
25Epilogue 

Abstract 

This chapter is the concluding chapter in which we summarize the journey that 
we have travelled in this book. 

We embarked on a long journey is this book and set ourselves the objective of 
providing a concise introduction to the software engineering field to students and 
practitioners. The book was based on the author’s experience at leading industrial 
companies, and it covered both theory and practice. The objective was to give the 
reader a grasp of the fundamentals of the software engineering field, as well as 
guidance on how to apply the theory in an industrial environment. 

Customers today have very high expectations on quality and expect high-quality 
software to be consistently delivered on time and on budget. The focus on quality 
requires that sound software engineering practices be employed to enable quality 
software to be consistently produced. Further, it is an accepted view in the software 
quality field that the quality of the delivered software is closely related to the quality 
of the underlying processes used to build the software, and on adherence to them. 

Many processes are employed in the design and development of software, and 
companies need to determine the extent to which the underlying processes used to 
design, develop, test, and manage software projects are fit for purpose. The process 
will need to be continuously improved, and often model-based improvement using 
a framework such as the CMMI is employed. There is also the need to focus on best 
practice in software engineering, as well as emerging technologies from various 
research programs. Piloting or technology transfer of innovative technology is an 
important part of continuous improvement. Companies need to focus on customer 
satisfaction and software quality, and they need to ensure that the desired quality is 
built into the software product. 

We discussed project planning and tracking, software lifecycles, software 
inspections and testing, configuration management, software quality assurance, etc. 
The capability maturity model integrated was discussed, and it provides a

431© Springer Nature Switzerland AG 2022 
G. O’Regan, Concise Guide to Software Engineering, 
Undergraduate Topics in Computer Science, 
https://doi.org/10.1007/978-3-031-07816-3_25 

https://doi.org/10.1007/978-3-031-07816-3_25


framework that assists organizations in software process improvement. The 
appraisal of an organization against the CMMI allows the organization to determine 
the current capability or maturity of selected software processes and to prioritize 
improvements. 

432 25 Epilogue

We discussed the professional responsibility of software engineers, where 
engineers have a professional responsibility to behave ethically with their clients. 
The professional engineering body requires its member to adhere to the code of 
ethics of the profession. 

We discussed ethical software engineering including the ethical impacts of 
technical decisions as part of the software engineering process. The ethical software 
engineer needs to examine both the technical and the ethical dimensions of deci-
sions that affect wider society. 

We introduced project management, and discussed project estimation; project 
planning and scheduling, project monitoring and control, risk management, and 
managing project quality. 

We discussed requirements engineering including activities such as requirements 
gathering, requirements elicitation, requirements analysis, requirements manage-
ment, and requirements verification and validation. 

We then discussed design and development, including the high-level architec-
tural design, the low-level design of individual programs, and software develop-
ment and reuse. The views of Hoare and Parnas on software design were discussed, 
and we discussed the historical function-oriented design and object-oriented design. 
We discussed software development topics such as software reuse, 
customized-off-the-shelf software, and open-source software development. 

We discussed software inspections including Fagan inspections, as well as the 
less formal review and walkthrough methodologies. Software testing was then 
discussed, including the various types of testing that may be carried out, and we 
discussed test planning, test case definition, test tracking, test metrics, test reporting, 
and testing in an e-commerce environment. 

We then discussed ethics and privacy where professional ethics are a code of 
conduct that governs how members of a profession deal with each other and with 
third parties. It expresses ideals of human behaviour, and the fundamental princi-
ples of the organization, and is an indication of its professionalism. Privacy is 
defined as “the right to be left alone”, and specifies there should be no intrusion 
upon seclusion, and no public disclosure of private facts or false information. 

We then discussed metrics and problem solving, including the balanced score 
card and GQM, as well as presenting a collection of sample metrics for an 
organization. 

We then discussed outsourcing including the selection and management of a 
software supplier, and we described how candidate suppliers may be formally 
evaluated, selected, and managed during the project. 

We then discussed software configuration management including the concept of 
a baseline. Configuration management is concerned with identifying those deliv-
erables that are subject to change control and controlling changes to them.



25 Epilogue 433

We discussed software quality assurance and the importance of process quality, 
and the discussion included audits and described how they are carried out. 

We discussed the Agile methodology which is has become the dominant para-
digm in software engineering. It is a popular lightweight approach to software 
development that has a strong collaborative style of working. It advocates adaptive 
planning and evolutionary development. 

We then discussed software reliability and dependability, and covered topics 
such as software reliability and software reliability models; the Cleanroom 
methodology; system availability; safety and security critical systems, and depen-
dency engineering. 

We discussed formal methods, which are often employed in the safety critical 
and security critical fields. These consist of a set of mathematical techniques to 
specify and derive a program from its specification. Formal methods may be 
employed to rigorously state the requirements of the proposed system; they may be 
employed to derive a program from its mathematical specification; and they provide 
a rigorous proof that the implemented program satisfies its specification. 

We discussed the Z specification language, which was developed at the Pro-
gramming Research Group at Oxford University in the early 1980s. Z specifications 
are mathematical, and the use of mathematics ensures precision, and allows 
inconsistencies and gaps in the specification to be identified. Theorem provers may 
be employed to demonstrate that the software implementation meets its 
specification. 

We then discussed the unified modelling language, which is a visual modelling 
language for software systems, and it is used to present several views of the system 
architecture. We presented various UML diagrams such as use case diagrams, 
sequence diagrams and activity diagrams. 

We then discussed the important field of software process improvement, and 
discussed the idea of a software process, and discussed the benefits that may be 
gained from software process improvement. 

We gave an overview of the CMMI model and discussed its five maturity levels 
and their constituent process areas. We discussed both the staged and continuous 
representations of the CMMI. 

We then discussed a selection of tools to support various software engineering 
activities, including tools to support project management, requirements engineer-
ing, configuration management, design and development activities and software 
testing. 

We then discussed some innovative developments in the computer field, such as 
distributed systems, service-oriented architecture, software as a service, cloud 
computing and embedded systems. This led to a discussion of the many innovations 
in the software engineering, and the need for continuous innovation. 

We then discussed legal aspects of computing including the application of the 
legal system to the computing field. This includes the protection of intellectual 
property such as patents, copyright, trademarks and trade secrets, and the resolution 
of disputes between parties.



434 25 Epilogue

Finally, we discussed cybersecurity and cybercrime. Computer crime (or 
cybercrime) is a crime that involves a computer and a network. The computer may 
be the vehicle by which the crime was conducted, or it may be the target of the 
crime. Cybersecurity is the protection of information through good security prac-
tices, including the protection of confidentiality, integrity, and availability of data. It 
is achieved through policies that ensure consistency in employee behaviour in the 
use of computer resources, as well as training and awareness of security in the 
workplace. 

25.1 The Future of Software Engineering 

Software engineering has come a long way since the 1950s and 1960s, when it was 
accepted that the completed software would always contain lots of defects, and that 
the coding should be done as quickly as possible, to enable these defects to be 
quickly identified and corrected. 

The software crisis in the late 1960s highlighted problems with budget and 
schedule overruns, as well as problems with the quality and reliability of the 
delivered software. This led to the birth of software engineering as a discipline, and 
the realization that programming is quite distinct from science and mathematics. 

The software engineering field is highly innovative, and many new technologies 
and systems have been developed over the decades. These include object-oriented 
design and development; formal methods and UML; the waterfall and spiral 
models; software inspections and software testing; software process improvement 
and the CMMI; and the Agile methodology. 

Software engineering will continue to be fundamental to the success of projects. 
There is not a one size that fits all: some companies (e.g., in the safety critical or 
security critical fields) are likely to focus on formal methods and software process 
maturity models such as the CMMI. For other areas, the lightweight Agile 
methodology may be the appropriate software development methodology. 

Companies are likely to measure the cost of poor quality in future, as driving 
down the cost of poor quality will become more important. Software components 
and the verification of software components is likely to become important, to speed 
up software development and to shorten time to market. Software reuse and 
open-source software development is likely to grow in popularity, and continuous 
innovation will continue in the software engineering field.


	25 Epilogue
	Abstract
	25.1 The Future of Software Engineering




