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Abstract. Neural networks are more expressive when they have multi-
ple layers. In turn, conventional training methods are only successful if
the depth does not lead to numerical issues such as exploding or vanish-
ing gradients, which occur less frequently when the layers are sufficiently
wide. However, increasing width to attain greater depth entails the use of
heavier computational resources and leads to overparameterized models.
These subsequent issues have been partially addressed by model compres-
sion methods such as quantization and pruning, some of which relying
on normalization-based regularization of the loss function to make the
effect of most parameters negligible. In this work, we propose instead to
use regularization for preventing neurons from dying or becoming linear,
a technique which we denote as jumpstart regularization. In comparison
to conventional training, we obtain neural networks that are thinner,
deeper, and—most importantly—more parameter-efficient.
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1 Introduction

Leap, and the net will appear.

Anonymous

Artificial neural networks are inspired by the simple, yet powerful idea that
predictive models can be produced by combining units that mimic biological
neurons. In fact, there is a rich discussion on what should constitute each unit
and how the units should interact with one another. Units that work in parallel
form a layer, whereas a sequence of layers transforming data unidirectionally
define a feedforward network. Deciding the number of such layers—the depth of
the network—is yet a topic of debate and technical challenges.

A neural network is trained for a particular task by minimizing the loss
function associated with a sample of data in order for the network to learn a
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function of interest. Although several universal approximation results show that
mathematical functions can generally be approximated to arbitrary precision by
single-layer feedforward networks, these results rely on using a very large number
of units [12,26,43]. Moreover, simple functions such as XOR cannot be exactly
represented with a single layer using the most typical units [45].

In fact, it is commonly agreed that depth is important in neural networks
[7,38]. In the popular case of feedforward networks in which each unit is a Rec-
tified Linear Unit (ReLU) [18,21,38,47], the neural network models a piecewise
linear function [3]. Under the right conditions, the number of such “pieces”—the
linear regions—may grow exponentially on the depth of the network [46,48,67].
Depending on the total number of units and size of the input, the number of
linear regions is maximized with more or less layers [58]. Similarly, there is an
active area of study on bounding the number of layers necessary to model any
function that a given type of network can represent [3,14,20,27,45,69].

Although shallow networks present competitive accuracy results in some
cases [4], deep neural networks have been established as the state-of-the-art over
and again in areas such as computer vision and natural language processing [13,
24,29,30,37,39,62,70] thanks to the the development and popularization of back-
propagation [41,54,71]. However, Stochastic Gradient Descent (SGD) [53]—the
training algorithm associated with backpropagation—may have difficulties to
converge to a good model due to exploding or vanishing gradients [6,28,35,49].

Exploding and vanishing gradients are often attributed to excessive depth,
inadequate choice of parameters for the learning algorithm, or inappropriate
scaling between network parameters, inputs, and outputs [17,32]. This issue
has also inspired unit augmentations [25,44,60], additional connections across
layers [23,30], and output normalization [32,52]. Indeed, it is somewhat intuitive
that gradient updates, depth, and parameter scaling may affect one another.

In lieu of reducing depth, we may also increase the number of neurons per
layer [22,64–66,72]. That leads to models that are considerably more complex,
and which are often trained with additional terms in the loss function such as
weight normalization to induce simpler models that hopefully generalize better.
In turn, that helps model compression techniques such as network pruning meth-
ods to remove several parameters with only minor impact to model accuracy.

Nonetheless, vanishing gradients may also be caused by dead neurons when
using ReLUs. If dead, a ReLU only outputs zero for every sample input. Hence, it
does not contribute to updates during training and neither to the expressiveness
of the model. To a lesser but relevant extent, similar issues can be observed with
a RELU which never outputs zero, which we refer to as a linear neuron.

In this work, we aim to reverse neurons which die or become linear during
training. Our approach is based on satisfying certain constraints throughout the
process. For a margin defined for each unit, at least one input from the sample is
above and another input is below. For each layer and input from the sample, at
least one unit in the layer has that input above such a margin and another unit
has it below. In order to use SGD for training, these constraints are dualized as
part of the loss function and thus become a form of regularization that would
prevent converging with the original loss function to spurious local minima.
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2 Background

We consider a feedforward neural network modeling a function ŷ = fθ(x) with
an input layer x = h0 = [h0

1 h0
2 . . . hl

n0
]T , L hidden layers, and each layer � ∈

L = {1, 2, . . . , L} having n� units indexed by i ∈ N� = {1, 2, . . . , n�}. For each
layer � ∈ L, let W � be the n� × n�−1 matrix in which the j-th row corresponds
to the weights of neuron j in layer � and b� be vector of biases of layer �. The
preactivation output of unit j in layer � is g�

i = W �
j h

�−1 + b�
j and the output

is h�
j = σ(g�

j) for an activation function σ, which if not nonlinear would allow
hidden layer � to be removed by directly connecting layers � − 1 and � + 1 [55].
We refer to g�(χ) and h�(χ) as the values of g� and h� when x = χ.

For the scope of this work, we consider the ReLU activation function σ(u) =
max{0, u}. Typically, the output of a feedforward neural network is produced by
a softmax layer following the last hidden layer [10], ŷ = ρ(hL) with ρ(hL)j =
ehL

j /
∑nL

k=1 ehL
k ∀j ∈ {1, . . . , nL}, which is a peripheral aspect to our study.

The neural network is trained by minimizing a loss function L over a
parameter set θ := {(W �, b�)}L

�=1 based on the N samples of a training set
X := {(xi)}N

i=1 to yield predictions {ŷi := fθ(xi)}N
i=1 that approximate the sam-

ple labels {yi}N
i=1 using metrics such as least squares or cross entropy [19,59]:

min
θ

L
(
θ,

{
(ŷi,yi)

}N

i=1

)
(1)

s.t. ŷi = fθ(xi) ∀i ∈ {1, 2, . . . , N} (2)

whereas a neural network is not typically trained through constrained optimiza-
tion, we believe that our approach is more easily understood under such a mind-
set, which aligns with further work emerging from this community [8,15,31].

3 Death, Stagnation, and Jumpstarting

Every ReLU is either inactive if g�
i ≤ 0 and thus h�

i = 0 or active if g�
i > 0 and

thus h�
i = g�

i > 0. If a ReLU does not alternate between those states for different
inputs, then the unit is considered stable [68] and thus the neural network models
a less expressive function [56]. In certain cases, those units can be merged or
removed without affecting the model [55,57]. We consider in this work a superset
of such units—those which do not change of state at least for the training set:

Definition 1. For a training set X, unit j in layer � is dead if h�
j(x

i) = 0 ∀i ∈
{1, 2, . . . , N}, linear if h�

j(x
i) > 0 ∀i ∈ {1, 2, . . . , N}, or nonlinear otherwise.

Layer � dead or linear if all of its units are dead or linear, respectively.

Figures 1a to 1c illustrate geometrically the classification of the unit based
on the training set. If dead, a unit impairs the training of the neural network
because it always outputs zero for the inputs in the training set. Unless the
units preceding a dead unit are updated in such a way that the unit is no longer
dead, then the gradients of its output remain at zero and the parameters of the
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(a) Dead unit (b) Linear unit (c) Nonlinear unit

(d) Dead point (e) Linear point (f) Nonlinear point

Fig. 1. A unit j in layer � separates the input space h�−1 into an open half-space
W �

j h
�−1 + b�

j > 0 in which the unit is active and a closed half-space W �
j h

�−1 + b�
j ≤ 0

in which the unit is inactive. The arrow in each case points to the active side. The unit
is dead if the inputs from training set X lie exclusively on the inactive side (a); linear
if exclusively on the active side (b); and nonlinear otherwise (c). In turn, an input is
considered a dead point if it is in the closed half-space W �

j h
�−1 + b�

j ≤ 0 in which
each and every unit j ∈ N� is inactive (d); a linear point if it is in the open half-space
W �

j h
�−1 + b�

j > 0 in which each and every unit j ∈ N� is active (e); and a nonlinear
point otherwise (f).

dead unit are no longer updated [42,61], which effectively reduces the modeling
capacity. If a layer dies, then the training stops because the gradients are zero.

For an intuitive and training-independent discussion, we consider incidence
of dead layers at random. If the probability that a unit is dead upon initialization
is p, as reasoned in [42], then layer � is dead with probability pn� and at least
one layer is dead with probability 1−∏L

�=1(1− p)n� . If a layer is too thin or the
network is too deep, then the network is more likely to be untrainable. We may
discard dead unit initializations, but that ignores the impact on the training set:

Definition 2. For a hidden layer � ∈ L, an input x is considered a dead point
if h�(x) = 0, a linear point if h�(x) > 0, and a nonlinear point otherwise.

Figures 1d to 1f illustrate geometrically the classification of a point based
on the activated units. If xi ∈ X is a dead point at layer �, then there is no
backpropagation associated with xi to the hidden layers 1 to � − 1. Hence, its
contribution to training is diminished unless a subsequent gradient update at a
preceding unit reverts the death. If � = L, then xi is effectively not part of the
training set. If all points die, regardless of the layer, then training halts.

If we also associate a probability q for xi not activating a unit, then xi is dead
for layer � with probability qn� and for at least one layer of the neural network
with probability 1 − ∏L

�=1(1 − q)n� . Unlike p, q is bound to be significant.
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We may likewise regard linear units and linear points as less desirable than
nonlinear units and nonlinear points. A linear unit limits the expressiveness of
the model, since it always contributes the same linear transformation to every
input in the training set. A linear point can be more difficult to discriminate
from other inputs, in particular if those inputs are also linear points.

Inspired by the prior discussion, we formulate the following constraints:

max
xi∈X

g�
j(x

i) ≥ 1 ∀� ∈ L, j ∈ N� (3)

min
xi∈X

g�
j(x

i) ≤ −1 ∀� ∈ L, j ∈ N� (4)

max
j∈N�

g�
j(x

i) ≥ 1 ∀� ∈ L,xi ∈ X (5)

min
j∈N�

g�
j(x

i) ≤ −1 ∀� ∈ L,xi ∈ X (6)

Dead and linear units are respectively prevented by the constraints in (3) and
(4). Dead and linear points are prevented by the constraints in (5) and (6). Then
we dualize those constraints and induce their satisfaction through the objective:

min
θ

L
(
θ,

{
(ŷi,yi)

}N

i=1

)
+ λP(ξ+, ξ−, ψ+, ψ−) (7)

s.t. ŷi = fθ(xi) ∀i ∈ {1, 2, . . . , N} (8)

ξ+j� = max
{

0, 1 − max
xi∈X

g�
j(x

i)
}

∀� ∈ L, j ∈ N� (9)

ξ−
j� = max

{

0,−1 − min
xi∈X

g�
j(x

i)
}

∀� ∈ L, j ∈ N� (10)

ψ+
i� = max

{

0, 1 − max
j∈N�

g�
j(x

i)
}

∀� ∈ L,xi ∈ X (11)

ψ−
i� = max

{

0,−1 − min
j∈N�

g�
j(x

i)
}

∀� ∈ L,xi ∈ X (12)

We denote by ξ+, ξ−, ψ+, and ψ− the nonnegative deficits associated with the
corresponding constraints in (3)–(6) which are not satisfied. These deficits are
combined and weighted against the original loss function L through a function P,
for which we have considered the arithmetic mean as well as the 1 and 2-norms.

We can apply this to convolutional neural networks [16,39] with only minor
changes, since they are equivalent to a feedforward neural network with param-
eter sharing and which is not fully connected. The main difference to work with
them directly is that the preactivation of the unit is a matrix instead of a scalar.
We compute the margin through the maximum or minimum over those values.
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4 Computational Experiments

Our first experiment (Fig. 2) is based on the MOONS dataset [51] with 85 points for
training and 15 for validation. We test every width in {1, 2, 3, 4, 5, 10, 15, 20, 25}
with every depth in {1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, . . . , 150}. We
chose a simpler dataset to limit the inference of factors such as overfitting, under-
fitting, or batch size issues. The networks are implemented in Tensorflow [1]
and Keras [11] with Glorot uniform initialization [17] and trained using Adam
[34] for 5000 epochs, learning rate of ε = 0.01, and batch size of 85. For each
depth-width pair, we train a baseline network and a network with jumpstart
using 1-norm as the aggregation function P and loss coefficient λ = 10−4.

With jumpstart, we successfully train networks of width 3 with a depth up to
60 instead of 10 for the baseline and width 25 with a depth of up to 100 instead
of 30. Hence, there is an approximately 5-fold increase in trainable depth.

(a) Train accuracy with baseline (b) Train accuracy with jumpstart

Fig. 2. Heatmap contrasting accuracy for neural networks trained on MOONSwith depth
between 1 and 150 and width between 1 and 25. The left plot is the baseline and the
right plot shows the results when using jumpstart. The accuracy ranges from a low of
0.5 (black) to a high of 1.0 (beige), with the former corresponding to random guessing
since the dataset has two balanced classes. (Color figure online)

Our second experiment (Table 1) evaluates convolutional neural networks
trained on the MNIST dataset [40]. We test every depth from 2 to 68 in incre-
ments of 4 with every width in {2, 4, 8}, where the width refer to the number of
filters per layer. The networks are implemented as before, but with a learning
rate of 0.001 over 50 epochs, batch size of 1024, kernel dimensions (3, 3), padding
to produce an output of same dimensions as the input, Glorot uniform initializa-
tion [17], flattening before the output layer and using a baseline and a jumpstart
network with 1-norm as the aggregation function P and loss coefficient λ = 10−8.
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Table 1. Summary of the results for the convolutional neural networks trained on the
MNIST dataset without jumpstart (baseline) and with jumpstart.

Baseline Jumpstart

Training Validation Training Validation

Best overall accuracy 0.999467 0.9885 0.999533 0.9911

Successful model 18 18 54 54

Best for depth-width pair 8 11 45 41

With jumpstart, we successfully train networks combining all widths and
depths in comparison to only up to depth 12 for widths 2 and 4 and only up to
depth 24 for width 8 in the baseline. In other words, only 18 baseline network
trainings converge, which we denote as the successful models in Table 1.

Our third experiment (Figs. 3 and 4) evaluates convolutional networks trained
on CIFAR-10 and CIFAR-100 [36]. For CIFAR-10, we test every depth in
{10, 20, 30} with every width in {2, 8, 16, 32, 64, 96, 192}. For CIFAR-100, we test
depths in {10, 20} with widths in {8, 16, 32, 64}. The networks are implemented
in Pytorch [50], with learning rates ε ∈ {0.001, 0.0001} over 400 epochs, batch
size of 128, same kernel dimensions and padding, Kaiming uniform initialization
[24], global max-avg concat pooling before the output layer, and jumpstart with
2-norm (P = L2) and λ ∈ {0.001, 0.1} or mean (P = x̄) and λ ∈ {0.1, 1}.

With jumpstart, we successfully train networks for CIFAR-10 with depth up
to 30 in comparison to no more than 20 in the baseline. The best performance—
0.766 for jumpstart and 0.734 for baseline—is observed for both with ε = 0.001,
where the validation accuracy of each jumpstart experiment exceeds the baseline
in 18 out of 21 depth-width pairs in one case and 20 out of 21 in another. The
baseline is comparatively more competitive with ε = 0.0001, but the overall val-
idation accuracy drops significantly. For CIFAR-100, the jumpstart experiments
exceed the baseline in 12 out of 16 combinations of depth, width, and learning
rate. The accuracy improves by 1 point in networks with 10 layers and 7.8 points
in networks with 20 layers. The maximum accuracy attained is 0.37 for the base-
line and 0.38 with jumpstart. The training time becomes 1.33 times greater in
CIFAR-10 and 1.47 in CIFAR-100. The use of the precomputed pre-activations
on the forward pass involves a similar memory cost: around 50% more.

The source code is at https://github.com/blauigris/jumpstart-cpaior.

https://github.com/blauigris/jumpstart-cpaior
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Fig. 3. Scatter chart of the number of parameters by accuracy for training (top)
and validation (bottom) of convolutional neural networks trained on CIFAR-10. Some
depth-width pairs are shown above the plots for reference and the gridlines are solid for
depth 30, dashed for 20, and dotted for 10. The results of this experiment are plotted
in this format due to their greater variability in comparison to the second experiment,
which permits evaluating parameter efficiency. With same number of units but fewer
parameters, the results for 20×8 are better than 10×16 and likewise for 20×32 when
compared with 10 × 64.
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Fig. 4. Scatter chart of number of parameters by accuracy for training (top) and vali-
dation (bottom) of convolutional neural networks trained on CIFAR-100. Some depth-
width pairs are shown above the plots for reference and the gridlines are dashed for
depth 20 and dotted for 10. Once certain capacity is reached at 640 units, we find
that the performance for 20 × 32 is competitive with that of 10 × 64 while using less
parameters.

5 Conclusion

We have presented a regularization technique for training thinner and deeper
neural networks, which leads to a more efficient use of the dataset and to neural
networks that are more parameter-efficient. Although massive models are cur-
rently widely popular in theory [33] and practice [2], their associated economical
barriers and environmental footprint [63] as well as societal impact [5] are known
concerns. Hence, we present a potential alternative to lines of work such as model



354 C. Riera et al.

compression [9] by avoiding to operate with larger models. Whereas deeper net-
works are often pursued, trainable thinner networks are surprisingly not.

Acknowledgements. Thiago Serra was supported by the National Science Founda-
tion (NSF) grant IIS 2104583.
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