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Abstract. Business Process Model and Notation (BPMN) is a stan-
dard business process modelling language that allows users to describe
a set of structured tasks, which results in a service or product. Before
running a BPMN process, the user often has no clear idea of the prob-
ability of executing some task or specific combination of tasks. This is,
however, of prime importance for adjusting resources associated with
tasks and thus optimising costs. In this paper, we define an approach to
perform probabilistic model checking of BPMN models at runtime. To
do so, we first transform the BPMN model into a Labelled Transition
System (LTS). Then, by analysing the execution traces obtained when
running multiple instances of the process, we can compute the probabil-
ity of executing each transition in the LTS model, and thus generate a
Probabilistic Transition System (PTS). Finally, we perform probabilistic
model checking for verifying that the PTS model satisfies a given proba-
bilistic property. This verification loop is applied periodically to update
the results according to the execution of the process instances. All these
steps are implemented in a tool chain, which was applied successfully to
several realistic BPMN processes.

1 Introduction

A business process describes a set of structured tasks that follow a specific order
and thus results in a product or service. The business process model and nota-
tion (BPMN), proposed by OMG, is the de facto standard for developing busi-
ness processes [15]. BPMN relies on a graphical workflow-based notation that
describes the structured tasks in a business process and the relationships between
these tasks.

The BPMN standard was quickly adopted by industry and academia, even
though several flaws were identified. One of them regards the lack of formal
semantics. Several approaches proposed to use Petri nets or automata-based lan-
guages for filling this gap. Related to formal semantics, the lack of formal analysis
techniques appeared as another weakness. The final goal is to provide (ideally
automated) verification techniques and tools for ensuring that processes respect
some functional and non-functional properties of interest (e.g. the absence of
deadlocks, the execution of the process within a reasonable amount of time, the
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occupancy of resources, etc.). All these checks are particularly useful for opti-
mising processes and thus reducing the costs associated with their execution.

In this paper, we tackle the problem of computing the probability of exe-
cuting certain tasks or combination of tasks when running the processes. The
possibility of executing one task or another comes from the use of different kinds
of gateways in the BPMN process (e.g. exclusive gateways). These probabilities
are difficult to determine, especially when multiple instances of the process are
executed at the same time. In that case, since resources are necessary for exe-
cuting some specific tasks, knowing these probabilities is of prime importance
for better adjusting the corresponding resources and thus converging to an opti-
mal allocation of resources. It is worth noting that before executing the process
multiple times, the developer has often no clear idea regarding the probability of
executing some task or a specific sequence of tasks. Therefore, there is a need for
automated techniques that can compute (and update) at runtime these proba-
bilities, thus allowing the verification of probabilistic properties (e.g. what is the
probability to execute task T? Is the probability to execute task T1 followed by
T2 higher than 40%?).

In this work, we define an approach to perform probabilistic model checking
of BPMN processes at runtime. To do so, we assume that a process is described
using an executable version of BPMN. The process can be executed multiple
times, each execution of the process is called an instance. Different instances
may perform different tasks in the process. Our approach first monitors these
executions to extract from the corresponding logs the probability of executing
each individual task. These probabilities are used to build a semantic model
of the BPMN process where these probabilities appear explicitly. This model
is called a Probabilistic Transition System (PTS). Then, given a probabilistic
property expressed in a dedicated temporal logic and this PTS, a probabilistic
model checker is called for verifying whether the property is true/false or for
computing the expected probability of that property. Note that this approach
is not applied once and for all, because more instances of the process can keep
executing including variations in terms of frequency of the executed tasks. Based
on these variations, the probability of each transition of the LTS evolves over
time. Therefore, the PTS is updated periodically, and the model checker is called
again. The result of our approach is thus not a single value, but a dynamic curve
indicating the evolution of the property evaluation over time.

To summarise, the main contributions of this work are as follows:

• Monitoring techniques for extracting at runtime relevant information about
the execution of multiple instances of a process.

• Periodic computation of a Probabilistic Transition System by analysing exe-
cution logs resulting of the monitoring of the process.

• Integrated toolbox for probabilistic model checking of BPMN processes at
runtime.

• Validation of our approach on a large set of realistic BPMN processes.

The remainder of this paper is organised as follows. In Sect. 2, we describe the
concepts and definitions used in the subsequent sections. In Sect. 3, we present
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the approach in detail. Section 4 focuses on the tool support and the experiments
performed for validation purposes. Section 5 describes related work. Finally, in
Sect. 6, we present our conclusions and future work.

2 Models

In this section, we introduce the preliminary concepts.

BPMN. Business process model and notation (BPMN) is a workflow-based nota-
tion for describing business processes [15]. Originally, it was a modelling notation,
but recent frameworks also allow the execution of such processes using a process
automation engine or by translation to an executable language. The syntax of
a BPMN process is given by a graph-based structure where vertices (or nodes)
correspond to events, tasks and gateways, and edges (or flows) connect these
nodes.

Figure 1 describes a fragment of the BPMN notation showing the main ele-
ments. Events include the initial/start event and the end event, which are used
to initialise and terminate processes. We assume there is only one start event,
and at least one end event. A task is an atomic activity containing only one
incoming flow and one outgoing flow. Gateways are used to describe the control
flow of the process. There are two patterns for each type of gateway: the split
pattern and the merge pattern. The split pattern consists of a single incoming
flow and multiple outgoing flows. The merge pattern consists of multiple incom-
ing flows and a single outgoing flow. Several types of gateways are available, such
as exclusive, parallel, and inclusive gateways. An exclusive gateway corresponds
to a choice among several flows. A parallel gateway executes all possible flows at
the same time. An inclusive gateway executes one or several flows. The choice of
flows to execute in exclusive and inclusive gateways depends on the evaluation
of data-based conditions.

Task

Initial Event End Event

Split gateways: inclusive, exclusive, parallel Merge gateways: inclusive, exclusive, parallel

Task Flow

Fig. 1. Excerpt of the BPMN notation

In this paper, we consider multiple executions of a single process. Each exe-
cution is called an instance and is characterised by an identifier and the list
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of consecutive tasks executed by this process. We assume that a BPMN process
cannot run infinitely and that each instance terminates at some point. Therefore,
the list of tasks associated to an instance is always finite.

LTS. We use Labelled Transition Systems as a semantic model of BPMN pro-
cesses, as described in [17,20,23].

Definition 1 (LTS). A labelled transition system (LTS) is a tuple 〈Q,Σ, qinit,
Δ〉 where: Q is a set of states; Σ is a finite set of labels/actions; qinit ∈ Q is the
initial state; Δ ⊆ Q × Σ × Q is the transition relation.

A transition (q, a, q′) ∈ Δ, written q
a−→ q′, means that the system can move

from state q to state q′ by performing action a.

PTS. We also need a more expressive model than LTS because we want to asso-
ciate transitions with probabilities. We therefore rely on Probabilistic Transition
Systems [18], which is a probabilistic extension of the LTS model.

Definition 2 (PTS). A probabilistic transition system (PTS) is a tuple 〈S,A,
sinit, δ, P 〉 such that 〈S,A, sinit, δ〉 is a labelled transition system as per Defini-
tion 1 and P : δ → [0, 1] is the probability labelling function.

P (s a→ s′) ∈ [0, 1] is the probability for the system to move from state s to state
s′, performing action a. For each state s, the sum of the probabilities associated
to its outgoing transitions is equal to 1, that is ∀s ∈ S :

∑
s′∈S P (s, a, s′) = 1.

MCL. Model Checking Language (MCL) [21] is an action-based branching-time
temporal logic suitable for expressing properties of concurrent systems. MCL
is an extension of alternation-free μ-calculus [6] with regular expressions, data-
based constructs, and fairness operators. We rely on MCL for describing proba-
bilistic properties, using the following construct [19]: prob R is op [ ? ] E end prob,
where R is a regular formula on transition sequences, op is a comparison operator
among “<”, “≤”, “>”, “≥”, “=”, “<>”, and E is a real number corresponding
to a probability. MCL is interpreted over a PTS model.

3 Probabilistic Model Checking of BPMN

This section first gives an overview of the different steps of our approach. Then,
we present with more details the solution for monitoring BPMN processes and
the computation of a probabilistic model from the execution traces observed
during the monitoring step.

3.1 Overview

Recall that before executing a process, it is unclear how often a certain task or
combination of tasks are executed. This is of prime importance for adjusting the
resources necessary for executing the tasks involved in a process. The goal of our
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approach is to analyse the multiple instances of a process at runtime to precisely
measure the probabilities of executing the tasks involved in a process, and thus
to evaluate automatically probabilistic properties on that process.

Our approach takes as input a BPMN process and a probabilistic property,
and returns as output the verdict returned by the model checker. The verdict
indicates whether the property holds on the system. Such a verdict is obtained
by passing the process and the property to a model checker. This verdict is peri-
odically updated, since the process keeps on executing, and our approach runs
as long as there are new instances of the process completing. Figure 2 overviews
the approach. First, we monitor and analyse the multiple instances resulting of
the execution of the BPMN process. These instances are used to compute the
probability of execution for each task. Then, these probabilities are added to
the LTS semantic model obtained from the BPMN process, resulting in a PTS.
Finally, we call a model checker to verify that the PTS satisfies the given prob-
abilistic property. Since the process keeps running, the probability of each task
and thus the PTS are periodically updated. The period is a parameter of the
approach. Every time the PTS is updated, the model checker is called again. Let
us now give a little more details on the three main parts of the approach.

Fig. 2. Overview of the approach

Monitoring. The monitoring part focuses on the data streams generated by the
execution of the BPMN process. A BPMN process may be executed multiple
times, each of its executions produces an instance. Each time a new instance
completes (meaning that the process has terminated), the information about that
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instance execution is stored into a database. We have implemented a technique
for extracting from this database the events related to a set of instances that
have completed, and we convert these events into execution traces (one trace per
process instance). This extraction is applied periodically, where the period can
be a duration (e.g. every hour) or a fixed number of completed instances (e.g.
when 100 instances have completed).

Model Generation. The first step of this part is to generate an LTS from the
BPMN process. This LTS stands as a semantic model, and exhibits all pos-
sible execution paths for the given process. There are several ways to trans-
form BPMN to LTS. Here, we rely on an existing work, which proposes to first
transform BPMN into the LNT (LOTOS New Technology) [10] process algebra.
Since LNT operational semantics maps to LTS, the generation of that LTS is
thus straightforward. Due to lack of space, the reader interested in more details
regarding the transformation from BPMN to LTS can refer to [17,20,23]. Note
that this transformation from BPMN to LTS is only computed once. In a second
step, by analysing the execution traces built during the monitoring stage, we
compute the probabilities of executing each task involved in the process, and
add these probabilities to the LTS, which thus becomes a PTS. This PTS is
updated periodically, every time a new set of execution traces is provided by the
monitoring techniques.

Verification. This step of the approach takes as input a probabilistic model
(PTS) and a probabilistic property, and computes as output a Boolean or numer-
ical verdict depending on the property. This check is performed by using an
existing model checker (the latest version of the CADP model checker [9] in this
work). Since the PTS is updated periodically, the model checker is thus called
whenever this update takes place. Therefore, the final result does not consist
of a single value, but all successive values are gathered on a curve, which is
dynamically updated every time the model checker is called with a new PTS.

3.2 BPMN Process Monitoring

In this section, we introduce monitoring techniques for BPMN processes at run-
time. These techniques are useful because a process is usually not executed only
once. Instead, a process can be executed multiple times. Each execution of the
process is called an instance. An instance of the process can be in one of the
following states: initial means that the instance is ready to start (one token in
the start event), running means that the instance is currently executing and is
not yet completed, completed means that all tokens have reached end events.
Tokens are used to define the behaviour of a process. When a process instance
is triggered, a token is added to the start node. The tokens move through nodes
and flows of the process. When a token meets a split gateway (e.g. parallel
gateway), it may be divided into multiple ones, depending on the type of split
gateway. On the contrary, when multiple tokens meet a merge gateway (e.g.
inclusive gateway), they are merged into a single token depending on the type



Probabilistic Model Checking of BPMN Processes at Runtime 197

of merge gateway. An identifier is used to characterise a specific instance, and
this identifier is associated to all nodes (e.g. tasks) executed by this instance.

Monitoring techniques (see Fig. 3 for an overview) aim at analysing the infor-
mation stored in a database, and extracting for each instance the corresponding
execution trace. An execution trace corresponds to a list of tasks executed by this
specific instance. The order of execution of these tasks is established by using
timestamps at which each task is executed. These timestamps are computed by
the process execution engine (Activiti [1] in this work), which relies on a global
clock. The execution trace corresponding to a specific instance can be computed
only when the instance is in its completed state.

Fig. 3. Runtime monitoring of multiple executions of a BPMN process

Since new instances can execute at any time, we should extract execution
traces periodically. There are several possible strategies that can be followed by
taking into account different criteria. In this work, we propose to use one of the
two following strategies:

– the time-based strategy means that the trace extraction is performed every
fixed period of time;

– the instance-based strategy is based on the number of instances, and the trace
extraction is triggered whenever the total number of new completed instances
reaches a certain value.

It is worth noting that a hybrid strategy combining these two strategies is also
an option, e.g. we extract traces whenever 100 instances have completed or every
hour if after one hour less than 100 instances have completed. In addition, the
choice of these different strategies may have a different impact on the actual
results.

There are two similar algorithms for extracting execution traces depending on
the strategy. We illustrate below with the algorithm relying on the time-based
strategy. The first goal of this algorithm is to extract the relevant completed
instances of this process from the database. These instances are then traversed
in order to generate the corresponding execution traces.

Let us now go through the algorithm to give more details. Algorithm 1
describes the execution of the time-based extraction of execution traces. The
inputs of the algorithm are the process identifier (pid), a timestamp (ts), and a
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time duration (td). This timestamp is the start time of the period to identify the
new instances that have completed. The output is a set of execution traces (T ).

Algorithm 1. Algorithm for extracting execution traces
Inputs: A process ID (pid), a timestamp (ts), and a time duration (td)
Output: A set of execution traces (T )
1: I := ∅, T := ∅
2: I := getInstances(pid)
3: for each I ∈ I do
4: if I .hasEndEvent() and ts < I .endts() ≤ ts + td then
5: T := T ∪ I .computeSortedTasks()

return T

Algorithm 1 first connects to the database and retrieves all the instances
corresponding to the process identifier by using function getInstances(). These
instances are stored in variable I. Each instance consists of the identifier of
the instance and a set of tasks (lines 1 to 2). These instances are traversed to
keep only those that have completed during the last period of time (presence
of an end event and completion time lower than timestamp + duration, line 4).
The resulting instances are all eligible instances. For each completed instance,
function computeSortedTasks() sorts the tasks using their completion times, and
returns an execution trace consisting of the instance identifier and an ordered
list of tasks (line 5). The algorithm finally returns the set of execution traces T .

The time complexity of the algorithm is O(n × m × log m), where n is the
number of completed instances over a period, and m is the maximum number
of tasks executed by an instance (O(m × log m) is the complexity of the timsort
algorithm used for sorting tasks).

3.3 Transforming LTS into PTS

Given a BPMN process, we can generate its LTS semantic model using existing
techniques such as [17,20,23]. The LTS model exhibits all possible execution
paths of the input BPMN process. This generated model is non-deterministic,
and it has only one final state1. In this section, we show how by analysing exe-
cution traces (one trace per instance) extracted during the monitoring of the
process, we can extend this LTS with probabilities of execution for each transi-
tion included in this LTS model. These probabilities are added as annotations
to the transitions of the LTS, which thus becomes a PTS.

Before explaining how we generate a PTS given an LTS and a set of execution
traces, it is worth noting that, similarly to trace extraction, the PTS should be

1 A final state is a state without outgoing transitions. If an LTS exhibits several final
states, these states can be merged into a single one, resulting into an LTS strongly
bisimilar [22] to the original one.
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updated periodically as well due to the execution of multiple instances. There-
fore, this part of the approach also relies on one of the two aforementioned
strategies (time or instance-based strategy) for defining the period.

Algorithm 2 takes as input the LTS model corresponding to the BPMN pro-
cess and a set of execution traces, and returns as output a PTS model. The main
idea of the algorithm is to count the number of times each transition is executed
using the information from the execution traces. This is achieved by associating
a counter to each transition and by traversing the execution traces one after the
other. Essentially, each time a task appears in an execution trace, we increment
the counter of the corresponding transition. After traversing all execution traces,
we compute the probability of executing each transition outgoing from a state
by using the associated counter value. We augment the LTS model with these
probabilities to obtain the PTS model.

Algorithm 2. Algorithm for transforming LTS into PTS
Inputs: LTS = 〈Q, Σ, qinit, Δ〉, a finite set of execution traces T = 〈T1, T2, . . . , Tn〉
Output: PTS = 〈S, A, sinit, δ, P 〉
1: S := Q, A := Σ, sinit := qinit, δ := Δ
2: Path := [ ],Fpaths := [ ],Bpaths := [ ],Ttasks := [ ] /* [ ] indicates an empty list */

3: for each (s, a, s′) ∈ Δ do cnt((s, a, s′)) := 0

4: for each T ∈ T do
5: Qcurrent := {qinit}, Qnext := ∅, Qpre := ∅,Ttasks := T .getTasks()
6: for each task ∈ Ttasks do
7: qsucc := {q′ ∈ Q | ∃q ∈ Qcurrent, (q, task, q′) ∈ Δ}
8: if task 	= Ttasks[Ttasks.length() − 1] then
9: Qnext := qsucc, Qcurrent := Qnext

10: else
11: qnext := {q ∈ Q | ∃q ∈ qsucc and q 	= q′, (q, task, q′) ∈ Δ}
12: Qnext := qsucc \ qnext

13: for each (q, task, q′) ∈ Δ, q ∈ Qcurrent, q
′ ∈ Qnext do

14: Fpaths.append((q, task, q′))

15: for each task ∈ Ttasks.reverseOrder() do
16: Qpre := {q ∈ Q | ∃q′ ∈ Qnext, (q, task , q′) ∈ Δ}
17: for each (q, task, q′) ∈ Δ, q ∈ Qpre, q

′ ∈ Qnext do
18: Bpaths.append((q, task, q′))

19: Qnext := Qpre

20: Path := Fpaths ∩ Bpaths
21: for each (s, a, s′) ∈ Path do cnt((s, a, s′)) := cnt((s, a, s′)) + 1

22: P := {(s, a, s′) �→ cnt((s, a, s′))/
∑

q∈S,a′∈A,(s,a′,q)∈δ cnt((s, a
′, q)) | (s, a, s′) ∈ δ}

return 〈S, A, sinit, δ, P 〉

Let us now present with more details how this algorithm for generating the
PTS model works. The PTS model is first initialised, and a counter (initialised
to 0) is added to each transition of the LTS model (lines 1 to 3). The algorithm



200 Y. Falcone et al.

starts by traversing the set of execution traces T . For each execution trace,
the algorithm proceeds in three steps: (a) traversing the tasks of the execution
trace, (b) finding the corresponding valid path into the LTS model, (c) increasing
the value of the counters. As a final step, all execution traces are traversed for
computing the probability of each transition. Qcurrent is the set of current states
in the LTS during the traversal, Qnext is the set of successor states of a current
state, and Qpre is the set of predecessor states of a current state. We now present
these steps with more details:

(a) Traversing the tasks of the execution trace (lines 5 to 14). Since the LTS
may exhibit non-deterministic behaviours, this step (and the following one)
computes the valid path in the LTS corresponding to an execution trace.
This step relies on a forward traversal of the LTS (from initial state to final
state). Each execution trace T consists of an identifier and a sequence of
tasks Ttasks. For each trace, these tasks are handled one after the other,
and by using transitions Δ, the successor states for each current state are
obtained until all tasks of the current execution trace have been traversed.
We use Fpaths (Forward-paths) to record the sequence of transitions in the
LTS corresponding to the execution paths of the current execution trace.

(b) Finding the corresponding valid path into the LTS model (lines 15 to 20).
This step relies on a backward traversal of the LTS (from final state to ini-
tial state). Therefore, we start by reversing the sequence of tasks for the
current execution trace. By using this reversed list and the final state which
is stored in the last Qnext of the previous step, we then traverse backwards
to the initial state. We use Bpaths (Backward-paths) to record all the tran-
sitions from the final state to the initial state (lines 15 to 19). Next, we
take the intersection of each element in Fpaths and Bpaths, and store the
result in Path. This intersection operation eliminates the invalid paths, or
more precisely the invalid transitions, in Fpaths and Bpaths. Thus, the Path
variable finally stores all the transitions of the LTS model corresponding to
the current execution trace (line 20).

(c) Increasing the value of the counters (line 21). The values of the counters for
the transitions in Path are increased by 1.

(d) Computing the probability of each transition (line 22). The probability of
each transition is computed. To do so, the value of each transition counter
is divided by the total number of transitions with the same starting state.

When we have traversed all the execution traces, the algorithm finally returns
the resulting PTS.

The time complexity of this algorithm is O(|T | × n × |Δ|), where |T | is the
number of execution traces, n is the number of tasks in the longest trace, and
|Δ| is the number of transitions in the LTS/PTS.

Figure 4 illustrates the execution of the algorithm. Figure 4(a) depicts the
input of the algorithm: an LTS and a set of execution traces, where the number
in the first column (e.g. 1003) is the identifier of the execution trace. In this
example, we assume that State 2 is the end/final state of the LTS. Figure 4(b)
depicts an example of traversing an execution trace, where the dashed lines
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Fig. 4. Example describing the execution of the algorithm

indicate all possible transitions. Figure 4(c) depicts an example of filtering the
invalid paths in it based on the paths obtained in the previous step, which is
indicated by dotted lines. Dashed lines are used to represent the valid path.
In this example, after the previous step, we get a total of two paths. One path
contains two transitions of (0 Task A−→ 1) and (1 Task C−→ 4). The final state reached
by this path is 4, which is not the final state of the LTS. Therefore, this path is
invalid. For the other one, its final state is the final state of the LTS, and hence,
this is a valid path. Figure 4(d) shows each relevant transition coming from
the valid path (dashed lines) whose counter is incremented by 1. Figure 4(e)
then describes the computation of the probability for each transition of the
LTS. Finally, the PTS corresponding to the LTS extended with probabilities is
returned.

4 Tool Support

In this section, we present the tool chain automating the different steps of our
approach. We then illustrate the application of these tools to a case study, and
end with additional experiments to evaluate performance of the tools on a set
of realistic examples.

4.1 Tool

Figure 5 overviews the tool chain. First, we use the Activiti framework [1] for
developing and executing BPMN processes. Activiti is a lightweight Java-centric
open source tool. When running a BPMN process once or several times, all data
related to these executions are stored into a MySQL database.

Beyond a BPMN process, the second input required by our approach is a
probabilistic property. In this work, the property is specified using the MCL [21]
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temporal logic, which is one of the input languages of the CADP toolbox [9].
CADP is a toolbox for the design and verification of asynchronous concurrent
systems. Note that the approach can take several properties as input, not just
a single one. We also use the Script Verification Language [8] (SVL), which
is convenient for automating all verification tasks, particularly when there are
several properties given as input.

The VBPMN tool [17] is used for transforming BPMN into LTS. The gen-
eration of the PTS from the analysis of the execution traces is automated by
a Python program we implemented. The property is then evaluated by call-
ing the CADP probabilistic model checker [19]. As a result, it returns either a
Boolean or Numerical value. Since the BPMN process keeps executing (multi-
ple instances), the PTS is updated periodically according to an update strategy
defined in Sect. 3. Whenever the PTS is updated, the model checker is called
again. The final result is thus not a single value, but a series of values, which
we represent as a curve (x: time or number of instances, y: verification result).
This curve is drawn using Matplotlib, which is a plotting library for the Python
programming language.

Fig. 5. Overview of the tool chain

4.2 Case Study

Let us illustrate our approach with the shipment process of a hardware retailer,
which comes from [20]. This example, shown in Fig. 6, describes a realistic deliv-
ery process of goods. More precisely, this process starts when there are goods
to be shipped (E1). Two tasks are then processed in parallel (PG1), one is the
packaging of the goods (T7) and the other decides whether the goods require
normal or special shipment (T1). Depending on that decision, a first option
checks whether there is a need for additional insurance (T2), followed by the
possibility to buy additional insurance (T4) and/or fill in a post label (T5).
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A second option is to request quotes from carriers (T3), followed by the assign-
ment of a carrier and preparation of the paperwork (T6). Before completing the
whole process, the package is moved to a pick-up area.

Decide: normal
post or

special carrier

Check extra
insurance

Move package to
pick area

Assign a carrierRequest quotes
from carriers

Fill in a post label

Take out extra
insurance

Package goods

Goods to ship

Goods available
for pick

E1 PG1
T1 Normal post

T8

T6

T5

T4

T2

T3

T7

Special carrier

EG1

IG1 IG2

EG2

PG2

E2

Always

Extra insurance
required

Fig. 6. BPMN shipment process of a hardware retailer

Probabilistic Property. For illustration purposes, we choose a property checking
that the probability of executing task T4 after task T2 is less than 0.4. This is
important because the choice of taking extra insurance (T4) comes with a cost,
and if this decision is taken too often (e.g. more than four times out of ten), this
may become a problem in terms of budget. This property is written in MCL
as follows: prob true*. T2. true*. T4 is < ? 0.4 end prob. Since we use the ‘?’
symbol, the model checker returns both a Boolean value (indicating whether the
property is true or false) and a numerical value (indicating the probability to
execute T4 after T2).

Simulation. We implemented a simulator in Java in charge of executing many
instances of the BPMN process, varying the order and frequency of task exe-
cutions in order to simulate a realistic operating environment. Figure 7 shows
the Boolean and numerical results for a simulation consisting of 1400 instances,
executed over a period of about 4 minutes, where the property is the one men-
tioned earlier. The update strategy used here relies on the number of completed
instances. Every time there are ten completed instances, we compute again the
execution probability of each transition of the LTS, generate a new PTS, and
we call the model checker to obtain a new result. Figure 7 shows a variation of
the truth and numerical values of the evaluated property over time. This is due
to our simulator, which favours the execution of some specific tasks during some
periods, resulting in the curve given in the figure.
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Fig. 7. Simulation results for the shipment process

4.3 Additional Experiments for Performance Evaluation

The goal of this section is to measure the execution times of the different steps of
our approach in practice. To do so, we rely on a set of realistic BPMN processes
found in existing papers and frameworks shown in Table 1. We used an Ubuntu
OS laptop running on a 1.7 GHz Intel Core i5 processor with 8 GB of memory
to carry out these experiments. Table 1 shows the results of these experiments.
Each process is characterised by its size (number of tasks and gateways), the
size of the generated PTS (number of states and transitions), and the execution
time of each step is decomposed as follows:

(1) Time for transforming the BPMN process into an LTS (executed only once);
(2) Time for extracting a certain number of execution traces (100 in these exper-

iments) from the database;
(3) Time for analysing these execution traces and for computing the PTS;
(4) Time for verifying the property on that PTS using the CADP model checker.

Let us now focus on the results presented in Table 1 for each step. The first
step focuses on the transformation of the BPMN process to an LTS model.
Table 1 shows this can be a time-consuming step compared to the other ones.
This computation time depends on the structure of the BPMN process and
increases with the number of parallel and inclusive gateways (in particular when
they are nested). Rows 8 and 11 in the table illustrate this point. However,
it is worth noting that this step of the approach is only executed once at the
beginning, so this extra-time is not really a problem. The second step focuses on
the computation time for connecting to the database and extracting a certain
number of execution traces (100 in these experiments) from it. We can see that
the computation time of this step is less than 0.5 s for all the examples in the
table. The third step aims to analyse these execution traces, calculating the
probabilities of each transition for building a PTS by annotating the previously
computed LTS. The algorithm (and its complexity) for computing that PTS was
presented in Sect. 3. According to our experiments, we can see that this time
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Table 1. Experimental results for some case studies

No.
BPMN

Process

Characteristics PTS Time (s)

Tasks
Gateways

States Transitions (1) (2) (3) (4)

Exclusive Inclusive Parallel

1 Shipment [20] 8 2 2 2 18 38 15 0.32 0.61 1.45

2 Recruitment [7] 10 1 0 6 19 31 25 0.21 0.64 1.32

3 Shopping [17] 22 8 2 2 59 127 50 0.26 1.12 1.68

4 AccoutOpeningV2 [17] 15 3 2 2 20 33 31 0.25 0.71 0.84

5 Publish [17] 4 0 2 0 16 61 22 0.42 0.58 0.77

6 Car [17] 10 2 0 2 18 31 18 0.44 0.67 0.84

7 Online-Shop [17] 19 7 2 0 36 74 41 0.33 0.79 1.21

8 Multi-Inclusive [17] 9 0 6 0 47 194 42 0.23 2.32 1.39

9 Multi-Exclusive [17] 8 6 0 0 6 9 22 0.01 0.51 0.82

10 Multi-Parallel [17] 8 0 0 6 15 22 12 0.12 0.63 0.67

11 Multi-InclusiveV2 [17] 12 0 6 0 141 1201 78 0.25 4.29 1.58

12 Booking [17] 11 2 4 0 53 242 22 0.19 2.37 1.24

increases with the size of the LTS (number of transitions). It takes less than a
second to compute this step for most examples and it is slightly longer for a
few examples (about 4 s for example Multi-InclusiveV2 for instance). The final
computation time corresponds to the verification of the PTS model by calling
the probabilistic model checker. We can see in the table that it takes about 1 or
2 s for each example to make this computation.

To conclude, these experiments show that, except for the LTS computation
that might be costly, the other steps of the approach are computed in a reason-
able time for realistic processes. This shows that conducting probabilistic model
checking of BPMN processes at runtime is feasible. Last but not least, the sum
of the times observed for steps (2), (3) and (4) could be used to obtain a lower
bound value to the period of time used by the time-based strategy. Indeed, this
would not make sense to use as period a value that would be smaller than this
lower bound.

5 Related Work

In this section, we overview some existing research efforts proposing probabilistic
models and analysis for BPMN.

The approaches in [2,3] focus on the use of Bayesian networks to infer the
relationship between different events. As an example, [3] introduces a BPMN
normal form based on Activity Theory that can be used for representing the
dynamics of a collective human activity from the perspective of a subject. This
workflow is then transformed into a Causal Bayesian Network that can be used
for modelling human behaviours and assessing human decisions.
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The approach in [4] extends BPMN with time and probabilities. Specifically,
the authors expect that a probability value is provided for each flow involved in
an inclusive or exclusive split gateway. These BPMN processes are then trans-
formed to rewriting logic and analysed using the Maude statistical model checker
PVeStA. This work is extended in [5] to explicitly model and analyse resource
allocation. This series of works allows one to compute at design time generic
properties, such as average execution times, synchronisation times or resource
usage, whereas the goal of this paper is to compute probabilistic properties at
runtime by dynamically analysing the executions of multiple process instances.

The approach in [14] presents a framework for the automated restructuring
of workflows that allows minimising the impact of errors on a production work-
flow. To do so, they rely on a subset of BPMN extended to include the tracking
of real-valued quantities associated with the process (such as time, cost, tem-
perature), and the modelling of probabilistic- or non-deterministic branching
behaviour, and the introduction of error states. The main goal of this approach
is to reduce the risk of production faults and restructure the production work-
flows for minimising such faults.

In [16,23], the authors first propose to give a formal semantics to BPMN via
a transformation to Labelled Transition Systems (LTSs). This is achieved via
a transformation to process algebra and use of existing compilers for automati-
cally generating the LTS from the process algebraic specification. Once the LTS
model is generated, model checking of functional properties is possible as well as
comparison of processes using equivalence checking. This work does not provide
any probabilistic model for BPMN nor any kind of quantitative analysis.

In [12,13], the authors present a framework for modelling and analysis of busi-
ness workflows. These workflows are described with a subset of BPMN extended
with probabilistic nondeterministic branching and general-purpose reward anno-
tations. An algorithm translates such models into Markov decision processes
(MDP) written in the syntax of the PRISM model checker. This enables quan-
titative analysis of business processes for properties such as transient/steady-
state probabilities, reward-based properties, and best- and worst-case scenarios.
These properties are verified using the PRISM model checker. This work sup-
ports design time analysis, but does not focus on the dynamic execution and
runtime verification of processes.

Statistical model checking [11], which uses simulation and statistical meth-
ods, facilitates the generation of approximate results to quantitative model
checking. Although it has a low memory requirement, the cost is expensive if
high accuracy is required. In comparison, probabilistic model checking produces
highly accurate results, despite the potential problem of state explosion.

6 Conclusion

We have presented a new approach that allows BPMN analysts to automat-
ically carry out probabilistic model checking of BPMN processes at runtime.
This approach takes as input an executable BPMN process and one (or several)
probabilistic property. To evaluate this property, we build a probabilistic model
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(PTS) by analysing the execution traces extracted from the multiple execution
of this process. This analysis allows us to annotate the LTS semantic model
corresponding to the BPMN process with probabilities, thus obtaining a PTS
model. Finally, we can call the probabilistic model checker with the probabilis-
tic model and the property. Since the process keeps executing, the probabilistic
model is updated periodically and the model checker is called periodically as
well. Therefore, we do not return a single value as a result but a curve display-
ing the successive truth or numerical values returned by the model checker. Our
approach is fully automated by a tool chain consisting of existing and new tools.
The tool chain was applied to several realistic examples for validation purposes.

As far as future work is concerned, we first plan to take advantage of
the results computed by our approach to effectively adjust resource alloca-
tion depending on the runtime analysis results. This requires having an explicit
description of resources associated with tasks and dynamically modifying the
resource allocation with respect to the analysis results. A second perspective is
to not only analyse properties at runtime, but predict the result of the evalua-
tion of these properties in the near future. This would allow the anticipation of
changes in the resource allocation for instance. This prediction can be achieved
by relying on the computed probabilistic model or by using machine learning
techniques.
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