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Abstract. A Breast cancer diagnosis provides prevention and treatment
to save lives or improve the life quality of patients, and a recent tool with
good performance for this diagnosis is deep learning methods to process
breast histology images. However, these methods are based on Convo-
lutional Neural Networks (CNN) with a high computational cost that
reduces usability. Therefore, this paper proposes an optimized CNN for
breast cancer diagnosis named Lightweight CNN for Histology Image
Processing (LCIP). LCIP is based on the MobileNet V2 architecture
adapted with four inverted residual convolutions to find cell features.
LCIP was validated with the BreakHis database, reporting an accuracy
of 99.73%, the best result in the literature. Additionally, LCIP is the
Histology Image Processing Deep learning method with fewer parame-
ters than recent state-of-the-art methods. These results demonstrate that
LCIP is a method that can be used as a feasible, portable, and accessible
method to develop novel tools for breast cancer diagnosis.
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1 Introduction

According to the World Health Organization (WHO), there exist 2.3 million people
with breast cancer and 685,000 deaths related to this disease in 2020. Therefore, the
early diagnosis is essential for patients, correct treatment, and care. The first stage
of diagnosis is breast self-examination, and the second stage is the analysis with
ultrasound, mammography, or magnetic resonance. The final stage is the biopsy,
which is a histologic tissue sample analyzed with an expert [1].

Many deep learning methods for histology image processing have been pro-
posed to develop novel breast cancer analysis methods. According to the lit-
erature, these methods achieve good results, and they are novel methodologies
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to prevent breast tumor growth [2]. Regard to histologic image processing with
deep learning, different CNN architectures achieve accuracies higher than 90%
like Inception-ResNet [3,4] and Xception [5,6]. However, these CNN have high
computational costs, and they can be implemented into expensive computational
platforms [7]. Therefore, this paper proposes a novel CNN with low computa-
tional cost named Lightweight CNN for Histology Image Processing (LCIP).
LCIP classifies breast tissue on benign or malignant cells and is based on the
MobileNet V2 architecture presented in [8] and inverted residual convolutions
layers to analyze histological images with different magnifications and cell fea-
tures. The architecture of LCIP brings a tool to analyze histological breast
tissue with embedded machine learning systems. This tool is useful to reduce
clinical costs and supports telemedicine for fast breast cancer diagnosis. Accord-
ing to [9,12], developing tools for telemedicine and breast cancer diagnosis is a
paramount topic for health in the next years.

The rest of the paper is organized as follows: Sects.2 and 3 present the
BreakHis dataset and the LCIP proposed method. Section 4 reports the results,
and finally, Sect.5 presents the conclusions.

2 Dataset

There are many breast histologic image datasets to propose tissue analysis algo-
rithms for the literature. Some of them are Grand Challenge on Breast Cancer
Histology Images (BACH) [13], Breast Histopathology Images [11], Breast Cancer
Histopathological Annotation and Diagnosis (BreCaHAD) [10], and Breast Can-
cer Histopathological Database (BreakHis) [14]. We select BreakHis because it is
the most popular in literature. Also, this database has histologic samples with dif-
ferent magnification levels, which is helpful to train networks with different feature
sizes. This aspect is important because the histologic analysis is developed with
different magnification observations to diagnose the tissue characteristics.
BreakHis was designed to evaluate the different histologic processing methods.
This database is composed of 7,909 microscopic images of breast tumor tissue col-
lected from 82 patients using various magnification factors (40X, 100X, 200X, and
400X). It contains 2,480 benign and 5,429 malignant samples of color images with
700 x 460 pixels, 8-bit resolution, and PNG format. Table 1 shows the sample dis-
tribution according to magnification and the classes of benign and malignant cells.

3 Lightweight CNN for Histology Image Processing

Figure 1 shows a general scheme of the proposed method, where the input is
an RGB histological image, I(x,y)®¢E. The first stage is preprocessing, which
consists of color normalization. The next stage is the deep CNN, which analyzes
the properties of the image to classify the tissue as Benign or Malignant cells.
The deep CNN is based on a MobileNet V2 network, but we add four inverted
residual convolutions to generate features with different magnification levels.
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Table 1. Sample distribution of BreakHis

Magnification | Benign | Malignant | Total
40X 652 | 1,370 1,995
100X 644 | 1,437 2,081
200X 623 |1,390 2,013
400X 588 | 1,232 1,820
Total of images | 2,480 | 5,429 7,909

Then, the feature extraction of LCIP has a convolution layer and inverted
residual block composed of parallel dilation convolutions to find features in dif-
ferent magnification levels. The following average pooling and convolution layers
are placed to reduce the feature dimension. The classification stage of LCIP is
based on two fully connected and a convolution layer of 1x1. The next subsec-
tions explain each layer.
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Fig. 1. General scheme of LCIP method.

3.1 Preprocessing

The input of LCIP is I(z,y)®%E, which is an image variant to color respect
other histological images due to the staining and the acquisition protocol. Then,
it is necessary to normalize the images I(z,y)®“? with the method of Macenko
[15], which is the most popular in literature for staining normalization. The
output of the Macenko method is an image I/ (z,y)®¢E. The following step is
to normalize Iy (x,y)"P regarding color level intensity with:

M RGB _ Mmaz — Mmin 1
(x7 y) Mmaz + Mmin ( )

where My, 4, is the maximum value of the image and My, is the minimum.
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3.2 First Convolutional Layer

This layer finds the abstract properties of the cells with the convolution given by:
Fp(x7y) = f(WT,pJ(‘rL.?y) * prl(aj?y) +/6P)7p = 17T = 327l =3x3 (2)

where p is the layer of the network (p = 1 means the first layer), 7 is the depth
of the kernels, F,_1(x,y) is the feature map of the last layer. The input Fy(x,y)
is M (x,y)R“B. The activation function f(.) is ReLU 6 [16] because this function
generate best generalization results than other activation functions. This layer
has a batch normalization to accelerate the deep training by reducing internal
covariate shift [17].

3.3 Residual Block

This layer has seven Inverted Residual blocks that consist of a set of convolutions
with kernel sizes of 1 x 1, 3x 3, 5 x5, and 7 x 7. These kernels find features of
the cells from different magnification images.

Figure 2 shows the scheme of this block, where the first layer of this block is
a convolution given by (2), where p = 2, 7 = 3, [ = 1 x 1. This layer reduces the
computational cost by combining the color image in one channel but preserving
the information. The next layer is a set of parallel convolutions given by:

Fp(x7y):WT,P(x7y) ®l Fp—l(xvy)+ﬂpvp:377—:1 (3)

where ®; is a depth separable convolution with dilation /. Figure 2 shows that
this block has three convolution given by (3) with a dilation factor of I =1 x 1,
Il =3x3,1l=5x5andl = 7 x 7 to find properties and features of tissue
cells from different magnification levels. In parallel to the dilation convolutions,
there are an average pooling [18] and a convolution given by (2), p =3, 7 =1,
I = 1x1 to find global features. The convolutions of (2) and the next parallel line
of the average pooling with the convolution of 1x1 are concatenated to generate
a tensor feature map F,(x,y,k), k = 1,...,4 where from k =1 to k = 3 are the
dilation convolution outputs ®;, p =41 = {1,3,5,7}, and k = 4 is the average
pooling [18] with the 1x1 convolution.

The next step is a convolution 3 of F,(x,y, k) where p =5, =1x1, and the
input is the concatenated map Fy(z,y, k). Finally, the feature maps are added to
fuse the features and find the patterns of the tissue cells. The addition is defined
as follows:

Fp(xay) :Z[Fp—l(xay7k)]ap:5 (4)
l
The result in this layer is a set of abstract properties that map tissue com-
position of different magnification levels. This composition is based on texture,
cell corpuscles, and cell nucleus features.
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Fig. 2. Inverted residual block.

3.4 Convolutional Layer for Feature Compression

The next layer is a Convolutional layer defined by (2), where p =6, 1 =1 x 1,
and the activation function is ReLLU 6. This layer has Batch normalization to
normalize the data of all the layers within the same dynamic range. The abstract
tissue features are normalized in a single map with this layer.

3.5 Global Average Pooling

This layer compresses the information of the features as possible but keeps the
tissue properties. The average pooling is defined as follows:

1 T=pr,y=qu
Fp(nam) = N Z [prl(x»y)]ap:’Y (5)
z=(p—r,y=(q—1)n
where N is the number of windows, (v, p) is the size of each windows that
compress the features, (P, Q) is the number of windows, p = 1,..., P and ¢ =
1,...,Q. This layer is the output of the feature extraction stage of LCIP.

3.6 First Fully Connected Layer

This is the first layer of the classification stage of LCIP, and it is defined as
follows:

Fp(na m) - Wr,p,l(n7m)Fp—l(nam) + 6p)7p =38 (6)

where 7 = 1,1 = vx u, and W, g ;(n, m) is a set of weights that learns the benign
properties of the compress tissue features. Equation 6 is the dot product between
the weights and the features Fy(n,m). If I(x,y)®%E has information of benign
cells, Fg(n,m) generates a vector with values close to zero, but if I(z,y)?%?
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has information of malignant cells, Fg(n,m) generate values also close to one,
and they surround the feature vectors generated by benign cells. Then, Fg(n, m)
generates a nonlinear classification subspace.

3.7 Convolutional Layer for Classification

The next layer is a Convolutional layer that separates the vector values of both
classes and works as a new feature map with linear separation. This layer is
defined by the Eq. 2, where p=9, 7=1,1=3 x 3.

3.8 Second Fully Connected Layer

)RGB

This layer classifies I(z,y on benign or malignant cells with the following

expression:

Fp(na m) = f(WT,PJ(n)m)Fp—l(n’ m) + 61?))7/) =10 (7)

where 7 = 1, | = v x p, and W, 19,(n,m) is a the prototype that represent
the pattern of benign cells. Equation 7 represents the dot product between this
prototype and the features Fy(n, m). Then, if the result is positive, I(z,y)?¢E
has information of benign cells, but if the result is negative, I(z,y)"“? has
information of malignant cells. In this case, f(.) is a softmax activation function
defined in [19]. This activation function generates two magnitudes that represent
the classes of benign or malignant tissue.

4 Results

This section presents information about the implementation of LCIP, a com-
parison of LCIP with the most popular methods in the literature, and a brief
Cross-Validation explanation to understand the learning of LCIP.

4.1 Training and Computer Platform

LCIP was trained with backpropagation by considering 1000 epochs with early
stopping (the training was stopped in 70 epochs). The BreakHis dataset was
divided into 70% of images for training, 15% for the test, and 15% for validation.
LCIP was implemented in Python 3.7.0, and the computer has an i7-8750H Intel
processor and an NVIDIA GPU GeForce GTX 1060 with a Max-Q design.

4.2 Comparison of LCIP with Other State of the Art Methods

The metrics used to compare LCIP with the state-of-the-art methods were accu-
racy (Acc), F measure (F1) [20], and Number of parameters (Np). Np is the
number of variables that the network processes during the inference. The net-
works selected for the comparisons have the best results in literature in Acc
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and Np. These methods are the ResNet-50 [5] network published in 2020, a Cap-
sule Neural Network (CapsNet)[21], and two Inception ResNet published in 2019
[3,4]. Also, we added the MobileNet V2, which is the foundation of our proposed
model. Other CNNs were not considered in this comparison because they have
low accuracy or the number of parameters is complicated to calculate due to
their architecture. Next, we describe the networks used in the comparisons.

Table 2. Sample distribution of BreakHis

Network Acc F1 Np

MobileNet V2 54.18% | 58.76% 14,056,513
CapsNet [21] 86% Not available | 31,893,908
Inception ResNtet 2 [4] | 92.4% | Not available | 64,823,657
Inception ResNtet 1 [3] | 97.9% | 98.47% 55,911,649
Xception [5] 99% 95% 39,737,897
LCIP 99.73%  99.59% 6,655,587

The MobileNet V2 [8] is a CNN for mobile devices or embedded systems. This
network has an inverted residual structure with shortcut connections between
the bottleneck layers. The intermediate layers use lightweight depthwise convo-
lutions. According to Table 2, MobileNet V2 has the lowest performance because
the histologic images have patterns that are not processed adequately with lin-
ear operations. However, MobileNet V2 has significantly fewer parameters than
ResNet or Inception-ResNet.

CapsNet [21] presents an Acc of 86% but does not report F1. CapsNet has
capsules, which are vector structures generated from the outputs of the neuron
group. The capsules generate invariant features to spatial and orientation, which
help find the nucleus and other cell properties. However, the performance is lower
than ResNet or Inception ResNet.

Inception-ResNet [3,4] is an architecture widely used for histologic image
processing. The architecture of [3] extracts features constructed with a new
autoencoder network that transforms the features to a low dimensional. The
model of [4] is an ensemble of VGG19, MobileNet, and DenseNet. This ensemble
generates a model similar to the Inception-ResNet network. However, the result
is 92.4% with BreakHis, and the Np is the highest.

ResNet-50 presents an Acc of 99% in [5]. This network has pre-trained kernels
with ImageNet and was trained with BreakHis, but the Np is high compared to
other networks.

LCIP achieves the best results with the highest Acc and the lowest Np. These
results are because LCIP combines the architecture of MobileNet with a block
that extracts abstract features according to the magnification level. LCIP finds
the necessary features describing the cells with the first convolutional layer and
the inverted residual block. The following convolutional layer and the average
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pooling reduce the dimension of the features. Finally, the classification stage
generates the hyperplanes to find the subspace where the images can be separated
into benign or malignant cells.

4.3 Cross Validation

The methods of ResNet, Inception-ResNet, and LCIP report accuracies higher
than 90%, but it is essential to know if a result higher than 90% is due to the
network learns. However, none of the articles reported in the literature present
an analysis to validate the obtained accuracy, like Cross-Validation (CV). For
this reason, this subsection presents the average results of a CV analysis of LCIP,
ResNet, and MobileNet V2. The CV was developed with 70 epochs and five k-
folds because these parameters were enough to know the generalization capability
of the networks. Table 3 shows the average of the five k-folds of the networks.
LCIP achieves the best Acc and F1 metrics. ResNet has low F1, which is very
different than the result shown in Table2. On the other hand, MobileNet V2
achieved better results in the CV than the results reported in Table 2. Inception-
ResNet 1 and 2 do not generate conclusive results because the CV reports lower
performance than MobileNet V2.

Table 3. Average CV of MobileNet V2, ResNet, and LCIP

Network Average Acc | Average F1
MobileNet V2 | 63.55% 45.91.76%
Xception [5] | 84.75% 76.33%
LCIP 86.66% 80.23%

5 Conclusion

This paper presents a novel method named Lightweight CNN for Histology Image
Processing (LCIP), a network for benign and malignant cell detection in histo-
logical breast tissue samples obtained from digital images. LCIP is based on the
architecture of MobileNet V2 and a block with dilated convolution in parallel to
extract cell features of different magnification levels. The second convolutional
layer and the average pooling reduce the dimension of the features. Finally,
the classification stage generates the subspaces where the images can be sepa-
rated into benign or malignant cells. According to the results, LCIP achieves the
best accuracy and F1 measure, with fewer parameters in the BreakHis dataset
compared to network models reported in the literature. LCIP has a low com-
putational cost architecture that includes a set of layers that find cell features
in the different magnification levels. The accuracy of LCIP was 99.73% with 70
epochs, and the average of the five k-folds in CV was 86.66% with 70 epochs.
On the other hand, the average accuracy of Xception falls from 99% to 84.75%
in the CV, and MobileNet V2 increases its performance from 54.18% to 63.55%.
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These results mean that the performances obtained with the backpropagation
generate overfitting in all the networks due to M (x,y)®%E do not distinguish
features at different magnification levels. However, LCIP achieves better results
in the CV than any other method reported in the literature. Furthermore, the
number of parameters of LCIP is significantly fewer than MobileNet V2, Cap-
sNet, Inception-ResNet, and Xception-50. These LCIP results are because in the
case of images with different magnifications levels, the increase in the number
of parallel operations, the network extracts descriptive features of the histologi-
cal tissue with fewer parameters. Then, based on the accuracy results of LCIP,
the CV validation, and the number of parameters, we conclude that LCIP is a
feasible network for histologic image processing. Future work will test LCIP in
embedded GPU devices to generate embedded machine learning technology for
telemedicine.
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