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Abstract. This paper presents the numerical modeling of plain con-
crete specimens subjected to uniaxial tensile stresses. The simulations are
performed using a three-dimensional macroscopic probabilistic model for
semi-explicit concrete cracking. As it is well known, concrete structures are
largely sensible to the scale effects that can be attributed, among other rea-
sons, to the heterogeneous nature of the material. The model used herein,
which is developed in the framework of the finite element method, con-
siders the material heterogeneity through the assumption that each finite
element represents a volume of heterogeneous material, with mechani-
cal properties of tensile strength and fracture energy being randomly dis-
tributed over the mesh according to the Weibull and lognormal distribu-
tions, respectively. The cracks are created with different energy dissipation
according to an isotropic damage law. The results are obtained through
Monte Carlo simulations using a parallelization strategy with OpenMp to
allow feasible 3D simulations of real structures in a viable computational
time. With the purpose of modeling the uniaxial tensile test and verify-
ing the prediction of the scale effects, simulations of three prismatic plain
concrete specimens with different sizes are performed.

Keywords: Numerical modeling · Probabilistic cracking model · Scale
effects · Uniaxial tensile test · Finite element method

1 Introduction

Concrete is a heterogeneous composite material whose mechanical behaviour is
subjected to the so-called scale effects. This phenomenon is related to the depen-
dence of the global response of a given concrete structure to its size or volume.
Some reasons can be pointed out to explain this phenomenon: the heterogeneous
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nature of concrete; the physical and chemical changing during its production and
hardening; the micro-cracking due to drying; and the porosity resulting from the
presence of water [8,10].

As stated by [7], the size effect is related to two levels: (1) the material level
that determines intrinsic constitutive relations for concrete cracking, and (2) the
structural level to account for size effect in design methods and finite element anal-
ysis. The material heterogeneity and size effect are strictly correlated aspects and
should be taken into account when dealing with concrete structures modeling.

In this work, a 3D macroscopic probabilistic model for semi-explicit concrete
cracking is applied to numerical simulations of the behavior of plain concrete
specimens under tensile stresses. The purpose of these simulations is to inves-
tigate the model’s capability to reproduce the phenomenon of scale effect on
concrete tensile strength. The model considers the heterogeneity of the material
through a probabilistic approach, and a Monte Carlo (MC) procedure is used to
ensure the accuracy of the results. The MC procedure is implemented using a
parallelization strategy, reducing the computational time.

2 Semi-explicit Probabilistic Model for Concrete
Cracking

The semi-explicit probabilistic model is developed in the context of the finite
element method; its main principle is to incorporate the concrete heterogeneity
in its formulation. For this, it is assumed that each finite element represents a
volume of heterogeneous material, with its heterogeneity degree (re) evaluated
by the following ratio: finite element volume (Ve) divided by coarsest aggre-
gate volume (Va). Therefore, to describe the material heterogeneity, the tensile
strength (ft) and fracture energy (Gc) are randomly distributed for each finite
element according to its respective re.

In this modeling, it is considered that the creation and propagation of one
crack within the element itself induces some local dissipation of energy. The
element is considered damaged when the total amount of energy that it can
consume is reached. The evolution of this dissipative process is mathematically
represented through a probabilistic isotropic damage law [2]. At a macroscopic
level, the creation and propagation of a crack is the consequence of the ele-
mentary failure of successive elements that randomly appear and can coalesce
to form the macroscopic cracks. In that context, the model does not deal with
crack propagation laws in the sense of fracture mechanics [3,10].

The stress-strain relation of the material in a stage of damage can be
expressed in terms of the undamaged stress-strain relation, as described in
Eq. (1), where Ẽ and E0 are, respectively, the elastic modulus of the damaged
and undamaged material and D is the damage variable. The damage evolution
can be given by Eq. (2), where ε̃0 represents the damage initialization strain; ε̃fi

represents the maximum critical strain and ε̃k stands for the equivalent strain.

σ = Ẽε, Ẽ = E0(1 − D), (0 ≤ D ≤ 1) (1)
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D = 1 − ε̃0
ε̃k

[
1 − (ε̃k − ε̃0)

(ε̃fi − ε̃0)

]
(2)

This constitutive law is completely defined by the tensile strength and volu-
metric density of dissipated energy (gc). This latter can be evaluated considering
the use of an energetic regularization technique [1], taking into account the mate-
rial fracture energy, as follows: gc = Gc/le; where le represents the elementary
characteristic length and is evaluated as: le = (Ve)1/3.

2.1 Random Distribution of the Material Properties

The tensile strength of the material is distributed according to the Weibull dis-
tribution [11,12]. Its probability density function for a random variable x is
described in Eq. (3), where b > 0 is the shape parameter and c > 0 is the scale
parameter of the distribution.

f(x, b, c) =
b

c

(x

c

)b−1

e(− x
c )b

(3)

The mean μ and the variance σ2 of the distribution can be seen in Eq. (4)
and Eq. (5), where Γ is the Gamma function given by Γ (η) =

∫ ∞
0

xη−1e−xdx. If
η is a positive integer then Γ (n + 1) = n! what means that Γ (n) = (n − 1)!.

μ = cΓ

(
1 +

1
b

)
(4)

σ2 = c2Γ

(
1 +

2
b

)
− μ2 (5)

The fracture energy of the material is distributed according the lognormal dis-
tribution. Its probability density function is defined by f(x, b, c) : x ∈ (0,∞] →
R, as can be seen in Eq. (6), where, μ is the mean and σ the standard deviation
of the variable’s natural logarithm.

f(x, μ, σ) =
1

μσ
√

2π
e− (ln(x)−μ)2

2σ2 (6)

The expected value E(X) and variance V ar(X) are given by (Eq. (7)) and
(Eq. (8)). The standard deviation is considered as the dispersion measure of the
distribution and is defined as dlog =

√
V ar(X).

E(X) = eμ+σ2
2 (7)

V ar(x) =
(
eσ2 − 1

)
e2μ+σ2

(8)
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2.2 Parameters Estimation

The Weibull distribution parameters are estimated through an iterative numer-
ical procedure developed to solve a non-linear system of equations. The system
combines the equations of the mean and standard deviation of the distribution
(Eq. (4) and Eq. (5)) with the analytical scale law proposed by [9]. This formula-
tion comes from an experimental investigation correlating concrete heterogene-
ity and scale effect. This law, applied here to the elementary level, estimates
the expected values of the mean and standard deviation of a given volume of
concrete. With the procedure, a pair of (b, c) is obtained for each element as
a function of its volume, maximum aggregate size, and compressive strength
(fc). More details of the analytical expressions as well as the description of the
iterative procedure implementation can be found in [5].

The lognormal distribution has two parameters; however, as it is assumed
that the fracture energy is an intrinsic material property with a constant mean
value, the only parameter that must be determined is its standard deviation
dlog. The fracture energy mean value can be taken equal to the experimental
value obtained by [6] (Gc = 1.3141 × 10−4 MN/m). Thus, an inverse analysis
procedure was carried out for estimating dlog, based on several simulations of a
macrocrack propagation test on a very large double cantilever beam specimen
(DCB), modeling the experimental test performed by [6]. From this procedure,
a function to define the value of the parameter for each mesh element related to
its heterogeneity degree (Eq. 9) was proposed. The full description of the inverse
analysis procedure is beyond the scope of this work, but more details can be
found in [4].

dlog (re) = (A ln (re) + B) × Gc, re ∈ [1, 3000] (9)

where, A = −8.538 and B = 70.88.

3 Modeling of the Uniaxial Tensile Test

Simulations using different volumes of plain concrete are performed to verify the
presence of scale effects on the direct tensile strength of concrete in cubic and
prismatic specimens. Since the model is macroscopic and its main objective is to
treat the macrocrack propagation and not macrocrack initialization, a difference
was expected between the numerical and experimental results concerning the
tensile strength values. Therefore, the following simulations are performed:

1. Simulations of four concrete cubes with different volumes to verify the accu-
racy of the model and the set of estimated parameters.

2. Simulations of the four concrete cubes after calibrating the evaluation of mean
and standard deviation of tensile strength, proposing an adjustment function
to be used in the cases of simulation of concrete specimens under uniaxial
tensile stresses.

3. Simulations of three prismatic plain concrete specimens with the purpose of
validation of the proposed adjustment function.
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The concrete properties are the following: Young’s Modulus E = 36 GPa;
Poisson’s ratio ν = 0.2 and volume of the largest aggregate Va ≈ 9 × 10−4dm3.
The meshes are composed of linear tetrahedrons. The number of elements was
fixed to ensure that the elements’ failure has the same impact on the global
response of the problem; this means that the ratio Vt/Ve is kept the same in
all cases. The boundary and loading conditions of the cubes and prisms are
consistent with the simulated direct tensile test, with incremental displacements
applied in the longitudinal direction and increments corresponding to δ = 0.1 ×
10−4 dm. The measures of the specimens are in decimeters. For each Monte Carlo
simulation, 400 samples were run to ensure a statistically consistent result.

3.1 Simulation of Cubic Specimens - First Evaluation

The simulations will be carried out on four cubes with different volumes whose
geometry and mesh characteristics can be seen in Fig. 1. The four meshes are
composed of 96 elements. More details about the cubic specimens are reported in
Table 1, where the following information is presented: the simulation reference
(REF), the specimen height and cross-section, the total volume of the cubes
(VT ), the ratio Vt/Va, the heterogeneity degree (Ve/Va) and the empirical (theo-
retical) values of mean and standard deviation of tensile strength related to each
analyzed specimen.

(a) C1 V1. (b) C2 V3. (c) C3 V6. (d) C4 V10.

Fig. 1. Geometry and meshes characteristics of cubic specimens.

The results of these simulations are displayed in Table 2, where Δft
and

ΔSD are the comparison between numerical results and experiments, obtained
by the respective division of numerical by empirical values of fmean

t and SD
(standard deviation). Notice that as the volume of the cubes increases, the dif-
ference between the expected and numerical tensile strength values increase. A
reason for this behavior is the model’s characteristics and purpose, i.e., it is
a macroscopic model responsible for providing fine information about localized
macrocrack propagation at a structural level. Thus, the model is not formulated
to reproduce the crack creation (initialization) as its principal feature. Therefore,
the obtained difference between the results is understandable.
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Table 1. Detailed information about the cubic specimens.

REF Height Cross-section VT Vt/Va Ve/Va Empirical

fmean
t (MPa) SD(MPa)

C1 V1 1.0000 1.0000 1 1111 11.52 3.17 0.23

C2 V3 1.4423 2.0801 3 3333 34.57 2.83 0.16

C3 V6 1.8171 3.3019 6 6666 69.15 2.64 0.13

C4 V10 2.1544 4.6416 10 11111 115.16 2.50 0.11

Table 2. Results of the first simulation on the cubes

Reference Numerical Comparison

fmean
t (MPa) SD(MPa) Δft ΔSD

C1 V1 3.454 0.1849 1.09 0.80

C2 V3 3.273 0.1505 1.16 0.94

C3 V6 3.157 0.1335 1.20 1.03

C4 V10 3.155 0.1468 1.26 1.33

3.2 Simulation of Cubic Specimens - Second Evaluation

The simulations presented in this section aim to minimize the difference between
numerical and expected results. For this purpose, a parameters calibration is
proposed employing a proportional decrease in the elementary values of the
mean and standard deviation of the tensile strength, provided by the analyti-
cal expressions describing the scale effect. Thus, the coefficient of variation of
tensile strength theoretically obtained remains unchanged through this strat-
egy. The adjustment is based on the difference between numerical and empiri-
cal results measured by the ratio Δft

(see Table 2). The proportional decrease
percentage, defined as dft(%), is given in Table 3. This table also presents the
numerical results of the second group of simulations and their comparison with
the empirical data.

Table 3. Results of the second simulation on the cubes

Reference dft(%) Numerical Comparison

fmean
t (MPa) SD(MPa) Δft ΔSD

C1 V1 −10 3.097 0.1665 0.98 0.70

C2 V3 −13 2.854 0.1329 1.01 0.83

C3 V6 −17 2.618 0.1097 0.99 0.84

C4 V10 −20 2.526 0.1119 1.01 1.02
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As can be seen, the mean value of the tensile strength is precisely achieved,
whereas its standard deviation became more accurate only for the case of
C4 V10. A level of discrepancy related to standard deviation was already
expected and can be justified considering the following aspects: a) the decrease
is proposed concerning Δft

; b) it is a complex task to reproduce coefficients
of dispersion of probabilistic parameters [9]; c) there is a substantial difference
between the number of MC samples (400 analyzes) and the number of tests
(around 13 experiments per concrete type and specimen size).

From these results, a function is proposed to estimate the percentage of
decrease of the mean and standard deviation of tensile strength related to the
mesh heterogeneity degree. The objective is to apply this function in the specific
cases of direct tensile tests simulations and use the calibrated values for estimat-
ing the (b, c) parameters of the Weibull distribution. This function is defined as
dft

(
Ve

Va

)
, and is described in Eq. 10.

dft

(
Ve

Va

)
= −4.8

(
Ve

Va

)0.3

(10)

3.3 Simulations of Prismatic Specimens - Validation

For validation purposes, numerical analyzes on three prismatic specimens with
different sizes, defined as P1, P2, and P3, are performed. Its geometry and mesh
characteristics can be seen in Fig. 2. The number elements is equal to 837. More
details about the prismatic specimens are reported in Table 4. The results are
presented in Table 5 showing that there is a difference between numerical and
analytical values of fmean

t . However, the maximum discrepancy is around 14%
for the case of P3, and the scale effect phenomenon is verified. Therefore, the
results can be considered satisfactory. Besides, it is essential to highlight the
mesh size distinction regarding to the cubic specimens; in this case, the number
of elements is almost ten times increased.

(a) Mesh P1. (b) Mesh P2. (c) Mesh P3.

Fig. 2. Geometry and meshes characteristics of prismatic specimens.
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Table 4. Detailed information about the prismatic specimens.

REF Height Cross-section VT Vt/Va Ve/Va Empirical

fmean
t (MPa) SD(MPa)

P1 2.20 0.9506 2.10 2333 2.78 2.94 0.1795

P2 3.00 1.7689 5.32 5911 7.06 2.67 0.1324

P3 3.52 2.4336 8.58 9533 11.38 2.54 0.1132

Table 5. Results of the prismatic specimens simulations.

REF Numerical Comparison

fmean
t (MPa) SD(MPa) Δft ΔSD

P1 3.196 0.1144 1.09 0.64

P2 3.004 0.1176 1.12 0.89

P3 2.907 0.1006 1.14 0.89

A general overview of the global mechanical behavior of the performed sim-
ulations is presented through the load-displacements curves of each MC simula-
tion, displayed in Fig. 4(a–c). Only twenty samples are reported in the graphics
to allow clear visualization of the typical profile of P − δ curves. A comparison
in terms of (σ×ε) curves is presented in Fig. 4(d). A more significant distinction
between P1 and P2 mean curves are observed due to their volumes’ larger dif-
ference. Moreover, the maximum discrepancy between numerical and empirical
values of fmean

t is related to P3. The typical cracking pattern of the analyzed
prismatic specimens is illustrated in Fig. 3, where is presented the results of the
damage variable at the final stage of the simulations for one of the MC samples
of each specimen. In these figures, the light grayish blue elements represent the
damaged elements. The dark gray represents the undamaged ones. The others
with intermediate colors represent elements in the damaging process.

(a) Crack P1. (b) Crack P2. (c) Crack P3.

Fig. 3. Example of typical cracking pattern at the final stage of the simulations.
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(a) Specimen P1. (b) Specimen P2.

(c) Specimen P3. (d) Comparison - (σ × ε) mean curves.

Fig. 4. Global response of Monte Carlo simulations of the prismatic specimens.

4 Conclusions

In this paper, a 3D probabilistic semi-explicit cracking model is applied to sim-
ulate the behavior of concrete specimens under tensile stress in order to repro-
duce scale effects. After calibrating the parameters, the mean value of tensile
strength was precisely achieved in the cubic specimens simulations, whereas its
standard deviation became less accurate. However, the results are promising
since the main objective was to achieve its mean value. Through these results,
an adjustment function to be used in this cases of uniaxial tensile stress simula-
tions was proposed to calibrate the parameters, and validation simulations were
performed. The scale effect was verified in the prismatic specimens, although a
slight difference between numerical and analytical values was observed. However,
as the maximum discrepancy is around 14% and, considering that the results are
concerning a very complex phenomenon, they can be considered satisfactory.
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