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In recent years, there have been major changes in the way diseases are diagnosed and
investigated due to the advent of high-throughput technologies, as well as advances
in chemistry and physics. This has led to the development of microarrays, lab-on-a-
chip, proteomics, genomics, lipomics, metabolomics, and other new platforms.
These advances have enabled the discovery of new and novel markers of disease
relating to autoimmune disorders, cancers, endocrine diseases, genetic disorders,
sensory damage, intestinal diseases, and many other conditions too numerous to list
here. In many instances, these progressions have gone hand in hand with analysis of
biomarkers elucidated via traditional methods, such as histopathology, immunoas-
says, and clinical biochemistry. Together with microprocessor-based data analysis,
advanced statistics, and bioinformatics, these markers have been used to identify
individuals with active disease as well as those who are refractory or have
distinguishing pathologies.

Unfortunately, techniques and methods have not been readily transferable to other
disease states, and sometimes diagnosis still relies on a single analyte rather than a
cohort of markers. Furthermore, the discovery of many new markers has not been
put into clinical practice partly because of their cost and partly because some
scientists are unaware of their existence or the evidence is at the preclinical stage.
There is thus a demand for a comprehensive and focused evidence-based text that
addresses these issues. Hence the book Biomarkers in Disease: Methods, Discov-
eries, and Applications: Biomarkers in Diabetes. It imparts holistic information on
the scientific basis of health and biomarkers and covers the latest knowledge, trends,
and links with treatments. It links conventional approaches with new platforms.

In the present book, Biomarkers in Diabetes, we have sections on:

. Circulating and body fluid biomarkers

. Micronutrients and minerals

. Diets and macronutrients

. Genetic, molecular, and cellular variables

. Functional and physiological variables and platforms
. Biomarkers in specific conditions or scenarios

. Resources
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Vi Preface

The ability to transcend the intellectual divide is aided by the fact that each
chapter has:

* Key Facts (areas of focus explained for the lay person)

» Definitions of Words and Terms

» Applications to Prognosis, Other Diseases, or Conditions
* Summary Points

The material in Applications to Prognosis, Other Diseases, or Conditions
pertains to speculative or proposed areas of research, cross-transference to other
diseases or stages of the disease, translational issues, and other areas of wide
applicability.

The Editors recognize the difficulties in assigning chapters to parts of the book, as
some chapters can fit into more than one section. Nevertheless, the book has
enormously wide coverage and is well indexed.

The chapters are written by national and international experts. This book is
designed for endocrinologists, clinical biochemists, health scientists specializing in
diabetes, epidemiologists, researchers, doctors, and nurses, from students to practi-
tioners at the higher level. It is also designed to be suitable for lecturers and teachers
in health care and academic libraries as a reference guide.

London, UK Dr Vinood B. Patel
November 2022 Professor Victor R. Preedy
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Abstract

Hemoglobin A1C (HbA1c) has been used as a convenient screening test for the
diagnosis of diabetes and prediabetes, requiring no fasting, as well as a reliable
measure for monitoring the glycemic control in people with diabetes. As HbAlc
is the measure of the fraction of glycated hemoglobin out of total hemoglobin in
red blood cells, both blood glucose levels and blood cell conditions affect levels
of HbAlc. Consistently, genome-wide association studies on HbA1c have iden-
tified multiple genetic loci, largely grouped into two separate pathways — via the
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glycemic pathway and via the erythrocyte pathway. Two genetic variants, G6PD-
rs1050828 and HBB-1s334, specifically found in individuals with African ances-
try, were noted for their relatively large effects on HbAlc via the erythrocytic
pathway, compared to other genetic variants. The glycemic status of individuals
carrying the HbA 1c-lowering alleles might be underestimated by HbAlc levels,
as lower HbA lc level is observed compared to their actual glycemic status due to
their genetic influences on blood cell biology. In addition, several erythrocyte-
related genetic variants of small effects may also have a combined impact on
HbAIlc in this regard. Thus, the influences of these non-glycemic-related variants
need to be considered when the HbAlc test is performed to measure glycemic
status.

Keywords

HbAlc - Type 2 diabetes - Diabetes diagnosis - Genetic variant - SNP - GWAS -
Erythrocyte - Blood traits - RBC - Glucose - G6PD deficiency - Hemoglobin -
Sickle cell trait - HbAlc recalibration

Abbreviations

2 hr. OGTT  2-hour oral glucose tolerance test

ADA American Diabetes Association

G6PD Glucose-6-phosphate dehydrogenase

GRS Genetic risk score

GWAS Genome-wide association study

HbAlc Hemoglobin A1C

MAF Minor allele frequency

MAGIC The Meta-Analysis of Glucose and Insulin-related Traits

Consortium

MCV Mean corpuscular volume

RBC Red blood cell

SCT Sickle cell trait

SNP Single nucleotide polymorphism

T2D Type 2 diabetes

WGS Whole genome sequencing
Introduction

Hemoglobin A1C or glycated hemoglobin (HbAlc) has been used for diabetes
diagnosis as well as for monitoring glycemic control over the past 3 months for
people with diabetes (American Diabetes Association 2010). This glycated hemo-
globin is formed by blood glucose attached to the hemoglobin, specifically,
N-terminal of beta-chains, in red blood cells (RBC, erythrocyte) by the
non-enzymatic and irreversible reaction. Hence, the fraction of glycated hemoglo-
bin out of total hemoglobin reflects the blood glucose levels over the lifespan of
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erythrocytes, typically 120 days. While HbA1c¢ indirectly measures blood glucose
levels, HbAlc is a robust indicator of chronic hyperglycemia (high blood sugar)
over the past 3—4 months, compared to a glucose-level measurement at one time
point from a fasting blood glucose test or an oral glucose tolerance test, which can
vary depending on the activity levels, stress, and hormone levels (Bonora and
Tuomilehto 2011). Another strength of HbA1c¢ test is that it can be performed any
time without requiring 8 h of fasting or waiting for 2 h for the oral glucose test.
Furthermore, HbAlc is a prognostic marker of diabetic complication risk
such as diabetic retinopathy, nephropathy, and neuropathy (Skyler 1996). On the
other hand, HbAlc levels can be influenced by hematologic conditions such
as hemoglobinopathy, anemia, iron deficiency or overload, and recent blood
loss or transfusion (Cohen et al. 2008; Sacks 2012; American Diabetes Association
2021).

Given this clinical importance of HbAlc, recent genome-wide association studies
(GWASSs) have been conducted to understand the genetics of HbAlc. These genetic
studies suggest two major pathways on how genetic variants influence HbAlc
levels. One is glycemic-related pathway and the other is erythrocytic-related path-
way. We will look in detail on the identified genetic associations with HbAlc and
describe the clinical implications of these findings.

Overview of Genome-Wide Association Studies of HbA1c

Since the first GWAS of HbA1c in 2007 (Meigs et al. 2007) until now in 2021, over
15 GWASSs have been conducted on HbAlc by single ancestral group analysis in
Europeans (Meigs et al. 2007; Pare et al. 2008; Franklin et al. 2010; Soranzo et al.
2010; An et al. 2014; Prins et al. 2017), Hispanics/Latinos (Moon et al. 2019;
Wojcik et al. 2019), and East Asians or South Asians (Ryu and Lee 2012; Chen
et al. 2013; Chen et al. 2014; Hachiya et al. 2017; Kanai et al. 2018; Spracklen
et al. 2018; Chai et al. 2020) as well as by trans-ancestral analysis (Wheeler et al.
2017; Chen et al. 2021; Sarnowski et al. 2019) (Table 1). Very recently, the Meta-
Analysis of Glucose and Insulin-related Traits Consortium (MAGIC) published the
most diverse and 1 of the largest GWASs on HbA1c of 215,977 individuals free of
diabetes from 76 cohorts (including majority of prior GWAS cohorts), comprised
of 70% Europeans, 13% East Asians, 7% Hispanics/Latinos, 6% African Ameri-
cans, 3% South Asians, and 2% sub-Saharan Africans (Chen et al. 2021). The
study identified 127 HbAlc-associated loci (218 variants), explaining about
4.5-6% of HbAlc variation (Chen et al. 2021). In addition, a whole genome
sequencing (WGS)-based association study identified several low-frequency or
rare variants associated with HbAlc (i.e., rs1039215 in HBG2 and HBEI,
1s76723693 in coding region of G6PD with p.Leu353Pro) in 10,338 individuals
(6158 Europeans, 3123 Africa Americans, 650 Hispanics, and 407 East Asians) in
the Trans-Omics for Precision Medicine (TOPMed) Program (Sarnowski et al.
2019). The analysis with WGS is expected to grow and provide enhanced under-
standing of genetics of HbAlc.
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Table 1 Genome-wide association studies on HbAlc. Studies in bold face have functional
characterization of identified genetic variants, which we refer often in this chapter. As
GWAS studies are progressing to include more samples and diverse ancestry, large
multi-cohort studies may include the study samples used in previously published paper. Most
of summary are generated from GWAS Catalog, https://www.ebi.ac.uk/gwas/efotraits/EFO_
0004541. Abbreviations: AA (African American), AF (African), EA (East Asian), EUR
(European), HL (Hispanic/Latino), NR (Not reported), SA (South Asian), SEA (South East

Asian)

First author (publication year)

Meigs JB (2007) (Meigs et al.
2007)

Paré G (2008) (Pare et al. 2008)

Franklin CS (2010) (Franklin
et al. 2010)

Soranzo N (2010) (Soranzo
et al. 2010)

Ryu J (2012) (Ryu and Lee 2012)
Chen P (2013) (Chen et al. 2013)
An P (2013) (An et al. 2014)

Chen P (2014) (Chen et al.
2014)

Prins BP (2017) (Prins et al.
2017)

Wheeler E (2017) (Wheeler
et al. 2017)

Hachiya T (2017) (Hachiya et al.
2017)

Kanai M (2018) (Kanai et al.
2018)

Spracklen CN (2018) (Spracklen
et al. 2018)

Moon JY (2019) (Moon et al.
2019)

Wojcik GL (2019) (Wojcik et al.
2019)

Sarnowski C (2019)*
(Sarnowski et al. 2019)

Chai JF (2020)° (Chai et al. 2020)

Sinnott-Armstrong N (2021)
(Sinnott-Armstrong et al. 2021)

Chen J (2021) (Chen et al. 2021)

Discovery population
982 EUR

14,618 EUR
1782 EUR

46,368 EUR

4275 EA

3427 EA, 1735 SEA, 1529 SA
4088 EUR

17,290 EA, 1727 SEA,

9436 EUR

88,355 EUR, 7564 AA, 7572 SA, 18,472
EA

7704 EA

42,790 EA

6943 EA

9636 HL

10,408 HL, 92 EA, 115 NR, 559 AA

6158 EUR, 3123 AA, 650 HL, 407 EA

2704 SEA
327,177 EUR, 4847 AA, 6895 SA

215,974 subjects: AA (6%), EA (13%), EUR

(70%), HL (7%), SA (3%), sub-Saharan
African (2%)

“Whole genome sequencing-based GWAS
"GWAS array and whole exome sequencing-based GWAS

Identified
genetic loci

4

60

28

470

127


https://www.ebi.ac.uk/gwas/efotraits/EFO_0004541
https://www.ebi.ac.uk/gwas/efotraits/EFO_0004541
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Functional Characterization of HbA1c-Associated Genetic
Variants

As HbAlc level is influenced by both blood glucose level and hematologic condi-
tions, GWASs of HbAlc also unveil the glycemic-related pathway and the
erythrocyte-related pathway for these HbAlc loci (Fig. 1). The most recent work
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Fig. 1 HbAlc-associated genetic loci and functional classification. The loci and functional classi-
fication are from Supplemental Tables 2 and 20 in Chen et al. (2021). The erythrocyte-related
classification includes the functional classification into mature red blood cell, reticulocyte, and iron-
related classification. One genetic variant of the highest BF for each loci and classification was depicted
in the figure. Logl10BF is logoBayes Factor of meta-analysis of single-ancestry GWAS using MAN-
TRA, where loglOBF > 6 considered to be genome-wide significant, approximately comparable to
P <5 x 10~% *G6PD and HBB were not included for functional classification in Chen et al. (2021),
but multiple studies indicate them to be associated with HbAlc via the erythrocyte pathway
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lead by Chen et al. in MAGIC (Chen et al. 2021) classified 218 HbA 1c-associated
genetic variants into glycemic-related (n = 53); erythrocyte-related (n = 115) includ-
ing mature red blood cell-related (n = 64), reticulocyte-related (n = 39), and iron-
related (n = 12); and unclassified (n = 23), excluding 27 variants with insufficient
information. This classification showed 82.1% consistency with a previous classifi-
cation of 61 HbAlc-associated variants into 19 through the glycemic pathway,
22 through the erythrocytic pathway, and 19 unclassified, in the work by Wheeler
et al. (2017).

The functional classification of the identified genetic variants have been
performed by examining the summary association statistics of glycemic-related traits
and erythrocyte-related traits (Wheeler et al. 2017; Moon et al. 2019; Soranzo et al.
2010; Sarnowski et al. 2019), by examining if the genetic association with HbAlc is
attenuated after conditioning on glycemic- or erythrocyte-related traits (Wheeler
et al. 2017; Soranzo et al. 2010), or by clustering the summary association signals
of glycemic and erythrocyte traits using a non-negative matrix factorization (Chen
et al. 2021). Glycemic traits include fasting glucose, 2-h glucose, fasting insulin,
HOMA-B, or HOMA-IR (Wheeler et al. 2017; Moon et al. 2019; Chen et al. 2021).
Erythrocyte-related traits include mature red blood cell traits, reticulocyte traits, and
iron traits, which can affect the hemoglobin levels and the opportunity of glycation
of hemoglobin (Wheeler et al. 2017; Moon et al. 2019; Chen et al. 2021).

Glycemic-Related Genetic Variants

These glycemic-related HbAlc variants are located in or near the genes which are
known to be involved in glucose metabolism. For example, GCK encodes glucoki-
nase, an enzyme sensing glucose, when blood glucose rises, the glucokinase helps to
stimulate the insulin secretion from B-cells in pancreas (Matschinsky 1996). Multiple
genetic variants (rs1799884 (in the promoter), rs2908286 (intron), rs2971670
(intron), 1s3757840 (intron)) in the region of glucokinase gene (GCK) are associated
with HbAlc and other glycemic traits (Wheeler et al. 2017; Chen et al. 2021;
Soranzo et al. 2010). Given the important role of GCK in glucose metabolism,
variants and mutations in GCK show a broad spectrum of glycemic disorders such as
neonatal, childhood-onset, maturity-onset, and type 2 diabetes (Raimondo et al.
2014; Bonnefond et al. 2020; Vaxillaire et al. 2008; Fu et al. 2013). Yet, a clear
mechanism remains unknown how the identified SNPs in the promoter or intron of
GCK affect the functionality of GCK.

Another glycemic-related genetic variant is 1s560887 (G-to-A) located in the
intron of G6PC2 gene, encoding glucose-6-phosphatase catalytic subunit-related
protein (Soranzo et al. 2010; Wheeler et al. 2017; Chen et al. 2021). The gene is
expressed specifically in pancreatic islets, and A allele of rs560887 is strongly
associated with lower fasting glucose level, B-cell function (HOMA-B), and
HbAlc (Bouatia-Naji et al. 2008). It has been suggested that G6PC2 plays a role
in the glucose phosphorylation pathway, along with GCK and GCKR (glucokinase
regulatory protein) (Bouatia-Naji et al. 2008). Other genetic loci affecting HbAlc
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through the glycemic pathway include CDKALI, KCNQI, INS, TCF7L2, MTNRI1B,
ABCBII, and so on (Chen et al. 2021; Leong and Meigs 2015). A genetic risk score
of 19 glycemic-related variants weighted by their effect sizes on HbAlc in Wheeler
et al. was found to be associated with increased risk of incident diabetes during
10-15 years of follow-up (odds ratio per weighted allele 1.05, 95% CI 1.04—-1.06)
(Wheeler et al. 2017). In addition, another weighted genetic risk score of LD-pruned
53 variants in Chen et al. also showed the positive association with odds of T2D
(Chen et al. 2021). These results support the validity of the classified glycemic-
related genetic variants of HbAlc.

Erythrocyte-Related Genetic Variants

A well-established locus affecting HbAlc via erythrocyte-related pathway is G6PD
(glucose-6-phosphate dehydrogenase) (Wheeler et al. 2017; Moon et al. 2019).
G6PD is a key enzyme in producing NADPH (nicotinamide adenine dinucleotide
phosphate), which prevents reactive oxygen species (ROS) to be built to toxic level
within red blood cells. When an excess amount of ROS is triggered by certain drugs,
infection, or fava bean intake to the people with G6PD deficiency, the damage and
destruction of RBC is faster than its production, causing hemolytic anemia
(MedlinePlus). This shortened lifespan of RBC, in other words, shorter period of
time for hemoglobin to be glycated, leads to lower HbAlc level, which is observed
for the people with G6PD deficiency. Consistently, the top signal rs1050828 (C-to-T
for p.Val98Met) in G6PD was identified to be associated with HbAlc levels by
several studies (Wheeler et al. 2017; Moon et al. 2019; Sarnowski et al. 2019), and
individuals carrying minor allele (A allele) of rs1050828 showed lower HbAlc
level, 0.81% units lower in hemizygous men (AA vs GG) and 0.68% units lower
in homozygous women (AA vs GG) in African Americans (Wheeler et al. 2017), and
0.35% lower per A allele in US Hispanics/Latinos population (Moon et al. 2019),
summarized in Table 2. In addition, this non-glycemic effect of rs1050828 on
HbAlc is supported by the fructosamine measurement which reflects the serum
protein glycation over 2-3 weeks, and the measured HbAlc is lower than
fructosamine-predicted HbAlc for individuals carrying A allele (Wheeler et al.
2017). Further, a recent whole genome sequencing study identified several additional
missense variants in G6PD such as 1576723693 (A-to-G for p.Leu353Pro, G allele
frequency 0.5% in African ancestry, and 0.07% in Hispanics/Latinos) and rs5030872
(T-to-A for p.Asp211Val, MAF = 0.0002) (Sarnowski et al. 2019). Some of these
variants in G6PD may have arisen from the positive natural selection against malaria
infection as G6PD deficiency shows a relative protection against severe malaria
(Guindo et al. 2007; Mason et al. 2007). This can be potentially explained by the
rapid destruction of the infected red blood cells along with malaria parasite in people
with G6PD deficiency, as the excessive ROS is produced in the red blood cell when
hemoglobin is degraded by malaria (Mason et al. 2007; Cappadoro et al. 1998).
Another example is HBB-1s334 (A-to-T for p.Glu7Val), a causal mutation for
sickle cell trait (SCT) and sickle cell disease (Lacy et al. 2017; Moon et al. 2019;
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Gordon et al. 2020; Chen et al. 2021). T allele is specifically found in African
ancestry (4.3%) and Hispanics/Latinos (0.6%) (Table 2). The missense mutation of
rs334 (p.Glu7Val) makes an abnormal type of hemoglobin, called hemoglobin
S. Having two copies of hemoglobin S (TT genotype) makes rigid and sickle-
shaped RBCs, called sickle cell disease, causing lifelong chronic hemolytic anemia.
Individuals with heterozygous genotype (AT), classified to have SCT, don’t show
any symptoms like sickle cell disease, but can develop alike symptoms in rare cases
under extreme circumferences like low oxygen level and increased pressure. It
remains unclear why the people with SCT have lower HbAlc. A potential explana-
tion is shorter lifespan of RBC with SCT, leading to less opportunity for glycation
(Lacy et al. 2017), though there is limited and conflicting evidence (Gordon et al.
2020; Suarez et al. 1959; McCurdy 1969; Lacy et al. 2017). Another explanation is
the smaller size of RBC (microcytes) with SCT, characterized by low mean corpus-
cular volume (MCV) (Moon et al. 2019). The small size puts RBCs more susceptible
to ROS damage, leading to shorter lifespan (Vives Corrons et al. 1995). Lastly, a
minor interference by hemoglobin S type in HbAlc measurement has been
reported in certain HbAlc assays (Lacy et al. 2017; Roberts et al. 2005; Rohlfing
et al. 2017), although the studies identifying the association between rs334 and
HbAlc (Moon et al. 2019; Lacy et al. 2017) used HbAlc assays (Tosoh G7 and
Tosoh 2.2) with no clinically significant interference (NGSP).

Other genetic loci influencing HbA 1¢ through erythrocyte-related pathway include
FN3K, TMPRSS6, HK1, HFE, and so on (Leong and Meigs 2015; Soranzo et al. 2010;
Wheeler et al. 2017; Chen et al. 2021). In addition, Amerindian ancestry-specific
variant, HBM-rs145546625, is suggested to affect HbAlc via RBC biology (Moon
et al. 2019). Unlike the positive association between the glycemic-related GRS and
incident diabetes, no association was observed between the erythrocyte-related GRS
and incident diabetes (Wheeler et al. 2017). This corroborates two separate genetic
pathways (i.e., glycemic and erythrocyte) influencing HbAlc levels. Furthermore, it
suggests to consider erythrocyte-related genetic factors and/or non-glycemic health
conditions which can influence HbAlc levels in a broad sense, in using HbAlc as a
diagnostic marker for diabetes, as HbAlc levels can be increased or decreased
depending on their blood-related genetic factors, unrelated with glycemic status.

Unclassified Genetic Variants

Although Chen and colleagues (2021) were able to classify 16 out of 19 unclassified
genetic variants in Wheeler et al. (2017) mostly into erythrocyte related variants,
aided by expanded GWAS on glycemic, RBC, and iron traits as well as the
application of statistical methods for classification (e.g., a fuzzy clustering), 11%
of HbAlc-associated variants are still unclassified such as VPS134-rs7847351 and
rs12351997, SPTA1-rs8577725 and rs857676, FADS2-rs174584, etc. (Chen et al.
2021; Wheeler et al. 2017). Further studies enhanced with large-scale, diverse
population, WGS data, gene expression, and epigenome will help better understand
mechanisms underlying these associations.
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Erythrocyte-Related HbA1c Variants and Glycemic Status
Screening

As erythrocyte-related genetic variants affect HbAlc level by hematologic path-
way not via glucose metabolism pathway, the information on genetic variants can
augment the HbA 1c test for better diagnosis of diabetes and monitoring of glyce-
mic control. Multiple research advocate this by examining the potential conse-
quence after taking into account a few erythrocyte-related genetic variants with
large effects (G6PD-rs1050828 and rs76723693 and/or HBB-rs334) (Wheeler et al.
2017; Lacy et al. 2017; Moon et al. 2019) or a cumulative effect of overall
erythrocyte-related genetic variants (Soranzo et al. 2010; Moon et al. 2019).
Table 2 summarizes the list of genetic variants estimated to have a large genetic
effect of ~0.3% per allele on HbA 1c to markedly interfere the clinical interpreta-
tion of HbAlc test, while other variants were estimated to have small effects on
HbA 1c around 0.03% per allele. For reference, the HbA 1c cut-off suggested by the
American Diabetes Association (ADA) is >6.5% (48 mmol/mol) for diabetes and
5.7-6.4% (39-47 mmol/mol) for impaired glucose tolerant/prediabetes (American
Diabetes 2018). The clinical importance of HbAlc test for diabetes screening is
emphasized by the convenience of test without fasting or waiting, despite the
slightly lower sensitivity compared to fasting glucose or 2-h glucose in OGTT
(Cowie et al. 2010; Selvin et al. 2011). The following examples illustrate the
avenue for HbAlc test in consideration of genetic factors for better screening of
diabetes, summarized in Table 3.

G6PD: rs1050828 and rs76723693

Multiple studies consistently showed a large effect of rs1050828 in G6PD on
HbAlc levels (Table 2). Further, a WGS-based study identified an independent,
large-effect rare variant rs76723693. Both variants were observed specifically in
African ancestral populations such as 12% in African American and 2% in
Hispanics for A allele of rs1050828 and 0.5% in African American for G allele
of 176723693 (Sarnowski et al. 2019). Sarnowski et al. (2019) estimated that if a
single measurement of HbAlc was solely used for diabetes diagnosis without
consideration of these two G6PD variants, 2.32% of people with HbAlc < 6.5%
would have missed to have diabetes in African Americans and 0.26% in His-
panics/Latinos due to G6PD-rs1050828 and additional 0.13% in African Amer-
icans due to G6PD-rs76723693, estimated from the National Health and Nutrition
Examination Survey (NHANES) in 2015-2016. Thus, HbAlc tests with consid-
eration of G6PD variants would diagnose additional 740,000 African American
adults with 40,000 from the rare variant rs767723693 and 100,000 Hispanic
adults to have diabetes, given 30.14 million African American adults
and 39.33 million Hispanics adults from 2016 US Census Bureau (Sarnowski
et al. 2019).
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Table 3 Potential clinical implication of erythrocyte-related genetic variants on HbAlc test
for diabetes screening, among the people without any prior physician diagnosis or anti-
diabetic medication. The percentage of reclassification is shown comparing the diabetes diagnosis
by HbAlc (>6.5%) and by erythrocyte-related variants adjusted HbAlc (>6.5%), unless otherwise
noted. Abbreviations: AA (African American), EA (East Asian), EUR (European), HL (Hispanic/
Latino)

% of people with

First reclassification from
Single or two variant author undiagnosed to
adjustment (Year) diagnosed
G6PD-rs1050828 Wheeler E | 2% in AA

(2017)
G6PD-rs1050828 and Sarnowski | 2.32% adjusting for
1s76723693 C (2019) rs1050828 in AA

+0.13% with
additional adjustment
of 1576723693 in AA
0.26% adjusting for
rs1050828 in HL

G6PD-rs1050828 + HBB- Moon JY 1.3% for prediabetes
rs334 (2019) or diabetes
(HbAlc > 5.7%) in
HL
Multiple variant adjustment | First % of people with % of people with
author reclassification from | reclassification from
(year) undiagnosed to diagnosed to
diagnosed” undiagnosed”
7 SNPs (FN3K, HFE, Soranzo N | 0.02% in EUR 8.7% in EUR
TMPRSS6, ANK1, SPTAI, (2010)
ATP11A, and HK1)
6 SNPs (TMEN79, HB21L/ Chen P 0.29% in EA 29.2% in EA
MYB, MYO9B, CYBA, (2014)
ANKI1, and FN3K)
22 SNPs (TMEM?79, SPTAI, Wheeler E 0.04% in EUR 10.5% in EUR
SYN2, HFE-1s1800562, (2017) 0.68% in AA 18.1% in AA
HFE-1s198846, C6orf183, 0.14% in EA 8.5% in EA

MYB, CITED2, ANKI,
SLC20A2, C9orf47, HKI,
CNTNS, SENP1, ATXN2,
ITFG3, CDH3, CDTI,
ERALI, MYO9B, TMPRSS6,
G6PD)

“Reinterpreted the result from each paper

HBB-rs334

About 1 in 13 African Americans has SCT (Centers for Disease Control and Preven-
tion), and individuals with AT genotype of HBB-rs334 (the most common mutation for
SCT) have 0.29% lower HbAlc value (95% CI 0.23-0.35%) than those without SCT
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(rs334 AA genotype), for the same fasting glucose or 2-h glucose levels (Lacy et al.
2017). Likewise, among individuals without self-reported diabetes or antidiabetic med-
ication use, the prevalence of prediabetes and diabetes were comparable between HBB-
rs334 genotype groups when prediabetes and diabetes were defined by fasting glucose
or 2-h glucose. When HbA 1c was used to define the hyperglycemia, individuals with
AT genotype of HBB-rs334 (SCT) had lower prevalence in prediabetes (29.2% vs
48.6%) and diabetes (3.8% vs 7.3%) compared to those with AA genotype (no SCT).

G6PD-rs1050828 and HBB-rs334

In US Hispanics/Latinos excluding those with diagnosed diabetes or sickle cell
disease (TT genotype of HBB-rs334), rs1050828 in G6PD and rs334 in HBB were
both identified to have large effects on HbAlc: —0.35% per A allele of G6PD-
rs1050828 and — 0.33% per T allele of HBB-rs334 (Moon et al. 2019). The
prevalence of hyperglycemia (prediabetes and diabetes) defined using fasting glu-
cose (> 100 mg/dL) or OGTT 2-h glucose (> 140 mg/dL) was similar between
carriers of HBB-1s334 or G6PD-rs1050828 HbA 1c-lowering alleles and non-carriers
(21.2% vs 25.4% and 18.6% vs 21.8%, respectively), while the prevalence of
hyperglycemia defined using HbAlc (> 5.7%) was significantly lower in carriers
than non-carriers (12.2% vs 28.4%). Similarly, carriers tended to have lower HbAlc
than non-carriers at the same fasting glucose levels (Fig. 2 left panel). After the
recalibration of HbAlc taking into account both variants, HbAlC.ccalibrated

1 1 1 a; 1 1 — 1
cpo___ +] .;' E Dc_\ -3 ‘,
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Fig. 2 Scatterplots of measured HbAlc and genetically adjusted HbAlc against fasting
glucose in carriers and non-carriers of HBB-rs334 or G6PD-rs1050828 minor alleles.
Zoomed-in plots among the individuals without diagnosed diabetes. Red points indicate carriers,
and blue points indicate non-carriers of HBB-rs334 or G6PD-rs1050828 minor alleles. Published
previously in Moon et al. A Genome-Wide Association Study Identifies Blood Disorder-Related
Variants Influencing Hemoglobin Alc With Implications for Glycemic Status in U.S. Hispanics/
Latinos. Diabetes Care 2019;42(9):1784—1791. Copyright 2019 by the American Diabetes
Association



1 Linking Variants of Hemoglobin A1C and Glycemic Status 15

(%) = HbA 1 Cheasured (%0) + 0.33 x number of T alleles in HBB-rs334 + 0.35 X num-
ber of A alleles in G6PD-rs1050828, the hyperglycemia prevalence defined by
HbAlc was similar between carriers and non-carriers (31.3% vs 28.4%). Also,
carriers and non-carriers showed comparable recalibrated HbAlc levels against the
same fasting glucose levels (Fig. 2 right panel).

Cumulative Effect of Erythrocyte-Related Genetic Variants

Although the effect sizes of majority of erythrocyte-related genetic variants are small to
make a clinical difference on its own, a cumulative effect of multiple erythrocyte-related
genetic variants may also have a clinical influence on HbAlc levels. For example,
between top 5% and bottom 5% of a weighted GRS of 22 erythrocyte-related genetic
variants, the mean difference in HbA 1c was 0.26% (95% CI 0.22-0.30%) in a European
ancestry population (Wheeler et al. 2017). Thus, the cumulative effect of erythrocyte-
related genetic variants could have a critical impact in diabetes screening using HbAlc.
Adjusting for the effect of erythrocytic variants on HbAlc levels has been shown to
improve reclassification for individuals with discordant diabetes status between HbAlc
(> 6.5% for diabetes) and fasting glucose (> 7 mmol/L for diabetes) (Wheeler et al.
2017). Out of 18,613 individuals without diabetes by fasting glucose (<7 mmol/L), 266
individuals were classified to have diabetes by unadjusted (HbAlc (> 6.5%) and
50 (18.8% reclassification) individuals were reclassified to have no diabetes using
the adjusted HbAlc level with cumulative erythrocytic variants’ effects. Among
390 individuals classified to have diabetes by fasting glucose but not by HbAlc, only
5 (1.3%) individuals were reclassified to have diabetes using adjusted HbAlc.

Conclusion

GWAS on HbAlc, accompanied by GWAS on glycemic traits and blood traits,
illustrates two separate pathways for HbAlc — glycemic pathway and erythrocytic
pathway. The genetic variants in the glycemic pathway along with GWAS on other
glycemic traits will provide the comprehensive understanding of the development of
diabetes. The erythrocyte-related genetic variants associated with HbA 1¢ suggest the
clinical use of recalibrated HbAlc by genetic variants for hyperglycemia diagnosis,
especially, G6PD-rs1050828 and HBB-rs334. These studies are expected to merit
the personalized strategy for the prevention, diagnosis, and treatment of diabetes.

Applications to Other Diseases or Conditions

In this chapter, we reviewed genetic variants associated with HbAlc levels identified
by recent GWAS and their implications in hyperglycemia and diabetes diagnosis. In
particular, several studies have suggested a potential clinical use of recalibrated HbA lc
by erythrocyte-related genetic variants for hyperglycemia and diabetes diagnosis. It is
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possible that these erythrocyte-related genetic variants may also have implications in
other diseases or conditions, especially diabetes complications, such as cardiovascular
disease, chronic kidney disease, neuropathy, etc. For example, Yeung et al. (2018)
(Au Yeung et al. 2018) found that the glycemic-related GRS, but not the erythrocyte-
related GRS, was associated with risk of CAD using the Mendelian randomization.

Mini-Dictionary of Terms

* G6PD deficiency. An inherited condition through G6PD gene on the X chromo-
some, hence affecting more males than females. The people with G6PD deficiency do
not have enough enzyme called G6PD (glucose-6-phosphate dehydrogenase), which
protects red blood cells against reactive oxygen species. Hemolytic anemia (prema-
ture breakdown of red blood cells) can be triggered on the people with G6PD
deficiency under certain conditions such as bacterial or viral infections, antimalarial
medication, aspirin, nonsteroidal anti-inflammatory medication, and fava bean
intake.

* Genetic risk score (GRS). A score for the susceptibility to a disease (trait),
calculated based on the genetic variants and their effects associated with the
disease (trait).

* Genetic variant. An alternative nucleotide sequence to the most commonly
observed DNA nucleotide sequence. The impact of the variant varies — benign,
uncertain significance, and pathogenic.

* Genome-wide association study (GWAS). A study to identify genetic variants
associated with a particular trait across the genome.

* Hemoglobin. A protein molecule in red blood cells to transport oxygen from the
lungs to the tissues in the body. The normal hemoglobin consists of two alpha-
globins and two beta-globins. Each of the globins contains an iron-containing
molecule, called heme, which binds to oxygen.

* HbAlc. The percentage of glycated hemoglobin. Glycated hemoglobin is formed
by the hemologin by the spontaneous chemical binding reaction of a sugar such
as glucose, galactose, and fructose.

» Sickle cell trait. The people with sickle cell trait carry one copy of a defective
beta-globin gene, making an abnormal hemoglobin (HbS). The people with sickle
cell trait do not show symptoms like the people with sickle cell disease with two
copies of defective beta-globin gene, presenting sickle-shaped red blood cells.

* Whole genome sequencing (WGS). A next-generation sequencing technique to
sequence the DNA (genome) base by base. In contrary, assay-based genotyping
provides the genetic variation information for pre-determined set of genetic variants.

Key Facts of HbA1c

HbAlc is the percentage of glycated hemoglobin out of total hemoglobin.
HbAlc is the indirect measure of blood glucose level over the lifespan of red blood
cells, typically 120 days.
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Independent of glucose level, HbAlc can be affected by hematological conditions
such as lifespan of erythrocytes, iron deficiency, and blood transfusion.

An HbAlc test is widely used for diabetes screening test, requiring no fasting.

HbAlc level is used to monitor the glycemic control for people with diabetes.

Summary Points

* HbAlc level is affected by blood glucose level and hematological conditions.

»  GWAS identified multiple genetic loci associated with HbAlc, via glucose metab-
olism pathway and via erythrocytic pathway.

» Two African ancestry-specific variants, G6PD-rs1050828 and HBB-rs334,
showed around 0.3% lower HbAlc per one minor allele, which poses clinical
consideration of the two variants for HbAlc-based diabetes screening test.

*  Multiple erythrocyte-related genetic variants of small size can also be considered
to recalibrate HbAlc for diabetes screening test.

* Glycemic-related genetic variants infer the genetic susceptibility to diabetes.
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Abstract

In our modern society, we are faced with a mismatch between our evolutionary
past as a human species and the current challenges arising from a modern society,
where physical inactivity and the consumption of energy-dense foods are
indulged and ubiquitous. It is with no surprise that over the past century, this
paradigm has led to an increase in the incidence and prevalence of several
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noncommunicable chronic diseases, including obesity, cardiovascular diseases,
neurodegenerative diseases, cancer, and the special focus of this chapter, type
2 diabetes mellitus (T2DM), in which the lipid and inflammatory profiles play a
major role in the pathophysiology.

In the following sections, we will provide an insight on how the lipid and
inflammatory profiles are related to the pathophysiology of T2DM and shed some
light on how acute and chronic exercise can impact and ameliorate the metabolic
dysfunction in 72DM individuals. In the first section, we will address the rela-
tionship of the lipid biomarkers with both obesity and T2DM by examining the
classic pathophysiology of dyslipidemia, while going into further detail on the
organ-crosstalk among the adipose tissue, muscle, and liver. At the muscle level,
we will highlight the interrelationships between intramyocellular lipids and lipid
intermediates and the development of muscle insulin resistance, whereas, at the
liver, we will discuss how intrahepatic lipids are a strong lipid biomarker capable
of predicting hepatic insulin resistance and other obesity-related complications.
We will then connect how acute and chronic exercise can impact these aforemen-
tioned lipid biomarkers through a mechanistic approach, as well as provide a
detailed review of the most recent results from randomized controlled trials
(RCT) on the classic, clinically used lipid biomarkers (e.g., low- and high-density
lipoprotein cholesterol and triglycerides). In the second section, we will review
the link between adipose tissue dysfunction and chronic low-grade inflammation
in both obesity and T2DM, while taking a closer look at the inflammatory
biomarkers that have been mostly studied in the exercise physiology field and
that have been implicated in the pathophysiology of T2DM. Finally, and follow-
ing the same trend as the first section on lipid biomarkers, we will discuss the
impact of acute and chronic exercise on the inflammatory milieu and review the
most recent RCT investigations, while focusing on the impact of certain exercise
characteristics, such as the duration, intensity, and type of intervention.

Keywords

Dyslipidemia - Obesity - Insulin resistance - Aerobic - Resistance - Cytokines -
Adipokines - Myokines - Lipid intermediates - Randomized controlled trials

Abbreviations

CRP C-reactive protein

DAG Diacylglycerols

DNL De novo lipogenesis

FFA Free fatty acid

HDL-C High-density lipoprotein cholesterol
HIT High-intensity interval training

IHL Intrahepatic lipids

IL-1B Interleukin 1 beta

IL-6 Interleukin 6

IMCL Intramyocellular lipids
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LCA-CoA Long-chain acyl-CoAs
LDL-C Low-density lipoprotein cholesterol

LPL Lipoprotein lipase

MCT Moderate continuous training
NAFLD Nonalcoholic fatty liver disease
RCT Randomized controlled trial
RT Resistance training

T2DM Type 2 diabetes mellitus

TC Total cholesterol

TG Triglycerides

TNF-a Tumor necrosis factor alpha
VLDL Very-low-density lipoprotein

Lipid Profile and T2DM
Introduction to Lipids and T2DM

Fat and lipids are essential components of all cells of the human body, where they
play an important role in energy production, cell membrane structure, as well as
many signaling processes. However, under circumstances of sustained positive
energy balance, excessive circulating lipids and fat storage can lead to the increased
risk of several chronic diseases, including T2DM. The energy balance mismatch is a
common occurrence in our modern society and is considered the main culprit behind
the overload of the adipose tissue depots that results in the overspill of lipids into
other organs (i.e., ectopic fat), especially that of the muscle and liver, which
contributes to insulin resistance in these tissues and the development of T2DM. In
the following sections (“The Relationship Between Obesity and Lipids,” “The
Relationship Between Lipids and T2DM,” and “Lipid Intermediates and Insulin
Resistance”), we intend to provide an overview of the role of lipids in obesity and
T2DM, while further exploring the relationship between intramyocellular lipids,
lipid intermediates, and intrahepatic lipids with the development of insulin resistance
and other obesity-related complications. We will then go from mechanisms to
orientation on how acute and chronic exercise can be used as a viable strategy to
improve these lipid-related biomarkers and contribute to an improved treatment and
control of T2DM in section “Role of Exercise on Lipid Metabolism in T2DM.”

The Relationship Between Obesity and Lipids

Obesity is at the heart of several cardiometabolic dysfunctions, including but not limited
to, impaired glucose tolerance, hypertension, and dyslipidemia (Tchernof and Despres
2013; Heymsfield and Wadden 2017). The first evidence that individuals presenting a
visceral adipose tissue phenotype had an impaired metabolic profile came in the late
1980s, where higher triglyceride and plasma glucose levels were observed following an
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oral glucose test when compared with matched body mass index (BMI) peers with an
abdominal subcutaneous adipose tissue phenotype (Fujioka et al. 1987). Following this
same line of research, several investigations laid down additional support that individ-
uals with obesity and a visceral adipose tissue phenotype were considered at risk for
several cardiometabolic risk factors, including dyslipidemia and impaired glycemic
control, and hence at risk for developing T2DM (Despres et al. 1990; Ross et al.
2020). Moreover, these previous investigations also addressed the importance of
looking beyond the quantity of body fat mass, and instead focusing on the quality of
the adipose tissue, represented by the extensibility capacities of the abdominal subcu-
taneous and visceral adipose tissue, and their relationship with cardiometabolic risk
factors (Tchernof and Despres 2013; Heymsfield and Wadden 2017).

When faced with a continuous energy surplus due to a positive energy balance, the
subcutaneous adipose tissue will be confronted with circumstances where it may not
be able to cope and expand. This, in turn, may lead to a lipodystrophic state and the
accumulation of lipids in unsought sites such as the visceral cavity (Tchernof and
Despres 2013, Heymsfield and Wadden 2017). In such a scenario, it is important to
understand that visceral adipose tissue has different lipolytic responsiveness to insulin
stimulation when compared with peripheral subcutaneous adipose tissue (Ross et al.
2020). In fact, when exposed to a high dose of insulin, subcutaneous adipose tissue in
the lower body can suppress its lipolytic activity, whereas visceral adipose tissue can
only suppress lipolysis by half under the same conditions (Nielsen et al. 2004). One
possible explanation for the differing responsiveness to insulin may be related to
adipocyte size, as insulin sensitivity is inversely related to fat cell size and the level
of hypertrophy of the adipocyte (Bays 2011). The higher basal and stimulated rates of
lipolysis found in the larger adipocytes characteristic of visceral fat can greatly impact
the lipid profile, given that approximately 50% of the portal vein flux of free fatty acids
(FFA) in individuals with obesity originates from visceral fat, whereas in lean indi-
viduals, this value is only around 5-10% (Nielsen et al. 2004).

Overall, the impaired capacity of properly storing lipids following a meal in
addition to the increase in circulating FFA are responsible for the subsequent
increase of fat deposited in the visceral tissues. Given that the liver plays a major
role in regulating lipid transport, the accumulation of fat within this visceral tissue is
a cornerstone of the dyslipidemia process (Petersen and Shulman 2018). Individuals
with obesity and a fatty liver have an overproduction of apolipoprotein B (apoB) to
accommodate the increased amount of triglycerides (TG) in the liver (derived from
the increased flux of FFA), which are later incorporated into large very-low-density
lipoproteins (VLDL) (Petersen and Shulman 2018). The combination of large VLDL
particles and the inability of the insulin-resistant liver to suppress VLDL secretion
postprandially are the culprits behind the hypertriglyceridemia state, which will be
further detailed in the following section regarding lipids and T2DM. Other charac-
teristics of dyslipidemia observed in the visceral adipose tissue phenotype include
low values of high-density lipoprotein cholesterol (HDL-C), with a decrease in the
number and size of these lipoproteins, and an increase in low-density lipoprotein
cholesterol (LDL-C) that tends to be smaller and denser than those found in a
healthier lipid profile (Tchernof and Despres 2013). These changes in LDL-C,
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which are a consequence of the increased values of apoB and the changes observed
in the VLDL particles, alongside the remaining dysfunctional lipid profile found in
individuals with obesity, are responsible for the increased cardiometabolic risk with
obesity (Tchernof and Despres 2013; Seidman et al. 2014).

The Relationship Between Lipids and T2DM

The mechanism of lipid-induced insulin resistance remains not fully elucidated. As
previously explained, when the buffering capacity of adipose tissue to store fatty
acids is exceeded, the overspill of lipids into other organs is expected, leading to the
accumulation of ectopic fat. In particular, the storage and accumulation of lipids in
the liver and muscle is a hallmark of T2DM (Petersen and Shulman 2018). It is when
looking at this triangle between the adipose tissue, muscle, and liver that we are able
to understand both tissue-autonomous and crosstalk-dependent mechanisms through
which lipids can lead to an insulin-resistant state. For instance, in the liver, the
increased circulating levels of FFA and glycerol derived from the insulin-resistant
lipolytic adipose tissue are responsible for the impaired processes of glycogen
synthesis and gluconeogenesis (Petersen and Shulman 2018). Both glycerol and
pyruvate carboxylase (which is increased from FFA beta-oxidation) are responsible
for increasing gluconeogenesis and hepatic glucose production (Despres et al. 1990).

Beyond the impact of lipids on insulin resistance, lipid accumulation in the liver
can also lead to nonalcoholic fatty liver disease (NAFLD), a common comorbidity
coexisting in the majority of individuals with T2DM (Brouwers et al. 2016).
Intrahepatic lipid (IHL) accumulation can occur as a result of: (1) saturated
VLDL-TG export, (2) increased uptake of FFA due to higher circulating concentra-
tions resulting from elevated lipolysis from insulin-resistant adipose tissue, (3) a
reduction in FFA oxidation, and (4) increased liver FFA synthesis, otherwise known
as de novo lipogenesis (DNL), which is stimulated by hyperinsulinemia and hepatic
glucose uptake (Brouwers et al. 2016). The selective insulin resistance observed in
T2DM is a major contributor facilitating the accumulation of IHL and the develop-
ment of NAFLD in individuals with T2DM. Although the actions of insulin to
suppress lipolysis in adipose tissue and VLDL production by the liver through
Fox01 gene are impaired in T2DM, insulin is still able to stimulate the mechanistic
target of rapamycin complex 1 (mTORC1), which promotes DNL and apoB secre-
tion (Taskinen and Boren 2015). As a result, there is an increased flux of FFA to the
liver from adipose tissue lipolysis and DNL, which together expand the pool of IHL,
promoting the increased secretion of apoB-VLDLs as well as FFA oxidation (Adiels
et al. 2008; Taskinen and Boren 2015). Eventually, however, the increased secretion
of VLDLs and rate of FFA oxidation are unable to keep up with the continuing
increased flux of FFA to the liver, which results in further IHL accumulation leading
to hepatic steatosis (Taskinen and Boren 2015). In fact, IHL is a strong lipid
biomarker with a superior ability to predict hepatic insulin resistance and other
obesity-related complications when compared with the overall amount of visceral
adipose tissue.
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At the muscle level, a similar mechanism can be observed on the accumulation of
lipid content, with the adipose tissue lipolysis being responsible for the accumulation
of intramyocellular lipids (IMCL) and the consequent lipid-induced muscle insulin
resistance (Despres et al. 1990). However, it is not the total amount of IMCL that
directly causes insulin resistance (Sokolowska and Blachnio-Zabielska 2019), but
instead, it is the dynamics and characteristics of the lipid droplets where the IMCL
TG content is stored, as well as the production and accumulation of lipid interme-
diaries derived from impaired lipid oxidation and lipolysis, that seem to be respon-
sible for the lipid-induced insulin resistance (Petersen and Shulman 2018;
Sokolowska and Blachnio-Zabielska 2019) (Fig. 1). These deleterious lipid inter-
mediates include diacylglycerols (DAG), sphingolipids (e.g., ceramides), and polar
lipids (e.g., long-chain acyl-CoAs (LCA-CoA) and acylcarnitine), which will be
further explored in the following sections.

Lipid Intermediates and Insulin Resistance

In the attempt to identify which lipid biomarkers were related to insulin resistance,
researchers have long focused on three major classes of lipid intermediates: polar
lipids, DAG, and sphingolipids.

As part of the polar lipids, LCA-CoA is the first active lipid intermediate formed
during FFA metabolism, with possible implications on the synthesis of other dele-
terious lipid intermediates (Ussher 2014). Within this same family, acylcarnitine is
an intermediate generated during mitochondrial FFA oxidation in order to facilitate
the transfer of LCA-CoAs across the mitochondrial membrane, which is imperme-
able to CoA esters. It is formed by the conversion of LCA-CoA and carnitine via
carnitine palmitoyltransferase 1 (CPT-1) located on the outer mitochondrial mem-
brane (Metcalfe et al. 2018). Once inside the mitochondrial matrix, acylcarnitine is
converted back to its corresponding LCA-CoA and carnitine by carnitine palmitoyl-
transferase 2 (CPT-2) located on the inner mitochondrial membrane (Metcalfe et al.
2018). From there, the LCA-CoA undergoes B-oxidation, which breaks down the
fatty acyl chain to acetyl-CoA. Fatty oxidation is completed with the entry of acetyl-
CoA into the tricarboxylic acid (TCA) cycle to ultimately generate ATP. However,
when the rate of B-oxidation exceeds that of the TCA cycle, which occurs with a
sustained mitochondrial oversupply of lipids, there is incomplete oxidation of
LCA-CoAs (Ussher 2014). These incompletely oxidized LCA-CoAs accumulate
and are reconverted back to acylcarnitine by CPT-2 (Ussher 2014). It has been
proposed that these acylcarnitines directly impair insulin signaling by interfering
with protein kinase B (AKT) phosphorylation (Bosma et al. 2012). On the other
hand, the reactive oxygen species (ROS)/acylcarnitine hypothesis may also explain
how these biomarkers contribute to the development of insulin resistance. Incom-
plete FFA oxidation leads to ROS production and thus, acylcarnitine may serve more
as a marker of incomplete FFA oxidation and, thus, a reflection of ROS levels than
being directly related with insulin resistance (Bosma et al. 2012; Metcalfe et al.
2018; Petersen and Shulman 2018).
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Fig. 1 Organization and location of the lipid intermediates at the subcellular level and their
potential mechanisms for muscle insulin resistance. Panel 1 depicts a physiological perspective
on how lipid intermediates may compromise proper insulin receptor substrate 1 (IRS-1) phosphor-
ylation through the protein kinase C (PKC) 6 and Jun N-terminal kinase (JNK) signaling pathways,
and/or through the stimulation of protein phosphatase 2A (PP2A) and PKC {/A downstream of the
protein kinase B (AKT) interference. Panels 2, 3, and 4 provide a closer look to lipid intermediary
metabolism within and between several organelles at the subcellular level (i.e., lipid droplets (LD),
endoplasmic reticulum (ER), mitochondria (mito), and blood vessel (BV)). Boxes in red display
lipid intermediates with possible links to insulin resistance; yellow arrows represent pathways
leading to lipid storage; green arrows display pathways leading either to lipolysis or free fatty acid
(FFA) oxidation at the mitochondria level; purple arrows are related with lipid synthesis at the
endoplasmic reticulum level. Abbreviations: acylcarnitine, AcylCarn; long-chain acyl-CoAs,
LCA-COA; diacylglycerols, DAG; glycerol, Glyc; insulin receptor, IR; monoglycerides, MAG;
triglycerides, TAG.

The hypothesis of the novel DAG/protein kinase C (PKC) axis has forested a lot
of interest by the scientific community as a possible link between lipid intermediates
and the insulin resistance process. DAG is an intermediary in the synthesis and
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breakdown of TG (Brouwers et al. 2016). It is a bioactive lipid involved in the
signaling and activation of PKC, particularly PKC 0 isoform in the muscle (Schmitz-
Peiffer et al. 1997) and PKC € isoform in the liver (Kumashiro et al. 2011). Although
the evidence is not fully clear, most of the investigations in animal and human
models suggest that the specific isoforms of PKC 6 and € can impair insulin action by
phosphorylating the insulin receptor at the serine and threonine residue, respectively,
thus, inhibiting IRS action (Petersen et al. 2016). DAG can exist as one of three
stereoisomers (i.e., sn-1,2 sn-2,3, or sn-1,3); however, it is only the sn-1,2 that is
capable of activating PKC 0 and € (Rando and Young 1984).

Finally, there is the ceramide hypothesis. Ceramides are bioactive lipids belong-
ing to the sphingolipid family and are derived through either de novo synthesis from
palmitate or re-acylation of sphingosine (i.e., salvage pathway) (Sokolowska and
Blachnio-Zabielska 2019). Ceramides have been proposed to mediate skeletal mus-
cle and liver insulin resistance through decreasing AKT activity by either stimulating
the activation of PKC, specifically the PKC  and A isoforms, and/or by stimulating
protein phosphatase 2A (PP2A) (Sokolowska and Blachnio-Zabielska 2019), which
results in decreased translocation of glucose transporter type 4 (GLUT4) to the
plasma membrane and glucose uptake (Metcalfe et al. 2018).

Role of Exercise on Lipid Metabolism in T2DM

Alongside nutrition and medication, exercise remains a fundamental cornerstone in
lifestyle interventions for individuals with T2DM to improve and control their lipid
profile, as well as other risk factors. From a classical physiological approach, the
delivery of FFA to the skeletal muscle during exercise is mainly supplied by the
lipolysis of TGs stowed in the adipose tissue and the muscle. The main stimulus for
lipid mobilization and the release of free fatty acids from the adipose tissue is mainly
adrenergic, involving both circulating catecholamines and sympathetic enervation
(Fritzen et al. 2020). If exercise is maintained for longer durations (>30-60 min), a
significant increase in the concentrations of cortisol and growth hormone occurs,
which stimulate the activity of lipolysis enzymes, such as adipose TG lipase and
hormone-sensitive lipase. When it comes to T2DM, all these processes can be
significantly impaired; however, it is still expected that FFA oxidation capacity can
be enhanced through exercise and, thus, improve the overall lipid profile and
metabolic flexibility in these individuals (Fritzen et al. 2020; Gemmink et al.
2020). In the previous sections, we have provided a background on how lipid
metabolism is linked to insulin resistance. In the next section, we will address the
role of acute and chronic exercise in countering lipotoxicity and improving overall
insulin resistance through its action on the classic lipid biomarkers as well as on the
lipid intermediates (Fig. 2). Finally, and before diving into the acute effects of
exercise on the lipid profile, it is important to highlight that most of the experimental
evidence arises from studies that used aerobic exercise with little information known
on the impact of resistance training (RT) on the lipid intermediates in individuals
with T2DM.



2 Treatment Regimes in Diabetes and Their Impact on Biomarkers

29

Acute Exercise ErFrecTs

EFFecT on LipiD
CONTENT

EFFecT ON INSULIN

CHronic Exercise EFFecTs

EFrecT on LiPID
CONTENT

EFFeCT ON INSULIN
ResisTance

* No changes or increases 2= ’
inIMCL

= No changes in total DAG 3=

*Decrease insn-120AG  } 7

* Increase in ceramide
levels during exercise

* No changes or decreases —£ J
in ceramide levels during
recovery

* No changes or increases —& '
in LCA-CoA

* No changes or increases £
in acylcarnitines

No impact on insulin =
resistance

Noimpacton insulin =~ &
resistance

Improvements in insulin l ?
resistance -

Mo impact on insulin =
resistance

Improvements in insulin 1 7
resistance

Noimpactoninsulin &
resistance

Noimpactoninsulin =~ 2=
resistance

* No changes in total IMCL =

* Shift in IMCL location
from S5 to intramyofibrillar

* Increase PLIN5 gene
expression and protein

* Nochanges in total DAG &

* No evidence on sn-1,2 DAG 7

» Mo changes or decreases 2|
in ceramide levels

* No changes or increases & ¢
in LCA-CoA

* No changes or increases 2= {
in acylcamnitines

No impact on insulin =
resistance

Improvements in insulin ‘
resistance

Improvements in insulin ‘
resistance

No impact on insulin -~ -
resistance

Improvements in insulin l, 7
resistance

Noimpact oninsulin =~ Z£
resistance

Noimpacton insulin -~ &
resistance

Fig. 2 Summary of the acute and chronic effects of exercise on lipid content and their impact on
insulin resistance. Abbreviations: intramyocellular lipid, IMCL; subsarcolemmal, SS;
diacylglycerols, DAG; long-chain acyl-CoAs, LCA-COA; perilipin protein 5, PLINS

Acute Effects of Exercise on Muscle Lipid Content

Despite the proposed mechanisms and links between ectopic lipid accumulation,
increased lipid intermediates, insulin resistance, and T2DM, high intramuscular lipid
stores and elevated lipid intermediates have also been observed in endurance-trained
athletes, an observation first identified by Goodpaster and colleagues and termed the
“athlete paradox” (Goodpaster et al. 2001). However, unlike in individuals who have
obesity or T2DM, insulin sensitivity of athletes is uncompromised and even
enhanced despite the presence of IMCL (Gemmink et al. 2020). This paradox has
provided a conceptual framework to understand the IMCL dynamics during acute
and chronic exercise in both trained individuals and those with T2DM.

It has been hypothesized that the IMCL characteristics (i.e., size, proximity to
mitochondria, expression of proteins regulating lipolysis) and dynamics (i.e., storage
and breakdown of FFA), as well as mitochondrial oxidative capacity all play a major
role in lipid droplet turnover, with higher turnover preventing lipid-induced toxicity
(Bergman and Goodpaster 2020). The advent of stable isotope measurements and
muscle biopsies obtained before and right after exercise has allowed a better
understanding of the IMCL response to an acute bout of exercise, which is deeply
dependent on the circulating FFA availability in both healthy and metabolically
compromised individuals (Gemmink et al. 2020). There is, however, a significant
difference when it comes to IMCL usage between trained and T2DM individuals,
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with T2DM individuals relying little to none on the IMCL as a source of energy
during an acute bout of exercise (Bergman et al. 2018). One possible explanation lies
on the fact that individuals with T2DM have a dysfunctional adipose tissue with a
higher rate of lipolytic activity and circulating levels of FFA, which could comprise
the usage of IMCL as a viable energy source (Bergman et al. 2018). On the other end
of the spectrum, athletes or exercise-trained individuals, have their IMCL stored in
many smaller lipid droplets that are more proximally associated with a larger number
of mitochondria, whereas individuals with T2DM tend to have fewer but larger lipid
droplets that are found mainly around the cellular membrane of type Il muscle fibers,
with less lipid droplet-mitochondria interaction (Bergman and Goodpaster 2020). It
has been hypothesized that mitochondria in the vicinity of the lipid droplets have
privileged access to the FFA released by these depots and, hence, have a higher FFA
oxidation rate, which will help maintain the ATP turnover during exercise
(Gemmink et al. 2020). In T2DM individuals, the IMCL content during the recovery
period following an acute bout of exercise has been reported to either increase or
present no changes when compared to the baseline period (Bergman and Goodpaster
2020).

Acute Effects of Exercise on Muscle Lipid Intermediates

Considering the experimental evidence of the effects of acute aerobic exercise on
DAG and sphingolipids, there is still limited data on these lipid intermediates. For
instance, in the animal model and in humans with different metabolic statuses
(i.e., trained athletes and T2DM individuals with obesity), a single bout of acrobic
exercise did not impact the overall pool of DAG (Thrush et al. 2011; Bergman et al.
2018). Nonetheless, and as explained in the previous sections, more important than
total DAG levels is the type of DAG stereoisomer present, with DAG sn-1,2 being
involved in the activation of the PKC 6 and € and, hence, related with the insulin-
resistant process (Rando and Young 1984). In this regard, IMCL lipolysis during
exercise is responsible for the increased release of DAG sn-2,3 and sn-1,3.
Therefore, insulin sensitivity may increase during exercise due to a decrease in
DAG sn-1,2, since no changes have been observed in the overall pool of DAG,
albeit further studies are needed to explore this potential mechanism (Bergman
et al. 2018).

Given the pro-inflammatory nature of acute exercise, it has been observed that
muscle levels of ceramide, among other lipid intermediates within the sphingolipids
family, tend to increase temporarily. However, 2 h after a single bout of exercise
ceramide values have been reported to decrease to values identical or less than those
observed at baseline (Bergman et al. 2016). This observation has also been reported
in the animal model and could partly explain the increase in insulin sensitivity
following acute endurance exercise (Turinsky et al. 1990).

Finally, data on the impact of acute exercise on LCA-CoA and acylcarnitines
remains controversial. For example, no changes or increases in LCA-CoA have
been reported in animal studies following an acute bout of exercise (Li et al. 2015).
Likewise, observations in humans have reported an increase or no change in
acylcarnitines following an exercise session, regardless of the length of the chain
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(Thyfault et al. 2010), which together mounts to a strong case that these polar lipids
have no impact on the benefits in the insulin sensitivity that can be observed after an
acute exercise session.

Chronic Effects of Exercise on Muscle Lipid Content

Similar to the athlete paradox, another contradictory observation arises from exper-
imental studies addressing the long-term effects of exercise on IMCL content. When
looking at the current body of literature in healthy trained individuals, some reports
observed an increase in IMCL content, whereas no changes have been found in
metabolically compromised patients, although both populations showed an increase
in insulin sensitivity (Tarnopolsky et al. 2007; Toledo et al. 2008). It is plausible to
assume that changes in insulin sensitivity following an exercise regimen do not rely
on IMCL fluctuations, but instead rely on alterations in the lipid droplet character-
istics. Experimental studies in both lean and obese individuals have reported a
location shift of the lipid droplets residing within the muscle cell, which move
from the subsarcolemmal to the intramyofibrillar space following long-term exercise
(Tarnopolsky et al. 2007). These changes will impact the overall metabolic flexibility
of the cell, since the intramyofibrillar lipid droplets are closer to the mitochondrial
reticulum where they will approach a trained lipid droplet phenotype (Gemmink
et al. 2020).

Another singularity within the “athlete paradox” concerns athletes/trained indi-
viduals having a greater abundance of lipid droplets coated with perilipin protein
5 (PLINSc) compared to individuals with T2DM (Gemmink et al. 2020). The
PLINS protein plays a major role alongside the lipases, such as the adipose TG
lipase and hormone-sensitive lipase, in helping regulate the lipolysis from the lipid
droplets in order for them to match the mitochondrial fat oxidation rate during
exercise (Bosma et al. 2012). Chronic exercise above the 4-week duration thresh-
old has been shown to increase PLINS gene expression and protein content in
obese and T2DM patients (Shepherd et al. 2017). How these changes translate to
an improved fat oxidation process in T2DM still warrants further investigation,
since there are still mixed results between obese and T2DM individuals on the
impact of chronic exercise on lipid droplet-mitochondrial tethering (Gemmink
et al. 2020).

Chronic Effects of Exercise on Muscle Lipid Intermediates

Following the same trend of the previous subsection on the acute effects of exercise
on lipid intermediates, there is still much to be understood on the chronic effects of
exercise on DAG, sphingolipids, and polar lipids, especially on their isomers,
species, and localization, and their relationship with changes in insulin resistance.
This observation arises from experimental investigations showing that long-term
endurance training increases DAG levels and insulin sensitivity in trained/athletic
individuals, adding another layer to the conundrum of the “athlete paradox” (Amati
et al. 2011). When looking at the individuals with obesity, the results of exercise
interventions have shown no changes in overall DAG content (Ryan et al. 2020).
Moreover, and as far as the sphingolipids family is concerned, chronic aerobic
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exercise has been shown to decrease ceramide levels (Coen et al. 2015), with some
studies showing no changes (Ryan et al. 2020). Finally, the LCA-CoA and
acylcarnitines also appear to have no changes (Bruce et al. 2004) or even increase
their content following chronic exercise (Ryan et al. 2020).

When gathering all the above information on the effects of chronic exercise on
these lipid intermediates, it is clear that changes in insulin sensitivity are not
dependent on favorable improvements of overall DAG, sphingolipids, and polar
lipids content. Nonetheless, future studies addressing the impact of exercise on
specific isomers, species, and location of these lipid biomarkers are paramount to
fully understand their relationship with insulin sensitivity.

Effect of Exercise on Liver Lipid Content

Although the underlying mechanisms of the effects of exercise on IHL are poorly
understood, exercise training has been proposed to lower IHL content by affecting
one or more of the abovementioned pathways (Brouwers et al. 2016). First, exercise
has a direct effect on lipoprotein lipase (LPL)-mediated TG removal from the
circulation to skeletal muscle and as a consequence, there is lower TG uptake and
accumulation by the liver and a decrease in hepatic VLDL secretion (Ussher 2014).
These changes in LPL activity induced by exercise can partially explain the
improved lipid profile observed in individuals with T2DM following training
(Brouwers et al. 2016). Secondly, exercise promotes whole-body insulin sensitivity
and hence insulin-stimulated suppression of lipolysis from adipose tissue and
insulin-stimulated uptake of glucose and FFA by the muscle, all of which decrease
the uptake of FFA by the liver (Brouwers et al. 2016; Gemmink et al. 2020). Beyond
reduced uptake of FFA, exercise also reduces DNL by decreasing circulating insulin
levels as well as glucose, which are key activators of DNL (Brouwers et al. 2016).
Lastly, exercise can reduce IHL accumulation by increasing energy expenditure and
inducing a negative energy balance. This in turn triggers the release and oxidation of
FFA from IHL storage to fuel the increased energy demands of exercise (Ussher
2014). It has been suggested that this reduction in IHL due to increased FFA
oxidation is one of the main mechanisms by which exercise improves NAFLD
(Brouwers et al. 2016).

It is important to note that the reductions in IHL following exercise have been
observed regardless of significant changes in body mass and total body fat. In fact,
beyond changes in the quantity of IHL, exercise can also have an impact on its
composition. For example, following just 7 days of exercise training, there was no
change in the amount of IHL; however, the content on the IHL was significantly
altered, such that it contained more polyunsaturated FFA (Haus et al. 2013). This
finding is likely a result of the effect of exercise on suppressing DNL, where the
principal FFA produced are saturated. Saturated FFA are known to negatively affect
cellular functions, such as that of insulin signaling (Taskinen and Boren 2015). Thus,
the qualitative changes in IHL following exercise in the absence of any quantitative
changes can have positive implications on insulin sensitivity for individuals
with T2DM.
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Exercise Interventions and Classic Lipid Biomarkers

Many studies have highlighted the importance of exercise for improving metabolic
health, including that of the classic lipid profile (Wood et al. 2019); however, fewer
reviews have been conducted in the T2DM population, especially when trying to
understand the impact of different types, intensities, and lengths of exercise inter-
ventions on the classic lipid biomarkers. In this section, we will address all the
experimental evidence of exercise interventions with a RCT design that aimed to
understand the impact of different types of training on the lipid profile. Mainly, we
will focus on aerobic (e.g., with a special focus on moderate continuous training
(MCT) and high-intensity training, either as interval or continuous), RT, and a
combination of both aerobic and RT. Table 1 provides a summary of the results of
recent RCT exercise interventions from 2010 forward on the classic lipid biomarkers
in individuals with T2DM.

Overall, the majority of the evidence points to aerobic exercise of both vigorous
or moderate intensity as being effective for improving the lipid profile
(i.e., increasing HDL-C and decreasing total cholesterol (TC), LDL-C, and TG)
in individuals with T2DM. Whether the benefits of aerobic training are superior
when performed continuously or through repeated intervals remains unclear.
Within the last decade, high-intensity interval training (HIIT) has become a
popular training method and has been promoted as being more time-efficient,
feasible, and effective than the traditional continuous endurance method.
According to a recent systematic review and meta-analysis comparing the effects
of HIIT and MCT on the lipid profile in both subclinical and clinical populations,
HIIT protocols did not confer greater improvements in the lipid profile over MCT
protocols (Wood et al. 2019). Nevertheless, it is difficult to generalize the effect of
MCT versus HIIT on blood lipids, as much of the effect of these exercise regimens
is likely influenced by the participant characteristics (age, sex, type of chronic
disease, etc.) (Wood et al. 2019).

According to the most recent RCTs specific to individuals with T2DM, mixed
results have also been reported. For instance, increases in HDL-C with HIIT and
MCT have been observed compared to controls (Mitranun et al. 2014), whereas, no
significant differences in the lipid profile have been reported following aerobic
exercise training in other intervention studies, regardless of exercise intensity
(Winding et al. 2018; Sabag et al. 2020). It is important to note that different HIIT
protocols were implemented by most of these studies, with distinguished character-
istics on the exercise-to-rest ratio as well as the intensity implemented. Thus, future
investigations in individuals with T2DM are still warranted to draw conclusions on
the role of interval versus continuous training on lipid biomarkers.

Considering the effects of RT on the lipid profile in individuals with T2DM, the
majority of studies have reported no changes compared to controls, although a
significant decreases in TC and TG compared to controls following a 12-week RT
intervention has been reported (Dadrass et al. 2019). The inconsistency in these
results could be due to differences in the baseline lipid profile of the included sample,
since those with higher impaired values tend to have further exercise benefits.
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Table 1 Outcomes of supervised exercise interventions on lipid biomarkers in individuals with
T2DM according to different types of training.

Sample size

Study (M/F)
Aerobic training
Balducci Control:
et al. 20 (9/11)
(2010) Exercise:
20 (8/12)
Kadoglou Control:
et al. 21 (8/13)
(2010) Exercise:
22 (8/14)
Sixt et al. Control:
(2010) 12 (8/4)
Exercise:
11 (10/1)
Belli et al. Control:
(2011) 10 (0/10)
Exercise:
9 (0/9)
Jorge et al. | Control:
(2011) 12 (4/8)
Exercise:
12 (5/7)
de Oliveira | Control:
et al. 12 (4/8)
(2012) Exercise:
11 (5/6)
Arslan et Control:
al. (2014) 33 (14/19)
Exercise:
31 (17/14)

Intervention
intensity

VCT: 70-80%
VO,max;
treadmill and/or
cycle ergometer
VCT: 50-80%
VO,ma;
walking or
jogging on
treadmill, cycle
ergometer, and
calisthenics
VCT: 80%
maximum heart
rate, cycle
ergometer

MCT:
ventilatory
threshold,
outdoor
walking

VCT: lactate
threshold;
cycling

MCT: lactate
threshold;
cycling

VCT: 75%
maximum HR,
treadmill or
bicycle

Duration

60 min/d,
2 d/week,
12 months

45-60 min/day,
4 times/week,
12 months

90 min/day,

5 days/week,
4 weeks, follow
by 30 min/day,
5 days/week,
plus 1 h/week
supervised
swimming or
endurance
training,

6 months;
following

6 months
unsupervised
5 days/week
60 min/d,

3 d/week,

12 weeks

60 min/day,
3 days/week,
12 weeks

50 min/d,
3 days/week,
12 weeks

45 min/d,
3 d/week,
12 weeks

Lipid
outcomes

HDL-C

TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C

TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C

Results

HDL-C
increased
compared to
controls
TC, TG, and
LDL-C
decreased
and HDL-C
increased
compared to
controls

TC and
LDL-C
decreased at
4 weeks but
not after

6 months
compared to
controls

Exercise
group
increased
HDL-C
compared to
controls

No
significant
difference
compared to
controls

No
significant
difference
compared to
controls

No
significant
difference
compared to
controls

(continued)
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Table 1 (continued)
Sample size
Study (M/F)
Mitranun Control:
et al. 15 (5/10)
(2014) MCT:
14 (5/9)
HIIT:
14 (5/9)
Dehghan Control:
et al. 49 F
(2016) Exercise:
49 F
Rahbar et Control: 15
al. (2017) Exercise: 13
Saghebjoo Control:
et al. 10 F
(2018) Exercise:
10 F
Winding Control:
et al. 7 (5/2)
(2018) MCT:
12 (7/5)
HIIT:
13 (7/6)
Sabag et al. | Control:
(2020) 11 (7/4)
MCT:
12 (5/7)
HIIT:
12 (7/5)

Resistance training

Wycherley | Control: 16
et al. Exercise: 17
(2010)

Intervention
intensity

MCT: 60%
VO,max

HIIT: 6 x 1 min
at 85%
VO,max, 4 min
at 60%
VO,max

MCT: 50-70%
maximum heart
rate, jogging

MCT: 50-70%
maximum heart
rate, treadmill

VCT: 75-85%
maximum heart
rate, jogging,
running

MCT: cycling
at 50% peak
workload
HIIT: cycling at
90% peak
workload for

1 min followed
by 1 min at
20% peak
workload
MCT: cycling
at 60%
VO,max

HIIT: 4 min
cycling at 90%
VO,max

(19 min total)

70-85% RM,
8-12 reps (leg
press, knee
extension, chest

Duration

40 min/d,
3 d/week,
12 weeks

60 min/d,
3 d/week,
16 weeks

30 min/day,
3 times/week,
8 weeks

From 15 min/
day to 35 min/
day, add

3—4 min per
week, 3 times/
week, 12 weeks

MCT: 40 min/d,
3 days/week,
11 weeks

HIIT: 20 min/d,
3 days/week,
11 weeks

MCT:

40-55 min,

3 days/week,
12 weeks

HIIT: minimum
of 19 min,

3 days/week,
12 weeks

45 min/d,
3 d/week,
16 weeks

Lipid
outcomes
TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C,
VLDL-C

TG,
HDL-C,
LDL-C

TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C,
FFA

TC, TG,
HDL-C,
LDL-C

35

Results
HDL-C
increased in
MCT and
HIIT group
vs. controls

TC, TG, and
LDL-C
decreased
and HDL-C
increased
compared to
controls

No
significant
difference
compared to
controls
TG, and
LDL-C
decreased
and HDL-C
increased
compared to
controls

No
significant
difference
compared to
controls

No
significant
difference
compared to
controls

No
significant
difference

(continued)
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Table 1

Study

Jorge et al.
(2011)

Kadoglou
et al.
(2012)

de Oliveira
et al.
(2012)

Dadrass
et al.
(2019)

(continued)

Sample size
(M/F)

Control:
12 (4/8)
Exercise:
12 (5/7)

Control:

24 (5/19)
Exercise:
23 (7/16)

Control:
12 (4/8)
Exercise:
10 (4/6)

Control:
12M
Exercise:
12M

Intervention
intensity

press, shoulder
press, lat pull
down, seated
row, triceps
press, and
sit-ups)

Leg press,
bench press, lat
pull down,
seated rowing,
shoulder press,
abdominal
curls, and knee
curls

60-80% RM,
6-8 repetitions
per exercise
(seated leg
press, knee
extension, knee
flexion, chest
press, lat pull
down, overhead
press, biceps
curl, and triceps
extension)

50% RM, 4 sets
of 8-12 reps
(leg press,
bench press, lat
pull down,
seated rowing,
shoulder press,
abdominal
curls, knees
curls)

First month
55% RM;
second month
65% 1RM;
third month
75% 1RM; 3 set
of

10 repetitions
(chest press, leg
extension, leg
curl, arm curl,
push-up with
knees against

Duration

60 min/day,
3 days/week,
12 weeks

45-60 min/day,
3 times/week,
3 months

3 days/week,
12 weeks

50 min/day,
3 days/week,
12 weeks

J. P. Magalhaes et al.

Lipid
outcomes

TC, TG,
HDL-C

TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C

Results

compared to
controls

No
significant
difference
compared to
controls

No
significant
difference
compared to
controls

No
significant
difference
compared to
controls

TC and TG
decreased
compared to
controls

(continued)
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Table 1 (continued)

Study

Rech et al.

(2019)

Combined

Balducci
et al.
(2010)

Jorge et al.

(2011)

Sample size
(M/F)

Control:
21 (10/11)
Exercise:
17 (10/7)

Control:

20 (9/11)
Exercise:
22 (8/14)

Control:12
(4/8)
Exercise:
12 (4/8)

Intervention
intensity

the floor, seated
row, overhead
pull down,
overhead press,
weighted sit-up
and toe raise)
2-3 sets of
12-10 reps
(partial squat
and bench
stepping,
unilateral leg
press, unilateral
knee extension,
knee flexion,
plantar flexion,
bench press,
low row, biceps
curl, elbow
extension, hip
abduction and
abdominal
crunches)

VCT aerobic:
70-80%
VO,max;
treadmill and/or
cycle ergometer
Resistance:
80% RM (chest
press, lateral
pull down, leg
press, trunk
flexion for the
abdominals)

VCT aerobic:
lactate
threshold;
cycling
Resistance: leg
press, bench
press, lat pull
down, seated
rowing,
shoulder press,
abdominal
curls, and knee
curls

Lipid
Duration outcomes | Results
3 days/week, TC, TG, No
12 weeks HDL-C, significant

LDL-C difference
compared to
controls

75 min/d, TC, TG, HDL

2 days/week, HDL-C, increased

12 months LDL-C and LDL
decreased in
exercise
group
compared to
controls

60 min/day, TC, TG, No

3 days/week, HDL-C significant

12 weeks difference
compared to
controls

(continued)
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Table 1

Study

de Oliveira
et al.
(2012)

Kim et al.
(2014)

Annibalini
et al.
(2017)

Balducci et
al. (2017)

Magalhées
et al.
(2020)

(continued)

Sample size
(M/F)
Control:

12 (4/8)
Exercise:
10 (4/6)

Control:
17 (10/7)
Exercise:
18 (9/9)

Control:
8 M
Exercise:
8 M

Control:
150 M
Exercise:
150 M

Control:
27 (13/14)
Exercise
(HIIT):

25 (10/15)
Exercise
(MCT):
28 (15/13)

Intervention
intensity

MCT:

25 min cycle at
lactate
threshold
Resistance:

2 sets of 8-12
RM

MCT aerobic:
50-70%
maximum heart
rate; brisk
walking
Resistance:
50% 10RM;

3 sets of

20 repetitions

MCT aerobic:
40-65% heart
rate reserve,
walking on
treadmill
Resistance:
40-60% 1RM,
24 sets of
12-20 reps
(horizontal leg
press, lat pull
down, chest
press)

MCT aerobic:
low to moderate
intensity
Resistance: not
described

HIIT aerobic:

1 min of
exercise at 90%
of their heart
rate reserve
followed by

1 min resting at
40-60% of the
heart rate
reserve

MCT aerobic:
40-60% of the
heart rate
reserve

Duration

3 days/week,
12 weeks

70 min/day,
3 days/week,
12 weeks

30-60 min/day,
3 days/week,
16 weeks

60 min/day,
2 days/week,
4 months

Duration based
on prescribed
energy target,
3 days/week,
12 months

J. P. Magalhaes et al.

Lipid
outcomes
TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C

TC,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C

TC, TG,
HDL-C,
LDL-C

Results

No
significant
difference
compared to
controls

TG
decreased
compared to
the controls.

TC
decreased
compared to
control

No
significant
difference
from control

LDL, TC
decreased
with HIIT
compared to
controls

(continued)
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Table 1 (continued)

Sample size | Intervention Lipid
Study (M/F) intensity Duration outcomes | Results
Resistance:
1 set of 10-12
RM (seated

row, pull down,

chest press,

shoulder press,

leg press, one

leg lung, dead

bug, and

regular plank)
VCT, vigorous continuous training; MCT, moderate continuous training; HIIT, high-intensity
interval training; RM, maximum repetition; TC, total cholesterol; TG, triglyceride; HDL-C, high-
density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; VLDL, very-low-
density lipoprotein cholesterol; FFA, free fatty acid

Moreover, similar to the aerobic interventions, differences in the RT protocol used
(i.e., intensity, frequency, duration) add to the difficulty in drawing conclusions on
the effects of RT on the lipid profile.

Randomized controlled trials examining the effect of combined aerobic and RT
on lipid biomarkers have had mixed results. For instance, when performing a 1-year
exercise intervention, we (Magalhdes et al. 2020) observed a favorable impact of
HIIT combined with RT on TC and LDL-C when compared to the control group,
whereas no changes were observed in the MCT combined with RT group. It is
reasonable to deduce that the combination of resistance and aerobic exercises may
provide additional benefits than either of them performed alone. However, the
paucity of research of combined interventions with similar protocols makes it hard
to come to any verdict.

Regardless of the exercise being aerobic (interval or continuous, moderate or high
intensity), resistance, or a combination of the two, a major confounding factor when
assessing the effects of exercise on the lipid profile is changes in body weight. It has
been found that just small changes in body weight can have a considerable impact on
insulin sensitivity at multiple organs (Petersen and Shulman 2018; Ryan et al. 2020).
Moreover, and as previously explained, an increase in insulin sensitivity reduces
circulating levels of glucose and lipids, via decreased lipolysis by adipose tissue,
increased uptake by skeletal muscle, decreased fat influx and synthesis by the liver,
and reduced liver VLDL secretion.

Overall, there is a clear link between exercise and an improved lipid profile,
especially when it comes to aerobic exercise. If the intent is to answer the question,
“what’s the best exercise intensity and type to improve the lipid profile for individ-
uals with T2DM,” then more research is warranted, with the special caveat on
standardizing the exercise intervention protocols.
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Inflammatory Profile and T2DM
Introduction to Inflammation and T2DM

The inflammation process involves a complex cascade of events, where several
cellular components are implicated to promote cell survival by warding off harmful
infections derived from pathogenic bacteria, viruses, and parasites. Although the
inflammatory profile is a key element in survival, there are circumstances in which it
becomes unable to properly function, leading to maladaptive chronic states of
low-grade inflammation. This low-grade inflammation is at the cornerstone of the
pathophysiology involved in the development of T2DM. In the following sections
(“The Relationship Between Obesity and Inflammation,” and “The Relationship
Between Inflammation and T2DM), we will examine the mechanisms linking
several of the most studied inflammatory biomarkers in the exercise physiology
field, with obesity and T2DM. We will then dive into how acute and chronic exercise
may improve the adverse inflammatory profile inflicting individuals with T2DM,
while also reviewing all the recent RCT on this topic (Section “Anti-inflammatory
Effects of Exercise”).

The Relationship Between Obesity and Inflammation

One of the underlying characteristics of people with T2DM is the overweight and
obesity phenotype. At the epidemiological level, people with higher values of BMI,
due to excessive body fat accumulation, have a higher relative risk of developing
T2DM when compared with their lean peers (Petersen and Shulman 2018). Thus, it
comes with no surprise that the divorce between energy expenditure and energy
intake contributes to a positive energy balance, hence increasing body fat storage,
which is one of the primary insults leading to chronic low-grade inflammation and
T2DM (Pedersen 2009).

Energetic intake exceeding that of energy expenditure can lead to adipose tissue
dysfunction, where local hypoxia and adipocyte apoptosis occur due to the increased
homeostatic stress imposed by adipocyte hyperplasia and hypertrophy (Murano et al.
2008). As a consequence, chemotactic signals from strained and dead adipocytes are
responsible for the recruitment of immune cells. As an example, the monocyte
chemoattractant protein 1 (MCP-1) is an important cytokine that plays a major
role in attracting other immune cells (e.g., macrophages, monocytes) to the extra-
cellular space of the adipocytes, where these immune cells will be responsible for
producing pro-inflammatory cytokines (Sartipy and Loskutoff 2003) (Fig. 3).
Another possible pathway leading to adipose tissue macrophage recruitment is
through the identification of adipocyte stress by the natural killer cells residing in
visceral adipose tissue depots (Wensveen et al. 2015). These immune cells will in
turn be involved in macrophage activation through the release of tumor necrosis
factor-alpha (TNF-a) and interferon-y (Wensveen et al. 2015).
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Fig. 3 An integrated physiological perspective on low-grade inflammation and its impact at the
tissue and cellular level in T2DM. As a result of a positive energy balance due to low levels of
physical activity and an increased energy intake, adipocytes become hypertrophic, placing them
under significant stress that eventually can lead to cellular hypoxia and death. Consequently, the
immune system will increase macrophage infiltration within the intercellular space of the adipose
tissue, thereby increasing the release of cytokines/chemokines such as the tumor necrosis factor-
alpha (TNF-a), interleukin-1 beta (IL-1p), and interleukin-6 (IL-6), which will in turn affect adipose
tissue insulin sensitivity. Local macrophages and other immune cells are responsible for creating a
pro-inflammatory cycle perpetuating the release of more cytokines, which have autocrine effects as
well as paracrine actions on other cells/organs such as the -cells in the pancreas and the skeletal
muscle. Fueling this inflammatory cycle, free fatty acids (FFA) arriving from the lipolytic adipose
tissue or from the circulation bind to the toll-like receptors (TLR) 2 and 4 present on the
macrophages and B-cells, triggering the downstream inflammatory nuclear factor kappa B
(NF-kB) pathway. Moreover, elevated levels of circulating glucose are also involved in the release
of IL-1B from macrophages and B-cells mediated by the NLR family pyrin domain containing
3 (NLRP3) sensor. At the pancreas, these cytokines are responsible for islet inflammation, leading
to apoptosis and reduced insulin secretion. In the muscle, cytokines and FFA derived from the
lipolytic adipose tissue are responsible for the muscle insulin resistance. Abbreviations: insulin
receptor, IR; endoplasmic reticulum, ER; IL-1 receptor antagonist, IL-1R1; diacylglycerols, DAG;
inhibitor kappa beta kinase beta, IKKf; Jun N-terminal kinase, JNK.

An important link between obesity and inflammation also lies with the lipid
profile. As previously mentioned in the section “The Relationship Between Obesity
and Lipids,” obese individuals with dysfunctional adipose tissue are prone to have
impaired lipid profiles, characterized by elevated circulating levels of FFA, as well as
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the accumulation of intercellular lipid intermediates (e.g., ceramides, DAG,
acylcarnitines) (Petersen and Shulman 2018). Adipocyte-derived FFA and
intercellular lipid intermediates can also contribute to low-grade chronic inflamma-
tion and macrophage activation mainly through toll-like receptors (TLR) and their
nuclear factor kappa B (NF-kB) pathway (Donath et al. 2013). Beyond lipids,
glucose can mediate the activation of the NLR family pyrin domain containing
3 (NLRP3)-dependent pathways, which directly affects the production of IL-1P
(Donath et al. 2013) (Fig. 3). The activation and recruitment of these immune cells
are responsible for inducing low-grade chronic inflammation. It has thus been
proposed that the chronic inflammation associated with obesity-linked insulin resis-
tance is initiated in adipose tissue.

The Relationship Between Inflammation and T2DM

To begin this discussion, it is important to clarify the role of the inflammatory
process in T2DM: Is it the culprit behind the insulin resistance process, or is it rather
an exacerbating factor? Several lines of experimental evidence have highlighted that
although adipose tissue macrophage activation may induce a low-grade inflamma-
tory process, this process is most likely an exacerbating factor of the obesity-
associated insulin resistance, rather than a primary cause of the defect. As an
example, investigations conducted using animal models have found that adipose
tissue insulin resistance can be observed after 1-week of a high-fat diet (Cantley et al.
2013), but prominent macrophage infiltration and activation within the extracellular
space of the adipocytes is only detectable after 12 weeks of high-fat feeding (Strissel
et al. 2007). Nevertheless, regardless of whether it is a cause or exacerbating factor,
low-grade chronic inflammation remains strictly linked to T2DM.

Within the inflammatory milieu, several pro-inflammatory cytokines have been
identified as important contributors to the insulin resistance of adipose tissue and beta-
cell dysfunction observed in T2DM. When looking at the recent literature, inflamma-
tory biomarkers with predictive value for T2DM, such as the lipoprotein-associated
phospholipase-A2, the trimethylamine-N-oxide, and the myeloperoxidase, have been
associated with cardiovascular disease and have shown promising pharmacological
therapeutics (Abdulhamied Alfaddagh et al. 2020). Nonetheless, there are no investi-
gations addressing the impact of exercise on these biomarkers, thus, in the interest of
keeping the scope of this chapter focused on exercise, we will address the chief among
the inflammatory biomarkers, which include TNF-a, interleukin 1 beta (IL-1p), and
interleukin 6 (IL-6).

TNF-a and T2DM

TNF-a was one of the first cytokines to be identified as a possible link between the
adipose tissue low-grade inflammation and an insulin-resistant state (Hotamisligil et al.
1995). Considering all its members, the TNF superfamily displays pro-inflammatory
activity, in which the inflammatory pathway depends in part on the activation of
transcription factors, such as the NF-kB.



2 Treatment Regimes in Diabetes and Their Impact on Biomarkers 43

In vivo studies have shown that TNF-a increases lipolysis in humans without a
concomitant increase in FFA oxidation at the muscle level, thus, leading to FFA
incorporation into IMCL and lipid intermediaries, such as DAG, sphingolipids, and
polar lipids as discussed in the previous section on lipids and T2DM. These lipid
intermediates are responsible for the development of TNF-a-induced insulin resis-
tance at the skeletal muscle. TNF-a can also impact the insulin-dependent pathway
by inducing the serine phosphorylation of the insulin receptor substrate-1 (IRS-1),
which blocks the downstream activation of phosphatidylinositol-3 kinase
(PI3-kinase) and GLUT-4 translocation (Ozcan et al. 2004). This process is depen-
dent on the activation of stress-related protein kinases such as the inhibitor kappa
beta kinase beta (IKK), the Jun N-terminal kinase (JNK), and the NF-xB pathway
(Ozcan et al. 2004).

This cytokine also displays an important role in insulin resistance by inducing
B-cell dysfunction through the activation of the transcriptional factor NF-kB, which
is responsible for increasing the inflammation and apoptosis of pancreatic islets,
thus, leading to decreased insulin production (Bouzakri et al. 2011) (Fig. 3). Finally,
TNF-a secretion as a result of low-grade chronic inflammation is related to increased
atherogenic risk for the arterial wall (i.e., a major risk for the micro- and macro-
vascular complications associated with T2DM) by inducing the expression of
adhesion molecules such as intracellular adhesion molecule-1 (ICAM-1) and
E-selectin (Couffinhal et al. 1993; Wyble et al. 1997).

IL-6 and T2DM

Circulating levels of IL-6 tend to be elevated in individuals with T2DM, with high
concentrations being considered an independent predictor for the development of the
disease (Akbari and Hassan-Zadeh 2018). However, the exact role of IL-6 in the
pathogenesis of T2DM is somewhat controversial. This is mainly due to the pleio-
tropic behavior of IL-6, where it can have both beneficial and pathological effects on
insulin sensitivity, insulin secretion, glucose homeostasis, as well as the inflamma-
tory process depending on its origin (i.e., cytokine, adipokine, myokine), chronic or
acute presence, cell target, and signaling mechanism (i.e., classical signaling through
the membrane-bound IL-6 receptor (IL-6R) or trans-signaling through the soluble
form of IL-6R (sIL-6R)) (Pedersen 2009; Han et al. 2020).

The link between IL-6 and T2DM is mainly due to its involvement in the
signaling pathways that inhibit insulin signaling, which occurs in states of obesity-
driven chronic inflammation (Donath et al. 2013). In adipocytes, chronically ele-
vated levels of IL-6 increase the expression of the suppressor of cytokine signaling
3 (SOCS3), which reduces GLUT-4 mediated glucose uptake via phosphorylation of
the insulin receptor B (IR-B), IRS-1, and PKB/Akt (Lagathu et al. 2003; Akbari and
Hassan-Zadeh 2018). IL-6 can additionally reduce the expression of GLUT-4, IR-f,
IRS-1, as well as peroxisome proliferator-activated receptor gamma (PPAR- ), an
insulin sensitizing factor (Rotter Sopasakis et al. 2004; Akbari and Hassan-Zadeh
2018). In the pancreatic islet cells, IL-6 tends to enhance B-cell apoptosis, which can
contribute to decreased insulin secretion (Ellingsgaard et al. 2008). In the muscle
cells, exposure to chronic levels of IL-6 seems to reduce insulin action through the
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JNK, suppressor of cytokine signaling 3 (SOCS3), and protein tyrosine phosphatase
1B (PTP1B) pathways (Kim et al. 2004). In the liver, IL-6 has been shown to
contribute to insulin resistance under both chronic and acute states (Akbari and
Hassan-Zadeh 2018). IL-6 stimulates mTORC1, which activates signal transducer
and activator of transcription (STAT), which in turn increases SOCS3 expression
leading to the reduction in insulin signaling and glucose uptake (Kim et al. 2004).

Beyond disrupting insulin signaling, IL-6 contributes to the macro-vascular
complications occurring in T2DM through the induction of C-reactive protein
(CRP) gene expression in hepatocytes (Sproston and Ashworth 2018). CRP is
considered an acute marker for inflammatory diseases and infections and is currently
one of the few biomarkers that transitioned from a laboratory setting to being
routinely used in the clinic (Sproston and Ashworth 2018). Given its general stability
in repeated measurements over time, CRP is now considered an important biomarker
for cardiovascular disease risk, adding incremental value to the traditional risk
factors such as those of the lipid biomarkers (Emerging Risk Factors et al. 2012).
Beyond being a marker, CRP is thought to be a mediator of the atherosclerotic
process through promoting the expression of genes involved in monocyte adhesion,
triggering LDL-C uptake by macrophages, and inhibiting endothelial nitric oxide
synthase (Sproston and Ashworth 2018). CRP further promotes the inflammatory
process through being involved in the production of other pro-inflammatory cyto-
kines such as IL-1PB and TNF-a (Sproston and Ashworth 2018).

IL-1f and T2DM

Like TNF-a and IL-6, IL-1p has also been found to play a major role in driving the
local and systemic inflammation contributing to T2DM (Herder et al. 2015). How-
ever, like IL-6, the deleterious effects of IL-1f are dependent on its concentration
and length of activation (Herder et al. 2015).

Under normal conditions, postprandial increases in glucose promote an acute rise
in macrophages, which secrete IL-1B in a glucose-dependent manner (Dror et al.
2017). IL-1B subsequently binds to the IL-1 receptor on pancreatic B-cells and
enhances the release of insulin by enhancing insulin granule docking at the plasma
membrane (Hajmrle et al. 2016). Both insulin and IL-1f are responsible for promot-
ing glucose uptake by muscles as well as macrophages (Dror et al. 2017). When in
low concentrations and under conditions of acute exposure, IL-1J activates and
delivers energy (i.e., glucose) to the innate immune system to aid in warding off
unwanted microorganisms arising from the ingestion of food (Vandanmagsar et al.
2011).

Under states of obesity and excessive nutrient intake, macrophages resident in
dysfunctional adipose tissue, particularly that found in visceral depots, synthesize
and release IL-1f in response to elevated glucose levels and metabolic stress
(Dinarello et al. 2010). In a paracrine fashion, IL-1p binds to the IL-1 receptor on
adipose cells and stimulates the action of LPL, which in turn results in the release of
FFA from circulating lipoproteins (Dinarello et al. 2010). IL-1p also reduces the
transcriptional and posttranscriptional expression of the insulin receptor, impairing
adipocyte insulin signaling (Jager et al. 2007). Circulating IL-1p, alongside FFA and
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glucose, triggers the synthesis and release of IL-1p by the pancreatic -cells, which,
under chronically elevated levels, induces B-cell death (Donath et al. 2013). Further-
more, the B-cell death and IL-1B induced chemokines attract macrophages to the
pancreas leading to islet inflammation and further B-cell destruction (Dinarello et al.
2010).

Anti-inflammatory Effects of Exercise

Since the beginning of the twenty-first century, the field of omics-based clinical
discovery has seen a significant increase in research with the identification of more
than 650 hormone-like substances, known as myokines, that are released from the
muscle during exercise (Khan and Ghafoor 2019). This research has fostered new
therapeutic opportunities for several pathophysiological conditions, as well as
uncertainty, warranting further investigation to understand how these myokines
regulate the muscle-organ crosstalk. Now the muscle is no longer seen only as a
tissue with contractile functions responsible for movement, heat, and strength
production, but instead it is capable of impacting several biomolecular functions
through its secretome, reaching diverse tissues such as the brain, liver, bone, gut,
skin, pancreas, adipose tissue, as well as other cells such as those of the immune
system (Pedersen 2006). Given the impact of the muscle secretome in ensuring
whole-body homeostasis, including preventing low-grade chronic inflammation,
these next sections will address some of the anti-inflammatory mechanisms mediated
by myokines as well as other potential hormonal factors of acute and chronic
exercise.

Acute Effects of Exercise and Anti-inflammatory Mechanisms
Myokines and their extensive portfolio of hormone-like substances, the IL-6 stands
out as the prototype adipo-myokine with a considerable amount of research
performed to explore its anti-inflammatory effects following a single bout of exercise
(Pedersen 2017). As mentioned previously, IL-6 can have both pro- and anti-
inflammatory actions, depending on several factors, with one being dependent on
the cells responsible for its production (i.e., adipocytes (adipokine), macrophages
(cytokine), or muscle (myokine)), with IL-6 secreted by muscle having a more anti-
inflammatory profile. Moreover, the inflammatory/anti-inflammatory effects of IL-6
depend on how the signaling between the protein and its receptor unfold (Han et al.
2020). On this topic, Han and colleagues described that a switch of IL-6 signaling
from a canonical mode to a noncanonical trans-signaling mode occurs due to the
increased expression of the ADAM10/17 metalloprotease, which enhances trans-
signaling via the soluble IL-6 receptor a (Han et al. 2020). This trans-signaling by
IL-6 is known to promote adipose tissue M1 macrophage recruitment and a more
inflammatory phenotype.

Looking at exercise, IL-6 can increase its circulating levels several fold,
depending on factors such as the duration, intensity, and type of exercise, as well
as nutritional intake of carbohydrates and pre-exercise glycogen content (Pedersen
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2006; Pedersen 2017). For instance, following an acute bout of 30 min running at
75% of VO, max, the circulating levels of IL-6 were increased by five-fold, whereas
after a marathon, the values were up by 100-fold (Ostrowski et al. 1999). These
differences between a shorter duration of exercise to a prolonged bout, as observed
in long-distance running (e.g., marathons), highlight the importance of the duration
of exercise as a considerable factor impacting the magnitude of changes in IL-6
production. A possible explanation for these observations lies on the glycogen
reserves of the muscle following exercise. Both IL-6 mRNA and protein content
increase drastically after long-duration exercise when glycogen content tends to
decrease significantly (Pedersen 2006). The levels of acute IL-6 production follow-
ing longer periods of exercise training are more pronounced in untrained sedentary
individuals where glycogen reserves are lower when compared with their athletic
peers (Pedersen 2017). Moreover, chronic adaptations to exercise, such as increased
glycogen cont