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Abstract The text discusses the concept of hybrid intelligence, which is a form of
collaboration between machines and humans. It describes how this concept can be
used in manufacturing to help improve productivity. The text also discusses how this
concept can be used to help humans learn from machines. There is a debate in the
intelligence community about the role of humans vs. machines. Machine intelligence
can do some things better than humans, such as processing large amounts of data, but
is not good at tasks that require common sense or empathy. Augmented intelligence
emphasizes the assistive role of machine intelligence, while hybrid intelligence
posits that humans and machines are part of a common loop, where they adapt to
and collaborate with each other. The text discusses the implications of increasing
machine involvement in organizational decision-making, specifically mentioning
two challenges: negative effects on human behavior and flaws in machine
decision-making. It argues that, in order for machine intelligence to improve
decision-making processes, humans and machines must collaborate. The chapter
argues that hybrid intelligence is the most likely scenario for decision-making in the
future factory. The chapter discusses the advantages of this approach and how it can
be used to improve quality control in a production system. The transformer-based
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language model called GPT-3 can be used to generate summaries of text. This task is
difficult for machines because they have to understand sentiment and meaning in
textual data. The model is also a “few-shot learner,” which means that it is able to
generate a text based on a limited amount of examples. Transformer-based language
models are beneficial because they are able to take the context of the processed
words into consideration. This allows for a more nuanced understanding of related
words and concepts within a given text.

[Abstract generated by machine intelligence with GPT-3. No human intelligence
applied.]
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1 From Human-Computer Interaction to Human-Machine
Collaboration

As summarized in the previous chapter “Future Scenarios and the Most Probable
Future for Next Generation Manufacturing”, the most probable scenario resulting
from our Delphi study on the future of digitalization in manufacturing predicts two
fundamental changes until 2030 that will be enabled by the scaled deployment of
digital shadows connecting data, products, and equipment across organizational
boundaries: first, a shift from the current focus on operational efficiency to a broader
set of economic, ecological, and social sustainability objectives driving future
manufacturing strategies and second, an anthropocentric perspective on production
where machines learn from humans and humans from machines in a much more
collaborative form as compared to the status quo today.

In this final chapter of our book, we build on the second development. It
corresponds to the paradigm shift from a technology-centered toward a human-
centered digitalization and work design, consistently reconsidering the role of
humans in the factory of the future (Mütze-Niewöhner et al., 2022; Hirsch-Kreinsen
& Ittermann, 2021). Chapters “Organization Routines in Next Generation
Manufacturing” and “Capability Configuration in Next Generation Manufacturing”
already discussed these developments in larger detail. Human-centered digitalization
and work design are also a central element of our understanding of an “Industry 4.
U,” as introduced in the first chapter of this book, describing the next evolution of
Industry 4.0—centered on people and planet.

Human-centered digitalization starts with using technology to support humans at
work in an individually customized manner by taking individual capabilities, habits,
and preferences into account. Nevertheless, it also has a profound impact on how
decisions are made in an organizational context, enabled by new forms of collabo-
ration between humans and machines (machine intelligence). Delphi Projection P8
proposed the rise of a “hybrid intelligence,” suggesting that in 2030, “strategic
production decisions will be executed in close interaction between humans and
AI-based algorithms.” Our expert panel demonstrated consensus and a high proba-
bility that this projection will be realized within the next decade.
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In this chapter, we explore the concept of hybrid intelligence in larger detail.
While there are more questions than answers and we are just at the beginning to
investigate this concept, early examples are already here. We used a specific use case
of (a weak) hybrid intelligence to write this book: a (transformer) language model
helped us to compose the abstracts and summaries of this book. While probably just
a simple form of hybrid intelligence, it still provides a good illustration of a new form
of collaboration between machines and us. We will discuss this specific application
and its technical background in larger detail toward the end of this chapter. Before,
we outline our understanding and definition of hybrid intelligence and the open
research questions it poses with regard to the future organization of work. In this
context, we present a specific scenario of using hybrid intelligence for learning and
continuous improvement for Next Generation Manufacturing.

2 Hybrid Intelligence: Concept and Definition

There used to be a clear separation between tasks done by machines and tasks done
by people (van der Aalst, 2021). Machine intelligence, i.e., mixtures of artificial
intelligence (AI) and machine learning (ML), can deal amazingly well with unstruc-
tured data (text, images, and video) as long as there are enough training data. In the
corporate context, the use of machine intelligence attempts to make structures and
processes more efficient. Applications in speech recognition (e.g., Alexa and Siri),
image recognition, automated translation, autonomous driving, and medical diagno-
sis have blurred the classical divide between human tasks and machine tasks.
However, while machine intelligence works well for such clearly defined tasks, it
is not foreseeable that it will become capable of fully mapping complex business
problems in organizational contexts (Dellermann et al., 2019) or solving multiple
tasks simultaneously (Raj & Seamans, 2019). Although current AI and ML technol-
ogies outperform humans in many areas, tasks requiring common sense, contextual
knowledge, creativity, adaptivity, or empathy are still best performed by human
intelligence. Machine intelligence, on the contrary, is about data and algorithms and
can be characterized by terms such as fast, efficient, cheap, scalable, and consistent.

Taken together, Dellermann et al. (2019) define hybrid intelligence as:

the ability to achieve complex goals by combining human and artificial intelligence, thereby
reaching superior results to those each of them could have accomplished separately, and
continuously improve by learning from each other.

Following this definition, hybrid intelligence hence blends human intelligence
and machine intelligence to combine the best of both worlds. As things stand today,
it is the most likely deployment scenario of machine intelligence in the corporate
context over the next few decades. Hybrid intelligence aims to leverage the com-
plementary strengths of human and machine intelligence in such a way that better
overall performance can be achieved than when machines or humans are used alone
(Dellermann et al., 2019; Kamar, 2016). Even in often-cited application scenarios
that use AI-based algorithms for decision preparation or outsource decision-making



to AI (e.g., laboratory data interpretation, human resources, claims processing),
human actors invariably play a central role (Shrestha et al., 2019).
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A closely related term, augmented intelligence, emphasizes the assistive role of
machine intelligence (especially ML), when deep neural nets and other data-driven
techniques enhance human intelligence rather than replace it. In this understanding,
AI and ML are shifting human intelligence on a higher level, just like telescopes are
there to enhance human vision. The term is widely used especially in the literature on
computational medicine for algorithms supporting humans in medical diagnosis and
research. Long and Ehrenfeld (2020) proposed such an augmentation scenario
impressively for the case of reacting to the Corona pandemic (in a paper published
at a time when the general public hasn’t realized yet that there was a pandemic),
forecasting a coordinated research endeavor to fight the spread of the disease that
would have been not possible without strong ML capacities supporting the research
teams. Reality proofed their predictions right.

However, in the understanding of augmented intelligence, there still is a sequen-
tial process in the division of labor between humans and machines: Machines
process large amounts of data, search for patterns, and make predictions, but
basically support humans, who drive the process, and execute the results of the
AI. Our understanding of hybrid intelligences goes further, regarding human and
machine intelligence as two elements of a common loop. In doing so, we follow the
definition by Dellermann et al. (2019), as presented above, or Zheng et al. (2017),
who describe a “human-in-the-loop hybrid-augmented intelligence” system, where
humans are always part of the system. In this system, humans first influence the
outcome (of a machine intelligence) in such a way that they provide further judgment
if a low confident result is given by the algorithm. But the collaboration goes further.
The idea is to “realize a close coupling between the analysis-response advanced
cognitive mechanisms in fuzzy and uncertain problems and the intelligent systems of
a machine” (Zheng et al., 2017: 154). Hence, human and machine intelligence adapt
to and collaborate with each other, forming a two-way information exchange and
control (a similar understanding has been outlined by Pan (2016) in his conceptual-
ization of an “Artificial Intelligence 2.0”). This is why we prefer to use the term
hybrid (and not augmented) intelligence.1

A good illustration of this collaboration between human and machine intelli-
gences provides AlphaGo, a Go-playing computer developed by DeepMind Tech-
nologies (a firm belonging to Alphabet Inc., the mother company of Google).
Commonly seen as a breakthrough in machine intelligence, AlphaGo defeated the

1Zheng et al. (2017) also describe a second concept of human and machine collaboration: “cogni-
tive computing-based hybrid-augmented intelligence.” While out of the scope of this chapter, it is
worth mentioning. Cognitive computing-based hybrid-augmented intelligence refers to a machine
that “mimics the function of the human brain and improves computer’s capabilities of perception,
reasoning, and decision-making. In that sense, [it] is a new framework of computing with the goal of
more accurate models of how the human brain/mind senses, reasons, and responds to stimulus,
especially how to build causal models, intuitive reasoning models, and associative memories in an
intelligent system” (Zheng et al., 2017: 154).



best-ranked Go player Ke Jie in 2017. The more powerful AlphaGo Zero learned by
just playing games against itself but was able to defeat any human player by the end
of 2017. However, this has not been the end of the story (van der Aalst, 2021). The
interplay between human intelligence and machine intelligence led to new insights.
AlphaGo showed human players new strategies for playing Go, as some of the
world’s leading Go players acknowledged [as recorded in Baker and Hui (2017)].
Shi Yue said “AlphaGo’s game transformed the industry of Go and its players. The
way AlphaGo showed its level was far above our expectations and brought many
new elements to the game.” Zhou Ruiyang said “I believe players more or less have
all been affected by Professor Alpha. AlphaGo’s play makes us feel freer and no
move is impossible to play anymore. Now everyone is trying to play in a style that
has not been tried before.” At the same time, the new strategies explored by the
human players inform the machine algorithm. Humans can learn from machines, and
machines from humans: “We look forward with great excitement to AlphaGo and
human professionals striving together to discover the true nature of Go,” Baker and
Hui (2017) conclude a review of the innovations to the gameplay of Go, resulting
from the collaboration of human players and the AlphaGo machine.
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Fig. 1 Hybrid intelligence (HI) aims to combine the best of human intelligence and machine
intelligence [Source: Building on van der Aalst (2021) and Zheng et al. (2017)]

Hybrid intelligence aims to combine the best of both worlds, as illustrated in
Fig. 1. The recent developments in AI and ML have extended the reach of software
and hardware automation (robots). Once a robot is able to perform a repetitive task at
a similar level of quality, it is often also more reliable and cost-effective. However,
humans still have unique capabilities. For example, we have the ability to transfer
experiences from one problem domain to another. As van der Aalst et al. (2021)
argue, AI/ML cannot deal with disruptions. The Corona pandemic or events of
severe weather like the flooding in Germany in July 2021 have shown that when



there is a sudden dramatic change, predictive models fail, no matter how much data
was there before. Especially at the beginning of the Corona pandemic, the
established algorithms predicting demand in supply chains failed because of the
unforeseen demand for certain products (e.g., pasta and toilet paper) combined with
simultaneous restrictions for travel, work, and business. In such a situation, machine
intelligence needs to be complemented by human intelligence.
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But also in non-catastrophic events, humans need to remain in the loop. The idea
of hybrid intelligence is not just to use humans when machine intelligence fails due
to disruptions. The allocation of machine intelligence in decision-making processes
often leads to more efficient, but sometimes also to unreflective or non-transparent,
solutions with unintended biases. This, in turn, leads to a rejection of the AI
contribution (acceptance) and thus hinders the exploitation of its potentials. Consider
situations that need empathy, creativity, or ethics (van der Aalst, 2020). Decisions in
these situations will also demand human contributions and cannot entirely be
executed by a machine. Machine intelligence and human intelligence will comple-
ment each other. Understanding these factors as well as the mechanisms of interac-
tion between humans and machine intelligence is a domain that opens a wide
demand for further research. We will explore these dynamics in larger detail in the
following section.

3 New Rules for Task Allocation: Division of Labor
Revisited

The rise of hybrid intelligence asks us to reconsider one of the most fundamental of
all economic and ergonomic questions: the division of labor and task allocation in an
organization and individual work systems. While the development of machine
intelligence is a field of computer science (decision routines and data structures)
and research on corresponding technical applications of AI is primarily located in the
engineering sciences, the implementation of hybrid intelligence is an economic
(management) phenomenon (Bailey & Barley, 2020; von Krogh, 2018). It asks the
question how to efficiently design decision-making in an organization.

Since the days of Frederick Taylor and Henry Ford, the idea of the ideal human-
machine task division has evolved considerably from an industrial engineering and
ergonomic perspective. Machine intelligence has the potential to be more than a tool,
as it can also take on the role of a work partner or even a supervisor, as suggested in
the debate of algorithmic management (Lee et al., 2015). In a work system, humans
and AI need not oppose each other, but can complement each other as a team. Still,
today, humans are only used for monitoring systems automated by machine intelli-
gence. These humans are either under-challenged or fatigued, which significantly
prompts errors. Other humans, who already are heavily burdened by their own
subtasks, get overwhelmed by the need to make additional decisions as to when
AI support should be utilized. Hence, to effectively support and relieve humans,



machine intelligence should therefore work largely independently and recognize
when support is necessary and desired. Furthermore, a dynamic division of tasks
between humans and machines could adapt to varying situations, tasks, and user
states, avoiding states of cognitive overload and underload. As a basis for such
adaptive support, data providing information about the states of the individual
components of a work system, like the involved human(s), equipment, the environ-
ment, as well as task and organizational goals, are needed and can be provided in the
future in the form of digital shadows.
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When the extent of decision support by machine intelligence is reaching intensity
levels that seemed impossible in the past, research is needed how tasks can be
allocated in the continuum between machine intelligence and human intelligence.
Prior research in this domain rather described the challenge based on a few case
studies (e.g., Iansiti & Lakhani, 2020; De Cremer, 2020) or exploratory surveys
(Berditchevskaia & Baeck, 2020) and rather focused on the practical implementation
of decision processes with machine intelligence, but neither examine their organi-
zational impact nor do they follow the understanding of a hybrid intelligence, as
discussed before.

We propose to structure such a research endeavor into two dimensions:

1. What is the (optimal) degree of integration of machine intelligence into organi-
zational decision processes, and what are the tasks remaining for humans and the
tasks where a human-machine collaboration is the preferred solution?

2. What is the quality of decisions made by the use of machine intelligence—not just
when compared to the factual quality of the decision for a given task
(if benchmarked against human decisions) but also when taking factors of
organizational acceptance and adoption of the machine decision into account?

3.1 Degree of Machine Intelligence Integration into
Organizational Decision Processes

To analyze the degree to which machine intelligence is involved in organizational
decision-making, the established logic of the automation pyramid in engineering
provides a good framework (Endsley, 1987). Consider the different cases shown in
Fig. 2. The two extremes are the established situations of human and machine
intelligence. But as the picture shows, there is a scope of hybrid situations [(b) to
(d) in Fig. 2]. Here, to varying degrees of intensity, human and machine intelligence
interact, each with particular strengths (and weaknesses) and major differences in
capabilities and behaviors, in ways that did not exist in earlier human-human
interactions (Berditchevskaia & Baeck, 2020; Groensund & Aanestad, 2020). In a
narrow understanding of our definition of hybrid intelligence, only Case
(d) addresses the intended collaboration between human and machine intelligence;
Cases (b) and (c) are rather situations of “augmented intelligence.” However, the



borders between these areas are fuzzy and constantly moving, as we will illustrate
with a simple example at the end of this chapter.
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Fig. 2 Different situations of combining human and machine intelligence

All situations of hybrid intelligence have immediate consequences for the behav-
ior of individuals and thus for the resulting (quality of the) decisions and their
implementation. In the longer term, they will also result in indirect effects, when
people’s experiences with machine intelligence influence their subsequent behavior
in other situations (e.g., always expecting that there is a machine intelligence at hand
to support a human task). Also, undesirable path dependencies may arise, such as a
loss of knowledge or skills (Lebovitz et al., 2022), as experienced by the use of
GPS-based navigation systems, which deterred the ability of many humans to
navigate without machine support.

Hence, a critical question is when the potential benefits of allocating decision-
making tasks to machine intelligence (increasing the efficiency and effectiveness of



the decision-making process) are (over)compensated by new costs and challenges.
These costs include both the efforts for developing and implementing the algorithms
and the cost of adapting an organizational design to the new situation. Also, indirect
costs in the form of negative effects on human behavior must be considered, e.g.,
costs resulting from acceptance problems. Acceptance here addresses both the
individual level, i.e., humans who must share decision power with machine intelli-
gence and collaborate with it, and the societal level of acceptance by stakeholder
groups such as trade associations, unions, or regulatory institutions.
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3.2 Consequences for Decision Quality

For certain, well-defined decision situations and tasks, machine intelligence provides
without doubt better results, i.e., adds real value (without obvious violation of norms
and other constraints). However, also in these situations, a remaining challenge is
often the black-box nature of the solution (Shrestha et al., 2019). In computer
science, approaches are therefore being developed to make AI more comprehensible
(Rai, 2020), so that people are more likely to accept and implement the solution
provided by the machine intelligence (when completely autonomous task perfor-
mance is not possible/desirable). Scenarios of using hybrid intelligence are obvious
in these decision-making situations.

In other situations, however, it is not certain whether machine intelligence can
provide a suitable and better solution. This may be because (1) relevant norms to the
decision are not observed by the machine and/or (2) the technical solution is
“flawed,” because the underlying data basis is insufficient or the modeling has not
adequately captured the problem or cannot capture it due to unknown causal
relationships. An example of such flawed decisions can be found in recruitment.
When past career paths and performance patterns are used as the basis for future
hiring, women tend to be left out of the equation (Cowgill & Tucker, 2020). This
results in a conflict with the social norm of increasing diversity. The reasons behind
these flawed decisions can be insufficient amounts of data or discriminatory patterns
contained therein, but also an ill-defined notion of recruitment performance. How-
ever, once such a problem has been understood, humans together with machine
intelligence can improve automating these decisions in the mid-term.

We believe that this situation also reflects the reality in most manufacturing
companies today (Agrawal et al., 2019; Raj & Seamans, 2019). Machine intelligence
is used but requires collaboration with human decision-makers to result in an optimal
solution. Hence, an important question is how humans could check the quality of
prescriptions provided by a machine, considering a potential violation of norms or
possible “errors,” before implementing the solution in a corrected manner, a proce-
dure that Groensund and Aanestad (2020) called “augmenting the algorithm.” As we
will argue in the next section, real-time simulation models enabled by digital twins
and shadows allow exactly such an ex ante validation. At the same time, structuring a
machine intelligence solely according to human thought patterns (or those that



humans can understand) is not sufficient either, as it may model the problem task
inadequately or follow violations of norms by human decision-makers. This is
exactly where the vision of a hybrid intelligence comes into place. Once the issues
outlined before are recognized and understood, either an autonomous decision
process by machine intelligence could be improved, or the decision could be
structured in such a way that humans stay in the loop, taking social norms or
intended consequences into account. Equally, however, humans also improve their
own decision-making processes, when, for example, a machine intelligence suggests
previously unknown initial solutions or uncovers distorted decision-making patterns
of humans in the past. The loop is closing.
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4 Hybrid Intelligence in Next Generation Manufacturing

While we believe that hybrid intelligence will strongly influence all kinds of
decisions and task execution in an organization, we want to demonstrate such a
scenario for Next Generation Manufacturing, as central to this book. As introduced
in chapter “How Digital Shadows, New Forms of Human-Machine Collaboration,
and Data-Driven Business Models Are Driving the Future of Industry 4.0”, the
context of this work is the interdisciplinary research cluster Internet of Production
(IoP) at RWTH Aachen University (iop.rwth-aachen.de), enabling a new level of
cross-domain collaboration along the entire product life cycles from engineering
over operations toward the usage stage (Brecher et al., 2016). The IoP pursues a
vision called the World Wide Lab (WWL), in which processes, factories, entire
companies, and the managers and workers constituting these organizations can learn
from each other by sharing experiences and knowledge (Brauner et al., 2022).
Corresponding to the relationship of the Internet and the World Wide Web
(WWW), the WWL aims to be a network of multisite labs in which models and
data from experiments, manufacturing, and usage are made accessible across com-
pany borders to gain additional knowledge. A main driver of the WWL is digital
shadows, i.e., purpose-driven, aggregated, multi-perspective, and persistent data sets
from production, development, or usage (Liebenberg & Jarke, 2020). Digital
shadows are a specification of the broader idea of digital twins (for more details,
refer to chapter “How Digital Shadows, New Forms of Human-Machine Collabora-
tion, and Data-Driven Business Models Are Driving the Future of Industry 4.0”).
The cross-domain exchange of digital shadows in the form of data spaces can make
data more valuable, opening the present data silos in different companies—a core
enabler of better machine intelligence.

In our understanding of the Internet of Production, digital shadows are the “units
of data” shared among organizations. They connect data, products, and industrial
assets within and across organizations and are the foundations for data-driven
planning and decisions within an organization (factory) and in-between organization
(supply chains, value chains) by using real-time and historical data to simulate
predicted futures. In this loop, hybrid intelligence plays a central role. Figure 3



outlines such a hybrid decision-making combining machine intelligence and human
expertise in a collaborative form. The figure shows three different modes of learning
(understood here generically as any kind of decision-making in an existing
manufacturing system to improve the system’s operational efficiency, to cope with
disturbance, or to increase the system’s potential for strategic differentiation).
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Fig. 3 Three models of learning in manufacturing: (1) causal learning, (2) machine learning, and
(3) model-based learning based on digital shadows [building on Brecher et al. (2017)]

1. Human intelligence: Causal learning is the established way we learn. Building on
domain knowledge acquired either by experience (learning on the job) or by
formal education, humans have a unique capability to understand a complex
system and utilize or improve it by trial-and-error learning. The experience
curve effect is based on this learning mode, as are practices like Lean Six
Sigma. Informed by their domain expertise, a team at a production station defines
a problem area (an application), sets up assumptions (hypotheses) how to achieve
an improvement, tests the assumptions via experiments to gain insights, and then
either implements the solution (if the experiment was successful) or redefines the
assumptions and conducts a new experiment. The development of the hypotheses
is based on theory, often captured in models of the systematic influencing factors
of the production system (like fluid or thermal dynamics) and uses the real
production system as the test bed for empirical validation (empiricism). Such a
causal learning process can be very powerful, but it is often slow and prone to the
assumptions human draw and the hypotheses they set up.

Conventional (digital) simulation models also belong to this learning mode.
An a priori simulation uses (“theoretical”) model knowledge to simulate
(an extract of) the production system, so that specific behaviors (assumptions,
scenarios) can be tested. These digital models can be used to reason about reality
and answer what-if questions. However, digital simulation models are a reflection
of reality that is created manually and functions in an offline manner, i.e., the
model does not change when reality changes (van der Aalst et al., 2021). Hence,
conventional simulation models are outdated when the production system goes
into operations, as there are numerous stochastic factors influencing the system
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behavior, like temperature conditions, material characteristics, or the mood of the
humans involved. All of these factors lead to a continuous change of the system
(like an abrasion of a component, minimal modifications of a material, etc.).
Conventionally, these changes are not captured in the simulation model, which is
why experiments in the real system are required.

2. Machine intelligence: Artificial intelligence and machine learning came up as the
new way to learn. Machine intelligence is data-driven and learns from data
without explicitly being programmed. In manufacturing, cyber-physical systems
provide these data in real time (in the form of digital twins and shadows) and store
it in repositories (data spaces) where algorithms can find insights and interrela-
tions between different data sets. Today’s usage of machine learning for many
tasks that before could only be done by humans can be attributed to progress in
deep learning techniques, where artificial neural networks (ANNs) having mul-
tiple layers progressively extract higher-level features from the raw input (van der
Aalst, 2021). For example, we can train an ANN to distinguish between pictures
from a vision control system that show work pieces with adequate and others with
insufficient quality. While training, the ANN updates the weights in the internal
representation until the number of incorrectly classified pictures is minimized.
Then the trained ANN is used to classify test data, i.e., unseen pictures of good
and bad pieces that need to be classified correctly. Given enough training data,
such an ANN may perform amazingly well in automating quality control,
although it was never programmed to do so and has no explicit knowledge of
what makes a good and a bad work piece.

Beyond such automation scenarios enabled by machine intelligence, also
higher-level learning can take place. When the quality data (from the automated
vision control system) is matched with data from other workstations of this
production system, algorithms can find patterns between two system elements,
identifying also states in one production step that causes later whether a work
piece is labeled as good or bad. This ability of finding patterns in huge data sets
led some people to say that the future of learning in manufacturing is only pattern
recognition in huge data spaces—no human input and no domain knowledge
required. However, we believe—and were confirmed by the results of our Delphi
study—that such a pure machine intelligence scenario is unlikely to cope with the
complexity of a real production system.

3. Hybrid intelligence: Model-based learning in real time is our proposed scenario
for learning in Next Generation Manufacturing. Without doubt, machine intelli-
gence can perform repetitive operational tasks more efficiently than humans can.
Machine learning algorithms also have an unmatched capability of finding
patterns in large data sets. We propose that these insights generated by machine
intelligence serve as a highly educated “hunch” for humans, who combine it with
their domain expertise on a higher level. An important component of this
approach is the availability of digital shadows as virtual, real-time digital coun-
terparts of something that exists in the physical world (e.g., a production system,
workstation, or work piece). The digital counterpart should help to make deci-
sions in a better way, by not providing the real-time data from which a machine



intelligence can generate its insights, but also the test bed where ideas for
improvement and optimization can be validated virtually.

Consider the quality example from Scenario (2). Let us assume that an
algorithm provided an insight in the form of a prediction on the causes of a
quality issue: “When the temperature in Station A dropped below a specific
threshold, later quality errors occurred in Station E.” With the availability of a
digital shadow, and different to conventional digital simulation models as in
Scenario (1), the model behind the digital shadow is automatically derived and
changes when reality changes. The digital shadow can now be used to reason
about reality and answer what-if questions. Hence, assumptions on how to
improve the quality issue in our example can be tested virtually in the simulation
models embedded in the digital shadow. This connects Scenarios (1) and (2).
Based on their intuition and domain expertise, human decision-makers could
make conclusions on how to improve the quality of the system, e.g., different
approaches to control the temperature in Station E in a more stable way or
approaches to counterbalance the temperature effect on to work pieces in later
word stations. These assumptions about how to improve the system’s quality,
provided by human intelligence but augmented by insights generated by machine
intelligence, could now be validated in the virtual shadow. The virtual experi-
mentation allows testing of many more alternative scenarios for improvement. A
machine intelligence could support this experimentation, e.g., by proposing
different scenarios and predicting their outcomes.

In a further state, an automated real-time feedback loop can be established.
The insights produced by the digital shadow could then either automatically
trigger changes in the production system or become implemented manually by
humans after interpreting the results (van der Aalst et al., 2021). Results of the
digital shadow directly affect reality. For operational situations, autonomous
learning and optimization is likely. For example, when the simulation model
predicts a delay, the production process could be reconfigured automatically
(similar to the re-routing algorithm in a navigation system when it is informed
about an incident on the originally planned route). For more complex learning
scenarios, like restructuring the manufacturing system or coping with disruptions,
the advanced simulation model embedded in a digital shadow allows human
decision-makers to evaluate all possible decisions in the virtual world without
causing harm, waste, and costs in the real (physical) system. With cheaper and
richer experimentation, the likelihood of finding a better solution increases.

We have to stress that this scenario is a picture of the future yet, especially
when we apply it on the level of a larger system. In our research in the Internet of
Production cluster at RWTH Aachen, our colleagues were able to demonstrate
this approach on the component and work station level (Brecher et al., 2019; Xi
et al., 2021). Process mining can serve as a concrete technology to facilitate the
development of such a virtual shadow/twin of an entire system (van der Aalst,
2016). Using process discovery, so-called control-flow models can be derived.
Aligning these models with event data, it is possible to add different perspectives
(time, costs, resources, decisions, etc.). The resulting elaborate model can be
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simulated. Using process mining, it is relatively easy to create a digital shadow in
terms of a frequently updated virtual replica of a physical object. However, it still
is rather difficult to create a model that behaves like a real system, where multiple
processes interact and compete for resources concurrently. To fulfill the vision of
a digital shadow that automatically takes action, action-oriented process mining
provides initial ideas (e.g., the Celonis Execution Management System can trigger
corrective workflows using the Integromat integration platform). But despite
these initial capabilities of process mining, it is fair to say that this scenario of
hybrid intelligence is more a vision than a reality. We need to keep humans in the
loop (Abdel-Karim et al., 2020) to cope with the complexities of an entire
production system. This is why we regard hybrid intelligence as the most likely
scenario for decision-making the factory of the future.

5 A Simple Application of Hybrid Intelligence in Publishing

We want to close this chapter by a simple use case of hybrid intelligence. When
writing and producing this book, we recruited an AI as a member of our author team,
tasking it with creating all abstracts of this book’s chapters and writing the book’s
preface. This worked amazingly simple, providing us a real glimpse into a future
where machines and humans collaborate intuitively.

The AI we used is a transformer-based language model. While quantitative data
prevails in a production context, much knowledge is shared through natural lan-
guage. By talking to a colleague, listening to a lecture, or reading a book, under-
standing language grants us access to a plethora of knowledge. Today, AI has
reached a good level of language understanding, so that we can use such technolo-
gies to further share and create knowledge. This makes language models an espe-
cially interesting form of AI to use in knowledge-intensive work (Bouschery et al.,
2022).

Transformer-based language models are a special kind of AI used for natural
language processing (NLP), which Liddy (2018: 3346) defines as a range of
“computational techniques for analyzing and representing naturally occurring texts
at one or more levels of linguistic analysis for the purpose of achieving human-like
language processing for a range of tasks or applications.” In general, natural
language processing is not new to firms. It has been used, for example, in text
analysis (text mining), like generating insights from maintenance or service reports.
Prior models have typically been very task specific. Also in this field, a great deal of
progress stems from advances in ANNs. Newer NLP technologies show the potential
to take on multiple knowledge-related tasks and cannot just analyze existing text but
also generate new one. A core example of these advanced NLP models is generative
or transformer-based models. At its core, language modeling is the process of
predicting the next word in a sequence based on its preceding characters or words.
This field has seen continued progress over the past decades with a trend toward
larger and more complex models rapidly increasing the models’ capabilities—from



the mere suggestion of related words to state-of-the-art models that can produce full
newspaper articles indistinguishable from human-written text (Brown et al., 2020).
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New transformer-based models contain attention mechanisms that allow for
parallelization during the processing of inputs and thereby eliminate some of the
main performance issues of recurrence-based models, leading to significantly faster
models (Vaswani et al., 2017). Another big advantage of these types of models is
their ability to take the context of the processed words into consideration, which
allows for a far more nuanced understanding of related words and concepts within a
given text and subsequently more complex applications. Today, most of the state-of-
the-art language models are based on this transformer architecture and rely on large
data sets only for pre-training purposes. Examples include Google’s BERT model or
OpenAI’s line of Generative Pre-trained Transformers (GPT). The number of
parameters used to generate the models’ output has increased significantly over the
last few years. For example, the original BERT model (Devlin et al., 2018) uses
340 million parameters in its largest instance. This pales in comparison to OpenAI’s
latest model, GPT-3. In just 3 years, the model size of the GPT line has grown by
nearly 1600% from 110 million parameters in the original model over 1.5 billion
parameters in its second iteration (Radford et al., 2019) to 175 billion parameters in
GPT-3 (Brown et al., 2020). The next version is expected to have 100 trillion
parameters. Because transformer-based language models’ capabilities significantly
improve with model size, the rapid increase in model sizes has dramatically
increased the usefulness and applicability of such transformer-based language
models.

While it is very cost-intensive to build and train large transformer-based language
models in the first place, many of these models have been open-sourced and can be
accessed very easily through web services, making them accessible to a broader
audience. Also, commercial applications like GPT-3 are available in cloud-based
applications via a standard Internet browser. Another big advantage of transformer-
based language models is that users can generally interact with them simply through
natural language. Companies like OpenAI provide access to their models through
not only application programming interfaces (APIs) but also graphical user inter-
faces (GUIs), which significantly lower the barriers to entry.

For this book, we utilized OpenAi’s GPT-3 [we refer to Bouschery et al. (2022)
for a more detailed description of our approach]. To interact with the model, users
have to provide some initial text input. This could either be a question, the beginning
of a story that should be completed, some text that should be summarized, bullet
points to turn into written text, etc. Based on this initial input and its knowledge
learned during training, GPT-3 then generates a text that best fits the provided
prompt by predicting the next word in the sequence based on the previous words
in the prompt. GPT-3 is a so-called few-shot learner, which means that users are
advised to provide the model with a few examples to show what kind of output they
expect from the model. The initial prompt is therefore the main way of steering the
model toward a desired output—a perfect illustration of a hybrid intelligence.

We hired the GPT-3 to become a member of our publishing team for a typical
knowledge processing task: knowledge extraction (De Silva et al., 2018), i.e.,



making existing knowledge usable by extracting knowledge that might be coded
explicitly or implicitly in a given knowledge base. Normally, extracting knowledge
is rather labor-extensive and not easily scalable. However, transformer-based lan-
guage models provide the opportunity to automate parts of such processes. The
knowledge task we asked the GPT-3 to do was text summarization. All abstracts of
this book (including the one of this chapter) were generated by the GPT-3.
Extracting knowledge from text requires the identification, selection, and processing
of large amounts of textual data, which can be very costly and time-consuming as
well as overwhelming for humans. This might lead to unwanted consequences like
bad decision-making, as humans tend to make simplifying assumptions in order to
be able to process such large volumes of information (Simon, 1955). Transformer-
based language models provide an adequate solution to such problems through their
ability to summarize text efficiently while conveying the most important aspects and
meaning of the original text. They are especially well suited for such tasks because of
their context awareness and the ability to pay special attention to the most relevant
pieces of information. This gives them a great advantage over earlier text summa-
rization algorithms, which struggled to understand sentiment and meaning in textual
data (Fan et al., 2006). We invite our readers to evaluate the results by themselves.
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Furthermore, users can prompt state-of-the-art language models like GPT-3 to
summarize a text in a very specific way. In addition to the abstracts provided in each
chapter of this book, we also tasked GPT-3 to summarize the entire book as short as
possible to test an extreme case of summarization. This is the result [the differences
result from varying settings of the model, see Bouschery et al. (2022), for more
details].

Prompt: “GPT-3, summarize this book in a few sentences.”

• The text discusses different projecting made by experts about the changes that
will occur in production by 2030. These include the trend of increasing digital
goods, the use of hybrid intelligence to supplement human decision-making
processes, the establishment of full digital twins of each production worker and
all of their operations, and the decentralization of supply chains.

• The text discusses various trends that are projected to occur in the manufacturing
industry by 2030. These trends include the use of subscription models for
production machines, the use of collaborative robots, the use of digital twins,
and the decentralization of supply chains. Each of these trends is expected to have
a significant impact on firms.

• The Delphi study found that in 2030, subscription models for production
machines will be the new industry standard, that environmental sustainability
will play a bigger role, and that AI-based decision-making systems will not be
able to significantly increase production resilience.

Prompt: “GPT-3, summarize this book in one sentence.”

• The text discusses various projections for the year 2030 and their potential
impacts on different aspects of society and the economy.



Hybrid Intelligence in Next Generation Manufacturing: An Outlook on. . . 155

These examples show the ability of transformer-based language models to cap-
ture the essence of a text and reproduce a coherent, yet substantially summarized,
version of the original text. We did not provide any further context and examples or
used fine-tuning to produce the response. While this task might seem rather trivial to
a human, it is rather complex. First, the model had to understand that there is a
difference between the provided article and the task description. Specifically, the
task descriptions are, in fact, exactly that, a description of what the model should do,
and not, e.g., the beginning of a novel that should be continued. Then, it had to
analyze, understand, and then generate a summary of the said abstract that was
factually, semantically, and grammatically correct. All, without having specifically
been trained to perform this task. Noteworthy is also that the model did not just
shorten the provided text, but that it summarized the text in its own words. However,
when looking closely at the generated texts, we instantly find expressions which we
would write differently, where there would be a dedicated technical term to describe
the subject more precisely for an expert audience, or where we also would emphasize
an aspect we believe being most interesting for our target audience of academic peers
(who the algorithm does not know at all).

Hence, we propose that transformer-based language models will specifically
support knowledge-based practices in the form of a hybrid intelligence. Their ability
to interact with different knowledge sources, to learn from them, and to transform
knowledge allow these models to act as a knowledge broker that facilitates the
sharing of knowledge between different stakeholders while also fostering the crea-
tion of new knowledge (Waardenburg et al., 2022). Human teams can employ these
language models to access existing knowledge. Models that have been trained on
large text corpora from the Internet have knowledge on a wide range of topics, which
opens up the opportunity for teams to integrate knowledge that might lay outside
their area of expertise. Given a prompt by a human, the AI can help to establish
connections between concepts and ideas that might otherwise not have been obvi-
ous. Few-shot learning capabilities then allow for an easier interaction between the
humans in a hybrid team and the AI. Humans have to provide a limited number of
exemplary responses to a given task, so that the language model can generate a first
adequate output. Humans then evaluate this output, indicating to the algorithm, for
example, parts of the output they find especially interesting. The algorithm will then
produce a next output, based on this feedback. In the true understanding of a hybrid
intelligence, machines and humans are building upon each other’s input and output.

In such a scenario, teams can integrate the AI in their existing processes, as if it
would be a new colleague. The combination of domain expertise by human team
members and knowledge provided by the AI provides the opportunity to greatly
improve productivity of knowledge-based practices and produce outcomes that
would not have been possible with just the skillset of one of the actors. Orchestrating
and building such hybrid teams becomes a new important managerial task, and
understanding when and how to allocate tasks to a machine intelligence (and which
one) will be a key success factor of organizations in the future. Managers have to
consider the distinct characteristics of human and non-human actors. While humans
will play a major role in providing context, steering language models toward desired



results, and embedding AI output in the larger picture, machine intelligence can
speed up many tasks that require the handling of large amounts of text (or other
data), understand patterns in data invisible to humans, and make connections
between knowledge bases that might not be readily available to human team
members.
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While for more complex tasks like steering a production system such a scenario
of hybrid intelligence is still not existing, the way of development seems clear. We
hope that this chapter, but also the analysis of our Delphi study in the entire book,
provides the reader plenty of ideas and food for thought about the future of industrial
production and the elements of Next Generation Manufacturing.

Acknowledgment Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC-2023 Internet of Production—
390621612.
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