
Efficient Operations Between MDDs
and Constraints

Victor Jung(B) and Jean-Charles Régin
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Abstract. Many problems can be solved by performing operations
between Multi-valued Decision Diagrams (MDDs), for example in music
or text generation. Often these operations involve an MDD that repre-
sents the result of past operations and a new constraint. This approach is
efficient, but it is very difficult to implement with some constraints such
as alldifferent or cardinality constraints because it is often impossible
to represent them by an MDD because of their size (e.g. a permutation
constraint involving n variables requires 2n nodes).

In this paper, we propose to build on-the-fly MDDs of structured con-
straints as the operator needs them. For example, we show how to realise
the intersection between an MDD and an alldifferent constraint by
never constructing more than the parts of the alldifferent constraint
that will be used to perform the intersection. In addition we show that
we can anticipate some reductions (i.e. merge of MDD nodes) that nor-
mally occur after the end of the operation.

We prove that our method can be exponentially better than building
the whole MDD beforehand and we present a direct application of our
method to construct constraint MDDs without having to construct some
intermediate states that will be removed by the reduction process.

At last, we give some experimental results confirming the gains of our
approach in practice.

1 Introduction

Multi-valued and binary decision diagrams (MDDs/BDDs) took an important
place in modern optimisation techniques. From the theory to the applications,
MDDs have shown a large interest in operational research and optimisation
[1,2,7,10,15,18]. They offer a broad range of modeling and solving possibilities,
from being a basic block of constraint solvers [6,13], to the development of MDD-
based solvers [3,9,19].

MDDs are a very efficient graph-based data structure to represent a set of
solutions in a compressed way. The fundamental reasons of their use is their
exponential compression power. A polynomial size MDD have the capacity to
represent an exponential size set of tuples. For example in a music schedul-
ing problem [16], an MDD having 14, 000 nodes and 600, 000 arcs stored 1090

meaningful tuples of size one hundred. Unlike trees, where each leaf represent a
solution, an MDD can have much fewer nodes and arcs than solutions.
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MDDs are also often reduced, that is a reduction operation is applied to
them. The reduction operation of an MDD merges equivalent nodes until a fix
point is reached. It may reduce the size of an MDD by an exponential factor.

Several other operators are available to combine MDDs without decompress-
ing them. The most important are the intersection, which corresponds to a con-
junction of two constraints, and the union, which corresponds to a disjunction
of two constraints and the negation.

Some problems can be solved by a succession of operations applied on MDDs
[8,14,16]. In other words, there is no search procedure that is used. To do so,
the different constraints are represented by MDDs, and they are combined by
applying operators between these different MDDs. In this way, all solutions can
be computed at once. However, even if the final solution can fit into memory,
it is possible that the memory explodes during the intermediate computation
steps - worse, it is even quite frequent that the MDD of the constraints are
themselves too big to fit in memory because they are exponential, as for most
cardinality constraints (e.g. alldifferent and global cardinality constraints).
One solution to be able to represent such constraints is to relax them [4,10]: we
gain memory in exchange for the loss of information. Usually, a relaxed MDD is
an MDD representing a super set of the solutions of an exact MDD. Preferably,
these relaxed MDDs are smaller than their exact versions. In general in such
techniques, the total size is a fixed given parameter, which has a strong impact
on the quality of the relaxation. Even if this approach is efficient, it can still be
unsatisfactory to a certain extent. The ideal would be to be able to perform the
computations while remaining exact. This is what interests us in this article: to
be exact. In particular, we are interested in being able to perform operations
without having to represent the whole constraint’s MDD in order to avoid the
problem of the intermediate representation.

More precisely the question we consider in this paper is: how can we compute
an operation between a given MDD and the MDD of a constraint without con-
suming too much memory? We need to answer this question even if the MDD
of the constraint cannot fit into memory. A simple example is the intersection
between an MDD involving fifty variables and the MDD representing an alld-
ifferent constraints on these variables. This latter MDD will have 250 nodes
(i.e. 1, 000, 000 Giga nodes) and so is too big to fit in memory.

The main ideas of this paper are to avoid building the MDD of the constraint
before applying the operation and to anticipate the reduction of the obtained
MDD.

The first idea can be implemented by using operators that proceed by layer
[14] because we can avoid building in advance the MDD of the constraint. Dur-
ing the operation, if a node can hold all the information necessary to build its
children in a way that satisfies the constraint, then we do not need to retain all
previous nodes. Thus, we can perform the construction having only at most two
layers in memory (the current layer and the next one being built). Furthermore,
if an arc does not exist in the first MDD, then it does not need to exist in the
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constraint’s MDD: building the MDD during the operation allows us to have
more gain by only representing what is necessary to be represented.

The second idea is based on the remark that a constraint is useless when
we can make sure that it will always be satisfied. For instance if 3 variables
remains and if we know that they have disjoint domains then an alldifferent
constraints between these variables is useless. Thus, we can avoid defining the
constraint’s MDD and we can immediately merge some nodes that would have
been merged by the reduction process and so gaining some space in memory.

The advantage of this approach is that it can provably gain an exponential
factor in space. It has also a direct application to construct constraint MDDs
without having to construct all intermediate states. This allows either to build
constraint MDDs that cannot be built otherwise, or to build them much faster.

We also show that processing several constraints simultaneously is not advan-
tageous compared to doing the operations successively for each constraint. This
is due to the lack of reduction which is normally performed after each operation
and which can strongly reduce the resulting.

The paper is organised as follows. First, we enrich the classical internal data
of an MDD with several notions: we introduce the notion of node states allowing
to represent the information associated with the node with respect to a certain
constraint, the notion of transition function δC(s, v) and the notion verifica-
tion function VC(s) allowing respectively to make the state of a node evolve by
performing a transition of value v and to verify if a state is satisfying the con-
straint (absence of violation). Then, we elaborate on the importance of perform-
ing merges to have some control over the growing behavior of some constraints,
by giving for each constraint described in the article the conditions to perform a
merge. In addition, we try to convey some intuition of the potential gain behind
these merges, which might greatly depend on the constraint’s parameters. Next,
we give for each of these constraints a possible implementation of the state and
functions δC(s, v) and VC(s), as well as a generic algorithm allowing to perform
an on-the-fly intersection operation based on the notions described. We also
give the size of the MDD representing each constraint. Afterwards, we prove
that building the constraint’s MDD on the fly can be exponentially better than
building the whole MDD beforehand. Finally, we present a direct application to
compute constraint MDDs and we give some experimental results, notably for
the car sequencing problem and we study the generalisation of our method for
a set of constraints. At last, we conclude.

2 Preliminaries

2.1 Constraint Programming

A finite constraint network N is defined as a set of n variables X = {x1, . . . , xn},
a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set
of possible values for variable xi, and a set C of constraints between variables.
We introduce the particular notation D0 = {D0(x1), . . . , D0(xn)} to represent
the set of initial domains of N on which constraint definitions were stated. A
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constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir
) is a subset

T (C) of the Cartesian product D0(xi1)×· · ·×D0(xir
) that specifies the allowed

combinations of values for the variables xi1 , . . . , xir
. An element of D0(xi1)×· · ·×

D0(xir
) is called a tuple on X(C). A value a for a variable x is often denoted by

(x, a). Let C be a constraint. A tuple τ on X(C) is valid if ∀(x, a) ∈ τ, a ∈ D(x).
C is consistent iff there exists a tuple τ of T (C) which is valid. A value a ∈ D(x)
is consistent with C iff x �∈ X(C) or there exists a valid tuple τ of T (C) with
(x, a) ∈ τ . We denote by #(a, τ) the number of occurrences of the value a in a
tuple τ .

We present some constraints that we will use in the rest of this paper.

Definition 1. Given X a set of variables and [l, u] a range, the sum constraint
ensures that the sum of all variables x ∈ X is at least l and at most u.
sum(l, u) = {τ | τ is a tuple on X(C) and l ≤ ∑

i=0 τi ≤ u}.
A global cardinality constraint (gcc) constrains the number of times every

value can be taken by a set of variables. This is certainly one of the most useful
constraints in practice. Note that the alldifferent constraint corresponds to
a gcc in which every value can be taken at most once.

Definition 2. A global cardinality constraint is a constraint C in which
each value ai ∈ D(X(C)) is associated with two positive integers li and ui with
li ≤ ui defined by
gcc(X, l, u) = {τ |τ is a tuple on X(C) and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤
ui}.

2.2 Multi-valued Decision Diagram

The decision diagrams considered in this paper are reduced, ordered multi-valued
decision diagrams (MDD) [2,12,17], which are a generalisation of binary decision
diagrams [5]. They use a fixed variable ordering for canonical representation and
shared sub-graphs for compression obtained by means of a reduction operation.
an MDD is a rooted directed acyclic graph (DAG) used to represent some multi-
valued functions f : {0...d − 1}n → true, false. Given the n input variables, the
DAG contains n + 1 layers of nodes, such that each variable is represented at a
specific layer of the graph. Each node on a given layer has at most d outgoing arcs
to nodes in the next layer of the graph. Each arc is labeled by its corresponding
integer. The arc (u, a, v) is from node u to node v and labeled by a. Sometimes
it is convenient to say that v is a child of u. All outgoing arcs of the layer n
reach tt, the true terminal node (the false terminal node is typically omitted).
There is an equivalence between f(a1, ..., an) = true and the existence of a path
from the root node to the tt whose arcs are labeled a1, ..., an.

The reduction of an MDD is an important operation that may reduce the
MDD size by an exponential factor. It consists in removing nodes that have
no successor and merging equivalent nodes, i.e. nodes having the same set of
children associated with the same labels. This means that only nodes of the
same layer can be merged.
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3 Generalisation of the Construction Process

Perez and Régin [14] have explained how an MDD can be built directly from
functions defining an automaton or a pattern. The general principle is to define
states and to link them by a transition function, which can be defined globally or
for each level. In order to be more general and less dependent on automata theory,
we propose to generalize the previous concepts and to introduce a verification
function. This is similar to what is done in [9,11].

By doing so, the notion of state, the function of transition δC(s, v) as well as
the verification function VC(s), form a lightweight and general scheme allowing
an efficient on the fly construction of a constraint’s MDD.

3.1 State, Transition and Verification

The notion of state holds some information in an MDD node about the constraint
representation, giving it an actual meaning: for the sum constraint, a state will
hold the value of the sum for the current node. Given that piece of information,
we will be able to build all the valid successors of a node.

In order to build the MDD layer by layer, i.e. to build the children of a node,
we define a transition function on the nodes: this transition function takes into
account the current state s of a node and the constraint C. Given a certain state,
we need to build all successors of a node such that the state of each successor
satisfies the constraint C.

Let δC(s, v) be the transition function that builds a new state from a state
s and a label v and VC(s) the verification function that checks whether a state
s satisfies the constraint or not.

Thanks to these notions we can define the following property:

Property 1. Nodes of the same layer with the exact same state can be merged.

Proof. The transition function δC takes into account the constraint C and the
current state s to build the successors of a node. The constraint C being invariant
during the construction process, it means that for a given layer if s1 = s2, then
δC(s1) = δC(s2). In an MDD, two nodes can be merged if they have the same
successors: therefore, we can merge two nodes having the same state. ��

Immediate Merges. If during the construction of the MDD, we can clearly
see that some nodes will be merged during the reduce operation, then we can
immediately merge some states. However, merging states will result in the loss
of precision concerning the information represented. For instance, if two nodes
representing a sum s1 and s2 are merged, the result of this merge is the set
{s1, s2}. The node holding this state could be considered to be in both state s1
and s2 at the same time. Now, let’s imagine that we must have a sum satisfying
the range [10, 15], and that we have a merged state of [14, 15] for a given node:
can we add 1? The answer is yes when considering 14, and no when considering
15. This shows that, in order not to lose information about the constraint (i.e.
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solutions), we have to be careful about what we merge - we cannot do it blind-
folded. In a general way, a node holding a merged state would mean that the
state of this node represents less information than the initial constraint (which
is the case for the gcc constraint), or in extreme cases that the state of the node
does not matter anymore (which is the case for the sum constraint).

For each constraint described in this article, we will detail: the total number of
states for the constraint, the conditions to perform a merge and its consequences
for the size of the MDD. Please note that the impact of the merges on the size
highly depends on the constraint and its parameters.

We will now present a possible implementation for the sum, gcc, and alld-
ifferent constraints. Henceforth, we will refer to the transition function δ as
createState and the verification function VC as isValid.

3.2 Sum

Fig. 1. Merged states in the
sum, with min = 4 and max
= 9. The merged path (red)
necessarily lead to tt, what-
ever the value taken.

Representation. The sum constraint is simply
represented by the minimum min and maximum
max value of the sum. For convenience purposes,
we also add the minimum vmin and maximum vmax

value of D, the union of the domains of the variables
involved in the constraint.

The state is represented by a single integer sum
(Fig. 1).

Transition and Validity. Creating a state means
to add the label’s value to the current sum, and a
transition is valid if the obtained sum belongs in the
constraint’s bounds (See Algorithm 1).

Number of States. The number of states at layer i is at most i × (vmax −
vmin + 1). The total number of states in the MDD is therefore at most:

2 +
n−1∑

i=1

i × (vmax − vmin + 1) = 2 +
(n − 1)2 + (n − 1)

2
× (vmax − vmin + 1)

This upper bound is achieved when the set of values D is an integer range. This
number can also be bounded by the upper and lower bounds of the sum.

Merging Condition. Let s be the state representing a sum. If min ≤ s+(n−
layer) × vmin and s + (n − layer) × vmax ≤ max, then we are certain to satisfy
the constraint no matter what values we assign next. Therefore, we can drop the
state of the node. Table 1 gives some experimental results of immediate merges.
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Algorithm 1. Sum State
createState(constraint, state, label, layer, n): state

nextState.sum ← state.sum + label;
return nextState;

isValid(constraint, state, label, layer, n): boolean
minReach ← state.sum + label + (n − layer) × constraint.vmin;
maxReach ← state.sum + label + (n − layer) × constraint.vmax;
// We cannot reach the minimum sum or go below the maximum
if (maxReach < constraint.min ∨ minReach > constraint.max) then

return false;

return true;

Table 1. Impact of immediate merges on the number of nodes created and memory
consumption for the sum constraint

With merges Without merges

min max n |V | #nodes memory (MB) #nodes memory (MB)

20 200 50 10 6204 29 7914 35

124 480 200 14 82349 448 87047 472

500 1000 200 10 117864 456 131504 506

500 1000 200 20 161720 1192 168051 1242

3.3 GCC

Representation. To represent the gcc constraint, we need: the set V of con-
strained values, and the minimum lbv and maximum ubv occurrences of each
specific value v ∈ V . To represent the state, we only need a array count that
contains the number of occurrences of each value v ∈ V . We also define another
variable named minimum that counts the minimum number of layers required
to reach all the lower bounds of values.

Transition and Validity. Creating a new state means adding 1 to the counter
of the value of the label we take if this value is constrained. A transition is valid
if we can reach the lower bounds with the remaining layers, and if the added
value of the label is not greater than its upper bound (always true if the value
is not constrained, of course). Algorithm 2 is a possible implementation.

Notation 1

• n is number of variables and layer the index of the current layer.
• ∀v ∈ V : cv is the number of times v is assigned, lbv the lower bound of v and

ubv the upper bound of v.
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Number of States. The number of states in a gcc is at most:
∏

v∈V

ubv

because this is the number of count tuples that can be represented by the numeral
system defined by the gcc.

Merging Condition

Property 2. We can remove the count cv of value v from the state iff:

(n − layer ≤ ubv − cv) ∧ (lbv ≤ cv + max(0, (n − layer) −
∑

i�=v

(ui − ci)))

If the number of variables left to assign is less than the number of times we can
assign the value v, and if the lower bound lbv is reached, then it means that,
no matter how many times we assign the value v to the future variables, we are
certain to be in the range [lbv, ubv].

Example: Let the bound [lbv, ubv] = [10, 20], cv = 10 and n− layer = 10. Then,
we can have a merged state [cv, cv + i] = [10, 10 + i] up to i = n − layer = 10.
In that case, the value v can be ignored (i.e. deleted) by the state because, no
matter what choices we make, we are assured to satisfy the constraint: there is
therefore no need to take into account v.

Table 2 gives some experimental results of immediate merges.

Table 2. Impact of immediate merges on the number of nodes created and memory
consumption for the gcc constraint

With merges Without merges

#nodes memory (MB) #nodes memory (MB)

405081 3308 543196 4300

58385 450 100341 715

5064 44 40558 266

430076 3584 470801 3849

3.4 AllDifferent

Representation. The alldifferent constraint is simply a gcc constraint for
which the set of values V contains all values and each value can only be assigned
once. We represent the state by the set of previously assigned values.

Transition and Validity. A transition is valid if the label is not already
assigned. To create a new state, we simply copy the current state (i.e. the set of
assigned values) and add to it the new label (See Algorithm 3).
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Algorithm 2. GCC State
createState(constraint, state, label, layer, n): state

count ← ∅ ;
min ← state.minimum;
potential ← n − layer − 1;
for each value v ∈ state.count do

if state.count[v] < constraint.min[v] then count[v] ← state.count[v]
if state.count[v] + potential > constraint.max[v] then

count[v] ← state.count[v]

if label ∈ count then
if state.count[label] < constraint.min[label] then min ← min − 1;
// If we are sure to satisfy the constraint for the label
if (constraint.min[label] ≤ count[label]+1)∧(count[label]+n−layer ≤
constraint.max[label]) then count.remove(label);
else count[label] ← count[label] + 1

nextState.count ← count;
nextState.minimum ← min;
return nextState;

isValid(constraint, state, label, layer, n): boolean
potential ← n − layer − 1;
min ← state.minimum;
if label /∈ state.count.values then return min ≤ potential;
value ← state.count[label];
if value < constraint.min[label] then min ← min − 1;
return (min ≤ potential) ∧ (value + 1 ≤ constraint.max[label]);

Number of States. The number of states in the ith layer for a given set of
constrained values V is

(|V |
i

)
. Therefore, the total number of nodes in the MDD

is:

2n ≤
n∑

i=0

(|V |
i

)

≤ 2|V |

Merging Condition. The alldifferent constraint can be seen as a gcc
constraint where all values v ∈ V are associated with the range [0, 1]. Thus, the
merging conditions for the alldifferent constraint is the same as the gcc
under the described parameters: it means that we can only merge during the
last layer, which is negligible.

3.5 Generic Constraint Intersection Function

This function is a possible implementation of the generic constraint intersection
function. It is based on Functions defined in [14]. It shows that we do not need to
store the full MDDc and that we build the next layer only knowing the current
layer.
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Algorithm 3. alldifferent State
createState(constraint, state, label, layer, n): state

values ← ∅;
for each v ∈ state.values do values.append(v);
if label ∈ constraint.values then values.append(label);
nextState.values ← values;
return nextState;

isValid(constraint, state, label, layer, n): boolean
return label /∈ state.values

Algorithm 4. Generic Constraint Intersection Function.
applyInter(mdd1, constraint, rootc): MDD

// When creating a node, we associate it with one node from each MDD
root ← createNode(root(mdd1), rootc) ;
L[0] ← {root} // L[i] is the set of nodes in layer i. ;
C[0] ← {rootc};
for each i ∈ 1..n do

L[i] ← ∅; C[i] ← ∅ ;
for each node x ∈ L[i − 1] do

get x1 and x2 from x = (x1, x2) ;
for each v ∈ childOf(x1) do

if v �∈ childOf(x2)∧ isValid(constraint, x2.state, v, i − 1, r)
then

y2 ← createNode();
y2.state ← createState(constraint, x2.state, v, i − 1, r);
addChild(x2, v, y2);
C[i].append(y2);

// Add the arc between x and the node defined by y = (y1, y2)
// The node y will be added to the MDD if it is not yet in it.
addArcAndNode(L, i, x, v, y1, y2) ;

destroy(C[i− 1]) // Remove previous constraint layer from memory ;

merge all nodes of L[n] into t;
pReduce(L) ;
return root ;

4 Exponential Gain

Theorem 1. Building the MDD of a constraint on the fly can be exponentially
better in terms of space and time than building the whole MDD beforehand.

Proof. We show how to perform an intersection between MDDx, an MDD, and
MDDAD the MDD of an alldifferent constraint. Let x be a number of sets,
MDDx is built as follows (See Fig. 2 for x = 3 and |X| = 3):

– Step 1 - Generate MDDU (X) a universal MDD with domain X. This means
that the variables can take any value in X.
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– Step 2 - Copy the MDD from step 1 for x sets having a cardinality equal to
|X| and make the union of them. We denote by MDDV the obtained MDD.

– Step 3 - Copy x times MDDV , and concatenate them.

Fig. 2. Final step. For
convenience purposes,
we represent only one
arc for a whole set of
values.

The size of MDDAD is exponential (i.e. at least 2n).
So, when n is large, it is not possible to build it. However,
the size of MDDx ∩ MDDAD is exponentially smaller
than the size of MDDAD, and our method is able to
compute this intersection as shown by the following pro-
cess:

1. The number of nodes in the MDDAD involving all the
variables is 2|X|×x, being (2|X|)x.

2. MDDV is the union of x universal MDDs. The inter-
section between a universal MDD and MDDC (i.e. the
MDD of a constraint C) is MDDC . So, for any set X,
the intersection between MDDU (X) and MDDAD is
equal to MDDAD which has 2|X| nodes.

3. We can simplify by stating that each MDDU (X) is
an arc. The shape of our MDD is therefore the one of
a universal MDD. Thus, the same observation that in
2. applies: the simplified MDD intersecting with the
alldifferent constraint is the MDD of the alld-
ifferent constraint. It is denoted by metaMDDAD.

4. If we know the number of arcs in our metaMDDAD,
we can deduce the number of nodes created during
the intersection.

5. The layer i of metaMDDAD contains
(
x
i

)
nodes.

6. Each node in the layer i has (x – i) out-going arcs
(because we already chose i values of the x possible).

7. By combining (5) and (6), the total number of arcs
in our metaMDDAD is

∑x
i=0

(
x
i

) × (x − i) = x × 2x−1

8. By combining (2) and (7), the total number of nodes
in our metaMDDAD is x×2x−1×2|X| = x×2|X|+x−1,
because each arc of metaMDDAD is an MDDAD(X)
involving |X| variables.

9. The difference between (8) x × 2|X|+x−1 and (1)
(2|X|)x is exponential. ��
We perform some benchmarks to experimentally confirm this gain.

4.1 Building the AllDifferent’s MDD

Table 3 shows that the alldifferent constraint quickly becomes impossible to
construct: after barely 24 values it is impossible to represent the constraint.
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Table 3. Construction of the alldifferent MDD with size variation

|V| Memory (MB) Time (s) Layer

20 8840 12.363 20

21 18789 27.476 21

22 39675 62.850 22

23 83619 134.696 23

24 Out of memory (≥100 GB) 160.894 13

4.2 Performing the Construction on the Fly

The results of Table 4 show that by constructing the alldifferent’s MDD on
the fly, it is possible to compute intersections with a lot of values (here between
|V | = 25 and |V | = 100) very efficiently. We notice that, when we increase the
number of sets, the intersection becomes more and more difficult to compute:
this testifies to the exponential behaviour of the constraint.

Table 4. Evolution of Time (ms) and Memory (MB) consumption for MDDAD inter-
section according to the variation of the number and size of sets (A, B, C in Fig. 2).
The number of variables is equal to Number × Size.

)BM(yromeM)sm(emiT

Number
Size

5 6 7 8 9 10 5 6 7 8 9 10

5 8 16 36 84 192 424 50 22 53 128 284 665
6 19 36 132 212 492 1096 53 58 167 348 852 2042
7 44 96 224 524 1232 2748 101 151 374 930 2312 5613
8 101 257 548 1273 2993 8129 216 403 984 2456 6116 15433
9 241 564 1397 3384 7814 15957 543 1010 3042 6605 16012 50836
10 556 1348 3144 7116 16649 39073 1211 3079 6600 15308 37723 137917

The second test (Table 5) is a variant of the first one (Table 4). Arcs are added
randomly between several sets, which as a consequence drastically increases the
number of states in the MDD. The result is that intersection becomes impossible
very quickly: for 6 sets and 6 values by set, we have a factor of 5 200 in time.

Table 5. Evolution of Time (ms) and Memory (MB) consumption for the alldiffer-
ent MDD intersection according to the variation of the number and size of sets with
random arcs added between sets

Number
Size 5 6

Time Memory #Arcs Time Memory #Arcs
5 322 107 6 2753 505 6
6 7059 2513 6 187061 53981 7
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5 Application: Construction of the MDD of Constraints

In this section, we show that our method can be useful to build the MDD of
some constraints and not only to perform some intersections.

Consider C a constraint. Suppose that the construction of MDDC , the MDD
of C, is problematic because a very large number of intermediate states are
generated but do not appear in the reduced MDDC . As the reduction can gain
an exponential factor this case is quite conceivable. It occurs, for example, with
a bounded sum of variables that can take very different values. The number
of states created is therefore huge, but it is quite possible that the reduction
induced by the bounds on the sum removes a large part of them.

This kind of constraint can either prevent us from building the MDD due to
lack of memory to store all the intermediate states, or require a lot of time to
compute. To remedy these problems we propose to use successively our method
on relaxations of MDDC allowing to deal with smaller MDDs.

This approach assumes that it is possible to define different relaxations of
MDDC more or less strong. We recall that an MDD is a relaxation of an MDD
if it represents a super set of the solutions of the exact MDD. In addition,
we assume that the relaxation has fewer nodes. This is achievable by merging
nodes for relaxing the MDD, which is quite usual. Thus, we suppose that we
have MDDs noted Relax(MDDC ,p) which are relaxations of MDDC according
to a parameter p such that p < q implies Relax(MDDC ,p) is smaller than or
equal to Relax(MDDC ,q). The value of p can be ad hoc. For example, for a
sum constraint, a relaxation is simply to consider the numbers up to a given p
precision. Thus we can merge many more states and the greater the precision
the less the MDD is relaxed.

For convenience we will consider that Relax(MDDC ,n) is MDDC . Then, we
can compute MDDC by applying the following process named OTF Inc:

1. Let M ← Relax(MDDC ,p)
2. Compute M ′ by performing the intersection on the fly between M and

Relax(MDDC ,p + 1)
3. Set p ← p + 1, and M ← M ′

4. If p < n then goto 2 else return M

6 Experiments

6.1 Constraint Building

We consider the following stochastic problem: there are n variables with domains
having the same size. The values represent the chance for an event to appear. A
solution is a combination of events such that their chance to happen simultane-
ously is above a certain threshold, for instance 75%. This problem is equivalent
to a bounded product of variables. The goal is to build the MDD containing all
the solutions. It is equivalent to building the MDD of CΠ the constraint defining
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a bounded product of variables. The difficulty is that values are quite different
(because computed from other elements) leading to the lack of collision.

We propose to compute the MDD of this problem by using the process OTF
Inc defined in Sect. 5. We define Relax(MDDCΠ

,p) by the MDD of CΠ for which
the variables have been rounded to a precision p (i.e. the number of decimal
places after the decimal point).

We test the method on different sets of data (available upon request). Each
set involves values between 0.95 and 1 with at least 4 digits. The combined
probability must be greater than 0.9. We compare the time and memory needed
to compute the MDD using OTF Inc and the MDD directly computed (Base),
both for a final precision p = 8, starting from p = 0. Table 6 shows that we
obtain a factor of at least 9 both in time and in memory. We achieve up to a
factor of 77.55 in time (181.5 s vs 2.6 s) and 19 in memory (405 MB vs 7 617 MB)
for the hardest dataset (set 5).

Table 6. Time (ms) and memory (MB) needed to compute the exact MDD.

Time (ms) Memory (MB)

Set OTF Inc Base Ratio OTF Inc Base Ratio

Set 1 1 131 10 235 9.05 136 1 423 10.46

Set 2 1 877 17 970 9.57 266 2 584 9.71

Set 3 1 405 25 528 18.17 189 1 869 9.89

Set 4 1 974 61 904 31.36 289 3 854 13.34

Set 5 2 642 181 468 77.55 405 7 617 18.81

6.2 The Car Sequencing Problem

A number of cars are to be produced. There are different options available to
customise a car, and it is possible that a car has to be built with several options
(paint job, sunroof, ABS, etc.). Each option is installed in a station that has
a maximum handling capacity: if, for example, a station installing an option A
can only handle one car in any two, then the assembly line must be designed in
such a way that there are never two cars in a row requiring the option A. This
constraint must be satisfied for each station. This problem is NP-complete.

All instances used in this article are available on csplib: https://www.csplib.
org/Problems/prob001/data/data.txt.html

We will use the following methods:

• OTF: On The Fly, the method presented in this article.
• OTF×: OTF performing operations with multiple constraints at once.
• Classic: The method that builds the MDD then performs the operation.

For the car sequencing problem it means that the final MDD is built as follows:
for the classic method, we build the MDD containing all sequence constraints,

https://www.csplib.org/Problems/prob001/data/data.txt.html
https://www.csplib.org/Problems/prob001/data/data.txt.html
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then we build the MDD of the gcc, and we perform the intersection between
these two MDDs. For the OTF method, we do the same as the classic method,
but the intersection with the gcc is done on the fly (we do not build the gcc
MDD). Finally, for the OTF×, we directly compute the intersection between the
sequence and gcc, without building them explicitly.

Table 7. Problem 4/72 (Regin & Puget #1), Problem 19/71 (Regin & Puget #4) and
Problem 60-02 from CSPLib. Time measured in ms and Memory in MB.

Problem 4/72 Problem 19/71
#options Method Time Memory Layer Time Memory Layer

2
OTF 1042 187 100 915 127 100
OTF× 3435 712 100 5858 1274 100
Classic 5177 1684 100 4845 1356 100

3
OTF 665 628 90 614 100 73 019 15 724 100
OTF× 2 736 002 224 931 691∗ 847 006 114 448 100
Classic 957 063 231 213 382∗ 819 905 214 445 382∗

Problem 60-02

2
OTF 41 129 9 043 100
OTF× 315 825 33 986 100
Classic 51 975 11 059 100

3
OTF 1 960 854 212 669 413∗

OTF× 2 763 521 172 543 311∗

Classic 957 063 231 213 382∗

1∗: MO during intersection of sequence + gcc
2∗: MO during the construction of the gcc, after the sequence intersection

3∗: MO during the gcc intersection

Table 7 shows that it is possible to build an MDD that is not possible to
build otherwise (because the gcc explodes in memory). Thus, we can conclude
that an instance has no solution (Problem 19/71 ), which we could not do before.
In the case of larger problems, we still manage to observe a strong progression,
even if it remains insufficient: where we could only build 38 layers of the gcc,
we manage to carry out the intersection with it up to layer 41 (Problem 60-02 ).
These results clearly show the advantage of this intersection method.

We notice that OTF× is systematically worse than the method doing them
one by one (Problem 4/72, Problem 60-02 ), and even worse in some cases than
Classic (Problem 60-02 ). This can be explained by the fact that the complexity
is proportional to the number of states constructed for each constraint. How-
ever, by making successive intersections, we observe a reduction in the number
of solutions, which can imply (and does imply in a general case) a reduction of
states. Performing several operations at the same time is therefore not interest-
ing, especially if the MDDs are easy to construct, i.e. they are not exponential
in memory like would be alldifferent or gcc.
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7 Conclusion

This article shows that building constraints’ MDD during an operation is more
advantageous in every way than building the complete constraint’s MDD first,
even if it does not prevent an explosion of memory. Moreover, this method shows
a major impact in performance for solving some well known problems or build-
ing MDDs of constraints. However, doing multiple constraints at once is not
necessarily better, and is shown to be worse most of times.
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