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Foreword1

The world is changing faster than ever before. Old certainties are disappearing, and
with them the business models that have underpinned the global economy for
decades. One of the most significant drivers of this change is the Internet, which is
now being extended from the virtual world into the physical world of manufacturing,
transforming the way we develop, produce, and use products. This is the world of the
Internet of Production (IoP). The IoP is a key enabler of the Fourth Industrial
Revolution, which is characterized by a rapid increase in the pace of technological
change, the blurring of boundaries between physical, digital, and biological systems,
and the increasing political, economic, and social impact of technological disrup-
tions. The IoP is already having a major impact on industry, and that impact is only
going to increase in the years ahead.

A key concept of the IoP is digital shadows that connect data, products, and
equipment and are shared in cross-organizational data spaces. Their widespread use
will have implications that go far beyond mere technical implementation. From a
company-internal perspective, the use of digital shadows facilitates cooperation
between humans, robots, and smart agents, enabling human capabilities to be
complemented by artificial intelligence-based decision support systems and
human-centered human–machine collaboration. From a company-external perspec-
tive, data-based value creation and capture in platform-based ecosystems changes
the logic of business models. These changes were reinforced by the COVID-19
pandemic, which acted as a catalyst.

This book is the result of interdisciplinary research from engineering, information
systems, social sciences, and management fields conducted in the context of the IoP.
Our objective was to create a picture of the future consisting of the elements of a next

1Note: This foreword has been created by machine intelligence using the GPT-3 language model.
Some human intelligence was applied for light editing. Refer to chapter “Hybrid Intelligence in
Next Generation Manufacturing: An Outlook on New Forms of Collaboration between Human and
Algorithmic Decision Makers in the Factory of the Future” for more information about this hybrid
approach.
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generation production system that may exist in 2030. By approaching this book with
an interdisciplinary view, we make an important contribution to the still very young
field of the IoP. Our work is based on the conviction that in order to make sense of
the future, one must take an integrative perspective that considers different disci-
plinary lenses. One cannot simply extrapolate from the past or from recent trends.
The world is changing too fast for that. We must instead understand the drivers of
change and the interactions between them. This book is an important step in that
direction. We hope that it will make a valuable contribution to the IoP research field
and help shape the debates about the future of industrial production.

vi Foreword

It is our wish that this book will inspire and stimulate debate on the opportunities
and challenges posed by the IoP. We hope that it will help policymakers to develop
policies that enable companies to take advantage of the opportunities presented by
the IoP, and that it will help business leaders to make the decisions that will enable
their companies to prosper in the IoP era. We hope that the propositions set out in
this book will provide a useful framework for understanding the potential impact of
the IoP on industrial production and the global economy. These would be some of
my wishes for the book. The future of industrial production is uncertain, but the IoP
has the potential to be a game changer. We should all be excited to see what the
future holds.

Aachen & San Francisco, March 2022
Generative Pre-trained Transformer (GPT)-3, OpenAI
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How Digital Shadows, New Forms
of Human-Machine Collaboration,
and Data-Driven Business Models Are
Driving the Future of Industry 4.0: A Delphi
Study

Frank T. Piller and Verena Nitsch

Abstract Transferring the idea of the Internet to the manufacturing landscape—the
Internet of Production (IoP)—fundamentally changes our understanding of how
products are developed, produced, and utilized. A key concept of the IoP is digital
shadows that connect data, products, and equipment and are shared in cross-
organizational data spaces. These developments are also core ideas driving the
evolution of the current Industry 4.0 paradigm into its next generation (“Industry
4.U”) and have far-reaching implications that go beyond mere technical issues. From
a company-internal perspective, managers and workers need to deal with new forms
of collaboration and cooperation between humans, robots, smart machines, and
algorithms. From a company-external (network) perspective, data-based value cre-
ation and capture in platform-based ecosystems change the logic of many
manufacturing business models. These changes have been reinforced by the
COVID-19 pandemic, which acted as a catalyst for many transformation processes.
Given the high uncertainty in the likelihood of occurrence and of the technical,
economic, and societal impacts of these concepts, we conducted a technology
foresight study in the form of a real-time Delphi analysis to derive reliable future
scenarios featuring the next generation of manufacturing systems. This chapter
introduces the conceptual and technical background of this study, defines important
terms and frameworks, and provides an overview of the Delphi projections that are
presented and analyzed in greater detail in the remaining chapters of this book.
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[Abstract generated by machine intelligence with GPT-3. No human intelligence
applied.]

2 F. T. Piller and V. Nitsch

1 Industrial Value Creation After the Pandemic

The COVID-19 pandemic has challenged politics, society, and the economy to an
unprecedented extent. Although we have not overcome its consequences, it is
apparent that the pandemic has acted as a catalyst, reinforcing existing trends,
fundamentally changing our everyday economic life, and creating new structures
(Piller et al., 2020). The crisis has given a major boost to digitalization in general and
digital business models in particular. In response to the experience of the supply
chain and labor shortages that followed the pandemic, companies in all industries
will continue to automate their production even more and to transform their services
into digital services more quickly. The business and societal models that prevail will
be those that respond best to changing economic and social behavior and new
societal demands. In this regard, the crisis has also demonstrated the importance of
high-performing digital infrastructures and scalable communication networks for
industry and healthcare systems and also in public administration and education
(Agrawal et al., 2020).

At the same time, the crisis also revealed significant deficits and differences,
particularly with regard to the digital maturity levels of various industries and sectors
(e.g., with regard to real-time data processing capabilities, the maturity of digital
processes, the speed of adaptation, and willingness to do so). It showed once again
that those who succeed are those who are prepared. The pandemic demonstrated that
the effects of such a global event are so drastic that they compel companies and
industries not only to manage the crisis in the short term but also to develop strategic
options for the future—to act proactively and not just react to and cope with new
realities (Teece et al., 2020).

Against this background, an expert group from RWTH Aachen University,
working together in a national Cluster of Excellence, The Internet of Production
(funded by the German Research Council, DFG, as part of the German Excellence
Initiative), set out to develop and validate a set of propositions on the future of
industrial production with a projection horizon of 2030. Our objective was to create a
picture of the future consisting of the elements of a next-generation production
system that may exist in 2030. Such a picture of a desirable future can allow a
backcasting process (Drehborg, 1996), i.e., working backward from the future
scenario to identify policies and programs that would connect that specified future
to the present and asking “if we want to attain a certain goal in 2030, what actions
must be taken to get there?” (Holmberg & Robèrt, 2000). The results of our inquiry
are presented in this book.

Our research was guided by the question of how the developments of the Fourth
Industrial Revolution, or Industry 4.0, will evolve between now and 2030: what is
the future of industrial value creation? First, we used a truly interdisciplinary panel



of researchers, many of them co-authors of chapters of this book, to develop a set of
projections for Next Generation Manufacturing, drawing on our own research in the
cluster and also incorporating the inputs of numerous external professionals in the
form of in-depth expert interviews. Using a novel real-time Delphi approach (Gor-
don & Pease, 2006; Gnatzy et al., 2011), we then validated these projections with the
help of a large, international set of experts from multiple fields, e.g., engineering,
information systems, social sciences, and management, who we asked about their
evaluation of, and also their qualitative feedback and commentary on, the projections
(with a projection period of up to 2030). After analysis, we consolidated the
validated projections into different scenarios for the future of digital manufacturing.

How Digital Shadows, New Forms of Human-Machine Collaboration,. . . 3

Overall, we hope that our research will contribute to a more proactive design of
the future of manufacturing. Our results can support both firms’ strategic planning
and future research. In particular, our study makes three major contributions:

• First, we provide a set of 24 validated projections regarding the future of digital
manufacturing (with a projection period of up to 2030), based on 1930 quantita-
tive estimations and 629 qualitative arguments from 35 industrial and academic
experts from Europe, North America, and Asia. In so doing, we deliver a basis on
which to substantiate academic discussions and which can support firm decision-
making on future technological developments and economic implications that go
beyond current speculations and siloed research.

• Second, we describe each projection in detail, offering current case study exam-
ples and related research, as well as implications for policy makers, firms, and
individuals (managers, employees). These detailed projections can be used as a
starting point for further research, but also for concrete strategic implementation
in companies.

• Third, our empirical results allowed us to build scenarios for the most probable
future along the dimensions of governance, organization, capabilities, and inter-
faces from both a company-internal and an external (network) perspective. In
addition, we discuss emerging tensions between the internal and external scenar-
ios. These scenarios will support managers when drafting new strategies and
challenging those already in place.

While we are aware that a black swan event like another global pandemic (Taleb,
2005) may make some of our results obsolete, we believe that the research presented
in this volume will prevail. We truly hope that nature (or humankind) will not tempt
our fate in the decades to come.

2 Next Generation Manufacturing and the Internet
of Production (IoP)

In this section, we (very) briefly review the evolution of manufacturing paradigms
from the early stages of mechanization, through industrialization and digitalization,
and into the current state of Industry 4.0. Building on this status quo, we describe our



understanding and vision of the next generation of manufacturing (with a projection
period spanning the decade from 2020 to 2030), which was our frame when
developing the projections for the Delphi study. We use the term Next Generation
Manufacturing to describe this envisioned state. This vision was informed by the
research conducted by the author team of this book in the Cluster of Excellence
“Internet of Production” at RWTH Aachen University, which we also outline in this
section, explaining its central technical and structural elements. These were the
starting points when developing the projections of our Delphi study. Our focus is
the usage stage, i.e., operating a future digital and networked manufacturing system,
from both an internal perspective (user acceptance, work organization, human-
machine interaction) and an external perspective (industrial business ecosystems
and data-driven manufacturing platforms). Finally, we introduce the five factors that
structured our Delphi analysis (governance, organization, capabilities, interfaces,
and resilience).

4 F. T. Piller and V. Nitsch

2.1 From Industry 4.0 to Industry 4.U

The evolving Fourth Industrial Revolution is currently reshaping manufacturing
industries through the broad deployment of new digital manufacturing technologies,
but also new digital business models driven by these technologies. The term
“Industry 4.0” has been established as a metaphor for this fundamental change in
the way in which we organize production and value creation. The term was popu-
larized in Germany (“Industrie 4.0”) after being coined at the Hannover Messe
Industrie (HMI) in 2011.

The advent of mechanical machinery and the steam engine triggered the First
Industrial Revolution, facilitating the change from hand-crafting methods to indus-
trialized production. A key development here was the first mechanical weaving loom
(1784). The Second Industrial Revolution started with the rise of mass production
systems, building on the first meatpacking assembly line (1870), further driven by
Taylor’s “Principles of Scientific Management,” and with Ford’s conveyor belt as its
enabling technology. In the late 1960s, programmable controllers paved the way to
computer-aided manufacturing and planning, starting the Third Industrial Revolu-
tion but also marking the beginning of the continuous digital transformation of
manufacturing. A core technology here was the first programmable logic controller
(PLC) in machinery (the Modicon 084, 1969). The spread of graphical user inter-
faces and the networking of individual machines to form larger production islands
further promoted the computerization of production. Since the 1980s, when the term
computer-integrated manufacturing (CIM) became a buzzword for new production
concepts, AI-driven computer networks have been envisioned as revolutionizing the
future of production. Radiofrequency identification (RFID) technologies (1999)
further enabled flexible automation scenarios in production.

The introduction and spread of new technologies have always been accompanied
by a change in work activities, conditions, and forms of organization. With the



development and introduction of CNC machine tools, the first industrial robots, and
production lines, human work was often replaced by automation or reorganized
according to Tayloristic principles into highly specialized, repetitive, often physi-
cally demanding activities (Schlick et al., 2018). With the introduction of the first
database systems and user-friendly dialog processing systems, it was later possible to
combine sub-functions at workstations, thus creating more varied work profiles
which also often demanded more qualifications. With the rapid advance of personal
computers, knowledge work gained in importance and attention, and today humans
largely create value by employing knowledge rather than muscle power and coor-
dination. Knowledge work is specifically characterized by a high degree of auton-
omy and a certain degree of (result- and process-related) uncertainty; it is complex, is
communication-intensive, and includes routine as well as creative activities, which
distinguishes it from traditional skilled work (Wilkesmann, 2005). This type of work
places fundamentally different demands on human’s physical and cognitive abilities,
and thus, the requirements of modern production technologies that aim to enable
knowledge workers are changing accordingly. New technologies also enable more
flexible ways of working (e.g., Ahlers, 2016). For instance, working from home and
virtual teamwork have only become possible through the location-independent
availability of information and applications, which is made possible by
digitalization.

How Digital Shadows, New Forms of Human-Machine Collaboration,. . . 5

The technology driving the Fourth Industrial Revolution (Industry 4.0) is a
unifying network infrastructure connecting human actors, machines, and products.
This Internet of Things (IoT) has transferred the original Internet
(of communications) into the physical world (Gubbi et al., 2013). Hence, in the
US literature, the terms Industrial Internet and Industrial Internet of Things (IIoT) are
used with similar connotations. They refer to a subset of the general digital trans-
formation of existing businesses and processes in which digital structures replace
previously analog or even manual operations (Sisinni et al., 2018; Porter &
Hemppelmann, 2015). The technical enablers of this development are cyber-
physical systems, which integrate smart devices with sensing, communications,
network, and autonomous acting capabilities (Dalenogare et al., 2018; Porter &
Heppelmann, 2015; Reischauer, 2018). These systems’ technology stack consists of
a classical device layer, i.e., the physical device and the added logical capability of
embedded sensors and actuators, a network layer for the transmission and transport
of information, a content layer that contains the data and metadata, and a service
layer for the application functionality (Fleisch et al., 2014). The real-time data stream
can be analyzed for decision-making purposes and to control devices flexibly
throughout the entire value generation process (Hartmann & Van der Auweraer,
2021).

While this development generated vast amounts of data, most of it is currently
stuck in silos—it is neither easily accessible, nor interpretable, nor connected to
knowledge gain (Schuh et al. 2020). In addition, many concepts from dealing with
consumer data are not transferable to manufacturing contexts, which are character-
ized by many more parameters but often much less available data. Hence, data on the
usage of products is not yet used across manufacturing firms to optimize operations,
investment decisions, innovation processes, or the generation of new products.



Shared data is also a core driver of sustainability in manufacturing (Bai et al., 2020;
Ghobakhloo, 2020). Data-enriched views on processes and increasing information
capability (in real time, complete, distributed) are the underlying principles of
improving the efficiency of processes and avoiding waste. Our vision of Next
Generation Manufacturing (derived from our research in the Internet of Production
research cluster) is based on this background of shared data in inter-organizational
production ecosystems. One of its main enablers is cross-company data spaces,
which link classic data silos across organizational boundaries (Otto & Jarke, 2019;
Cappiello et al., 2020). Supported by artificial intelligence and machine learning,
new insights can be created. Data spaces can be seen as one form of business
ecosystem, changing a firm’s business model as a result of a digitalized and
networked manufacturing system (Otto et al., 2019). This vision also resembles
the description of the next generation of digital manufacturing systems outlined by
ElMaraghy et al. (2021).
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Fig. 1 The evolution of industry: from the first mechanical weaving loom (1784) via the first
meatpacking assembly line (1870) and the first programmable logic controller (PLC) (the Modicon
084, 1969) + RFID (1999) toward Industry 4.0 (HMI 2011) and Industry 4.U (Internet of
Production, 2020)

Based on an idea by our colleague Thomas Gries (2020), we suggest calling this
further evolution of the Fourth Industrial Revolution “Industry 4.U (for you),”
which recognizes that Next Generation Manufacturing systems and the business
ecosystems they are built upon are focused on creating ultimate value for customers,
but also for our society and the planet. This purpose complements the current
perspective of Industry 4.0, which has been predominantly focused on increasing
operational efficiency (OE, OEE). Industry 4.U builds on open, cross-organizational
business ecosystems, which generate value for customers and society and enable
novel business models with the ambition of ecological and social sustainability in
manufacturing (see Fig. 1).

The central purpose of Industry 4.U is to increase value for customers and users.
New supply chain structures with flexible processes and high equipment efficiency
not only deliver cost savings but also enable a range of strategic benefits such as
better handling of complex products, short time-to-market, and on-demand
manufacturing. Connecting and sharing data in open business ecosystems yields
new value propositions for highly customized or differentiated products, well-
synchronized product-service combinations, and value-added services (Burmeister
et al., 2016). While differentiation and cost leadership have conventionally been



considered contradictory strategies, Industry 4.U promises to enable both simulta-
neously. Shared data also increase a firm’s ability to predict demand by analyzing
different streams of market information. This allows more precisely timed procure-
ment and producing only what is needed, when it is needed—providing customers
with what they want, when they want it, but also reducing waste from
overproduction at all levels of the value chain.

How Digital Shadows, New Forms of Human-Machine Collaboration,. . . 7

The latter result is part of the second purpose of Industry 4.U: utilizing
manufacturing ecosystems and cross-organizational data spaces to realize vast new
opportunities for more sustainable production. Sustainability may actually act as a
driver of structural change: in parallel with our current digital transformation, we
need a sustainability transformation of today’s value creation and production models
into future-proof, resilient approaches (Piller et al., 2022). But reducing resource
consumption and making existing production models more efficient are just the
beginning. CO2-neutral production and the shift from energy management to
resource efficiency are accepted goals in many companies today. However, these
measures—while undisputedly important—increase path dependencies and focus on
existing business models, often supporting only a sustainability narrative (“green- or
social-washing”). Instead, a true triple paradigm shift is required: digitization,
sustainability, and customer-centricity either must move to the center of the value
proposition or must be generated by a digital value creation structure itself.

Next Generation Manufacturing is also accompanied by a paradigm shift from
technology-centered toward human-centered digitalization and work design
(cf. Mütze-Niewöhner et al., 2022, Hirsch-Kreinsen and Ittermann 2021). Most
would agree that CIM failed because it paid no attention to workers (Thorade,
2020). Industry 4.U aims to learn from the mistakes of CIM by consistently
considering the role of humans in the socio-technical work system when developing,
introducing, and implementing Next Generation Manufacturing technologies in
workplaces. Thus, Industry 4.U no longer aims to use automation technologies to
replace humans as comprehensively as possible, but to support them at work in an
individually customized manner by taking their individual capabilities, habits, and
preferences into account. By providing adaptive, individually optimized support,
technology is considered a key enabler of productive, healthy, and safe work. In the
future of production, technology will be used to support socially innovative, eco-
nomic, and humane work design, thus maximizing social sustainability at work.

2.2 The Cluster of Excellence “Internet of Production (IoP)”

The context of this work is the interdisciplinary research cluster Internet of Produc-
tion (IoP) at RWTH Aachen University (iop.rwth-aachen.de). RWTH Aachen is
characterized by a unique scope and an outstanding reputation in production
research. An earlier Cluster of Excellence, Integrative Production Technology for
High-Wage Countries (2006–2017), was awarded to RWTH Aachen as part of the
Excellence Strategy inaugurated by the German federal government to strengthen its



university landscape in 2005. This first cluster focused on the development of
innovative solutions to ensure the future viability and competitiveness of the local
manufacturing industry. Achievements included, for example, the development of
new intelligent production systems, solutions for the efficient production of
customer-specific components, integrated product life cycle management (PLM),
and predictive human-robot collaboration (HRC) concepts, as well as increased
interconnectedness and collaboration, laying important foundations for the develop-
ment of the vision of Industry 4.0.

8 F. T. Piller and V. Nitsch

In 2017, research started in the following Internet of Production cluster. Since
then, about 100 researchers at all career levels and from various disciplinary
backgrounds, such as mechanical and plastics engineering, material science, indus-
trial engineering and ergonomics, humanities, management, and computer science,
have been working on a vision for a new level of cross-domain collaboration along
the entire product life cycles, from engineering to operations and usage (Brecher
et al., 2016). The IoP pursues a vision called the World Wide Lab (WWL), in which
processes, factories, and even organizations can learn from each other by sharing
experiences and knowledge (Brauner et al. 2022). Corresponding to the relationship
between the Internet and the World Wide Web (WWW), the WWL aims to be a
network of multi-site labs in which models and data from experiments, manufactur-
ing, and usage are made accessible even across company borders to allow companies
to gain additional knowledge. This change will increase productivity in a similar way
as the WWW increased the efficiency of e-commerce transactions, customer inter-
actions, and entertainment.

A main driver of the WWL are task- and context-dependent, purpose-driven,
aggregated, multi-perspective, and persistent datasets, which we call digital shadows
(Bauernhansl et al., 2018; Riesener et al., 2019). Digital shadows are multi-modal
views with task-specific granularity which can simultaneously provide high perfor-
mance, low latency, security, and privacy (Brauner et al. 2022). They enable
radically new kinds of production and engineering applications. The cross-domain
exchange of digital shadows in the form of data spaces can make data more valuable
by opening up the current data silos of different companies to increase the speed of
research and innovation in the presence of global challenges such as the three Ds
(demographic change, digital transformation, and de-carbonization). The following
section will explain the concept of connected digital shadows in more detail.

The Internet of Production strives to integrate the major domains of a manufac-
turer along the life cycle of a product (development, production, and usage). This
integration, enabled by the infrastructure of the Internet of Production, results in a
new level and understanding of cross-domain collaboration due to the real-time
availability of semantically adequate and contextual data from these domains. The
participating research groups thus approach the Internet of Production from different
application perspectives, taking up the challenge of bringing together methods from
material science, production engineering, and production management, along with
human factors and business models. Cross-domain research and cooperation with
industry are coordinated by a set of use cases at different scales, ranging from rather
technical process innovations to complex, life cycle-wide interplays of subtasks to



inter-organizational network design (Liebenberg & Jarke, 2022). For this purpose,
the RWTH Aachen Campus (rwth-campus.com), with its various research institutes
and industrial partners, offers unique infrastructural opportunities for the integrative
development and validation of the Internet of Production.

How Digital Shadows, New Forms of Human-Machine Collaboration,. . . 9

2.3 Digital Twins and Digital Shadows

As introduced before, the sharing of knowledge, models, and data across all relevant
domains within and between manufacturing firms is part of the value proposition of
the next generation of Industry 4.0 (Björkdahl, 2020). A key enabler of our vision of
Next Generation Manufacturing is digital shadows: purpose-driven, aggregated,
multi-perspective, and persistent datasets from production, development, or usage
(Liebenberg & Jarke, 2020). Digital shadows are a specific subset of the broader idea
of digital twins, one of the core elements of Industry 4.0. Digital twins are a
“description of a component, product or system by [a] set of well aligned executable
models [. . . linking] engineering data, operation data and behavior descriptions [. . .]
along the whole life cycle” (Boschert, Heinrich, and Rosen, 2018). A more practice-
focused description of digital twins has been provided by the Digital Twin Consor-
tium, an industry group (digitaltwinconsortium.org). According to their definition, a
digital twin is a virtual representation of real-world entities and processes, synchro-
nized at a specified frequency and fidelity. They facilitate holistic understanding,
optimal decision-making, and effective action of manufacturing systems. Digital
twins use real-time and historical data to represent the past and the present and to
simulate predicted futures. They are motivated by outcomes, tailored to use cases,
powered by integration, built on data, guided by domain knowledge, and
implemented in IT/OT systems.

When integrated, a digital twin allows objects (end products, components,
machinery, infrastructures, etc.) to be tracked and controlled throughout their entire
life cycle, facilitating a continuous adaptability to changing customer requirements.
For example, digital twins enable manufacturing firms to shift from acquiring
reliable industrial equipment to paying for access to outcome-based services and
performance through the data generated by the equipment (Iansiti and Lakhani,
2020; Porter and Heppelmann, 2015). In such a scenario, digital twins enable the
provider of the machinery not just to measure the volumes of products or compo-
nents manufactured on that machine but also to enable production without
unplanned downtime and with continuous improvement.

Hartmann and Van der Auweraer (2021, p. 7) recently suggested the idea of an
executable digital twin, “a specific encapsulated realization of a digital twin with its
execution engines . . . [which enables] the reuse of simulation models outside of R &
D.” To realize this objective, a digital twin will be purposefully designed for a
specific use case or industrial application, using existing data and models. The vision
is that “an executable digital twin can be instantiated on an edge, on premise, or in

http://rwth-campus.com
http://digitaltwinconsortium.org


the cloud and used autonomously by a non-expert or a machine through a limited set
of specific APIs” (Hartmann and Van der Auweraer, 2021, p. 7).

10 F. T. Piller and V. Nitsch

In practice, the challenge is the integration of the different scales (temporal,
spatial, etc.) of the numerous underlying processes, which yield huge amounts of
data, ill-fitted models, and high latencies if data needs to be aggregated and analyzed.
Even in a mid-term perspective, we do not consider a complete digital twin to be
feasible due to the massive amounts of data that a virtual replica of a product,
machine, or production plant updated with a high frequency would require. Also,
most digital twins used in practice are not complete digital counterparts of physical
objects; rather, they are collections of different datasets and models, each
representing a particular aspect of the real object. Hence, a core element of our
vision for the Internet of Production is the digital shadow, which we consider as a
collection of task- and context-dependent, purpose-driven, aggregated, and persis-
tent datasets that encompass a complex reality from multiple perspectives in a more
compact fashion and with better performance than a fully integrated digital twin
(Brauner et al., 2022; Schuh et al., 2020). Figure 2 provides an illustration of the
different levels of digital shadows in a production system. A digital shadow can be
compared to a view in database systems: an aggregated subset of the data on the real
object computed by a complex function that might include complex algorithms for
data reduction and analysis (Becker et al., 2021).

In our understanding of the Internet of Production, digital shadows are the “units
of data” shared among organizations. They connect data, products, and industrial
assets within and across organizations and are the foundation for data-driven plan-
ning and decision-making within an organization (factory) and between organiza-
tions (supply chains, value chains). Hence, digital shadows have company-internal
and company-external implications in Next Generation Manufacturing:

• Internally, digital shadows enable different forms of production organization by
enabling, for instance, changing human-machine interactions in the context of
collaborative robotics, remote work in production contexts, or artificial
intelligence-based decision support systems.

• Externally, integrating user and usage data into a digital shadow creates (open)
data ecosystems which enable new forms of collaboration and innovation.

We will discuss these internal and external implications in more detail in the
following two sections.

2.4 Internal Perspective: New Forms of Human-Machine
Collaboration Enabled by Digital Shadows

Internally, (connected) digital shadows influence how manufacturing is organized
and provide new opportunities for human-machine collaboration. In a Next Gener-
ation Manufacturing system, interactions are not only carried out between
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autonomous machines. Through intelligent connectivity and the target group-
specific provision of information, machines learn from humans and vice versa.
Irrespective of their age, gender, and educational, cultural, and social background,
humans will continue to be an essential part within future manufacturing systems,
even though concrete tasks, qualification requirements, and work structures may
change. Hence, an important task is to design systems for user-centered communi-
cation, interaction, and knowledge transfer between persons and digitalized produc-
tion technology. In human-robot collaboration, the advantages of both manual work
and high automation are combined. Previous work in industrial application scenarios
mainly focused on safe collaboration and technological solutions to avoiding tradi-
tional safety guards. But to master the increasing complexity of the information
available in future socio-technical production systems, decision support systems
must be adapted to the requirements of human operators, including their individual
capabilities and preferences.

12 F. T. Piller and V. Nitsch

Novel forms of hybrid teamwork in terms of joint actions, e.g., predicting human
intentions in human-robot collaboration, and an appropriate mapping of human
skills and capabilities to the technical systems shape the basis for an efficient
interaction. Virtual training environments can be used to familiarize the user to
complex contexts. A core enabler of these developments could be to complement the
rather techno-centric understanding of digital shadows (stemming from an engineer-
ing and information systems perspective) with an anthropocentric perspective in the
form of human digital shadows (Mertens et al., 2021).

A human digital shadow comprises all data that can be assigned to human actors
within the socio-technical system under consideration as a source or sink. The
human digital shadow thus represents an extension of the idea of digital twins or
shadows of products or machinery but facilitates the analysis of existing and future
interactions between people, technology, and organizations. Human digital shadows
can include, for example, patterns of behavior and movement of a worker, individual
working methods, anthropometric data such as measurements or forces, physiolog-
ical and cognitive parameter progressions and states, abilities, skills and experiences,
and other socio-demographic information.

In the future, digital shadows of human workers can help ensure that the interac-
tion between humans and machines is even better adapted to the user and the context,
e.g., in human-robot collaboration. Humans therefore take on context-specific tasks
that match their abilities and strengths, such as cognitive flexibility and situation
awareness, while robots execute very repetitive tasks that require high speed and
precision (Giuliani et al., 2010). In this use case, the application of a human digital
shadow comprises both human-robot cooperation, i.e., sharing a workspace, with
occasionally overlapping work, and human-robot collaboration, i.e., working hand
in hand with mandatory physical contact to fulfill the assigned task. In a basic case of
human-robot interaction, the human performs a task, while the robot assists, e.g., by
holding and handing tools or lifting, positioning, and machining work pieces that the
human is actively working on (Mertens et al., 2021). Hence, the robot acts similar to
a colleague supporting the human worker. This interaction could be enhanced using
the data from the digital shadow of a human, e.g., data pertaining to individual



working methods and procedures, handedness, or his or her experience and exper-
tise. It could become possible to simulate mechanisms to aid familiarization that
would otherwise typically occur on a social level and as part of interpersonal
interactions. Thus, a human digital shadow can contribute to both increased effi-
ciency and effectiveness in operations and higher levels of acceptance of robot
support.
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By capturing the tacit knowledge and experience of workers, human digital
shadows could also facilitate company-wide knowledge management, enabling the
replication of practical know-how in a novel way that could not be realized before. If
solutions are found to be particularly beneficial for specific tasks, these could be
transferred to other workplaces, and technical assistance systems could apply them
when applicable. In this way, other human workers could implicitly assimilate and
benefit from the insights of others during their own work without the acceptance
problems that often arise during explicit training (Mertens et al., 2021).

Human digital shadows could also facilitate better planning and decision-making
in Next Generation Manufacturing systems. Despite all the advancements in AI and
autonomous systems, it is our strong belief that humans will continue to perform
tasks of information acquisition, information analysis, and decision-making in
production (Parasuraman, Sheridan, & Wickens, 2000). Due to the rapidly advanc-
ing digitalization of production, humans will increasingly be supported by decision
support systems and other technical assistance systems to accomplish those tasks.
Thus, an assistance system could indicate which component to pick next, visualize
the current allocation of workers, or simulate the outcome of reorganizing an
assembly line or supply chain. In these scenarios, task performance depends on
the assistance system’s ability to support the user, which, in turn, depends on how
well the system adapts to the specific needs of the user and the demands of the task
(Mertens et al., 2021). Applying human digital shadows to the system would provide
opportunities to significantly improve such collaborative systems. By modeling a
user’s past interactions with the system (based on his or her digital shadow),
individual assistance tailored to his or her mental model could be provided. In a
further step, the human digital shadow could also incorporate more advanced data,
including an assessment of the user’s mental state during task execution, e.g.,
cognitive load, mental fatigue, and attention allocation. Valid indicators for relevant
human states and well-being which use psychophysiological measures such as pupil
dilation, heart rate variability, or skin conductivity already exist and can be
implemented contactlessly or, e.g., with the help of a smartwatch (Charles &
Nixon, 2019).

These outlined applications are just a few of the scenarios in which connected
digital shadows of humans and machines may influence the next generation of
manufacturing. One of the central advantages of human digital shadows is that
problems cannot only be prevented, but resources can also be used more efficiently
in the short term. Technical changes could support this goal: for instance, equipment,
tools, and user interfaces could be adapted or even customized to each individual
worker. However, we strongly believe that the introduction and use of digital
shadows of humans should always be guided by a proper understanding of the



potential ethical risks and accompanied by strong efforts to mitigate against these
risks. Without addressing these concerns, neither compliance with established eth-
ical standards nor employee acceptance will be achieved.
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2.5 External Perspective: Data-Driven Ecosystems Creating
and Capturing Value from Digital Shadows via IoT
Platforms

Externally, integrating engineering, production, and usage data in the form of digital
shadows is the underlying foundation of new, data-based industrial ecosystems. Our
vision for the Internet of Production is, as its name indicates, not restricted to a focal
company or value creation within a closed network of established partners. It
resembles an open network of sensors, assets, products, and actors that continuously
generate data (represented in digital shadows). These data are utilized to enhance
operational efficiency, but also to provide new opportunities for strategic differen-
tiation. A core element is thus the (re-)usage of data, insights, and applications by
other parties than those generating the data in the first place.

In the management literature, this idea corresponds to the shift from conventional
value chains to platform-based business ecosystems which mediate data and
connected assets with third-party complements (Kopalle, Kumar, and Subramaniam,
2020). Since the early 2000s, the industrial organization literature has begun to
develop theory on platforms, also referred to as “two-sided markets,” “multi-sided
markets,” or “multi-sided platforms” (Rochet & Tirole, 2003). Economists view
platforms as special kinds of markets that play the role of facilitators of exchange
between different types of users that could not otherwise transact with each other.
The rise within industrial ecosystems of platforms where these data are being
exchanged and enhanced by dedicated “apps” (complementing offerings and ser-
vices), often provided by specialized third-party entities, is one of the largest
economic developments of the last decade (Adner, 2017; Gawer, 2014).

Platforms connect multiple sides to enable transactions or foster innovation. They
can be considered as the technological architecture on which firms develop platform-
based business models (van Dyck et al., 2021). For that, they need to coordinate the
network of users (customers, consumers) and providers (complementors). Together,
they build an ecosystem consisting of a central platform with multiple peripheral
firms connected to it (Gawer, 2014). Following the dominant view in the literature,
platform-based business models are in most instances orchestrated by a central
(keystone) player (Adner, 2017).

In the context of industrial manufacturing, the term IIoT (Industrial Internet of
Things) platform is frequently used to denote such a platform. As Fig. 3 illustrates,
they have to be differentiated from platforms in the form of marketplaces focusing
on the transaction of goods (transaction platforms, such as Amazon or Alibaba) or
data (data spaces, such as IDS or GAIA-X). IoT platforms are the technical



implementation of the Internet of Things (IoT), which, as defined before, aims to
connect physical and virtual objects and enable them to work together. The spectrum
of such so-called smart devices ranges from household appliances to transportation
and logistics systems to industrial plants. Networking these devices in practice
means connecting them to an IoT platform. The platform fulfills the function of an
operating system that enables application programs to read data from the various
devices and send control signals to them using standardized Internet technologies
(Guth et al., 2016; Hoffmann, et al., 2018).

How Digital Shadows, New Forms of Human-Machine Collaboration,. . . 15

Types of BtoB Platforms

IIoT Platforms
Data (Transaction) 

Platforms
Transaction Platforms

Connecting processes, 
assets, and machines 
for automated 
interaction of these 
“things” and enabling 
analytics, predictions, 
and prescriptions about 
them through dedicated 
(3rd party) applications

“Data spaces” for 
exchange and 
monetarization of 
relevant business data 
from all domains 
(production, product, 
weather, etc. data) 
across different 
organizations

Platforms with 
transaction focus for 
exchange and trade of 
materials, components, 
and products between 
actors in a unified digital 
environment 
(marketplaces, logistic, 
recycling networks)

Fig. 3 Types of business-to-business platforms

IoT platforms are thus an essential prerequisite for the connected devices to
provide actors with greater benefits through innovative applications than the devices
are capable of themselves. Generally, learning and analytics can take place faster and
more efficiently if manufacturers not only utilize their own data but can also access
data from similar contexts in other industries. Hence, in the 2010s, more and more de
facto standards (e.g., the RAMI 4.0 initiative) emerged to facilitate greater connec-
tivity and networking via different IIoT platforms. These standards enable a wide
range of complementors to develop applications for one IIoT platform. Users of
platforms with open interfaces (i.e., APIs based on non-proprietary standards) have
the advantage of being able to select each application independent of the manufac-
turer according to individual requirements. The more open an IIoT platform is, the
lower the transaction costs and investment risks associated with its introduction.
Because third-party providers can also access an open API, open IIoT platforms
favor a broader spectrum of providers and the development of innovative new
applications (Guth et al., 2016).

In the case of Next Generation Manufacturing, IIoT platform participants include
a number of entities:

• The orchestrator of the platform is today either an IT infrastructure provider like
SAP, Microsoft, or Amazon Web Services (AWS); a provider of automation or
manufacturing equipment like Siemens, GE, or Trumpf; or, in a recent develop-
ment, an industrial producer, like Volkswagen Group with its Industrial Cloud
platform.
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• Users of the platform are operators of production assets (users in the form of
“factories”), which provide data and receive analytics, predictions, or prescrip-
tions. Some operators only utilize insights from aggregated data to optimize their
own production (in exchange for a fee), but do not share any of their own data.
Other users also become . . .

• Providers of applications (“app providers”), who develop applications for ana-
lyzing data and providing prescriptions and predictions. App developers can be
specialized firms (e.g., data analytics startups, research institutes, but also
established analytics providers) or lead users (plant operators) who share appli-
cations originally developed for their internal usage with other members of the
platform ecosystem (basically complementing their existing business model with
another one).

• In addition, the goods being produced can also become part of the platform in the
form of connected (“smart”) products, providing a feedback loop of usage data
and also becoming the center of another platform based around digital services
complementing these products. The latter also refer to end-users (consumers) as a
final participant of the platform.

An essential prerequisite for making multi-sided IIoT platforms work is the
existence of network effects created by these participants and arising between the
different sides of the market (Gawer, 2014). As the value of the platform stems
principally from the access of one side of the platform to the other side of the
platform (e.g., users providing data, users providing analytics apps, and users paying
for the insights generated from these data analytics), the question of platform
adoption becomes one of how to bring multiple sides on board. To create value,
platform-based manufacturing ecosystems hence depend on complementary inputs
made by loosely interconnected yet independent stakeholders with varying levels of
(technological) distance from each other and the end consumer.

This will not just change the business model of an individual company but will
create entirely new industry structures. As a result, manufacturing firms may change
roles from producer-sellers to platform orchestrators (van Dyck et al., 2021). This
not only challenges traditional business-to-business relationships in highly vertically
integrated, rigid supply chains characterized by asset- and process-specific invest-
ments (Sjödin et al., 2016) but also requires a different form of value creation in
which multiple sides of the market are connected and firms compete through the data
generated by products (Kopalle et al., 2020). While some firms might profit from
such an ecosystem approach, competitive advantage may shift from the machine
(hardware) to the data (digital shadow) layer. This could have detrimental effects for
firms without continued data access (e.g., Alexy et al., 2018; Dahlander, Gann, and
Wallin, 2021). Therefore, incentives, governance, and new ways of user integration
are necessary elements to make this vision a reality (Kortmann & Piller, 2016).

Hence, a core element of Next Generation Manufacturing systems is mechanisms
of ecosystem (platform) governance (Adner & Kapoor, 2010). Dedicated mecha-
nisms governing data sharing and access are required to avoid the misuse of data. At
the same time, appropriate incentives must be set in order to align the different



interests and priorities of the partners involved (in order to encourage the sharing of
data (digital shadows) in data spaces and other forms of exchange). In addition,
managing property rights (access, transfer, enforcement) regarding data, applica-
tions, and connected assets will become a core capability of manufacturing compa-
nies, which will also need to define governance modes and design factors in order to
generate adequate business models that allow value appropriation to be maximized
by all involved actors. In such a situation, a core decision for a platform operator is
how open to make the platform and when to absorb inputs (developments, apps,
data) from the connected parties (Parker & Van Alstyne, 2018).
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Currently, we see these dynamics unfolding in parallel in many industries. We are
far from a consolidation of industrial platforms, as has happened in the consumer
markets of social media, mobile phone operating systems, ride sharing, or entertain-
ment. But these examples also indicate the profound effect the rise and success of
one platform orchestrator can have. One of the central intentions of our Delphi study
was to provide more clarity by developing validated forecasts for future data and
application platforms in industrial ecosystems over the coming decade.

3 Strategic Design Factors of Next Generation
Manufacturing: A Framework for Analyzing the Delphi
Projections

The previous sections introduced the fundamental elements of a Next Generation
Manufacturing system, building on the vision of the Internet of Production. Utilizing
connected data spaces with digital shadows across organizational borders can yield
new dimensions of industrial value creation when the right interfaces are designed,
the required capabilities are developed, a specific organizational structure is
established, and an adequate governance mode, accepted by all members of the
ecosystem, is adopted. In this section, we present the analytic framework used to
develop our Delphi projections for Next Generation Manufacturing and to analyze
the responses from our Delphi panel. Following Gawer (2014) and Parker and Van
Alstyne (2018), we distinguish four strategic design factors which influence the
utilization and exploitation of digital shadows and data spaces internally and exter-
nally: governance, organization, capabilities, and interfaces. The development of the
projections for our Delphi study can be structured along these four dimensions:

• Governance refers to the impact of digital shadows and cross-organizational data
spaces on business models and governance structures in manufacturing organi-
zations. A particular focus is on the level of value capture, i.e., how the different
actors of an IIoT platform can profit from their participation and contributions to
the platform. This dimension also considers the rules and regulations for data
exchange across organizational boundaries.

• Organization studies the effects of connected digital shadows and AI on work
organization and human-machine interactions. Who is making the decision:
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humans, machines, or both in a hybrid, collaborative mode, and how will this
collaborative work be organized?

• Capabilities refers to the new skills and abilities organizations need to utilize the
opportunities derived from digital shadows and collaborative work environments,
but also to the capabilities that Next Generation Manufacturing systems offer for
increasing efficiency and achieving real sustainability in industrial production.

• Interfaces address the different layers of interfaces between a human operator and
a future manufacturing system, from both a cognitive and a spatial dimension.
From an external perspective, the openness of machine-to-machine interfaces
(APIs) is investigated as a key design factor of future (IIoT) platforms.

Influenced by our shared experiences during the COVID-19 pandemic, we added
a fifth cluster of projections addressing the need for resilience in Next Generation
Manufacturing systems.

• Resilience: next-generation production systems may utilize data-driven ecosys-
tems based on collaborative applications and using leading AI technologies and
Industry 4.0 standards to anticipate disruptions (anticipation) and to optimally
adapt their production planning to mitigate against active disruptions at any time
(response).

The following section elaborates on each design factor and the related projections
tested in our Delphi study.

3.1 Governance

Technological change requires firms to reconfigure their business model in order to
maintain a consistent alignment between external and internal factors (Snihur, Zott,
and Amit, 2021). With digital shadows and data spaces mediating data sharing
across organizations, interdependence among products and services from multiple
firms is increased, as these jointly form a value proposition in a future manufacturing
ecosystem. As a case in point, Siemens’ MindSphere platform integrates data from
connected products and plants and invites third-party developers to build customized
applications using the data. Here, MindSphere both serves as a source for innovation
and also orchestrates the interaction between app providers and users. Thereby,
Siemens is able to tie its business model to the customer more closely, to include
stakeholders previously not present in the industry, and to tap into what
Hedenstierna et al. (2019) describe as economies of collaboration. As a conse-
quence, activities across the value chain are redistributed, and customer interactions
change. At the same time, designing and implementing a joint value proposition
across organizations is contrary to traditional business-to-business relationships,
which are characterized by rigid supply chains and hierarchical structures (Sjödin,
et al., 2016). Business models for Next Generation Manufacturing thus also need to



focus on capturing sufficient proportions of the value created between all actors
(Björkdahl, 2020).
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Table 1 Projections for governance structures in Next Generation Manufacturing

P# Short title Projections for governance structures in Next Generation Manufacturing

1 Subscription
Models

In 2030, subscription models for production machines will be the new
industry standard, fulfilling an assured performance level based on real-
time usage data in return for a periodic payment

2 Digital
Services

In 2030, for production machinery and other hardware assets, e.g., trac-
tors, equipment, etc., competition will shift from hardware capabilities
and functionality to differentiation by (digital) services, supplementing
the traditional transactional business logic with a data-driven business
model

3 Data Sharing In 2030, organizations that share usage and production data with sup-
pliers, customers, and other partners will obtain a competitive advantage
over organization that do not share this data

4 Central
Platform

In 2030, one central platform provider will serve as the operating system
for the Industrial Internet of Things, enabling them to make use of data by
integrating machine manufacturers and complementary service providers
and to capture the greatest share of the value created

5 Data Mediator In 2030, platform orchestrators or dedicated third-party providers will
mediate data sharing between all actors involved in a production network

6 Industrial
GDPR

In 2030, industrial data protection regulations (like a special GDPR—
General Data Protection Regulation for Business-to-Business) will gov-
ern the application of data-based digital services

However, envisioning new business models is particularly difficult in emerging
ecosystems (Dattée et al., 2018), creating high uncertainties for established firms.
Hence, the Delphi projections for this cluster (Table 1) will help firms to identify
favorable business model elements and governance structures in light of develop-
ments in future digital manufacturing. A particular focus here is on the level of value
capture, i.e., on mechanisms that allow the different actors of an IIoT platform to
profit from their participation in and contributions to the platform. The first three
projections of this cluster cover such advanced approaches to capturing value from
manufacturing platforms (Projections P1, P2, P3). The next projection predicts a
market concentration of IIoT platforms (toward a “winner-takes-all” situation),
similar to the development of digital platforms in the consumer market (P4)—a
development that probably would not be the best solution. Therefore, we also
consider the rules and regulations for data exchange across organizational bound-
aries (P5, P6).

3.2 Organization

Given their central importance for organizing manufacturing, the design of human-
machine interactions has been a core field of interest in research and practice alike.



Similarly, for the next generation of manufacturing systems, interfaces between
humans and machines will be the enablers of human workers’ operational and
strategic decisions and actions (Nelles et al., 2016; Shin, 2014). Task demands
must correspond to operators’ visual and cognitive ergonomic requirements in
order to support efficient and responsible decision-making. Hence, we were inter-
ested in exploring a set of Delphi projections in this domain (see Table 2). In the
usage stage (the focus of our Delphi study), the emphasis is on knowledge genera-
tion and improving decision-making by integrating human actors with technical
systems (Brauner et al., 2022, Villani et al., 2017). In this context, usage refers to
capturing the value of human and machine capabilities as an essential component of
socio-technical production systems. With apps and AI augmenting the autonomy of
humans in decision-making, one question often asked is who is making the decisions
in the factory (network) of the future: humans or machines?
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Table 2 Projections for organization routines in Next Generation Manufacturing

P# Short title Projections for organization routines in Next Generation Manufacturing

7 Autonomous
Robots

In 2030, collaborative robots that move autonomously on the shop floor
and interact directly with humans will have replaced most conventional
robots that only interact in protected cells

8 Hybrid
Intelligence

In 2030, strategic production decisions will be executed with close
interaction between humans and AI-based algorithms (“hybrid
intelligence”)

9 AI-Based
Assistants

In 2030, operative production decisions will no longer lie with people, as
they will be made by AI-based decision-making agents

10 New
Leadership

In 2030, AI-based decision systems will have changed our current
understanding of management completely, increasingly eliminating
hierarchies and leadership based on human interactions

11 Human Digital
Twins

In 2030, a full digital twin of each production worker and all of her/his
operations will be available and will become a valuable tool for produc-
tion planning and optimization by reflecting their workload, their stress,
and also their need for training in real time

12 Employees’
Rights

In 2030, adequate anonymization procedures for the protection of
employees’ personal rights will have been introduced for firms that
collect data on personal performance and work patterns in the form of
digital twins of their employees

13 Workforce
Reduction

In 2030, AI-based software and robots will have reduced a company’s
workforce significantly

Interaction between the entities of a socio-technical production system leads
toward hybrid team organizations where humans and machines both pursue the
same goal (Brauner et al., 2022). The example of human-robot collaboration
discussed earlier stresses that communication inside the team and ergonomics in
the workflow are crucial for safe and effective collaboration (Wang et al., 2017).
These hybrid teams must be organized in a way that ensures acceptance by the
working persons. Flexible division of tasks and mutual learning and adaption will
provide methods for transferring behavior to new products. Even though the increas-
ing degree of automation will relieve humans from having to make simple decisions,



strategic decisions will still depend on humans, who will have to perceive and
process increasingly complex multi-dimensional datasets and make decisions
whose effects are difficult to forecast, despite all the simulation abilities built into
a digital shadow. Therefore, important factors to consider include the acceptance and
willingness of human actors to adopt and use novel technology, the ergonomic
design of working and learning environments, and the promotion of mutual learning
between humans and machines (Villani et al., 2017). Our first set of five projections
in this cluster (P7, P8, P9, P10, P11) covers these thoughts.
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In addition, we were interested in the effects of these new organizational struc-
tures, with regard to both acceptance and job effects. While the former aspect refers
to the trust that must be generated for humans to accept and adopt the augmentation
of their tasks by machines and algorithms (P12), the latter refers to the effects of the
continuous automation of operational and planning processes on future employment
opportunities in the production sector. While this aspect deserves an intensive
investigation of its own (e.g., Sima et al., 2020), we wanted to formulate at least
one projection in this domain (P13).

3.3 Capabilities

This cluster of projections deals with the capabilities that organizations need to
utilize the opportunities of Next Generation Manufacturing platforms, but also the
capabilities that Next Generation Manufacturing offers with regard to increasing
efficiency and sustainability in manufacturing (see Table 3).

In prior research, there is a strong consensus about the capabilities required for a
digital transformation of manufacturing (Warner & Wäger, 2019). This research
builds on the rich literature of capability building and organizational sensemaking
and studies how dedicated capabilities are linked to firm performance. With increas-
ing amounts of production data available, the necessary qualifications of persons
working with data and analytics in production processes will change significantly
(Soluk and Kammerlander 2021). Intelligent decision support systems can reduce
the cognitive load, but the skills necessary to interact and interpret with these
systems will still be required (Brauner et al., 2022). Also, operators will have to
gain the capability to managing multiple production processes or collaborate with
multiple robots simultaneously (Giuliani et al., 2010; Wang et al. 2017). Another
established set of capabilities is business model innovation capabilities (Burmeister
et al., 2016; Bocken & Geradts, 2020), which will be required to orchestrate a
manufacturing ecosystem (Kopalle et al., 2020; van Dyck et al., 2021) or enact
organizational change (Björkdahl, 2020). Given the strong state of research in this
area, we did not build any additional projections for these topics.

From our vision of the Internet of Production, however, we could derive a novel
approach to capability building, enabled by shared digital shadows in data spaces.
With such infrastructures in place, an organization could counterbalance a lack of
required capabilities by having access to the abilities and skills of other actors via an



P# Short title

IIoT platform. This is a common pattern in digital consumer markets, where a
smartphone app provides consumers with access to dedicated skills (e.g., customized
training plans or nutrition analysis) via a standardized platform, often building on
data shared by the user’s wearable device. Similar scenarios could also become
possible in industrial settings. This idea of “downloading” required capabilities over
a platform forms the basis of the first projection in this cluster (P14). We
complemented this projection with one on the capabilities required for the ongoing
biological transformation of manufacturing (Byrne et al., 2018; Neugebauer et al.,
2019). While this aspect is only complementary aspect to our research, we wanted to
include it through at least one projection (P17) because such a “biologicalization” of
production is frequently mentioned as a future trend in manufacturing (Bergs et al.,
2020; Miehe et al., 2020).
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Table 3 Projections for capability configuration for and by Next Generation Manufacturing

Projections for capability configuration for and by Next Generation
Manufacturing

14 Expert Knowledge In 2030, implicit expert knowledge, which traditionally could only
be gained through experience, will increasingly be explicitly pre-
served in the form of digital models, interactive guides, or instruc-
tions and facilitated by technologies like augmented or virtual reality.
As a result, this knowledge will also be made available to novices
and will eliminate the dependency on experienced production
employees

15 Environmental
Sustainability

In 2030, environmental sustainability of production will have
increased significantly compared to today

16 Production
Transparency

In 2030, full transparency based on a complete digital twin of all
production machines, lines, and plant engineering and a complete
digital shadow of their operations will increase production efficiency
significantly

17 University Degrees In 2030, the application of biological principles (e.g., cybernetics,
biomimicry) of manufacturing will have created a demand for new,
multidisciplinary university degrees covering engineering, the life
sciences, and computer science

The two other projections in this section concern the capabilities enabled by a
Next Generation Manufacturing system. First, the future development of industrial
production and its increasing digitalization offer huge opportunities for more sus-
tainability in Industry 4.0 (P15). The COVID-19 crisis has reinforced the focus on
ecological and social sustainability (Piller et al., 2022), as argued at the beginning of
this chapter. Digitalization and new value-chain constellations can lead to significant
improvements in terms of lower material and energy consumption over the entire
product life cycle, from engineering and production to maintenance and disposal—
and society is demanding that companies utilize these opportunities (Bai et al., 2020;
Ghobakhloo, 2020). But even the objective dominating today’s discussion of Indus-
try 4.0, increasing the (operational) efficiency of an established production setup,
can benefit from our vision of the Internet of Production (Dalenogare et al., 2018).
Hence, a final projection (P16) refers to the additional transparency in a production



system that utilizes shared digital shadows to increase transparency and thus the
understanding of what exactly is happening in the system and why. Transparency is
a prerequisite for predictions and prescriptions.
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3.4 Interfaces

This cluster of projections addresses different layers of human-machine and
machine-to-machine interfaces from cognitive, spatial, and competitive perspectives
(Table 4). Building on the organization dimension above, three projections cover
further aspects of the design of human-machine interfaces. The increasing digitali-
zation and intelligent connectivity of devices will lead to rising amounts of available
production data, with high levels of cognitive and visual complexity required to
handle these data. Although data represented in digital shadows are generally
preprocessed, there are multiple application scenarios and different types of
decision-makers which require context-specific visualizations of the data (Mertens
et al., 2021). Decision support systems following context-sensitive design principles
may provide a solution in this context by providing implicit and attentive (adaptive)
support for a human operator (P18). Furthermore, advances in key technologies such
as eye and body tracking, combined with greater availability of data on human
movements and preferences, will allow far more implicit and natural human-
machine interactions than the rather cumbersome—from an ergonomic point of
view—keyboards, joysticks, and computer mice that are still predominantly used
today.

Two other projections were informed by the shared experience of working from
home (WFH) during the COVID-19 pandemic. There is no doubt that WFH will
remain an integral part of the work organization of office-based and administrative

Table 4 Projections for interface design in Next Generation Manufacturing

P# Short title Projections for interface design in Next Generation Manufacturing

18 Implicit Interfaces In 2030, human-machine interaction will have evolved away from
explicit interaction, where the human operator has full control of the
actions of the production system’s entities, toward implicit inter-
action, where the system automatically adapts to the human opera-
tor’s behavior by detecting and predicting their actions and
modifying these actions accordingly

19 Open Interfaces In 2030, regulatory requirements will demand open and standard-
ized interfaces for data exchange for all kinds of manufacturing
equipment

20 Production from
Home

In 2030, production employees will operate their workstation from
their home office, controlling, for example, remotely operated
robots

21 Plant Management
from Home

In 2030, plant directors will be able to manage multiple factories
centrally from their home office due to the complete and real-time
transparency of all the operations in a digital system



jobs. But can the possibilities of WFH be transferred to industrial production? Two
projections investigate the possibility of remotely managing a plant or even operat-
ing a workstation from one’s home office (P20 and P21). If these projections were to
become reality, suppliers and solution providers of the corresponding digital service
offerings would see a significant increase in demand. In particular, remote service
offerings like virtual and augmented reality (VR/AR) technologies, autonomous
robotics, and industrial metaverse applications will gain in importance. In turn,
industrial work processes would be radically changed by remote services, data-
based decision-making (e.g., predictive maintenance), and the increased use of
digital shadows and virtual reality tools. Education and training would need to
follow these developments, probably increasingly using digital delivery formats,
digital learning tools, and learning analytics (Piller et al., 2020).
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From the external perspective of a firm’s future position on shared manufacturing
(IIoT) platforms, the openness of machine-to-machine interfaces (APIs) needs
special attention and became the subject of the last in this set of projections. On a
technical level, the openness of APIs and other technical interfaces is not just a
question of programming and quality control but is first of all an important design
factor for the ability of a connected asset to provide predictive and prescriptive
functionality, i.e., to enhance its capability by gaining access to data from and
sending data to other actors (van Dyck et al., 2021). From the perspective of a
platform, the openness of an API is a signal of a willingness to share data and
knowledge and hence potentially attract third parties. At the same time, open
interfaces not just are a technical risk but also reduce the ability of the originator
of the data to capture unique value from this data and hence differentiate it from
other market players (Adner & Kapoor, 2010). Hence, companies need to be aware
of their openness decisions when designing their technical interfaces—as this will
become a core strategic decision. Also, regulatory bodies may enforce larger levels
of openness to prevent an uneven distribution of power toward a platform orches-
trator, but also to increase the flexibility for manufacturers to switch easily between
platforms and asset providers (Alexy et al., 2018; Parker & Van Alstyne, 2018).
Furthermore, striving for more sustainability in industry demands the open sharing
of data to build transparency along entire supply chains. Therefore, our final
projection (P19) proposes that it may be regulators, and not the strategic decisions
of companies, that lead to greater openness of interfaces and open data exchange
between organizations.

3.5 Resilience

We complement our analytical framework with a fifth factor, resilience. In a
globalized and networked economy, production interruptions, including the inter-
ruption of supply chains, have been the leading business risk for many years. But the
COVID-19 pandemic demonstrated especially powerfully how unexpected events
can disrupt entire global logistics chains very quickly. The resulting demand for



change poses enormous challenges for industrial production. At the same time, the
ongoing digitalization and networking of industrial value chains offer new opportu-
nities and provide the capabilities to reach these objectives. Hence, like sustainabil-
ity, resilience will complement the established set of strategic objectives of Industry
4.0, becoming similarly important to operational efficiency (OE, OEE) and strategic
differentiation (e.g., individualization, flexibility, customer centricity).
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Table 5 Projections for drivers of future resilience in manufacturing

P# Short title Projections for drivers of future resilience in manufacturing

22 Decentralization In 2030, supply chains will have become more decentralized, with
production and sourcing moving closer to the end customer to cope better
with global crises (e.g., pandemics)

23 Production
Costs

In 2030, production costs will have increased substantially due to more
regional production and higher inventory levels to cope with global
crises (e.g., pandemics)

24 Production
Resilience

In 2030, AI-based decision systems will enable greater resilience of
production networks in the event of a global crisis (e.g., a pandemic)

The ability of a company to adapt permanently to internal and external changes
and disruptions has been described as its “search for resilience” (Gu et al., 2015;
Moghaddam & Deshmukh, 2019). Reinforced by a significant increase in complex-
ity in production due to Industry 4.0, resilience management is thus becoming an
indispensable success factor for production companies. But sharing data across
organizational and industry boundaries and using novel predictive approaches to
identify potential sources of disruption in these data, along with algorithms provid-
ing prescriptions to cope with these disruptions, promise new ways to achieve
resilience. In this sense, next-generation production systems utilize data-driven
ecosystems based on collaborative applications and using leading AI technologies
and Industry 4.0 standards to anticipate disruptions (anticipation) and optimally
adapt their production planning to mitigate against active disruptions at any time
(response).

We cover these developments in a final set of projections (Table 5). Increasing
resilience could become a dominant strategic objective in Next Generation
Manufacturing, enabled by future applications of machine intelligence (P24). Com-
panies could further (re-)integrate previously distributed stages of the value chain,
preferring insourcing to outsourcing for a larger scope of activities. From an
aggregated perspective, this would mean that supply chains would become more
decentralized, with production and sourcing moving closer to customers in local
markets (P22). Value chains would be shortened and more partners added for
diversification, especially to secure critical components and to increase flexibility
in fulfillment. For such a strategy, digitalization helps to mitigate the increasing cost
of complexity resulting from vertical integration. Still, the focus on increasing
resilience will overall lead to higher production cost (P23).
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4 Conclusions and Outlook

In the following chapters of this study, we will present the results from the validation
of our 24 projections by an international panel of experts from industry and academia
and discuss the implications and insights gained from this analysis.

Chapter “Applying the Real-time Delphi Method to Next Generation
Manufacturing”: Marc Van Dyck, Dirk Lüttgens, and Frank T. Piller introduce the
methodology of the real-time Delphi study that serves as a template for further
applications of forecasting studies in interdisciplinary settings with high degrees of
technical uncertainty.

Chapter “Big Picture of Next Generation Manufacturing”: Sebastian Pütz, Marc
Van Dyck, Dirk Lüttgens, and Alexander Mertens provide an overview of the expert
assessments of all 24 projections for Next Generation Manufacturing.

Chapter “Governance Structures in Next Generation Manufacturing”: Christian
Brecher, Matthias Jarke, Frank T. Piller, Günther Schuh, Annika Becker, Florian
Brillowski, Ester Christou, István Koren, Maximilian Kuhn, Dirk Lüttgens, Marc
Van Dyck, and Marian Wiesch elaborate on how the sharing of usage data requires
new forms of governance, internally and externally.

Chapter “Organization Routines in Next Generation Manufacturing”: Philipp
Brauner, Luisa Vervier, Florian Brillowski, Hannah Dammers, Linda Steuer-
Dankert, Sebastian Schneider, Ralph Baier, Martina Ziefle, Thomas Gries, Carmen
Leicht-Scholten, Alexander Mertens, and Saskia K. Nagel discuss how the intro-
duction of digital shadows will impact the organization of work, workers, and
workplace design.

Chapter “Capability Configuration in Next Generation Manufacturing”: Christian
Hinke, Luisa Vervier, Philipp Brauner, Sebastian Schneider, Linda Steuer-Dankert,
Martina Ziefle, and Carmen Leicht-Scholten show how the digital transformation
affects the capabilities of production systems and companies, as well as requirements
for higher education and educational programs.

Chapter “Interface Design in Next Generation Manufacturing”: Ralph Baier,
Srikanth Nouduri, Luisa Vervier, Philipp Brauner, István Koren, Martina Ziefle,
and Verena Nitsch discuss the future of emerging trends in human-machine inter-
action such as implicit interfaces and teleoperation from home.

Chapter “Resilience Drivers in Next Generation Manufacturing”: Alexander
Schollemann, Marian Wiesch, Christian Brecher, and Günther Schuh illustrate
opportunities for improving the resilience of global production networks via decen-
tralization and the use of AI-based decision support systems.

Chapter “Future Scenarios and the Most Probable Future for Next Generation
Manufacturing”: Marc Van Dyck, Sebastian Pütz, Alexander Mertens, Dirk
Lüttgens, Verena Nitsch, and Frank T. Piller present scenarios that portray the
most probable future for Next Generation Manufacturing in 2030.

We close this book with a chapter discussing a core pattern that we see in many of
the implications presented in the previous chapters. Today, humans and machines/
algorithms mostly work sequentially with each other: an algorithm provides decision



support, but the human makes the final decision. Or, vice versa, humans generate or
engage in pre-classification of data, and an autonomous system then makes and
executes a decision. But the results from our Delphi study predict that humans and
machines will become real collaborative partners in the near future—a development
we call “hybrid intelligence” (following Dellermann et al., 2019). For manual work,
the rise of collaborative robots has already begun this shift. But for the planning and
engineering levels, this change is still to come. Hence, chapter “Hybrid Intelligence
in Next Generation Manufacturing: An Outlook on New Forms of Collaboration
between Human and Algorithmic Decision Makers in the Factory of the Future”
introduces the concept of hybrid intelligence, complementing the results from the
Delphi study and providing a further outlook on the future of manufacturing.
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Applying the Real-Time Delphi Method
to Next Generation Manufacturing

Marc Van Dyck, Dirk Lüttgens, and Frank T. Piller

Abstract The Delphi method is a structured scientific approach used to organize
and structure an expert discussion in order to gain insights about the future. In order
to develop scenarios for the future of Next Generation Manufacturing, an innovative
real-time Delphi survey was conducted with 35 experts from industry and academia.
The survey involved evaluating a set of 24 projections on the future of Next
Generation Manufacturing, and the results of the survey were used to develop
reliable future scenarios. Our main objective was to create a picture of the elements
of Next Generation Manufacturing in 2030, guided by developments in the context
of Industry 4.0. By using an innovative real-time Delphi approach in the context of
Next Generation Manufacturing, we extend this established tool of strategic tech-
nology management from predicting technological developments and their impact
on firms and society to providing a strategic guide for decision-makers in times of
high uncertainty. Our study thus serves as a template for further applications of
forecasting studies in interdisciplinary settings with high degrees of technical
uncertainty.
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1 Scenario Development for Next Generation
Manufacturing

Technological developments can have an impact on firms and society. This impact is
often unpredictable, creating a need to manage the involved uncertainty (IPTS
Economists Group et al., 2002). A common approach to managing uncertainty is
engaging in forecasting projects which involve the generation of future scenarios
that outline influencing factors and trends (Gausemeier et al., 1998). The main goal
of such forecasting efforts is to anticipate the future (Saritas & Oner, 2004) and to
serve as a basis for long-term planning (Courtney et al., 1997).

Similarly, the implications for Next Generation Manufacturing are unclear given
the high uncertainty of technological development involved. We provide an
approach to developing scenarios for future outcomes of Next Generation
Manufacturing which can enable strategic planning by firms and future research.
Our research is guided by one core question: how will digital shadows influence
manufacturing firms from the perspective of employees, managers, firms, and
society?

Scenario development is done using technological forecasting methods, which
have a long tradition in strategic technology management. One can distinguish three
categories of forecasting methods. First, exploratory methods project current tech-
nological progress into the future, for example, trend exploration or bibliometric
analyses (Cho & Daim, 2013). Second, normative methods, such as multi-criteria
decision models or morphological analyses, illustrate the path to a desired future
(Roberts, 1969). Third, combined methods integrate both approaches, such as the
Delphi method (TFAMW Group, 2004). As our aim is to assess the probability and
impact of early-stage technology on a diverse set of stakeholder groups, we followed
common practice and drew on the Delphi method, an expert-based assessment
(Landeta, 2006).

The Delphi method is a structured scientific approach to organizing and structur-
ing an expert discussion in order to gain insights (Beiderbeck et al., 2021). Its
purpose is to derive a reliable consensus about future developments by structuring
complex opinions from various stakeholders (Kameoka et al., 2004; Linstone &
Turoff, 2002; Rauch, 1979). It is considered a “judgmental forecasting procedure”
(von der Gracht & Darkow, 2010), is constructed in an interactive multi-stage
format, and is conducted anonymously and in written form. Here, experts assess
statements about the future, so-called projections. Given the complexity of the
problems, it is crucial to incorporate diverse perspectives in terms of both the set
of projections and the selection of experts (Linstone, 1981). In addition, Saritas and
Oner (2004) suggest including comments by the experts explaining the reasoning for
their quantitative estimates.

Our scenario development is built on a multi-round, real-time Delphi survey with
35 experts from industry and academia who evaluate a set of 24 projections. In the
following, we outline our process for conducting the Delphi survey. We applied a
platform framework, adapted from Gawer (2014), distinguishing four dimensions:
governance (e.g., open forms of collaboration), organization (e.g., boundaries and



decision-making), capabilities (e.g., hybrid intelligence), and interfaces (e.g., open
APIs and human-machine interfaces). In addition, we added a section on resilience
drivers to framework for the development of the projections and the scenarios.
Conventional Delphi surveys face criticism regarding a failure to translate their
findings into actionable results due to being a time-consuming process (Gnatzy
et al., 2011) with high drop-out rates (Keller & von der Gracht, 2014). Thus, we
used a novel real-time Delphi approach, as described by Gordon and Pease (2006)
and improved by Gnatzy et al. (2011). In this approach, experts evaluate the pro-
jections through an interactive online interface that provides instant feedback in the
form of the other experts’ assessments and allows the participants to engage in
discussion and potentially to adjust their estimations. As well as ensuring anonym-
ity, the internet-based approach is more efficient and accessible, thus reducing drop-
out rates and increasing the accuracy of the results (Gnatzy et al., 2011). A sample
real-time Delphi survey can be found in Jiang et al. (2017).
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2 Real-Time Delphi Process

Strict adherence to a rigorous process is key to ensuring the reliability and validity of
a Delphi survey (Hasson & Keeney, 2011). We followed a four-step process to
deliver this, as suggested by von der Gracht and Darkow (2010): first, we developed
our Delphi projections; second, we selected a panel of experts; third, we conducted
the Delphi survey; and finally, we developed future scenarios (see Fig. 1). We will
provide a detailed overview and discuss the results of each step in the subsequent
sections.

04

Develop
future scenarios

03
Conduct survey

02
Select panel experts

01

Develop 
projec�ons

24 projec�ons developed using desk 
research, expert workshops, and 
pretes�ng

01

Real-�me Delphi approach collected 
quan�ta�ve es�mates regarding 
probability of occurrence and firm impact 
and collected 629 qualita�ve arguments

03

35 experts from 8 countries par�cipated, 
providing global coverage of industry (23 
experts) and academia (12 experts)

02

Most probable scenarios developed, 
based on expert consensus and with 
par�cular focus on the interplay between 
internal and external perspec�ves, within 
a framework adapted from Gawer (2014)

04

Fig. 1 Real-time Delphi process
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2.1 Step 1: Develop Delphi Projections

First, we developed a set of projections for Next Generation Manufacturing. In line
with previous Delphi studies (e.g., Jiang et al., 2017; von der Gracht & Darkow,
2010), we chose 2030 as the projection horizon for our scenarios, giving a 10-year
timeframe. To address the required diversity of perspectives, we used an adaptation
of Gawer’s (2014) framework to structure the formulation of our projections, as
outlined previously. We conducted workshops with 27 experts from the fields of
computer science, engineering, management, and social sciences to develop pro-
jections. Workshop participants did not participate in the survey. In addition, we
used literature research to triangulate the workshop results (Gausemeier et al., 1998).
As a result, we identified an initial set of 76 projections. We clustered similar
projections to rule out redundancy and ensure an equal level of detail. Hence, we
reduced the number of projections to 45. To ensure that we gained valid results
without causing research fatigue and to guarantee that we covered all relevant topics
within our framework dimensions, we went back to our workshop participants to
discuss the reduced set of projections. After this second evaluation, we were able to
dramatically reduce the number of projections again, to 24. In addition to the number
of projections, we paid special attention to their quality and comprehensibility.
Short, unequivocal, and precise wording is key to avoid any ambiguity which
would impact the quality of the outcome (Mićić, 2007). Figure 2 illustrates the
process of developing the projections.

We conducted a pre-test with 13 experts from industry and research to ensure
content reliability as well as face validity. The pre-tested set of 24 projections then
underwent a final editing round before being presented to the panel experts using the
internet-based real-time Delphi tool developed by Gnatzy et al. (2011).

• Workshops with 27 
experts in relevant 
fields (IT, engineering, 
management)

• Desk research to 
triangulate trend 
analysis

Final set for 
Delphi survey76 projec�ons 45 projec�ons 24 projec�ons

• Clustering and 
aggrega�on of 
projec�ons to reduce 
redundancies

• Dismissal of similar 
projec�ons

• Evalua�on regarding 
dependencies and 
exhaus�ve coverage

• Pre-test with 13 
experts

• Final edi�ng

Fig. 2 Projection development funnel
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2.2 Step 2: Select Panel Experts

In a second step, we composed a panel of experts by identifying, selecting, and
recruiting relevant actors in the field of manufacturing, in particular digital
manufacturing (Gordon & Pease, 2006). Panel sizes in Delphi studies vary and
depend on the scope of the study, required heterogeneity, and availability (Loo,
2002). In previous Delphi studies, the panel size has ranged from 10 to 60 partici-
pants (e.g., Beiderbeck et al., 2021; Gordon & Helmer, 1964; Jiang et al., 2017). Our
target panel size was in the middle of this range, as digital shadows involve a
heterogeneous actor structure but are still an emerging field with a limited number
of available experts.

We identified potential experts by tapping into the network of all the workshop
participants, as well as by searching in professional social networks such as
LinkedIn. We reached out to this initial set of experts and asked them to refer
experts who are more knowledgeable than they themselves, following an approach
known as a pyramiding search (von Hippel et al., 2009). Selection criteria included
technical expertise, publications in the relevant field, and profession. We evaluated
the experts according to their corporate function, company’s stake in the technology,
or previous publications and adapted the initial set to include a diverse group of
experts. Our final panel contained 35 experts, including different stakeholders from
industry (23) and academia (12) across a global range of nationalities (8). Table 1
provides an overview of our final expert panel. To our knowledge, our panel is one
of the most comprehensive used in a study on digital shadows.

2.3 Step 3: Conduct Survey

For the Delphi survey, we used the real-time survey software developed by Gnatzy
et al. (2011). The participating experts were presented with one projection at a time
to reduce information overload. First, we asked the experts to provide their estimates
on the probability of occurrence and the impact on firms of the projection in the year
2030. Probability of occurrence was measured in percent (0–100%), while firm
impact was measured on a 5-point Likert scale (1 ¼ very low to 5 ¼ very high).
In addition, we invited the experts to provide qualitative comments explaining the
reasoning for their estimates. We were able to collect a large amount of qualitative
data, with 629 comments. This indicates the commitment of the participants as well
as their relevant expertise.

After the experts had provided their initial estimates and reasoning for a given
projection, the next page presented the intermediate results (mean, standard devia-
tion, interquartile range), as well as the anonymized arguments of the other experts
for this projection. In line with the aim of the Delphi method to reach a consensus,
the experts were prompted to reevaluate their estimated probability of occurrence
and firm impact. In addition, they could engage in a discussion anonymously by
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(continued)
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Table 1 Expert panel

Affiliation Region Field Competency

1 Academia Europe Information
systems

Professor for computational analysis of techni-
cal systems

2 Industry Europe Aerospace Digital transformation manager

3 Industry Europe Automotive Data scientist

4 Industry Europe Consulting Consultant in industrial complexity
management

5 Industry Europe Conglomerate R&D strategy consultant

6 Academia North
America

Engineering Professor for manufacturing systems

7 Industry Europe Industrial
equipment

Expert in manufacturing excellence

8 Industry Europe Industrial
equipment

Executive vice president

9 Academia North
America

Engineering Professor of mechanical and aerospace
engineering

10 Academia Europe Engineering Professor of prognostics and health
management

11 Academia Europe Engineering Senior researcher for applied industrial engi-
neering and ergonomics

12 Industry Europe Conglomerate Expert in additive manufacturing

13 Industry Europe Aerospace Director of production

14 Industry Europe Consulting Managing director and partner, global leader in
manufacturing

15 Academia Europe Engineering Professor of production systems

16 Industry Asia Electronics Vice chairman and board member

17 Industry Europe Industrial
software

Managing director

18 Academia North
America

Engineering Professor of manufacturing engineering

19 Academia Europe Economics Professor of economics and entrepreneurship

20 Industry Europe Automotive Industrial engineer

21 Industry Europe Chemicals Innovation manager

22 Industry Asia Conglomerate Senior chief researcher

23 Academia Europe Information
systems

Professor of software and systems engineering

24 Industry Europe Industrial
equipment

Head of product marketing

25 Academia Europe Information
systems

Professor of business informatics and data
science

26 Industry Europe Industrial
software

Chief technology officer

27 Industry Europe Automotive Director of manufacturing

28 Industry Europe Industrial
equipment

Managing director
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responding to other experts’ comments. Thereby, we strengthened the data’s validity
(von der Gracht & Darkow, 2010).
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Table 1 (continued)

Affiliation Region Field Competency

29 Industry Europe Industrial
equipment

R&D manager, laser technology

30 Industry Europe Textile
manufacturer

Head of finance

31 Academia Europe Engineering Professor of production planning and control

32 Industry Europe Aerospace Founder and technical director for lightweight
construction parts

33 Industry Europe Materials Chief technology officer

34 Industry Europe Automotive Head of operations, production support

35 Academia North
America

Economics Professor of management

2.4 Step 4: Develop Future Scenarios

In a final step, we used the Delphi results to derive future scenarios regarding the
probability of occurrence and impact on firms of digital shadows within Next
Generation Manufacturing in 2030. For this, we first analyzed the quantitative results
of the Delphi survey by calculating the mean, standard deviation, interquartile range,
and outliers for each projection. To identify whether a consensus was reached among
our expert panel for a projection, we used the interquartile range, which measures the
difference between the upper and lower quartiles (Sekaran & Bougie, 2013). In line
with previous Delphi studies (e.g., Jiang et al., 2017; von der Gracht & Darkow,
2010), we considered each projection with an interquartile range equal to or less than
2.0, indicating a low dispersion from the median, as having a consensus. Consensus
was measured for the probability of occurrence as we developed our future scenarios
using the most probable scenarios, even if there was a higher dispersion among the
firm impact values.

After establishing the quantitative baseline for each projection, we described the
results for each projection separately. In addition to the quantitative estimates, we
analyzed the qualitative comments. They provided a richer understanding of and
reasoning with which to interpret the quantitative estimates. For this, we took the
results back to the initial workshop group that had developed the projections in the
first place. Workshop participants clustered around projections they were particu-
larly knowledgeable about. In this way, we were not only able to reflect a diversity of
perspectives in the survey, but we were also able to incorporate heterogeneous
perspectives in our interpretation of the results by including interdisciplinary
research teams in the interpretation process. The quantitative results provided the
basis for our analysis. The qualitative comments were coded and aggregated to



broader themes and served as complementary data. We then followed a clear
structure, describing the results for each projection, providing use cases from
industry and academia, and outlining implications for policy makers, firms, and
individuals (managers, employees).
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Finally, we developed future scenarios by clustering selected projections, as
suggested by von der Gracht and Darkow (2010). We followed the previously
introduced framework adopted from Gawer (2014) and developed the most probable
scenarios for each dimension according to the aggregated statistics from the survey
(for the aggregated statistics, see in chapter “Big Picture of Next Generation
Manufacturing”; and for a synthesis of the results, see chapter “Governance Struc-
tures in Next Generation Manufacturing”).

3 Summary

Managing the uncertainty resulting from technological developments is paramount
to prepare for potential scenarios. By using an innovative real-time Delphi approach
in the context of Next Generation Manufacturing, we extend this established tool of
strategic technology management from predicting technological developments and
their impact on firms and society (Courtney et al., 1997) to a providing a strategic
guide for decision-makers in times of high uncertainty. Our study thus serves as a
template for further applications of forecasting studies in interdisciplinary settings
with high degrees of technical uncertainty.

Acknowledgment Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet of Production –
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Big Picture of Next Generation
Manufacturing

Sebastian Pütz, Marc Van Dyck, Dirk Lüttgens, and Alexander Mertens

Abstract In our real-time Delphi survey, we present 24 projections for Next Gener-
ation Manufacturing. An international set of experts from multiple fields, e.g., engi-
neering, information systems, social sciences, and management, evaluated these
projections regarding their likelihood and their impact on manufacturing firms by
the year 2030. The experts predict that in the coming decade, we will see a significant
increase in the use of production data in the form of digital shadows, which will in turn
shape both internal and external processes of manufacturing companies. The quanti-
tative results of the Delphi study show that there is significant disagreement among the
experts about the likelihood and impact of several of the projections. The most likely
projection is the increased importance of environmental sustainability, while the least
likely is the emergence of a central platform provider for Next GenerationManufactur-
ing. The most impactful projections are those related to the roles of digital services,
data sharing, hybrid intelligence, and environmental sustainability.

[Abstract generated by machine intelligence with GPT-3. No human intelligence
applied.]

1 Overview

In our real-time Delphi survey, we present 24 projections for Next Generation
Manufacturing. An international set of experts from multiple fields, e.g., engineer-
ing, information systems, social sciences, and management, evaluated these pro-
jections regarding their likelihood and their impact on manufacturing firms by the
year 2030. The final list of projections is provided in Table 1. The projections are
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clustered according to the framework adopted from Gawer (2014), whereby pro-
jections (P1)–(P6) belong to the governance dimension, (P7)–(P13) to organization,
(P14)–(P17) to capabilities, (P18)–(P21) to interfaces, and (P22)–(P24) to the
additional dimension of resilience. The projections were initially developed by
interdisciplinary workshop groups and were subsequently refined and filtered
based on a pre-test with a group of 13 experts (for more details on the methodology,
see chapter “Applying the Real-Time Delphi Method to Next Generation
Manufacturing”).
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Out of a total of 35 experts from the industry and academia, 29 completed the
survey in full, while 6 completed the survey in part. All projections were assessed by
17 to 23 experts from the industry and by 12 experts from the academia. Each
projection received ratings from 21 to 26 experts from Germany and from 8 or
9 experts from the rest of the world. This resulted in a total of 1930 quantitative
estimations which were further supported by 629 qualitative arguments. As a result,
we give an overview of Next Generation Manufacturing based on the experts’
quantitative assessments.

2 Expert Assessments

Overall, the experts’ assessments of the projections show that the role of digital
shadows in production by 2030 is still the subject of controversial debate (see
Table 1). To determine whether the experts reached a consensus in estimating the
probability of a projection, we used the interquartile range (IQR) of their estimates.
To improve comparability with prior reports of Delphi studies in the literature, we
downscaled the percentage estimates by dividing them by 10 before calculating the
IQRs and used an IQR of 2 or less as the criterion for consensus (see, e.g., Jiang et al.,
2017; Scheibe et al., 1975; von der Gracht, 2012; von der Gracht & Darkow, 2010).
Based on this threshold, the experts reached a final consensus on the probability of
only 4 of the 24 projections developed. The topics on which the experts agreed are
the role of subscription models for production machinery (P1), the reduction of labor
through AI-based software and robots (P13), the increasing importance of environ-
mental sustainability of production (P15), and the decentralization of supply chains
(P22). The experts concurred that the increased role of environmental sustainability
is particularly likely (67%), while for the other three projections, they consistently
indicated medium probabilities (between 52% and 58%). The projections that
resulted in the highest level of dissent between the experts are the emergence of a
central platform provider as the operating system for the Industrial Internet of Things
(P4), the mediating role of platforms for data sharing (P5), the implementation of
adequate measures for protecting employees’ privacy (P12), and plant management
from home (P21). For all four of these projections, the probability estimates yielded
IQRs equal to or greater than 4.

Figure 1 displays the average estimates for probability and firm impact for all
24 projections. Starting by focusing on the probability dimension, the projections



show a wide spread of average estimated probabilities, ranging from 30% to 67%,
with a mean (M ) of 52% and a standard deviation (SD) of 11%. Closely following
the projection on environmental sustainability (P15), which was estimated to be the
most likely, the next most likely projections are the rising importance of digital
services (P2), hybrid intelligence (P8), and full transparency of production systems
based on digital twins (P16), all with an estimated probability of 65%. In contrast,
the experts considered the emergence of a central platform provider for Next
Generation Manufacturing (P4: 30%) and the upheaval of current management
structures by virtue of AI-based decision systems (P10: 34%) to be the least likely
to occur by 2030. Regarding the potential impact of the projections on firms, the
experts’ average ratings on the 5-point scale varied between 2.66 and 3.71
(M ¼ 3.22, SD ¼ 0.30). Consistent with their high probability ratings, projections
(P2) and (P8) also received the highest average impact scores (3.65 and 3.7),
whereas the development of new multidisciplinary university degree programs
(P17: 2.66) and the possibility for production workers to operate their workstations
from home (P20: 2.83) are expected to have the lowest impact on manufacturing
companies.
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Fig. 1 Expert assessments of 24 projections for Next Generation Manufacturing

Considering the estimates of both probability and firm impact, six projections that
the experts consider the most relevant for the future of production emerge. They are
highlighted by the colored area in Fig. 1. The rationale for using the selected post hoc
cut-off values of probability estimates above 60% and firm impact ratings above 3.5
is that the resulting 6 projections are assessed as being more likely than any of the
other 18 projections and represent 6 of the 7 most impactful projections. The only
projection that has a higher estimated firm impact than some of the six selected



projections is rated as considerably less likely. Therefore, the results of this Delphi
study emphasize the importance of considering the increasing role of digital services
(P2), the benefits of sharing usage and production data with business partners (P3),
the development of industrial data protection regulations (P6), the role of hybrid
intelligence in production decision-making (P8), the environmental sustainability of
production (P15), and the full transparency of production systems based on digital
twins (P16) in the strategic planning of production firms and in related future
research.
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3 Comparison Between Subgroups of Experts

Although the further analysis and discussion of the expert assessments in this book
focus on the full expert sample, we present here some additional insights into the
experts’ perspectives by comparing the assessments of different types of experts.
Figure 2a illustrates the differences in assessments between academic and industry
experts. When calculating the IQRs of the probability estimates for consensus
identification within the subgroups, both groups show a consensus for projection
(P15), consistent with the findings for the full sample. However, both groups also
yielded a consensus for projection (P4), which yielded one of the highest levels of
dissent when looking at the full sample. The observed dissent can thus be attributed
to the different perspectives of the two groups of experts, which are internally
consistent, with academics estimating a higher probability than industry representa-
tives. The academics also yielded a consensus on the probability of introducing
collaborative robots in production (P7).

While the mean average probability ratings of the academic (M ¼ 53%,
SD ¼ 10%) and industry (M ¼ 50%, SD ¼ 11%) experts are similar, experts from
the academia rated 17 of the 24 projections as more likely than their industry
counterparts. That said, a Wilcoxon signed-rank test did not show a significant
difference in the probability ratings between the two groups ( p ¼ 0.056,
r ¼ 0.275). Individual projections that are considered more likely by the academics
include the introduction of collaborative robots (P7), the disruptive effect of
AI-based decision systems on established leadership structures (P10), and the
decentralization of supply chains (P22). In contrast, the industry experts attributed
a higher probability to the implementation of digital shadows of production workers
(P11) and the introduction of adequate anonymization procedures for the protection
of employees’ personal rights (P12) than the academic experts. Regarding the firm
impact ratings, academics (M ¼ 3.30, SD ¼ 0.33) and industry members (M ¼ 3.19,
SD ¼ 0.34) also yielded similar mean average rating, with the academics rating the
firm impact of the projection higher than industry members in 15 of 24 cases. The
difference between the ratings of the two groups was again not significant
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Fig. 2 Expert assessments of 24 projections for Next Generation Manufacturing differentiated
between experts from the academia and from the industry (a) and between experts from Germany
and the rest of the world (b). The connecting line between the two assessments for each projection is
colored according to the group with the higher probability rating



(p ¼ 0.145, r ¼ 0.210). The largest differences between the two groups,
corresponding to higher impact assessments by the academic experts, are for the
projections of new multidisciplinary university degree programs (P17) and increas-
ing production costs due to more regional production and higher inventory levels
(P23). Conversely, the industry experts considered the introduction of platforms as
mediators in data sharing (P5) in particular as more impactful than the academic
experts.
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Switching to the comparison between experts from Germany and from the rest of
the world (see Fig. 2b), this division of the full expert sample highlights the higher
levels of consensus among the experts within the respective subsamples. Whereas
the German experts yielded a consensus for projections (P13), (P15), (P16), (P17),
and (P22), the experts from other countries did so for projections (P1), (P2), (P4),
(P5), (P6), (P7), (P8), (P10), (P11), (P13), (P14), (P17), (P18), and (P23). This
observation may indicate the importance of experts’ regional background and
cultural experiences for their predictions on the future of production. However, the
small sample sizes of the subsamples should be considered, as they affect both the
informative value of the IQR as a measure of dispersion and the overall generaliz-
ability of the inferred conclusion.

In terms of probability estimates, the experts from Germany (M ¼ 49%,
SD ¼ 12%) showed a lower mean average estimation than the other experts
(M ¼ 57%, SD ¼ 10%), providing lower estimates for 18 of the 24 projections.
Based on the performed Wilcoxon signed-rank test, this difference between the
average probability estimates of the two groups reaches statistical significance
(p < 0.01, r ¼ 0.456). Future developments that the German experts consider
particularly less likely are the introduction of new multidisciplinary university
degree programs (P17) and plant management from home (P21). In contrast, the
emergence of platform providers as mediators for data sharing (P5) is the projection
with the largest difference in average probability, with the German experts estimat-
ing its probability to be higher. In addition, the two groups also differ significantly in
their average estimates of the impact of the projections on firms (p < 0.05,
r ¼ 0.306). For 17 of the 24 projections, the German experts (M ¼ 3.17,
SD ¼ 0.37) assessed the firm impact as being lower than the experts from the rest
of the world did (M ¼ 3.36, SD ¼ 0.30). Exemplary projections that yielded
high differences in impact estimates between the two groups are (P5), (P16),
(P20), and (P21). Whereas the German experts estimated lower firm impacts for
production workers (P20) and plant managers (P21) working from home, they
assessed platform providers as mediators for data sharing (P5) and full transparency
of production systems based on digital twins (P16) as being more impactful than the
other experts.
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4 Summary

The experts project that in the coming decade, we will see a significant increase in
the use of production data in the form of digital shadows, which will in turn shape
both internal and external processes of manufacturing companies. The experts
ascribe a high probability and a high firm impact to the visions of achieving full
transparency of production processes via digital twins of production machines,
production lines, and plant engineering and operation. This progress in creating
comprehensive datasets comprising information on all relevant aspects of production
will create vast opportunities, from improving decision-making through AI-based
assistance to creating new business models by sharing data between companies and
providing newly developed digital services. However, although the experts provided
positive assessments for the central vision of Next Generation Manufacturing, their
responses also emphasize that there is still considerable uncertainty about how
exactly the deployment of digital shadows will impact the production landscape,
as shown by the dissent among them for most projections. These differences in the
experts’ assessments can be partially attributed to their different professional and
regional backgrounds. This observation highlights both the importance of using a
diverse panel of experts to forecast Next Generation Manufacturing and the need for
further research on the differences between the perspectives of various groups of
experts. Indeed, the latter is especially important, as the opinions and expectations of
relevant stakeholders will have a direct influence on future developments, with
significant differences between stakeholder groups potentially leading to tensions
or divergent developments in different geographic and economic areas. To conclude,
data-based optimization and value creation will be a central part of Next Generation
Manufacturing, though the details are still difficult to predict.
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Governance Structures in Next Generation
Manufacturing

Christian Brecher, Matthias Jarke, Frank T. Piller, Günther Schuh,
Annika Becker, Florian Brillowski, Ester Christou, István Koren,
Maximilian Kuhn, Dirk Lüttgens, Marc Van Dyck, and Marian Wiesch

Abstract Next Generation Manufacturing describes a vision of an open network of
sensors, assets, products, and actors which are not restricted to a focal organization
or a closed supply chain. A core principle of the digital shadow is that it collects and
shares data about the usage of products within and across organizations, allowing
them to optimize operations, investment decisions, innovation processes, or the
generation of new products. Sharing of usage data, however, requires new forms
of governance, both internally and externally. Given the high uncertainty in the
likelihood of occurrence and the technical, economic, and societal impacts of these
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concepts, we conducted a technology foresight study, in the form of a real-time
Delphi analysis, to derive reliable future scenarios featuring the next generation of
manufacturing systems. This chapter presents the governance dimension and
describes each projection in detail, offering current case study examples and
discussing related research, as well as implications for policy makers and firms.
For example, according to the experts, subscription models for production machines
will be the new industry standard by 2030. This is due to the changing needs of
manufacturers and customers, as well as the impacts of digitization and Industry 4.0.
Customers would benefit from guaranteed machine availability and lower invest-
ment costs, while manufacturers would benefit from increased customer satisfaction
and longer-term business relationships.

[Abstract generated by machine intelligence with GPT-3. No human intelligence
applied.]
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1 Introduction

Next Generation Manufacturing describes a vision of an open network of sensors,
assets, products, and actors which are not restricted to a focal organization or a closed
supply chain. A core principle of the digital shadow is that it collects and shares data
about the usage of products within and across organizations, allowing them to optimize
operations, investment decisions, innovation processes, or the generation of new
products. Sharing of usage data, however, requires new forms of governance, both
internally and externally. Governance refers here to the reconciliation of the interests of
all internal and external stakeholders (Gawer, 2014). Internally, governance systems
need to reflect changes in organizational structures and processes. They need to create
acceptance by all stakeholders and ensure security, privacy, and ethical behavior.
Externally, governance needs to balance the need for openness in order to integrate
third parties with each actor’s desire for control. The internal and external governance
systems also need to reconcile contradicting requirements. For instance, they need to
ensure internal privacy while enabling a certain degree of external openness.

To create value based on a digital shadow, data must be exchanged with third-
party complementors – independent but interdependent actors (Jacobides et al.,
2018) – who innovate based on the data, e.g., in the form of dedicated “apps”
(Gawer, 2014; Parker & Van Alstyne, 2018). These exchanges resemble the dynam-
ics in platform markets (e.g., Parker et al., 2016). Collaborative innovation needs to
be coordinated and federated, which can be done through different governance
modes (Gawer, 2014). While basic mechanisms of value creation in platform
markets are understood, dedicated research in the context of industrial data applica-
tions is lacking, as is on work on value capture.

A central challenge for governance is finding the right degree of openness to
enable both value creation and capture (Boudreau, 2010; West, 2003). The more
open data is exchanged, the more innovative input can be provided by third parties.
However, the less control the digital shadow provider has, the less value the focal
organization can capture. In addition, governance can be implemented differently. It



can be either centrally organized by the provider of the digital shadow or decentrally
distributed between multiple organizations (Eisenmann et al., 2006). These gover-
nance challenges are exacerbated by two factors: first, ecosystems built on digital
shadows are newly emerging, and it is not yet clear what future complements and
third-party actors are required (Dattée et al., 2018); and second, digital shadows
enable completely new value propositions, such as a shift from acquiring reliable
industrial equipment to paying for access to outcome-based services, with perfor-
mance assessed through the data generated by the equipment (Iansiti & Lakhani,
2020; Porter & Heppelmann, 2015).
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Using a novel real-time Delphi approach (see chapter “Applying the Real-Time
Delphi Method to Next Generation Manufacturing” for a presentation of the method
and the sample and chapter “Big Picture of Next Generation Manufacturing” for an
overview of the results), we developed propositions for different scenarios within
Next Generation Manufacturing in 2030. As suggested by Gawer (2014), we used an
integrative framework for platforms, distinguishing four dimensions: governance
(e.g., open forms of collaboration, this chapter), organization (e.g., boundaries and
decision-making; see chapter “Organization Routines in Next Generation
Manufacturing”), capabilities (e.g., hybrid intelligence; see chapter “Capability
Configuration in Next Generation Manufacturing”), and interfaces (e.g., open APIs
and human-machine interfaces; see chapter “Interface Design in Next Generation
Manufacturing”). In addition, and influenced by our shared experiences during the
COVID-19 pandemic, we added a fifth cluster of propositions addressing the need
for resilience in future digital manufacturing systems (see chapter “Resilience
Drivers in Next Generation Manufacturing”). We provide a set of 24 validated
projections based on 1930 quantitative estimations and 629 qualitative arguments
from 35 industrial and academic experts from Europe, North America, and Asia. In
so doing, we deliver a basis on which to substantiate academic discussions and
which can support firm decision-making on future technological developments and
economic implications that go beyond current speculations and siloed research.

To cover all perspectives on governance challenges, we developed six projec-
tions. Projections 1 (subscription models) and 2 (digital services) address potential
changes in value propositions. We explored whether new types of ownership models
and closer exchanges with users are likely and which resources will provide com-
petitive advantages in the future. Projections 3 (data sharing), 4 (central platform),
and 5 (data mediator) explore different implementation modes of governance – from
central to decentral – and the incentives required for firms to share data. Lastly,
Projection 6 (industrial GDPR) addresses relevant security and privacy concerns
within and across organizations (see Fig. 1).
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2 Projection 1: Subscription Models

The first projection in the governance dimension says that in 2030, subscription
models for production machines will be the new industry standard, fulfilling an
assured performance level based on real-time usage data in return for a periodic
payment. The results of the study show a high probability of occurrence of this
projection, with a mean probability of 57.79%. The low interquartile range (IQR),
with a value of 2.00, shows that a consensus could be found among the experts about
this probability of occurrence. At the same time, the experts rated the impact of this
projection on the industry and its companies as relatively high, with a mean value
of 3.32.

The high probability of occurrence and the high impact on companies can be
explained by changing needs on the part of manufacturers and customers, as well as
by overarching trends and technical developments in the machinery and plant
engineering sector. First, the intensity of competition in machinery and plant
engineering is increasing due to globalization (Schuh et al., 2017). Especially in
high-wage countries, differentiation based on cost-effective products is no longer
expedient for companies in this sector (Schuh et al., 2020). In this context, the
combination of products and services in so-called product-service systems (PSS)
appears to be a promising approach. PSS offer the possibility to differentiate oneself
from competitors, generate comparatively high margins, and increase customer
loyalty. At the same time, digitization and Industry 4.0 are finding their way into
the field of machinery and plant engineering, enabling the development of new,
innovative business models (Meier & Uhlmann, 2012).

In this context, a promising type of business model is subscription models (Schuh
et al., 2019). A subscription model is defined by the continuous delivery of a value
proposition in return for a recurring periodic fee (Gassmann et al., 2013; Rappa,
2004; McCarthy et al., 2017). In contrast to one-time, product-oriented transactions
in classic transactional business models, providers of subscription models can use
them to meet their customers’ needs continuously and to build long-term business
relationships (Tzuo, 2018). Subscription models with these characteristics have been
implemented in different industries going back several centuries.

In the early sixteenth century, European map publishers used subscription models
to give continuous updates on conquered empires (Rudolph et al., 2017). Since
1600, subscription models been used to provide access to newspapers and books
(Warrillow, 2015). In the B2B sector, the aircraft turbine manufacturer Rolls-Royce
established one of the first and best-known subscription models in the early 1960s.
Their “Power-by-the-Hour” business model focuses on the usage of their turbines
instead of their purchase as a product (Rolls Royce, 2012). Driven by continuous
digitization, subscription models have been established in the IT (e.g., Salesforce)
and multimedia (e.g., Netflix) sectors. Based on usage data from their subscription
model, Netflix gained a much better understanding of their customer’s needs and
transformed itself from a DVD distributor into one of the most successful producers
of television series and movies (Schuh et al., 2019). With Heidelberg Subscription,



the German printing machine manufacturer Heidelberger Druckmaschinen was one
of the first companies in the machinery and plant engineering sector to offer a
business model in which customers pay for a defined monthly print volume instead
of paying for the printing machine itself (Riesener et al., 2020).
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In the machinery and plant engineering sector, the potential of subscription
models is broad and can help secure Germany as a high-wage location in the long
term. There are numerous advantages for both customers and manufacturers. For
example, customers benefit from the manufacturers’ agreed use-oriented perfor-
mance promise. This ensures, for example, guaranteed machine availability and a
certain productivity of the machine. Detailed knowledge of the machines based on
usage data also enables manufacturers to deliver a certain value proposition.
Through the close connection between manufacturer and customer during the
usage phase, the potential improvements to the machine can be jointly identified,
and productivity continuously increased. In addition, customers can benefit from
greater financial flexibility due to lower investment costs. Machines can be pur-
chased for a purchase price and an additional fixed or usage-based fee (Schuh et al.,
2020).

There are also many advantages for manufacturers. First, it is scientifically proven
that customers show an increased willingness to pay due to the additional benefits
and the integrated solution to their problems (Tukker, 2004). Greater customer
satisfaction also leads to long-term business relationships and secures payment
flows in the long term, which can lead to significantly higher profitability compared
to traditional sales (Schuh et al., 2020).

The high impact on machinery and plant engineering companies identified in the
study can be explained by the actions these companies need to take to implement
subscription models. Riesener et al. (2020) suggest an iterative approach for this.
Accordingly, the implementation process starts with the strategic conception of the
subscription model. Subsequently, concrete insights about customers must be gained
and used to specify the subscription model. Based on this, a PSS is set up and usage
data are analyzed, and the scope of service and the remaining framework conditions
of the subscription model are adjusted if necessary (Riesener et al., 2020).

An example of a subscription business model for production machines is pro-
vided by the company DMG Mori AG, who are introducing a new digital business
model in the form of a subscription model with their PAYZR – Pay with Zero Risk –
product. Customers can subscribe to machines instead of purchasing them. Conse-
quently, there is no investment risk or down payments, but full financial flexibility,
cost and price transparency, and, as a result, a high level of planning security.
PAYZR is offered as Equipment-as-a-Service or as Software-as-a-Service. With
Equipment-as-a-Service, customers pay a basic monthly fee and a usage-based fee
per spindle hour. PAYZR can be easily accessed via several digital channels, such as
the website or the “my DMG Mori” customer portal (DMG Mori, 2021).
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3 Projection 2: Digital Services

Besides subscription models, additional opportunities are being seriously explored
by the industry, indicating that a transformation of business practices is imminent.
The expert survey revealed that competition for production machinery, e.g., machine
tools, and other hardware assets, e.g., tractors or equipment, will with a high
probability (M ¼ 65.00%) and a high firm impact (M ¼ 3.65) shift from differen-
tiation through hardware capabilities and functionality to differentiation through
digital services. Nevertheless, the expert evaluations in the survey show disagree-
ments between the experts’ assessments, especially surrounding the future impor-
tance of hardware and mechanical functionality associated with technical system
complexity in competition with the position of software as the basis for digital
services (IQR¼ 3.00). However, the experts agree that it will be important to remain
competitive in terms of hardware while aiming for a good mix of both physical and
digital goods (e.g., licensing, digital models, and intelligent properties). Even if a
trend toward expanding digital services in the context of comprehensive business
model innovation is discernible in some industrial sectors, the discussion on the use
of digital services among the experts was characterized by a bottom-up approach,
with a focus on technology and standards. The research and implementation of
systematic business model innovation processes in the context of Industry 4.0 will
drive this development.

Due to technological leaps and societal changes, a significant increase in digital
goods is currently becoming apparent. This trend started with massively multiplayer
online role-playing games (MMORPGs) and sports games, in which cosmetic or
temporary items of a digital nature can be purchased with real money. Nowadays,
sports game publishers make most of their revenue from digital goods that lose their
value within a single year (Brillowski et al., 2021). Evidence of this can also be
found in production, of which the most prominent example is additive manufactur-
ing, where the value of digital models exceeds the value of products and production
machinery (Chekurov et al., 2018; Korbel et al., 2019). In other production areas,
profits are currently being made from the licensing of software or maintenance
contracts.

Machine tool manufacturers have also recognized the potential of digital services:
K.K. Makino Furaisu Seisakujo offers its customers a holistic monitoring and
control tool, the so-called MHmax (Makino Health Maximizer), which continuously
monitors the condition of a machine tool using integrated sensors. Makino offers its
customers three connectivity levels. While level 1 is limited to individual machines,
level 2 allows cross-company analysis and access to all data within the company
network. Level 3 includes connection to the Makino cloud. This gives Makino
access to machine data and enables it to achieve improved analysis based on
extensive historical data. The state of the subsystems can be viewed continuously
via dashboards. In addition, warnings and malfunctions alerts, as well as essential
information for early, proactive intervention, are provided. The overarching analysis
of historical data combined with the manufacturer’s expertise enables significantly
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more accurate predictions which can be used as the basis for fast and predictive
intervention decisions (Brecher et al., 2021).
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The example of MHmax shows the current efforts in the machine tool industry to
offer digital services in the form of tailored proposals, depending on the customer’s
use of the individual hardware and on the network of production units. For example,
these proposals may allow the optimal and resource-efficient use of the tools, as well
as enabling productivity-increasing measures for individual processes through the
availability and evaluation of process data. These efforts highlight the disagreement
described among the individual experts about whether hardware capabilities and
functionality will transform fully into (digital) services. Breaking the projection
down into a combination of hardware functionality and software as the basis for
(digital) services, the experts in the survey see a combination of both being important
and revealing undiscovered potential in relation to improved ergonomics, efficiency,
and flexibility in the future. The importance of the topic is reflected in the firm impact
as well as in the probability of occurrence; the disagreement of some of the experts
comes from the hardness of the statement in its projection of a complete shift. Until
recently, it was not necessary to address production data-related issues to remain
competitive, but technological leaps and societal and technological changes mean an
emphasis on digital goods or services will be required to stay competitive in 2030. In
this area, legislative, software-, and hardware-related questions and research oppor-
tunities arise in regard to customs clearance of digital goods, licensing possibilities,
and open access. In addition to the endless possibilities, it will also be necessary to
address problems related to data leaks and cyber piracy in order to safeguard
knowledge and prevent production sites in high-wage countries from being jeopar-
dized. However, to establish digital services long term within a producing
company’s portfolio, novel business models that emphasize data acquisition and
sharing should be the focus of research that follows a systematic business model
innovation process in the context of Industry 4.0 (Burmeister et al., 2016).

4 Projection 3: Data Sharing

The survey indicates that it is highly likely that organizations that share usage and
production data with suppliers, customers, and other partners will obtain a compet-
itive advantage over organizations that do not share this data (M ¼ 62.58%). The
experts predict that the projection will have a high impact if it materializes
(M ¼ 3.55). Firms’ core knowledge will change decisively, and new features will
be available due to data sharing. The experts particularly highlight the benefits of
monitoring and improving supply chains and consider data sharing as a prerequisite
for innovative solutions such as predictive maintenance. Nevertheless, the experts
did not reach a consensus, as the value of data sharing was considered questionable
by some (IQR 3.00).

In an organizational context, data can be considered as a production resource, just
like human, machinery, capital, and other such resources (Barney, 1991; Levitin &



Redman, 1998). In recent decades, most data gathered by organizations did not leave
the internal system (Fitzgerald, 2013). Conservative firms might be afraid of sharing
data as their data are a valuable resource that other companies could potentially use
and gain benefits from. For managers and employees, increased data sharing requires
new capabilities to cope with data-based business models and new collaboration
modes with external organizations.
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Yet in recent years, interconnected businesses have become more and more
prevalent. As an example, platform-based business models with data sharing as a
core aspect of how they capture value already exist, especially in the online gaming
industry (Boudreau & Jeppesen, 2015) and social networks (Li & Agarwal, 2017).

For firms in the industrial sector, sharing data also holds potential for capturing
competitive advantages. Data sharing enables competitive supply chains, better
usage of machines, and the transformation to digital platform business models.
The competitiveness of supply chains no longer relies on how companies design
their contracts with regard to making data available for other players in multisided
markets. Rather, it relies on how companies agree to share data within already
existing business models (Huttunen et al., 2019).

Data sharing plays a key role in efficient supply chains because it matches supply
and demand to reduce costs by increasing resource utilization, thereby reducing
excess inventory and loss of profits from stockouts (Stefansson, 2002). Researchers
suggest that the application of information technologies sharing data has substan-
tially lowered the time and cost required to process an order, resulting in improve-
ments in supply chain performance (Clark & Hammond, 1997).

Data sharing can also enable better usage of machines: Condition Based Services
(CBS) by TRUMPF increases the availability and productivity of networked laser
systems. CBS evaluates important sensor data and detects risks and potential for
improvement. All data (more than 250 sensors per machine) are analyzed centrally
by algorithms and TRUMPF experts. This helps to avoid high production downtime
costs (typically several 1000 euro per hour). In addition to automatic, proactive
warning messages, the system also provides recommendations for optimized oper-
ation. Beyond this, the system provides full transparency by aggregating all data in
customer-specific dashboards.

The collaboration between DuPont and John Deere serves as an example of
exploiting new business models based on data collection and sharing. DuPont and
John Deere developed a new business model based on sharing their data. The goal of
the collaboration between these two firms is to support decision-making related to
planting, harvesting, and field management in order to maximize crop yields.
DuPont’s key activity is agricultural consulting and selling seeds. John Deere is
one of the leading manufacturers of agricultural machinery, with a value proposition
of farming equipment outfitted with sensors, GPS, and wireless transmission tech-
nology. Both firms have farmers as their main customers. John Deere’s farming
equipment gathers data on crop yields, moisture, and location and is sent to DuPont,
who use this data in their farming software that supports decision-making. DuPont
actively integrates John Deere’s Data into its value proposition. Products from both
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companies gain value by sharing data, and better services can be provided to
customers, creating a competitive advantage (Deloitte, 2014).
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5 Projection 4: Central Platform

The survey indicates high uncertainty as to whether one central platform provider
will serve as the operating system for Next Generation Manufacturing, connecting
machines, complementary assets, data, and service providers from different organi-
zations (IQR ¼ 4.00). The experts deemed this projection rather unlikely due to the
heterogeneity of both competition and machines and existing legacy technology
(M ¼ 30.15%). At the same time, the survey showed a medium to high impact if the
projection materializes, indicating its potentially transformative character
(M 3.09).

Platforms already dominate consumer markets, as illustrated by firms like
Alibaba, Uber, and Google, who have shifted from selling products and services
toward facilitating economic exchanges between two or more (related) user groups,
realizing network effects (Zhao et al., 2020). In these platform markets, a focal
organization usually orchestrates all actors through a central platform, and over time,
winner-takes-all (WTA) scenarios evolve when the market shifts toward a dominant
platform due to strong network effects (Eisenmann et al., 2006; Cennamo & Santalo,
2013; Jacobides et al., 2018). The provider of the central platform usually captures
the most significant share of the value (Zhu & Iansiti, 2019).

Platforms have only recently started to evolve in industrial (BtoB) markets (e.g.,
Porter & Heppelmann, 2015; Kopalle et al., 2020). Like in consumer markets, many
manufacturing firms are trying to build their own platforms to connect machinery
providers with service providers, thus enabling complementary innovation based on
data and allowing them to capture unprecedented amounts of value (Kopalle et al.,
2020). Prominent examples include Siemens’ MindSphere, General Electric’s
Predix, and TRUMPF’s AXOOM. In contrast to consumer markets, WTA dynamics
do not necessarily lead to one central platform provider. Instead, multiple platforms
can co-exist (Piller et al., 2021).

For society, a central platform provider would pose challenges concerning anti-
trust regulations and monopolistic market structures, since network effects based on
data could change the market dynamics (Gregory et al., 2021). Other projections (P3,
P5, P6, P19) propound viable solutions. For firms, building a platform on their own
is risky (e.g., Yoffie et al., 2019). Following an alliance-driven approach, where the
platform (or multiple platforms) is operated under shared leadership, could provide
an effective alternative. Initiatives such as the Industrial Data Space (IDS; Otto &
Jarke, 2019) and GAIA-X (Braud et al., 2021) suggest potential blueprints for
alternative decentralized structures.
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6 Projection 5: Data Mediator

The survey shows that there is dissent among respondents on whether data sharing
between all actors of a production network will be managed individually or by an
external entity (i.e., neutral mediator) (IQR ¼ 4.10). It is estimated that there is a
medium likelihood (M¼ 52.34%) that data exchange will be mediated by a platform
orchestrator or dedicated third-party services and that if this happens, it will have a
medium impact (M 3.09).

In order to submit data analytic queries across organizational boundaries, a
technical mapping between the export view (the perspective the data provider is
willing to reveal) and the import perspective must be defined. The latter allows the
data consumer to embed the query results within its own data infrastructure to
process them. Furthermore, such export views need to respect privacy regulations
concerning personal data. Traditionally, such mappings are defined as programmed
workflows. However, more recently, also logic-based semi-automatic mappings
have been proposed. On the export side, popular means of protecting the data
provider’s confidential knowledge are aggregation, encryption, and fuzzification
(Schuh et al., 2022).

In the information systems literature, architectures for data mediation have been
proposed as an infrastructure for integrating data from different sources into a central
schema since the late 1980s (Jarke et al., 1987), e.g., for data warehouses (Jarke
et al., 2002) or multi-party negotiations (Jarke et al., 1987). In Wiederhold’s (1992)
wrapper-mediator architecture, wrappers are responsible for defining and executing
the transformation from source data models to the central model. In contrast,
mediators resolve conflicts among contradictory data such as missing information,
different times of data capture, and other data quality issues. Especially in the
mediation of production data, data provenance is considered particularly relevant
(Gleim et al., 2020; Becker et al., 2021).

Considering the important aspect of physical data transport, commercial data
warehouses nowadays follow a three-stage ETL (Extract-Transform-Load) architec-
ture. For data exchange, this process must be performed twice, once on the provider
side and then in reverse order on the consumer side of a data process. This is
mediated by a metadata management tool called a broker. On a much larger scale,
commercial brokering platforms like SAP Convergent Mediation collect and analyze
highly heterogeneous usage data from many different sources and act as a mediator,
distributing the data for usage to diverse organizations. Similar offerings exist from
vendors such as IBM Data Integration or AWS Data Exchange. The business
advantage of such mediation platforms is that the number of linkages that need to
be programmed grows only linearly with the number of sources, rather than qua-
dratically, as was the case when mappings between all pairs of sources were
necessary.

Recent research on ontology-based data exchange (Lenzerini, 2019) demon-
strates that direct peer-to-peer data exchange without such central platforms can
also be a feasible option. It could, in fact, be more efficient than the double work of



first transforming source data to a central schema and then transforming that
transformed data back to the target schemas on the consumer side. In peer-to-peer
data exchange, mappings relate the semantic meaning of data source models and
consumer data models to a shared formal knowledge graph, which is the only data
known to the broker. When a specific query is made on the consumer side, the
method first composes a forward rewriting from the knowledge graph model to the
consumer model, along with a reverse rewriting from the knowledge graph model to
the source. This rewriting can be automatically simplified to a direct mapping from
the source to the consumer model and, finally, is automatically transformed into
optimized database code that directly transports the data from the source to the
consumer, without any central platform seeing the data. A few start-ups are just
beginning to offer commercial usage of such advanced methods on the market.
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7 Projection 6: Industrial GDPR

Many legal and regulatory uncertainties exist regarding data protection in industrial
environments. The study indicates disagreement among experts about whether new
industry-oriented data protection regulations, similar to the European Union’s
GDPR, which regulates data protection and privacy within the EU, will emerge.
Business-to-business data exchange would be governed at an organization level.
However, the probability of such a law is estimated at around 60%.

Driven by concerns about the growing influence of dominant Internet players, the
issue of data sovereignty has captured much attention in recent European debates.
Data sovereignty is defined as the ability to freely decide about the usage of your
own data. For individual persons, it is regulated by the General Data Protection
Regulation (GDPR) adopted in 2018 by the European Union and also taken up in
many other parts of the world. Aspects of the GDPR are already applicable in
production today. For example, connected smart devices on the shop floor may
collect personal data if a link to an employee can be established, for instance,
through idle times correlating with breaks. Data exchange by increasingly individ-
ualized goods can become similarly critical regarding privacy aspects.

Data sovereignty is also an important issue for engineering and production
organizations who need to protect the competitive advantage contained in and the
knowledge derived from their data. Controlled data sharing and value appropriation
thus becomes an essential complement to the value creation from IIoT data integra-
tion and analytics. It becomes even more complex in light of networks of production
sites. Europe’s Digital Single Market Strategy encourages the instantiation of a data-
sharing economy, yet the legal schemes are still unclear (Wiebe, 2017).

There are various challenges for regulations concerning data sovereignty in
industrial settings. The allocation problem addresses the question of data ownership.
For instance, in a connected car equipped with hundreds of sensors, does the data
belong to the manufacturer or the owner, and who gets the right to exploit the data
economically? The example of the GDPR makes many end users aware of how



valuable their data is to Internet corporations that offer free services and sell data for
advertising purposes in the background. The specification problem has is based on
the fact that data are inherently abstract and are not, for example, subject to the laws
on physical property. Data represents a state of information during creation,
processing, and storage.
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Fig. 2 Rules and interactions in a data space according to the IDS reference architecture 3.0
(Source: Otto et al., 2019)

The German Fraunhofer Society initiated the so-called Industrial Data Space
initiative in 2014 to analyze corporate data sovereignty needs and to develop a
reference architecture for alliance-driven platforms for data ecosystems (Otto &
Jarke, 2019). From this early work, the International Data Spaces Association
emerged to standardize the principles of self-protected, cross-organizational data
spaces that enable trusted smart services, data-based business models, and cross-
company data exchange while securing data sovereignty for all participants. In
addition to the task of data mediation mentioned in Projection 5, data sovereignty
requires agreement on and support for monitoring or enforcement tools concerning
not just the data access rights but also permitted or prohibited data usage.

To achieve this goal, existing standards, technologies, and governance models are
combined. The International Data Space Reference Architecture Model (IDS-RAM,
Otto et al., 2019) specifies how the different technologies and stakeholders should
work together and provides a structure for using IIoT data and cross-company IIoT
technologies. The IDS-RAM categorizes participating actors into the roles of Core
Participants, Intermediary, Software/Service Provider, and Governance Body, as
shown in Fig. 2. The data provider, who can also be the data owner, provides data
to the data consumer via a service provider. The data consumer provides these data to
the data user under well-defined and ideally automatically monitored, or even
enforced, usage controls. Clearing houses record all transactions. Broker service
providers store and manage metadata about the data sources available in the IDS.
The same person or company can take on different roles within the IDS.

An identity provider issues identities to entities in the IDS to ensure secure
operation and to prevent unauthorized access to data. Two central technical



components are part of the architecture. First, the IDS connector protects the inflow
and outflow of data to/from a partner. Second, usage constraints (or policies) govern
data exchange policies within the data space (Schuh et al., 2022). Fair usage and
value capture are therefore central aspects of a data space with controlled data
sharing that can be used to create new business models which use IIoT data as part
of a service or as a product.
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Building on earlier research on regional mobility brokers, the German Mobility
Data Space (Otto & Burmann, 2021) is one of the largest examples of the application
of the IDS architecture. It brings together all large vendors of personal mobility
offerings (train systems, rental cars/bikes/scooters, regional transport networks,
public weather data, etc.) to share data for so far dozens of innovative and cross-
vendor mobility offerings, e.g., personalized weather-dependent travel recommen-
dations, together with combination ticketing and real-time travel updates across
different vendors and regions. The even larger Catena-X group of companies is
preparing a similar value-added data space for the automotive engineering field
(Catena-X, 2021).

The GDPR has created several implications for all organizations dealing with
personal data, but also for users interacting with these companies, or even with
websites. As a result, users are now forced to engage more closely with their rights.
Following the European example, California, for example, has introduced a new
privacy law. Similarly, an industrial GDPR would impact processes and systems for
both data producers and data consumers. Therefore, data protection in industrial
environments needs to be embedded in all levels of enterprise architectures, from
technical service-level agreements to cross-organizational aspects of business
models.

8 Summary

This chapter aimed to develop an understanding of the challenges expected when
dealing with Next Generation Manufacturing, addressing this from a governance
perspective, namely, by looking at subscription models, digital services, data shar-
ing, central platforms, data mediators, and industrial GDPR.

Optimizing processes and products by collecting usage data can be discussed in
the context of subscription models. The likelihood that subscription models will be
the new industry standard for production machinery in 2030 was considered rela-
tively high by the experts. This estimation can be justified by these model’s
characteristics and the resulting benefits for providers and customers. Subscription
models are characterized by the provider retaining ownership of the production
machine and instead selling the machine’s performance for a regular payment. By
recording usage data, the provider can, for example, offer supplementary services to
increase the machine’s output. Further research could be needed to enable compa-
nies aiming to introduce a subscription model to identify in a structured way which
data from product usage can be used to analyze and, above all, optimize usage. The



customer gets full flexibility, along with low initial investment costs. Simulta-
neously, the experts agreed that the occurrence of the projection would cause a
high impact on companies. This can be explained by the extensive structural and
organizational adjustments required to offer a subscription model. Therefore, man-
agers in the industry are advised to seek an exchange of experience with other
companies that are already successfully offering such a business model when
launching the introduction of a subscription model. Regarding the financing of
such a business model changeover, a subscription model should initially be intro-
duced for only a few products.
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Furthermore, sharing industrial data with other firms will become more important
in the near future, as experts consider an increase in the sharing of usage and
production data to be highly likely. Organizations that share data with different
players are highly likely to obtain competitive advantages over organizations that do
not. Experts assessed the impact of data sharing on the competitiveness of firms as
high, referring to the shift in knowledge accessibility, resulting in new opportunities
and enabling advances in production as well as in supply chains. In addition, data
sharing requires new notions of trust and security to be formed and implemented. If
these are in place, new business models that enable and govern data exchange on
platforms can emerge. A regulatory framework, technical requirements, and the
appropriate usage of shared data are prerequisites discussed by individual experts,
indicating the complexity of data sharing in firms. Further research is needed to
investigate how to overcome these challenges in order to capture value in the context
of business models in Next Generation Manufacturing. In particular, future research
should consider exploring the circumstances under which firms are willing to share
industrial data in an environment of interconnected businesses, with the background
of a shift to a more sustainable value chain.

Addressing the expected future of a networked production landscape, efforts are
being made worldwide to provide customized offers as digital services, depending
on how the customer uses the individual hardware or even the network of production
units. There was disagreement among the individual experts of the survey on
whether the capabilities and functionality of hardware will shift completely to
(digital) services or whether we will instead see (digital) services via intelligent
analysis software in combination with or as an extension of the hardware’s func-
tionality in order to achieve the desired economic and ecological goals in terms of
the worldwide sustainability trend.

Considering the potential shift toward competition in digital services and their
importance in the near future, legislative, software-, and hardware-related questions
and research opportunities arise regarding the customs clearance of digital goods,
licensing possibilities, and open access. As subscription models, digital services, and
data sharing gain importance, the question is how and by whom these collaboration
modes are governed and orchestrated. Problems related to data leaks and cyber
privacy should be addressed to safeguard know-how and prevent production sites
in high-wage countries from being jeopardized.

Unlocking and utilizing data in cross-company settings offers many new oppor-
tunities for companies in Next Generation Manufacturing settings. To implement the



exchange of abstract data products, however, framework conditions like interfaces
and usage policies need to be defined. The survey shows disagreement among the
respondents as to whether these will be applied individually or enforced externally
by a data mediator. Existing approaches like the IDS clearinghouse would support
data policies such as usage controls.
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Consumer markets suggest that mono- and oligopolistic market structures where
central platforms orchestrate the relationships may be the future. However, in
industrial settings, no major platform has been able to establish itself as the dominant
leader. Alliance-driven approaches under shared leadership seem more likely. Ongo-
ing initiatives, such as IDS and GAIA-X, provide potential solutions. This study can
also be considered an interesting contribution to the European GAIA-X debate
(https://www.gaia-x.eu). GAIA-X wants to address challenges regarding data sov-
ereignty at three levels: the lack of high performance and secure network, storage,
and computing infrastructure ecosystems (“hyperscaler”) in Europe; the need for
federation services to enable sovereign and privacy-preserving data sharing and
mediation; and the promotion of cross-organizational value creation and appropria-
tion through a data ecosystem of data-centric services and new business models. This
study contributes valuable expert insights on many of these strategic questions,
focusing on the interplay between the data and the business levels.

Driven by concerns about the growing influence of dominant Internet players, the
GDPR was adopted in 2018 by the European Union to regulate data protection for
individual persons. However, many legal and regulatory uncertainties exist for
industrial data sharing scenarios. The survey indicates disagreement among the
experts on whether new industry-oriented data protection regulations similar to the
GDPR will emerge. The International Data Spaces initiative offers a reference
architecture that enables such regulations to be embedded within enterprise archi-
tectures. Managers face the risks of building a platform (e.g., Yoffie et al., 2019), but
following an alliance-driven approach where the platform (or multiple platforms) is
operated under shared leadership could provide an effective alternative. Finally, the
protection of shared personal data in organizations needs to follow the GDPR,
impacting internal processes and systems for both data producers and customers.
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Abstract Next Generation Manufacturing promises significant improvements in
performance, productivity, and value creation. In addition to the desired and
projected improvements regarding the planning, production, and usage cycles of
products, this digital transformation will have a huge impact on work, workers, and
workplace design. Given the high uncertainty in the likelihood of occurrence and the
technical, economic, and societal impacts of these changes, we conducted a tech-
nology foresight study, in the form of a real-time Delphi analysis, to derive reliable
future scenarios featuring the next generation of manufacturing systems. This
chapter presents the organization dimension and describes each projection in detail,
offering current case study examples and discussing related research, as well as
implications for policy makers and firms. Specifically, we highlight seven areas in
which the digital transformation of production will change how we work, how we
organize the work within a company, how we evaluate these changes, and how
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employment and labor rights will be affected across company boundaries. The experts
are unsure whether the use of collaborative robots in factories will replace traditional
robots by 2030. They believe that the use of hybrid intelligence will supplement
human decision-making processes in production environments. Furthermore, they
predict that artificial intelligence will lead to changes in management processes,
leadership, and the elimination of hierarchies. However, to ensure that social and
normative aspects are incorporated into the AI algorithms, restricting measurement of
individual performance will be necessary. Additionally, AI-based decision support can
significantly contribute toward new, socially accepted modes of leadership. Finally,
the experts believe that there will be a reduction in the workforce by the year 2030.

[Abstract generated by machine intelligence with GPT-3. No human intelligence
applied.]

76 P. Brauner et al.

1 Introduction

The (first) Industrial Revolution had an enormous impact on the world of work and
society: instead of being carried out in the workers’ homes or in craft shops,
production was increasingly shifted to factories. This made manufacturing cheaper
and more productive, but it also had an enormous impact on society and led to social
grievances (Engels, 1971). The upcoming digital transformation of production
termed Industry 4.0 or the Industrial Internet of Things promises significant
improvements in performance, productivity, and value creation (Kagermann,
2015; Liao et al., 2017; Brauner et al., 2022). However, in addition to the desired
and projected improvements regarding the planning, production, and usage cycles of
products, this digital transformation will have a huge impact on work, workers, and
workplace design (Acemoglu & Restrepo, 2017; Brynjolfsson & Mitchell, 2017). In
this chapter, we will therefore highlight seven areas in which the digital transforma-
tion of production will change how we work, how we organize the work within a
company, how we evaluate these changes, and how employment and labor rights
will be affected across company boundaries. Thus, we here consider what implica-
tions Next Generation Manufacturing will have for work, the workforce, and society.

In detail, the proposed concepts will include changes in work organization and
work structures inside and outside companies. Improved sensors and actuators and
faster, smarter control systems mean that automation and robots will take on more
tasks and work more closely with humans. New forms of human-robot collaboration
will also emerge (Villani et al., 2018; Borenstein, 2011). At the same time, produc-
tion data within companies and along supply chains will be recorded more accu-
rately. Improved data models can then be analyzed by advanced AI methods and
used either for full automation or to support human decision-makers. Therefore, a
new form of hybrid intelligence—the combination of artificial and human intelli-
gence—will support the production of, decision-making around, and creation of new
products. Also, models and digital shadows can be generated of not only production
itself but also the employees in the sociotechnical system. While this can be used for
better coordination between workers and the production system, it can also be used



for personnel management or employee control. It is therefore to be expected that
this digital transformation will also affect the workforce, employee rights, and
employment (Autor, 2015; Lepore, 2019).
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Using a novel real-time Delphi approach (see chapter “Applying the Real-Time
Delphi Method to Next Generation Manufacturing” for a presentation of the method
and the sample, as well as chapter “Big Picture of Next Generation Manufacturing”
for an overview of the results), we developed propositions for different scenarios
within Next Generation Manufacturing in 2030. As suggested by Gawer (2014), we
used an integrative framework for platforms, distinguishing four dimensions: gov-
ernance (e.g., open forms of collaboration; see chapter “Governance Structures in
Next Generation Manufacturing”), organization (e.g., boundaries and decision-
making; see this chapter), capabilities (e.g., hybrid intelligence; see chapter “Capa-
bility Configuration in Next Generation Manufacturing”), and interfaces (e.g., open
APIs and human-machine interfaces; see chapter “Interface Design in Next Gener-
ation Manufacturing”). In addition, and influenced by our shared experiences during
the COVID-19 pandemic, we added a fifth cluster of propositions addressing the
need for resilience in future digital manufacturing (see chapter “Resilience Drivers in
Next Generation Manufacturing”). We provide a set of 24 validated projections
based on 1.930 quantitative estimations and 629 qualitative arguments from
35 industrial and academic experts from Europe, North America, and Asia. In this
way, we provide a foundation upon which academic discussion can be grounded and
which can support decision making regarding future technological developments
and economic impacts that go beyond current speculation and isolated research.

In this chapter, we analyze whether production will profit from the increased
autonomy of robots (P7). We further explore whether collaborations between human
and artificial intelligence in “hybrid intelligence” can be expected to be meaningful
in producing companies (P8) and whether AI-based assistants will reshape decision-
making (P9). We also address the question of whether the digital transformation will
change work culture and leadership (P10) and what opportunities and challenges
will emerge if digital shadows of employees are created (P11). Finally, we look at
how the changes triggered by Next Generation Manufacturing will affect workers’
rights (P12) and what effects this will have on the labor market (P13) (see Fig. 1).

2 Projection 7: Autonomous Robots

It is impossible to imagine the large-scale production of the last 50 years without
robots, which have traditionally been used for the full automation of processes.
Prominent robotic applications of this period include, for example, spot welding,
spray painting, assembly, machining, and electronic testing. The tasks included in
these applications can be performed very well by robots due to their positive



78 P. Brauner et al.

F
ig
.1

E
xp

er
ta
ss
es
sm

en
to

f
or
ga
ni
za
tio

n
ro
ut
in
es

in
N
ex
tG

en
er
at
io
n
M
an
uf
ac
tu
ri
ng

(s
ee

ch
ap
te
r
“
B
ig

P
ic
tu
re
of

N
ex
tG

en
er
at
io
n
M
an
uf
ac
tu
ri
ng

”
fo
r
th
e
fu
ll

re
su
lts

of
th
e
D
el
ph

is
ur
ve
y)



characteristics regarding reliability, durability, accuracy, and precision (Grau et al.,
2017).
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However, traditional robots are not suitable for fulfilling every task. For example,
they still fail during unstructured tasks, when reacting to uncertainties or frequent
changes, or when their tasks require cognitive or motoric flexibility. In recent years,
production companies have replaced traditional industrial robots with so-called
collaborative robots (or cobots for short) that are equipped with additional sensor
and software systems to enable human-robot or robot-robot collaboration (Villani
et al., 2018). Due to their ability to perceive people and obstacles, costly and
impedimentary elaborate safety measures such as protective fences and light barriers
can be removed. In addition, due to simple teaching methods, usage of cobots
enables higher flexibility and partial automation of work processes. Other examples
include automated guided vehicles (AGVs) that can move autonomously through
shop floors and can thus further increase the flexibility and autonomy of robots
(Castro et al., 2021).

In the survey, the experts reported a low average probability that collaborative
robots which move autonomously through the shop floor will have replaced most
conventional robots in protective cells by 2030 (M ¼ 40.81%, SD ¼ 25.72%). The
experts consider 2030 to be too early for such a full transformation on the shop floor
because of the existing technical and safety regulations. In particular, high invest-
ment costs are seen as a major hurdle, so it is expected that a considerable number of
cheap and efficient robots that do not need to interact with humans or move freely
will remain. For high-volume production of many product groups, where high speed
in fixed setups is needed, traditional robots still have advantages regarding lower
cycle times, lower cost, and higher process capability. However, the experts men-
tioned that significant progress has been made in special applications where human-
robot collaboration and autonomously moving robots are feasible and economically
viable. There was low agreement between the experts on our panel on this topic
(IQR ¼ 3.5). As some experts believe this projection to be more likely, it should be
investigated whether these differences are due to different application domains or
industry sectors.

If this projection comes true, the experts estimate that it will have a moderate
average firm impact of M ¼ 3.06. Some experts assume there will be significant
improvements in flexibility in certain use cases so that a fast reaction to changes in
demand, changing technologies, and new products is possible. According to the
experts, this will also lead to a significant impact on the attainable productivity and
return on investment (ROI). Other experts see a high level of collaborative robots
being realized on shop floors already today, leading to a lower impact similar to
ordinary efficiency improvements.

In conclusion, to transform conventional robotic production scenarios into robots
moving freely on the shop floor, interacting with workers, and autonomously making
decisions, technologies and AI methods must be (further) developed and costs
reduced. A successful conversion can only proceed if human factors such as trust,
acceptance, and ergonomics are embraced (Brauner et al., 2022), while representa-
tives such as trade unions and work councils must be involved at an early stage. In



addition, both safety and security aspects must be considered. It is essential to ensure
that human workers are safe and that data leaks and hacks are prevented. Further-
more, ethical and legal restrictions must also be considered, for example, regarding
responsibility, warranty, and liability.
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To advance the use of autonomous robots in production, specific applications
must be identified. Among these are, for example, more complex tasks in logistics
for material transport between different workstations by AGVs (Gualtieri et al.,
2021). Other applications for collaborative robots can primarily be found in areas
detrimental to humans, e.g., within the handling of chemicals (automotive paint
shop, Ford) and ergonomically unfavorable positions (insertion of rivets inside
aircraft fuselage, Airbus) or in repetitive assembly (filigree micro parts, Albrecht
Jung). In addition, it has recently been shown that collaborative robots and human-
robot collaboration can be used to respond flexibly to needs during the COVID-19
pandemic (see also (P24) in chapter “Resilience Drivers in Next Generation
Manufacturing”), e.g., the ramping up of propeller production while maintaining
social distancing (Malik et al., 2021).

3 Projection 8: Hybrid Intelligence

Monitoring new forms of data in production, as well as significant advances in
process mining methods, leads to productive applications of AI in so-called hybrid
intelligence, i.e., supplementing human decision-making processes with an AI
system. Hybrid intelligence can be applied at all levels, from production on the
shop floor to strategic management decision-making.

A potential use case of hybrid intelligence is given by the vision of control of
global production streaming from the IoP. This approach aims to improve decision
quality and speed in dynamic production environments based on the targeted
collection of machine and sensor data. The corresponding data evaluations are
intended to be hybrid decisions made using AI and expert knowledge. Such a hybrid
intelligence approach is promising for strategic, tactical, and operational levels. By
feeding the information back into the data sources, e.g., the IT systems that control
the machines, optimizations could be realized in real time throughout an entire
production network (WGP, 2019; Schuh et al., 2019).

The experts predict that hybrid decision-making in the form of human-AI col-
laboration will have a strong impact on the management profession in the future and
is very likely to occur. They predict hybrid intelligence will occur with an average
expected likelihood of 65.13% (SD ¼ 23.66%) and will have a high impact on the
industry (M ¼ 3.71). There was little deviation across experts from industry and
academia.

However, the experts interviewed in this Delphi study did not indicate a clear
position on the projection that says that in 2030, strategic production decisions will
be executed through close interaction between humans and AI-based algorithms.
Some of the experts assume that human decisions will be supplemented by AI in the



future, of whom some remark that this inclusion of AI is already happening today,
e.g., in finance. Others hold that this trend will take more time and that human
decisions in everyday work will always be influenced by their own affective feelings
rather than by AI.

Organization Routines in Next Generation Manufacturing 81

In order to use hybrid intelligence sensibly in the production of the future, further
understanding of the conditions is required for its implementation. Hybrid intelli-
gence is a form of human-machine interaction, raising questions about the reliability
and fairness of such systems and, consequently, about the attribution of responsibil-
ity in the context of shared tasks.

First, working in cooperation with an accurate and precise AI system potentially
induces the phenomenon of social loafing as workers adapt to human-machine
collaborations, i.e., human experts may show a tendency to go to less effort when
working together with an algorithm than when working alone (Parasuraman &
Manzey, 2010; Brauner et al., 2019). Instead of forming decisions supplemented
by the input of an AI system, the human expert may tend to rely on the decision of
the system. Thus, overreliance could lead to the human expert not sufficiently
engaging in the decision-making, ultimately leading to complex questions of respon-
sibility attribution (Zerilli et al., 2019; Liehner et al., 2021). If the human expert does
not function at least as a co-decision-maker, effectively, the machine is taking
autonomous decisions. However, we generally do not hold machines responsible,
and the lack of suitable agents for responsibility attribution gives rise to further moral
issues, such as on autonomy and contestability.

Second, the past has shown that AI systems are not self-evidently fair, but that
biased training data may reinforce societal biases and algorithmic design may create
discriminatory outcomes. Yet high-level decision-making in an industrial context
involves decisions of importance to, e.g., workforces in the industry. Therefore, a
differentiated discussion on the fairness of AI systems is crucial to prevent the
emergence of avoidable distributive injustices (Binns, 2018).

On the upside, hybrid intelligence offers significant opportunities for improving
high-level decision-making. From applications of decision support systems in med-
icine, there is evidence that working with the support of an automated system may,
first, free up cognitive load, which is necessary for more complex cognitive tasks
such as those requiring abstract thinking, and, second, improve decision-making
processes as a direct result of technological integration (Patel et al., 2002).

4 Projection 9: AI-Based Assistants

Making a thorough decision is a time-consuming process that requires a lot of
different information. The required information must be gathered and integrated
from various sources and must then be evaluated according to various criteria. Based
on this evaluation, a decision-maker can conclusively make a well-founded decision.

In decision theory, models often assume an ideal rational being and decision
process. Yet decision-making is often based on experience, implicit knowledge, and



emotions (Lerner et al., 2015), and people are easily distracted by complacency or
bad user interfaces (Brauner et al., 2019). In the past, automated model-based
approaches have therefore been developed to objectify decision-making and avoid
an intuitive procedure. Especially when an excessive amount of information must be
considered, algorithms (e.g., for scheduling) are preferably utilized. However, in the
context of safety-critical decisions, algorithms are only used as a decision support
due to legal and ethical implications. The decision authority in these cases remains
with the human. In contrast, supporting processes already rely heavily on different
types of AI (e.g., decision trees or neuronal networks), and the decision authority is
shifted toward algorithms. Nevertheless, unwanted decisions can still occur and lead
to severe consequence, like Dow Jones’ “Flash Crash” in 2010 which caused a
market value loss of one trillion dollars within a few minutes (Subrahmanyam,
2013). Furthermore, algorithms tend to be discriminating when trained with a biased
dataset, e.g., in job application processes or for chatbots (Hacker, 2018; Neff &
Nagy, 2016). Considering the opportunities and dangers of automated decision-
making, demand for third-party auditing of algorithms is rising (Wachter et al.,
2017).
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Most of the experts share these sentiments and raised concerns regarding safety-
critical and discriminating decisions and thus still expect people to be the central
decision-making figures in the future, contributing with their experience and knowl-
edge. According to the experts, humans will still possess the decision authority and
will only be supported by AI systems. Due to this AI support, humans will be able to
make quicker decisions, especially given the ever-increasing decision complexity
and data availability.

Overall, experts from our panel anticipate a rather high impact (M ¼ 3.48) if the
projection becomes a reality but are divided about how probable this is
(M ¼ 49.68%, SD ¼ 22.61%). There was a medium level of disagreement
(IQR ¼ 3.50) among the experts when confronted with the projection that in 2030
operative production decisions will no longer lie with people as they will be made by
AI-based decision-making agents. However, all the experts acknowledged that AI
assistance offers great opportunities for cost and time savings, potentially resulting
in a disruptive change in decision-making processes.

Suitable use cases of AI assistance are manifold across various industries and
domains. In the context of the IoP, production environments like machining
manufacturing or process planning of high-performance fiber-reinforced composites
(Brillowski et al., 2020; Schemmer et al., 2020; Brillowski et al., 2021) are the
subjects of research. In both cases, a decision-supporting tool (“smart expert”) is
trained with available and task-specific data (digital shadow). To achieve the best
possible usability, the tools must be designed to foster trust, comprehensibility, and
availability of crucial information. An AI-based decision tool consists of autono-
mous decision-making algorithms which either possess the final authority over a
decision (machining production) or have an advisory function (planning), only
providing suggestions so that the decision authority remains with the human.
Overall, applying AI assistants can improve efficiency within production environ-
ments significantly and contribute toward broader acceptance of autonomous agents.
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While novel access to data and data processing technologies enables more
efficient decision processes, there is an inherent risk of automation bias. Humans
rely heavily on automatically generated suggestions and simultaneously neglect to
scrutinize them critically (Cummings, 2017; Skitka et al., 1999; Brauner et al.,
2019). Furthermore, there are ethical and legal implications regarding the AI’s
reliability and ultimately also its accountability, especially in the case of a fatal
decision. A need for a user-centered and participatory design thus arises to achieve
explainability and comprehensibility of “black-box” AI models. Only by incorpo-
rating the user appropriately is joint decision-making by AI assistants and humans
possible. In such a scenario, only outliers and crucial, safety-critical decisions will be
made by humans, leaving support process to an autonomous decision agent. Within
the Delphi study conducted, the experts agreed that this is the most probable AI
assistance scenario within the medium-term future.

5 Projection 10: New Leadership

Artificial intelligence, machine learning, and data infrastructure are changing the
way decisions are made by people and organizations. The term “algorithmic man-
agement” describes partially or fully automated decision-making processes that were
previously carried out by human managers (Jarrahi et al., 2021). For example, AI is
already used in recruiting processes, with the aim of making application processes
more transparent and allowing firms to carry out selection procedures in a more
non-discriminatory way (Tambe et al., 2019; Ochmann & Laumer, 2020). Further-
more, algorithmic management is used in crowdworking (Neuburger & Fiedler,
2020; Rani & Furrer, 2021) or platform work (e.g., Uber, Lyft, Deliveroo) (Duggan
et al., 2020), but also for work scheduling (Parker & Grote, 2020). However, besides
the hoped-for benefits of artificial intelligence in management processes, studies
already point to negative effects of automated algorithms. Examples of this are a
higher pressure on workers to perform, less control and influence over individual
work tasks, lower perceived autonomy, lower morale, and decreased job satisfaction
(Kellogg et al., 2020; Parker & Grote, 2020).

In addition to the effects mentioned above, initial studies are also already
indicating discriminatory effects of artificial intelligence, particularly in human
resource issues. The cause of this is often found in the databases used for artificial
intelligence training processes, which are created by humans and already exhibit a
bias (Tambe et al., 2019; Todolí-Signes, 2019). Nevertheless, AI promises the
potential to support data-intense decisions and pave the way for novel leadership.
However, the negative effects of purely AI-based management processes demon-
strated in several recent studies (e.g., Tambe et al., 2019; Ochmann & Laumer, 2020)
suggest a need for human interaction in leadership. Additionally, they indicate that if
AI systems are implemented within leadership processes, these AI-based manage-
ment systems must incorporate social and normative aspects via their technological
structure and, also, via socially sensitive creation processes during the development



and testing of the given technology. Thus, in the future, people will and must
continue to be a component of management processes, at least in the sense of
affecting the AI technologies used in a way that helps to counteract or even to
overcome their negative aspects.

84 P. Brauner et al.

Consequently, the projection “new leadership” raises the question of whether
increasing implementation of artificial intelligence will also lead to changes in
management processes, leadership, and the elimination of hierarchies. The expert
panel gave a low probability of 34.19% (SD¼ 20.25%) and a medium firm impact of
M ¼ 3.10 for this projection. This low likelihood results either from an adherence to
established structures and systems or from an adherence to power structures which
might result from a target group bias. However, the experts’ assessment was not
unanimous (IQR ¼ 3.00), and some experts reported a higher probability for the
emergence of new leadership through AI-based decision systems than others.

But interaction with artificial intelligence does result in the need to rethink
leadership and to develop new forms of leadership styles. By employing AI in
leadership decisions, managers can focus on interhuman factors, while the AI
supports mainly data-driven reasoning. However, as introduced above, there are
many barriers that currently impede a thorough usage of AI, starting with the overall
acceptance of AI reasoning. Furthermore, responsibilities for AI-based decisions
must be clearly assigned, and social interactions between humans must be captured
in AI algorithms. To guarantee that these social interactions are represented in AI
algorithms, several strategies within the wider developmental process of such
software can be introduced. As an example, the Institut Montaigne (2020) recom-
mends (a) the deployment of good practices that help to prevent the spread of
algorithmic biases, e.g., guaranteeing diversity within development teams or creat-
ing internal charters that support the developmental processes, (b) special training
for technicians and engineers that strengthens their understanding and awareness of
algorithmic biases, (c) the introduction of stronger and more sensitive testing
practices for algorithms (even including public or “real” settings in which the AI
software is to be used), (d) the introduction of a fairness approach that guides the
developmental processes and the persons involved in it, and, along with that, (e) the
introduction of a stringent list of requirements that the AI software needs to encom-
pass (or not) in order to accurately capture social aspects of interactions between
humans and AI algorithms (Institut Montaigne, 2020). Such strategies might be even
more important, as there is currently, e.g., no approach to representing intuitive
decisions with AI and the consideration of individual framework conditions.

All of this means that only by guaranteeing that social and normative aspects are
incorporated into the AI algorithms and by reducing individual performance mea-
surement and, instead, generating AI-compatible KPIs that help to capture
employees’ perceptions can AI-based decision support significantly contribute
toward socially accepted novel leadership.
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6 Projection 11: Human Digital Twin

The term “digital twin” has been around for over a decade: Grieves and Vickers
(2017) state that the concept was first introduced at a presentation in 2002 and
thereafter went by various names until the term digital twin was published by
Grieves in 2011. But it is only in the last few years that the idea has received great
attention in industry and academia. The core idea is that there is a virtual entity in
addition to the physical entity. These two elements are linked within a cycle: data is
fed from the real to the virtual domain, and information and processes pass the
reverse way. The virtual representation means that simulations, data analysis, etc. are
now possible. The close interweaving, often called synchronization, of the real
domain with the digital domain allows a continuous optimization process (Jones
et al., 2020; Schuh et al., 2019).

It should be explicitly noted that the mere collection of data on work persons and
their work performance does not constitute a digital twin. Thus, the digital twin is
still a concept that has not yet been implemented. In the following, visions of how
the implementation and use of digital twins could be designed are presented. A
digital twin of a human could benefit production planning in a variety of use cases on
different organizational levels (Mertens et al., 2021). In human-robot collaboration,
using knowledge about an employee’s experience, handedness, and working
methods would enable situation-specific matching of a robot’s interaction with its
user. For decision tasks, workers could benefit from decision support systems that
tailor their interface and the allocation of tasks based on the user’s current mental
workload. Furthermore, digital twins of employees could enable health strategies in
human resource management that are specifically tuned to an individual’s needs.

This paragraph reports the results of the study. The experts assessed the proba-
bility that, by 2030, a full digital twin of each production worker and all of her or his
operations will be used as a tool for production planning and optimization as rather
low. The experts from industry estimate the probability to be 47.38%, much more
likely than the experts from academia at 37.50%. German experts estimate the
probability to be 41.74%, noticeably lower than the experts from the rest of the
world (ROW) with 51.25%. There is disagreement among the German experts, but
not among the ROW experts. Those who estimate the probability of occurrence to be
low identify two central causes: resistance from work councils and unions and legal
reasons, in particular data protection and personal rights, especially in the
EU. Furthermore, they point to a change in work, in which workers will move to
having controlling or monitoring roles, while the value-creating work will be taken
over entirely by machines. Thus, they think digital twins of workers would only have
benefits for training or even none at all. From the point of view of some experts, the
creation of a digital twin of a work person is too complex and only makes sense for
machines. Others argue that the costs of creating a digital twin are very high, which
would make their economic viability questionable for most companies. For some
experts, however, the idea is simply too visionary. On the other hand, there are
experts who estimate the probability of occurrence as high. Some consider the digital



twin to be reasonable and feasible. Most of the experts, however, are more cautious
and estimate that their introduction will take a long time and will be gradual: the
reasons given for this are again the resistance of employees and unions, as well as the
complexity of digital twins themselves. Changes in the way individuals and society
deal with (their own) data are seen as the main drivers of the development toward
digital twins.

86 P. Brauner et al.

Regarding firm impact, the estimates by the experts from Germany and the ROW
are not far apart, and overall the experts consider this projection to have a medium
impact (M ¼ 3.13). Most of the experts who expect the firm impact to be low expect
restrictions with regard to the target groups: some see a meaningful use of digital
twins only among office workers and others only among workers of a certain age or
experience. On the other hand, those experts who predict a strong firm impact point
out that information on skills and competences is important for planning. They see a
general benefit with regard to production.

Before the conclusion, the authors would like to discuss two expert statements.
Firstly, there is a need for discussion regarding the nature of the digital twin: in it, the
human being is represented not only physically but also in terms of their cognitive
load. If this aspect was not considered, we would be dealing with a mechanistic view
of human beings which understands them as a kind of machine and in which
psychological factors cannot be covered at all. Secondly, the assertion that humans
will no longer be engaged in value-creating activities at some point in the future is a
vision that is propagated by some groups. But it is by no means the only conceivable
vision of the future. There is disagreement and a variety of positions here.

The authors conclude that, on the one hand, implementing digital twins of
humans has the potential to create adaptive workspaces that adjust to the needs of
employees and, thereby, benefit production productivity, safety, and employees’
health. On the other hand, the concept is associated with substantial privacy concerns
and opens up possibilities of misuse of the collected data resulting, e.g., in workplace
discrimination “justified by objective data” or responsibility gaps due to unwarranted
reliance on faulty, data-based assessments. Implementing digital shadows of
employees in a firm will require the acceptance of the work council and taking the
organizational culture into account.

7 Projection 12: Employees’ Rights

The projection “employees’ rights” deals with the impact of data collection on
employees’ rights. Experts were asked whether adequate anonymization procedures
for the protection of employees’ personal rights will have been introduced for firms
that collect data on personal performance and work patterns in the form of digital
twins of their employees. This was rated as having a high probability (M ¼ 57.07%,
SD ¼ 26.01%). At the same time, there was a large amount of dissent among the
experts (IQR ¼ 5.00). While some experts stressed that such data protection prac-
tices would be a prerequisite for human digital twins (P11) and would be enforced by
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unions as well as workers’ rights legislation, others raised doubts that even
anonymization procedures would be sufficient to protect employees’ privacy. The
survey found a medium firm impact of M 2.93.
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In order to obtain acceptance for AI applications like digital shadows of
employees and to ensure an ethical and legal implementation of such ideas, it will
be necessary to guarantee the protection of employees’ privacy and sovereignty over
the individual-related data (Todolí-Signes, 2019). This can be achieved through the
interaction of different approaches. On the one hand, research and development are
required to develop (technical) procedures that prevent the disclosure of personal
data and prevent any possibility of reconstructing the original identity of the
employee based on the obtained data. On the other hand, processes that strictly
limit the accessibility of the data must be developed and established to further
prohibit misuse. This also requires thorough education of employees regarding
their rights and the measures to protect their privacy so that they can make informed
decisions about providing the company with access to their data. This would be done
through coordination and active involvement with work councils.

Considering the European General Data Protection Regulation, it must be
assumed that realizing privacy by design (Cavoukian, 2009) will be a legal require-
ment for using human digital twins. Moreover, the implementation of sufficient
privacy measures will play a crucial role in determining employees’ acceptance of
human digital shadows. Employees’ acceptance will, in turn, be an important factor
in determining their reliance on the system. Insufficient acceptance will lead to
misuse or disuse of the implemented systems, impeding any benefits they could
provide. Therefore, a potential strategy for improving this acceptance among
employees, besides merely teaching them about the processes at the beginning of
data collection, would be an ongoing effort to make the involved collection pro-
cesses as transparent as possible. If employees can always easily access information
about the collected datasets, this might positively affect their acceptance of their
digital twins, since it could strengthen their trust in the ongoing processes.

The impact of employees’ acceptance and attitude toward use of their data also
highlights the possibility that guaranteeing adequate handling of employee data may
become a crucial competitive advantage across companies for recruiting new
employees. This is because new employees might choose to work for a company
that respects their privacy rights as it positively affects their emotion-led evaluation
processes.

8 Projection 13: Workforce Reduction

Due to the recent and ongoing developments in automation, ever more work
originally performed by human workforces may become automated, and hence,
that workforce may become redundant (Autor, 2015; Acemoglu & Restrepo, 2017;
Brynjolfsson & Mitchell, 2017). According to the industry association International
Federation of Robotics (IFR), Germany has the fifth highest robot usage in industry
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worldwide (IFR, 2021). With this trend continuing and with further technological
advancements in robotics likely to happen, automation will have fundamental
implications on the future workplace, especially in production. Furthermore, a
World Economic Forum (WEF) survey from 2020 suggests that half of production
work could be done by robots as early as by the year 2025. This may amount to the
displacement of some 85 million jobs worldwide (WEF, 2020).

88 P. Brauner et al.

In the Delphi study, experts were asked whether they predict that AI-based
software and robots will bring about a significant reduction in the workforce by
the year 2030. In the survey, the experts from industry and academia agreed on a
medium probability of a significant reduction, with an average expectation of
51.55% (SD ¼ 18.85%). However, they expect significant variability across the
different industrial domains. Additionally, while our experts predicted that a signif-
icant reduction of the workforce would have a profound impact on enterprises and
businesses (M ¼ 3.62), there seems to be a consensus that new jobs will emerge and
that the workforce will, at least partially, shift to other fields. In contrast to many
other projections from this study, the experts agreed overwhelmingly on this ques-
tion (IQR 2.00).

The predicted reduction of the workforce is likely to cause large-scale job
displacement and possibly unemployment, especially for low-qualified workers.
Under the assumption that jobs requiring higher educational qualifications are less
likely to be redundant in the near future, which is supported by the WEF’s survey
and by our experts’ predictions, increasing automation and reliance on AI will place
increasing pressure on companies to re- and upskill their workforce and on societies
both to produce a qualified workforce and to deal with the social repercussions of
this development. Educational goals of re- and upskilling workers create conflicts on
generational levels. Consider the example of stock-keeping clerks who have been
working at their workplace for the past four decades and are not far from retirement:
many of them may be unwilling to change paths this late in their working career or
would experience mental stress if forced to do so. This not only threatens their
autonomy, but it is questionable whether they will indeed reach the levels of skill
necessary to re-enter the job market as, e.g., machine learning specialists.

Thus, re- and upskilling may not suffice as approaches to dealing with job
displacement. Furthermore, it is not clear that there will be sufficient demand for
work to guarantee employment.

Hence, there is an urgent need to determine an ethical framework for dealing with
displacement-induced unemployment to avoid distributive injustice caused by the
loss of low-qualified jobs, as well as to respect the autonomy to choose one’s
preferred education and life path. A discussion on the meaning and the normative
value of work is necessary to examine the non-monetary social costs of unemploy-
ment, as there are concerns that the loss of work would be accompanied by a loss of
potential non-monetary benefits of work. On the one hand, some argue, work may
produce valuable non-monetary goods, e.g., the development of skills and the
production of valuable goods, as well as social contribution and recognition (Gheaus
& Herzog, 2016) or community building (Estlund, 2003). Hence, approaches like
universal basic income (UBI) would be insufficient solutions for



displacement-induced unemployment as they do not replace the non-monetary value
of work. However, UBI does not prevent one from performing charitable work. On
the other hand, some argue that work is merely required for living, going hand in
hand with distributive injustice, domination, unhappiness, and dissatisfaction. The
absence of a socioeconomic requirement to work would thus enhance people’s
autonomy and even, some suggest, create “utopian possibilities and enable height-
ened forms of human flourishing” (Danaher, 2019). From this perspective, AI and
robots might liberate workers from dangerous, unpleasant, or routine work, allowing
them to work on more meaningful tasks voluntarily.
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Notably, however, as the workforce was not predicted to be fully replaced by
robots, further research is needed to explore how to design workplaces to enable
productive and human-centered human-technology collaboration. Thus, the impli-
cations of workforce reduction should be further elaborated in light of the projections
on autonomous robots, hybrid intelligence, AI assistants, and their implications.

9 Summary

In this chapter, we have outlined how the digital transformation of production,
Industry 4.0, and our vision of Next Generation Manufacturing will influence how
we work, how the organization of work within companies will change, and what
implications this will have on employment and labor rights.

Projection 7 looked at the merging of workspaces of and closer collaboration
between employees and production robots. Collaborative robots moving autono-
mously on the shop floor and interacting with human workers will most probably not
dominate production scenarios by 2030. High investment costs and the lack of
methods to easily program robots are seen as major hurdles. Thus, to transform
conventional robotic production to autonomous production, robots, technologies,
and AI methods must be (further) developed, programming barriers lowered, and
costs reduced.

Projection 8 addresses the use of hybrid intelligence—the combination of human
and artificial intelligence—for decision-making. These hybrid intelligences can be
applied in production from the shop floor to strategic management decision-making.
Experts predict this trend will both have a strong impact on the management
profession in the future and be very likely to occur. Hybrid intelligence constitutes
a form of human-machine interaction, raising questions for both academia and
practitioners on the reliability and fairness of such systems and, consequently, on
the attribution of responsibility in the context of shared tasks.

Projection 9 builds on the consideration of hybrid intelligence and explores the
role of AI-based assistants in manufacturing. AI assistance has the potential to
disruptively change current decision-making processes. While all the experts agree
on the promising potential of AI assistance, the majority still expect humans to be the
central decision-making authority who must consider ethical and legal implications.
In consequence, there is disagreement regarding whether all decisions will be made



by intelligent algorithms in 2030, with many experts believing this will only be the
case for supporting processes.
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Projection 10 examines the extent to which digital transformation will influence
leadership roles in companies. Even though the experts rated the potential impact of
changes in management and leadership processes as low, it is noticeable that
artificial intelligence has already led to changes in management and leadership
decision-making. This is especially noticeable when it comes to leadership decisions
within HR. However, this also brings negative effects because most current AI
systems tend to exclude social aspects from their processes of decision-making.
Therefore, if AI systems are to be implemented in an ethically justifiable way that
also incorporates social aspects, organizations that want to use such AI systems
within their processes of management and leadership decision-making must make
efforts to guarantee that those social aspects are incorporated into their AI systems.

Projection 11 focuses on the digital shadow as one of the central concepts of Next
Generation Manufacturing and examines the opportunities and risks associated with
creating digital shadows of employees and their behaviors. These digital shadows of
employees can be considered a double-edged sword: on the one hand, the processing
of data collected on workers allows the optimization of the workplace, which is
intended to lead to optimal working conditions (personal advantages) and increased
productivity (economic advantages); on the other hand, the ethical question arises as
to whether the collection of the required data interferes too much with the workers’
privacy (personal disadvantage).

Projection 12 addresses the question of what impact the digital transformation of
production will have on working conditions and employee rights. While the experts
agree that processes of anonymization are needed if firms or organizations collect
data, they disagreed on whether exactly this anonymization can be guaranteed
sufficiently. Furthermore, it is questionable whether employees will accept such
data collection. Therefore, firms and organizations that want to collect data must
invest in training and education processes and also design the whole collection
process transparently. Additionally, it must be guaranteed that employees’ have
sovereignty over their individual-related data and that the firm or organization will
not misuse the collected data.

Finally, projection 13 addressed the implications of automation on employment.
With the trend of automation continuing and further technological advancement in
robotics likely, fundamental implications for future workplaces, especially in pro-
duction, need to be considered. Experts predict that a significant reduction of the
workforce will have a profound impact on enterprises and businesses. There seems
to be a consensus that new jobs will emerge and that the workforce will, at least
partially, shift to other fields. This development needs to be considered from ethical,
social, economic, and psychological angles to allow value-capturing workplaces to
be designed.

In summary, this chapter investigated how Next Generation Manufacturing will
change work and the organization of work inside and outside companies from
experts’ perspectives. Many of the changes are associated with significant benefits
for the companies and for value creation, but many ethical, social, and legal issues



are still insufficiently addressed and remain subjects for open research and
innovation.
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We have seen that collaborative robots and hybrid intelligence are impactful
topics for the future, but also that implementation barriers, algorithmic biases, and
questions of responsibility are still insufficiently addressed. Consequently, we must
explore how humane yet productive future workplaces with collaborative robots and
human-AI teams can be designed, what specific barriers to acceptance may arise, and
how these can be mitigated, for example, by conducting co-design workshops. The
problem of AI and algorithmic bias needs to be addressed by developing approaches
to reduce algorithmic bias in the first place, by increasing the explainability and
transparency of AI models and decision support systems (Barredo Arrieta et al.,
2020), and, lastly, by increasing AI literacy and raising awareness for this issue and
its consequences among developers, implementers, and end users (Long &Magerko,
2020). Although a new, AI-informed leadership culture is considered unlikely by the
experts, corresponding approaches are already becoming reality. Therefore, there is
an urgent need to address social aspects and fairness in this area and to ensure that
today’s companies with more traditional management concepts do not risk their
viability. The experts further confirmed the benefits of collecting more data about
employees and making it usable, which raises unresolved questions of privacy and
data sovereignty. One approach to resolving this dilemma could be that companies
develop, together with their employees, concepts for the use of personal data and to
identify optimal privacy-utility tradeoffs that are harmonized with all stakeholders
involved.

Undoubtedly, value creation will increase through automation, autonomous and
collaborative robots, and AI assistants (Kagermann, 2015). Since this may come at
the price of significant job losses, we need to be prepared by carefully exploring
concepts such as universal basic income and their implications, as well as by
continuously re- and upskilling employees in vulnerable positions, giving them the
opportunities to acquire new competences and develop new skills (Brynjolfsson &
Mitchell, 2017). However, this must not be imposed by the management, but
developed together with employees and in line with their interests and capabilities
to increase motivation, self-determination, and autonomy (Deci & Ryan, 2008). A
central prerequisite for this is that we understand precisely the competences and
skills needed for digitalized production and how these can be conveyed to prepare
current employees for the future, ideally allowing employers and employees to
engage in meaningful work. The digital transformation of production is inevitable.
It remains a central challenge to shape this transformation with and for the people.
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Abstract Industrial production systems are facing radical change in multiple
dimensions. This change is caused by technological developments and the digital
transformation of production, as well as the call for political and social change to
facilitate a transformation toward sustainability. These changes affect both the
capabilities of production systems and companies and the design of higher education
and educational programs. Given the high uncertainty in the likelihood of occurrence
and the technical, economic, and societal impacts of these concepts, we conducted a
technology foresight study, in the form of a real-time Delphi analysis, to derive
reliable future scenarios featuring the next generation of manufacturing systems.
This chapter presents the capabilities dimension and describes each projection in
detail, offering current case study examples and discussing related research, as well
as implications for policy makers and firms. Specifically, we discuss the benefits of
capturing expert knowledge and making it accessible to newcomers, especially in
highly specialized industries. The experts argue that in order to cope with the
challenges and circumstances of today’s world, students must already during their
education at university learn how to work with AI and other technologies. This
means that study programs must change and that universities must adapt their
structural aspects to meet the needs of the students.
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1 Introduction

Industrial production systems are facing radical change in multiple dimensions. This
change is caused by technological developments and the digital transformation of
production, as well as the call for political and social change to facilitate a transfor-
mation toward sustainability. These changes affect both the capabilities of produc-
tion systems and companies and the design of higher education and educational
programs.

Using a novel real-time Delphi approach (see chapter “Applying the Real-Time
Delphi Method to Next Generation Manufacturing” for a presentation of the method
and the sample, as well as chapter “Big Picture of Next Generation Manufacturing”
for an overview of the results), we developed propositions for different scenarios
within Next Generation Manufacturing in 2030. As suggested by Gawer (2014), we
used an integrative framework for platforms, distinguishing four dimensions: gov-
ernance (e.g., open forms of collaboration; see chapter “Governance Structures in
Next Generation Manufacturing”), organization (e.g., boundaries and decision-
making; see chapter “Organization Routines in Next Generation Manufacturing”),
capabilities (e.g., hybrid intelligence, this chapter), and interfaces (e.g., open APIs
and human-machine interfaces; see chapter “Interface Design in Next Generation
Manufacturing”). In addition, and influenced by our shared experiences during the
COVID-19 pandemic, we added a fifth cluster of propositions, addressing the need
for resilience in future digital manufacturing (see chapter “Resilience Drivers in
Next Generation Manufacturing”). We provide a set of 24 validated projections
based on 1930 quantitative estimations and 629 qualitative arguments from 35 indus-
trial and academic experts from Europe, North America, and Asia. In so doing, we
deliver a basis on which to substantiate academic discussions and which can support
firm decision-making on future technological developments and economic implica-
tions that go beyond current speculations and siloed research.

In this chapter, we examine the effects that experts predict the transformation of
production will have in relation to the capabilities of production systems (see Fig. 1).
One core capability of a production system is the utilization of human work and
especially of expert knowledge. We are currently seeing the digital transformation of
expert knowledge into intelligent systems. This digital representation of explicit and
implicit expert knowledge and its systematic transfer and processing could become a
critical factor for success in the future of production. Projection 14 (expert knowl-
edge) addresses these questions and highlights the implications for experienced
workers.

These questions are closely linked to projection 17 (university degrees), which
addresses the implications of these changes regarding academic education. In par-
ticular, projection 17 deals with the potential need for changes toward more holistic
and interdisciplinary study programs in universities. Higher education institutions
are already in the process of creating and introducing innovative multi- or interdis-
ciplinary study programs. This change is characterized by a need for more interdis-
ciplinary competencies and an extension of the engineering subjects to include
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computer science competencies. Projection 17 (university degrees) questions the
demand for such developments.
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Another core capability of a production system is its ability to produce the right
products (effectivity) in the right way (efficiency). Regarding these aspects, a
production system is traditionally defined by the conflicting criteria of quality,
cost, and time. This triangle is increasingly being supplemented by sustainability
as a fourth conflicting criteria. If sustainability became an equivalent or even the
dominant criteria, this would change industrial production systems in a fundamental
way. Projection 15 (environmental sustainability) questions whether environmental
sustainability of production by 2030 will have increased significantly compared to
today and illuminates the implications of this development.

The efficiency of a production system is closely related to the optimized alloca-
tion of all resources within the production system. Extensive and, as far as possible,
full transparency is an essential prerequisite for this optimized allocation of
resources. Projection 16 (production transparency) investigates whether full trans-
parency based on a complete digital twin of all production machines, lines, and plant
engineering and a complete digital shadow of their operations will increase produc-
tion efficiency significantly.

2 Projection 14: Expert Knowledge

One vision regarding the advent of the Fourth Industrial Revolution is smart
connections between intelligent systems as well as between them and humans.
With the ability to learn and share data as well as to communicate with each other
and collaborate autonomously, aspects such as performance, maintenance,
manufacturing of individualized products, and generating transparency over the
whole production process or value chain of a company will be improved (Zenkert
et al., 2021).

One essential factor for a successful and well-functioning interaction is the digital
transformation of expert knowledge into the systems. A widely agreed-upon defini-
tion of the term expert knowledge has not yet been established, but in general, it can
be described as essential know-how on a specific issue that is not generally known
by others. Expert knowledge can be classified into three types, namely, explicit,
implicit, and tacit knowledge. Explicit knowledge can be expressed in words,
numbers, and symbols and is easily communicated between individuals and organi-
zations. Implicit knowledge refers to knowledge that is gained through incidental
activities without awareness that learning is occurring. Tacit knowledge is gained
from personal experience and is more difficult to express (Feng et al., 2017; Nonaka
& Takeuchi, 2007).

Due to digital transformation in production, demographic change, and the short-
age of skilled workers, capturing and making knowledge accessible is not new but
has never before been so important and at the same time so challenging. This stems
from the fact that expert knowledge, especially the implicit and tacit types, is



challenging to capture. The other factor is that the differences in education and
technological understanding between different generations have never been so great.
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Regarding the ongoing industrial transformation, experts in the Delphi study were
given a proposition that in 2030 implicit expert knowledge will increasingly be
preserved explicitly in the form of digital models, interactive guides, or instructions
and facilitated by technologies like augmented or virtual reality. Moreover, it was
stated in the proposition that the knowledge would be also made available to novices
and would eliminate the dependency on experienced production employees.

With an average expectation of 52.07% (SD ¼ 20.95%), the experts considered
the proposition to be probable. The projected impact of digital knowledge capture on
companies was M ¼ 3.28. However, reasons given for the projection not occurring
by 2030 were due to a lack of time, different understandings of expert knowledge,
problems associated with generalizing algorithms, a lack of robust working technol-
ogies, and a lack of willingness to share expert knowledge.

The benefits of capturing knowledge and making it accessible to newcomers are
that it adds a great deal of value, especially in highly specialized industries (e.g.,
textile industry). Outsourcing the learning of skills to digital technologies would be a
great gain in efficiency and effectivity. Strengthening the robustness of such systems
would bring significant benefits if knowledge was sustainably preserved and was
retrievable by the company. However, a key question that needs to be solved is how
systematic knowledge capture can be achieved. In one option, knowledge could be
captured through complete digital documentation of decisions and process steps by
employees. Another is to systematically extract expert knowledge through serious
games and gamified environments, allowing more and also negative outcomes to be
classified in a short time (Schemmer et al., 2022).

Another industrial example that underlines the importance of the digital transfor-
mation of expert knowledge can be found in laser-based production machines, which
are highly complex systems. To be able to optimize the corresponding production
processes or to detect expensive malfunctions and failures in advance, many years of
experience and fundamental expert knowledge are necessary. Condition Based
Services (CBS) by TRUMPF increase the availability and productivity of networked
laser systems. CBS evaluates sensor data (> 250 sensors per machine) and detects
risks and potential for improvement. By aggregating all the data in customer-specific
dashboards, the system provides a solid knowledge and decision base, especially for
non-expert machine users.

The systematic capture of explicit and implicit expert knowledge and its system-
atic transfer and processing could become critical factors for success in the future of
production. Especially against the background of an aging workforce and an
impending shortage of skilled workers, the need to deal with possibilities, benefits,
barriers, and conditionals is increasing. In this context, an interdisciplinary approach
is urgently required: in addition to labor law issues, it is necessary to consider how
the accumulated knowledge can be applied in practice. This raises the question of
how this knowledge can be translated into digital shadows, while concepts to bring
this knowledge back into use should be developed. In this context, the question of
suitable user interfaces is essential.
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3 Projection 15: Environmental Sustainability

Projection 15 (environmental sustainability) deals with the concept of sustainable
development, described in the Brundtland Report as “development that meets the
needs of the present without compromising the ability of future generations to meet
their own needs” (Brundtland, 1987). Environmental sustainability is currently
playing a major role in the global political debate and is leading to major political
initiatives, e.g., the Green New Deal in the USA and the European Green Deal in
Europe (European Commission, 2019). Even if there is no generally accepted
definition of environmental sustainability, most experts agree with the following
two defining characteristics: (a) no net emissions of greenhouse gases and
(b) economic growth decoupled from resource use. A major driver for the increased
significance of environmental sustainability is the ongoing tightening of the legal
framework in this field. In addition to these legal regulations, customers are rethink-
ing and partly reducing their consumption behaviors in a society-wide trend. In
addition, there are (financial) incentives to encourage the protection and preservation
of common goods and to penalize environmental damage from products.

There is consensus that environmental sustainability of production will play a
bigger role in 2030 (IQR¼ 2.00). The experts consider this projection to have a high
probability (M ¼ 67.24%, SD ¼ 19.14%) and a high impact (M ¼ 3.59%). This is
particularly remarkable as it has the highest probability of all projections. This high
probability and high impact reflect the high significance of environmental sustain-
ability in political and social discussions. It is interesting that the likelihood given by
the industry experts (M¼ 68.42%) is higher than that from academia (M¼ 65.00%).
This may reflect the objections from some of the academic experts that there is still
more research on productivity than on sustainability.

Several experts stated that improvements in emerging and developing countries
will be crucial for global environmental sustainability. Experts from the rest of the
world expect a significantly higher average impact (M ¼ 4.00) compared to experts
from Germany (M ¼ 3.43). In general, the experts see multiple drivers of this
projection: climate goals of governments and regulation, requirements by investors
and financial markets, and demand-driven selection of sustainable companies by
customers.

In addition to the further tightening of limits and legal framework conditions,
most experts interviewed in this Delphi study stated the importance of efficient use
of resources, new technology, and innovative products for environmental sustain-
ability of production. This demand is reflected by recent leading conferences like the
Aachen Machine Tool Colloquium (Bergs et al., 2021) and by the new European
research program for research and innovation (European Commission, 2021).

The implications of this projection on environmental sustainability of production
can be summarized as follows: sustainable production and sustainable products
(in terms of economic, ecological, and social sustainability) are demanded by the
public and could provide a competitive advantage. Policy makers have started to
encourage sustainability and establish societal transformation.
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4 Projection 16: Production Transparency

Projection 16 (production transparency) deals with the concept of coupled digital
twins and digital shadows along production lines. The increasing consideration of
sustainability as an additional priority alongside the conflicting priorities of quality,
cost, and time leads to a significant increase in the complexity of production systems.
This projection states that full production transparency based on a complete digital
twin of all production machines, lines, and plant engineering and a complete digital
shadow of their operations should increase production efficiency significantly (Bergs
et al., 2021).

The digital shadow and the digital twin are key enablers in this context. They
connect all data and information linked to each asset of a production line across the
full production line or system. According to the International Academy for Produc-
tion Engineering (CIRP), a digital twin is a virtual image of a real device, object,
machine, service, or immaterial process that describes its properties and behavior
with the help of models, data, and information from within its life cycle (Stark &
Damerau, 2019). A digital shadow, as defined by the Scientific Society for Produc-
tion Engineering (WGP), is a sufficiently accurate representation of a production
process with the purpose of creating a real-time capable evaluation basis of all
relevant data (Bauernhansl et al., 2018).

Even though the experts in the Delphi study largely agree with this projection,
giving it a quite high average probability (M¼ 65.17%, SD¼ 20.82%), there was no
consensus among them that full production transparency could be achieved before
2030 (IQR ¼ 3.00). Many experts claimed that 2030 is too early, and some others
claimed that full production transparency could never be achieved for complex
production systems. Experts consistently indicated that full transparency based on
a complete digital twin of all production machines, lines, and plant engineering and a
complete digital shadow of their operations will not be widely implemented by 2030.
At the same time, most of the experts predicted a high firm impact of production
transparency (M ¼ 3.62). There is no significant difference between the industry
experts and the academic experts regarding this assessment. However, there is a
difference between the experts from Germany, who expect a significantly higher
impact of this projection, and those from the rest of the world (M ¼ 3.76 instead of
M ¼ 3.25). This may be related to the fact that many documented applications
aiming for production transparency are implemented in Germany. The Condition
Monitoring Center implemented by TRUMPF is a well-known example of produc-
tion transparency. Based on the real-time analysis of networked sensor data (digital
twin representing the laser system), the Condition Monitoring Center increases the
technical availability and productivity of connected laser systems. Moreover, the
digital twin can be opened up to external partners for collaboration. For example,
Rolls-Royce built its R2 Data Labs as an ecosystem where it jointly innovates with
external partners based on usage data from its engines.

Depending on the implementation, production transparency can simply provide
production efficiency, but it can also be the basis for completely new business



models which allow for further differentiation in the industry. Currently, only large
firms have the computing power and data capabilities to make use of digital twins
and production transparency, but this is likely to change. Decreasing costs for
collecting, storing, and analyzing data will make the business case more favorable
for many use cases.
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5 Projection 17: University Degrees

Projection 17 (university degrees) deals with a potential need for changes toward
more holistic and interdisciplinary study programs in universities. When asked
whether, for example, the application of biological principles (e.g., cybernetics or
biomimicry) in manufacturing will create a higher demand for multi- or interdisci-
plinary university degrees that incorporate the fields of engineering, life sciences,
and computer science, experts disagreed (IQR¼ 3.00). Tellingly, such changes were
rated as having a medium probability of occurring of 50.69% (SD ¼ 23.48%) and a
medium level of firm impact of 2.66.

However, if we look at current changes in the study programs of universities, we
can see that higher education institutions are already in the process of creating and
introducing innovative multi- or interdisciplinary study programs. A qualitative
study conducted by the GDI of RWTH Aachen University with the management
of different companies from the production sector in 2019–2020 indicated a change
in the requirements of job profiles. This change was characterized by a need for more
interdisciplinary competencies and an extension of engineering subjects to include
computer science competencies. Furthermore, diversity management competencies
seem to be becoming increasingly important. Research has shown that, for example,
within the context of engineering in a more and more globalized world, students
must learn, already while they are studying, to work within teams that are marked by
diversity and to become “globally competent engineers” (Downey et al., 2006;
Leicht-Scholten et al., 2016; Leicht-Scholten & Steuer-Dankert, 2020; Dankert
et al. 2019).

The importance of this is also apparent in connection with (P10) “new leadership”
and the therein addressed need to pay attention to social aspects (e.g., diversity)
surrounding the usage of AI decision software to avoid biased outcomes within HR
decision-making processes. This can be achieved by offering students teaching
formats that are characterized by interdisciplinary and intercultural teaching settings
that provide space for critical reflections and discussions on diversity (Leicht-
Scholten & Steuer-Dankert, 2020). This is, e.g., visible within the context of (P10)
(see chapter “Organization Routines in Next Generation Manufacturing”) because
research introduces the fact that HR leaders are increasingly forced to understand
processes surrounding the topics of AI and data science (Tambe et al., 2019) and,
therefore, need to gain interdisciplinary knowledge and competencies (ideally while
at university). As research further shows, such multi- and interdisciplinary
approaches are also necessary to achieve more diversity-inclusive, fairer, and more



usable (including from the perspective of other aspects of diversity like gender, race,
and disabilities) technological outcomes that avoid discriminatory biases (Dankert
et al., 2019; Leicht-Scholten & Steuer-Dankert, 2020). Therefore, processes of
diversity, creativity, and skill management must also be integrated into study pro-
grams if, like in our example, humans and AI are to increasingly work as “team-
mates” (Dellermann et al., 2019 and see P9).
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Students must learn already during their university education how they can cope
with the challenges and circumstances of today’s digitalized and globalized labor
market. Since this means that study programs and their contents must change, it
automatically also means that structural aspects of learning environments, or more
generally universities themselves, must change. Yet this change is already visible
within universities that are aware of the addressed needs for more holistic and
interdisciplinary study programs.

6 Summary

In this chapter, we have examined the changing capabilities of industrial production
systems driven by technological development (especially digital transformation) and
political or social change (especially sustainability transformation). In the Delphi
study, we investigated whether and in what ways capabilities related to human work
and, especially, expert knowledge (P14), as well as the closely related academic
education of expert workers (P17), will change in the future. We also investigated
whether the traditional triangle of quality, cost, and time will be supplemented by
sustainability as a fourth conflicting criteria (P15). Additionally, we outlined how
full transparency-based digital twins and digital shadows will increase production
efficiency (P16).

Projection 14 (expert knowledge) addresses the digital representation of explicit
and implicit expert knowledge and outlines that the systematic transfer and
processing of knowledge could become a critical but currently untapped factor for
success in the future of production: an impending shortage of skilled workers
requires firms to deal with possibilities, benefits, barriers, and conditionals of
knowledge capture in the workplace. Industry and academia need to develop
approaches that enable systematic knowledge capture, for example, by creating
“knowledge-to-data” pipelines that capture fluid or tacit knowledge implicitly during
work. This digitalized knowledge must then be made actionable as training material
for the re- and upskilling of employees, for training AI-based decision support
systems (Schemmer et al., 2020), or for developing automated control systems that
are based on prior human behavior. This requires interdisciplinary approaches to
develop systems that are compliant with labor laws, respect the privacy concerns of
employees, and make the accumulated knowledge actionable. This raises the ques-
tion of how this knowledge can be translated into digital traces and shadows and how
these can be integrated within usable, actionable, and trusted support systems.
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On projection 15 (environmental sustainability), we found a broad consensus of
all experts that environmental sustainability of production will play a bigger role in
2030 and will have a high firm impact. This reflects the high significance of
environmental sustainability in political and social discussions. In addition to the
further tightening of limits and legal conditions, most experts interviewed in our
Delphi study stated the importance of the efficient use of resources, new technolo-
gies, and innovative products for environmental sustainability of production. Several
experts stated that improvements in emerging and developing countries will be
crucial for global environmental sustainability. Some other experts from academia
remarked that there is still more research on productivity than on sustainability.
From a community point of view, sustainable production is demanded by the public
and could provide a competitive advantage.

Projection 16 (production transparency) addresses full production transparency
based on a complete digital twin of all production assets and a complete digital
shadow of their operations. There is consensus among the experts that this full
transparency could increase production efficiency significantly, but there is no
consensus that full production transparency will be achieved by 2030. Besides
simply improving production efficiency, full production transparency could also
be the basis for completely new business models which allow for further differen-
tiation in the industry.

How production transparency and traceability can be increased along supply
chains while preserving the autonomy and privacy of companies is still an open
challenge. While blockchains are suggested as possible approaches (Pennekamp
et al., 2020), how these concepts can be implemented by both large enterprises and
small- and medium-sized companies with smaller development budgets is still an
open question.

Projection 17 (university degrees) states that, for example, the application of
biological principles (e.g., cybernetics or biomimicry) in manufacturing will create a
higher demand for multi- or interdisciplinary university degrees that incorporate the
fields of engineering, life sciences, and computer science. There was disagreement
among the experts (IQR¼ 3.00). Nevertheless, as actual research shows, such multi-
and interdisciplinary approaches are necessary to achieve more diversity-inclusive,
fairer, and more usable (including from the perspective of other aspects of diversity
like gender, race, and disabilities) technological outcomes that avoid discriminatory
biases (Dankert et al., 2019; Leicht-Scholten & Steuer-Dankert, 2020). Therefore,
processes of diversity, creativity, and skill management must also be integrated into
study programs.

The upcoming digital transformation of production will offer exciting new
possibilities and will require new capabilities from companies, supply chains, and
educational institutions. This chapter examined the experts’ assessments of the
impact and likelihood of occurrence of the technologies, tools, and methods devel-
oped by Next Generation Manufacturing on selected capabilities of production
systems.

We showed that beyond evolutionary improvements in production technology,
the capabilities of production systems will be shaped by three major trends: digital



transformation of production, demographic change, and transformation toward
sustainability. However, these challenges require holistic and inter- and transdisci-
plinary cooperation instead of siloed disciplinary approaches.
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Abstract With the advent of Next Generation Manufacturing, information and
communications technologies have become an essential part of the production process,
creating and providing data for all stakeholders. Given the high uncertainty in the
likelihood of occurrence and the technical, economic, and societal impacts of associ-
ated transformations in production, we conducted a technology foresight study, in the
form of a real-time Delphi analysis, to derive reliable future scenarios featuring the
next generation of manufacturing systems. This chapter presents the interfaces dimen-
sion and describes each projection in detail, offering current case study examples and
discussing related research, as well as implications for policy makers and firms.
Interfaces play a major role in the provision of information. We discuss the trend of
implicit user interfaces and the benefits of working from home. Implicit user interfaces
are based on user inputs that are not directly aimed at giving a command, but are
nevertheless captured, understood, and used by the computer system to provide a
richer user experience. Working from home has many benefits, including reducing
costs and dependencies. However, experts disagree on whether plant directors will
manage multiple factories centrally via telework due to complete and real-time
transparency of all operations in a digital system by 2030. The COVID-19 pandemic
has shown that it is important to have such an infrastructure even if working from
home may not be considered appropriate in many manufacturing companies. Mobile
apps that support production management are one key issue in this context.
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1 Introduction

With the advent of Next Generation Manufacturing, information and communica-
tions technologies have become an essential part of production processes, creating
and providing data for all stakeholders (Brauner et al., 2022). Interfaces play a major
role in the provision of information. Although interfaces have always existed in
industry and production, they have changed due to the development of automation
technologies (Papcun et al., 2018). Nowadays, there is a distinction between internal
and external interfaces. Whereas internal interfaces are usually extensions of a
production system controls expanded to include additional process and control
functionality, external interfaces serve to connect the production system with the
surrounding production facility. Internal interfaces are mainly systems for user
interaction, such as human-machine interfaces (HMI), machine and data acquisition,
or production management (Weck, 2006). There are various types of HMI,
depending on the field of application and the degree of automation or, conversely,
human influence (Gorecky et al., 2014). External interfaces are considered the
connection between the production system and the environment. Against the back-
ground of these two perspectives, manufacturing firms face high uncertainties
regarding the management and design of open external interfaces and internal
HMI. Dealing with these uncertainties is the topic of this chapter (see Fig. 1).

Using a novel real-time Delphi approach (see chapter “Applying the Real-Time
Delphi Method to Next Generation Manufacturing” for a presentation of the method
and the sample, as well as chapter “Big Picture of Next Generation Manufacturing”
for an overview of the results), we developed propositions for different scenarios
within Next Generation Manufacturing in 2030. As suggested by Gawer (2014), we
used an integrative framework for platforms, distinguishing four dimensions: gov-
ernance (e.g., open forms of collaboration; see chapter “Governance Structures in
Next Generation Manufacturing”), organization (e.g., boundaries and decision-
making; see chapter “Organization Routines in Next Generation Manufacturing”),
capabilities (e.g., hybrid intelligence; see chapter “Capability Configuration in Next
Generation Manufacturing”), and interfaces (e.g., open APIs and human-machine
interfaces; see this chapter). In addition, and influenced by our shared experiences
during the COVID-19 pandemic, we added a fifth cluster of propositions addressing
the need for resilience in future digital manufacturing (see chapter “Resilience
Drivers in Next Generation Manufacturing”). We provide a set of 24 validated
projections based on 1930 quantitative estimations and 629 qualitative arguments
from 35 industrial and academic experts from Europe, North America, and Asia. In
so doing, we deliver a basis on which to substantiate academic discussions and
which can support firm decision-making on future technological developments and
economic implications that go beyond current speculations and siloed research.
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2 Projection 18: Implicit Interfaces

How we interact with computers and technology evolves constantly. While for
decades the primary input devices have been keyboards and mouses (Dix et al.,
2003), touch surfaces and voice assistants are now pervasive. In the near future,
additional input and output devices, such as proximity or presence sensors and
camera systems that can detect one’s posture, intentions, fatigue, or mood, will
enrich how we interact with technology (Brunner et al., 2021; Garcia-Garcia et al.,
2017). Furthermore, while traditionally software systems have offered different
users the same functionality and appearance, they have now become increasingly
personalized. For example, past search queries, favorite songs, and shopping behav-
iors are integrated to give a better understanding of what we as users want and to
provide search results, playlists, or shopping recommendations that better match our
interests.

While these developments are mainly driven by consumer products and services,
we assume they will continue and that there will be more implicit user interfaces in
the future, including in production. Explicit user interfaces are ones where users
interact with computers through direct commands – by either command line, speech,
or a graphical user interface. In contrast, implicit interfaces are based on user inputs
that are not intended to give a direct command, but are nevertheless captured,
understood, and used by the computer system to provide a richer user experience
(Schmidt, 2000).

Possible application areas of implicit user interfaces include human-robot collab-
oration (HRC) or decision support systems at the administrative level of manufactur-
ing companies. For example, a robot at a hybrid workstation could detect the current
workload of its human colleague utilizing a camera system and adjust its speed
accordingly (Prewett et al., 2010). In the case of a decision support system for
administrative tasks, the interface, the presentation of information, and the level of
automation could be implicitly customized to best fit the human decision-maker’s
capabilities and current state and thereby reduce errors and workload (Kaber &
Endsley, 2004).

AI-based approaches to both the recognition of human intent and selecting
appropriate responses are being worked on to enable smooth and implicit interac-
tions between people and technology. Despite much progress in the field of implicit
interactions in production, many questions remain unresolved. For example, it is still
a fundamental challenge for machines to reliably recognize human intent and to
respond appropriately. Furthermore, transparency, traceability, security, reliability,
trust, and social acceptance are unresolved issues.

Projection 18 states that in 2030, human-machine interaction will have evolved
away from explicit interaction, where the human operator has full control of the
actions of the production system’s entities, toward implicit interaction, where the
system automatically adapts to the human operator’s behavior by detecting and
predicting their actions and modifying these actions accordingly.
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On average, the members of our expert panel assessed this trend as having a
medium probability of occurrence by 2030 (M ¼ 52.07%, SD ¼ 17.93%) and a
medium projected impact on companies (M¼ 3.07). However, there is disagreement
among the experts on the likelihood of occurrence of implicit HMI by the year 2030.
Consequently, there are both strong supporters and rejecters of this projection.
According to the experts from our panel, the challenge lies in the complete devel-
opment of implicit HMI, and 2030 is seen as most certainly too soon for this.
Another problem is long machine lifecycles in manufacturing and thus slower
adoption of new production machines that would explore the potential of future
implicit interfaces. In addition, numerous unresolved issues regarding the social
acceptance of implicit interfaces must be addressed by academia and industry. From
the development of explicit interfaces for Next Generation Manufacturing, we
already know that interface design, privacy perception, and trust in technology
play essential roles in successful interaction and that human factors must be consid-
ered from the beginning of the technology’s development (Hoff & Bashir, 2015;
Valdeza et al., 2015; Brauner et al., 2022). Implicit interfaces for Next Generation
Manufacturing must be designed to support employees in their work while being
aligned with their expectations, norms, and values. Approaches to this include new
implicit and explicit interfaces in Next Generation Manufacturing being developed
in a stakeholder-orientated way together with employees (user-centered and partic-
ipatory design) to identify and mitigate possible acceptance and interaction barriers
at an early stage. Otherwise, companies risk losing the motivation of their employees
through a lack of perceived utility, autonomy, and self-determination (Deci & Ryan,
2008), all of which are urgently needed for the upcoming digital transformation of
production.

3 Projection 19: Open Interfaces

To enable data-driven services across organizational boundaries within Next Gen-
eration Manufacturing, the IT systems of two companies must communicate with
each other to exchange data. Interfaces act as points of contact between involved
stakeholders and are thus technically the foundation of distributed computing.
Service-oriented architectures allow enterprises to encapsulate business functions
in well-defined components. A look back at history reveals the role of open inter-
faces as a catalyst for the internet and computers in general. A computer with all its
many different components from different manufacturers would not work without
commonly defined and used interfaces. The internet makes this clear at the level of
communication. It was only by means of standardized protocols that it became
possible for all kinds of devices to communicate with each other via a local or
worldwide network. Open interfaces are considered vital in Next Generation
Manufacturing (cf. https://openindustry4.com/), as they make data exchange
between manufacturers, customers, and service providers possible. The German

https://openindustry4.com/


Standardization Roadmap Industrie 4.0 mentions that harmonized interfaces presup-
pose that these are based on standards and coordinated specifications.
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Among the experts surveyed as part of the Delphi study, there is clear disagree-
ment on the regulatory requirements for introducing open interfaces by the year
2030. The probability of this projection is estimated to be 44.48%, with a compar-
atively low standard deviation (SD ¼ 21.77%). The experts predicted that it would
have a medium impact on firms (M¼ 3.17). The experts see two ways in which open
interfaces can be established: through regulations or through (proprietary) standards
from companies that become established on the market. The feasibility of imple-
mentation in the next 10 years is considered unrealistic, not least because resistance
is expected from companies that want to protect their know-how. Nevertheless, the
experts see open interfaces as a game-changer and a way to reduce costs and
dependencies.

In the future, this certainly means that individual manufacturers will have to keep
their products at least compatible with open interfaces to remain competitive.
Companies will not risk running into a dead-end of incompatibility with their
machines or robot fleets. An example of an open interface with standardized
communication is the OPC Unified Architecture (OPC UA), a machine-to-machine
communication protocol for industrial automation. It is freely available and
implementable under the GPL 2.0 license and focuses on communication between
industrial equipment and data collection and control systems.

Benefits of standardized interfaces in Next Generation Manufacturing include
easier integration of products into production networks, coherent documentation,
information about interaction possibilities, and streamlined modularity between
components of various manufacturers. Some general concerns regarding interfaces
include security-related aspects like possible entry gates for hackers and exploiters.
Overly complex standards or overlooking configuration basics can also be potential
problems. A prime example of this is keeping the default settings for access control
(Dahlmanns et al., 2020).

Secure and sovereign data exchange among industrial partners is of overall
strategic importance. The International Data Spaces Consortium is working on
standardized processes, metamodels, and a technical reference architecture to enable
data exchange. These go beyond pure (technical) descriptions of data exchange and
enable new deployment scenarios, such as the inclusion of an independent third
party to monitor and regulate policy-based data sharing between two organizations
(see chapter “Governance Structures in Next Generation Manufacturing”).

4 Projection 20: Production from Home

Rapid advancements in digital technologies for industrial applications are promoting
the transformation of conventional production facilities into cyber-physical systems
(CPS; Schumacher et al., 2020). Although these modern technologies have great
application potential and have shown promising results in the research phase, their



development as of today is not yet sufficient to meet real-world challenges. There-
fore, it is farfetched to expect that all the operations at a production facility will be
compatible with employees working from remote locations by 2030. The expert
survey resulted in disagreement as to whether production employees will operate
their workstations from home (IQR ¼ 3.00), and the experts in this field do not
expect that employees will predominantly work remotely by the year 2030
(M ¼ 38.10%, SD ¼ 24.93%). As well as this low probability rating, the experts
do not believe that remote work will have a significant impact on the future of
production (M¼ 2.83). While experts from the industry estimated this probability to
be 37%, experts from academia estimated it to be 40%. Additionally, the experts
from Germany gave lower estimations for this projection (probability: 33.10%; firm
impact: 2.62) compared to those coming from other parts of the world (probability:
51.25%; firm impact: 3.38).
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The COVID-19 pandemic has shown that there are situations for the industries
where working from home can still help maintain production. Siemens, for example,
has used this experience as the basis for its “New Normal Working Model” policy
(Siemens, 2020). This agreement allows employees to work from home 2–3 days a
week. Remote working can be beneficial for those who can utilize flexibility in their
schedules to improve work productivity. While tasks, like modeling, simulations,
documentation, etc., can be completed on a workstation from a remote location, the
physical presence of a substantial portion of the workforce is required for shop floor
operations. Although industries currently employ advanced robotic solutions for
ongoing operations, remotely controlling artificial intelligence-based agents (cogni-
tive robots, cobots) and having them perform comparably well to natural ones
(human workers) still pose difficult challenges (see also (P7) to (P9) in chapter
“Organization Routines in Next Generation Manufacturing”).

For instance, in an automotive manufacturing facility, industrial-grade robots
handle tedious tasks like material handling (transferring, stacking), processing
operations (welding, painting, assembly), and final inspections. At the same time,
a worker on the shop floor takes care of the tasks that require human intervention
(system maintenance, machine tools setup, equipment repair). The ability of such
experienced technicians to work remotely mainly depends on the need to use
specialized equipment and make machine-assisted decisions. Closely related to the
question of the systematic acquisition of expert knowledge (P14), it will be neces-
sary to determine the nature of the information (visual or audiovisual) a worker
needs to interpret so that this information can be incorporated into the decision-
making process. Therefore, fundamental research that focuses on remote interactions
between humans and production systems is needed to enable the execution of
production tasks from workspaces at home in the future (Lund et al., 2020). A better
understanding of human cognition is a primary requirement for passing these
milestones, and this can be based on work in the fields of human-robot interaction,
information visualization, and interface design.

As research in these fields is still embryonic, it is not fundamentally excluded that
remote work will take place from beyond the shop floor, but it is only occasionally
assumed that this can happen via working from home. At the same time, some see



¼

working from home as an option for tasks in more strategic areas, and industries are
currently progressing in the direction of so-called hybrid offices, a mixture of
telework and presence work. Looking at the reasons given for moving toward hybrid
offices reveals a wide range of arguments, such as that human beings are social
animals that rely on day-to-day interactions to survive and thrive. However, as part
of the changes associated with Next Generation Manufacturing, Schwab (2017)
points out that combining different technologies like robotics, mixed reality, and
artificial intelligence could blur the lines between the physical and digital worlds,
which would have a substantial influence on the workplaces of the future.
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5 Projection 21: Plant Management from Home

In this projection, the perspective has changed from shop floor operations to that of
the higher-level management. Here, the addressed question is whether, by 2030,
plant directors will manage multiple factories centrally via telework due to complete
and real-time transparency of all operations in a digital system. The experts from the
Delphi study rated the probability of occurrence as medium (M ¼ 46.03%,
SD ¼ 25.61%) and the firm impact as low (M ¼ 2.90). Experts from both industry
and academia gave similar estimations. While the German experts estimated the
probability for this projection to be only 39%, experts from the rest of the world
estimated it to be over 64%. Additionally, the firm impact was as low as 2.67 in
Germany and higher in the rest of the world, at 3.50. There is strong disagreement
among the experts on this topic (IQR 4.00).

The differing opinions of the domain experts elicited several competing argu-
ments. On the one hand, experts who estimate a lower probability of this projection
emphasized two reasons: the timeline requirement for this implementation and the
importance of human-to-human interactions among the top management. On the
other hand, those experts who foresee a higher probability of occurrence stated that
many aspects of this hypothesis already exist today and the implementation of
remote plant management is more likely than remote production. Among the many
infrastructural and technological hindrances mentioned, security risks associated
with remote desktop connectivity and installing communication channels in residen-
tial buildings are prominent. Also, studies have long shown that frequent in-person
interactions can lead to commitment, support, and cooperation among people on
teams (Fayard et al., 2021). For some experts, this approach is incorrect as they
believe that factory management is all about addressing problems directly on-site,
and therefore handling such issues from home could be ineffective. Although it is
also argued that the feasibility of remote management depends on the size of the
factory, simpler tasks such as machine status queries can be handled remotely by the
factory management, and facilitating such provisions would increase technological
progress in this area.

The recent COVID-19 pandemic has shown that it makes sense to have such an
infrastructure even if working from home may not be considered appropriate in



many manufacturing companies. Mobile apps that support production management
are one key issue in this context. Monitoring machine statuses in a digital twin of the
factory via apps that support virtual execution of shop floor operations is a promising
application prospect. Here, the key question that arises is which tasks can be carried
out via telework, and it turns out, from the investigation of Lund et al. (2020), that it
is not easy to answer this question. It is no surprise that working from home can
affect highly qualified, well-educated employees and an increase or decrease in their
productivity depends on the type of the task (Wu & Chen, 2020). However, Lund
et al. (2020) also found that more than 20% of employees can work from remote
locations for more than 2 days a week while being just as productive as if they were
working from their offices.
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Mobile applications for production management promise more flexibility and
up-to-dateness, irrespective of the use case (telework or presence work). An opti-
mized yet simplified decision-making process can be expected if users are presented
with the right information at the right time and in the right way via a mobile
application. Decision support systems in production can add real value to the process
if they succeed in handling data from analysis using artificial intelligence-based
agents to provide meaningful presentations for people in real time. Similarly, other
aspects, like automated support, questions of liability, etc., will also become more
relevant in this context.

6 Summary

In this chapter, insights about different types of human-machine interfaces were
discussed, based on the results of the expert panel.

In projection 18, the question was raised of whether implicit interfaces will
become established in the industry and whether they promise added value. Our
expert panel could not provide a clear answer to the question. The typically long
service lives of machines are seen as a particular obstacle, which noticeably slows
down innovations in this area. This projection will depend on other factors, such as
the retrofittability of the implicit interfaces. Retrofittability has worked before, for
example, with numerical displays on production machines such as milling machines
and lathes. Another aspect may be the attractiveness of the workplace with respect to
the impending shortage of skilled workers. If implicit interfaces make work easier,
then higher motivation, lower downtimes, and a lower error rate can also be
expected. These inevitably lead to increased productivity, which is why retrofitting
or even renewing the machines can pay off.

The question of whether, in 2030, regulatory requirements will demand open and
standardized interfaces for data exchange for all kinds of manufacturing equipment
was expressed in projection 19. There is disagreement among the experts regarding
this projection, although they agree that open interfaces can only be introduced
through legal regulations or if a manufacturer prevails on the market. However, it
should not be underestimated what is happening in universities and other



organizations in the field of open-source projects. A good example of this is the
Robot Operating System (ROS), an open-source robotics middleware that originated
at the Stanford Artificial Intelligence Laboratory as part of the Stanford AI Robot
Project (STAIR) and is now widely used and making its way into the industry.
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Projection 20 dealt with the question of whether, in 2030, production employees
will operate their workstations from their homes, using remotely operated robots.
The general question about working from home at the shop floor level cannot be
answered conclusively: it is necessary to look in much more detail to identify which
activities could be carried out remotely from home. For some of the interviewed
experts, this will simply not be possible. For the rest of the experts, it is then
necessary to clarify the extent to which teleworking makes work easier for the
employee. Telework is not in itself a reason for enterprises to introduce it. It is rather
a question of the workplace’s attractiveness, flexible working hours, or prevention of
infections or injuries. Many researchers believe there will be a hybrid form in the
future, and research is currently being conducted in this field.

Finally, projection 21 focused on the scenario in which plant directors would be
able to manage multiple factories centrally from their home office due to the
complete and real-time transparency of all the operations in a digital system. In
contrast to the shop floor level, management is more abstract. The processes that
occur are not necessarily linked to and therefore dependent on physical objects.
Management is therefore inherently more suited to teleworking, at least superficially.
However, here too, the question must be asked as to what benefits and advantages
the employee receives from teleworking. For example, a disadvantage is that
personnel management, in particular, requires personal interaction. In this field,
researchers agree that we will also end up with a hybrid solution. The experts
interviewed did not consider the issue very relevant, as the group of people affected
is small. They pointed out that some functions – especially in monitoring – are
already possible. They also stated that personal contact and human-to-human inter-
action are important, especially as a manager.

It must be highlighted that several of the projections in this study have the
potential to be used in the future: projections 18, 20, and (in parts) 21 show that it
is possible to facilitate work and increase productivity at the same time. Furthermore,
the attractiveness of workplaces can be increased with more flexible working hours
and protection against infection or other dangers due to teleoperation.

Considering all the projections in this dimension, it becomes apparent that the
HMI projections evoke various challenges at first glance. For a long time now, HMI
has no longer consisted of buttons and switches only, but rather of incorporated
digital displays, dashboards, and touch screens in modern control systems. It is
possible to divide the challenges into general potential and barriers on a meta-level.
As in all transformation processes, where interactions between humans and
machines take place, it is essential to consider the humans’ needs, at least initially,
to increase acceptance (Hartson & Pyla, 2018). Acceptance is understood as the
willingness to use or work with a specific type of interface. In essence, acceptance is
largely determined by the ergonomics and usability of a technology. Thus, the
mentioned aspects regarding the results of the Delphi study should be understood



as indications for the successful implementation of a roadmap to the transformation
into Next Generation Manufacturing.
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Resilience Drivers in Next Generation
Manufacturing

Alexander Schollemann, Marian Wiesch, Christian Brecher,
and Günther Schuh

Abstract Given the high uncertainty in the likelihood of occurrence and the
technical, economic, and societal impacts of digital transformations in the
manufacturing industry, we conducted a technology foresight study, in the form of
a real-time Delphi analysis, to derive reliable future scenarios featuring the next
generation of manufacturing systems. This chapter presents the resilience dimension
and describes each projection in detail, offering current case study examples and
discussing related research, as well as implications for policy makers and firms. The
current COVID-19 pandemic and its impact on human health, the biosphere on
which we depend, and our need for certain commodities demonstrate the importance
of developing global resilience. In 2030, supply chains are expected to be more
decentralized, with production and sourcing moving closer to the end customer.
Centralized production networks have been shown to be vulnerable to disruptions,
and this trend is likely to continue. The majority of the experts do not expect
production costs to rise substantially as a result of more regional production and
higher inventory levels in order to cope with global crises. Some experts see
reshoring, which is characterized by flexibility and resilience despite supposedly
high costs in high-wage regions as a key long-term driver. In the future, production
costs, while still important, will only be one factor taken into consideration by
customers. The experts predict that AI-based decision-making systems will not be
able to significantly increase production resilience by 2030. Factors such as lack of
acceptance and the complexity of production networks are hindering the widespread
implementation of such systems. However, companies that are already investing in
AI see significant potential of this technology to help them overcome the challenges
posed by global crises.
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1 Introduction

The current COVID-19 pandemic and its impact on human health, the biosphere on
which we depend, and our need for certain commodities demonstrate the importance
of developing global resilience. As defined by sustainability scholars, resilience is
the maintenance of development in the face of surprising and anticipated changes
when there are thresholds between alternative paths, some of which are less desirable
than others, and when it is difficult or even impossible to turn back once the
threshold is crossed (Folke, 2006).

An analogy from biology with implications for human behavior can be used to
illustrate the need to strengthen resilience, e.g., through novel methods, as a means
of dealing with unexpected disturbances: “For example, a heatwave over a coral reef
with low resilience, can result in algae taking over the corals. This often cause
species loss, result in lower fish abundance, and large losses to the tourism sector.
The algae are hard or impossible to get rid of, the corals might never come back. The
people living off the reef can lose livelihoods dependent on tourism and fisheries. A
resilient reef would be able to return back and the communities around it continue to
develop. When a crisis hit, the resilience often comes from places less anticipated or
even neglected. For example, a case study of a shift from algae to coral dominated
communities on the Great Barrier Reef showed that recovery was primarily driven
by one single species that is relatively rare on the reef, a species that easily can go
extinct without notice under normal conditions but that is needed in crisis (Bellwood
et al., 2006). Similarly, it is the less dominating species in a mature forest that often
invades first and prepare the grounds for the return of the forest after a fire. Species
that are less visible, and seem less valuable, can have a big role to play for the system
to rebuild itself” (Gordon, 2020).

If we transfer this example to society during the COVID-19 pandemic, we can see
how the importance of the work not only of doctors but also of nurses for the elderly
has increased and how they have rebuilt the system or kept it alive. Transferring this
example further, to the global industrial economy, the COVID-19 pandemic caused
centralized supply chains, and thus entire production networks, to collapse in
response to public health measures. The heavy reliance on Chinese suppliers, for
example, meant that Apple had to curb production and at times allowed customers to
buy only two iPhones per person.

To cope with this vulnerability to disruption, the importance of individual
production systems within globally interconnected production networks must be
assessed at each point in time so that production networks respond resiliently to
disruptions. The increasing digitization of production, including the exchange of
digital information, can be a significant technical and methodological enabler to
increase resilience. In terms of the vulnerability of supply chains to disruptions, it
will be important for companies to use operational data to make their supply chains
more customized and independent.

Using a novel real-time Delphi approach (see chapter “Applying the Real-Time
Delphi Method to Next Generation Manufacturing” for a presentation of the method



and the sample, as well as chapter “Big Picture of Next Generation Manufacturing”
for an overview of the results), we developed propositions for different scenarios
within Next Generation Manufacturing in 2030. As suggested by Gawer (2014), we
used an integrative framework for platforms, distinguishing four layers: governance
(e.g., open forms of collaboration; see chapter “Governance Structures in Next
Generation Manufacturing”), organization (e.g., boundaries and decision-making;
see chapter “Organization Routines in Next Generation Manufacturing”), capabili-
ties (e.g., hybrid intelligence; see chapter “Capability Configuration in Next Gener-
ation Manufacturing”), and interfaces (e.g., open APIs and human-machine
interfaces; see chapter “Interface Design in Next Generation Manufacturing”). In
addition, and influenced by our shared experiences during the COVID-19 pandemic,
we added a fifth cluster of propositions addressing the need for resilience in future
digital manufacturing systems (see this chapter). We provide a set of 24 validated
projections based on 1930 quantitative estimations and 629 qualitative arguments
from 35 industrial and academic experts from Europe, North America, and Asia. In
so doing, we deliver a basis on which to substantiate academic discussions and
which can support firm decision-making on future technological developments and
economic implications that go beyond current speculations and siloed research.
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Projections were developed to assess the ability of increasingly connected pro-
duction networks to respond to unanticipated disruptions in a resilient manner. These
projections were evaluated by the experts in terms of their probability of occurrence
and their benefit in relation to the problem described (see Fig. 1).

Projection 22: In 2030, supply chains will have become more decentralized with
production and sourcing moving closer to the end customer to cope better with
global crises (e.g., pandemics).

Projection 23: In 2030, production costs will have increased substantially due to
more regional production and higher inventory levels to cope with global crises
(e.g., pandemics).

Projection 24: In 2030, AI-based decision systems will enable greater resilience
of production networks in the event of a global crisis (e.g., a pandemic).

2 Projection 22: Decentralization

The first projection within the field of resilience drivers states that in 2030, supply
chains will have become more decentralized, with production and sourcing moving
closer to the end customer to cope better with global crises. The study estimates its
probability of occurrence to be high, with a mean probability of 56.55%. Experts
with an academic background and experts from outside of Germany consider the
probability to be even higher (mean probability within academia, 63.00%; mean
probability ROW, 63.75%). As the interquartile range (IQR) is low, with a value of
2.00, a consensus was found among the experts about this probability of occurrence.
The expected influence on companies is considered relatively high, with a mean firm
impact value of 3.17.
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Recent years have clearly shown that global production networks are susceptible
to disruptions, with the COVID-19 epidemic exposing the weaknesses of supply
chains (Chowdhury et al., 2021). The high probability of occurrence and the high
impact on companies of this projection can be explained by the impact on the
economy seen in current events such as the blockade of the Suez Canal and the
associated obstruction of global shipping traffic. Experts considering the probability
to be lower argue that the current trend toward decentralization may abate once the
COVID-19 crisis is over. Additionally, company size could be a decisive factor.
However, decentralized production could offer a long-term solution approach, as
current trends toward greater self-sufficiency and pressures to reduce carbon foot-
prints, as well as rising geo-political trade conflicts, make its occurrence likely
according to the experts. The experts indicate that the impact on the operational
structure of companies will be medium if the projection occurs, mainly due to its
impacts at the production network level.

During the COVID-19 pandemic, the vulnerability of centralized production
networks became apparent. The heavy dependence on Chinese suppliers led to
Apple having to cut back on production, and customers were only allowed to buy
two iPhones per person at times. Honda also had no choice but to temporarily shut
down its production site in Wuhan (Cai & Luo, 2020). Amazon closed a warehouse
in Kentucky, and the food supplier Sysco had to reduce its workforce due to
restrictions in the restaurant industry. As global crises, e.g., pandemics, may occur
more frequently in the future, companies need to be prepared to withstand economic
pressure. Decentralization can solve many of the associated problems, such as
dependence on one country or its regulations. It will be important for companies
to use operational data to make their supply chains more customized and indepen-
dent. Society will benefit because it will be less vulnerable in times of crisis and
purchasing power will generally increase. The challenge is to find a mix of risk
avoidance and optimal use of data.

In this context, the data-based identification of adaptation needs in the design of
global production networks represents a fundamental challenge. The adaptations
required in response to the various changes mentioned are currently often made too
late, however, because due to their complexity, immediate adaptation of network
designs is not feasible (Moser et al., 2016). One of the main reasons is the delayed
recognition of changes and thus of the need for adaptation. Accordingly, considering
the hysteresis time in the design of global production networks, the latency period
from the occurrence of the change to the perception of the change to the identifica-
tion of the need for adaption must be shortened (Lanza et al., 2019). Recognition of
changes in the design of production networks, analysis of possible consequences and
correlations, and the derivation of network adaptation needs are requirements for the
proactive identification of adaptation needs. Based on the systematization of the
adaptation needs in the network, a data-based analysis of their causes and correla-
tions can be performed by identifying those factors influencing KPIs used to monitor
the network performance using a data-based approach. Finally, this is transferred
into the derivation of adaptation needs in order to support companies in the future in



network adaptation such as the decentralization of the global production network
(Schuh et al., 2020).
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3 Projection 23: Production Costs

The survey indicates a rather low mean probability of occurrence of 37.9% that
production costs will substantially increase due to more regional production and
higher inventory levels in order to cope with global crises such as pandemics.
Experts from academia or from outside of Germany rate the probability of occur-
rence as higher (mean probability within academia, 48.00%; mean probability ROW,
50.00%). The same result emerges in the evaluation of the impact on companies if
the projection occurs, which is assessed as medium overall, with a value of 2.94. The
experts with academic backgrounds assess the impact on the company as high, with
a firm impact factor of 3.50.

Most experts note that COVID-19 will indeed lead to a shift in supply chain
strategies toward greater resilience, with regional production as one possible change.
In this context, reshoring activities in global production networks are increasingly
gaining significance as ways to accelerate the shift to regional production. However,
these must be differentiated regarding their strategic orientation between short-term,
reactive reshoring decisions and long-term strategic decisions of the overall supply
chain (Barbieri et al., 2020). Some authors, therefore, see reshoring as a key long-
term driver, characterized by flexibility and resilience despite supposedly high costs
in high-wage regions. This is reinforced by new forms of automation, which have the
potential to prevent significant cost increases. In addition, more resilient production
could prove more cost-efficient in the long term, e.g., through fewer supply bottle-
necks. Although reshoring is associated with higher production costs compared with
the cost-oriented distribution of locations in global production networks, the major-
ity of experts do not expect production costs to rise substantially. There is disagree-
ment on the long-term trend, with some experts considering reshoring a trend that
will not prevail in the face of the resumption of globalization.

In the future, production costs, while still important, will only be one factor taken
into consideration by customers. Future generations will most likely not only
evaluate products based on price but also consider social and environmental factors.
The holistic consideration of sustainability dimensions is thus becoming increas-
ingly important for companies. In this context, the sustainability dimensions are
defined as economic, environmental, and social sustainability. For instance, the
current gold standard for production efficiency, overall equipment effectiveness
(OEE), is being adjusted to include sustainability factors (Boos, 2021). However,
as well as addressing these aspects in their products, processes, and sites,
manufacturing companies also have opportunities to exert an influence on produc-
tion costs and thus on the associated dimensions of sustainability through the design
of global production networks. Access to resources, e.g., green power or primary
resources, and the regulations regarding environmental and social sustainability



across globally distributed regions can have significant long-term impacts on pro-
duction costs or on customers’ purchase decisions.
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The economic repercussions of the COVID-19 pandemic have been tremendous.
Building an economy, and thus a production network, that is better able to cope with
such shocks will be critical in the upcoming years. However, automation and
intelligent use of data mean this will not necessarily lead to higher production
costs. Even if production costs increase slightly, firms can still be competitive.
Customers are increasingly evaluating products not solely based on cost measures
but are also demanding environmental and social sustainability.

4 Projection 24: Production Resilience

The experts assume a low probability that in 2030, AI-based decision-making
systems will enable greater resilience in production networks in the event of a global
crisis (e.g., pandemic). The study estimates the probability of occurrence to be low,
with a mean probability of 40.52%. As the interquartile range (IQR) is high, with a
value of 2.90, disagreement was found among the experts about this probability of
occurrence. This projection’s influence on companies is considered to be medium,
with a mean firm impact value of 2.90. The reason for this is that it will take longer
than by 2030 to integrate AI systems so fundamentally into all areas that they can be
used to cope with complex problems. Acceptance of such systems will also
take time.

According to the experts, AI-based, all-encompassing decision-making systems
for predicting the effects of and possible actions to be taken in response to unex-
pected events in order to increase resilience within production still require lengthy
development due to their complexity, and their implementation would also be
influenced by the need for acceptance of such systems. On the other hand, the
experts concede that such systems, if acceptance can be demonstrated, have great
leverage as a decision-making aid, since they are able to derive complex and
unknown causalities implicitly contained in the totality of the data. These causalities
can form the basis for important decisions, and thus the systems can be a major
contribution to increasing resilience in production. Nevertheless, the acceptance of a
holistic, AI-based decision-making system designed to respond to unexpected global
events in production is highly dependent on how well it can predict new events, their
effects, and possible responses using the knowledge it has learned so far.

Moreover, this acceptance would also depend on the comprehensibility of and the
level of trust in the proposed decision, as well as in the handling of tangential issues
like data protection, moral overlaps such as human surveillance, and legal respon-
sibility in the event of wrong decisions. In addition, global crises always have new
and unknown characteristics, which can mean that data patterns learned by AI from
the past do not or only partially reappear, and therefore the trust level for and
acceptance of AI-based decision systems will decrease. In particular, the interplay
between possible effects of unknown events and the complexity of production as a



holistic system consisting of production units, supply chains, organizational pro-
cesses, different data interfaces, and different participants brings high complexity,
which significantly increases the acceptance tolerance threshold.
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For this reason, AI-based decision-making systems are not evaluated as a prob-
able sole solution to dealing with global crises, but as an additional aid capable of
transparently presenting previously unknown implicit relationships contained in
historical data that may indicate causality, thereby assisting humans in dealing
with a crisis.

AI tools already exist and are already used in production today. Capgemini
(2019), Columbus (2020), McKinsey (2017), and McKinsey (2020) show concrete
examples of how AI can be used in production and how it can be systematically
scaled. The authors unanimously agree that AI is a game changer in manufacturing.
It has the potential to change performance across the breadth and depth of
manufacturing processes. Such tools produce quantitatively positive results, but
often the user is not involved in finding the result. This black box leads to less
acceptance. Coupled with the fact that production networks are very complex and
significant projects, especially in crises, people do not want to place all responsibility
into the hands of AI alone (Schuh et al., 2019). Despite the analyzed acceptance
problem of AI, a global survey by McKinsey (2020) shows that following the
economic challenges that pandemic response efforts brought to many companies,
those who see the greatest benefit in AI are increasingly embracing the technology.
These companies see a high potential in terms of increasing value creation through
the use of AI and continue to invest in it, even during the pandemic. Most respon-
dents from high-performing companies say their organizations have increased
investment in AI across all key business areas in response to the pandemic. From
the point of view of the leading companies in the study, AI as a future technology has
the potential to deal with global crises. This could lead to a wider gap between the
leading AI companies and the majority of companies that are still struggling to
capitalize on the technology. It is necessary here to address and solve the problems
mentioned in terms of acceptance of the use of AI applications in production. In
contrast to the companies in McKinsey’s (2020) study, the experts surveyed do not
currently believe that AI in production is a comprehensive technology for dealing
with crises. The leading companies in terms of investment levels in AI listed in
McKinsey’s survey demonstrate several practices that could provide helpful hints for
success and thus close the gap in AI acceptance.

5 Summary

In this chapter, macroscopic effects were highlighted in the context of global crisis
situations. In this respect, the COVID-19 pandemic in particular has highlighted the
fragility of global production networks and their associated supply chains, which
have been significantly shaped by the ongoing globalization of recent decades. Due
to this thematic topicality, the present Delphi study investigated whether supply



chains will become more decentralized in the next decade (P22) and whether
production costs will increase significantly due to more regional production and
higher inventories (P23). In addition, the study examined the potential of AI-based
decision systems to enable greater resilience in production networks (P24).
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Projection 22 (decentralization): the COVID-19 epidemic has exposed weak-
nesses in supply chains, which will lead to more decentralized production networks
in the coming years, with production and sourcing moving closer to the end
customer to cope better with global crises. In this context, data-based identification
of required adaptions to the global production network design plays an important
role in transparently detecting various risk factors and initiating appropriate mea-
sures along the production network.

Projection 23 (production costs): we found that despite the shift in supply chain
strategies toward regional production triggered by the COVID-19 pandemic, this
more resilient and flexible design of the production network is not necessarily
accompanied by higher production costs. Through automation, the intelligent use
of data, and, especially, a new awareness of environmental and social sustainability
among customers, production costs will not play a substantial role.

Projection 24 (production resilience): we found that AI-based decision-making
systems are not evaluated as a probable sole solution to dealing with global crises but
could be an additional aid capable of transparently presenting previously unknown
implicit relationships contained in historical data that may indicate causality, thereby
assisting humans in dealing with the crisis. For many experts, the traceability of
AI-based decisions is currently a black box, which is affecting acceptance. Never-
theless, other studies show that large companies, especially those that have experi-
ence with AI, are increasingly relying on this technology, as it is said to have great
potential for increasing value creation, which increases their belief in their ability to
better handle global crises.

This chapter investigated from the experts’ perspectives how the vulnerabilities in
global supply chains exposed by the COVID-19 pandemic will evolve within the
long-term design of production networks. In this context, short-term emergency
reactions such as the drastic ramping up of inventories are contrary to the long-term
development of resilient network structures. Whether the seemingly unstoppable
globalization drive will continue despite pandemics, rising protectionism, and global
crises is yet to be critically questioned. Consistent reshoring coupled with the use of
automation and digitization can enable high-wage locations to continue to operate
economically while simultaneously increasing network resilience. In this context,
however, it is unlikely that there will be a wave of reshoring, but rather a targeted
design of the production network in which data-based, early detection of adaptation
needs can provide transparency in the decision-making process.
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Future Scenarios and the Most Probable
Future for Next Generation Manufacturing

Marc Van Dyck, Sebastian Pütz, Alexander Mertens, Dirk Lüttgens,
Verena Nitsch, and Frank T. Piller

Abstract Based on the results of a rigorous Delphi study, we present scenarios that
portray a most probable future of Next Generation Manufacturing in 2030, enabled
by connected data (digital shadows) shared in cross-organizational data spaces. We
provide individual scenarios for the dimensions governance, organization, capabil-
ities, interfaces, and resilience, as well as one aggregated scenario for the future
development of the manufacturing ecosystem. Our analysis identifies two funda-
mental changes: a shift from the current focus in many Industry 4.0 use cases on
operational efficiency toward more ecologically and socially sustainable production
and an anthropocentric perspective complementing techno-centric production. We
discuss emerging tensions resulting from these changes.
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1 Overview

The way products are developed, produced, and distributed will fundamentally
change in the next decade. To portray a most probable future of Next Generation
Manufacturing in 2030, this chapter presents multiple scenarios which focus on
different dimensions in the framework suggested by Gawer (2014) and introduced in
more detail in chapter “How Digital Shadows, New Forms of Human-Machine
Collaboration, and Data-Driven Business Models Are Driving the Future of Industry
4.0”: Governance (e.g., open forms of collaboration), organization (e.g., boundaries
and decision-making), capabilities (e.g., hybrid intelligence), interfaces (e.g., open
APIs and human-machine interfaces), and resilience (e.g., decentralization). The
scenarios are substantiated by the collected quantitative (see chapter “Big Picture of
Next Generation Manufacturing”) and qualitative findings of the conducted Delphi
study and highlight those projections that were estimated as most likely and most
impactful. Direct quotes from the experts’ responses are used for illustrative pur-
poses and to emphasize the role of these scenarios as syntheses of the collected
expert assessments. Figure 1 summarizes a most probable scenario for Next Gener-
ation Manufacturing organized along the five dimensions and from internal and
external perspectives.

Governance

Organization

Capabilities

Interfaces

Resilience

Data privacy and 
security required to 
create acceptance

Ecosystems 
replace supply 
chains

Production 
transparency 
increases 
resource 
efficiency

Open interfaces enable 
data exchanges across 
organizations

Local production includes 
job shifts across regions

Data sharing across 
organizations enables new 
forms of collaboration

AI-based systems work 
together with humans 
(hybrid intelligence)

Complementary 
innovators provide 
solutions for 
sustainability

Human-centered interfaces 
enable implicit human-
machine interactions

Decentralized production enables 
faster and more customized solutions

INTERNAL EXTERNAL

Anthropocentric 

production

Data-based 

industrial 

ecosystems

Sustainable production ecosystem

Fig. 1 Most probable scenario for Next Generation Manufacturing
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2 Governance

The projections that form the most relevant scenario for the governance dimension
for the year 2030 address subscription models (P1), digital services (P2), data
sharing (P3), and industrial GDPR (P6):

Scenario The introduction of digital shadows creates opportunities for
business models with new forms of collaboration between suppliers, manu-
facturers, and customers. Increasingly, customers want to “buy guaranteed
production capabilities and not just machines.” Subscription models where
customers only pay for the use or outcome of a machine are also a potential
catalyst for new technologies. In particular, highly specialized equipment
could benefit from more flexible models which change investments from
capital expenditures (CAPEX) to operating expenses (OPEX). Meanwhile,
existing legacy machines that are focused on producing at high volume will
likely remain in traditional ownership models with a clear depreciation calcu-
lation. Here, competitive advantage and differentiation will be achieved “only
via software,” as physical efficiencies are exhausted. Since “many firms lack
the data capabilities” required to create software-based efficiencies by leverag-
ing data from digital shadows, machinery suppliers will offer them as digital
services and benefit from data learning effects across their customers. In
contrast, for specialized equipment, hardware remains crucial, and a “return
to much more competition based on hardware capabilities due to innovation in
materials, design, functionality, and shrinking global supply chains” is
expected.

A fundamental requirement for this scenario is data sharing across organi-
zations, i.e., digital shadows that incorporate usage data from various cus-
tomers and make supply chains transparent. While the traceability of
components offers clear benefits in terms of compliancy with regulations
such as the Act on Corporate Due Diligence Obligations in Supply Chains
(BMAS, 2021) and opens up opportunities for efficiency gains, many firms are
reluctant to share data. Internally, employees and managers fear security and
privacy issues given the extensive data collection required, which may violate
ethical requirements. Externally, firms fear exposing firm secrets when sharing
data with other parties in the supply chain: “manufacturers want to keep
control.” At the same time, small- and medium-sized firms feel forced by
large players to share data despite their doubts.

Creating acceptance by all stakeholders and ensuring security and privacy
will be key for these new collaboration modes that require data sharing and
involve joint risk-taking. Otherwise, potential negative effects, such as
monopoly building due to data network effects or failure of new business
models due to reluctance to share data, will prevail (Piller et al., 2021).

(continued)



However, it is still unclear how this acceptance can be achieved. One avenue is
new anonymization methods that allow secure data sharing without
compromising firm secrets and which ensure privacy protection. Another
avenue is new data protection regulations for industrial sectors, equivalent to
the European General Data Protection Regulation (European Parliament and
Council, 2016) for consumers. While this provides an opportunity for the EU
to set guidelines with potentially global impacts, it is unlikely to be realized
before 2030. Until then, data sharing agreements will be managed in bilateral
contracts. However, this involves a risk that proprietary standards managing
data sharing could be established by powerful players to the detriment of
smaller firms. Regulators should watch this closely.
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3 Organization

The projections that form the most relevant scenario for the organization dimension
for the year 2030 address hybrid intelligence (P8), AI assistants (P9), employees’
rights (P12), and workforce reduction (P13):

Scenario The development of the industrial internet along with the introduc-
tion of digital shadows will shape decision-making processes in manufacturing
companies across all organizational levels. As time progresses, the role of
AI-based decision support systems will continue to grow and will have
reached substantial level by 2030. One important use case for decision support
systems will be the support of managers, as “AI and statistics can help to
prepare data for strategic decision-making.” Thereby, the application of
AI-based algorithms will facilitate decisions “based on facts and data,” reduc-
ing the influence of managers’ gut feelings and intuitive judgments. Moreover,
decision support systems will make it much easier for managers “to consider a
multitude of influencing factors simultaneously and perform multi-criteria
optimization.” However, by 2030, the support of AI-based applications may
still be limited to “short-term decision-making,” and their use for long-term
decision-making on a strategic level may only be achieved at a later stage. The
main obstacle in this regard is the scarcity of adequate data, resulting in a high
level of uncertainty even for well-calibrated algorithms.

In line with their use at the managerial level, AI-based decision-making
agents will play a major role in operative production decisions. Here, auto-
mated decision-making will be particularly useful because operative decisions
are mostly “repetitive and a large data amount is available,” so they can be
used “for decision templates or scenario development.”Nonetheless, AI-based
decisions will still need to be supervised by human actors who will retain

(continued)



“final decision-making power,” upholding the relevance of human expertise.
Consequently, the introduction of AI-based decision systems will not lead to a
drastic reduction of the total workforce. Whereas the number of shop floor
workers might be reduced by about 20% due to industrial robots taking over
“repetitive tasks,” new “supportive jobs” for managing the AI-based systems
will emerge. For companies, it will be crucial to hire or train workers with the
appropriate digital skills to capitalize on the potential competitive advantages
of using AI technologies. Regarding the data sources of the digital shadows
that form the basis for the AI-based decision support systems, most
implementations in 2030 will access data on production machinery and pro-
cess parameters. In contrast, digital shadows of production workers will only
achieve limited application due to the associated risks of invading employees’
privacy. For those applications implemented in practice, unions will enforce
“advanced anonymization techniques [as] a prerequisite” to prevent individual
workers from being identifiable, reducing the potential for misuse of the data.
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4 Capabilities

The projections that form the most relevant scenario for the capabilities dimension
for the year 2030 address environmental sustainability (P15) and production trans-
parency (P16):

Scenario Digital shadows serve as a key enabler of both producing and
developing more environmentally sustainable products. Environmental sus-
tainability will become a decisive competitive factor demanded by customers
and employees alike and “enforced by financial markets.” It may become
central to a new corporate culture and boost employee morale, thanks to a
“higher purpose.” While all interests seem to be aligned, the extent of this
change will vary depending on the industry and the country. From a global
perspective, it “largely depends on what happens in emerging countries,”
which are more financially constrained and already suffering from the effects
of a changing climate. From an industry perspective, operating in an environ-
mentally sustainable manner is more difficult for asset-heavy industries and
certain technologies.

Even though there is “no other choice” but to comply with the need for
environmental sustainability, it is unclear which technologies will help achieve
this. In principle, transparency and data availability support sustainability.
They enable better forecasting, scenario analyses, and a reduction of waste,
potentially leading to an efficiency increase of 10–30%. However, production
transparency will not be fully realized by 2030 due to a lack of data readiness

(continued)



and a lack of digital competencies among small- and medium-sized firms.
Furthermore, other approaches are competing with digital shadows, such as
transparency through blockchain or sustainability certificates issued by inde-
pendent authorities.

134 M. Van Dyck et al.

5 Interfaces

The projections that form the most relevant scenario for the interfaces dimension for
the year 2030 address implicit interfaces (P18) and open data interfaces (P19):

Scenario While the implementation of digital shadows will undoubtedly
require the introduction of new interfaces both within production systems
and between companies, the potential advances will not be fully realized by
2030. Starting with human-machine interfaces on the shop floor, increasing
levels of automation and the application of AI-based support systems will
further reduce the amount of manual work performed by human actors and
shift their tasks toward collaboration with robots, automation control, auto-
mation supervision, and decision selection. Consequently, production workers
will increasingly be confronted with digital interfaces that provide insights into
or from AI-based systems. In terms of optimally designing these interfaces
between human actors and AI-powered automation, a promising approach is to
move from explicit interactions, with the human operator exercising direct
control, to implicit interactions in which the machine automatically adapts to
human behavior by recognizing and predicting human activities. The deploy-
ment of AI in this context offers a multitude of opportunities because it “will
enable systems to prepare and make better decisions.” Furthermore, the
required “sensor technologies are developing fast and [are] getting cheap,”
as is the hardware required for the necessary “processing power.” However,
“production systems [are] slow to adapt,” so the timeframe under consider-
ation, up to 2030, “is too early.” In addition, the adoption of implicit interfaces
will require high standards for robustness and reliability. Beyond 2030,
implicit interactions between production workers and AI-based systems will
be pursued, although a status of “100% implicit interaction” will not be
targeted.

Regarding the new demands for external interfaces associated with Next
Generation Manufacturing, the exchange of data between companies will
require standardized interfaces to enable efficient exchange processes and
new business models. Here, the introduction of regulatory requirements
demanding open and standardized interfaces “would be a major game
changer,” as they would “boost the [development of] standards.” However,

(continued)



such standards are rather “unlikely in [the] next 10 years.” Standardization
efforts will be hampered by companies relying on their “installed base and
legacy” production machines. In addition, “different manufacturers [will] still
protect their competitive knowledge and data and [will] resist full integration/
connectivity.” Therefore, regulations for standardized data interfaces are likely
to be implemented only after 2030, with the first regulations likely to be
enacted for an “economic bloc like the EU” rather than globally.
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6 Resilience

The projection that forms the most relevant scenario for the resilience dimension for
the year 2030 addresses decentralization (P22):

Scenario The COVID-19 pandemic caused significant supply chain disrup-
tions and created supply and labor shortages. Better AI-based decision support
systems and forecasting mechanisms will only have a minor impact in dealing
with future crises, as such events are by definition outliers which cannot be
predicted easily by learning from the past. Instead, more flexible production
setups are required. Decentralization of production is a viable option that
allows production to move closer to the customer, thereby making delivery
faster and solutions more customized. In this scenario, production plants will
not necessarily produce exclusively for one manufacturer. “Manufacturing-as-
a-service,” where plant operators provide production capacity to multiple
firms, thanks to a more flexible and interconnected production setup based
on digital shadows, offers new opportunities. “Trends toward de-globalization,
greater self-sufficiency, and pressures to reduce carbon footprint, together with
rising geo-political trade conflicts,” will exacerbate regionalization trends.
This also includes a job shift across regions. However, while the current
focus is on creating robust and resilient supply chains for future pandemics,
experts are wary as to whether this trend will reverse to globally centralized
production after COVID-19 due to cost efficiency.

7 A Most Probable Scenario for Next Generation
Manufacturing

A scaled deployment of digital shadows that connect data, products, and equipment
across organizational boundaries would significantly change the way products are
developed, produced, and distributed. Our Delphi study showcases how these
changes will materialize in a vision of Next Generation Manufacturing by 2030.



Two fundamental changes lie at the center of Next Generation Manufacturing: first, a
shift from operational efficiency to a broader set of economic, ecological, and social
sustainability principles in production, and second, an anthropocentric perspective
on production, where machines learn from humans and vice versa.
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Scenario Digital shadows enable cross-company data spaces which create
transparency along the value chain and a product’s life cycle (Otto & Jarke,
2019; Cappiello et al., 2020). In combination with machine learning and
simulation models, new insights and collaboration beyond organizational
boundaries open up new opportunities for sustainable production (Piller
et al., 2022). For instance, production equipment can be monitored throughout
its lifetime to improve its efficiency and longevity through predictive mainte-
nance and to enable second life use cases or recycling through exact health
measures.

Internally, digital shadows offer the opportunity to complement a techno-
centric understanding of production with an anthropocentric perspective
(Mertens et al., 2021). Human shop floor workers and production management
will continue to play key roles in manufacturing, but the type of work and the
required skills will change. In Next Generation Manufacturing, machines and
humans will be much more interconnected. Artificial intelligence-based deci-
sion support systems will complement human decision-making for tactical and
operational tasks. In addition, new forms of human-machine collaboration will
require more emphasis on user-centered machine interfaces.

Externally, cross-company data spaces enabled by digital shadows will
create the foundation for data-based industrial ecosystems. Decentralized
manufacturing systems will allow flexible and local production to be more
resilient and closer to the customer. At the same time, these decentralized
systems will be connected through open interfaces that enable data exchanges
between digital shadows in (nearly) real time. The data generated in these
ecosystems will provide new opportunities for differentiation while changing
the forms of collaboration. Third parties will be able to tap into this data to
develop service applications that help achieve greater efficiency and sustain-
ability. This resembles platform-based business models known from consumer
settings (Kopalle et al., 2020). Consequently, industry structures will change
where manufacturing firms can take on new roles, such as app complementors
or platform orchestrators (Piller et al., 2021). However, these forms of value
creation and capture require data sharing beyond organizational boundaries.
To ensure privacy and data security, new regulations for data protection will
need to be in place.
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8 Summary: Tensions Arising at the Interplay Between
Internal and External Perspectives

The above scenarios illustrate the most probable scenarios with a high impact on
employees, managers, firms, and society. Nevertheless, the impact of digital
shadows is controversial and uncertain, which is common for technology-related
Delphi studies (e.g., Jiang et al., 2017). One reason for uncertainty is the latent
tensions between the company-internal and the external (network) perspectives. In
particular, the governance and organization dimensions require a delicate balance
between the two perspectives. For instance, firms need to manage the need for
internal data privacy and protection and the need for external data sharing. Further-
more, firms are confronted with a lack of data science skills among their employees
and a lack of acceptance of AI-based decision support systems despite the need for
faster, automated, and data-based decision-making across organizations. These
tensions lie at the fundament of how digital shadows will be implemented and
how they will affect manufacturing firms (Bauernhansl et al., 2018). Depending on
how managers, customers, and regulators manage these tensions, the scenarios will
materialize differently.
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Hybrid Intelligence in Next Generation
Manufacturing: An Outlook on New Forms
of Collaboration Between Human
and Algorithmic Decision-Makers
in the Factory of the Future

Frank T. Piller, Verena Nitsch, and Wil van der Aalst

Abstract The text discusses the concept of hybrid intelligence, which is a form of
collaboration between machines and humans. It describes how this concept can be
used in manufacturing to help improve productivity. The text also discusses how this
concept can be used to help humans learn from machines. There is a debate in the
intelligence community about the role of humans vs. machines. Machine intelligence
can do some things better than humans, such as processing large amounts of data, but
is not good at tasks that require common sense or empathy. Augmented intelligence
emphasizes the assistive role of machine intelligence, while hybrid intelligence
posits that humans and machines are part of a common loop, where they adapt to
and collaborate with each other. The text discusses the implications of increasing
machine involvement in organizational decision-making, specifically mentioning
two challenges: negative effects on human behavior and flaws in machine
decision-making. It argues that, in order for machine intelligence to improve
decision-making processes, humans and machines must collaborate. The chapter
argues that hybrid intelligence is the most likely scenario for decision-making in the
future factory. The chapter discusses the advantages of this approach and how it can
be used to improve quality control in a production system. The transformer-based
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language model called GPT-3 can be used to generate summaries of text. This task is
difficult for machines because they have to understand sentiment and meaning in
textual data. The model is also a “few-shot learner,” which means that it is able to
generate a text based on a limited amount of examples. Transformer-based language
models are beneficial because they are able to take the context of the processed
words into consideration. This allows for a more nuanced understanding of related
words and concepts within a given text.

[Abstract generated by machine intelligence with GPT-3. No human intelligence
applied.]
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1 From Human-Computer Interaction to Human-Machine
Collaboration

As summarized in the previous chapter “Future Scenarios and the Most Probable
Future for Next Generation Manufacturing”, the most probable scenario resulting
from our Delphi study on the future of digitalization in manufacturing predicts two
fundamental changes until 2030 that will be enabled by the scaled deployment of
digital shadows connecting data, products, and equipment across organizational
boundaries: first, a shift from the current focus on operational efficiency to a broader
set of economic, ecological, and social sustainability objectives driving future
manufacturing strategies and second, an anthropocentric perspective on production
where machines learn from humans and humans from machines in a much more
collaborative form as compared to the status quo today.

In this final chapter of our book, we build on the second development. It
corresponds to the paradigm shift from a technology-centered toward a human-
centered digitalization and work design, consistently reconsidering the role of
humans in the factory of the future (Mütze-Niewöhner et al., 2022; Hirsch-Kreinsen
& Ittermann, 2021). Chapters “Organization Routines in Next Generation
Manufacturing” and “Capability Configuration in Next Generation Manufacturing”
already discussed these developments in larger detail. Human-centered digitalization
and work design are also a central element of our understanding of an “Industry 4.
U,” as introduced in the first chapter of this book, describing the next evolution of
Industry 4.0—centered on people and planet.

Human-centered digitalization starts with using technology to support humans at
work in an individually customized manner by taking individual capabilities, habits,
and preferences into account. Nevertheless, it also has a profound impact on how
decisions are made in an organizational context, enabled by new forms of collabo-
ration between humans and machines (machine intelligence). Delphi Projection P8
proposed the rise of a “hybrid intelligence,” suggesting that in 2030, “strategic
production decisions will be executed in close interaction between humans and
AI-based algorithms.” Our expert panel demonstrated consensus and a high proba-
bility that this projection will be realized within the next decade.
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In this chapter, we explore the concept of hybrid intelligence in larger detail.
While there are more questions than answers and we are just at the beginning to
investigate this concept, early examples are already here. We used a specific use case
of (a weak) hybrid intelligence to write this book: a (transformer) language model
helped us to compose the abstracts and summaries of this book. While probably just
a simple form of hybrid intelligence, it still provides a good illustration of a new form
of collaboration between machines and us. We will discuss this specific application
and its technical background in larger detail toward the end of this chapter. Before,
we outline our understanding and definition of hybrid intelligence and the open
research questions it poses with regard to the future organization of work. In this
context, we present a specific scenario of using hybrid intelligence for learning and
continuous improvement for Next Generation Manufacturing.

2 Hybrid Intelligence: Concept and Definition

There used to be a clear separation between tasks done by machines and tasks done
by people (van der Aalst, 2021). Machine intelligence, i.e., mixtures of artificial
intelligence (AI) and machine learning (ML), can deal amazingly well with unstruc-
tured data (text, images, and video) as long as there are enough training data. In the
corporate context, the use of machine intelligence attempts to make structures and
processes more efficient. Applications in speech recognition (e.g., Alexa and Siri),
image recognition, automated translation, autonomous driving, and medical diagno-
sis have blurred the classical divide between human tasks and machine tasks.
However, while machine intelligence works well for such clearly defined tasks, it
is not foreseeable that it will become capable of fully mapping complex business
problems in organizational contexts (Dellermann et al., 2019) or solving multiple
tasks simultaneously (Raj & Seamans, 2019). Although current AI and ML technol-
ogies outperform humans in many areas, tasks requiring common sense, contextual
knowledge, creativity, adaptivity, or empathy are still best performed by human
intelligence. Machine intelligence, on the contrary, is about data and algorithms and
can be characterized by terms such as fast, efficient, cheap, scalable, and consistent.

Taken together, Dellermann et al. (2019) define hybrid intelligence as:

the ability to achieve complex goals by combining human and artificial intelligence, thereby
reaching superior results to those each of them could have accomplished separately, and
continuously improve by learning from each other.

Following this definition, hybrid intelligence hence blends human intelligence
and machine intelligence to combine the best of both worlds. As things stand today,
it is the most likely deployment scenario of machine intelligence in the corporate
context over the next few decades. Hybrid intelligence aims to leverage the com-
plementary strengths of human and machine intelligence in such a way that better
overall performance can be achieved than when machines or humans are used alone
(Dellermann et al., 2019; Kamar, 2016). Even in often-cited application scenarios
that use AI-based algorithms for decision preparation or outsource decision-making



to AI (e.g., laboratory data interpretation, human resources, claims processing),
human actors invariably play a central role (Shrestha et al., 2019).

142 F. T. Piller et al.

A closely related term, augmented intelligence, emphasizes the assistive role of
machine intelligence (especially ML), when deep neural nets and other data-driven
techniques enhance human intelligence rather than replace it. In this understanding,
AI and ML are shifting human intelligence on a higher level, just like telescopes are
there to enhance human vision. The term is widely used especially in the literature on
computational medicine for algorithms supporting humans in medical diagnosis and
research. Long and Ehrenfeld (2020) proposed such an augmentation scenario
impressively for the case of reacting to the Corona pandemic (in a paper published
at a time when the general public hasn’t realized yet that there was a pandemic),
forecasting a coordinated research endeavor to fight the spread of the disease that
would have been not possible without strong ML capacities supporting the research
teams. Reality proofed their predictions right.

However, in the understanding of augmented intelligence, there still is a sequen-
tial process in the division of labor between humans and machines: Machines
process large amounts of data, search for patterns, and make predictions, but
basically support humans, who drive the process, and execute the results of the
AI. Our understanding of hybrid intelligences goes further, regarding human and
machine intelligence as two elements of a common loop. In doing so, we follow the
definition by Dellermann et al. (2019), as presented above, or Zheng et al. (2017),
who describe a “human-in-the-loop hybrid-augmented intelligence” system, where
humans are always part of the system. In this system, humans first influence the
outcome (of a machine intelligence) in such a way that they provide further judgment
if a low confident result is given by the algorithm. But the collaboration goes further.
The idea is to “realize a close coupling between the analysis-response advanced
cognitive mechanisms in fuzzy and uncertain problems and the intelligent systems of
a machine” (Zheng et al., 2017: 154). Hence, human and machine intelligence adapt
to and collaborate with each other, forming a two-way information exchange and
control (a similar understanding has been outlined by Pan (2016) in his conceptual-
ization of an “Artificial Intelligence 2.0”). This is why we prefer to use the term
hybrid (and not augmented) intelligence.1

A good illustration of this collaboration between human and machine intelli-
gences provides AlphaGo, a Go-playing computer developed by DeepMind Tech-
nologies (a firm belonging to Alphabet Inc., the mother company of Google).
Commonly seen as a breakthrough in machine intelligence, AlphaGo defeated the

1Zheng et al. (2017) also describe a second concept of human and machine collaboration: “cogni-
tive computing-based hybrid-augmented intelligence.” While out of the scope of this chapter, it is
worth mentioning. Cognitive computing-based hybrid-augmented intelligence refers to a machine
that “mimics the function of the human brain and improves computer’s capabilities of perception,
reasoning, and decision-making. In that sense, [it] is a new framework of computing with the goal of
more accurate models of how the human brain/mind senses, reasons, and responds to stimulus,
especially how to build causal models, intuitive reasoning models, and associative memories in an
intelligent system” (Zheng et al., 2017: 154).



best-ranked Go player Ke Jie in 2017. The more powerful AlphaGo Zero learned by
just playing games against itself but was able to defeat any human player by the end
of 2017. However, this has not been the end of the story (van der Aalst, 2021). The
interplay between human intelligence and machine intelligence led to new insights.
AlphaGo showed human players new strategies for playing Go, as some of the
world’s leading Go players acknowledged [as recorded in Baker and Hui (2017)].
Shi Yue said “AlphaGo’s game transformed the industry of Go and its players. The
way AlphaGo showed its level was far above our expectations and brought many
new elements to the game.” Zhou Ruiyang said “I believe players more or less have
all been affected by Professor Alpha. AlphaGo’s play makes us feel freer and no
move is impossible to play anymore. Now everyone is trying to play in a style that
has not been tried before.” At the same time, the new strategies explored by the
human players inform the machine algorithm. Humans can learn from machines, and
machines from humans: “We look forward with great excitement to AlphaGo and
human professionals striving together to discover the true nature of Go,” Baker and
Hui (2017) conclude a review of the innovations to the gameplay of Go, resulting
from the collaboration of human players and the AlphaGo machine.
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Fig. 1 Hybrid intelligence (HI) aims to combine the best of human intelligence and machine
intelligence [Source: Building on van der Aalst (2021) and Zheng et al. (2017)]

Hybrid intelligence aims to combine the best of both worlds, as illustrated in
Fig. 1. The recent developments in AI and ML have extended the reach of software
and hardware automation (robots). Once a robot is able to perform a repetitive task at
a similar level of quality, it is often also more reliable and cost-effective. However,
humans still have unique capabilities. For example, we have the ability to transfer
experiences from one problem domain to another. As van der Aalst et al. (2021)
argue, AI/ML cannot deal with disruptions. The Corona pandemic or events of
severe weather like the flooding in Germany in July 2021 have shown that when



there is a sudden dramatic change, predictive models fail, no matter how much data
was there before. Especially at the beginning of the Corona pandemic, the
established algorithms predicting demand in supply chains failed because of the
unforeseen demand for certain products (e.g., pasta and toilet paper) combined with
simultaneous restrictions for travel, work, and business. In such a situation, machine
intelligence needs to be complemented by human intelligence.
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But also in non-catastrophic events, humans need to remain in the loop. The idea
of hybrid intelligence is not just to use humans when machine intelligence fails due
to disruptions. The allocation of machine intelligence in decision-making processes
often leads to more efficient, but sometimes also to unreflective or non-transparent,
solutions with unintended biases. This, in turn, leads to a rejection of the AI
contribution (acceptance) and thus hinders the exploitation of its potentials. Consider
situations that need empathy, creativity, or ethics (van der Aalst, 2020). Decisions in
these situations will also demand human contributions and cannot entirely be
executed by a machine. Machine intelligence and human intelligence will comple-
ment each other. Understanding these factors as well as the mechanisms of interac-
tion between humans and machine intelligence is a domain that opens a wide
demand for further research. We will explore these dynamics in larger detail in the
following section.

3 New Rules for Task Allocation: Division of Labor
Revisited

The rise of hybrid intelligence asks us to reconsider one of the most fundamental of
all economic and ergonomic questions: the division of labor and task allocation in an
organization and individual work systems. While the development of machine
intelligence is a field of computer science (decision routines and data structures)
and research on corresponding technical applications of AI is primarily located in the
engineering sciences, the implementation of hybrid intelligence is an economic
(management) phenomenon (Bailey & Barley, 2020; von Krogh, 2018). It asks the
question how to efficiently design decision-making in an organization.

Since the days of Frederick Taylor and Henry Ford, the idea of the ideal human-
machine task division has evolved considerably from an industrial engineering and
ergonomic perspective. Machine intelligence has the potential to be more than a tool,
as it can also take on the role of a work partner or even a supervisor, as suggested in
the debate of algorithmic management (Lee et al., 2015). In a work system, humans
and AI need not oppose each other, but can complement each other as a team. Still,
today, humans are only used for monitoring systems automated by machine intelli-
gence. These humans are either under-challenged or fatigued, which significantly
prompts errors. Other humans, who already are heavily burdened by their own
subtasks, get overwhelmed by the need to make additional decisions as to when
AI support should be utilized. Hence, to effectively support and relieve humans,



machine intelligence should therefore work largely independently and recognize
when support is necessary and desired. Furthermore, a dynamic division of tasks
between humans and machines could adapt to varying situations, tasks, and user
states, avoiding states of cognitive overload and underload. As a basis for such
adaptive support, data providing information about the states of the individual
components of a work system, like the involved human(s), equipment, the environ-
ment, as well as task and organizational goals, are needed and can be provided in the
future in the form of digital shadows.
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When the extent of decision support by machine intelligence is reaching intensity
levels that seemed impossible in the past, research is needed how tasks can be
allocated in the continuum between machine intelligence and human intelligence.
Prior research in this domain rather described the challenge based on a few case
studies (e.g., Iansiti & Lakhani, 2020; De Cremer, 2020) or exploratory surveys
(Berditchevskaia & Baeck, 2020) and rather focused on the practical implementation
of decision processes with machine intelligence, but neither examine their organi-
zational impact nor do they follow the understanding of a hybrid intelligence, as
discussed before.

We propose to structure such a research endeavor into two dimensions:

1. What is the (optimal) degree of integration of machine intelligence into organi-
zational decision processes, and what are the tasks remaining for humans and the
tasks where a human-machine collaboration is the preferred solution?

2. What is the quality of decisions made by the use of machine intelligence—not just
when compared to the factual quality of the decision for a given task
(if benchmarked against human decisions) but also when taking factors of
organizational acceptance and adoption of the machine decision into account?

3.1 Degree of Machine Intelligence Integration into
Organizational Decision Processes

To analyze the degree to which machine intelligence is involved in organizational
decision-making, the established logic of the automation pyramid in engineering
provides a good framework (Endsley, 1987). Consider the different cases shown in
Fig. 2. The two extremes are the established situations of human and machine
intelligence. But as the picture shows, there is a scope of hybrid situations [(b) to
(d) in Fig. 2]. Here, to varying degrees of intensity, human and machine intelligence
interact, each with particular strengths (and weaknesses) and major differences in
capabilities and behaviors, in ways that did not exist in earlier human-human
interactions (Berditchevskaia & Baeck, 2020; Groensund & Aanestad, 2020). In a
narrow understanding of our definition of hybrid intelligence, only Case
(d) addresses the intended collaboration between human and machine intelligence;
Cases (b) and (c) are rather situations of “augmented intelligence.” However, the



borders between these areas are fuzzy and constantly moving, as we will illustrate
with a simple example at the end of this chapter.
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Fig. 2 Different situations of combining human and machine intelligence

All situations of hybrid intelligence have immediate consequences for the behav-
ior of individuals and thus for the resulting (quality of the) decisions and their
implementation. In the longer term, they will also result in indirect effects, when
people’s experiences with machine intelligence influence their subsequent behavior
in other situations (e.g., always expecting that there is a machine intelligence at hand
to support a human task). Also, undesirable path dependencies may arise, such as a
loss of knowledge or skills (Lebovitz et al., 2022), as experienced by the use of
GPS-based navigation systems, which deterred the ability of many humans to
navigate without machine support.

Hence, a critical question is when the potential benefits of allocating decision-
making tasks to machine intelligence (increasing the efficiency and effectiveness of



the decision-making process) are (over)compensated by new costs and challenges.
These costs include both the efforts for developing and implementing the algorithms
and the cost of adapting an organizational design to the new situation. Also, indirect
costs in the form of negative effects on human behavior must be considered, e.g.,
costs resulting from acceptance problems. Acceptance here addresses both the
individual level, i.e., humans who must share decision power with machine intelli-
gence and collaborate with it, and the societal level of acceptance by stakeholder
groups such as trade associations, unions, or regulatory institutions.
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3.2 Consequences for Decision Quality

For certain, well-defined decision situations and tasks, machine intelligence provides
without doubt better results, i.e., adds real value (without obvious violation of norms
and other constraints). However, also in these situations, a remaining challenge is
often the black-box nature of the solution (Shrestha et al., 2019). In computer
science, approaches are therefore being developed to make AI more comprehensible
(Rai, 2020), so that people are more likely to accept and implement the solution
provided by the machine intelligence (when completely autonomous task perfor-
mance is not possible/desirable). Scenarios of using hybrid intelligence are obvious
in these decision-making situations.

In other situations, however, it is not certain whether machine intelligence can
provide a suitable and better solution. This may be because (1) relevant norms to the
decision are not observed by the machine and/or (2) the technical solution is
“flawed,” because the underlying data basis is insufficient or the modeling has not
adequately captured the problem or cannot capture it due to unknown causal
relationships. An example of such flawed decisions can be found in recruitment.
When past career paths and performance patterns are used as the basis for future
hiring, women tend to be left out of the equation (Cowgill & Tucker, 2020). This
results in a conflict with the social norm of increasing diversity. The reasons behind
these flawed decisions can be insufficient amounts of data or discriminatory patterns
contained therein, but also an ill-defined notion of recruitment performance. How-
ever, once such a problem has been understood, humans together with machine
intelligence can improve automating these decisions in the mid-term.

We believe that this situation also reflects the reality in most manufacturing
companies today (Agrawal et al., 2019; Raj & Seamans, 2019). Machine intelligence
is used but requires collaboration with human decision-makers to result in an optimal
solution. Hence, an important question is how humans could check the quality of
prescriptions provided by a machine, considering a potential violation of norms or
possible “errors,” before implementing the solution in a corrected manner, a proce-
dure that Groensund and Aanestad (2020) called “augmenting the algorithm.” As we
will argue in the next section, real-time simulation models enabled by digital twins
and shadows allow exactly such an ex ante validation. At the same time, structuring a
machine intelligence solely according to human thought patterns (or those that



humans can understand) is not sufficient either, as it may model the problem task
inadequately or follow violations of norms by human decision-makers. This is
exactly where the vision of a hybrid intelligence comes into place. Once the issues
outlined before are recognized and understood, either an autonomous decision
process by machine intelligence could be improved, or the decision could be
structured in such a way that humans stay in the loop, taking social norms or
intended consequences into account. Equally, however, humans also improve their
own decision-making processes, when, for example, a machine intelligence suggests
previously unknown initial solutions or uncovers distorted decision-making patterns
of humans in the past. The loop is closing.
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4 Hybrid Intelligence in Next Generation Manufacturing

While we believe that hybrid intelligence will strongly influence all kinds of
decisions and task execution in an organization, we want to demonstrate such a
scenario for Next Generation Manufacturing, as central to this book. As introduced
in chapter “How Digital Shadows, New Forms of Human-Machine Collaboration,
and Data-Driven Business Models Are Driving the Future of Industry 4.0”, the
context of this work is the interdisciplinary research cluster Internet of Production
(IoP) at RWTH Aachen University (iop.rwth-aachen.de), enabling a new level of
cross-domain collaboration along the entire product life cycles from engineering
over operations toward the usage stage (Brecher et al., 2016). The IoP pursues a
vision called the World Wide Lab (WWL), in which processes, factories, entire
companies, and the managers and workers constituting these organizations can learn
from each other by sharing experiences and knowledge (Brauner et al., 2022).
Corresponding to the relationship of the Internet and the World Wide Web
(WWW), the WWL aims to be a network of multisite labs in which models and
data from experiments, manufacturing, and usage are made accessible across com-
pany borders to gain additional knowledge. A main driver of the WWL is digital
shadows, i.e., purpose-driven, aggregated, multi-perspective, and persistent data sets
from production, development, or usage (Liebenberg & Jarke, 2020). Digital
shadows are a specification of the broader idea of digital twins (for more details,
refer to chapter “How Digital Shadows, New Forms of Human-Machine Collabora-
tion, and Data-Driven Business Models Are Driving the Future of Industry 4.0”).
The cross-domain exchange of digital shadows in the form of data spaces can make
data more valuable, opening the present data silos in different companies—a core
enabler of better machine intelligence.

In our understanding of the Internet of Production, digital shadows are the “units
of data” shared among organizations. They connect data, products, and industrial
assets within and across organizations and are the foundations for data-driven
planning and decisions within an organization (factory) and in-between organization
(supply chains, value chains) by using real-time and historical data to simulate
predicted futures. In this loop, hybrid intelligence plays a central role. Figure 3



outlines such a hybrid decision-making combining machine intelligence and human
expertise in a collaborative form. The figure shows three different modes of learning
(understood here generically as any kind of decision-making in an existing
manufacturing system to improve the system’s operational efficiency, to cope with
disturbance, or to increase the system’s potential for strategic differentiation).
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Fig. 3 Three models of learning in manufacturing: (1) causal learning, (2) machine learning, and
(3) model-based learning based on digital shadows [building on Brecher et al. (2017)]

1. Human intelligence: Causal learning is the established way we learn. Building on
domain knowledge acquired either by experience (learning on the job) or by
formal education, humans have a unique capability to understand a complex
system and utilize or improve it by trial-and-error learning. The experience
curve effect is based on this learning mode, as are practices like Lean Six
Sigma. Informed by their domain expertise, a team at a production station defines
a problem area (an application), sets up assumptions (hypotheses) how to achieve
an improvement, tests the assumptions via experiments to gain insights, and then
either implements the solution (if the experiment was successful) or redefines the
assumptions and conducts a new experiment. The development of the hypotheses
is based on theory, often captured in models of the systematic influencing factors
of the production system (like fluid or thermal dynamics) and uses the real
production system as the test bed for empirical validation (empiricism). Such a
causal learning process can be very powerful, but it is often slow and prone to the
assumptions human draw and the hypotheses they set up.

Conventional (digital) simulation models also belong to this learning mode.
An a priori simulation uses (“theoretical”) model knowledge to simulate
(an extract of) the production system, so that specific behaviors (assumptions,
scenarios) can be tested. These digital models can be used to reason about reality
and answer what-if questions. However, digital simulation models are a reflection
of reality that is created manually and functions in an offline manner, i.e., the
model does not change when reality changes (van der Aalst et al., 2021). Hence,
conventional simulation models are outdated when the production system goes
into operations, as there are numerous stochastic factors influencing the system
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behavior, like temperature conditions, material characteristics, or the mood of the
humans involved. All of these factors lead to a continuous change of the system
(like an abrasion of a component, minimal modifications of a material, etc.).
Conventionally, these changes are not captured in the simulation model, which is
why experiments in the real system are required.

2. Machine intelligence: Artificial intelligence and machine learning came up as the
new way to learn. Machine intelligence is data-driven and learns from data
without explicitly being programmed. In manufacturing, cyber-physical systems
provide these data in real time (in the form of digital twins and shadows) and store
it in repositories (data spaces) where algorithms can find insights and interrela-
tions between different data sets. Today’s usage of machine learning for many
tasks that before could only be done by humans can be attributed to progress in
deep learning techniques, where artificial neural networks (ANNs) having mul-
tiple layers progressively extract higher-level features from the raw input (van der
Aalst, 2021). For example, we can train an ANN to distinguish between pictures
from a vision control system that show work pieces with adequate and others with
insufficient quality. While training, the ANN updates the weights in the internal
representation until the number of incorrectly classified pictures is minimized.
Then the trained ANN is used to classify test data, i.e., unseen pictures of good
and bad pieces that need to be classified correctly. Given enough training data,
such an ANN may perform amazingly well in automating quality control,
although it was never programmed to do so and has no explicit knowledge of
what makes a good and a bad work piece.

Beyond such automation scenarios enabled by machine intelligence, also
higher-level learning can take place. When the quality data (from the automated
vision control system) is matched with data from other workstations of this
production system, algorithms can find patterns between two system elements,
identifying also states in one production step that causes later whether a work
piece is labeled as good or bad. This ability of finding patterns in huge data sets
led some people to say that the future of learning in manufacturing is only pattern
recognition in huge data spaces—no human input and no domain knowledge
required. However, we believe—and were confirmed by the results of our Delphi
study—that such a pure machine intelligence scenario is unlikely to cope with the
complexity of a real production system.

3. Hybrid intelligence: Model-based learning in real time is our proposed scenario
for learning in Next Generation Manufacturing. Without doubt, machine intelli-
gence can perform repetitive operational tasks more efficiently than humans can.
Machine learning algorithms also have an unmatched capability of finding
patterns in large data sets. We propose that these insights generated by machine
intelligence serve as a highly educated “hunch” for humans, who combine it with
their domain expertise on a higher level. An important component of this
approach is the availability of digital shadows as virtual, real-time digital coun-
terparts of something that exists in the physical world (e.g., a production system,
workstation, or work piece). The digital counterpart should help to make deci-
sions in a better way, by not providing the real-time data from which a machine



intelligence can generate its insights, but also the test bed where ideas for
improvement and optimization can be validated virtually.

Consider the quality example from Scenario (2). Let us assume that an
algorithm provided an insight in the form of a prediction on the causes of a
quality issue: “When the temperature in Station A dropped below a specific
threshold, later quality errors occurred in Station E.” With the availability of a
digital shadow, and different to conventional digital simulation models as in
Scenario (1), the model behind the digital shadow is automatically derived and
changes when reality changes. The digital shadow can now be used to reason
about reality and answer what-if questions. Hence, assumptions on how to
improve the quality issue in our example can be tested virtually in the simulation
models embedded in the digital shadow. This connects Scenarios (1) and (2).
Based on their intuition and domain expertise, human decision-makers could
make conclusions on how to improve the quality of the system, e.g., different
approaches to control the temperature in Station E in a more stable way or
approaches to counterbalance the temperature effect on to work pieces in later
word stations. These assumptions about how to improve the system’s quality,
provided by human intelligence but augmented by insights generated by machine
intelligence, could now be validated in the virtual shadow. The virtual experi-
mentation allows testing of many more alternative scenarios for improvement. A
machine intelligence could support this experimentation, e.g., by proposing
different scenarios and predicting their outcomes.

In a further state, an automated real-time feedback loop can be established.
The insights produced by the digital shadow could then either automatically
trigger changes in the production system or become implemented manually by
humans after interpreting the results (van der Aalst et al., 2021). Results of the
digital shadow directly affect reality. For operational situations, autonomous
learning and optimization is likely. For example, when the simulation model
predicts a delay, the production process could be reconfigured automatically
(similar to the re-routing algorithm in a navigation system when it is informed
about an incident on the originally planned route). For more complex learning
scenarios, like restructuring the manufacturing system or coping with disruptions,
the advanced simulation model embedded in a digital shadow allows human
decision-makers to evaluate all possible decisions in the virtual world without
causing harm, waste, and costs in the real (physical) system. With cheaper and
richer experimentation, the likelihood of finding a better solution increases.

We have to stress that this scenario is a picture of the future yet, especially
when we apply it on the level of a larger system. In our research in the Internet of
Production cluster at RWTH Aachen, our colleagues were able to demonstrate
this approach on the component and work station level (Brecher et al., 2019; Xi
et al., 2021). Process mining can serve as a concrete technology to facilitate the
development of such a virtual shadow/twin of an entire system (van der Aalst,
2016). Using process discovery, so-called control-flow models can be derived.
Aligning these models with event data, it is possible to add different perspectives
(time, costs, resources, decisions, etc.). The resulting elaborate model can be
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simulated. Using process mining, it is relatively easy to create a digital shadow in
terms of a frequently updated virtual replica of a physical object. However, it still
is rather difficult to create a model that behaves like a real system, where multiple
processes interact and compete for resources concurrently. To fulfill the vision of
a digital shadow that automatically takes action, action-oriented process mining
provides initial ideas (e.g., the Celonis Execution Management System can trigger
corrective workflows using the Integromat integration platform). But despite
these initial capabilities of process mining, it is fair to say that this scenario of
hybrid intelligence is more a vision than a reality. We need to keep humans in the
loop (Abdel-Karim et al., 2020) to cope with the complexities of an entire
production system. This is why we regard hybrid intelligence as the most likely
scenario for decision-making the factory of the future.

5 A Simple Application of Hybrid Intelligence in Publishing

We want to close this chapter by a simple use case of hybrid intelligence. When
writing and producing this book, we recruited an AI as a member of our author team,
tasking it with creating all abstracts of this book’s chapters and writing the book’s
preface. This worked amazingly simple, providing us a real glimpse into a future
where machines and humans collaborate intuitively.

The AI we used is a transformer-based language model. While quantitative data
prevails in a production context, much knowledge is shared through natural lan-
guage. By talking to a colleague, listening to a lecture, or reading a book, under-
standing language grants us access to a plethora of knowledge. Today, AI has
reached a good level of language understanding, so that we can use such technolo-
gies to further share and create knowledge. This makes language models an espe-
cially interesting form of AI to use in knowledge-intensive work (Bouschery et al.,
2022).

Transformer-based language models are a special kind of AI used for natural
language processing (NLP), which Liddy (2018: 3346) defines as a range of
“computational techniques for analyzing and representing naturally occurring texts
at one or more levels of linguistic analysis for the purpose of achieving human-like
language processing for a range of tasks or applications.” In general, natural
language processing is not new to firms. It has been used, for example, in text
analysis (text mining), like generating insights from maintenance or service reports.
Prior models have typically been very task specific. Also in this field, a great deal of
progress stems from advances in ANNs. Newer NLP technologies show the potential
to take on multiple knowledge-related tasks and cannot just analyze existing text but
also generate new one. A core example of these advanced NLP models is generative
or transformer-based models. At its core, language modeling is the process of
predicting the next word in a sequence based on its preceding characters or words.
This field has seen continued progress over the past decades with a trend toward
larger and more complex models rapidly increasing the models’ capabilities—from



the mere suggestion of related words to state-of-the-art models that can produce full
newspaper articles indistinguishable from human-written text (Brown et al., 2020).
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New transformer-based models contain attention mechanisms that allow for
parallelization during the processing of inputs and thereby eliminate some of the
main performance issues of recurrence-based models, leading to significantly faster
models (Vaswani et al., 2017). Another big advantage of these types of models is
their ability to take the context of the processed words into consideration, which
allows for a far more nuanced understanding of related words and concepts within a
given text and subsequently more complex applications. Today, most of the state-of-
the-art language models are based on this transformer architecture and rely on large
data sets only for pre-training purposes. Examples include Google’s BERT model or
OpenAI’s line of Generative Pre-trained Transformers (GPT). The number of
parameters used to generate the models’ output has increased significantly over the
last few years. For example, the original BERT model (Devlin et al., 2018) uses
340 million parameters in its largest instance. This pales in comparison to OpenAI’s
latest model, GPT-3. In just 3 years, the model size of the GPT line has grown by
nearly 1600% from 110 million parameters in the original model over 1.5 billion
parameters in its second iteration (Radford et al., 2019) to 175 billion parameters in
GPT-3 (Brown et al., 2020). The next version is expected to have 100 trillion
parameters. Because transformer-based language models’ capabilities significantly
improve with model size, the rapid increase in model sizes has dramatically
increased the usefulness and applicability of such transformer-based language
models.

While it is very cost-intensive to build and train large transformer-based language
models in the first place, many of these models have been open-sourced and can be
accessed very easily through web services, making them accessible to a broader
audience. Also, commercial applications like GPT-3 are available in cloud-based
applications via a standard Internet browser. Another big advantage of transformer-
based language models is that users can generally interact with them simply through
natural language. Companies like OpenAI provide access to their models through
not only application programming interfaces (APIs) but also graphical user inter-
faces (GUIs), which significantly lower the barriers to entry.

For this book, we utilized OpenAi’s GPT-3 [we refer to Bouschery et al. (2022)
for a more detailed description of our approach]. To interact with the model, users
have to provide some initial text input. This could either be a question, the beginning
of a story that should be completed, some text that should be summarized, bullet
points to turn into written text, etc. Based on this initial input and its knowledge
learned during training, GPT-3 then generates a text that best fits the provided
prompt by predicting the next word in the sequence based on the previous words
in the prompt. GPT-3 is a so-called few-shot learner, which means that users are
advised to provide the model with a few examples to show what kind of output they
expect from the model. The initial prompt is therefore the main way of steering the
model toward a desired output—a perfect illustration of a hybrid intelligence.

We hired the GPT-3 to become a member of our publishing team for a typical
knowledge processing task: knowledge extraction (De Silva et al., 2018), i.e.,



making existing knowledge usable by extracting knowledge that might be coded
explicitly or implicitly in a given knowledge base. Normally, extracting knowledge
is rather labor-extensive and not easily scalable. However, transformer-based lan-
guage models provide the opportunity to automate parts of such processes. The
knowledge task we asked the GPT-3 to do was text summarization. All abstracts of
this book (including the one of this chapter) were generated by the GPT-3.
Extracting knowledge from text requires the identification, selection, and processing
of large amounts of textual data, which can be very costly and time-consuming as
well as overwhelming for humans. This might lead to unwanted consequences like
bad decision-making, as humans tend to make simplifying assumptions in order to
be able to process such large volumes of information (Simon, 1955). Transformer-
based language models provide an adequate solution to such problems through their
ability to summarize text efficiently while conveying the most important aspects and
meaning of the original text. They are especially well suited for such tasks because of
their context awareness and the ability to pay special attention to the most relevant
pieces of information. This gives them a great advantage over earlier text summa-
rization algorithms, which struggled to understand sentiment and meaning in textual
data (Fan et al., 2006). We invite our readers to evaluate the results by themselves.
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Furthermore, users can prompt state-of-the-art language models like GPT-3 to
summarize a text in a very specific way. In addition to the abstracts provided in each
chapter of this book, we also tasked GPT-3 to summarize the entire book as short as
possible to test an extreme case of summarization. This is the result [the differences
result from varying settings of the model, see Bouschery et al. (2022), for more
details].

Prompt: “GPT-3, summarize this book in a few sentences.”

• The text discusses different projecting made by experts about the changes that
will occur in production by 2030. These include the trend of increasing digital
goods, the use of hybrid intelligence to supplement human decision-making
processes, the establishment of full digital twins of each production worker and
all of their operations, and the decentralization of supply chains.

• The text discusses various trends that are projected to occur in the manufacturing
industry by 2030. These trends include the use of subscription models for
production machines, the use of collaborative robots, the use of digital twins,
and the decentralization of supply chains. Each of these trends is expected to have
a significant impact on firms.

• The Delphi study found that in 2030, subscription models for production
machines will be the new industry standard, that environmental sustainability
will play a bigger role, and that AI-based decision-making systems will not be
able to significantly increase production resilience.

Prompt: “GPT-3, summarize this book in one sentence.”

• The text discusses various projections for the year 2030 and their potential
impacts on different aspects of society and the economy.
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These examples show the ability of transformer-based language models to cap-
ture the essence of a text and reproduce a coherent, yet substantially summarized,
version of the original text. We did not provide any further context and examples or
used fine-tuning to produce the response. While this task might seem rather trivial to
a human, it is rather complex. First, the model had to understand that there is a
difference between the provided article and the task description. Specifically, the
task descriptions are, in fact, exactly that, a description of what the model should do,
and not, e.g., the beginning of a novel that should be continued. Then, it had to
analyze, understand, and then generate a summary of the said abstract that was
factually, semantically, and grammatically correct. All, without having specifically
been trained to perform this task. Noteworthy is also that the model did not just
shorten the provided text, but that it summarized the text in its own words. However,
when looking closely at the generated texts, we instantly find expressions which we
would write differently, where there would be a dedicated technical term to describe
the subject more precisely for an expert audience, or where we also would emphasize
an aspect we believe being most interesting for our target audience of academic peers
(who the algorithm does not know at all).

Hence, we propose that transformer-based language models will specifically
support knowledge-based practices in the form of a hybrid intelligence. Their ability
to interact with different knowledge sources, to learn from them, and to transform
knowledge allow these models to act as a knowledge broker that facilitates the
sharing of knowledge between different stakeholders while also fostering the crea-
tion of new knowledge (Waardenburg et al., 2022). Human teams can employ these
language models to access existing knowledge. Models that have been trained on
large text corpora from the Internet have knowledge on a wide range of topics, which
opens up the opportunity for teams to integrate knowledge that might lay outside
their area of expertise. Given a prompt by a human, the AI can help to establish
connections between concepts and ideas that might otherwise not have been obvi-
ous. Few-shot learning capabilities then allow for an easier interaction between the
humans in a hybrid team and the AI. Humans have to provide a limited number of
exemplary responses to a given task, so that the language model can generate a first
adequate output. Humans then evaluate this output, indicating to the algorithm, for
example, parts of the output they find especially interesting. The algorithm will then
produce a next output, based on this feedback. In the true understanding of a hybrid
intelligence, machines and humans are building upon each other’s input and output.

In such a scenario, teams can integrate the AI in their existing processes, as if it
would be a new colleague. The combination of domain expertise by human team
members and knowledge provided by the AI provides the opportunity to greatly
improve productivity of knowledge-based practices and produce outcomes that
would not have been possible with just the skillset of one of the actors. Orchestrating
and building such hybrid teams becomes a new important managerial task, and
understanding when and how to allocate tasks to a machine intelligence (and which
one) will be a key success factor of organizations in the future. Managers have to
consider the distinct characteristics of human and non-human actors. While humans
will play a major role in providing context, steering language models toward desired



results, and embedding AI output in the larger picture, machine intelligence can
speed up many tasks that require the handling of large amounts of text (or other
data), understand patterns in data invisible to humans, and make connections
between knowledge bases that might not be readily available to human team
members.
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While for more complex tasks like steering a production system such a scenario
of hybrid intelligence is still not existing, the way of development seems clear. We
hope that this chapter, but also the analysis of our Delphi study in the entire book,
provides the reader plenty of ideas and food for thought about the future of industrial
production and the elements of Next Generation Manufacturing.

Acknowledgment Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC-2023 Internet of Production—
390621612.

References

Abdel-Karim, B. M., Pfeuffer, N., Rohde, G., & Hinz, O. (2020). How and what can humans learn
from being in the loop? Invoking contradiction learning as a measure to make humans smarter.
Künstliche Intelligenz, 34(2), 199–207. https://doi.org/ghqvr8

Agrawal, A., Gans, J., & Goldfarb, A. (2019). Artificial intelligence: The ambiguous labor market
impact of automating prediction. Journal of Economic Perspectives, 33(2), 31–50. https://doi.
org/ggnh5t

Bailey, D., & Barley, S. R. (2020). Beyond design and use: How scholars should study intelligent
technologies. Information and Organization, 30(2), 100286. https://doi.org/hm62

Baker, L., & Hui, F. (2017, April). Innovations of AlphaGo. Research blog by Deepmind. https://
deepmind.com/blog/article/innovations-alphago

Berditchevskaia, A., & Baeck, P. (2020). The future of minds and machines: How AI can enhance
collective intelligence. Nesta Report.

Bouschery, S., Blazevic, V., & Piller, F. (2022). Artificial intelligence as an actor in hybrid
innovation teams: An assessment of the GPT-3 language model. Forthcoming as a Catalyst
Paper in the Journal of Product Innovation Management.

Brauner, P., Dalibor, M., Jarke, M., Kunze, I., Koren, I., Lakemeyer, G., . . . Ziefle, M. (2022). A
computer science perspective on digital transformation in production. ACM Transactions on
Internet of Things, 3(2), 1–32.

Brecher, C., Eckel, H. M., Motschke, T., Fey, M., & Epple, A. (2019). Estimation of the virtual
work piece quality by the use of a spindle-integrated process force measurement. CIRP Annals,
68(1), 381–384. https://doi.org/hm63

Brecher, C., Özdemir, D., & Weber, A. R. (2016). Integrative production technology: Theory and
applications. In C. Brecher & D. Özdemir (Eds.), Integrative production technology (pp. 1–17).
Springer. https://doi.org/hhn9

Brecher, C., et al. (2017). Learning production systems. In Proceedings of the 29th AWK Aachener
Werkzeugmaschinen-Kolloquium (pp. 135–161). Apprimus.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., & Askell, A. (2020). Language models are few-shot learners. ArXiv:2005.14165.

Cowgill, B., & Tucker, C. E. (2020). Algorithmic fairness and economics. Columbia Business
School Research Paper.

https://doi.org/ghqvr8
https://doi.org/ggnh5t
https://doi.org/ggnh5t
https://doi.org/hm62
https://deepmind.com/blog/article/innovations-alphago
https://deepmind.com/blog/article/innovations-alphago
https://doi.org/hm63
https://doi.org/hhn9


Hybrid Intelligence in Next Generation Manufacturing: An Outlook on. . . 157

De Cremer, D. (2020). Leadership by algorithm: Who leads and who follows in the AI era.
Harriman House.

De Silva, M., Howells, J., & Meyer, M. (2018). Innovation intermediaries and collaboration:
Knowledge–based practices and internal value creation. Research Policy, 47(1), 70–87.
https://doi.org/gcshf5

Dellermann, D., Ebel, P., Söllner, M., & Leimeister, J. M. (2019). Hybrid intelligence. Business and
Information Systems Engineering, 61(5), 637–643. https://doi.org/ggkxz4

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. ArXiv, 1810, 04805. https://doi.org/hm65

Endsley, M. R. (1987). The application of human factors to the development of expert systems for
advanced cockpits. Proceedings of the Human Factors Society Annual Meeting, 31(12),
1388–1392. https://doi.org/fzdz4g

Fan, W., Wallace, L., Rich, S., & Zhang, Z. (2006). Tapping the power of text mining. Commu-
nications of the ACM, 49(9), 76–82. https://doi.org/b7f48c

Groensund, T., & Aanestad, M. (2020). Augmenting the algorithm: Emerging human-in-the-loop
work configurations. Journal of Strategic Information Systems, 29(2), 101614. https://doi.org/
gjjp64

Hirsch-Kreinsen, H., & Ittermann, P. (2021). Digitalization of work processes: A framework for
human-oriented work design. In The palgrave handbook of workplace innovation
(pp. 273–293). Palgrave Macmillan.

Iansiti, M., & Lakhani, K. R. (2020). Putting AI at the firm’s core. Harvard Business Review, 98(1),
59–67.

Kamar, E. (2016 July). Directions in hybrid intelligence: Complementing AI systems with human
intelligence. In Proceedings of the twenty-fifth international joint conference on artificial
intelligence (pp. 4070–4073).

Lebovitz, S., Lifshitz-Assaf, H., & Levina, N. (2022). To engage or not to engage with AI for
critical judgments: How professionals deal with opacity when using AI for medical diagnosis.
Organization Science, 33(1), 126–148. https://doi.org/gn3jks

Lee, M. K., Kusbit, D., Metsky, E., & Dabbish, L. (2015). Working with machines: The impact of
algorithmic and data-driven management on human workers. In Proceedings of the 33rd annual
ACM conference on human factors in computing systems (pp. 1603–1612).

Liddy, E. D. (2018). Natural language processing for information retrieval. In J. D. McDonald &
M. Levine-Clark (Eds.), Encyclopedia of library and information sciences (Vol. 5, 4th ed.,
pp. 3346–3355). CRC Press.

Liebenberg, M., & Jarke, M. (2020). Information systems engineering with digital shadows:
Concept and case studies. In S. Dustdar, E. Yu, C. Salinesi, D. Rieu, & V. Pant (Eds.), Advanced
information systems engineering. CAiSE 2020 (Lecture notes in computer science) (Vol.
12127). Springer. https://doi.org/hhph

Long, J. B., & Ehrenfeld, J. M. (2020). The role of augmented intelligence (AI) in detecting and
preventing the spread of novel coronavirus. Journal of Medical Systems, 44(3), 1–2. https://doi.
org/ggp6f3

Mütze-Niewöhner, S., Mayer, C., Harlacher, M., Steireif, N., & Nitsch, V. (2022). Work 4.0:
Human-centered work design in the digital age. In W. Frenz (Ed.), Handbook industry 4.0: Law,
technology, society. Springer.

Pan, Y. (2016). Heading toward artificial intelligence 2.0. Engineering, 2(4), 409–413. https://doi.
org/gfwwrf

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are
unsupervised multitask learners. Open AI blog, 1(8), 9.

Rai, A. (2020). Explainable AI: From black box to glass box. Journal of the Academy of Marketing
Science, 48(1), 137–141. https://doi.org/ggw7h2

Raj, M., & Seamans, R. (2019). Primer on artificial intelligence and robotics. Journal of Organi-
zation Design, 8(1), 1–14. https://doi.org/hm67

https://doi.org/gcshf5
https://doi.org/ggkxz4
https://doi.org/hm65
https://doi.org/fzdz4g
https://doi.org/b7f48c
https://doi.org/gjjp64
https://doi.org/gjjp64
https://doi.org/gn3jks
https://doi.org/hhph
https://doi.org/ggp6f3
https://doi.org/ggp6f3
https://doi.org/gfwwrf
https://doi.org/gfwwrf
https://doi.org/ggw7h2
https://doi.org/hm67


158 F. T. Piller et al.

Shrestha, Y. R., Ben-Menahem, S., & Von Krogh, G. (2019). Organizational decision-making
structures in the age of artificial intelligence. California Management Review, 61(4), 66–83.
https://doi.org/gf48d3

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics,
69(1), 99–118. https://doi.org/dw3pfg

van der Aalst, W. M. (2016). Process mining: Data science in action. Springer.
van der Aalst, W. M. (2020). On the Pareto principle in process mining, task mining, and robotic

process automation. In Proceedings of the 9th international conference on Data Science,
Technology and Applications (DATA 2020) (pp. 5–12). https://doi.org/hm7b

van der Aalst, W. M. (2021). Hybrid Intelligence: To automate or not to automate, that is the
question. International Journal of Information Systems and Project Management, 9(2), 5–20.
https://doi.org/gk92bq

van der Aalst, W. M., Hinz, O., & Weinhardt, C. (2021). Resilient digital twins. Business and
Information Systems Engineering, 63(6), 615–619. https://doi.org/gmv8sh

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &
Polosukhin, I. (2017). Attention is all you need. In Proceedings of the 31st conference on
neural information processing systems. NIPS.

Von Krogh, G. (2018). Artificial intelligence in organizations: New opportunities for phenomenon-
based theorizing. Academy of Management Discoveries, 4(4), 404–409. https://doi.org/gfztxx

Waardenburg, L., Huysman, M., & Sergeeva, A. V. (2022). In the land of the blind, the one-eyed
man is king: Knowledge brokerage in the age of learning algorithms. Organization Science,
33(1), 59–82. https://doi.org/gntnhp

Xi, T., Benincá, I. M., Kehne, S., Fey, M., & Brecher, C. (2021). Tool wear monitoring in roughing
and finishing processes based on machine internal data. International Journal of Advanced
Manufacturing Technology, 113(11), 3543–3554. https://doi.org/gndbwx

Zheng, N. N., Liu, Z. Y., Ren, P. J., Ma, Y. Q., Chen, S. T., Yu, S. Y., & Wang, F. Y. (2017).
Hybrid-augmented intelligence: Collaboration and cognition. Frontiers of Information Tech-
nology and Electronic Engineering, 18(2), 153–179. https://doi.org/gg6r35

https://doi.org/gf48d3
https://doi.org/dw3pfg
https://doi.org/hm7b
https://doi.org/gk92bq
https://doi.org/gmv8sh
https://doi.org/gfztxx
https://doi.org/gntnhp
https://doi.org/gndbwx
https://doi.org/gg6r35

	Foreword
	Acknowledgements
	Contents
	Editors and Contributors
	How Digital Shadows, New Forms of Human-Machine Collaboration, and Data-Driven Business Models Are Driving the Future of Indus...
	1 Industrial Value Creation After the Pandemic
	2 Next Generation Manufacturing and the Internet of Production (IoP)
	2.1 From Industry 4.0 to Industry 4.U
	2.2 The Cluster of Excellence ``Internet of Production (IoP)´´
	2.3 Digital Twins and Digital Shadows
	2.4 Internal Perspective: New Forms of Human-Machine Collaboration Enabled by Digital Shadows
	2.5 External Perspective: Data-Driven Ecosystems Creating and Capturing Value from Digital Shadows via IoT Platforms

	3 Strategic Design Factors of Next Generation Manufacturing: A Framework for Analyzing the Delphi Projections
	3.1 Governance
	3.2 Organization
	3.3 Capabilities
	3.4 Interfaces
	3.5 Resilience

	4 Conclusions and Outlook
	References

	Applying the Real-Time Delphi Method to Next Generation Manufacturing
	1 Scenario Development for Next Generation Manufacturing
	2 Real-Time Delphi Process
	2.1 Step 1: Develop Delphi Projections
	2.2 Step 2: Select Panel Experts
	2.3 Step 3: Conduct Survey
	2.4 Step 4: Develop Future Scenarios

	3 Summary
	References

	Big Picture of Next Generation Manufacturing
	1 Overview
	2 Expert Assessments
	3 Comparison Between Subgroups of Experts
	4 Summary
	Appendix
	References

	Governance Structures in Next Generation Manufacturing
	1 Introduction
	2 Projection 1: Subscription Models
	3 Projection 2: Digital Services
	4 Projection 3: Data Sharing
	5 Projection 4: Central Platform
	6 Projection 5: Data Mediator
	7 Projection 6: Industrial GDPR
	8 Summary
	References

	Organization Routines in Next Generation Manufacturing
	1 Introduction
	2 Projection 7: Autonomous Robots
	3 Projection 8: Hybrid Intelligence
	4 Projection 9: AI-Based Assistants
	5 Projection 10: New Leadership
	6 Projection 11: Human Digital Twin
	7 Projection 12: Employees´ Rights
	8 Projection 13: Workforce Reduction
	9 Summary
	References

	Capability Configuration in Next Generation Manufacturing
	1 Introduction
	2 Projection 14: Expert Knowledge
	3 Projection 15: Environmental Sustainability
	4 Projection 16: Production Transparency
	5 Projection 17: University Degrees
	6 Summary
	References

	Interface Design in Next Generation Manufacturing
	1 Introduction
	2 Projection 18: Implicit Interfaces
	3 Projection 19: Open Interfaces
	4 Projection 20: Production from Home
	5 Projection 21: Plant Management from Home
	6 Summary
	References

	Resilience Drivers in Next Generation Manufacturing
	1 Introduction
	2 Projection 22: Decentralization
	3 Projection 23: Production Costs
	4 Projection 24: Production Resilience
	5 Summary
	References

	Future Scenarios and the Most Probable Future for Next Generation Manufacturing
	1 Overview
	2 Governance
	3 Organization
	4 Capabilities
	5 Interfaces
	6 Resilience
	7 A Most Probable Scenario for Next Generation Manufacturing
	8 Summary: Tensions Arising at the Interplay Between Internal and External Perspectives
	References

	Hybrid Intelligence in Next Generation Manufacturing: An Outlook on New Forms of Collaboration Between Human and Algorithmic D...
	1 From Human-Computer Interaction to Human-Machine Collaboration
	2 Hybrid Intelligence: Concept and Definition
	3 New Rules for Task Allocation: Division of Labor Revisited
	3.1 Degree of Machine Intelligence Integration into Organizational Decision Processes
	3.2 Consequences for Decision Quality

	4 Hybrid Intelligence in Next Generation Manufacturing
	5 A Simple Application of Hybrid Intelligence in Publishing
	References


