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Preface

We are proud to present the final set of accepted full papers for the 9th International
Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO 2022) held
in Gran Canaria, Spain, during June 27–30, 2022.

IWBBIO seeks to provide a discussion forum for scientists, engineers, educators,
and students about the latest ideas and realizations in the foundations, theory, models,
and applications for interdisciplinary and multidisciplinary research encompassing
disciplines of computer science, mathematics, statistics, biology, bioinformatics, and
biomedicine.

The aim of IWBBIO 2022 was to create a friendly environment that could lead to
the establishment or strengthening of scientific collaborations and exchanges among
attendees, and therefore IWBBIO 2022 solicited high-quality original research papers
(including significant work in progress) on any aspect of bioinformatics, biomedicine,
and biomedical engineering.

Submissions relating to new computational techniques and methods in machine
learning; data mining; text analysis; pattern recognition; data integration; genomics and
evolution; next generation sequencing data; protein and RNA structure; protein function
and proteomics; medical informatics and translational bioinformatics; computational
systems biology; modeling and simulation; and their application in the life science
domain, biomedicine, and biomedical engineering were especially encouraged. The list
of topics in the call for papers has also evolved, resulting in the following list for the
present edition:

1. Computational proteomics. Analysis of protein-protein interactions. Protein
structure modeling. Analysis of protein functionality. Quantitative proteomics and
PTMs. Clinical proteomics. Protein annotation. Data mining in proteomics.

2. Next generation sequencing and sequence analysis. De novo sequencing, re-
sequencing, and assembly. Expression estimation. Alternative splicing discovery.
Pathway analysis. Chip-seq andRNA-Seq analysis.Metagenomics. SNPs prediction.

3. High performance in bioinformatics. Parallelization for biomedical analysis.
Biomedical and biological databases. Data mining and biological text processing.
Large scale biomedical data integration. Biological and medical ontologies. Novel
architecture and technologies (GPU, P2P, Grid, etc) for bioinformatics.

4. Biomedicine. Biomedical computing. Personalized medicine. Nanomedicine. Med-
ical education. Collaborative medicine. Biomedical signal analysis. Biomedicine in
industry and society. Electrotherapy and radiotherapy.

5. Biomedical engineering. E-computer-assisted surgery. Therapeutic engineering.
Interactive 3D modelling. Clinical engineering. Telemedicine. Biosensors and data
acquisition. Intelligent instrumentation. Patient monitoring. Biomedical robotics.
Bio-nanotechnology. Genetic engineering.

6. Computational systems for modelling biological processes. Inference of
biological networks. Machine learning in bioinformatics. Classification for
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biomedical data.Microarray data analysis. Simulation and visualization of biological
systems. Molecular evolution and phylogenetic modeling.

7. Healthcare and diseases. Computational support for clinical decisions. Image
visualization and signal analysis. Disease control and diagnosis. Genome-phenome
analysis. Biomarker identification. Drug design. Computational immunology.

8. E-health. E-health technology and devices. E-health information processing.
Telemedicine/E-health application and services. Medical image processing. Video
techniques for medical images. Integration of classical medicine and E-health.

9. COVID-19. A special session analyzing different aspects, fields of application, and
technologies that have been applied against COVID-19.

After a careful peer review and evaluation process (each submissionwas reviewed by
at least 2, and on average 3.1, Program Committee members or additional reviewers), 75
papers were accepted, according to the recommendations of reviewers and the authors’
preferences, to be included in the LNBI proceedings.

IWBBIO2022 featured several Special Sessions, which are a very useful tool in order
to complement the regular program with new and emerging topics of particular interest
for the participating community. Special Sessions that emphasized multidisciplinary
and transversal aspects, as well as cutting-edge topics were especially encouraged and
welcomed, and in this edition of IWBBIO 2022 the following were received:

– SS1. High-throughput Genomics: Bioinformatic Tools and Medical
Applications.
Genomics is concerned with the sequencing and analysis of an organism’s genome. It
is involved in the understanding of how every single gene can affect the entire genome.
This goal is mainly afforded using the current, cost-effective, high-throughput
sequencing technologies. These technologies produce a huge amount of data that
usually require high-performance computing solutions and open new ways for the
study of genomics, as well as transcriptomics, gene expression, and systems biology,
among others. The continuous improvements and broader applications of sequencing
technologies are producing a continuous new demand for improved high-throughput
bioinformatics tools.

In this context, the generation, integration, and interpretation of genetic and
genomic data is driving a new era of healthcare and patient management. Medical
genomics (or genomic medicine) is an emerging discipline that involves the use of
genomic information about a patient as part of the clinical care with diagnostic or
therapeutic purposes to improve the health outcomes. Moreover, it can be considered
a subset of precision medicine that has an impact in the fields of oncology, phar-
macology, rare and undiagnosed diseases, and infectious diseases. The aim of this
Special Session was to bring together researchers in medicine, genomics, and bioin-
formatics to translate medical genomics research into new diagnostic, therapeutic,
and preventive medical approaches. Therefore, we invited authors to submit original
research, new tools or pipelines, and update and review articles on relevant topics,
such as (but not limited to):
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• Tools for data pre-processing (quality control and filtering)
• Tools for sequence mapping
• Tools for the comparison of two read libraries without an external reference
• Tools for genomic variants (such as variant calling or variant annotation)
• Tools for functional annotation: identification of domains, orthologues, genetic
markers, and controlled vocabulary (GO, KEGG, InterPro, etc.)

• Tools for gene expression studies and tools for Chip-Seq data
• Integrative workflows and pipelines

Organizers: M. Gonzalo Claros, Department of Molecular Biology and Biochemistry,
University of Málaga, Spain; Javier Pérez Florido, Bioinformatics Research Area,
Fundación Progreso y Salud, Seville, Spain; and Francisco M. Ortuño, Department
of Computer Architecture and Technology, University of Granada, Spain.

– SS2. Feature Selection, Extraction, and Data Mining in Bioinformatics:
Approaches, Methods, and Adaptations.
Various applications of bioinformatics, system biology, and biophysics measurement
datamining require proper, accurate, and precise preprocessing or data transformation
before the analysis itself. Here, the most important issues are covered by the feature
selection and extraction techniques to translate the raw data into the inputs for the
machine learning andmultivariate statistic algorithms. Even if this is a complex task, it
reduces the problemdimensionality, by removing redundant or irrelevant data, without
affecting significantly the principal information. The methods and approaches are
often conditioned by the physical properties of the measurement process, mathemat-
ically congruent description and parameterization, and biological aspects of specific
tasks.With the increasing adoption of artificial intelligence methods to solve bioinfor-
matics problems, it is necessary to understand the conditionality of such algorithms,
to choose and use the correct approach and avoid misinterpretations, artefacts, and
aliasing effects. The adoption often uses existing knowledge from different fields, and
direct applicationmight underestimate the required conditions and corrupt the analysis
results. This Special Session provided a forum to dicuss the multidisciplinary over-
laps, development, implementation, and adoption of feature and selection methods
for datasets with a biological origin in order to setup the pipeline from measurement
design through signal processing to obtaining the results. The topic should cover
theoretical questions, practical examples, and results verifications.

Organizer: Jan Urban, Laboratory of Signal and Image Processing, Institute of
Complex Systems, South Bohemian Research Center of Aquaculture and Biodiversity
of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South
Bohemia, Czech Republic.

– SS3. Smart Healthcare Solutions for Handling COVID-19.
Smart healthcare plays an important role towards providing robust solutions,
especially for COVID-19 related problems, both locally and globally. Collection and
interpretation of data worldwide and systematic research helps in identifying the
potential solutions as well as predicting the future issues. This Special Session was
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organized to emphasize the potential problems and the related solutions, focusing on
the following topics:

• Smart wearable healthcare
• Microbiological analysis
• Minimal invasive sensors
• Biomedical waste management
• Drug-induced therapy
• Early prediction and diagnosis
• Biostatistical driven solution
• Explainable AI and deep learning driven solutions

Organizer: N. Sriraam, Department of Medical Electronics, M.S. Ramaiah Institute
of Technology, India.

– SS4. Computational Systems for Modeling of Medical Micro Sensors.
Medical sensors are micro devices containing several parts mainly including micro-
tubes, micro-valves, biological/body fluids (blood, plasma, saliva, etc.), and chemical
materials (reagents and other materials). Microfluidics is an interdisciplinary field that
involves the science and technology of fluid flow through systems with micro scales.
Computational systems and engineering simulation are essential from the start to the
end of the medical sensor design and development process. The main advantages of
computational systems (AI, CFD, etc.) in medical sensors design and development
are as follows:

• Improvement and optimization of design
• Acceleration in medical device innovation
• Reduction of cost and failure risk
• Reduction of production times and regulatory approval processes

The main objectives of this Special Session were as follows:

• To determine the role of computational systems (AI, CFD, etc.) in medical sensors
design and development

• To determine the role of simulation in optiming the analysis process and design of
medical micro-sensors

• To discuss the use of computational fluid dynamics (CFD) in analyzing medical
micro sensors

• To discuss the use of computational systems to combine engineering, biology,
chemical, and other criteria

Organizers: Patrizia Piro and Behrouz Pirouz, Department of Civil Engineering,
University of Calabria, Italy.

It is important to note that for the sake of consistency and readability the accepted
papers are organizaed into 15 chapters over two volumes, essentially following the topics
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list included in the call for papers. The first volume (LNBI 13346), entitled “Bioinfor-
matics and Biomedical Engineering. Part I” is divided into eight main parts and includes
the contributions on

1. Biomedical Computing
2. Biomedical Engineering
3. Biomedical Signal Analysis
4. Biomedicine. New Advances and Applications
5. Biosensors and Data Acquisition
6. Image Visualization and Signal Analysis in Biomedical Applications
7. Computational Support for Clinical Decisions
8. COVID-19. Bioinformatics and Biomedicine

The second volume (LNBI 13347), entitled “Bioinformatics and Biomedical
Engineering. Part II” is divided into seven main parts and includes the contributions
on:

1. Chip-seq and RNA-Seq Analysis
2. Bioinformatics and Biomarker Identication
3. Computational Proteomics
4. Computational Systems for Modelling Biological Processes
5. Feature Selection, Extraction, and Data Mining in Bioinformatics: Approaches,

Methods, and Adaptations
6. Machine Learning in Bioinformatics
7. Next Generation Sequencing and Sequence Analysis

This 9th edition of IWBBIO was organized by the University of Granada. We wish
to thank our main sponsor as well as the Department of Computer Architecture and
Computer Technology at the University of Granada (CITIC-UGR) and International
Society for Computational Biology (ISCB) for their support and grants. We also wish
to thank the editors in charge of different international journals for their interest in
publishing special issues of a selection of the best papers of IWBBIO2022. In this edition
of IWBBIO there were two awards (best contribution award and best contribution from
student participant) sponsored by the Editorial Office of Genes, a MDPI journal.

We would also like to express our gratitude to the members of the different
committees for their support, collaboration, and good work. We especially thank the
Program Committee, the reviewers, and the Special Session organizers. We also want to
express our gratitude to the EasyChair platform. Finally, we wish to thank Springer for
their continuous support and cooperation.

April 2022 Ignacio Rojas
Olga Valenzuela
Fernando Rojas

Luis Javier Herrera
Francisco Ortuño
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Abstract. Ovarian cancer (OC) is the third leading gynecological malignancy in
females that is silent and leads to significant deaths annually. As per GLOBOCAN
2020 statistics, Asia recorded a total of 100,854 ovarian cancer incidence cases
with China and India leading the cases with 34.2% and 24.8% respectively.This
paper aims to identify the genes that regulate ovarian cancer network biology by
integrating high-grade serous ovarian adenocarcinoma data from TCGA and GEO
databases. The data has been used to detect differentially expressed genes (DEGs),
and further to assess the potential of the seed genes for disease-gene associations
(DGA), principal component analysis (PCA), and Kaplan Meier (KM) survival
estimations to give insights about these genes function in ovarian cancer path-
way.We conclude that genes –CLDN3, CLDN4, NFKB1, GSN, MUC16, NANOG,
FKBP10,and CD274 are highly significant and influential in dominating ovar-
ian serous adenocarcinoma in females and must be further deployed to construct a
specific ovarian cancer network depict functional attributes of each of these genes.

Keywords: Differentially expressed genes (DEGs) · Disease-gene associations
(DGA) · Kaplan Meier analysis · Ovarian serous adenocarcinoma · Principal
component analysis (PCA)

1 Introduction

Ovarian cancer ranks the third position after breast and cervical cancers that predominate
lethality in females every year [1]. According to GLOBOCAN 2020 statistics, Asia
recorded a total of 100,854 ovarian cancer incidences with China and India leading the
cases with 34.2% and 24.8% respectively [2]. This increment in incidence cases directly
points to the loopholes that exist in themedical infrastructure and lack of awareness in the
general public. There are two factors that have been studied to cause this gynecological
malignancy – a) Intrinsic factors – the genetic makeup of an individual, age, family
history, epigenetic alterations,etc.; b) Extrinsic factors – environment and lifestyle of an
individual [1, 3]. Furthermore, because of the lack of specific prognostic indicators for
the disease, ovarian cancer remains undetected for a majority of the patients in its initial
proliferation in the body as its symptoms coincide with various other medical problems
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I. Rojas et al. (Eds.): IWBBIO 2022, LNBI 13347, pp. 3–17, 2022.
https://doi.org/10.1007/978-3-031-07802-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07802-6_1&domain=pdf
http://orcid.org/0000-0002-0596-7515
http://orcid.org/0000-0002-3646-6828
https://doi.org/10.1007/978-3-031-07802-6_1


4 S. Qazi and K. Raza

[4]. Various studies have revealed the median age of detection of ovarian cancer in
females is ~ 60 years [5].

With translational bioinformatics, epigenomics, epi-informatics, molecular biology,
systems biology, researchers have dexterously worked to decode the stealth behav-
ior of ovarian cancer. Recent studies have revealed that many genes get hypomethy-
lated (over-expressed) in case of ovarian cancer such as – members of POTE fam-
ily (POTEC, POTEE, POTEF), BRCA1, NOTCH, SAT2, BRCA2, FOXM1, CCNE1,
CLDN4,BORIS, IGF2, SNCG,MAPK,MAL,WFDC2, FOLR1,COL18A1, FLJ12988,
CLASP1, TRAIL, etc. [6–10]. However, all these genes are also found to cause other
malignancies such as – colorectal cancer, breast cancer, cervical cancer, non-small cell
lung cancer, etc. [11–13]. Even the KEGG pathways [14] don’t report specific path-
ways for ovarian serous adenocarcinoma. Therefore, there is an urgent need to identify
significant genes playing a role in ovarian cancer network biology.

This paper aims to identify the genes that regulate ovarian cancer network biology
by integrating high-grade serous ovarian adenocarcinoma data from TCGAand GEO
databases. The data has been used to check for differentially expressed genes (DEGs),
and further to assess the potential of the seed genes for disease-gene associations (DGA),
principal component analysis (PCA), andKaplanMeier (KM) survival estimationsto give
insights about these genes function in ovarian cancer pathway.

2 Material and Methods

2.1 Data Retrieval

a) The Cancer Genome Atlas Program (TCGA): The TCGA [15] was first explored
to retrieve gene expression data for serous ovarian cancer. MeSH terms such as –
{“gene expression of ovarian cancer”, “gene expression of ovarian carcinoma”,
“gene expression of ovarian adenocarcinoma”} were used to search for relevant
datasets for this study.

b) GeneExpressionOmnibus (GEO):GeneExpressionOmnibus (GEO) of theNational
Centre for Biotechnology Information (NCBI) [16] was also used to retrieve gene
expression datasets. Again, MeSH terms such as – {“gene expression of ovarian
cancer”, “gene expression of ovarian carcinoma”, “gene expression of ovarian
adenocarcinoma”} were used to search for relevant datasets.

A total of 25,229 datasets were retrieved from both TCGA and GEO, however,
after selective streamlining procedure, only 2567 datasets were obtained for MeSH
term = “gene expression of ovarian adenocarcinoma”. After final sorting, from GEO
we selected expression profiles: GSE185008, GSE157153, GSE111776, GSE181955,
GSE168930, GSE154762, GSE185008, GSE151335, GSE171033, GSE171032,
GSE166539, GSE162626, GSE142310, GSE114332, GSE115481, GSE118828,
GSE99217, GSE90125, GSE108084, GSE84539, while from TCGA we selected
TCGA-61–2113, TCGA-20–0991, TCGA-24–1426, TCGA-09–2051, TCGA-61–1998,
TCGA-23–2078, TCGA-24–1431, TCGA24–1845, TCGA-29–1763, TCGA-23–1116,
TCGA-25–2042, TCGA-61–2110, TCGA-13–1492, TCGA-29–1770, TCGA-13–0920,
TCGA-61–2003, TCGA-24–2280, TCGA-24–2293, TCGA-23–2084, TCGA-13–1477.
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2.2 Differentially Expressed Genes (DEGs) Identification

Gene expression profiling was further done on selected datasets that had methylations
status of serous ovarian adenocarcinoma only. The datasets were pre-processed and
normalized to reduce redundancy and erroring. Fold-change (FC) statistics and p-values
were considered to identify significant DEGs. FC-method is a statistical measure that
showcases the altered expression of genes over two conditions – cancerous samples and
normal ones. In this case, we deploy for a log2-foldchange, wherein all values greater
than 0.5849 were considered asup-regulated whereas all values less than -0.5849 (or
FC = 0.666) were be down-regulated genes [17]. LogFC function was used to check
the expression levels in RStudio [18, 19]. To control the false discovery rate (FDR) in
the analysis, Benjamini & Hochberg algorithm [23] was deployed with a significance
cut-off set defined as 0.05.

2.3 Disease-Gene Association analysis

These DEGs were further submitted in DisGeNET [20] to understand the basic disease-
gene association (DGA) of each DEG identified in the study.

2.4 Principal Component Analysis and Kaplan-Meiers Survival Estimation

These seed genes were submitted for a principal component analysis (PCA) and Kaplan-
Meiers (KM) survival estimation. PCA analysis was executed using an online webserver
named – Principal Components Analysis Online [21] and UALCAN [25] while KM
plots were plotted using the KMplotter for ovarian cancer [22] that uses data from GEO,
TCGA, and EGA. Figure 1 gives a graphical overview of the entire analysis performed
in the study.

2.5 Gene Set Enrichment Analysis (GSEA)

Gene set enrichment analysis includes – gene ontology (GO) analysis, pathway enrich-
ment, disease-drug associations etc. that eventually allow to assign functional features
based on biological processes, molecular function and cellular localization aspects to a
set of genes. Based on the genetic expression of genes, GO enrichment displays whether
the genes are overrepresented or under-represented based on several annotations [17].
We deployed g:Profiler for the execution of GO enrichment analysis [34] and Enrichr
[35].

2.6 Construction of Gene Regulatory Network and Analysis

GeneMania [36] plugin in Cytoscapewas deployed to analyse the seed genes and also to
construct a gene regulatory network (GRN) using them. Gene regulatory network (GRN)
construction is an essential step towards screening the significance of each of the seed
gene inmyriad biological processes, topological analysis, networkmodule identification
further provides an insight towards specific drug targets. After the interaction network is
retrieved, we employed OmicsNet visualization webtool [37] for network visualization
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and topological analysis. Consensus Pathway Analysis [38] was used to predict highly
significant pathways and processes from KEGG [39] and GO [40] based on significant
p-values.

Fig. 1. Graphical overview of the study.

3 Results

3.1 Significant Differentially Expressed Genes (DEGs)

By using the FC method as a crucial parameter in order o select the differentially
expressed genes (DEGs), we observed that thousands of genes (~2200 approx) were dif-
ferentially expressed having log2FC scores ranging from − 2.0 to + 2.0 with p-value ≤
0.05.Most of the genes are up-regulated (shown in red) referring to their over-expression
in serous ovarian adenocarcinoma when compared to down-regulated genes (shown in
blue) (refer Fig. 2). A total of 167 significant differentially expressed genes that had
a good log2FC and with smaller p-values were selected for further analyses. Figure 2
displays the scatter-plot of log2FC of all the genes.
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Fig. 2. Scatter-plot of log2 fold change (FC) values of all genes. Here, the red-colored dots
represent up-regulated (over-expressed) genes while dots in blue represent down-regulated (under-
expressed) genes in serous ovarian adenocarcinoma. The grey dots represent those genes that
maintain a normal level of expression (Color figure online).

3.2 Disease-gene Associations (DGA) Study

Disease-gene associations enable to identification of potential genes that can act as prog-
nostic indicators for a disease of interest. To get closer to the best biomarker candidates,
we mapped the selected 167 DEGs for a disease-gene association using DisGeNETwith
query string = ‘(“ovarian serous adenocarcino”) AND biomarker AND altered expres-
sion)’. After the execution of the search string, we retrieved a list of 144 significant genes
that may have a potential role in ovarian cancer. The list of identified 144 genes with
their statistical scores such as disease specificity index (DSI), disease pleiotropy index
(DPI), disease-gene association score, and number of SNPs reported for the genes for
the disease.

Out of these 144 genes, we could categorize the genes based on – biomarkers, altered
expression, and genetic variations. To further narrow down, we focused only on those
genes that were classified as biomarkers and had altered genetic expression. Therefore,
only 88 genes popped out – 46 genes had evidences as biomarkers while 42 genes were
reported to have altered expression. While screening these 88 genes, we noted the list
shared common genes too. Therefore, from here we selected only 15 common seed
genes that will further be studied for PCA and KM survival analyses. Table 1 displays
the 15 seed genes and their association in ovarian serous adenocarcinoma identified after
disease-gene association analysis.
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Table 1. 15 seed genes identified from disease-gene association.

S.No. Seed gene Association Score

1 CLDN3 Biomarker 0.02

2 CLDN4 Biomarker 0.11

3 RSF1 Altered Expression 0.02

4 SCN1A Biomarker; Altered Expression 0.3

5 NACC1 Biomarker, Altered Expression 0.01

6 PAX8 Biomarker 0.1

7 NFKB1 Biomarker 0.01

8 GSN Biomarker, Altered Expression 0.1

9 EPHA1 Biomarker 0.02

10 MUC16 Biomarker 0.3

11 TP53 Biomarker 0.1

12 NANOG Altered Expression 0.01

13 AURKB Altered Expression 0.3

14 FKBP10 Altered Expression 0.01

15 CD274 Altered Expression 0.02

3.3 PCA and Kaplan-Meiers (KM) Survival Estimation

Out of 88 DEGs, we selected only 15 seed genes for further analysis. With these 15 seed
genes in hand, we examined these for a principal component analysis (PCA) calculation
andKaplan-Meiers (KM) survival estimations. PCA is done to reduce the dimensionality
of huge datasets thereby increasing the interpretability with minimal information loss.
For this study, we plotted PCA graphs based on two parameters: a) age of the female,
b) Hardy-Weinberg’s equilibrium. Figure 3 depicts the principal component analysis
(PCA) based on the above-mentioned parameters.

We observed that when age was kept as the main criteria for assessment, these seed
genes mainly target females of age bracket 50–69 [1, 5]. The expression of these seed
genes could be in older females because ovarian cancer gets detected in the advanced
stages of the disease. It is mainly due to the lack of specific biomarkers for oncological
malignancy. When the Hardy scale was placed as the main criteria for PCA analysis, we
found that majority of the females that get diagnosed with ovarian cancer are screened
late, therefore, admitted late for treatment [24].



Integrative Analysis of Ovarian Serious Adenocarcinoma 9

Fig. 3. Representing principal component analysis. a) An incidence of ovarian serous adenocar-
cinoma based on the age bracket of a female. b) Severity of patients based on Hardy-Weinberg’s
equilibrium.

To check for genes that have a greater expression, we plotted an expression pattern
heatmap aligning the expressions of each seed gene. The overall expression pattern of
the seed genes is shown in Fig. 4. CLDN3, CLDN4, PAX8, NACC1, GSN, MUC16, and
FKBP10 showcased a greater over-expression when compared to the rest. This suggests
that these genes are more likely to cause tumors that lead to the severity in a majority
of ovarian cancer cases. The KM plots which are known as the Kaplan-Meier curve
represent the probability of survival of a patient at a specific time interval. Table 2
represents the median survival estimates for each of the seed genes. The KM survival
curves suggest that seed genes – CLDN3, CLDN4, NFKB1, GSN, MUC16, NANOG,
FKBP10, and CD274 have better survival medians in both low and high expression when
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compared to the rest of the seed genes. Figure 5 represents the KM survival curves for
these best 8 seed genes.

Table 2. Median survival estimates for all 15 seed genes.

S.No. Seed gene Description Low expression cohort
(months)

High expression cohort
(months)

1 CLDN3 Claudin 3 20.63 18.83

2 CLDN4 Claudin 4 20.2 19.0

3 RSF1 Remodeling and
spacing factor 1

18.0 15.0

4 SCN1A Sodium voltage-gated
channel alpha subunit 1

18.0 21.29

5 NACC1 Nucleus Accumbens
Associated 1

18.27 16.0

6 PAX8 Paired box gene 8 18.79 22.5

7 NFKB1 Nuclear factor kappa B
subunit 1

21.13 17.9

8 GSN Gelsolin 20.53 18.43

9 EPHA1 Ephyrin type A
receptor 1

18.23 22.02

10 MUC16 Mucin 16 23.24 19.0

11 TP53 Tumor protein P53 17.43 21.29

12 NANOG Nanog Homeobox 21.13 18.2

13 AURKB Aurora Kinase B 18.93 20.63

14 FKBP10 FKBP Prolyl Isomerase
10

20.47 19.0

15 CD274 CD274 molecule 20.0 14.37
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Fig. 4. Heatmap showing expression patterns of seed genes in ovarian serous adenocarcinoma

Table 3 showcases the p-values and hazard ratio (HR) of the best 8 genes. These 8
genes were selected based on their P-values, HR scores, and KM survival curves and
expression values.

Fig. 5. Kaplan Meier survival estimation for best 8 seed genes. a) KM survival curves. Here red
color represents high expression while black represents the low expression of the genes (Color
figure online).
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Table 3. Hazard ratios and P-values of the 8 genes identified after KM analysis.

S.No. Gene Hazard Ratio (HR) value p-value

1 CLDN3 1.19 0.012

2 CLDN4 1.22 0.0047

3 NFKB1 1.21 0.005

4 GSN 1.1 0.17

5 MUC16 1.21 0.0098

6 NANOG 1.13 0.066

7 FKBP10 1.15 0.035

8 CD274 1.55 7.3e-06

3.4 Gene Set Enrichment Analysis of the 8 Seed Genes

Gene ontology (GO) enrichment of the 8 seed genes suggest that they are involved in
various biological processes, have different molecular functions and are localized in the
major membrane systems. Table 4 depicts the GO enrichment of the seed genes based
on engagement in biological processes, their molecular functions, cellular localization
and pathways the seed genes are actively engaged in. As per our analysis, these seed
genes are localizedmainly in themembrane system – plasmamembrane, endomembrane
system, and organelle lumen. As far as the molecular functions of these 8 seed genes
are concerned, they are all heavily deployed in binding and regulation of different pro-
cesses. It was also known that these 8 seed genes are found crucial for various biological
pathways too – mostly in gynecological cancers and signalling pathways.

3.5 Gene Regulatory Network Construction, Visualization and Topological
Analysis

GeneMania plugin was used to construct gene regulatory network (GRN) with the 8
seed genes namely – CLDN3, CLDN4, NFKB1, GSN, MUC16, NANOG, FKBP10,
and CD274 in cytoscape. We found that there were 20 direct interacting partners with
the 8 seed genes where each association depicted a greater number of co-expression
(96.12%), physical interactions (2.25%), sharing of protein domains was observed to be
1.55% with co-localization of 0.08%. We uploaded the retrieved network on OmicsNet
webserver and selected to screen for possible genes, proteins, and microRNAs present in
the subnetworks. To simplify the network, we used label propagation algorithm (LPA)
[41] to visualize the GRN. After applying LPA to our network, we found only NFKB1,
CD274, GSN, NANOG, FKBP10, CLDN4 were significant in the subnetwork that was
obtained. These genes had a better degree along with higher betweenness between nodes
(Table 5). We found that these 6 genes were interacting with various proteins, genes and
microRNAs. These hub genes were further deployed to check for their roles in pathways
fromKEGG and GO using Consensus Pathway Analysis webserver. We found that these
genes are known to be playing crucial roles in commencing different cancers, triggering
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Table 4. Gene ontology enrichment of the 8 seed genes

GENE ONTOLOGY (GO)

Seed Gene Biological
Processes

Molecular
Functions

Cellular
Localization

Pathway
Collection

CLDN3 Response to
stimulus, Wound
healing, Cell
adhesion,
Macromolecular
metabolic process,
biological
adhesion, Positive
regulation of
biological process,
Positive regulation
of metabolic
process, response
to cytokine,
regulation of
peptidase activity,
Tight junction
assembly, Positive
regulation of cell
motility

Binding, Protein
Binding,
DrugBinding,
Chloride channel
activity, cis-trans
isomerase activity,
DNA binding
transcription
repressor activity,
Actinin binding

Membrance
enclosed lumen,
Apicolateral
plasma membrane,
Organelle lumen,
Lateral plasma
membrane, Tight
junction,
Anchoring
junction,
Endomembrane
system, Bicellular
tight junction,
Cellular
component

Proteins with
altered expression
in endometrial
cancer, proteins
involved in
endometriosis,
Coagulation,
Apoptosis,
Inflammatory
response,
TNF-Alpha
signalling via
NF-kB, Cancer
immunotherapy by
PD-1 blockade
WP4585,
Interactions
between immune
cells and
microRNAs in
tumor
microenvironment
WP4559

CLDN4

NFKB1

GSN

MUC16

NANOG

FKBP10

CD274

signalling pathways such as – MAPK pathway, TNF pathway, PI3K-Akt pathway etc.
They also known for causing apoptosis, regulation of actin cytoskeleton, cell adhesion,
tight junction, immune responses etc. Figure 6 depicts the highly confident pathways
and biological processes that are crucially played by the six hub genes CD274, NFKB1,
NANOG, FKBP10,GSN,CLDN4. The greater the circle node, the greater the confidence
score.
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Table 5. Subnetwork topology

Gene Name Degree Betweeness p-value

CLDN4 88 14703 3.36e-43

GSN 31 10264.75 2.28e-08

CD274 47 8770.75 8.89e-22

NANOG 28 7695.75 2.32e-13

NFKB1 17 4012.75 3.01e-09

FKBP10 5 842 8.94e-11

Fig. 6. Significant pathways where 6 hub genes – CD274, NFKB1, NANOG, FKBP10, GSN,
CLDN4 are involved.

4 Discussion

Our analysis pipeline screened 15 common seed genes and found that these seed genes
mainly target females of age bracket 50–69. The expression of these seed genes could
be in older females because ovarian cancer gets detected in the advanced stages of the
disease. It is mainly due to the lack of specific biomarkers for oncological malignancy
[1, 5]. Furthermore, gene expression of most of seed genes tend to be on a milder
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side referring to the fact that these seed genes result in poor RNA quality [26]. Genes
namely – CLDN3, CLDN4, PAX8, NACC1, GSN, MUC16 and FKBP10 showcased a
greater over-expression when compared to the rest. This suggests that these genes are
more likely to cause tumors that lead to severity in majority of the ovarian cancer cases.
The KM survival curves suggest that seed genes – CLDN3, CLDN4, NFKB1, GSN,
MUC16, NANOG, FKBP10 and CD274 have better survival medians in both low and
high expressionwhen compared to the rest of the seed genes. These 8 geneswere selected
based on their P-values, HR scores, and KM survival curves and expression values.

We suggest these 8 genes – CLDN3, CLDN4, NFKB1, GSN, MUC16, NANOG,
FKBP10 and CD274, are highly significant and influential in dominating ovarian serous
adenocarcinoma in females. After gene set enrichment analysis we found that the 8 seed
genes are localized mainly in the membrane system – plasma membrane, endomem-
brane system, and organelle lumen. These seed genes are heavily deployed in binding
and regulation of different processes (Table 4). These 8 seed genes are known to be
crucial players in various disease and signalling processes. Some of these are cell adhe-
sion, MAPK signalling pathway, transcriptional misregulation in cancer, apoptosis, etc.
During network reconstruction analysis, we found that only six genes – CLDN4, GSN,
CD274, NANOG, FKBP10 and NFKB1showed a strong sub-network that were fur-
ther associating with smaller proteins and microRNAs. We found that these genes are
known to be playing crucial roles in commencing different cancers, triggering signalling
pathways such as – MAPK pathway, TNF pathway, PI3K-Akt pathway etc. They also
known for causing apoptosis, regulation of actin cytoskeleton, cell adhesion, tight junc-
tion, immune responses etc. All these pathways have been depicted based on greater
P-value scores (> = 0.5) and have been reported in KEGG and GO databases.

MUC16 is simply CA-125 that is one of the recognized biomarkers for screening
ovarian cancer. Studies reveal thatMUC16 regulates the innate immune response against
ovarian cancer cells by directly stopping the Natural Killer (NK) cells to function [27].
CLDN3 and CLDN4 have been found to over-expressed in ovarian cancers [28]. NFKB1
on the other hand has been proved to build an immune-evasive environment in ovarian
cancer [29]. GSN has been discerned to be fruitful target for chemoresistant ovarian
cancer, thus can be deployed as a screeningmarker for the disease in its initial stages [30].
NANOGhas been found tomonitor the stemness of cells (for instance -Cancer StemCells
(CSCs) and thus can be used as a new target for screening ovarian cancer [31]. FKBP10
has been proved to be under-expressed in high grade serous ovarian cancer [32]. CD274
has been known as a tumor cell-intrinsic molecule that pushes MTORC1 signaling in
mouse melanoma and mouse and human ovarian cancer preventing autophagy. Thus,
CD274 can be an indicator for autophagy in ovarian cancer [33].

5 Conclusion

We conclude that genes – CLDN3, CLDN4, NFKB1, GSN, MUC16, NANOG, FKBP10
and CD274 are highly significant and influential in dominating ovarian serous adeno-
carcinoma in females, and thus, can be looked as biomarkers for ovarian cancer initial
screening examinations in patients.
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Abstract. Single-cell Assay for Transposase Accessible Chromatin
using sequencing (scATAC-seq) is rapidly becoming a powerful technol-
ogy to assess the epigenetic landscape of thousands of cells. However, the
current great sparsity of the resulting data poses significant challenges to
their interpretability and informativeness. Different computational meth-
ods are available, proposing ways to generate significant features from
accessibility data and process them to obtain meaningful results. In par-
ticular, the most common way to interpret the raw scATAC-seq data is
through peak-calling, generating the peaks as features. Nevertheless, this
method is dataset-dependent because the peaks are related to the given
dataset and can not be directly compared between different experiments.
For this reason, this study wants to improve on the concept of the Gene
Activity Matrix (GAM), which links the accessibility data to the genes,
by proposing a Genomic-Annotated Gene Activity Matrix (GAGAM),
which aims to label the peaks and link them to the genes through func-
tional annotation of the whole genome. Using genes as features solves
the problem of the feature dataset dependency allowing for the link of
gene accessibility and expression. The latter is crucial for gene regulation
understanding and fundamental for the increasing impact of multi-omics
data. Results confirm that our method performs better than the previous
GAMs.

Keywords: Epigenomic single-cell data · Gene Activity Matrix ·
Bioinformatics

1 Introduction

Recent advances in New Generation Sequencing (NGS) technologies paved the
way for single-cell multi-omics data analysis, which captures different facets of
cells’ regulative state, including the epigenome, the genome, the transcriptome,
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and the proteome [19]. Multi-omics approaches increase resolution and sensitiv-
ity in the characterization of cellular states, the identification of known or new
cellular phenotypes, and the understanding of cell dynamics [13]. This charac-
teristic supports a quantitative and comprehensive approach to study cellular
heterogeneity [5].

In particular, the combination of transcriptomic and epigenomic data pro-
vides integrated information on the functional activation of genes and the struc-
tural organization of chromatin. There are different experimental approaches
to generate epigenomic data. These includes accessibility measurements, which
indicate whether chromatin is open or closed at genomic locations, exposing
other genomic regions for transcriptional and regulatory processes [15]. These
data have a very different organization than transcriptomic data indicating the
expression level of genes.

Analyzing data from multiple omics does not directly imply to gain richer
information on the cellular system, nor to gain a systemic understanding of
regulative modalities generating the data. To achieve that, a multi-omics analysis
must combine data-driven and model-driven approaches by considering not only
the multiple modalities but also their interrelations in the cellular system [29].
To consider them together, it is necessary to correlate the expression level of
genes (i.e., transcriptomic analysis) and the accessibility of their relevant coding
and regulatory genomic regions.

The concept of gene activity, i.e., the overall accessibility of a gene allowing
its transcription inside the cell [26], facilitates comparison between accessibility
and expression data. Gene activity is a necessary but not sufficient condition to
transcript a gene: a cell can have a coding region accessible at the epigenomic
level and the corresponding gene either strongly, weakly, or not expressed at all
at the transcriptomic level. This must be considered when comparing transcrip-
tomic and epigenomic data and build approaches to analyze them jointly.

A Gene Activity Matrix (GAM) [26] is an effective way to summarize acces-
sibility information deriving from single-cell experiments. In a GAM, columns
identify cells while rows identify genes. An element of the matrix (GAMg,c) rep-
resents the Gene Activity Scores (GAS) of the gene g in cell c [26]. The GAS
is a value describing the activity of a gene in a cell in a given model. The use
of the same genes in expression and activity experiments makes transcriptomic
data directly comparable with epigenomic data.

Current approaches to compute GAMs derive primarily from data-driven
strategies, which show limitations in capturing the contextual meaning and the
regulative implications of epigenomic data. This work takes a step towards inte-
grating transcriptomic and epigenomic data to support consistency in the joint
consideration of gene activity and gene expression. In particular, this paper intro-
duces a data- and model-driven computation of a Genomic Annotated GAM
(GAGAM), which leverages accessibility data and information from genomic
annotations of regulatory regions to weigh the gene activity with the anno-
tated functional significance of accessible regulatory elements linked to the genes.
GAGAM helps improve the resolution, explainability, and interpretability of the
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results of the clustering and differential activity analyses, supporting the study
of cellular heterogeneity based on epigenomic data alone [26].

2 Background

Single-cell Assay for Transposase Accessibility Chromatin sequencing (scATAC-
seq) is rapidly becoming the primary way to assess the accessibility of the
whole genome at the single-cell resolution. ScATAC-seq datasets employ dif-
ferent ways to define meaningful features to allow their analysis, as shown in [9].
One of the most popular is the “peak calling”, which defines peaks (i.e., inter-
vals on the genome that have a local enrichment of transposase cut-sites) from
an experiment-dependent set of chromosomal regions [36]. Since resulting peaks
directly derive from the experimental results, they are not univocal, as in tran-
scriptomic data. This hampers comparison of different analyses results and iden-
tification of cell-type related marker genes.

As described before, a GAM is an effective way to define robust accessibility
features. The GAM considers the overall accessibility of the genomic regions
linked to a gene. Using scATAC-seq data, the gene activity scores composing
the elements of a GAM can be computed as the accessibility of the peaks related
to a gene in a cell. However, the way to link peaks to the correct genetic region on
the genome is not unique, and in the literature, there are three main strategies:

1. The GeneScoring sums the peaks in a broad region before and after a gene’s
Transcription Starting Site (TSS), weighted by their distance from it [18].
This is the easiest way to define the activity of a gene, but it does not consider
all the regulatory aspects.

2. Cicero defines the activity of a gene as the accessibility of the peaks over-
lapping the TSS and the accessibility of all the co-accessible peaks [26]. This
method is more structured than the previous one. However, it identifies the
genes through a single DNA base, i.e., the TSS, limiting the effectiveness of
the approach. Moreover, co-accessibility evaluation is a very long and com-
putationally heavy process, and the GAS estimation does not consider the
meaningfulness of the peak.

3. Signac GAM counts all the raw reads in the gene body [28]. The main limita-
tion of this method is the necessity of a fragment file related to the dataset,
which contains all the fragments read in each cell. It is a large file and rarely
available, thus making the computation often impossible.

In general, all these methods oversimplify the relationship between a gene
and its accessibility. The epigenetic mechanisms are related to the regulation
and resulting expression of the genes. However, this association is not direct and
linear. If a gene is accessible, it is not necessarily also expressed: the association
only gives an insight on whether transcription is possible or not.

Studying how accessibility links to gene expression becomes relevant due to
the emergence of new multi-omic Next-Generation Sequencing (NGS) techniques
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allowing performing both scATAC-seq and Single-cell RNA sequencing (scRNA-
seq) simultaneously. One way to achieve multi-omic consistent integration is to
employ a model-driven approach.

For this reason, GAGAM introduces a new way to construct a GAM based
on the functional annotation of the peaks. GAGAM is not only a new GAM but
also a new way to interpret epigenomic data in perspective to link them with
transcriptomic data. This method employs publicly available genomic annota-
tions and evaluates the activity based on the regulatory elements linked to the
gene by elaborating only the peaks related to the genes and their regulatory
regions. Thus, it provides a model-driven GAS that reflects the accessibility to
the whole transcription machinery, drawing a direct link to the gene expression.

3 Materials and Methods

Figure 1 introduces the workflow for computation and evaluation of GAGAM
starting from a scATAC-seq dataset.

Fig. 1. Workflow for computation and evaluation of GAGAM. The workflow
starts with scATAC-seq data, and labels the peaks with the help of genomic annota-
tions and USCS tracks. Then it computes the three contributions forming GAGAM.
GAGAM is evaluated and compared to other GAMs through clustering experiments
with three well-established metrics: Adjust Rand Index (ARI) [17], and Adjust Mutual
Information (AMI) [35] (if the dataset is labeled) or Residual Average Gini Index
(RAGI) [6] (if the dataset is not labeled).

A scATAC-seq dataset contains a set P of peaks observed in a group of C
cells. Each peak corresponds to a region of the target genome and is defined by
its chromosome and a genomic coordinate pair p = (ch, start, stop). The dataset
is a binary matrix D|P |×|C| where rows are associated with peaks and columns
with cells. An element of D equal to 1 denotes a peak (row) accessible in a cell
(column).

The main contribution of GAGAM is to exploit information regarding over-
laps of peaks, gene bodies, and genetic regulatory regions (i.e., promoters and
enhancers) to build a GAM with higher information content.
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3.1 Genomic Annotation

The genomic annotation of peaks is the first step to constructing GAGAM.
This process aims to enrich information regarding peaks with data coming
from different genomic annotations useful for a model-driven construction of
a GAM. Figure 2 shows the genomic model considered in this work. It represents
a genomic unit, which includes three parts: (i) the gene body region, starting
at the Transcription Starting Site (TSS), (ii) the gene Promoter, preceding the
coding region, and (iii) a set of Enhancers that are distal to the gene.

Fig. 2. Genomic model. The genomic model consists of the coordinates of all the
genomic regions related to the gene. The gene body region (in green) comes from the
NCBI RefSeq Genes annotations. The regulative regions, i.e., Promoter (in red), and
Enhancers (in orange), come from the cCRE ENCODE tracks. (Color figure online)

The gene coding region is defined using NCBI RefSeq Genes [25] annota-
tions, consisting of genes’ genomic coordinates. Therefore, a gene g in a target
genome G is a tuple defining the gene’s chromosome and its genomic coordi-
nates pair (i.e., g = (ch, start, stop)). The NCBI RefSeq annotations are acces-
sible using the NCBI Eukaryotic Genome Annotation Pipeline [30]. It consists
of an annotated and curated information list of protein-coding and non-protein-
coding genes. The annotation also includes all the pseudogenes and miRNA
regions. Since GAGAM aims to obtain something as close as possible to the
transcriptomic information, it only considers the protein-coding and lncRNA
regions.

The regulative genomic regions are elements on the DNA footprints for the
trans-acting proteins involved in transcription, either for the positioning of the
basic transcriptional machinery or for the regulation. The annotation tracks are
associations between a genomic region and a label indicating the function of the
region. Given a target genome G it is possible to define a set R of regulative
regions with each region defined by the corresponding chromosome, the genomic
coordinates pair, and a label (e.g., promoter or enhancer) indicating the function
of the region (r = (ch, start, stop, l)).

Information regarding regulative gene regions are available from the Encyclo-
pedia of DNA Elements (ENCODE) project, which provides an extensive collec-
tion of cell- and tissue-based repertoires of genomic annotations, including, for
example, transcription, chromatin organization, epigenetic landscape dynamics,
and protein binding sites from the mouse and human genomes [24]. ENCODE
data are available through the ENCODE data portal [11].
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This work only considers genomic annotations relative to promoter and
enhancer functions. These regulatory elements are derived from the ENCODE
candidate cis-Regulatory Elements (cCREs). cCREs provides an extensive col-
lection of annotated regions for the human and mouse genomes. Classification of
cCREs is based on biochemical signatures, considering DNase hypersensitivity,
histone methylation, acetylation, and CTCF binding data [24]. Since this work
aims to label peaks from both human and mouse datasets, cCREs tracks (in
BigBed format [16]) were collected from ENCODE for both the human [33], and
mouse [34] genomes.

The goal of the genomic annotation process is to associate each peak p ∈ P
obtained from a scATAC-seq dataset D to a set of genomic annotation labels by
analyzing how the peak overlaps to the different genomic regions.

GAGAM labels each peak p ∈ P with four possible labels: (1) prom for peaks
overlapping a promoter region, (2) enhD for peaks overlapping a distal enhancer
region and not a promoter region, (3) intra for the peaks contained into a gene
body region, and (4) empty in all other cases. The rule to assign the label is
summarized in the following equation:

PL : p ∈ P �→

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

prom if ∃r ∈ R|r ⊆ p ∧ rl = prom
enhD if (∃r ∈ R|r ⊆ p ∧ rl = enh)∧

(�r ∈ R|r ⊆ p ∧ rl = prom)
intra if ∃g ∈ G|p ⊆ g

empty otherwise

(1)

The operator a ⊆ b is used here to denote that the two regions a and b
belong to the same chromosome with b overlapping a (i.e., astart ≥ bstart∧aend ≤
bend). The computation of the intersection between peaks and annotation regions
leverages the bigBedToBed tool from ENCODE [32].

Performing genome annotation for the mouse genome is straightforward for
all considered datasets since both datasets, and annotation tracks refer to the
mm10 genomic assembly. Differently, for the human genome, the cCREs anno-
tation track is only available for the hg38 genomic assembly, while the human
dataset is based on the hg37 genomic assembly. For this reason, this work lever-
ages the UCSC LiftOver tool [20] to convert the peaks’ coordinate ranges from
the hg37 to the hg38 assemblies before performing peak labeling.

Given the list of annotated peaks, GAGAM builds a gene activity matrix
as a weighted sum of three separated matrices: (i) the promoter peaks matrix
(P) indicating accessibility of genes associated with promoter peaks, (ii) the
intragenic peaks matrix (I) indicating the accessibility of genes containing intra-
genic peaks, and (iii) the co-accessibility matrix (C) indicating the accessibility
of genes associated with distal enhancer peaks, obtaining a final curated and
model-driven evaluation of the activity of the genes:

GAGAM = wp · P + wi · I + wc · C (2)
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3.2 Promoter Peaks Matrix

The promoter peaks matrix exploits model-driven information about promoter
peaks to identify relevant genes in the GAM. The golden rule applied in GAGAM
is that a gene in a cell is active if, and only if, its promoter peak is accessible.
This rule reduces the set of interesting genes to consider when constructing a
GAM.

To follow this rule, let us denote with P p ⊆ P the subset of peaks in the
dataset D annotated as promoters (i.e., PL(p) = prom ∀p ∈ P p) and with
Dp

|Pp|×|C| the submatrix of D including only rows associated to promoter peaks.
GAGAM constructs a binary matrix GP|Gp|×|Pp| associating the set of genes

with active promoter peaks (Gp) to their related peaks. To associate a promoter
peak to a gene, GAGAM considers the overlapping of an enlarged gene body
region including 500 bp before the TSS (i.e., an approximation of the mean peak
length) with the peak region. Based on this, the promoter peaks matrix is a
binary matrix computed as:

P|Gp|×|C| = GP|Gp|×|Pp| × Dp
|Pp|×|C| (3)

This matrix is a GAM including accessibility data for the subset of genes
associated with the promoter peaks. In this way, GAGAM leverages available
knowledge on transcriptional regulatory regions to define the active genes based
on a model taking into account the knowledge of gene regulation and transcrip-
tion.

3.3 Intragenic Peaks Matrix

GAGAM also considers the contribution of the intragenic peaks (i.e., peaks
located in the gene body region) to the overall gene activity score. Similarly
to what described before, let us denote with P i ⊆ P the subset of peaks in
the dataset D annotated as intragenic (i.e., PL(p) = intra ∀p ∈ P i) and with
Di

|P i|×|C| the submatrix of D including only rows associated to intragenic peaks.
GAGAM constructs a matrix GI|Gp|×|P i| associating genes with active pro-

moter peaks (Gp) to their related intragenic peaks. This matrix only considers
genes with active promoter peaks to follow the GAGAM golden rule (Sect. 3.2).
Some of the identified intragenic peaks could be part of genes that do not have
a promoter peak. Moreover, it could happen that given a gene region inside a
cell, intragenic peaks could be accessible even if the promoter peak is not.

Statistically, there will be more peaks inside the gene body region of a long
gene, meaning it might have a higher score after its length. To prevent this bias,
GAGAM employs a strategy from the GeneScoring [18] method to compute
the elements of GI. It weighs the contribution of the intergenic peaks with an
exponentially decaying function of their distance from the TSS (i.e., GIg,p =
a · e− d

5000 where a = 1 if p ⊆ g, 0 otherwise and d is the distance of the peak
from TSS). In this way, very long genes are not over-represented because the
most crucial part of the gene’s activity is near the promoter. Therefore, the
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peaks near it are weighted more. Based on this, the intragenic peaks matrix is a
matrix computed as:

I|Gp|×|C| = GI|Gp|×|P i| × Di
|P i|×|C| (4)

3.4 Promoter-Enhancer Co-accessibility Matrix

The co-accessibility matrix accounts for the connections between promoters and
enhancers. It leverages Cicero [26] to calculate the co-accessibility of the peaks.
The co-accessibility represents how couples of peaks tend to be simultaneously
accessible in the cells, expressing it in a range between 0 and 1. This calculation
“connects regulatory elements to their putative target genes” [26], meaning it
can find connections between the promoters and the distal regulatory regions
where different elements like Transcriptional Factors (TF) bind and enable the
transcription.

The first step to compute this matrix is to calculate the co-accessibility from
the scATAC-seq data with the Cicero function run cicero (for the explanation
of the calculation, refer to [26]). The result is a list of peaks couples with their
co-accessibility value (ca) and distance (d) in the form conn = (p1, p2, ca, d).

GAGAM selects only couples of promoter-enhancer peaks, i.e., couples with
p1 ∈ P p and p2 ∈ P e (or vice versa), with P e ⊆ P representing the subset of
peaks in the dataset D annotated as enhancers (i.e., PL(p) = enhD ∀p ∈ P e).

Moreover, GAGAM keeps only couples with ca ≥ cam (with cam the
mean value of all the co-accessibility scores above zero) and d ≤ dth (with
dth = 30, 000 bp the distance threshold defined as suggested by the guidelines of
Cicero [26]).

To calculate the co-accessibility matrix C, GAGAM uses three matrices.
First, the binary matrix GP|Gp|×|Pp| previously defined in Sect. 3.2 and asso-
ciating genes with promoter peaks. Second, the matrix PE|Pp|×|P e| associating
promoter peaks and enhancer peaks. The elements of this matrix are the co-
accessibility values ca of the couples of peaks available in the list produced by
Cicero, and 0 otherwise. Third, the matrix De

|P e|×|C| is a submatrix of D includ-
ing only rows associated with enhancer peaks.

Based on this, the co-accessibility matrix is computed as:

C|Gp|×|C| = GP|Gp|×|Pp| × PE|Pp|×|P e| × De
|P e|×|C| (5)

4 Results and Discussion

4.1 Evaluation Strategy

This section evaluates GAGAM by looking at different aspects.
First, GAGAM represents an interpretation of scATAC-seq data. As the

majority of single-cell experiments, it must identify cellular heterogeneity. Based
on this consideration, the first approach to evaluate the capabilities of this new
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gene activity matrix is to employ one of the many available pipelines to process
GAMs (Fig. 1). This work uses Monocle3 [31], given its simplicity and the fact
that Cicero GAM (see Sect. 2) is dependent on it.

The standard Monocle workflow starts with a GAM, performs Principal Com-
ponent Analysis (PCA), visualizes the cells in 2D using UMAP [23], and most
importantly, performs cells clustering. The clustering results should at least par-
tially represent the cellular heterogeneity of the dataset. This can be measured
using a group of metrics thoroughly discussed in Sect. 4.2.

Moreover, it can be proved that GAGAM and, in particular, the selected
genes are not just a product of data manipulation but are biologically meaningful
in two ways. First, performing differential activity analysis on the GAM can
show that the differentially active genes are cell-type specific. This would also
demonstrate that employing marker genes allows classifying scATAC datasets,
something not possible with raw data. Second, using the RAGI index (one of the
metrics for the evaluation of the clustering performances defined in Sect. 4.2), it
is possible to assess the informativity of the GAGAM.

4.2 Metrics Definition

The evaluation strategy proposed in Sect. 4.1 is based on unsupervised clustering
of cells based on the selected genes. The obtained clusters are the outputs that
must be analyzed to understand if they represent cell heterogeneity. There are
two scenarios: (i) the starting dataset has cell labels; thus, each cell has a label
identifying its cell type, or (ii) there are no available cell labels, so there is no
ground truth to compare.

In the first case, the most direct way to measure the quality of the clustering
process is to compare the clusters to the cell-type labels. To show how much the
two classifications are similar, this paper uses the Adjust Rand Index (ARI) [17]
and Adjust Mutual Information (AMI) [35] from information theory. These two
metrics are often employed for this type of evaluation. In particular, [6] uses
them for their benchmarking. Thus, they help compare their results with those
produced in this paper. ARI and AMI range between 0 and 1, where 1 is a perfect
match, and 0 is complete uncorrelation. This evaluation employs the R package
ARICODE [8], which easily allows their calculation.

The second case requires a different approach. Since there is no reference
classification, ARI and AMI cannot be used. One method is to calculate ARI
and AMI comparing the results with the clustering-based labels obtained from
the scATAC-data data processing. Otherwise, [6] proposes a very fitting way: the
Residual Average Gini Index (RAGI) [6]. The RAGI investigates the differences
in the Gini index of markers and housekeeping genes. The idea is that a good
clustering should have marker genes active only in specific clusters and house-
keeping genes over all the cells. Therefore, RAGI can measure the quality of the
GAM itself. A good GAM should convey meaningful biological information that
should translate into a difference between the two sets of genes. Therefore, the
RAGI estimates if a GAM can correctly assess the gene activity. Anyway, RAGI
has the problem of being highly dependent on the employed genes to calculate
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it. Still, the concept of housekeeping genes and, even more, marker genes are
not well-defined [22]. Therefore, it is essential to carefully choose the right set
of marker genes strictly related to the dataset sample. In this work, the list of
housekeeping genes derives from [10] for humans and [12] for the mouse. On
the other hand, the marker genes list comes from the CellMarker [37] database,
which provides a curated list of markers per tissue. For the mouse brain datasets,
this work also employs markers from [14], and [21].

4.3 Datasets

GAGAM was tested on five datasets (see Table 1). Two datasets are from the
10XGenomic platform [27], and consist of a collection of respectively 5,335 (10X
V1.0.1 PBMC [1]) and 4,623 (10X V2.0.0 PBMC [3]) cells from human Periph-
eral Blood Mononuclear Cells (PBMC) samples. From the 10XGenomic platform,
there is also a mouse brain dataset with 5,337 cells (10X V1.1.0 Brain [2]). All
three datasets do not have cell labels. Therefore, ARI and AMI evaluations
are applicable only on the clustering-based labels. Next, this study employed
a dataset of bone marrow (Buenrostro2018 ) from [4]. This dataset consists of
2,034 cells and provides cell-type classification. The last dataset comes from a
multi-omic SNARE experiment (SNARE [7]). It consists of 10,309 cells from
the mouse cortex and comes with a partial classification of the cells. Two of the
considered datasets (10X V1.0.1 PBMC and Buenrostro2018 ) derive from [6],
a paper performing a benchmarking analysis on different methods allowing for
easy comparison of results.

Table 1. Datasets employed

Dataset Species Tissue Cells labels Reference

10X V1.0.1 PBMC Human PBMC No [1]

10X V2.0.0 PBMC Human PBMC No [3]

10X V1.1.0 Brain Mouse Brain cortex No [2]

Buenrostro2018 Human Bone marrow Yes [4]

SNARE Mouse Brain cortex Yes [7]

4.4 Results

This section compares the performance of GAGAM with two state-of-the-
art GAM computation pipelines (i.e., Cicero and GeneScoring) following the
evaluation strategy proposed in Sect. 4.1. Since GAGAM is constructed from
three contributions (see Eq. 2), it is advisable to evaluate different combina-
tions to select the best one. This experimental setup considers two versions of
GAGAM: GAGAM1 constructed considering only the promoter peaks and the
co-accessibility (i.e., wp = 1, wi = 0, and wc = 1) and GAGAM2 created using
the complete GAGAM workflow (i.e., wp = 1, wi = 1, and wc = 1).
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Figures 3 and 4 reports AMI and ARI results comparing Buenrostro2018 [4]
and SNARE [7] clusters, with their ground truth labels, and the other datasets
against the scATAC clustering results. Overall, Figs. 3 and 4 shows that both ver-
sions of GAGAM perform equally or better than Cicero and GeneScoring. Only
on 10X V1.1.0 Brain, GeneScoring has a higher metric value than GAGAM.
However, comparing the results in [4] with the ones reported in [6] on the same
dataset shows how the GAGAM performances are on the high end of the bench-
marked paper methods (as shown in Table 5 from [6]).

Fig. 3. ARI results of the four methods for the five datasets

Fig. 4. AMI results of the four methods for the five datasets

Next, RAGI has been computed for all datasets to assess the clustering results
and the information content of the GAMs. The results are in Figs. 5 and 6. For
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the three different types of tissues, we employed three different sets of curated
markers, while the housekeeping genes were shared between the same species
datasets. For each method and dataset, there are two different results. One is
the RAGI score calculated on each GAM concerning the clustering results. The
other is computed on each GAM but resorting to the cell labels (when available)
or the clustering-based labels obtained from the scATAC data processing. This
way, all methods are evaluated against the same partition to understand which
GAM is the most biologically consistent. In particular, the 10X V1.0.1 PBMC
dataset is assessed with this metric in [6], and GAGAM outperforms all the
methods illustrated there.

Fig. 5. RAGI results of the four methods for the five datasets, when compared to each
method’s clustering

Fig. 6. RAGI results of the four methods for the five datasets, when compared to labels
or ATAC clustering
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In general, the results show how GAGAM has consistently good perfor-
mances. Nevertheless, in this case, Cicero performs better on the SNARE
dataset. Instead, GeneScoring offers low performances. Although its clustering
results are consistent with the ground-truth classification (as indicated by ARI
and AMI), the actual scores are not well defined. This suggests the importance
of evaluating the GAMs on both metrics. Therefore, although there are some
cases where Cicero and GeneScoring have better results than GAGAM, the lat-
ter has a consistent behavior on all the metrics, meaning it is the most reliable
method on both clustering results and actual GAS computation. It is essential
to highlight that some of the RAGI results (marked with *) have a p-value over
the tolerable threshold (0.05), so they are not statistically meaningful, but we
report them anyways.

5 Conclusions

In conclusion, GAGAM is a new method to obtain a Gene Activity Matrix from
scATAC-seq data. It is based on a model-driven approach leveraging genomic
annotations of genes and functional elements. It introduces the promoter peak
accessibility into the score, which is necessary for the gene’s activity. Then, it
considers the contribution of intragenic peaks, weighted by their distance from
the TSS and the enhancer peaks connected to the promoter. The score obtained
this way represents a good model of the gene activity interpreted as the set of
elements that should be accessible to allow gene transcription.

Experimental results demonstrate how GAGAM generally performs better
against other GAMs concerning its ability to identify cellular heterogeneity.
Specifically, the clustering obtained from GAGAM is evaluated with ARI, AMI,
and RAGI and has better results than Cicero and GeneScoring on all of these
metrics. In addition, GAGAM is a suitable method to interpret accessibility
data in general. Indeed, since it employs genes as features, it allows analyzing
scATAC-seq data through well-studied and investigated concepts like marker
genes. The same analysis would not be possible with raw accessibility data.
RAGI results support this claim and highlight the activity differences between
marker and housekeeping genes. This activity proves that the features selected
in GAGAM (i.e., the genes) and their activity scores are biologically meaningful.
Therefore, GAGAM provides an optimal and reliable middle ground between the
accessibility data and the gene expression data, crucial for future works in a field
where multi-omics single-cell techniques are fastly growing.

In conclusion, GAGAM is a promising and reliable way to interpret scATAC-
seq data, which focuses on the accessibility of the genes and their regulatory
elements, acting as a direct link between epigenomic and transcriptomic.
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Abstract. Gene set analysis is a leading bioinformatical technique allowing
comparison of phenotypes on gene set level, which is applied to different
transcriptome-wide gene expression platforms and omics levels. The aim of this
study was to measure the performance of three single-sample gene set enrichment
algorithms, based on their ability to obtain the statistical significance of enrichment
in each cell separately using scRNA-Seq data. The peripheral blood mononuclear
cell dataset was used in the evaluation process and individual enrichment within
the B cell subtype was investigated based on reference gene set collection. Sen-
sitivity, specificity, prioritization, and balanced accuracy were used as evaluation
metrics, accompanied by correlation analysis between gene sets. AUCell, origi-
nally designed for scRNA-Seq, showed the best sensitivity and balanced accuracy,
good prioritization and acceptable specificity. However, large correlation between
gene set size and specificity was observed, so we recommend its usage on large
gene sets (>80). Moreover, the computational time is much longer compared to
other testedmethods. Among other algorithms, CERNOgave very high specificity
and prioritization, but the sensitivity needs to be enhanced by algorithm improve-
ment. Finally, the problem of the “gold standard” dataset and gene set collection
that could be used for gene set analysis algorithms performance evaluation in
scRNA-Seq, was stated and the initial solution was presented.

Keywords: Pathway enrichment analysis · Single-cell RNA sequencing ·
Single-sample algorithms · Algorithms effectiveness

1 Introduction

Ever since the invention of transcriptome-profiling technologies, the measurement of
gene expression in different cells/samples is possible. As the abundant number of genes
occurring in a cell would be hard to process individually, making both calculations
and conclusions challenging, the genes are gathered into groups based on mechanisms
they regulate. These groups of genes are called gene sets (GSs) and stored in databases
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such as KEGG [1] or GO [2], expanding the knowledge about biological processes in
living organisms. Such collections allow differentiating between various groups, aiding
diagnostics or observing the characteristics of specific phenotypes and their reactions to
the environment.

One of the methods of gene expression measurement is microarrays where the cell
mixture from samples of different phenotypes is investigated. For the analysis of tran-
scriptomic experiments in the form of gene set activity, approaches known as Gene Set
Analysis (GSA) were introduced. Those bioinformatics algorithms can be divided based
on study type: per group or per sample. Per group methods are based on the designation
of control and test group where the genes’ expressions are transformed to GS activa-
tion. In this category, such methods as Gene Set Enrichment Analysis (GSEA) [3], Link
Enrichment of Gene Ontology (LEGO) [4], or Coincident Extreme Ranks in Numeri-
cal Observations (CERNO) [5] can be distinguished. The second group of algorithms
is known as single-sample approaches, where activation of GS is explored within one
sample instead of a group of samples with the same phenotypes. Here, such methods like
Pathway Level Analysis of Gene Expression (PLAGE) [6], Gene Set Variation Analy-
sis (GSVA) [7], Pathway Analysis for Sample-level Information (PASI) [8], singscore
[9], or z-score [10], where the scores are calculated for each cell/sample and pathway
separately, can be included. The second group of GSA methods could be easily applied
in single-cell RNA sequencing (scRNA-Seq) as they will allow to reveal individual cell
enrichment of particular GS/pathway in the form of pathway activation score (PAS).

Methods that are designed for microarrays tend to be used in other transcriptome-
wide gene expression platforms and techniques like bulk RNA sequencing (RNA-Seq)
and scRNA-Seq. In [11, 12] authors show that applying GSA algorithms designed for
microarray analysis into bulk RNA-Seq does not impact their effectiveness. However,
in analysis of scRNA-Seq different issues may occur. The main problem in scRNA-Seq
is data sparsity and previously designed algorithms might not be robust to this form of
count data. Moreover, the methods should be robust against the effects of normalization
as the highest number of counts may be overestimated. Thus, a few approaches were
designed especially for enrichment analysis in scRNA-Seq, e.g. AddModuleScore [13]
from Seurat R package, where the presented problem requires knowledge of control
and test groups (clusters) before performing the analysis. Also, comparisons are made
across the dataset and the results strongly depend on cell data composition. The result-
ing values do not provide an explicit cut-off value dividing the cells into significant
and non-significant. Another method, UCell [14], removes the issue of the normaliza-
tion effect by introducing individual ranking scores for each sample (transformation
to non-parametric approach). Moreover, this solution allows for the analysis of single
cells (without including information about clusters) in comparison to AddModuleScore.
Again, there is no threshold classifying the significance of the pathway in the studied
cell. The desired cut-off value is introduced in AUCell [15], which analyses the AUC
scores for each cell separately, then based on the results across all the samples for the
pathway calculates several thresholds and chooses one of them as the final one.

In [16] authors test the performance of enrichment algorithms in terms of accuracy,
scalability, and stability based on PAS matrix. Here, we focus on methods that not only
give PAS but can state enrichment significance in each cell. We chose two methods
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previously used in microarray data analysis (CERNO and z-score), which will produce
the results in the form of p-values and therefore, the easily retrievable, and interpretable
cut-off value for each GS can be obtained for scRNA-Seq data.We evaluate them against
AUCell as the only enrichmentmethod dedicated to scRNA-Seq analysis, which simulta-
neously allows for significant classification of a gene set in each cell. In the comparison,
the following metrics were evaluated: sensitivity, specificity, prioritization, balanced
accuracy, and correlation to gene set size.

2 Materials and Methods

2.1 Data Acquisition and Pre-processing

The raw scRNA-Seq data of peripheral blood mononuclear cells (PBMC) were down-
loaded from single-cell portal of Broad Institute [17]. Out of all measurements, the
PBMC experiment 1 performed on 10x Chromium (v2) A was extracted. The initial
dataset consists of 3,222 cells and 33,694 gene transcripts. Transcripts with low expres-
sion were filtered out using Gaussian Mixture Model (GMM) [18] on the logarithmic
distribution of zero counts number per transcript. Next, the threshold for the intersection
of two first components was extracted and transcripts with a number of zero counts above
the threshold were removed [19]. Duplicated genes were removed by keeping genes with
higher variance across cells. Finally, the 3,222 cells and 15,817 unique gene transcripts
were analyzed. The cell labels were provided with the dataset to distinguish nine differ-
ent cell types: B cell (n = 288), CD14 + monocyte (n = 640), CD16 + monocyte (n =
102), CD4 + T cell (n = 550), Cytotoxic T cell (n = 1,174), Dendritic cell (n = 55),
Megakaryocyte (n = 221), Natural killer cell (n = 166) and Plasmacytoid dendritic cell
(n = 26).

For the collated dataset the pathway enrichment analysis was performed on a dedi-
cated gene set (GS) collection. In the KEGG database [1] pathways from “Organismal
Systems; Immune system” category were extracted. Furthermore, out of the collections
of Chaussabel et al. [20] (DC) and Li et al. [21] (LI) available in tmod R package [5] gene
sets whose names include one of the analyzed cell types were selected. The third group
of gene sets was the LM22 list fromCIBERSORT software which contains a signature of
PBMC types [22]. Finally, the simulated GSs with random genes and various sizes were
created (GS sizes: 20, 50, 80, 100, 150, 300, 500) as a negative control. In the process
of random selection, the genes from CIBERSORT subcollection were excluded as they
represent signatures of PBMC cell types. In summary, 103 gene sets were used (KEGG
n= 21, LI/DC= 53, CIBERSORT= 22, Random = 7). The coverage of gene signature
between GSs was investigated by the Jaccard index and the results were clustered using
hierarchical clustering with Euclidean distance.

2.2 Single-Sample Pathway Enrichment Algorithms

Three different methods of single-sample enrichment were tested. The first algorithm
is AUCell which is part of an R package SCENIC dedicated to complex scRNA-Seq
analysis [15]. In this method, at first, the gene counts are ranked from high to low for
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each cell separately,with ties being placed at random. For further calculations, the top 5%
of the highest-ranking genes for the specific cell are used. The score for the chosen gene
set and cell is calculated as the area under the curve (AUC) of a number of genes in the
gene set and gene rank normalized by the maximum possible area under the curve for the
used number of genes. Based onAUC distribution, for particular gene set across all cells,
the significance cutoff is estimated. For the threshold choice, the following conditions
are checked: (i) normal distribution assumption tested by Kolmogorov-Smirnoff test for
all AUCs of the individual genes and then the calculation of:

p = 1 − 0.01

N
(1)

whereN is the total number of tested cells. The obtained result is treated as the percentile
of a normal distribution with mean and standard deviation of all AUC scores across all
cells for a particular gene set; (ii) Kernel fitting is conducted for the obtained AUC scores
for the analyzed gene set. For the obtained distribution global maximum, local maximum
and local minimum placed before the second-highest local maximum are found. If the
ratio of the density of local maximum to the density of global maximum is higher than
0.05, then the local minimum is set as a threshold. If none of the above are satisfied, the
threshold is calculated in the following way: (i) The following statistic is calculated:

p = 1 −
(
0.01

N
− 0.25

)
(2)

The obtained value is again approximated to the percentile of a normal distribution with
a mean and standard deviation of all AUC scores across all cells for a particular gene set;
(ii) Two Gaussian distributions are fitted to the calculated AUC scores. Next, the cut-off
is set as a percentile from Eq. (1) and the normal distribution with a mean and standard
deviation of the second component of fitted GMMmodel; (iii) The same as for the above
is repeated for the three-component GMM model and the cutoff is set as p = 0.01 for
the normal distribution with mean and standard deviation of the third component.

The next two algorithms were originally designed for single-sample microarray GS
analysis. The reasoning of their selection is that out of the range of different single-
sample approaches, they set significance for each individual sample without original
algorithm modification and can easily be applied to scRNA-Seq analysis. The first one
is the z-score [10] where the counts are normalized over all the genes in the cell. Next,
genes in the GS are combined via Stouffer’s method [23] for each cell separately:

ZGS =
∑N

i=1 Zi√
N

(3)

where Zi is the normalized count of gene i and N is the total number of genes in the
analyzed GS that occur for the tested cell. The obtained statistic can follow the standard
normal distribution under the null hypothesis that the genes in the tested GS for the
tested cell are distributed randomly.

The last tested algorithm is CERNO [5] where sorted rank lists of genes for each
of the cells separately are used. The counts are ranked from high to low and ties are
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placed at random (same as in AUCell). The null hypothesis of the test assumes a random
distribution of genes belonging to individual GS for the tested sample. The F statistic
for each cell and gene set is calculated as:

FGS = −2
N∑
i=1

ln

(
ri
Ntot

)
χ2
2N (4)

where N is the total number of genes in a given GS, Ntot is the total number of analyzed
genes and ri is the rank of gene i for an investigated cell at GS. The obtained F distribution
statistic is approximated with χ2 distribution with 2*N degrees of freedom.

Both z-score and CERNO produce p-values, which were then corrected via the usage
of the Benjamini-Hochberg procedure (BH) [24]. For both algorithms, GS is taken as
significant if the p-value or q-value (after correction for multiple testing) is lower than
0.05. In total 5 different enrichment approaches were tested (AUCell, both CERNO and
z-score with and without BH correction).

2.3 Algorithm’s Evaluation

Each enrichment method was run on 103 GSs for each cell separately. As a result,
the significance of each cell, in each GS was obtained. Out of all GSs, only pathways
related to B cells were extracted, as the B cell type is the most homogenous cluster out
of all investigated cell subtypes in PBMC dataset. Twenty-one pathways related to B
cells were recognized in the investigated GS collection (KEGG n = 1, CIBERSORT
n = 2, LI/DC n = 18). Those pathways were set as a reference and based on their
gene signature the B cell subtype detection was evaluated. To assess the performance
of enrichment algorithms, sensitivity, specificity and balanced accuracy were calculated
for each enrichment method and B cell type gene set. Next, prioritization was calculated
as follows: (i) for each cell and each analyzed GS, the GSA results were ranked from
the most to the least significant, (ii) next ranks were divided by the total number of
analyzed GS (n = 103), (iii) mean across all B cells was calculated for each GS which
represents surrogate prioritization, (iv) finally, surrogate prioritization was extracted
for reference pathways. The above prioritization metric was presented in [25] and it is
adjusted for scRNA-seq data. As the next part of the algorithm’s evaluation, Spearman
rank correlation was calculated between evaluation metrics and GS size (number of
analyzed genes of PBMC dataset in the reference gene set). Finally, the level of false
positives (FP) in the randomly generated pathwaywas investigated as for those GSs none
of the cells should be detected. All calculations were performed using Python version
3.8.12 and visualizations were prepared within R programming language version 4.1.1
ggplot2 package.

3 Results

Atfirst, the counts frompre-processedPBMCdatasetwere log2 normalized and the tSNE
dimensionality reduction technique [25]was used to explore cell types grouping. In Fig. 1
the first and second tSNE instances are presented for all 3,222 cells and colors represent
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each cell type. As can be observed, the majority of PBMC cell types are well grouped.
Only Cytotoxic T, CD4 + T and Natural killer cells are aggregated together creating
a large group of cells with the internal division to each cell type. B cells are notably
separated from other groups which indicates that they have a unique gene expression
pattern. Moreover, in gene set collection the largest group of pathways characterizes
this cell type (21 gene sets). Thus, in further evaluation, only B cell type enrichment for
reference 21 gene sets is investigated.

Fig. 1. The tSNE projection of investigated scRNA-Seq dataset. Colors represent cell types, while
the dashed line distinguishes B cell cluster.

Next, for each of the reference 21 gene sets, detection of B cells was examined by
calculating sensitivity, specificity, balanced accuracy, and prioritization for 5 different
tested enrichment approaches (Fig. 2). AUCell obtained the best performance in terms of
sensitivity, balanced accuracy, and prioritization (Fig. 2). However, CERNO and z-score
with and without BH correction were characterized by better specificity. This indicated
that both CERNO and z-score tend to not detect all cells in the reference cluster, but the
classification of other cell types as B cell is limited. This trait is stronger when multiple

Fig. 2. Evaluationmetrics results for tested algorithms based on detection of B cell in 21 reference
gene sets. For sensitivity, specificity and balanced accuracy the higher value the better. The lower
value of prioritization the better algorithm performance.
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testing correction is applied (BH). In addition, CERNO has very good prioritization
comparable to AUCell, which indicates that despite lower sensitivity, the GSs of interest
are at the top of the list. Out of microarray-designed approaches, CERNO has the best
performance across all four tested metrics.

In the next step, the correlation of evaluation metrics with GS size was investigated
and the results are presented in Fig. 3 panel A). Specificity for AUCell is strongly pos-
itively correlated with GS size which is further reflected in medium effect on balanced
accuracy. Moreover, the medium effect is observed for prioritization and small for sen-
sitivity. CERNO approaches show a large positive correlation in terms of sensitivity
and balanced accuracy in parallel with a large negative correlation to prioritization (the
larger GS size the better prioritization). Moreover, when BH correction is applied the
specificity shows a medium negative correlation. However, this is the effect of a small
variation in specificity and the estimated correlation may be inaccurate. Similar observa-
tions can be made for the z-score method with lower effects. In Fig. 3 panel B) the level
of false positives in randomly generated GSs of different sizes is presented. AUCell has
a high level of false positives on small GSs (<80 genes). This observation is concordant
with with Fig. 3 panel A) where together with the increase of GS size the specificity
increases as an effect of false positive decreasing. In terms of CERNO and z-score, the
robustness to GS size is observed (stronger for BH correction), which confirms the high
specificity of those methods, also on randomly generated data.

Fig. 3. Algorithm performance in terms of gene set size. Panel A) shows correlation between
evaluation metrics and gene set size of reference gene sets. Panel B) presents percentage of false
positives regardless of simulated gene set size.

Further, evaluationmetricswere checked for each referenceGS separately and results
are presented in Fig. 4. GSs from CIBERSORT (B CELL NAÏVE and B CELL MEM-
ORY) were well classified by AUCell, CERNO (with and without BH correction) and
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z-score, while for z-score with BH correction the sensitivity decreases compared to other
methods. Taking into consideration all reference GSs, AUCell method has the best per-
formance and only a few gene sets show medium performance. From methods designed
for the microarrays analysis, CERNO without BH correction gives the best results and
over half of its results have similar performance levels to AUCell. Out of reference GSs,
surprisingly, the pathway from KEGG collection gives the poorest results in terms of
sensitivity. However, the worst outcomes across all tested approaches were obtained for
a pathway from Li et al. [21] collection: T & B cell development, activation.

Fig. 4. Heatmap of evaluation metrics for each B cell gene set separately. Green color represents
good performance while red represents poor performance. (Color figure online)

For the reference GSs with best (B CELLMEMORY) and the worst performance (Li
et al. T & B cell development, activation) across all tested methods, the tSNE projection
withmarked recognized cells as enrichedwas prepared (Fig. 5). As can be found in Fig. 5
panel A), in B CELL MEMORY GS the best true positive rate on B cell recognition
is observed for CERNO approach, while the best false positive control is obtained for
z-score with BH correction. In terms of Li et al. T & B cell development, activation GS
(Fig. 5 panel B) approaches designed for microarrays almost do not detect any cell as
significantly enriched. AUCell pointed too many cells as significantly enriched in the
B cell cluster (FP = 1,751 cells). However, the pathway itself contains the signature of
both B and T cells, and the cells in the right bottom cluster represent mainly CD4+ T
cell and Cytotoxic T cell. Thus, for design evaluation process judgment of performance
as poor for AUCell method for Li et al. T & B cell development GS is ambiguous.

Finally, the Jaccard indexwas calculated to reveal coverage of geneswithin reference
gene sets (Fig. 6). The investigatedGSs are characterized bymainly very low coverage of
gene signature. Thus, the presented reference GS collection does not contain redundant
information and mainly each GS checks different characteristics of B cell activity. As
can be expected from performance analysis (Fig. 4), B CELL MEMORY and B CELL
NAÏVE (Cluster 1) GSs are very similar and mostly correctly recognized within the B
cell subtype by all algorithms. The next groups of pathways are: Li et al. enrichment in B
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Fig. 5. The tSNEprojectionwithmarked detected cells for two different gene sets. PanelA) shows
results for B CELL MEMORY gene set across each tested algorithm. Panel B) shows results for
T & B cell development, activation gene set from Li et al. collection across each tested algorithm.

Fig. 6. Jaccard index value for the investigation of reference gene sets coverage. Clusters were
established by average hierarchical clustering on Euclidian distance.
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cells (I), (II) and (VI) and DC et al. B cells. Those GSs have medium similarity between
each other and very small coverage with GSs from cluster 1. However, those GSs were
correctly recognized by AUCell and CERNO. Similar observations can be noted for GSs
in clusters 4 and 5. GSs in cluster 4 are characterized by very low signature coverage
and the worst performance of algorithms in terms of B cell subtype detection.

4 Conclusions

The general comparison of three different enrichment algorithms which can estimate
gene set significance of individual cells in scRNA-Seq data was presented. Each algo-
rithm works with different assumptions but all of them are robust to data normalization
of scRNA-Seq data and can work on both, raw and normalized counts.

Out of testedmethods, only theAUCell was originally designed for scRNA-Seq data.
The AUCell was characterized by the best sensitivity, prioritization, and balanced accu-
racy but the worst specificity. Moreover, the specificity is strongly positively correlated
with GS size with only a small correlation to sensitivity. Thus, this method is reliable for
larger size gene sets. This feature was also observed on false positive levels calculated on
randomly generated gene sets. Two other algorithms (CERNO and z-score) were origi-
nally designed formicroarray data analysis. In this group, better outcomes were obtained
forCERNOalgorithmwithout correction formultiple testing. CERNOsurpassed z-score
in all three metrics but the correlation of sensitivity with GS size was large and reflected
in balanced accuracy. Moreover, better prioritization was obtained for larger GSs. Both
CERNO and z-score have a very low false positive level on the randomly generated gene
set, regardless of gene set size. Thus, the specificity of both methods seems to be robust
to the size of the investigated pathway. In [16] they showed that Pagoda2 (designed for
scRNA-Seq data) method is the best for GSA when only PAS matrix is in consideration.
Moreover, PLAGE method (designed for microarrays) has also good performance. In
the presented study, results indicated that methods originally designed for microarrays
need adjustment before their usage in scRNA-Seq, when the significance of individual
cell enrichment is of scientific interest. Both AUCell and CERNO at the beginning rank
genes in each cell, but further AUCell takes only the top 5%. Thus, such modification of
CERNO should be applied in terms of improving the results, especially sensitivity. This
will also allow for faster execution on big datasets, and simultaneously should reduce
the effect of the noise at the bottom of the gene ranking caused by zero counts. However,
CERNO and z-score are very fast algorithms (mean calculation time in minutes: 0.08
with 95% CI [0.07 – 0.09] and 0.086 with 95% CI [0.084 – 0.088] respectively). The
AUCell mean execution time is 2.5 min (95% CI [2.4 – 2.6]) where over 2 min are spent
on the threshold estimation. Thus, a faster solution for threshold identification is needed
for AUCell or an improvement in the original implementation. Finally, in the presented
work significance of each cell was established, alongside each of the tested algorithms
allowing presentation of results as a continuous heatmap (PAS matrix) like e.g. [14].

Lastly, there is still a lack of “gold standard” datasets but more importantly “gold
standard” gene set collections which are assigned to cell type labels. Out of 21 reference
pathways, those from CIBERSORT have the strongest signature of PBMC cell types,
but some gene sets can be assigned to multiple cell types which must be incorporated
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in future evaluation designs. By investigation of signature coverage, we propose to use
only GSs from clusters 1, 2, 3 and 5 as the reference for B cell detection. Nevertheless,
performance designs like those in GSA on microarrays (e.g. [5, 12, 26, 27]) are needed
in scRNA-Seq data analysis.
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Abstract. Thanks to their diversity, non-model bacteria represent an inex-
haustible resource for microbial biotechnology. Their utilization is only limited
by our lack of knowledge regarding the regulation of processes they are capable
to perform. The problem lies in non-coding regulators, for example small RNAs,
that are not so widely studied as coding genes. One possibility to overcome this
hurdle is to use standard RNA-Seq data, gathered primarily to study gene expres-
sion, for the prediction of non-coding elements. Although computational tools to
perform this task already exist, they require the utilization of stranded RNA-Seq
data that must not be available for non-model organisms. Here, we showed that
trans-encoded small RNAs can be predicted from non-stranded data with com-
parable sensitivity to stranded data. We used two RNA-Seq datasets of non-type
strain Clostridium beijerinckii NRRL B-598, which is a promising hydrogen and
butanol producer, and obtained comparable results for stranded and non-stranded
datasets. Nevertheless, the non-stranded approach suffered from lower precision.
Thus, the results must be interpreted with caution. In general, more benchmarking
for tools performing direct prediction of small RNAs from standard RNA-Seq data
is needed so these techniques could be adopted for automatic detection.

Keywords: Small non-coding RNA · Clostridium beijerinckii NRRL B-598 ·
RNA-Seq · Genome annotation

1 Introduction

It has been almost half a century since small non-coding RNAs (sRNAs)were discovered
in bacteria [1]. During years, sRNAs were shown to play important regulatory roles in
diverse cellular processes by participating in post-transcriptional regulation of gene
expression [2]. This is the reason why sRNAs are drawing more attention than ever
before. While the first experiments were done with a model bacterium, Escherichia
coli, primarily its non-pathogenic strain K-12, later studies showed the role of sRNA
in the virulence of pathogenic bacteria [3–5]. Besides their role in medicine, sRNAs
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can be used in general biotechnologies for their involvement in other processes, for
example, degradation of toxic compounds [6]. Finally, the latest research shows that the
engineering of a novel sRNA can improve bacterial phenotype, for example, tolerance
to acids [7], which could be utilized in various fermentation processes for the production
of bio-based chemicals.

As the formerwidely used title small non-codingRNAsuggests, it is a smallmolecule
that is not translated into a protein. Although this is true in a majority of cases, it has
been proved that some sRNAs can encode small proteins [8]. Therefore, it is common
that these short regulatory RNAs are simply referred to as small RNA. Its length can
vary but it typically spans within the interval 40–500 nucleotides [9]. Most commonly,
sRNAs can be divided according to the locations of sRNA genes and their targets into
two groups, cis-encoded and trans-encoded sRNAs [8]. A cis-encoded sRNA overlaps
with a regulated gene but is coded by the antisense strand and during its regulation binds
to the target mRNA by perfect base pairing. Binding can occur at any location depending
on the location of sRNA expression [10]. There are three mechanisms that cis-encoded
sRNAs use for regulation. They can act as transcription terminators, potential inhibitors
of translation initiation, or modulators of mRNA degradation. A trans-encoded sRNA
interacts with its target mRNA by imperfect base pairing because such sRNA is coded
by an intergenic region (ITR) and its coding sequence does not overlap with a sequence
of the target gene [11]. This also means that trans-encoded sRNAs can be coded by the
same strand as target genes and they have a wider range of regulatory mechanisms. They
can act as repressors of expression but also as activators. They can increase as well as
block mRNA degradation.

Some of the early experiments showed that sRNA genes identified in E. coli were
found in Salmonella enterica and vice versa [2]. This suggested their conservation across
the bacterial domain and made them ideal targets for computational prediction. A wide
range of tools has been proposed. In general, they can be divided into two groups: com-
parative genomics-based and machine learning-based techniques [8]. While the former
techniques rely on sequence alignment and cluster analysis with phylogenetic profiling,
the latter are taking advantage of widely used machine learning methods such as neural
networks, support vector machines, and genetic algorithms. Nevertheless, these tech-
niques can only predict a location of sRNA but cannot predict its target site, which can
be cumbersome, primarily for trans-encoded sRNAs that pair imperfectly to target sites.
Besides computational solution lying in in silico prediction of sRNA-target mRNA inter-
action, e.g., sRNATarget [12], IntaRNA [13], or RNApredator [14], there is a plethora
of techniques based on RNA-Seq to reveal these interactions experimentally [15]. The
main disadvantage of these specialized techniques such asGRIL-Seq [16], RIP-Seq [17],
RIL-Seq [18], and many others, is their difficult implementation in non-model bacteria
that limits their utilization to model organisms, mainly E. coli [15]. On the other hand,
even standard RNA-Seq that became a commonly used technique in bacterial research,
can be used to discover sRNA genes.

Despite existing algorithms as well as experimental techniques, identification of
sRNA genes is still not a common procedure during annotation of non-model bacterial
genomes. While there is currently more than a million bacterial genome assemblies
in the GenBank database (27th January 2022), the number of annotated sRNAs for
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particular genomes is very limited, usually in units of genes. The most commonly used
tool for genome annotation, the PGAP pipeline [19], uses homology-based annotation
by scanning the Rfam database [20] with infernal’s cmsearch [21]. This suggests that
computational prediction of sRNAs in non-model bacteria might be limited by low
sequence similarity to model organisms whose sRNAs were discovered experimentally.
This opens a door to the utilization of standardRNA-Seq datawhich is available formany
non-model bacteria. Nevertheless, a systematic pipeline for such predictions is missing
and various authors use different techniques. Zhu et al. [22] predicted approximately
ten sRNAs in Bifidobacterium animalis by combining prediction using TargetRNA2
[23] with RNA-Seq data used to calculate RPKM (Reads per kilobase per million)
values summarizing expression of identified sRNAs. Liu et al. [24] found 263 sRNAs
candidates inMycobacterium neoaurum by combiningRPKMand IntaRNApredictions.
On the contrary, Wang et al. [25] used RNA-Seq data itself for searching sRNAs in
Mycobacterium tuberculosis by examining coverage of unannotated regions. Thanks
to the utilization of strand-specific RNA-Seq, 192 sRNAs candidates were found in
intergenic regions and additional 664 candidates coded by antisense strand in regions
overlapping to target genes. Although their study is presented as an automated approach,
it brings no computational tool that could be used for another organism.

It is the unavailability of computational tools that prevents the wider utilization of
RNA-Seq data in the prediction of sRNA genes in non-model bacteria. There are only a
few tools that suffer from various drawbacks. For example, APERO [26] needs paired-
end reads which are usually not available for bacterial RNA-Seq data, Rockhopper [27]
is very hard to be implemented to other pipelines due to its graphical user interface
nature and utilization of obsolete formats such as protein table for genome annotation,
and baerhunter [28] is no longer working with the current version of R/Bioconductor.
Moreover, benchmarking for different tools is missing and a comparison of prediction
possibilities regarding input data was never performed before. In this paper, we got
inspired by current tools and performed sRNAs prediction in the non-model bacterium
Clostridium beijerinckii NRRL B-598 [29] using two different RNA-Seq datasets taken
under the same conditions.We showed that the current approach in sRNAs prediction can
be, with some limitations, applied to both, stranded as well as non-stranded RNA-Seq
data and that more benchmarking is needed to establish functional pipelines for sRNAs
prediction using standard RNA-Seq data.

2 Materials and Methods

2.1 Genome and Annotation

To examine sRNAs prediction in a non-model bacterium, we selected C. beijerinckii
NRRL B-598, a non-type strain, which is a promising butanol and hydrogen producer.
Most importantly, it is a non-type strain with the highest number of RNA-Seq-based
transcriptomic studies among solventogenic clostridia [30]. In this study, we used its
third complete genome assembly, available at DDBJ/EMBL/GenBank under acces-
sion No. CP011966.3, which was constructed using a combination of Roche 454 GS
Junior, PacBio RSII, and Illumina NextSeq500 reads [31]. The genome annotation was
performed with PGAP v4.6 [19] and genome features are summarized in Table 1.
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Table 1. Genome features of Clostridium beijerinckii NRRL B-598.

Feature Chromosome

Length (bp) 6,186,993

GC content (%) 29.8

Protein coding genes 5,128

Pseudogenes 166

rRNAs (5S,16S, 23S) 17, 16, 16

tRNAs 94

Non-coding RNAs 5

Riboswitches 31

2.2 Transcriptomic Data

RNA-Seq data used in this study comes from a publicly available study performing tran-
scriptional profiling of the butanol fermentation using glucose as a substrate [32]. Two
particular samples, A and B, from the exponential growth phase, after 3.5 h from the start
of fermentation, were selected. These samples are available from the NCBI Sequence
Read Archive (SRA) under the project accession number PRJNA229510. Cell samples
for isolation of total RNA were collected from 3 ml of culture broth (OD600 0.9–1.0)
by centrifugation at 10000 rpm for two minutes, washed with RNase free water and cell
pellets were immediately stored at − 70 °C. RNA from the cell pellet was isolated using
High Pure RNA Isolation Kit (Roche). Isolated total RNA was stored frozen at − 70 °C.
The total RNA concentration was determined onDS-11 FX+ Spectrophotometer (DeN-
ovix). Quality and integrity of the samples were assessed using the Agilent RNA 6000
Nano Kit (Agilent) with the Agilent 2100 Bioanalyzer (Agilent). RNA integrity number
was measured using 2100 Bioanalyzer Expert software. Frozen total RNA samples were
thawed on ice and an aliquot of each sample containing 10 µg of RNA was taken for
16S and 23S ribosomal RNAs removal using The MICROBExpress™ Bacterial mRNA
Enrichment Kit (Ambion). Efficiency of ribosomal RNA depletion and concentration of
RNA samples were checked on the Agilent 2100 Bioanalyzer (Agilent) with the Agilent
RNA 6000 Nano Kit (Agilent).

For sample A, library construction and sequencing was performed by BGI Europe
A/S (Copenhagen, Denmark). During the library preparation, cDNA was synthesized
by using a random hexamer-primer and the sample was sequenced on Illumina HiSeq
4000, single-end, 50 bp. This means that resulting reads are non-stranded, i.e., it is not
possible to determine a strand of DNA that codes genes producing sequence transcript
as reads mapping to analyzed loci have both orientations.

For sample B, library construction and sequencing was performed by CEITEC
Genomics core facility (Brno, Czechia). NEBNext Ultra II stranded kit was used for
library preparation and the sample was sequenced on Illumina NextSeq500, single-end,
75 bp. This resulted in reads that are reversely stranded, i.e., the reads have the opposite
orientation to the locus producing sequenced transcripts.
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2.3 Data Preprocessing

Adapter and quality trimming was performed using Trimmomatic v0.36 [33]. Two dif-
ferent settings were used for comparison. In the first settings, parameters LEADING and
TRAILING specifying minimum qualities (PHRED score) to keep a base, were both set
to three. The length of the SLIDINGWINDOW parameter was set to four and required
average quality of 15. Finally, only reads reaching the length of 36 bases were kept by
setting up a parameter MINLEN. In the second settings, the parameters were stricter.
Minimum qualities were both set to 10 and a sliding window of the length four required
at least a quality of 25. On the other hand, reads of length 20 nucleotides and more were
preserved.

Although laboratory ribodepletion was performed prior to sequencing, the step
of computational rRNA filtering was done for comparison. This step was done with
SortMeRNA v2.1 [34] using the SILVA database [35] of known bacterial 16S and
23S rRNA genes. Finally, the mapping to the reference genome was performed with
STAR v2.5.4b [36]. Reads mapping to more than three loci were filtered out by setting
up a parameter outFilterMultimapNmax.

Quality assessment after particular steps was performed using FastQC in combina-
tion with MultiQC [37] to summarize the reports. The resulting SAM (Sequence Read
Alignment/Map) files were indexed and transformed into more compact BAM (Binary
Read Alignment/Map) format using SAMtools v1.7 [38].

2.4 sRNAs Prediction

The prediction of sRNA loci was performed in R v4.1.2 and Bioconductor v3.14. The
whole pipeline was inspired by baerhunter [28] that uses thresholding of coverage.
Baerhunter itself cannot be used due to erroneous functions for counting sRNAs and
untranslated regions (UTRs). Nevertheless, the pipeline was reproduced by rewriting
these functions to be compatible with the current Biocondutor. Although baerhunter
requires stranded RNA-Seq data, the whole pipeline can be reproduced by similar
custom-made code that works alsowith non-stranded data. Themain steps of the pipeline
are summarized in Fig. 1.

The main idea of thresholding coverage requires coverage to be counted across the
whole reference sequence in the first step. This can be achieved using samtools depth or
by loading BAM files into R/Bioconductor and calculating coverage with suitable func-
tions, for example “coverage” from the GenomicAlignments [39] package. In the case of
non-stranded data, the coverage is calculated for the chromosome at once. However, for
stranded data, coverages of particular strands of DNA have to be calculated separately.
Before thresholding is performed, only ITRs are selected. This again requires selecting
these regions separately for particular strands in the case of stranded RNA-Seq.

Selecting putative sRNAs inspired by baerhunter requires three input parameters.
The first parameter “low coverage cutoff” is used to select potential sRNA loci. Once
the coverage exceeds the threshold, the start of a potential sRNA is marked. The region
is being continually expanded until coverage falls under the threshold again. Other
parameters are used for additional filtering. The parameter “high coverage cutoff” sets
another threshold for coverage. Only previously selected regions in which at least one



50 K. Sedlar and R. Zimmer

base is covered bymore reads than the thresholds are preserved. The last parameter “min
sRNA length” simply filters out regions that are shorter than the selected length.

Fig. 1. A schema of coverage-based identification of sRNAs. Coverage of ITRs in examined.
Here, only a sRNA_3 candidate is returned as a putative sRNA as it meets high coverage and min
sRNA length cutoff value criteria.

The thresholds used in this study were, 10 for the low coverage cutoff, 50 for the
high coverage cutoff, and 40 for the min sRNA length. The values were set empirically
based on benchmarking study of baerhunter [28].
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3 Results and Discussion

3.1 Data Preprocessing

Sample A contained 21 million and sample B had 53 million raw sequences. The initial
quality assessment showed high GC content suggesting remaining rRNA contamination.
The resulting numbers of reads after filtering and mapping steps are summarized in
Table 2. Particular parameters settings for quality trimming can be found in materials
and methods.

Table 2. Results of data preprocessing

Sample Trimming
settings

rRNA
removal

No. of reads in
a sample
(million)

No. of
mapped
reads
(million)

A1 1 No 21.0 11.9

A2 2 No 20.6 11.7

A1r 1 Yes 12.3 11.8

A2r 2 Yes 12.2 11.6

B1 1 No 52.5 15.3

B2 2 No 48.9 14.3

B1r 1 Yes 15.2 14.6

B2r 2 Yes 15.7 13.7

The results showed very high, up to 73%, contamination by rRNA. Although rRNA
is filtered during mapping as multi-mapped reads, numbers of mapped reads for samples
with and without computational ribodepletion are different, therefore, this step may
affect the final identification of sRNA genes.

3.2 sRNAs Prediction in Stranded Data

Before comparison of stranded and non-stranded data, we performed prediction of
sRNAs by the same procedure that is used in baerhunter to identify putative sRNA
genes as they have never been reported in C. beijerinckii NRRL B-598 genome before.
The sensitivity of baerhunter was tested against more complex tools, particularly Rock-
hopper, APERO, and ANNOgesic, using simulated as well as real datasets [28]. Thus,
we used its predictions, summarized in Table 3, to estimate sRNAs counts.
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Table 3. Numbers of sRNAs predicted by baerhunter

Sample No. of sRNA genes

trans-encoded cis-encoded Total number

B1 121 115 236

B2 115 99 214

B1r 121 101 222

B2r 115 87 202

Although baerhunter was benchmarked in comparison to other tools, our result
showed that its prediction is influenced by data preprocessing as the total number of
predicted sRNAs ranged from 202 to 236. While the detection of cis-encoded sRNAs
was influenced by quality trimming and rRNA removal, only quality trimming affected
the identification of trans-encoded elements. The predicted trans-encoded sRNAs for
B1 and B1r and for B2 and B2r were the same. More benchmarking would be needed to
reveal the origin of these differences. Nevertheless, it is evident that direct prediction of
sRNAs from RNA-Seq data is affected by computational data preprocessing and should
be investigated in detail to ensure reliable prediction of non-coding genomic elements
in bacteria.

3.3 Comparison of Stranded and Non-stranded Data

Because non-stranded RNA-Seq does not preserve information about the orientation of
genomic elements producing sequenced transcripts, it cannot be used for the identifica-
tion of elements that overlap. Thus, only trans-encoded sRNAs can be predicted using
non-stranded data. Since the pipeline for non-stranded data is a little bit different (see
Fig. 1), we recalculated the results for sample B using the pipeline for non-stranded data.
The results are summarized in Table 4.

Table 4. Numbers of sRNAs predicted by approach for non-stranded RNA-Seq

Sample A B A ∩ B

X1 76 109 32

X2 75 108 30

X1r 76 109 32

X2r 75 108 30

Computational ribodepletion again did not affect the results. The sensitivity of detec-
tion by non-stranded approach was a little bit lower as the numbers of predicted sRNAs
in B samples was slightly lower. The detection was not completely the same but very
similar when only three sRNAs identified in the non-stranded approach were different
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from those detected by the stranded approach in samples B1/B1r and six in samples
B2/B2r. If baerhunter predictions of trans-encoded sRNA were considered as a refer-
ence, the sensitivity (or recall) and precision of the non-stranded approach could have
been calculated, see Table 5.

Table 5. Precision and recall of approach for non-stranded RNA-Seq

Sample A B

Precision Recall Precision Recall

X1/X1r 44.7% 28.1% 97.2% 87.6%

X2/X2r 42.7% 27.8% 94.4% 88.7%

Unfortunately, the prediction using non-stranded data from sample A was consid-
erably worse. Not only was the total number of detected sRNAs lower, more than half
of predicted loci did not match those predicted using data from sample B. Such a dif-
ference between both samples is surprising. Direct detection of sRNAs from RNA-Seq
data can only capture those loci that are currently being transcribed [28]. Nevertheless,
both samples, A and B, come from the biological replicates taken under the same con-
ditions, and the data were preprocessed in the same manner. Thus, the prediction should
be very similar. On the other hand, there is plenty of other parameters that could be
responsible for the difference: sequencing depth, preparation of library, or platform used
for sequencing, etc.

The only parameter whose influence can be examined computationally is the
sequencing depth. Considering the number of mapped reads and their length, sample
A contains only half of the sequenced bases in comparison to B. Therefore, we set the
high coverage cutoff parameter to 25 for the following detection. This resulted in 180
identified sRNAs for both quality trimming settings. The number of sRNAs that were
previously detected by baerhunter was considerably higher, 113 for A1/A1r and 114 for
A2/A2r. This means that the resulting recall, 93.4% for A1/A1r and 99.1% for A2/A2r,
was even higher than recall for B samples processed by the non-stranded approach.
The improvement of precision was lower, resulting in 62.8% for A1/A1r and 63.3% for
A2/A2r.

The results showed that non-stranded RNA-Seq can be used for the prediction of
trans-encoded sRNAswith very high sensitivity, however, the results must be interpreted
carefully due to lower precision. Detection by direct processing of RNA-Seq is also
heavily influenced by the sequencing depth and detection thresholds must be adjusted
according to it. Moreover, the results suggested that thresholds for achieving the same
sensitivity in stranded and non-stranded data might be different even if the sequencing
depth correction is performed.

4 Conclusions

Prediction of small RNAs in bacterial genomes can be performed by several computa-
tional as well as laboratory techniques. Direct prediction from standard RNA-Seq data
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seems to be advantageous.Unlike fully computational approaches, it brings experimental
evidence while recalculating data that are easily obtainable even for non-model bacterial
genomes for the simplicity of technique that is widely used to measure expression on
a genome-wide scale. Unfortunately, computational tools to perform such predictions
are not widely adopted. Although current tools require the utilization of stranded RNA-
Seq, we demonstrated that sRNAs can also be identified using non-stranded RNA-Seq
with comparable sensitivity to the stranded approach. Nevertheless, only trans-encoded
sRNAs can be identified. Moreover, we demonstrated that the prediction from non-
stranded as well as stranded RNA-Seq is highly influenced by sequencing depth. Since
the results depend on a threshold that has to be set up manually in current tools, more
benchmarking is needed to ensure reliable and fully automatic prediction of small RNAs
in bacterial genomes.
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Abstract. The bulk RNA-seq technology allows researchers to find differentially
expressed genes or alternative splicing variants.Multiplemethods for investigating
these problems have been developed so far, however their performance can only
be reliably evaluated on synthetic data or by performing expensive spike-in exper-
iments. Because of the need for such evaluations, various methods for generating
synthetic bulk RNA-seq data have been developed. Those methods deploy para-
metric, semiparametric, or nonparametric approaches to generate datasets based
on different input data or parameters. Currently, there is no complete and system-
atic approach for evaluating different characteristics and performance metrics of
such data-generation methods, especially in terms of “closeness” to the original
data. In this work, we present an initial framework for comparing different aspects
of the data generated by several of the currently available algorithms for synthetic
bulk RNA-seq data generation. We demonstrate that there are noticeable differ-
ences between those data generators, even in cases when they use the same input
data set. We also propose several metrics that could be used as components of a
systematic approach for comparative evaluation of algorithms for synthetic bulk
RNA-seq data generation.

Keywords: RNA-seq · Synthetic data · Comparison

1 Introduction

The development of RNA sequencing (RNA-seq) has brought tremendous insight into
the dynamics of the transcriptome. Bulk RNA-seq has often outperformed microarrays
with its higher signal-to-noise ratio, larger dynamic range of detection, and the ability to
uncover andmeasure a priori unknown genes [1, 2]. It has become a standard technology
to detect how gene expression is altered by various experimental conditions. The recent
developments in single-cell RNA-seq (scRNA-seq) technologies provide the researchers
with the opportunity to explore the transcriptome variation at the level of individual cells
[3].As it is no longer the experiment assumption that tissues are homogenous, researchers
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are presented with new opportunities to characterize the cell-to-cell expression variabil-
ity. However, bulk RNA-seq data is still widely used and is relatively cheaper to obtain
compared to the scRNA-seq data [4]. Moreover, it is possible to estimate cell-type pro-
portions (termed decomposition) from bulk RNA-seq data which allows to identify cell
population-level associations [5]. The relevance of bulk RNA-seq is also supported by
large public databases (dbGAP, GEO) and its common use in translational research [6].
Bulk RNA-seq is still widely used and therefore in this study we cover several methods
for synthetically generating this type of data.

The standard bulk RNA-seq experiment consists of two parts - a wet lab and a com-
putational one. The laboratory part includes RNA isolation, messenger RNA (mRNA)
selection, ribosomal RNA depletion, complementary DNA (cDNA synthesis), fragmen-
tation, adaptor-ligation to one or both ends and sequencing to a read depth of 5–200
million reads per sample on a high-throughput machine. The computational part incor-
porates aligning the sequencing reads to a reference transcriptome and/or in some cases
de novo assembly [7], quantification of the gene expression by counting the reads that
overlap transcripts and filtering and normalization between samples and batches. The
most common data analysis procedure for bulk RNA-seq is a statistical estimation of
the changes in the expression levels of individual genes between sample groups (e.g.,
tumor versus normal). This is also known as differential expression (DE) analysis and
remains the primary and most used application of RNA-seq data.

The increase of the number of methods for analysis of bulk and single-cell RNA-seq
data requires tests to assess whether the statistical methodology tools are performing
correctly. The used metrics are often false discovery rate and sensitivity [8]. Accuracy
tests should not be performed on real datasets due to lack of knowledge of true gene
expression levels and expression differences betweenpopulations – one canonly estimate
these parameters. Such accuracy evaluation usually requires costly spike-in experiments.
A cost-attractive and common alternative involves simulated datawith known generation
parameters and a built-in truth, closely recapitulating the characteristics of real data.
Various synthetic data generators have been proposed to help with experimental design
since the inception of theRNA-seq technology. Someof themmimic alternatively spliced
transcript reads and other RNA editing events, [9, 10]. The authors discuss several
methods that use FASTA, SAM or BED files as input and aim to evaluate RNA-seq
alignment algorithms, mimic the major RNA-seq steps using empirical attributes for
introducing approximate experimental biases of the specific sequencing platforms, or
estimate transcript expression with or without a reference genome using a de novo
transcriptome assembler. Such types of methods are not the focus of this review.

Because gene expression in RNA-seq is measured with nonnegative counts and the
specific operating characteristics of the sequencing machines, the Poisson distribution
was first proposed to model RNA-seq data, e.g. in [11]. However, this model is not
widely utilized currently, due to the phenomenon of overdispersion observed in real
data, where the biological variation of the read counts among biological replicates could
bemuch larger than themeanwhereas in the case of Poisson distribution themean and the
variance are identical. To address this issue, RNA-seq data are sometimes modelled with
generalized Poisson distributions - the variance is expressed as a non-constant function
of the mean that is always larger than it. Subsequently, the negative binomial distribution
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model gained popularity because it captures most of the data overdispersion with just
two parameters [12]. A basic implementation of the negative binomial distribution is the
rnbinom function from the built-in stats R package; one could also use theCountDataSet
function from the PoiClaClu R package, having an option to generate 2-class data.
Alternative solutions have been proposed in order to better model the global underlying
biological variability, including a Poisson-Tweedie distribution [13] and a beta-binomial
generalized linear model [14], which have certain limitations, as described in [13].

Given the variety of available software packages that aim to simulate real bulk RNA-
seq data, it is important to systematically compare their performance. Such a comparison
could guide the research community in selecting the software that is appropriate to gen-
erate synthetic data sets for the evaluation of a given statistical analysis method. In this
review, we examine a few relatively recent applications for generating synthetic RNA-
seq data that take as input either a combination of parameters, a count data set or both.
They have been developed around three major goals, the first two being related: 1) DE
studies - compcodeR [8], SimSeq [15], powsimR [16], Splatter [17], seqgendiff [9]; 2)
Classification studies - NGSSPPG, Splatter, 3) Correlation studies - NGSSPPG, SPsim-
Seq [18]. The synthetic RNA-seq data generators can be further divided into parametric,
semiparametric, and nonparametric. The evolution of the nonparametric generators has
been presented in [9]. It should be noted that Splat, a simulation method provided in the
R package Splatter, is aimed specifically at the scRNA-seq data generation. However,
it has been also used to model bulk RNA-seq data by disabling its feature for adding
dropouts [18]. While there are other recently developed software packages that generate
syntheticRNA-seq data and are either based on emulating transcriptional gene regulatory
networks [19] or use sparsity constraints to simulate the 16S rDNA-seq metagenomic
data processing pipelines [20] we do not consider them in this manuscript. The soft-
ware packages developed for simulating RNA-seq data and discussed in this review are
summarized in Table 1.

Table 1. List of generators of synthetic RNA-seq data considered in this article.

Name Year Input Language Modelling

NGSSPPG [21, 22] 2013 Parameters C++ Parametric

compcodeR [8] 2014 Parameters, can be estimated
from read count matrix

R Parametric

SimSeq [12] 2015 Read count matrix Java, C, R Nonparametric

powsimR [16] 2017 Parameters, read count matrix R Parametric

Splat [17] 2017 Parameters, can be estimated
from read count matrix

R Parametric

seqgendiff [9] 2020 Read count matrix R Nonparametric

SPsimSeq[18] 2020 Read count matrix R Semi-parametric
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2 RNA-Seq Data Generators

In this study, we consider several parametric, semiparametric, and nonparametric
methods for generating synthetic RNA-seq data sets.

The R package compcodeR [8] was developed for benchmarking methods for dif-
ferential expression analysis for RNA-seq data. Counts for each gene can be generated
from theNegativeBinomial or Poissondistribution,withmean anddispersion parameters
estimated either from the Pickrell [23] and Cheung [24] data sets or from user-supplied
RNA-seq data. The approach for generating synthetic data is described in detail in [25].
The user-defined properties of the dataset include the number of genes and samples, the
fraction of differentially expressed genes, their effect size distribution and the inclusion
of outlier counts and filter thresholds. compcodeR provides an interface to several dif-
ferential expression analysis methods and a large number of metrics for comparison of
the DE results, many of which are general and suitable for test analysis results for other
types of data, e.g. microarrays.

SimSeq [12] is a nonparametric algorithm implemented as an R package. It does not
rely on parametric models for RNA-seq read count generation, as such testing strategy
could result, according to the authors, in an overly optimistic view of the performance of
an RNA-seq analysis method. SimSeq generates read counts with a joint distribution that
closely resembles the distribution of a user provided RNA-seq dataset. SimSeq subsam-
ples columns from an RNA-seq dataset and swaps individual read counts within genes
adjusted by a correction factor in order to create differential expression. The algorithm
requires as inputs: an RNA-seq dataset with two independent treatment groups, a vector
of normalization factors with an element for each column of the source data, the number
of equivalently expressed and DE genes in the simulated count matrix. A modification
allows the user to work with source data with a paired treatment design. There is also a
feature allowing for the simulation of three or more independent treatment groups from
a dataset with two treatment groups. SimSeq has the advantage of preserving the source
data’s original complex gene dependence structure, while parametric simulations often
generate data independently for each gene. SimSeq also permits the sampling of extreme
values from the source data.

powsimR [16] can assess power and sample size requirements for detecting differ-
ential expression in single cell and bulk RNA-seq data. The synthetic data generation can
be determined either by user-specified parameters or by real data. The default sampling
distribution in powsimR is the negative binomial with the option to choose the zero-
inflated negative binomial that is useful when simulating scRNA-seq data. The user can
specify the number of genes, the effect sizes, the number of samples per group, their
relative sequencing depth and the number of simulations. The count tables can be used
directly for differential expression analysis with integrated R-packages (bulk and single
cell data: limma, edgeR, DESeq2, ROTS, baySeq, DSS, NOISeq, EBSeq; specifically sin-
gle cell data:MAST, scde, BPSC, scDD, monocle). The package also includes estimation
of statistical power.

The Splat [17] method is part of the Splatter R Bioconductor package that pro-
vides an interface to multiple scRNA-seq data simulation methods. There are several
scRNA-seq data generators available in Splatter, including Splat, which captures high
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expression outlier genes, differing library sizes between cells, trended gene-wise disper-
sion, and zero-inflation, typical for real scRNA-Seq data, using parametric distributions
with hyper-parameters estimated from real data (gamma-Poisson hierarchical model).
The simulation process has two steps: 1) estimation of the simulation parameters from a
real dataset, the result of which is a parameters object unique to each simulation model;
2) using the estimated parameters and/or additional user-defined parameters to generate
synthetic data. A synthetic dataset can be generated by specifying user-defined parame-
ters without using real data. Splat can also be used for generation of bulk RNA-seq data
in [18] by disabling its feature for adding dropouts, specifically designed for scRNA-seq
data simulation. Splatter can produce comparisons with multiple metrics between the
simulations’ output (from different models or generated with different parameters) and
real datasets with estimated parameters.

The seqgendif [9] package extends the two-group model, most common in dif-
ferential expression analysis, to arbitrary design matrices. Such design matrices have
applications in multi-group RNA-seq experiments, and so the ability to simulate arbi-
trary designs provides the flexibility to evaluate statistical methods in more compli-
cated scenarios. To keep the unwanted variation, a prespecified signal is added to real
RNA-seq datasets, in a process called binomial thinning. Counts are heterogeneously
subsampled using the binomial distribution for different individuals to add signal to the
observed counts. This procedure can be applied to both single-cell and bulk RNA-seq.
The package allows for extending data-basedRNA-seq simulation beyond the two-group
(finite-group) model. Seqgendiff can be applied in evaluating confounder adjustment
approaches, as unobserved confounding, batch effects, surrogate variables, unwanted
variation are trending problems for genomics. Other potential applications include eval-
uating the effects of library size heterogeneity on differential expression analyses and
evaluating factor analysis methods.

SPsimSeq [18] is a semi-parametric method for generating bulk and single-cell
RNA-seq data. Designed to simulate transcriptome data with the aim to preserve the
characteristics of real data, it accommodates a wide range of experimental scenarios,
including different sample sizes, biological signals (differential expression) and con-
founding batch effects. SPsimSeq uses the logarithmic counts per millions of reads (log-
CPM) values from a real dataset for semi-parametric estimation of gene-wise distribu-
tions [26] and the between-genes correlation structure [27]. Datasets of different realis-
tically varying library sizes can be sampled while maintaining the correlation structure
between the genes. SPsimSeq simulates differential expression by separately estimating
the distributions of the gene expression from the different populations (e.g. treatment
groups) in the real dataset, and then sampling a new dataset from each group. SPsimSeq
has been demonstrated [18] to simulate data closely resembling the characteristics of
real data in terms of variability, distribution of mean expression levels, fraction of zero
counts (per gene and sample/cells), relationship between mean and variability, relation-
ship between mean expression and fraction of zero counts and the dependence between
genes.
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3 Methodology, Parameter Selection, and Results

The software packages we selected to evaluate and compare implement either paramet-
ric (compcodeR, powsimR, Splat), semiparametric (SPsimSeq), or nonparametric meth-
ods (SimSeq, seqgendiff) for generating synthetic RNA-seq data. They were originally
designed to use real RNA-seq data as input for their respective algorithms. Therefore,
we used the Hunley real RNA-seq data set [28] in our comparative study, Fig. 1. The
cohort producing the samples consists of Alzheimer’s disease patients (219 samples) and
age-matched controls with no neurological disease diagnoses (70 samples). The samples
are subjected to a standard polyA-selected Illumina RNA-Seq analysis and sequenced
on Illumina HiSeq2500. We filtered out counts with median = 0 and used a subset of
100 samples (50 patients and 50 control samples) to have comparable datasets for all
our simulations. Each sample includes 34616 genes. This real data set has two classes
and thus, satisfies the input requirement for several of the data simulation packages we
consider in our study, Fig. 1.

We also used the NGSSPPG package [21, 22] to generate RNA-seq data with a
known covariance structure and used it as input for the comparison evaluation, Fig. 1.
The NGSSPPG data (100 samples, 10000 genes or features) is 2-group (class ratio =
50/50), generated with two parameter combinations, resulting in different variances:
small σ0 = 0.4 (NGSSPPG1) and large σ1 = 0.7 (NGSSPPG2). This synthetic data set
has a clearly defined feature-feature block correlation of 0.4 for five of the features.
The mean number of reads per feature was adjusted to be equal to 300 by an empirical
procedure available in our code (https://github.com/Felitsiya/Comparative-study-of-syn
thetic-bulk-RNA-seq-generators). NGSSPPG package generates data by modelling the
two-step process used in the real data sequencing procedure: 1) mRNA concentrations
are modelled by a multivariate Gaussian model (MVN-GC); 2) NGS-reads obtained
from the libraries produced by the mRNA are modelled by a Poisson process that uses
the MVN-GC data as its input. The user-specified parameters in the package are: the
number of features, the number of samples per group, the number of subgroups in
group 1, the number of global, heterogeneous and non-markers, average expression and
average standard deviation for each group, the number of correlated variables in a block
structure, the strength of block covariance, the sequencing depth, and the noise. The
model also includes a term that represents unknown technical effects associated with an
NGS experiment, which follows aGaussian distributionwith zeromean and amodifiable
variance.

Our simulation protocol consists of the following steps:

(i) We used compcodeR with parameters calculated from the NGSSPPG data or
Huntley data: means of class 1, specific dispersions of class 1 and class 2, as
suggested by the package manual and default parameters, including effect size of
1.5 and default minfact and maxfact to generate individual sequencing depths for
the simulated samples.

(ii) powsimR includes a parameter estimation stepwith recommended settings for bulk
RNA-seq data, a simulation setup step and a simulation step with the differential
testing method from DESeq2. For the simulation we set the values above 10ˆ7 to
10ˆ7 in the Huntley data set, in order to avoid the effect of severe outliers.

https://github.com/Felitsiya/Comparative-study-of-synthetic-bulk-RNA-seq-generators
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(iii) The input of seqgendiff was one of the two classes generated by NGSSPPG or the
control group of the Huntley data set. The signal was added with an exponential
function with rate of 0.5 and added effect size of 1.5.

(iv) Because the SimSeq runs as a one-step process, we used it with its default
parameters.

(v) Because SPsimSeq method is a one-step process, where we set the genewiseCor
parameter to FALSE, thereby not retaining the gene-to-gene correlation structure of
the input data due to computational restrictions and possible unreliable estimation
for that structure, considering the relatively small sample size of our data sets.

(vi) Splat is a simulation algorithm designed for scRNA data simulation with a param-
eter estimation step and a simulation step, where we set the dropout.type parameter
to FALSE, in order for the output data to resemble bulk RNA-seq data, as sug-
gested in [18]. The output data sets have 10000 genes/features in the NGSSPPG
input data sets, 34616 genes/features in the Huntley data set, 50 samples in the
seqgendiff and SimSeq data sets and 100 samples in the rest of the generated data
sets. The 2-group model of the output data is either due to added effect or due to
the nature of the input data.

For the comparisons, we used the read count matrices produced by the respective
software packages to generate quantile-quantile (Q-Q) plots [29] and descriptive statis-
tics with the help of the R-package countsimQC [30], Fig. 1. In addition, the DESeq2 R
package [31] was used to compare the numbers of DE genes, Table 2, in the synthetically
generated data to the numbers of DE genes detected in the input data sets.

Fig. 1. Methodology for comparison. Different colors indicate different types of methods: com-
pcodeR, powsimR and Splat are parametric, SPsimSeq - semiparametric, SimSeq and seqgendiff
are nonparametric.

The Q-Q plots illustrate how similar two distributions are. If two data sets are char-
acterised by similar distributions their quantiles should be close to the diagonal. This
can be observed for all data sets generated with the NGSSPPG1 data set as input and
the NGSSPPG1 data set itself (Fig. 2), except the Splat generated data, which is skewed
right (Fig. 2 C). In this case, where the variation of the input data is relatively small,
the distributions are close for most of their ranges. However, towards the right-hand
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side they do not necessarily match closely. This skewness is even stronger for the larger
variance NGSSPPG2 data set (Figure available at: https://github.com/Felitsiya/Compar
ative-study-of-synthetic-bulk-RNA-seq-generators). The closest distribution pair with
the NGSSPPG1 and NGSSPPG2 data is the one with SimSeq where the regression line
is over the diagonal. In Fig. 3 one can see the Q-Q plots for the simulations based on the
real Huntley data. Note the much larger intrinsic variation (nature of real data and over

Fig. 2. Q-Q plots of five samples generated by the six packages with NGSSPPG1 as input data vs
5 samples of the NGSSPPG1 data set. The samples are from the same class. Each axis represents
the quantiles of the respective distribution. Blue: linear regression line. Red: diagonal line. (Color
figure online)

Fig. 3. Q-Q plots of five samples generated by the six packages with the Huntley data set as input
vs the first 5 samples of the Huntley data set. The samples are from the same class. Each axis
represents the quantiles of the respective distribution. Blue: linear regression line. Red: diagonal
line. (Color figure online)

https://github.com/Felitsiya/Comparative-study-of-synthetic-bulk-RNA-seq-generators
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three times more features than the NGSSPPG case). The plots suggest that the real data
set is best represented and simulated with the compcodeR package.

Fig. 4. Dispersion/BCV plots of the NGSSPPG1 data set and the data sets generated by the six
packages with NGSSPPG1 as input data. Black dots: gene-wise dispersion estimates. Red curve:
fitted mean-dispersion relationship. Blue circles: final dispersion estimates. (Color figure online)

Fig. 5. Dispersion/BCV plots of the Huntley data set and the data sets generated by the six
packages with the Huntley data set as input. Black dots: gene-wise dispersion estimates. Red
curve: fitted mean-dispersion relationship. Blue circles: final dispersion estimates. (Color figure
online)

The Dispersion/ Biological Coefficient of Variation (BCV) plots (Fig. 4 and Fig. 5)
show the relationship between the dispersion or “biological coefficient of variation” and
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Fig. 6. Mean-variance plots of the NGSSPPG1 data set and the data sets generated by the six
packages with the NGSSPPG1 data set as input.

Fig. 7. Mean-variance plots of the Huntley data set and the data sets generated by the six packages
with the Huntley data set as input.

the mean of the log2 of the counts per million, calculated by DESeq2. One can notice
that the typical for many real data sets curve of the BCV plot (Fig. 5) is not present
in NGSSPPG1 data (Fig. 4). This difference could be attributed to the specifics of the
NGSSPPG algorithm, which is aimed at data generation for classification studies and
generates samples from two classes with a relatively small dispersion. As a result, lower
dispersion is also observed in the generated data. Note that the Splat algorithm increases
the range of the mean the most.
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The mean-variance scatter plots (Fig. 6 and Fig. 7) show how the variance of the
features relates to their empirical mean, not considering the information about the exper-
imental design and sample grouping. Note that seqgendiff and SPsimSeq add dispersion
to data, regardless of its presence in the input data.

Fig. 8. Feature-feature correlation plots. The first plot includes estimations for the NGSSPPG1
data set and the derived form it synthetic data sets; the second plot includes estimations for the
Huntley data set and the derived from it synthetic data sets.

The Feature-feature correlation plots display Spearman correlation coefficients’ dis-
tribution for pairs of features and provides a visualisation of how well the correlation
structure of the input data is preserved by the respective generation algorithms. Only
non-constant features are considered - when more than 25 such features are present in a
data set the pairwise correlations between 25 randomly selected features are displayed
[30]. Note that the nonparametric methods SimSeq and seqgendiff outperform the other
generation algorithms in capturing the feature-to-feature correlations in the real data
set, Huntley (Fig. 8). However, when NGSSPPG was used as input for synthetic data
generation, one can observe that the same two algorithms do not perform as well in
capturing the feature-to-feature correlations present in the input data.

We also performed testing for DE of the generated data and compared it to the same
statistical testing for the two types of input data, Huntley and NGSSPPG. We used the
most recent version of theDESeq2 packagewith an adjusted p value threshold set at 0.05.
The DE analysis with DESeq2 reveals many features adjusted for multiple comparison
p-values< 0.05 for the Huntley data set, which is due to the intrinsic nature of the tissues
the samples are taken from. Similarly, all the synthetic data generators have been set to
generate data with 5% DE genes, which is 500 genes for the NGSSPPG-based data sets
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and about 1731 genes for the Huntley-based data sets, Table 2. The Splat-generation
leads to higher numbers, possibly due to the spread of the counts’ means. The DE genes
found in the SimSeq data sets are much lower than the expected numbers.

Table 2. DE genes found by DESeq2 from data sets simulated either based on either the
NGSSPPG1 (100 samples, 10000 features, class ratio = 50/50) data or the Huntley data (100
samples, 34616 features, class ratio = 50/50). All simulation packages are set to generate data
with 5% DE genes. Asterisk (*) denotes the original data set and the subsequent rows indicate
data sets generated based on that original data set.

Data set Number DE genes Data set Number DE genes

*NGSSPPG1 623 *Huntley 10066

compcodeR 560 compcodeR 1689

powsimR 543 powsimR 1751

Splat 680 Splat 2210

seqgendiff 573 seqgendiff 1649

SimSeq 77 SimSeq 297

SPsimSeq 629 SPsimSeq 1828

4 Discussion

One of the critical issues related to the evaluation of statistical methods for RNA-seq
data analyses is to evaluate them on data sets with known properties, e.g. gene-to-gene
correlation structure. Therefore, generation of synthetic RNA-seq data sets, which can
serve as ground truth for such evaluation, has become a topic of significant interest in
the research community. Currently, there are multiple methods for generating synthetic
bulk RNA-seq data. One can find many studies comparing the performance of DEmeth-
ods, however those typically compare the results, e.g. sensitivity, specificity and related
performance metrics, and in some cases statistical power. However, little attention has
been focused on using a systematic approach for comparing the quality of bulk RNA-seq
simulated data. In this paper, we propose an initial approach to address this problem.
We highlight several metrics that can be considered when comparing synthetic RNA-
seq data while also taking into account the properties present in data used as input for
the generation algorithms. The application of the proposed approach is illustrated by
using six currently available software packages for synthetic RNA-seq data generation.
In our opinion, it is important to include both real data sets (Huntley), and synthetic
data (NGSSPPG) with a known structure in the proposed evaluation. Our results clearly
show that different data-generation algorithms perform differently with respect to the
proposed in this workmetrics, underscoring the importance of performing such an evalu-
ation before selecting which specific algorithm should be used to generate synthetic data
in order to evaluate a specific data analysis method. While the steps outlined in Fig. 2
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describe a general framework for performance evaluation, it is also clear that more work
is needed to expand and refine the proposed framework.
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Abstract. Single-cell RNA sequencing allows expression profiling of hundreds
of thousands of individual cells in a single experiment. The main drawback is that
on the single-cell level observed proportion of zero counts is much higher than
on the bulk level. In this study, we performed the analysis of potential sources of
excessive zeros usingmulti-omics data from a homogenous breast cancer cell line.
A comparison of the expression data at the population and single-cell level showed
that variability between sequencing platforms is higher than when comparing
replicates on the same platform. The non-linear model was used to estimate the
difference in the expected and observed number of zeros per gene. Then, using
gene set enrichment analysis, we discovered some biological pathways containing
genes with an increased or reduced number of zeros, like ribosomal genes. Finally,
we analyzed different technical factors potentially influencing the dropout rate,
and found that the number of transcripts per gene, low mappability and difference
in transcript coverage uniformity might cause fluctuations in gene expression
estimate on a single-cell level.

Keywords: Single-cell sequencing · Transcriptomics ·Missing data · Technical
artifacts

1 Introduction

Single-cell RNA sequencing (scRNAseq) allows characterizing individual cells by mea-
suring the expression levels for each gene within a population. In this way, the method
helps to determine what types of cells are present in a heterogeneous sample, which
enables a deeper understanding of cell biology and the evaluation of changes that could
indicate the presence of the disease [1]. Several methods have been developed for car-
rying out scRNAseq, each with its own advantages and disadvantages [1]. These high-
throughput technologies enable the profiling of hundreds of thousands of cells in parallel.
In this work, the droplet-based 10x Genomics Chromium platform, which is based on
the capture of single cells by gel beads, was used to obtain the gene expression data
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for each cell [2]. Computational analysis of data obtained from scRNAseq is a certain
challenge due to factors such as high dimensionality of the data, measurement noise or
detection limits.

Appropriate analysis of the scRNAseq data ismuchmore complex than bulkRNAseq
data. ScRNAseq counts are naturally more variable than bulk RNAseq counts because
the transcriptional signal is not averaged across thousands of individual cells, making
cell-to-cell heterogeneity, cell-type mixtures, and stochastic expression bursts important
contributors to between-sample variability [3]. Three main technical characteristics of
scRNAseq are: (i) sensitivity – the probability to capture and convert a particular mRNA
transcript present in a single cell into a cDNA molecule present in the library; (ii)
accuracy – how well the read quantification corresponds to the actual concentration of
mRNAs; (iii) precision – the technical variation of the quantification [4]. The key task
is to accurately separate technical noise from heterogeneity in gene expression levels
driven by biological factors.

A well-known characteristic of scRNAseq is the sparsity of the data (zeros), i.e.,
the high proportion of zero read counts (sometimes called dropout rate) [5]. Some
zero expressions may reflect true biological non-expression, when a gene is simply not
expressed in the cell or result from gene expression stochasticity (transcriptional burst-
ing). On the other hand, zeros could also occur even when a transcript is expressed in a
cell but is entirely undetected in its mRNA profile [6]. The reasons for this type of zeros
could be inefficient cDNA polymerization, amplification bias, or low sequencing depth.
Other factors that affect gene expression levels include differences in the nucleotide
composition, the length of the tested RNA fragments and the differences resulting from
variations in the degradation rate of the studied molecules [7]. Separating the biological
and technical reasons as sources of zeros is not trivial [8]. Bulk RNAseq can be used as
a ground truth assuming that the assayed cell populations are homogeneous.

In this work, we try to understand and quantify which of the known sources of
zeros in scRNAseq are the most influential. For that, breast cancer cell line expression
data measured on single-cell and bulk levels are used, accompanied by bulk profiles
of chromatin openness and DNA methylation profiles. We searched for the biological
pathways that contain genes with a higher proportion of zeros than expected and then
quantified the effect of technical factors on decreased expression in scRNAseq data.

2 Methods

2.1 Data

Multi-omics data deposited in Sequence Read Archive under the project accession num-
ber PRJNA657088 were used in this study. Experiments performed in the original study
involved repeated applications of cytotoxic agents to the in vitro cultures of triple-
negative breast cancer cell line MDAMB-468 [9]. Available are the measurements of
transcriptomic profiles on bulk and single-cell level and additionally different bulk epige-
netic profiles (chromatin openness and DNAmethylation levels). Only baseline samples
before treatment were used here. MDA-MB-231 cells were grown for two parallel sets
of identical experiments (biological replicates 1a and 1b). Single-cell RNAseq libraries
were constructed using 10× Chromium technology [2]. Bulk RNAseq was done using



Investigating Sources of Zeros in 10× Single-Cell RNAseq Data 73

TruSeq Stranded Total RNA kit with poly-A selection (Illumina). DNAmethylation pro-
files were obtained using DNA-SeqCap Epi CpGiant Probes (Roche). Chromatin acces-
sibility was measured using ATAC-seq method [10]. All samples were sequenced on
Illumina HiSeq4000 platform at Yale Center for Genome Analysis. The same transcrip-
tome annotation files were used across different omics experiments, ENSEMBL release
84, and all sequencing reads were aligned to human reference genome hg38. From 19
797 protein-coding genes included in the analysis, 2 140 had noDNAmethylation profile
and 6 801 no chromatin openness measurement.

2.2 Non-linear Regression Model

To estimate the relationship between dropout rate measured on single-cell level and
signal from different bulk modalities, a non-linear regression model with four-parameter
logistic curve was used. The model is represented by the following formula:

f (x) = c + d − c

1+ exp(b(log(x)− log(e)))
(1)

where d is the higher asymptote, c is the lower asymptote, e is the value halfway between
the asymptotes of d and c, and b is the slope at the inflection point. The parameters of the
model were estimated by analysis of the model residuals. Specifically, the Kolmogorov-
Smirnov test was run on model residuals, excluding genes with a dropout rate equal to
0 or 1, and D statistic was calculated. The best parameters of the model were set as the
one that minimizes D.

2.3 Gene Set Analysis

Gene Set Enrichment Analysis (GSEA) is a most common algorithm used for differen-
tial analysis at the level of gene sets [11]. An ordered list of genes according to their
value of residual from the non-linear regression model was used as the input. GSEA
uses a permutation-based test with the Kolmogorov-Smirnov running sum statistics to
determine enriched expressions in groups of samples. Enrichment of KEGG pathways
[12] was tested using GSEA implementation in the fgsea R package [13]. Normalized
enrichment score (NES) was used as the measure of the effect of the gene set.

2.4 Sources of Technical Bias

Based on the literature search, five most probable reasons of observed shift in expression
between bulk and single cell-levels were selected. These are: (i) biased reads coverage
at 3’ end of transcripts, (ii) difference in %GC content of the gene sequence, (iii) length
of the gene, (iv) no. of transcripts per gene, (v) lower mappability in a gene region.
The non-uniformity of the sequence coverage for each transcript was quantified using
Transcript integrity score (TIN) [14]. TIN varies from 0 to 100, where 100means perfect
RNA integrity. For each gene, median TIN was calculated including all transcripts that
belongs to this gene. Information about GC content, length of the gene and no. of
transcripts per gene was retrieved from ENSEMBL database [15]. The mappability was
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calculated as the percentage of gene coverage by single-read map to genomic region
which is a fraction of that region that overlaps with at least one unique k-mer (k = 100)
[16].

2.5 Logistic Regression Model

To estimate the most important factors discriminating expressed genes and zeros, a
multiple logistic regression model was fitted. In the full model, 8 variables were used
including 5 technical factors described above andmeasurements from3modalities. After
removing chromatin openness and DNAmethylation profiles data (due to many missing
values), the model was reduced using the Bayesian Information Criterion. Odds ratio
(OR) with 95% confidence interval was used as an effect size of each variable capturing
its importance in the model.

2.6 Statistical Analysis

All analyses were performed using non-parametric statistical methods. Two-group com-
parisons of single variables were performed using the Mann-Whitney U test. The effect
size was measured using Cliff’s Delta estimate. The significance level was set to 0.05 in
all analyses.

3 Results and Discussion

From the analyzed dataset, the measurements containing population (bRNAseq) and
single-cell (scRNAseq) gene expression data were used, as well as 2 other bulk modal-
ities such as methylation profiles (DNAm) and chromatin openness (ATACseq). The
descriptions “1a” and “1b” refer to replicates of cells grown in two identical experiments
performed in parallel.

3.1 Differences in Gene Expression Between Bulk RNAseq and Cummulative
ScRNAseq

First, we compared the measurements of gene expression at the population (bRNAseq)
and single-cell (scRNAseq) levels. For that, we needed to sum up counts from all indi-
vidual cells, creating pseudo-bulk sample (cumulative single-cell RNAseq data). Pear-
son correlations were computed to evaluate the data similarity. In both replicates, we
observed a strong correlation between measurements from two platforms (r = 0.94;
Fig. 1ab). When comparing two replicates, we found stronger correlation on both levels
(on bulk r= 0.99; on single-cell r= 0.99). Also, the correlation in dropout rate between
replicates was very strong (r ~ 1; Fig. 1c). Thus, the technological differences are slightly
greater than the biological differences between tested samples.
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Fig. 1. Comparison of expression of individual genes between bulk RNA-seq and summarized
single-cell RNA-seq data for two biological replicates (a and b). Panel c shows correlation in
dropout rate between replicates

3.2 Characterization of Genes with Zeros Using Other Modalities

Genes, that have zero counts in bRNAseq in both samples were removed from further
analysis, since we assume that they represent the true biological lack of expression
(n = 16 608 genes left). Analysis was performed separately for each replicate. Using
3 modalities, the measurements were compared between expressed genes and zeros
(Fig. 2). In the case of bRNAseq and ATACseq, the higher signal was found in expressed
genes,while in the case ofDNAm, the higher signalwas in zeros,which is consistentwith
current biological knowledge (chromatin openness correlates with higher expression,
while increased DNA methylation correlates with decreased expression). The statistical
differences between groups of genes were the highest in bRNAseq (p = 3.97e-188 in
1a, p= 3.67e-179 in 1b; Fig. 2ad), moderate in DNAm (p= 8.2e-33 in 1a, p= 1.76e-37
in 1b; Fig. 2cf) and the lowest in ATACseq (p = 2.79e-7 in 1a, p = 1.25e-14 in 1b;
Fig. 2be). The effect size calculations showed a strong effect for bRNAseq (ES = 0.67
in both samples) and a small or medium effect for other modalities.

3.3 Finding Genes with a Higher Proportion of Zeros Than Expected

For each modality and sample, we fitted the non-linear regression model to quantify
the relationship between the dropout rate measured on a single-cell level and bulk level
signals (Fig. 3). Similar findings were observed than in the previous section; higher
expression and chromatin openness, and lower methylation level relate to lower dropout
rate. Model residuals were calculated to quantify how distant is the dropout rate for each
gene from the expectations (represented by the model). For each modality, high values
of residuals indicate that there is a higher proportion of zeros than the model indicates,
while negative values of residuals indicate that there is a lower dropout rate than expected
from the model. The best model fit was found for expression data (Fig. 3ad), while the
worst was for DNA methylation data (Fig. 3cf).
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Fig. 2. Distribution of signals from different modalities, a bulk gene expression level (a and d),
chromatin accessibility (b and e) and methylation level (c and f), between groups of expressed
genes and the one with zeros on a single-cell level. The top row shows results from sample 1a,
while the bottom from sample 1b.

Fig. 3. Modeling relationship between dropout rate and a signal from 3 different modalities: bulk
gene expression level (a and d), chromatin accessibility (b and e) and methylation level (c and f).
The top row shows results from sample 1a, while the bottom from sample 1b.
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3.4 Searching of Biological Sources of Decreased Expression on a Single-Cell
Level

The information obtained from the non-linear regression models was used in further
analysis to find biologically related groups of genes for which different modalities indi-
cate that expression should be observed, but it is not seen in scRNAseq data. For that,
GSEA was performed on 186 KEGG pathways (n = 186) in each sample and modal-
ity. Sixty-five pathways showed statistically significant enrichment of positive residuals
from the model in at least one comparison, indicating more zeros on a single-cell level
than expected (Fig. 4a). Fifty-eight pathways showed the opposite trend (Fig. 4b). Most
of the selected pathways had contrasting values of NES between expression and two
epigenetic modalities. It means, that even we observe higher expression on a bulk level
than on a single-cell level (which correlates with higher dropout rate), closed chromatin
and/or highDNAmethylation could explain this behavior andwe probably observe some
artifacts on bulk expression level.

Fig. 4. Gene set analysis of model residuals using KEGG pathways. In panel a gene sets with a
significant proportion of genes with more zeros than expected are shown, while in panel b gene
sets with higher proportion of genes with fewer zeros. * indicates gene sets with padj < 0.05, **
padj < 0.01 and *** padj < 0.001.

The top 3 pathways shown in Fig. 4a with the lowest average NES score across
samples andmodalities and the top 3 pathways shown in Fig. 4b with the highest average
NES score were selected for further analysis (Fig. 5). Nitrogen metabolism, olfactory
transduction and butanoatemetabolism pathways contain genes that show systematically
lower expression on a single-cell level than on bulk level (Fig. 5a). NES values for
these pathways were moderate in comparison to others. Within those gene sets, we
observe genes with both low and high expression levels, and the findings are consistent in
both replicates. Ribosome, Parkinson’s disease, and oxidative phosphorylation pathways
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contain genes that had higher expression on a single-cell level than on bulk level (Fig. 5b).
NES values for these pathways were strongly negative in all modalities. Within these
gene sets, we observe more genes with high expression levels. These results suggest
that maybe the mechanism of reduced expression of some genes on single-cell level is
different to what was expected: some groups of genes, like ribosomal genes, have higher
expression on a single-cell level than bulk level, so low expression genes could not be
captured due to limited total number of sequencing read counts that are measured in a
single experiment.

Fig. 5. Visualization of genes included in top3 up- and down-regulated pathways. In panels a and
c genes from gene sets with a significant proportion of genes with more zeros than expected are
shown, while in panels b and d genes from gene sets with higher proportion of genes with fewer
zeros. The top row shows results from sample 1a, while the bottom from sample 1b.
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3.5 Influence of Technical Factors to Decreased Gene Expression on a Single-Cell
Level

Along with the measurements from 3 modalities, 5 technical factors were analyzed to
check their influence on excessive zeros. Before modeling, the Spearman correlation
between variables was calculated. The highest positive relationship was found between
bulk expression and TIN score (r = 0.688). Also, we observed a negative correlation
between gene length and GC content (r=−0.554) and mappability (r=−0.439). Thus,
these variablesmight be redundant and only one could be chosen in the stepwise selection
procedure of model building.

In the full model, which includes all analyzed variables, TIN score and bulk expres-
sion level were significant factors in sample 1a, while TIN, chromatin openness and no.
of transcripts in sample 1b. After eliminating less important variables in the stepwise
approach, in both samples, the same factors were the most important (no. of transcripts,
mappability, TIN score and bulk gene expression level). Since the correlation of TIN
and Expression was high, only the importance of expression was highlighted (z-value
equal 9.817 in 1a and 7.506 in 1b). Also, high importance was observed for mappability
(z-value equal 8.257 in 1a and 7.232 in 1b). This suggests, that selected technical factors
also might explain the decrease in gene expression on a single-cell level, however a real
low expression level in the analyzed cells/sample is the main contributor (Table 1).

Table 1. Relationship between selected technical reasons of zeros and twogene groups (expressed
genes vs zeros) measured by odds ratio with 95% CI, calculated using the multiple logistic
regression model. Star indicates a significant variable in the model.

Factor Sample 1a Sample 1b

Full Reduced Full Reduced

GC 1.011
(0.988;1.034)

– 1.014
(0.991;1.037)

–

Gene_length 0.999 (0.998;1) – 0.999 (0.998;1) –

N_transcripts 1.029
(0.979;1.078)

1.082
(1.046;1.119)*

1.067
(1.009;1.124)

1.11
(1.071;1.149)*

Mappability 0.978
(0.906;1.05)

1.018
(1.013;1.022)*

1.006
(0.972;1.04)*

1.016
(1.012;1.021)*

TIN 1.039
(1.025;1.05)*

1.011
(1.006;1.017)*

1.062
(1.046;1.078)*

1.017
(1.012;1.023)*

Expression 1.304
(1.168;1.440)*

1.325
(1.269;1.382)*

1.107
(0.978;1.237)

1.243
(1.186;1.3)*

Chromatin 1.119
(0.866;1.371)

– 1.554
(1.224;1.884)*

–

Methylation 1 (0.994;1.006) – 1.001
(0.996;1.008)

–
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4 Conclusions

We performed the analysis of potential sources of zeros in single-cell RNA sequencing
data. In the first step, a comparison of the expression data at the population and the single-
cell level was performed, and we found that differences between sequencing platforms
are higher than when comparing replicates on the same platform. Then, the non-linear
model was used to estimate the difference in expected and observed number of zeros per
gene. Next, based on the gene enrichment analysis, we found some potential biological
factors that could indicate why some genes have a higher dropout rate than others.
Finally, we analyzed different technical factors potentially influencing excessive zeros
rate, and found that no. of transcripts, mappability and transcript coverage uniformity
might cause variance in gene expression estimate on a single-cell level.
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Abstract. Biomarkers seem to play an important role in understanding various
diseases’ nature, course and management, including respiratory ones. Yet, discov-
ering verifiable and validated ones, that are useful in pulmonology, is challenging
and constant. A special body specimen that has been characterized as a matrix of
biomarkers, is the exhaled breath condensate (EBC). It is a fluid resulting from
freezing the exhaled air. Water is its main constituent. The rest is a rich mix of
water-soluble volatile compounds and aerosol droplets of airway lining fluid. The
droplets carry non-volatile organic compounds. Their concentration is very small
and the techniques applied to measure it are very accurate and sensitive. The con-
tent of the exhaled breath condensate reflects important processes taking place in
the lungs, such as inflammation and oxidative stress, which are the basis of respira-
tory diseases’ pathophysiology. It seems that it has a role in diagnosis, monitoring,
stratification and therapy of respiratory diseases, including COVID19. This paper
presents information on exhaled breath condensate and highlights its importance
as a potential source of biomarkers.

Keywords: Exhaled breath condensate · Biomarkers · Inflammation · Oxidative
stress · Non-volatile organic compounds

1 Introduction

Biomarkers are an established tool in medical science, providing significant help from
diagnosis to management of diseases. There are many different types and groups of
markers, possessing specific roles. They serve as indicators of normal and abnormal
processes or even as a response to therapy (Vincent, Bogossian and Menozzi, 2020).
Their discovery and application may be different in the various medical fields (Pahwa,
Sharma and Arora, 2017). Respiratory medicine needs biomarkers. That is due to the
inadequacy of the existing techniques and methods to clarify issues regarding the nature
and treatment of pulmonary diseases. Different biological sample types are used for
that purpose, aiming to find new ones and establish their role (Wu et al., 2018, Sears
and Mazzone, 2020). A relatively new specimen in the field of respiratory medicine
is the exhaled breath condensate (EBC) which is derived by freezing the exhaled air.
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It is a biological fluid full of compounds. Its non-invasive collection has made it an
attractive mean to study respiratory diseases, as well (Davis, Fowler and Montpetit,
2019). The purpose of this paper is to provide information regarding both the technique
and the sample of the EBC and highlight the reasons for characterizing it as a matrix of
biomarkers.

2 Exhaled Breath Condensate Definition and Formation

According to the European Respiratory Society, the EBC is a fluid or a frozen material,
which can be obtained by cooling the exhaled air (Horváth et al., 2017). It is a type of
breath matrix that produces a rich content of numerous compounds. The predominant
constituent of the exhaled breath condensate is the water (>99%). The rest is a group
of water-soluble volatile compounds and aerosol droplets of airway lining fluid that
carry non-volatile compounds. This mix of components ranges from micromolecules
to macromolecules such as inorganic ions, urea, organic acids, peptides and proteins
(Rahimpour et al., 2018).

The number of the compounds that have been identified in EBC is large (more
than 2000) but their concentration is extremely low (Khoubnasabjafari, Rahimpour and
Jouyban, 2018). The daily volume of water released with breath in the form of vapour
is 350 ml, which entrains the soluble volatile compounds. Apart from that, there are
aerosol particles accompanying the exhaled air and they are of variable amount. Their
average size is 0.3 µm and their levels in a normal breath range from 0.1 to 4 particles
× cm−3. Moreover, it is estimated that <0.1 µl of the exhaled droplets is contained in
1 ml of exhaled breath condensate (Hayes et al., 2016, Konstantinidi et al., 2015).

This mix of volatile and non-volatile compounds originates from the whole respi-
ratory tract. The mechanisms responsible for the presence of these compounds in the
breath vary (Maniscalco et al., 2019). Volatile organic compounds travel through the
airways and the condensing breath absorbs them. On the other hand, the origin of the
aerosol droplets or exhaled particles is the airway lining layer. Two different theories
can explain their generation a) the turbulence of the airflow able to shear the airway
lining fluid and b) the bronchiole fluid film burst model. According to the latter, films
or bubbles of respiratory fluid are formed and their burst that happens following the
closure and reopening of the bronchioles is responsible for the droplets (Kazeminasab
et al., 2020a).

3 Exhaled Breath Condensate Collection

The collection of the EBC is performedwith a variety of apparatus. There are commercial
devices and homemade systems. All of them follow the same principle which is to freeze
the exhaled air. Based on that, they have main common parts, the chamber or condenser,
where the EBC is formed and tubes with valves that guide the exhaled air into the
condenser. The valves are used to prevent the mix of the ambient air with the exhaled
one. An additional part is saliva traps, which are used to prevent the contamination of
the exhaled air with saliva.
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In the case of homemade systems, a detailed report of the structure and the materials
used for their construction is necessary. Both of them can affect the concentration of the
compounds in the sample (6). On the other hand, there are the available standardized
commercial devices for the collection of the EBC, which are the Rtube, the EcoScreen,
the Turbo-deccs and the Anacon Glass Condenser. Different and varied materials have
been used for their construction. Moreover, each one has its characteristics regarding
the structure of the device. There are guidelines of performance based on which one
is used and deal with the sampling duration, the temperature of condenser and the
device cleaning and possible reuse process (Kubán and Foret, 2013, Połomska, Bar and
Sozanska, 2021).

4 Exhaled Breath Condensate Analysis

The analysis of the EBC is also performed with a variety of techniques. These can be
grouped as optical (absorbance, fluorescence, chemiluminescence), separation (chro-
matography: ion, liquid and gas, electrophoresis: capillary and gel), electrochemi-
cal, ion mobility mass spectrometry, polymerase chain reaction-based assays, nano-
particle based, surface acousticwave immunosensors, nuclearmagnetic resonance-based
metabolomic analyses and high electron mobility transistors. Each one has its strengths
and weaknesses, especially regarding its sensitivity and specificity. None of the current
single techniques is the gold standard for the analysis of the exhaled breath conden-
sate because of the physiochemical properties of the compounds. The ones, that are
widely used, are the nuclear magnetic resonance-based metabolomic analyses and mass
spectrometry in combination with the separation ones (Khoubnasabjafari et al., 2021,
Wallace and Pleil, 2018).

5 Exhaled Breath Condensate Application

The EBC study seems to be capable to provide information on the nature, course and
treatment of diseases, especially the respiratory ones. Its application is wide and it has
been used for diagnostic reasons and early detection of diseases, differential diagnosis,
stratification, screening and monitoring the severity of diseases as well as the efficacy
of pharmacotherapy (Chen et al., 2021).

This wide application relies on the advantages the EBC has. It is an entirely non-
invasive technique and simple to perform. It canbe repeated several timeswithout causing
discomfort or adverse effects. It has no age restriction and is well tolerated. It can be
collected at different stages of a condition including the mechanically ventilated patient.
It does not require any special skills of either the staff or the patient for its collection as
well (Davis and Montpetit, 2018).

However, it has not yet been established as a clinical tool because of its lack of
standardization. That is because of the variety of devices and techniques used for its
collection and analysis. Apart from the technical issues, its high dilution is a crucial
remaining problem that contributes to its weakness and does not allow its usage in the
clinical setting (Peterová et al., 2018).
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6 Exhaled Breath Condensate and Biomarkers

A biomarker is a ‘defined characteristic that is measured as an indicator of normal
biological processes, pathogenic processes or responses to an exposure or intervention’
(Califf, 2018). The exhaled breath condensate is a specimen of fluid that is considered
to contain biomarkers. The rationale for that relies on its characteristics and advantages.

The content of the exhaled breath condensate has components that are related to the
main pathogenic processes taking place in the lungs such as inflammation, oxidative and
nitrative stress. These components are not cells but compounds of the airway epithe-
lial lining fluid as a result of the inflammatory response to various stimuli. The airway
epithelial lining fluid is an aqueous layer that lines the respiratory tract and shows hetero-
geneity because it has a different cell population in various regions of the lungs (Youssef
et al., 2016, Pouwels et al., 2021). It is a barrier and one of its functions is the defense
which is expressed by inflammation (De Rose et al., 2018). The compounds from the
airway epithelial lining fluid provide information on different patterns of inflammation
in the lungs.

The components of the EBC are a rich mix of volatile and non-volatile compounds.
Their variety, concentration and roles make them candidates for being biomarkers
because they alter the breath profile. They are mediators of inflammation and mark-
ers of oxidative and nitrative stress. Their origin varies and involves different path-
ways. Some of them derive from the free radical catalyzed peroxidation of arachidonic
acid (eicosanoids, prostanoids) while others from the nitric oxide (nitrite, nitrate, S-
Nitrosothiols, 3-Nitrytyrosine) through the reaction of the amino acid L-arginine and
the enzyme nitric oxide synthase. Their role varies and they seem to be responsible for
the regulation and balance of inflammation, oxidative and nitrative stress. The increased
levels of them in the exhaled breath condensate may reflect the underlying inflammation
of the airways and the severity of the condition. Moreover, processes such as mucus
production, bronchoconstriction and recruitment of different types of cells are affected
by increased levels of some of the arachidonic acid derivatives (Lazar et al. 2018). Other
components that have been detected in the EBC are proteins (cytokines, chemokines),
some enzymes andmetals. Cytokines possess a central inflammatory and immune role as
they can either promote or inhibit inflammatory reactions (Hatami et al. 2019). Smooth
muscle contraction may also be affected by metals found in it and some enzymes are
involved in the remodelling process of the airways (Ghio, Madden and Esther, 2018).
Nucleic acids (DNA and RNA) have been discovered in the EBC as well. Their presence
in it is due to cell apoptosis and necrosis as well as cell death in the lungs as a result of the
process of oxidative stress. The nucleic acids provide information of alterations in DNA
gene sequence and the genes’ expressions (Kazeminasab et al., 2020b, Pérez-Sánchez
et al., 2021). In the case of cancer, they possibly provide information on the process of
tumorigenesis (Kazeminasab et al., 2021). Additional findings in the EBC are viruses,
bacteria and fungi. Even though COVID-19 is a new disease, studies have shown that
it is detectable in exhaled breath condensate. That is because of the transmission of the
coronavirus via respiratory droplets and aerosols as well as the alteration of the content
of the exhaled breath condensate of patients with COVID-19 compared to healthy sub-
jects (Khoubnasabjafari et al., 2020, Giovannini, Haick and Garoli, 2021, Barberis et al.,
2021).



Exhaled Breath Condensate Study for Biomarkers Discovery 87

The performance of collection of the EBC is also an argument that contributes to
the study of biomarkers. It is a simple direct sampling task as it requires only tidal
breathing for its collection. This type of breathing is considered enough for obtaining
the appropriate amount of EBC. The airflow carries particles of all sizes ranging from
submicron to large ones (Bake et al., 2019). These particles have different sites of origin
including the lower respiratory tract and small and medium – size airways. There are
indications that alveoli are a source of some of them, as well (Finamore et al., 2019).

The non-invasive character of the technique provides a sample that is not affected by
external interventions. Furthermore, the process of the collection does not influence the
function of the airways nor the pathological processes taking place in them. That means
there is no alteration in its content and the result reflects the state and the actions in the
lungs. This is also enhanced by three technical features a) its application is feasible at
any age group (Urs et al., 2021), b) the status of a disease does not prevent its collection
and c) it is available for collection several times easily. As a result, a great variety and
number of markers is obtained, leading to the identification of different profiles full of
information of a condition or a disease (Campanella, De Summa and Tommasi, 2019).

7 Summary

The study of biomarkers in medicine is constant. A relatively new specimen the exhaled
breath condensate has been characterized as a promising source of biomarkers of respi-
ratory diseases. Many arguments support this opinion and they are based on its nature
as well as the process of its collection and analysis. It has a rich content of compounds
deriving from the whole respiratory tract. It is capable to provide information on dif-
ferent aspects of physiological and pathological processes happening in the lungs. Its
collection is simple and non-invasive leading to a product without external interventions.
The fact that it is not limited by age or disease status provides the chance to obtain more
information and markers of various stages. However, it has not established its role in
the clinical setting because of the lack of standardization. Further research to reveal its
whole capacity is necessary.
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Abstract. The classification of human cancers constitutes to date a
significant challenge in the context of microarray data analysis. The dis-
covery of gene hallmarks for biological processes involves the examina-
tion of large gene expression matrices in a broad and massively parallel
manner. In this article, a comprehensive and comparative analysis of
thyroid cancer datasets is presented, including stages for feature selec-
tion, hypothesis testing, and classification. Also, datasets are integrated,
and results for this integration are reported and analyzed. To conclude,
text mining is used to investigate some biological information regard-
ing the main resulting characteristic genes. Some genes found during the
research, HINT3 in particular, appear to be worth to be further studied.

Keywords: Microarray · Classification · Feature selection · Cancer ·
Statistical learning

1 Introduction

Computer science applied to problems in biology is so relevant that it gave birth
to a rising branch of research: bioinformatics. In this new discipline, machine
learning and statistical-based inference methods play a central role. This allows
the discovery of new knowledge in molecular biology [5,13], including in the
context of covid-19 pandemic [8]. However, we must not lose sight of the signifi-
cance of statistics. It is thus mandatory to become almost an expert in hypoth-
esis testing to perform a robust examination of biological data. A particularly
challenging problem is the discovery of relations between gene expression at the
molecular level and the phenotype. The activity of many genes can be deter-
mined by the measurement of mRNA levels using multiple techniques, including
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DNA microarray [3,4], Serial Analysis of Gene Expression [20,22], and various
in situ hybridization applications [26]. In this context, microarray has emerged
as a precise, productive, and efficient tool for measuring specific gene expression
levels.

The goal is to use microarray data for gene selection and classification. In
this context, machine learning constitutes a powerful tool, and its applications
extend across many scientific disciplines. Specifically, feature selection, classifi-
cation, and grouping algorithms have emerged as significant helpers to identify
strong correlations, associations, and separations in large data sets, especially
for gene expression data. Regarding the case of study, thyroid cancer is the
most common malignant endocrine disease, and year after year, its incidence
worldwide increases substantially [16,17,19]. Papillary Thyroid Cancer (PTC)
is the most common type of thyroid cancer, constituting between 70% and 80%
of all cases of thyroid cancer. Anaplastic Thyroid Cancer (ATC) is a rare but
highly aggressive type of cancer that accounts for only 1–2% of all thyroid can-
cer cases. Nonetheless, more than 50% of thyroid cancer deaths are related to
ATC, and the mean survival rate is six months. Then, as a value-added con-
tribution of this work, the knowledge of molecular mechanisms underlying ATC
may provide new potential therapeutic targets in its treatment. In this context, a
comprehensive study of microarray datasets obtained from different thyroid can-
cer experiments is presented in this paper. Theoretical and practical procedures
are briefly explained and compared, covering feature selection, classification, and
description of biological relevance. Also, multiclass problems are considered, and
the integration of datasets is analyzed.

2 Methods

Machine learning consists of algorithms that iteratively learn from input data
to improve their performance, describe data, and predict results. There are dif-
ferent categories in which machine learning algorithms can be categorized [11].
Depending on the objective, on the nature of the problem being treated, and on
the type and volume of the data. The primary separation is between supervised
and unsupervised learning. Unsupervised learning is generally associated with
clustering, used for class discovery. On the other hand, when a class prediction
is a goal, supervised learning is the option since it uses known class informa-
tion (such as tumor/control labels). This rule stands for with class comparison,
used for feature selection. All these strategies are being assiduously used in the
analysis of biological data to infer new knowledge.

Statistics also plays a leading role in data analysis. Hypothesis testing is
broadly used for class comparison. Genes are usually identified as differentially
expressed (DE) between known classes of specimens using univariate analyses
on each gene, such as Wilcoxon tests. In doing so, it is fundamental to consider
the problem of multiple testing to avoid generating many false positives (some-
times referred to as “false discoveries”). In this article, we focus on supervised
machine learning using feature selection (class comparison) and classification
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(class prediction). Also, feature selection is performed applying statistical tests,
and results from both approaches are compared and discussed.

Python was used to program all the analyses carried out in this article, with
different libraries for statistical and machine learning methods. The methods
used to perform the selection of the most characteristic features were statistical
tests and Recursive Feature Elimination (RFE). Scikit-learn (Python library)
offers three different methods: SelectKBest, SelectPercentile, and GenericUni-
variateSelect, which can be used with a series of various statistical tests to select
a specific number of features. For classification problems, it is possible to use the
chi-square and ANOVA statistical tests. SelectKBest eliminates all the charac-
teristics except the K with the highest score (more significant relationship with
the output variable); SelectPercentile removes all features, except the highest
score percentage; and GenericUnivariateSelect allows the selection of univari-
able characteristics with a configurable strategy [11].

Finally, we chose to work with two of the most used classifiers in the context
of data mining for microarray data: KNN (K-Nearest Neighbors) and SVM (Sup-
port Vector Machine). As for the multi-class problem, different decomposition
strategies exist. One way is to decompose the original problem into multiple
binary problems and perform a classification through training and combining
several binary classifiers. Many of these strategies are found in the framework of
Error-Correcting Output Codes (ECOC), among which the One-vs.-One scheme
stands out due to its simplicity but high effectiveness [10]. Figure 1 illustrates
an abstraction of the main stages of the workflow and schematically shows the
tasks explained in the following sections.

Fig. 1. Main stages of the workflow for thyroid data analysis.
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3 Experimentation

Experimentation was delineated as follows. First, the objective was to test how
statistical methods performed regarding chi-square and ANOVA approaches.
Later, statistical methods were compared with the most renowned machine learn-
ing method, the RFE. Regarding the data, several public databases provide
numerous microarray experiments, most notably GEO [9] and ArrayExpress [1].
GEO is an international public repository that freely archives and distributes
results from microarray experiments, Next-Gen sequences and other forms of
high performance functional genomic data presented by the research commu-
nity, and is the repository used here.

The first dataset selected for the analysis was GSE33630 [15]. It captures
the expression levels of genes from ATC, PTC as well as healthy tissues. This
dataset was selected for various reasons. First, it includes three different classes,
which will allow us to analyze the behavior of this experiment under the different
multiclass classification. Second, it presents a distribution of the samples of each
class, which, despite not being ideal, is superior compared to the vast majority
of datasets, composed of a large number of classes, and in some cases, with only
one or two samples in certain classes. Regarding the source of the tissues, ATC
samples were obtained from different hospitals in France and Belgium, while
the samples of PTC and healthy thyroid tissues were obtained from Ukraine
through the Chernobyl Tissue Bank. Members of the international pathology
panel confirmed the diagnoses. The second selected dataset was GSE29265 [21],
which, like the previous dataset, includes ATC, PTC, and standard samples.
The reasons why this dataset was selected are similar to the previous ones;
the distribution of the samples is acceptable, it includes the same three classes,
and the data were preprocessed using the same normalization strategy, which
will allow both experiments to be combined easily for analyzing them together.
Samples from this dataset were obtained through the Chernobyl Tissue Bank,
and also from French patients with no history of exposure to radiation.

3.1 Phase 1: Individual Analysis of the Datasets

The first dataset analyzed is GSE33630, which outlines the gene expression pro-
files of 11 samples of ATC, 49 samples of PTC, and 45 samples of healthy tissues,
including the full range of expression levels. The initial transformation applied
was the elimination of those genes whose variance was low, justifying this deci-
sion under the fact that, if the value of a particular gene varies very little between
standard thyroid samples and those of ATC or PTC, then the likelihood that it
has a direct relationship to the onset of carcinoma is very low. However, to elimi-
nate the genes with low variance is not enough; the dimensionality of the matrix
is still very high, so it is necessary to apply other transformations. We then
analyzed the impact of different feature selection procedures in the precision of
the classifier. Figure 2-(left side) illustrates the precision obtained after selecting
50 genes using three univariate characteristics selection methods with various
statistical tests, RFE, and the accuracy of the classifier without having made
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any reduction. The classifier is constructed using SVM here in all cases, with the
GridSearch strategy provided by Python to obtain the best set of parameters,
and K-fold cross-validation with k = 5 was set for all the trials.

Fig. 2. Precision comparison of SVM classifier after univariate feature selection (chi-
square vs. ANOVA) and RFE to the GSE33630 dataset (left) and the GSE29265 dataset
(right).

As it can be observed, although the accuracy of the classifier without per-
forming feature selection is high, it is notorious how reducing the number of
characteristics using statistical approaches improves its accuracy, especially with
ANOVA, obtaining practically the same results for the three Python implemen-
tations. Furthermore, RFE achieved an even more significant improvement.

The next dataset is GSE29265; it outlines the gene expression of 9 samples of
ATC, 20 samples of PTC, and 20 samples of healthy tissues. Initial transforma-
tions were the same as those in the previous dataset. Redundant information was
eliminated and prepared to be analyzed by the Python libraries. Genes with low
variance value were excluded, and methods of feature selection were analyzed.
As seen in Fig. 2-(right side), the accuracy of the classifier without removing
characteristics was also high, although slightly less than in the previous dataset.
The tests with the three univariate selection methods and the different statistical
tests yielded similar results for all the combinations: all increased the accuracy
by almost 5%, but none stood out from the rest. Precision using RFE increased
by about 6% compared to univariate methods, and close to 12% compared to a
classifier working with a total of genes.

These results ratify several studies that have shown that SVM is particularly
well suited for the analysis of gene expression from DNA microarray data, and
when applied to the RFE method, the positive impact of gene selection on the
performance of the classifier is remarkable. Likewise, the best-ranked genes found
by the SVMs when applying RFE have mostly a plausible relationship with the
diseases studied, in contrast to other selection methods, whose selected genes
are related to the separation of the classes but are not relevant to diagnoses of
these diseases [12].
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A biological analysis of the selected genes was performed by doing a litera-
ture investigation. Next, we list the gene symbols of DE genes found by RFE:

– GSE33630: GABRB2, Hs.544373, CDH2, CCL21, TFF3, BCHE, MMRN1,
COMP, DPT, NFAT5, TFPI2, CHI3L1, GRB10, NR4A3, SCN3A, TFPI,
POSTN, APLNR, MFAP5, HRC13275, CNTNAP2, BMS1P20, IGLV1-
44, COL10A1, SFTPA2, LYVE1, FLRT3, CLIC3, TRIM36, SLC27A6,
COLEC12, C2orf40, SLC1A2, ENTPD1, HINT3, GJC1, CPNE4, WISP1,
F2RL2, COL3A1, SNORD3D, HECW2, PLEKHA2, ARHGAP36, LPP, and
COL11A1.

– GSE29265: WASIR2, LTF, TACSTD2, ATF3, ADM, NELL2, DPP4,
BUB1B, IGF2BP3, DUSP4, MMP7, PROM1, EIF1AY, GAP43, PLN,
DEFA1B, PRSS2, RASGRP1, TENM1, EGR3, RYR3, GRP, HMGA2,
PLAUR, TMEM158, LRRC15, CXCL5, YME1L1, GREM1, RERGL,
MECOM, ANLN, HHATL, INMT, FOXQ1, ZNF595, AGR3, TDRD9,
HINT3, RIMS2, TCERG1L, Hs.720692, LOC101930164, LIPH, Hs.443967,
SCARNA2, LCN10, Hs.553068, and COL11A1.

A bibliographic search was performed to seek the biological relevance of these
genes. Several articles were examined, in which the identification of biomarkers
from DE genes to improve the diagnosis of thyroid carcinomas was discovered.
Regarding the GSE33630 dataset, four of the genes found in this work were also
reported. Notably, in a previous study where the same dataset was analyzed
using a different bioinformatics approach, COL11A1 was found as DE in ATC
suggesting a potential role in the progression of such kind of tumor via ECM-
receptor interaction [15]. Interestingly, other authors analyzed three different
datasets in collaborative microarray analysis, and they found that COL3A1 gene
expression was differently expressed in ATC [14]. Also, using a different set of
tumor tissues, GABRB2 gene expression was found as the most upregulated
gene in PTC compared to healthy thyroid tissue and its expression alone was
reported to be able to discriminate between both kinds of tissues with excellent
performance [2].

On the other hand, regarding DE genes found in this work for GSE29265,
other authors previously reported only three of them. One is COL11A1, as
already mentioned. Also, DPP4 was published as a secreted protein with a poten-
tial diagnostic marker of PTC [24]. Lastly, the BUB1B gene, whose high expres-
sion was associated with recurrence in PTC [6] and that was found DE in ATC
when compared to healthy thyroid tissue [14]. To the best of our knowledge, the
rest of the genes have not been highlighted in any study as possible biomarkers
nor with any relationship to thyroid cancer.

3.2 Phase 2: Analysis of Integrated Datasets

One of the objectives of this work was to analyze how the integration of datasets
affects the selection of DE genes. The significant difference in the genes selected
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by the two datasets provides a good starting point. Various situations could
occur, the dataset with more samples may have a preponderance in the selected
genes, or a combination of all the genes might be obtained. The integration pro-
cess consisted of joining both expression matrices in the same file and joining
the labels of the samples in another file. It is important to remark that expres-
sion matrixes could be mixed since they were both identically normalized with
an RMA procedure. Then, the transformations were the same as in the individ-
ual datasets: first, eliminate genes with low variance, and then apply RFE to
the remaining set. The list of selected genes is HS6ST2, PDZK1IP1, WASIR2,
AADACP1, COL1A1, NELL2, MMP7, PROM1, MMP1, SSPN, PRSS2, COMP,
TENM1, EREG, EGR3, RYR3, CALCA, POSTN, FCER1A, PXDN, DPT,
CNTNAP2, GUSBP9, YME1L1, GREM1, FLRT3, TRIM36, ZNF750, C2orf40,
PCDHB5, KCNK17, XIST, AL521247, SLC1A2, LRRN1, COL3A1, TCEAL7,
AGR3, TDRD9, HINT3, CPNE4, RIMS2, SCARA5, TCERG1L, Hs.720692,
PLCXD2, FAR2, and COL11A1.

Fig. 3. DE genes (Gene Symbols). Sets A, B, and C are the genes not in the intersec-
tions.

From the 50 genes selected with the integrated dataset, ten belonged to the
group chosen in GSE33630, fifteen to the group in GSE29265, two belonged
to both, and twenty-three genes that had not been chosen before. For illustra-
tive purposes, the intersections between the lists of genes are shown in Fig. 3
with a Venn diagram. At first, it might seem that the most significant dataset
(GSE33630), whose size is twice the size of the GSE29265 dataset, did not have
a substantial impact on the selection of the genes since only ten were selected
again, compared with the fifteen selected genes that matched the ones chosen in
the smallest dataset.
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So, although within the 50 genes selected in the integrated dataset, a more
significant number coincided with the dataset GSE29265, most of the genes
highlighted in GSE33630 due to their potential relationship with thyroid cancer
in the bibliography were selected again, while only one of the reported genes
in GSE29265 coincided. All in all, this information gives an excellent start-up
scenario to study those genes that are not yet associated with a cancer diagnosis.
As a starting point for the analysis the Kaplan-Meier curve of these genes can be
studied. Figure 4 shows the difference between the curves corresponding to high
and low cohorts measured by log-rank for each gene (COL11A1 and HINT3).

Fig. 4. Kaplan-Meier curve for COL11A1 (left) and HINT3 (right)

In particular, special attention should be paid to HINT3, since it was selected
in all the experiments. This gene will be later approached in a separate section.

3.3 Phase 3: Multiclass Classifiers’ Analysis

As was aforementioned, one of the reasons why these datasets were selected is
that they are composed of more than two classes, which allows the analysis of
different multiclass approaches. Python provides the possibility to specify which
multiclass classification strategy (OVR or OVO) one wishes to use for an SVM
classifier. This new analysis was performed with the data obtained after the
selection of genes using the RFE strategy in each of the datasets. In the case of
the first dataset (GSE33630), SVM with OVR was the best strategy, although
just above SVM with OVO, while KNN obtained the worst accuracy of the
three. In the second dataset (GSE29265), both SVM with OVO and SVM with
OVR proved to be the best strategies obtaining the same accuracy, although
KNN was only one point below both. Finally, when integrating both datasets,
similar results were obtained, SVM was superior to KNN, this time with the
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OVO technique being slightly better to the OVR technique. SVM was the best
strategy to classify data from thyroid cancer datasets, imposing KNN in all cases.
Regarding the multiclass classification techniques, no significant differences were
observed.

3.4 HINT3: Statistical and Biological Hypothesis

HINT3 is a gene located at the human chromosome 6q22, which codifies by
Histidine triad nucleotide-binding protein 3 (HINT3). Using microarray analysis
HINT3 up-regulation was reported in hepatocellular carcinoma [23] and neurode-
generative disorders [7,25]. In hepatocellular carcinoma, HINT3 up-regulation
was reported as being related to the effect of all-trans retinoic acid, which in
serum-starved condition prevents cell death but induces cell migration and inva-
sion [23]. Interestingly, HINT3 up-regulation was also related to the induction
of apoptosis of neurons in the context of neurodegenerative disorders [18]. To
date, only the previously mentioned in Vitro studies related the expression of
HINT3 to pathophysiological conditions. Nevertheless, HINT3 remains poorly
characterized since a deep understanding of its involvement in such pathologies
was not carried out. In this work, we found that HINT3 is upregulated in human
tissue samples from ATC compared to healthy thyroid tissue as well as PTC (see
box-plots in Fig. 5)

Fig. 5. Box-plots for HINT3’s expression profiles, according to the phenotypes class,
analyzed in each dataset (GSE33630, GSE29265, and both datasets integrated).

Regarding the notorious differences that can be visually observed between the
expression values of control and ATC cases, statistical analysis was performed to
ratify this evidence. ANOVA tests were first carried out. Once it was determined
that there are significant differences between the means (see p values for ANOVA
in Table 1), post-hoc rank tests (Tuckey) and the multiple pairwise comparisons
allowed us to determine which means differ.
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Table 1. Statistical results for differential expression of HINT3.

ANOVA Tuckey test

p value Control-PTC Control-ATC ATC-PTC

GSE33630 0.00778 0.79 0.005 0.017

GSE29265 6.52e−07 0.301 0.000024 4.0e−7

Table 1 shows that, in ATC, HINT3 exhibits the highest difference of expres-
sion. Given that ATC is highly aggressive and resistant to therapies, we hypoth-
esize that HINT3 may play a role in the progression from PTC to ATC favoring
cell migration and invasion as well as cell death resistance. However, further
work is needed to evaluate HINT3 function in the thyroid cancer context.

4 Discussion and Conclusions

Throughout this work, we presented different aspects of the application of statis-
tics and machine learning to data obtained from microarray experiments, specif-
ically to thyroid cancer studies. First, various approaches were evaluated to
reduce the size of the matrix, taking them from an initial length of approxi-
mately 50,000 genes to only 50. This reduction allows for improving the accuracy
of the classifiers. Several algorithms were applied to the datasets, starting with
univariable feature selection by different statistical tests, and ending with RFE,
which is postulated as one of the most effective for microarray problems in a
large number of articles.

Results confirmed that the use of RFE improved the accuracy of the con-
structed classifiers in comparison to the precision without applying any reduc-
tion. Genes selected in each dataset were analyzed in-depth, and several of them
have been part of numerous studies as possible biomarkers of both PTC and
ATC. In the first dataset, most of the selected genes had a relationship with
PTC, and only one was found to have a connection to ATC. In the second
dataset, one prominent gene was related to PTC, and two to ATC, one being
the same as relevant as it was in the previous dataset. These differences can be
mainly due to two reasons. The first dataset had almost twice as many samples
as the second, and the RFE selection method constructs models with the avail-
able attributes so that the fewer samples there are, the model will be less precise,
and the selected genes might not be the most appropriate. The distribution of
the samples is another of the influential factors in RFE, so the difference in the
distribution of the samples in each dataset can generate a different result. When
both datasets were integrated, the number of samples increased to 154, but the
distribution did not improve: 12% ATC, 44% PTC, 44% normal. Most of the
relevant genes selected in the first dataset also appeared when integrating both
datasets. Only one of the second dataset was repeated which coincided in both
datasets. Several ATC-related genes, according to the literature, were lost when
integrating. A new gene with importance was selected in the integration, which is
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related to PTC. With the results obtained, both individually and jointly, we can
infer that the process of integrating datasets can be useful when selecting genes
in microarray experiments. On the one hand, it can help confirm the importance
of the selected genes by analyzing each dataset individually, as well as allowing,
by increasing the number of samples, to choose new genes whose relevance had
not been previously detected.

Once a small set was obtained, it was proposed to compare SVM and KNN.
Given that the datasets are composed of three classes, it was also possible to
differentiate within the alternatives of SVM according to the multiclass classifi-
cation schemes, facing One-Vs-One and One-Vs-Rest. Results showed that both
SVM and KNN are good choices when classifying microarray data, although
SVM proved to be better. Regarding the multiclass classification techniques, it
is not possible to give a satisfactory conclusion since there were practically no
differences in the results obtained.

Finally, one issue must be remarked as a significant contribution presented
in this work, besides the whole computational analysis. Regarding the selection
of representative genes, two appeared in all the sets. As aforementioned, one of
them, COL11A1, has been related to thyroid cancer in various studies. However,
the remaining one, HINT3, seems so far not been associated with this type
of disease. So, it is interesting to analyze a potential relationship between the
expression of HINT3 and thyroid cancer.
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Abstract. In order to tackle the programming challenges related to het-
erogeneous computing, Intel recently introduced oneAPI, which is a new
programming environment that allows code developed in the Data Paral-
lel C++ (DPC++) language to be run on different devices such as CPUs,
GPUs, and FPGAs, among others. To handle CUDA-based legacy codes,
oneAPI provides a compatibility tool (dpct) that facilitates the migra-
tion to DPC++. In view of the large amount of existing CUDA-based
software in the bioinformatics context, this paper presents our experi-
ences porting SW#db, a well-known sequence alignment tool, to DPC++
using dpct. From the experimental work, it was possible to prove the use-
fulness of dpct for SW#db code migration and the cross-vendor GPU,
cross-architecture portability of the migrated DPC++ code. In addition,
the performance results showed that the migrated DPC++ code reports
similar efficiency rates to its CUDA-native counterpart, or even better
in some tests (by approximately 5%).

Keywords: oneAPI · SYCL · GPU · CUDA · Bioinformatics

1 Introduction

At present, heterogeneous computing and massively parallel architectures have
proven to be an effective strategy for maximizing the performance and energy
efficiency of computing systems [20] . That is the main reason why the program-
mers typically rely on a variety of hardware, such as CPUs, GPUs, FPGAs, and
other kinds of accelerators. This creates the need for specialized libraries, tools,
and APIs, which increase the programming costs and complexity, and complicate
future code maintenance and extension.

On the one hand, Khronos Group has proposed SYCL1, which is an open
standard, to face some of the programming issues related to heterogeneous com-
puting. Although SYCL shares some characteristics with OpenCL (such as being
1 https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf.
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royalty-free and cross-platform), it can actually be considered as an improved,
high-level version of the latter. SYCL is an abstraction layer that enables code
for heterogeneous systems to be written using standard, single-source C++ host
code including accelerated code expressed as functions or kernels. SYCL imple-
mentations are often based on OpenCL, but also have the flexibility to use other
backends such as CUDA or OpenMP. Furthermore, SYCL features asynchronous
task graphs, buffers defining location-independent storage, interoperability with
OpenCL, among other characteristics aimed to increase productivity [6,18].

On the other hand, Intel recently introduced the oneAPI programming
ecosystem, which provides a unified programming model for a wide range of
hardware architectures. The core of the oneAPI environment is a simplified lan-
guage for expressing parallelism on heterogeneous platforms, named Data Paral-
lel C++ (DPC++), which can be summarized as C++ with SYCL. In addition,
oneAPI also comprises a runtime, a set of domain-focused libraries and support-
ing tools [1].

In this scenario, GPUs can be considered the dominant accelerator, and
CUDA is the most popular programming language for them nowadays [14]. Bioin-
formatics and Computational Biology are two fields that have been exploiting
GPUs for more than two decades [12]. Many GPU implementations can be found
in sequence alignment [3], molecular dynamics [9], molecular docking [13], and
prediction and searching of molecular structures [11], among other application
areas. Even though some applications achieve a better performance with CUDA,
their portability to other architectures is severely restricted due to their propri-
etary nature.

To tackle CUDA-based legacy codes, oneAPI provides a compatibility tool
(dpct) that facilitates the migration to the SYCL-based DPC++ programming
language. A few preliminary studies assessing the usefulness of dpct can be found
in simulation [1], math [2,19], and cryptography [10]; however, to the best of our
knowledge, no study has assessed their utility in Bioinformatics. In this paper,
we present our experiences porting a biological software tool to DPC++ using
dpct. In particular, we selected SW#db [8], which is a CUDA-based, memory-
efficient implementation of the Smith-Waterman (SW) algorithm, which can be
used either as a stand-alone application or a library. Our contributions are:

– An analysis of the effectiveness of dpct effectiveness for the CUDA-based
SW#db migration, including a detailed summary of the porting steps that
required manual modifications.

– An analysis of the DPC++ code’s portability, considering different target
platforms and vendors (Intel CPUs and GPUs; NVIDIA GPUs).

– A comparison of the performance on different hardware architectures (Intel
CPUs and GPUs; NVIDIA GPUs).

This work can be considered the starting point for a more exhaustive evaluation
of CUDA-based biological tool migration to oneAPI. The remaining sections of
this article are organized as follows. In Sect. 2, the background is presented, and
in Sect. 3 we describe the migration process. Section 4 contains the experimental
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work carried out and an analysis of the results. Finally, in Sect. 5, the conclusions
and possible lines for future work are presented.

2 Background

2.1 The oneAPI Programming Ecosystem

Intel oneAPI2 is a unified programming model for application development that
can be used on different architectures, such as CPUs, GPUs, and even FPGAs.
It seeks to facilitate the hard task of developing applications on a different set
of hardware. By using oneAPI, the coding task can be performed at various
levels: (1) invoking one of the multiple optimized libraries (oneMKL, oneDAL,
oneVPL, etc.) that takes advantage of offloading technology in a transparent
way to the programmer; or (2) via direct programming using the SYCL hetero-
geneous programming language supported by the Data Parallel C++ (DPC++)
language. The DPC++ programming language (supported by Intel’s dpcpp com-
piler) combines the C++ language with SYCL, allowing the same source code
to be compiled and executed across different accelerators.

Intel oneAPI comprises several programming tools and one of the most inter-
esting with regards to code migration is a compatibility with regards tool named
dpct. This tool converts applications written in the proprietary CUDA language
to SYCL. According to Intel, this tool automatically migrates 80%-90% of the
original CUDA code to SYCL. In addition, when it comes to non-ported code,
dpct inlines comments (through warning messages) that help the programmer
to migrate and tune the final DPC++ code. [4].

The migration process consists of 3 stages:

1. Running the dpct tool, which performs the automatic code migration.
2. Modification of the migrated code, attending to all the dpct warnings in order

to obtain a first, executable version following the Diagnostics Reference3.
3. Verification of the correctness and efficiency of the resulting oneAPI program

and implementation of the necessary modifications.

2.2 Smith-Waterman Algorithm

This algorithm was proposed by Smith and Waterman [17] to obtain the optimal
local alignment between two biological sequences. SW employs a dynamic pro-
gramming approach and presents quadratic time and space complexities. Fur-
thermore, it has been used as the basis for many subsequent algorithms and
is often employed as a benchmark when comparing different alignment tech-
niques [5].

2 https://www.oneapi.com/.
3 Diagnostics Reference of Intel R© DPC++ Compatibility Tool available at: https://

software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-
compatibility-tool-user-guide/top/diagnostics-reference.html.

https://www.oneapi.com/
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
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The SW algorithm can be used to compute: (a) pairwise alignments (one-to-
one); or (b) database similarity searches (one-to-many). Both cases have been
parallelized in the literature. In case (a), a single SW matrix is calculated and all
Processing Elements (PEs) work collaboratively (intra-task parallelism). Due to
inherent data dependencies, neighbouring PEs communicate in order to exchange
border elements. In case (b), multiple SW matrices are calculated simultaneously
without communication between the PEs (inter-task parallelism) [3].

2.3 SW#

SW# is a tool for computing biological sequence alignments that can be used as
an API-based library or as a standalone command-line executable [7]. It is consid-
ered a versatile tool since it works with both protein and DNA sequences, being
able to compute pairwise alignments as well as database similarity searches.

SW#db is the package for fast exact similarity searches, which works by
simultaneously utilizing the CPU and GPU(s). The GPU part is based on CUDA
and follows both inter-task and intra-task parallelism approaches (depending
on the sequence length). For its part, CPU just exploits inter-task paralleism
through multithreading and SIMD instructions4. Through dynamic work dis-
tribution and dynamic communication between the CPU and GPU, SW#db
significantly reduces the execution time.

3 Implementation

3.1 Differences Between CUDA and DPC++

Before migrating a code from CUDA to oneAPI, certain differences should be
considered.

Memory Model: on the one hand, CUDA provides two different types of
memory model:

1. Conventional model: based on explicit memory operations between the CPU
and GPU to be specified.

2. Unified Memory (UM): introduced in CUDA 6, this model allows to the pro-
grammer to address the CPU and GPU memory in a transparent manner
based in such a way of a shared memory pool.

On the other hand, oneAPI offers three abstractions for managing memory:

1. Buffers: these are data abstractions that represent one or more objects of a
given C++ language type. Buffers represent data objects rather than specific
memory addresses, so the same buffer can be allocated to several different
memory locations on different devices, or even on the same device, for per-
formance reasons.

4 In particular, it makes use of the OPAL library for the CPU part https://github.
com/Martinsos/opal.

https://github.com/Martinsos/opal
https://github.com/Martinsos/opal
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2. Images: these are a special type of buffer created specially for image pro-
cessing. They include support for special image formats, and image reading
through sampling objects, among other features.

3. Unified Shared Memory (USM): this consists of creating a unified virtual
memory space in which pointers are shared between the CPU and the device
(similar to the CUDA UM).

Verbosity: in DPC++, all the variables used within a kernel must be declared
and explicitly sent to the functions, as well as other aspects that in CUDA are
not mandatory. On the contrary, in CUDA it is possible to indicate the variables
that you wish to send to the device and implicitly use them in the kernels. These
issues may cause the oneAPI code to be longer than its CUDA counterpart.

3.2 Migrating CUDA Codes to DPC++

In general, dpct is not able to generate fully functional DPC++ code. Thus, it
is necessary to perform hand-tuned adaptations. However, the dpct tool reports
a list of warnings, which facilitates successful refactoring.

Warnings Generated by dpct: these warnings range from simple recommen-
dations (i.e. to improve performance) to more complex issues, such as fragments
of code that have not been successfully migrated.

This section details the messages reported by the migration dpct tool when
porting the SW#, and the manual adaptation is carried out to obtain the final
DPC++ code.

DPCT1003: Migrated API does not return error code. (*, 0)

is inserted. You may need to rewrite this code

DPCT1009: SYCL uses exceptions to report errors and does

not use the error codes. The original code was

commented out and a warning string was inserted. You

need to rewrite this code.

Both warnings occur when using native CUDA functions, such as CUDA error
codes (Fig. 1a). Since dpct cannot translate them, it modifies the code to still
keep it functional (Fig. 1b). Generally, this technique is used when exchanging
data with the device. Figures 1a) and 1b) show memory allocations on the GPU
using CUDA and oneAPI, respectively. By default, dpct tries to use the USM
model because it produces a smaller volume of code and allows dpct to support
more memory-related APIs.
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1 size_t valuesSize =
2 databaseLen * sizeof(double);
3 double* valuesGpu;
4

5 CUDA_SAFE_CALL(
6 cudaMalloc(
7 &valuesGpu, valuesSize
8 )
9 );

(a) CUDA

1 size_t valuesSize =
2 databaseLen * sizeof(double);
3 double* valuesGpu;
4

5 CUDA_SAFE_CALL((
6 valuesGpu = (double *)sycl::malloc_device(
7 valuesSize, dpct::get_default_queue()),
8 0));

(b) DPC++

Fig. 1. CUDA SAFE CALL example

DPCT1005: The SYCL device version is different from CUDA

Compute Compatibility. You may need to rewrite this

code.

This problem is related to the previous one and appears when querying for
intrinsic CUDA attributes. While dpct can obtain information from the GPU,
such as the number of registers, or maximum memory size, among others5, some
CUDA-proprietary attributes (e.g. CUDA driver information) are not translat-
able. Figure 2a shows that, in the original code, the number of CUDA blocks
and threads depends on the driver version. Figure 2b presents the migrated code,
showing that it is possible to obtain information about GPU properties, with
the exception of those specific to CUDA.

DPCT1049: The workgroup size passed to the SYCL kernel

may exceed the limit. To get the device limit , query

info:: device :: max_work_group_size . Adjust the

workgroup size if needed.

1 cudaDeviceProp properties;
2 cudaGetDeviceProperties(
3 &properties, card
4 );
5

6 bool major = properties.major < 2;
7 int threads = major ? 64 : 128;
8 int blocks = major ? 360 : 480;

(a) CUDA

1 dpct::device_info properties;
2

3 dpct::dev_mgr::instance()
4 .get_device(card)
5 .get_device_info(properties);
6

7 bool major = false;
8 int threads = major ? 64 : 128;
9 int blocks = major ? 360 : 480;

(b) DPC++

Fig. 2. Querying device properties

To run the CUDA kernel, both block and thread sizes must be configured;
however, each device has a different size limit. dpct alerts the programmer that
5 https://docs.oneapi.io/versions/latest/dpcpp/iface/device.html.

https://docs.oneapi.io/versions/latest/dpcpp/iface/device.html
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the migrated code may exceed the maximum work-group limit that the under-
lying architecture supports. In addition, it recommends adjusting the code if
necessary. Figure 3a shows how to run the kernel in CUDA, while Fig. 3b shows
the DPC++ counterpart.

1 solveShort<<<blocks, threads>>>(...);

(a) CUDA

1 dpct::get_default_queue()
2 .submit([&](sycl::handler &cgh) {
3 ...
4 cgh.parallel_for(
5 sycl::nd_range<3>
6 (sycl::range<3>(1, 1, blocks) *
7 sycl::range<3>(1, 1, threads),
8 sycl::range<3>(1, 1, threads)),
9 [=](sycl::nd_item<3> item_ct1) {

10 solveShort(...);
11 });
12 });

(b) DPC++

Fig. 3. Kernel launch with dynamic work-group size

DPCT1065: Consider replacing sycl:: nd_item :: barrier ()

with sycl:: nd_item :: barrier(sycl:: access :: fence_space

:: local_space) for better performance if there is no

access to global memory.

In this situation, dpct recommends the programmer to use an additional param-
eter when synchronizing threads within the kernel as long as no global memory
is used. By default, the tool does not automatically optimize this aspect because
it cannot discern whether this memory is being used. An example of the CUDA
thread synchronization and the migrated oneAPI code can be seen in the Figs. 4a
and 4b, respectively.

1 ...
2 __syncthreads();
3 ...

(a) CUDA

1 ...
2 item_ct1.barrier();
3 ...

(b) DPC++

Fig. 4. Thread synchronization
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DPCT1084: The function call has multiple migration

results in different template instantiations that

could not be unified. You may need to adjust the code

.

In CUDA, generic functions are a common way of reducing code size, since they
permit code reuse for data of different types. Although oneAPI supports this
programming feature, it cannot automatically port this kind of code due to the
multiplicity of possible migration options. Figure 5a shows a CUDA example in
which instructions depend on the type of parameter sent to the kernel function.
Figure 5b shows the corresponding migrated code.

DPCT1059: SYCL only supports 4-channel image format.

Adjust the code.

In CUDA, texture memory variables can be allocated through 1 to 4 channels,
while in SYCL, texture memory is accessed through images. As is reported by
the dpct warning, SYCL only supports the use of 4-channel images, so the
programmer must adapt the parts of the code in which images of different sizes
are used. In Fig. 6a a 1-channel texture variable is declared in CUDA (placed
in the device) and finally a data is read from it. Figure 6b presents a possible
adjustment to the corresponding code to convert a 1-channel texture variable
to an equivalent 4-channel one. As can be seen, this conversion requires to the
modification of the indexes through which the memory is accessed to obtain
the correct data. Thus, a 2-bit right shift (equivalent to DIV 4) combined with
a logical AND 3 operation (equivalent to MOD 4) must be performed in the
corresponding read operation.

Runtime and Results Check: once the code compiles correctly, it must be
verified that there are no execution errors and that the results obtained are cor-
rect. In this case, although the oneAPI program compiled correctly, the following
runtime error appeared:

For a 1D/2D image/image array , the width must be a Value

>= 1 and <= CL_DEVICE_IMAGE2D_MAX_WIDTH.
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1 class SubVector {
2 public:
3 __device__ int operator()(...) {
4 ...
5 }
6 };
7

8 template <class Sub>
9 __global__ static void solveLong(

10 ..., Sub sub) {
11 sub(...);
12 }
13

14 solveLong<<<blocks, threads>>>(
15 ..., SubVector());

(a) CUDA

1 class SubVector {
2 public:
3 int operator()(...) {
4 ...
5 }
6 };
7

8 template <class Sub>
9 static void solveLong(..., Sub sub) {

10 sub(...);
11 }
12

13 cgh.parallel_for(
14 sycl::nd_range<3>
15 (sycl::range<3>(1, 1, blocks) *
16 sycl::range<3>(1, 1, threads),
17 sycl::range<3>(1, 1, threads)),
18 [=](sycl::nd_item<3> item_ct1) {
19 solveLong(..., SubVector());
20 });
21 });

(b) DPC++

Fig. 5. Generic functions

This error appears because SYCL images have a limited size, with the max-
imum size of the 1D images (vectors) being smaller than their 2D counterparts
(matrices). To solve this issue, this image object must be converted to another
DPC++ memory abstraction: either buffers or USM. We chose USM because
the required modifications were simpler compared with the other option.

Figure 7a shows how a 2-level texture memory is allocated on the GPU, while
Fig. 7b illustrates how to use USM to send an array to the device. In this way,
the read mechanism also changes, both in CUDA (Fig. 8a) and in DPC++.

1 texture<char> colTexture;
2

3 int colSize = colsGpu * sizeof(char);
4 char *colGpu;
5 cudaMalloc(&colGpu, colSize);
6 cudaMemcpy(colGpu, colCpu,
7 colSize, TO_GPU);
8 cudaBindTexture(NULL, colTexture,
9 colGpu, colSize);

10

11 char v = tex1Dfetch(colTexture, 10);

(a) CUDA

1 //dpct::image_wrapper<char, 1> colTexture;
2 dpct::image_wrapper<sycl::char4, 1> colTexture;
3 int colSize = colsGpu * sizeof(char);
4 char* colGpu;
5

6 colGpu = (char *)sycl::malloc_device(
7 colSize, dpct::get_default_queue());
8

9 dpct::get_default_queue()
10 .memcpy(colGpu, colCpu, colSize).wait();
11

12 colTexture.attach(colGpu, colSize);
13

14 // DIV 4 y MOD 3
15 char v = colTexture.read(10 >> 2)[10 & 3];

(b) DPC++

Fig. 6. 4-channel texture memory
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1 texture<int, 2,
2 cudaReadModeElementType> seqsTexture;
3

4 cudaArray *sequencesGpu;
5 cudaChannelFormatDesc channel =
6 seqsTexture.channelDesc;
7 cudaMallocArray(&sequencesGpu,
8 &channel, sequencesCols, sequencesRows);
9 cudaMemcpyToArray(sequencesGpu, 0, 0,

10 sequences, sequencesSize, TO_GPU);
11 cudaBindTextureToArray(
12 seqsTexture, sequencesGpu);

(a) CUDA

1 static int *seqsGpu;
2

3 seqsGpu = (int *)sycl::malloc_device(
4 sequencesCols * sequencesRows * sizeof(int),
5 dpct::get_default_queue());
6

7 dpct::get_default_queue()
8 .memcpy(seqsGpu, sequences, sequencesCols *
9 sequencesRows * sizeof(int))

10 .wait();

(b) DPC++

Fig. 7. CUDA 2-D texture memory adaptation using the DPC++ USM

1 int columnCodes = tex2D(
2 seqsTexture, colOff, j + rowOff);

(a) CUDA

1 int columnCodes =
2 seqsGpu[(j + rowOff) * sequencesCols + colOff];

(b) DPC++

Fig. 8. Data accessing in 2D array

After the DPC++ program executed successfully, different tests were per-
formed and their results were verified to ensure that they were equivalent to
those of the original CUDA code.

4 Experimental Results

4.1 Experimental Design

All the tests were carried out using the platforms described in Table 1. The
oneAPI and CUDA versions are 2022.0 and 11.5, respectively, and in order to
run DPC++ codes on NVIDIA GPU, we built a DPC++ toolchain with sup-
port for NVIDIA CUDA, as it is not supported by default on oneAPI6. The
performance was evaluated by carrying out experiments similar to those in pre-
vious works [15,16], searching 20 query protein sequences against the well-known
UniProtKB/Swiss-Prot database (release 2021 04)7, and including the following
features:

– The input queries range in length from 144 to 5478, and they were
extracted from the Swiss-Prot database (accession numbers: P02232, P05013,
P14942, P07327, P01008, P03435, P42357, P21177, Q38941, P27895, P07756,
P04775, P19096, P28167, P0C6B8, P20930, P08519, Q7TMA5, P33450, and
Q9UKN1).

– The database contains 204173280 amino acid residues in 565928 sequences
with a maximum length of 35213.

6 https://intel.github.io/llvm-docs/GetStartedGuide.html.
7 Swiss-Prot: https://www.uniprot.org/downloads.

https://intel.github.io/llvm-docs/GetStartedGuide.html
https://www.uniprot.org/downloads
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Table 1. Experimental platforms used in the tests

CPU GPU

ID Processor RAM

Memory

ID Vendor (type) Model (architecture) GFLOPS peak

(SP)

Core-i5 Intel Core

i5-7400

16 GB Titan NVIDIA

(Discrete)

Titan X

(Pascal)

10970

Core-i3 Intel Core

i3-4160

8 GB RTX NVIDIA

(Discrete)

RTX 2070

(Turing)

7465

Core-i9 Intel Core

i9-10920X

32 GB Iris XE Intel

(Discrete)

Iris Xe MAX Graphics

(Gen 12.1)

2534

Xeon Intel Xeon

E-2176G

65 GB P630 Intel

(Integrated)

UHD Graphics P630

(Gen 9.5)

441.6

– BLOSUM62 and 10(2) were set as the scoring matrix and gap insertion (exten-
sion) penalty, respectively.

As SW#db is hybrid CPU-GPU software, just a single thread was configured
at the CPU level (flag T=1) to minimize its impact on the overall performance.
In addition, different work-group8 sizes were configured for kernel execution.
Finally, each test was run twenty times and the performance was calculated as
the average in order to avoid variability.

4.2 Performance Results

GCUPS (billion cell updates per second) is commonly used as the performance
metric in the context of SW [15]. Figure 9 presents the performance of the both
CUDA and DPC++ versions on two NVIDIA GPUs when varying work-group
size. First, it can be noted that both codes are sensitive to the work-group size.
In fact, the best performances are obtained when using work-group sizes that are
different to the ones that SW#db set as default. Regarding the performance on
each NVIDIA GPU, there are no significant differences between the two codes

Fig. 9. Performance of both CUDA
and DPC++ versions on the NVIDIA
GPUs when varying work-group size.

Fig. 10. Performance of both CUDA
and DPC++ versions on the NVDIA
GPUs when varying the query length.

8 A DPC++ work-group is equivalent to a CUDA block.
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on the Titan. However, on the RTX, this situation changes; the DPC++ version
actually outperforms its CUDA counterpart (by approximately 5%).

Figure 10 deepens the above analysis by presenting the performance of both
the CUDA and DPC++ versions on the NVIDIA GPUs when varying the query
length (optimal work-group size was used for each case). It can be noted that all
versions benefit from larger workloads. As expected, the CUDA code achieves
the same GCUPS as the DPC++ one for all query lengths on the Titan. Both
the DPC++ and CUDA versions present practically the same performance on
the RTX, with the latter outperforming the former on the largest sequences.

To verify cross-vendor GPU portability, the DPC++ code was executed on
two different Intel GPUs, varying the query length (see Fig. 11). Due to the
absence of an optimized version for both Intel devices, little can be said about
its performance. However, it is important to remark that only two minor changes
were necessary to carry out these tests: (1) setting the appropriate work-group
size; and (2) setting the corresponding backend. As the ported code was com-
piled and executed with minimal tuning, there is probably room for further
improvement.

Finally, Fig. 12 presents the performance of the DPC++ code on 4 different
Intel CPUs, demonstrating its cross-architecture portability. With regards to
performance, more GCUPS are achieved as the query length increases. Once
again, running the migrated code only required minimal intervention and its
performance could be improved through fine tuning.

Fig. 11. Performance of DPC++ code
on the different Intel GPUs when vary-
ing the query length.

Fig. 12. Performance of DPC++ code
on the different Intel CPUs when vary-
ing the query length.

5 Conclusions and Future Work

The recently introduced Intel oneAPI ecosystem aims to respond to the pro-
gramming challenge posed by heterogeneous computing. In this paper, we have
presented our experiences when migrating a CUDA-based, biological software
tool to DPC++ using the oneAPI framework. The main findings of this research
are:
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– dpct proved to be an effective tool for SW#db code migration to DPC++.
While it was not able to translate the complete code, dpct did most of the
work and gave hints to the programmer on the pending parts.

– The migrated code could be successfully executed on CPUs and also
GPUs from different vendors, demonstrating its cross-vendor GPU, cross-
architecture portability.

– The performance results showed that the migrated DPC++ code is compa-
rable to the original CUDA one. In fact, DPC++ can even be faster in some
cases. As the ported code was compiled and executed with minimal tuning,
there is probably room for further improvement.

Future work will focus on:

– Understanding the gap in performance between DPC++ and CUDA code,
and optimizing DPC++ code to reach its maximum performance.

– Carrying out more exhaustive experimental work. In particular, by consider-
ing other alignment operations, larger workloads, and multi-GPU execution,
among other aspects, in order to increase the representativeness of this study.

– Running the DPC++ code on other architectures such as FPGAs, to verify
its cross-architecture portability.
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Spanish MINECO and CM under grants S2018/TCS-4423, RTI2018-093684-B-I00 and
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Abstract. Mass spectrometry is one of the widely used techniques in proteome
studies, enabling, inter alia, the identification of proteins present in biological
samples based on the analysis of unique peptides originating from the proteins of
interest. It should be noted, however, that from the point of view of mass spec-
trometry data pre-processing, the identification of an isotopic envelope of a peptide
plays a crucial role in its precise annotation. Nowadays, there are a plethora of
algorithms created to reach this goal, nevertheless, they strongly depend on the
type of experimental platform (especially the ionization method: MALDI, ESI,
etc.) and are usually dedicated to a specific type of molecules (e.g., lipids or pep-
tides). We propose a unique approach that combines information about the spatial
distribution of a molecule across a tissue section sample with a fuzzy-inference
system. The mass spectrum was considered as a set of peaks. For each peak, an
intensity map was constructed, that presents the spatial distribution of peptide
abundance across the tissue sample. The obtained intensity map was further ana-
lyzed and the outcome of this analysis was applied to the fuzzy-inference system
and to the fuzzy C-means image segmentation method.

Keywords: Isotopic envelope ·Mass spectrometry imaging · Proteomics ·
MALDI · Fuzzy C-means

1 Introduction

Mass Spectrometry Imaging (MSI) is a tool that enables the mapping of the spatial
distribution of biomolecules across the tissue of interest [1]. MALDI mass spectrometry
imaging methods are widely used in various fields of bioanalysis to analyze proteins,
peptides, lipids, or exogenous and endogenous small molecules [2]. Moreover, MALDI
MSI has attracted a great deal of interest in the analysis of cancer tissues [3] and it
turned out that it is a promising tool for cancer diagnostics [4]. It offers the possibility
to generate maps of the spatial distribution of hundreds of molecules across an analyzed
tissue section in a single imaging experiment [5]. First, a properly prepared tissue section
is introduced into the mass spectrometer, then spectra are acquired at the sample surface
(rectangular x, y grid). As a result, an array of spectra is obtained, where each spectrum is
a molecular profile of the area irradiated by the laser [2]. The use of MSI can expand the

© Springer Nature Switzerland AG 2022
I. Rojas et al. (Eds.): IWBBIO 2022, LNBI 13347, pp. 119–132, 2022.
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amount of information that could be obtained from a tissue – it combines molecular and
morphological information [6] since spatially resolvedmass spectrometrymeasurements
are taken from a tissue section without destroying it [3].

Amass spectrum is obtained when a beam of ions is separated according to themass-
to-charge ratios (m/z) of the ionic species contained within it [7, 8]. A mass spectrum
of a protein can be considered as a set of peaks [9]. A peak on a mass spectrum is
a signal derived from an ion that was detected in a mass spectrometer. In order to
handle such data correctly, various preprocessing methods have been developed, such
as baseline removal, smoothing, peak picking, etc. One of them is deisotoping, which
is based on the search for the isotopic envelope across the whole spectrum, since some
peaks do not originate from different compounds, but are isotopes of one element. An
isotope pattern in mass spectrometry is a set of peaks related to ions with the same
chemical formula but containing different isotopes [8]. In the case of high-resolution
mass spectrometry (which enables the resolution of signals originating from molecules
of a given compound differing in isotopic composition) identification of the isotopic
envelope (isotope pattern) of a compound is of crucial importance from the correct
compound identification point of view. Nowadays, there are several methods that try to
deal with the problem of deisotoping, but they are depended on the type of experimental
platform and are dedicated to a specific type of molecule (proteins or lipids). Some of
the aforementioned algorithms have been tested by the authors and published in [10].

In order to properly identify isotopic envelopes of tryptic peptides, here we have pro-
posed a new approach based on the spatial distribution of peaks and a fuzzy-inference
system and fuzzy C-means image segmentation method. The mass spectrum was con-
sidered as a set of peaks. For each peak, an intensity map was constructed, that presents
the spatial distribution of peptide abundance across the tissue sample. Hence, there is a
strong need for defining theway how to choose the criterion that can distinguish intensity
maps for peaks that are members of one isotopic envelope from those that are not. To
determine whether the image represents peaks that are members of an isotopic envelope,
intensity differences were taken into consideration. The outcome of this analysis was
applied to the fuzzy-inference system and to the fuzzy C-means image segmentation
method. In order to confirm obtained results, an expert in the field of mass spectrometry
annotated peaks that were members of an isotopic envelope.

2 Materials and Methods

2.1 Data Characteristic

Data were provided by Maria Skłodowska-Curie National Research Institute of Oncol-
ogy in Gliwice (Poland). The material was collected from a patient with oral cavity
squamous cell carcinoma, cancer stage T4N2M0 – peptides are taken into considera-
tion in this work. Spectra were acquired in positive reflectron mode in the mass range
between 800 and 4000m/z. The primary dataset consisted of 9,492 averaged spectra with
109,568 mass channels [m/z]. Then, the spectra underwent several pre-processing steps:
resampling (in order to unify mass channels across the dataset), baseline removal, TIC
normalization, and alignment to the average spectrum based on the Fast Fourier Trans-
form [11, 12]. After that, the Gaussian Mixture Model (GMM) approach was applied
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to peak detection and spectra modeling [13]. In order to construct the mathematical
model of an average spectrum, the GMM approach was applied and it turned out that the
complete model consisted of 6,714 Gaussian components. Then, the neighboring com-
ponents, which model right-skewness of spectral peaks, were merged, and components
with relatively low abundance were filtered out. After all, the number of components
has been reduced from 6,714 to 2,435 peaks [12]. After these steps, the peaks that were
considered to belong to an isotopic envelope were annotated by an expert in the field of
mass spectrometry.

2.2 Idea Explanation

A spectral fragment is represented by one datum – peaks [14] (Fig. 1). For further
analysis, the spectrum is to be considered as a set of peaks.

Fig. 1. Peptides spectrum fragment.

An isotopic envelope consists of the isotopes of one compound. An exemplary iso-
topic envelope for a peptide is shown in Fig. 2. It is the isotopic envelope of peptide,
calculated with the Isotope Pattern Calculator, developed by Bruker®.
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Fig. 2. An exemplary isotopic envelope for peptide YDLDFK.

The first step of analysis is based on Mamdani-Assilan fuzzy-inference system,
presented in detail in [10]. The system is based on the following IF-THEN rules, which
define if a peak is a member of an isotopic envelope [10]:

• “distance between two neighboring peaks is approximately equal to 1 Dalton
• the variance ratio of two neighboring peaks is approximately equal to 1
• amplitude ratio between two neighboring peaks is decreasing”.

To combine the rule outputs, the maximum-based aggregation method was applied
[10]. “For defuzzification – the center of gravity method was used” [10].

After identifying candidate peaks that were prior identified with the fuzzy algorithm
based on theMamdani-Assilan fuzzy-inference system, the following algorithm for each
peak pair is performed – Fig. 3.
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Fig. 3. Algorithm pipeline.
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To annotate peaks that are included in an isotopic envelope, we propose the following
algorithm:

• Peak visualization

A separate spectrum is acquired for every tissue coordinate. The lateral resolution (raster
width) of our MS images is 100 μm. To visualize the spatial distribution of the peaks,
each peak from a spectrum with a given m/z value is visualized as an image (map
of intensities). It represents the intensities of peaks registered for specific m/z values
throughout the whole tissue section. The image is constructed in the following way:
intensities of the peaks are represented by different colors across the entire sample, in
the original coordinate system. Then, in order to find the isotopic envelopes, for each
peak of the pair, the aforementioned intensitymap is constructed, that presents the spatial
distribution of peptide abundance across the tissue sample.

After all peaks in the spectrum were visualized as images (intensity maps), pairwise
differential images (Fig. 4, Fig. 5) have been created for each pair of peaks by subtracting
normalized images.

Fig. 4. Differential image of peaks that are members of one isotopic envelope.



Fuzzy-Inference System for Isotopic Envelope Identification 125

Fig. 5. Differential image of peaks that are not the members of one isotopic envelope.

For each differential image, a comprehensive analysis of its intensity histogram and
signal spatial distribution was performed, as shown in Fig. 3. We claim that if two peaks
belong to the one isotopic envelope, their spatial distribution should be similar, and the
obtained differential image should not have any internal structure. The above hypothesis
could be verified by applying histogram analysis. The uniformity of the signal abundance
means that we do not expect any particular structure in the image. The ‘salt and pepper’
structure is the most required one. Salt and pepper noise can be compared to sprinkling
white and black dots on the image – it is a well-known process of image degradation
[15]. To sum up, we assume that the peaks which are members of the particular isotopic
envelope have the same spatial distribution, so that no structure should be visible in a
differential image (Fig. 4). Therefore, we expect that for peaks that are not members of
an isotopic envelope, a structure is visible in a differential image (Fig. 5).

Contribution of Peaks Intensities in Isotopic Envelope Defining
The difference in intensities of the pixels was pairwise calculated and as a result,
histograms of that difference were created (Fig. 6, Fig. 7).
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Fig. 6. Ahistogrampresenting the difference in intensities of the pixels for peaks that aremembers
of an isotopic envelope.

Fig. 7. A histogram presenting the difference in intensities of the pixels for peaks that are not the
members of an isotopic envelope.

As it can be observed, a standard deviation of envelope peaks is lower than the
standard deviation of peaks that are not members of an isotopic envelope. According
to this, that feature was taken into consideration for further analysis. Based on that, the
number of peaks included in the range <−0.2; 0.2> were calculated. Finally, the value
[%] is an input for the fuzzy-inference system (Fig. 8).
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Fig. 9. Fuzzy-inference system [16].

Then, the Sugeno fuzzy-inference system [17] was created, in Fig. 9 the process of
calculating the output value was presented. During the fuzzification process, numerical
input values are converted to fuzzy input values by the Gaussian combination member-
ship function (Eq. 1, Fig. 10). The defuzzificationmethod is based on aweighted average
of data points [16, 17].

f (x; σ, c) = e
−(x−c)2

2σ2 , (1)

where:
σ – standard deviation,
c – mean for each Gaussian function.
Such a system provides the percentage possibility of being a member of an isotopic

envelope.
Another approach for isotopic envelope identification is based on the fuzzy C-means

clustering approach (FCM). In this method, a piece of data can belong to two or more
clusters [18]. The fuzzy C-means segmentation of the differential image was performed
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Fig. 10. Gaussian membership function.

by converting an input differential image into two segments by the fuzzy C-means
algorithm [19].

3 Results

Fuzzy-Inference System
In Table 1 exemplary results for peptides’ mass spectrum are presented. An output of the
fuzzy-inference system is a possibility of isotopic envelope membership – it indicates
whether a peak is a member of an isotopic envelope or not. As it can be observed, peaks
that are members of an isotopic envelope are characterized by possibility values bigger
than 50%, whereas the non-envelope ones have possibility values lower than 50%.

Table 1. Exemplary results for peptides’ mass spectrum.

m/z1 m/z2 Possibility of isotopic envelope membership [%]

805.6 809.7 46 (Non-envelope)

808.7 809.7 74.7 (Envelope)

810.7 811.7 98.1 (Envelope)

810.8 897.6 15.3 (Non-envelope)

812.7 813.7 98.7 (Envelope)

812.7 897.6 25.1 (Non-envelope)

843.7 844.7 99 (Envelope)

Obtained results have been checked on the mass spectrum, in Fig. 11 peaks included
in the same isotopic envelope are marked in red, whereas in Fig. 12 peaks that are not
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included in the same isotopic envelope were marked in red. Isotopic envelope members
are characterized by the lower number of peaks within the range <−0.2; 0.2>. The
reason is that peaks of one isotopic envelope in such a range of m/z values (~800 – ~
1000 Da) follow such a pattern: the first peak has the highest intensity (monoisotopic
peak), whereas the successive peaks represent ~ 45% and ~ 12% of the intensity of the
first peak, respectively. According to that, the intensity histogram of peaks included in
one envelope is denser within the range < −0.2; 0.2 >.

Fig. 11. Peaks included in the same isotopic envelope.

Fig. 12. Peaks that are not members of the same isotopic envelope.

The obtained results were compared to results of an analysis of an average MSI
spectrum performed by an experienced mass spectrometrist, who assessed whether a
particular isotopic peak belonged to a given isotopic envelope based on the theoretical
isotope pattern for a peptide with a given mass. The theoretical isotopic pattern for a
peptide was obtained using the Compass IsotopePattern Calculator (Bruker®) taking
into account the peptide sequence obtained in an LC-MALDI MSMS analysis of the
tissue protein extract.
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Fuzzy C-Means Differential Image Segmentation
In Fig. 13 and Fig. 14 exemplary results of the differential image segmentation based on
the fuzzy C-means algorithm for the envelope and non-envelope members are presented,
respectively. As it can be observed, in the envelope image there is no structure visible,
whilst in the non-envelope image, the structure is clearly visible.

Fig. 13. Final segmentation after fuzzy
C-means clustering.

Fig. 14. Final segmentation after fuzzy
C-means clustering.

Table 2. Exemplary results of the differential image segmentation based on the fuzzy C-means
clustering.

Envelope Non-envelope

Cluster center 1 Cluster center 2 Cluster center 1 Cluster center 2

2.6 32.4 7.0 71.7

2.1 23.9 7.9 86.1

2.2 23.6 7.7 81.0

In Table 2 exemplary results of the differential image segmentation based on fuzzy
c-means clustering are presented. The cluster center is an arithmetic mean of all the
data points that belong to the specific cluster. It can be observed that for the envelope,
the cluster centers are characterized by significantly lower values in comparison to the
non-envelope ones.
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4 Conclusions

The proposed method is based on mass spectrum analysis from the spatial distribution
point of view. Other aspects of the mass spectrum are not taken into consideration.
According to that, the presented method can be used for any mass spectrum, no matter
what type of mass spectrometry experiment it comes from. There are several existing
methods for deisotoping, but they are usually dedicated to a specific type of experimental
platform (for instance MS-Deconv [18], BPDA [19]) or type of molecule (lipids or
peptides), for example, BPDA [19], YADA [20].

Nevertheless, there are some limitations to this work, since the proposed method is
dedicated only to molecular imaging techniques and cannot be used in other proteome
studies.

Finally, we conclude that the proposed algorithm for the automatic identification
of the isotopic envelope is independent of the type of mass spectrometry experiment
(MALDI,ESI, etc.) andof the typeofmolecules to be analyzeddue to the fact that the only
feature that is considered is a spatial distribution of the peaks from the mass spectrum.
The basic idea that a proper analysis of the spatial distribution of themolecular abundance
in the tissue sample allows distinguishing between the envelope and non-envelope peaks
has been proven, and the obtained results seem to be promising.
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Abstract. RTK KIT regulates a variety of crucial cellular processes via
its cytoplasmic (CD) domain composed of the tyrosine kinase domain
crowned by highly flexible domains - juxtamembrane region, kinase insert
domain and C-tail, key recruitment regions for downstream signalling
proteins. We generated 3D models of the full-length CD attached to the
transmembrane helix to prepare a structural basis for characterization
of interactions of native KIT and its oncogenic mutant D816V with sig-
nalling proteins (KIT INTERACTOME). Generic models of native KIT
in inactive state and constitutively activated KIT mutant D816V were
studied by molecular dynamics simulation under conditions mimicking
the natural environment of KIT. With the accurate atomistic descrip-
tion of the multidomain KIT dynamics, we explained the role of somatic
mutation D816V on structural and dynamical properties of RTK KIT
focusing on its intrinsic (intra-domain) and extrinsic (inter-domain) dis-
order. Conformational ensembles of native and mutated KIT were rep-
resented through free energy landscapes. Strongly coupled movements
within each domain and between distant domains of KIT prove the func-
tional interdependence of these regions, described as allosteric regulation,
a phenomenon widely observed in many proteins.

Keywords: Receptor tyrosine kinase · RTK · Full-length KIT
cytoplasmic region · Intrinsically disordered regions · Somatic mutation
d816v · Phosphotyrosine · Modelling · Molecular dynamics ·
Conformational transition · Allosteric regulation and deregulations ·
Free energy landscape

Receptor tyrosine kinases (RTKs) control various signalling pathways in cells.
Their remarkable conformational plasticity enables the specific recognition of
many molecules such as ligands, substrates or proteins. In solution, RTKs are
at equilibrium between different conformations ranging from an inactive auto-
inhibited state to a fully active state. Ligand-induced activation of RTKs leads
to recruitment and activation of multiple downstream signalling proteins which
alter the expression of genes governing cell physiology [10]. Explicit elucida-
tion of signalling events is an important and unresolved problem in cell biol-
ogy. The initiation of these cascade-like processes involves different domains of
c© Springer Nature Switzerland AG 2022
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RTK, each performs specific actions, finely concerted by a regulated allosteric
mechanism controlling all functional biological processes [4,12]. Dysregulation
of RTK-controlled signalling pathways, prompted generally by gain-of-function
mutations, underlies abnormal cell development leading to tumorigenesis.

Focusing on the RTK KIT, an important target in oncology [3,11], we will
discuss this RTK as a key regulator of intracellular signalling mediated by regions
possessing multiple phosphorylation sites: juxtamembrane region (JMR), kinase
insert domain (KID), activation loop (A-loop) and C-terminal tail. Since these
regions are very flexible or disordered, their properties are not yet well under-
stood. As KIT is a multi-functional protein, its different regions regulate cat-
alytic processes and/or events that activate and control the signalling cascade.
To complete the functions required in more than one region, these regions should
be directly or collaterally coupled.

We generated the 3D model of the inactive full-length native KIT (KIT
WT) attached to the transmembrane helix (Fig. 1), to (i) prepare a structural
basis for the characterisation of interconnections between functional regions -
JMR, tyrosine kinase (TK) domain, KID and C-tail -, and (ii) establish the
interactions of KIT with its signalling proteins. Then, we investigated this model
by molecular dynamics (MD) simulation in conditions mimicking its natural
environment. We suggested that such atomistic description of KIT will fully
elucidate structural and dynamical properties of its different functional regions.
To the best of our knowledge, we have presented for the first time a model of
a full-length cytoplasmic region of an RTK KIT attached to a transmembrane
helix and its molecular dynamics simulations under conditions that mimic its
natural environment [9].

Analysis of the simulation data (three 2-µs MD trajectories) put in evidence
that the multidomain RTK KIT is a modular protein consisting of a quasi-
stable TK domain crowned by at least four intrinsically disordered (ID) regions
- JMR, KID, A-loop and C-tail. These ID regions belong to two types - the very
elongated (extended) and poorly folded regions (JMR, A-loop and C-tail), and
the globule-like (collapsed) KID having a high level of the helical structures. KIT
ID regions contain transient structures (helices and β-strands) and their local
architecture displays various degrees of compaction and elongation. Therefore,
the structure of each ID domain of KIT represents a very complex mixture of
a broad variety of differently folded conformations which describe a reversible
folding-unfolding process, specific for each ID domain. In particular, the KID,
composed of transient helices linked by coils, is the most disordered domain
in respect to other KIT domains, but shows a globule-like shape stabilised by
non-covalent interactions [5,7].

Also, the inherently disordered KID shows different positions derived from
two types of motions - linear (translation) and angular (rotation) displacement
- regarding the stable TK domain. The elongated regions (JMR, A-loop and
C-tail) show rather local disorder as evidenced by alternating positions of their
short segments relative to the stable TK domain.



Receptor Tyrosine Kinase KIT: A New Look for an Old Receptor 135

Fig. 1. The 3D model of full-length KIT in native and constitutively active
states attached to the transmembrane helix. Modelling and study by MD sim-
ulations (top panel) analysed to (i) characterise the global motions and coupling, (ii)
to represent the MD conformations as the free energy landscape, (iii) to describe the
relative positions of the KIT functional regions and the position of phosphotyrosine
residues.

The two-level disorder (intrinsic and extrinsic) provides high conformational
variability of KIT and supplies the high adaptability of JMR, KID and C-tail
required for the scaffolding (docking sites) and recruitment of different protein
partners of KIT and accomplishes the tight regulation of cellular processes. Con-
sequently, the overall structure of KIT represents a continuous spectrum of con-
formations with a different degree and depth of disorder, thereby generating a
complex protein structural space. It is partially reflected by free energy land-
scapes (FEL) lacking a unique global deep minimum as typically observed in
ordered proteins. Such energy landscapes, with two local minima joined by a
‘flattened plateau’ containing the intermediate conformations, show that KIT
is extremely sensitive to different environmental changes (e.g. phosphorylation)
that can alter its FEL in different ways. We suggest that JMR, displaced from
its packed auto-inhibited position upon the SCF-induced activation of KIT, will
achieve higher levels of disorder, and therefore a higher level of adaptability for
the recruitment of signalling proteins. We suggest that JMR, displaced from its
packed auto-inhibited position upon the SCF-induced activation of KIT, will
achieve higher levels of disorder, and therefore a higher level of adaptability for
the recruitment of signalling proteins.

Since ID domains are multiple in RTK KIT, does the disorder/order of one
domain depend on the disorder/order of other remote regions? As evidenced by
the cross-correlations, the highly coupled motions of distant regions of KIT sug-
gest their functional dependence, classified as allosteric regulation, phenomenon
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largely observed in many proteins. In particular, the coupling motions within
the TK domain reflect the allosteric regulation of kinase function which is
well-described for different non-receptor and receptor tyrosine kinases [1]. The
coupled/uncoupled motions of A-loop and JMR were described through their
allosteric communication in the wild-type KIT and oncogenic mutants [2,6],
although this characterization was made using limited structural data with only
partially resolved JMR.

To characterise function-related mutation-induced effects in KIT, we studied
KID D816V mutant represented by the most realistic the full-length model [8].
Even through KID D816V structure is highly similar to native KIT, motions of
these two proteins are quite different. Indeed, KID D816V mutant shows signif-
icantly increasing coupling of intra- and inter-domain motions. Moreover, KIT
communication pathways network is strongly different in two proteins. Such mul-
tipanel characterisation has explained more explicitly the role of each region in
maintaining KIT inactive and constitutively active state and/or as a signalling
support for the phosphotyrosines-containing regions, and has established rela-
tionships between them.

This dynamic model of allosterically regulated KIT in two states is the first
step for the reconstruction of its (i) INTERACTOME, composed of a set of KIT
complexes with its signalling proteins, and its (ii) DYNASOME, constituting
of an ensemble of KIT intermediate conformations before, over and after post-
transduction processes upon its physiological and pathological context. We also
suggested that KIT in inactive state encodes all properties of the active protein
and post-transduction events. Such hypothesis echoes high dependences of the
INTERACTOME to the DYNASOME.
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Abstract. Human Vitamin K epoxide reductase (hVKORC1) is a key
enzyme to reduce vitamin K. Such function requires activation of the
enzyme by a redox partner delivering reducing equivalents through thiol-
disulphide exchange reactions. The activation process represents a first
and less studied step in hVKORC1 vital cycle, involving the oxidised
luminal loop (L-loop) and a reduced thioredoxin protein (Trx), which is
yet undefined for hVKORC1. A careful in silico study, based on molec-
ular dynamic (MD) simulations of hVKORC1 in oxidised state, and a
comparative analysis of four Trx proteins - protein disulphide isomerase
(PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-
related transmembrane protein 1 (Tmx1) and thioredoxin-related trans-
membrane protein 4 (Tmx4)), viewed as the most probable reducers of
hVKORC1 - in their sequence, secondary and tertiary structure, dynam-
ics, intra-protein interactions and composition of the surface exposed to
the target - provided the identification of putative recognition/binding
sites on each isolated protein. PDI was suggested as the most probable
hVKORC1 partner. By probing the alternative orientation of PDI with
respect to hVKORC1, two PDI-VKOR models were proposed and one
of them considered as precursor for thiol-disulphide exchange reactions.

Keywords: hVKORC1 · Trx-fold redox proteins · Protein folding ·
Intrinsic disorder · Modular protein · Molecular recognition ·
Thiol-disulphide exchange · Protein-protein interactions ·
PDI-hVKORC1 complex · 3D modelling · Molecular dynamics

The human vitamin K epoxide reductase (hVKOR) hVKORC1 is an endoplas-
mic reticulum (ER)-resident transmembrane protein reducing vitamin K inside a
membrane-embedded cysteine-containing redox centre [9]. Such activity requires
the cooperation of VKOR with a redox partner delivering reducing equivalents
through thiol-disulphide exchange reactions, involving a disulphide bridge from
the extended luminal loop (L-loop) of VKOR [6]. The activation process repre-
sents a first and less studied step in VKOR vital cycle. The physiological redox
partner of hVKORC1 remains uncertain. Four human redoxin proteins (Trx)
- protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase
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(ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-
related transmembrane protein 4 (Tmx4) - were suggested as the most probable
H-donors of hVKORC1 [7]. In addition, the structure of hVKORC1 L-loop is
not credibly characterised. Consequently, deciphering the molecular origins of
hVKORC1 recognition by an unknown redox protein is not a trivial task.

We suggested that an accurate in silico study of Trxs and hVKORC1 as
isolated proteins would provide useful information for the development of puta-
tive Trx-VKOR complexes. Quantitative metrics and qualitative estimations can
shed new light on the target (hVKORC1) features and peculiarities of redox pro-
teins (Trx). Such information may help in predicting (i) the protein fragments
participating in VKORC1 recognition by a Trx and (ii) the most probable part-
ner of VKORC1.

Fig. 1. 3D model of VKORC1 and its complex with redox protein (a)
VKORC1 inserted into membrane and surrounded by water molecules. The helically
folded L-loop shows structural and conformational disorder in de novo model (left and
middle) and in X-ray structures. (b) Clustering of L-loop conformations using RMSD
and secondary structures. (d) Projection of MD conformations on the three principal
components determined by principal component analysis (PCA). (e) Free energy land-
scape of L-loop conformations defined on two primary reaction coordinates, RMSD
and radius of gyration (Rg). (f) Mechanism of disulphide exchange between Trx and
a target. (g) Superimposed 3D structures of Trx-fold proteins with cysteine residue as
yellow balls. Regions that are potentially involved in target recognition and/or electron
transfer reaction are differentiated by colour. (h) Modelling of human PDI-hVKORC1
complex (left) and reproduced results by protein-protein docking (HADDOCK) (right).
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First, conformational features of hVKORC1 and L-loop, the principal plat-
form of hVKORC1 for Trx recognition, scaffolding and intermolecular thiol-
disulphide exchange reactions, were characterised by extended molecular dynam-
ics simulations (MD) of a de novo model [1,8] and crystallographic structures
[4] of the enzyme in oxidized state. This study clearly showed that (i) L-loop
is an intrinsically disordered region, and (ii) hVKORC1 is a modular protein
composed of the structurally stable transmembrane domain (TMD) crowned
by the disordered L-loop [2] (Fig. 1a–e). Indeed, the structurally well conserved
TM helices, varied slightly only at their ends, show a cooperative drift typical
for transmembrane domains rigidified by the stable non-covalent interactions.
In contrast, L-loop exhibits an unstable helical fold represented by reversible
transient - and 310-helices linked by flexible coils, offering L-loop a great confor-
mational diversity, from compact ‘globule-like’ shape (closed form) to extended
(open form) (Fig. 1b–c).

Such modular architecture of hVKORC1 provides (i) excellent conforma-
tional plasticity required for specific adaptation over recognition by redox pro-
tein, activation process and catalysis, and (ii) easy and exact reproducibly of
hVKORC1 metastable intermediates during repeated enzymatic cycles. Those
qualities are strictly required for hVKORC1 activities [5]. Structure and con-
formations of the disordered L-loop are better described in terms of free energy
than conventional methods such as clustering.

Secondly, focusing on Trx-fold proteins, probable hVKORC1 redox part-
ners, we found that, despite similar architecture, each redox partner has its
own sequence-dependent dynamical features. Further analysis identified PDI as
the most probable redox partner of hVKORC1 (Fig. 1f–h) [8]. By probing PDI
alternative orientations with respect to hVKORC1, two models of noncovalent
complex were proposed. One of them was considered as functionally related
model and postulated as the first precursor to probe thiol-disulphide exchange
reaction. This predicted complex, formed by hVKORC1 and PDI, was further
reproduced by docking trials (protein-protein docking with HADDOCK) [2].

Third, results obtained for hVKORC1 simulated in different environment
(water/membrane) and simulation methods (conventional and accelerated) indi-
cated that, for in silico study of hVKORC1 and its complexes, the membrane is
probably not necessary, and the cleaved L-loop, simulated as isolated polypep-
tide, reflects its properties when fused to the transmembrane domain. Therefore,
it may be used to study hVKORC1 recognition by its redox protein. Extension of
these conclusions for experimental studies of hVKORC1 requires their empirical
validation.

Finally, all these findings lead to modelling of PDI-hVKORC1 complexes
assembled during a biomolecular proton-electron transfer reaction between PDI
and hVKORC1 - a hydrogen-bonded ‘precursor complex’ formed prior to proton-
electron (hydrogen-atom) transfer, intermediate covalent complex characterising
transient state, and ‘successor complex’, corresponding to post proton-electron
(hydrogen-atom) transfer [3]. Such 3D models of PDI-hVKORC1 complexes will
lay the structural basis for comprehensive description of hVKORC1 activation
mechanisms.
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Abstract. We revisit a simple, yet capable to provide good solutions,
procedure for solving the Distance Geometry Problem (DGP). This pro-
cedure combines two main components: the first one identifying an ini-
tial approximated solution via semidefinite programming, which is there-
after projected to the target dimension via PCA; and another component
where this initial solution is refined by locally minimizing the Smooth
STRESS function. In this work, we propose the use of the projected
Levenberg-Marquart algorithm for this second step. In spite of the sim-
plicity, as well as of its heuristic character, our experiments show that this
procedure is able to exhibit good performances in terms of quality of the
solutions for most of the instances we have selected for our experiments.
Moreover, it seems to be promising not only for the DGP application
arising in structural biology, which we considered in our computational
experiments, but also in other ongoing studies related to the DGP and
its applications: we finally provide a general discussion on how extending
the presented ideas to other applications.

1 Introduction

Let G = (V,E, d) be a simple weighted undirected graph, where the weight
function d maps every edge of the graph to a given distance value. We suppose
that a unique numerical label i ∈ {1, 2, . . . , |V |} is associated to every vertex
in V , so that a vertex ordering is implicitly given. The focus of this article is a
geometric problem having several real-life applications [12,15]:

Definition 1.1. Given the graph G and a dimension K > 0, the Distance
Geometry Problem (DGP) asks whether there exists any realization x : V −→ R

K

such that the following distance constraints are satisfied:

∀{i, j} ∈ E, ||xi − xj || = dij , (1)

where || · || is the Euclidean norm and xi = x(i).
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Throughout this article, we will suppose that the considered problem instances
admit at least one solution, which we will refer to as “valid realizations”.

We remark that, in several applications, such as the one arising in the context
of structural biology [5], sensor network localization [4], or even in computer
graphics [11], the distance information cannot be provided with high precision.
Most likely, instead of having one precise distance value dij , approximated lower
and upper bounds are actually provided for most of the involved distances. Let
us suppose therefore that our weight function d in G does not provide a single
real number, but rather a pair of real numbers, dij and dij for every {i, j} ∈ E,
such that dij < dij . In order to take these interval distances into consideration,
we introduce new variables y indexed on the edge set E, and modify the problem
in Eq. (1) as follows:

∀{i, j} ∈ E,

{
||xi − xj ||2 − yij = 0,

d2
ij ≤ yij ≤ d

2

ij .
(2)

In spite of the current large efforts of the research community in finding
new and efficient solution methods to the DGP, a general method has not been
devised yet. In this work, we focus our attention on a rather simple procedure,
which is basically composed by two main components: (i) the generation of an
initial realization that we can expect to be in a relatively small neighborhood of a
DGP solution; (ii) a refinement step: from the found initial realization, we locally
minimize the sum of squared constraint violations, with the aim of identifying a
better approximation of the DGP solution. In particular, to tackle part (i), we
solve a semidefinite programming relaxation [4] of the original DGP and project
the obtained high-dimensional realization in R

K ; then, from the obtained initial
realization, we run the projected Levenberg-Marquardt algorithm [8] to tackle
the part (ii) of our procedure.

We point out that the general structure of our procedure is not new. One
example can be found in [1], where semidefinite programming also comes to play;
another example can be found in [6]. To the best of our knowledge, however,
the procedure used in our article is the first one that employs the Levenberg-
Marquardt algorithm. The main motivation to use this algorithm is that it pro-
vides better convergence results when compared to other methods (such as gra-
dient descent methods), as our computational experiments will show. As a result,
despite the simplicity of our procedure, we can report successful computational
experiments on relatively small-sized instances (but not really tiny instances, as
in the experiments presented in other works). The use of our procedure appears
therefore to be promising for future studies in the context of the DGP.

The rest of the paper is organized as follows. The DGP procedure main struc-
ture will be briefly introduced in Sect. 2. This short section will then contain two
subparts, one (Sect. 2.1) focusing on a semidefinite programming relaxation of
our target problem, and another (Sect. 2.2) describing the Projected Levenberg-
Marquardt (PLM) algorithm. Computational experiments on a set of protein-like
instances will be reported in Sect. 3. Finally, we will conclude the paper in Sect. 4
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with an extensive discussion on the possibilities of use for the described proce-
dure, as well as on the use of its components in other algorithmic frameworks.
A particular emphasis will be given to the impact of the uncertainty on the
distances on sets of DGP solutions.

2 Our DGP Procedure

Given a pair (G,K) representing a DGP instance, our procedure for its solution
can be simply summarized in the following two steps:

Step A. Find a realization via a Semidefinite Programming (SDP) relaxation,
following by a Principal Component Analysis (PCA) projection. The realization
this way obtained is our “initial realization” (see Sect. 2.1);

Step B. Improve the quality of the initial realization found at the previous step
by running the Projected Levenberg-Marquardt (PLM) algorithm (see Sect. 2.2).

Notice that, from now on, we will be using the acronyms SDP, PCA and PLM
for referring to the methods mentioned above.

2.1 Semidefinite Programming Relaxation

Let X ∈ R
K×n be a matrix with the vectors xi ∈ R

K as its columns. We have:

‖xi − xj‖2 = (ei − ej)�X�X(ei − ej) =: (ei − ej)�Y (ei − ej),

where ei stands for the ith canonical vector of Rn. As a consequence, problem (2)
is equivalent to find a positive semidefinite matrix Y of rank K such that

d2ij ≤ 〈Eij , Y 〉 ≤ d
2

ij , ∀{i, j} ∈ E,

where 〈A,B〉 := trace(A�B) is the trace inner product and Eij := (ei − ej)(ei −
ej)�. This reformulation could be cast as a linear SDP except for the (nonconvex)
rank constraint. Following [1,4], we suppress the rank constraint and consider
the following SDP relaxation:

min
Y =Y �

− γ〈I, Y 〉

s.t. d2ij ≤ 〈Eij , Y 〉 ≤ d
2

ij , ∀{i, j} ∈ E

Y 1 = 0, Y 	 0,

(3)

where 1 ∈ R
n is a vector of ones, γ > 0 is a regularization parameter and Y 	 0

means that Y must be positive semidefinite. The term −〈I, Y 〉 in the objective
function corresponds to a rank reduction heuristic [4]. The reasoning behind it
is that, under Y 1 = 0, we have that

〈I, Y 〉 = trace(Y ) = trace(Y ) − 1
n
1�Y 1 =

1
2n

∑
i

∑
j

‖xi − xj‖2,
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and by maximizing this quantity we force the corresponding realization to be
“more flat” and hence belonging (hopefully) to a lower dimensional space.

Let Y be a solution to problem (3). Since Y 	 0, we have that Y = X�X,
where X ∈ R

r×n, with r = rank(Y ). Although X satisfies all distance con-
straints, it may happen that the rank r is strictly larger than the desired dimen-
sion K. This is the reason why it is necessary to project X onto R

K : we perform
this projection by PCA. Let Y = QΛQ� be the eigendecomposition of Y and
assume the eigenvalues are ordered in non-increasing order λ1 ≥ . . . λn ≥ 0. If
ΛK denotes the principal submatrix of Λ containing the K largest eigenvalues
of Y and QK contains the K corresponding eigenvectors in its columns, then

X0 =
√

ΛKQ�
K

gives us the sought “projection”, which is an approximate realization in R
K . We

say approximate because after the projection, X0 may no longer satisfy some
distance constraints.

In order to recover the feasibility of the violated constraints, we consider a
refinement step which consists in an iterative method for solving problem (2)
using the columns of X0 as starting point for the vectors xi (the additional vari-
ables yij are initialized to the values (d2

ij + d
2

ij)/2). For this refinement step, we
consider the PLM algorithm [8], which is briefly reviewed in the next subsection.

2.2 Projected Levenberg-Marquardt Algorithm

Consider the following constrained system of nonlinear equations:{
F (z) = 0,
z ∈ C,

(4)

where F : Rn → R
m is continuously differentiable and C is a convex compact

set. Let J(z) denote the Jacobian of F at z and PC(u) the Euclidean projection
of u onto C. Moreover, let us define the following function:

f(z) =
1
2
‖F (z)‖2.

Following [8], we consider the PLM algorithm for solving eq. (4), summarized
below.

The Projected Levenberg-Marquardt (PLM)

Given z0 ∈ C, σ, η1 ∈ (0, 1), M ∈ Z++, η2 > 0, set k = 0.

Step 1. Set μk = ‖F (zk)‖2 and solve (J(zk)�J(zk) + μkI)dU
k = −J(zk)�F (zk)

Step 2. Set dC
k = PC(zk + dU

k ) − zk. If dC
k satisfies

F (zk)�J(zk)dC
k ≤ −η1‖dC

k ‖2 (5)

‖dC
k ‖ ≤ η2‖J(zk)�F (zk)‖ (6)
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then dk = dC
k , else dk = PC(zk − J(zk)�F (zk)) − zk.

Step 3. Set α = 1. While f(zk + αdk) > max0≤j≤min{M,k} f(zk−j) +
σαd�

k J(zk)�F (zk), update α = α/2.

Step 4. Set αk = α and update zk+1 = zk + αkdk. Go to Step 1.

Given zk ∈ C, the unconstrained LM direction dU
k is computed at Step 1. In

Step 2, the feasible direction dC
k , based on the projection of zk + dU

k onto C, is
computed and it is chosen as search direction if it satisfies the descent conditions
in Eq. (5) and (6). Otherwise, the projected gradient direction is taken. A step-
size α > 0 verifying a non-monotone Armijo-like condition [9] is determined in
Step 3 by a backtracking process.

For more details about this algorithm, the reader is referred to [8], where a
detailed convergence analysis of the algorithm can also be found. It was proved,
in fact, that every limit point of the sequence {zk} is stationary for the problem of
minimizing f(z) subject to z ∈ C. Furthermore, under an error bound condition,
a local superlinear convergence was established.

We point out that problem (2) corresponds to problem (4) with z = (X, y) ∈
R

K×n × R
|E|, F : RK×n × R

|E| → R
|E| with

[F (X, y)]ij = ‖xi − xj‖2 − yij , ∀{i, j} ∈ E,

and
C = {(X, y) ∈ R

K×n × R
|E| | d2ij ≤ yij ≤ d

2

ij , ∀{i, j} ∈ E}.

In this case, the least-squares function f takes the form

f(X, y) =
1
2
‖F (X, y)‖2 =

∑
{i,j}∈E

(‖xi − xj‖2 − yij)2, (7)

which corresponds to the Smooth STRESS function [18], with d2ij ≤ yij ≤ d
2

ij .

3 Computational Experiments

We propose in this section some initial computational experiments with the
DGP procedure sketched in Sect. 2. All experiments were carried out on Matlab
R2018b running MacOS X 10.13.6 (personal laptop).

We consider two sets of instances, both related to protein conformations.
However, in the first set that we consider, the instances will only resemble to
typical protein instances, because we will not include any additional distance
information that is likely to help DGP solvers to find solutions. This “extra” and
helpful distance information would include, for example, the length of chemical
bonds, as well as the angles formed by triplets of consecutively bonded atoms.
Thus, we decide to take, in our instance generation procedure, no advantage from
the typical chemical structure of protein conformations. We make this choice for
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Table 1. Some experiments showing the effectiveness of our DGP procedure on the
two sets of instances. In the upper row block, we consider the instances generated in
this work where no extra information about the nature of the distances is exploited;
in the lower row block, we present the experiments on the protein instances previously
used in [7].

PLM SPG

pdb-id |V | |E| γ f0 k f RMSD k f RMSD

2JMY 45 432 1 9.16E+01 93 4.26E-09 0.08 322 4.53E–02 0.08

2LR9 57 505 1 3.72E+03 555 4.90E-09 1.16 801 1.73E–01 1.36

1HJ0 123 1210 1 8.40E+03 73 4.20E+01 3.86 1602 4.22E+01 3.83

1HJ0 123 1210 10 8.37E+03 778 4.94E-09 2.13 1498 5.23E–01 2.57

2KSL 153 1398 1 4.56E+04 250 2.63E+02 7.59 1010 6.58E+02 10.23

2KXA [7] 177 973 1 9.43E+02 172 4.68E–09 0.45 686 2.79E–02 0.62

1DSK [7] 222 1210 10 6.29E+03 268 4.99E–09 2.51 578 1.79E–02 2.44

2ERL [7] 323 1789 1 1.99E+03 245 4.80E–09 0.41 704 2.66E–02 0.41

2JWU [7] 447 2413 1 6.02E+03 219 4.69E–09 1.03 824 4.26E–02 0.99

the generation of our first set of instances with the aim of testing the effectiveness
of the procedure for larger classes of DGP instances, which may be related to
different applications.

Instead, the second set of instances that we consider in our experiments will
include this additional information. For lack of space, we focus our attention
on the main steps for generating our new instances of the first set, while the
reader is referred to [7] for details on how the 4 instances of the second set were
generated.

In order to generate the first set of instances, we consider models of pro-
tein conformations obtained from the Protein Data Bank (PDB) [2]. From one
selected PDB model (when more than one model is available in the same PDB
file, we simply pick the first one), we extract the backbone atoms N, Cα and
C, and we generate the corresponding instance by measuring all possible dis-
tances between pairs of such backbone atoms, and by keeping only the distances
shorter than 6Å. Noise is thereafter added to the distances by creating an inter-
val [d, d] of range 0.2Å, where the computed distance is randomly placed. The
procedure outputs a simple weighed graph G that represents an instance of the
DGP. We point out that our procedure introduces the same level of noise in all
the distances, without distinguishing between distances between bonded atoms
or other.

To assess the performance of PLM as a refinement tool, we compare it with
the Spectral Projected Gradient (SPG) algorithm [3] for minimizing the func-
tion (7) over C. Notice that SPG was already successfully used in previous works
as a local solver for DGP [17].

In all experiments, the SDP relaxation in Eq. (3) was solved using SDPT3
solver [19] with standard parameters and tolerances. In PLM, we consider the
parameters η1 = 10−4, η2 = 104, σ = 10−3, M = 10 and stop the iterations when
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either ‖F (Xk, yk)‖ ≤ ε = 10−4 or ‖zk − PC(zk − ∇f(zk))‖ ≤ ε. For SPG, we
used the same parameters as in [17], and stopped the iterations when ‖dk‖ ≤ ε.
The maximum number of iterations was set to 2,000 for both SPG and PLM.

Table 1 summarizes the performed computational experiments. For every
instance, we report the original PDB identifier of the protein in the PDB,
together with the total number of vertices and the total number of edges in
the generated graph G. The parameter γ is the one involved in SDP, while f0
is set to f(X0, y0), which corresponds to the value of eq. (7) evaluated at the
solution X0 in Step A, where y0 = (d2 + d

2
)/2. For both PLM and SPG, we

report the number of iterations k, the final objective function value for f(X, y)
(denoted f in the table), and the RMSD with respect to the first model of the
PDB file. Notice that only the Cα atoms in the solution found for our second
set of instances were taken into consideration when computing the RMSD (for
example, for the 2ERL instance, only 40 atoms out of 323 were selected).

The experiments show that, although after the execution of our Step A the
value of Eq. (7) for our initial realization is relatively large, such a starting point
is nevertheless close enough to one of the instance solutions. In fact, the Step B
in our procedure, when performed by running the PLM algorithm, is able to
decrease the value of the Smooth STRESS function to a magnitude of 10−9 for
the instances 2JMY, 2LR9, 2KXA and 2ERL belonging to our first instance set. This
indicates that all involved distances are satisfied (i.e., ‖xi − xj‖ ∈ [dij , dij ]), or
close to be satisfied (i.e., ‖xi − xj‖ /∈ [dij , dij ], but ‖xi − xj‖ is close to one of
the two bounds). Notice that we can state a similar remark for SPG, but with a
final value for the STRESS function that is about six orders of magnitude larger.
Even if the corresponding RMSD values are similar to those obtained by PLM,
we can remark therefore that the PLM provides solutions in general capable to
better satisfy the available distances.

Concerning the number of iterations of PLM and SPG, we can observe that,
although the former requires fewer iterations, it is important to mention that its
iterations are more expensive because requiring the solution of a positive definite
linear system.

Two times the instance 1HJ0 is reported in the upper row block of Table 1. In
fact, the former of the two experiments shows that the initial realization from
Step A was not close enough to one of the instance solutions: both PLM and
SPG have most certainly converged towards a local minimizer or a stationary
point of (7). In the latter experiment concerning 1HJ0, however, where the value
of the γ parameter was changed from 1 to 10, we can observe a performance
for our procedure which is close to the other experiments, where the initial real-
ization is actually a good starting point for the refinement step (with PLM still
beating SPG on the STRESS function value). This example is particularly inter-
esting because, even though the use of a different value for γ leads to a STRESS
function value approaching zero, the final RMSD value in the found solutions
does not change much. This indicates that the instance we have generated by
using the first model in the PDB file does not have only that model in its solution
set. The left side of Fig. 1 shows the model we have obtained with γ = 10.
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Fig. 1. A comparison among some obtained solutions and the original PDB model
used to generate the instances: 1HJ0 (γ = 10 version, on the left-hand side), and 2ERL
(only Cα atoms, on the right-hand side). Axis units in Angstroms.

The last line of the upper row block in Table 1 shows that, for one of the
instances of our first set, we could not find any satisfactory solutions. Trying to
use alternative values for the γ parameter did improve the results in this case;
the use of small values (e.g. 0.01, 0.1) or even larger than 10, did not allow us to
get close enough to one of the solutions for having either SPG or PLM converge
to a global minimizer. This is certainly not the only case where our procedure
can fail, because of its simplicity.

Finally, the lower row block of experiments in Table 1 shows the performances
of our procedure on 4 of the instances already used in [7]. As remarked above,
these instances exploit some additional distance information that can help the
solvers identifying the solutions, for example by fixing some of the distances to
some given precise values. Our procedure seems to provide similar performances
on this second set of instances, and the comparison between PLM and SPG
remains the same as well. The right side of Fig. 1 shows the solution found for
the instance 2ERL: since these instances contain more atoms from the proteins
(not only its backbone atoms), for clarity we only consider in the figure its Cα

trace, which is the same considered in the computation of the RMSD.

4 Discussion and Conclusions

We have presented and tested a simple procedure for the solution of DGPs where
the value of the distances is uncertain and generally represented by a real-valued
interval. As pointed out in the Introduction, the general structure of our simple
procedure is not new, as it was already used in previous works, but, to the best
of our knowledge, this is the first time that the projected Levenberg-Marquardt
is employed in this context.
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Even if it cannot be considered as a general solver for the DGP, our com-
putational experiments have shown the effectiveness of our procedure on a set
of artificially generated instances related to a typical biological application. The
experiments show in fact that, when the first step of the procedure is able to
identify an initial realization that is close enough to a valid realization (a solu-
tion for problem (2)), then its second step is able to localize that solution in the
search domain.

These results open the doors for other possible uses of this procedure (or
of one of its components) in more general solution methods for the DGP. For
example, MDjeep1 is a solver for DGPs for which the discretization of the
search space can be performed, by transforming the problem in a combinatorial
problem [16]. When the value on the distances is uncertain, however, some nodes
of the search domain cannot be associated to singletons, but rather to relatively
small portions of the original continuous search domain. This is the reason why,
in MDjeep, the combinatorics is coupled with a refinement step consisting in
locally exploring all those small domain portions in the attempt to improve
the overall solution quality [14]. The impact of the current work on the future
developments of MDjeep can be two-fold. Firstly, the first step of our procedure
may be used to guess the most promising parts of the discretized search domain
to enhance its performance in terms of time. The idea is only to give higher
priority to the identified parts of the search domain, and to remove, a priori,
none of them, so that the entire search domain may, potentially, still be explored.
Secondly, since the current version of MDjeep, the version 0.3.2 at the moment
we are writing this article, uses SPG for performing its refinement step, another
possible improvement may be to replace SPG with PLM.

Another interesting application falls in the context of motion adaptation [11].
Here, a skeletal structure (representing for example a human character) performs
a given motion over time, and the problem of embedding the same motion (or
a motion as close as possible to the original one) on another skeletal structure
is considered. One of the main difficulties in solving such a problem is related
to the fact that distorted self-contacts, which may be either artificially created
in the new motion, or rather omitted from the original one, are likely to make
the viewer perceive the motion as different when compared to the original. Self-
contact is synonym of high proximity, and hence of near distances. The dynamical
DGP (dynDGP) was introduced in [13] to tackle this class of problems, and more
recently it was applied to motion adaptation in [10]. In this application, every
frame of the motion can be considered as a separated (and static) DGP, where
every new frame belongs to a small neighborhood, in its search domain, of the
previous frame. SPG was exploited in previous works on distance-based motion
adaptation: the animations created in [10] were generated by SPG for example.
Again, we propose the use of PLM as a replacement for SPG, which is likely to
provide interesting results in this application context as well.

We remark that, in the two cases where we propose to use PLM as a tool for
refinement, the DGP instances to be solved (in both cases, these are actually sub-

1 https://github.com/mucherino/mdjeep.

https://github.com/mucherino/mdjeep
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instances of the original problems) are rather simple if compared to the ones we
used in the computational experiments in this work. When the refinement step is
performed in MDjeep, in fact, only a subset of vertices of the original instance
is considered, and the local solver can benefit of a starting point where (in most
of the cases) only a few distances are not satisfied (the best-case scenario being
the one where only one distance is violated). In the case of motion adaptation,
since the starting point is always the solution obtained at the previous frame of
the motion, it is expected the new local solution to be very near the available
starting point. Future works will be devoted to these very promising research
directions.
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8. Gonçalves, D.S., Gonçalves, M.L.N., Oliveira, F.R.: An inexact projected LM type
algorithm for solving convex constrained nonlinear equations. J. Comput. Appl.
Math. 391(1), 113421 (2021)

9. Grippo, L., Lampariello, F., Lucidi, S.: A truncated newton method with non-
monotone line search for uncontrained optimization. J. Optim. Theory Appl. 60,
401–419 (1989)

10. Hengeveld, S.B., Mucherino, A.: On the representation of human motions and
distance-based retargeting. In: IEEE Conference Proceedings, Federated Confer-
ence on Computer Science and Information Systems (FedCSIS21), Workshop on
Computational Optimization (WCO21), pp. 181–189. Sofia, Bulgaria (2021)

https://doi.org/10.1007/s00454-016-9846-7
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Abstract. The protein function annotation based on functional prop-
erties like the Enzyme Commission (EC) numbers is a very challenging
task that aims to understand life at the molecular level. Especially, the
size of features for each protein is very huge and the number of labeled
samples is limited, which can significantly affect the annotation accu-
racy. To address these issues, we propose a novel semi-supervised graph
deep learning model that aims to learn better latent representations for
each protein/node by taking into account the neighborhood information
in order to improve the annotation. Firstly, we extract a set of features
from raw protein data. Each protein is associated with a 1-D feature
vector that represents its InterPro domain composition. As D, the num-
ber of possible interPro domains, is very high (>11,000), we design a
deep autoencoder model (DAE) that seeks to find an efficient repre-
sentation of the domain composition of proteins in a lower dimensional
latent space. Then, we construct a protein graph where each node is a
protein associated with its latent representation vector and each edge is
weighted by the Euclidean distance between the two nodes it connects.
Finally, we train a semi-supervised graph neural network (SGNN) for
the automatic protein function annotation using the constructed pro-
tein graph. Experiments are conducted on four reference proteomes in
UniProtKB/SwissProt, including Human, Arabidopsis Thaliana, Mouse,
and Rat. Experimental results show that the proposed model is compet-
itive for protein function annotation compared to existing methods.

Keywords: Deep autoencoder · Feature extraction · Protein function
annotation · Graph representation learning

1 Introduction

Nowadays, protein sequence analysis plays a very important role in understand-
ing disease processes and drug discovery. Thanks to the remarkable scientific
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progress in this field, it is possible to collect large numbers of protein sequences
that are now available in public databases like UniProtKB [3]. However, this
huge quantity of protein data causes several challenges for computer scientists
as well as biologists in protein function annotation [11,17,19]. Recently, sev-
eral machine learning methods have been proposed to overcome these chal-
lenges [2,5,6,14]. In [12], authors proposed a deep learning approach called
Deepre, which seeks to predict Enzyme Commission (EC) numbers based on
proteins sequence using feature selection and classification techniques. Further-
more, Sarker et al. [15,16] proposed a graph-based model called GrAPFI for
automatically annotating proteins with EC numbers. GrAPFI uses the label
propagation technique for protein function annotation based on domain simi-
larity graphs using the Jaccard index. In [22], a hybrid model called COFAC-
TOR has been developed for protein sequence annotation. It fuses sequence
homologs and protein structure with Protein-Protein Interaction (PPI) networks
to predict EC numbers, ligand-binding, and Gene Ontology (GO) terms. In [10]
Ko et al. proposed a deep learning framework called FUTUSA (FUnction Teller
Using Sequence Alone) to predict protein functions in silico. It performs sequence
segmentation using a convolutional neural network (CNN) to extract the regional
sequence patterns.

Based on previous works, we can conclude that deep learning models have
shown their high performance in improving protein function annotation. How-
ever, there are several issues, especially the large number of protein features,
e.g. InterPro domain composition, that can lead to the problem of the curse of
dimensionality and overfitting, which can significantly destroy the performance
in terms of function annotation precision and accuracy. Moreover, existing mod-
els do not consider the topological local information between vertices (proteins),
which can be useful to improve the annotation accuracy.

Modeling graph data is a challenging task, especially when dealing with large
amounts of data. The success of deep learning has generated interest in extend-
ing this technique to non-Euclidean structures such as graphs and manifolds,
namely Geometric Deep Learning (GDL). This emerging field combines the rep-
resentational power of graphs with deep learning. This new framework allows to
learn how to propagate the information along the entities, i.e. nodes, conforming
the graph. More and more reports suggest that DL can extract useful features
from non-Euclidean data [18,23]. Furthermore, a core assumption of existing
machine learning algorithms is that instances are independent of each other.
However, these data do not always have a regular structure, like protein data,
which can be represented as a complex big graph [1]. Graphs are composed of
a variable number of unordered nodes, which in turn, have different numbers of
neighboring nodes, resulting that some important operations (e.g. convolution)
which are easily computed in image processing, are difficult to extend to the
graph domain. In the literature, there are a limited number of existing reviews
on the topic of graph neural networks [21]. Most of them need a large number of
training samples and do not consider the problem of overfitting. Moreover, there
is a big challenge related to a large amount of collected data. Recently, graph
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deep representation learning [7,8,13] models have been developed to capture hid-
den patterns of non-Euclidean data. For example, a graph convolution can be
generalized from a 2D convolution. Similar to 2D convolution, one may perform
graph convolutions by taking the weighted average of a node’s neighborhood
information.

The objective of this work is to design new graph deep learning techniques
that will allow incorporating the non-euclidean space of data. Our models will
be applied to protein function annotation which is a very challenging task that
aims to understand life at the molecular level. This task is important in several
scenarios including human disease and drug discovery. In the context of drug
discovery, it is important to have various annotations and information about
protein sequences since the majority of available drugs have protein molecules
as their targets. Moreover, the wealth of protein sequences being produced has
generated the need for rapid annotation of protein sequences. We will validate
our model on several datasets and make available our software to the scientific
community. In the literature, graph representation of protein data and machine
learning methods have been used simultaneously. Depending on the number of
protein entries used to construct the graph and on the number of features of each
protein (protein sequence, functional domains, keywords, ...), the graph repre-
senting protein entries could be very huge and complex. Thus, extracting useful
features for each node/protein while providing good annotations using only a
few labeled proteins (samples) is a challenging task. Our research hypothesis is
that improving graph network methods will make the protein function annota-
tion task easier. Therefore, we propose a novel graph deep learning model for
automatic protein function annotation that allows learning a better latent rep-
resentation from InterPro domain composition and considers the local features
in protein graphs, in order to improve the protein annotation precision.

The remainder of this paper is organized as follows. In Sect. 2, we present
the proposed method for automatic protein function annotation along with the
developed algorithms for the protein graph construction and the semi-supervised
graph neural networks (SGNN). Afterward, in Sect. 3, experimental results are
described exhibiting performance improvements of the proposed approach. In
Sect. 4, we conclude and propose some perspectives and future works.

2 Proposed Approach

The proposed approach (see Fig. 1) aims to exploit proteins datasets by extract-
ing all different domains enabling to automatically annotate unlabeled proteins.
More precisely, the latent representation is obtained from the bottleneck hid-
den layer of a deep autoencoder trained from extracted domains. The aim is to
extract relevant features and get a better representation for each protein by dis-
carding the nuisance features. Finally, the latent representation is used as input
of a graph convolutional neural network, which is trained for automatic pro-
tein function annotation. The annotation phase aims to annotate the unlabeled
proteins using the learned latent representations.
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Fig. 1. Architecture of the proposed approach

2.1 Protein Feature Extraction

The first phase of the proposed approach is data analysis. The main goal is to
process the proteins data to obtain the features vectors from domains {X}. We
will extract all different domains for each protein and encode them in order to
get a feature vector. At the end of this process, each feature vector is represented
as a 1-D vector, where D is the number of different domains of all proteins. The
main assumption is that proteins sharing the same function also share the same
domains and identifying proteins represented by similar domain composition can
be useful to enhance the annotation task. Therefore, we propose to use these
feature vectors in a deep learning model in order to find a shared representation
between all proteins.

2.2 Representation Learning with Deep Autoencoders (DAE)

We designed a deep autoencoder (DAE) that aims at extracting relevant features
from the domain composition of each protein, from which this domain composi-
tion may be reconstructed. It relies on our case on the assumption that domains
of proteins are relevant for the annotation task. Our goal is to extract a relevant
latent representation from which one may construct a graph in order to train
a graph deep representation learning model to obtain an accurate annotation.
The proposed DAE model includes an encoder and a decoder noted Enc, and
Dec, respectively. Enc is a multi-layer deep learning network that contains three
hidden layers. It aims to encode the input proteins domain vectors X ∈ R

N×D

into a new latent representation space z ∈ R
N×d, where the number of extracted
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Fig. 2. Architecture of the deep autoencoder model (DAE).

features d is much lower than D (d << D). The encoder network uses the encod-
ing function gθ(x) as follows:

gθ(x) = Φg(Wx + b) (1)

where Φg is an activation function such as ReLu(), Sigmoid (), Linear(), W is
the weights of neurons, and b is the bias of the model. Therefore, we note z
the corresponding representation output by the encoder, z = Enc(x) = gθ(x).
The second component of the DAE model is the decoder Dec that uses the
obtained latent representation z to reconstruct all domains, x̂ = Dec(z). The
reconstructed input may be obtained using the decoding function as:

x̂ = fθ′(z) = Φf (W ′
z + b′) (2)

The optimization function of this model is based on mean squared error (MSE)
criterion. It aims to reduce the reconstruction error between the input X and
the output X̂. It can be expressed as follows:

LDAE(θ, θ′) =
1
2n

n∑

i

‖x(i) − fθ′(gθ(x(i)))‖2 (3)

where n is the number of proteins, θ and θ′ are the learned parameters of the
DAE model. Figure 2 reports the architecture of the DAE model.

2.3 Latent Representation-Based Protein Graph Construction

We use the extracted latent representations z = [x1, ..., xd] ∈ R
N×d to construct

our protein graph noted G = (V, E ,W). V = {v1, ..., vN} is a set of vertices cor-
responding to the proteins, E is the set of edges, and W ∈ R

N×N is the weighted
matrix of G, where wi,j is a weight attributed to the edge ei,j = (vi, vj) ∈ E .
Each node vi in the protein graph G is associated with a 1-d feature vector (d
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is the number of extracted features with DAE) that represents the latent rep-
resentation zi ∈ R

d. Furthermore, an edge ei,j between two nodes (proteins) vi

and vj can be defined based on a similarity criterion, which is computed by the
euclidean distance as follows:

W(vi, vj) = dist(z i , z j ) = ||z i − z j || =

√√√√
d∑

t=1

(zit − zjt)2 (4)

where W is the weighted matrix, and zi, zj ∈ R
d are the feature vectors of vi

and vj , respectively. Formally, each vertex vi is connected to vj if zi belongs to
the neighborhood of zj according to a well-defined neighborhood threshold α,
controlling the size of the neighborhood for N (vi) ∈ {1, ..., N}. The threshold
α is between 0 and 1 (0 and 1 are the minimum and maximum values of W).
Therefore, the adjacency matrix A based on W and α is computed using the
following formula:

A(vi, vj) =

{
1, if wi,j ≤ α

0, otherwise
(5)

Algorithm 1 describes the different steps of the protein graph construction.

Algorithm 1. Protein graph construction based on latent representation
Require: Z ∈ R

N×d// Z: Latent representation
α (threshold): integer

Ensure: G = (V, E, W ) Graph of Z and its adjacency matrix A. A depends on the
thershold α, V ← [ ], E ← [ ], W ← [ ], A ← [ ]
// Find all vertices V (proteins)
for i = 1 : N do // N : Number of protein

for j = 1 : d do // d: Dimensionality of latent representation
V [i][j] ← Z[i][j]

end for
end for
// Find Edges E for each protein vi and compute the weights for each edge E =
(vi, vj)
W (vi, vj) = dist(zi, zj)
if dist(zi, zj) ≤ α then

E ← E ∪ {(vi, vj)}
A(vi, vj) ← 1

else
A(vi, vj) ← 0

end if
return V, E, W, A
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2.4 Protein Function Annotation with Semi-Supervised Graph
Neural Networks (SGNN)

In this section, we propose a novel graph deep representation learning method
which aims to learn better latent representations for each node by taking into
account the neighborhood information. In usual protein similarity graphs, each
node will be associated with a high-dimensional feature vector, which contains
a large number of features extracted from the raw protein data, e.g., domains.
The challenge here is the exploitation of the latent representation of protein
data in order to efficiently annotate unreviewed/unlabeled proteins based on the
information on reviewed/labeled ones. We design a dedicated graph deep network
architecture in order to obtain efficient representations of such protein data by
incorporating neighborhood information and considering the irregular structure
of data. Formally, let consider the protein graph G obtained by the proposed
algorithm of Sect. 2.3. For semi-supervised learning, let TDl = {xi, yi}L

i=1 be a
set of labeled training dataset of size L, where xi indicates a feature vector of
the ith labeled protein, and yi is its corresponding label. Moreover, let TDnl =
{xi}L+NL

i=L+1 be a set of unlabeled training samples of size NL (L + NL = N).
The main goal of semi-supervised learning is to predict the labels of unlabeled

training samples TDnl, using a non-linear function f(X,W ) such as ReLu [9].
Furthermore, convolution on graphs can be computed by multiplying each graph
signal z̄ by a filter gθ parametrized by the Fourier coefficient θ ∈ R

N . Usually,
the graph Fourier transform for a signal z is defined as:

F (z) = UT z = ẑ ∈ Rn (6)

where F−1(z) = Uẑ, U is the matrix of eigenvectors of the normalized graph
Laplacian Ln = IN − Diag

−1
2 WDiag

−1
2 = UΣUT , Diag is the diagonal degree

matrix of G, IN is the identity matrix, and Σ is the diagonal matrix of eigenval-
ues. The graph convolution of the latent representation z with a filter g ∈ Rn is
calculated using:

z ∗G g = F−1(F (z) � F (g)) = U(UT (z) � UT (g)) (7)

where � denotes the element wise product. According to [4], we can efficiently
compute an approximated convolution of G as follows:

gθ � z̄ = θ B z̄ (8)

where B = IN + Diag
−1
2 WDiag

−1
2 + (Diag

−1
2 WDiag

−1
2 )2.

For the semi-supervised learning, the optimal neural network weights
W(0),W(1), . . . ,W(K) can be trained using the labeled set of training samples
TDl = (xi, yi)L

i=1, by minimizing the standard cross-entropy loss function:

Loss = −
L∑

i=1

yi lnMi (9)

where Mi is the label output of node i in the final layer.
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The proposed SGNN aims to predict the labels of unlabeled proteins xi ∈
TDnl which will go through various propagation layers. Formally, given an input
latent feature matrix Z and a weighted adjacency matrix A, GNN applies a layer-
wise propagation rule using the Rectified Linear Unit (ReLu) as a non-linear
activation function and softmax() as a classifier:

Z(1) = ReLu(B Z(0) W(0))
...

Z(K−1) = ReLu(B Z(K−2) W(K−2))

Z(K) = softmax(B Z(K−1) W(K−1))

(10)

where Z(0) = Z, {Z(1),Z(2), . . . ,Z(K−1)} are the feature map outputs of the
different layers and Z(K) = M is a vector of output labels, i.e., Mi is the label
of vertex vi.

3 Experimental Results

3.1 Data Description

We conduct our experiments on 61,832 proteins collected from the UniProt-
KB/SwissProt database [3] using four reference proteomes, including Human,
Rat, Arabidopsis thaliana, and Mouse. For each proteome, we downloaded from
UniProt-KB website the EC annotation and InterPro domain composition of
each protein entry. We then filtered the dataset to keep only protein entries with
at least one InterPro signature that were divided into EC-annotated and EC-
non annotated ones. Table 1 gives some statistical information of the different
reference proteomes, including the number of nodes and the percentage of labeled
proteins.

Table 1. Statistical information about the four proteomes Human, Rat, Mouse, Ara-
bidopsis thaliana. Data were downloaded from UniProtKB/SwissProt 2022 version*.
For each proteome, figures are provided for Total: total protein entries in this proteome,
With InterPro: those entries having at least one InterPro domain, With InterPro and
EC: those entries having both InterPro and EC number. The percentage of labeled
proteins is calculated over the number of entries with InterPro domain.

Proteome Total With InterPro With InterPro and EC Labeled proteins (%)

Human 20,376 19,656 4,414 22,46 %

Rat 8,174 8,067 2,307 28,60 %

Mouse 17,107 16,959 4,239 25,00 %

A. thaliana 16,202 15,766 5,813 36,87 %
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3.2 Compared Methods

Our model is compared with other methods, including GrAPFI, support vector
machines (SVM), and K-nearest neighbor (KNN). In order to evaluate the pro-
tein function annotation results and to compare the effectiveness of the proposed
model, three standard evaluation metrics have been used, including accuracy (A),
precision (P ), and recall (R). The accuracy (A) can be computed as follows:

A(y, y′) =
1
N

n−1∑

i=0

1(yi = y′
i) (11)

where y and y′ are the true label and predicted label, respectively.
The precision (P ) aims to quantify the number of positive label predictions

that actually belong to the positive label. This metric can be defined as

P =
TP

TP + FP
(12)

where TP is the True Positives and FP is the False Negatives. Furthermore,
the Recall (R) metric seeks to quantify the number of positive label predictions
made out of all positive samples in the dataset, which can be expressed as follows

R =
TP

TP + FN
(13)

where FN is the False Negatives.

3.3 Parameters Settings

The DAE and GNN models were implemented using the Keras framework. The
DAE has been trained over 200 epochs with a batch size of 32 training samples.
We randomly used 80% of samples from labeled training samples for training and
the remaining samples for test. Whereas, after several tests, the GNN model has
been trained using a 10-fold cross-validation method on 500 epochs with a batch
size of 250 training samples (from labeled proteins). Moreover, we use ADAM
as an optimizer for training for both models, where the learning rate is set to
10−3. Furthermore, our DAE network was built as dense neural networks which
contains three hidden layers: [D, 500, 200, d, 200, 500, D] (D is the number
of different domains of all proteins). We opted also to variate the number of
extracted features, i.e. the size for the latent representation d from 10 to 100
features, i.e., d ∈ [10, ..., 100]. Besides, in the protein graph construction step,
we set the threshold α to 0.1 as an Euclidean distance value to find neighboring
proteins and construct the adjacency matrix. Figure 3 reports the computed
normalized Euclidean distance with the latent space representation Zi versus
the frequency. Based on the obtained histograms, we can notice that they are
very similar with a majority of distance values very close 0, suggesting that many
proteins share with at least one other protein the same domain composition.
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Fig. 3. Histograms of the normalized distance computed on the domains of differ-
ent proteins using four reference proteomes (Human, Arabidopsis Thaliana, Rat, and
Mouse).

Fig. 4. The reconstruction error (MSE) versus the number of extracted features for
four reference proteomes using the proposed DAE model.

3.4 Deep Representation Learning with the DAE Model

In this section, we evaluate the DAE model in representation learning based
on the reconstruction error on the four reference proteomes, i.e., Human, Rat,
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Fig. 5. Best accuracy using the proposed model SGNN on the four datasets.
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Arabidopsis Thaliana, and Mouse. We use the MSE metric as a loss function to
quantify the reconstruction error between the initial input (InterPro domain
composition) X and the output (reconstructed domain composition) X̂. We
report then the average MSE versus the number of extracted features (see Fig. 4).
Thus, we can notice that the proposed DAE is able to reconstruct the input using
only a few features.

Table 2. Best Accuracy, Precision, and Recall using GrAPFI, SVM, KNN, and SGNN
on UniProtKB/SwissProt dataset

Model Accuracy(%) Precision(%) Recall(%) Accuracy(%) Precision(%) Recall(%)

Human Mouse

GrAPFI 95.42 94.10 95.27 97.14 95.98 96.66

SVM 90.75 89.45 90.76 92.26 91.87 91.45

KNN 86.78 86.12 84.59 90.78 91.25 91.14

SGNN 97.45 97.21 97.03 98.23 97.76 98.16

Rat A. thaliana

GrAPFI 96.23 96.44 96.71 93.78 94.25 94.77

SVM 89.12 92.12 91.24 93.45 92.34 93.25

KNN 81.45 78.90 83.22 87.45 84.65 88.12

SGNN 98.12 97.95 98.05 97.96 97.21 97.85

3.5 Performance Analysis

In this section, we compare our model with other machine learning-based models
in the function protein task. Firstly, we report in Fig. 5 the history of loss and
accuracy during the training and test. We can observe then that the proposed
model gives a good accuracy for the four reference proteomes, e.g., for the Human
dataset, we get an accuracy of 97.45%, and a loss which is very close to zero.
This proves that the model has been well fitted on used datasets and can provide
an accurate annotation. We give also a quantitative comparison in Table 2 on all
used datasets using SVM, K-NN, and our proposed model, i.e., SGNN. We can
conclude that the SGNN model gives better performances for the four reference
proteomes than the other machine learning methods. For the Human dataset,
the predicted annotation has as accuracy, precision, and 97.45%, 97.21%, and
97.03%, respectively. In addition, GrAPFI shows also sufficient results, where
the accuracy is equal to 95.42%, the precision is equal to 94.10%, and the recall
to 95.27%. Whereas, for SVM, and KNN the performance is low compared to the
SGNN, and GrAPFI. For the rest of the datasets, the SGNN, and GrAPFI give
also better annotation than the rest of the methods, which can prove the added
value of the protein graph. That means that the incorporation of the neighboring
features between all proteins (graph nodes) in the layers of the neural network
can enhance the annotation performance. This can be also extended by using
different similarity metrics in the step of protein graph construction [20].
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4 Conclusion

In this paper, we applied a graph representation learning model for performing
protein function annotation from the domain composition of proteins. We used
a deep autoencoder model to encode the InterPro domain composition to learn
a better representation, i.e., find relevant features for the protein function anno-
tation. Furthermore, we constructed a protein similarity graph based on latent
representation to train a graph neural network to perform the protein function
annotation. Experimental results demonstrate the effectiveness of our approach
in terms of performance in the protein function annotation. In future work, we
will extend our approach by adding more features such as keywords and biologi-
cal pathways, and taxonomy of proteins to improve the performance rates of the
proposed model.
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Abstract. Human DNA contains many genes encoding transfer RNAs.
These genes differ significantly in their primary structure, nucleotide
sequence, within the same organism. This study aims to reveal the rela-
tionship between the structure of the tRNA gene sequence and the amino
acids carried by the tRNA corresponding to their genes. Raw tRNA
gene sequences were used as data. After preliminary preparation, the
data were analyzed by nonlinear method of dimensionality reduction and
data clusterization called elastic maps. The method application revealed
the data structure (triplet frequency composition) and desired interplay
between the structure and function (the type of amino acid residue to be
transferred) over the set of human transfer RNA genes. Some deviations
in the distribution of the isodecoders are discussed.

Keywords: Triplet frequency · Clustering · Elastic map · Structure

1 Introduction

An interplay between the structure and function of genetic entities and the
taxonomy of their bearers still challenges researchers. A lot has been done here
(see e.g., [4,7,8,17,24] and much more others). Obviously, the answer depends on
the genetic matter taken into consideration: some entities show the substantial
prevalence of the taxonomy over function [23], while another matter shows the
prevalence of the function over taxonomy [3]. This paper aims to further the
studies of the interplay mentioned above.

Here we study the relationship between the function encoded in the transfer
RNA human genes and the structure provided by the triplet composition of those
genes sequences. Let us now pose the problem more precisely and rigorously.
There are three entities: structure of a genetic sequence, the function encoded in
it, and taxonomy of the bearer of that former. All of them are interconnected so
c© Springer Nature Switzerland AG 2022
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that one may expect to reveal an order on a set of genetic sequences determined
by the entities or their interplay. To do it, one must rigorously define a structure
and function; maybe, taxonomy brings no problem in understanding. The current
study does not aim to reveal the impact of taxonomy on the order we seek.

A function seems to be the entity easily to define; despite a great diversity
of the functions observed both within a family of genes and for a single gene
(see, e. g. [18,19,22]), one faces no problem in the determination of the specific
function to be considered. Herein, we shall consider the very clearly defined and
apparent function of the transfer of various amino acids to a ribosome; see details
below.

A structure is much more complicated and diverse in nature; see, e.g. [13–
15,21,26] and many more. We shall focus on the simplest pattern revealed from
DNA sequences that is the triplet frequency dictionary (see below). Let us now
describe exactly the goal of the paper and the methodology.

1.1 Function–Taxonomy Interplay

To reveal the interplay between structure, function, and taxonomy, we shall go
the following way:

– choose the genetic entities with clearly determined and controlled function;
– convert them into a triplet frequency dictionary each;
– use up-to-date and powerful methods to cluster the points (frequency dictio-

naries) in the relevant metric space and identify the clusters;
– check what is the crucial factor of the clustering: a taxonomy of DNA donor

organisms or a function encoded in the sequences.

Suppose the clusters are observed (otherwise, no interplay occurs at all).
There are three possible outputs here:

1. the clusters are apparent, and each cluster comprises the sequences encoding
the same (or highly proximal) function;

2. the clusters are apparent, and each cluster comprises the sequences belonging
to organisms of high taxonomic proximity;

3. a hierarchy in the composition of the clusters takes place: e.g. there are super-
clusters gathering the functionally close entities with a fine pattern of each
super-cluster determined by taxonomy.

Speaking in advance, let us say that for the genes of human tRNAs, the
function is the top leading factor of clustering. Here the transfer of a specific
amino acid residue is considered the function.

1.2 Peculiarities of Codons Deciphering

Genetic code is known for redundancy: 64 triplets are available to code 20 amino
acids (22 in some organisms). As a rule, 61 codons are sense, while the remaining
three (usually UAA, UAG, and UAG) reserved for termination. Code redundancy
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results in so-called degenerate codons; some of them are grouped into semantic
blocks, where each of the synonymous codons codes for the same amino acid.
Synonymous codons usually have identical first pairs of bases. While protein
synthesis, only the first two bases of a codon interact with the second and third
bases of the anticodon strictly complementary, while the third base of the codon
and the first base of the anticodon (also known as “wobble position”) can pair
either complementarily or through the U:G, G:U or inosine:C interaction [12].
This feature allows one tRNA to bind to different synonymous codons; thus, a
cell requires less than 61 tRNA types for interaction between the tRNAs and
all sense codons. However, the number of tRNA types with different anticodons
varies among species according to their anticodons paring strategies.

Eukaryotic organisms have a strategy of depletion of tRNAs containing argi-
nine or guanine in the first position of the anticodon. For example, each of the
amino acids Phe, Tyr, His, Asn, Asp, Cys is encoded by a pair of synonymous
codons that differ only in the last base, U or C (UUC and UUU for Phe, ACC
and ACU for Tyr, and so on). During protein synthesis, tRNAs containing G in
the first base of the anticodon read both NNC and NNU codons of these amino
acids. The same is true for those of the four Ser codons in which the last base is
a pyrimidine (also U or C). On the contrary, tRNAs containing A in the “wobble
position” are used to decode pyrimidine when reading synonymous codons of
Val, Pro, Thr, Ala, and some others. A complete list of tRNA types existing
in the human body (and their number analyzed in the research) is provided in
Table 1.

Selenocysteine-specific tRNAs need special attention. Selenocysteine is the
21st proteinogenic amino acid, an analogue of cysteine with the replacement of
a sulfur atom with a selenium one. In mRNA world, selenocysteine is encoded
by the UGA termination codon followed by a specific stimulatory nucleotide
sequence (translational recoding). The structure of tRNASec differ from those of
standard tRNAs. Thus, the acceptor region contains 10 bases (for eukaryotes)
and a longer T-loop; additionally, tRNASec is characterized by the substitution
of several rather conservative base pairs [2].

1.3 Transfer RNA Genes

A crucial role of tRNA genes and the encoding function bring them to severe evo-
lutionary pressure, forcing them to remain highly conservative. A gene encoding
the transfer RNA for a specific amino acid is referred to isodecoder. Moreover,
isodecoders are the genes encoding tRNAs with the same anticodon differing in
the gene sequence. In practice, it results in a significant diversity of the genes
coding tRNAs with the same anticodon. The divergence of isodecoders may be
as high, as 50% [5,6]. The diversity of isodecoders is also provided by introns
embedded into the genes; these former are located pretty close to the anticodon
loop.
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2 Materials and Methods

2.1 Genetic Material

We studied the human genes of transfer RNAs to reveal the interplay between
structure, function, and taxonomy. These genes encode relatively short (≈
102 b. p. sequences), producing the RNA moleculae with the same function:
to transfer specific amino acid to the ribosome. In such a capacity, they all have
the same function in general and differ in the specificity to the peculiar amino
acid residue. Thus, this specificity in amino acid affinity may stand behind the
clustering pattern mentioned above, if any.

We used GtRNAdb database as the source of genetic material1 [1], the release
of 2019 comprising 421 tRNA genes of high confidence; there are 28 genes with
introns (–7%) in this dataset. It is commonplace that a genetic code is redun-
dant: some amino acids are encoded with several different triplets (codons).
Additionally, tRNA isodecoders are defined as tRNA moleculae sharing the same
anticodon but diverging elsewhere in their sequence (up to 274 different tRNA
species are produced from 446 genes in humans) [20]. Table 1 enlists the set of
isodecoders.

Table 1. Abundances of isodecoders of tRNA genes—stands for the codon with no
isodecoders in the database.

U l A G

U Phe – Ser 9 Tyr 1 Cys – U

Phe 10 Ser – Tyr 13 Cys 29 C

Leu 4 Ser 4 Stop/SeC 1 Stop A

Leu 7 Ser 4 Stop Trp 7 G

C Leu 9 Pro 9 His – Arg 7 U

Leu – Pro – His 10 Arg – C

Leu 3 Pro 7 Gln 6 Arg 6 A

Leu 9 Pro 4 Gln 13 Arg 4 G

A Ile 14 Thr 9 Asn – Ser – U

Ile 3 Thr – Asn 22 Ser 8 C

Ile 5 Thr 6 Lys 12 Arg 6 A

Met 10 Thr 5 Lys 15 Arg 5 G

G Val 10 Ala 22 Asp – Gly – U

Val – Ala – Asp 22 Gly 14 C

Val 5 Ala 8 Glu 7 Gly 9 A

Val 11 Ala 4 Glu 8 Gly 5 G

Initiator methionine AUG 9 genes

1 http://gtrnadb.ucsc.edu/.

http://gtrnadb.ucsc.edu/
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2.2 Triplet Frequency Dictionary

Triplet frequency dictionary Wj is the list of all 64 triplets ωk, k = AAA, . . . ,TTT
accompanied with their frequency fωk

; index j here enlists the sequences under
consideration. To make it, place the reading frame of the length 3 at the very
beginning of a sequence and count all the triplets identified by the frame as it
moves along a sequence from left to right (for determinacy). Obviously,

TTT∑

k=AAA

fω = 1 . (1)

Such transformation converts a sequence into a point in 63-dimensional metric
space; the constraint (1) leaves only 63 linearly independent triplets.

The transformation maps symbol sequences into more convenient mathemat-
ical objects that are the points in metric space, thus allowing effective analysis
methods. To do it, one must introduce metrics; further, we shall use Euclidean
metrics

ρ (Wj ,Wl) =

√√√√
TTT∑

k=AAA

(
f
(j)
k − f

(l)
k

)2

. (2)

Thus, we investigate the distribution of the points corresponding to genetic
sequences in this metric space revealing patterns and clusters, if any.

2.3 Clustering and Visualization

A variety of methods to cluster the multidimensional data falls beyond imagina-
tion. We use k-means and the elastic map technique to cluster the data. k-means
is well known linear classification method [9,11], so we focus on the elastic map
technique. It is the non-linear statistics method based on the approximation of
the multidimensional data by a manifold of the lower dimension; further, we
shall use two-dimensional manifolds [10].

The idea of the method consists of jamming the originally plain manifold
(a square in our case) to minimize the total deformation energy of the elastic
manifold and mathematical springs connecting the manifold and the projection
points. It is a compelling and efficient method to cluster multi-dimensional data
and visualize them. A development of elastic map implies specifically organized
deformation of elastic membrane so that the best possible fitting of the mem-
brane to the points takes place. To reveal a cluster pattern, one should redefine
the images of original points of the jamped surface: an orthogonal projection
must be found for each data point.

The next step one should cut-off the mathematical springs so the membrane
relaxes back to a straight position. Evidently, this reverse transformation relo-
cates the original points images. Counting the number of the images of the points
in an area unit of the plain elastic map, one gets the local density pattern; more
rigorously this procedure could be found in [9,11].
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Fig. 1. A general pattern of the distribution of isodecoders in 63-dimensional triplet
frequency space. Right is the legend explaining the amino acids notation. The cluster
structure is revealed through local density of the isodecoders distribution in inner
coordinate space.

3 Results and Discussion

We analyzed the distribution of human tRNA genes converted into triplet fre-
quency dictionaries in 63-dimensional Euclidean space. To do it, we excluded
the triplet TAC from the analysis since it has the least standard deviation figure
(σTAC = 0.00353); to compare with, the triplet CAG has the greatest standard
deviation figure σCAG = 0.11523.

Figure 1 shows the distribution of the genes of with respect to encoded amino
acids in the inner coordinates of the elastic map provided in 63-dimensional
Euclidean space of the triplet frequencies; right is the legend explaining the
amino acid code. Doubtlessly, the clusters comprise the genes of tRNAs isode-
coders of the same amino acid.

A common fact is that some amino acids are encoded with a few different
codons called synonyms. So, the question arises what happens with the isode-
coders bearing these different anticodons in terms of clustering pattern. Careful
examination of Table 1 shows that some synonyms are absent in the study set
of isodecoders. We start by analyzing the distribution of isodecoders of pheny-
lalanine, histidine, aspartic acid, asparagine, and cysteine; typically, they are
encoded with two synonyms. However, there is one in our database for each
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mentioned amino acid. So, one might check whether the isodecoders bearing the
same unique anticodon follow the general pattern of the distribution or deviate
from that former.

Fig. 2. Examples of the different distribution of the genes of multi-codon tRNAs.
Figure 2(a) shows the distribution of tRNA-Glu genes, two synonym codons isodecoders
are present; Fig. 2(b) shows the distribution of tRNA-Arg genes, five synonym codons
isodecoders are present. (Color figure online)

All these genes except cysteine yield a single specific cluster for themselves.
The genes of histidine, cysteine, and aspartic acid are gathered into the dense
cluster each; these genes form the dense clusters; however, a single isodecoder
(for each gene group) escapes from the cluster to some extent. Cysteine and
phenylalanine genes exhibit the farthest escape from the relevant cluster. Hence,
one can see that a single cluster pattern is peculiar for the genes with a single
synonymous codon. The same distribution pattern of a single dense cluster is
inherent for amino acids that do not have synonymous codons. These include
tryptophan, represented by a single UGG codon, and selenocysteine, encoded by
the UGA stop codon.

Some amino acids occupy the opposite pole in the set of distribution patterns.
Figure 2 illustrates two different patterns of both isoacceptors and isodecoders
clustering for tRNA genes encoding Gln (Fig. 2(a)) and Arg (Fig. 2(b)). Two
synonym codons normally encode gln; the database comprises 19 isodecoders for
both isoacceptors (6 for CAA, green triangles and 13 for CAG, red triangles). This
set of isodecoders exhibits a single-cluster pattern: both isoacceptors groups of
genes are gathered into a single cluster. On the contrary, the distribution pattern
for Arg exhibits an opposite behaviour.

Typically, Arg is encoded with six synonyms; the database contains 5 of
them (the synonym CGC is absent). The isodecoders for four isoacceptors tend
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to gather into a dense cluster; that latter comprises the isodecoders for CGU
(7 isodecoders, red triangles), CGG (4 isodecoders, yellow triangles), AGG (5
isodecoders, violet triangles), AGA (6 isodecoders, green triangles) and CGA (6
isodecoders, orange triangles) synonyms. The isodecoders comprising the set for
AGA anticodon differ from other ones in the presence of introns.

Isodecoders of all isoacceptors for glutamic acid and proline also are gath-
ered in one solid cluster exhibiting similar to the glutamine model of distri-
bution. Similar to arginine, leucine, isoleucine, and tyrosine show an unusual
distribution. All these amino acids are characterized by a particular distribu-
tion of isodecoders of one of the isoacceptors: the genes AGA (Arg), TTG (Leu),
AUA (Ile) and UAC (Tyr) are distributed throughout the map without forming a
dense and clearly isolated cluster, unlike the genes of the other isoacceptors the
above amino acids. The behaviour of “diffusing” isodecoders may be explained
by incorporating introns into the relevant genes. It should be stressed that the
introns in tRNA genes are highly conservative; maybe this fact manifests in the
dispersion of their distribution.

The isodecoders show another example of an unusual distribution for alanine,
lysine, and valine. Similar to cysteine and phenylalanine, isodecoders for the same
isoacceptor of these amino acids are divided into two separated groups.

4 Conclusion

Here we studied the relationships between the amino acids affinity to tRNA
and the ensemble of genes encoding these moleculae. The paper brings an evi-
dence for the strong prevalence of the function (that is the type of amino acid
transferred by tRNA) over all other issues that might affect the cluster pattern
formation. This result is of high scientific merit, since it unambiguously and
rigorously addresses the key problem of up-to-date molecular biology. That is
the fine pattern in structure, function and taxonomy interplay. The presented
results do not involve an effect of taxonomy. Nonetheless, the general approach
implemented in this paper provides an exhaustive analysis of the problem.

Recently [16,25], some other types of a structuredness have been reported.
Further, we shall check the distribution of those types of tRNA against the
observed pattern so that some fine details of the interplay between structure
and function might be revealed. Similarly, this approach should be extended for
the combined study of tRNA genes ensembles belonging to various organisms
ranging from proximal relatives (say, gorilla) to pathogenic and/or obligatory
microflora. More specifically, some deeper sight on the problem could be achieved
through an analysis of various combinations of genetic entities differing either
in taxonomy (say, a mutual analysis of the set of tRNA-Arg genes belonging
to different organisms of the same class), or in function of the studied genetic
entities.
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12. Grosjean, H., de Crécy-Lagard, V., Marck, C.: Deciphering synonymous codons in
the three domains of life: co-evolution with specific tRNA modification enzymes.
FEBS Lett. 584(2), 252–264 (2010)

13. Hong, F., Zhang, F., Liu, Y., Yan, H.: DNA origami: scaffolds for creating higher
order structures. Chem. Rev. 117(20), 12584–12640 (2017). https://doi.org/10.
1021/acs.chemrev.6b00825, pMID: 28605177

14. Jia, H., Gong, P.: A structure-function diversity survey of the RNA-dependent
RNA polymerases from the positive-strand RNA viruses. Front. Microbiol. 10,
1945 (2019)

15. Jin, X., et al.: Similarity/dissimilarity calculation methods of DNA sequences: a
survey. J. Mol. Graph. Model. 76, 342–355 (2017)

16. Lu, Z., Filonov, G.S., Noto, J.J., Schmidt, C.A., Hatkevich, T.L., Wen, Y., Jaffrey,
S.R., Matera, A.G.: Metazoan tRNA introns generate stable circular RNAs in vivo.
RNA 21(9), 1554–1565 (2015)

https://doi.org/10.1093/nar/gkn787
https://doi.org/10.1093/nar/gkn787
https://doi.org/10.1016/j.physa.2006.02.008
https://doi.org/10.1016/j.physa.2006.02.008
http://www.sciencedirect.com/science/article/pii/S0378437106001993
https://doi.org/10.1007/s11538-007-9229-6
https://doi.org/10.1007/s11538-007-9229-6
https://doi.org/10.1016/j.physa.2005.01.043
http://www.sciencedirect.com/science/article/pii/S0378437105000828
http://www.sciencedirect.com/science/article/pii/S0378437105000828
https://doi.org/10.1142/S0129065710002383
https://doi.org/10.1109/DSAA.2015.7344818
https://doi.org/10.1109/DSAA.2015.7344818
https://doi.org/10.1016/j.aml.2006.04.022
https://doi.org/10.1016/j.aml.2006.04.022
http://www.sciencedirect.com/science/article/pii/S0893965906001856
http://www.sciencedirect.com/science/article/pii/S0893965906001856
https://doi.org/10.1021/acs.chemrev.6b00825
https://doi.org/10.1021/acs.chemrev.6b00825


178 Y. Nedorez and M. Sadovsky

17. Mascher, M., Schubert, I., Scholz, U., Friedel, S.: Patterns of nucleotide asymme-
tries in plant and animal genomes. Biosystems 111(3), 181–189 (2013)

18. Mekhedov, S., de Ilárduya, O.M., Ohlrogge, J.: Toward a functional catalog of
the plant genome. a survey of genes for lipid biosynthesis. Plant Physiol. 122(2),
389–402 (2000)

19. Nikaido, M., Law, E.W., Kelsh, R.N.: A systematic survey of expression and func-
tion of zebrafish frizzled genes. PloS one 8(1), e54833 (2013)

20. Pan, T.: Modifications and functional genomics of human transfer RNA. Cell Res.
28(4), 395–404 (2018)

21. Pechal, J.L., Schmidt, C.J., Jordan, H.R., Benbow, M.E.: A large-scale survey of
the postmortem human microbiome, and its potential to provide insight into the
living health condition. Sci. Rep. 8(1), 1–15 (2018)

22. Philip, M., Chen, T., Tyagi, S.: A survey of current resources to study lncRNA-
protein interactions. Non-Coding RNA 7(2), 33 (2021)

23. Sadovsky, M., Putintseva, Y., Chernyshova, A., Fedotova, V.: Genome structure of
organelles strongly relates to taxonomy of bearers. In: Ortuño, F., Rojas, I. (eds.)
IWBBIO 2015. LNCS, vol. 9043, pp. 481–490. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16483-0 47

24. Sadovsky, M.G., Putintseva, J.A., Shchepanovsky, A.S.: Genes, information and
sense: complexity and knowledge retrieval. Theory Biosci. 127(2), 69–78 (2008).
https://doi.org/10.1007/s12064-008-0032-1

25. Schmidt, C.A., Matera, A.G.: tRNA introns: presence, processing, and purpose.
Wiley Interdiscipl. Rev. RNA 11(3), e1583 (2020)

26. Vinodhini, R., Suganya, R., Karthiga, S., Priyanka, G.: Literature survey on DNA
sequence by using machine learning algorithms and image registration technique.
In: Kolhe, M.L., Trivedi, M.C., Tiwari, S., Singh, V.K. (eds.) Advances in Data
and Information Sciences. LNNS, vol. 39, pp. 55–63. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-13-0277-0 5

https://doi.org/10.1007/978-3-319-16483-0_47
https://doi.org/10.1007/978-3-319-16483-0_47
https://doi.org/10.1007/s12064-008-0032-1
https://doi.org/10.1007/978-981-13-0277-0_5


A Methodology for Co-simulation-Based
Optimization of Biofabrication Protocols

Leonardo Giannantoni(B) , Roberta Bardini , and Stefano Di Carlo

Control and Computer Engineering Department, Politecnico di Torino,
10129 Turin, Italy

{leonardo.giannantoni,roberta.bardini,stefano.carlo}@polito.it

Abstract. Biofabrication processes are complex and often unsatisfac-
tory. Trial-and-error methods are costly and yield only incremental inno-
vation, starting from sub-optimal and poorly represented existing pro-
cesses. Although computational techniques might support efficient pro-
cess design to find optimal process configurations, intelligent computa-
tional approaches must comprise biological complexity to provide mean-
ingful insights. This paper proposes a novel co-simulation-based opti-
mization methodology for the systematic design of protocols for cell cul-
ture and biofabrication. The proposed strategy integrates evolutionary
computation and simulation for efficient design space exploration and
assessment of candidate protocols. A generic library supports the modu-
lar and flexible composition of multiscale and multidomain co-simulation
scenarios. The feasibility of the presented approach was demonstrated
in the automatic generation of protocols for the biofabrication of an
epithelial cell monolayer. The results are twofold. First, the prototype
co-simulation library helps build flexible, loosely coupled simulation sce-
narios. Second, the in-silico experimentation on the use case shows that
the proposed approach is a viable first step towards standard and auto-
mated design in biofabrication.

Keywords: Computational systems biology · Optimization via
simulation · Biofabrication

1 Introduction

Biofabrication is “the automated generation of biologically functional prod-
ucts with the structural organization from living cells, bioactive molecules, bio-
materials, cell aggregates such as micro-tissues, or hybrid cell-material con-
structs, through Bioprinting or Bioassembly and subsequent tissue maturation
processes” [8]. Biofabrication in Tissue Engineering and Regenerative Medicine
(TERM) has the potential to disrupt clinical and pharmacological research [19].
Yet, biofabrication of complex and large tissues and organs is still out of reach.

Biofabrication processes are highly complex biologically and technologically.
Biofabrication requires the application of specific protocols representing the
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dynamic configuration of relevant process control parameters, emphasizing the
values they assume in space and time. However, the large number of criti-
cal parameters implies a vast design space, whose exploration is prohibitive
and impairs the results obtainable by common in vitro trial-and-error experi-
ments [4]. These include brute-force experimental campaigns and One Factor at
A Time (OFAT) strategies exploring ranges of relevant system parameters one
at a time while holding the others constant [7]. This approach is expensive in
terms of time and resources. Also, it overlooks inter-dependencies among sys-
tem variables, which impedes linking experimental results with process designs
controlling multiple variables at a time. This can result in sub-optimal processes
[26].

Automation [10] and digitalization [9,26] make trial-and-error approaches
more efficient, reducing operator-dependency and human errors, thus support-
ing process tracking and control. This dramatically increases the yield of in
vitro experimental campaigns, allowing a more significant number of experi-
ments, thus a broader exploration of the design space. Yet, making the execu-
tion of experiments more efficient does not affect the underlying trial-and-error
paradigm. In silico Design Space Exploration (DSE) approaches can instead
support research design and optimization to maximize information extraction,
and process improvement efficiency [12].

This work presents the first step towards optimization via simulation (OvS)
for generating optimal biofabrication protocols for defined target products.
In particular, the proposed framework follows the model-based simulation-
optimization paradigm in which DSE and simulation modules are tightly inte-
grated. The DSE selects the solutions which need to be evaluated by simulation
[1]. The proposed method exploits heuristic DSE based on Genetic Algorithms
(GA) to increase computational feasibility and combines it with a co-simulation
environment relying on white-box simulation models to maximize expressivity
and explainability. The original contribution of this paper also includes a library
of generic components supporting the modular and flexible composition of co-
simulation scenarios. Therefore, the co-simulation can easily combine different
models, including the target biological entities (e.g., cells), the biofabrication
environment, and the possible stimuli delivered during the biofabrication pro-
cess. The entire framework is presented, resorting to a selected use case to gen-
erate optimal protocols for cultivating two-dimensional epithelial sheets with
specific shapes relying on a model including both intracellular and extracellular
processes. Experimental results show the capability of the proposed approach
and identify a set of significant challenges to stimulate further research in this
field.

2 Background

Model-based simulation-optimization techniques are part of the broader field of
computational process design for biofabrication. Several computational method-
ologies for biofabrication process design exist in the state-of-the-art. Design-
of-Experiments (DoE) [23,26] supports strategic and effective research design
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by enabling efficient, systematic exploration and exploitation of complex design
spaces [7,14]. A variety of DoE approaches exist [11], and they prove adequate to
tackle multi-factorial problems in the optimization of directed cell differentiation
[3,18], and tissue engineering scaffolds [25]. DoE can be combined with Machine
Learning (ML) and Artificial Neural Networks (ANN) to improve the accuracy
of the bioprocess model [23].

Yet, ML and ANN provide black-box models of the system. Comprehen-
sive modeling of biological complexity is critical for developing computational
approaches for biofabrication [5]. To support informed decisions in process
design, the ideal model of biofabrication must be accurate, predictive, inter-
pretable and able to analyze process dynamics. Computer simulations provide
white-box models of the process, a powerful tool for analyzing complex systems,
and particularly their trajectories under different conditions [1].

Simulation and optimization can work together. In optimization via sim-
ulation (OvS) methods, optimization can leverage simulations to explore the
process design space, and DoE can support the design of simulations campaigns
[11]. OvS leverages the simulation model of a physical process to explore its
dynamic behavior after specific stimuli, where the parameter values are sys-
tematically varied to find the most performing combination towards a target
objective [2]. OvS includes model-based and metamodel-based approaches [1].
In model-based OvS, the optimization engine selects the solutions evaluated by
simulation. Model-based approaches combine the accuracy and interpretability
of simulations with the systematic exploration of the process design space pro-
vided by optimization. This fulfills the requirements of biofabrication process
optimization, yet it poses strong limitations in terms of computational feasibil-
ity when the modeled system is complex. A strategy to reduce the computational
complexity of OvS is to include a metamodel that estimates input-output rela-
tions of the simulation model to significantly reduce the computational time at
the cost of accuracy [17] and a partial fallback to black-box modeling. Also, in
this case, white-box is preferable to black-box modeling since interpretability and
explainability of OvS results build their relevance for the design of an actual bio-
fabrication process. Heuristic methods allow us to find an approximate solution
faster than full-space search methods by trading accuracy and completeness for
speed while maintaining the simulated model intact. Among them, the Genetic
Algorithm (GA) mimics biological evolutionary dynamics where solutions in the
design space undergo a process similar to natural selection [15].

3 Methods

Figure 1 summarizes the main architecture of the presented framework, including
a Design Space Exploration (DSE) engine for the generation of biofabrication
protocols and a simulation engine for testing them. The framework receives the
high-level specification of the target product and iteratively computes a bio-
fabrication protocol optimized to grow it. The DSE assembles potential biofab-
rication protocols and feeds them to simulation instances. Simulation results
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are compared against the specifications of the target product used to rank the
corresponding protocols and generate new ones at the next iteration. This pro-
cedure continues until an optimal protocol is produced, a predetermined number
of iterations is reached, or the protocol performance stalls for a given number
of iterations. To help the reader, the paper introduces the proposed framework
using a running use case focusing on the fabrication of a human epithelial cells
monolayer with selected shapes.

Co-simula on
engine

generate and
op mize
protocols

end
op miza on?

simula on
pipeline

NO

YES
op mized
protocol

simula on
products

target
product

descrip on
candidate
protocols

DSE engine

Fig. 1. A high-level representation of the simulation-optimization pipeline.
Given a target product, the DSE engine generates a pool of candidate protocols to be
simulated. The products obtained by simulation are compared to the desired target.
The previous steps are iterated until an optimal protocol is found.

3.1 Use Case Description

As a proof of concept, this work presents the generation of protocols for fab-
ricating human epithelial sheets. To this end, the proposed use case includes a
computational model of a population of epithelial cells, modeling intracellular
and extracellular processes.

The intracellular model is a Boolean Network (BN) based on a published
and well-documented work synthesizing epithelial cells behavior (i.e., survival,
proliferation, and apoptosis) in response to a combination of cues [22]. These
include environmental factors such as cell density, extracellular matrix stiffness,
and growth factor signaling. The high abstraction level of this model allows
for low computational complexity and easy integration of new knowledge. A
graphical representation of the used Boolean network is available in Fig. 3 of the
above paper.

The extracellular model describes interactions among cells and between cells
and the environment. It models a discrete 3D grid supporting cells evolving on
an extracellular matrix (ECM) surface and interacting with neighboring cells
and environmental stimuli.

Biofabrication of a target product can be guided in this model by administer-
ing growth factors (GF) at a given 3D coordinate, i.e., molecules that stimulate
cell proliferation, and by exposing it to TNF-related apoptosis-inducing ligand



Simulation-optimization of Biofabrication Protocols 183

(TRAIL), a protein inducing cell death by apoptosis [24]. The biofabrication
process can also control the deposition of cells in the culturing environment.

The two models are coupled and interact through specific inputs. For
instance, the intracellular model includes a CellDensity High node, which is
used by the Boolean equation to determine the value for the Replication node.
If, according to the extracellular model, a cell ends up in a very dense area, the
cell is informed by setting its CellDensity High to True. This, in turn, affects
the cell’s ability to replicate, thus simulating the inhibition of proliferation by
contact inhibition.

3.2 Co-simulation Engine

The co-simulation engine interacts with the DSE engine to simulate and evalu-
ate the candidate biofabrication protocols. It sets up and evolves the biological
system for a predetermined number of simulation steps, administering stimuli
according to the protocol under test. As described in Subsect. 3.1, biofabrication
requires the co-simulation of intertwined aspects, each based on a different for-
malism. Therefore, different simulators must be connected through an interface
to exchange data and handle different scales and domains. Several freely-available
libraries were tested to ease such implementation (e.g., Mosaik [21]). However,
they cannot dynamically change the topology of the simulators required to han-
dle the intrinsic dynamical nature of biological systems.

To overcome this limitation, a prototypal co-simulation framework was devel-
oped. It is a Python library of generic components that can set up loosely-coupled
co-simulation scenarios, either standalone or associated with a DSE engine.
It supports multiscale and multidomain systems and provides mechanisms for
transparent distributed execution and third-party software encapsulation.

Fig. 2. Co-simulation framework. (a) UML diagram of the simulation framework.
(b) Co-simulation scenario for the modeled use case.

Figure 2(a) depicts the overall architecture of the simulation framework. A
Simulation encapsulates a Pipeline of Simulators, each executing an arbi-
trary number of Model entities. This design provides common interfaces to
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ensure interoperability between multiscale and multidomain simulators, either
custom or pre-existing, that can be transparently instantiated on local or remote
machines relying on the Pyro4 library [13]. Flexible composition and clear sep-
aration are coupled with an ad-hoc loose-coupling mechanism (i.e., it does
not involve an orchestrator) for information exchange using a shared Event
Dictionary collecting and relaying all the events in the simulation pipeline. The
high degree of modularity and integration does not enforce consistent conceptual
interrelations. Therefore, the data exchanged between the simulators might need
suitable translation layers provided by intermediate simulators. With this archi-
tecture, a simulation scenario can be easily set up through a single file listing
the simulators, both local and remote, and their configurations (Listing 1.1).

1 # Composition of the simulation scenario
2 SIMS = {
3 ’Local_Sim_Name ’ : { ’python’: ’library.simulator1:Sim1’ },
4 ’Remote_Sim_Name ’: { ’remote’: ’myuser@remotemachine.domain.it :9999’ },
5 ... }
6 # Configuration parameters for local simulators
7 SIM1_CONFIG = {
8 "TIMESCALE": ...,
9 "PARAM2": ...,

10 ... }
11 # Configuration parameters for the simulation
12 SIMULATION_CONFIG = {
13 "SIMULATION_STEPS": 1000,
14 "SIM1_CONFIG": SIM1_CONFIG ,
15 ... }

Listing 1.1. Configuration example for the simulation engine.

The considered use case is implemented by the co-simulation setup illustrated in
Fig. 2(b), supported by the above-described library. Two separate discrete-event
simulators, Spatial Grid and Intracellular Environment are dedicated to simulat-
ing a discrete 3D grid model with object instances (cells, ECM, signals) and BN
models of cells. A third simulator (Demiurgos) translates and administers the
protocol commands to the appropriate simulator. Demiurgos, like its Platonic
entity namesake, is the means through which protocols manifest in and influ-
ence the simulation universe. It acts as a purely functional layer (i.e., it does not
simulate any entity) by translating and delivering the culturing protocol under
simulation.

The Spatial Grid instantiates cells, ECM, and signal objects, as instructed by
Demiurgos, and manages the assignment of unique universal identifiers (UUIDs)
to cells. It also mimics the diffusion of GFs and TRAIL in the culturing space
with a simplified algorithm. At each simulation step, each signal is displaced
according to its drift attribute, which decays over time. Signals are removed
from the simulation when their keepalive counter reaches zero. With a random
probability, each signal reaching the same coordinate of a cell is tagged to be
consumed by it and removed from the simulation. If a cell is in an area with a high
density of neighboring cells, Spatial Grid prevents replication and communicates
to the cell that it is in a high-density area. Such information, in turn, might
affect that cell’s behavior in the Intracellular Environment (see Subsect. 3.1).
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The Intracellular Environment is informed about a newly issued cell’s UUID if
the cell can replicate.

The Intracellular Environment manages Boolean network entities modeled
after [22] and relies on the PyBoolNet library [16]. It spawns new entities with
the UUID provided by Spatial Grid. It feeds them a Boolean input modified by
both the protocol and the events coming from the extracellular environment, thus
informing them about the cell density of their surroundings, the quality of their
supporting ECM, and the availability of nutrients and other signals. Suppose
a cell entity enters an apoptotic state. In that case, Intracellular Environment
removes it and broadcasts its UUID so that the other simulators in the pipeline
(in this case, Spatial Grid) remove the corresponding model too.

3.3 Design Space Exploration Engine

A biofabrication protocol is a list of signals organized in time and space to
guide a specific biological product synthesis. Optimizing such arbitrary long lists
of instructions is a complicated combinatorial problem. Therefore, exhaustive
exploration is not an option. Our DSE component employs a Genetic Algorithm
(GA), an evolutionary computation metaheuristic, to generate populations of
candidate solutions or individuals (i.e., the protocols). In this context, a protocol
is an individual characterized by a genome whose genes are the signals composing
the protocol. Candidate individuals are ranked based on a fitness function and
mutated to evolve the population at each new generation. The proposed DSE
engine is built on top of the µGP(microGP) library, a tool tailored to problems
whose solutions can be expressed similarly to assembly programs [20].

The individuals defined for the proposed use case scenario are organized in
two sections (Listing 1.2). The placing section lists the 3D coordinates of the
cells to be deposited at the beginning of the biofabrication process. The signal
section lists nutrients and environmental stimuli organized in space and time.

1 % placing section
2 CELL (99, 72, 3), (150, 162, 3), (67, 56, 3), ...
3

4 % signals section
5 0: GF LOW (147 ,84 ,3), GF LOW (133 ,101 ,3), GF HIGH (26 ,22 ,3), GF LOW

(137 ,158 ,3), TRAIL (81 ,148 ,3), TRAIL (43,8,3), TRAIL (75 ,177 ,3), ...
6

7 5: TRAIL (5,24,3), GF HIGH (104 ,24 ,3), ...
8

9
.
.
.

10

11 300: ...

Listing 1.2. Sample protocol built by the DSE engine.

The language used to build the protocols for the epithelial cell model includes
CELL, GF LOW/HIGH, and TRAIL macros, each followed by 3D coordinates. They
derive from the inputs (cells deposition and exposure to stimuli) specific to
the model described in Subsect. 3.1. This abstract and compact representation
minimizes the resources required to compute and store the individuals that in
µGPare encoded as directed multigraphs constrained by user-defined rules [20].
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The DSE engine requires the specification of a target product, i.e., the bio-
logical construct obtained at the end of the simulation and a timescale. In the
example provided in Listing 1.3, a STRIPES target composed of two parallel
planar stripes is described using the sum of two CUBOID primitives from our
geometry library. An optional bounding box can provide cues to the DSE engine
for the assembly of new individuals. The timescale allows tuning the granularity
of the protocol for the simulated system. For instance, if the protocol step is set
to 5, the signal section of the protocol uses a simulation steps/5 length, and
Demiurgos issues one protocol instruction every five simulation steps.

The DSE engine uses three genetic operators to evolve the population of
candidate protocols. When creating a new offspring, each operator is applied
with an initial probability equal to the strength parameter α, which in our
setup is equal to 0.9 (α ∈ [0...1]). Strength is a self-adapting parameter.
µGPincreases it when an operator shows a high success rate (i.e., the mutated
individuals’ fitness improved compared to its parents) and decreases it other-
wise. singleParameterAlterationMutation chooses a new random value for
one parameter of an individual. For instance, it might alter the x coordinate for
the deposition of a signal at protocol step n. onePointCrossover generates two
offspring individuals from two parent individuals by recombining them over a
single cut point. For instance, given two 100-step protocols, it might cut them
at step 20 and swap the parts containing steps 21 to 100. twoPointCrossover
operates similarly. It chooses two cut points and swaps the middle portion.

The protocols’ fitness is assessed by comparing the product obtained by sim-
ulation with the target product. For the presented application, the fitness is
represented using two values:

f0 =
cellsInsideTargetArea ∗ 100

1 + cellsInsideTargetArea + cellsOutsideTargetArea
(1)

f1 =
cellsInsideTargetArea ∗ 100

1 + targetAreaPoints
(2)

Equation 1 (f0) expresses the precision, i.e., the fraction of the biofabricated
product that matches the target. Eq. 2 (f1) expresses the coverage, i.e., how
much of the target product has been obtained. targetAreaPoints is defined as
the number of integer 3D coordinates included in the target shape. For instance,
given a square target covering a m × n area (i.e., m × n targetAreaPoints),
a fitness f = [84.1, 29.2] means that 29.2 % of the desired product has been
obtained (i.e., it covers 29.2 % of the m × n area), and 84.1 % of the material is
where expected (inside the target area). That is, the remaining 15.9 % of cells is
misplaced (outside the target area).

µGPprovides two methods to evaluate a multi-parameter fitness functions,
Enhanced and MultiObjective. The Enhanced method attributes decreasing
importance to the fi parameters. The MultiObjective method attributes the
same weight to f0 and f1, thus leading to the choice of the best individuals
based on the joint evaluation of the two parameters. The best individual, in this
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case, is chosen among those dominating the individuals belonging to the Pareto
frontier of the previous generation.

The proposed implementation of the DSE engine employs the
MultiObjective method, as it is tailored to multi-objective optimization prob-
lems. That is, those requiring trade-offs between multiple and potentially con-
flicting objectives. Cell proliferation is helpful for coverage for the presented use
case but must be restrained to avoid abnormal growth. Simultaneously, precision
(summarizing a proliferation process under control and limited to a well-defined
area) should not prevent obtaining the target product in the desired quantity
and shape.
1 from library.common import geometry
2 STRIPES = {"DESCR": {
3 "CUBOID 1":
4 {"width": 200, "depth": 25, "height": 1, "origin": (0, 0, 3)},
5 "CUBOID 2":
6 {"width": 200, "depth": 25, "height": 1, "origin": (0, 174, 3)} },
7 "BOUNDING_BOX": ((0, 200), (0, 200), (3, 4)) }
8 CIRCLE = {"DESCR": {
9 "CYLINDER": {"center": (100, 100, 3), "radius": 30, "height": 1}},

10 "BOUNDING_BOX": ((70, 130), (70, 130), (3, 4)) }
11 UGP_CONFIG = { "PROTOCOL_STEP": 5, "TARGET": STRIPES }

Listing 1.3. Configuration example for the DSE engine.

4 Results

This section presents the validation strategy employed to demonstrate the func-
tioning of the proposed approach.

4.1 Experimental Setup

The experimental setup starts with the definition of a target product, that is, an
epithelial cells monolayer covering half the ECM surface (Fig. 3). The culturing
environment simulated by the Spatial Grid is a 200 × 200 × 200 cube, with its
base covered by a 200 × 200 × 3 layer of ECM entities. The target product is
then a 200× 100× 1 rectangle lying on the ECM layer. At the beginning of each
simulation, the Intracellular Environment sets all new cells in the proliferative
state defined in [22]. Demiurgos issues one protocol instruction every five sim-
ulation steps. The co-simulation engine evolves the system for 1,500 simulation
steps per simulation, stopping in advance if all cells die.

As for this experiment, the placing section of the protocols lists 1 to
15 (average = 8, sigma = 2) coordinates for cells deposition. The signals
section contains 300 (1500/5) instructions, and each instruction contains 0 to 50
(average = 15, sigma = 5) occurrences of macros (GF HIGH, GF LOW, and TRAIL,
as detailed in Subsect. 3.3). The population evolved by µGPis of MultiObjective
type, it has an initial size ν = 10 and a maximum size μ = 10. The genetic oper-
ators described in Subsect. 3.3 can be applied λ = 10 times at every step of the
evolution, with a σ = 0.9 strength, and an α = 0.9 inertia. To rank protocols
by fitness, the DSE engine uses the pair of values f = [f0, f1] (Eq. 1 and Eq. 2),
measuring precision and coverage of the target, respectively.
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Fig. 3. Target product. Left: top view, right: lateral view. The green and red dots
help figure out the orientation.

4.2 Experimental Results

As of the writing of this document, the experiments have been running for 39
days on an Intel(R) Xeon(R) CPU E5-2680 @ 2.70 GHz with 64 GB RAM,
evaluating 884 protocols along 50 generations.

Results obtained demonstrate that (1) the proposed framework proves capa-
ble of automatically generating a protocol for the simulated biofabrication of
the illustrated target product and use case and that (2) the DSE can drive the
optimization toward protocols with better fitness expressed as similarity to a
target product.

Fig. 4. Fitness trend during optimization. Left: product obtained by the best
protocols at the beginning and end of the simulation. The dashed red box highlights
the target area. Right: fitness of the best protocols.

Figure 4 (left) shows a 2D view of the Spatial Grid at the beginning (t = 0)
and end (t = 1500) of the simulation of the best protocols identified during dif-
ferent generations of the optimization process. On the right panel of the figure,
the chart shows the evolution of the fitness of best protocols along generations.
This plot highlights two trends for the fitness of the best protocols consistent
with observations performed on all the 884 best protocols (data not shown).
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Fig. 5. Evolution of the Pareto front. Each chart reports the fitness of the indi-
viduals from the same generation, with the Pareto-dominant protocols highlighted in
red. The green arrow pinpoints the best individual emerged from that generation. Only
generations 0, 1, 3 (top) and 11, 23, 27 (bottom) are shown. (Color figure online)

Some best protocols (generations 3, 11, 27) exhibit higher precision (f0), while
others (generations 1, 23) higher coverage (f1). Therefore, the best protocol
might be selected from both clusters, depending on the maximum lifetime of the
individuals and the advancement of the Pareto front.

Figure 5 shows the evolution of the Pareto front, taking into account only the
protocols evaluated in the same generation to which the best protocols belong.
The best protocol, indicated by a green arrow, is chosen by µGPamong the red
dots in the image. According to µGPdefinition of the MultiObjective optimiza-
tion, “two fitness may be equal, may dominate each other, meaning that all the
components of one fitness are greater or equal to the corresponding parts of the
other, or they may be not comparable” [20].

Figure 6 shows per each generation (rows) different initial configurations of
the cells (blue), provided by the placing section of the protocols at the beginning
of each simulation. 2D views of the Spatial Grid at t = 0 represent different
simulations for each generation, corresponding to other simulated protocols. At
the beginning of the optimization process (generations 0, 1, and 2, top three
rows), the DSE engine generates protocols as random individuals. After several
rounds of evolution (generations 48 and 49, bottom couple of rows), the initial
configuration of cell placing shows more consistency among different simulated
protocols.

Indeed, both Fig. 4 and Fig. 6 show that, through the generations, the ini-
tial placing of the cells gradually shifts and concentrates towards the target
area. Figure 7 shows the same simulated protocols at the end of the simulation
(t = 1500, or t corresponding to death of all the cells). In the first three gener-
ations (top three rows), few protocols guarantee cells survival to the end of the
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simulation. Indeed, those simulations stopped before executing the 1,500 steps
(we show the last simulation step with alive cells), corresponding to very low
protocol fitness. The two bottom rows (generations 48 and 49) demonstrate that
those very poorly fit individuals have permanently given way to protocols that
are indeed able to grow conglomerates of cells.

Figure 7 indicates the same two-fold tendencies that Fig. 4 discovered: some
of the fittest protocols yield higher precision, others higher coverage.

The source code and the results obtained are available on GitHub and
archived in Zenodo [6].

Fig. 6. Initial configuration of the cells (blue) obtained from the simulated
protocols at the beginning of the simulation. At the beginning of the optimization
process, the top three rows are from generations 0–2 (random individuals). The bottom
two after several rounds of evolution (generations 48 and 49). The red and green clouds
represent Trail and GF signals, respectively. The dashed red box highlights the target
area. (Color figure online)

Fig. 7. Final configuration of the cells (blue) obtained from the simulated
protocols after 1500 simulation steps. At the beginning of the optimization pro-
cess, the top three rows are from generations 0–2 (random individuals). The bottom
two rows (generations 48 and 49) show the progress after several rounds of evolution.
The red and green clouds represent Trail and GF signals, respectively. The dashed red
box highlights the target area. (Color figure online)
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5 Conclusions

In this work, we presented a simulation-optimization methodology for generating
biofabrication protocols and a co-simulation framework supporting our strategy.
To the best of our knowledge, we are the first to propose this kind of approach.
We chose the human epithelium as a use case to validate our methodology and
demonstrate the developed framework’s usefulness.

Our results are twofold. First, the prototype framework backing our simula-
tions helps build flexible loosely-coupled co-simulation scenarios. Secondly, the
preliminary experimental results show that the proposed approach might provide
viable support to biofabrication process design.

In the future, we plan to expand this work in several directions, first, by
addressing hyperparameter optimization for the DSE engine. That is the explo-
ration and tuning of optimal GA parameters. Second, by integrating better quan-
titative models for the realization of more accurate digital twins for both the bio-
fabrication process and the modeled biological system. Finally, we plan to extend
our use case by adding cells differentiation so that their diverse functional and
phenotypical types let us build more complex products. We are already taking
steps towards a massive parallelization, which would allow faster experimenta-
tion of larger and more complex biological systems.

While still in its infancy, we can foresee this new methodology as the first
step towards standard and automated design in biofabrication.
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21. Schütte, S., Scherfke, S., Tröschel, M.: Mosaik: a framework for modular simulation
of active components in smart grids. In: 2011 IEEE First International Workshop
on Smart Grid Modeling and Simulation (SGMS), pp. 55–60. IEEE (2011)

22. Sizek, H., Hamel, A., Deritei, D., Campbell, S., Regan, E.R.: Boolean model of
growth signaling, cell cycle and apoptosis predicts the molecular mechanism of
aberrant cell cycle progression driven by hyperactive pi3k. PLOS Comput. Biol.
15, e1006402 (3 2019)

23. Walsh, I., Myint, M., Nguyen-Khuong, T., Ho, Y.S., Ng, S.K., Lakshmanan, M.:
Harnessing the potential of machine learning for advancing “quality by design” in
biomanufacturing. In: Mabs, vol. 14 (1), p. 2013593. Taylor & Francis (2022)

24. Wiley, S.R.: Identification and characterization of a new member of the TNF family
that induces apoptosis. Immunity 3(6), 673–682 (1995)

25. Zhang, S., Vijayavenkataraman, S., Lu, W.F., Fuh, J.Y.: A review on the use of
computational methods to characterize, design, and optimize tissue engineering
scaffolds, with a potential in 3d printing fabrication. J. Biomed. Mater. Res. Part
B Appl. Biomater. 107(5), 1329–1351 (2019)

26. Zobel-Roos, S., Schmidt, A., Uhlenbrock, L., Ditz, R., Köster, D., Strube, J.: Digi-
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Abstract. Although computational solutions are commonplace in Synthetic Biol-
ogy laboratories that use software, proprietary or otherwise, the use of multicel-
lular simulations promises to enhance such workflows by in silico prototyping
via spatiotemporal biological simulations prior to the in vitro genetic manipula-
tion of cell lines. Thus, a multicellular layer for the Infobiotics Workbench Syn-
thetic Biology platform was pursued with a view towards impactful multicellular
case studies. This work interrogates and benchmarks a variety of multicellular
modalities, including the application of parallel subcellular stochastic simulations
for computing biochemical network models. Phenotypic and microenvironmental
characteristics were meticulously reviewed to effectively construct the multicel-
lular designs that could elicit emergent population level consequences. The result
was the benchmarking of a batch processed solution compared to one utilizing
Unreal Engine 4 in real time, along with the elucidation of relative characteris-
tics and performances. Such simulations proved very computationally intensive
as prototyped on conventional hardware, hence this work alluded to the need for
high performance computing especially regarding biochemical parallelization.

Keywords: Synthetic · Biology ·Multicellular · Stochastic · Simulation · CAD

1 Introduction

The objective of Synthetic Biology has been described as the utilization of biology
technologically [1], especially from the DNA level, for essentially unlimited possible
outcomes. The challenge explored here is in elevating CAD (computer assisted design)
to the multicellular level. Data is available within various repositories upon which mod-
els and simulations can be constructed. In fact, bioregulatory models acquired from
repositories can be harnessed and applied dynamically to spatiotemporal simulations
[2]. Thus, computers are poised for the computer assisted design of blueprints, upon
which in silico proofing can be performed, with potential parameter optimization [3]
and finally laboratory application and/or verification [4] from ‘in silico first’ efforts.

The integration of the NGSS (Next Generation Stochastic Simulator) [5] into two
unique multicellular simulation layers was pursued, with subsequent benchmarking of
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performances with and without this subcellular processing layer. In this way the scala-
bility, tractability and feature differences could be assessed, commencing at the personal
computing level. With NGSS integrated into the Infobiotics Workbench (IBW) platform
[6], the present work pursued the extension of this Synthetic Biology CAD system to the
multicellular context through the mutual SBML [7] model exchange format. Multicel-
lularity was found to be absent or limited in such suites [1, 6, 8], especially with regards
to compelling physical, spatiotemporal 3D solutions. Coupled with a phenomenolog-
ical assessment of cellular behavior and the respective microenvironment (Sect. 2.2),
the work sets the foundation for promising developments towards increasingly realistic,
instructive and useful multicellular simulations with diverse, emergent spatiotemporal
potential. Such elucidation coordinates with the phenomenological approach that was
encouraged in the literature [9].

Unreal Engine 4 (UE4) as a real-time platform (including physics) for multicellular
simulation and CAD design was assessed as contrasted to a rules-based batch-processed
dynamic mesh generation approach. The distinction between real-time and batch pro-
cessed performances in multicellular simulation are not clear from the literature and is
one of the critical design aspects to consider when developing a multicellular simulator
(see Sect. 2.3 formore details). Theworkwould demonstrate the call for batch processing
over real time solutions, as well as performance profiles of parallel NGSS processing that
highlighted the need for future high performance computing (HPC) implementations for
subcellular models (see Sect. 4.3) in the pursuit of expanding IBW.

2 Multicellular Simulation Principles and Technologies

The features of multicellular simulation as well as the data exchange technologies dis-
cussed in this section were considered for the construction of the multicellular layers
presented in the methods section (Sect. 3) as well as for the subcellular biochemical
processing layer used in association with IBW’s stochastic simulator (NGSS).

2.1 Bioregulatory/Metabolic Simulations and Exchange Standards

SBML is an exchange format designed to exchange modeled data within Systems Biol-
ogy and between computational modeling and metabolic simulation tools [8]. SBML
can be used to capture the mathematics of biochemical reactions and regulatory models,
and it has been used for multiscale simulations at the subcellular level [10].

There are a number of simulators available for the chemical level that can solve
various biological computations, such as biochemical reactions or state transitions (e.g.
transport). These simulators tend to be designed for solving SBML models and have
been used to compute subcellular models within multicellular simulators [10]. They can
utilize various biochemical simulation modalities [11], including ordinary differential
equations (ODEs), stochastic algorithms and flux balance analysis, and may even pos-
sess parameter estimation capabilities.Whilst stochastic approaches are computationally
expensive, they are considered more principled than ODEs, and the justification for their
use has been given [12] by the argument that stochastic models can capture the noise of
biochemical systems, whilst also effectively fulfilling the modelling of genetic switches.
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It was argued that deterministic ordinary differential equations are incapable of fulfill-
ing these objectives effectively. Hybrid approaches have also been pursued [11], where
low particle numbers suited stochastic simulations whilst faster reactions containing
more reactants could be solved deterministically. Boolean models provide a convenient
alternative solution by avoiding the need for kinetics data [13].

NGSS and SSAPredict
NGSS [12] possesses one approximate and 8 exact Gillespie stochastic algorithms [6]
and was notably incorporated into the Infobiotics Workshop Synthetic Biology suite.
Stochastic SimulationAlgorithms (SSAs) behave equivalently toChemicalMasterEqua-
tions; a set of probabilistic differential equations. NGSS can operate on a single logical
core (i.e. serially) or on multiple CPU logical cores, and outputs average concentrations
over one or more parallel runs. The web-based SSAPredict tool [5] can purportedly pre-
dict the fastest SSA to use for a given model via topological network property analysis.
As will be seen, it is not always correct. According to Sanassy et al. (2015) [5], despite
being one of the top 4 algorithms out of the 9, Tau Leaping still performed worse than
other algorithms on many occasions. However, Tau Leaping often far outperforms other
algorithms for economy of time (see Sect. 4.3) and reportedly has better performance at
higher reaction and species graph densities. Thus, SSAPredict should only be treated as
a guideline for the best algorithm.

2.2 Multicellular Simulator Characteristics and Potential Characteristics

With regards to the mechanisms underlying multicellular simulation, it is apparent that
small cellular phenotypic changes can have significant biological implications [2]. The
outcome of understanding the genetic and phenotypic properties of cells is the ability
to mechanically predict their emergent consequences. Cellular and subcellular pheno-
typic phenomena can be derived from a variety of multicellular and biological literature
sources [2, 13–21] and operate in conjunction with extracellular characteristics [13, 14,
16, 22–24] to produce emergent consequences such as cell sorting [9, 24], morphogen-
esis [9], patterning [24], fitness [25] and many more. As a reassurance to modelers, it
was observed that the emergent phenomena list was far more extensive than the fun-
damental cellular and extracellular phenomena from which they emerged, although the
permutations, including spatial organizations, are innumerable.

2.3 Computational Considerations

High performance computing and extensive parallelization is not uncommonwith multi-
cellular simulation [22, 24, 26]. Other computational enhancements include the cluster-
ing of similar cells phenotypically [25], referred to as ‘super-individuals’ [22], perhaps
based on the assumed similarity of the local biochemical microenvironment [26, 27], or
into nearest neighbor lists by proximity [22], use of state outputs with subsequent exter-
nal visualization [22, 26] following “batch processing” [19] as opposed to real-time
approaches [16, 20], GPU and CPU parallelization [19, 26, 28] with as few as one cell
per CPU, random update ordering [25] to remove bias, Voronoi tessellations to abstract
spatial distributions [29], graphical merging of objects [30], client-server architecture
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[19] and the use of small scale representations of a functionally identical larger sys-
tem [27]. Domain-based computing is an essential hallmark of multicellular simulation
tractability and computation, allowing for parallelization, as well as structural and func-
tional discretization. Also, with the need to consider multiscale phenomena, multiple
timesteps are often used, referred to as a “pseudo steady-state approximation”, because
temporal resolutions may be different enough that certain processes are “frozen” during
those smaller time steps [22, 31].

The initialization of spatial configurations, or whatmight be considered ‘bioprinting’
in silico, can allow for proportionally distributed heterogenous populations, for example
in the cortical layers of neurological tissue simulations [28], thereby bypassing stages of
developmental emergence. Initial simulated arrangements of cells [16] as well as model
generation [32–34] have also been attempted using micrographs. Multicellular states,
emergent or otherwise, could be saved and experimented on in silico [2] andmanipulated
by playback controls [19].

2.4 Multicellular Simulation Methodologies

An on-lattice [9] approach refers to a spatially discretized space, where only the dis-
cretized spaces of fixed resolution can be occupied. Off-lattice refers [26] to less defined
increments of space, for example 3D localization at floating point precision, often using
an agent/individual based approach. That said, hybrid methods are common, for exam-
ple diffusion is often represented through voxel discretization [16, 22, 35] in otherwise
agent-based solutions, providing for fine and even spatial control. Some solutions are
entirely on-lattice [9], notably the Cellular Pottsmethod, whichwas described as an Ising
lattice [36], utilizing ‘index-copy’ occurrences via Monte-Carlo Metropolis dynamics
method with Boltzmann acceptance [9]. Lattice approaches tend to be more morpholog-
ically manipulable due to total discretization, but with inevitable computational costs.
Cellular Potts (aka. Glazier-Graner-Hogeweg) multicellular simulators include, perhaps
most convincingly, CompuCell3D [9]. Vertex approaches can take on a nodal form in
the case of the Finite Element Method, with the discretization of a body into nodes on
a mesh to solve complex problems utilizing degrees of freedom. An example using a
“subcellular element model” with nodal meshes was the multicellular EmbryoMaker
[21] solution, which alluded to an apparently computationally expensive yet high reso-
lution solution with significant morphological flexibility. A hybrid Finite-Element Cel-
lular Potts approach is in VirtualLeaf [37]. Agent-based multicellular simulators, almost
always hybridized with a domain-based discretized layer or possibly other modalities,
are apparently the most abundant [2, 4, 16, 19, 22, 24–26, 30, 36].

3 Methods

3.1 Overview

The benchmarking of two novel 3D multicellular simulators with and without NGSS
integration on a high-end personal computing system will be described to demonstrate
computational limits, reveal enhancements and demonstrate the scalabilities of different
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approaches. A specific NGSS version was tailored for Windows and its integration with
multicellular layers was pursued to bridge the gap between multicellular simulation
and Synthetic Biology CAD design. This methodology would provide insights into
CAD considerations regarding simulation architecture, ergonomics, and demonstrated
principled in silico population level emergence from the algorithms.

SBML-Constructor was a utility developed to automatically generate simple SBML
level 2 format biological reaction pathways of differing homogeneity, lengths and topolo-
gies for benchmarking with the NGSS stochastic simulator coupled to a multicellular
simulation layer. It was developed using SBML level 2 documentation as formatting
guidance [38] to overcome interoperability issues [6].

NGSS-Invoker is a simple utility program developed to execute and benchmark an
adapted Windows version of NGSS multiple times and hence fully saturate the CPU to
measure the time taken for a user defined number of NGSS activations to complete.

3.2 UnrealMulticell3D

Fig. 1. UnrealMulticell3D circular, raised cellular colony formation of bacillus cells.

UnrealMulticell3D (UM3D) is a prototype, agent-based, off-lattice, real-time, 3D
multicellular simulation software developed in Epic Games’ Unreal Engine 4 (UE4) and
C++. UM3D addressed inferior graphical solutions [16, 20] with the state of the art 3D
UE4 used for blockbuster gaming productions. UE4 provides GPU support for physics
calculations utilizing PhysX which works with GeForce GPUs and performs Newtonian
physics. UM3D also addressed the lack of real time ergonomic user interfaces and
Windows accessibility compared to otherwise very robust methods [22, 26].

Cellular assets were produced through 3D skeletal mesh designs in Blender 2.90.1,
including the use of shape-key animations for bacterial cleavage. The basis mesh con-
sisted of 3,551 vertices for a bacillus shaped cell, but a simplified mesh was successfully
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trialed using only 8 vertices with only visual implications since physical interactions
used a ‘Capsule Component’, inherent to the UE4 ‘Character’ blueprint class. The bac-
teria in UM3D would split upon reaching a shape-key setting of double the size from
1.5 microns to 3 microns in length, based in the simulation literature [16]. UE4 use has
the capacity to overcome limitations in the modelling of morphology and heterogene-
ity compared to the most promising agent-based multicellular solutions [22, 26]. Also,
such solutions lack interdisciplinary ease of use, with the literature recommending the
harnessing of graphical user interfaces [11] as exhibited in UM3D.

Figure 1 demonstrates a circular, raised colony that, in this case, took 28.112 s to
reach 16,384 simplified mesh cells from a single cell, as measured by the epoch-based
timer. This type of colony morphology was used for benchmarking purposes.

3.3 SynthMeshBuilder

Fig. 2. SynthMeshBuilder’s diverse morphology generation of mesh-based cell networks (upper
left), highly scalable one million cell colonies (upper right), parallelized “stochastic chain exten-
sion” reminiscent of staphylococcus clusters [39] used for benchmarking (lower left) and an
alternative on-lattice algorithmwith randomupdate order (lower right), as visualizedwith Blender.

SynthMeshBuilder (SMB) is a procedural, multithreaded, vertex-based, batch pro-
cessed, 3D multicellular mesh generation prototype software, developed in .NET C#
for Windows, blurring the line between On-Lattice and Off-Lattice approaches, with
an agent-based character and utilizing generative rules-based decision making. Mesh
generation is practical since vertices can be represented by minimal data and meshes
can be used to construct and regulate large objects such as tissues.

SMB shares similarity to a ‘family’ of multicellular tools [22, 24–26]. Commonali-
ties include batch processing, retrospective visualization, spherical agents, proliferation
focused, computationally parallelized, highly scalable, independent solutions; although
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SMB has not yet utilized HPC. Batch processing can be recommended as it negates the
need for live rendering costs, and can provide for interface-free computation if embed-
ded in a suite. Animation of growth was possible in SMB due to the ordered sequence
of vertices in the OBJ output file that Blender 2.90.1 could iterate over with particles
(Fig. 2).

SMBwas trialed with various approaches, including on and off lattice solutions. The
“Pseudo Off-Lattice” algorithm used no fixed lattice boundaries but placed vertices at
unit distance from the parent and was used for benchmarking. Within this Pseudo Off-
Lattice approach, the “Stochastic Chain Extension” ruleset insighted the most recently
generated cell on a computational thread to replicate in a random direction into an unoc-
cupied location. “Tunnelling” of cells was used if the cell could find no free space to
expand into locally.OBJ encoding of edges occurred between parent and daughter cells to
generate the histological mesh. In multicellular scenarios such bonds may be formed by
extracellular substances, cell-matrix adhesion and cell-cell adhesion. Such interwoven
webs could be used for intercellular communication simulations. High entropy stochastic
outcomes can be progressed towards low entropy organization and behavior by increas-
ing algorithmic control. The benchmarked colony formations were morphologically
different from those of UM3D due to the underlying algorithmic differences.

3.4 NGSS Use via NGSS-Invoker, UnrealMulticell3D and SynthMeshBuilder

No actual model feedback into the simulators was attempted or achieved when running
the external NGSS metabolic simulator besides NGSS completion checks via output
files. Whether it is through stochastic simulation or another solution such as the use of
Boolean networks [29], flux balance analysis [27], deterministic or hybrid algorithms
[11] subcellular “decision making” affecting cellular phenotypes is vital in order to
elicit regulated, emergent multicellular behavior in silico. However, for prototyping and
benchmarking purposes it was sufficient to execute the control flow without feedback.

4 Results

4.1 Hardware, Software and Models Used for Benchmarking

Benchmarking was performed using a G7 7700 Dell Laptop, Intel(R) Core(TM) i7-
10750HCPU@2.60GHz (6 cores, 12 logical cores) processor, 16.0 GBRAM,NVIDIA
GeForce RTX 2060 6 GB VRAM graphics card on Windows 10 64-bit.

SBML-Constructor was used to produce sets of SBML models with serial path-
ways up to 128 reactions in length with low enzyme and high substrate concentrations
to homogenize performance. Two sets of models were generated, a set with separate
enzymes (multi-enz) for each reaction and one with a single enzyme (single-enz) medi-
ating every reaction. Most SBML models from the BioModels database were reported
as 50 reactions or less, with a few having as many as 1800 reactions [5]. Thus the
range generated by SBML-Constructor, up to 128 reactions, could give a reasonable
sense of tractability for models from curated model archives. NGSS-Invoker was used
to benchmark NGSS without spatial simulation using the SBML models. UM3D and
SMB engines were benchmarked with and without NGSS, with spatial and graphical
consequences but without actual logical feedback from the SBML model itself.
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4.2 Benchmarking Without the Multicellular Layer

Single Cell Performance via NGSS-Invoker
Initially, three different Stochastic Simulation Algorithms (SSAs) were tested. A fourth
was added retrospectively on recommendation by the SSAPredict tool [5]. With the
multienzyme model, SSAPredict concluded for the 4, 8, 32, 64 and 128 reaction models
that the Logarithmic Direct Method should be optimal. For 2 and 3 pathway reactions
the Optimized Direct Method was recommended. Nevertheless, Tau Leaping performed
faster, likely because it favors low propensity (slow, low probability) scenarios [12]
matching the models generated. For all algorithms, time to complete increased with
a polynomial trend as the number of reaction steps to complete increased. Up to 6
reactions the Tau Leaping algorithm possessed a nuance where it followed the relatively
slow Direct Method.

A comparison of the behavior of different SSA algorithms was also performed
for the Single Enzyme model set, where NGSS performed identically in every case
despite SSAPredict recommending the Logarithmic Direct Method (LDM) and the Par-
tial Propensity Direct (PPD)Method. The single-enz topologywas far slower thanmulti-
enz. Out of the conditions tested, NGSS turnover was deemed fastest under Tau Leaping,
interval 0.1, MAX_TIME 3, with multiple enzyme models over a single run.

Multicellular Performance via NGSS-Invoker
The fastest performing settings were brought forward and NGSS-Invoker was used to
saturate the CPU with multiple concurrent NGSS process activations. Because only a
single runwas beingmade, the ‘parallel on’NGSS setting served no purpose, but behaved
differently from the ‘parallel off’ setting. Note that the NGSS parallel thread setting is
independent from the parallelization bymultipleNGSS activations and is used to average
multiple stochastic runs. As the “cell target” (NGSS completions) increased, initial
performance increase towards plateauwas due to the concurrency ofNGSSactivations on
the processor, reducing time per cell. The conclusion that was brought forward was that
for a single run, the ‘parallel off’ NGSS setting was the less time consuming algorithm.

4.3 Benchmarking with the Multicellular Layer

Multicellular Performance via UnrealMulticell3D with NGSS Using the conditions
established from the previous experiments,NGSScould be run in the spatialmulticellular
simulators once per mitotic cell cycle and the reaction count could be varied by changing
the multi-enz SBMLmodel. Here we discuss this implementation into UM3D. The three
variables (time, population, reactions) resulted in 3D statistical data (Fig. 3). Starting
from a single cell, the duration to reach a given population size was longer for larger
cell target populations and as the number of reactions per cell cycle was increased.
Polynomial time scaling with reactions per cycle induced by the NGSS algorithm was
likely because the reactions in the model were not mutually exclusive and, hence, had
computational interference,matchingNGSSbehavior. The optimumnumber of reactions
in the model was 8 due to the nuances of the Tau Leaping algorithm and the range
of models tested (note that 7 reactions was not tested). On the other hand, scaling



A 3D Multicellular Simulation Layer for the Synthetic Biology CAD 201

towards a target population was essentially linear given constant reactions per cycle. A
linear scaling was unsurprising as increasing the cell population target simply increased
the number of repetitions of the same action, especially once processor saturation was
reached.

Fig. 3. Benchmarked time performance data subset of UnrealMulticell3D on a time per reaction
step basis. Note that greater cell target populations ensured processor saturation, explaining the
peaks, with performance consistency upon saturation given unchanging reactions per cell cycle
(RPC). There was polynomial scaling with RPC beyond the NGSS nuance up to ~7 RPC.

Multicellular Performance via UnrealMulticell3D Without NGSS Starting from a
single cell, target populations were reached over a measured time without NGSS pro-
cessing to evaluate the behavior of the multicellular simulation layer alone. Physics was
compared in the on and off states with increasing model sizes. Both cases performed
undiscernibly, implying that physics computations played little part in overall perfor-
mance. This led to the recognition that Unreal Engine 4 was using PhysX to calculate
physics on the GPU. Thus toggling physics had no statistical impact because the CPU
was equally saturatedwhilst theGPU apparently remained unsaturated. A benchmarking
effort was also made to assess other factors such as the impact of cell textures, with no
discernible computational costs. That said, the performance enhancement from turning
the camera away from the cells was dramatic, demonstrating a significant slowdown
associated with rendering costs. By eliminating the need to graphically render, the GPU
could compute physics with reduced graphical responsibilities. In the future the camera
might be completely turned off in a batch processing mode accompanied by the export
of simulation states. The removal of an aesthetic animation shape-key for the bacterial
cleavage site had no impact on the simulation time, but simplifying the bacterial mesh
from 3,551 vertices down to 8 vertices significantly sped up the simulation, particularly
at higher cell populations.

The impact of the collective performance enhancements were compared to the con-
ditions prior to benchmarking (Fig. 4). Regardless of these significant baseline engine
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enhancements, usewithNGSShadvery limited to nobenefit sinceNGSSwas the limiting
factor in the total simulation time, justifying the future pursuit of HPC.

Fig. 4. Performance enhancement of UnrealMulticell3D without NGSS, due primarily to a move
towards batch-processing and reduced rendering costs.

Multicellular Performance via SynthMeshBuilder Without NGSS
The first benchmarking experiment with SMB targeted 252,000 cells. The number of
threads ranged from 1 to 50, with cells per thread ranging from 252,000 to 5,040 respec-
tively. Performance plateaued as threads reached the number of logical cores (12) beyond
which there was a very slight decrease in performance. 10 threads were brought forward
for benchmarking to maintain a responsive UI and operating system. Linear scaling was
not achieved as the number of cells increased, rather there was a polynomial increase in
simulation time. This is almost certainly because as the cell population grew, the over-
lap checks on proliferation also grew in number since all cell coordinates were iterated
over. Thus many unnecessary points were scanned as the point-cloud developed. This
is where domain-based parallelization or nearest neighbor lists [16, 22] could be con-
sidered, with a reduction of cell by cell processing and thereby the linearization of the
trend. An On-Lattice approach with local scanning across the restricted lattice geometry
is one option, but Off-Lattice provides for more diverse spatial potential going forward.
Alternatively, distinct cell populations could be computed on separate processors within
a heterogenous pool of cells. The probabilistic “bridge” concept between physically
isolated populations might also be considered [19].

SynthMeshBuilder Versus UnrealMulticell3D Performances with NGSS
SMB scaled in a similarly polynomial fashion but performed faster than UM3D when
NGSS was processing models (Fig. 5). This should be attributable to the fact that SMB
is algorithmically far less complex than UM3D and was able to leave the majority of
the CPU for NGSS to utilize and was entirely batch-processed, thereby circumventing
live rendering costs. The scaling followed NGSS behavior for the network sizes. With
NGSS, SMB was able to perform almost twice as quickly as UM3D (evidenced in both
Figs. 5 and 6) due to its simpler ground-up algorithmics, specifically streamlined for
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NGSS performance. The performances of the multicellular engines with and without
NGSS were very different with even modest SBML model conditions imposed, with
NGSS lengthening the simulation time dramatically (Fig. 6).

Fig. 5. Both coupled with NGSS, SynthMeshBuilder scaled faster than UnrealMulticell3D due
to its streamlined algorithmics, but with a similar trend. The target populations differ above.

Fig. 6. The base multicellular simulation layers could generate 1000-cell populations within sec-
onds (UM3D) or fractions of a second (SMB). However adding a moderately sized reaction
network (32 reaction steps) with parallel NGSS processes (one for each cell cycle) resulted in a
drastically more time consuming performance profile operating on the order of several minutes to
complete. Because NGSS could use as much as a single core (two threads) of processing power for
each activation, by the time only 6 cells was reached the processor could be saturated, giving an
overall linear scaling as NGSS processes were queued for completion on the rapidly saturated sin-
gle processor. The same linear scaling would be expected with HPC but with a shallower gradient,
at least once the HPC cores were fully saturated.

SynthMeshBuilder Versus UnrealMulticell3D Scalabilities Without NGSS
The scalabilities of SMB toUM3Dwithout NGSSwere compared (Fig. 7). SMBdemon-
strated far greater scalability (with only 10 of 12 threads) compared to UM3D (with no
imposed resource restrictions). UM3D was slower and more unstable, eventually reach-
ing a respectable 131,072 cells. SMBwas stopped at 500,000 cells, although it can scale
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much further. That said, a high cell count is not required for multicellular life. The adult
nematode worm Caenorhabditis Elegans, an oft used model organism, has been reported
to have as few as 959 cells [40]. However, should regulatory computations (subcellular
models) andmoremulticellular simulation phenomena be added (e.g. diffusion, extracel-
lular agents), scalabilities would become much lower. On the other side of the spectrum,
the human retina photoreceptor topography has been reported as being composed of as
many as 5.29 million cone and 107.3 million rod cells [41]. Far beyond tractability on
conventional hardware without simplification.

Fig. 7. SynthMeshBuilder proved much more scalable without NGSS than UnrealMulticell3D
on the personal computing system. By contrast, HPC solutions from the literature could process
millions [26] or even tens ofmillions [22, 28] of cells, with thousands [20] or hundreds of thousands
[26] reported on modest hardware.

5 Conclusions

Multiple ground-up approaches to agent-based multicellular simulation were demon-
strated; a scalable, prototype, mesh-based, batch processed approach (SMB) and a state-
of-the-art 3D engine approach (UM3D). SMB demonstrated that low level abstractions
can have scalable yet compelling outcomes reminiscent of classical Cellular Automata,
with a reduction of entropic behavior achieved by increasing algorithmic regulatory
control. Both SMB and UM3D can benefit from many additional multicellular features
that are described in the literature and obtainable through open-source code. A critical
progression for SMB and UM3D is subcellular model feedback with phenotypic effects,
with the choice of subcellular models also of critical importance. Subcellular regulatory
models would either be designed or downloaded from a repository.

The temporal use of UE4 physics would need to be carefully considered in order to
make multiscale performance accurate, along with the overall careful orchestration of
temporality in general. On the other hand, Unreal Engine ensured that physics and other
computations could be performed on the GPU but if live rendering is occurring for large
numbers of cells, there could be a negative impact on performance. Thus the results
alluded strongly towards batch processing methodologies with rendering minimized,
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such as provided by SMB that harbors similarity to various extant tools [22, 24–26].
UM3D could be adapted towards batch processing away from real time rendering but
while retaining the visualization options.

NGSS saturation of the processor via process executions demonstrated the limits of a
high end desktop computer. Temporal multiscale implications were observed as NGSS’s
significant temporal usage contrasted with cell growth, physics and population growth
dynamics in the multicellular layer, particularly as seen in UM3D. NGSS has a peculiar
performance nuance at fewer than 7 reaction models with the Tau Leaping algorithm,
however many reaction networks will likely be larger than 6 reactions. For NGSS,
metabolic network topology has a significant impact on performance, as demonstrated
by the Single Enzyme models versus the Multienzyme models.

Subsequent work should challenge the limits of multiscale, multicellular simulations
including the implementation of novel case studies ofmorphogenetic and functionalmul-
ticellularity/histology, including subcellular model feedback, heterogenous populations
and the continued hybridization of both agent-based and lattice-based (domain-based)
modelling. The importance of having identified the key features of multicellular simu-
lation should not be underestimated for subsequent work, specifically when considering
the integration of, what has been described as, ‘sub-models’ [26].

The current work highlighted just how computationally intensive cell by cell com-
putations are, especially with the use of subcellular biochemical stochastic simulations,
and implicated the future use of HPC that might be applied on a cell by cell basis with the
splitting of NGSS activations between processors [28] (see Fig. 6). The ‘first-come-first-
serve’ consequences of NGSS activation across processors potentially skews realism,
rectifiable primarily by HPC distribution of NGSS and/or a possible Monte Carlo app-
roach. The use of clustering into “super-individuals” [22] can be considered, along with
the possibility of population-based or hybrid individual/population approaches.

Model verification would need to be considered perhaps through mechanisms such
asmicrographic analysis [10], machine learning [3] and/or with further insights garnered
from extant projects [28]. Once convincing simulations are operational at a small scale
with verification protocols, the simulations can then be scaled up using HPC. The use
of HPC is planned for upcoming work.
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Abstract. A comparison between the results obtained integrating in-
vivo measurements in numerical simulations and in-vitro experiments
is presented. Three aorta geometries are considered: a patient-specific
healthy aorta, an aneurysmal aorta, and a coarctated aorta, both derived
from the former geometry. Hemodynamic simulations are carried out by
using the open-source code Simvascular. In-vitro data are obtained by
a fully controlled and sensorized circulatory mock loop for 3D-printed
aortic models. This experimental setup allows the elimination of a few
uncertainties conversely present in in-vivo data: the flow rate is con-
trolled and the same waveform is present in each cardiac cycle, the model
is fixed, and the wall model properties are known. In this way, clearer
indications can be obtained to assess and possibly to improve the accu-
racy of CFD models. The comparison between CFD and in-vitro data is
excellent for all the considered cases. The agreement with in-vivo data is
satisfactory and consistent with the possible controlled and uncontrolled
differences with the numerical and in-vitro set-up. The validated CFD
and in-vitro platforms are then used to investigate in detail the hemo-
dynamics and to point out, in particular, the differences between the
healthy and pathological cases.

Keywords: Hemodynamic simulations · CFD · Ascending thoracic
aorta · in-vivo measurements · CFD vs. in-vitro results

1 Introduction

Hemodynamic forces play an important role in the initiation and progression of
cardiovascular diseases. In the last years, the merging of Computational Fluid
Dynamics (CFD) with Magnetic Resonance Imaging (MRI) has been used to
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provide clinical information at a patient-specific level. In-vivo MRI data can be
successfully used to obtain patient-specific boundary conditions for the simula-
tions (see e.g. [1–5]), as well as for comparison against numerical results, provid-
ing cross-validation. However, MRI suffers from spatial and temporal resolution
limitations and it is not able to provide quantitative flow descriptors, such as
wall shear stresses, with sufficient accuracy. On the other hand, CFD allows
the flow and pressure fields to be investigated with space and time resolutions
that are not achievable by any in-vivo measurement. The accurate morphologi-
cal features and the non-invasive quantification of blood flow [6–8] provided by
in-vivo measurements have been combined with CFD to investigate hemody-
namics on a patient-specific basis, in both healthy [1–3,5,12,13] and diseased
subjects [9–11,14–17]. Nevertheless, the accuracy of CFD predictions strongly
depends not only on the need for accurate MRI data but also on modeling
assumptions and computational set-up. Different sources of uncertainties are
indeed present in CFD models, e.g., inlet flow rate, outflow pressure waveform,
and arterial stiffness for fluid-structure interaction, and these uncertainties may
affect the accuracy of the output quantities of interest (see e.g. [9,11,17–22]).

A comparison between numerical simulations and in-vitro data is presented
in this paper. Three aorta geometries are considered, viz. the healthy aorta from
[5], an aneurysmal aorta and a coarctated aorta, both derived from the former
geometry. Phase-contrast MRI is used to provide in-vivo temporally-resolved
velocity data for the inlet conditions in simulations and experiments. Simulations
are carried out with the open-source code Simvascular [23], whereas in-vitro data
are obtained by a fully controlled and sensorized circulatory mock loop for 3D-
printed aortic models [24]. This experimental setup allows the elimination of
given uncertainties that are conversely present in-vivo data: the flow rate is
perfectly controlled in each cardiac cycle, the model is fixed, and the wall model
properties are known. In this way, clearer indications can be obtained to assess
and possibly improve the accuracy of CFD models. Results are compared in
terms of velocity and pressure waveforms at the outlet sections and of velocity
fields in different portions of the aorta, which are obtained through echography
in experiments.

2 Problem Definition, Numerical Methodology
and Experimental Set-Up

The geometry of the healthy thoracic ascending aorta, shown in Fig. 1a, is
obtained from MRI acquisitions performed by means of a 3T MR-scanner on one
healthy subject (28 years, male) with a tricuspid aortic valve ([5]). Anatomical
and functional data are extracted from MRI. From this geometry, two additional
ones reproducing an aneurysmal and a coarctated aorta are obtained by means
of computer aided design tools (see Fig. 1b and Fig. 1c, respectively). The flow
rate at the inlet section of the considered aortas an it was directly evaluated
from in-vivo functional MRI data is reported in Fig. 2. The MRI dataset volume
is retrospectively reconstructed with the Phase-Contrast Magnetic Resonance
Angiography (PC-MRA) technique.
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Fig. 1. Sketch of the considered geometries: (a) healthy aorta, (b) aortic aneurysm,
and (c) coarctation of the aorta.

In the numerical simulations, blood is considered as a Newtonian and incom-
pressible fluid with density and kinematic viscosity equal to ρ = 1.06 g cm−3

and ν = 3.77 × 10−2 cm2 s−1. The three-dimensional Navier-Stokes equations
for incompressible flows are thus considered as governing equations. At the inlet
section of the computational domain we imposed plug flow with the measured
flow-rate waveform, while at the outflow boundaries, we used the 3-element
Windkessel model. Since the experimental model is rigid, rigid-wall simulations
are considered for comparison. The open-source code SimVascular is used to
carry out the hemodynamic simulations. A finite-element method, including
SUPG/PSPG stabilizing terms, is used to discretize the governing equations.
The stabilized formulation allows to choose P1-P1 elements, i.e. linear shape
functions for both velocity and pressure.

For the in-vitro experiments, the mock-circulatory loop setup described in
[24] is used. The active component of the setup is given by a custom speed-
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Fig. 2. Inlet flow-rate waveform for the deterministic comparison with in-vivo and
in-silico data
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controlled piston pump. The pump speed profile is configured through an auto-
matic interpolation process of the given patient-specific flow waveform shown in
Fig. 2. 3D-printed models of the three aortas are realized and velocity and pres-
sure measurements are carried out. The physiologic pressure conditions were con-
trolled by three-element Windkessel models. The resistive and capacitive compo-
nents were modeled with pinch valves and air-filled rigid chambers respectively.
Flow/pressure measurements were monitored through dedicated clamp-on ultra-
sound sensors (Sonotec) and strain-gauge transducers (TruWave) at each outlet
branch, whereas flow fields are obtained through echography. For all the tests,
the chosen fluid was a mixture of water and glycerol (60/40%) to reproduce the
density (1060 kg/m3) and the viscosity (3.6 ·10−3 Pa·s) of the blood. In addition,
echocardiographic acquisitions were carried out for the experimental set-up. In
particular, Vortex Flow Analysis and color Doppler acquisition procedures were
performed on the three aortic phantoms to measure the velocity distributions
inside the vessels (Fig. 3).

Fig. 3. Picture of the circulatory mock loop.

3 Results and Discussion

The flow-rate profiles obtained in the numerical simulations are compared in
Fig. 4 with the in-vitro results from the circulatory mock-loop. The results for
the three geometries of the aorta are presented, together with in-vivo MRI data
for the healthy aorta. In particular, the flow rate at the outlet section of the
descending aorta is shown in Fig. 4a, whereas the ones for the three branches
are reported in Fig. 4b,c,d. The agreement between the experiments and the
simulations is successful in terms of flow rate, with acceptable errors at systolic
peaks. A perfect agreement in the time of the in-vitro and numerical peaks of
the flow rate in the descending aorta section is found. The agreement with in-
vivo data from the healthy case is satisfactory and consistent with the possible
controlled and uncontrolled differences with the numerical and in-vitro set-ups.
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Fig. 4. Flow-rate waveforms for in-vivo, in-vitro and numerical data at the outlet
sections: (a) descending aorta, (b) BCA, (c) LCCA, and (d) LSA.

The time lag at the systolic peak between simulated and in-vitro results and
MRI data is reasonably related to the wall compliance of the real aorta and it is
consistent with the findings in [5] in which the time delay between simulations
and MRI data reduces by increasing wall compliance.

The pressure waveforms at the four outlet sections are reported in Fig. 5. It
is worth noting that the physiological range was maintained in both numerical
and in-vitro environments. Again, the comparison between CFD and in-vitro
data is excellent for all the considered cases. The differential pressure waveforms
between the ascending and the descending aorta are reported in Fig. 6 for the
three aortas. As can be expected, the highest differential pressure is found for the
coarctated aorta, due to the restricted section. Again, a satisfactory agreement
between in-vitro and numerical results is found.

Once validated the flow and pressure waveforms, we consider the velocity
fields in the three geometries. Velocity distributions in the cross-sections of the
healthy aorta, of the aneurismatic aorta and of the coarctated aorta are shown
in Fig. 7, Fig. 8 and Fig. 9, respectively. Six different times during a cardiac cycle
of time-length T are considered (the time instants are highlighted with symbols
in Fig. 2). Compared with the healthy aorta (Fig. 7), low-velocity regions and
local recirculations are present in the aneurysms (Fig. 8) at the systolic peak
(t/T= 0.156). This low-velocity behavior is actually expected for the aneurys-
matic condition. Negligible differences are present in the descending aorta. As
for the coarctated aorta (Fig. 9), the main differences with the healthy aorta are
found at section S4, with significantly higher velocity values.
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Fig. 5. Pressure waveforms for in-vitro and numerical data at the outlet sections: (a)
descending aorta, (b) BCA, (c) LCCA, and (d) LSA.
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Fig. 6. Differential pressure between the ascending and the descending aorta. Compar-
ison between in-vitro and numerical data.

Velocity distribution and streamlines in the sagittal plane through the aorta
are then compared with the echography results in the ascending and descend-
ing aorta tested in the circulatory mock loop (see Figs. 10, 11, 12 and 13). The
velocity fields obtained through CFD are in good agreement with the echogra-
phy results in in-vitro experiments and these fields allowed us to point out the
differences between the healthy and pathological cases. In particular, recircula-
tions are evident only in the aneurismatic region at the systolic peak (Fig. 10b at
t/T = 0.156) and at the early diastole (Fig. 11b at t/T= 0.208). The trend is also
shown in the numerical results in Fig. 8. On the contrary, blood recirculations
are present in all the geometries during the diastole (Fig. 12 at t/T = 0.260).
Finally, the flow pattern through the coarctation is shown in Fig. 13. A qualita-
tive agreement between simulations and echography patterns is found with an
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)b()a(

Fig. 7. (a) Position of the considered cross-sections in the healthy aorta. (b) Velocity
distribution in the cross-sections of the healthy aorta in numerical simulations at dif-
ferent times (from left to right): t/T = 0.104, t/T = 0.156, t/T = 0.208, t/T = 0.260,
t/T = 0.312, t/T = 0.364.

)b()a(

Fig. 8. (a) Position of the considered cross-sections in the aortic aneurysm. (b) Velocity
distribution in the cross-sections of the aortic aneurysm in numerical simulations at
different times (from left to right): t/T = 0.104, t/T = 0.156, t/T = 0.208, t/T =
0.260, t/T = 0.312, t/T = 0.364.
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)b()a(

Fig. 9. (a) Position of the considered cross-sections in the coarctation of the aorta. (b)
Velocity distribution in the cross-sections of the coarctation of the aorta in numerical
simulations at different times (from left to right): t/T = 0.104, t/T = 0.156, t/T =
0.208, t/T = 0.260, t/T = 0.312, t/T = 0.364.

(a) (b) (c)

Fig. 10. Velocity distribution and streamlines (top), echography results in the ascend-
ing (middle) and descending (bottom) aorta at t/T = 0.156. Considered cases: (a)
healty aorta, (b) aneurismatic aorta and (c) coarctated aorta.
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(a) (b) (c)

Fig. 11. Velocity distribution and streamlines (top), echography results in the ascend-
ing (middle) and descending (bottom) aorta at t/T = 0.208. Considered cases: (a)
healty aorta, (b) aneurismatic aorta and (c) coarctated aorta.

(a) (b) (c)

Fig. 12. Velocity distribution and streamlines (top), echography results in the ascend-
ing (middle) and descending (bottom) aorta at t/T= 0.260. Considered cases: (a) healty
aorta, (b) aneurismatic aorta and (c) coarctated aorta.
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(a) (b) (c) (d)

Fig. 13. Velocity distribution and streamlines (top) and echography results (bottom)
in the coartation region at: (a) t/T = 0.156, (b) t/T = 0.208, (c) t/T = 0.208 (zoom),
and (d) t/T = 0.260.

absence of recirculations in both the ascending and descending aorta sections at
systolic peak.

4 Conclusions

In this work, we integrate in-vivo-measured patient-specific data in numerical
simulations and in in-vitro experiments. Simulations, carried out by using the
open-source code Simvascular, are compared with experiments performed in a
fully-controlled and sensorized circulatory mock loop for 3D-printed aortic mod-
els. Both healthy and diseased aortas are considered. The experimental setup
allows eliminating the uncertainties on the flow rate and on the wall properties,
which are conversely always present in in-vivo data. The comparison between
CFD and in-vitro data is excellent for all the considered cases and the agree-
ment with in-vivo data is satisfactory and consistent with the possible controlled
and uncontrolled differences with the numerical and in-vitro set-up. The velocity
fields obtained through CFD are in good agreement with the echography results
in in-vitro experiments and allowed us to point out the differences between the
healthy and pathological cases.
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Abstract. This work introduces a computational model of elastic dou-
ble cluster. We describe a method to create a partially flattened spherical
cell and a mirroring process that creates a symmetrical double cluster
with desired adhesion surface. The main focus is on the adhesion between
the two cells modeled by repulsive-attractive Lennard-Jones potential.
We study the stability of the adhesion with respect to the parameters of
the Lennard-Jones potential and to the elasticity of the cells. Based on
these, a baseline cluster is created and calibrated to a specific separation
force using computational experiment that mimics a dual micropipette
assay. This cluster is then immersed into elongation flow to create a
parallel between the two types of cell stretching experiments: one that
mechanically pulls the cell membrane and another where fluid flow cre-
ates stress on the membrane. Thus validated, our model of adhesion can
be used in more complex clusters and serve as a building block in future
computational studies.

Keywords: Computational model · Cell clusters · Adhesion · PyOIF

1 Introduction

The motivation to separate circulating tumor cell (CTC) clusters into individual
cells arises from their higher metastatic potential [9] compared to the individual
CTCs as well as their higher resistance to drugs [3]. To better understand how
to break up the clusters, it is important to understand their bonds. There are
experiments measuring such bonds in flow [17] or using micropippete aspiration
[15]. There is also evidence that high shear stress [16] and specific drugs [4,5]
can also help to break them apart.
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The work [17] investigates the separation force for clusters consisting of two
cells. Using microfluidic chip with sudden narrow constriction they tested differ-
ent flow conditions (by varying differential pressure in the microfluidic channel)
and measured how many clusters separated. With the use of a computational
model they determined that a separation force of 173 nN is necessary to separate
50% of the clusters. Even at separation force 542nN , there were 30% of clusters
that did not separate. However, the range of the separation force varies across
the literature, and the separation force measured by [17] is very much dependent
on the channel design.

Other works look at the behaviour of cluster in various flow situations. A 2D
liquid-drop model is used in [16] to represent single cells and doublets. In [1],
[13], the clusters are modelled as one stiff mesh consisting of 2, 3 and 4 cells.
A 3D elastic model is used to model clusters squeezing into a capillary sized
channels in [2]. More detailed study about the adhesion of a single cluster cell
to a microvasculature wall was performed in [7]. However, we could not find a
study focused on the adhesion between individual cells.

In order to investigate this, we focus on a doublet of two identical cells. First,
we briefly describe the model with details on modeling the adhesion bonds and
contact surfaces. Then we focus on the pulling experiment (similar to optical
tweezers experiment done with biological cells) and finally we consider a com-
parable elongation flow.

2 Computational Model of Double Cluster

2.1 Elastic Cells

Cell Model. The cells forming the cluster are modeled using a dissipative
immersed boundary method [6] in 3D. The membrane is represented by a tri-
angular mesh of nodes connected by elastic bonds. The five employed elastic
moduli are stretching, bending, conservation of local area, conservation of global
area and conservation of volume. The individual nodes are then coupled to the
underlying lattice-Boltzmann model of the surrounding fluid. The model allows
for viscosity contrast of the inner and outer fluid by using DPD particles inside
the cell.

Cluster Model. While the individual (spherical) cells have a relaxed shape
defined by their initial geometry and bonds of the mesh points, the cluster shape
is determined by non-bonded interactions of points on neighboring membranes.
As a consequence, the clusters may change shape and also the cells forming a
cluster may separate. More information about the model and its implementation
can be found at [18].

Cell Size. The size of the CTC varies depending on the type and stage of cancer
and on the variation within the cell population. In [21] the cell line MDA-MB-
231 has diameters 12.4 ∓ 2.1μm (average of 128 cells) and the line MCF-10A
has 11.2 ∓ 2.4μm (average of 158 cells). For this work we chose cell diameter at
the lower end of these ranges: 2rcell = 10 μm.
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Elastic Parameters. The original PyOif model [12] was calibrated for red blood
cells (RBCs) using the optical tweezers data [11]. Qualitative observations [13]
suggest that the elasticity of tumor cells can vary considerably, and as shown in
e.g. [14], computational experiments are sensitive to the elastic parameters in the
model. Considering that the CTCs are generally stiffer than RBCs [20], we have
chosen the following moduli for our model cells: ks = 0.05μN/m, kb = 0.005Nm,
kal = 0.02μN/m, kag = 0.7μN/m, kv = 0.9μN/m

2.

2.2 Adhesion

For the cells to create a cluster, they need to have an attractive force between
them. However, the force cannot be only attractive, because computationally this
would lead to cells collapsing onto each other. Real biological cells do not collapse
but connect with bonds of small but finite length. To achieve this behaviour, we
also need a repulsive force at very close range, that would prevent the cells from
overlapping.

Lennard-Jones (LJ) potential is frequently used to model particle-
particle interactions in coarse-grained simulations to represent interactions that
are attractive at large distance and strongly repulsive at short distances [19].
Typically, in simulations it also has a cutoff distance and is only evaluated when
the two particles (in our case a pair of points, one on each cell membrane) are
closer than this cutoff distance. To calculate the LJ interaction energy one needs
to consider the number of pairwise LJ interactions per square unit of membrane
surface.

The potential is defined as:

VLJ(r) =

{
4εLJ

[(
σ
r

)12 − (
σ
r

)6] if r < rcut

0 otherwise
(1)

where r is the distance between the interacting particles, rcut is the cutoff dis-
tance and ε scales the strength of the interaction. The parameter σ determines
the distance rmin where the repulsion changes to attraction. This switch occurs
at the minimum of the potential, when r = rmin =

√
2σ.

Adhesion Surface. Two cells in a double cluster are adhered by a circular area
with a given adhesion diameter. In double clusters images, e.g. in [9], the ratio
between adhesion diameter and cell diameter is around 60%. So for our clusters
we selected rsurf = 3μm as a suitable radius of the spherical contact surface.

The typical shape of double cluster has two cells that are flattened at the
contact surface. The yz plane is the plane of symmetry along which we flattened
the cells. The points on the cells were selected to achieve the desired adhesion
radius. And then the distance between the adhesion surfaces of the cells was set to
rmin. The second cell was created as a mirror image of the first. This guarantees
that we have pairs of points facing each other on the adhesion surface and with
an appropriate choice of LJ parameters we can have each mesh point interacting
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Fig. 1. Possible adhesion areas for baseline cluster with kb = 0.005 Nm, see Table 3.

Fig. 2. Profiles of clusters with various adhesion areas shown in Fig. 1 for baseline
cluster with kb = 0.005 Nm, see Table 3. Number of points on adhesion surface, from
left to right: 19, 33, 61.

with exactly one mesh point of the other cell, which offers more control over the
interaction and more stability of adhesion.

Adhesion Strength. Apart from the size of the surface, the strength of the
adhesion is important, too. In [8], the authors used a micropippete aspiration
method to measure the cell-cell adhesion strength of various human embryonic
kidney cell clones, and determined them to be 2–12nN . The cell-cell adhesion
measurements in [15] give the separation force of mesoderm and endoderm cells
in the range 2–5 nN . Based on these measurements we aimed to model a clus-
ter with adhesion which separates under applied force between 1–2 nN . More
specifically our baseline is a cluster that holds up to 1.5nN and separates at
1.6 nN . We also discuss how we can change the cluster properties through the
LJ interaction parameters to model other separation forces.

Stable Clusters. The clusters were created by putting two flattened and mir-
rored cells next to each other, flat sides facing, and applying the LJ interaction.
We placed the cells at the equilibrium distance rmin, where there should be no
LJ influence, provided that the only points in the interactions are the ones facing
each other. This can be achieved by setting the parameters rmin and rcut in such
a way that the closest neighbour of the opposite point (considering the smallest
edge length in the triangulation of the mesh) is further than rcut and thus out of
the range of the interaction. The clusters were then left to relax until the change
of axial length of the cell was less than 0.01% per 10μs.

It is important to note that even though the adhesion surfaces were set to be
at the equilibrium of the LJ interaction, the relaxed distance between the cells
was always slightly under rmin. This was expected, since the cells are elastic and
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attempt to resume their original spherical shape. This pushes the points from
the flattened area closer together. These points are then closer than rmin and
the LJ interaction starts to repulse them. The final distance between the cells is
then the distance where the forces are in balance.

2.3 Pulling Experiment

To determine the strength of the adhesion modeled with LJ potential we designed
a simulation experiment mimicking the dual micropipette assay, such as the
biological experiment in [8]. To achieve similar stretching, we pulled a cap of
each cell with radius 2μm. The pulling cap can be seen in Fig. 3. This size was
selected as the most typical pipette radius [10].

Mirrored and flattened clusters were loaded into channels with static fluid
that provides damping. The viscosity of the fluid was set to 1.5mPas. The
simulation was run until the gap between the cells was larger than 1μm, or until
the cell stretched and the adhesion area stabilized, assuring that the cluster will
not separate.

Using this experiment, we studied how individual parameters of cluster model
influence the final behaviour of the cluster.

Fig. 3. Snapshot of cell deformation halfway through the pulling experiment. The white
part of the mesh marks points to which the outward force is equally applied.

3 Stability of Adhesion Surface

Changes in parameters rmin and rcut can improve the stability of the adhesion
area. As shown in Table 1, the change to rmin does not influence the size of
the stable area. For the same cell cluster we carried out a set of experiments
where rmin was fixed and rcut increased. As long as the rcut was smaller than
the distance to the second closest point on the opposite cell, the changes had
no influence. This shows that the cell cluster with given elastic parameters, cell
radius, mesh, adhesion area (represented by contact radius rsurf and number of
mesh points shown in the final column of Table 1) and εLJ is stable. However,
this stability changes if the elasticity of the cell changes.

Of the five employed elastic moduli, bending, which conserves angles between
pairs of mesh triangles, is the most important modulus to the adhesion surface. In
order to test how the changes in elasticity influence the stability of the adhesion,
we tested changes in bending parameter kb. With increased kb, the cell becomes
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Table 1. Contact radius rsurf does not depend on the size of the LJ repulsive region,
with a set width of the attraction region of 0.15 μm and other elastic and interaction
parameters held constant (baseline cluster). The gap between the cells’ flat adhesion
surfaces is set to rmin (the actual gap is shown in column 3) and there is no other force
applied to the cells. They are left to relax until the change in their axial length is less
then 0.01% per 10 μs.

rmin[μm] rcut[μm] gap [μm] rsurf [μm] points [-]

0.10 0.25 0.0999 3.08521 61

0.15 0.30 0.1497 3.08521 61

0.20 0.35 0.1994 3.08520 61

0.25 0.40 0.2491 3.08519 61

0.30 0.45 0.2988 3.08518 61

0.35 0.50 0.3484 3.08517 61

more rigid and resists the flattening of part of its surface more. Though the
stable area changes only slightly, in Table 2 we can see that for kb ≥ 0.02Nm
the gap between the surfaces collapses and is no longer at rmin.

The gap is calculated as distance (in x-direction) between the leftmost point
of the right cell and the rightmost point of the left cell, see also Fig. 4 for sepa-
ration outcomes with a given elasticity and varying separation force. A negative
gap represents the fact that the cells are overlapping. The contact area is still
a flat surface, e.g. Fig. 2, but we see that higher pulling force leads to more
prolonged cluster and smaller adhesion area.

Table 2. Influence of bending elasticity kb on the stability of the adhesion radius
rsurf and separation force Fs. o denotes a cluster that holds when the given force is
applied. x denotes a cluster that separates when the given force is applied. Other elastic
coefficients and interaction parameters are set to the baseline cluster. The gap between
the cells’ flat adhesion surfaces is set to rmin (the actual gap is shown in column 3).
There is no other force applied to the cells. They are left to relax until the change in
their axial length is less then 0.01% per 10 μs. Number of mesh points on the contact
surface is in column 4.

kb[Nm] gap [μm] rsurf [μm] points[-] Fs [nN ]

1.3 1.4 1.5 1.6 1.7 1.8

0.000625 0.1499 3.1863 65 o o o o o x

0.00125 0.1499 3.1864 65 o o o o o x

0.0025 0.1498 3.1865 65 o o o o x x

0.005 0.1497 3.0852 61 o o o x x x

0.01 0.1485 3.0854 61 o x x x x x

0.02 −0.1580 3.0812 61 x x x x x x

0.04 −0.1585 3.0810 61 x x x x x x
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Fig. 4. Gap between cells for double cluster from Table 2 with kb = 0.01 Nm. Forces
are given in [n N ]. The abrupt ends of almost vertical lines represent the fact that the
cluster has separated. The initial downward shift in all cases means that the starting
gap was 0.15 μm and at the beginning of the simulation the membranes crossed over
and stabilized at distance −0.15 μm.

The adhesion surface of more rigid cells is smaller than the one we have
selected as the baseline and consequently more stable as shown in Table 3.

Table 3. Size of the adhesion area, represented by the number of points, depending
on cells’ elasticity and initial radius of the flattened surface. The stars note that the
cells are overlapping.

kb[Nm]/rsurf [μm] 0.5 1 1.5 2 3

0.000625 7 7 19 33 65

0.00125 7 7 19 33 65

0.0025 7 7 19 33 65

0.005 7 7 19 33 61

0.01 7 7 19 33 61

0.02 7 7 19* 29* 61*

0.04 7 7 19* 25* 61*

Adhesion strength parameter εLJ can be used to prevent cells from over-
lapping, but it also influences the magnitude of separation force necessary, see
Table 4. With increasing εLJ the separation force Fs also increases.

To achieve more stable adhesion surface with gap at rmin levels, even if the
cells are more rigid and the separation force kept at the desired level, a change
in rmin and rcut can help.

Table 5 shows that the first estimate for the value of εLJ (for mesh with
1182 points) was approximately 0.0036 fNm. This led to cluster separating
even at the smallest separation force we tested, Fs = 0.5nN . As we can see in
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Table 4. Separation force necessary for baseline cluster (642 mesh nodes per cell)
depending on the adhesion parameter εLJ . The columns rsurf , points and gap show the
stability of the adhesion surface when no external forces are applied. The LJ potential
is set to rmin = 0.15 μm and rcut = 0.3 μm.

εLJ [fNm] gap[μm] rsurf [μm] points[-] Fs[nN ]

0.5 1.0 1.5 1.6 2.0

0.0025 0.14817 3.08517 61 o x x x x

0.005 0.14920 3.08520 61 o o x x x

0.0066 0.14968 3.08521 61 o o o x x

0.0075 0.14972 3.08521 61 o o o o x

0.01 0.14979 3.08521 61 o o o o o

Fig. 5. Small variability in stabilized adhesion of clusters that do not separate, demon-
strated using 1992 node cluster with LJ parameters εLJ = 0.005 fNm, rcut = 0.25 μm
and rmin = 0.2 μm. The inset figures show profile and the adhesion area for pulling
forces 1 nN and 1.6 nN .

Table 7, to achieve Fs between 1.5 nN and 1.6 nN , εLJ needs to be approximately
0.0065 fNm. This is in contrast to what can be seen for coarser discretization of
our baseline cluster with 642 mesh points. The stability of the adhesion surface
is not influenced by changing εLJ , as seen in Table 4, nor is it changed by moving
rmin and rcut as seen in Table 1.

For denser meshes, there is a higher risk of instability. This arises mainly
from the interplay between the cell trying to achieve its original shape and the
LJ interaction. During the initialization of the cluster, the cells are flattened, and
positioned at distance rmin. In the next iteration step, some of the points on the
flattened adhesion surface are pushed out, mainly by the bending interaction.
This instantly puts them into the repulsive region of the LJ potential. Depending
on how close they get to the second cell they are repulsed by a corresponding
force, which pushes them into the attractive region of the LJ potential.



228 A. Bohiniková et al.

This fluctuation, stabilizes into either a gap less than rmin or above −rmin

(when the cells overlap), or the whole system diverges. By increasing rmin we
allow for more space. So if we take similarly deformed meshes, the point (close
to the border of the flattened surface) that is pushed into the repulsive region
of LJ, is pushed with about the same force (since the deformation of the cell’s
surface is the same) for any value of rmin (since at the beginning the cells are
rmin apart). However, with higher rmin the repulsive force given to this point is
smaller and allows for more stable adhesion between cells.

Table 5. Stability of adhesion surface for 1182 node discretization.

simID εLJ [fNm] rmin[μm] rcut[μm] gap [μm] rsurf [μm] points [-]

1 0.0036 0.15 0.3 0.1474 3.36467 133

2 0.0060 0.15 0.3 −0.1337 3.36085 133

3 0.0060 0.15 0.25 −0.1404 3.36052 133

4 0.0060 0.2 0.3 0.1993 3.36467 133

5 0.0060 0.2 0.25 0.1993 3.36466 133

Thus, rmin should be set as small as possible to mimic the qualitative shape
of biological cell clusters, whose membranes touch at the adhesion area, but
large enough so that the adhesion is stable. The interaction cutoff rcut should
be set smaller than the distance of the point to its second closest neighbour on
the opposite cell. If we set rcut higher than this value, we could end up with
one point being repulsed by one point but at the same time attracted by all
six neighbours of this point, which would lead to instability. We calculated this
threshold value for each mesh we used, see Table 6, as follows.

Since the cells are mirrored at the beginning, taking a pair of points facing
each other from each cell and one of their closest neighbours, creates a right angle
triangle. The distance between the opposing points is rmin and we estimate the
distance between a point and its closest neighbour as the smallest edge length
of our mesh emin and then the maximum value for rcut can be calculated as:
rcutmax

=
√

r2min + r2cut.

Baseline Cluster. As mentioned in previous sections, our baseline cluster has
the following parameters: rcell = 5μm, rsurf = 3μm, ks = 0.05μN/m, kb =
0.005Nm, kal = 0.02μN/m, kag = 0.7μN/m, kv = 0.9N/m

2. For discretization
we selected a mesh with 642 points. LJ parameters were set to rmin = 0.15μm,
rcut = 0.3μm and εLJ = 0.0066 fNm. rmin was selected the smallest possible to
keep the cells from overlapping. rcut was selected smaller than rcutmax

= 0.62μm,
as calculated in Table 6 to have only one-to-one point LJ interaction on the
adhesion surface, and then adjusted to achieve separation at 1.6 nN. εLJ was also
tuned to achieve the desired separation force. This was done by running multiple
parameter combinations in the pulling experiment. Similarly, we ran experiments



Sensitivity Analysis of Adhesion in Computational Model of Elastic Doublet 229

Table 6. Maximum value of rcut for various discretisations. emin emax and emean

denote minimal, maximal and mean edge.

nnodes[−] emin[μm] emax[μm] emean[μm] rmin[μm] rcutmax [μm]

482 0.686 0.956 0.868 0.15 0.70

642 0.602 0.823 0.750 0.15 0.62

1182 0.332 0.779 0.556 0.2 0.39

1524 0.293 0.689 0.489 0.2 0.36

1922 0.338 0.480 0.434 0.2 0.39

for other mesh discretizations, see Table 7, to demonstrate consistent behavior
across different levels of coarse-graining.

It is important to note that also values close to that stated in the table would
lead to similar separation force. This would be valuable for more precise fine-
tuning of the LJ interaction. This table should be used as a tool to initialise a
cluster with similar behaviour as the baseline, only with different discretizations,
that might be needed for simulations with more narrow channels.

4 Elongation Flow

To better mimic the microfluidic conditions, we also considered separation of
double clusters in elongation flow. The flow is achieved by having the inflow at
two opposite sides of the microfluidic chamber, as shown in Table 8, and outflow
on two perpendicular sides. The cells are placed at the center in such a way that
the contact area is perpendicular to the outflow. This way the flow drives the
separation. The boundary inflow velocity is then adjusted to determine which
velocities lead to separation and which are not strong enough.

Table 7. Various discretizations for baseline cluster. Values of rmin and rcut were
selected to achieve stable adhesion area with radius of 3µm. εLJ was selected through
series of pulling experiments with various forces and various values of εLJ . εLJ stated
in the table results in clusters separating between 1.5 and 1.6 nN.

nnodes[−] εLJ [fNm] rmin[μm] rcut[μm]

482 0.0070 0.15 0.3

642 0.0066 0.15 0.3

1182 0.0065 0.2 0.25

1524 0.0060 0.2 0.25

1992 0.0048 0.2 0.25
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Fig. 6. Baseline cluster. The red points are at distance less than rmin, the white points
are at distance between rmin and rcut. (Color figure online)

Table 8. Validation of various discretization setting for the baseline cluster. The dis-
cretizations from Table 7 were used in elongation flow and exhibit consistent behavior:
separating at inflow velocities 0.017 mm/s and above (x) and holding attached at inflow
velocities 0.015 mm/s and below (o).

nnodes[−]
vinflow[mm/s]
0.015 0.017

482 o x
642 o x
1182 o x
1524 o x
1992 o x

Using the cluster discretizations from Table 7 we determined the separation
inflow velocity of elongation flow to be ∼0.016mm/s (as measured at the center
of the boundary, see Table 8).

(a) v = 0.015m/s (b) v = 0.017m/s

Fig. 7. Fluid force on cells in elongation flow. The red line indicates the fluid force
acting on a cell at a given time, the blue dashed line shows number of points on the
contact area. (a) no separation at lower fluid velocity (b) higher flow results in cluster
separation. (Color figure online)



Sensitivity Analysis of Adhesion in Computational Model of Elastic Doublet 231

4.1 Fluid Force on Cell

To link the flow and force conditions needed to separate a given cluster, we
measured the total fluid force acting on each cell in the elongation flow. This
force has the same magnitude and opposite direction for the two cells and is
calculated as a sum of fluid forces from all the individual mesh points, Fig. 7.

At lower applied fluid velocity in the elongation flow, Fig. 7 (a), we see an
increase in the total fluid force as the cell membrane stretches and thus moves
relatively to the surrounding fluid. The sharp jump corresponds to the moment
when the contact area decreases (some of the bonded pairs no longer hold). The
fluid force on the object then equalizes with the adhesion force and the system
is at equilibrium.

At larger applied fluid velocity in elongation flow, Fig. 7 (b), we see a similar
initial increase in the total fluid force, followed by multiple sharp jumps. Each of
these corresponds to the contact area decreasing (blue line), when some of the
bonded points no longer hold. Before the fluid force has a chance to equalize with
the adhesion force another jump occurs, ultimately leading to cell separation.
At that point the total fluid force is 0, indicating both cells are moving with the
fluid.

While the correspondence is not perfect (most likely due to numerical rea-
sons), we see that a cluster that separates at 1.5–1.6 nN pipette pulling force,
holds at ∼1.4nN fluid pulling force and separates around 1.5nN . This means
we can use the total acting fluid force as a proxy when evaluating the strength
of adhesion in flow.

5 Conclusion

The adhesion area and its stability depend on many factors. With increased cell
rigidity, represented by higher values of the bending parameter, the adhesion
surface becomes less stable, especially for larger contact surfaces. We have shown
that to a certain extent this instability can be managed by appropriate settings
of the LJ potential parameters. To increase the stability, the repulsion/attraction
threshold rmin can be increased, which leads to fewer fluctuations. The increase
of εLJ can also improve the stability of the relaxed adhesion surface, however it
is directly proportional to the adhesion strength.

To satisfy the need for various dicretizations of cell membrane, we have cal-
ibrated our baseline cluster for five meshes of various densities. Based on these,
appropriate parameters for other meshes can be reasonably interpolated. The
values in Table 7 suggest that to achieve the same behaviour of the cluster with
an increased number of nodes, εLJ must be lowered and if the stability requires it,
rmin increased and rcut adjusted accordingly. We have explained and calculated
the upper boundary for the value of rcut, see Table 6.

This setup allows us to simulate any type of double cluster with varying elas-
ticity, adhesion strength and adhesion surfaces. Building on this, more complex
clusters can be explored, with higher number of cells and varying cell sizes.
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Another direction of future work is to look at the behavior of this type of
cluster under different flow conditions, such as in shear flow, parabolic flow or
more complex flows with other types of cells. We have shown the first step in
this direction with the elongation flow and determining the flow velocity that
corresponds to the separation force in the pulling experiment.
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Abstract. Recently, a new piece of software called OptiPharm has been
proposed to optimize the similarity between two given molecules. A com-
prehensive study proved it was very competitive compared with state-
of-the-art algorithms such as WEGA and ROCS. However, all of these
methods, including OptiPharm, assume the proteins as rigid, resulting
in poor or inefficient predictions. The consideration of conformational
changes and thus the molecule’s flexibility is necessary. In this work, we
have extended the OptiPharm’s functionality by applying a methodology
that considers the flexibility of the molecules. Apart from that, the new
OptiPharm presents some strengths regarding its previous version. More
precisely, it reduces the search space dimension and introduces circular
limits for the angular variables to enhance searchability. As results will
show, these improvements help OptiPharm to achieve better predictions.

Keywords: Ligand based virtual screening · Molecule’s flexibility ·
Optimization

1 Introduction

Virtual Screening (VS) methods can be divided into structure-based (SBVS)
and ligand-based (LBVS) methods. When the structure of the protein target is
known, SBVS can be applied, and methods such as Molecular Docking [22], and
Molecular Dynamics [6] are used. Unfortunately, the number of crystallographic
structures that solved until now is not sufficient enough [12], so SBVS methods
cannot always be applied. As an alternative, LBVS methods can always be used,
where only known data (descriptors) (their chemical composition or expression,
electrostatic potential, color) are used to derive new and improved ligands.

There are different categories [11] of LBVS methods, such as pharmacophore
methods [17], similarity methods [21], QSAR [5], Machine Learning [1], etc.
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This work focuses on similarity LBVS methods. In shape similarity methods
or similarity of another descriptor, the starting point is a source drug whose
shape or other descriptor is known. This source ligand or crystal will be the
query, and the virtual screening methods try to find which other ligands or
molecules in a large database or chemolibrary are similar to this query. When
calculating the similarity between the query and a compound in the database,
the optimal position and 3D space compound orientation must be found to allow
maximum similarity. It is in this process of searching for the best orientation that
optimization algorithms are used [7,20].

Protein flexibility is necessary for metabolism, transport, and function bio-
logical effects. When a single protein structure is investigated (the protein is
considered as rigid), the functions of the protein considered are poor, where the
intrinsic dynamics and the motions allowed by the rotatable bonds (see Fig. 1)
are not taken into account, resulting in inefficient results [4,8]. For this reason,
to identify new inhibitory compounds, it is necessary to consider conformational
changes and thus the molecule’s flexibility [3,18]. Except for simple molecules
such as O2, both ligands and receptors are flexible molecules. Therefore, there is
no single three-dimensional representation of these molecules when they are free
in solution or forming the ligand-receptor complex at the organism’s tempera-
ture. On the contrary, receptors and ligands possess many thermally accessible
states, which define the accessible conformational space at a given temperature,
and which essentially reflect the internal flexibility due to rotations through sin-
gle bonds (see Fig. 1). The conformational richness increases exponentially with
its size since the more atoms (and therefore bonds, angles, and twists) it pos-
sesses, the more degrees of freedom there are. These degrees of freedom are not
additive but multiply, giving rise to many possible conformational states.

The Virtual Screening studies based on ligands in which ligand flexibility
is considered [2,9,10], consider the protein to be almost rigid or with partial
flexibility, so that of all the possible rotatable single bonds, they only allow a
maximum of 5 of them to rotate. In some cases, the solution is to perform the
Virtual Screening considering the molecule to be rigid, and then apply a process
in which the flexibility is studied for the number of rotatable links allowed by
the algorithm [9]. This process sometimes consists of varying in a discrete way
each of the angles of the rotatable bonds to find the best solution. Other authors
include gradient algorithms [2] to find the best rotation of these simple links.
In [10], apart from studying flexibility as a refinement process after Virtual
Screening with rigid molecules, he also studies flexibility from the beginning of
the Virtual Screening process, considerably increasing the number of parameters
to be optimized.
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(a) A molecule of the target FPPS that
has some rotable bonds.

(b) A set of conformation generated
from the rigid FPPS molecule.

Fig. 1. A rigid molecule (a) can generate different conformations (b). An example for
the farnesyl diphosphate synthase (FPPS) target from the DUD-E database is shown
here.

2 Methods

2.1 Shape Similarity Scoring Function

The shape similarity value of two molecules A and B is measured as the overlap-
ping volume of their atoms. In this work, the similarity function is implemented
as in WEGA [20] where the function is expressed in the following form:

V g
AB =

∑

i∈A,j∈B

wiwjv
g
ij (1)

Considering that the different sizes of distinct molecules can imply significant
overlapping variations, it is essential to normalize this overlapping. For this pur-
pose, different metrics exist in the literature such as Tversky [19] or Tanimoto
[16] coefficients. In this work, it has been decided to use the later because it is
used in well-known virtual screening software like ROCS [15], WEGA [20], and
Align-it [9]. Consequently, the score of Eq. 1 is normalized using the Tanimoto
coefficient [16], which is calculated as follows:

Tc =
VAB

VAA + VBB − VAB
(2)

where VAA and VBB is the self-overlap volume of molecules A and B, respectively.
It returns a value between [0, 1] where two molecules are more similar the closer
the value is to 1, and vice versa.

2.2 OptiPharm Algorithm

This section briefly describes OptiPharm, the software used to perform the exper-
iments in this work. For further reading, it is recommended to read their original
work [14]. However, given the increased complexity of the problem addressed
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here, new mechanisms implemented in OptiPharm to reduce the computational
cost will be detailed below.

OptiPharm is a recent software designed explicitly for LBVS problems. It
implements a global evolutionary optimizer capable of calculating the similarity
between two compounds, a target, and a query. To do so, it uses different methods
in the optimization process to gradually adjust the position of the query while
the target fixes its position.

To explore the solution space, OptiPharm works with a user-defined popula-
tion of size M, which applies reproduction, selection, and improvement methods
to each member of the population. A member or solution of this population
represents the rotation and translation of the query molecule. Originally ten
parameters were used to represent this modification, which means to work in a
10-dimensional search space. This paper presents a new version of Optipharm,
where the search space is reduced to 6 dimensions. The main change consists of
replacing the use of quaternions with a semi-sphere parametrization, which sim-
plifies the definition of the rotation axis. Consequently, searchability is enhanced
due to the reduction of the search space dimension. Nevertheless, not only that,
this new system avoids the repetition of the same rotation axis already explored.

This new mechanism provides improved freedom of exploration. In addition
to reducing input parameters, the new version incorporates some problem knowl-
edge, such as a mechanism to keep the angular variables between 0 and 2π in
a continuous circular. So, if during the search an angle α takes a value greater
than 2π, it is updated to the α−2π value. In the previous version of Optipharm,
this value was updated to the maximum value 2π.

One of the strengths of Optipharm is the concept of annealing the search
space by decreasing at each iteration of the algorithm the area where each solu-
tion can search, i.e., can perform reproduction and improvements operations.
The radius’s value associated with a solution search area depends on the iter-
ation in which the solution was created and decreases with each iteration. So
initially, a solution may explore the entire search space. However, in the later
stages of the algorithm, it focuses on a very localized area of the space to refine
the solutions. It allows the coexistence of a population of solutions with different
radii that search on different sub-areas. This mix of coexisting solutions implies
an equilibrium between exploitation and exploration of the search space. The
radius associated to search areas decreases to a user-defined value called Rtmax

and has this value in the last iteration, whose maximum number is also defined
as parameter tmax.

2.3 Methodology

Procedure for Rigid Molecules
As indicated in the previous section, with Optipharm, after an optimization
process, the maximum similarity between a target and a query can be obtained.
This optimization process is repeated for each query in the database. Then,
after finalizing the process, the maximum similarity for molecule in the database
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Fig. 2. Procedure to rank rigid molecules.

is known. Consequently, a ranked molecules list is obtained by sorting them
according to their similarity. The first compounds are more likely to be successful
potential drugs because they are the most similar to the target. Figure 2 shows
this process to obtain a ranked list of compounds.

Procedure for Molecules Conformations
When working with flexible molecules with some rotatable bonds, it is necessary
to modify the methodology to obtain the similarity between a target and a query
molecule in the database. Therefore, to simulate the flexibility at the rotatable
bonds of a given molecule, multiple alternative conformers of this molecule have
been constructed by modifying the rotatable bonds with various rotation angles.
Once multiple conformations of both the target crystal or molecule and the query
molecule have been obtained, a procedure is executed to obtain the maximum
similarity of the two flexible compounds. Figure 3 shows such a procedure by
means of a toy example where only three conformations have been generated for
both the target and for the query.

As can been seen in the figure, an extensive comparison is carried out, which
involves running ntxnq times Optipharm algorithm instead of just one for rigid
molecules. In this exhaustive comparison nt represents the number of confor-
mations of the target molecule and nq is the number of conformations of the
query molecule. Once the maximum similarity of each of the comparisons has
been calculated, the algorithm searches for the highest value and provides it
as the final similarity result between the two flexible molecules. In most cases,
the obtained highest value is greater than the similarity value achieved when
trading the molecules as rigid. In this toy example, (nt = nq = 3) hence nine
comparisons are made, and the similarity values are obtained. Finally, it can be
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Fig. 3. Procedure for obtaining maximum similarity when working with conformations
of molecules.

seen that the highest value (0.92) is obtained when conformation 3 of the target
is compared to conformation 2 of the query, this value being, therefore, the one
selected by the proposed method.

Once the flexible target has been compared with all molecules in the database,
they are ordered based on their similarity value. This value, as previously men-
tioned, is usually higher than in the case of rigid molecules. This variation in
the similarity values may imply that there will be a variation in the order of
the compounds compared with the ordered list obtained when rigid molecules
are considered. Consequently, new query compounds with a high similarity value
can be identified while they are not detected when working with rigid molecules.

An example of how using the flexibility of the molecules yields better results
than with rigid molecules (Fig. 2) is shown in Fig. 4. In this case, molecule 1,
which was in second place when considered rigid, appears in the first place when
it is considered flexible.

3 Materials

Hardware. The experiments of this work have been carried out using a cluster
of 18x Bullx R424-E3: 2 Intel Xeon E5 2650 (16 cores), 64 GB of RAM memory
and 128 GB SSD.

Database DUD-E. The DUD-E is a well-known benchmark for structure-
based virtual screening methods from the Shoichet Lab at UCSF. The method-
ology of the DUD-E benchmark is fully described in its original work. In this
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Fig. 4. Procedure to rank Molecules with conformations.

work, we only consider that the DUD-E database consists of 102 targets and
1.477.909 molecules that are the queries of our experiments.

The original DUD-E database downloaded from http://dude.docking.org/
has been used in this work.

Software. The new version of Optipharm, described in Sect. 2.2 is the optimiza-
tion algorithm used to find the maximum similarity between two compounds. It
has been configurated to consider the hydrogen atoms of each molecule. In addi-
tion, all the heavy atom radii have been set to 1.7 Å. Furthermore, all compound
pairs are centered and aligned. Consequently, the molecule centroids have been
located at the coordinates center of the search space. Finally, each molecule has
been aligned so that its longest axis has been oriented at X-axis and the shortest
along the Z-axis. The input parameter set used in Optipharm is the one pro-
posed by the authors to make the algorithm reliable and robust. In particular,
the following values were considered: N = 200000 function evaluations, M = 5
starting poses, tmax = 5 iterations, and R = 1 as the smallest possible radius.

Additionally, software OMEGA [13] has been the generator selected to obtain
the conformations of targets and queries in the database. The maximum number
of conformations for a given compound was limited to 500, though the obtained
number was smaller in many compounds due to a small number of rotable bonds.

4 Results

In this work, an experimental study has been performed with some targets of the
DUD-E database. The results are shown for the two targets, FFPS and PTN1.

http://dude.docking.org/
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Both rigid and flexible molecules have been considered to establish a comparison
of results.

Tables 1 and 2 show the results obtained with FPPS and PTN1 targets,
respectively. These tables show in decreasing order of similarity the best 10
queries both when considering rigid and flexible molecules. In each table, on the
left-hand side, the first three columns refer to the experiment results with rigid
molecules. The Query column shows the name of the query, the Tc column shows
the similarity value obtained, and the RkC column shows the position of the com-
pound in the ordered list obtained from the experiments with flexible molecules.
The remaining four columns correspond to the experiments performed with flex-
ibility. The Target conformation column identifies the conformation number
that has obtained the best similarity value with the corresponding conformation
of the query indicated in the Query conformation column. The Tc column indi-
cates the similarity value obtained, and the RkR column shows in which position
that molecule is in the ordered list with the results of rigid molecules.

Table 1. Top-10 most similar compounds in shape to the target ZOL 901 1ZW5
(FPPS, Farnesyl diphosphate synthase).

Rigid Flexible

Query Tc RkC Target conformation Query conformation Tc RkR

CHEMBL301247 0.887 1 Target 7 CHEMBL301247 16 0.963 1

ZINC05368839 0.883 47 Target 5 CHEMBL924 3 0.963 175

CHEMBL299717 0.882 40 Target 10 CHEMBL446734 6 0.955 133

CHEMBL55358 0.881 28 Target 4 CHEMBL340034 4 0.952 837

CHEMBL434024 0.868 32 Target 6 CHEMBL394758 2 0.946 705

CHEMBL322551 0.866 42 Target 2 CHEMBL923 1 0.940 139

CHEMBL301065 0.863 96 Target 4 CHEMBL437758 11 0.939 18

CHEMBL99369 0.857 29 Target 9 CHEMBL394759 3 0.937 778

ZINC42040652 0.857 53 Target 2 CHEMBL55886 1 0.934 188

ZINC45202189 0.852 472 Target 3 CHEMBL98110 7 0.929 103

As seen in the tables, the similarity value obtained when lexibility is consid-
ered, as compared to the values obtained when only rigid molecules are taken
into account. Thus, for example, in the Table 1 the similarity values are in the
range [0.887–0.852] for rigid molecules and [0.963–0.929] for flexible molecules.
This increment corroborates that it is more accurate to compare molecules con-
sidering them flexible.

This increase in similarity is not a fixed quantity for all the compounds. This
variable increment implies that rigid molecules can modify their position and
move from the latest positions in the list to the first positions when flexibility is
taken into account.

This fact can be verified by analyzing the two tables’ RkC and RkR columns.
In the case of the FPPS target, it can be seen that the query that appears in
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Table 2. Top-10 most similar compounds in shape to the target 982 301 2AZR (PTN1,
Protein-tyrosine phosphatase 1B).

Rigid Flexible

Query Tc RkC Target conformation Query conformation Tc RkR

ZINC05945704 0.812 2 Target 12 ZINC03887548 2 0.899 15

ZINC39460069 0.811 7 Target 2 ZINC05945704 7 0.870 1

ZINC49581318 0.805 20 Target 12 ZINC62614886 9 0.863 103

ZINC50396795 0.802 205 Target 2 ZINC39612940 84 0.863 350

CHEMBL601290 0.797 29 Target 5 ZINC36909894 3 0.842 13

ZINC42396974 0.797 44 Target 8 ZINC49819538 3 0.840 8

ZINC44419884 0.794 10 Target 2 ZINC39460069 3 0.832 2

ZINC49819538 0.789 6 Target 2 ZINC39133313 11 0.832 282

ZINC16698354 0.788 28 Target 12 ZINC42708789 105 0.832 55

CHEMBL601290 0.782 37 Target 9 ZINC44419884 43 0.830 7

first place in the case of rigid molecules coincides with the one that appears in
first place in the case of flexible molecules, although their similarity increases.
However, for the rest of the queries, it can be seen that their position within the
ordered list of flexible molecules is higher than 25. In particular, the tenth query
(ZINC45202189) appears in position 472. On the other hand, if we analyze the
first positions of the flexible molecules, we can see that most of them were in
positions higher than 100, which implies that they would never be selected as
drug candidates. Thus, for example, the compound appearing in second place
(CHEMBL924 3) in the flexible list occupies position 175 in the rigid list. These
changes of positions in the respective lists can also be seen in Table 2, where
the best query considering flexibility occupies position 15 in the list of rigid
molecules.

Figures 5 and 6 show the maximum similarity obtained respectively between
the targets FPPS and PTN1 and the queries appearing in the first position of
the ordered lists. Thus, in the case of the target FPPS, where the best query
obtained is the same (CHEMBL301247), whether rigid or flexible molecules are
considered, it can be seen in Fig. 5 how the similarity in shape improves when the
flexibility of the molecule is included. However, in the case of the target PTN1,
the query with the highest similarity (0.812) when rigid molecules are consid-
ered is ZINC05945704. This query occupies the second position in the ordered
list according to the similarity of flexible molecules. Figure 6 shows their over-
lapping with the Target. Regarding the flexible rank, conformation 2 of molecule
ZINC03887548 has the best similarity value (0.899) though this molecule occu-
pied position 15 when considered rigid. Figure 7 shows the overlapping of this
query when it is considered rigid and flexible.
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(a) Rigid overlapping (b) Flexible overlapping

Fig. 5. Target FPPS or ZOL 901 1ZW5 (in green) and Query CHEMBL301247 are
depicted in this Figure. Figure (a) shows the best overlapping between them when
molecules are considered rigid while Figure (b) shows the overlapping after applying to
thema conformational process as indicated in the first row ofTable 1. (Color figure online)

(a) Rigid overlapping (b) Flexible overlapping

Fig. 6. Target PTN1 or 982 301 2AZR (in green) and Query ZINC03887548 are
depicted in this Figure. Figure (a) shows the best overlapping between them when
molecules are considered rigid while Figure (b) shows the overlapping after applying to
thema conformational process as indicated in the first row ofTable 2. (Color figure online)

(a) Rigid overlapping (b) Flexible overlapping

Fig. 7. TargetPTN1 or 982 301 2AZR(in green) andQueryZINC05945704 are depicted
in this Figure. Figure (a) shows the best overlapping between them when molecules are
considered rigid while Figure (b) shows the overlapping after applying to them a confor-
mational process as indicated in the second row of Table 2. (Color figure online)
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5 Conclusion and Future Work

In this paper, we have addressed the LBVS similarity search problem, including
flexibility. For this purpose, a new and more efficient version of OptiPharm has
been presented. Among its improvements is the reduction of the optimization
parameters by reducing the search space and a new freedom range in some of
them. Consequently, the number of function evaluations required to find the opti-
mal similarity is decreased. The experiments have been performed using the well-
known DUD-E database, and flexibility has been implemented using OMEGA,
where a maximum of 500 conformations was generated for each molecule.

The results obtained show an increase in the scoring function value for flexible
molecules compared to the traditional rigid-molecule procedure. This better sim-
ilarity optimization leads to new query compounds with a high similarity value
that can be identified while not detected when working with rigid molecules.

As future work, it is proposed to implement a conformation generation algo-
rithm as an internal procedure of OptiPharm, allowing the reduction of the
experiments’ time and offering a new solution to this complex LBVS problem.
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Abstract. In order to capitalize on the extensive biological research
publications and databases, knowledge graphs can help extract clinically
useful details from large and complicated resources. Here, we compare
utility of knowledge graphs and named entity extraction for identifying
biologically appropriate results from breast cancer subtyping publica-
tions. This biomedical field is an excellent representative test set - the
biological mechanisms are well studied but complex, while the clinical
applications of identifying breast cancer subtypes are critical to mak-
ing appropriate diagnostic and therapeutic considerations. Optimizing
knowledge graphs to extract actionable biological details rapidly and
accurately could have huge implications in translating biological data
into clinical care responses. Our research suggests that limitations exist
in current knowledge graph pipelines in biomedical data analysis, pri-
marily related to named entity extraction issues.

Keywords: Knowledge graphs · Breast cancer subtyping ·
Reproducibility · Precision medicine

1 Introduction

The complexity of biological systems requires graphical representation in order
to make any sense of the seemingly chaotic tangles of molecules and interac-
tions. Metabolic pathways can grow to hundreds and thousands of intersecting
proteins, carbohydrates and lipids - all simultaneously activating and interacting
with partners to complete their tasks [9]. Graphs have been come increasingly
critical as biological datasets grow in complexity with the expansion of genomic,
transcriptomic, and proteomic datasets capturing more and more biological phe-
nomenon [16]. While broadly utilized in bioinformatics and biomedical research,
only a subset can be considered knowledge graphs. We define knowledge graphs
as a graph where nodes represent biological entities (e.g., gene, drug) and edges
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represent relationships between the entities. While conflicting definitions exist,
this definition is consistent with the predominant researchers in this field [24].

While knowledge graphs have been shown to be beneficial in many studies,
they have not seen widespread adoption in the fields of biomedical sciences,
the very topic which could most benefit from clear graph modeling of complex
pathways, wherein one subtle shift could have profound patient outcomes [4].
The goal of this work is to study and assess the performance of state-of-the-
art knowledge graph pipelines in biomedical research. To provide context for
evaluation, we focus our analysis on the complex and heterogeneous disease of
breast cancer where increased specificity of related knowledge allows for greater
specificity of patient care [20]. We perform this analysis by analyzing the benefits
of using a knowledge graph generated from relevant literature versus a pure
manual analysis of the same body of literature.

2 Background

Breast cancer is a disease which currently affects over 2.3 million people per year
worldwide and is responsible for over 600,000 deaths [21]. It is also a remarkably
heterogeneous disease, with a variety of subtypes which have a wide range of
prognostic outcomes [25]. These subtypes are defined by gene expression pro-
files, cellular histology, and tissue of origin. Currently the field describes five
“intrinsic subtypes,” initially identified by the PAM50 subtype classifier: lumi-
nal A, luminal B, HER-2 enriched, basal-like (triple-negative), and normal [5]. It
is clinically important to identify the subtype as early as possible in the diagnos-
tic process in order to identify the most optimal treatment options to target the
specific cellular characteristics of each subtypes. Luminal A and B tumors both
grow from cells in the inner mammary ducts and similar gene expression profiles.
In general, they have more promising prognoses, though luminal B tumors tend
to be larger and more invasive than luminal A, resulting in a poorer clinical out-
comes [11]. Basal-like tumors develop from the outer cells of the mammary duct
and exhibit the poorest prognoses [8]. HER-2 enriched tumors are so-named for
their abundance of HER-2 receptors on the cell surface, leading to their sensi-
tivity to estrogen-blocking therapeutics. Their prognoses are often poorer than
luminal subtypes and better than basal-like [3]. In general, subtype classification
allows researchers to identify correlating differences both in disease etiology and
clinical outcome; therefore, the discovery of more distinct subtypes provides a
critical impetus for breast cancer research.

ScispaCy is a Python-based natural language processing (NLP) package for
biomedical literature that is built off of the more general Python-based NLP
package called spaCy [15]. The goal of scispaCy is to be a robust NLP library
that provides the text-processing needs of the biomedical domain. The subset of
the package we are focusing on is the “en ner bionlp13cg md” pre-trained model.
En ner bionlp13cg md is a scispaCy model specifically designed for named entity
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recognition (NER) on literature in the domain of cancer research. NER is a form
of information extraction that involves extracting and classifying named entities
in unstructured text. En ner bionlp13cg md largely uses a neural network model
to classify named entities such as amino acid, cancer, tissue, gene, cell, disease,
etc.

BERN2 is another NER model that uses a neural network and is specifically
built for biomedical literature [22]. BERN2 was designed for any research paper
that could be on Pubmed. BERN2 works by using cached annotations if possible,
and if not uses a neural network NER model to find entities. The classes of
named entities BERN2 can extract are “Disease”, “Chemical”, “Gene/Protein”,
“Species”, “Cell Line”, “Cell Type”, “DNA”, “RNA”.

KGen is a pipeline built from state-of-the-art natural language processing
libraries and publicly available ontologies. It is designed to generate knowledge
graphs in a semi-automatic fashion [18]. It assists in graphically representing
knowledge from the vast amount of scientific information available in articles.
It does so by identifying triples for Resource Description Framework (RDF)
graphs. A triple in an RDF graph consists of a subject, predicate, and object,
which essentially describes a node, and the nature of its relation to another
node. It can be used on unstructured text from biomedical papers and produces
a ttl file, a file type designed to represent triples, which can then be queried by
SPARQL - a semantic query language.

Knowing that KGen would be unable to create a concise, or accurate graph,
the working goal for a partial output of a knowledge graph from a paper on
breast cancer sub-typing would look similar to Fig. 1.

Fig. 1. Ideal knowledge graph output.
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3 Methods

Individual biologists manually performed a systematic literature review to iden-
tify breast cancer subtyping genomic articles. Article title, key words, and
abstracts were searched using Google Scholar using the following search con-
dition: “breast cancer subtype molecular classification”. The resulting articles
were filtered to only those containing primary genomic and transcriptomic data
on breast cancer subtyping. These factors greatly influenced the article filtering
due to the availability of these large data sets for farther work on cancer sub-
typing. We considered journal articles published prior to January 1, 2022. This
resulted in a final set of 9 articles [1,2,2,7,10,12,13,17,19].

Each of the articles was reviewed by at least two biologists who prepared
a summary of major genomic findings. When reviewing articles, the criteria to
determine utility of the paper was dependent on the ability to use molecular
markers for more accurate sub-typing of breast cancer. Key information gath-
ered in the process was the factors for sub-typing, the number of sub-types and
contrasting names for each sub-type. A meta-analysis was then performed on all
the findings to identify open questions and gaps in the findings. For this study,
we selected two of the questions for comparative analysis:

1. Blows et al. found that low TP53 mutation frequency in luminal A (12%) and
a higher frequency in luminal B (29%) cancers [2]. Have other researchers
found the interesting change in mutation rate in TP53 between luminal A
and luminal B?

2. Koboldt et al. found a luminal expression signature of ESR1, GATA3,
FOXA1, XBP1 and MYB [12]. Have other researchers found similar signa-
tures?

Utilizing these papers, we applied our selected entity recognition technolo-
gies for comparison to manually curated information performed by biologists.
Figures 2, 3 and 4 below show example annotations done on the abstract of the
Koboldt et al. paper [12] by ScispaCy, BERN2, and manually extracted infor-
mation.

3.1 Knowledge Graph Pipeline

KGen is a pipeline of numerous NLP tools in order to generate the aforemen-
tioned triples. It begins with prepossessing in four major steps.

1. Split raw text into sentences
2. Co-reference Identification
3. Identify abbreviations
4. Simplify sentences to groups of phrases. (Noun phrase, phrase, etc.).

The first step of splitting into sentences is done by tokenizing the text and
identifying end of sentence punctuation, in order to prepare for future processing.
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Fig. 2. ScispaCy’s annotation of the Koboldt et al. paper [12]

Fig. 3. BERN2’s annotation of the Koboldt et al. paper [12]

Co-reference identification looks to link objects to its implicit references nearby.
For example, in a sentence that says, “this study, ... it ...” with it referring to
this study, the program attempts to replace the it with “this study” so that it
is explicitly related. It also identifies abbreviations be looking for the common
pattern of “part of speech (POS)” with paranthesis to identify an abbreviation
for later use. Finally it subdivides sentences into smaller phrases, such as noun
phrases and verb phrases.

It then attempts to extract primary and secondary triples from the struc-
tures using semantic labelling and dependency parsing. An example is that a
sentence of the form {NounPhrase1, V erbPhrase} with the verb phrase being
of the structure {V erb,NounPhrase2}, would be processed into the rdf triple
{NounPhrase1, verb,NounPhrase2}. Then, using entity recognition models,
such as ScispaCy, it attempts to link with an ontology, and creates a graph using
the triples as defining a node and edge pair. The result will look something like
this (Fig. 5).

To evaluate the knowledge graphs, we browsed and developed SPARQL
queries to extract partial and relevant information for these questions. In addi-
tion to running the queries on the entire knowledge graph derived from all



254 J. Davidson et al.

Fig. 4. Biologist’s manual annotation of the Koboldt et al. paper [12]

9 papers, we performed a self-evaluation as a controlled experiment. For this
self-evaluation, we evaluate the performance of the knowledge graph to return
the expected information driving the original question. In this short paper, we
present a qualitative comparative analysis of the knowledge graph and the under-
lying named entity extraction methods of ScispaCy and BERN2. We discuss the
accuracy, benefits, and shortcomings of these technologies.

3.2 Application of Knowledge Graphs

One potential application of biomedical knowledge graphs is to improve predic-
tions from transcriptomic data. We explored the use of NER tools (ScispaCy
and BERN2) for feature selection of a breast cancer subtyping dataset. We used
the dataset from Curtis et al.’s METABRIC study [6]. This dataset contains the
expressions of 20,000 different genes from 1,989 primary breast tumor samples
and 144 normal breast tissue samples (a total of 2,133 samples). Each sample is
classified as one of 6 classes: normal, normal-like, luminal A, luminal B, basal,
and HER2+. We used the genes as columns and the samples as rows. Our pri-
mary goal was to use the NER tools to identify “important” genes in papers on
breast cancer subtyping and reduce the genes in our dataset to only include the
ones found by the NER tools. We compared feature selection derived from Scis-
paCy and BERN2 pipelines to random gene feature selection and dimensionality
reduction using principal component analysis (PCA). For PCA we reduced the
number of columns in the dataset from 20,000 to 100. For random gene selection,
we randomly selected 1000 genes to use in the reduced dataset.

We obtained the titles and abstracts of 589 papers on breast cancer subtyping
from the PubMed API by searching for “breast cancer subtyping”. ScispaCy’s
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Fig. 5. KGen graph output for a single sentence.

en ner bionlp13cg md NER model and BERN2 were applied to the titles and
abstracts to detect genes in the texts. The pieces of text the NER models labelled
as genes were preprocessed by converting the text to lowercase and removing
unncessary whitespace, and punctuation. The detected genes were matched with
genes existing in our 20,000 gene dataset and only the matching genes were used
in the final dataset fed to the model. ScispaCy ended up finding 176 genes in
common and BERN2 ended up finding 172.

SciKit Learn’s Multi-Layer Perceptron Classifier (MLPClassifier) was used
to generate performance results for comparative analysis. The classifier uses a
basic neural network with the default SciKit Learn parameters and architecture.
We chose to use the MLPClassifier over more sophisticated classifiers due to its
balance between a short training time and reasonable performance. In training
and testing a random 80/20 train/test split was always used, and the final results
were determined by averaging the performance metrics of 10 independent runs.

4 Results and Discussion

A qualitative self-evaluation of Question 1 indicates that the quality of the enti-
ties extracted is not sufficient for wide-scale deployment of the KGen pipeline.
For example, when a graph made from the sentence “The luminal A subtype
harboured the most significantly mutated genes, with the most frequent being
PIK3CA (45%), followed by MAP3K1, GATA3, TP53, CDH1 and MAP2K4”
from Blows et al. [2]. This sentence originates the idea in Question 1. This text
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is easily interpreted and understand by biologists as an association of those genes
with luminal A cancer. The graph generated for the sentence contains 0 links
from a luminal A node to any of the genes of interest. For example a query for
relations to the node representing gata3 returns only one link:

http://www.local/local.owl →
http://www.w3.org/2000/01/rdf\discretionary-schema#label → gata3.

Further analysis and browsing of the knowledge graph indicates that the
entities are not extracted with the precision and recall necessary to execute
the required queries. To explore this finding, we manually compared two leading
entity extraction methods: ScispaCy and BERN2. The results of this analysis are
shown in Fig. 6. We observe that both methods correctly identify genes and that
BERN2 incorrectly classifies subtype, while ScispaCy omits it. We also observe
a misidentification of gata3 and cdh1, and finally, we note that ScispaCy does
not identity luminal A.

Fig. 6. Named entity extraction results for Question 2 shown for (A) ScispaCy and
(B) BERN2.

Similar results are observed for Question 2. The sentences that originates
this question is “One of the most dominant features is high mRNA and protein
expression of the luminal expression signature, which contains ESR1, GATA3,
FOXA1, XBP1 and MYB; the luminal/ER+ cluster also contained the largest
number of significantly mutated genes.” For this sentence, our analysis showed
that both ScispaCy and BERN2 identified the genes, BERN2 incorrectly classi-
fies the subtype, ScispaCy omits the subtype, and ScispaCy misidentifies luminal
and ER+ as genes.

ScispaCy and BERN2 were found to be effective at improving model perfor-
mance through dimensionality reduction.

The major performance difference between the unprocessed dataset and the
random 1000 dataset on the same classifier (see Table 1) highlights the diffi-
culty the MLPClassifier has handling our dataset with 20,000 features. This
also highlights the necessity of feature selection or dimensionality reduction on
this dataset to ensure model performance. The highest performing dimensional-
ity reduction method was PCA with 100 components with an f-score of 0.7798.
ScispaCy and BERN2 were comparable to this with f-scores of 0.7616 and 0.7656
respectively, and performed a significant amount better than the random 1000
which had an f-score of 0.7175. While ScispaCy and BERN2 did not perform
the best, it is arguable that they are still the best choice for within this set of
methods because they still maintain the interpretability of the data.

http://www.local/local.owl
http://www.w3.org/2000/01/rdfdiscretionary {-}{}{}schema#label
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Table 1. Comparing the performance of ScispaCy and BERN2 used for dimensionality
reduction

Precision Recall F-score

No preprocessing 0.0894 0.2275 0.1141

Random 1000 0.7673 0.7209 0.7175

PCA 100 0.7886 0.7747 0.7798

ScispaCy 178 0.7992 0.7550 0.7616

BERN2 172 0.8091 0.7577 0.7656

5 Conclusion

The potential advantages of knowledge graphs and NER in biomedicine include
but are not limited to identifying important and relevant entities in papers,
improving predictive performance of machine learning models, and predicting
unknown relationships between entities. Our results indicate that connections
between possible gene and disease relations, can to some extent, be identified
quickly with both automated knowledge graph pipelines (e.g., KGen), and specif-
ically, NER methods such as BERN2 and ScispaCy. Even in the presence of omit-
ted and incorrectly labeled entities, the prepossessing done can with these tools
can help a researcher identify targets with higher efficiency. None of the extrac-
tion methods tested in this paper were able to execute with a high degree of
accuracy, potentially limiting their ability to discover connections across papers
and predict unknown relationships between entities.

The domain of biomedical literature is broad and diverse making it difficult
for general biomedical NER models to perform on subfields such as breast can-
cer subtyping. For example, there is ongoing research into defining molecular
subtypes [23] of breast cancer. With the development of highly accurate entity
extraction methods, the ability to settle the differing nomenclature behind what
is the underlying same sub-type may be possible. The implications for this, espe-
cially in a field such as cancer sub-typing where the many groups working towards
identifying cancer sub-type groups do not take into account prior classifications
is immense. By centralizing the data behind molecular and clinical sub-typing,
better treatment can be easily reached for patients with more suitable treatment
[14].

Our results show that semi-automated knowledge graph pipelines such as
KGen are limited in the triples they can identify extract and thus are limited
in utility for complex biomedical domains such as breast cancer subtyping. Our
analysis identified named entity extraction as a primary issue with biomedi-
cal knowledge graph creation and one with significant biomedical informatics
research potential.
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Abstract. Under the concept of explainable artificial intelligence (XAI), this
study explores the usage of shallow neural networks (SNN) to model and pre-
dict motor processes in the brain. Two main goals are considered: the suitability
of independent component analysis (ICA) for data dimension reduction; and the
capability of the SNN to have its underlying processes explained while retaining
accurate predictions.

Thirty subjects from the HCP Young Adult database are used. A traditional
GLM-based data analysis is carried out aiming to establish a ground for com-
parison, besides founded neuroscientific knowledge. ICA is used for input data
dimensionality reduction, which feeds an SNN with one hidden layer containing
10 nodes. Accuracies range from 67.5% to 92.5%, and precisions from 64.3%
to 97.2%, per stimulus. The analysis of the weights yields independent compo-
nents (ICs), i.e. inputs, that encompass motor areas. Even though the ICs’ spatial
resolution is not optimal, the SNN predicts well above the chance level.

The motor cortex-containing ICs, i.e. the main inputs, are in accordance with
the founded neuroscientific knowledge and the GLM-based data analysis results,
allowing for the interpretability of the SNN underlying processes.

Keywords: Explainable artificial intelligence (XAI) · Shallow neural networks ·
Backpropagation feedforward artificial neural networks · Human Connectome
project · fMRI

1 Introduction

Although the success of deep learning methods, their “black box” nature is not transpar-
ent inwhat concerns how they achieve predictions [1]. The process is not comprehensible
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and, therefore, is not under control. Such drawback precludes the extensive use of deep
learning in the health / medical domains due to the lack of reliability [2]. The purpose
of the present study is to contribute to the emerging field of explainable artificial intelli-
gence (XAI) [3], more specifically, to develop interpretablemachine learning procedures
that help understand how the brain functions.

FMRI (functionalmagnetic resonance imaging) is a neuroscientific techniquewidely
used to study brain functioning. The Human Connectome Project “is undertaking a
systematic effort to map macroscopic human brain circuits and their relationship to
behaviour in a large population of healthy adults.” [4] Further progress [5, 6] has freely
disclosed large brain function-related datasets. One encompasses fMRI data acquired in
a simple motor paradigm where subjects move their feet, hands, and tongue. Contrary
to cognitive processes, motor processes in the brain are reasonably known. The motor
and somatosensorial cortices map specific body parts. Such specificity may be used
to define targets for classification. Therefore, one may have both ends of the process,
inputs and outputs, which may contribute to exploring and discovering the underlying
machine learning processes. Thus, the motor fMRI Human Connectome Project dataset
offers an appropriate platform for testing and studying machine learning classifiers and
understanding how they function.

ANNs (artificial neural networks) are not new for fMRI data modelling and anal-
ysis [5, 6]. However, because fMRI data is of high dimensionality, the studies have
focused on parts of the brain or modelling the BOLD (blood-oxygen-level-dependent)
signal. The alternative for whole-brain fMRI acquisitions passes by data dimensionality
reduction [7, 8]. This step is of crucial importance as the yielded data must retain the
information needed for accurate predictions and, in this case, make it possible to inter-
pret both neural networks, the biological and the artificial. Because ICA (independent
component analysis) is widely used in fMRI [9], each IC (independent component) has
a spatial expression that permits anatomical comparisons, and each IC retains temporal
information that may be used for feature extraction for feeding the ANN, it is used in
the study for data dimensionality reduction.

Thus, the present article aims to contribute with answers to the questions:

• is ICA suitable for data dimension reduction for the purpose of artificial neural
networks modelling and prediction?

• is the simplicity of shallow neural networks helpful in interpreting the underlying
processes yet achieving high prediction accuracies?

2 Method

2.1 Data Source: The Motor Paradigm in the Human Connectome Project

The data used were the 30 subjects in the HCP (Human Connectome Project) Young
Adult database1, subjects 100307 to 124422, from the 100 Unrelated Subjects subset
[4, 10, 11]. HCP’s motor paradigm is adapted from [12, 13]. It consists of two runs per
subject. Each run encompasses a sequence of five stimuli where subjects were asked to

1 https://www.humanconnectome.org/study/hcp-young-adult.

https://www.humanconnectome.org/study/hcp-young-adult
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squeeze their left foot (LF), tap their left-hand fingers (LH), squeeze their right foot (RF),
tap their right-hand fingers (RH), and move their tongue (T). The 12 s stimulus response
time is preceded by a 3-s cue, both visually projected. There are also three periods
with a fixation cross (FIX) lasting 15 s. Besides the stimuli sequences themselves, the
difference between both runs was the fMRI scanner’s phase encoding: one was acquired
with right-to-left phase encoding (RL), and the other run with left-to-right (LR):

• RL sequence: FIX-RH-LF-T-RF-LH-FIX-T-LF-RH-FIX-LH-RF-FIX;
• LR sequence: FIX-LH-RF-FIX-T-LF-RH-FIX-LH-T-RF-RH-LF-FIX.

Subjects made no responses in this task. The TR is set to 0.72, and the run duration
is 3:34. Each subject originated 284 volumes in each fMRI session, as the first fixation
cross was cut in order to synchronise the data files with the other run for the same subject
and between subjects. Data files were already subjected to brain extraction and registered
to a standard image.

2.2 Neural Data Processing

The data originated in the fMRI scanning sessions is analysed in two parallel ways:
on the one hand, it is a traditional GLM-based analysis considering the a priori model
defined by the explanatory variables (EVs); on the other hand, the data is ultimately
analysed by the mean of a backpropagation feedforward shallow neural network, but it
is previously pre-processed using ICA (Independent Component Analysis). The purpose
of the ICA pre-processing is to reduce data dimensionality.

GLM-based Data Analysis. fMRI data pre-processing is carried out with FSL
(FMRIB’s Software Library) v. 6.0.52 and the specific GLM-based analysis with FEAT
(FMRI Expert Analysis Tool) [14].

At the subject level, each session is analysed separately, and the following methods
are applied: registration to high resolution structural and standard space images is carried
out using FLIRT [15, 16]; motion correction using MCFLIRT [16]; non-brain removal
using BET [17]; spatial smoothing using a Gaussian kernel of FWHM 5mm; grand-
mean intensity normalisation of the entire 4D dataset by a single multiplicative factor;
high pass temporal filtering (Gaussian-weighted least-squares straight-line fitting, with
sigma = 45.0s); time-series statistical analysis is carried out using FILM with local
autocorrelation correction [18]; z (Gaussianised T/F) statistic images is thresholded
using clusters determined by z > 2.3 and a (corrected) cluster significance threshold of
p= 0.05 [19]. This analysis considers six EVs: LF, LH, RF, RH, T, and cue. Finally, the
subject level analysis has a second step where the results of both sessions are combined,
which is done considering fixed effects.

The thirty individual level contrasts outputs are then analysed at the group level. In
this stage, the mean across all subjects is calculated for all EVs, considering mixed-
effects (FLAME stage 1; FMRIB’s Local Analysis of Mixed Effects) [20, 21]. The
statistical parameter maps are thresholded for z > 2.3.

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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Data Reduction with ICA and Pre-processing. The 30 subjects are randomly split
into two groups: 20 are assigned into the train group and the remaining 10 into the
test group. Because the stimuli sequence is different in each session and in order to
concatenate the data files, each session is interpreted as a separate subject, i.e., for the
data reduction with ICA and pre-processing, each data file is considered one subject,
and, therefore, there are 40 data files in the train group, and 20 in the test group. It is
important to stress that each subject keeps in the respective group, i.e., there is no data
of the same subject in both groups.

The 40 fMRI data files of the train group entered the ICA analysis as implemented in
MELODIC (Multivariate Exploratory Linear Optimized Decomposition into Indepen-
dent Components) v. 3.15 [9], also part of FSL. Importantly, to overcome the limita-
tions imposed by using MIGP (MELODIC’s Incremental Group-PCA) in v. 3.15, which
precludes the output of ICs’ complete time-courses, this step is run in line command
including the option --disableMigp. The following data pre-processing was applied to
the input data: masking of non-brain voxels; voxel-wise de-meaning of the data; nor-
malisation of the voxel-wise variance. Pre-processed data were whitened and projected
into a 46-dimensional subspace using probabilistic Principal Component Analysis. The
number of dimensions was estimated using the Laplace approximation to the Bayesian
evidence of the model order [9, 22]. The whitened observations were decomposed into
sets of vectors that describe signal variation across the temporal domain (time-courses),
the session/subject domain and across the spatial domain (maps) by optimising for
non-Gaussian spatial source distributions using a fixed-point iteration technique [23].
Estimated component maps were divided by the standard deviation of the residual noise
and thresholded by fitting a mixture model to the histogram of intensity values [9].

Features are then extracted from each of the 46-time courses of the ICs (independent
components). The strategy adopted is to average the seventh, eighth and ninth signals
after the stimulus onset. The mean time difference to the stimulus onset is 5.285 s,
proximal to the maximum of the canonical hemodynamic response in the brain [24],
i.e., this feature maximizes the difference between task activation and the baseline. The
data is standardised. At the end of this stage, the result is a matrix with 400 rows (20
subjects × 2 sessions × 5 × 2 stimulus/session), each corresponding to an epoch and
46 columns corresponding to one IC. This matrix is the training set input.

The test data is obtained with a different procedure. The 46 brain activation maps
obtained with the train group are used as masks to average the individual time courses in
the raw NIfTI files of each subject pertaining to the test group. The same procedure for
feature calculation is adopted. The seventh, eighth and ninth acquisitions after stimulus
onset are averaged. The data is standardised. Finally, a similar matrix with 200 rows (10
subjects× 2 sessions× 5× 2 stimulus/session) and 46 columns is obtained. This matrix
is the test set input.
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2.3 Implementation of the Shallow Neural Network

The AMORE package v. 0.2–15 [25] implemented in R3 v. 4.1.2 [26] and RStudio4 v.
2021.09.01 Build 372 is used to design and perform the necessary calculations of the
backpropagation feedforward shallow neural network.

Exploratory analysis searched for the best tunning parameters. Firstly, the global
learning rate varied from 0.05 to 0.50 in 0.05 steps and then, more finely, from 0.03
to 0.10 in 0.01 steps, and the momentum ranged from 0.3 to 0.9 in 0.1 steps. The
best combination yields a global learning rate of 0.10 and a global momentum of 0.8.
Because the purpose of the study is to deliver interpretable shallow neural networks, it
is considered a single hidden layer with 10 nodes fully connected with the inputs (46)
and outputs (5). The selected activation function for the hidden nodes is “tansig”, while
“sigmoid” is for output neurons.

2.4 Neural Network Interpretation

To aid in the neural network interpretation, especially to understand which inputs have
a higher impact on the correct hits, the “path weight” is calculated according to:

pathweightijk = ∣
∣wIiHj × wHjOk

∣
∣ (1)

wherewIiHj is the weight between the input node Ii and the hidden nodeHj, andwHjOk is
the weight between the hidden nodeHj and the output nodeOk . Therefore, pathweightijk
is the module of the product of the weights found in the path from input Ii to output Ok ,
passing by the hidden node Hj. The analysis of the path weights aims to identify which
magnitudes are further from zero. These “heavier” path weights contribute more to the
perceptron equation than underweighted paths, close to zero, although signal magnitude
also has a role here. Therefore, such path weights may identify the inputs (ICs) that hold
important information for correct predictions.

The test data is used to evaluate the neural network’s performance depleted of its
“lighter” weights. This is done twice, with the top 10 path weights per output and 46
(corresponding to the top 10% “heavier”). Finally, the inputs of the top 10 are compared
to the contrasts that result from the GLM-based analysis and interpreted according to
the neuroscience literature.

2.5 Neural Network and Procedure Quality Analyses

To identify possible biases in the neural network’s structure, the network is 10,000
times fed with two data sets: random values from a uniform distribution ranging two
standard deviations (above e below) from the test data mean; random values from a
normal distribution with the same mean and standard variation of the test data mean (as
data is previously standardised, µ = 0, sd = 1).

The neural network’s train and test input data are obtained by different procedures.
While the train inputs derive from the process of data reduction with ICA, the test

3 https://www.r-project.org/.
4 https://www.rstudio.com/.

https://www.r-project.org/
https://www.rstudio.com/
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inputs result from averaging the raw data files screened with masks of the activations in
each IC’s statistical parameter map. Because such difference may influence the testing
stage and have a magnitude of such impact, further analysis is done with the train data
processed the same way as the test data, i.e., the train raw files are screened with masks
obtained from the activated voxels in each IC, and the surviving voxels’ time courses
are averaged.

3 Results

3.1 GLM-Based Analysis

Figure 1 depicts the activations that resulted from the GLM-based data analysis for the
five types of stimuli contrasted among them. All the cases exhibit extensive activations in

Fig. 1. Selected sagittal, coronal, and axial views of the main statistical parameter maps in the
GLM analysis. A: RH> LH (x=−50, y=−20, z= 48); B: LF> RF (x= 4, y=−24, z= 70);
C: RH > RF (x = −4, y = −24, z = 64); D: T > RH (x = −66, y = −18, z = 16); E: T > LF (x
= −58, y = −10, z = 34). MNI152 coordinates. Radiological convention: right hemisphere on
the left.
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the motor cortex and cerebellum. In panel A, which contrasts right hand> left hand, the
coronal and axial slices show the activation of the right hand in the medial section of the
contralateral motor cortex and the deactivation of the left hand in the right motor cortex,
also in itsmedial section. The two feet are contrasted in panel B, left foot> right foot, and
both are contralaterally represented in the dorsal motor cortex in the interhemispheric
fissure. Panel C addresses the right member, contrasting right hand > right foot; the
activation is the medial motor cortex, which corresponds to hand, and the deactivation
is in the interhemispheric fissure section of the motor cortex, both contralateral. Panels
D and E contrast tongue > right hand and tongue > left foot, respectively. Hand and
foot deactivations are in the expected places, as addressed in the previous panels, and
the activation corresponding to the tongue appears in both hemispheres in the ventral
section of the motor cortex, bordering the Sylvian fissure.

3.2 Performance of the Neural Network

The results of the shallow neural network with the best performance (more global correct
hits= 166) are represented in Table 1, with the respective accuracies (global and partial)
and precisions. Partial accuracies start at 67.5% for the left foot and increase to 77.5%
for the right foot. The accuracies are higher for hand movements, 90.0% for the left and
92.5% for the right. For tongue, the accuracy is similar, 87.5%. The global accuracy
is 83.0%. All of them are well above the chance level. Precision values are similar to
accuracies. The left side has 63 correct hits, while the right side has 68, both out of 80.
Feet has 58 correct hits versus 73 in hands (out of 80).

3.3 Procedure Quality Analysis

The first part consists in feeding the neural network with random values from a uniform
and normal distributions (cf. Sect. 2.4). Figures 2 and 3 respectively represent the hits

Table 1. Confusionmatrix of the predictions of the neural networkbasedon the test data, including
the partial and global accuracies and precisions (LF: left foot; LH: left hand; RF: right foot; RH:
right hand; T: tongue).

Stimulus Prediction Total

LF LH RF RH T

Input LF 27 1 6 5 1 40

LH 3 36 0 1 0 40

RF 8 0 31 1 0 40

RH 0 2 1 37 0 40

T 4 0 1 0 35 40

Total 42 39 39 44 36

Accuracy (%) 67.5 90.0 77.5 92.5 87.5 83.0

Precision (%) 64.3 92.3 79.5 84.1 97.2
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rate for each type of stimulus in frequency bar graphs. Compared with the values in the
matrix diagonal in Table 1, both the peaks in Figs. 2 and 3 are well below (between 5
and 10 in the graphs, and between 27 and 37 in the table), which means that the structure
of the network does not introduce biases that could inflate the hit rate.

Fig. 2. Bar graph representing the frequency for the five outputs (LF: left foot; LH: left hand; RF:
right foot; RH: right hand; T: tongue) after feeding the neural network with random values from
a uniform distribution (10,000 times).

Fig. 3. Bar graph representing the frequency for the five outputs (LF: left foot; LH: left hand; RF:
right foot; RH: right hand; T: tongue) after feeding the neural network with random values from
a normal distribution (10,000 times).

In the second part of the analysis of the quality of the procedure, the neural network
is fed with the train data processed the same way as the test data. Table 2 reports the
results, i.e. the hit rate for each stimulus, in the matrix diagonal, and both global and
partial accuracies and precision. Except for left hand (accuracy) and tongue (precision),
all the other values are higher in Table 2, although slightly.
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3.4 Identification of the Inputs that Most Contribute to Correct Hits

The 460 path weights (46 inputs × 10 hidden nodes) for each stimulus (output) are
depicted in Fig. 4 sorted in decreasing order. Visually, it is evident that about 10% of
the path weights are “heavier”. Two analyses are run, one considering the 46 “heavier”
path weights (which is not reported here for the sake of space) and the other regarding
the top 10 “heavier” path weights.

Table 2. Confusion matrix of the predictions of the neural network based on the test with train
data processed the same as the test data, including the partial and global accuracies and precisions
(LF: left foot; LH: left hand; RF: right foot; RH: right hand; T: tongue).

Stimulus Prediction Total

LF LH RF RH T

Input LF 62 1 12 2 2 79

LH 5 69 1 4 1 80

RF 11 0 68 1 0 80

RH 0 3 2 75 0 80

T 4 0 2 0 74 80

Total 82 73 85 82 77

Accuracy (%) 78.5 86.2 85.0 93.8 92.5 87.2

Precision (%) 75.6 94.5 80.0 91.5 96.1

Fig. 4. Path weights for each output (LF: left foot; LH: left hand; RF: right foot; RH: right hand;
T: tongue) sorted in decreasing order.

The results of the neural network test depleted from all the “lighter” path weights,
i.e. considering the top 10 paths per output only, are reported in Table 3. Compared
with Table 1, with the complete set of weights, the global accuracy drops from 83.0% to
64.0%. Acknowledging that the chance level is 20%, this top 10 frugal neural network
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still predicts well above. The stimuli that mostly drops are feet, the left dropping from
67.5% to 47.5% and the right from 77.5% to 42.5%. Nonetheless, the drop in accuracy
is of lesser magnitude in hands: left drops from 90.0% to 77.5%, and right drops from
92.5% to 90.0%, the latter retaining high accuracy, though. The tongue is similar to feet,
and the analysis with precision is in the same line.

The reduced neural network, containing the top 10 path weights, is further explored.
Table 4 presents the ICs that belong to the “heavier” path weights. Remarkably, these
ICs compose a restricted group. ICs 5, 7, 11, and 12 figure in all the paths, although
with different influences. ICs 43 and 44 also figure for the left hand, right foot, and right
hand, but with lesser weights.

Table 3. Confusion matrix of the predictions of the top 10 path weights per stimulus (output) of
the neural network, including the partial and global accuracies and precisions (LF: left foot; LH:
left hand; RF: right foot; RH: right hand; T: tongue).

Stimulus Prediction Total

LF LH rf RH T

Input LF 19 1 9 2 9 40

LH 1 31 4 4 0 40

RF 5 0 17 8 10 40

RH 0 1 2 36 1 40

T 7 1 3 4 25 40

Total 32 34 35 54 45

Accuracy (%) 47.5 77.5 42.5 90.0 62.5 64.0

Precision (%) 59.4 91.2 48.6 66.7 55.6

Table 4. Identification of the ICs (inputs) that influence more in the frugal top 10 path weights
neural network (LF: left foot; LH: left hand; RF: right foot; RH: right hand; T: tongue).

Output ICs Path weight sum Output ICs Path weight sum

#1 LF 5 28.5290 #2 LH 5 14.3806

7 58.9993 7 41.7794

11 64.3555 11 38.5726

12 44.3519 12 24.0543

43 7.2116

44 6.6728

(continued)
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Table 4. (continued)

Output ICs Path weight sum Output ICs Path weight sum

#3 RF 5 34.3084 #4 RH 5 20.0228

7 44.7067 7 40.1865

11 63.8054 11 54.1943

12 42.3072 12 30.5627

43 12.6839 43 9.1628

44 11.7363 44 8.4783

#5 T 5 28.4708

7 21.1036

11 27.2684

12 15.8641

ICs 5, 7, 11, and 12 are depicted in Fig. 5. Most of the activations of these ICs
are located in the precentral and postcentral gyri, which means motor and primary
somatosensorial cortices. Such areas border the central sulci (all four cases) and the
interhemispheric fissure (ICs 7, 11, and 12, mainly the latter).

4 Discussion

As reported in Table 1, the shallow neural network is predicting well above the chance
level. This means that, although its frugal structure, containing one hidden layer with 10
nodes only, it extracts information from data to make predictions correctly. The mean
accuracy is 83.0%, and precision ranges from 64.3% to 97.2%. These results favourably
sanction all the procedures herein applied, including feature choice, the strategy for data
reduction, the process of test data, and the construction of the shallow neural network
and parameter tuning.

Besides predictions, the analysis of the neural network weights permits the iden-
tification of the inputs and paths into the outputs that have a greater influence on the
performance. Because all the stimuli are motor-based, one would expect that the inputs
that convey information of the motor-related areas in the brain would be prominent.
The results support such an assumption, which is the core of the present research. Table
4 presents the inputs with higher weights in the frugal shallow neural network, i.e. the
network constructed with the top 10 “heavier” path weights only. These ICs (inputs) con-
tain motor and somatosensorial activations, as depicted in Fig. 5, bordering the central
sulci and the medial part of the interhemispheric fissure. While IC 5 and IC 12 contain
symmetrical activations in the motor cortex, IC 7 and IC 11 are lateralised, right and
left, respectively. The motor cortex has the particularity of mapping the human body,
i.e. specific sections of the motor cortex represent parts of the human body in an ordered
manner. The feet are contralaterally mapped in the sections facing the interhemispheric
fissure. The hands and fingers are contralaterally mapped in the medial section facing
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Fig. 5. Selected sagittal, coronal, and axial views of the main ICs in Table 4. A: IC 5 depicted in
the plans x = 54, y = −6, z = 32; B: IC 7 depicted in the plans x = 46, y = −10, z = 56; C: IC
11 depicted in the plans x = −46, y = −14, z = 56; D: IC 12 depicted in the plans x = 2, y = −
26, z = 56. MNI152 coordinates. Radiological convention: right hemisphere on left.

the central sulcus, and the tongue is bilaterally mapped in the ventral section, close to the
Sylvian fissure [13, 27]. The results of the GLM-based analysis are consistent with these
rules (cf. Fig. 1). Thus, one may conclude that there is coherence between the inputs,
where the shallow neural network did the calculus to extract information to model the
process and output correct predictions, and the neuroscientific knowledge, which stands
that specific sections of the motor cortex participate in muscular movement processes,
i.e. the output. Such coherence is equivalent to saying that the shallow neural network
starts to be explainable.

Although there is a macro explanation, this procedure lacks detail due to the large
activation blobs in the ICs (cf. Fig. 5). The neuroscientific knowledge is much more
detailed in what concerns the organisation of the motor cortex than the features yielded
by the ICA (independent component analysis) method. Probably, if the data reduction
process could be more fine-grained, the neural network could individualise the contri-
butions of distinct sections of the motor cortex. Even so, although the coarse data, the
shallow neural network performs well above the chance level. Accuracies are between
67.5% and 92.5%, and precisions are between 64.3% and 97.2%. ICs other than those
listed in Table 4 also contributed to the performance. Even so, the frugal shallow neural
network maintains correct predictions well above the chance level.
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The quality analysis of the network reveals that it has no intrinsic biases because
when it is fed with random values, the predictions drop to the chance level. Another
challenging aspect of the procedure is the differential processing of the train and test
data. Testing the train dataset processed the same way as the test data set reveals that,
although different, both processes are equivalent (cf. Table 2).

Further work should focus on three pathways: data reduction, feature extraction, and
explaining hidden nodes. In fMRI acquisitions, one volume typically corresponds to a
vector with around 60,000 elements, which is intractable for artificial neural networks,
as the number of training epochs is several magnitudes below. Thus, data reduction
imposes, and methods other than ICA may be explored to improve detail, which is
needed for the sake of better explainable networks. The feature extraction here applied is
comfortable for block designs, but it is not extensible to event-related. For such purpose,
the particularities of the hemodynamic response may be modelled in order its capture is
more reliable, signalling the process in the brain. Finally, the study may extend into the
explanation to hidden nodes, revealing decision hubs.
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Abstract. There is increasing interest in the development of tools for
investigating the protein ligand space. Understanding the underlying
mechanisms of G protein-coupled receptors (GPCR) in the ligand-binding
process is of particular interest due to their role in pharmacoproteomics.
In this work, we propose the study of GPCR ligand-induced conforma-
tional variations from Molecular Dynamics (MD) simulations using Deep
Learning (DL)-based methods. We devise and train a Convolutional Neu-
ral Network (CNN) for classifying the states for both ligand-free struc-
ture and the bound of agonists in the β2-adrenergic receptor. We also
study the transformation of MD data into an interaction network matrix
to further improve and facilitate the analyses without significant loss of
information. Our method introduces a framework for the study of the
effect of ligand-receptor binding activity that includes a novel analysis
based on interpretability algorithms, allowing the quantification of the
contribution of individual residues to structural re-arrangements.

Keywords: Proteomics · GPCRs · Molecular dynamics · Residue
interaction networks · Deep learning · Convolutional networks ·
Interpretability · Layer wise relevance

1 Introduction

Machine learning (ML)-based models are suitable tools for the extraction of
knowledge from the data stemming from the study of biological processes [37]
and also for handling, processing, and analyzing the massive amount of data
often generated by different biological sources [21]. The current study deals with
the analysis of protein MD simulations. Although X-ray crystallography research
has boosted the study of proteins, it provides very limited information on the
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dynamic nature of their structures. In this scenario, MD data can help to incor-
porate the missing information regarding the dynamics of receptors.

The target of this study are G protein-coupled receptors (GPCRs) [36], pri-
mary receptors in cell membranes for signal transduction, as they can respond to
plenty of signaling molecules (ligands) [31]. This confers them relevance as dru-
gable targets for treating diverse diseases (Alzheimer’s, cancer, and pulmonary
illnesses [11,25], for instance). Broadly, the study of structural and physico-
chemical properties of proteins is crucial in the drug development process [26].
Nevertheles, the endless number of atomic rearrangements that a protein can
present constrains the comprehension of its function [14,19].

In this context, the large-scale analysis of protein processes trough MD sim-
ulations becomes crucial to elucidate their functional properties, including the
protein-ligand interactions and the identification of druggable binding pockets
[4,23]. The massive generation of MD information has turned the investigation of
the dynamic nature of the receptors into a Big Data problem [40], a challenging
area of research. In this realm, academy and industry have already made impor-
tant inroads in molecular biology problems exploiting the strengths of ML-based
algorithms [27].

We focus our effort here on the development of a DL-based approach to the
investigation of receptor conformations related to its function. As part of this
approach, the identification of the motifs (residues or subsets of residues) of the
protein that undergo conformational state changes is a central goal. To achieve
it, we propose a CNN model to classify agonists-specific functional responses
in the GPCR-β2-adrenergic (β2AR) receptor from MD simulations. The pro-
posed method also involves an MD data transformation into a representation
that might further improve and facilitate the analyses. For this purpose, we use
residue interaction networks (RIN), an intuitive representation of the complexity
of MD trajectories. Besides, we provide a way to measure the trustworthiness
of the results, relying on an interpretability analysis of the model predictions.
Importantly, the method allows us to reveal the learned molecular properties
by identifying the residues that induce ligand-dependent conformations. From
the obtained results, we expect that this method can be applied successfully to
related problems.

2 Related Work

The exploration of the state-of-the-art shows that ML-based methods have
boosted the drug discovery process [3,6,9,20,37]. In this work, we investigate
the use of DL-based models and, particularly, CNNs. These models have been
applied mostly to image analysis, included medical image, tackling problems
such as cancer detection [24], or neuro-degenerative analysis [39], to name just
a couple. DL methods have also been used in recent years in proteomics-related
problems [28]. For instance, the study of ligand-protein interactions is discussed
in [22], and [34], to name a few. Specificly, CNNs have been used of late in dif-
ferent applications related to the ligand influence in the protein structure. Some
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examples include [8,15–17], and [12], whose proposals stands on CNN architec-
tures for protein-ligand binding prediction.

Although the results are generally encouraging, the interpretability and
explainability of the predictions have been poorly investigated. The classical met-
rics to evaluate DL-based models are insufficient to disclose the mechanisms that
induce the making-decision process for classifying a specific ligand-dependent
protein response, as stated in [29,30], and [38].

3 Materials

The data under study include the molecular structures for GPCRs simulated on
the Google Exacycle platform [18]. This dataset consists of MD simulations of
both inactive (PDB 2RH1) and active (PDB 3P0G) states of the β2-adrenergic
(β2AR) receptor and the assessment of the bounding of the inverse agonist cara-
zolol and the full agonist BI-167107.

Broadly, the raw data is generated by the simulation of two milliseconds of
the dynamics of the receptor. Each simulation state (free and induced-ligand)
includes 10,000 trajectories generated with Gromacs molecular dynamics pack-
age [13], along with the structure file that summarizes the protein information,
i.e., the sequence and the list of the atoms and their coordinates.

For our case study, we have randomly chosen 500 trajectories of the MD
simulations related to the inactive (2RH1) state of the receptor. Details about
the three dimensional structure of the inactive state were provided by crystal-
lography [7]. While the study reported in [18] used several derived metrics from
the receptor structure to identify distinct activation pathways related to the
ligand-free structure and to the agonist binding, our experiments aim to identify
relevant interactions between residues for each type of simulation. For this rea-
son the present study analyzes the MD simulation data at the level of residues.
However, to accomplish this goal, we first transform the data into a readable
form that fits into the CNN model, as described in the following subsection.

3.1 Protein as Residue Interaction Network Representation

To ease the learning process of conformational variations, each simulation frame
from the trajectories is transformed into a RIN. This representation of the pro-
tein has been shown to facilitate the study of the structure and function of pro-
teins. Besides, some studies suggest that this compact expression of the receptor
has the advantage of capturing important elements of the global structural prop-
erties, function, folding, and stability of proteins [1,5,10,35].

Furthermore, a two-dimensional representation simplifies the problem, mak-
ing it more suitable for the CNN model. It also allows us to increase the training
data, as several samples of the same state can be generated to analyze differ-
ent conformational states. Commonly, in DL models, generalization capability
improves with an increased and diverse training set.
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The idea is simple: to represent the three-dimensional protein structure in a
two-dimensional space where the atomic coordinates of residues represent net-
work nodes, and the interaction strength between them, the edges in a graph
network. The pairwise interaction strength of residues is evaluated using the
Protein Structure Network (PSN) module from Wordom software, suitable for
the analysis of MD trajectories, [33]. Roughly speaking, this module evaluates
the interaction strength Iij as a percentage of the interaction of distinct pairs of
nodes within a given distance cutoff.

Iij =
nij√
Nij

100, (1)

where nij is the number of atoms pairs of a side-chain given within a determined
cutoff distance. Ni and Nj are residue normalization factors taken from the
work by Kannan and Vishveshwara, where more details on the procedure can be
consulted, [5].

In general, the Wordom implementation of PSN analysis allows us to modify
several cutoffs, perform residue selection, and achieve different network repre-
sentations by probing a range of minimal interaction cutoff, etc. The analysis
requires the structure file as a reference and a trajectory file to provide the coor-
dinate sets. The module writes an output file that contains the residue-residue
interaction strengths of all trajectory frames. In our case study, we pre-processed
this output file to generate square and sparse matrices that were in turn fed into
the CNN model.

3.2 Data Pre-processing

The working proposal suggests the transformation of the output data given by
the PSN module in square and sparse matrix form. In our experiments, it takes
500 trajectories from the 2RH1 state of the protein and considers the analysis
of the structure for both free-of-ligand and induced by inverse and full agonists.

Therefore, to express each frame in the trajectories as an N×N array of pair-
wise interactions, we consider the residue number as the XY position coordinate
and assign the corresponding interaction strength value. Besides, the data is nor-
malized and the resulting matrices are of 314× 314 dimension. The distribution
of the data is shown in Table 1.

Table 1. Data distribution.

Class Description # trajectories # frames

2RH1-b β2AR full agonist 500 13,482

2RH1-c β2AR inverse agonist 500 12,852

2RH1-icl3 β2AR apo (no ligand) 500 12,765

Total: 1500 39,099
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To visualize the sparse matrices, the non-zero values are extracted to draw a
scatter plot, color-coded according to the interaction strength. A representative
sample for each class is shown in Fig. 1. Furthermore, we show the receptor
transmembrane regions in the second column of the figure, according to the
list of residues in [32]. For this case, each color represents a region, but we
also present a visualization that merges the transmembrane regions and the
interaction strength in the third column of the figure.

Fig. 1. Each row shows three different illustrations for expressing the RIN of each
structure class. All matrices are color-coded and the axes express pairs of interacting
residues (i, j). First column: interaction strength expressed through color-coding and
by the size of the marker; second column: color-coded distinct transmembrane (TM)
regions; third column: interaction strength of each transmembrane region using the
marker size. (Color figure online)

This interaction network representation incorporates translational and rota-
tional invariance, which is suitable for improving the generalization of most
ML models, including CNNs. Worth mentioning that the data under analysis
includes plenty of matrices with small variations which make the use of general-
ization techniques like data augmentation unproductive.
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4 Experimental Setup

In this study, we have first split the dataset into training and test samples. The
distribution of the data is shown in Table 2. For the training and validation of
our data, stratified k-fold cross-validation was used, with k = 5.

Table 2. Data split distribution.

Class Description # training samples # test samples

2RH1-b β2AR full agonist 8,089 5,393

2RH1-c β2AR inverse agonist 7,711 5,141

2RH1-icl3 β2AR apo (no ligand) 7,659 5,106

Total: 23,459 15,640

CNNs are DL models designed mostly for image analysis tasks and are com-
posed of a sequence of stacked layers that can learn complex representations
through simple, nonlinear modules. Their main building blocks are the convo-
lution, pooling, and fully connected layers. In classification problems, the con-
volution module aims to identify relevant features in the form of feature maps
representing abstractions of shape, patterns, or colors. Commonly, each convo-
lution module includes an activation function to add non-linearity to the model.
Following the feature maps, a dimensionality reduction layer is set. In most cases,
it uses max or average pooling layers. Finally, a fully connected layer performs
the final classification over the extracted features. In contrast to shallow artifi-
cial neural networks, the learned patterns are translation invariant and have a
degree of rotational invariance.

In the context of our analysis, learning spatial information is relevant, i.e.,
our model should detect the position of the molecular conformations. Moreover,
a subsequent interpretability study of the results should allow the identification
of those residues (amino acids of the protein) that induce such structural re-
arrangements. The best practice for defining the CNN architecture is to start
from a shallow one and gradually increase its size until under-fitting vanishes.
However, our early experiments showed that a larger number of filters and the
increase in kernel size provided no improvement. A CNN with only two convo-
lutional layers, relu activation function, and max poling yielded the best results.
Besides, we have established two fully connected layers to get the probabilities
over the feature maps for each class. The proposed architecture for addressing
the classification problem is summarized in Table 3.
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Table 3. CNN architecture proposed.

Layer (type) Output shape # Param

Conv2d-1 [−1, 32, 310, 310] 832

ReLu-2 [−1, 32, 310, 310] 0

MaxPool2d-3 [−1, 32, 155, 155] 0

Conv2d-4 [−1, 32, 151, 151] 25,632

ReLu-5 [−1, 32, 151, 151] 0

MaxPool2d-6 [−1, 32, 75, 75] 0

Flatten-7 [−1, 180000] 0

Linear-8 [−1, 32] 5,760,032

ReLU-9 [−1, 32] 0

Dropout-10 [−1, 32] 0

Linear-11 [−1, 3] 99

Total params: 5,786,595

Trainable params: 5,786,595

Non-trainable params: 0

The selection of this small architecture was empirical, and so was the choice
of hyper-parameters. Thus, in the context of convolution layers, we set 5 × 5
window size, no padding and stride value to 2. Besides, we use drop-out as a
regularization method to 0.5 and we trained this architecture using cross-entropy
as a loss function and adaptive moment estimation (ADAM) optimizer with a
learning rate value to 1×10−4. The algorithms and computations were developed
using Python (version 3.9.7) and, Pytorch machine learning framework (version
1.10.1).

5 Results and Discussion

Table 4 summarizes the results of the CNN training process. The average accu-
racy for both training and validation sets is in the 90–100% interval and often
near 99%. Furthermore, there is no evident gap between the reported training
and validation accuracies in each fold, i.e., there is no obvious presence of over-
fitting in our training procedure as demonstrated in the learning curves reported
in Fig. 2.

Importantly, in terms of assessing the generalization capabilities of the
learned model, and as previously stated, we made predictions on unseen (test)
data. In our experiments, the test accuracy was 99.76%.

Despite the experimental evidence about the quality of our model, there is
a remaining step to perform. We should make sure that the model predictions
are made considering meaningful patterns (residues in our particular case) for
the classification. Therefore, the interpretation of the predictions by a sensitivity
analysis is a crucial aspect of our evaluation process to succeed in our aims.
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Table 4. The first column represents the trained model. The following two columns
shows the average score for the loss function in the training and validation sets. The
computed average accuracy value on training and validation sets is reported in the last
two columns.

# fold AVG Tr Loss AVG Val Loss AVG Tr Accuracy AVG Val Accuracy

1 53.5658 8.3702 0.9152 0.9541

2 20.1192 1.9798 0.9709 0.9897

3 14.3261 1.4840 0.9797 0.9925

4 11.4291 1.0138 0.9832 0.9948

5 9.8927 1.4139 0.9854 0.9984

Fold AVG: 21.8665 2.8523 0.9668 0.9859

(a) Accuracy metric (b) Loss metric

Fig. 2. Average accuracy/loss curves across the five cross-validation folds.

5.1 Interpretability of the Results

It is well known that DL methods are most successful in many scientific and
industrial domains. Nevertheless, paradoxically, their complexity could also be
their major constraint, because the decisions making process is notoriously lack-
ing transparency. Trusting the results of a black-box model is not ideal (or even
unacceptable in some domains), no matter the reported by the evaluations met-
rics (e.g., accuracy and loss). Both the model decision and its interpretation are
crucial for risk assessment in many domains. Recent research has focused on the
development of methods to provide these models with some level of transparency.

Layer-Wise Relevance Propagation (LRP) is one of the most prominent tech-
niques to provide intuitive human-readable explanations of the model predic-
tions, [2]. This method produces a heatmap of the input space, highlighting
features that are relevant for the output. The core idea behind the algorithm
is the identification of the contribution of the neurons by back-propagating the
prediction layer by layer until reaching the input. The magnitude of the con-
tribution is called relevance, and it is redistributed equally in each layer. The
neurons that contribute the most are assigned higher relevance.
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(a) Average Relevance for residues when binding the full ag-
onist BI-167107.

(b) Average Relevance for residues when binding the inverse
agonist carazolol.

(c) Average Relevance for residues for free-ligand structure.

Fig. 3. Contribution of pairs residues for the structure conformation of each class. Their
relevance is color-coded (red and blue for positive and negative influence, respectively),
and their magnitude is represented by the size of the marker. (Color figure online)

The proposed interpretability study for our experiments computes the map
of relevance for each instance of a class in the test set by summing the con-
tribution of pairs of residues and reporting the average relevance. Therefore,
we generate relevance maps to identify residues that influence positively and
negatively structural conformations when the receptor is either ligand-free or
agonists-induced. The results are shown in Fig. 3 where it is noticeable that the
trained model has succeeded in identifying relevant motives in the classification
of protein structural re-arrangements.

Furthermore, from the relevance maps, we have computed the influence of
the transmembrane regions on the conformation of the structure when binds
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by ligands and when is ligand-free. To accomplish this task, our strategy is
to identify the set of residues that positively influence a transmembrane and
compute the average relevance for each region. The results are shown in Table 5.

Table 5. First column: TM region; second column: number of pairs of residues inter-
acting (RI); third column: average relevance of the transmembrane.

(a) Reported average influence to structural rearrangements when the

receptor binds the full agonist BI-167107.

region # RI AVG R

TM1 178 0.002775

TM2 219 0.003977

TM3 236 0.003365

TM4 126 0.005040

TM5 211 0.004188

TM6 269 0.005906

TM7 186 0.003853

(b) Reported average influence to structural rearrangements when the

inverse agonist carazalol is present.

region # RI AVG R

TM1 183 0.006238

TM2 239 0.007591

TM3 260 0.013146

TM4 116 0.018101

TM5 219 0.011499

TM6 291 0.011066

TM7 213 0.012098

(c) Reported average influence to structural rearragments when the

receptor is ligand-free.

region # RI AVG R

TM1 214 0.005606

TM2 179 0.002913

TM3 251 0.002294

TM4 164 0.002551

TM5 445 0.003197

TM6 257 0.012646

TM7 66 0.002494

Overall, we are providing a tool that gives insights into the residue’s influence
when the receptor binds different agonists. Furthermore, this analysis enables
recognizing conformational variations that can be subtle but relevant for the
functional properties of the protein. The proposed method is thus important
for the analysis of MD simulations in terms of identifying and distinguishing
molecular conformations induced by the ligand-biding process.
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6 Conclusions

The opportunities provided by the analysis of MD simulations through ML-based
methods in disciplines such as molecular biology and biochemistry have provided
relevant insights in understanding the function, dynamics, and molecular pro-
cesses of protein structures. In this realm, our study contributes an exploration
of receptor conformational activity, using a GPCR subtype as an example.

We have proposed a methodology to train a CNN-based model from MD tra-
jectories to analyze the activation of the β2-adrenergic (β2AR) receptor when
bound to the inverse agonist carazolol and the full agonist BI-167107. This
methodology includes the transformation of MD data into a more suitable for-
mat for analyzing and computationally using interaction networks. The results
of our experiments show that this transformation provides a simplified version
of the structure (from the atomic to the residue level) that still preserves the
most relevant features for investigating the ligand space.

In general terms, the results provide evidence that our CNN model can recog-
nize the relationship of the ligand-dependent conformational details to generate
knowledge that could be useful to elucidate the dynamic processes of the recep-
tor. One of the most relevant outcomes is the identification of motifs (groups
of residues) of the receptor through an interpretability study. Consequently, we
are providing a framework for understanding and assessing the mechanisms that
underlie conformational rearrangements involved in the functional states of the
protein. It is worth stressing that few works currently address the application of
interpretability techniques in MD problems. Our approach provides an advantage
by improving the trustworthiness of the CNN model and a method to further
assess its predictions in this domain.
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Abstract. Feature detection and peak detection are one of the first
steps of mass spectrometry data processing. This data comes in large
volumes; thus, the processing needs to be optimized, not overloaded.
State-of-the-art clustering algorithms can not perform feature detection
for several reasons. First issue is the volume of the data, second is the
disparity of the sampling frequency in the MZ and RT axis. Here we show
the data transformation to utilize the clustering algorithms without the
need to redefine its kernel. Data are first pre-clustered to obtain regions
that can be processed independently. Then we transform the data so
that the numerical differences between consecutive points should be the
same in both space axes. We applied a set of clustering algorithms for
each region to find the features, and we compared the result with the
Gridmass peak detector. These findings may facilitate better utilization
of the 2D clustering method as feature detectors for mass spectra.

Keywords: Mass spectrometry · Clustering · Feature identification

1 Introduction

Gas chromatography-Mass Spectrometry (GC-MS) is a widely used analytical
method for volatile compounds in complex mixtures. Technologies in GC-MS
experiments yield a large volume of data, and correct handling of the data pro-
cessing is a crucial step in processing these experiments. There is a lot of pro-
cessing steps to be careful of. It greatly impacts the extent and quality to which
the ions can be identified a quantized [9].

After the data acquisition, we obtained a large set of consecutively measured
spectra. Three values characterize each point in spectra. RT is the measure of
retention time. It is the time section for the analyst to be evaluated from the
chromatographic column. MZ is the measured ratio of the mass-to-charge of the
ion. The last descriptive feature of each point is the intensity of the measured
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signal. Each data point in space is defined by the intensity function ψ(RT,MZ)
[2,6].

One of the first processing steps is to identify features in the data. By fea-
tures, we identify the peaks and their properties. The usual method includes
the centroiding step and several signal processing methods. This approach deals
with data reduction so the large volume of the data can be effectively processed.
Some methods, like GridMass [12], can work in 2D directly identifying the local
maxima in the planar data.

In our approach, we will be showing the utilization of the clustering algo-
rithms to identify the features, peaks, and their properties by segmenting the
data plane. Several issues need to be solved. First, there is a need to deal with
the volume of the data. The data needs to be divided into independent batches
to be easily processed without the robust computing demands. Another issue is
with a different dimension of RT and MZ. Each dimension has a different size,
point density, and sampling frequency. There is a need for space transformation
to utilize the clustering or define the distance in each dimension separately [4,7].

We introduce the effective method for region segmentation, providing regions
that can be processed independently of the others without splitting the features
between the regions. To utilize the clustering, we propose data space transfor-
mation to be able to define 1D distance measure applicable in both dimensions.
Last, we provide a proof-of-concept that clustering algorithms can identify the
features in the data, and we test the method on a real dataset of the mass
spectrometry experiment.

2 Materials and Methods

2.1 Dataset

To test the proposed method, we use an in-house generated dataset of a mix-
ture of flame retardants at known proportions. The concentrations of the com-
pounds were predefined at 1000 ng/ml, 500 ng/ml and 100 ng/ml. This dataset
was obtained during the INTERFLAB experiment [8]. The experiment was mea-
sured by Thermofisher Scientific Q Exactive GC Orbitrap GC-MS machine. The
measurement was performed in profile mode.

The composition of the dataset is shown in Table 1. For each of the com-
pounds, the expected values of MZ and RT of their fragments were defined.
This values was then projected to the raw data and manually corrected to the
exact values of the local maxima in the corresponding regions. We then obtained
a dataset containing 1057 known and annotated peaks. This peaks was set as
ground truth to evaluate the performance of the method.
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Table 1. List of compounds of the test mixture.

Compound name Expected RT Corrected RT

2IPPDPP 640.80 635.364

4IPPDPP 688.80 682.372

a-DP 945.00 939.089

Acenapthylene d8 98.40 98.662

aTBCO 478.20 472.720

aTBECH 419.40 413.740

ATE 293.40 290.486

B4IPPPP 774.00 768.052

BATE 443.40 438.707

BDE 100
(2,2’,4,4’,6-Pentabromodiphenyl ether)

712.20 711.895

BDE 128
(2,2’,3,3’,4,4’-Hexabromodiphenyl ether)

856.80 861.607

BDE 153
(2,2’,4,4’,5,5’-Hexabromodiphenyl ether)

792.60 792.692

BDE 154
(2,2’,4,4’,5,6’-Hexabromodiphenyl ether)

763.80 763.544

BDE 183
(2,2’,3,4,4’,5’,6-Heptabromodiphenyl ether)

861.60 861.337

BDE 28
(2,4,4’-Tribromodiphenyl ether)

528.60 528.965

BDE 47
(2,2’,4,4’-Tetrabromodiphenyl ether)

637.80 638.250

BDE 71
(2,3’,4’,6-Tetrabromodiphenyl ether)

623.40 623.303

BDE 85
(2,2’,3,4,4’-Pentabromodiphenyl ether)

745.80 745.393

BDE 99
(2,2’,4,4’,5-Pentabromodiphenyl ether)

690.00 689.565

BEHTBP 921.60 916.392

Benzoapyrene-d12 721.20 720.945

bTBCO 455.40 450.016

bTBECH 424.80 419.660

BTBPE 886.80 881.649

DBDPE 1246.80 1228.891

DPTE 592.80 588.993

EHDP 606.00 601.436

EHTBB 724.80 719.059

HBBZ 597.00 591.149

(continued)
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Table 1. (continued)

Compound name Expected RT Corrected RT

HBCD 811.80 804.520

HCDBCO 721.20 715.044

OBIND 1099.80 1089.182

p-Terphenyl-d14 501.60 501.571

PBBA 683.40 678.061

PBBZ 450.00 444.897

PBEB 546.60 540.857

PBT 524.40 519.167

PCB121 451.80 452.172

pTBX 439.20 433.899

s-DP 925.20 918.766

T21PPP 720.00 713.967

T23BPIC 910.20 904.338

T35DMPP 759.60 753.379

TBBPA 799.80 792.692

TBBPA 799.20 792.692

TBCT 473.40 468.449

TBEP 610.80 604.131

TBEP 609.60 604.131

TBP 238.80 234.783

TCEP 244.20 244.992

TCPP 249.60 244.992

TDBPP 806.40 799.967

TDCPP 566.40 561.014

TDCPP 567.00 561.014

TEHP 567.00 561.014

TMTP 684.60 679.139

TOTP 657.60 651.241

TPP 592.20 587.190

TPTP 714.60 709.200

2.2 Space Division

After the acquisition of the GC-MS experiment, we obtain a raw file of several
billion data points. Each of the data points is represented by three values: MZ,
RT and Intensity. We can incorporate a preprocessing step to filter out the noise
and zero intensity data points as they do not bear any significant information.

For noise filtering, we incorporate intensity threshold filtering. To estimate
a filtering value, we use a method based on the histogram construction of the
intensity values. We produce a histogram of the logarithms of the intensity values
and find the maximum of the histogram. This value is set as the threshold to
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filter out low-intensity and noisy data points. Based on the composition of the
sample and the resolution of the log-intensity histogram, around 10–30% of the
data points will be filtered out. Thus significantly reducing the number of data
to process. The noise thresholding is visualized in Fig. 1.

To utilize the clustering of the data points, the whole data space needs to be
divided into smaller regions of an adequate number of data points. Thus, it can
be processed with good memory and time demands. For our method, we intend
to use a floating 2D window with data overlaps. The overlaps of the windows
must be broad enough so they can cover a whole expected single peak region.
The span of the overlap must be higher than the expected peak span in both
the MZ and RT axis, thus ensuring that the peak regions in the overlaps of the
window would completely fit one of the windows.

Fig. 1. Noise threshold identification for concentration of 500 ng/ml.*

2.3 ROI Identification

To process and apply clustering algorithms, we do a preprocessing of the data.
We segment the data into the regions of interest. Each region will contain only
points within a region of the local peak values. First, the local maxima are
identified based on the euclidean distance. Each point is labeled based on the
nearest local maxima in the neighborhood. In the next iteration, the maximas
will move towards the closest local maxima in their neighborhood, enlarging
and joining their areas. After there is no change in the regional distribution, the
regions of interest are extracted based on the labels of the points, thus belonging
to the local maxima. Each of these regions is an independent area of measure,
and there will be no peak area overlap between the areas. These regions do not
have to have orthogonal dimensions. An example of one of the regions of interest
with a peak value marked is shown in Fig. 2.
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Fig. 2. Test region with annotated (cross) peak value displayed in transformed space.

2.4 Space Transformation

To utilize the known clustering algorithms, there is a need to transform the
dataspace accordingly. First of all, we have a 2D plane with values of different
dimensions. The acquisition gives the continuity of the data points by the scans.
Each scan contains one RT value and a set of measured MZ values of the ion
fragments. The distribution of the first difference of consecutive points in the
MZ dimension is shown in Fig. 3C. The difference of consecutive scans is shown
in Fig. 3A. To apply clustering kernels that are defined by the distance value,
we must ensure that the distance value in both axes accurately represents the
consecutive of the datapoints. The dispersion of the differences of consecutive
points should be the same in both dimensions.

To ensure the consecutive RT dimension, we can substitute the RT values
with a number of the corresponding scan in order of acquisition. Thus the differ-
ence of this axis will be equal to one. This substitution allows to scale this axis
accordingly to the MZ axis and provide the same distance value for consecutive
points.

The consecutive data points in the MZ axis is not strictly ensured. The con-
secutive points are only the ones belonging to the same measured ion fragment.
Sorting the MZ values in one scan by the value will provide a set of many con-
secutive points and the few of them, where the difference is higher because they
belong to different ions. The consecutive points should be in a higher number
as the density of the points in the areas belonging to the ios should be higher.
The measurements done in the region with no ion are noisy and should occur
sparsely.
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To estimate the distance of the consecutive points in the MZ dimension, we
compute the first differentiation of the ordered MZ values in several scans. We
then acquire the median of that values and use it as a scaling factor for the other
axis.

After this transformation, we obtain a data space of MZ ax and accord-
ingly scaled RT ax, as seen in Fig. 3B. The distance between consecutive points
in both dimensions should be approximately the same in this dataspace. This
transformation allows us to use clustering methods based on the distance com-
putation without the need to define the distance individually for each of the
dataset dimensions.

Fig. 3. The differences between consecutive points.

2.5 Clustering

Clustering is the task of dividing the data points into groups so that the data
in the same group are more similar than the data in other groups. In other
words, it aims to segregate data into groups of similar traits. These groups we
call clusters. There are many clustering methods with a diverse approach to
finding the similarity. The decision to use the suitable algorithm depends on
the data structure and the desired clusters characteristics. One segment of the
data can be seen in Fig. 2. We decided that a blank space clearly separated the
clusters. Inside regions, the density of points is much higher. Thus, we utilize
density-based algorithms rather than one based on a simple distance measure
like K-means. We decide to use the DBScan, Optics, and BIRCH. Another type
of algorithm we want to utilize is based on the distribution of the data points,
and we choose the Gaussian Mixture Model (GMM).

Each of the clustering methods was set to the initial state with eps or thresh-
old to 0.01, and was tuned towards the better identification of the ground truths
peak values.

BIRCH (balanced iterative reducing and clustering using hierarchies) is an
unsupervised algorithm used for hierarchical clustering. It performs exceptionally
well over large datasets. There is no need to set the number of clusters in advance,
only a distance threshold between the sample and subclusters. The example of
predicted groups for this method can be seen in Fig. 4A [13].



Data Transformation for MS Clustering 295

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an
unsupervised clustering algorithm. It does not have shape constraints about the
clusters. It is based on the dense areas separated by the area of low density.
Dense areas we call core points and all the points within the distance eps we
will call core points too. Thus it forms separated clusters. There is no need to
set the number of clusters in advance, and we only set the eps value and the
minimal number of points to form a cluster. The example of predicted clusters
for this method can be seen in Fig. 4B [5,11].

OPTICS (Ordering Points To Identify the Clustering Structure) can be viewed
as a generalization of the DBSCAN method. It also depends on identifying the
density in regions, but it keeps a cluster hierarchy for a variable neighborhood
called the reachability graph. Cutting this graph produces the core set points and
noise values. There is a need to set the maximum eps value and the minimum
number of points to be considered as a cluster. The example of predicted clusters
for this method can be seen in Fig. 4C [1].

Gaussian Mixture Model is a probabilistic method assuming that all the
points came from a mixture of a finite number of processes with a gaussian
distribution. It can be viewed as a generalization of the k-means with information
about the covariance structure of the data. The data points are fitted to the set
of the Gaussians, so the probability of the points coming from that Gaussians are
maximized. For our purposes, we will be using a Variational Bayesian Gaussian
Mixture. The example of predicted clusters for this method can be seen in Fig. 4D
[3,10].

3 Results

The space was divided as described in the method section for the selected dataset.
We compute the regions of interest; thus, each area can be processed indepen-
dently. Dimensions of each subspace were transformed; therefore, the distance of
the consecutive points would have the same size in both dimensions. This allows
using the clustering methods with defined one-dimensional distance measures.
For each subspace, all of the clustering methods described above were executed.
Each data point then obtains the identifier of the cluster it belongs to. The
results from the subspaces were finally merged into one dataset. Each cluster
containing less then 20 datapoints was relabeled as noisy one, as there is no
data support to form a valid peak area.

Each algorithm provides a different number of clusters, as we can see in
Table 2. Non-clustered points are points we consider noisy ones. The clustering
also gives us the estimation of the noise in the measurement. There are significant
differences between the used clustering methods. If we use the GMM or BIRCH
algorithm, the noise points portion tends to be small compared to the OPTICS
algorithm, which identifies about 17% of the points as the noisy one. Another
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Fig. 4. Clustering algorithms performing on test region. Clusters were distinguished
by color. (Color figure online)

Table 2. Number of clusters and their features for a dataset of concentration 500
ng/ml.

Method N of clusters Median cluster size Non-clustered (noisy) points

BIRCH 164533 62 0.045%

DBSCAN 66783 213 2.507%

OPTICS 150890 43 17.304%

GMM 53150 179 0.045%

difference we see in the sizes of the obtained clusters. Birch and Optics tend to
provide smaller clusters compared to DBScan and GMM method.
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Table 3. Number of clusters with annotated peak.

Concentration Method Clusters with peak Portion of identified peaks

1000 ng/ml
(1057 peaks)

BIRCH 901 85.24%

DBSCAN 886 83.82%

OPTICS 813 76.92%

GMM 873 82.59%

Gridmass 889 84.11%

500 ng/ml
(1057 peaks)

BIRCH 930 87.98%

DBSCAN 912 86.28%

OPTICS 845 79.94%

GMM 902 85.33%

Gridmass 866 81.93%

100 ng/ml
(1046 peaks)

BIRCH 902 86.23%

DBSCAN 885 84.61%

OPTICS 835 79.83%

GMM 876 83.75%

Gridmass 699 66.83%

From the annotation of the dataset, we identify a set of ground-truth ions in
the raw data. The RT and MZ values of these ions were marked as peak values.
The annotated peaks were taken as the ground truth of the known features.
Every peak should be clustered independently to its own area. From each of the
identified clusters, we obtain the maximum intensity point. This point should
be considered as a peak value. We can compare specified peak values with the
ground truth. From the whole dataset, none of the algorithms was able to identify
all of them, as we can see in the Table 3. The 100% identification was not expected
as some of the annotated values were identified by hand with much guardedness.
For each of the ions, there is a set of 20 peak values ordered with the relative
abundance. For comparison, we provided the results obtained by the Gridmass
method [12] with the maximum MZ tolerance set to 0.001. As we can see, the
clustering methods were able to identify almost the same portions of the features
as the Gridmass method. In the lower concentrated sample, it even outperformed.
The portion of correctly identified features was not much decreasing with the
dilution of the sample. Although the number of features is much higher from
clustering methods than the GridMass, it considers more data properties.

4 Conclusion

We presented the proof-of-concept to identify the peaks and their features in
raw GC-MS measurement. The integral step of this method to apply clustering
methods is the space division and transformation.

We presented a method of raw space segmentation into the independent
regions of interest. This method is based on a seeding algorithm and region merg-
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ing. Each region contains local maxima and its belonging points. This ensures
that each point is clustered within its local maxima; thus, the regions can be
processed independently. It ensures that the data to the corresponding peak will
be processed together and inseparably.

After the space division into processable regions, we transform the space
to provide approximately the same absolute distance size between consecutive
points in each dimension. This allows defining the distance measures for the
clustering algorithm as a one-dimensional parameter.

After the dataspace transformation, we presented that the clustering algo-
rithms can identify the peaks and their regions in raw data. This method can
process the mass spectrometry measurement in 2D without centroiding or signal
processing methods. These detectors consider the neighborhood of the peak and
can label the whole peak area.
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Abstract. In the study of the evolution of various bacteria, the content
of the CRISPR locus has proven to be quite useful. This locus has been
made famous because it allows for simple and inexpensive genome edit-
ing. And bacteriologists are used to studying this locus, through tools
such as spoligotyping, in order to experimentally be able to determine
the lineage or even the sub-lineage of a given strain, and to deduce an
optimal antibiotic cocktail. The problem is that the study of the content
of this locus is very often delicate and difficult. Therefore, we propose in
this paper a new way of representing them, which makes sense biologi-
cally speaking, and which allows a simplified and enriched study of the
CRISPR content. After explaining how to extract this locus from Whole
Genome Sequencing data, we propose an embedding of this locus in a
high dimensional space, followed by a reduction to dimension 2, which
makes sense of the content. This method is applied to the case of the
Mycobacterium tuberculosis complex, and a discussion is proposed to list
the advantages of this approach.

1 Introduction

Tuberculosis remains one of the most deadly diseases in the world today, and its
incidence has even increased in recent years following the COVID epidemic. This
disease is caused by a bacterium called Mycobacterium tuberculosis, which was
described more than 100 years ago. But since the discovery of the first antibiotics,
little progress has been made in the fight against this bacterium, and the devel-
opment of resistant to multi-resistant strains is certainly a problem. Therefore,
any additional knowledge on this bacterium and its evolution is welcome.

To a lesser extent, this can also be established for other diseases such as
salmonella or legionella. And the various bacteria involved in these diseases have
the particularity to be studied through the content of the CRISPR locus. In
some of them, such as the bacteria of the Mycobacterium tuberculosis complex
(MTC), this locus is no longer active and now only faces deletions. In this case,
the difference between the current content and the ancestral content [10,11] is a
specific characteristic of a strain, which allows it to be classified, for example, in
a particular lineage. This barcode allowing the analysis of strains based on their
c© Springer Nature Switzerland AG 2022
I. Rojas et al. (Eds.): IWBBIO 2022, LNBI 13347, pp. 300–308, 2022.
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content in CRISPR is called spoligotype in M.tuberculosis. In other bacteria, this
locus remains active, but it also contains sub-patterns which can be studied to
gain knowledge. But in any case, the deciphering and analysis of this content is
still a delicate task, and there is currently no tool to help study these complex
motifs.

The objective of this paper is to propose a new way to represent these
CRISPR motifs, illustrating it in the case of MTC. The idea is mainly to plunge
them intelligently into an N-dimensional space, and then to do a quality dimen-
sion reduction, to obtain a planar view that makes sense biologically speaking,
and that is easier to study. The various steps required to achieve this result are
fully detailed, from downloading the genome directly from the sequencing, to
extracting the lineage information and the CRISPR locus content. The latter is
obtained here by a De Bruijn graph approach, after extraction of the reads of
interest, and requires a manual step. Finally, the embedding is also fully detailed.

The remainder of this article is as follows. In the next section, basic recalls
regarding the CRISPR locus and the spoligotyping technics is recalled. Section 3
is devoted to the proposed approach, which is fully detailed. It is experimented
in Sect. 4 in the case of the Mycobacterium tuberculosis complex. This result
section is followed by a discussion that extends this work. This article ends by a
conclusion section, in which the contribution is summarized and intended future
work is outlined.

2 Basic Recalls

The CRISPR locus of Mycobacterium tuberculosis complex (MTC), the agent of
tuberculosis (TB), was first described in 1993 as the“Direct Repeat” locus [9,20].
It consists of 36 nucleotide-repeats interspersed with single spacers averaging
37 nt (range: 25–45 nt). The repeats were quickly referred to as direct repeats
and abbreviated as such (DR), and the sequences of a single spacer + a DR
were called direct-variant repeats (DVR). The first two isolates sequenced (M.
tuberculosis H37Rv and M. bovis BCG) yielded 43 different spacer sequences.
The detection of their presence/absence led to the development of the innovative
method of “spoligotyping” [15]. This method has become very popular because
of its ease of implementation and its digital format. It has indeed allowed us to
decipher the structure of the global MTC population [4]. More recently, whole
genome sequencing (WGS) studies have indeed confirmed that for the 6 major
human lineages (L1 to L6) and many sub-lineages, the spoligotypic signature
allows an approximate taxonomic assignment [16]. However, some generic sig-
natures remain either meaningless, imprecise, or convergent, which largely jus-
tifies the use of SNPs as preferred taxonomic markers, whether at the global or
national level [6], or for L4 [22], L1 [19], or L2 [12,21].

As in other species with functional CRISPRs, this locus is accompanied by a
set of CRISPR-associated genes (cas). Their number and nature make the MTC
CRISPR type fall into the Type III-A group in the CRISPR-Cas taxonomy [17].
The CRISPR-Cas locus has recently been shown to be active in the H37Rv
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system [26]. Yet some or all of the region is deleted in several MTC sublines [8].
Another important question is whether deletion of some of the cas genes in the
CRISPR-Cas locus can promote genomic instability in some epidemic strains of
MTC [23].

The genomic diversity of the CRISPR locus was studied in detail as early as
2000 in a study by J. van Emdben et al. showing that spacer duplications, spacer
variations and IS6110 insertion sites could be found in the different phylogenetic
lineages of TCM [25]. However, it involved a very small sample (n = 34) and did
not include any investigation of cas genes [3,7]. Understanding the evolutionary
dynamics of this locus now requires exploration of the CRISPR-Cas region on
an extensive data set.

The classical in vitro approach of spoligotyping lists the presence or absence
of a well-known list of spacers in a sample. This robust method has been widely
applied in vitro [15]. However, this approach did not explore many features, such
as whether the order of spacers is different in one strain or the other. It also did
not reveal whether there was duplication of any part of the locus. Finally, it
did not provide information on the presence of insertions such as IS6110, nor
on the existence of single nucleotide polymorphisms (SNPs) in its direct repeats
or spacers. This masks potential functionally important changes in the loci,
and makes it impossible to conduct in-depth evolutionary studies. New in silico
approaches (SpolPred, SpoTyping) have been developed to produce spoligotypes
from genome reads [5]. Although these methods reveal the presence/absence of
spacers in a similar manner, they have the same limitations as in vitro spolig-
otyping techniques. Last, but not least, their exploitation is frequently difficult
due to the existence of numerous patterns that are difficult to relate together.

Fig. 1. Example of spoligotypes of Lineage 5, defined by their accession numbers.
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3 The Proposed Approach

Firstly, we have to download the genomes of interest, in the form of a Sequence
Read Archive (SRA), for example with the fastq-dump command from the NCBI
SRA Toolkit [1].

The first key step is then to extract the spoligotype from this SRA. Various
tools exist in the literature [5], but none of them are suitable for our approach.
Some of them require assembled genomes; however, the CRISPR locus is rich in
repeated sequences (DR and IS6110), and its very difficult assembly often leads
to gross errors. Others are compatible with SRA-type inputs, but the quality
of the spoligotypes produced has proven insufficient for our needs. The problem
is that these tools are not specific to MTBC: some just tell if a CRISPR locus
is present, while others try to find the content of the locus without a priori
knowledge of the spacer sequences to find. This is why we have chosen to follow
the new approach proposed in [13].

We first build a blast database from the reads contained in the SRA file, then
we blast the sequences of interest (spacers, DR, and CAS genes). To increase the
diversity of the retained sequences and to guard against the discarding of reads
containing mutations, we transform these reads that match into k-mers, where
k is three-fourths the size of the reads. We then construct a De Bruijn graph
from these k-mers, in which the nodes are these sequences, and there is an edge
from a node i to a node j if and only if a suffix of i is a prefix of j.

We then traverse each of the connected components of this graph G. A first
node is drawn at random, and we traverse the related component from vertex
to vertex, as long as it is possible. The vertices thus traversed are removed from
the G graph, and this traversal produces by concatenation of the sequences a
part of the CRISPR locus. We then identify the elements of this part using the
list of sequences of interest (spacers, DRs, CAS and IS6110 genes), and we thus
obtain a first contig with the details of its content. This process is repeated until
the vertices of G are exhausted (the process necessarily has an end). The contigs
are then sorted by size, and the final assembly is done by hand.

Note that, with few exceptions, there is always at least one IS6110 in the
CRISPR locus. Given the size of this insertion sequence, compared to k, as well
as its large number of copies in the genome, contig construction by iterating on
G necessarily stops when an IS6110 is encountered. Similarly, we have recently
shown the existence of duplicated spacers (singly or in tandem), and these dupli-
cations are also a cause of stopping contig reconstruction [20]. These elements
explain why a human final step is required.

Once the CRISPR of the strain has been reconstructed and the spoligotype
deduced, we still need to determine the lineage of the genome. This is done
by taking the list of SNPs per lineage from Coll [6], then extracting from the
h37Rv reference a 40 base pair sequence around the SNP position, and blasting
the result onto the database defined above. A majority vote is then needed to
assign a lineage to this strain.

Let us now assume that the set of our spoligotypes of interest contains a
total of N different gaps, e.g. (15, 26); (30, 34); (51, 60) for the first spoligotype
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in Fig. 1. The next step is to transform each spoligotype into a point in an N -
dimensional space, as follows. The gaps are sorted according to the lexicographic
order, and an integer from 1 to N is then assigned to each gap positioned accord-
ing to this order. The vector corresponding to the considered spoligotype is then
constituted as follows: we place a 1 at each associated gap position, and a 0 every-
where else. In this way, we obtain a binary vector of size N , where each distinct
spoligotype has a different position in space. In this N -dimensional space, points
close in Manhattan distance correspond to similar spoligotypes. It remains then
to make a reduction to dimension 2, using the t-SNE algorithm [24].

The implementation has been realized in Python 3.10, and an interface pro-
vided in Tk is available upon reasonable request.

4 Obtained Results

An example of what Spolmap can lead to is shown in Fig. 2 in the MTC case. In
this figure, each point corresponds to one strain (in WGS genome form), while
the color of these points is made according to the strain lineage. In this picture,
we can find:

– the lineage 1, indo-oceanian, in pink at the bottom of the picture;
– the lineage 2, Beijing, in two blue clusters: a spread out cluster at the center

of the figure, corresponding to ancient strains, and a concentrated one at its
bottom left, for the modern ones;

– the Middle-East lineage 3 in violet, on the right part of the cloud;
– the Americano-European lineage 4 in red, occupying the upper half of the

figure;
– the two African lineages 5 and 6, respectively in brown and dark green, a

little bit off-center;
– the Ethiopian lineage 7 in yellow, alone at the center of the cloud;
– the animal strains in green, a few circles in the bottom left part of the cloud.

Many conclusions can be drawn from this point cloud obtained from the
spoligotypes. First, there are as many clusters as there are lineages, with sub-
clusters associated with sub-lineages. Some lineages are very well separated and
present a really pure cluster, such as lineages 5, 6 and 7. We also find, in the
upper right part, lineages 2 to 4, and in the lower left part, lineages 1, 5, 6
and animal, and we know that these two subgroups are phylogenetically sepa-
rated. The clusters of lineages 1 to 4 extend to the center of the cloud, arguing
for a common origin of the tuberculosis complex, whose ancestor is probably
M.canettii.

In some sublineages, the corresponding subcluster is only partially colored,
suggesting a poor definition of said sublineage (an overly restrictive lineage SNP).
This is evident in the circular cluster at the top of lineage 4, for example. We
also see a whole big gray cluster with a few green dots in it, which would tend
to show our very poor knowledge of animal TB.



Spolmap: An Enriched Visualization of CRISPR Diversity 305

Fig. 2. A 2D visualization of the MTC’s spoligotypes (Color figure online)

Another lesson is that, in general, the complex is well described by the exist-
ing lineages: apart from the animal lineage, there are no large new gray clusters to
investigate. However, there are several small grey clusters, the size of the lineage
8 cluster, which are isolated, such as the small ten points between the animal
lineage and lineage 6 (in dark green). These small clusters probably reflect small
exotic lineages, which should be further investigated to have a full understanding
of the TB mycobacterial complex.

Finally, it is undeniable that the SNP-based lineage data and the spoligo-
type hole data are strongly correlated, arguing for a co-occurrence of these two
evolutionary mechanisms at the same time.
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5 Discussion

The spoligotype has long been considered useful for many lineage identifications,
with for example the absence of spacers 18–22 on the one hand, and 51–60 on
the other, as a definition of Lineage 5, cf. Fig. 1. However, its interpretation is
often quite delicate, if one is content to focus on a linear representation. We
have shown that a representation of the latter in high dimension followed by
a reduction to the 2-dimension reveals something quite coherent, and a vision
both summarized and useful.

We also saw that this approach made it possible to find new lineages or
sub-lineages, to highlight definitional problems in the latter, as well as poorly
explored areas in the diversity of the considered species. Such an approach is
not limited to the bacteria that cause tuberculosis. It can potentially be applied
to any bacterial species with a CRISPR locus that is no longer functional (and
therefore, for which the number of spacers is finite), if exist. It can also be used
in bacteria whose locus is active, but for which subgroups of spacers appear, and
allow a use for characterization, such as in salmonella or legionella (or, in some
plant pathogenic bacteria).

Note that we have only used an elementary definition of distance between
two spoligotypes, and other choices are possible. Similarly, t-SNE is not the only
recent tool for dimension reduction, and techniques such as the so-called Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP, [18])
could lead to other representations, equally useful and complementary.

Finally, dimension reduction techniques are often coupled with outlier detec-
tion methods [2,14], and the latter seem promising either to rule out a strain
that does not belong to the complex under consideration, or to highlight new
lineages that were previously unknown (recall that lineages 8 and 9 have been
discovered in the last three years: there are probably new things to discover).

6 Conclusion

Based on spoligotyping in M.tuberculosis, we have proposed a new way of rep-
resenting the CRISPR locus, which both makes biological sense, and makes the
study easier and more thorough. This approach has been fully detailed, from
genome upload to locus extraction, through plotting in high-dimensional space
and to the final dimension reduction step. This approach allows to detect outliers,
to show the diversity of the studied strains and their respective relationships.
It also allows to detect new lineages or sub-lineages, and to highlight possible
inconsistencies.

For our next works, we wish to make this tool accessible through a neat
interface, and propose versions for tuberculosis, salmonella and legionella. We
then wish to integrate all available genomes (more than 100000 genomes in the
case of M. tuberculosis), and then to search for unknown lineages. Finally, we
wish to integrate this representation in a larger and complete tool, including for
example the determination of lineages and MIRU-VNTRs in M.tuberculosis.



Spolmap: An Enriched Visualization of CRISPR Diversity 307

References

1. SRA toolkit development team. https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.
cgi?view=software. Accessed 16 Mar 2022

2. Ranga Suri, N.N.R., Murty M, N., Athithan, G.: Outlier detection. In: Outlier
Detection: Techniques and Applications. ISRL, vol. 155, pp. 13–27. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-05127-3 2

3. Bland, C., et al.: Crispr recognition tool (crt): a tool for automatic detection of
clustered regularly interspaced palindromic repeats. BMC Bioinform. 8(1), 1–8
(2007)

4. Brudey, K., et al.: Mycobacterium tuberculosis complex genetic diversity: mining
the fourth international spoligotyping database (spoldb4) for classification, popu-
lation genetics and epidemiology. BMC Microbiol. 6(1), 1–17 (2006)

5. Coll, F.: Spolpred: rapid and accurate prediction of mycobacterium tuberculo-
sis spoligotypes from short genomic sequences. Bioinformatics 28(22), 2991–2993
(2012)

6. Coll, F., et al.: A robust SNP barcode for typing mycobacterium tuberculosis
complex strains. Nat. Commun. 5(1), 1–5 (2014)

7. Faksri, K., Xia, E., Tan, J.H., Teo, Y.-Y., Ong, R.T.-H.: In silico region of difference
(RD) analysis of mycobacterium tuberculosis complex from sequence reads using
RD-analyzer. BMC Genom. 17(1), 1–10 (2016)

8. Freidlin, P.J., et al.: Structure and variation of CRISPR and CRISPR-flanking
regions in deleted-direct repeat region mycobacterium tuberculosis complex strains.
BMC Genom. 18(1), 1–14 (2017)

9. Groenen, P.M.A., Bunschoten, A.E., van Soolingen, D., van Errtbden, J.D.A.:
Nature of DNA polymorphism in the direct repeat cluster of mycobacterium tuber-
culosis; application for strain differentiation by a novel typing method. Mol. Micro-
biol. 10(5), 1057–1065 (1993)

10. Guyeux, C., Al-Nuaimi, B., AlKindy, B., Couchot, J.-F., Salomon, M.: On the
reconstruction of the ancestral bacterial genomes in genus mycobacterium and
Brucella. BMC Syst. Biol., IWBBIO 2017 Special Issue 12(5), 100 (2018)

11. Guyeux, C., Salomon, M., Al-Nuaimi, B., AlKindy, B., Couchot, J.-F.: Ancestral
reconstruction and investigations of genomic recombination on some pentapetalae
chloroplasts. J. Integrative Bioinform. *, 20180057 (2019)

12. Guyeux, C., Senelle, G., Refrégier, G., Bretelle-Establet, F., Cambau, E., Sola, C.:
Connection between two historical tuberculosis outbreak sites in Japan, Honshu,
by a new ancestral mycobacterium tuberculosis l2 sublineage. Epidemiol. Infect.
150, e56 (2022)
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Abstract. Breast cancer is a highly diverse disease.With the state-of-the-artmeth-
ods of molecular studies, novel subgroups of breast cancer can be revealed. The
proper identification of subtypes is crucial for treatment choice. Hence, further
investigation of breast cancer subtypes is promising in terms of therapy tailor-
ing. We applied various machine learning approaches to the set of protein level
measurements to detect subpopulations of breast cancer patients. Those methods
involved various dimensionality reduction techniques combined with clustering.
The outcomes of those approaches depended on the algorithms involved and on
their parameters. Hence, we proposed the methodology to compare the results of
clustering algorithms when the proper number of groups is unknown. The used
metrices based on the effect size measurements and allowed for the selection of
the best machine learning approach. The values of the proposed pooled d measure
varied from 1.6847 for the worst method to 2.0568 for the best one. The highest
value was obtained for the custom DiviK approach. Potentially, the metrices can
also serve for the proteomic characterization of differences between subtypes and
the identification of novel biomarkers.

Keywords: Breast cancer · Machine learning · Proteomics · Clustering ·
Dimensionality reduction

1 Introduction

Breast cancer is a diverse disease with highly heterogenous molecular characteriza-
tion. Its subtypes vary in prognosis and therapy response. Proper diagnosis and subtype
identification are crucial for treatment choice and planning.

In the early 2000s, Sørlie et al. [1] proposed a division of breast cancers into
five intrinsic molecular subtypes: Luminal A, Luminal B, HER2-enriched, Basal, and
Normal-like. This study led to the development of the PAM50 classifier [2], which
allowed labeling a tumor with its intrinsic molecular subtype based on the gene
expression microarray measurements. However, with the arrival of new technologies
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for molecular profiling, it became possible to further investigate, extend, and modify
well-established breast cancer subtype categorization.

Machine learning provides a variety of methods for clustering and feature extraction
or selection.Those techniques canbe successfully applied for large genomicor proteomic
datasets to investigate the heterogenic and diverse structure of breast cancer. However,
results of subtypes identification often distinctly differ between algorithms in terms of
both patient assignment to clusters and the final number of clusters detected. Moreover,
the clustering outcome strongly depends on the parameters used. Thus, a method to
compare and select different grouping approaches and parameters is needed. However,
this task seems to be challenging as the method should deal with an unbalanced number
of cases among subpopulations, an unknown target number of subtypes, a huge number
of features in comparison with observations, and various dissimilarity degrees between
resulting clusters. Some of the difficulties result also from the biological background
and disease characterization: for instance, basal breast cancers are expected to be far
more isolated from other tumors, while luminal family members should tend to group
together and then further split into smaller subgroups.

In this study, we aim to test various approaches for clustering evaluation as well as
to propose a metrics that would handle the challenges mentioned above.

2 Materials

Data used in this study are the result of the Reverse Phase Protein Arrays (RPPA)
experiment. This dataset was created as a part of The Cancer Genome Atlas Breast
Invasive Carcinoma (TCGA-BRCA) project [3]. All results were downloaded from the
Genomic Data Commons (GDC) Data Portal in the normalized form. Samples used
for the RPPA measurements were collected from primary tumors of females suffering
from breast cancer. TCGA provided molecular subtype labels obtained with the PAM50
classifier based on the gene expression microarrays [4]. We excluded the samples with
missing PAM50 etiquette. Due to the insufficient number of normal-like cases, this
group was not considered. We also excluded proteins which levels were missing for
some patients due to the requirements of algorithms used in the further analysis. The
remaining records were corrected for the batch effect with the ComBat tool [5]. Finally,
the dataset consisted of expression levels for 166 proteins and 407 patients. The summary
of patients included in the study regarding their PAM50 label is presented in Table 1.

Table 1. The numbers and percentages of patients included in the study concerning breast cancer
subtype label given by the PAM50 classifier.

PAM50 subtype No. patients Percentage of patients [%]

Basal 86 21.13

HER2-enriched 50 12.28

Luminal A 173 42.51

(continued)



How to Compare Various Clustering Outcomes? Metrices to Investigate 311

Table 1. (continued)

PAM50 subtype No. patients Percentage of patients [%]

Luminal B 98 24.08

Total 407 100

3 Methods

3.1 Subtype Detection

To investigate the dataset composition and identify subpopulations of breast cancer
patients, we tested various combinations of clustering algorithms and feature extrac-
tion or selection methods. We used the HDBSCAN [6], graph-based Louvain commu-
nity detection [7], and custom Divisive intelligent k-means (DiviK) [8] algorithms for
grouping. Those methods were applied either to the levels of all available proteins or to
the reduced feature space. Features were extracted with Principal Components Analysis
(PCA) to select top components explaining 90% of the variance in the data and with
Uniform Manifold Approximation and Projection (UMAP) [9] performed on the PCA-
reduced dataset. For the feature selection, we used the Gaussian Mixture Model (GMM)
[10] decomposition of log2-scaled variances of protein levels. All tested combinations
were presented in Table 2.

Table 2. Combinations of clustering algorithms and data dimensionality reduction methods used
in the study. Abbreviations for each combination are written in italics. DiviK is marked with (*)
to indicate that the GMM-based filtration is built in each iteration of the algorithm.

Feature engineering

No reduction PCA UMAP

Clustering Complete GMM filtered Complete GMM filtered Complete GMM filtered

HDBSCAN × × × × HUMAP-C
✓

HUMAP-F
✓

Louvain LC
✓

LF
✓

LPCA-C
✓

LPCA-F
✓

× ×

DiviK* × ✓ × × × ×

In the HDBSCAN algorithm, there was a need to assign classes to the cases which
were left unclassified. We tested several methods for this prediction, based on:

1. HUMAP-C1: Proximity in 2-dimensional UMAP
2. HUMAP-C2: Proximity in the dataset with all protein levels (complete)
3. HUMAP-C3: Proximity in the set of top principal components explaining 90% of the

variance.
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3.2 Comparison of Clustering Approaches

To evaluate clustering results and investigate proteomic profiles of identified subpopula-
tions, we compared levels of each protein between the clusters with a one-way ANOVA
procedure followed by the Tukey-Kramer post hoc tests. ANOVA results served for
calculations of η2 effect size for each protein. The higher the η2 value, the better the
cluster separation. The η2 metrics considers all clusters together, so its values do not
provide insight into whether all clusters are well-separated, or just some of them are
highly isolated.

Moreover, we calculated the values of modification of Cohen’s d effect size to
compare each obtained cluster versus all remaining ones considered jointly [11]. This
measure was calculated based on the following equation:

d = xsubtype − xremaining√
MSwithin

(1)

Hence, for each protein, we obtained as many d values, as many subtypes were
detected with a particular approach. As a result, for each method, we achieved a list of
protein η2 values, and several lists of d values corresponding to subtypes.

To integrate η2 per method, we computed mean, median, and 3rd quartile of protein
η2 values. To obtain a pooled value of d metrics per method, we proposed to assign
the 3rd quartile of protein d absolute values to each subtype. Then, we projected the 3rd

quartiles as a point in the k-dimensional space, where k was the number of subtypes
detected. Finally, we calculated the pooled d value as a distance between the created
point and the beginning of the coordinate system.

Moreover, we assessed the similarity between detected subtypes and PAM50 labels
with the Dice coefficient. To further investigate the differences in outcomes of vari-
ous method combinations, we referred the corresponding clusters to each other for the
approaches with the lowest and the highest values of the pooled d metrics. We compared
the values of d per protein for each subtype.

3.3 Biological Investigation

To biologically characterize each resulting cluster and evaluate the differences between
the worst and the best approaches according to the pooled d metrics, we identified the
proteins with significantly increased or decreased levels in each subtype compared to
all remaining ones. Hence, we selected proteins with at least large or very large effect,
so those with absolute values of d equal at least 0.8 or 1.2, respectively [11, 12]. We
matched those proteins to the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database pathways in which they are involved [13] (accessed April 13, 2022).

4 Results

All HDBSCAN approaches without GMM filtration provided five clusters correspond-
ing to Basal, HER2-enriched, Luminal A, and Luminal B subtypes. Luminal A cases
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were divided into two subgroups. All the remaining combinations of methods (HDB-
SCANwith GMM, Louvain, and DiviK algorithms) gave six clusters. The clusters in all
combinations corresponded to Basal, HER2-enriched, Luminal B, and three Luminal A
subpopulations.

The distributions of η2 values per method are presented in Fig. 1A. The exemplary
distributions of absolute d values for the DiviK method with built-in variance-based
GMM filtration per subtype are presented in Fig. 1B.

Fig. 1. The distributions of metrices values with quartiles, median, and mean values marked
with vertical lines. Panel A density plots showing distributions of η2 values per method. Panel B
density plots showing distributions of absolute d values per subtype for the DiviK method with
variance-based GMM filtration.
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Obtained values of η2 quartiles and mean, pooled d, and Dice coefficient are pre-
sented in Table 3. Dice coefficient results are comparedwith pooled d and the 3rd quartile
of η2 in Fig. 2.

Fig. 2. Values of pooled d (Panel A) and 3rd quartile of η2 (Panel B) compared with Dice
coefficient for tested clustering approaches.

Table 3. Metrics values obtained with various combinations of feature dimensionality reduction
methods and clustering algorithms.

Method No. clusters η2 Pooled d Dice

Q1 Median Mean Q3

HUMAP-C1 5 0.0764 0.1587 0.1963 0.3083 1.7053 0.7125

HUMAP-C2 5 0.0749 0.1519 0.1954 0.3002 1.7204 0.7052

HUMAP-C3 5 0.0785 0.1598 0.1949 0.3034 1.6847 0.7052

HUMAP-F 6 0.0844 0.1661 0.2113 0.3173 1.8529 0.7469

LC 6 0.0806 0.1702 0.2050 0.2966 1.8534 0.7469

LPCA-C 6 0.0800 0.1665 0.2030 0.2989 1.8105 0.7445

LF 6 0.0889 0.1687 0.2105 0.3151 1.8342 0.7396

LPCA-F 6 0.0839 0.1698 0.2100 0.3168 1.8066 0.7371

DiviK 6 0.1123 0.2040 0.2413 0.3379 2.0568 0.7273

The results of theworst (HUMAP-C3) and the best (DiviK) approaches according to the
pooled d values are also marked and compared to original PAM50 labels at the UMAP
visualization in Fig. 3.

The primary difference between those two methods is that the DiviK algorithm pro-
vides an additional Luminal A3 cluster, containing cases included mainly in HUMAP-C3

Luminal B and Luminal A1 subtypes.
Those two contrasting approaches are further compared in Fig. 4. The protein values

of d are referred to each other for corresponding Luminal subtypes: A1 versus A1, A2
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versus A2, B versus B (respectively: Panels A, B, and C). Moreover, we compared the
HUMAP-C3 Luminal B subtype with an additional Luminal A3 subtype given by DiviK
(Panel D).

Total numbers of proteinswith significantly higher or lower level for a certain subtype
(with at least large or very large effects) are presented in Table 4 per subtype for the worst
and the best approach. This table also contains the numbers of corresponding KEGG
pathways.

Fig. 3. UMAP visualization with results of two clustering approaches referred to the original
PAM50 subtype labels. Panel A corresponds to the worst approach according to the pooled d
values (HDBSCAN algorithmwith the proximity in the set of top principal components explaining
90% of the variance for prediction, preceded by UMAP dimension reduction -HUMAP-C3). Panel
B corresponds to the best approach according to the pooled d values (DiviK algorithm with
variance-based GMM filtration).

Table 4. Total numbers of proteins with at least large or very large effect size and corresponding
KEGG pathways for the approaches with the lowest (HDBSCAN algorithm with the proximity
in the set of top principal components explaining 90% of the variance for prediction, preceded by
UMAP dimension reduction - HUMAP-C3) and the highest (DiviK algorithm with variance-based
GMM filtration) pooled d values.

Subtype At least large |d| At least very large |d|

No. proteins No. KEGG
pathways

No. proteins No. KEGG
pathways

HUMAP-C3 DiviK HUMAP-C3 DiviK HUMAP-C3 DiviK HUMAP-C3 DiviK

Basal 41 44 60 61 16 19 31 42

(continued)
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Table 4. (continued)

Subtype At least large |d| At least very large |d|

No. proteins No. KEGG
pathways

No. proteins No. KEGG
pathways

HUMAP-C3 DiviK HUMAP-C3 DiviK HUMAP-C3 DiviK HUMAP-C3 DiviK

HER2-enriched 12 9 47 31 5 4 27 23

Luminal A1 59 89 83 86 34 54 76 80

Luminal A2 37 38 65 64 6 7 4 4

Luminal A3 – 28 – 36 – 3 – 4

Luminal B 5 39 2 79 2 6 0 10

Fig. 4. Protein d values for the best (DiviK algorithmwith variance-basedGMMfiltration) and the
worst (HDBSCAN algorithm with the proximity in the set of top principal components explaining
90% of the variance for prediction, preceded by UMAP dimension reduction - HUMAP-C3) app-
roach according to the pooled d metrics. Comparison of d values for the corresponding: Luminal
A1 subtypes (Panel A), Luminal A2 subtypes (Panel B), Luminal B subtypes (Panel C), and DiviK
Luminal A3 versus HUMAP-C3 Luminal B subtypes (Panel D). Dashed lines mark the threshold
values for the large effect size, equal to −0.8 and 0.8 [11]. Values for proteins with small or
medium effect according to both approaches are marked in grey.
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5 Discussion

Obtained results suggest the dataset should be divided into five or six clusters, with one
cluster corresponding to each of the Basal, HER2-enriched, and Luminal B subtypes,
and two or three subgroups for Luminal A cases.

Basedon theη2 andd distributionswe concluded that the 3rd quartile is an appropriate
representation of metrics values for all proteins. It sufficiently reflects the impact of
proteins which expression levels significantly vary between clusters. Still, it remains
resistant to outliers.

The DiviK method obtained maximal values of all metrices based on η2 and d.
However, in terms of Dice similarity coefficients, all methods that gave six clusters
performed better. However, the aim was not to maximize the similarity to the original
PAM50 labels but to obtain as distant clusters as possible. All effect size metrices were
higher when six clusters were obtained instead of five. GMM filtration improved the
values of the 3rd quartile of η2 for both HDBSCAN and Louvain algorithms and pooled
d for HDBSCAN. This can be especially noticed for the 3rd quartile of η2 in Fig. 2B, in
which results of the Louvain approach with and without filtration are more separated.
Hence, it is beneficial to compare the pooled d metrics with other criteria, including the
Dice similarity index.

The methods with the highest (DiviK algorithm) and the lowest (HUMAP-C3) values
of the pooled d metrics differ mainly regarding Luminal cases handling.HUMAP-C3 gave
only two Luminal A subgroups and one bigger Luminal B subtype. DiviK, on the other
hand, distinguished one more Luminal A subgroup that consists of patients clustered as
Luminal A1 or B by the HUMAP-C3 approach. Moreover, the HER2-enriched subtype is
more numerous for the DiviK algorithm, as it also contains a part of patients grouped as
Luminal B with the HUMAP-C3 approach.

Division obtained with the DiviK algorithm greatly increased the number of proteins
with an effect at least large (with decreased or increased levels in a subtype) for Luminal
A1 and B subtypes. In the case of the Luminal A1 cluster, the number of proteins
with at least a very large effect is also distinctly higher. Consequently, the number of
associated KEGG pathways increased. Luminal A2 clusters do not vary much between
the methods. However, the number of proteins and KEGG signaling pathways identified
for the HER2-enriched subtype is smaller for the DiviK algorithm than for theHUMAP-C3

approach.

6 Conclusions

Weperformed breast cancer subtype identificationwith various combinations ofmachine
learning methods for clustering and data dimensionality reduction. The outcomes were
evaluated with several metrices, including the Dice coefficient and η2 effect size. We
also proposed a custom effect size-basedmeasure that represents the differences between
each cluster and all remaining ones. The results of all metriceswere consistent in terms of
the best machine learning approach for breast cancer subpopulation detection. However,
we believe it is beneficial to consider at least two different criteria for the comparison
of various clustering algorithms and their parameters. Moreover, the metrices we used
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can serve for the characterization of proteomic profiles of breast cancer groups and the
identification of novel biomarkers.

The approach which outperformed all the others was the custom Divisive intelligent
k-means (DiviK) algorithm with the feature filtration based on the decomposition of the
Gaussian Mixture Model of the log2-scaled protein level variance. For the other cluster-
ing methods, the GMM-based filtration also improved all or some metrices, depending
on the algorithm.

We detected subgroups of the Luminal A breast cancer subtype: three with best
performing approaches and two with the worst ones. We also identified the proteins with
significantly increased or decreased levels in particular subgroups and related them to
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The selection of
the additional third Luminal A subgroup increased the number of proteins with elevated
or decreased levels characteristic for Luminal clusters as well as the number of the
associated KEGG pathways, especially for the Luminal B subtype.
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Abstract. Infertility has become a severe health issue in recent years.
Sperm morphology, sperm motility, and sperm density are the most crit-
ical factors in male infertility. As a result, sperm motility, density, and
morphology are examined in semen analysis carried out by laboratory
professionals. However, applying a subjective analysis based on labo-
ratory observation is easy to make a mistake. To reduce the effect of
specialists in semen analysis, a computer-aided sperm count estimation
approach is proposed in this work. The quantity of active sperm in the
semen is determined using object detection methods focusing on sperm
motility. The proposed strategy was tested using data from the Visem
dataset provided by Association for Computing Machinery. We created
a small sample custom dataset to prove that our network will be able to
detect sperms in images. The best not-super tuned result is mAP 72.15.

Keywords: Sperm-cell detection · Small-object detection · Yolo ·
Computer-aided sperm analysis

1 Introduction

One out of every ten couples suffers from infertility [2]. It can have a detrimental
impact on a couple’s quality of life and lead to social and psychological issues [19].
Male factor is responsible for over half of all infertility cases [16]. Semen analysis
is used to identify male infertility or subfertility and establish treatment options
[6]. The shape and size of sperm components are inspected, and the percentages
of normal and aberrant sperms are determined in sperm morphology assessment,
one of several procedures in semen analysis.

Sperm analysis can be more profound and lead toward DNA analysis [22]. Due
to the uncertain efficiency of normal sperm parameters in detecting male factor

c© Springer Nature Switzerland AG 2022
I. Rojas et al. (Eds.): IWBBIO 2022, LNBI 13347, pp. 319–330, 2022.
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infertility problems and boosting the success rates of assisted reproductive pro-
cedures, additional, comprehensive sperm parameters that could affect male fer-
tility and reproduction have been investigated. Thus, using previously described
methods such as single-cell gel electrophoresis (COMET) assay, sperm chro-
matin structure assay (SCSA), acridine orange test (AOT), terminal deoxynu-
cleotidyl transferase-mediated deoxyuridine (TdT) triphosphate (dUTP) nick
end labelling (TUNEL) assay, and sperm chromatin dispersion (SCD), the effects
of various However, examining sperm DNA may be difficult due to the unique
structure of sperm DNA, which differs from that of somatic cells [14]. Further-
more, during spermatogenesis, sperm DNA undergoes numerous alterations and
is compressed by being tightly packaged with various types and numbers of pro-
tamines in different species. Despite these challenges, these approaches provide
valuable information regarding the causes and consequences of DNA damage in
sperm and the consequences of these damages on reproduction.

The vast majority of earlier sperm cell detectors achieved good accuracy
since the density was minimal, according to a survey report [20]. (only 10–20
sperm cells presents in the video). The accuracy reduces dramatically as the
density rises. For example, as described in [3,11], Hamilton Thorne, a com-
mercial computer-based automated system, produces measuring inaccuracies in
densely populated sperm suspended due to multiple clashing sperms. Our previ-
ous results show possible applications of object detection architectures [17], also
as using deep convolutional networks to upscale medical images [4].

In order to address the lack of beef production, the Indonesian government
built and mandated artificial insemination centres, such as The Lembang Insti-
tute for Artificial Insemination, to provide high quality frozen bull semen as the
primary substance for artificial insemination. As a result, artificial insemination
is the most extensively used reproductive technology for increasing beef produc-
tion in the country [8]. Currently, sperm assessment is done manually at The
Lembang Institute for Artificial Insemination.

The head, midpiece, and tail are the three primary sections of a spermato-
zoon, with the head being separated into acrosome and nucleus [18,21]. Anoma-
lies can occur in any of these areas, although the abnormalities of the skull are
the most common [26]. The initial stage in automatically detecting head anoma-
lies is to segment the head from the background and into its basic pieces, notably
the acrosome and midpiece. The contour information of the sperm head has been
proven to be crucial for improving sperm head description, and classification [5].
As a result, precision is crucial while removing the sperm head contour.

Subjectivity, low accuracy, inter variability, and intra-variability are all sig-
nificant limitations of manual sperm motility measurement [1,10]. Computer-
assisted sperm analysis (CASA) has been frequently adopted to circumvent these
limitations. However, there are several limitations to employing CASA, espe-
cially when evaluating sperm motility in fresh bull sperm, where sperm motility
is relatively fast, and partial occlusions are common. Our goal in this project is
not to completely replace the current CASA system. We want to improve a few
key components of the CASA system. The accuracy and speed of multi-sperm
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tracking are also constrained. The second important issue is the difficulty in
accurately classifying motility.

The low accuracy and speed of multi-sperm tracking are one of the major
roadblocks. Several researchers have attempted to solve this problem [20].
Sorensen et al. [23], for example, utilized a Particle Filter and a Kalman Fil-
ter with a Hungarian algorithm for labeling, which is comparable to the method
used by Jati et al. [13]. The authors of Imani et al. [12] used frame difference
background subtraction and a non-linear diffusion filter to select the threshold
value. The samples in these trials exhibited low sperm densities, with only a few
sperm visible in one field of view, and blockage or passing sperm were uncommon.

Hidayatullaha et al. created a new method called deep sperm. This method
reports better results than YOLOv3 and YOLOv4. Particularly on YOLOv3
by 2% of validation accuracy and on YOLOv4 0,25% [9]. This work does not
include YOLOv5 architecture since there is no official paper describing exact
parameters.

1.1 Topic Overview

20222021202020192018201720162015201420132012

50

100

150

Fig. 1. Yearly count of articled published on the Web of Science.

Regarding the Web of Science database, the topic of sperm detection is slightly
increasing. We used a query sperm(All F ields) AND detection(AllF ields).
Since 2012 there has been an increase of 39% of published articles; see the Fig. 1.
Any criteria did not restrict the search. Their results also include conference
papers. Indexes included in the search were: SCI-EXPANDED (2995), CPCI-S
(272), ESCI (109), BKCI-S (36), SSCI (28), IC (2) and CPCI-SSH (1).

Keyword analysis in Fig. 2 shows the connection between sperm detection
and other topics; in total, 100 keywords are connected into 6 clusters by 2974
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Fig. 2. Keyword analysis of top 100 keywords.

links. The amount of all used keywords is 13427. The analysis shows the diversity
of multiple topics that are around sperm analysis.

2 Materials and Methods

2.1 Dataset

Multimedia datasets including more than just images or text are uncommon.
Open multimedia datasets in medicine are even rarer. Clinical datasets frequently
consist only of images or videos. Visem is a dataset that is unique in two aspects.
It is a multi-modal dataset that includes movies, biological analysis data, and
participant information, for starters. It is made up of anonymised data from 85
distinct people. This dataset is publicly available from https://datasets.simula.
no/visem/ [7].

VISEM comprises information from 85 male participants who are at least
18 years old. Parameters from a routine semen analysis, a video of live spermato-
zoa, sperm fatty acid profile, the fatty acid composition of serum phospholipids,
demographic data, and WHO analysis data are all available for each participant.
Due to drift in the initial sample collected. This makes assessing motility chal-
lenging for laboratory employees. In addition, due to concerns about the size of

https://datasets.simula.no/visem/
https://datasets.simula.no/visem/
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the dataset, we opted only to include one video per participant. The video files
in the dataset are over 35 terabytes, with each movie lasting between two and
seven minutes.

The videos have a 640 × 480 pixels resolution and a frame rate of 50 frames
per second. The dataset includes six CSV files (five for data and one for video to
participant ID mapping), a description file, and a video folder. Each video file is
labelled with an ID, the date of video capture, and a brief optional explanation.
The code of the person who assessed the video using the WHO standard is then
included at the end of the filename. VISEM also includes five CSV files for each
of the other data sets, a CSV file holding the IDs associated with each video and
a text file containing definitions of some of the CSV columns.

Our use-case study needed more exact data about spermatozoa. Using the
object detection method requires object position data not provided in the
dataset. We decided to mark data on our own. We were using an annotation
tool that will export boxes as coordinates used later for training.

We extracted images from videos in jpg format. The example shown in Fig. 3
We reduced the number of images to 382. The distribution of photographs was
made similar for each subject. Our dataset is not publicly available yet and can
be provided upon request on email address.

Annotation tool creates text annotation files with format.

〈object − class〉〈x center〉〈y center〉〈width〉〈height〉 (1)

where 〈object − class〉 is the object identity, integer number ranging from 0
to (classes − 1) and 〈x center〉〈y center〉〈width〉〈height〉 is the bounding box
specification, float number relative to width and height of image ranging from
0.0 to 1.0.

Since our focus is in this study to determine the possibility to use YOLOv5
architecture, we did not classify sperm cells with any defects. There can be a
lot of biological defects. There are defects in heads, midpieces and tails. These
defect cells we completely ignore. Sperm morphology detection can be built on
top of our current results.

Images also include many artefacts that make this detection hard for deep
networks. For example, there can be a blurry image, lousy lighting or wrong
contrast.

We split marked images into two datasets. One is for training with a size
of 368 images. Second, for validation, that contains 14 images to evaluate the
training process.

The dataset we created for training had 3500 labels. Width and height graph
is shown in Fig. 4.

Regarding the current size of marked images, we will extend the size of both
datasets. This approach will lead to better accuracy, lower overfitting, and better
performance.
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Fig. 3. Example image extracted from dataset video [7].

2.2 Neural Network Architecture

Yolov5 was chosen as our initial learner for three reasons. To begin, Yolov5 com-
bined the cross-stage partial network (CSPNet) [24] into Darknet, resulting in
the creation of CSPDarknet as the network’s backbone [27]. CSPNet solves the
problem of recurrent gradient information in large-scale backbones by including
gradient changes into the feature map, reducing model parameters and FLOPS
(floating-point operations per second), ensuring inference speed and accuracy
while simultaneously reducing model size. In detecting a sperm cell, speed and
accuracy are critical, and the size of the model impacts its inference efficiency on
resource-limited edge devices. Second, to improve information flow, the Yolov5
used a path aggregation network (PANet) [25] as its neck. PANet uses a new
feature pyramid network (FPN) topology with an improved bottom-up app-
roach to improving low-level feature propagation. Simultaneously, adaptive fea-
ture pooling, which connects the feature grid to all feature levels, ensures that
meaningful information from each feature level reaches the next subnetwork. In
addition, PANet improves precise localization signals in lower layers, significantly
improving the object’s location accuracy. Finally, Yolov5’s head, the Yolo layer,
generates three various sizes of feature maps to provide multi-scale prediction,
allowing the model to handle tiny, medium, and large objects (Table 1).
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Fig. 4. Explained labels and theirs sizes as width and height of boxes. Plotted with
seaborn package.

Table 1. Described models in numbers of size.

Model Nano Small Medium Large Xtra

Input size 640× 480

Number of layers 270 270 369 468 567

Number of parameters 1,765,270 7,022,326 20,871,318 46,138,294 86,217,814

Memory size 0.93 GB 1.73 GB 3.2 GB 4.97 GB 7.34 GB

During training all hyper parameters were set to same values. Learning rate:
0.01; momentum: 0.937; weight decay: 0.0005; batch size: 8. Pretrained weights
were loaded from COCO [15] dataset training.

2.3 Hardware

In general, performance requirements for deep learning are very high. On our
machine, we have two cards with 7 934 CUDA cores. This card is one of
NVIDIA’s best-performing cards. We chose NVIDIA cards solely because of
the framework support. The graphics clock rate on one of our 1080TI cards
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is 11 176 MB, with a clock rate of 1607 MHz. Another is a 2080TI, which has
11019 MB of graphics memory and a maximum clock rate of 1545. The processor
used is an i7-8700 with a 3.20 GHz clock speed. Described in Table 2.

In version 3.8.2, we used Python as a programming language. Our Python
programming environment was the cli-based script. PyTorch is our main machine
learning framework.

Our environment is built on top of IntelliJ remote development and IntelliJ
Idea. We ran the development backend on the server, and the coding was done
directly on the machine with remote access.

2.4 Results

The best model achieved 72.15 mAP on the validation dataset, comparable to
YOLOv4. Table 3 present the comparison of the results. All networks use an
input size of image 640× 480 pixels images.

Table 2. Hardware specification of training machine.

Processor Intel (R) CoreTMi7-8700 3.20 GHz (6xCORE)

RAM 16GB× 4 (2666 MHz) CL13

GPU GeForce GTX 1080TI (11176 MB) 1607 MHz

GPU GeForce RTX 2080TI (11019 MB) 1545 MHz

Table 3. Results achieved on validation dataset.

Model Nano Small Medium Large Xtra

Precision 64.7 61.6 71.7 88.6 64.6

Recall 61.4 64.9 57.8 52.6 71.9

mAP 69.6 64.6 66.4 72.1 68.6

In a more detailed quantitative investigation (see Table 3). The best per-
forming model is large. This network achieves a precision of 88.6%, recall of
52.6, and mAP is 72.1. Other networks are achieving lower results. The second
best network is nano, with an mAP of 69.6 and precision of 64.7%.

If we compare models by precision only, we get them in order large, medium,
nano, small, xtra. So we can determine that in our case, xtra is overfilling.

We can determine that the nano network is too resilient to learn these small
objects such as sperm cells. Of course, this also applies to a small network.

Artifact Handling. Artefacts are also a significant source of inaccuracy when
it comes to detection. For example, small markings were seen in one of the test
samples. They possessed a grayscale similar to that of sperm cells, but they were
smaller or defected (Fig. 5).
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(a) Ground truth. (b) Predicted by L network.

Fig. 5. Comparison for validation dataset labels of (a) Ground truth of labels, (b)
predicted labels by network L. Generated during training - best epoch.

Overfitting Handling. The detectors may overfit if the training dataset’s
samples contain too slight variation. We included samples in the dataset that
we believe have enough variety to prevent overfitting in the model. The sperm
cells seem relatively little when detected with a magnification of 100x. Therefore
having annotated samples is generally limited. To investigate the impact on
accuracy and decide which model has the best generalization ability, we add a
single dataset split with low variation in the training data.

3 Conclusion

This study tested a deep neural network architecture, with its hyper-parameters
and configurations detailed in the material and methods section. Detection of a
sperm cell is the main target of the study. It was unaffected by partial occlusion,
artefacts, many moving objects, the small size of the objects, low contrast, low
video resolution, fuzzy objects, and a variety of lighting conditions.

To summarise, the proposed method performs well in precision, speed, and
resource use. On the validation dataset, the mAP was 72.15. However, the tested
method uses a significant amount of memory. Also, one of the networks ended
up overfitted. Therefore, we will investigate the training dataset profoundly and
try to propose a solution for this xtra network size.

The used dataset is an excellent opportunity to provide data for object detec-
tion in terms of sperm detection [7]. In future, we will also focus on using another
dataset to make this work better compared with other methods.

Used results can provide great information for future applications; Applica-
tions as automatic determination of infertility.
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Abstract. Recent studies on Single-cell RNA sequencing (scRNA-seq)
technology have been widely applied in biological research and drug dis-
covery. Before in-depth investigations of the functionality of single cells
for pathological goals, identification of cell types is an essential step.
Recently, several unsupervised learning methods have been developed
to identify cell types. However, annotating clusters with the correct
cell types require considerable efforts using marker genes. Due to the
lack of enough annotated datasets, supervised techniques have not been
commonly used in scRNA-seq studies. On the other hand, classifica-
tion methods use feature selection algorithms to improve the prediction
accuracy by finding the most informative features among many in high-
dimensional datasets. Hence, to automating the process of annotation
of clusters of cell types, we can take advantage of classification models.
This article evaluated the performance of three state-of-the-art super-
vised classification methods, namely support vector machine, k-nearest
neighbor, and random forest combined with three feature selection meth-
ods, namely Chi-squared, information gain, and ANOVA F-value. The
results of applying nine combinations of these methods on three standard
scRNA-seq datasets show that support vector machine combined with
information gain outperforms other combinations of techniques. More-
over, we investigated reference gene sets and found 11 out of 20 highly
variable genes in two different Pancreas gene sets to validate our findings.
This article sheds some light on the potential use of identifying marker
genes to improve the automatic identification of cell types.

Keywords: Cell type identification · scRNA-seq data analysis ·
Marker gene identification · Feature selection · Classification

1 Introduction

Tumor heterogeneity is a common phenomenon in studying different types of
cancer. In this regard, novel techniques such as single-cell RNA sequencing (sc-
RNA sequencing) can be used to detect unknown tumors and consequently drug
discovery, better treatment, diagnosis, and prognosis. Thus, one of the first fun-
damental steps to perform an in-depth analysis of single-cell sequencing data
c© Springer Nature Switzerland AG 2022
I. Rojas et al. (Eds.): IWBBIO 2022, LNBI 13347, pp. 333–345, 2022.
https://doi.org/10.1007/978-3-031-07802-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07802-6_28&domain=pdf
http://orcid.org/0000-0002-1916-2179
http://orcid.org/0000-0001-7988-2058
https://doi.org/10.1007/978-3-031-07802-6_28


334 A. Vasighizaker et al.

consists of identifying cell types. Hidden diversity and characteristics of a par-
ticular cell type can be found via deferentially expressed genes or marker genes.

Supervised or unsupervised learning approaches can effectively be used to
identify various cell types depending on the dataset, annotated or unanno-
tated, respectively. Typically, in single-cell RNA-seq downstream analysis, clus-
tering techniques are used to reveal well-separated clusters of cells and anno-
tate them manually with different cell types using canonical markers and refer-
ence databases. Different clustering methods try multiple parameters to achieve
higher performance. Setting up the clustering parameters, such as the number
of clusters, is a challenging point [14]. For example, several clustering meth-
ods are compared in [4]. Among them, SC3 [7], CIDR [8], Ascend [12], SAFE-
clustering [16], and TSCAN [6] all posses built-in methods for estimating the
optimal number of clusters. However, Ascend and CIDR underestimated the
number of clusters, whereas SC3 and TSCAN tend to overestimate. Moreover,
manually annotating the obtained clusters using differential expression analysis
is time-consuming and non-reproducible in clustering methods.

On the other hand, classification techniques have increasingly developed to
identify cell types automatically instead of manually annotating clusters of cells.
In addition to this, different feature selection techniques can be used to avoid the
“curse of dimensionality” and select a reduced number of the significant marker
genes. A comparative study in [1] discussed 22 supervised techniques, includ-
ing random forest classifier (RF), k-nearest neighbor (k-NN), support vector
machine (SVM). One of the challenges covered in this study is feature selec-
tion. Three different cell-specific purpose feature selection techniques have been
used, including random gene selection, highly variable genes (HVG) selection,
and selecting genes based on the number of dropouts (zero expression). They
benchmarked their experiments based on the number of features. The findings
show that the performance of the classifiers highly depends on the number of
cells and genes, selected marker genes, and dataset complexity. In this study, we
used general-purpose techniques, instead of cell-specific ones, to compare three
state-of-the-art feature selection techniques combined with three popular classi-
fiers to complement the feature selection step. We also biologically validate cell
type marker genes identified by the best feature selection method.

2 Materials and Methods

2.1 Framework

Three general-purpose feature selection methods, namely ANOVA F-value, Chi-
squared, and information gain (IG), along with three state-of-the art classifi-
cation methods, including SVM, k-NN, and RF, are used in our experiments
to identify cell types automatically. A comparative study on scRNA-seq data
is done in this work. To this end, we followed the pipeline depicted in Fig. 1.
First, we performed pre-processing steps, including filtering, normalization, and
scaling. Then, to find the best parameters for the classification methods, hyper-
parameter tuning and optimization were done on pre-processed data. The most
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informative features were extracted in the feature selection step. Three classifiers
combined with three feature selection algorithms were evaluated to find the best
model. Finally, cell types are predicted by the method with higher accuracy.

Fig. 1. Pipeline overview of the experiments.

It is worth mentioning that although there a other state-of-the-art classifica-
tion methods including deep learning ones, feeding this group of methods require
rich labeled datasets which is the main limitation of scRNA-seq datasets. We
used the Scikit-learn in Python version 3.7 to perform the feature selection and
classification methods [10].
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2.2 Dataset

Public, annotated scRNA-seq data sets with the accession number of
GSM2230757 and GSM2230758 under series GSE84133 [3], and PBMC 10X V2
were extracted from NCBI’s Gene Expression Omnibus [5] and used in this arti-
cle to evaluate the classification performance. These datasets include transcripts
of pancreatic and peripheral blood cells from human donors. Pancreatic cells are
divided into eight groups of previously characterized cell types: alpha, beta, aci-
nar, delta, quiescent, activated pancreatic stellate cells, endothelial, and ductal
cells. The existence of these cell types is validated with immuno-histochemistry
stains [3] so that it can be a good resource for the discovery of cell types. Also,
the PBMC dataset includes nine different cell types. The details of datasets are
listed in Table 1.

Table 1. Details of the datasets studied in this work.

Dataset Tissue Accession # Cell Types # Cells # Genes #

Baron-human1 (Data1) Human-Pancreas GSM2230757 8 1,937 20,125

Baron-human2 (Data2) Human-Pancreas GSM2230758 8 1,724 20,125

PBMC (Data3) Prepheral Blood 10X V2 9 23,154 22,280

2.3 Data Pre-processing

Raw read count matrices generated using next-generation sequencing technolo-
gies contain low-quality sequencing information based on the expression levels.
Pre-processing step (Fig. 1) is to ensure removing any weakly expressed genes or
low-quality cells, including damaged, dead, or degraded during sequencing, and
are represented by a low number of expressed genes in the read count matri-
ces. To perform pre-processing, we followed the standard pre-processing pipeline
in scRNA-seq data analysis [9]. According to this pipeline, cells with less than
200 expressed genes, and genes expressed in less than three cells are filtered
out. In Data1, for example, we first filtered out 5,387 low-expression genes that
were detected in less than three cells and kept 14,739 genes. Further analysis of
the data distribution showed low-quality cells and led to removing seven cells.
After per-gene quantification, we selected a subset of highly variable genes to
use in downstream analyses. To this end, we chose a common strategy routinely
used [2] and defined the set of highly variable genes given a normalized disper-
sion higher than 0.5 after normalization and obtained 2,546 genes at the end.
We used Scanpy [15], a specifically designed package to work with scRNA-seq
datasets, for pre-processing steps.

2.4 Feature Selection

In scRNA-seq data analysis, feature selection or gene selection can be an essential
component due to the curse of dimensionality. The primary motivation behind
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feature selection or gene selection in cell type identification is that cell types
are often distinguished by only a few essential genes known as biomarkers. This
study investigated three general-purpose feature selection approaches, including
Analysis of Variance (ANOVA) F-value, Chi-squared, and information gain (IG)
to select a sorted list of genes. The best number of genes for the training model
is chosen by calculating the model’s performance for top k genes where k =
100, 200, 300, and 400. We evaluated the accuracy of the methods by varying the
number of marker genes based on different computational approaches.

Analysis of Variance (Anova) F-value. ANOVA F-value assumes that there
is a linear relationship between variables and target, and also the variables are
normally distributed. It uses F-tests to statistically measure the ratio of two
variances, i.e. how far the data points are dispersed from the mean. The results
show the statistical significance of the test. F-value is a very important part of
ANOVA and is calculated by the Eq. 1.

F =
σ2
1

σ2
2

(1)

where F is the F-value, σ1 is the larger sample variance and σ2 is the smaller
sample variance.

Chi-squared. Pearson’s Chi-squared test or just Chisquared test is a statis-
tical test applied to the categorical features to test the relationships among
them. It is suited for non-negative variables and mostly boolean, frequencies, or
counts. It uses frequency distribution of the features to determine the correla-
tion or association among them. The test calculates chi-squared statistics i.e.
the expected frequencies of the observations and then determines whether the
observed frequencies match the expected frequencies. The Eq. 2 shows how this
method calculates the correlation among features.

χ2 = Σ
(ObservedFrequency − ExpectedFrequency)2

Expected
(2)

where χ2 is Chi-squared.

Information Gain. Information Gain is defined in terms of uncertainty. The
lesser the information gain, the higher the uncertainty. If IG(X) > IG(Y ), it
means feature X will be better and preferred where IG(X) represents the infor-
mation gain from feature X. The relevance of feature is estimated by considering
the information gain for each feature and choosing the one with maximum value.
It is defined as the difference between prior uncertainty and uncertainty after
considering feature X as shown in Eq. 3 [11].

IG(X) =
∑

iU(P (Ci)) − E
[∑

iU(P (Ci|X))
]

(3)
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where U represents uncertainty function, P (Ci) represents probability of class
Ci before considering feature X and P (Ci|X) represents posterior probability of
class Ci after considering feature X.

2.5 Evaluation Metrics

We applied the most commonly used evaluation metrics, namely accuracy, preci-
sion, recall, and F-score to systematically estimate and compare the performance
of different methods. To this end, we used 10-fold cross-validation to test and
train the model.

3 Results and Discussion

3.1 Parameter Optimization

To select the best parameters of the classifiers (K-NN, RF, and SVM), we used
a Bayesian model-based optimization approach with Gaussian as an adaptive
hyperparameter search. It is a fast approach compared to grid search and random
search. We employed Bayesian search to tune hyperparameters, which rather
than scanning the hyperparameter space mindlessly (as in the grid or random
search), this strategy emphasizes the use of knowledge obtained in one step
to discover the next set of hyperparameters that would improve model perfor-
mance. This method, in an iterative manner, continues until the optimal result is
obtained. Since it prioritizes hyperparameters that appear more promising from
previous steps, the Bayesian technique is able to find the best hyperparameters
in less time (fewer iterations) than grid search and random search.

Table 2. The best parameters for each method obtained using Bayesian Optimization
for the datasets.

Method Best parameters found

Data1

K-NN k = 5

RF n estimators = 359 max depth = 41 criterion = ‘gini’ max features = ‘sqrt’

SVM C = 0.5 gamma = 0.2 kernel = ‘linear’

Data2

K-NN k = 4

RF n estimators = 100 max depth = 1 criterion = ‘gini’ max features = ‘sqrt’

SVM C = 0.5 gamma = 0.2 kernel = ‘linear’

Data3

K-NN k = 6

RF n estimators = 495 max depth = 54 criterion = ‘gini’ max features = ‘sqrt’

SVM C = 0.1 gamma = 0.2 kernel = ‘poly’ degree = 2



Supervised Cell Type Detection in Single-Cell RNA-seq Data 339

The best parameter based on the optimization results for each classification
method for Data1, Data2 and Data3 are presented in Table 2.

For selecting the best value of k for the k-NN classifier, the following values
of the k = (4,5,6) in the search space are inspected. The quality of the result is
determined by k with the highest average accuracy of the three feature selection
methods.

For RF, the following values for the search space are investigated:
n estimators = (100, 500), max features = (sqrt, log2), max depth = (1, 60)
and criterion = (gini, entropy). The n estimators parameter are the number of
trees to be considered. The parameter max features are the maximum number
of features to be considered for individual tree. max depth parameter is the max-
imum depth of the tree where maximum depth is defined as the longest path
from root node to the leaf node and the parameter criterion is the function
which is used to evaluate the quality of split.

RF, by default, uses built-in feature selection methods, including ‘Ginni’ and
‘entropy’. To ensure that each method uses its approach for classification, we
allowed RF to use this ability during the training process with a list of selected
features using the feature selection methods.

For SVM, the following values for the search space are inspected: C =
(0.1,0.5,1), gamma = (0.1, 0.2, 0.3), degree = (1,8) and kernel = (rbf , poly,
linear). The regularization parameter, aka the cost of misclassification, C, is a
degree of importance that is given to the misclassifications error. SVM seeks a
trade-off to maximize the margin among the classes and minimize the number of
misclassifications. The larger the value of C, the larger is the miss-classification
cost. Kernels are functions used to solve non-linear problems by making a curva-
tive hyperplane to separate classes. The parameter gamma decides the curvature
in the decision boundary in non-linear kernels, where a large value of gamma
means more curvature, i.e., softer and tends to overfit the data.

3.2 Classification Results

To investigate the effect of the selected features (genes) as a form of prior knowl-
edge, we evaluated the performance of the classifiers based on the different num-
ber of selected features using three different approaches. We examined k features
where k = 100, 200, 300, and 400 to determine the best number of features to
optimize the performance of the classifier. The best value of k with the highest
accuracy of a combination of each feature selection and classification method for
Data1 is shown in Table 3.

For Data1, the k-NN classification method results reveal a high accuracy
of 96.11% with 400 features when using the Information Gain feature selection
method. The RF classification method for Data1 indicates high accuracy with
400 features for all three feature selection methods. A combination of this classi-
fier with IG gives the best accuracy of 97.05%. Observing the results of the SVM
classification method for Data1, all three feature selection methods reveal high
accuracy with 400 features. Again, SVM combined with IG gives the highest
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accuracy of 98.08%. Among all the combinations, SVM combined with IG shows
highest performance with 98.08% accuracy for Data1.

For Data2 among all the combination, k-NN classification method achieves
high accuracy (94.66%) with 200 features selected from IG feature selection
method, RF and IG combination achieves high accuracy (96.06%) with 400 fea-
tures, and lastly, SVM achieves high accuracy with 400 features (98.09%) selected
from IG feature selection method. For Data2, SVM coupled with IG provides
the best performance, with 98.09% accuracy.

For Data3, SVM achieves highest performance (84.91% accuracy) with 200
features selected from Anova feature selection method. In general, SVM outper-
formed the other two classification methods for all three datasets.

To generalize our experiments, we used two datasets with the same number
of genes and the different number of cells (i.e., Data1 and Data2), and another
dataset with the higher number of cells and genes (i.e., Data3) comparatively.
Other metrics are presented in Figs. 2, 3, and 4.

Among all combinations of classification and feature selection methods, SVM
combined with IG significantly outperformed other approaches. High accuracy
of 98.08% for Data1 means that the features that have been selected are highly
correlated and significantly help fulfill our primary objective.

Table 3. Classification accuracy obtained by three classification methods combined
with feature selection methods through selected features for Data1.

Method No. of Features Accuracy %

k-NN

ANOVA F-value 400 95.65

Chi-squared 400 93.99

Information Gain 400 96.11

Random Forest (RF)

ANOVA F-value 400 96.74

Chi-squared 400 96.84

Information Gain 400 97.05

SVM

ANOVA F-value 400 97.72

Chi-squared 400 96.79

Information Gain 400 98.08

Our results highlight the power of the SVM classifier combined with the IG
as the best approach. Also, it shows that the performance of classifiers highly
depends on the selected marker genes using different techniques.
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Fig. 2. Average performance of the SVM classifier combined with three feature selec-
tion methods.

Fig. 3. Average performance of the k-NN classifier combined with three feature selec-
tion methods.

Fig. 4. Average performance of the RF classifier combined with three feature selection
methods.
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3.3 Biological Validation

We evaluated the performance of our method for detecting cell types using the
high-ranked features or deferentially expressed genes through investigating the
current literature and reference databases. By investigating GSEA [13] on the
result of Data1, we found 9 out of 20 overlapped genes between Pancreas gene
sets, “Muraro Pancreas Endothelial Cell”, and top genes found by our method.
The list of 9 overlapped genes, along with the description of their functionality, is
depicted in Table 4. Moreover, we conducted a biological validation on the other
datasets, Baron Human2 (Data2) and PBMC (Data3). The results are depicted
on Tables 5 and 6. Overall, our results show the power of our method to identify
the cell types using a list of marker genes in scRNA-seq datasets.

Table 4. Muraro Pancreas Endothelial Cell gene set.

Gene symbol Description

IFITM3 interferon induced transmembrane protein 3 [Source:HGNC
Symbol;Acc:HGNC:5414]

IGFBP4 insulin like growth factor binding protein 4 [Source:HGNC
Symbol;Acc:HGNC:5473]

IFITM2 interferon induced transmembrane protein 2 [Source:HGNC
Symbol;Acc:HGNC:5413]

COL4A1 collagen type IV alpha 1 chain [Source:HGNC
Symbol;Acc:HGNC:2202]

SPARC secreted protein acidic and cysteine rich [Source:HGNC
Symbol;Acc:HGNC:11219]

IGFBP7 insulin like growth factor binding protein 7 [Source:HGNC
Symbol;Acc:HGNC:5476]

VIM vimentin [Source:HGNC Symbol;Acc:HGNC:12692]

TM4SF1 transmembrane 4 L six family member 1 [Source:HGNC
Symbol;Acc:HGNC:11853]

HLA-B “major histocompatibility complex, class I, B [Source:HGNC
Symbol;Acc:HGNC:4932]”



Supervised Cell Type Detection in Single-Cell RNA-seq Data 343

Table 5. Muraro Pancreas Ductal Cell gene set.

Gene symbol Description

CDC42EP1 CDC42 effector protein 1 [Source:HGNC
Symbol;Acc:HGNC:17014]

PMEPA1 “prostate transmembrane protein, androgen induced 1
[Source:HGNC Symbol;Acc:HGNC:14107]”

TACSTD2 tumor associated calcium signal transducer 2 [Source:HGNC
Symbol;Acc:HGNC:11530]

KRT7 keratin 7 [Source:HGNC Symbol;Acc:HGNC:6445]

SDC4 syndecan 4 [Source:HGNC Symbol;Acc:HGNC:10661]

KRT19 keratin 19 [Source:HGNC Symbol;Acc:HGNC:6436]

FLNA filamin A [Source:HGNC Symbol;Acc:HGNC:3754]

IFITM3 interferon induced transmembrane protein 3 [Source:HGNC
Symbol;Acc:HGNC:5414]

SERPING1 serpin family G member 1 [Source:HGNC
Symbol;Acc:HGNC:1228]

COL18A1 collagen type XVIII alpha 1 chain [Source:HGNC
Symbol;Acc:HGNC:2195]

Table 6. Travaglini Lung Ereg Dendritic Cell gene set.

Gene symbol Description

HLA-DPB1 “major histocompatibility complex, class II, DP beta 1
[Source:HGNC Symbol;Acc:HGNC:4940]”

TYROBP transmembrane immune signaling adaptor TYROBP
[Source:HGNC Symbol;Acc:HGNC:12449]

HLA-DPA1 “major histocompatibility complex, class II, DP alpha 1
[Source:HGNC Symbol;Acc:HGNC:4938]”

AIF1 allograft inflammatory factor 1 [Source:HGNC
Symbol;Acc:HGNC:352]

LST1 leukocyte specific transcript 1 [Source:HGNC
Symbol;Acc:HGNC:14189]

FCER1G Fc fragment of IgE receptor Ig [Source:HGNC
Symbol;Acc:HGNC:3611]

HLA-DQB1 “major histocompatibility complex, class II, DQ beta 1
[Source:HGNC Symbol;Acc:HGNC:4944]”

CST3 cystatin C [Source:HGNC Symbol;Acc:HGNC:2475]

FCN1 ficolin 1 [Source:HGNC Symbol;Acc:HGNC:3623]

VCAN versican [Source:HGNC Symbol;Acc:HGNC:2464]

HLA-DRB1 “major histocompatibility complex, class II, DR beta 1
[Source:HGNC Symbol;Acc:HGNC:4948]”

GPX1 glutathione peroxidase 1 [Source:HGNC
Symbol;Acc:HGNC:4553]

GZMB granzyme B [Source:HGNC Symbol;Acc:HGNC:4709]
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4 Conclusion and Future Work

This work focuses on the supervised identification of cell types using feature
selection methods combined with classification techniques on an annotated
dataset. Investigating similarities among features using three state-of-the-art
feature selection methods to reduce the dimension of the feature space helps
enhance the classification task and overcome its inherent computational com-
plexity. Finding similarities can result from linear or non-linear relationships
among the features, data distribution, or data entropy. Biologically speaking,
the similarity is defined by structural, functional, or evolutionary relationships
among the genes that lead to finding the most accurate class for a new test sam-
ple. In our experiments, we have demonstrated that genes in our dataset that
have similar expression patterns were grouped in highly-scored classes. Identify-
ing biomarker genes that are differentially expressed among different cell types is
done in the feature selection step. This work highlights the power of using only a
sub-group of highly effective genes to find cell types. Thus, we can take advantage
of disregarding a considerable number of uninformative genes for identifying the
corresponding cell types. Moreover, there are some potential future avenues to
find cell types automatically using scRNA-seq data. For example, conducting a
comprehensive experiment using a more significant number of samples obtained
from different tissues shows potential in enhancing the results on a larger scale.
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Abstract. Biochemical pathways analysis is an effective tool for understanding
changes in gene expression data and associating such changes with cellular phe-
notypes. Pathway research aims to identify associated proteins within a cell using
pathways and at building new pathways from a group of molecules of interest.
Using pathway-based methods we gain insight into different functions of relevant
molecules and find direct and indirect relations between them. We present Path-
Weigh, a Python-based tool for pathway analysis and graph presentation. The tool
is open-sourced, extendable and runtime efficient.

PathWeigh is available at https://github.org/zurkin1/Pathweigh and is released
under MIT license. A sample Python notebook is provided with examples of
running the tool.

Keywords: Pathway analysis · RNA sequencing · Machine learning

1 Introduction

A typical biological signaling pathway is defined as a network of molecular or chemical
interactions. Each interaction contains one ormore input genes, proteins or other complex
molecules, promoters and inhibitors, and one or more output molecules.

Pathway analysis exposes networks of regulation between elements that lead to cell
phenotypes. Pathway network research is often able to provide robust solutions, in cases
where differential expression at the gene level cannot provide such insights. It is a
key tool in a large area of research called ‘system biology’ where researchers search
for macro properties of a given biological network rather than local micro behavior
[8]. System biology tools include dynamical modeling using differential equations or
statistical modeling using sample data such as RNA-sequencing reads [6, 9].

One of the earliest works to make use of network pathways is [11]. The authors
showed how gene expression profiles define biological modules that are either activated
or deactivated in various tumor conditions. TAPPA [4] used molecular connectivity
concepts to calculate scores that are based on topological structures. Later CLIPPER by
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[9] introduced a graphical library called Graphite for path analysis. Hipathia [5] used a
propagation algorithm to estimate the amount of signal that arrives to the effector protein
from the receptor protein.

The Pathologist [3] was the first pathway analysis algorithm to leverage a statistical
model of gene expression data to assess the strength of activations in a given group of
pathway interactions and to inspect the co-behavior of interacting molecules. A distribu-
tion is fitted to data to better estimate the ‘center of mass’ of a gene distribution and thus
better estimate its level of activation in each interaction. It is one of the first topological
based methods, where the network structure of the pathway is considered as well and not
only gene sets. In a recent paper [1] demonstrated the advantages of using this approach
over other methods. Our work builds upon this work, improving the original algorithm
and its performance, supporting more sequencing platforms, and providing accessible
and modifiable code. PathWeigh networks database supports 581 different paths from
sources such as KEGG and BioCarta and provides the following novel tools for pathway
topology analysis:

• Using a distributed framework for optimization algorithms allows path activity
calculation in seconds.

• Assessing different discrete and continuous distributions for fitting gene expression
data.

• Support both microarray and RNA sequencing data from different platforms.
• Optionally support single cell data using extension to our distribution fit framework.
• Provide multiple runtime options: as a desktop application, Python library or a web
service.

• API for assessing pathway effectiveness by comparing results of two datasets.

2 PathWeigh Algorithm

Our core algorithm can learn the behavior of different pathways given enough data. Input
is RNA sequencing of samples from same or different individuals in different treatment
or time points. We start by fitting a probability model for each gene in the data. This is
done row-wise for each gene, requires enough sample points and might vary depending
on the sequencing platform. Using this probability function we move from expression
values to probabilities of being in Up or Down state (UDP). This probability is a uniform
way of comparing different genes across different interactions. By looking at probability
instead of gene expression we can aggregate UDP values to access overall activation.

Next focusing on a specific sample, we assess the activity level of a given pathway.
This is done by first calculating the activity level of all the interactions in the pathway,
and then aggregate at the pathway level. To determine the activity at the pathway level
we average the activities of all interactions.

PathWeigh activities are calculated using pathway data from sources such as KEGG,
BioCarta and PID. The pathway file format is a simple text file describing its interactions
and can easily be extended to supportmore pathways. Following is the high-level pipeline
of the PathWeigh algorithm (Fig. 1).
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Fig. 1. PathWeigh pipeline: 1) RNA sequencing. 2) Data after alignment quality control and
normalization. 3) Fitting a known distribution per gene to calculate UDP. 4) Calculate interaction
activity and consistency. 5) Aggregate for all samples and pathways.

3 UDP Fitting

The learning stage includes fitting a known distribution to the RNA sequencing data.
Research [2, 10] shows that different RNA sequencing platforms adhere to different
distributions of expression values. RNA-Seq data tends to fit a negative binomial distri-
bution, and gene expression microarray data is best described using a mixture model of
one or two Gaussian distributions. PathWeigh provides a framework for assessing the fit
of other common distributions to support other platforms. The following example shows
various tests for fitting different distributions to microarray RNA data of lung cancer
(GSE29013). The AIC is the average of 1000 fittings done for 1000 genes (Table 1).

Table 1. Fitting various distributions to GSE29013 data.

Distribution Avg. AIC

Poisson 207

Negative binomial 240

Gaussian mixture 162

Normal 169

Generalized normal 160
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Weuse aBayesianmaximum likelihood estimatorwith the expectationmaximization
simulation approach for model fitting. In various discrete and continuous distributions
(e.g., Binomial, Poisson and Normal) a closed form formula for the best parameters
exists and can be used. For other distributions (e.g., negative Binomial) no such formula
is available, hence we developed an iterative numerical estimation algorithm to fit the
data.Our optimization algorithmuses a knownmethod forminimization of the likelihood
calledBFGS [12]. Thismethod allowsminimization of unconstrained nonlinear function
using gradient descent and considering general curvature for gradient direction. Once a
distribution is fitted to data, PathWeigh assigns to each gene in each sample its probability
for up or down state.

The negative Binomial distribution is a discrete probability distribution modeling
the number of successful IID Bernoulli events before a specific failure happens. Its
probability mass function is:

f (K; r, p) = P(X = K) =
(
K + r − 1
r − 1

)
(1 − p)kpr (1)

and its maximum likelihood estimator must be numerically calculated like Newton’s
method. The pseudo code for fitting this function is:

4 Activity and Consistency

For every sample and every pathway, we can now evaluate its activity level. This is done
by first assessing all the interactions. By using the UDP level of its inputs, and their
graphical dependencies, inhibitors or promoters, we can calculate the activity of the
interaction. Once all interactions activities are calculated, we aggregate at the pathway
level by taking the average.
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We also calculate a consistency level for each interaction in the pathway. Consis-
tency assesses howmuch the interaction activity is consistent with the interaction output
molecule’s UDP value, in other words, it is the likelihood of getting the output UDP
result given the interaction activity. We define consistency as:

Consistency(interaction) = Likelihood(output) = P(active interaction) ∗ P(output is in “up” state)
+P(inactive interaction) ∗ P(output is in “down” state)

(2)

Here again we aggregate at the pathway level using average. Following is an example
of activity and consistency calculations (Fig. 2).

Fig. 2. Interaction activity and consistency.

5 Visualization

PathWeigh supports few output visualizations options using KEGGs KGML pathway
map standard. KGML is a standard describing graphs and networks of biological molec-
ular interactions and is commonly used by researchers. KGML diagrams are often
imported to visualization tools such as Cytoscape.

PathWeigh can export a standard KGML file which depicts the graphical layout of
a pathway, together with its activity and consistency levels. In the supplemental is an
example of such a KGML file.

Another option is using the PathWeigh built in UI graphics to present an outline
of the given pathway together with its corresponding activity and consistency values.
Following is an example of PathWeigh output in a Google Collab notebook (Fig. 3).
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Fig. 3. PathWeigh’s output.

6 Pathway Assessment

Kim [7] suggests five criteria for assessment of a pathway development tool.

• Reproducibility: how are gene level differences affect the overall activity level.
• Noise robustness: be able to handle noisy data.
• Separation of normal vs. abnormal tissues: either using a classification method or
other statistical method.

• Classification of survival information: using clinical data and concordance index.
• Classification of cancer subtypes: using molecular signatures of the sequencing data.

We demonstrate PathWeigh usage for evaluating a novel pathway for the interaction
of the BRCA1 gene recently used in our lab, thus being able to separate healthy vs.
unhealthy patients.

• We collected the gene expression data from NCBI dataset GSE50948. It contains
samples from 156 breast cancer patients and a reference dataset of 51 healthy donors.

• Calculate activity and consistency for a known BRCA1 pathway from BioCarta.
• These values are contrasted using a two-sample rank sum test across the two sample
sets.

• The significance of the test would then tell if the pathway is able to efficiently
differentiate the two classes of patients.

Here are the results we received when running these tests (Table 2):
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Table 2. Comparing Results of A newly Developed Path for BRCA show a high P value

Pathway P value U stat

brca1 dependent ub ligase activity(BioCarta) 0.003 2977

New path for BRCA 0.008 2814

Role of brca1 brca2 and atr in cancer susceptibility(BioCarta) 2.4e-07 2109

7 Summary

PathWeigh is an efficient pathway activity estimator that works with different kinds of
sequencing platforms. It uses few algorithmic optimizations to fit parameters to data. It
supports parallel run of calculations and othermethods for runtime efficiency. PathWeigh
is written in Python and can easily be extended to support more sequencing platforms
and normalization methods. An online Google Collab based notebook is provided for
quickly accessing the tool.
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Abstract. The ever increasing use of artificial intelligence (AI) meth-
ods in biomedical sciences calls for closer inter-disciplinary collaborations
that transfer the domain knowledge from life scientists to computer sci-
ence researchers and vice-versa. We highlight two general areas where
the use of AI-based solutions designed for clinical and laboratory set-
tings has proven problematic. These are used to demonstrate common
sources of translational challenges that often stem from the differences
in data interpretation between the clinical and research view, and the
unmatched expectations and requirements on the result quality metrics.
We outline how explicit interpretable inference reporting might be used
as a guide to overcome such translational challenges. We conclude with
several recommendations for safer translation of machine learning solu-
tions into real-world settings.

Keywords: Machine learning · Biomedicine

1 Introduction

Transfer of machine learning (ML) solutions into laboratory and clinical settings
is complicated by many diverse sources of pitfalls. In laboratories, the methods
need to be readily used to infer conclusions from data collected using state-
of-the-art research methods with unforeseen properties. Likewise, the clinicians
need to apply the methods to highly variable, often irreproducible and always-
original data from patients. The deficiencies that risk the transferability of such
solutions range from reproducibility issues (e.g. data/code/model availability),
lack of expert auditing, external validation, to ethical and legal concerns (e.g.
informed consent, bias, liability) [20,24].

Dodging these problems, literature on biomedical ML solutions often focuses
on simple evaluation metrics to assess the performance, while disregarding qual-
ities such as adaptability, auditability, and resilience that are key to deploy
solutions into real-world settings and prevent data cascades [27].
c© Springer Nature Switzerland AG 2022
I. Rojas et al. (Eds.): IWBBIO 2022, LNBI 13347, pp. 353–358, 2022.
https://doi.org/10.1007/978-3-031-07802-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07802-6_30&domain=pdf
http://orcid.org/0000-0002-7979-9921
http://orcid.org/0000-0001-7356-4075
http://orcid.org/0000-0002-6532-5880
http://orcid.org/0000-0002-8278-1618
https://doi.org/10.1007/978-3-031-07802-6_30


354 C. Vega et al.

The growing popularity of ML challenges (and their impact in areas such as
biomedical image analysis [16]) only worsens the issue, promoting the ranking of
solutions based on goodness-of-fit metrics that do not reflect phenomenological
fidelity, and thus their suitability for clinical or lab settings [28]. Even many peer-
reviewed studies lack in data and code availability [14], let alone other aspects
concerning external validity such as generalisation to different populations or
robustness against concept drift and data shift [3,10]. Moreover, almost all stud-
ies employing ML solutions have been retrospective, despite that only through
prospective studies we can properly assess external validity and avoid potential
biases arising from ad-hoc hyperparameter tuning [10].

These issues also extend to unsupervised methods aimed at reduction of
problem complexity. For instance, single-cell gene expression studies often rely
on dimensionality reduction to produce scrutinizable data visualisations. How-
ever, the results are used as well for qualitative and quantitative analysis on the
basis that properties such as the structure of the data remain faithfully repre-
sented [11]. Although this practice lacks enough theoretical support, such visuals
are employed to identify phenotypes and infer cell relationships [4]. Despite of the
misuse, we identify a trend where the advanced visualisations are repurposed for
quality-control tasks, offering a boost in verifiability and explainability of other
ML solutions.

Below, we present two case studies illustrating the impact of aforementioned
problems in biomedical solutions.

2 Case Studies

2.1 Chest X-ray Image Diagnosis of COVID-19

At the pandemic outset, researchers rushed to develop solutions from crowd-
sourced repositories1 to predict the COVID-19 severity and outcome from chest
X-ray (CXR) images. Questionable methods and poor annotation of the datasets
spawned a multitude of problems [6,15,26]. Commonly, the solutions were based
on binary or multi-class classification methods, employing either conventional
ML as well as deep learning, that considered a small subset of diseases. However,
these solutions assume mutual exclusion of the classes while, in fact, many lung
diseases may co-exist. For example, COVID-19 and Tuberculosis share abnor-
malities such as fibrosis and capacities, and produce a spectrum of pathologies
that evolves over time, requiring a combination of tests (e.g. blood, sputum) for
their diagnosis [21,31,34]. Attempts to diagnose lung diseases with just CXR
images are thus unnecessarily partial and defy the multimodal nature of diag-
nosis. For all these reasons, regardless of the reported evaluation metric, binary
and multinomial classification solutions are rarely suited for real clinical set-
tings, mainly due to unrealistic assumptions about the nature of the predicted
phenomena [26,30].

1 For example: https://git.io/J0xva.

https://git.io/J0xva
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Notably, high output modality issues are common in biomedical research, and
attract possible improvements: Waegeman et al. [32] delved into the problem of
multi-target (multivariate) prediction (MTP), providing a unifying view of MTP
problems to help researchers on method choice. In a related work, Rauschen-
berger and Glaab [25] employ multivariate regressions for molecular data.

2.2 Disease Status Detection in Cytometry

Single-cell measurement techniques [1] have enabled gathering of tremendously
detailed datasets of millions of cells as individual data-points, offering a direct
way to diagnose many forms of cancer and autoimmune diseases. Multitude of
approaches appeared to cluster the observations and predict the disease status,
suffering from similar deficiencies as the CXR diagnostics despite the ongoing
efforts [5,8,13]. In particular, ML studies are often limited to retrospective data
from at most several dozen patients, model the outcome with discrete class
assignment, and ignore a plethora of data variability (batch effects and patient
variability) that jeopardises their transfer to a general medical setting [23]. After
a decade of published research, the problematic re-applicability of the methods
has resulted in little adoption even in laboratory practice [14,19,22].

Lately, researchers began to utilise advanced dimensionality reduction meth-
ods to produce interpretable data visualisations [2]. Despite the unavoidable
bias caused by the data dimensionality reduction and their often erroneous use
as base data for analyses (e.g. clustering), the visuals have proven surprisingly
effective in communicating the complicated modality of the data to experts, who
use them to infer cell population presence and relationships quite reliably [4,11].
Conversely, this gave a novel use where the interpretable but likely misleading
visualisation could be used for quick quality control of the ML algorithm out-
put [12], where the visualisation may be intuitively used to detect problematic
inter-sample variability and failures of clustering or population identification.

3 Discussion

These two use-cases show that despite the common pitfalls may be repeatedly
observed across the translational medicine landscape, there are viable research
directions that may alleviate the problems. These may eventually give a reliable
methodology for integrating advanced ML solutions into the laboratory and
clinical practice.

The most problematic feature of the ML studies that impedes adoption is the
representation of the diagnostic as a multi-class assignment problem that carries
almost no resemblance to the clinical reality and the modelled phenomena. In this
sense, proper modelling of the ML output, e.g. as multi-modal feature systems
or fuzzy assignments, may also alleviate the issues.

As a guideline, sufficient metadata must be available to model such a rich
space of possible outcomes. Interpretation of the dataset guided by rich metadata
also improves latent space representations [4], which is, in turn, a key property
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for training better predictors. Metadata availability may further alleviate the
common problem of practitioners who face situations where they need to “work
with what they have”, often lacking parts of measurements and the “selective
capability” of laboratories to discard poor quality samples, because of the data
acquisition limits in clinical settings [27]. In particular, data acquisition issues
may result in production of ascertained datasets containing potential collider
bias, which undermine both external and internal validity of the solutions [7].
This calls for advocating data accountability and maximising the transparency
of the data acquisition process [9]. In this vein, efforts are already being made to
increase research reproducibility, data quality, model interpretability and min-
imise biases in model evaluation and optimisation, such as with the DOME
recommendations [33].

As a relevant development, a new set of maintenance and monitoring prac-
tices (MLOps) is finding its place within the machine learning workflows, adding
continuous testing of both the data and models by continual monitoring of their
distribution properties and alerting on data shift events [17,29]. Thus, the mod-
elling does not end with the ‘deployment’ of the model, but the models are now
continuously assessed and iterated for timely adaptation to the evolving reality.

We observed the shift of utilisation of the ML-based visualisation techniques,
from serving as a likely biased base for analysis to a valid resource for quick val-
idation of the results of other ML methods. Despite bringing no improvement
for actual ML methodology, this enables safer utilisation of the existing ML
approaches in the clinical settings [18], where trained personnel may quickly
recognise a classification problem and act accordingly, thus increasing the tol-
erance of the deployment to classifier errors and, collaterally, improving the
compliance with existing regulations.

4 Conclusion

We have reviewed two recent cases where the utilisation of ML solutions in real-
world laboratory and clinical settings has proven problematic. After reviewing
the causes of the translational difficulties, we highlight that many of the prob-
lems may be alleviated by improvements in dataset annotation with metadata,
removing the bias towards simple binary or categorical decisions. Furthermore,
novel applications of the visualisation techniques enhance the capabilities of ML
solutions by utilising the visualisation as a quality control tool, rather than as
an analysis cornerstone. In the long term, we expect that similar improvements
may be developed for many other kinds of ML algorithms, potentially advancing
the adoption of existing methods and driving the long-term shift towards the
wide adoption of translational ML solutions.
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Abstract. The Machine Learning applications in the medical field using
omics data are countless and promising, highlighting the possibility of
creating long-term predictive models for highly prevalent diseases. Nev-
ertheless, to take advantage of the virtues of omics data and machine
learning tools, we first need to perform adequate data pre-processing
just as taking some considerations for the constructions of the models.
The present paper is an example of how to face the main challenges
encountered when constructing machine learning predictive models with
multi-omics human data. Some topics covered in this work include a
description of the main particularities of each omics data layer, the most
appropriate pre-processing approaches for each source, and a collection
of good practices and tips for applying machine learning to this kind
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360 Á. Torres-Martos et al.

of data with predictive purposes. Using real data examples (blood sam-
ples), we illustrate how some of the key issues are addressed in this kind of
research (technical noise, biological heterogeneity, class imbalance, high
dimensionality, and presence of missing values, among others). Addi-
tionally, we set the basis for future work incorporating some proposals
to improve models, arguing their need according to encountered insights.

Keywords: Multi-omics · Data pre-processing · Machine learning ·
eXplainable Artificial Intelligence

1 Introduction

The biomedical field has undergone a true big data revolution during the past
decades. Starting with the appearance of the first microarray technologies, our
analytic ability has grown exponentially and now we can perform almost any
type of molecular analysis at a genome-wide scale, generally referred to as
‘omics’ analysis. From our ability to identify alterations in the DNA sequence by
Genome Wide-Association Studies (GWAS), passing through the study of gene
expression levels by RNAseq experiments, or the possibility to study chemical
environment-inducible DNA modifications with Epigenome Wide-Association
Studies (EWAS), omics technological advances have led to major breakthroughs
in our fundamental understanding of cell biology. Likewise, they have promised
a true revolution for the clinical treatment and management of many diseases.
Particularly, one of the most promising clinical applications of omics technologies
has involved the generation of predictive panels of biomarkers for personalized
disease risk estimation and the consequent implementation of stratified clinical
guidelines. For that purpose, omics technologies have further taken advantage of
the recent advances in the machine learning (ML) field. ML is a research sub-
branch of Artificial Intelligence that has recently experienced a notable boost due
to its ability to automatically generate predictive and descriptive models from
massive amounts of data. Within the context of predictive modelling, more and
more sophisticated ML algorithms have become available; highlighting ensemble
models or the recent revolution of deep learning [7].

Despite all mentioned benefits and potential applications emanating from
omics and ML fields, the major obstacles in translating these promises into tan-
gible predictive models in the daily clinic remain unsolved. Most of the encoun-
tered challenges are related to the implementation of adequate analytic pipelines;
a situation that is worsened by the shortage of suitably trained professionals to
perform such complex data analysis tasks. Omics data present a complex nature
with huge differences across omics platforms, different needs for pre-processing
steps, intense variability within and between human subjects, and the ubiquitous
problem of high-dimensionality-and-low-sample size settings.

The selection of the most suitable pre-processing pipeline for each omics layer
and the choice of the most appropriate ML model are critical steps that must
take place considering the particularities of human datasets and depending on
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the purpose of each predictive modelling. This problem increases if we keep in
mind the need for creating interpretable models. Following this line, to face this
need have emerged the recent eXplainable Artificial Intelligence (XAI) revolution
that recommends the use of transparent models that are easy to understand by
human users; and are especially relevant for medical applications [2].

Taking all this into account, in the present paper we will review some of
the particularities that make predictive modelling with multi-omics data a chal-
lenging task and will propose adequate solutions that are currently employed
in ML-omics research. In order to illustrate the process, we will present a case
study consisting of the creation of a predictive ML model on a longitudinal design
in children with obesity and metabolic dysfunction. In this dataset, a series of
multi-omics data layers (GWAS and EWAS), as well as, biochemical and clinical
variables will be available at a pre-pubertal stage. Likewise, the metabolic status
(insulin-resistance or IR) reached by each child when entering puberty will be
available. The main goal of the project will be constructing a robust ML predic-
tive model that using multi-omics and biochemical pre-pubertal data is able to
predict the IR status of each child [7].

The paper follows into different sections. Section 2 describes the research
problem and the datasets employed. Section 3 introduces the main faced chal-
lenges in omics ML predictive modelling commonly. Section 4 proposes specific
data pre-processing guidelines and different analytical solutions for mentioned
challenges. Section 5 gathers the basis and recommendations that must guide the
selection of an ML algorithm and the experimental design. Section 6 presents the
main results and insights from our case study. Finally, Sect. 7 is for exposing the
concluding remarks.

2 Description of the Case Study Population and Data

The PUBMEP (“PUBberty and Metabolic risk in obese children. Epigenetic
alterations and Pathophysiological and diagnostic implications”) project is a
longitudinal research study in which children with and without obesity are fol-
lowed from pre-puberty to puberty evaluating the prevalence of metabolic syn-
drome and the progression of the cardiometabolic risk factors related to it. In
this population, a series of multi-omics analyses have been conducted with the
aim of discovering new and promising blood molecular biomarkers of IR during
the metabolically critical period of puberty (see Fig. 1) [1].

IR is one of the metabolic disturbances derived from obesity that present the
earliest appearance in patients. If not properly addressed, IR finally results in
the development of more severe diseases such as cardiovascular disease or Type
II Diabetes. For this reason, IR has become a cornerstone in preventing obesity-
associated morbimortality. In the PUBMEP study, a population composed of
90 Spanish children (47 females) were allocated into two experimental groups
according to their IR status (IR or non-IR) after the onset of puberty (see Fig. 1).
The number of children with the respective distribution of sex in each group can
be found also in the Fig. 1. In this population, as mentioned in the introduction



362 Á. Torres-Martos et al.

section, pre-pubertal (T0) data (GWAS, EWAS, clinical, anthropometrical and
biochemistry) were employed as predictors for the IR status at the pubertal stage
(T1). For that purpose, a number of pre-processing steps and ML models were
implemented as detailed below. A wide description of the PUBMEP project can
be found elsewhere [1]. In the current paper, datasets were divided into GWAS,
EWAS, and Biochemistry (which also incorporated data from anthropometry
and clinical history).

Fig. 1. Summary of PUBMEP project.

Children from the PUBMEP project were recruited in three different
Spanish cities: Santiago de Compostela, Zaragoza and Córdoba. AS it will
be detailed below, special attention was paid to this, considering the origin as a
substantial source of confounding during analyses.

3 Main Challenges that are Usually Faced in Omics ML
Predictive Modelling

One of the main problems related to the work with human data is the difficulty
of patient recruitment, the access to invasive biopsies and the high costs asso-
ciated with omics technologies, which directly result in studies with a relatively
low sample size. The issue gets even more problematic in the context of omics
data, where we have millions of variables measured, massively increasing the rate
of false-positive discoveries (Curse of dimensionality). In the context of ML pre-
dictive modelling, the low sample sizes available in omics studies along with the
huge search space have direct effects on the performance of constructed models
(increasing computational burden and inducing overfitting). For these reasons,
it is indispensable to perform feature-selection steps, previous to model training.
As we will see in the next sections, there are several ways of performing a feature
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selection, and the choice of one or another method will depend mainly on the
type of data and research problem to work with. Another common challenge of
human research is the high presence of unbalanced design (in which one class
is over-represented concerning the other). Often, this happens in a context in
which the disease under study is not frequent and the recruitment of patients
is a complicated task. As it happens with the low sample size and the high-
dimensionality problem, the presence of unbalanced design directly affects ML
predictive models inducing overfitting. Again, a lot of solutions have been pro-
posed to face this problem (undersampling, oversampling,...) and the selection
of the most appropriate method will strongly depend on the characteristics of
the sample. In our case study, we will demonstrate how the undersampling solu-
tion is one of the most recommendable for the majority of the human context
(avoiding introducing additional noise to the data). Another issue of importance
when dealing with human data is the strong variability that exists between
subjects. To deal with it, it is of vital importance the development of a good
study/experimental design, minimizing sources of bias (randomizing subjects,
balancing sex and ages across recruiting centres, controlling the batch effect,
etc.). Moreover, it will be crucial to validate the findings in an external popu-
lation to ensure that our model is robust. For that purpose, in those cases in
which it is not possible to recruit additional patients, there exist several iter-
ative validations solutions based on cross-validation methodologies which are
indispensable[10].

Focusing now on the characteristics of omics data, there are also a range of
particularities (inherent to each platform) that should be highlighted, and which
involve the need of implementing different pre-processing procedures for each
molecular layer. In all omics analyses, there is a background noise or unwanted
source of variability which is inherent to technical laboratory analyses. This
heterogeneity is therefore not related to the biological question under study
and must be removed from the analysis. Background noise due to technical
procedures usually differs not only across omics types but also across the different
technological platforms normally employed for the analysis of each omic (intra-
and inter-omics variability).

GWAS refers to any observational study of a genome-wide set of genetic
variants or single nucleotide polymorphisms (SNPs) in different individuals to
see if any variant is associated with a trait. GWAS are evaluated by the use of
microarrays and therefore are subjects to the usual problems that typically
affect these technologies; erroneous genotype call assignments due to poor qual-
ity of DNA samples, poor DNA hybridization to the array, poorly performing
genotype probes, and sample mix-ups or contamination. Moreover, although cur-
rently available GWAS platforms map a great number of SNPs (500.000 SNPs),
there are still many unmeasured variants with interest for disease prediction that
could be imputed through appropriate procedures ([3]). In order to deal with
these and other problems, several quality control filters are usually applied
in GWAS research (e.g., assessing missingness of SNPs and individuals, evalu-
ating sex discrepancies according to sex chromosomes, filtering by minor allele
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frequencies, controlling Hardy-Weinberg equilibrium (HWE), heterozygosity or
population stratification). Another particularity of genetics data is the existence
of a certain linkage between SNPs, which means that some groups of SNPs are
inherited in blocks (i.e., their minor alleles are inherited as a complete allelic
phase). These SNPs are therefore redundant for predictive purposes and a pre-
vious pruning step must be always performed before passing GWAS data to a
ML model.

Fig. 2. Comparison between β and M values. This image has been taken from [12]

β =
M

M + U

Mvalue = log2(
M

U
)

In EWASs, the DNA methylation (DNAm) status across the whole genome is
interrogated at the CpG level. For each molecule of DNA in a single cell, DNAm
is a binary entity, in that at any cytosine it is either present or absent. However,
as DNAm studies profile either bulk tissue - comprising multiple cell types - or a
population of purified cells, DNAm measurements for CpGs are always reported
as continuous values representing the proportion of methylated CpGs for a DNA
position. Regardless of the Illumina microarray version employed, for each CpG,
there are two measurements: a methylated intensity (denoted by M) and an
unmethylated intensity (denoted by U). These intensity values can be used to
determine the proportion of methylation at each CpG locus. Methylation levels
are commonly reported as either β values or M-values (see the formulations
and the Fig. 2). M-values have more robust statistical properties and for that
reason, they are preferred in ML tasks than beta values, which have a better
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biological interpretation and are frequently used for visualizing data. A detailed
comparison of M-values and β values is available elsewhere [12].

As it happens for GWAS, EWAS data is also subject to many sources of
unwanted variability, some of them deriving from the microarray nature of
analytic platforms and some others not; detection errors, the existence of cross-
reactive probes, need for special treatment of sex-chromosome located probes,
or the need for data normalization of fluorescence intensity raw signals (to
address within and between-subject variability). Regarding normalization pro-
cesses, although there is no single method that is universally considered best, the
Functional normalization method is most appropriate for datasets with global
methylation differences between different tissue types [6], and the Beta-Mixture
Quantile (BMIQ) method is considered a golden standard to deal with datasets
in which not big differences are expected in terms of DNAm between samples
(e.g., when all samples derive from the same tissue [21].

The fact of EWASs analyzing a mix of cells in a tissue is also an important
issue as, in some cases, tissues present infiltration of other cell types or are so
heterogeneous that might confound the findings. In the case of blood sample
types, which is the most common one analyzed in EWASs, there is an impor-
tant part of variability coming from the white cells proportions that each
individual presents. Therefore, and especially when dealing with diseases with
an inflammatory component (such is the case of obesity), it will be extremely
important to correct findings by the proportion of white cells types that every
subject has, as it might affect the DNAm findings and thereby confound the
effects of DNAm on disease. This is usually solved in EWAS through the use of
the houseman procedure which deduces the proportion of white cell types in each
subject. Then, estimated proportions can be included as confounding variables
in models.

Beyond mentioned technical sources of variability associated with each tech-
nology, there are also other particularities affecting data pre-processing that are
of special importance when one wants to predict an outcome. In the case of
GWAS data, it is a fact that certain diseases present a strong polygenetic
architecture; being many the number genes involved in disease development
and progression. Moreover, associated genes usually present small individual
effects on the phenotype. So, it’s the accumulation of many small-effect variants
that constitutes a susceptibility profile. Regarding EWAS, it is a fact how envi-
ronmental confounders may strongly affect the epigenetics patterns. For this
reason, it is well-known that the findings from a study population are not easily
extrapolated to another different population.

4 Data Pre-processing Guidelines and Analytical
Solutions for Mentioned Challenges

In this section, we review step by step the methods that were used to approach
some of the mentioned problems in the previous section for the different datasets
(GWAS, EWAS, and Biochemistry).
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4.1 GWAS Data

Regarding genomics, data were generated using a Bead Chip named Infinium
Global Screening-24-v3.0. Some quality control filters were implemented in
PLINK software before statistical analysis. The quality control filters, which
were applied to treat the mentioned technical problems, were: 1) Exclu-
sion of SNPs with a missing data rate >= 5% and individuals with a missing
data rate >= 20%. 2) Exclusion of SNPs with a allele frequency < 5% or Hardy-
Weinberg Disequilibrium p-value <0.05 [13] in control subjects. Additionally, we
removed ambiguous SNPs, using the GenotypeHarmonizer software[4], which
is an indispensable step if we want to impute missing variants. Next, impu-
tation of missing data for available SNPs in the array was conducted
with the Beagle software. Additionally, this software allows performing geno-
type imputation for unmeasured SNPs making use of a reference population.
As a result, the number of available markers in the array could increase to mil-
lions. Although this second missing data imputation procedure was not incor-
porated in our current study, we consider it as an interesting option for future
works. From the application of all introduced filters, 467,526 SNPs remained in
the final dataset.

When talking about the genetic basis of a disease, there are several modes of
inheritance we could assume (autosomal dominant, recessive, co-dominant, etc.),
and this will have direct effects on the way we code data and construct predictive
ML models. In the case of obesity, as we have mentioned in the previous section,
we are in front of a complex trait with a strong polygenic and additive nature
(the accumulation of many small-risk effects SNPs is what constitutes a high-
risk profile). Considering this, GWAS data were encoded following the additive
model in this work. For that reason, we propose to use a dosage format (.raw)
to do the classification task: this format is easily obtained through PLINK soft-
ware. The dosage format indicates the presence or absence of a risk/reference
allele in a SNP encoded as 0, 1, or 2. This format transformation allows hav-
ing numerical genetic variables making it suitable for the algorithms’ learning
process [13].

Regarding feature selection before ML construction, here we opted by select-
ing a subset of SNPs from the whole array according to previous evidence in
the literature. Particularly, we collected highlighted SNPs in meta-analysis since
these are the studies with the highest degree of evidence, ensuring a strong sta-
tistical power to detect the small effects that each SNP could exert on the phe-
notype. For that purpose, we performed a literature search and selected
7 articles performing meta-analysis in huge populations of predom-
inantly European descent [11,17,23]. A limitation of this work is the age
study because all articles are in adults not children [8,15,16]. From these arti-
cles, we selected a list of 146 SNPs strongly associated with Type 2 Diabetes
[19]. Only 46 SNPs from the initial list were available in our GWAS. In these
cases, it is recommendable therefore to perform a genotype imputation for miss-
ing SNPs increasing the number of genetic variants available in the dataset. As
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we said, future lines of work will involve the imputation of missing SNPs before
constructing ML models.

4.2 EWAS Data

EWAS data were generated through the use of the Infinium MethylationEPIC
850K from blood samples. To remove any source of technical variability, poor
performing probes were filtered out according to different criteria: probes with
a detection p-value above 0.01 in more than 10 cross-reactive probes aligning
to multiple locations (number of probes = 25,570) and probes located on the
Y chromosome (number of probes = 246). Regarding normalization, we applied
BMIQ normalization, which affects only biased type II probes, though wateR-
melon R package [21]. The selection of this normalization method was argued
in the fact that all samples under study were obtained from the same tissue
(blood). Lastly, we obtained the β and M values of 834,371 CpG sites [12].

Here, the feature-selection procedure consisted of the application of an
agnostic EWAS, a type of feature selection in which have been extracted the
differential methylated CpG sites associated with IR across the whole genome
(hypothesis-free). This procedure was conducted in an independent population
study with the same origin as our study population, being some samples coin-
cident. The study population, which has facilitated the EWAS agnostic, is part
of a study in 139 children (76 girls) including longitudinal and cross-sectional
approaches and following the same experimental design. From this approach, we
selected 267 CpG sites. More details about the selection of these CpG sites could
be found on references [1]. The choice of performing an agnostic EWAS for the
phenotype of interest (IR) instead of relying on literature findings as in the case
of GWAS was motivated by the fact of epigenetics findings are strongly condi-
tioned by the characteristics and environmental exposures of each population.
On this matter, having an independent sample with the same characteristics as
the current study cohort was a better option than selecting CpGs according to
European population studies (among which children studies are scarce).

4.3 Biochemistry, Anthropometrical and Clinical Data

The last dataset referenced as the Biochemistry data set; is the combination of
data of diverse origin as mentioned in previous sections. This dataset consisted
of 49 input variables related to the pubertal IR problem. In this dataset, the
main problem to address was the presence of missing values. The structure of
missing data in our cohort was checked (Missing completely at random (MCAR),
missing at random, missing not at random, and structurally missing). Then, we
revised several imputation methods as mean/median imputation, knn imputa-
tion, bagged trees [10], Multiple Imputation by Chained Equations (MICE) [22]
and missForest [20]. Finally, we chose the missForest method for several reasons:
it is a non-parametric method that can impute continuous and categorical fea-
tures, it does not need tuning parameters because of their robust performance,
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and does not require assumptions about the distribution of the features. This
method was used through missForest R package [20].

4.4 Future Perspectives on Pre-processing

Future lines of work to improve current guidelines might include; 1) Performing
imputation of missing SNPs in order to increase the number of genetic vari-
ants available in the GWAS, and consequently, the number of literature SNPs
to be included into ML models, 2) Evaluating the performance of other
feature-selection methods beyond our classical proposals, highlighting the
method recursive feature elimination (RFE) or other multivariate methods such
as LASSO (Least Absolute Shrinkage and Selection Operator), Ridge regression,
or Elastic net, strongly used in biological sciences [10].

5 Basis and Recommendations that Must Guide
the Selection of a ML Algorithm and the Experimental
Design

5.1 Experimental Design

After completing individual pre-processing procedures, three different datasets
(GWAS, EWAS and biochemistry) were obtained. Each dataset has 1 response
variable with 2 classes differentiated (IR and non-IR) in 90 children. The number
of input features by dataset was 46, 267 and 34 for the GWAS, EWAS and
biochemistry data, respectively.

Although a promising approach would have involved the simultaneous mod-
elling of several omics layers along with biochemistry data together, merging
so much information in a single model would also increase the problem of high
dimensionality. Moreover, the different nature of each dataset makes it indis-
pensable to take a first look at the models constructed separately, so we can
understand the amount of valuable information available in each source. In this
work, as a preliminary approach, we propose therefore to generate independent
ML predictive models for each data layer, while letting the multi-omics mod-
elling as a pending task for future works. Our approach allowed us to extract
the predictive information from the different biological layers and identify the
most important variables for the IR problem without falling into the undesired
overfitting [10].

One of the most important good practices in the ML field is to train the
algorithms on a set of individuals that is different from the set aimed to evaluate
the model performance. If it is not possible to access an independent population,
then, it is established that the training and test sets must be selected iteratively
from the same population through a process which is known as cross-validation
(CV). There are several types of CV: Leave One Out (LOOCV), Montecarlo
CV, Bootstrap, k-fold CV, and repeated k-fold CV. Generally, it is preferred to
use by default k-fold CV because it presents the average estimations with the
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least possible error. Choosing the right validation methodology according to the
characteristics of the data is key for avoiding getting wrong conclusions from
models [10].

Another important factor is that the learning process should be as much
homogeneous as possible in every iteration. That is to say, the distribution of
the variables as well as the class proportion should be the same in the training
and test sets of each iteration from the CV process. In this paper, a stratified
repeated k fold cross validation was used to evaluate the model performance.
This approach has been pointed in the literature as one of the best CV procedures
to reduce the variability from the average classification metrics in the case of low
sample size designs. Although other CV methodologies such as LOOVC have also
been commonly used in the context of low sample sizes, we still recommend the
use of repeated k fold cross validation for similar studies where the sample size
is low because this methodology has the lowest estimation error [10].

As it can be seen in Fig. 1, the datasets from the case study present a severe
class imbalance which could lead to overfitting in terms of the majority and neg-
ative class. Considering this, oversampling and undersampling techniques were
tested on the training sets to “balance” the learning procedure. The resampling
method with the best performance in our case study was the nearmiss under-
sampling, which was implemented through the R package themis [9]. To confirm
that learning has occurred equally in both classes it is necessary to evaluate the
performance of the models by looking at different classification metrics [10].

5.2 Selection of ML Algorithms and Classification Metrics

Another point of debate when constructing a predictive model is the choice of
the ML algorithm and the metrics to be used, which will be strongly conditioned
by the objective to be pursued. For example, in the case of seeking a model with
high predictive ability, neural networks, support vector machines or random
forests can be valuable options. However, if a model is meant to be implemented
in a hospital, the clinician must understand how the algorithm takes decisions.
In these cases, we would opt for more interpretable models such as decision
trees or other rule-based methods. The objective motivating the creation of the
model will also affect the choice of metrics used. In our case study, following the
XAI recommendations [2], the selection of ML algorithms was made pursuing a
balance between accuracy and interpretability. Some of the most interpretable
algorithms, as mentioned in the literature [5], are C4.5, Ripper, PART, and C5.0
which are implemented in R through the caret package with the names J48, JRip,
PART, and C5.0Rules. In this case, we choose to use C4.5, which is a classical and
popular algorithm among professionals with the default parameters (Confidence
Threshold = 0.35, Minimum Instances Per Leaf = 2). Regarding metrics, since we
are much more interested in adequately predicting the minority/positive class,
we should not focus on accuracy and specificity but sensitivity [10].
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Table 1. Classification metrics obtained by C4.5 models with/without undersampling
in training sets.

Datasets Datasets (undersampling)

Metrics GWAS EWAS Biochemistry GWAS EWAS Biochemistry

Accuracy 0.60 (0.10) 0.65(0.13) 0.65(0.09) 0.51 (0.10) 0.56 (0.13) 0.59 (0.12)

Sensitivity 0.32 (0.22) 0.40 (0.19) 0.35 (0.18) 0.51 (0.19) 0.50 (0.22) 0.60(0.20)

Specificity 0.71 (0.14) 0.75 (0.15) 0.78(0.09) 0.51 (0.12) 0.58 (0.17) 0.58 (0.16)

PPV 0.73 (0.08) 0.75 (0.08) 0.75 (0.07) 0.72 (0.09) 0.74 (0.12) 0.78(0.09)

NPV 0.31 (0.17) 0.43(0.23) 0.39 (0.18) 0.30 (0.10) 0.34 (0.13) 0.38 (0.12)

AUC 0.52 (0.1) 0.58 (0.13) 0.56 (0.11) 0.51 (0.11) 0.54 (0.13) 0.59(0.13)

6 Main Results and Insights from the Case Study

The results obtained after applying the C4.5 algorithm under a stratified
repeated k fold cross-validation in each dataset separately (with/without
nearmiss undersampling) can be found in the Table 1.

Regarding genetics, it is interesting how models have been overfitted to the
negative/majority class (see the differences between sensitivity and specificity
values). Looking at the Accuracy one might think that these models classify
well but this is only true for the negative/majority class (please, take a look at
specificity values). This is relevant because the objective of our case study was
exactly the opposite, to be able to predict the positive/minority class correctly.
Despite using undersampling methods to avoid overfitting, it can be observed
that the classifiers constructed on GWAS data were not better than randomly
assigning individuals to one or another class (Area Under Roc Curve or AUC
≈0.5). These results make us think that the GWAS data itself does not con-
tain useful information patterns for predictive tasks. Among other reasons, this
might be attributed to the complex genetic architecture of obesity traits and
the additive effects of SNPs on disease risk (they are thousands of SNPs, with
small risk-effects on the phenotype, which constitute a high susceptibility pro-
file). Regarding epigenetics, the overfitting also occurred in terms of the nega-
tive/majority class. Despite using undersampling to try to improve sensitivity
through balanced learning, the sensitivity maintained too low to be considered
(≈0.5). Lastly, seeing the Table 1 we can conclude that using undersampling suc-
cessfully reduced the overfitting in the Biochemistry dataset. Particularly, the
values of Sensitivity were almost double when the undersampling was applied
(0.32 vs. 0.6). The biochemical dataset, therefore, provided the patterns with
the most useful predictive information, achieving the best values in most of the
metrics.
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Obtained results for the biochemistry dataset are not surprising, since it
included phenotypic, anthropometric, and clinical variables with a direct implica-
tion in the development of the disease (e.g., origin, or waist circumference), which
indeed are currently used in the daily clinic to estimate the risk of metabolic
syndrome in children with obesity. On the other hand, the poor performance of
C4.5 in the omics datasets could be argued in several facts: the elapsed time
between temporal points (comprising several years) and the biological hetero-
geneity of omics data. Particularly, in the case of genetics, it is crucial how we
select input SNPs, and how we pass such information to the ML model. As we
previously mentioned, obesity and other complex traits involve a complex poly-
genetic architecture and it has been demonstrated that directly using individual
SNPs is not the best tool for predictive purposes. Otherwise, the construction
of risk scores (which could be also extended to EWAS and environmental data),
has been pointed as a powerful tool to account for the complex structures of
omics data and the best way to predict long-term outcomes. In risk scores, we
can gather information for thousands of SNPs (or variables), so we reduce the
problem of dimensionality at the time we also model the complex structures of
omics. In future works, therefore, others ways of encoding omics data as
genetic, methylation or metabolic risk scores (polygenetic risk score)
should be explored. Likewise, performing an appropriate feature-selection
about omics data which presents imbalance class is an unsolved task
in the omics ML field. For that reason, some multivariate methods could
be tested checking their promising ability to deal with omics data to
reduce their high dimensionality [10].

Another point to be considered for future work, and evidenced as crucial
according to our results, it is the integration of multi-omics data with bio-
chemistry/clinical data in a single model. Despite it, such combination
procedures are not always as straightforward as putting all data together into
the same model. An example of these exciting and promising approaches for
integrating the multi-omics data can be found in the Omics Data Integration
Project (mixOmics R package) [14] proposing the use of multivariate methods
such as Principal Component Analysis, Projection to Latent Structures, Canon-
ical Correlation Analysis, and DIABLO to reduce dimensionality [18].

Finally, to demonstrate the high interpretability and the great utility for pre-
dictive purposes of ML models such as C4.5 in the medical domain, we plotted
the important variables employed by the model and proposed the cuts off; see
Fig. 3. Some variables which appear in Fig. 3 are widely described in the bibliog-
raphy and of vital importance for the IR problem. For example, we can highlight
the role of Leptin in the development of IR or the importance of confounding
variables such as Origin. The fact of being able to see and understand the model
working is key and one of the basis from the XAI easing the decision making
and the new knowledge extraction [2].
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Fig. 3. Generated model through biochemistry dataset.

7 Conclusion

This paper is an example of how to face the main challenges encountered when
constructing ML predictive models with multi-omics human data. Some topics
covered in this work include a description of the main particularities of each omics
data layer, the most appropriate pre-processing approaches for each source, and
collection of good practices and tips for applying ML to this kind of data with
predictive purposes. Making use of a real data example, we illustrate some of
the key issues to be addressed in this kind of research (technical noise, biologi-
cal heterogeneity, class imbalance, high dimensionality, and presence of missing
values, among others). This paper can be viewed as a sort of good practices and
guidelines that could be extrapolated to other human diseases with a complex
basis such as obesity. Although some topics have not been covered here given
the nature of this work (conference paper), we also set the basis for future work
incorporating some proposals to improve models, arguing their need according
to encountered insights.
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Abstract. Labeled medical datasets may include a limited number of
observations for each class, while unlabeled datasets may include obser-
vations from patients with pathologies other than those observed in the
labeled dataset. This negatively influences the performance of the pre-
diction algorithms. Including out-of-distribution data in the unlabeled
dataset can lead to varying degrees of performance degradation, or even
improvement, by using a distance to measure how out-of-distribution a
piece of data is. This work aims to propose an approach that allows esti-
mating the predictive uncertainty of supervised algorithms, improving
the behaviour when atypical samples are presented to the distribution
of the dataset. In particular, we have used this approach to mammo-
grams X-ray images applied to binary classification tasks. The proposal
makes use of Feature Density, which consists of estimating the density
of features from the calculation of a histogram. The obtained results
report slight differences when different neural network architectures and
uncertainty estimators are used.

Keywords: Feature Density · Mahalanobis distance · Jensen-Shannon
distance · Uncertainty · Deep learning

1 Introduction

Machine Learning (ML) approaches are trying to be applied in the field of
medicine as a tool to help in classification and diagnosis tasks of diseases like
cancer and more recently COVID-19 by using medical images [1,2]. Cancer is the
first or second leading cause of premature death and breast cancer remains the
leading cause of death in women worldwide, although it can also be diagnosed in
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men [3]. In 2019, it was estimated that 268,600 new cases of invasive breast cancer
were diagnosed among women and approximately 2,670 cases diagnosed in men
[4]. To mitigate these numbers, it is necessary an early and accurate diagnosis.
The analysis of imaging evaluation such as mammography or histopathologi-
cal [5,6] images may supply that diagnosis. Due to this, approaches like ML
have been extensively studied to improve classification tasks and apply them to
medical diagnosis.

In areas such as medicine, the main problem is the limited data set, its quality
and the acquisition process, and it causes that not all approaches are suitable
and not all methods provide optimal performance. ML algorithms usually face
many problems in real-world deployment environments and several examples
of this can be found [7–10]. According to [7] and [8] the labelled dataset can
include a limited number of observations for each class, in the context of breast
cancer, a more significant number of samples without cancer can be observed
than with cancer, which can cause a tendency of the models to classify better (or
recognize) the samples of the majority class, this is known as Data Imbalance.
Also in [9] mentioned that the test dataset can include observations of patients
with other types of pathologies than those observed in the training dataset, this
is known as Out-Of-Distribution (OOD) data, and it can be potentially harmful
to classifications models performance and cause a degradation in its accuracy.
Another well-studied problem [10] is the mismatch distribution of the data. This
usually happens when deploying the algorithms to a real-world environment.
Training models with a specific dataset does not guarantee that testing the model
in another setting (another hospital or clinic, usually called target dataset) will
give the same performance results.

Experimental evidence shows that despite accuracy being harmed by the
problems mentioned above and in [11] mentions that obtaining models that
can generalize the characteristics of breast cancer is complicated since there
is significant variability of anomalies which will always limit the efficiency of
the algorithms, the ML techniques they remain an attractive approach for the
detection, classification or segmentation of different types of anomalies. Hence,
it is essential to continue their improvement and investigation.

In ML, uncertainty measures how reliable or accurate a model is in classifying
the images in a test data set based on the supervised training that the model has
performed. In this work, we evaluate feature density as a measure of uncertainty
and compare this method with others proposed in state-of-the-art like Maha-
lanobis distances. To perform this investigation, we offer the following question: is
it possible to obtain a statistically significant improvement between using Feature
Histogram to improve the estimation of predictive uncertainty concerning other
techniques that assume a Gaussian distribution of the data set?

2 State of the Art

In [12] they propose to combine two uncertainty measurements. The first one,
based on subjective logic [13], u(p) : p → R, based on the information con-
tained from the probabilistic predictions, while the second, a data closeness
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measurement Dm(z) : z → R following a Mahalanobis approach [14] that mea-
sures the distance Dm of a sample to the training distribution cluster. They
have observed that the Mahalanobis distance brings a complementary aspect,
especially related to out-of-distribution cases [14]. For instance, when a classifier
trained on breast images (ID) is fed with outliers from a flower dataset (OOD),
the authors saw that the rejection criterion based on the Mahalanobis distance
is quite effective. Despite the effectiveness of the combination, further research
is required on automatic ways to find the optimal thresholds.

On the other hand, [15] their focus is on uncertainty estimation methods
that are practical and straightforward to implement. Specifically, the Softmax
and Monte Carlo Dropout (MCD) approaches were tested. The usage of a Soft-
max activation function in the output layer of a deep learning model can serve as
a basic method for uncertainty estimation. The complete set of values for a Soft-
max output given an input xj can also be used for uncertainty estimation. This
is done by calculating the entropy over the corresponding output distribution
p of Softmax. Softmax method alone can lead to poor representations of model
uncertainty due to typical overconfidence in neural networks’ predictions. The
MCD approach aims at having more robust estimations while still being sim-
ple to implement [16], when compared to the usage of Softmax for uncertainty
estimation. MCD is based on a Bayesian interpretation of the model’s parame-
ters. According to their results, an improvement with statistical significance was
observed for SSDL models over supervised models.

To deal with data imbalance, [8] proposes to use the transfer learning app-
roach. Multiple models were trained under different training configurations to
evaluate the impact of SSDL on their Transfer learning (a simple Domain adap-
tation method) and loss function based class-imbalance correction were also
tested. Deep learning models were first trained in a supervised manner with
complete mammography datasets Dl

s,INbreast and Dl
s,DDSM in order to obtain

source-trained models which were further fine-tuned on their target Costa Rican
dataset in a Supervised manner, with limited amounts of labelled observations.
In summary, models that were subject to do main adaptation from a source
mammography dataset showed improved classification performance results in
comparison to other experimental configurations tested there.

3 Methods

3.1 Mammography Datasets

Three different mammography datasets were used to carry out the experiments.
The characteristics of those datasets are summarized in Table 1 and some samples
of X-Ray images are illustrated in Fig. 1.

INbreast. The INbreast dataset introduced in [17] is a dataset containing a
wide variety of breast anomalies such as masses, calcifications, architectural dis-
tortions, asymmetries and images with multiple anomalies at the same time, and
usual patient samples. This dataset was built from 115 cases of X-ray images
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Table 1. Summary of characteristics of the datasets.

INbreast [17] CBIS-DDSM [18] CR-Chavarria 2020 [8]

Origin Portugal United States Costa Rica

Year 2011 1997–2016 2020

Cases 115 1522 87

Images 410 3103 282

(a) Benign sample of IN-
breast

(b) Benign sample of
CBIS-DDSM

(c) Benign sample of CR-
Chavarria

(d) Malignant sample of
INbreast

(e) Malignant sample of
CBIS-DDSM

(f) Malignant sample of
CR-Chavarria

Fig. 1. Mammogram samples from each dataset used according to a binary classifica-
tion from a CC view (top-down view of the breast).

originating at Centro Hospitalar de São João at Porto, Portugal. Of the 115
cases, 90 cases have associated two images for each breast, belonging to each of
the views (Craniocaudal (CC): which is a top to bottom view of the breast; and
Mediolateral oblique (MLO): which is a side view of the breast); that is, 4 images
associated with each patient; the remaining 25 cases only have related images
for each of the views; giving a total of 410 X-ray images. The resolution of the
images varies depending on the size of the patient’s breast. In addition, these
images were evaluated and classified according to the categories of BI-RADS and
according to their density measurement. For this case, the images were acquired
digitally (Full-Field Digital Mammography) and stored in a DICOM (Digital
Imaging and Communications in Medicine) format.
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CBIS-DDSM. The Curated Breast Imaging Subset of Digital Database of
Screening Mammography (CBIS-DDSM) [18] is an improved version of the Dig-
ital Database of Screening Mammography, which contained 2620 cases from dif-
ferent sources. This dataset has X-Ray images with standard samples, benign and
malignant cases of breast cancer. The main problem with the original database
was that some of the information attached to each case was limited or difficult
to access. Due to this, a new dataset is created to improve the quality; to do
this, inaccurate images or images that did not meet confidentiality standards are
discarded. In [8] it is detailed that CBIS-DDSM contains a total of 3103 digitized
images (scanned) belonging to 1566 cases, separated according to the anomaly
presented in the X-Ray images (masses or calcifications) and classify according
to the category of the BI-RADS system and according to its density measure.
By classifying the dataset in a binary way, a total of 1728 images with benign
cases were obtained and 1375 images with malignant cases.

CR-Chavarria-2020. Introduced in [8] the dataset from the Dr. Chavarria
Estrada Medical Imaging private clinic located in Costa Rica. In [8] this dataset
is used as out-of-distribution data as it comes to represent the conditions of a
real-world deployment environment for the Machine Learning algorithms. The
dataset was built from 87 cases, whose patients have an age range of 40 to
90 years. It contains 341 images, of which only 282 images are used, because in
some cases the image does not have optimal quality or the patients have breast
implants, which could produce noise in the classification models. When perform-
ing the classification in a binary way, the result is that 268 images are negative
samples and 14 images are positive samples of cancer, showing a clear data
imbalance in its classes. The images belonging to CR-Chavarria-2020 dataset
were evaluated and classified according to the BI-RADS categories. Also, the
images were acquired digitally form(FFDM).

3.2 Data Preprocessing

As part of the X-Ray image preprocessing from all three datasets described
above, it was necessary to perform three operations on the datasets:

– A readjustment of the resolution of each image was performed, resulting in
images of 224 × 224 pixels, dimensions also used in the state-of-the-art liter-
ature in previous experiments, in order to reduce execution time, processing
load and amount of disk space used.

– It was also necessary to change the file extension (image format) from DICOM
to BMP (Windows Bitmap).

– This work was focused on the binary classification of the samples, because
of this it was necessary a reclassification of the available datasets, similar
to [8], where mammograms labelled with BI-RADS categories 4, 5 and 6
are defined as positive cases of breast cancer, while mammograms labelled
with categories 1 and 2 are defined as negative cases of breast cancer. Image
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samples labelled with categories 0 and 3 were discarded due to the peculiarity
of their characteristics.

It was necessary to perform a second preprocessing stage on the dataset
CBIS-DDSM since the X-ray images belonging to this set were digitized
(scanned), thus their images were noisy. The anomalies observed are the fol-
lowing:

– In the pixels surrounding the breast it is observed as a blur (pixels in different
shades of grey) similar to a shadow, which could cause the classification algo-
rithms to take those areas as part of the image’s characteristics and cause a
classification deficiency. To clean up noise, it was used the procedure described
in [19].

– Despite the preprocessing that was given to the images described in the pre-
vious point, after a visual inspection it was found that in some images there
were still remains of annotations of the type of view or data belonging to
the X-ray, which could generate a bias within the classification model. To
eliminate the remaining noise, it was necessary to make manual annotations
of the area with noise and treat them using an algorithm.

After a second visual inspection of the images in the CBIS-DDSM dataset,
it was possible to observe that in some exceptions the algorithm removed a
considerable part of the breast. For these cases, manual cleaning of the image
was carried out, similar to item two described above.

3.3 Training Process

For this work, the FastAI implementations of AlexNet and DenseNet architec-
tures were chosen as classification models, were used a pre-trained version of
the same and subsequently a Fine-Tuning process was performed on the dataset
INbreast and CBIS-DDSM.

Initially, the configuration of hyperparameters used is the default configu-
ration by the FastAI library, i.e. no modification was made to the algorithm
to improve its accuracy when classifying images, with that a maximum of 70%
accuracy was obtained on classification tasks, to improve that and achieve the
accuracy reported in the state-of-art was resorted to using of Adam optimiza-
tion function and data augmentation technique but was not obtain a statistical
improvement.

Since the purpose of this work is not focused on obtaining models with the
best possible accuracy in classification tasks, but to try uncertainty techniques,
no further modifications were made to the classification models and left the
default settings. To a certain extent, it is sought that the models are not per-
fect and that they make errors, in order to be able to evaluate the uncertainty
estimators.

Initially, the models were trained from 857 X-ray images as shown in Table 2
for a maximum of 50 epochs. The selection of these images was done randomly.
In order to improve the accuracy of the models, it was also experimented the
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Table 2. Composition of images from the training dataset

Dataset Number of images Class balance

INbreast BI-RADS-1 47 242

INbreast BI-RADS-2 195

INbreast BI-RADS-4 34 77

INbreast BI-RADS-5 39

INbreast BI-RADS-6 4

CBIS-DDSM Benign Calcifications 140 329

CBIS-DDSM Benign Masses 189

CBIS-DDSM Malignant Calcifications 92 209

CBIS-DDSM Malignant Masses 117

training of the models with more epochs (e.g. 200 epochs) and tried to use a more
balanced training set, but it did not obtain an improvement of the performance.

From the training process, the feature extractor was obtained, which in simple
words are all those operations or mathematical processes that the network has
used to extract the features of images. The feature extractor is used as part of
the uncertainty estimators. The aim is to obtain the features of the correct and
incorrect estimations and compare them with the features of the training images.

3.4 Uncertainty Estimation Process

Once the training of the models is finished, the uncertainty estimators were
evaluated. For this, 10 test sets were used. Once the network has classified the
test images, the confusion matrix and the network’s predictions were used to
find out the number of correct and incorrect estimations. From this information,
representative subsets were created, these sets (correct and incorrect estimations)
were subsequently processed by the uncertainty estimator models, together with
the other necessary parameters. (similar to data flow shown in Fig. 2).

For the Mahalanobis Distance method, it was necessary to calculate the
covariance matrix and the vector of means, from the training dataset, these
elements are the basis that was used to estimate the uncertainty of the previ-
ously built image sets. For each image within the subsets mentioned above, an
uncertainty measurement was obtained, thus creating two vectors of uncertainty,
i.e. a vector with uncertainties of correct estimations and the other with uncer-
tainties of incorrect estimations. Once this information was obtained, a PDF
(Probability Density Function) was created for each of the uncertainty vectors,
and it proceeded to calculate the distance between them (Jensen-Shannon Dis-
tance). The distance will be compared subsequently with the other estimator
method.

For the Feature Density method, it was first necessary to estimate the feature
histogram of the training dataset, this histogram is the basis for estimating
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Fig. 2. Schema of the estimation of uncertainty

the uncertainty of the previously constructed image subsets. As in the previous
method, for each subset (correct and incorrect estimations) a vector was obtained
that contains each one of the uncertainty measurements corresponding to each
image. Again, another PDF was created for each of the uncertainty vectors and
the distance between them was calculated.

Once the Jensen-Shannon distance of the uncertainty vectors has been mea-
sured using each of the methods, a direct comparison was made as to which
method is more accurate. As mentioned above, the Jensen-Shannon distance of
the uncertainty distribution is intended to be as large as possible.

4 Experiment Results

To evaluate the performance of the uncertainty estimator models, 10 experiments
(batches) were used, each of the test sets had 60 randomly selected X-ray images,
covering each of the types of images available. It is important to mention that
the network had never seen the images of test sets previously. In the first five
experiments were used in-of-distribution images, i.e. images that belonged to
the INbreast and CBIS-DDSM datasets with which the network was trained.
In the remaining five experiments, different degrees of out-of-distribution data
contamination were used, as shown in Table 3, belonging to the CR-Chavarria-
2020 dataset.

The first experimental stage it was necessary to train the AlexNet architec-
ture with the INbreast and CBIS-DDSM dataset with the number of images
detailed in Table 2, 20% of the total images were used as a validation set. The
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Table 3. Evaluation experiments for the uncertainty estimation methods

Experiments without

contamination

Experiments with

contamination

N◦ of exp. Number
of
images

Distribution
percentage

N◦ of exp. Number
of
images

Distribution
percentage

1 60 100% IOD 6 60 75% IOD
25% OOD

2 60 100% IOD 7 60 50% IOD
50% OOD

3 60 100% IOD 8 60 50% IOD
50% OOD

4 60 100% IOD 9 60 25% IOD
75% OOD

5 60 100% IOD 10 60 100% OOD

Table 4. Number of correctly and incorrectly classified images, using INbreast and
CBIS-DDSM as IOD data and CR-Chavarria as OOD data, with an Alexnet architec-
ture for classification.

Experiments without contamination Experiments with contamination

N◦ of exp. Correct.
estimations

Incorrect.
estimations

Acc N◦ of exp. Correct.
estimations

Incorrect.
estimations

Acc

1 33 27 0,5500 6 31 28 0,5254

2 31 29 0,5167 7 31 29 0,5167

3 32 28 0,5333 8 33 27 0,5500

4 33 27 0,5500 9 40 20 0,6667

5 28 32 0,4647 10 45 15 0,7500

neuronal network was trained for 50 epochs. The maximum accuracy obtained
in the train validation was 70%.

Despite not obtaining high accuracy in the classification tasks, it was not
taken as an impediment to continue with the experiments, since a perfect classi-
fication model was not sought. Table 4 shows the number of correct and incorrect
estimations made by the neural network over the test dataset, as well as the
accuracy with which it was made.

Not in all experiments can the capacity of the neural network to classify OOD
data be determined with such precision, although experiment 10 of Table 4 can
be taken as a basis, where there is 100% of OOD data and the model adequately
classified 75% of the samples. In Tables 5 and 6 the averages of the uncertainty
measurements were compiled for the ten experiments carried out in this stage.

Despite being hardly noticeable, when analyzing the averages of the uncer-
tainty values, there are two tendencies:
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Table 5. Average of uncertainty measurements over the correct and incorrect estima-
tions, using INbreast and CBIS-DDSM as IOD data.

N◦ of exp. Mahalanobis
distance

FD method

Correct.
estimations

Incorrect.
estimations

Correct.
estimations

Incorrect.
estimations

1 9,7627 7,6000 388,2441 386,3513

2 7,9117 6,3012 384,3943 394,4933

3 8,9966 7,2569 336,9922 381,4414

4 7,6128 8,4158 385,8245 395,2873

5 9,4562 7,2151 385,8129 394,8537

Table 6. Average of uncertainty measurements over the correct and incorrect esti-
mations, using INbreast and CBIS-DDSM as IOD data and CR-Chavarria as OOD
data.

N◦ of exp. Mahalanobis distance FD method

Correct.
estimations

Incorrect.
estimations

Correct.
estimations

Incorrect.
estimations

6 9,0266 5,7338 416,1937 423,9887

7 8,6063 8,1578 491,3473 465,5490

8 8,0021 7,0746 459,0135 478,2890

9 9,2823 6,6258 520,9386 505,8273

10 11,5599 6,6558 548,6212 554,1428

– The difference between the uncertainty measurements for the correct and
incorrect estimations is minimal in the case of the Mahalanobis Distance,
whereas with the Feature Density method the uncertainty measurements for
the incorrect estimations are a little greater than the uncertainty measure-
ments for the correct estimations.

– The uncertainty measurements for the experiments with OOD data are a
little greater than the uncertainty measurements for the experiments without
OOD data, the most noticeable difference could be seen with the Feature
Density method.

The observations above are not always met, especially using the Maha-
lanobis Distance method. Thus, it is necessary more experiments to determine
the causes. All information about the comparison between both methods are
showed in Table 7.

One aspect in which there is a big difference between both estimating meth-
ods is in the execution time and computational cost. With a convolutional layer
belonging to the AlexNet architecture, the Mahalanobis Distance method takes
an average of 0.3 ms to process an experimental batch, while with the Feature
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Table 7. Jensen-Shannon distance between the uncertainties of correct and incorrect
estimations, using INbreast and CBIS-DDSM as IOD data and CR-Chavarria as OOD
data. Classification architecture: AlexNet.

Experiments without contamination Experiments with contamination

N◦ of exp. JS distance
with the
Mahalanobis
method

JS distance
with the
FD method

N◦ of exp JS Distance
with the
Mahalanobis
method

JS distance
with the
FD method

1 0,3639 0,3579 6 0,3865 0,3011

2 0,3883 0,3409 7 0,3639 0,3480

3 0,3573 0,3158 8 0,3469 0,4000

4 0,4419 0,3069 9 0,3666 0,3079

5 0,2932 0,4647 10 0,3896 0,5324

Avg 0,3689 0,3573 0,3707 0,3779

Std 0,0481 0,0566 0,0157 0,0849

Density method it takes an average of 41 s. The big difference between the exe-
cution times is due to the calculation of the Feature Histogram for each one of
the dimensions of the training set when it is processed by the Feature Extrac-
tor. To calculate the execution time using the Mahalanobis Distance method,
the computation time of the covariance matrix and the vector of means plus the
batch processing time are added. In the case of Feature Density, the time it takes
to calculate the Feature Histogram of the training set is added plus the batch
processing time.

As a second experimental stage, a DenseNet architecture was used, the pro-
cess of both training, validation and testing was similar to that used with the
AlexNet architecture.

The results obtained for the Jensen-Shannon distance are shown in Table 8.
As can be seen when using a feature extractor belonging to the DenseNet net-
work, there is a more notable difference between both estimating methods; In
this case, the Feature Density method is the one with the highest value for both
the IOD and the OOD samples. This would indicate that the performance of the
method is related to the type of Feature Extractor that is used.

When using a more complex Feature Extractor, the execution time and the
computational cost increased significantly for both methods. For the Maha-
lanobis method the average time in the execution of the experiments was
3.6047 s, while for the Feature Density estimator it was 1763.3704 s (approxi-
mately 30 min), this difference between the times is due to the fact that with the
Feature Extractor produced from the DenseNet architecture, 1024 dimensions
are obtained as a result, at which The Feature Histogram must be calculated
from the training data set. Therefore, the little gain obtained by estimating the
uncertainty is overshadowed by the execution time invested.
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Table 8. Jensen-Shannon distance between the uncertainties of the correct and incor-
rect estimations, using INbreast and CBIS-DDSM as IOD data and CR-Chavarria as
OOD data. Classification architecture: DenseNet.

Experiments without contamination Experiments with contamination

N◦ of exp. JS distance
with the
Mahalanobis
method

JS distance
with the
FD method

N◦ de exp. JS distance
with the
Mahalanobis
method

JS distance
with the
FD method

1 0,2934 0,3479 6 0,1076 0,4151

2 0,2722 0,4098 7 0,3647 0,3779

3 0,2234 0,3988 8 0,3710 0,4193

4 0,3476 0,5553 9 0,4280 0,4163

5 0,3105 0,5180 10 0,3798 0,4209

Avg 0,2894 0,4460 0,3296 0,4099

Std 0,0412 0,0778 0,1135 0,0161

5 Conclusions and Recommendations

This research was carried out to evaluate the feature density method as an uncer-
tainty estimator, applied to the binary classification of X-ray images (mammo-
grams), using the AlexNet and DenseNet neural network architectures.

Based on the results of this work, no statistically significant improvement was
found between the feature density method concerning the Mahalanobis Distance
as an uncertainty estimator method when using an AlexNet architecture. In the
case of the DenseNet architecture, a more notable difference can be observed, but
the results are not entirely conclusive. This way, more experiments are needed
to reach a more accurate answer.

If the execution time and the computational cost invested in estimating the
uncertainty using both methods are taken into consideration, it can even be
thought that the Mahalanobis Distance has some advantage from that perspec-
tive. It is necessary to emphasize that the execution time and computational
cost is closely related to the type of architecture selected for the experiments.

Despite the conclusions reached in this research, this does not mean that
the feature density method should be discarded entirely as an estimator of
uncertainty. Like everything in Artificial Intelligence, more experiments must
be carried out to reach an accurate conclusion about which method has a better
performance.

As recommendations to continue with the work raised in this research, it
proposes:

– Perform more experiments, with a more significant number of images for
both training and testing. As there are few images and tests, no conclusive
trend regarding improvement can be observed. Another recommendation is
to experiment with data augmentation approaches and find the optimal com-
bination of transformations on the images.
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– Use other convolutional network architectures to investigate if there are archi-
tectures (and thus their feature extractor) where the performance of the fea-
ture density method might be better.

– Experiment with the hyperparameters of the architectures until finding an
optimal configuration, which can reach the accuracy proposed in [15] and
experiment if there is a variation in the estimation of the uncertainty.

– Experiment with other datasets of medical images, with the possibility that in
different contexts, a significant improvement is obtained, since not necessarily
when getting a low or high performance in a specific context means that it
must work in the same way in others.
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Abstract. The Next Generation Sequencing technologies provide large volumes
of DNA-seq and RNA-seq data. A central part of their investigation is the task
for selecting the differentially expressed genes. Different methods for RNA-seq
data analysis that identify genes distinguished by their expression levels have been
proposed basically on the statistical data analysis. There is no agreement among
the applied methods as different results are produced by the distinct methods. The
present paper proposes a new method for differential gene expression analysis
based on machine learning approach. Difficulty of the selection due to the large
number of indistinguishable genes is solved by iterative clustering procedure.
The importance of the proper cluster distance measure is discussed. The visibility
of the procedure results and ability to find different number of compact clusters
is also underlined. The significance of the method is investigated and proved by
application to the twomice strains dataset. The obtained results are compared with
the results of the statistical methods applied to the same dataset. It is concluded
that the proposed method is valuable and could be applied as standalone or for
preliminary genes selection within a statistical algorithms pipeline for discovering
differentially expressed genes.

Keywords: RNA-seq · Differential gene expression analysis · Cluster analysis

1 Introduction

The Next Generation Sequencing technologies provide large volumes of DNA-seq and
RNA-seq data. These are gene expression data, which are more precise having higher
resolution than the older technologies such as microarray. It significantly increases the
opportunities for effective research and revealing knowledge about dependencies of the
genes’ activity. A central part of these investigations is the task for selecting differentially
expressed genes. In this way, the genes responsible for certain disease states can be
discovered or it is possible to find differences of two species strains.

Different methods for RNA-seq data analysis to identify genes distinguished by
their expression levels have been proposed. These are basically statistical data analysis
approaches. Systematic and deep comparison studies is provided to quantifying the
proximity of methods’ performance in solving the task [1–3]. The papers’ conclusions
state that there is no agreement among the applied methods and the respective software
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used tools as different results are produced by the distinct methods. For instance, fifteen
methods were assessed according to the obtained p-values of each gene [3] of a dataset
consisting of two mice groups of different strains. The differentially expressed genes of
the two strains have been selected according to a value of a predefined threshold using an
appropriate software [4]. Only 570 genes in common were recognized as significant by
four different methods namelyDESeq [5],DESeq2 [6], edgeR [7] and the limmamethod
that is closely to ttest. Each of these methods has been chosen as a representative of a
subgroup of similar methods for investigation. It is underlined that beside the common
genes identified from all methods each method detects additional genes that are not
found by the others. The amounts of these additional genes differ in large among the
distinct methods.

The difficulties of the existing methods in reliable discovering differently express
genes is an incentive to explore other approaches in solving the problem. Given the lack
of reference information to assess the selected genes, the unsupervised approaches of
machine learning analysis could be useful. The machine learning methods able to find
structures within complex data sets as biosignal data are. By that they could increase the
knowledge about the biological mechanisms and their application can surely improve
patient outcomes [8, 9]. The obtained results indicate that machine learning algorithms
can effectively differentiate healthy subjects and affected patients [10]. The successful
implementation of these methods to tasks of differential expression analysis [11, 12]
encourages such research.

The present paper proposes a new method for differential gene expression identifi-
cation based on clustering analysis. The difficulty of the selection problem due to the
large number of indistinguishable genes is solved by iterative clustering procedure. The
significance of the approach is investigated by application to the twomice strains dataset.
The obtained results are compared with the results of the well-known statistical meth-
ods applied to the same dataset. According to the comparison it is concluded that the
approach is valuable and could be apply as stand alone or for preliminary gene selection
within a pipeline of the algorithms for differential gene expression.

2 Problems of Differential Gene Expression Analysis

Differential expression problem tries to find genes that have significantly different activ-
ity represented by the expression levels of one strain compared to other. For this task
RNA-seq dataset is used. Each entry of the dataset is a row with reads of a particular
gene for samples given in the table columns.

The solution of the task is complicated due to difficulties in gene expression distin-
guishing assessed by statistical analysis. Due to the large number of genes and lack of
significance in separation by the estimated p-values no valuable conclusion about the
gene selection could be done. The task is complicated by the fact that usually num-
ber of interested genes is quite smaller than the whole their number. In this case the
searched genes are appeared mostly as outliers than as a representative group that could
be estimated and separated.

Other difficulty of the differential gene expression separation is a result of the large
deviation of the activity levels among the samples of a certain strain. For instance, the
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profiles of the gene expression values of mice of two different strains [13] shows larger
deviation in the gene activities within the same strain than between the two strains
(Fig. 1). Due to the impossibility of distinguishing genes within the distinct samples, a
solution based on some aggregated measure of the gene activity of all samples could be
useful.
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Fig. 1. Gene expression profiles of 100 genes that are most differently in their average activity
values of the two mice strains. First ten samples (from 2 to 10) are of one mice strain and the rest
11 (from 11 to 22) are of another mice strain

3 Unsupervised Analysis for Gene Expression Differentiation

Here we propose a method of gene expression differentiation that uses the average
value of the gene expression of the strain samples. Comparing the average values of
the two investigated strains we could expect that for the genes that behave equally the
respective average values remine close whereas for the differently expressed genes the
mean values differ. Direct comparison will not give a reliable result as we do not have
a threshold value to separate the genes group with equal behave from the group with
dissimilar behave. It is necessary to apply a procedure that could distinguish the genes
data that is not separable from those that are much different for the two strains. The
latter are differently expressed genes which we are interesting. Due to the lack of a
reference threshold the studying could use unsupervised machine learning method as
cluster analysis. This machine learning technique does not need preliminary information
about the data structure.

In accordance to this idea we are looking for clustering algorithm applied to the
data space formed by the average gene activities values of two strains that enables to
distinguish the two types of genes. An appropriate choice is widely applicable DBSCAN
algorithm [14], which groups data based on density-based approach and finds clusters,
as well as outliers. By this algorithm we can separate genes densely scabbed around the
equivalence area from the outliers that are away from this area. In fact, the outlier data
are of genes that are differentially expressed and that we are searching for.
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DBSCAN clustering uses a matrix of pairwise distances between data. It finds the
number of outliers and core points. The clustering is accomplished based on a threshold
radius r for neighborhood search and a minimum number of neighbors Nmin required to
identify a core point. The two parameters are subject of off-line investigation and fully
depend on the structure of the data space. The default measure for data range estimation
is Euclidian distance.

Clustering results of Bottomly reduced dataset [13] are presented at Fig. 2 where
the two dimensions correspond to the two mice strains and dots’ coordinates are the
respective average expression values of a certain gene of the two strains. By varying the
clustering parameters r and Nmin different number of clusters is discovered. It should
be underlined that we are interested not in the data of the clusters but the outliers that
are surrounding the compact data group(s). They are marked by “−1” and are the data
of differently expressed genes. For small cluster radius r and low minimum neighbors
number Nmin the number of discovered clusters is relatively high and the number of the
outliers is small (Fig. 2a,b).

a) b) c)

d) e)

Fig. 2. a) Results of DBSCAN clustering applied to the average values of the genes activity of
the two mice strains a) r = 0,2, Nmin = 5, discovers 153 differently expressed genes; b) r = 0,2,
Nmin = 10, discovers 310 genes; c) r = 0,2, Nmin = 15, discovers 420 genes; d) r = 0,2, Nmin
= 20, discovers 593 genes; e) r = 0,4, Nmin = 20, discovers 154 genes. Discovered clusters are
enumerated in the picture legends.

By increasing Nmin more outliers are identified (Fig. 2c,d). The radius r is sensi-
tive parameter as by its doubling the number of identified differently expressed genes
decreases (Fig. 2d,e). For some parameters values only one compact cluster is defined
(Fig. 2d,e).
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It should be underlined a problem of DBSCAN clustering applied to the entire
genes dataset. Due to the large number of genes behaving equivalent the algorithm
reveals limited amount of differently expressed genes compared to those discovered by
statistical analysis [3]. In order to improve the distinguishability of the two types of
genes and thus their disclosure, the clustering can be applied not to the whole dataset at
once, but sequentially to distinct subsets of all data. These subsets of data must have the
same volume and here we call them data batches.

4 Iterative Procedure of Gene Expression Differentiation

Aiming to improve gene selection, here we propose an iterative clustering procedure
that applies DBSCAN at batches of genes. By that the outliers of each batch are added
in order to form a common set of the differently expressed genes.

4.1 Data Preprocessing

A lot of zero values are amain feature of the RNA-seq data. This implies special attention
in the developed methods for analysis of differential gene expression. In our case the
problem is solved during the preprocessing stage as a part of the procedure pipeline.

Two important stages of data preprocessing are need. First, logarithm transformation
of the data is obligatory to deal with the large differences in the expression values of the
raw data that will distort the gene grouping. Second, in order to ensure the logarithm
calculation, filtering for removing genes with zero activity value is a requisite.

4.2 Data Processing

Iterative implementation of DBSCAN requires to set clustering parameters in advance.
These are the threshold radius r for neighborhood search,minimumnumber of neighbors
Nmin and the number of genes’ data in a batch. Once the parameters are found they are
applied to each data batch.

Again, due to the similarity in the genes’ behavior as in case of the whole data set
(Fig. 2), it could be expected that the data of each batch form a large compact group along
the equivalence area. This area is rather oblong than spherical one. This suggests that
clusters are not Euclidean. This observation is assessed by exploiting different distance
measure of DBSCAN search. In searching of a proper distance measure two distances–
Euclidean and Mahalanobis, were applied and the results were compared in terms of
data separation abilities.

The number of data that form a batch is also a subject of an advance choice. The larger
number could make impossible to detect the outliers due the effect already discussed in
case of whole data set processing. The low number could embarrass detection of real
clusters and thus the right selection of the interested genes.

The search for proper radius r and neighbors Nmin could be such to maximize the
number of the discovered differentially expressed genes.
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5 Application Results and Discussion

The proposed procedure for finding genes that are differently expressed is applied for the
samples’ set of two mice strains–ten of strain C57BL/6J and eleven of strain DBA/2J.
Raw data available from the ReCount online resource [15] were filtered to represent data
of 13932 genes having non-all-zero rows in the dataset [13].

By applying the preprocessing transformations discussed in Sect. 4.1, the number
of genes is reduced to 9196. They were divided in 18 batches of 511 genes each except
the last one consisting 508 genes. By that the amount of a batch is set to be comparable
to the number of genes found by statistical analysis. DBSCAN algorithm was set by
parameters given in Table 1.

Table 1. DBSCAN initialization parameters

Distance r Nmin

Eucledian 0.15 10

Mahalanobis 0.2 5

For the purposes of analyzing the results and comparing the proposedmethodwith the
existing ones the found group of differently expressed genes marked byML is compared
with genes’ groups defined through statistical data analysis (Table 2). Four statistical
methods–ttest, edgeR, limma, DESeq2 have been explored to the same dataset. The
number of discovered genes by each statistical method of the filtered dataset provided
by [3] is presented at the first (sub)column of the respective method column. The number
of genes discovered by our procedure that are common for the corresponding statistical
method is given at the respective second (sub)column. The last column of the table “ML
all data” consists the total amount of differently expressed genes that are identified by
the proposed iterative clustering method.

Table 2. Number of differentially expressed genes selected by the different methods

Method ttest edgeR limma DESeq2 ML
all 

data Distance
ttest ML edgeR ML limma ML DESeq2 ML

Euclidean 71 71 915 647 736 537 982 648 2848
Ma-
halanobis 

71 71 915 738 736 611 982 735 1905

It could be seen that the preference is given for searching by Mahalanobis distance.
By searching oblong clusters through Mahalanobis distance smaller number of 1905
is selected against 2848 through Eucledean distance. By that, by Mahalanobis distance
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larger numbers of common identified genes by statistical and machine learning analysis
are discovered. The only method that is not affected by this observation is ttest - in both
cases the common genes are 71.

An advantage of the proposed procedure is visibility of the obtained result, which
could help in further analysis and interpretation. All data batch separations are plotted in
two-dimension figures, where clusters and outliers are visible and numerated (Figs. 3 and
4). The ability to discover more compact and smaller number of clusters byMahalonobis
(M) distance is confirmed in batch clustering (Table 3). Nevertheless, for six of the
batches it is not the case (batches 4, 9–13) it should be underlined that the Euclidean (E)
clustering in more attains data that belong to the compact clusters of similar genes to the
outliers. This situation is illustrated for the result of 9-th batch clustering (Fig. 5) where
Euclidean clustering finds only 4 clusters whereas Mahalonobis–7 clusters. However,
the oblong clusters of Fig. 5b covers better the compact group of similar genes’ data.

Table 3. Number of determined clusters in each batch for the two clustering

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

E 6 7 5 6 6 7 7 6 4 5 5 8 7 6 8 9 10 7

M 3 7 5 9 2 3 7 1 7 7 10 10 10 4 7 5 2 4

Fig. 3. Results of Iterative DBSCAN clustering by Euclidean distance measure
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Fig. 4. Results of Iterative DBSCAN clustering by Mahalonobis distance measure

   a) Euclidean distance           b) Mahalonobis distance

Fig. 5. Clustering results of the 9-th batch

The proposed procedure can be applied recursively. For this aim new dataset of 7
291 genes is obtained after subtraction the selected differentially expressed genes from
the initial dataset. They are clustered by DBSCAN algorithm and in result additional
317 differentially expressed genes are identified (Fig. 6).
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Fig. 6. Result of DBSCAN clustering, r = 0.2, Nmin = 20 of newly form dataset

Some additional observations have to be marked. By varying the clustering param-
eters different splitting in two groups could be found–the group of outliers (differently
expressed) and rest genes equivalent in its behavior. The clustering determines several
clusters along the equivalent area (Figs. 3 and 4), which captures genes with specific
(very close) behavior. For instance, in case of clustering of 9-th batch (Fig. 5b) clusters
except 2-nd should be interpreted additionally as they show close behavior but, in some
sense, different from the large compact group. All these observations are prerequisites
for further knowledge extraction and an opportunity to find genes with different level of
significance revealing new useful information.

6 Conclusion

The proposed method introduces a new procedure for gene differential expression iden-
tification that is applicable to RNA-seq dataset. It is build based on machine learning
approach that implements iterative clustering on data space defined by the averaged
sample data of two strains.

It is shown that by varying the values of the clustering parameters the procedure
discovers different number of significant genes. The important improvement is found
by proper choice of the cluster distance measure. It is underlined that oblong clustering
finds more genes common for the proposed method and for the statistical analysis for
genes expression identification. The visibility of the procedure results and ability to find
different number of compact clusters is other method advantage. This is an object of
additional information, which could gain new knowledge about the gene activity.

The procedure could be used in combination with statistical methods in order to
stick their search in a smaller number of genes. However, it is applicable as a standalone
method by exploring some further procedure improvements as defining proper number
of genes in a batch, optimal clustering parameters values and procedure optimization.
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Abstract. Mass cytometry is one of the most popular single-cell technology that
canmeasure over 50markers simultaneously for millions of cells. Due to the high-
dimensional nature of the dataset, manual analysis is difficult. Furthermore, during
biological sample preparation, some problemsmay arise that need to be dealt with.
One of the problems is a batch effect that can be introduced to the data because of
experimental design or different experimental settings and techniques used. There
are several bioinformatical solutions to correct the batch effect. Some of them
require technical replicates (CytofBatchAdjust, CytoNorm and CytofRUV), oth-
ers can work for a limited number of cells only (iMUBAC). An interesting aspect
is how the batch correction method affects the results in terms of the number and
quality of identified cell groups and to what extent the batch effect was removed.
In the study, the two batch effect methods were compared, that do not require
technical replicates, cyCombine and iMUBAC, applied to a real dataset with over
2 million bronchoalveolar lavage cells. Results were presented with the origi-
nal mISO plots. Cells were clustered based on the original and corrected marker
profiles with the PARC algorithm. After the correction, the number of clusters
decreased from 24 to 22 (iMUBAC) and 18 (cyCombine). The homogeneity of
clusters expressed as an effect size measure increased after the cyCombine cor-
rection (p-value = 4.38*10–7) in contrast to iMUBAC (p-value = 0.4628). The
results indicate the superiority of cyCombine over iMUBAC for the real dataset
if the within-cluster marker profile similarity is considered.

Keywords: CyTOF · Batch effect · Clustering

1 Introduction

One of the most popular single-cell analysis technology is mass cytometry (CyTOF)
which combines mass spectrometer with inductively coupled plasma and Time-of-flight
detector (TOF). This technique uses stable isotopes of rare metals to label the antibodies,
therefore, enabling the measurement of over 50 parameters [1]. The measured markers
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indicate functional and phenotypic traits of the cellsmaking it possible to identify specific
subtypes.

Mass cytometry overcomes many of the flow cytometry limitations like spectra over-
lap. However, measuring more parameters translates to a more difficult analysis because
of the higher data dimensionality. Moreover, mass cytometers are used to measure mil-
lions of cells but have lower throughput than flow cytometry [2]. This implies that to
process the same number of cells, the mass cytometer has to run longer (for example
several days) than the flow cytometer. This may lead to some problems, including signal
fluctuations and a presence of a batch effect.

The batch effect is a technical variance introduced to the data during experimenting
and it makes it difficult to reveal the real biological variance, therefore a lot of effort is
made to find methods that can remove batch effect accurately. The batch effect not only
results from the experimental design but is also present between datasets from different
experiments or experimental techniques (like CITE-seq) that could be combined and
analysed together to get a better view of the biological problem [3].

Some methods for the batch effect correction in mass cytometry data have been
proposed so far. The most popular ones are CytofBatchAdjust, CytoNorm, CytofRUV,
iMUBAC and cyCombine. CytofBatchAdjust [4] is a method that uses technical repli-
cates that are included in each run to appropriately adjust all samples to a reference
batch without manual intervention. CytoNorm [5] requires an identical control sample
to be included in each batch to perform batch-to-batch correction of variability. First,
the control sample is clustered with FlowSOM [6] to find cell subpopulations and goal
distributions are determined based on the quantiles calculated for the clusters. The orig-
inal values are translated to follow the goal distribution. Then the rest of the samples
are normalized using learned models leaving only a biological variation in the data.
CytofRUV [7] is based on RUV-III method, which was applied mainly for technologies
likeRNA-Seq ormicroarrays. Themethod uses pseudo-replicates to estimate and remove
the artificial variation from protein expression. iMUBAC [8] uses only healthy controls
for batch correction. The data are downsampled to a fixed number of cells per batch to
reduce the computations. Then, the expression values are corrected with Harmony [9]
with the default parameters. cyCombine [3] allows integration of cytometry data from
different baches, experiments and experimental techniques. This technique uses Com-
Bat [10], which was introduced to remove batch effects from microarray expressions, to
remove technical variation. Similar cells are grouped by a self-organizing map (SOM)
and the groups are batch corrected.

The methods propose a lot of diagnostic plots and measurements that will indicate
the presence of batch effect in data and evaluate the effectiveness of batch correction.
Some of the techniques are Earth Mover’s Distance (EMD) for batch-to-batch compar-
isons presented on different types of plots; distribution of each marker in each batch;
multidimensional scaling plot (MDS); comparison of EMD values before and after cor-
rection [3] and visualization of the batches on two-dimensional plots after dimensionality
reduction. However, these methods, especially the last one, are not clear indicators of
the batch effect when the number of cells exceeds millions of cells.

In the study, two of the mentioned batch effect removal methods: iMUBAC and
cyCombine were applied and compared. A real dataset was used that does not have
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technical replicates, therefore the correction with the other three techniques (Cytof-
BatchAdjust, CytoNorm and CytofRUV) is impossible since they require the replicates.
To evaluate the effectiveness of the methods, after batch correction the dataset was clus-
tered with PARC [11]. An interesting aspect is how the batch correction method affects
the results in terms of the number of identified cell subtypes. Since iMUBAC uses only
healthy samples for the correction the cyCombine was also applied to the same healthy
samples. A proposed new visualization technique can help visualize the batch effect and
if it decreased after correction. The technique is also helpful to visualize the results of
clustering.

2 Materials and Methods

2.1 Dataset

Data used in the study contained healthy control samples of bronchoalveolar lavage cells
(BALC) from studies on drug-resistant tuberculosis. Bronchoscopies were performed in
the bronchoscopy theatre, ward A5, Tygerberg Hospital (TBH) from Cape Town, South
Africa. The dataset was measured in seven batches with CyTOF2 instrument, located at
the SATVI institution (South African Tuberculosis Vaccine Initiative) at the University
of Cape Town. For each cell, a set of 32 parameters (markers) was collected, where 19 of
them were extracellular (phenotype features) and 13 intracellular (functional features).

Before using the batch effect removal methods, the dataset was normalized with
MATLABNormalizer v0.3 software and the samples were filtered during manual gating
to discard debris, dead cells, beads or doublets from the analysis. Eachmarker expression
was arcsinh transformedwith a co-factor of 5 for visualizationpurposes.The total number
of cells used in the study was equal to 4,145,712. Table 1 presents the number of cells
in each batch.

Table 1. The number of cells in each batch.

Batch no Number of cells

Batch 1
Batch 2
Batch 3
Batch 4
Batch 5
Batch 6
Batch 7
Total

761,230
598,492
205,958
329,228
341,007
1,449,084
460,713
4,145,712

2.2 Batch Effect Correction

Cells were corrected with the iMUBAC method using the default parameters set by the
authors except for maxN that was set to 300,000. This means a maximum of 300,000
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cells were randomly selected for each batch to correct, that is 2,005,958 cells (about
50% of data). To make a fair comparison, the same set of cells was used for cyCombine
correction, although this method is not limited to the number of cells and the patient’s
status. This algorithm was also run with the default parameters.

2.3 Cell Subtypes Identification

For the cell subtypes identification on corrected data, the PARC [11] algorithm was used
with the default parameters. Although the FlowSOM method is the most often used
clustering tool for mass cytometry data because it is fast and gives satisfactory results
in most cases, it has no automatic way to precisely estimate the number of cell types.
FlowSOM often results in an overestimated number of clusters that have to be merged
manually after examination of the clusters’ content. Therefore it was decided to apply a
newer method, which automatically finds the number of clusters that is consistent with
the experts’ opinion. PARC constructs a nearest-neighbour graph with a hierarchical
navigable small world and prunes the edges based on their edge-weight distribution.
Then, the community detection is performed with the Leiden algorithm. The method is
fast and applicable to many single-cell technologies. The algorithm works well for high-
dimensional data and efficiently detects rare cell subpopulations. The clustering was
applied to cells described by the 32 markers after batch effect correction. The resulting
cluster assignments were then transferred to the corresponding uncorrected cells for
comparison purposes.

2.4 Statistical Comparison of Methods

Having observations before and after batch effect correction with PARC clusters, the
effect of iMUBAC and cyCombine on the resulting clusters was checked with the
ANOVA post-hoc Q Tukey test, for each marker. For the pairwise comparisons of
marker’s expression between clusters, an effect size was calculated (1) where mA and
mB are mean values of marker expression in clusters A and B; Nps (2) is a pooled sample
size; NA and NB are sample sizes in the clusters; N is a total number of samples; SSwithin
is a sum of squares within k groups (all clusters).

dAB = mA − mB

SE ∗ √
Nps

= mA − mB
√

SSwithin
N−k ∗ 1

Nps
∗ √

Nps

= mA − mB
√

SSwithin
N−k

(1)

Nps = 2
1
NA

+ 1
NB

(2)

The pairwise comparison resulted in a set of dAB effect size values for each marker
and the median value was calculated as the global effect size. Therefore, for each exper-
iment (iMUBAC, cyCombine) 32 values of dAB were collected before and after batch
correction (64 values in total per experiment). The effect sizes were then compared with
the Wilcoxon signed-rank test. The assumption was, that after batch effect removal the
heterogeneity of marker expression between clusters will be higher than before the cor-
rection. TheWilcoxon test was performed to check if the homogeneity of markers in the
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clusters after correction is greater than before at a 5% significance level. The median
shift of values was also included next to the p-value.

Moreover, the centroids of clusters (vectors of 32meanmarker values) after iMUBAC
and cyCombine correction were grouped using agglomerative clustering with Spear-
man’s rank correlation coefficient as the distance metric to find cluster equivalents in
bothmethods. If a cyCombine cluster’smarker profile is similar to the iMUBACcluster’s
profile, then the two clusters probably describe the same type of cells.

2.5 UMAP Transformation

One of themost frequently used visualizationmethods for high dimensionalmass cytom-
etry data is Uniform Manifold Approximation and Projection (UMAP) [12]. With this
algorithm, it is possible to see high dimensional data structures projected on the two-
dimensional space. It is convenient to present analysis resultswith the use ofUMAPplots,
for example, cell assignments after grouping. In the study, generatedUMAP embeddings
from the batch corrected samples and the same transformationwas used to present results
for raw data. The assumption was, that each cell will be placed in a different position
in the UMAP space before and after correction. The transformation is applied to the
same set of features (markers) so it is possible to observe the change in cell placement
and the effect of correction. To transform new data with the learned model, a simple
neural network for regression tasks with three fully connected layers was proposed. The
number of neurons in the layers was 100, 50 and 25 and the activation function was
ReLU. The network took as input a vector of 32 markers and the output was a learned
UMAP embedding. The performance of the network was evaluated with the coefficient
of determination.

2.6 mISO Plots–Visualization of Results in High Dimensional Space

Because of the large number of observations (about 2 mln), presenting cell assignments
to specific groups by colouring the cells on the plot may not be the best choice of
visualization, especially when the cells onUMAP plots densely occupy a specific region.
Due to this, the results could be misinterpreted. In the paper, a proposed new type of
visualization is used–median isoline plot (mISO) that can be superimposed on UMAP
plots. It is based on isolines that determine the density of the points. mISO plot has a
parameter m that defines the density level above which the data will be displayed. The
default value of m is 0.5 (median) and this value is used in the study. This method clearly
shows the cell assignments by presenting the area of the highest concentration of the
group of observations, a “core” of the group at the specified level (Fig. 1.).
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Fig. 1. mISO plot as a proposition of high-dimensional data visualization technique that reveals
the most densely populated regions. A) One batch of samples (green) looks as if it is evenly
spreading over the data space (grey points). B) mISO plot showing region above 25% quartile
isoline. C) mISO plot showing region above 50% quartile (median) isoline. D) mISO plot showing
region above 75% quartile isoline.

2.7 Technical Details

The analysiswas conducted inPython,R andMATLAB2020a environments. The system
implementation was carried out using GeCONiI server (Intel Xeon Gold 6226R CPU
64 threads, 2.9GHz, GPU: 3x NVIDIA Tesla V100-PCIE with 1x 16GB and 2x 32GB).

3 Results

The same set of 2 mln healthy cells from seven samples were corrected with iMUBAC
and cyCombine to remove technical variances present in the data. Using mISO plots,
the effect of batch correction was visualized on UMAP. Figure 2 shows the effect of
the iMUBAC method on each sample distribution in the UMAP space. The uncorrected
samples (Fig. 2.A.) are located in different regions on the plot, while the corrected
samples (Fig. 2.B.) share the space to a large extent - is visible, that they overlap. The
same behaviour can be observed for samples correctedwith cyCombine (Fig. 3.). Despite
the differences in the location of the cells (different UMAP shape), the highest density
of each sample before correction (Fig. 3.A.) occupy a separate space than after applying
cyCombine (Fig. 3.B.). It can be also noticed that in the cyCombine case the overlap
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is bigger and more regular than in the iMUBAC. The overlap of samples is desirable
because it indicates the removal of technical variance in data.

Fig. 2. Visualization of results after iMUBAC correction. A) Samples before batch correction.
B) Samples after batch correction. C) Clusters found with PARC before correction. D) Clusters
after batch correction.

Cells before and after batch removal were subjected to cell subtypes identification
with the PARC algorithm. The results were presented on the mISO plots to visualize the
impact of the correction on the cluster location. The clustering of cells was conducted
after the batch correction and the same cluster assignments were transferred to the
raw cell expressions. For the iMUBAC corrected cells, the PARC algorithm found 22
clusters (Fig. 1.D.) that overlap strongly when transferred to raw data (Fig. 2.C.). For the
cyCombine, 18 clusters were found (Fig. 3.C-D.) and the results are similar to iMUBAC,
however, the differences before and after correction are smaller.
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Fig. 3. Visualization of results after cyCombine correction. A) Samples before batch correction.
B) Samples after batch correction. C) Clusters found with PARC before correction. D) Clusters
after batch correction.

The cluster centroids were grouped with agglomerative clustering and visualized
with a dendrogram (Fig. 4.). It can be noticed, that most of the clusters (14 clusters)
from one experiment have a similar cluster from the second experiment. The pairs are
presented in the same colour on the dendrogram (Fig. 4.A.) as well as the mISO plots
(Fig. 4.B-C.). Clusters that do not have a direct pair are presented in grey.

To better understand the differences between the clusters from both experiments,
each marker expression was compared among all the clusters with the ANOVA post-hoc
Q Tukey test and the dAB effect size measure. The visualization of the median dAB
values for each marker before and after correction is presented in Fig. 5. The effect size
before iMUBAC correction did not change much after the correction, in contrast to the
cyCombinemethod,where the values have increased. The observationwas validatedwith
the Wilcoxon test. For the iMUBAC correction, the p-value was 0.4628 with a median
shift of 0.0011. For the cyCombine correction, the p-value was 4.38*10–7 (p-value≈0)
with a median shift of 0.0961.



Comparison of Batch Effect Removal Methods 407

Fig. 4. Comparison of the clustering results after batch correction. A) Dendrogram showing
similar clusters (colour-coded) between the two correction methods; iM - cluster created after
iMUBAC correction; cC–cluster created after cyCombine correction. B) mISO plot of iMUBAC
clusters which have a direct counterpart among cyCombine clusters. C) mISO plot of cyCombine
clusters which have a direct counterpart among iMUBAC clusters. The clusters that are most
similar according to the dendrogram share the same colour. Clusters that do not have a similar
pair from the other experiment are presented in grey.

Fig. 5. Median effect sizes from post-hoc ANOVA test before and after batch correction. A)
iMUBAC. B) cyCombine.
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4 Discussion

Mass cytometry is a very popular technology used for deep phenotyping, that overcomes
the limitations of traditional flow cytometry. However, the ability to measure dozens of
parameters and millions of cells makes the analysis of CyTOF data more difficult and
impossible to conduct manually. Therefore, automatic tools that accurately and quickly
perform the relevant parts of the analysis are constantly being sought. Difficulties in
the implementation of these tools are the presence of artefacts, contamination and other
problems arising during the preparation of the sample and the measurement itself, as the
batch effect.

There are many proposed solutions for the batch effect problem and how to decrease
or remove it, with the most popular five: CytofBatchAdjust, CytoNorm, CytofRUV,
iMUBAC and cyCombine. Unfortunately, the first three solutions require technical repli-
cates that are not always available. There is also the question of which method is the best
to use for our data. Also, howmuch can the results differ after applying a specificmethod
of correcting the batch effect? To address this question, a comparative analysis of the
results of cell identification after data correction by cyCombine and iMUBAC methods
was conducted. For the comparison, the same set of observations and preprocessing was
used, as well as the default parameters of each method.

For the visual comparison, it was decided to generate UMAP plots, where for cor-
rected data the UMAP was created and then, the learned transformation was applied to
uncorrected data to see how the cells changed their position. The effect of transformation
is visible in Figs. 2 and 3, as some blurring of the grey shapes that were formed on the
UMAP plot after the correction. Because the effect size introduces an artificial variance
to the data, it is assumed that before batch correction each of the baches (samples) will
take a separate place in the UMAP space. Therefore after batch correction, the sam-
ples should overlap more than before the correction, since this issue is reduced. This
is reflected in the UMAP transformation (the blurring indicating movement of points
depending on the marker values) as well as in the mISO plots (Fig. 2.A. and Fig. 3.A.).

With mISO plots, it can be seen that iMUBAC correction had less impact on the
placement of the cells than cyCombine, where the samples overlap almost completely.
This would be impossible to observe on a regular UMAP plot with a specified colour
of the points corresponding to each batch. The proposed mISO plot makes it easier to
observe the change in expression values. It is expected that cells with different values
will lie further apart in the UMAP space and with the batch effect, this behaviour can
be seen on the mISO plot for samples. After the correction, samples should overlap
because the technical variance is decreased and cells of the same type lie close to each
other among all batches. Visually, cyCombine (Fig. 3.A.) has a better correction of values
than iMUBAC (Fig. 2.A.).

After batch effect removal, clustering of the dataset was conducted with the PARC
method and default parameters. The algorithm works fast (about an hour) with over 2
million observations and automatically finds the number of clusters. After iMUBAC
correction, the number of clusters was 22 and after cyCombine correction, the number
was 18. The results are presented in Fig. 2.D. and 3.D. It can be seen especially for
iMUBAC correction, that the clusters transferred to the raw data are overlapping (for
example the six clusters at the bottom of Fig. 2.C. overlap completely). This indicates
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that without the batch effect correction the cell types that overlap would not be found
but joined to other clusters. It is expected that after the correction cores of the clusters
will take a separate place which is visible for both methods.

Clustering visualization with the mISO plots is not sufficient to infer the superiority
of any method but someone can wonder which division into clusters is better since the
different number of clusters results only from the batch correction method. Dendrogram
(Fig. 4.A.) shows that 14 of the clusters are similar between the methods and the clusters
lie in a similar place despite the different UMAP transformations (Fig. 4.B-C.). It can
be concluded that the clusters represent the same type of cells. However, there are 8
clusters after IMUBAC and 4 after cyCombine corrections that do not have a direct
counterpart and because there are more iMUBAC clusters, they probably contain a
mixture of different cell subtypes.

The cluster assignments were transferred to the corresponding raw expression values
to examine the differences in the values after correction andmeasure how the homogene-
ity of markers within clusters has changed. For each experiment (iMUBAC, cyCombine)
an effect size was calculated for each marker in pairwise comparisons between cell sub-
types. A median of the pairwise effect sizes was computed to get one overall value for
each marker. This resulted in 32 effect size measures (Fig. 5.) for each case (32*4 in
total): for data before and after iMUBAC correction grouped into 22 clusters and data
before and after cyCombine correction grouped into 18 clusters. The Wilcoxon signed-
rank test revealed that the differences in effect size measures after correction are not
greater than before for the iMUBAC method (p-value = 0.4628). This may indicate
that the batch effect was not significantly removed and the clusters may contain a mix-
ture of several cell types. The raw dataset was also clustered with PARC (rather than
transferring the clusters gained after correction) and the algorithm found 24 clusters.
After iMUBAC correction, it was 22 clusters so the reduction from 24 to 22 is minor
compared to cyCombine (18 clusters). This may suggest that the iMUBAC correction is
not sufficient to remove the batch effect.

Taking all of the above into consideration, it can be concluded that cyCombine is
a better method for batch effect removal than iMUBAC. It is not limited to healthy
(control) patients–cyCombine removes the batch effect from the whole dataset without
interfering with biological differences. cyCombine also does not need downsampling–it
works fast and efficiently for large datasets with millions of cells so the correction can
be more accurate. The measures of effect size after correction increased significantly
(p-value = 4.38*10–7) which means the homogeneity of the clusters is higher therefore
the clusters differ more.

However, the obtained results should be further analysed and compared with other
methods on different datasets. It is possible that cyCombine may be better for the used
dataset but another problemmay need another batch effect removal method to effectively
reduce the technical variance.

In the future, the proposedmISOplot visualizationmethodwill be shared as a Python
package for general use in the problems of high-dimensional data analysis.
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5 Conclusions

In the study, two batch effect removal methods, iMUBAC and cyCombine, were com-
pared. Bothmethods significantly decrease the batch effect. Cell clustering in the domain
of corrected marker profiles resulted in a decreased number of detected cell groups
for both methods compared to uncorrected data. The cell-type marker homogeneity
increased after applying cyCombine in contrast to iMUBAC, where the one-vs-other
effect size analysis did not reveal significant improvement. The results indicate the supe-
riority of cyCombine over iMUBAC for the real dataset if the within-cluster cell-type
marker profile similarity is considered.
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Abstract. Differential expression study between tumor and non-tumor cells aids
lung cancer diagnostic classifications and prognostic prediction at various stages.
Support vector machine (SVM) learning is used to categorize the morphology of
lung cancer. Logistic regression, random forest, and group lasso-based models
are used to model dichotomous outcome variables. The purpose is to take groups
of observations and design boundaries to forecast which group future observa-
tions belong to base measurements. The performance of these selected regression
and classification models using lung cancer prognostic indicators is evaluated
in this article. The presented results might guide for further regularizations in
classification techniques using known lung carcinoma marker genes.

Keywords: Regression · Lung carcinomas · Predictions

1 Introduction

Among all malignancies, lung cancer caused the most considerable loss of pay, total-
ing $21.3 billion in year 2018–19 [1]. However, the specific environmental and genetic
etiology of a person’s lung cancer is unknown, and it can be described as a tumor form-
ing in the lung when altered cells escape the immune system and grow out of control.
Despite the fact that many lung cancer research findings have been published, scientific
advancement in lung cancer research is still limited. Lung cancer diagnostic classifi-
cations and prognosis prediction at various stages are aided by differential expression
analysis between tumor and non-tumor cells. Attempts have been undertaken to find
genes linked to lung cancer symptoms. Lung cancer morphology categorization has been
performed using support vector machine learning techniques [2]. Alanni et al. devised a
deep gene selection technique for cancer classification frommicroarray datasets [3]. The
results of their experiments revealed an average sensitivity of 95.22% and a specificity
of 77.39%. Several machine learning methods have also been utilized to identify 13
top genes in lung adenocarcinoma and lung squamous cell cancer [4]. To learn cancer
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type classification based on TCGA data, Mohammed et al. employed the least absolute
shrinkage and selection operator (LASSO) as a feature selection approach [5]. In addi-
tion to cancer classification and biomarker identification, overlapping feature selection
strategies have been used [6]. Squamous cell lung cancer (LUSC) has been associated
to four genes CCNA2 (890), AURKA (6790), AURKB (9212), and FEN1 (2237) [7],
while lung adenocarcinoma (LUAD) has been linked to four genes (CD44 (960), CCND3
(896), NCALD (83988), MACF1 (23499), and RAMP2-AS1 (10266). In a comprehen-
sive genomic study of squamous cell lung tumors [9], one gene, TP53 (7157), was found
to be altered in virtually all cases. To model dichotomous outcome variables, logis-
tic regression, random forest, support vector machines (SVM), and group lasso-based
models are utilized [10, 11]. The purpose is to take groups of observations and design
boundaries to forecast which group future observations belong to base on their measure-
ments. The performance of these selected regression and classification models using
lung cancer prognostic indicators is evaluated in this article.

2 Dataset and Methodology

We chose to test performance of each of the 4 techniques on 3 different datasets with
lung LUAD (517 tumor, 59 normal) [12], LUSC (501 tumor, 51 normal) [9] and non-
small cell lung carcinomas (NSCLC) (91 tumor, 65 normal subjects) [13]. Libraries
randomForest, caret was used for random forest application, library kernlab and e1071
for SVM, and glmnet for regression. Functions svm(kernel= “radial”, cost= 10, gamma
= 1), predict(), glm(),wald.test(), and glmnet()were utilized for performing k-fold cross-
validation to find optimal lambda value that minimizes test mean squared error (MSE)
[14–16]. Cross validationswere performedwith 70:30 training to testing splits. Response
value was considered 0/living and 1/death status. Sum of squares total (SST), sum of
squares error (SSE) and R-squared value on a response variable (y) were calculated as
follows:

sst < - sum((y-mean(y))ˆ2).
sse < - sum((y_predicted-y)ˆ2).
rsq < - 1 - sse/sst.
All the code for accessing data and methodology can be found at authors GitHub

account: https://github.com/spawar2/Regression-Lung-Carcinoma/tree/main.

3 Results

3.1 Prediction Performance of Random Forest

Test classification accuracy of 55%was obtained on selected 10 genes expression values
with an 30–78 range for 95% CI. The P value was seen insignificant with sensitivity and
specificity of 14 and 81% respectively. The 10 genes were not found to exclusively clas-
sify the survival response status. We also tested this classification approach on different
combinations of these 10 marker genes, and results were consistent. Table 1 provides
details of test and training metrics of random forest.

https://github.com/spawar2/Regression-Lung-Carcinoma/tree/main://github.com/spawar2/Regression-Lung-Carcinoma/tree/main
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Table 1. Test and training metrics of random forest.

Train: Type of random forest:
regression
Number of trees: 500
No. of variables tried at each split:
3
Mean of squared residuals:
0.2553676
% Var explained: −6.72

Test: Type of random forest:
classification
Number of trees: 500
No. of variables tried at each split:
3
OOB estimate of error rate:
40.62%

Accuracy 1 0.5556

95% CI (0.944, 1) (0.3076, 0.7847)

No information rate 0.6094 0.6111

P-value [Acc > NIR] 1.709e−14 0.7680

Kappa 1 −0.0435

Sensitivity 1 0.14286

Specificity 1 0.81818

Pos pred value 1 0.33333

Neg pred value 1 0.60000

Prevalence 0.3906 0.38889

Detection rate 0.3906 0.05556

Detection prevalence 0.3906 0.16667

Balanced accuracy 1 0.48052

‘Positive’ class 0 0

3.2 Prediction Performance of SVM

Testing SVM with 10 marker gene expression on a survival response variable predicted
85% subjects living/0 correctly (n = 20), and 24% subjects dead/1 correctly (n = 62)
(Table 2). The test group was randomly selected with Fig. 1 showing dispersion of 2
groups for genes 890 and 6790.We found similar dispersion patterns for other genes and
throughout all the 3 separate datasets. SVM poorly classifies survival response status
with known marker genes.

Table 2. SVM classification of test data.

0 1

0 17 3

1 15 47
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Fig. 1. Dispersion of survival and dead subjects for genes 890 and 6790.

3.3 Prediction Performance of Logistic Regression and LASSO

Testing prediction probabilities fromLASSO ranged from 0.3–0.7 (Table 3). Aweighted
distance between the unrestricted estimate (Wald test) P value was found to be insignif-
icant. The Chi-squared value of 0.89 with a P value > 0.05 also states insignificant
prediction probabilities. The least squares regression tries to find coefficient estimates
that minimize the sum of squared residuals (RSS). It can be presented with function:
RSS = �(yi – ŷi)2, yi: is actual response value for the ith observation and ŷi: is the
predicted response value based on the multiple linear regression model. Figure 2 depicts
calculates the binomial deviance (binomial log-likelihood) in the test dataset. The test
data R square value of −6.70 was obtained stating the selected model does not follow
the trend of the data, therefore leading to a worse fit than the horizontal line.

Fig. 2. Calculation of binomial deviance (binomial log-likelihood) in the test dataset.

Table 3. Prediction probabilities from LASSO.

Status Predicted probability

0 0.6545150

0 0.6875263

(continued)
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Table 3. (continued)

Status Predicted probability

0 0.5171204

1 0.6935557

1 0.6536800

1 0.7114294

1 0.7818345

1 0.3633772

1 0.8720003

1 0.6644866

1 0.6111339

1 0.6527981

4 Discussion and Future Scope

The biological literature of the selected 10 key genes is enriched by their new roles
associated to lung cancer, which have moved from an indirect to a direct association,
i.e., to become new biomarkers. In many cases, indirect impacts are more important than
direct effects because direct effects can be seen and controlled, whereas indirect effects
are difficult to detect and control. We wanted to test their effects on response variable
using selected regression and classification techniques.We find insignificant correlations
with response variable. these findings are consistent for all the three cancer types. There
can be several reasons of these outcomes. Growing more than one type of lung cancer
is uncommon among all known lung cancer types. As a result, competing risk factor
models can be extremely effective at modeling a variety of lung cancer forms. Further,
confounding factors (age, gender, preexisting conditions, etc.) also significantly affect
regression perditions. The expression data is rarely linearly separable, and prone to noise
and overfitting. Although we did take care of limiting outliers, regression techniques
are oversensitive to nominal outliers. One limitation of this study is multicollinearity,
dimensionality reduction techniques are needed to be implemented to address issue
of multicollinearity apart from above confounding factors. The presented results might
guide for further regularizations in classification techniques using known lung carcinoma
marker genes.
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Abstract. Search schemes enable the efficient identification of all
approximate occurrences of a search pattern in a text. Using a bidi-
rectional FM-index, search schemes describe how to explore the search
space in such a way that runtime is minimized. Even though in-index
matching has an optimal time complexity, relatively expensive random
memory access is required for elementary operations on the FM-index.
We analyze to what extent in-index matching can be complemented with
in-text verification where a candidate occurrence is directly validated in
the text using a bit-parallel, pairwise alignment procedure. We find that
hybrid in-index/in-text matching can reduce the running time by more
than a factor of two, compared to pure in-index matching. We present
Columba 1.1, an open-source (AGPL-3.0 license) software tool written
in C++ that efficiently implements these ideas. Using a single CPU core,
Columba 1.1 can identify, within a maximum edit distance of four, all
occurrences of 100 000 Illumina reads (150 bp) in the human reference
genome in roughly half a minute. This significantly outperforms exist-
ing, state-of-the-art tools.

Keywords: Lossless sequence alignment · FM-Index · Bit-parallel
alignment · In-text validation

1 Introduction

Approximate pattern matching is a well-studied problem in computer science and
central to many bioinformatics applications. It involves identifying occurrences of
a search pattern P in a (much) larger text T . For example, in a typical setting,
P could be a short DNA fragment (a read) and T a (collection of) reference
genome(s). Due to sequencing errors and genetic diversity among individuals,
one is often interested in finding approximate occurrences of P in T .

Historically, lossy approximate pattern matching algorithms gained a lot of
popularity. Such algorithms rely on heuristics to quickly identify some (but not
necessarily all) approximate matches of P in T . By sacrificing some sensitivity,
significant performance gains can be obtained. As such, lossy algorithms are
used in many state-of-the-art alignment tools such as BLAT [8], BLAST [2],
BWA [12], etc. In contrast, in this paper, we focus on lossless algorithms which
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are guaranteed to retrieve all approximate matches of P in T under a certain
error distance metric. Specifically, the k-mismatch problem involves identifying
all occurrences of P in T with up to k errors. Under the Hamming distance
metric, only substitutions are allowed whereas the Levenshtein/edit distance
metric allows substitutions, insertions, and deletions. In this work, we focus on
the edit distance metric.

Full-text indexes such as suffix trees [5], enhanced suffix arrays [1] and FM-
indexes [4] are used within numerous bioinformatics tools [18]. They allow for
unidirectional, exact pattern matching, one character at a time, with a runtime
proportional to the length of the search pattern and independent of the size of T .
A naive approach to lossless approximate pattern matching would be to explore
all possible branches in the index (called backtracking) within the maximum
allowed Hamming/Levenshtein distance of search pattern P . This approach has
two problems: a) the number of branches to explore increases rapidly with k and
b) the vast majority of branches that are explored eventually turn out not to be
matches.

A bidirectional index (such as the affix tree [13], the affix array [24] and
the bidirectional FM-index [11]) augments the functionality of its unidirectional
counterpart by allowing patterns to be matched in both directions: left-to-right
and right-to-left. Using, e.g., a bidirectional FM-index, a query pattern can be
searched by starting at any arbitrary position of that pattern and extending
the match either to the left or to the right in arbitrary order. More formally, a
(partial) match P can be extended by a single character c to either cP or Pc.
In 2009, Lam et al. were the first to note that this added functionality opens up
new possibilities for faster lossless approximate matching [11]. Leveraging the
classical pigeonhole principle, they partitioned P into k + 1 parts, from which
immediately follows that any approximate occurrence with at most k errors,
must have an exact match with at least one of these parts. By first performing
an exact search for one part of P (which maps to a single branch of the index)
and then extending this partial match with an approximate search (backtrack-
ing), significant computational gains are obtained. This idea was generalized by
Kucherov et al. who introduced the concept of search schemes [10]. Informally,
search schemes define how a pattern P is matched using a bidirectional index,
such that unsuccessful branches are discarded as quickly as possible and, hence,
the runtime is minimized. Kucherov et al. also proposed a number of efficient
search schemes with k + 1 and k + 2 parts for up to k = 4 errors. Kianfar et
al. [9] further extended this work and used integer linear programming (ILP)
to generate additional search schemes for the Hamming distance metric. Addi-
tionally, they show that related work on lossless approximate pattern matching
by Vroland et al. on 01 * 0 seeds [26] can also be expressed as search schemes.
Therefore, search schemes represent a flexible framework for lossless approximate
pattern matching in which a multitude of algorithmic ideas can be expressed.

Recently, we proposed Columba [21], an efficient software tool for lossless
approximate pattern matching using arbitrary search schemes. We proposed an
algorithm for the dynamic partitioning of search patterns to further reduce the
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search space and used an efficient memory layout for the data structures that
underlie the FM-index. In this paper, we further build upon this work and we
make the following contributions:

1. We adapted the search schemes by Kucherov et al. with k+1 parts by impos-
ing more stringent lower bounds on the cumulative number of errors in the
different parts of the search pattern while maintaining the guarantee that all
possible error distributions are covered. These adapted search schemes reduce
the runtime by nearly 15%.

2. We adopt the bit-parallel, pairwise alignment algorithm by Hyyrö [7]. This
algorithm is used to accelerate edit distance computations during in-index
matching. Additionally, it is applied to in-text verification where a candi-
date occurrence of the search pattern is assessed directly in the text T . We
show that using hybrid in-index matching/in-text verification can reduce the
runtime by half compared to using only in-index matching.

3. We developed Columba 1.1, an open-source implementation in standard
C++11 in which the above techniques were implemented. We demonstrate
that our implementation is several times faster than other state-of-the-art
lossless alignment algorithms such as GEM [14] and Bwolo [26] for the task
of identifying all occurrences of 150 bp Illumina reads in the human refer-
ence genome within an edit distance of k = 4. We show that Columba 1.1 is
faster than BWA in mem mode for k = 1, 2 and 3 and has a similar runtime
for k = 4. Columba 1.1 is available at https://github.com/biointec/columba
under AGPL-3.0 license.

This paper is organized as follows. In Sect. 2, we briefly describe the (bidi-
rectional) FM-index and search scheme functionality. Section 3 introduces the
adapted search schemes that are used throughout this work. In Sects. 4 and 5,
we provide the key algorithms for bit-parallel edit distance computations and
their application to in-text verification, respectively. Finally, Sect. 6 provides
performance benchmarks of Columba as well as existing state-of-the-art tools.

2 Preliminaries

2.1 Bidirectional FM-Index

In this paper, we use zero-based array indexing, half-open intervals [.,.) and
standard notation on strings. A text T [0, n) of size n, which ends with a unique
sentinel character $ (defined as the lexicographically smallest character), has a
Burrows-Wheeler transform BWT[0, n), which is defined as BWT[i] = T [SA[i]−
1] if SA[i] > 0 and BWT[i] = $ otherwise [3]. Here, SA denotes the suffix array
of text T , defined as a permutation over {0, 1, . . . , n − 1}, such that SA[i] is
the starting position of the lexicographically i-th suffix of T . To perform exact
and approximate matching, we need support for occ(c, i) queries on the BWT,
that return the number of occurrences of a character c in the prefix BWT[0, i).
This is realized through |Σ| (where Σ denotes the alphabet) bit vectors with

https://github.com/biointec/columba
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Fig. 1. Search scheme for k = 2 errors and 3 parts proposed by Kucherov et al. The
parts are processed from darkest to lightest shade of gray. In each part, the lower and
upper bound to the cumulative number of errors up to and including that part, are
indicated. The arrows indicate the search direction (left-to-right or right-to-left).

constant-time rank support. Exact matching can then be performed by matching
character by character from right to left. Consider an interval [b, e) over the suffix
array for which the corresponding suffixes are prefixed by P . In order to do exact
matching backwards, we want to find interval [b′, e′) whose corresponding suffixes
are prefixed by cP . This can be computed as follows: b′ = C(c) + occ(c, b) and
e′ = C(c)+occ(c, e), where C(c) denotes the number of characters in BWT[0, n)
that are smaller than c. These are pre-computed and stored in a small array of
size |Σ|. Since occ queries rely only on constant-time rank operations, exact
matching of a pattern P takes O(|P |) time. The number of occurrences of P
in T is equal to the size of the interval [b, e), i.e., e − b. The positions of these
occurrences in T are then found using the suffix array. One can opt to use a
sparse version of the suffix array, where SA[i] is stored only when SA[i] is a
multiple of a pre-defined sparseness factor s. A length-n bit vector B is stored
alongside the sparse suffix array to indicate for each index i if SA[i] is stored.
The value SA[i] for arbitrary i can be inferred in O(s) time. For details of this
procedure, we refer to e.g. [20]. The FM-index is a full-text index that comprises
a BWT representation and auxiliary tables and that may occupy as little as 2–4
bits of memory per character for DNA sequences [4].

In 2009, the bidirectional FM-index was introduced [11]. By also storing
BWTr, the Burrows-Wheeler transform of the reverse of T , and keeping track
of both the range [b, e) over the BWT as well as the range [b′, e′) over BWTr in
a synchronized manner, P can be extended backwards (to cP ) or forwards (to
Pc). By replacing the ‘occ’ data structure with a so-called ‘Prefix-Occ’ structure,
both can be done in O(1) time [19].

2.2 Search Schemes

To perform lossless approximate pattern matching with up to k errors one
needs to explore all the branches of the FM-index that could potentially be
matches. Using a naive backtracking approach, an excessive number of unsuc-
cessful branches near the dense root of the search tree will be explored, rendering
backtracking computationally unfeasible even for modest values of k. To allevi-
ate this, Kucherov et al. proposed search schemes [10]. We adopt their notation.
A pattern P is partitioned into p parts Pi (i = 0 . . . p − 1). A search S is a
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triplet of arrays (π, L, U) of size p. Here, π is a permutation over {0, ..., p − 1}
that defines the order in which the parts Pi are processed. In order to constitute
a valid search scheme, π must satisfy the connectivity property, i.e., a partial
match can only be extended in a contiguous manner, either to the left or to the
right. The arrays L and U respectively define the lower and upper bound to
the cumulative number of errors after each part is processed. The core idea of
search schemes is that the number of allowed errors is only gradually increased.
This significantly reduces the search space near the dense root of the search tree.
To cover all possible error distributions over the length of a pattern, multiple
searches are required that collectively form a search scheme. We denote an error
distribution for p parts and at most k errors as e0e1 . . . ep−1, with

∑p−1
i=0 ei ≤ k,

where ei is the number of errors in part Pi. In order for a search scheme for p
parts and at most k errors to be valid, all possible error distributions need to be
covered by at least one search.

For example, for k = 2 errors, Kucherov et al. proposed a search scheme with
three searches: S0 = (012, 000, 022); S1 = (210, 000, 012); S2 = (102, 001, 012)
(see Fig. 1). In the S0 search, exact matching is first performed for the leftmost
part P0. Next, this exact match is extended to the right, thus processing parts P1

and P2, using a backtracking procedure that allows up to two errors. In the S1

search, exact matching is first performed for the rightmost part P2, and extended
to the left by first allowing up to a single error in P1, and then two errors in
P0. Indeed, occurrences of P with two errors in the middle part were already
covered by search S0. Finally, search S2 first involves an exact matching of P1,
which is then extended to the left allowing a single error, and finally to the right
with at least one, and at most two errors. This search also explains the need for
bidirectional matching functionality. Kucherov et al. [10] and Kianfar et al. [9]
proposed search schemes for up to k = 4 errors.

3 Adapted Search Schemes

In earlier work [21], we concluded that the search schemes by Kucherov et al.
with p = k + 1 parts showed the best performance for the task of identifying
occurrences of Illumina reads in the human reference genome under an edit dis-
tance constraint. However, it appears that for some searches S = (π, L, U), the
lower bound array L can be made more stringent, while maintaining the guar-
antee that collectively, all searches within the search scheme cover all possible
error distributions over a pattern. Recall that when part Pi has been processed,
the cumulative number of errors must be between L[i] and U [i]. The benefit of
the adapted search schemes is twofold: 1) if fewer error distributions of a search
pattern are covered by multiple searches, the number of redundant occurrences
decreases, reducing the time to filter them and 2) by making the lower bounds
more stringent, the search space that needs to be explored decreases. The original
and adapted search schemes are presented in Table 1.
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Table 1. The original search schemes by Kucherov et al. for p = k + 1 parts and our
adapted search schemes for k = {1, 2, 3, 4} errors. Changes are highlighted in bold.

k Original Adapted

1 (01, 00, 01); (10, 01, 01) (01, 00, 01); (10, 01, 01)

2 (012, 000, 022); (210, 000, 012); (012, 012, 022); (210, 000, 012);

(102, 001, 012) (102, 001, 012)

3 (0123, 0000, 0133); (1023, 0011, 0133) (0123, 0002, 0133); (1023, 0113, 0133)

(2310, 0000, 0133); (3210, 0011, 0133) (2310, 0000, 0133); (3210, 0111, 0133)

4 (01234, 00000, 02244); (43210, 00000, 01344); (01234, 00002, 02244); (43210, 00000, 01344);

(10234, 00133, 01334); (01234, 00133, 01334); (10234, 01334, 01334); (01234, 00334, 01334);

(32410, 00011, 01244); (21034, 00013, 01244); (32410, 00111, 01244); (21034, 00113, 01244);

(10234, 00124, 01244); (01234, 00034, 00444); (10234, 01224, 01244); (01234, 00344, 00444)

4 Bit-Parallel Edit Distance Computation

To enable approximate pattern matching, we rely on edit distance computa-
tions. The edit distance between two sequences S1 and S2 of lengths m and n,
respectively, can be computed in O(mn) time using a dynamic programming
algorithm. This entails computing an (m+1)× (n+1) matrix D such that each
element D(i, j) represents the edit distance between prefix S1[0 . . . i) and prefix
S2[0 . . . j). The values D(i, j) are efficiently computed by following recurrence
relation:

D(i, 0) = i;D(0, j) = j ∀i, j ≥ 0

D(i, j) = min

⎧
⎪⎨

⎪⎩

D(i − 1, j − 1) + δ(S1[i − 1], S2[j − 1]
D(i − 1, j) + 1
D(i, j − 1) + 1

∀i, j > 0

where δ(a, b) is 0 if a = b and 1 otherwise. The oldest description of this algorithm
is by Vintsyuk [25] in 1968; it has been independently rediscovered by others (see
e.g. [17] and the references therein). Myers [16] improved the time complexity to
O(mn/w), where w denotes the computer word size (w = 64 for most CPU archi-
tectures). The core idea is to leverage bit-level parallelism to compute multiple
values of matrix D simultaneously. Inspired by Myers work, Hyyrö [6] proposed a
slightly more efficient bit-parallel algorithm. We first provide a brief description
of this algorithm. Next, we describe our specific adaptations.

4.1 Hyyrö’s Bit-Parallel Algorithm

Adjacent elements within any row or column of matrix D differ by at most a value
of 1, i.e., for all i, j: D(i, j) − D(i, j − 1) ∈ {−1, 0, 1} and D(i, j) − D(i − 1, j) ∈
{−1, 0, 1} (see [15], lemma 3). Similarly, for adjacent elements on a diagonal, it
holds that D(i, j) − D(i − 1, j − 1) ∈ {0, 1}. Rather than computing the values
of D directly, each row i is encoded by five delta vectors VPi, VNi, HPi, HNi,
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and D0i. These delta vectors are stored as bit vectors (i.e., a sequence of 0s and
1s) and are defined as follows:

1. The vertical positive delta vector: VPi[j] = 1 ⇐⇒ D(i, j) − D(i − 1, j) = 1
2. The vertical negative delta vector: VNi[j] = 1 ⇐⇒ D(i, j)−D(i−1, j) = −1
3. The horizontal positive delta vector: HPi[j] = 1 ⇐⇒ D(i, j)−D(i, j−1) = 1
4. The horizontal negative delta vector: HNi[j] = 1 ⇐⇒ D(i, j)−D(i, j −1) =

−1
5. The diagonal zero delta vector: D0i[j] = 1 ⇐⇒ D(i, j) − D(i − 1, j − 1) = 0

The bits HPi[j] and HNi[j] encode the value D(i, j) − D(i, j − 1). The latter
equals either 1 (when HPi[j] = 1), −1 (when HNi[j] = 1), or 0 (when both
HPi[j] = 0 and HNi[j] = 0). Similarly, VPi[j] and VNi[j] encode the value
D(i, j) − D(i − 1, j). Therefore, because D(0, 0) is known (often 0), all other
values D(i, j) can be inferred from the delta vectors.

The key advantage of using the delta vectors is that they can be computed
in a bit-parallel manner as shown in Algorithm 1:

Algorithm 1: Bit-parallel computation of the delta vectors at row i from
those at row i − 1

D0i ← (((MS1[i−1] & HPi−1) + HPi−1) ˆ HPi−1) | MS1[i−1] | HNi−1

VPi ← HNi−1 | ∼(D0i | HPi−1)
VNi ← D0i & HPi−1

HPi ← (VNi << 1) | ∼(D0i | (VPi << 1))
HNi ← (D0i & (VPi << 1))

Here, the symbols &, |, ,̂ ∼ and << respectively denote the bitwise AND, OR,
XOR, NOT and left shift operators. MS1[i−1] is a match vector (again a bit
vector) that indicates which positions in S2 match character S1[i − 1]. The four
match vectors Mc (with c ∈ {A, C, G, T}) are pre-computed. For the exact
details of Algorithm 1, we refer to [6].

4.2 Bit-Parallel Banded Alignment

In the context of this work, we want to identify approximate occurrences within
a distance of at most k edit operations of search pattern P . Therefore, computa-
tions can be restricted to those elements D(i, j) for which |i− j| ≤ k, i.e., within
a band along the diagonal. Each row (or column) of matrix D thus contains at
most 2k + 1 values to compute. For this problem of banded alignment, Hyyrö
proposed a bit-parallel algorithm [6]. Our implementation is heavily influenced
by these ideas but uses a different layout of bit vectors. It is described below.

The global layout of the banded dynamic programming matrix D is depicted
in Fig. 2. Search pattern P is the ‘horizontal’ sequence while candidate occur-
rence O is the ‘vertical’ sequence. The FM-index spells out candidate occurrences
character by character, therefore, we leverage bit-parallel computations at the
level of rows of D. During in-index searching, candidate occurrences are gener-
ated by a depth-first exploration of the search tree. To support backtracking,
the delta vectors of each row are kept in a stack data structure.
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Fig. 2. Layout of the banded dynamic programming matrix D as 64-bit words.

Our implementation can compute edit distance values up to k = 10 for
sequences of arbitrary length. Because k is sufficiently small, a single 64-bits
word can be used to represent a delta vector and all computations per row
are done in O(1) time. Support for larger values of k could easily be achieved
by representing a delta vector by multiple words, at the cost of some loss of
performance. Rows are grouped into blocks of 32 rows each. At each next block,
the delta vectors are shifted by 32 bit positions such that they overlap all relevant
values of the banded dynamic programming matrix (gray-shaded cells in Fig. 2).
For each block, four match vectors Mc (with c = {A, C, G, T}) are pre-computed
to indicate character matches between c and the overlapping positions of P . At
each row i, we also keep track of the value D(i, i). Using the D0i delta vector,
D(i, i) can easily be computed from D(i−1, i−1). The knowledge of D(i, i) and
the HPi and HNi delta vectors allows for the computation of any value D(i, j).
By using population count (‘popcount’) instructions, this can be achieved in O(1)
time. Finally, we adopted Hyyrö’s algorithm to evaluate in a bit-parallel manner
whether all values on a row exceed the maximum edit distance threshold k. This
is important to signal the backtracking algorithm that the current candidate
occurrence O should no longer be extended and that the search procedure should
backtrack and explore a different branch of the search tree. For details on this
algorithm, we refer to [7].

4.3 Matrix Initialization

Traditionally, the first row and column of matrix D are initialized with gap
penalties (i.e., D(i, 0) = i and D(0, j) = j) in the case of global alignment, or
with zero values (i.e., D(i, 0) = 0 and/or D(0, j) = 0) in case of semi-global
alignment. For our use case of search schemes, we need to be able to initialize
the leftmost column of D with 2k + 1 arbitrary values. Indeed, using search
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schemes, search pattern P is matched part by part. Therefore, assuming left-
to-right matching, when matching part Pi, the first column of D should be
initialized with the values from the last column of the matrix of part Pi−1 in
order to continue the alignment.

In the bit-parallel implementation, the initialization of the first row of D
is straightforward: we set the appropriate value for D(0, 0) (e.g., D(0, 0) = 0)
and encode the other values D(0, j) using the HP0 and HN0 delta vectors. For
example, to encode D(0, j) = j, we set HP0[j] = 1 and HN0[j] = 0 for j = 1 . . . k.

To initialize the first column of D with arbitrary values, we append dummy
columns with a ‘negative’ column index to D (illustrated in a lighter shade of
gray in Fig. 2). Again, we use the HP0 and HN0 delta vectors to encode the part
of the first row of D with negative column indexes such that D(0,−i) equals
the desired value for D(i, 0). By always assuming a character match at negative
column indexes, each value D(0,−i) will effectively propagate along a diagonal
and ultimately set D(i, 0) to its correct value. This is easily achieved by setting
1-bits in the corresponding part of Mc for all c = {A, C, G, T}. Even in the
presence of backtracking, the elements D(i, 0) will always be computed correctly.
Because the computations for the negative column indexes are handled within
the same 64-bit word as the regular column indexes, this procedure imposes no
computational overhead.

Because we support a maximum allowed edit distance of 10, we require at
most Wh,max = 11 elements at the top row of D (e.g., to encode the values
{0, 1, 2, . . . , 10} and at most Wv,max = 21 elements at the leftmost column of
D (e.g., to encode the values {10, . . . , 1, 0, 1, . . . , 10}). Thus, the parts of the
delta vectors that could contain relevant values are indicated in a darker shade
of gray in Fig. 2. Depending on the use-case (the actual allowed edit distance
k ≤ 10, and how precisely matrix D is initialized) only a subset of these cells
will effectively contain relevant data.

5 In-Text Verification

In principle, search schemes rely purely on in-index matching: using the bidi-
rectional FM-index, candidate occurrences O of a search pattern P are spelled
character by character. Extending a candidate occurrence by a single charac-
ter ultimately translates into rank operations on bit vectors. Collectively, these
rank operations lead to a random memory access pattern. The expression random
memory access refers to the fact that the memory access pattern is unpredictable,
and hence, will suffer from a large number of cache misses. Therefore, extend-
ing a candidate occurrence by a character is a relatively expensive operation:
Pockrandt et al. estimated at least 100 CPU clock cycles per character [20].

At all times during the spelling of a candidate occurrence O, a range [b, e) over
the suffix array is maintained that refers to the starting positions of each instance
of O in T . Thus, at any point, the size of the range e−b corresponds to the number
of times O occurs in T . This number of instances decreases monotonically when
more characters are added to O. When the value e − b becomes small, it can be
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beneficial to abandon the in-index matching procedure and to verify each of the
instances of O directly in T using the previously described pairwise alignment
procedure. As detailed in Sect. 4, pairwise alignment can be performed efficiently
using bit-parallel techniques in a cache-friendly manner. In contrast, when the
value e − b is large, in-index matching is more computationally advantageous,
because all instances of O of in T are handled simultaneously by the FM-index.

In our implementation, part Pπ[0] is always matched using the FM-index.
In practice, matching Pπ[0] always entails an exact pattern matching procedure
(see search schemes in Table 1). From that point onwards, whenever the value
e − b becomes smaller than or equal to a pre-defined threshold t (referred to
as the ‘tipping point’), candidate occurrence O is no longer extended using the
index and the search procedure switches to in-text verification. When O has been
fully evaluated, the search procedure will backtrack and explore other candidate
occurrences, again using the FM-index.

This idea of hybrid in-index matching/in-text verification within the con-
text of search schemes has been explored previously by Pockrandt et al. for the
Hamming distance metric. The authors report speed-ups between 1.6× and 2.1×
and an optimal tipping point of 25 [20]. Performing in-text verification for the
edit distance metric is more complex because 1) pairwise alignment is computa-
tionally more expensive and thus needs to be highly optimized to have overall
performance gains; 2) the precise start and end positions of each approximate
occurrence of P in T are not known in advance. To this end, the bit-parallel
alignment algorithm from Sect. 4 is easily modified to support semi-global align-
ment.

6 Results and Discussion

All benchmarks were performed using a dataset of 100 000 Illumina NovaSeq
6000 reads (150 bp), randomly sampled from a larger whole genome sequencing
dataset (accession no. SRR9091899). We identified all approximate read occur-
rences up to an edit distance of k = {1, 2, 3, 4} on both strands of the human
reference genome (GRCh38) [22]. We recall that we consider only lossless algo-
rithms that are guaranteed to report all occurrences. We replaced non-ACGT
characters in the reference genome (e.g., Ns) by a randomly chosen nucleotide.
The different chromosomes were concatenated into a single string. As such, a
read can be mapped across the borders of adjacent chromosomes. Such spurious
matches can easily be filtered during post-processing.

All results were obtained using a single core of a 32-core IntelR© XeonR© E5-
2698 v3 CPU running at a base clock frequency of 2.30 GHz. To quantify vari-
ability in runtime, each benchmark run was repeated 20 times. We report both
the average wall clock time as well as the standard deviation. Redundant occur-
rences (as defined in [21]) were filtered.
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Table 2. Comparison of the original search schemes by Kucherov et al. and our adapted
search schemes, for different values of the maximum allowed edit distance k. In both
cases, 100 000 Illumina reads of length 150 bp are mapped to both strands of the human
reference genome.

Search scheme Wall clock
time ± SD

No. of nodes visited
(search space)

No. of redundant
occurrences

k = 2, unique occurrences = 676 528, reads mapped 90.5%

Original 15.91 ± 1.58 s 62 035 887 267 541

Adapted 14.73 ± 1.44 s (−7.4%) 57 263 477 (−7.7%) 264 671 (−1.1%)

k = 3, unique occurrences = 1 416 632, reads mapped 93.1%

Original 30.89 ± 1.80 s 128 708 469 719 576

Adapted 26.82 ± 0.60 s (−13.2%) 116 965 983 (−9.1%) 648 817 (−9.8%)

k = 4, unique occurrences = 2 579 745, reads mapped 94.8%

Original 72.07 ± 2.54 s 364 385 491 1 492 806

Adapted 61.35 ± 0.59 s (−14.9%) 305 476 323 (−16.2%) 1 420 668 (−4.8%)

6.1 Original Versus Adapted Search Schemes

In Table 2, the original and adapted search schemes (as defined in Table 1) are
compared for edit distance values of k = {2, 3, 4} as for k = 1, both search
schemes are identical. We report the average runtime and standard deviation on
a single CPU core and the number of nodes visited in the search tree. The latter
equals the number of times a partial match is extended by a single character c
(in either direction). In practice, this involves expensive random memory access
that largely determines the runtime. It is therefore a clear indication of intrinsic
performance, regardless of the quality of implementation. It is clear that both
in the size of search space (number of nodes visited) and runtime the adapted
search schemes are superior. This is no surprise, as the adapted search schemes
have tighter bounds and thus reduce the search space.

Table 2 also reports the total number of unique and redundant (filtered out)
occurrences for the different values of k. Because search schemes are lossless, the
number of unique occurrences does not differ between the original and adapted
search scheme. Clearly, the tighter lower bounds also reduce the number of redun-
dant occurrences (i.e., occurrences reported by multiple searches in the search
scheme).

Finally, Table 2 reports the fraction of reads that have at least one occurrence
in the reference genome (‘reads mapped’), for the different values of k.

6.2 In-Index Versus In-Text Verification

We compared the runtime for matching 100 000 Illumina patterns to both strands
of the human reference genome with up to k = 4 edit operations for different
values of the tipping point t = 0, 1, 5, 50, 500 and ∞. A value of t = 0 means
that all patterns are entirely matched using the FM-index and that no in-text
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Fig. 3. Left: the runtime for mapping 100 000 Illumina reads of length 150 bp to both
strands of the human reference genome (k = 4) as a function of the tipping point t.
Right: histogram of the number of matches for part Pπ[0] across all searches.

verification is performed whereas t = ∞ denotes that after the initial matching
of the first part Pπ[0], all candidate occurrences are verified directly in T and
that no further in-index extension takes place. For the intermediate tipping point
values, the search procedure switches to in-text verification when e − b ≤ t.

Figure 3 (left) shows the runtime as a function of tipping point t. Clearly,
using purely in-index matching shows the worst performance for this particular
dataset. This is because in-index matching involves expensive random mem-
ory access in the FM-index for each character that is added to a candidate
occurrence. Switching to in-text verification when there is only a single candi-
date occurrence in T (t = 1) reduces runtime by almost half. This is because
bit-parallel, pairwise alignment between the appropriate substring of T and P
can be performed very efficiently. This effect increases with larger tipping point
values and for t ≈ 5, runtime is minimized. For larger tipping point values
(t ≥ 50), the increasing overhead of suffix array lookup operations and pair-
wise alignments associated with in-text verification (that often turn out to be
unsuccessful) dominates the gains. Remarkably, for this dataset, never perform-
ing in-index extension beyond the exact matching of the first part Pπ[0] (t = ∞)
is still significantly faster than pure in-index matching (t = 0). For t = ∞, the
matching process degenerates to a very simple procedure: exact pattern matching
of part Pπ[0] followed by in-text verification of each of the candidate occurrences.
For our dataset, the largest suffix array range size encountered was 57 933. This
range was encountered for a single read for which Pπ[0] consists of 29 consecutive
characters A.

Collectively over all reads, a tipping point t between 2 and 10 yields the
best performance. Within this range and for our dataset, the runtime is largely
insensitive to the precise choice of t (data not shown). Only for larger values of
the tipping point (t ≥ 10), we again observe an increase in runtime. For other
values of k, a similar conclusion is reached: hybrid in-index matching/in-text
verification reduces runtime by 38.43% for k = 1, 45.24% for k = 2 and 51.30%
for k = 3.
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Breakdown of Reads. The search scheme for k = 4 errors consists of eight
searches (see Table 1). Therefore, for the task of identifying all approximate
occurrences of 100 000 reads on both strands of the reference genome, 1 600 000
searches are executed in total. For more than half of these searches (834 198), the
first part Pπ[0] has no exact match in T and, hence, the search will immediately
be terminated. This is no surprise, as most reads have approximate occurrences
on only one strand of the reference genome. For the remaining 765 802 searches,
Fig. 3 (right) shows a breakdown as a function of the number of (exact) occur-
rences of part Pπ[0]. Remarkably, 76.67% (587 103) of those searches yield only
a single occurrence in T for Pπ[0]. In other words, for most reads, matching only
a single part of P already suffices to point to a unique position in T . For such
cases, in-text verification of that sole candidate occurrence outperforms a further
in-index character-by-character extension. This explains the large performance
difference between tipping point values t = 0 and t = 1. Additionally, 13.84%
(106 022) of the searches yield between 2 and 10 occurrences in T for part Pπ[0].
Also for these cases, in-text verification at each of these candidate positions in
T is superior to in-index matching.

In contrast, only a relatively small fraction of 9.49% (72 677) of the searches
deal with patterns for which Pπ[0] has more than 10 occurrences in T . In certain
cases, this number of instances is vast. For example, 14 329 searches yield more
than 1 000 instances of Pπ[0] in T , seven of which amount to more than 50 000
instances. The latter all correspond to low-complexity poly-A/T or poly-CA/GT
patterns which are highly repeated in the human genome. Here, in-index match-
ing has a clear advantage as all repeated candidate occurrences are handled
simultaneously by the FM-index.

We conclude that in-text verification is beneficial for those searches for which
the number of occurrences of Pπ[0] in T (and hence, the number of candidate
occurrences of P itself), is limited (≤10). For our dataset, this holds for roughly
90% of the searches. In contrast, the remaining searches (10%) deal with search
patterns with many potential occurrences in T , a task which is best performed
using in-index matching and the search scheme. We find that these ‘difficult’
searches, although limited in number, account for roughly two-thirds of the total
runtime. In total, these complex searches account for 96.0% of unique matches
over the entire dataset.

SA Space-Time Tradeoff. In-text verification requires a lookup operation in
the suffix array (SA) to retrieve, for each candidate occurrence, its position in T .
The number of candidate occurrences for which in-text verification is performed,
and hence, the number of required lookup operations in the SA, increases with
higher values of the tipping point t.

To reduce the memory footprint of the FM-index, a sparse version of the SA
is often used. In our implementation, every s-th suffix of the SA is stored, where s
denotes the sparseness factor, i.e., SA[i] is stored if and only if SA[i] mod s = 0.
It is well-known that a suffix at an arbitrary index i can then be inferred in O(s)
time [20]. Thus, the sparseness factor s controls the space-time tradeoff. As each
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Fig. 4. Runtime for mapping 100 000 Illumina reads (150 bp) to both strands of the
human reference genome as a function of the tipping point t and sparseness factor s.

in-text verification requires a lookup operation in the SA, a larger sparseness
factor s will diminish the gains in the runtime of in-text verification.

Figure 4 shows the runtime for different sparseness factors s and tipping
points t. The results for s = 1 (dense SA) are identical to those of Fig. 3 (left).
For all values of t, the runtime increases with the sparseness factor s, as lookup
operations in the SA become more expensive. For t = 0, the increase in runtime
from s = 1 to s = 32 is limited to only 4.2% whereas for t = ∞, the runtime
more than doubles.

Therefore, especially for larger values of the sparseness factor s, the tipping
point t should not be set to (too) high values for good performance. In our
experience, up to s = 16, a choice of t ≈ 5 appears appropriate. For sparseness
factors of s = 32 and larger, a tipping point of t = 1 or t = 2 showed the best
performance.

6.3 Comparison to State-of-the-Art Tools

In earlier work [21], we presented Columba 1.0, a fast software implementation
for lossless approximate pattern matching using search schemes. Columba 1.0
implements the ideas outlined in [21] such as a cache-friendly BWT representa-
tion and dynamic partitioning of search schemes.

The techniques described in this paper (bit-parallel edit distance computa-
tions, in-text verification, and the adapted search schemes) are implemented in
Columba 1.1. In this section, we benchmark Columba 1.1 against state-of-the-
art lossless pattern matching tools, including Columba 1.0. We use the adapted
search schemes proposed in Table 1, a tipping point t = 5 and a SA sparseness
factor s = 1 (dense SA).
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Table 3. Runtime comparison of state-of-the-art lossless alignment tools, with the
exception of BWA in ‘mem’ node, which is a lossy alignment algorithm.

Tool Language Reference k = 1 k = 2 k = 3 k = 4

Columba 1.1a C++ This paper 5.15 ± 0.44 s 8.66 ± 1.00 s 13.06 ± 1.31 s 28.48 ± 2.13 s

Columba 1.0b C++ [21] 7.05 ± 0.16 s 13.10 ± 0.26 s 25.62 ± 0.33 s 67.75± 0.51 s

BWAc C [12] 14.73± 0.23 s 133.11 ± 2.39 s 1454.40 ± 24.64 s DNC (> 3 h)

Bwolo C++ [26] 12.53± 0.55 s 25.24 ± 0.86 s 63.67 ± 1.32 s 189.78 ± 2.25 s

GEMv3d C [14] 9.0± 1.5 s 18.6± 2.4 s 38.5± 4.6 s 84.6± 4.9 s

Yara v0.9.11e C++ [23] 4.49 ± 0.13 s 21.00 ± 0.34 s 81.90 ± 0.84 s 537.26 ± 7.65 s

BWA mem (lossy) C [12] 32.42 ± 0.67 s (independent of k)
a -e k -i 5 -ss ../search schemes/kuch k+1 adapted/
b -e k -ss ../search schemes/kuch k+1/
c aln -N -n k -i 0 -l 150 -k k
d -t 1 -e [k] -s [k] –alignment-model edit –mapping-mode complete -M 1000
e -e [k] -s [k] -y full -t 1

In Table 3, we compare the performance of Columba 1.1 to Columba 1.0,
Bwolo [26], GEM [14], Yara [23] and BWA [12] in all-mapping mode. Note that
Columba 1.0 and Bwolo do not report the CIGAR string of the alignments in
their output whereas the other tools do (including Columba 1.1). For the GEM
aligner, not all occurrences could be reported as the tool failed when using
the all parameter. Therefore, GEM was configured to report at most 1000
occurrences per read.

Columba 1.1 outperforms Columba 1.0 for all values of k, even though
Columba 1.0 does not compute the CIGAR string. Gains are achieved through
the tighter lower bounds as specified in the adapted search schemes and bit-
parallel, in-text verification. Clearly, these gains outweigh the extra computa-
tions required to generate the CIGAR string.

Both Columba 1.1 and 1.0 outperform all other lossless alignment tools for
k ≥ 2. For k = 1, both are slightly slower than Yara. This is likely due to the
overhead imposed by the use of the bidirectional FM-index, whereas Yara relies
on a unidirectional index. For k ≥ 2, Columba 1.1 is at least twice as fast as
other tools. For k = 4, Columba 1.1 appears roughly 3× faster than GEM, 6×
faster than Bwolo, and even 18× times faster than Yara. Clearly, BWA was not
designed to run in lossless mode for higher values of k.

We also compare Columba 1.1 with BWA in (lossy) mem mapping mode. In
mem mode, BWA does not require a maximum number of errors k to be specified
and it will typically report only a single candidate alignment position for each
read. Note that the time to read the index structure from disk is included in
BWA’s runtime, which is not the case for Columba 1.1. Also note that BWA
outputs SAM format and is able to handle paired-end reads, which is not the
case for Columba 1.1. Columba 1.1 appears faster than BWA for k = 1, 2 and 3.
For k = 4, the runtime of Columba 1.1 is similar to that of BWA. This indicates
that the performance gap between lossless and lossy alignment tools is closing
for practical bioinformatics applications such as read mapping.
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7 Conclusion

We introduced Columba 1.1, a tool for lossless approximate pattern matching
using search schemes under the edit distance metric. Columba 1.1 implements
hybrid in-index matching/in-text verification using a bit-parallel, pairwise align-
ment algorithm. It is demonstrated that this technique reduces runtime by more
than a factor of two, compared to pure in-index matching. We provided an analy-
sis of the effect of in-text verification for different types of reads. For reads with a
limited number of occurrences, switching to in-text verification greatly reduces
the runtime. In contrast, for reads with many potential occurrences, in-index
matching appears the better option. We showed that the use of a sparse suffix
array somewhat diminishes the performance gains of using in-text verification.
Nevertheless, for all practical values of the suffix array sparseness factor, in-text
verification proves beneficial. Finally, Columba 1.1 shows superior performance
to state-of-the-art lossless aligners.
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Abstract. Detecting common regions and overlaps between DNA
sequences is crucial in many Bioinformatics tasks. One of them is genome
assembly based on the use of the overlap graph which is constructed by
detecting the overlap between genomic reads. When dealing with long
reads this task is further complicated by the length of the reads and the
high sequencing error rate. This paper proposes a novel alignment-free
method for detecting the overlaps in a set of long reads which exploits
a signature (called fingerprint) of reads built from a factorization of
the read based on the notion of Lyndon words. The method has been
implemented in the tool KFinger and tested over a simulated and a real
PacBio HiFi dataset of genomic reads; its results have been compared
with the well-known aligner Minimap2. KFinger is available at https://
github.com/AlgoLab/kfinger.

Keywords: Lyndon word · Factorization · Fingerprint · Overlap
graph · Long reads

1 Introduction

Lyndon word is a concept of combinatorics on words and a well-known notion
in Bioinformatics [1,2], where it has been used to find short motifs [3] and more
recently in the notion of the extended BWT [4]. Most notably, a recent work sug-
gests that Lyndon factorizations can be used to detect overlaps between reads [5],
which is the fundamental task to build the overlap graph in genome assembly.
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Note that a factorization (as notion of combinatorics on words) expresses a string
as a concatenation of factors and factors in a Lyndon factorization are Lyndon
words. Lyndon factorization [1,6] is one of the most well-known factorizations
and has two main properties: (i) it is unique for a given string and (ii) can be
computed in linear time. Moreover, it satisfies the following crucial property,
which is the foundation of our proposed method: two strings sharing a common
overlap also share a set of consecutive common factors in their factorizations [5].

Detecting the overlap between sequences is the fundamental step in de-novo
assembly based on the Overlap-Layout-Consensus (OLC) strategy [7], which is
the main approach used for assembling long reads [8,9]. Since unfortunately such
reads are long and error-prone, detecting overlaps is often a bottleneck from a
computational point of view, mainly when a pairwise comparison is adopted,
due to the fact that long reads have high sequencing errors and contain repet-
itive regions. Several methods for discovering overlaps in long reads, which are
based on a representation of the input reads, are present in literature, achieving
good performance in terms of computation time and accuracy. For example, [10]
proposes an algorithm combining minimizers and MinHash algorithm [11] for
mapping long reads to a reference database; sourmash [12] and MHAP [8] use
MinHash algorithm (MHAP relies on k-mers); sourmash estimates sequence sim-
ilarity between very large data sets whereas MHAP is a tool for discovering over-
laps between long reads and is used by Canu assembler [13]. Minimap2 [14] is
an aligner of DNA or mRNA long reads against a large reference database and
uses minimizers.

We propose an alignment-free approach for discovering the overlaps in a set
of noisy long reads, exploiting a compact representation (or signature) given by
the sequence of lengths of the Lyndon factors (instead of the factors themselves)
in Lyndon factorizations. The sequence of factor lengths, called fingerprint, has
been first introduced in [15] as a mean to discover common regions between reads
and applied for classifying RNA-Seq reads by origin gene. Read fingerprints pro-
vide a compact representation of the reads and unexpectedly they are effective
in preserving sequence similarities, thus being extremely useful in an alignment-
free approach for discovering similarities. The main idea is that a factorization
of a read is computed while reading the reads and the factorization splits the
reads based on their content in terms of Lyndon-words: we keep the sequence
of the distances between consecutive splitting positions (that is, the sequence
of the factor lengths) to use as read fingerprint (read signature). The k-mers of
a fingerprint (called k-fingers) are the sub-pieces able to capture the similarity
regions between the reads in a more flexible way with respect to the k-mers
of a sequence: indeed the length k of a k-mer is fixed. Furthermore, fingerprints
(numerical sequences) are shorter than the represented nucleotide sequences and
we expect that they are also resilient to errors occurring in long reads and com-
mon k-fingers can be discovered. In the paper we show that k-fingers provide
anchors for computing common regions between reads of an input set S and
present an algorithm performing factorization of the reads in S and (next) a
linear scanning of the read signatures (or fingerprints); by hashing the k-fingers,
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the common regions, shared by the currently processed read s and all the reads
previously considered, are computed in O(LN), where L is the read length and
N is the maximum number of occurrences of a unique (occurring once) k-finger
of s in the reads considered by the previous iterations. At the end of the iter-
ations, the algorithm has computed all the common regions between the input
reads. Observe that comparing reads in a reference-free approach often requires
a pairwise comparison and is computationally demanding (refer for example
to the problem of the identification of the relationships between metagenomic
reads [16]). We have implemented our method in the Python prototype KFinger
taking as input a set of reads and producing as output the pairs of reads in over-
lap. We have tested it over an error-free dataset of long reads simulated from
a 2M-long region of the human chromosome 21 by using DeepSimulator [17]
and a real PacBio HiFi set. We have compared the results from KFinger and
Minimap2 [14].

Overall, Minimap2 produces more overlapping pairs than KFinger and the
percentage of overlaps with high error rate (error rate over 3.0%) is higher for
Minimap2 than KFinger. Observe that pair of reads, that share a short overlap,
are expected to be missed by our method, but, on the other hand, with the
purpose of reconstructing an assembly, these pairs of reads may be discarded.
The obtained results suggest that KFinger is less sensitive than Minimap2 in the
face of a quite high specificity. To test this hypothesis, we also compared the
results (from KFinger and Minimap2) with the overlaps obtained by mapping
the input reads to the reference genome.

2 Preliminaries

Let s = c1 · · · cp be a string over a finite alphabet Σ. The length of s (that is,
the number p of its characters) will be denoted by |s|. A prefix of s is a string
composed of its first i characters (that is, c1 · · · ci). Similarly, a suffix is a string
composed of the last i characters of s (that is, cn−i+1 · · · cn).

A prefix (or suffix) is proper if it does not cover the whole string s. In the
following, notation s < s′ (resp. s ≤ s′) will specify that string s is lexicograph-
ically smaller than s′ (resp. s = s′). Furthermore, s � s′ will specify that s < s′

and additionally s is not a proper prefix of s′.
Now, we introduce the two main ingredients for capturing common regions

between two strings (or reads): the definitions of factorization and fingerprint.
Precisely, a factorization of a string s is a sequence F (s) = 〈f1, f2, . . . , fn〉 of
factors (strings over Σ), such that s = f1f2 · · · fn and the fingerprint, with
respect to F (s), is the sequence L(s) = 〈|f1|, |f2|, . . . , |fn|〉 of the factor lengths.

Given a fingerprint L(s) = 〈l1, l2, . . . , ln〉, a k-finger is a k-mer of L(s), that
is, any substring 〈li, li+1, . . . , li+k−1〉 composed of k consecutive elements of L(s).
The sum li + li+1 + · · · + li+k−1 will be referred as supporting length of the k-
finger. Moreover, the index i and the sum l1 + l2 + · · · + li−1 of the upstream
elements (lengths) of the fingerprint will be referred as index offset and length
offset of the k-finger with respect to the fingerprint.

The substring fifi+1 · · · fi+k−1 will be the supporting string of the k-finger.
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Example 1. Let F (s) = 〈aaaaa, cccc,aaaaaa, ccccc, ttt, a〉 be the factorization
of s and let L(s) = 〈5, 4,6, 5, 3, 2, 1 〉 be the fingerprint. The three bold con-
secutive integers 〈6, 5, 3〉 are a 3-finger, whose supporting length is 14 and
supporting string is the concatenation of the three bold factors of the factoriza-
tion. The index offset of the 3-finger is 3, since its first element is the third in
the whole fingerprint, and the length offset is 9, which the sum of the upstream
elements 5 and 4. The length offset gives the offset of the supporting string in s.

In order to obtain read fingerprints, in this work we will exploit special kinds
of factorizations, named Lyndon based factorizations [15] since they are defined
starting from the well-known Lyndon factorization of a string s [1]. We firstly
recall that each string s can be uniquely factorized into Lyndon words [1], where a
Lyndon word is a word which is strictly smaller than any of its non empty proper
suffixes. For example, it is easy to see that accgctct is a Lyndon word, whereas
cac is not a Lyndon word. Formally, given a string s, its Lyndon factorization
is denoted by CFL(s) = 〈f1, f2, . . . , fn〉, where f1 ≥ f2 ≥ · · · ≥ fn and each fi
is a Lyndon word. For example, given s1 = gcatcaccgctctacagaac, we have that
CFL(s1) = 〈g, c, atc, accgctct, acag, aac〉. In [18], the Canonical Inverse Lyndon
factorization ICFL(s) = 〈f1, f2, . . . , fn〉 is a factorization of s such that f1 �
f2 � · · · � fn and each fi is an inverse Lyndon word [18], that is, each non
empty proper suffix of fi is strictly smaller than fi. For example, cac, tcaccgc
are inverse Lyndon words. Let us consider again s1 = gcatcaccgctctacagaac. We
have that ICFL(s1) = 〈gca, tcaccgc, tctacagaac〉. Such factorizations are unique
and can be computed in linear time and constant space [18].

A property of CFL(s) = 〈f1, f2, . . . , fn〉, which is crucial in our framework, is
the following Conservation Property [19]. Suppose that CFL(s) = 〈f1, f2, . . . , fn〉
and let z = f ′

lfl+1 · · · ftf ′
t+1 be a non simple factor w.r.t. CFL(s) (i.e., it properly

contains at least one factor), for some indexes l, t with 1 ≤ l < n, 1 < t < n, and
fl = f ′′

l f ′
l , ft+1 = f ′

t+1f
′′
t+1. A main consequence of the conservation property

proved in [18] is that, given two strings s and s′ sharing a common overlap z,
there exist factors that are in common between CFL(w) and CFL(w′). Thus, s
and s′ will have fingerprints sharing k-fingers for a suitable size k. For example,
consider again s1 = gcatcaccgctctacagaac and s2 = ccaccgctctacagaagcatc. We
know that CFL(s1) = 〈g, c, atc, accgctct, acag, aac〉 and we have that CFL(s2) =
〈c, c, accgctct, acag, aagcatc〉. Hence, we have L(s1) = 〈1, 1, 3, 8, 4, 3〉 and L(s2) =
〈1, 1, 8, 4, 7〉. The two common consecutive elements 〈8, 4〉 are related to the same
factors in the strings (8 is realated to accgctct and 4 is related to acag) and
capture the common substring accgctctacag given by their concatenation.

Our method exploits the previous result and is based on the following assump-
tion: a k-finger occurring in different read fingerprints has the same supporting
string. This assumption is fundamental in order to capture common regions
between reads by using fingerprints and k-fingers while ignoring the string char-
acters. We define CFL ICFL the factorization obtained by applying first the
Standard Lyndon Factorization CFL, and then the Canonical Inverse Lyndon
factorization ICFL to factors (of CFL) longer than a given threshold. In other
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words, given CFL(s) = 〈f1, f2, . . . , fn〉, we obtain CFL ICFL(s) by replacing with
ICFL(fi) each fi longer than the threshold.

Observe that CFL ICFL has the main advantage of producing many factors,
thus enriching the set of k-fingers to use for detecting the common regions
between reads. In [15], in order to deal with the double-stranded nature of
sequencing reads it is proposed a factorization algorithm F d(s) = 〈f1, f2, . . . , fn〉
such that F d(s) is equal to 〈fn, fn−1, . . . , f1〉, where f i is the reverse and com-
plement of fi. Recall that the reverse and complement of a string s over the
DNA alphabet {A,C,G, T} is the string s, such that its i-th character is the
complement of the (|s| − i + 1)-th character of s, where the complement is the
operation transforming the DNA symbol A into the DNA symbol T (and vice
versa) and the DNA symbol C into the DNA symbol G (and vice versa). This
double-stranded factorization relies on a basic algorithm F such as CFL, ICFL
or CFL ICFL, and is obtained by combining F (s) with F (s), with the result of
reducing the length of the factorization factors [15].

Observe that the fingerprint of s will be equal to the reverse of the fingerprint
of s and, as a consequence, the same genomic region on the two opposite strands
will be supporting two k-fingers, which are one the reverse of the other.

3 Detecting Reads in Overlap

In our framework, we consider in overlap two reads s and s′ between which,
one of the following relations occurs: (i) a proper suffix of s has a match with a
proper prefix of s′ (or vice versa), (ii) s has a match with a substring of s′ (or
vice versa). In absence of sequencing errors, the suffix of s will be equal to the
prefix of s′ (or vice versa) in case (i) and s will be equal to the substring of s′ (or
vice versa) in case (ii). Clearly, when sequencing errors are present, the equality
relation must be transformed into a similarity relation. Observe that the above
relation (i) holds for two reads sequenced from the same genomic strand. When
the reads come from opposite strands, then relation (i) must be turned into the
following one: a proper suffix (resp. prefix) of s has a match with a proper suffix
(resp. prefix) of s′ (or vice versa). Obviously, in both cases the matching occurs
except for a reverse and complement operation of one of the two involved read
substrings. Our aim is to use fingerprints and k-fingers obtained from Lyndon-
based factorizations for capturing common regions between reads in an input set
and inferring pairs of reads in overlap. Given an input set of reads, our method
duplicates each input read. In other words, we expand the input set by adding
the reverse and complement version of each input read. Then, it computes for
each read (of the expanded set) a Lyndon factorization from which to obtain
the fingerprint (read signature) and extract the k-fingers. Next, it exploits the
obtained k-fingers to detect common regions between reads and infers the pairs of
reads in overlap (or overlapping pairs) in the expanded input set. Observe that,
following the duplication approach to handle the double-stranded nature of the
reads, we only have to deal with suffix-prefix overlaps as if the reads originated
from the same strand. Next, a post-processing step obtains the overlapping pairs
of the original input set and (if needed) converts suffix-prefix overlaps into suffix-
suffix (or prefix-prefix) overlaps between reads from opposite strands.
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ova

ovb

ra

rbmb

ma

Fig. 1. Suffix-prefix overlap between reads ra and rb having common region (ma, mb).
A suffix of ra has a match with a prefix of rb.

3.1 The Method

Let S = {s1, s2, . . . , sr} be the set of the input reads (strings over the DNA
alphabet) and let si be the reverse and complement of si. The set S is first
expanded into the set Se = {s1, s1, s2, s2, . . . , sr, sr}. Then, (first step), each
read in Se is split into segments of a given length X (observe that the last seg-
ment may be smaller) and each segment is factorized by using a factorization
algorithm (among the ones described in the previous section). The fingerprint
of a read will be the concatenation of the fingerprints of its segments. The read
segmentation has the advantage of producing richer fingerprints in terms of num-
ber of elements and therefore in terms of k-fingers to use to capture similarities.
Next (second step), the read fingerprints are exploited to obtain the pairs of
reads (of the expanded set Se) sharing a common region. Observe that we are
not interested in overlapping pairs (si, si) composed of a read and its reverse
and complement. This step considers pairs (ra, rb) such that ra is si or si and rb
is in {si+1, si+1, . . . , sr, sr} (the vice versa is indeed redundant). This step basi-
cally finds two common unique k-fingers (occurring uniquely in the two reads)
to use as anchors of the common region between ra and rb. For each computed
common region (third step), the suffix-prefix overlap is obtained by extending
the common region to the left endpoint of a read and to the right endpoint of
the other read (as depicted in Fig. 1). When the common region does not cover
a certain percentage P of the putative overlap, then the pair (ra, rb) is not an
overlapping pair and will not be produced as output.

Finally (fourth step), after computing all the suffix-prefix overlaps of the
expanded set Se, a post-processing step computes the overlapping pairs of the
original input set S. Precisely, let si, sj and si, sj be two input reads and their
reverse and complement versions. Assuming i < j, then the overlapping pairs
(si, sj), (si.sj), (si, sj) and (si, sj) may be coexist in the output of the third step.
Hence, a trivial strategy is applied to only retain just one among those pairs,
which consists in selecting the first pair produced by the algorithm. Observe that
sophisticated strategies have been tested (using some criteria based on the read
strand) but we did not obtain a significant improvement in the results. Observe
that when the selected pair is (si.sj) or (si, sj) (that is, it involves reads from
opposite strands), then the suffix-prefix overlap is converted into a suffix-suffix or



442 P. Bonizzoni et al.

prefix-prefix overlap. When the selected pair is (si, sj), the suffix-prefix overlap
is reported onto the original reads si and sj .

The following paragraphs are devoted to detail the second step which is
the core of our method and works in two sub-steps: first, the candidate pairs
are computed (see Algorithm 1) and then, the common regions are obtained.
Basically, Algorithm 1 performs a linear scanning of the reads of Se and, for each
read fingerprint, the k-fingers are considered from the leftmost to the rightmost.
The goal is to compute a hash table C storing the pairs (ra, rb) sharing at least U
unique k-fingers (that is, occurring only once in both reads), which are referred
as candidate pairs. The leftmost (unique) k-finger shared by ra and rb is stored
in C for each candidate pair (ra, rb) together with its length offsets and index
offsets in the fingerprints of the two reads. The returned hash table C gives for a
key (ra, rb) (candidate pair) the tuple (fl, ωl

a, i
l
a, ω

l
b, i

l
b), where fl is the common

leftmost k-finger, ωl
a and ωl

b are the length offsets for ra and rb (respectively)
and ila and ilb are the index offsets for ra and rb (see Example 1). The algorithm
uses a support hash table H storing the k-fingers and their localization in the
reads (length offset and index offset): for each k-finger f , the value H(f) is a list
of tuples (r, ω, i), where each tuple gives the localization of f in the fingerprint
of a read r. For each considered read rb (see the main foreach cycle at line 3)
and for each k-finger f , its localization in rb is stored in the hash table H (see
foreach cycle at line 5). Then, H is updated such that it contains only the
localizations of the unique k-fingers of rb (see foreach cycle at line 9) and at
the same time such unique k-fingers are stored in the list unique list. The if
condition at line 10 checks whether the k-finger f is unique in rb. In fact, if f
is not unique, then the n > 1 trailing tuples of list H(f) will be related to rb.
At each iteration of the main foreach cycle, the support hash table H contains,
for each read already processed before rb, only the localizations of its unique
k-fingers. The last foreach cycle at line 15 considers each unique k-finger of rb
and finds its localizations in the other reads (processed before rb) in order to
compute all the candidate pairs involving rb as second read. Observe that the
k-fingers are always considered from left to right in the read fingerprints and the
two foreach cycles at lines 9 and 15 guarantee that the k-finger f , stored in C
for a candidate pair (ra, rb), is the leftmost unique k-finger shared by the two
reads. Algorithm 1 performs a linear scanning of the read fingerprints and the
three foreach cycles at lines 5, 9 and 15 perform a linear scanning of the read k-
fingers whose number is asymptotically equal to the read length. Finally, observe
that the foreach cycle at line 16 only checks the tuples in the list H(f) (of the
support hash table H) whose size is the number of reads (among the ones already
processed) containing a unique occurrence of the k-finger f . Even though it is
not specified by the algorithm, only k-fingers whose supporting length, i.e. the
sum of the lengths in the k-finger, is at least a given threshold τ are considered.
The parameter τ is the threshold we use to consider a k-finger reliable and avoid
collisions (that is, the same k-finger which is supported by different strings in
different reads).
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Algorithm 1: Compute the candidate pairs
Input : Fingerprints of the reads of the expanded set Se

Output: C, hash table of the candidate pairs

1 H ← empty hash table;

2 C ← empty hash table;

3 foreach fingerprint L do
4 rb ← read whose fingerprint is L;
5 foreach k-finger f ∈ L do // From the leftmost to the rightmost

6 (ω, i) ← length offset and index offset of f;
7 Add (rb, ω, i) to the list H(f);

8 unique list ← empty list;

9 foreach k-finger f ∈ L do
10 if the last n > 1 tuples of H(f) are related to rb then
11 Remove from H(f) the last n tuples;

12 else // f is unique in rb
13 Append f to unique list;

14 already processed ← empty set;

15 foreach f ∈ unique list do

16 foreach (ra, ωl
a, ila) ∈ H(f) do

17 if ra �= rb and ra /∈ already processed and (ra, rb) /∈ C then
18 if ra and rb share at least U unique k-fingers then

19 (ωl
b, i

l
b) ← length offset and index offset of f in L;

20 C(ra, rb) ← (f, ωl
a, ila, ωl

b, i
l
b);

21 else
22 Add ra to already processed;

23 return C

For each candidate pair (ra, rb) in the hash table C, the algorithm uses the
tuple (fl, ωl

a, i
l
a, ω

l
b, i

l
b) returned by C to localize the two longest subsequences

(consecutive elements) of fingerprints L(ra) and L(rb) of rb which satisfy the
following three conditions: (1) both subsequences have k-finger fl as prefix, (2)
they share at least the last k′ elements (where k′ is an input parameter) and
the k′-finger corresponding to such elements uniquely occurs in the two reads
and has a minimum supporting length (to avoid collisions), and (3) the sum of
the elements (integer values) of the first subsequence differs from the sum of
the elements of the second subsequence by an upper threshold, we call length
tolerance. The algorithm further extends as much as possible on the right the
two subsequences while maintaining the equality of the corresponding elements.

Example 2. Let L(ra) = 〈5, 4, 3,10, 6, 5, 3, 2, 7, 3, 4〉 be the fingerprint of ra
and let L(rb) = 〈2, 2,10, 6, 3, 2, 2, 2, 7, 3, 3, 9〉 be the fingeprints of rb. Assum-
ing k = 2, k′ = 2, a length tolerance set to 3 and a minimum supporting length
set to 10 for k-fingers, then the bold subsequences satisfy the above conditions.
Indeed, both ones start with the 2-finger 〈10, 6〉 which is the leftmost common
k-finger (occurring just once in the reads) having a supporting length at least
10. Moreover, they share the last k′-finger (the last k′ elements) 〈7, 3〉 having a
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supporting length at least 10 (assuming that 10 is also the minimum supporting
length for the k′-finger terminating such subsequences). Finally, the sum of the
bold subsequence of ra is equal to 36, while the sum of the bold subsequence
of rb is equal to 35 and their difference satisfies the assumed length tolerance.
Hence, the common region between ra and rb (computed by our method) will
be composed of the 36-long substring starting at position 5 + 4 + 3 + 1 = 13 of
ra and the 35-long substring starting at position 2 + 2 + 1 = 5 of rb. At this
point, the common region between the reads is obtained by retrieving the two
read substrings, referred in the following as common region, supporting the two
computed fingerprint subsequences. The length tolerance admitted in condition
(3) takes into account possible sequencing errors of the reads and is the maxi-
mum difference between the length of the two detected common read substrings.
Observe that the two fingerprint subsequences may share only a prefix (the left-
most k-finger fl) and a suffix and the equality of the corresponding integers
may be interrupted because of sequencing errors or read segmentation (see the
first step). Our method also allows to perform a re-factorization of one of the
two reads ra and rb before computing the core common region, motivated by the
fact that the read segmentation (see step one) may lead to a misalignment in the
segment fingerprints, thus inducing to lose common factors in the overlapping
regions between two reads.

During re-factorization, the read (between ra and rb), where the common
leftmost k-finger fl has the smallest length offset, is selected; the suffix w to
re-factorize is computed as described by Fig. 2. Note that w is aligned with
a factorization segment of the other read and therefore the fingerprint of w
will be compared with the suffix of the fingerprint of the other read starting
from such segment. The common region between ra and rb will be computed,
as described before, starting from the common leftmost k-finger shared by the
two new fingerprints. In case of re-factorization, the common region between
the two reads will be the longest between the ones computed before and after
re-factorization.

4 Experimental Results

The method has been implemented in the Python prototype KFinger and it
is available at https://github.com/AlgoLab/kfinger along with all the scripts
needed to replicate the experiments. The tests have been performed on an
Ubuntu 20.04 laptop with a single Intel R© CoreTM i5-8250U CPU and 16 GB of
RAM over the following datasets: (1) a dataset of 10K error-free long reads simu-
lated from the region of the human chromosome 21 between positions 32 000 000
and 34 000 000 (2 000 000bp), by using DeepSimulator [17] and (2) a dataset of
6141 real PacBio HIFI reads extracted from PacBio Sequel II HiFi sequencing
of sample HG00731 of a Puerto Rican Trio. Precisely, the reads were mapped
against the human genome GRCh38 (GCA 000001405.15, no ALT contigs) using
Minimap2 (version 2.17) with preset asm20 (as suggested in its documentation
for aligning PacBio HiFi/CCS genomic reads). Only primary alignments were

https://github.com/AlgoLab/kfinger


Capturing Overlaps by Using Lyndon Fingerprints 445

ωl
a

ra

rb

ωl
b

suffix w to re-factorize

Fig. 2. Re-factorization scheme. The two reads ra and rb are depicted as horizontal
bars aligned according to the common leftmost k-finger fl whose supporting strings
are depicted as black boxes. ωl

a and ωl
b are the length offsets of fl and the vertical bars

on rb (which has the largest length offset for fl) are the edges between consecutive
factorization segments (only edges in the portion aligned with ra are shown). The left-
most edge falling in ra determines the starting point of the suffix w of ra to re-factorize
(highlighted in tiled grey), whose fingerprint will be compared with the fingerprint of
rb corresponding to the portion highlighted in solid grey.

retained. We then extracted in FASTA format reads overlapping region 32M–
34M of chromosome 21. The final dataset was composed by 6141 reads with
average length 11124bp (min 2349bp, max 23263bp, median 10417bp) for a total
of 68316199 bases. The error rate inferred from the alignment was 6.22 × 10−3.
Original sequence files are available at http://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/data collections/HGSVC2/working/20190925 PUR PacBio HiFi/ (run IDs:
r54329U 190528 – r54329U 190906).

The first dataset will be referred as error-free-ds while the second one as
hifi-ds. Recall that each input read to KFinger is accompanied by its reverse
and complement, so that the size of the two datasets is 20000 for error-free-ds
and 12282 for hifi-ds. We have used a double-stranded factorization algorithm
built over the basic CFL ICFL factorization algorithm with threshold parameter
30 (that is, factors of CFL factorization longer that 30 are submitted to ICFL fac-
torization), by splitting each read into segments of length X = 300bp in order
to limit the factor lengths. The common regions between reads were computed
for both datasets before and after re-factorization; then, the overlaps from com-
mon regions covering at least a percentage P = 80% (coverage percentage of
the putative overlap), were obtained. For finding the candidate pairs, we used
a k-finger size set to 7 (k = 7) and a minimum supporting length set to 40;
6 is the minimum number of unique shared k-fingers required for a candidate
pair. Moreover, before re-factorization, we required k′ = 3 and a length toler-
ance set to 0 for error-free-ds and k′ = 2 and length tolerance set to 15
for hifi-ds. After re-factorization, we used k = 5 and a minimum supporting
length set to 10. We maintained the above values for parameter k′ for the two
datasets and the length tolerance set to 0 for error-free-ds, while setting to
20 the length tolerance for hifi-ds. We have compared, in terms of accuracy,

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20190925_PUR_PacBio_HiFi/
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KFinger with Minimap2 [14] by retaining only the common regions produced by
Minimap2 having a minimum coverage percentage P = 80% with respect to the
putative overlap and computing the overlaps on such common regions. Observe
that records involving the same read have been discarded both for KFinger and
Minimap2. For each common region and each overlap obtained with Minimap2
and KFinger, we computed an error rate as the ratio of the edit distance,
between the two read substrings involved in a common region or an overlap,
and the smaller substring length. Tables 1 and 2 report the results for datasets
error-free-ds and hifi-ds, respectively. Both tables report the results on
common regions and overlaps produced by KFinger before (rows K) and after
re-factorization (rows KR) and on common regions and overlaps obtained from
Minimap2 (rows M). In the following, we refer to a common region or an over-
lap with the generic term record. The first three columns “#0”, “#≤ 3.0” and
“#> 3.0” give the number of records having an error rate equal to 0, greater than
0 but at most 3.0% and over 3.0%, respectively. The last three columns MinL,
MaxL and AvgL report the minimum, maximum and average length of the read
substrings involved in the record. Overall, Minimap2 finds more records than
KFinger. Over error-free-ds Minimap2 outputs a total of 1286932 common
regions, 179757 out of them are alternative overlaps between reads, against the
533584 produced by KFinger. Observe that a given pair of reads may be involved
in more than one record; only Minimap2 produces alternatives, whereas KFinger
gives (by choice) just one common region/overlap for two given reads. Then,
over hifi-ds, Minimap2 finds a total of 530529 common regions (108655 out
of them are alternatives) against the 211230 produced by KFinger. Moreover,
Minimap2 finds a total of 502377 overlaps (4455 out of them are alternatives)
over error-free-ds and a total of 132160 overlaps (461 out of them are alter-
natives) over hifi-ds. KFinger produces 433947 overlaps over error-free-ds
and 147029 overlaps over hifi-ds before re-factorization, whereas it produces
465121 overlaps over error-free-ds and 173057 overlaps over hifi-ds after
re-factorization.

Column “#> 3.0” reports in parentheses the percentage of records (having
an error rate over 3.0%) with respect to the total number of obtained records.
We consider this value as a proxy of the false positive rate of the prediction.
Observe that this percentage is rather low for KFinger both for common regions
and overlaps, whereas for Minimap2 it is low only for the overlaps since the
parameter P = 80% contributes to filter out the common regions produced by
Minimap2 not leading to a good read overlap. Moreover, the re-factorization
has mainly determined an improvement in terms of detected overlaps, since for
dataset error-free-ds 31079 extra overlaps (with an error rate ≤ 3.0) were
detected after the re-factorization with respect to the experiment before re-
factorization. Similarly, the re-factorization has produced 25486 extra overlaps
for dataset hifi-ds. These results suggest that KFinger does not compete with
Minimap2 in terms of sensitivity but it is likely to be more specific in terms of
common regions. Indeed, Minimap2 is more tolerant with respect to the sequenc-
ing errors and therefore finds more common regions than KFinger. On the other
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Table 1. Experimental results for error-free-ds. The rows tagged as K and KR
refer to the common regions/overlaps produced by KFinger before and after re-
factorization, whereas the row tagged as M refers to common regions/overlaps obtained
from Minimap2.

#0 #≤ 3.0 #> 3.0 MinL MaxL AvgL

Common regions

K 473053 7643 52888 (10%) 40 37383 4339

KR 474107 7103 52374 (10%) 39 37414 4550

M 498479 29577 758876(59%) 100 37441 2246

Overlaps (P = 80%)

K 433884 8 55 (0.1%) 95 37441 5622

KR 464958 13 150 (0.1%) 95 37441 5364

M 496289 2142 3946(1%) 100 37441 5055

hand, KFinger gives fewer common regions and seems to be more precise. To
test this hypothesis, and, in particular, to evaluate sensitivity, we compared the
predicted common regions with the overlaps computed by mapping reads to the
reference genome. We mapped the two datasets to region 32M–34M of human
chromosome 21 using Minimap2 and we kept only reads aligning for at least 95%
of their length. From these alignments we devised the set of overlaps such that
the length of the overlap was at least 80% of the length of the genomic region
spanned by the two reads. We define this set as the set of “alignment-based” over-
laps. Please note that we do not expect that the set of alignment-based overlaps
coincides with the set of predicted overlaps since (i) some overlaps were discarded
because of their length and since (ii) there exists common regions between reads
that do not actually overlap on the genome. For each alignment-based overlap,
we checked if there exists a predicted common region that intersects the overlap
for at least 50% of their span. If it exists, we considered the alignment-based
overlap as found. The dataset error-free-ds contains 9273 alignment-based
overlaps. As expected, Minimap2 found all of them, while KFinger missed 5
of them before re-factorization and 3 of them after re-factorization. The dataset
hifi-ds contains 16207 alignment-based overlaps. Minimap2 was not able to find
2 of them, while KFinger missed 1743 of them before re-factorization and 753 of
them after re-factorization. These results support the hypothesis that Minimap2
is more sensitive and more tolerant than KFinger, but, on the other hand, it
is also less specific, since Minimap2 reports twice as much common regions as
KFinger. In terms of time efficiency, we measured the whole time for computing
the candidate pairs and the common regions. These two steps are indeed the
intensive part of the method. Moreover, the time is given before re-factorization,
since the current implementation of the read factorization is not optimal. On
a single thread, KFinger took 12 min and 5 s for dataset error-free-ds and
4 min and 2 s for dataset hifi-ds. Despite being highly optimized, Minimap2
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Table 2. Experimental results for hifi-ds. The rows tagged as K and KR refer to
the common regions/overlaps produced by KFinger before and after re-factorization,
whereas the row tagged as M refers to common regions/overlaps obtained from
Minimap2.

#0 #≤ 3.0 #> 3.0 MinL MaxL AvgL

Common regions

K 10309 184461 16460 (8%) 40 17853 4392

KR 6976 187396 16858 (8%) 39 18063 4933

M 9449 217870 303210(57%) 100 18811 2531

Overlaps (P = 80%)

K 2583 143916 530 (0.3%) 97 18169 6036

KR 3275 168710 1072 (0.1%) 97 18169 5880

M 2646 109115 20399(15%) 103 19664 6623

took 4 min and 42 s for dataset error-free-ds and 2 min and 16 s for dataset
hifi-ds.

5 Conclusions and Future Developments

We have proposed a method for detecting overlaps in a set of long reads by using
a compact numerical representation (fingerprint) based on Lyndon factorization.
The method has been implemented in the Python prototype KFinger which
has been tested over a set of error-free simulated reads and a PacBio HIFI
dataset. The experimental results encourage to think that KFinger may be a
suitable and specific method for finding shared regions between pairs of reads,
taking advantage of the compact numeric representation of the reads. In the
immediate we plan to improve KFinger in terms of time efficiency by improving
the implementation of (1) the factorization algorithms used for producing the
input fingerprints and (2) of the steps two and three producing the common
regions, improvement needed in terms of a more efficient programming language
such as C++ and the use of more efficient data structures. In terms of accuracy
we plan to investigate the impact of the different factorization algorithms in order
to face the typical issues related to long reads: sequencing errors and repetitive
regions.
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Abstract. T cells play an essential role in defense of the organism against
pathogens and cancer. Efficient protection requires a vast repertoire of immune
receptors, which is created by the V(D)J recombination process. There are mul-
tiple algorithms designed for the annotation of recombined T cell receptor (TR)
sequences from traditional (short-read) RNA-Seq, however, none is adjusted for
the long-read data. Here we intend to examine whether existing methods for TR
sequences annotation using traditional RNA-Seq can be utilized for long-read
sequencing data. ImReP, TRUST4, CATT and MiXCR algorithms were applied
to data obtained by nanopore technology (PromethION). Adjustment of parame-
ters was performed. The biggest number of CDR3 sequences was detected by the
TRUST4 algorithm (20,599 unique TR sequences out of 73,904,478 total reads),
representing 25% of the expected number of sequences. The distribution of anno-
tated V and J genes was the same for MiXCR and TRUST4 algorithms and may
be used to analyze the repertoire of V/J gene used in rearranged TR genes. Due to
the high sequencing error rate of the analyzed sample (median read quality Q =
6.9), TR clonotype analysis is not suggested, and additional error correction steps
are recommended for such analyses.

Keywords: TCR detection · Oxford Nanopore Sequencing · Long reads

1 Introduction

1.1 VDJ Recombination

B and T lymphocytes play an essential role in the organism’s defense against pathogens
and cancer. This defense is mediated by clonally distributed immunoglobulins (Ig) and
T cell receptors (TR). Efficient protection requires a vast repertoire of different Igs and
TRs, which is assured by the V(D)J recombination process required for their expression.
It consists of the selection and assembly of one of each variable (V), diversity (D), and
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joining (J) gene segments into an exon coding for the complementarity determining
regions of TRs. The most variable is the complementarity determining region 3 (CDR3)
at the junction of V, D and J genes. V, D and J gene ends are heavily processed by
random nucleotide deletion and/or addition before ligation. Due to the random nature of
these mechanisms created exons may be in-frame, out-of-frame or contain a stop codon.
The last two cannot create a functional receptor or immunoglobulin but may be found
circulating in the blood.

1.2 Immune Repertoire Identification–State of the Art

The ability to characterize the immune repertoire on a large scale and identify rearranged
TRswas improved thanks to the advances in high-throughput sequencing. Themost used
approach is Ig/TR sequencing, which requires previous amplification of DNA material
covering V/J genes region, including the CDR3 region. It allows obtaining nucleotide
sequences of all possible rearranged Ig/TR genes focusing on the CDR3 region or full
variable region.

Recently, the attention of scientists has been attracted by the detection of Ig and TR
sequences from bulk RNA sequencing data, which is currently produced on a massive
scale. In RNA-Seq experiments, only reads mapped to the reference genome are con-
sidered to study the transcriptomic profile of a donor. Unmapped reads, which might
include sequences of rearranged V/J genes, are filtered out from the further analysis.
Some algorithms have been developed for recycling these waste reads to detect TR or Ig
sequences. This approach allows the identification of a donor’s immune profile without
the need to spend time and money on another experiment. Traditional RNA-Seq data is
characterized by a low sequencing error rate, thanks to which the accuracy of identified
immune receptor sequences is very high.

Some of the available algorithms are applicable only for B cell receptor identification
(V’DJer [1], BASIC [2], BALDR [3], IgBLAST [4]), others can only identify T cell
receptors (TraCeR [5], RTCR [6]), and many can be utilized for both types of cells
(ImReP [7], TRUST4 [8], IMSEQ [9], MiXCR [10], VDJPuzzle2 [11], CATT [12]).
Some of these algorithms are designed to work with targeted RNA-Seq only (IMSEQ,
LymAnalyzer [13], TCRklass [14], RTCR). They assume the presence of V/J genes
in every read, and thus are not applicable for detecting immune receptors from bulk
RNA-Seq. VDJPuzzle and TraCeR are designed to work with scRNA-Seq data only.

1.3 CDR3 Detection from Long-Read Data

Long-read sequencing is a relatively new technology developed by Oxford Nanopore
Technology (ONT) and Pacific Biosciences (PacBio). They create reads on the scale
of kilobase pairs, however, the error rate is high due to the difficulty in identifying
the DNA bases from the complex electrical signals [15]. Types of errors introduced to
the sequences produced by ONT are more or less evenly distributed between insertions,
deletions, or substitutions [16, 17]. This high error rate is problematic in detecting highly
variable CDR3 region, for which no template exists. On the other hand, ONT sequencing
is under current development due to the low cost, high throughput, and portability. We
may expect it to become more accurate and popular in the near future. What is more,
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long reads are able to cover the full rearranged TR region (consisting of ~ 500bp [6]),
which is an advantage to short-read data covering only parts of TRs.

Currently, there are no algorithms specifically designed to identify immune repertoire
from bulk long-read RNA sequencing. This study aims to check if methods for the
identification of immune receptor sequences from non-targeted RNA-Seq short reads
can be utilized for long-read data. We focus only on the CDR3 region of the β chain
T cell receptors. We tested four algorithms (ImReP [7], TRUST4 [8], CATT [12], and
MiXCR [10]) on a file obtained with PromethION (ONT). In addition, we checked if
optimization of parameters may improve the work of algorithms on long reads.

2 Material

A collection of data from Cruz-Garcia et al. [18] was utilized. Poly A + RNA iso-
lated from whole blood samples obtained from 3 donors pooled together (30 ml of
blood in total) was sequenced in 2 flow cells of PromethION. The fastq file consisted
of 73,904,478 raw reads with a median length of reads equal to 666 bp. The median
sequencing quality of a read equaled to Q = 6.9 in Phred score, which means that the
median accuracy of sequencing is around 80% (every 1 out of 5 nucleotides is potentially
falsely detected). Figure 1A shows a correlation between read length and average read
quality, performed by the NanoPack algorithm [19].

Fig. 1. A–Scatter plot showing relations between read length and average read quality with corre-
sponding histograms on sides performed by NanoPack, B–Histogram and density plot of mapping
quality.

3 Methods

3.1 Mapping to Reference Genome

Minimap2 [20] was used to align reads to the GRChv38 human genome using default
parameters. Samtools [21]was used forBAMfile sorting. 54,218,305 readsweremapped
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to the reference genomewith highmapping quality (Fig. 1B). The remaining 19,686,173
reads were not mapped to the genome, serving as the primary source of sequences with
variable CDR3 region. Rsamtools [22] was used to extract reads mapped to the TCRβ

C1 and C2 gene regions (constant regions of T cell receptors).

3.2 Algorithms for TRβ Detection from Sequencing Data

Four algorithms: ImReP, TRUST4, CATT andMiXCRwere applied to check if they can
be used for the identification of CDR3 sequences from long-read, bulk RNA-Seq data.
Table 1 summarizes the algorithms.

Table 1. Summary of algorithms for CDR3 detection from traditional RNA-Seq

ImReP TRUST4 CATT MiXCR

Overview of the

method

Alignment-free

detection of reads

containing full-length

CDR3 → match reads

containing partial

CDR3 → correction of

PCR and sequencing

errors using CAST

algorithm

Candidate reads

extraction based on

significant overlap

criterion → de novo

assembly using greedy

seed extension approach

→ annotation and

extension of partial

alignments

Detection and assembly of

CDR3 using de Bruijn

graph → pattern match →
data-driven error correction

→ annotation and

confidence evaluation

using Bayes classifier

Read alignment using

Smith-Waterman/Needleman-Wunsh

algorithms → partial alignment

assembly and CDR3 extension →
assembly of clonotypes and full

receptor sequences

Requires previous

mapping to the

genome

Yes No, but available No, but available No

Chains available IGH, IGK, IGL, TRA,

TRB, TRD, TRG

IGH, IGK, IGL, TRA,

TRB, TRD, TRG

IGH, TRA, TRB IGH, IGK, IGL, TRA, TRB, TRD,

TRG

Complementarity

determining

regions available

CDR3 CDR1, CDR2, CDR3 CDR1, CDR2, CDR3 CDR1, CDR2, CDR3

Adjustable

assembly

parameters

Yes No No Yes

Multithreaded

processing

No Yes Yes Yes

Error correction Yes Yes Yes Yes

Analysis of

partial alignments

Yes Yes Yes Yes

Outputs germline

CDR3 sequence

No Yes Yes Yes

Outputs

out-of-frame

CDR3 sequences

No Yes No Yes

Reference page https://github.com/

Mangul-Lab-USC/

imrep

https://github.com/liu

lab-dfci/TRUST4

https://github.com/GuoBio

infoLab/CATT

https://mixcr.readthedocs.io/en/mas

ter/index.html#

All algorithms define TR CDR3 as an amino-acid sequence starting with cysteine
(C) and ending with conserved phenylalanine (F) (i.e., ending with FGxG motif), as

https://github.com/Mangul-Lab-USC/imrep
https://github.com/liulab-dfci/TRUST4
https://github.com/GuoBioinfoLab/CATT
https://mixcr.readthedocs.io/en/master/index.html
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proposed by the IMGT database [23]. All algorithms are publicly available, working
as standalone programs. ImReP and MiXCR allow the user to change alignment and
assembly parameters to optimize the work of the tool. CATT and TRUST4 provide pre-
defined options to work on single-cell and 10x Genomics data, in addition to traditional
bulk RNA-Seq data.

ImReP consists of two stages. First, every read is translated into an amino-acid
sequence. Second, CDR3 is inferred from reads overlapping V and J gene segments
simultaneously. Full CDR3 sequences are determined using adjustable parameters of
minimum overlap and maximum mismatch between read and reference V/J genes. In
the second stage of the algorithm, the overlap between reads matching only V or J gene
segments is determined using a suffix tree. If the defined threshold is exceeded, the reads
are concatenated to create a full CDR3. Last, CAST clustering is used to correct PCR and
sequencing errors. As a result, unique clonotypes with their frequencies are determined.

TRUST4 first performs candidate TR read extraction. For reads notmapped toV, J, or
C genes, significant overlap between read and reference region is determined using k-mer
hits and chaining procedure (default, k = 9). Next, de novo assembly of candidate reads
into immune receptor region is performed. TRUST4 builds an index for all k-mers in the
existing contigs and applies the seed-extension paradigm to identify alignments. Overlap
between read and contig is defined as a block of at least 31-bp exact matches, while
unaligned bases are outside the contig. After contig extension, TRUST4 sorts the reads
by their frequency, using k-mer frequency rule. Additional parameters are predefined for
the case of paired-end and barcoded data. The last step consists of annotating V, J and C
genes, with correction of sequencing errors and extension of partial CDR3 sequences,
if applicable.

CATT is designed especially for small-sized data with short-read lengths. The algo-
rithm consists of four main steps, detection and assembly of CDR3 sequences, motif
pattern match, error correction and gene annotation. First, reads are mapped to V/J ref-
erence genes by BWA algorithm. Both fully and partially mapped reads are considered,
where the latter are used to construct potential CDR3 sequences using k-mer chaining
procedure. Next, all CDR3 sequences with open reading frame and without stop codon
are selected. Using an in-house data-driven procedure correction of PCR and sequencing
errors is performed. Finally, annotation of V, D and J genes is performed using Bayes
classifier.

MiXCR first applies an in-house procedure for read mapping to reference TR region
using k-mer chaining algorithm. The parameters are set in default to handle traditional
short-read data (seed length = 5). Once the best reference candidate (or few candidates)
is chosen, the alignments are built using the classical Needleman-Wunsch and modified
Smith-Waterman algorithms.MiXCRalso allows assembling partially overlapping reads
into full CDR3contig, imputing germline sequences for goodquality.After the alignment
step, the assembling of clonotypes is performed. The assembler algorithm starts with
extracting gene features from aligned reads and performs mapping and clustering of
good quality reads. PCR and sequencing errors are corrected during these steps and
low-quality reads are rescued. Multiple parameters can be controlled at every step of
MiXCR algorithm.
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All calculations were run on Ubuntu 20.04 server with 24x CPU and 128Gb RAM.
TRUST4 and CATT algorithms were applied on raw reads (fastq file).

3.3 CDR3 Sequences Comparison

We compared the nucleotide sequence of identified CDR3. The distribution of annotated
V and J genes obtained by the different algorithms was compared using Jensen-Shannon
Divergence (JSD) metric [24]. It ranges from 0 to 1, reflecting identical and totally
different distributions respectively.

4 Results

4.1 Reads Mapped to TRβ C1 and C2 Gene Region

To estimate the expected number of rearranged TRβ gene sequences in the sample and
therefore the maximal number of CDR3 regions possible, we measured the number of
reads mapped to the constant region of T cell receptors. In the case of beta chain, there
are two C genes on chromosome 7. There were 41,094 and 42,023 reads overlapping
C1 and C2 gene regions respectively in analyzed sample, representing together 0.1% of
total reads. Thus, we expect only a small fraction of reads to cover CDR3 region in an
analyzed sample.

4.2 Impact of Parameters on CDR3 Detection

First, all algorithms were run on default parameters. For ImReP and MiXCR no full
CDR3 sequenceswere detected. TRUST4 resulted in the detection of 20,599 uniqueTRs,
out of which 8,041 were annotated as functional (in-frame). CATT algorithm detected
1,019 unique CDR3 sequences, all functional.

Next, adjustment of parameters was performed for ImReP and MiXCR algorithms
to check their impact on CDR3 detection from long reads. However, as TRUST4 and
CATT do not allow the user to adjust the alignment parameters, no action was performed
for the two programs.

ImReP allows users to adjust parameters of minimum overlap and maximum mis-
match between read and reference sequence. Every candidate read is divided into three
parts: prefix (potentially overlapping with the suffix of V gene), CDR3 region and suffix
(potentially overlapping with the prefix of J gene). The parameters of matches and mis-
matches can be set separately for the outside and inside of the potential CDR3 region.
The default values are set to 4/2 amino acids overlapping/mismatching the reference
sequence and the outside of CDR3 region (prefix and suffix of the read); and 1/2 amino
acids overlapping/mismatching the reference sequence and the inside of CDR3 region
(right part of V gene after cysteine and left part of J gene before phenylalanine). From
quality control of our data, we expect that 1 in 5 nucleotides is incorrectly detected.
Thus, we increased the allowed number of mismatching amino acids outside CDR3
region to 3. This resulted in the detection of one full CDR3 sequence. Additional change
of remaining parameters did not impact the final number of detected CDR3 sequences,
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however, it did affect the number of reads overlapping either V or J gene region. Table 2
presents the results obtained with the best selection of parameters (5/2 matches and 3/3
mismatches for outside/inside of CDR3, respectively). ImReP also allows adjustment of
minimum overlap between two reads assigned to either V or J genes to concatenate them
and create a full CDR3. However, this parameter did not impact the number of detected
CDR3 sequences.

MiXCR provides a unique pipeline for non-targeted genomic data obtained by tradi-
tional RNA-Seq. However, the default parameters are too strict for the low-quality of the
long-read data. MiXCR algorithm allows users to adjust multiple parameters on all anal-
ysis steps, including read alignment, assembly of clonotypes and partial alignments, and
gene annotation. First, we decreased the minimum alignment score required for further
read processing (as we expect more mismatches in the case of ONT sequences in refer-
ence to traditional RNA-Seq). This action did increase the number of analyzed sequences
but did not change the final number of full CDR3s.Worth noticing that sequencesmay be
extracted after the alignment step for detailed inspection. Next, we increased the length
of seed used in the aligner to 9, for we areworkingwith long reads. This highly decreased
the time taken to complete the analysis (about 8x faster work when compared to default
seed length= 5) but, again, did not impact the final number of CDR3 sequences. The next
step included assembly and extension of partial alignments. Again, changing the param-
eters into less strict or not performing assembly of partial alignments did not impact the
final number of detected CDR3 sequences. Worth noticing that MiXCR does not allow
mismatches within the overlap of partially aligned sequences. Therefore, it is hard to
recover TR sequences from the sample with low sequencing quality. Finally, assembly
of clonotypes using alignments obtained in previous steps was performed. Lowering the
sequencing quality threshold of nucleotides to 7 (which is themedian sequencing quality
of our data) allowed the detection of 10 CDR3 sequences. The change of the remaining
parameters did not affect the result.

Table 2 shows the results of CDR3 identification for the four algorithms using the best
selection of parameters. Because ImReP does not allow parallelization, we measured
the running time of all algorithms using one thread only. MiXCR and TRUST4 were the
fastest algorithms, where the latter had a minor average memory consumption. ImReP
was also very time efficient (due to the alignment-free procedure). However, it required
the most extensive memory reservoir. CATT was running the longest on one thread.
Worth noticing that the parallelization of algorithms strongly shortened the working
time of CATT, TRUST4 and MiXCR algorithms.



Can We Detect T Cell Receptors from Long-Read RNA-Seq Data? 457

Table 2. Results of CDR3 detection from long reads. Parameters for ImReP and MiXCR were
adjusted to obtain the best results. *Number of sequences detected after alignment step of MiXCR
algorithm.

ImReP TRUST4 CATT MiXCR

Number of unique full
CDR3s

1 20,599 1,019 10

Number of functional CDR3s 1 8,041 1,019 5

Number of partial
CDR3s–V/J genes

209,923 / 1,128 Not reported Not reported 3,459* / 3,459*

Running time of an algorithm
on 1 thread

184m 33s 129m 39s 3,654m 50s 128m 34s

Average memory
consumption

18.0Gb 1.8Gb 3.3Gb 6.2Gb

4.3 Analysis of Detected CDR3s

ImReP returned one CDR3 sequence, which consisted of only four amino acids (CASF).
Any of the remaining algorithms did not identify this sequence. Interestingly number of
sequences with annotated only V or only J gene regions was much higher (209,923 and
1,128 of V and J genes, respectively). The number of sequences with identified V gene
highly exceeds the number of sequences with annotated J genes.

MiXCR detected 10 CDR3 sequences, out of which half were functional. For all the
sequences, both V and J genes were annotated. Interestingly, there were 3,459 candidate
sequences returned by the algorithm after the alignment step. All these sequences were
initially annotated with both V and J gene, some of them had multiple possible V or J
genes annotated. It must be noted that the D gene was sometimes erroneously identified
as an Ig D genes (about 35% of all D gene annotated sequences). 1,198 sequences were
inferred to be in-frame. Due to the low quality, sequences did not pass further steps of
an algorithm.

CATT returns only functional sequences, as those without an open reading frame or
with stop codon are filtered out. 1,019 sequences were detected; however, only 20 had
V and J genes annotated simultaneously. Most sequences were annotated with J genes
(757 reads), and about one-third of sequences had V gene annotated (282 reads).

TRUST4 detected the biggest number of CDR3 sequences among all analyzed algo-
rithms. Almost all sequences were annotated with V and J genes at the same time, and
only 124 sequences did not have either gene classified. Most of the sequences were
identified in only one copy, the biggest number of copies for a unique CDR3 sequence
equaled 32. The majority of sequences were out-of-frame or contained a stop codon.

The number of detected CDR3 sequences is lower than expected for all algorithms.
Based on an analysis of reads mapped to TRβ C1 and C2 gene regions, we expected
about 80 thousand CDR3 sequences in an analyzed sample. TRUST4 provided the best
result; however, it covers only 25% of the expected number of sequences.
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Next, we compared the CDR3 sequences obtained by CATT, TRUST4 and the first
step alignments of MiXCR. For every algorithm, we found some duplicated CDR3
sequences (Table 3). For TRUST4 and MiXCR about 10% of CDR3 sequences did not
start with cysteine, which is required for the correct conformation of TR. After filtration
of these sequences, we were left with the following numbers of unique CDR3 sequences
for CATT: 1,011, MiXCR: 3,058, and TRUST4: 18,970. Figure 2 shows the number
of common CDR3 sequences between the algorithms. There were only 69 clonotypes
identical among all algorithms. Most of the sequences detected by MiXCR were in
common with TRUST4, whereas the majority of CATT and TRUST4 sequences were
unique for the algorithms. For the 69 common clonotypes, annotation of V and J gene
names was identical for MiXCR and TRUST4 algorithms. CATT did not identify most
of the J genes and proposed different annotations of the V gene for eight sequences.
Furthermore, an inspection of CDR3 sequences reported by CATT showed that most
of them include the insertion of thymine nucleotides (reaching up to 45 T nucleotides
stretches) at the end of the CDR3 sequence. These nucleotides are not present in J genes
and most probably come from sequencing errors.

Table 3. Number of CDR3 sequences detected by TRUST4, CATT and first step alignments from
MiXCR.

TRUST4 CATT MiXCR

All CDR3 sequences 20,599 1,019 3,459

CDR3 duplicates 13 8 27

Unique CDR3 sequences 20,586 1,011 3,432

Sequences starting with TGT codon 13,871 657 2,249

Sequences starting with TGC codon 5,099 354 809

Sequences starting with Cysteine 18,970 1,011 3,058

% of sequences starting with Cysteine 92.15% 100.00% 89.10%

Prompted by the high similarity in common V gene distribution between the algo-
rithms, we investigated V and J gene frequencies for all the CDR3 sequences starting
with cysteine. Distribution of V and J genes is almost identical between MiXCR and
TRUST4 (Fig. 3; JSD.V= 0.01 and JSD.J= 0.00). CATT reports quite different V gene
composition (JSD.V= 0.17 forMiXCR and 0.18 for TRUST4) and very different J gene
composition (JSD.J = 0.49 for MiXCR and 0.47 for TRUST4).

To further investigate high similarity of results obtained by TRUST4 and MiXCR
algorithms, we compared the J gene repertoire used by selected high, medium, and low-
frequency V genes, namely V20–1, V6–1 and V10–1. As expected, we observed that the
more frequent the V gene, the more similar was the J gene distribution (Fig. 4, JSD.high
= 0.01, JSD.medium = 0.02, JSD.low = 0.37). For the low-frequency V10–1 gene,
only 14 CDR3 sequences were reported by MiXCR, causing the observed bias in J gene
distribution.
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Fig. 2. Common unique nucleotide CDR3 sequences detected by the algorithms. Sequences after
first alignment step of MiXCR were considered. ImReP results were not included in the figure.
Figure created with http://eulerr.co/ [25].

Fig. 3. V and J gene frequencies reported by the algorithms. A–V gene frequencies. B–J gene
frequencies.

http://eulerr.co/
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Fig. 4. J gene distribution used by high-frequency V20–1, medium-frequency V6–1 and low-
frequency V10–1 genes reported by MiXCR and TRUST4 algorithms.

5 Discussion

Nanopore sequencing is a high throughput and low-cost technology providing reads
of kilobase pairs length. However, due to the difficulty in identifying DNA bases from
complex electrical signals [15] it is also characterized by a high error rate.Data used in the
following analysis had a sequencing quality of 80%,meaning that one in five nucleotides
is most probably incorrectly sequenced. This high error rate affects the identification of
highly variable CDR3 regions from rearranged Ig and TR genes. For that, it is worth to
consider applying error correction methods, like [15] or [26], as a preprocessing step.

This work aimed to apply existing algorithms for CDR3 detection from bulk RNA-
Seq on data with long reads. The following algorithms were checked: ImReP, TRUST4,
CATT and MiXCR. They use different methods for TRβ sequence identification, some
require previous alignment (ImReP), and others apply an in-house procedure for read
mapping (TRUST4, CATT and MiXCR). Furthermore, ImReP and MiXCR allow users
for custom parameter adjustment, whereas CATT and TRUST4 provide ready pipelines
for different types of input data.

ImReP algorithm performs identification of V/J genes based on amino-acid
sequences, without previous read alignment to reference region. This approach ensures
a high speed of the algorithm, however, it requires reads with high sequencing quality.
In the case of data with 80% sequencing accuracy, about 60% of amino acids might be
incorrectly identified due to the falsely detected nucleotide. This affects the identifica-
tion of full CDR3s based on reads overlapping both V and J genes and reads partially
overlapping CDR3 region. In the latter case, finding the exact overlap between the two
candidate sequences is a huge challenge.

The remaining algorithms first apply read alignment to the TRβ region using
nucleotide sequences before the identification of CDR3 region is performed. This step
allows for more efficient extraction of candidate reads, confirmed by a much higher
number of final CDR3s reported by TRUST4, CATT or MiXCR (considering first step
alignments).

CATT reported 1,019 final CDR3 sequences; however, only 20 had V and J genes
assigned. What is more, it only returns in-frame sequences, which do not represent the
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whole TR repertoire. Having cDNA data, we expect at most 10% of sequences to be out
of frame [27], so restriction to only functional sequences causes a lack of information.
In addition, sequences reported by CATT include excessive stretches of T nucleotides,
resulting in amino acid sequence with tandem phenylalanine. This most probably is a
sequencing error, and such sequences should be discarded. Finally, as reported by the
authors, CATT is specially designed for data with short read length and small size,
which are both the opposite of Nanopore Sequencing. Because the parameters are not
adjustable for the user, long-read data cannot therefore be used with CATT.

MiXCR algorithm is the most adjustable one, allowing for optimizing multiple
parameters at every step of the procedure. Lowering the quality score of alignments
and increasing the seed length speeded up the algorithm and allowed for the detection
of 10 full CDR3s. However, an inspection of first step alignments showed additional
3,447 CDR3 sequences with annotated both V and J genes. Detailed analysis of these
sequences showed that they could be utilized to analyze the V and J gene repertoire used
in rearranged TRβ genes.

TRUST4 resulted in the biggest number of detected CDR3 sequences, even though
it does not allow users to adjust parameters. The number of identified CDR3 sequences
represented only 25% of the expected number of sequences; however, it still was six
times more efficient than MiXCR first step alignments.

For TRUST4 results and MiXCR first step alignments, the functional status of
sequences was mostly out-of-frame, which is not expected in the case of cDNA samples
[27]. Here, the proportion of functional sequences should highly exceed the fraction of
nonfunctional ones. This high number of out-of-frame sequences might be caused by a
high rate of sequencing errors, which either introduce indels shifting the reading frame
or introduce substitutions resulting in a stop codon. Applying a custom post-processing
algorithm to correct the frameshifts andduplicates in the datamight beworth considering.
Also, clustering of highly similar sequences might be a way to go.

What is more, TRUST4 and MiXCR can be utilized for the detection of V and J
genes distributions. As the vast majority of sequences identified by these algorithms
were annotated with both V and J genes, we can use this information to analyze V and
J gene diversity in a given sample and to compare it between samples. Furthermore, the
information about the distribution of V genesmight give insights into the evolution of TR
repertoire, thus obtaining this knowledge from bulk RNA-Seq long reads is very useful.
This work shows that TRUST4 and MiXCR can be used to provide information about
the evolution of the TR repertoire from bulk RNA-Seq long reads, precious information
in pathophysiological conditions.
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