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Abstract. Breast cancer is a highly diverse disease.With the state-of-the-artmeth-
ods of molecular studies, novel subgroups of breast cancer can be revealed. The
proper identification of subtypes is crucial for treatment choice. Hence, further
investigation of breast cancer subtypes is promising in terms of therapy tailor-
ing. We applied various machine learning approaches to the set of protein level
measurements to detect subpopulations of breast cancer patients. Those methods
involved various dimensionality reduction techniques combined with clustering.
The outcomes of those approaches depended on the algorithms involved and on
their parameters. Hence, we proposed the methodology to compare the results of
clustering algorithms when the proper number of groups is unknown. The used
metrices based on the effect size measurements and allowed for the selection of
the best machine learning approach. The values of the proposed pooled d measure
varied from 1.6847 for the worst method to 2.0568 for the best one. The highest
value was obtained for the custom DiviK approach. Potentially, the metrices can
also serve for the proteomic characterization of differences between subtypes and
the identification of novel biomarkers.
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1 Introduction

Breast cancer is a diverse disease with highly heterogenous molecular characteriza-
tion. Its subtypes vary in prognosis and therapy response. Proper diagnosis and subtype
identification are crucial for treatment choice and planning.

In the early 2000s, Sørlie et al. [1] proposed a division of breast cancers into
five intrinsic molecular subtypes: Luminal A, Luminal B, HER2-enriched, Basal, and
Normal-like. This study led to the development of the PAM50 classifier [2], which
allowed labeling a tumor with its intrinsic molecular subtype based on the gene
expression microarray measurements. However, with the arrival of new technologies
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for molecular profiling, it became possible to further investigate, extend, and modify
well-established breast cancer subtype categorization.

Machine learning provides a variety of methods for clustering and feature extraction
or selection.Those techniques canbe successfully applied for large genomicor proteomic
datasets to investigate the heterogenic and diverse structure of breast cancer. However,
results of subtypes identification often distinctly differ between algorithms in terms of
both patient assignment to clusters and the final number of clusters detected. Moreover,
the clustering outcome strongly depends on the parameters used. Thus, a method to
compare and select different grouping approaches and parameters is needed. However,
this task seems to be challenging as the method should deal with an unbalanced number
of cases among subpopulations, an unknown target number of subtypes, a huge number
of features in comparison with observations, and various dissimilarity degrees between
resulting clusters. Some of the difficulties result also from the biological background
and disease characterization: for instance, basal breast cancers are expected to be far
more isolated from other tumors, while luminal family members should tend to group
together and then further split into smaller subgroups.

In this study, we aim to test various approaches for clustering evaluation as well as
to propose a metrics that would handle the challenges mentioned above.

2 Materials

Data used in this study are the result of the Reverse Phase Protein Arrays (RPPA)
experiment. This dataset was created as a part of The Cancer Genome Atlas Breast
Invasive Carcinoma (TCGA-BRCA) project [3]. All results were downloaded from the
Genomic Data Commons (GDC) Data Portal in the normalized form. Samples used
for the RPPA measurements were collected from primary tumors of females suffering
from breast cancer. TCGA provided molecular subtype labels obtained with the PAM50
classifier based on the gene expression microarrays [4]. We excluded the samples with
missing PAM50 etiquette. Due to the insufficient number of normal-like cases, this
group was not considered. We also excluded proteins which levels were missing for
some patients due to the requirements of algorithms used in the further analysis. The
remaining records were corrected for the batch effect with the ComBat tool [5]. Finally,
the dataset consisted of expression levels for 166 proteins and 407 patients. The summary
of patients included in the study regarding their PAM50 label is presented in Table 1.

Table 1. The numbers and percentages of patients included in the study concerning breast cancer
subtype label given by the PAM50 classifier.

PAM50 subtype No. patients Percentage of patients [%]

Basal 86 21.13

HER2-enriched 50 12.28

Luminal A 173 42.51

(continued)
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Table 1. (continued)

PAM50 subtype No. patients Percentage of patients [%]

Luminal B 98 24.08

Total 407 100

3 Methods

3.1 Subtype Detection

To investigate the dataset composition and identify subpopulations of breast cancer
patients, we tested various combinations of clustering algorithms and feature extrac-
tion or selection methods. We used the HDBSCAN [6], graph-based Louvain commu-
nity detection [7], and custom Divisive intelligent k-means (DiviK) [8] algorithms for
grouping. Those methods were applied either to the levels of all available proteins or to
the reduced feature space. Features were extracted with Principal Components Analysis
(PCA) to select top components explaining 90% of the variance in the data and with
Uniform Manifold Approximation and Projection (UMAP) [9] performed on the PCA-
reduced dataset. For the feature selection, we used the Gaussian Mixture Model (GMM)
[10] decomposition of log2-scaled variances of protein levels. All tested combinations
were presented in Table 2.

Table 2. Combinations of clustering algorithms and data dimensionality reduction methods used
in the study. Abbreviations for each combination are written in italics. DiviK is marked with (*)
to indicate that the GMM-based filtration is built in each iteration of the algorithm.

Feature engineering

No reduction PCA UMAP

Clustering Complete GMM filtered Complete GMM filtered Complete GMM filtered

HDBSCAN × × × × HUMAP-C
✓

HUMAP-F
✓

Louvain LC
✓

LF
✓

LPCA-C
✓

LPCA-F
✓

× ×

DiviK* × ✓ × × × ×

In the HDBSCAN algorithm, there was a need to assign classes to the cases which
were left unclassified. We tested several methods for this prediction, based on:

1. HUMAP-C1: Proximity in 2-dimensional UMAP
2. HUMAP-C2: Proximity in the dataset with all protein levels (complete)
3. HUMAP-C3: Proximity in the set of top principal components explaining 90% of the

variance.
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3.2 Comparison of Clustering Approaches

To evaluate clustering results and investigate proteomic profiles of identified subpopula-
tions, we compared levels of each protein between the clusters with a one-way ANOVA
procedure followed by the Tukey-Kramer post hoc tests. ANOVA results served for
calculations of η2 effect size for each protein. The higher the η2 value, the better the
cluster separation. The η2 metrics considers all clusters together, so its values do not
provide insight into whether all clusters are well-separated, or just some of them are
highly isolated.

Moreover, we calculated the values of modification of Cohen’s d effect size to
compare each obtained cluster versus all remaining ones considered jointly [11]. This
measure was calculated based on the following equation:

d = xsubtype − xremaining√
MSwithin

(1)

Hence, for each protein, we obtained as many d values, as many subtypes were
detected with a particular approach. As a result, for each method, we achieved a list of
protein η2 values, and several lists of d values corresponding to subtypes.

To integrate η2 per method, we computed mean, median, and 3rd quartile of protein
η2 values. To obtain a pooled value of d metrics per method, we proposed to assign
the 3rd quartile of protein d absolute values to each subtype. Then, we projected the 3rd

quartiles as a point in the k-dimensional space, where k was the number of subtypes
detected. Finally, we calculated the pooled d value as a distance between the created
point and the beginning of the coordinate system.

Moreover, we assessed the similarity between detected subtypes and PAM50 labels
with the Dice coefficient. To further investigate the differences in outcomes of vari-
ous method combinations, we referred the corresponding clusters to each other for the
approaches with the lowest and the highest values of the pooled d metrics. We compared
the values of d per protein for each subtype.

3.3 Biological Investigation

To biologically characterize each resulting cluster and evaluate the differences between
the worst and the best approaches according to the pooled d metrics, we identified the
proteins with significantly increased or decreased levels in each subtype compared to
all remaining ones. Hence, we selected proteins with at least large or very large effect,
so those with absolute values of d equal at least 0.8 or 1.2, respectively [11, 12]. We
matched those proteins to the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database pathways in which they are involved [13] (accessed April 13, 2022).

4 Results

All HDBSCAN approaches without GMM filtration provided five clusters correspond-
ing to Basal, HER2-enriched, Luminal A, and Luminal B subtypes. Luminal A cases
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were divided into two subgroups. All the remaining combinations of methods (HDB-
SCANwith GMM, Louvain, and DiviK algorithms) gave six clusters. The clusters in all
combinations corresponded to Basal, HER2-enriched, Luminal B, and three Luminal A
subpopulations.

The distributions of η2 values per method are presented in Fig. 1A. The exemplary
distributions of absolute d values for the DiviK method with built-in variance-based
GMM filtration per subtype are presented in Fig. 1B.

Fig. 1. The distributions of metrices values with quartiles, median, and mean values marked
with vertical lines. Panel A density plots showing distributions of η2 values per method. Panel B
density plots showing distributions of absolute d values per subtype for the DiviK method with
variance-based GMM filtration.
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Obtained values of η2 quartiles and mean, pooled d, and Dice coefficient are pre-
sented in Table 3. Dice coefficient results are comparedwith pooled d and the 3rd quartile
of η2 in Fig. 2.

Fig. 2. Values of pooled d (Panel A) and 3rd quartile of η2 (Panel B) compared with Dice
coefficient for tested clustering approaches.

Table 3. Metrics values obtained with various combinations of feature dimensionality reduction
methods and clustering algorithms.

Method No. clusters η2 Pooled d Dice

Q1 Median Mean Q3

HUMAP-C1 5 0.0764 0.1587 0.1963 0.3083 1.7053 0.7125

HUMAP-C2 5 0.0749 0.1519 0.1954 0.3002 1.7204 0.7052

HUMAP-C3 5 0.0785 0.1598 0.1949 0.3034 1.6847 0.7052

HUMAP-F 6 0.0844 0.1661 0.2113 0.3173 1.8529 0.7469

LC 6 0.0806 0.1702 0.2050 0.2966 1.8534 0.7469

LPCA-C 6 0.0800 0.1665 0.2030 0.2989 1.8105 0.7445

LF 6 0.0889 0.1687 0.2105 0.3151 1.8342 0.7396

LPCA-F 6 0.0839 0.1698 0.2100 0.3168 1.8066 0.7371

DiviK 6 0.1123 0.2040 0.2413 0.3379 2.0568 0.7273

The results of theworst (HUMAP-C3) and the best (DiviK) approaches according to the
pooled d values are also marked and compared to original PAM50 labels at the UMAP
visualization in Fig. 3.

The primary difference between those two methods is that the DiviK algorithm pro-
vides an additional Luminal A3 cluster, containing cases included mainly in HUMAP-C3

Luminal B and Luminal A1 subtypes.
Those two contrasting approaches are further compared in Fig. 4. The protein values

of d are referred to each other for corresponding Luminal subtypes: A1 versus A1, A2



How to Compare Various Clustering Outcomes? Metrices to Investigate 315

versus A2, B versus B (respectively: Panels A, B, and C). Moreover, we compared the
HUMAP-C3 Luminal B subtype with an additional Luminal A3 subtype given by DiviK
(Panel D).

Total numbers of proteinswith significantly higher or lower level for a certain subtype
(with at least large or very large effects) are presented in Table 4 per subtype for the worst
and the best approach. This table also contains the numbers of corresponding KEGG
pathways.

Fig. 3. UMAP visualization with results of two clustering approaches referred to the original
PAM50 subtype labels. Panel A corresponds to the worst approach according to the pooled d
values (HDBSCAN algorithmwith the proximity in the set of top principal components explaining
90% of the variance for prediction, preceded by UMAP dimension reduction -HUMAP-C3). Panel
B corresponds to the best approach according to the pooled d values (DiviK algorithm with
variance-based GMM filtration).

Table 4. Total numbers of proteins with at least large or very large effect size and corresponding
KEGG pathways for the approaches with the lowest (HDBSCAN algorithm with the proximity
in the set of top principal components explaining 90% of the variance for prediction, preceded by
UMAP dimension reduction - HUMAP-C3) and the highest (DiviK algorithm with variance-based
GMM filtration) pooled d values.

Subtype At least large |d| At least very large |d|

No. proteins No. KEGG
pathways

No. proteins No. KEGG
pathways

HUMAP-C3 DiviK HUMAP-C3 DiviK HUMAP-C3 DiviK HUMAP-C3 DiviK

Basal 41 44 60 61 16 19 31 42

(continued)
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Table 4. (continued)

Subtype At least large |d| At least very large |d|

No. proteins No. KEGG
pathways

No. proteins No. KEGG
pathways

HUMAP-C3 DiviK HUMAP-C3 DiviK HUMAP-C3 DiviK HUMAP-C3 DiviK

HER2-enriched 12 9 47 31 5 4 27 23

Luminal A1 59 89 83 86 34 54 76 80

Luminal A2 37 38 65 64 6 7 4 4

Luminal A3 – 28 – 36 – 3 – 4

Luminal B 5 39 2 79 2 6 0 10

Fig. 4. Protein d values for the best (DiviK algorithmwith variance-basedGMMfiltration) and the
worst (HDBSCAN algorithm with the proximity in the set of top principal components explaining
90% of the variance for prediction, preceded by UMAP dimension reduction - HUMAP-C3) app-
roach according to the pooled d metrics. Comparison of d values for the corresponding: Luminal
A1 subtypes (Panel A), Luminal A2 subtypes (Panel B), Luminal B subtypes (Panel C), and DiviK
Luminal A3 versus HUMAP-C3 Luminal B subtypes (Panel D). Dashed lines mark the threshold
values for the large effect size, equal to −0.8 and 0.8 [11]. Values for proteins with small or
medium effect according to both approaches are marked in grey.
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5 Discussion

Obtained results suggest the dataset should be divided into five or six clusters, with one
cluster corresponding to each of the Basal, HER2-enriched, and Luminal B subtypes,
and two or three subgroups for Luminal A cases.

Basedon theη2 andd distributionswe concluded that the 3rd quartile is an appropriate
representation of metrics values for all proteins. It sufficiently reflects the impact of
proteins which expression levels significantly vary between clusters. Still, it remains
resistant to outliers.

The DiviK method obtained maximal values of all metrices based on η2 and d.
However, in terms of Dice similarity coefficients, all methods that gave six clusters
performed better. However, the aim was not to maximize the similarity to the original
PAM50 labels but to obtain as distant clusters as possible. All effect size metrices were
higher when six clusters were obtained instead of five. GMM filtration improved the
values of the 3rd quartile of η2 for both HDBSCAN and Louvain algorithms and pooled
d for HDBSCAN. This can be especially noticed for the 3rd quartile of η2 in Fig. 2B, in
which results of the Louvain approach with and without filtration are more separated.
Hence, it is beneficial to compare the pooled d metrics with other criteria, including the
Dice similarity index.

The methods with the highest (DiviK algorithm) and the lowest (HUMAP-C3) values
of the pooled d metrics differ mainly regarding Luminal cases handling.HUMAP-C3 gave
only two Luminal A subgroups and one bigger Luminal B subtype. DiviK, on the other
hand, distinguished one more Luminal A subgroup that consists of patients clustered as
Luminal A1 or B by the HUMAP-C3 approach. Moreover, the HER2-enriched subtype is
more numerous for the DiviK algorithm, as it also contains a part of patients grouped as
Luminal B with the HUMAP-C3 approach.

Division obtained with the DiviK algorithm greatly increased the number of proteins
with an effect at least large (with decreased or increased levels in a subtype) for Luminal
A1 and B subtypes. In the case of the Luminal A1 cluster, the number of proteins
with at least a very large effect is also distinctly higher. Consequently, the number of
associated KEGG pathways increased. Luminal A2 clusters do not vary much between
the methods. However, the number of proteins and KEGG signaling pathways identified
for the HER2-enriched subtype is smaller for the DiviK algorithm than for theHUMAP-C3

approach.

6 Conclusions

Weperformed breast cancer subtype identificationwith various combinations ofmachine
learning methods for clustering and data dimensionality reduction. The outcomes were
evaluated with several metrices, including the Dice coefficient and η2 effect size. We
also proposed a custom effect size-basedmeasure that represents the differences between
each cluster and all remaining ones. The results of all metriceswere consistent in terms of
the best machine learning approach for breast cancer subpopulation detection. However,
we believe it is beneficial to consider at least two different criteria for the comparison
of various clustering algorithms and their parameters. Moreover, the metrices we used
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can serve for the characterization of proteomic profiles of breast cancer groups and the
identification of novel biomarkers.

The approach which outperformed all the others was the custom Divisive intelligent
k-means (DiviK) algorithm with the feature filtration based on the decomposition of the
Gaussian Mixture Model of the log2-scaled protein level variance. For the other cluster-
ing methods, the GMM-based filtration also improved all or some metrices, depending
on the algorithm.

We detected subgroups of the Luminal A breast cancer subtype: three with best
performing approaches and two with the worst ones. We also identified the proteins with
significantly increased or decreased levels in particular subgroups and related them to
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The selection of
the additional third Luminal A subgroup increased the number of proteins with elevated
or decreased levels characteristic for Luminal clusters as well as the number of the
associated KEGG pathways, especially for the Luminal B subtype.
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