
•

14Agile Methodology 

Abstract 

This chapter discusses the Agile methodology which is a popular lightweight 
approach to software development. Agile provides opportunities to assess the 
direction of a project throughout the development lifecycle, and ongoing 
changes to requirements are considered normal in the Agile world. It has a strong 
collaborative style of working, and it advocates adaptive planning and 
evolutionary development. 

Keywords 

Sprints • Stand-up meeting • Scrum • Stories • Refactoring • Pair programming •
Test driven development Continuous integration 

14.1 Introduction 

Agile is a popular lightweight software development methodology that provides 
opportunities to assess the direction of a project throughout the development life-
cycle. There has been a growth in interest in lightweight software development 
methodologies since the 1990s, and these include approaches such as rapid appli-
cation development (RAD), dynamic systems development method (DSDM), and 
extreme programming (XP). These approaches are referred to collectively as agile 
methods. 

Every aspect of Agile development such as requirements and design is contin-
uously revisited during the development, and the direction of the project is regularly 
evaluated. Agile focuses on rapid and frequent delivery of partial solutions 
developed in an iterative and incremental manner. Each partial solution is evaluated 
by the product owner, and the feedback is used to determine the next steps for the

247© Springer Nature Switzerland AG 2022 
G. O’Regan, Concise Guide to Software Engineering, 
Undergraduate Topics in Computer Science, 
https://doi.org/10.1007/978-3-031-07816-3_14

https://doi.org/10.1007/978-3-031-07816-3_14


project. Agile claims to be more responsive to customer needs than traditional 
methods such as the waterfall model, and its adherents believe that it results in:

248 14 Agile Methodology

• higher quality, 
• higher productivity, 
• faster time to market, 
• improved customer satisfaction. 

It advocates adaptive planning, evolutionary development, early development, 
continuous improvement, and a rapid response to change. The term ‘agile’ was 
coined by Kent Beck and others in the Agile Manifesto in 2001 [1]. The traditional 
waterfall model is similar to a wide and slow-moving value stream, and halfway 
through the project 100% of the requirements are typically 50% done. However, 
50% of the requirements are typically 100% done halfway through an agile project. 

Agile has a strong collaborative style of working, and ongoing changes to 
requirements are considered normal in the agile world. It argues that it is more 
realistic to change requirements regularly throughout the project, rather than 
attempting to define all the requirements at the start of the project (as in the 
waterfall methodology). Agile includes controls to manage changes to the 
requirements, and good communication and early regular feedback is an essential 
part of the process. 

A user story may be a new feature or a modification to an existing feature. The 
feature is reduced to the minimum scope that can deliver business value, and a 
feature may give rise to several stories. Stories often build upon other stories and 
the entire software development lifecycle is employed for the implementation of 
each story. Stories are either done or not done (i.e., there is no such thing as 50% 
done), and the story is complete only when it passes its acceptance tests. 

Scrum is an Agile method for managing iterative development, and it consists of 
an outline planning phase for the project, followed by a set of sprint cycles (where 
each cycle develops an increment). Sprint planning is performed before the start of 
the iteration, and stories are assigned to the iteration to fill the available time. Each 
scrum sprint is of a fixed length (usually 2–4 weeks), and it develops an increment 
of the system. 

The estimates for each story and their priority are determined, and the prioritized 
stories are assigned to the iteration. A short (usually 15 min) morning stand up 
meeting is held daily during the iteration, and it is attended by the scrum master, the 
project manager1 and the project team. It discusses the progress made the previous 
day, problem reporting and tracking, and the work planned for the day ahead. 
A separate meeting is held for issues that require more detailed discussion. 

Once the iteration is complete the latest product increment is demonstrated to a 
review audience including the product owner. This is to receive feedback and to 
identify new requirements. The team also conducts a retrospective meeting to

1 Agile teams are self-organizing and small teams (team size < 20 people) do not usually have a 
project manager role, and the scrum master performs some light project management tasks. 



identify what went well and what went poorly during the iteration, as part of 
continuous improvement for future iterations. 

14.1 Introduction 249

The planning for the next sprint then commences. The scrum master is a 
facilitator who arranges the daily meetings and ensures that the scrum process is 
followed. The role involves removing roadblocks so that the team can achieve their 
goals and communicating with other stakeholders. Agile employs pair program-
ming and a collaborative style of working with the philosophy that two heads are 
better than one. This allows multiple perspectives in decision making which pro-
vides a broader understanding of the issues. 

Software testing is very important in verifying that the software is fit for purpose, 
and Agile generally employs automated testing for unit, acceptance, performance, 
and integration testing. Agile employs test driven development with tests written 
before the code. The developers write code to make a test pass with ideally 
developers only coding against failing tests. This approach forces the developer to 
write testable code, as well as ensuring that the requirements are testable. Tests are 
run frequently with the goal of catching programming errors early. They are gen-
erally run on a separate build server to ensure that all the dependencies are checked. 
Tests are re-run before making a release. 

Refactoring is employed in Agile as a design and coding practice. The objective 
is to change how the software is written without changing what it does. Refactoring 
is a tool for evolutionary design where the design is regularly evaluated, and 
improvements are implemented as they are identified. It helps in improving the 
maintainability and readability of the code and in reducing complexity. The auto-
mated test suite is essential in demonstrating that the integrity of the software is 
maintained following refactoring. 

Continuous integration allows the system to be built with every change. Early 
and regular integration allows early feedback to be provided, and it also allows all 
the automated tests to be run thereby identifying problems earlier. The main phi-
losophy and features of Agile are: 

• Working software is more useful than presenting documents, 
• Direct interaction preferred over documentation, 
• Change is accepted as a normal part of life in the Agile world, 
• Customer involved throughout the project, 
• Demonstrate value early, 
• Feedback and adaptation employed in decision making, 
• Aims is to achieve a narrow fast flowing value stream, 
• User Stories and sprints are employed, 
• A project is divided into iterations, 
• An iteration has a fixed length (i.e., Time boxing is employed), 
• Entire software development lifecycle is employed for implementation of the 

story, 
• Stories are either done are not done (no such thing as 50% done), 
• Iterative and Incremental development is employed, 
• Emphasis on Quality,



• Stand Up Meetings held daily, 
• Rapid conversion of requirements into working functionality, 
• Delivery is made as early as possible, 
• Maintenance is seen as part of the development process, 
• Refactoring and Evolutionary Design Employed, 
• Continuous Integration is employed, 
• Short Cycle Times, 
• Plan regularly, 
• Early decision making. 

Stories are prioritized based on several factors including: 

250 14 Agile Methodology

• Business Value of Story, 
• Mitigation of risk, 
• Dependencies on other stories. 

14.2 Scrum Methodology 

Scrum is a framework for managing an Agile software development project. It is 
not a prescriptive methodology as such, and it relies on a self-organizing, 
cross-functional team to take the feature from idea to implementation. The 
cross-functional team includes the product owner who represents the interest of the 
users and ensures that the right product is built; the scrum master who is the coach 
for the team, and helps the team to understand the Scrum process and to perform at 
the highest level, as well as performing some light project management activities 
such as project tracking; and the team itself who decide on which person should 
work on which tasks and so on. 

The Scrum methodology breaks the software development for the project into a 
series of sprints, where each sprint is of fixed time duration of 2–4 weeks. There is a 
planning meeting at the start of the sprint where the team members determine the 
number of items/tasks that they can commit to, and then create a sprint backlog (to 
do list) of the tasks to be performed during the sprint. The Scrum team takes a small 
set of features from idea to coded and tested functionality that is integrated into the 
evolving product. 

The team attends a daily stand-up meeting (usually of 15 min duration) where 
the progress of the previous day is discussed, as well as any obstacles to progress. 
The new functionality is demonstrated to the product owner and any other relevant 
stakeholders at the end of the sprint, and this may result in changes to the delivered 
functionality or the addition of new items to the product backlog. There is a sprint 
retrospective meeting to reflect on the sprint and to identify improvement 
opportunities.



14.3 User Stories 251

The main deliverable produced using the Scrum framework is the product itself, 
and Scrum expects to build a properly tested product increment (in a shippable 
state) at the end of each sprint. The product backlog is another deliverable, and it is 
maintained and prioritized by the product owner. It is a complete list of the func-
tionality (user stories) to be added to the product, and there is also the sprint 
backlog which is the list of the functionality to be implemented in the sprint. Other 
deliverables are the sprint burnout and release burnout charts, which show the 
amount of work remaining in a sprint or release and indicate the extent to which the 
sprint or release is on schedule. 

The Scrum Master is the expert on the Agile process and acts as a coach to the 
team thereby helping the team to achieve a high level of performance. The role 
differs from that of a project manager, as the Scrum Master does not assign tasks to 
individuals or provide day-to-day direction to the team. However, the scrum master 
typically performs some light project management tasks. 

Many of the traditional project manager responsibilities such as task assignment 
and day-to-day project decisions revert to the team, and the responsibility for the 
scope and schedule trade-off goes to the product owner. The product owner creates 
and communicates a solid vision of the product and shares the vision through the 
product backlog. Larger Agile projects (team size > 20) will often have a dedicated 
project manager role. 

14.3 User Stories 

A user story is a short simple description of a feature written from the viewpoint of 
the user of the system. They are often written on index cards or sticky notes and 
arranged on walls or tables to facilitate discussion. This approach facilitates the 
discussion of the functionality rather than the written text. 

A user story can be written at varying levels of detail, and a large, detailed user 
story is known as an epic. An epic story is often too large to be implemented in one 
sprint, and such a story is often split into several smaller user stories. 

It is the product owner’s responsibility to ensure that a product backlog of user 
stories exist, but the product owner is not required to write all stories. In fact, 
anyone can write a user story, and each team member usually writes a user story 
during an Agile project. User stories are written throughout an Agile project, with a 
user story-writing workshop held at the beginning of the project. This leads to the 
product backlog that describes the functionality to be added during the project. 
Some of these will be epics, and these will need to be decomposed into smaller 
stories that will fit into the timeboxed sprint. New user stories may be written at any 
time and added to the product backlog. 

There is no requirements document as such in Agile, and the product backlog 
(i.e., the prioritized list of the functionality of the product to be developed) is closest 
to the idea of a requirements document for a traditional project. However, the 
written part of a user story in Agile is incomplete until the discussion of that story



takes place. It is often useful to think of the written part of a story as a pointer to the 
real requirement, such as a diagram showing a workflow or the formula for a 
calculation. 

252 14 Agile Methodology

14.4 Estimation in Agile 

Planning poker is a popular consensus-based estimation technique often used in 
Agile, and it is used to estimate the effort required to implement a user story. The 
planning session starts with the product owner reading the user story or describing a 
feature to the estimators. 

Each estimator holds a deck of planning poker cards with values like 0, 1, 2, 3, 5, 
8, 13, 20, 40 and 100, where the values represent the units in which the team 
estimates. The estimators discuss the feature with the product owner, and when the 
discussion is fully complete and all questions answered, each estimator privately 
selects a card to reflect his or her estimate. 

All cards are then revealed and if all values are the same then that value is 
chosen as the estimate. Otherwise, the estimators discuss their estimates with the 
rationale for the highest and lowest discussed in detail. Each estimator then rese-
lects an estimate card, and the process continues until consensus is achieved, or if 
consensus cannot be achieved the estimation of the item is deferred until more 
information is available. 

The initial estimation session usually takes place after the initial product backlog 
is written. This session may take several days, and it is used to create the initial 
estimates of the size and scope of the project. Further estimation and planning 
sessions take place regularly during the project as user stories are added to the 
product backlog, and these will typically take place towards the end of the current 
sprint. 

The advantage of the estimation process employed is that it brings multiple 
expert opinions from the cross-functional team together, and the experts justify their 
estimates in the detailed discussion. This helps to improve the estimation accuracy 
in the project. 

14.5 Test Driven Development 

Test-driven development (TDD) is a software development process often employed 
in Agile. It was developed by Kent Beck and others as part of extreme program-
ming, and the developers focus on testing the requirements before writing the code. 
The application is written with testability in mind, and the developers must consider 
how to test the application in advance. Further, it ensures that test cases for every 
feature are written and writing tests early help in gaining a deeper understanding of 
the requirements.



14.6 Pair Programming 253

TDD is based on the transition of the requirements into a set of test cases, and 
the software is then written to pass the test cases. Another words, the test-driven 
development of a new feature begins with writing a suite of test cases based on the 
requirements for the feature, and the code for the feature is written to pass the test 
cases. This is a paradigm shift from traditional software engineering where the unit 
tests are written and executed after the code is written. 

The tests are written for the new feature, and initially all tests fail as no code has 
been written, and so the first step is to write some code that enables the new test 
cases to pass. This new code may be imperfect (it will be improved later), but this is 
acceptable at this time as the only purpose is to pass the new test cases. The next 
step is to ensure that the new feature works with the existing features, and this 
involves executing all new and existing test cases. 

This may involve modification of the source code to enable all the tests to pass, 
and to ensure that all features work correctly together. The final step is refactoring 
the code, and this involves cleaning up and restructuring the code, and improving 
its structure and readability. The test cases are re-run during the refactoring to 
ensure that the functionality is not altered in any way. The process repeats with the 
addition of each new feature. 

Continuous integration allows the system to be built with every change, and this 
allows early feedback to be provided. It also allows all the automated tests to be run, 
thereby ensuring that the new feature works with the existing functionality and 
identifying problems earlier. 

14.6 Pair Programming 

Pair programming is an agile technique where two programmers work together at 
one computer. The author of the code is termed the driver, and the other pro-
grammer is termed the observer (or navigator) and is responsible for reviewing 
each line of written code. The observer also considers the strategic direction of the 
coding and proposes improvement suggestions and potential problems that may 
need to be addressed. The driver can focus on the implementation of the current 
task and use the observer as a safety net. The two programmers switch roles 
regularly during the development of the new functionality. 

Pair programming requires more programming effort to develop code compared 
to programmers working individually. However, the resulting code is of higher 
quality, with fewer defects and a reduction in the cost of maintenance. Further, pair 
programming enables a better design solution to be created as more design alter-
natives are considered. 

This is since two programmers are bringing different experiences to the problem, 
and they may have different ways of solving the problem. This leads them to 
explore a larger number of ways of solving the problem than an individual pro-
grammer. Finally, pair programming is good for knowledge sharing and learning, 
and it allows knowledge to be shared on programming practice and design and 
allows knowledge about the system to be shared throughout the team.



254 14 Agile Methodology

14.7 Review Questions 

1. What is Agile? 
2. How does Agile differ from the waterfall model? 
3. What is a user story? 
4. Explain how estimation is done in Agile 
5. What is test-driven development? 
6. Describe the scrum methodology and the role of the Scrum Master 
7. Explain pair programming and describe its advantages 

14.8 Summary 

This chapter gave a brief introduction to Agile, which is a popular lightweight 
software development methodology. Agile advocates adaptive planning, evolu-
tionary development, early development, continuous improvement, and a rapid 
response to change. The traditional waterfall model is similar to a wide and 
slow-moving value stream, and halfway through the project 100% of the require-
ments are typically 50% done. However, 50% of the requirements are typically 
100% done halfway through an agile project. 

Agile has a strong collaborative style of working, and ongoing changes to 
requirements are considered normal in the Agile world. It includes controls to 
manage changes to the requirements, and good communication and early regular 
feedback is an essential part of the process. 

A story may be a new feature or a modification to an existing feature. It is 
reduced to the minimum scope that can deliver business value, and a feature may 
give rise to several stories. Stories often build upon other stories and the entire 
software development lifecycle is employed for the implementation of each story. 
Stories are either done or not done and the story is complete only when it passes its 
acceptance tests. 

The Scrum approach is an Agile method for managing iterative development, 
and it consists of an outline planning phase for the project followed by a set of 
sprint cycles (where each cycle develops an increment). Each scrum sprint is of a 
fixed length (usually 2–4 weeks), and it develops an increment of the system. 

The estimates for each story and their priority are determined, and the prioritized 
stories are assigned to the iteration. A short (usually 15 min) morning stand up 
meeting is held daily during the iteration and attended by the project manager and 
the project team. It discusses the progress made the previous day, problem reporting 
and tracking, and the work planned for the day ahead.



Reference 255

Once the iteration is complete the latest product increment is demonstrated to a 
review audience including the product owner. This is to receive feedback and to 
identify new requirements. The team also conducts a retrospective meeting to 
identify what went well and what went poorly during the iteration, as part of 
continuous improvement for future sprints. 

Reference 

1. K. Beck et al., Manifesto for Agile Software Development (Agile Alliance, 2001). http:// 
agilemanifesto.org/

http://agilemanifesto.org/
http://agilemanifesto.org/

	14 Agile Methodology
	Abstract
	14.1 Introduction
	14.2 Scrum Methodology
	14.3 User Stories
	14.4 Estimation in Agile
	14.5 Test Driven Development
	14.6 Pair Programming
	14.7 Review Questions
	14.8 Summary
	Reference




