
A Requirements-Driven Methodology:
Formal Modelling and Verification
of an Aircraft Engine Controller

Oiśın Sheridan(B), Rosemary Monahan, and Matt Luckcuck

Department of Computer Science/Hamilton Institute,
Maynooth University, Maynooth, Ireland

oisin.sheridan.2019@mumail.ie

Abstract. The formal verification of software systems often requires the
integration of multiple tools and techniques. To ensure the accuracy of
any verification done and to ensure the applicability of formal methods
to industrial use cases, traceability must be maintained throughout the
process so that it is clear what the requirements for the system are and
how they are fulfilled. We propose a three-phase methodology for formal
verification with the aim of ensuring traceability, built around the Formal
Requirements Elicitation Tool (FRET). Our current case study applies
this methodology to the use of FRET, Simulink and Event-B for the
verification of the software controller for a civilian aircraft engine.

Keywords: Software verification · Formal methods · FRET · Event-B

1 Overview

Despite the wide applicability of formal methods in industrial applications, par-
ticularly safety-critical domains such as aerospace, offshore oil and gas, and the
nuclear industry, uptake of formal techniques in industry has historically been
slow. To remedy this, the VALU3S project1 aims to evaluate the state-of-the-art
verification and validation (V&V) methods and tools and their application to a
number of use cases across different sectors.

We have been working on the elicitation of formal requirements for a software
controller using the Formal Requirements Elicitation Tool (FRET), an open
source tool developed by NASA that allows requirements to be encoded in a
structured natural-language called FRETISH [1]. These requirements can be
automatically translated into other formalisms, and the use of FRET reduces
ambiguity and simplifies the verification process.
1 The VALU3S project: https://valu3s.eu/.

This research was funded by the European Union’s Horizon 2020 research and inno-
vation programme under the VALU3S project (grant No 876852), and by Enterprise
Ireland (grant No IR20200054). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 352–356, 2022.
https://doi.org/10.1007/978-3-031-07727-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_21&domain=pdf
https://valu3s.eu/
https://doi.org/10.1007/978-3-031-07727-2_21


A Requirements-Driven Methodology 353

Our example application is a software controller for a civilian aircraft engine;
the model of the controller in Simulink was provided by our industrial partner
on the VALU3S project. The controller is a representative example of a Full
Authority Digital Engine Control (FADEC), which is a software system moni-
toring and controlling everything about the engine, including thrust control, fuel
control, health monitoring of the engine, and so on. The controller’s high-level
objectives are that it should continue to control the engine and respect specified
operating limits in the presence of various sensor faults, perturbations of system
parameters, and other low-probability hazards.

In this research, we address two main research questions:

1. Can we accurately support traceability of formalised requirements in the
implementation of (safety-)critical systems using a combination of formal and
non-formal methods?

2. How can we reuse diverse V&V artefacts (proofs, models, etc.) to modularise
and simplify the software verification process?

We are interested in the integration of multiple software V&V techniques,
to provide a framework for reasoning about the correctness of concrete software
implementations with respect to their abstract software models, to provide and
evaluate practical tool support for software engineers. To this end, we propose
a three-phase methodology for the verification of software systems.

2 Three-Phase Methodology

Phase 1: Eliciting
and Formalising
Requirements

Phase 2A: 
FRET-Supported

Toolchain

Phase 2B: 
FRET-Guided

Toolchain

Phase 3:
Verification Report

Fig. 1. High-Level Flowchart of
our Methodology. After Phase 1 is
complete, Phases 2A and 2B can
occur in parallel. Phases 2A and
2B can both highlight deficiencies
in the requirements, prompting a
return to Phase 1.

Our workflow takes requirements in natural-
language and a Simulink diagram as input,
and enables the formal verification of the sys-
tem’s design against the requirements. In the
case of our current use case, these require-
ments and Simulink model have been provided
by our industrial partner on the VALU3S
project. Our approach is split into three dis-
tinct phases, shown in Fig. 1. First, in Phase
1 we elicit and formalise the natural lan-
guage requirements using FRET. Then we
move on to formal verification either sup-
ported (Phase 2A) or guided (Phase 2B) by
FRET. The ‘FRET-Supported’ toolchain uses
FRET’s built-in translation function to pro-
duce contracts in the CoCoSpec language that
can be incorporated into a Simulink diagram.
The ‘FRET-Guided’ toolchain uses the formalised requirements to drive the
(manual) translation into other formal methods as chosen by the verifier. Both
verification phases can be applied in parallel. Finally, Phase 3 involves the assem-
bly of a verification report to capture the verification results and traceability of



354 O. Sheridan et al.

requirements. The methodology is presented in full in [2]. A report on our expe-
rience using FRET is presented in [3].

3 ‘FRET-Guided’ Modelling

The current focus of this PhD is on Phase 2B of our methodology, ‘FRET-
Guided’ verification in Event-B. A flowchart of this phase is shown in Fig. 2.

Fig. 2. Flowchart of Phase 2B: Verifica-
tion guided by FRET requirements. The
circular nodes are start and end points,
the rectangular nodes are processes, the
diamond nodes are decisions, and the
rhomboid nodes are inputs or outputs.

Rather than using a direct trans-
lation of the FRET requirements, the
elicited semi-formal requirements and the
Simulink model of the software controller
are used to construct a formal model in
the Event-B language, which can then
be verified. Event-B is a set-theoretic
modelling language that supports formal
refinement [4]. Event-B has been used to
verify models of cyber-physical systems,
similar to our case study [5]. However,
unlike this previous work, our goal is to
model the behaviour of the entire engine
control system, rather than using Event-
B to model a particular self-contained
algorithm. Work has also been done on
using FRET as a basis for runtime mon-
itoring with Copilot in [6], rather than
theorem proving with Event-B.

Event-B offers an intuitive path to
constructing a model of the Simulink dia-
gram. We use a context to define vari-
ables external to the system we want to
model; in this case, we have a compos-
ite input signal including operating lim-
its for the engine (e.g. the shaft speed
limit) and commands from the pilot (e.g.
the desired thrust). Within the Event-
B machine itself, we model the blocks
from the system diagram as events where
the guards are that the respective input
variables have been set, and which then
apply the specified function and set the
variables representing their outputs. By
using the Simulink block diagram as a
basis and incorporating a consistent naming scheme to tie the events to their
respective blocks, we can easily preserve traceability between the models.

Once the Simulink diagram has been adequately modelled, we can refine
the Event-B model by incorporating the semi-formal FRETISH requirements



A Requirements-Driven Methodology 355

as additional guards and invariants. If a conflict is found between the require-
ments and the existing model, we can return to the Simulink diagram to check
whether this represents an error in the translation to Event-B or a failure of
the diagram to meet the requirement in question. We may also find an error in
the requirements themselves, prompting a return to the requirements elicitation
phase.

4 Future Work

After modelling the system in Event-B, we will compare the verification process
in Phase 2A and 2B of our methodology, investigating how both techniques
can be utilised in parallel to reuse V&V artefacts to modularise and simplify
the software verification process. We will also look into techniques to formally
guarantee consistency in translation between models and ensure traceability in
both directions, such as using institution theory to verify the translation or
checking the Event-B model against the LTL specification using ProB.

Additionally, we are looking at ways to improve FRET with new function-
ality. Currently, FRET allows the user to define informal parent-child relation-
ships between requirements, but we would like to expand this to support true
formal refinement. This would be a great aid to both the requirements elicita-
tion process and supporting traceability alongside other formalisms. We are also
working on applying refactoring techniques to FRETISH requirements. Refac-
toring would minimise duplication of information across requirements, and so
would streamline the elicitation process and remove opportunities for error. We
discuss refactoring in full in [7].

References

1. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation of
formal requirements from structured natural language. In: Madhavji, N., Pasquale,
L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 19–35. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44429-7 2

2. Luckcuck, M., Farrell, M., Sheridan, O., Monahan, R.: A methodology for developing
a verifiable aircraft engine controller from formal requirements. In: IEEE Aerospace
Conference (2022)

3. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: Fretting about requirements:
formalised requirements for an aircraft engine controller. In: Gervasi, V., Vogelsang,
A. (eds) Requirements Engineering: Foundation for Software Quality 2022. LNCS,
vol. 13216, pp. 96–111. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
98464-9 9

4. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

5. Bourbouh, H., et al.: Integrating formal verification and assurance: an inspection
rover case study. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
(eds.) NFM 2021. LNCS, vol. 12673, pp. 53–71. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-76384-8 4

https://doi.org/10.1007/978-3-030-44429-7_2
https://doi.org/10.1007/978-3-030-98464-9_9
https://doi.org/10.1007/978-3-030-98464-9_9
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4


356 O. Sheridan et al.

6. Perez, I., Mavridou, A., Pressburger, T., Goodloe, A., Giannakopoulou, D.: Auto-
mated Translation of Natural Language Requirements to Runtime Monitors. In:
Fisman, D., Rosu, G. (eds) Tools and Algorithms for the Construction and Analy-
sis of Systems 2022. LNCS, vol. 13243, pp. 387–395. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-99524-9 21

7. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: Towards Refactoring
FRETish Requirements. (2022). https://arxiv.org/abs/2201.04531. (to appear)

https://doi.org/10.1007/978-3-030-99524-9_21
https://doi.org/10.1007/978-3-030-99524-9_21
https://arxiv.org/abs/2201.04531

	A Requirements-Driven Methodology: Formal Modelling and Verification of an Aircraft Engine Controller
	1 Overview
	2 Three-Phase Methodology
	3 `FRET-Guided' Modelling
	4 Future Work
	References




