
Maurice H. ter Beek
Rosemary Monahan (Eds.)

17th International Conference, IFM 2022
Lugano, Switzerland, June 7–10, 2022
Proceedings

Integrated
Formal MethodsLN

CS
 1

32
74

Fo
rm

al
 M

et
ho

ds

Lecture Notes in Computer Science 13274

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Maurice H. ter Beek • Rosemary Monahan (Eds.)

Integrated
Formal Methods
17th International Conference, IFM 2022
Lugano, Switzerland, June 7–10, 2022
Proceedings

123

Editors
Maurice H. ter Beek
ISTI-CNR
Pisa, Italy

Rosemary Monahan
Maynooth University
Maynooth, Ireland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-07726-5 ISBN 978-3-031-07727-2 (eBook)
https://doi.org/10.1007/978-3-031-07727-2

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2930-6367
https://orcid.org/0000-0003-3886-4675
https://doi.org/10.1007/978-3-031-07727-2

Preface

This volume contains the papers presented at the 17th International Conference on
integrated Formal Methods (iFM 2022) held in beautiful Lugano, Switzerland, and
hosted by the Software Institute of the Università della Svizzera italiana (USI). These
proceedings also contain seven papers selected by the Program Committee of the PhD
Symposium (PhD-iFM 2022) chaired by Marie Farrell and João F. Ferreira.

In recent years, we have witnessed a proliferation of approaches that integrate
several modeling, verification, and simulation techniques, facilitating more versatile
and efficient analysis of software-intensive systems. These approaches provide pow-
erful support for the analysis of different functional and non-functional properties of the
systems, and the complex interaction of components of different nature, as well as
validation of diverse aspects of system behavior. The iFM conference series is a forum
for discussing recent research advances in the development of integrated approaches to
formal modeling and analysis. The conference series covers all aspects of the design of
integrated techniques, including language design, verification and validation, auto-
mated tool support, and the use of such techniques in software engineering practice.

iFM 2022 solicited high-quality papers reporting research results and/or experience
reports related to the overall theme of formal methods integration. The Program
Committee (PC) originally received a total of 53 abstract submissions, which even-
tually resulted in 46 paper submissions from authors in 24 different countries spread
over all six continents: 40 regular papers, five short papers, and one journal-first paper
submission. Each submission went through a rigorous review process according to
which all papers were reviewed by three PC members, with the help of many external
reviewers, followed by a short yet intense discussion phase. The decision to accept or
reject a paper was based not only on the review reports and scores but also, and in
particular, on these in-depth discussions. In the end, the PC of iFM 2022 selected 16
papers for presentation during the conference and inclusion in these proceedings: 14
regular papers, one short paper, and one journal-first paper. This amounts to an overall
acceptance rate of 34.8% (35% for regular papers and 20% for short papers). The PC of
PhD-iFM 2022 received eight submissions and selected seven papers for presentation
during the conference and inclusion in these proceedings.

To credit the effort of tool developers, this edition of iFM introduced for the first
time EAPLS artifact badging. The Artifact Evaluation Committee, chaired by Alessio
Ferrari and Marie-Christine Jakobs, received seven submissions and worked hard to
run often complex tools and long experiments. All artifacts achieved the available and
the functional badge, while two artifacts of particularly good quality were awarded the
functional and reusable badge.

The conference featured keynotes by Yamine Aït Ameur (Toulouse INP and
IRIT-CNRS, France), Roderick Bloem (Graz University of Technology, Austria),
and—as a joint keynote speaker of iFM 2022 and PhD-iFM 2022—Louise Dennis
(University of Manchester, UK). We hereby heartily thank these invited speakers.

We are grateful to all involved in iFM 2022. In particular, all PC members and
external reviewers for their accurate and timely reviewing, all authors for their sub-
missions, and all attendees for their participation. We also thank all chairs and com-
mittees (Journal First Track, Artifact Evaluation Committee, and PhD Symposium),
itemized on the following pages, and the excellent local organization and finance and
publicity teams chaired by Carlo A. Furia.

We are very grateful to the organizations which sponsored the conference: The
Hasler Foundation, Springer, and the European Association for Programming Lan-
guages and Systems (EAPLS).

Finally, we thank Springer for publishing these proceedings in their FM subline, and
for facilitating the EAPLS artifact badges on the papers, and we kindly acknowledge
the support from EasyChair in assisting us in managing the complete process from
submissions through these proceedings to the program.

We hope you enjoyed the conference!

April 2022 Maurice H. ter Beek
Rosemary Monahan

vi Preface

Organization

General Chair

Carlo A. Furia Università della Svizzera italiana, Switzerland

Program Committee Chairs

Maurice H. ter Beek ISTI–CNR, Italy
Rosemary Monahan Maynooth University, Ireland

Journal First Track Chairs

Ferruccio Damiani University of Turin, Italy
Marieke Huisman University of Twente, The Netherlands

Artifact Evaluation Committee Chairs

Alessio Ferrari ISTI–CNR, Italy
Marie-Christine Jakobs Technical University of Darmstadt, Germany

PhD Symposium Chairs

Marie Farrell Maynooth University, Ireland
João F. Ferreira University of Lisbon, Portugal

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Yamine Aït Ameur Toulouse INP and IRIT-CNRS, France
Petra van den Bos University of Twente, The Netherlands
Giovanna Broccia ISTI–CNR, Italy
Ana Cavalcanti University of York, UK
Ivana Černá Masaryk University, Czech Republic
Louise A. Dennis University of Manchester, UK
John Derrick University of Sheffield, UK
Brijesh Dongol University of Surrey, UK
Einar Broch Johnsen University of Oslo, Norway
Rajeev Joshi Amazon Web Services, USA
Nikolai Kosmatov CEA List, France
Michael Leuschel University of Düsseldorf, Germany
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Matt Luckcuck Maynooth University, Ireland

Anamaria Martins Moreira Federal University of Rio de Janeiro, Brazil
Dominique Méry Loria and University of Lorraine, France
Stephan Merz Inria Nancy and Loria, France
Luigia Petre Åbo Akademi University, Finland
André Platzer Carnegie Mellon University, USA
Jaco van de Pol Aarhus University, Denmark
Kostis Sagonas Uppsala University, Sweden
Gerhard Schellhorn University of Augsburg, Germany
Emil Sekerinski McMaster University, Canada
Marjan Sirjani Mälardalen University, Sweden
Volker Stolz Western Norway University of Applied Sciences,

Norway
Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Helen Treharne University of Surrey, UK
Elena Troubitsyna Åbo Akademi University, Finland
Frits W. Vaandrager Radboud University, The Netherlands
Andrea Vandin Sant’Anna School of Advanced Studies, Italy
Heike Wehrheim University of Oldenburg, Germany
Anton Wijs Eindhoven University of Technology, The Netherlands
Kirsten Winter University of Queensland, Australia
Burkhart Wolff Université Paris-Saclay, France
Naijun Zhan Chinese Academy of Sciences, China

Artifact Evaluation Committee

Cedric Richter University of Oldenburg, Germany
Pedro Ribeiro University of York, UK
Felix Pauck Paderborn University, Germany
Emilio Incerto IMT School for Advanced Studies Lucca, Italy
Virgile Robles CEA List, France
Yannic Noller National University of Singapore, Singapore
Davide Basile ISTI–CNR, Italy
Martin Tappler Graz University of Technology, Austria
Bishoksan Kafle University of Melbourne, Australia
Mathias Fleury University of Freiburg, Germany
Danilo Pianini University of Bologna, Italy
Sharar Ahmadi University of Surrey, UK

PhD Symposium Program Committee

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Clare Dixon University of Manchester, UK
Angelo Ferrando University of Genova, Italy
Ivan Perez National Institute of Aerospace and NASA, USA
Alexandra Mendes University of Porto and INESC TEC, Portugal

viii Organization

Maike Schwammberger University of Oldenburg, Germany
Graeme Smith University of Queensland, Australia

Steering Committee

Erika Ábrahám RWTH Aachen University, Germany
Wolfgang Ahrendt Chalmers University of Technology, Sweden
Ferruccio Damiani University of Turin, Italy
John Derrick University of Sheffield, UK
Carlo A. Furia Università della Svizzera italiana, Switzerland
Marieke Huisman University of Twente, The Netherlands
Einar Broch Johnsen University of Oslo, Norway
Luigia Petre Åbo Akademi University, Finland
Nadia Polikarpova University of California, San Diego, USA
Steve Schneider University of Surrey, UK
Emil Sekerinski McMaster University, Canada
Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Helen Treharne University of Surrey, UK
Heike Wehrheim University of Oldenburg, Germany
Kirsten Winter University of Queensland, Australia

Local Organizers

Mohammad Rezaalipour Università della Svizzera italiana, Switzerland
Diego Marcilio Università della Svizzera italiana, Switzerland
Elisa Larghi Università della Svizzera italiana, Switzerland
Roberto Minelli Università della Svizzera italiana, Switzerland

Additional Reviewers

Sara Abbaspour Asadollah
Ole Jørgen Abusdal
Sharar Ahmadi
Christian Attiogbe
Boutheina Bannour
Chinmayi Prabhu

Baramashetru
Nikola Benes
Lionel Blatter
Jean-Paul Bodeveix
Zheng Cheng
Sadegh Dalvandi
Crystal Chang Din

Constantin Catalin Dragan
Jannik Dunkelau
Mamoun Filali-Amine
Paul Fiterău-Brostean
Predrag Filipovikj
Aditi Kabra
Eduard Kamburjan
Paul Kobialka
Stefan Marksteiner
Hugo Musso Gualandi
Muhammad Osama
Felix Pauck
Valentin Perrelle

Violet Ka I Pun
Cedric Richter
Justus Sagemüller
Joshua Schmidt
Arnab Sharma
William Simmons
Marek Trtík
Fabian Vu
Shuling Wang
Simon Wimmer
Hao Wu
Tengshun Yang
Bohua Zhan

Organization ix

Side Channel Secure Software
(Abstract of Invited Talk)

Roderick Bloem

University of Technology, Austria
roderick.bloem@iaik.tugraz.at

Abstract. We will present a method to analyze masked hardware or masked
software for vulnerability to power side channel attacks. Masking is a technique
to hide secrets by duplication and addition of randomness. We use the Fourier
expansion of Boolean functions to find correlations between variables and
secrets and we present an abstraction-refinement technique that reduces the
search for correlations to the satisfiability of a formula in propositional logic.
This technique allows us to find leaks in industrial-size circuits, while taking
detailed timing aspects such as glitching into account.

Formal methods to analyze the power side channel security of software often
take a simplistic view of the side-channel leakage that is incurred during a
software execution. We take a detailed look at how software executes on a real
processor, and specifically on the IBEX RISC-V CPU. Using our verification
tool, we find vulnerabilities that are surprising on first glance. We present both
modifications to harden a CPU against leaks and guidelines for writing software
that can be proven not to leak any further information.

References

1. Bloem, R., Gros, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal verification
of masked hardware implementations in the presence of glitches. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 321–353. Springer (2018). https://doi.org/
10.1007/978-3-319-78375-8 11

2. Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: Coco: co-design and co-verification
of masked software implementations on CPUs. In: Bailey, M., Greenstadt, R. (eds.) 30th
USENIX Security Symposium (USENIX Security 2021), August 11–13, 2021, pp. 1469–1468.
USENIX Association (2021). https: //www.usenix.org/conference/usenixsecurity21/presentation/
gigerl

3. Hadzic, V., Bloem, R.: CocoAlma: a versatile masking verifier. In: Proceedings of the 21st
Conference on Formal Methods in Computer Aided Design (FMCAD 2021), New Haven,
CT, USA, October 19–22, 2021, pp. 1–10. IEEE (2021). https://doi.org/10.34727/2021/isbn.
978-3-85448-046-4 9 , https://ieeexplore.ieee.org/document/9617707/

https://orcid.org/0000-0002-1411-5744
 https://doi.org/10.1007/978-3-319-78375-8 11
 https://doi.org/10.1007/978-3-319-78375-8 11
https: //www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https: //www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 9
https://ieeexplore.ieee.org/document/9617707/

Contents

Invited Presentations

Verifying Autonomous Systems . 3
Louise A. Dennis

Empowering the Event-B Method Using External Theories 18
Yamine Aït-Ameur, Guillaume Dupont, Ismail Mendil, Dominique Méry,
Marc Pantel, Peter Rivière, and Neeraj K. Singh

Cooperative and Relational Verification

Journal-First: Formal Modelling and Runtime Verification of Autonomous
Grasping for Active Debris Removal . 39

Marie Farrell, Nikos Mavrakis, Angelo Ferrando, Clare Dixon,
and Yang Gao

Formal Specification and Verification of JDK’s Identity Hash Map
Implementation . 45

Martin de Boer, Stijn de Gouw, Jonas Klamroth, Christian Jung,
Mattias Ulbrich, and Alexander Weigl

Reusing Predicate Precision in Value Analysis . 63
Marie-Christine Jakobs

Certified Verification of Relational Properties . 86
Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto, and Pascale Le Gall

B Method

Reachability Analysis and Simulation for Hybridised Event-B Models 109
Yamine Aït-Ameur, Sergiy Bogomolov, Guillaume Dupont,
Neeraj Kumar Singh, and Paulius Stankaitis

Operation Caching and State Compression for Model Checking
of High-Level Models: How to Have Your Cake and Eat It 129

Michael Leuschel

Time

Conservative Time Discretization: A Comparative Study 149
Marcelo Forets and Christian Schilling

Untangling the Graphs of Timed Automata to Decrease the Number
of Clocks . 168

Neda Saeedloei and Feliks Kluźniak

Probability

Probabilistic Model Checking of BPMN Processes at Runtime 191
Yliès Falcone, Gwen Salaün, and Ahang Zuo

HyperPCTL Model Checking by Probabilistic Decomposition. 209
Eshita Zaman, Gianfranco Ciardo, Erika Ábrahám,
and Borzoo Bonakdarpour

Learning and Synthesis

Learning Finite State Models from Recurrent Neural Networks 229
Edi Muškardin, Bernhard K. Aichernig, Ingo Pill, and Martin Tappler

Kaki: Concurrent Update Synthesis for Regular Policies via Petri Games 249
Nicklas S. Johansen, Lasse B. Kær, Andreas L. Madsen,
Kristian Ø. Nielsen, Jiří Srba, and Rasmus G. Tollund

Security

Verified Password Generation from Password Composition Policies 271
Miguel Grilo, João Campos, João F. Ferreira, José Bacelar Almeida,
and Alexandra Mendes

A Policy Language to Capture Compliance of Data Protection
Requirements . 289

Chinmayi Prabhu Baramashetru, Silvia Lizeth Tapia Tarifa, Olaf Owe,
and Nils Gruschka

Static Analysis and Testing

Extending Data Flow Coverage to Test Constraint Refinements 313
Alexander Kolchin and Stepan Potiyenko

Scalable Typestate Analysis for Low-Latency Environments 322
Alen Arslanagić, Pavle Subotić, and Jorge A. Pérez

PhD Symposium Presentations

Studying Users’ Willingness to Use a Formally Verified
Password Manager . 343

Carolina Carreira

xiv Contents

Modeling Explanations in Autonomous Vehicles. 347
Akhila Bairy

A Requirements-Driven Methodology: Formal Modelling and Verification
of an Aircraft Engine Controller . 352

Oisín Sheridan, Rosemary Monahan, and Matt Luckcuck

A Dialogue Interface for Low Code Program Evolution 357
Luís Carvalho

Simple Dependent Types for OSTRICH. 361
Joana Parreira

SNITCH: A Platform for Information Flow Control. 365
Eduardo Geraldo

Machine-Assisted Proofs for Institutions in Coq . 369
Conor Reynolds and Rosemary Monahan

Author Index . 373

Contents xv

Invited Presentations

Verifying Autonomous Systems

Louise A. Dennis(B)

University of Manchester, Manchester, UK

louise.dennis@manchester.ac.uk

Abstract. This paper focuses on the work of the Autonomy and Veri-
fication Network (https://autonomy-and-verification.github.io). In par-
ticular it will look at the use of model-checking to verify the choices made
by a cognitive agent in control of decision making within an autonomous
system. It will consider the assumptions that need to be made about the
environment in which the agent operates in order to perform that veri-
fication and how those assumptions can be validated via runtime moni-
toring. Lastly it will consider how compositional techniques can be used
to combine the agent verification with verification of other components
within the autonomous system.

Keywords: Verification · Autonomous systems · Model-checking ·
Runtime verification

1 Introduction

Autonomous systems are increasingly being used for a range of tasks from explor-
ing dangerous environments, to assistance in our homes. If autonomous systems
are to be deployed in such situations then their safety assurance (and certifica-
tion) must be considered seriously.

Many people are seeking to leverage the power of machine learning to directly
link inputs and outputs in a variety of autonomous systems via a statistical model.
This paper examines an alternative, more modular, approach in which the decision
making component of the system is constructed in a way that makes it amenable
to formal verification. This approach necessitates an integrated approach to the
verification of the whole autonomous system – both in terms of validating assump-
tions about the way the environment external to the system behaves and in terms
of compositional verification of the various modules within the system.

2 A Cognitive Agent Decision Maker

Our decision making component is a cognitive agent programmed using the
Beliefs-Desires-Intentions (BDI) programming paradigm.

At its most general, an agent is an abstract concept that represents an
autonomous computational entity that makes its own decisions [39]. A general

Supported by organization x.

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 3–17, 2022.
https://doi.org/10.1007/978-3-031-07727-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_1&domain=pdf
http://orcid.org/0000-0003-1426-1896
https://autonomy-and-verification.github.io
https://doi.org/10.1007/978-3-031-07727-2_1

4 L. A. Dennis

agent is simply the encapsulation of some computational component within a
larger system. However, in many settings we desire something more transparent,
where the reasons for choices can be inspected and analysed.

Cognitive agents [7,33,40] enable this kind of reasoning. We often describe
a cognitive agent’s beliefs and goals, which in turn determine the agent’s inten-
tions. Such agents make decisions about what action to perform, given their cur-
rent beliefs, goals and intentions. This view of cognitive agents is encapsulated
within the Beliefs-Desires-Intentions (BDI) model [32–34]. Beliefs represent the
agent’s (possibly incomplete, possibly incorrect) information about itself, other
agents, and its environment, desires represent the agent’s long-term goals while
intentions represent the goals that the agent is actively pursuing.

There are many different agent programming languages and agent platforms
based, at least in part, on the BDI approach [5,11,23,29,35]. Agents programmed
in these languages commonly contain a set of beliefs, a set of goals, and a set
of plans. Plans determine how an agent acts based on its beliefs and goals and
form the basis for the selection of actions. As a result of executing a plan, the
beliefs and goals of an agent may change and actions may be executed.

We consider agent architectures for autonomous systems in which a cognitive
agent decision maker is supported by other components such as, image classi-
fiers, sophisticated motion planning systems with statistical techniques for simul-
taneous localisation and mapping, planners and schedulers for determining when
and in what order tasks should be performed, and health monitoring processes to
determine if all the system components are functioning as they should. The agent
decision-maker coordinates information and control between these systems.

3 Verifying Autonomous Choices

The starting point of our approach is the use formal verification in the form of
model-checking [10] (specifically, in our case, program model-checking [37]) for
the cognitive agent.

Formal verification is the process of assessing whether a formal specification
is satisfied on a formal description of a system. For a specific logical property,
ϕ, there are many different approaches to this [6,12,21]. Model-checking takes a
model of the system in question (or, in the case of program model-checking the
implemented system itself), defining all the possible executions, and then checks
a logical property against this model. Model-checking is therefore limited by our
ability to characterise and feasibly explore all such executions.

The properties we verify are based on the choices the agent makes, given
the information that is available to it. This is feasible since, while the space
of possibilities covered by, for instance, the continuous dynamics of a robotic
system is huge (and potentially infinite), the high-level decision-making within
the agent typically involves reasoning within a discrete state space. The agent
rarely, if ever, bases its choices directly on the exact values of sensors, etc. It
might base its decision on values reaching a certain threshold, but relies on other
parts of the system to alert it to this, and such alerts are typically binary valued

Verifying Autonomous Systems 5

(either the threshold has been reached or it has not). We assume this information
is transmitted to the agent in the form of environmental predicates which the
agent then treats as beliefs.

A very simple example of this is shown in Fig. 1. In this the agent decision
maker uses two simple plans to choose whether to stop or follow a path. When
it makes the choice it sends a command to an external control system (which
can stop or execute path following behaviour). Information from sensors has
been processed into two possible environmental predicates, obstacle or path.
A property we might wish to verify here is

if the agent believes there is an obstacle then it will try to stop.

With only two predicates and this very simple behaviour we only need to explore
four execution traces to see if the property is correct. The correctness will depend
on the priority of the two plans. If their priority is incorrect then, in the case
where the system detects both an obstacle and a path, it will follow the path
rather than stopping. Errors of this kind, where priorities (or behaviour) are
not correctly specified for situations where multiple events are taking place are
typical of the errors we detect with our approach.

if you believe there is
an obstacle then stop

if you believe there is a
path then follow it

Perception

If the agent believes there is an obstacle then it will try to stop

Data abstracted to
beliefs/facts/
predicates

Data from Sensors

Control system
executes
command

Something happens in the real world

No obstacle, no path

Obstacle, no path

No obstacle, path

Obstacle, path

Fig. 1. Verifying a simple agent decision maker

6 L. A. Dennis

3.1 The MCAPL Framework

We use the MCAPL framework [13,16] in our work, which provides a route
to the formal verification of cognitive agents and agent-based autonomous sys-
tems using program model-checking. The MCAPL framework has two main
sub-components: the AIL-toolkit for implementing interpreters for BDI agent
programming languages in Java and the AJPF model checker.

Agent JPF (AJPF) is a customisation of Java PathFinder (JPF) that is
optimised for AIL-based language interpreters. JPF is an explicit-state open
source model checker for Java programs [28,38]1. Agents programmed in lan-
guages that are implemented using the AIL-toolkit can thus be model checked
in AJPF. Furthermore if they run in an environment programmed in Java, then
the whole agent system can be model checked.

AJPF comes with a property specification for stating properties about BDI
agent programs. This language is propositional linear temporal logic (PLTL),
extended with specific modalities for checking the contents of the agent’s belief
base (B), goal base (G), actions taken (A) and intentions (I). This property
specification language is described in [16]. As well as the modalities for beliefs
etc., the property specification language supports the standard logical connec-
tions (∧, ∨, ¬, =⇒) and the temporal operators, � (where �p means that p is
always true) and ♦ (where ♦p means that p will eventually be true).

4 The Problem with Environments

In order to prove meaningful properties about our cognitive agent we need to con-
sider the environmental predicates it receives from its environment and, impor-
tantly, sequences of these predicates as the situation in which the agent is oper-
ating evolves.

When we model check a decision-making agent in AJPF we have to use
a purely Java environment to supply these predicates since JPF restricts us
to the model-checking of Java programs. However in general agents controlling
autonomous systems operate in a heterogenous environment with components
programmed in a variety of languages and communicating via middleware such
as the Robot Operating System [30] and behaviour ulitmately determined by
the behaviour of the real world.

So when model-checking an autonomous hybrid agent system in AJPF we
have to construct a Java verification environment that represents a simulation
of some ‘real’ environment. We can encode assumptions about the behaviour
of the ‘real’ world in this simulation, but we would prefer to minimize such
assumptions. For much of our autonomous systems work we try to have minimal
assumptions where on any given run of the program in the simulated environ-
ment, the environment asserts or retracts the environmental predicates that the
agent receives on an entirely random basis. This means that we do not attempt
to model assumptions about the effects an agent’s actions may have on the

1 https://github.com/javapathfinder.

https://github.com/javapathfinder

Verifying Autonomous Systems 7

world, or assumptions about the sequence in which perceptions may appear to
the agent. When model checking, the random behaviour of the verification envi-
ronment causes the search tree to branch and the model checker to explore all
environmental possibilities [15].

We call this most simple verification environment, where environmental pred-
icates arrive at random, an unstructured abstraction of the world, as it makes no
specific assumptions about the world behaviour and deals only with the possible
incoming perceptions that the system may react to. Unstructured abstractions
obviously lead to significant state space explosion so we have explored a number
of ways to structure these abstractions in order to improve the efficiency of model
checking, for example specifying that some predicates never appear at the same
time. These structured abstractions of the world are grounded on assumptions
that help prune the possible perceptions and hence control state space explosion.

What if these environmental assumptions turn out to be wrong?
Consider a simple intelligent cruise control programmed as a cognitive agent.

This cruise control can perceive the environmental predicates safe, meaning it
is safe to accelerate, at_speed_limit, meaning that the vehicle has reached its
speed limit, driver_brakes and driver_accelerates, meaning that the driver
is braking/accelerating. In order to formally verify the behaviour of the cruise
control agent in an unstructured environment we would explore the behaviour for
all subsets of {safe, at_speed_limit, driver_brakes, driver_accelerates}
each time the vehicle takes an action. The generation of each subset causes
the search space to branch so that, ultimately, all possible combinations, in all
possible sequences of action are explored.

We would like to control the state space exploration by making assump-
tions about the environment. In the case of the cruise control, for instance,
we might suggest that a car can never both brake and accelerate at the same
time: subsets of environmental predicates containing both driver_brakes and
driver_accelerates should not be supplied to the agent during verification, as
they do not correspond to situations that we believe likely in the actual envi-
ronment. However, since this introduces additional assumptions about environ-
mental combinations it is important that we provide a mechanism for checking
whether these assumptions are ever violated.

Runtime Verification. We use a technology called runtime verification [17,36]
to monitor the environment that one of our autonomous systems finds itself in
and check that this environment conforms to the assumptions used during ver-
ification. Our methodology is to verify the behaviour of the program using a
structured abstraction prior to deployment – we refer to this as static verifi-
cation. Then, during testing and after deployment, we continually check that
the environment behaves as we expect. If it does not then the runtime monitor
issues a violation signal. We do not discuss what should happen when a violation
is detected but options include logging the violation for later analysis, handing
over control to a human operator, or entering some fail-safe mode.

8 L. A. Dennis

We can generate a verification environment for use by AJPF from a trace
expression. Trace expressions are a specification formalism specifically designed
for runtime verification and constrain the ways in which a stream of events may
occur. The semantics of trace expressions is presented in [2]. A Prolog imple-
mentation exists which allows a system’s developers to use trace expressions for
runtime verification by automatically building a trace expression-driven monitor
able to both observe events taking place and check their compliance with the
expression. If the observed event is allowed in the current state – which is rep-
resented by a trace expression itself – it is consumed and a transition function
generates a new trace expression representing the updated current state. If, on
observing an event, no transition can be performed, the event is not allowed. In
this situation an error is “thrown” by the monitor.

A trace expression specifying a verification environment can therefore be
used in the actual execution environment to check that the real world behaves
as the (structured) abstraction assumes. Essentially the verification environment
represents a model of the real world and a runtime monitor can be used to check
that the real world is behaving according to the model.

Figure 2 provides an overview of this system. A trace expression is used to
generate a Java verification environment which is then used to verify an agent
in AJPF (the dotted box on the right of the figure). Once this verification is
successfully completed, the verified agent is used with an abstraction engine that
converts sensor data into environmental predicates. This is shown in the dotted
box on the left of the figure.

If, at any point, the monitor observes an inconsistent event we can conclude
that the real world is not behaving according to the assumptions used in the
model during verification.

Verification Results. We created trace expressions representing the property
that the driver of a car only accelerates when it is safe to do so, and that the
driver never presses both the brake and acceleration pedals at the same time.

From this trace expression we were able to generate a verification environ-
ment for the cruise control agent and compare it with performance on an unstruc-
tured abstraction. We chose to verify the property:

�(Bcar safe =⇒ �(♦(Bcar safe ∨ Bcar braking))) (1)

It is always the case that if the car believes it is safe (at some point) then
it is always the case that eventually the car believes it is safe or the car
believes it braking.

We needed the initial Bcar safe in order to exclude those runs in which the car
never believes it is safe since the braking behaviour is only triggered when the
belief safe is removed.

When model checked using a typical hand-constructed unstructured abstrac-
tion, verification takes 4,906 states and 32:17 min to verify. Using the structured

Verifying Autonomous Systems 9

Fig. 2. General view of the runtime monitoring framework from [14]

abstraction generated from the trace expression the property took 8:22 min to
prove using 1,677 states – this has more than halved the time and the state
space.

As discussed, the structured abstraction may not reflect reality. In the original
cruise control program the software could override the human driver if they
attempted to accelerate in an unsafe situation. We removed this restriction.
Now we had a version of the program that was incorrect with respect to our
property in the unstructured environment model but remained correct in the
structured environment model. We were then able to run our program in a
motorway simulation contained in the MCAPL distribution where the “driver”
could accelerate whenever they liked – the runtime monitor correctly detected
the violation of the environment assumption and flagged up a warning.

Full details of the use of runtime verification with structured abstractions of
environments can be found in [20].

5 Compositional Verification

We now look beyond our agent decision-maker to see how we can derive proper-
ties about the behaviour of an autonomous system of which the agent decision-
maker is only one part. To motivate this we will discuss the verification of a
vehicle platooning system (reported in [26]) and an autonomous search and res-
cue rover.

10 L. A. Dennis

Vehicle Platooning. The automotive industry is working on what are vari-
ously called road trains, car convoys, or vehicle platoons. Here, each vehicle
autonomously follows the one in front of it, with the lead vehicle in the pla-
toon/convoy/train being controlled by a human driver.

In these platoons, vehicle-to-vehicle (V2V) communication is used at the
continuous control system level to adjust each vehicle’s position in the lanes and
the spacing between the vehicles. V2V is also used at higher levels, for example
to communicate joining and leaving requests to the platoon’s lead vehicle. It is
these leaving and joining requests that we consider here.

We assume that this lead vehicle serves two roles. It is controlled directly
by a human driver but it also acts as the central decision-making component in
platoon operations such as leaving and joining protocols. Therefore there is a
software agent in the lead vehicle, in all the other vehicles in the platoon and
in any vehicle wishing to join the platoon. These software agents control the
enactment of the protocols for joining and leaving the platoon.

Search and Rescue Rover. Consider an autonomous rover deployed in a disaster
situation. The autonomous rover has two types of sensor: the vision sensor is used
for navigation around the area while an infrared sensor detects sources of heat
that might indicate an injured or trapped person. There is a route planner that
works with the vision system to provide obstacle free routes to target locations
and a battery monitoring system that monitors the power level of the rover.
Finally there are two cognitive agents: a goal reasoning agent which takes input
from the sensors to select target locations for searching or recharging and a plan
execution agent that selects and executes route plans based on battery level
information and may send recharge instructions to the goal reasoning agent2.

5.1 Module Level vs. System Level Properties

Vehicle Platoons. We implemented the reasoning needed to follow the leaving
and joining protocols for a platoon as a cognitive agent and were able to verify
properties of these agents such as:

If a vehicle has a goal to join a platoon but never believes it has received
confirmation from the leader, then it never initiates joining the platoon.

However we are also interested in properties of the global system, for instance
we might wish to know that

If an agent ever receives a joining agreement from the leader, then the cars
in the platoon at the joining location have created enough space for the new
car to join.

2 Code for these two agents can be found in the src/examples/eass/composi

tional/rescue directory of the MCAPL distribution.

Verifying Autonomous Systems 11

In AJPF’s property specification language this would involve both beliefs of
the joining agent (that it has received an agreement) and actions of the agents
in the specified places in the platoon (that space has opened up). We could, of
course, verify each agent separately – for instance that the leader never sends
an agreement message unless it believes that a space has opened but this fails
to really tell us system behaviour. We also have a second problem. While it
is all very well to verify that eventually an appropriate message is sent or an
appropriate action is performed sometimes we require timing constraints on this
– particularly in an environment such as a motorway where vehicles are moving
at speed. So we are interested in properties like:

Given assumptions about the time taken for a vehicle to move to the correct
spacing, to move to the correct place adjacent to the platoon and to change
lane and for messages to be delivered then the time the required required
for a completed join maneuver is within desired bounds

AJPF’s property specification language simply cannot express these properties.
Therefore we opted to use a different approach to verify global properties of

the system. In this approach the agent is represented as a more simple automata
with many implementation details and edge cases associated with handling
unexpected environment behaviour, such as receiving unrequested agreements,
removed. This simple automata is then combined with automata representing
other vehicles and communication to verify timing properties using the UppAal
model-checking tool [3,4]. Meanwhile we use AJPF to prove desired properties
of the agent implementation.

Search and Rescue Rover. In the case of the Search and Rescue rover we
are interested in verifying system level properties such as:

If the rover needs to recharge, it will execute actions to move to the charger
location.

This requires, at a minimum, formal guarantees about the behaviour of both
agents and the route planning system, and ideally would also involve some anal-
ysis of the behaviour of the battery monitor.

In this case we can break this down into properties we want to hold of the
individual system components and then combine these. For instance, we want
to establish a couple of properties for the plan execution agent, namely:

If the plan execution agent believes the battery to be low and the current
goal is not the charge position then it will send a recharge message to the
goal agent.

If the plan execution agent believes the current goal is the charge position
and has a plan to get there then it will instruct the control system to follow
the route to the charge position.

12 L. A. Dennis

We want to establish that the goal agent has the property:

If the goal agent believes a recharge is needed then it will set the target
location to be the charge position.

The route-planner is not a BDI agent, but we can model the algorithm it
uses and prove properties of that using Event-B [1]. For instance our route
planner outputs a set of routes R as a sequence of waypoints, w0, . . . , wn so we
established:

The current target location appears as a waypoint in all routes suggested
by the route planner.

We then need a mechanism to combine these proofs.

5.2 Combining Results

In both our case studies we generated a number of formal verification results
using different formalisms and technologies. The challenge is then to combine
these into a system level result.

The Platoon. For our platooning system, we established properties both of the
agents controlling the individual vehicles involved in the platoon with details of
the communication and control behaviour abstracted away in an unstructured
verification environment and timing properties of the system behaviour with
details of the agent behaviour abstracted away.

For simplicity, we assume that our system S consists of just two agents/ve-
hicles and our verification works has given us the following:

– V1 and V2: timed automata representing the vehicle control used to verify
properties in UppAal.

– V ′
1 and V ′

2 : untimed abstractions of V1 and V2 represented in an unstructured
verification environment in AJPF.

– A1 and A2: BDI agent implementations used to verify properties in AJPF.
– A′

1 and A′
2: abstractions of A1 and A2 with BDI elements removed used to

verify properties in UppAal.
– Comms12 is a timed automaton representing the inter-vehicle communica-

tions used to verify properties in UppAal.
– Comms12 ′ is an untimed abstraction of Comms12 represented in an unstruc-

tured verification environment in AJPF.

We use ‖ to represent the parallel combination of these automata into a system
S. So V ′

i ‖ Ai ‖ Comms12 ′ represents a system used to prove a property about
agent, Ai, in AJPF, while V1 ‖ A′

1 ‖ Comms12 ‖ A′
2 ‖ V2 is a system con-

sisting of two agent abstractions and timed automata used to prove a property
about interactions of the agents in UppAal. In [26] we prove that individual
proofs about these systems containing abstractions can be conjoined into a single
theorem about the system, S = V1 ‖ A1 ‖ Comms12 ‖ A2 ‖ V2.

We applied this to our platooning system. In AJPF we proved proved:

Verifying Autonomous Systems 13

If a vehicle with a goal of joining the platoon never believes it has received
confirmation from the leader, then it never initiates joining to the platoon.

While, in UppAal, we proved:

If an agent ever receives a joining agreement from the leader, then the
preceding agent has increased its space to its front agent.

So the combined system has the property:

If a vehicle never believes it has received confirmation from the leader,
then it never initiates joining to the platoon and if an agent ever receives
a joining agreement from the leader, then the preceding agent has increased
its space to its front agent.

Indicating that an agent never initiates joining the platoon unless the preceding
agent has increased its space to it front agent.

Search and Rescue Rover. In the platooning example, our combined prop-
erty was expressed in a mixture of logics as used by the individual verification
tools. For the search and rescue rover example we sought to place this kind of
combination within a framework based on the concept of contracts.

For this system we specify contracts for each module, in the form of assump-
tions and guarantees and show, using first order logic, that these contracts imply
the system properties. The verifications of individual modules allow us to argue
that the module fulfils its contact.

Contracts in First-Order Logic. We assume that our system consists of a
set of modules, M, and a signature, Σ, of variables.

For a given module, C ∈ M, we specify its input modules, IC ⊆ M, updates,
UC ⊆ Σ, assumption, AC : Σ → Bool and guarantee, GC : Σ → Bool. Taken
together 〈IC ,UC ,AC ,GC〉 form a contract for the module.

We use the notation C↑ to indicate that a C emits some output and C↓ to
indicate that C receives an input.

We assume that all modules, C, obey the following:

∀φ, x · x ⊆ Σ\UC ∧ AC ∧ C↓ ∧ φ(x) ⇒ ♦(GC ∧ C↑ ∧ φ(x)) (2)

Intuitively, this states that if, at some point, C receives an input and its assump-
tion holds then eventually it emits an output and its guarantee holds. Moreover,
for any formula, φ, which does not involve any of C’s update variables then, if
φ holds when C recieves the input, φ also holds when C emits the output – i.e.,
φ is unaffected by the execution of C.

We have a second assumption that explains how inputs and outputs between
two modules, C1 and C2, connect:

C↑
1 ∧ C1 ∈ IC2 → C↓

2 (3)

14 L. A. Dennis

Intuitively this states that if C1 emits an output and is connected to the input
of C2, then C2 recieves an input.

We use these two rules to reason about our system.

Module Contracts. As an example module contract, the contract for the goal
reasoning agent was:

Inputs. IG: {V,H,E}
Updates. UG: g
Assumption. AG: �
Guarantee. GG: (g = chargePos ⇒

(∃h · h ∈ N ∧ (g, h) ∈ GoalSet ∧ (∀p, h1 · (p, h1) ∈ GoalSet ⇒ h ≥ h1)))
∧(recharge ⇐⇒ g = chargePos)

The goal reasoning agent’s inputs are the outputs of the Vision system V , the
heat sensor, H and the plan execution agent, E. It updates the target goal, g.
It has no assumptions (�) and guarantees that:

1. If the target goal, g, (which it updates) is not the charge position then (g, h) ∈
GoalSet for some heat signal, h, and for all other positions in the GoalSet
the heat for that position is lower than h.

2. If a recharge is needed then g is the charge position

Does the Goal Reasoning Agent Meet its Contract? We proved, using AJPF, that
if the goal reasoning agent believed a recharge was required then it would set the
goal to be the charging position. We also proved that if recharge was not required
it would select the position with the highest heat signature. Note, however, we
proved this for specific assumed positions (with these assumptions embedded
in a verification environment), rather than the general properties stated in the
contract.

Using our contracts we proved:

If at any point all plans sent to the plan execution agent by the planner
module are longer than available battery power, then eventually the current
plan will contain the charging position as the goal or there is no route to
the charging position

�(GP ∧ (∀p · p ∈ PlanSet → length(p) > b − t) ∧ E↓) =⇒ (4)
♦((g = chargePos ∧ g ∈ plan) ∨ PlanSet = ∅))

using the two rules (3) and (2).
In a series of works [8,9,18] we have considered a number of variations on

this example, as well as different kinds of contracts and sets of rules for reasoning
about them.

Verifying Autonomous Systems 15

6 Conclusion

This paper has focused on work performed by members of the Autonomy and
Verification Network. In particular we have focused on the use of the MCAPL
framework for verifying decision-making agents in autonomous systems [15,16],
the use of runtime verification to check that environments behave as assumed
by abstractions [19,20] and techniques for combining heterogenous verifications
of different components or aspects of an autonomous system [8,9,18,26].

Our approach is built upon constructing verifiable autonomous systems by
locating key high-level decisions in a declarative component based upon the
BDI-model of agency.

AJPF is not the only tool aimed at enabling the verification of autonomous
systems. Tools are being developed for analysing the behaviour of image classi-
fiers [25], reasoning about control systems [22], programming planning systems
with defined formal properties [27] and validating both the models used by plan-
ning systems [31] and the plans produced [24]. This is why the work on compo-
sitional verification is so critical. To truly verify an autonomous system we need
to consider all the software components that make up the system, verify each of
them with the appropriate tools and then combine those verifications together.

Data Access Statement. The MCAPL framework, including most of the exam-
ples in this paper, is available on github, https://github.com/mcapl/mcapl, and
archived at Zenodo, https://zenodo.org/record/5720861. The only example not
available with the framework is the platooning example which can be found
at https://github.com/VerifiableAutonomy/AgentPlatooning.

Acknowledgements. This work has been supported by EPSRC, through Model-
Checking Agent Programming Languages (EP/D052548), Engineering Autonomous
Space Software (EP/F037201/1), Reconfigurable Autonomy (EP/J011770), Verifiable
Autonomy (EP/L024845/1), Robotics and AI for Nuclear (EP/R026084/1), Future
AI and Robotics for Space (EP/R026092/1), and the Trustworthy Autonomous Sys-
tems Verifiability Node (EP/V026801/1). Thanks are due to Rafael C. Cardoso, Marie
Farrell, Angelo Ferrando, Michael Fisher, Maryam Kamali and Matthew Luckcuck for
much of the work presented in this paper.

References

1. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, London (2010)
2. Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear

temporal logic for runtime verification. In: Ábrahám, E., Bonsangue, M., Johnsen,
E.B. (eds.) Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 47–64.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 6

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

https://github.com/mcapl/mcapl
https://zenodo.org/record/5720861
https://github.com/VerifiableAutonomy/AgentPlatooning
https://doi.org/10.1007/978-3-319-30734-3_6
https://doi.org/10.1007/978-3-540-30080-9_7

16 L. A. Dennis

4. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason. John Wiley & Sons, Chichester (2007)

6. Boyer, R.S., Strother Moore, J. (eds.): The Correctness Problem in Computer
Science. Academic Press, New York (1981)

7. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

8. Cardoso, R.C., Dennis, L.A., Farrell, M., Fisher, M., Luckcuck, M.: Towards com-
positional verification for modular robotic systems. In: Proceedings 2nd Interna-
tional Workshop on Formal Methods for Autonomous Systems (FMAS 2020) (2020)

9. Cardoso, R.C., Farrell, M., Luckcuck, M., Ferrando, A., Fisher, M.: Heterogeneous
verification of an autonomous curiosity rover. In: Proc. 12th International NASA
Formal Methods Symposium (NFM). LNCS, vol. 12229, pp. 353–360. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-55754-6

10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

11. Dastani, M., van Birna Riemsdijk, M., Meyer, J.-J.C.: Programming multi-agent
systems in 3APL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-Agent Programming. MSASSO, vol. 15, pp. 39–67. Springer, Boston,
MA (2005). https://doi.org/10.1007/0-387-26350-0 2

12. DeMillo, R.A., Lipton, R.J., Perlis, A.: Social processes and proofs of theorems of
programs. ACM Commun. 22(5), 271–280 (1979)

13. Dennis, L.A.: The mcapl framework including the agent infrastructure layer and
agent Java Pathfinder. J. Open Source Softw. 3(24) (2018)

14. Dennis, L., Fisher, M.: Verifiable autonomy and responsible robotics. In: Software
Engineering for Robotics, pp. 189–217. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-66494-7 7

15. Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Practical Verifica-
tion of decision-making in agent-based autonomous systems. Autom. Softw. Eng.
23(3), 305–359 (2016). https://doi.org/10.1007/s10515-014-0168-9

16. Dennis, L.A., Fisher, M., Webster, M., Bordini, R.H.: Model checking agent pro-
gramming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

17. Falcone, Y., Havelund, K., Reger, G.: A Tutorial on runtime verification. In: Engi-
neering Dependable Software Systems, pp. 141–175. IOS Press, Amsterdam (2013)

18. Farrell, M., et al.: Modular verification of autonomous space robotics (2019)
19. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and

validating autonomous systems: towards an integrated approach. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 263–281. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 15

20. Ferrando, A., Dennis, L.A., Cardoso, R.C., Fisher, M., Ancona, D., Mascardi, V.:
Toward a holistic approach to verification and validation of autonomous cognitive
systems. ACM Trans. Softw. Eng. Methodol. 30(4), 43:1–43:43 (2021). https://
doi.org/10.1145/3447246

21. Fetzer, J.H.: Program verification: the very idea. ACM Commun. 31(9), 1048–1063
(1988)

22. Garoche, P.L.: Formal Verification of Control System Software. Princeton Univer-
sity Press (2019), http://www.jstor.org/stable/j.ctv80cd4v

https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-030-55754-6
https://doi.org/10.1007/0-387-26350-0_2
https://doi.org/10.1007/978-3-030-66494-7_7
https://doi.org/10.1007/978-3-030-66494-7_7
https://doi.org/10.1007/s10515-014-0168-9
https://doi.org/10.1007/978-3-030-03769-7_15
https://doi.org/10.1145/3447246
https://doi.org/10.1145/3447246
http://www.jstor.org/stable/j.ctv80cd4v

Verifying Autonomous Systems 17

23. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, Boston, MA (2009). https://doi.org/10.1007/978-0-387-89299-3 4

24. Howey, R., Long, D., Fox, M.: VAL: Automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In: Proceedings of the ICTAI, pp.
294–301 (2004). https://doi.org/10.1109/ICTAI.2004.120

25. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:
verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020). https://doi.org/10.1016/j.cosrev.2020.100270, http://
www.sciencedirect.com/science/article/pii/S1574013719302527

26. Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification
of autonomous vehicle platooning. Sci. Comput. Program. 148, 88–106 (2017).
http://arxiv.org/abs/1602.01718

27. Lacerda, B., Faruq, F., Parker, D., Hawes, N.: Probabilistic planning with formal
performance guarantees for mobile service robots. Int. J. Robot. Res. 38(9) (2019).
https://doi.org/10.1177/0278364919856695

28. Mehlitz, P.C., Rungta, N., Visser, W.: A hands-on Java PathFinder tutorial. In:
Proceedings of the 35th International Conference on Software Engineering (ICSE),
pp. 1493–1495. IEEE/ACM (2013). http://dl.acm.org/citation.cfm?id=2486788

29. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: Bor-
dini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Pro-
gramming. MSASSO, vol. 15, pp. 149–174. Springer, Boston, MA (2005). https://
doi.org/10.1007/0-387-26350-0 6

30. Quigley, M., et al.: ROS: an open-source robot operating system. In: Proceedings
of the ICRA Workshop on Open Source Software (2009)

31. Raimondi, F., Pecheur, C., Brat, G.: PDVer, a tool to verify PDDL planning
domains. In: Proceedings of the ICAPS 2009 (2009). http://lvl.info.ucl.ac.be/
Publications/PDVerAToolToVerifyPDDLPlanningDomains

32. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Proceed-
ings of the 2nd International Conference Principles of Knowledge Representation
and Reasoning (KR&R), pp. 473–484. Morgan Kaufmann (1991)

33. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Pro-
ceedings of the International Conference Knowledge Representation and Reasoning
(KR&R), pp. 439–449. Morgan Kaufmann (1992)

34. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of
the 1st International Conference on Multi-Agent Systems (ICMAS), pp. 312–319.
San Francisco, USA (1995)

35. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

36. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

37. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Automat. Softw. Eng. 10(2), 203–232 (2003)

38. Visser, W., Mehlitz, P.C.: Model Checking Programs with Java PathFinder. In:
Proceedings 12th International SPIN Workshop. LNCS, vol. 3639, p. 27. Springer,
Cham (2005)

39. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons,
Chichester (2002)

40. Wooldridge, M., Rao, A. (eds.): Foundations of Rational Agency. Kluwer Academic
Publishers, Applied Logic Series (1999)

https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1016/j.cosrev.2020.100270
http://www.sciencedirect.com/science/article/pii/S1574013719302527
http://www.sciencedirect.com/science/article/pii/S1574013719302527
http://arxiv.org/abs/1602.01718
https://doi.org/10.1177/0278364919856695
http://dl.acm.org/citation.cfm?id=2486788
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/0-387-26350-0_6
http://lvl.info.ucl.ac.be/Publications/PDVerAToolToVerifyPDDLPlanningDomains
http://lvl.info.ucl.ac.be/Publications/PDVerAToolToVerifyPDDLPlanningDomains
https://doi.org/10.1007/BFb0031845

Empowering the Event-B Method Using
External Theories

Yamine Aı̈t-Ameur1(B), Guillaume Dupont1, Ismail Mendil1,
Dominique Méry2, Marc Pantel1, Peter Rivière1, and Neeraj K. Singh1

1 INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{yamine,guillaume.dupont,ismail.mendil,marc.pantel,

peter.riviere,nsingh}@enseeiht.fr
2 LORIA, Université de Lorraine and Telecom Nancy, Nancy, France

dominique.mery@loria.fr

Abstract. Event-B offers a rigorous state-based framework for design-
ing critical systems. Models describe state changes (transitions), and
invariant preservation is ensured by inductive proofs over execution
traces. In a correct model, such changes transform safe states into safe
states, effectively defining a partial function, whose domain prevents ill-
defined state changes. Moreover, a state can be formalised as a complex
data type, and as such it is accompanied by operators whose correct use
is ensured by well-definedness (WD) conditions (partial functions).

This paper proposes to define transitions explicitly as partial functions
in an Event-B theory. WD conditions associated to these functions prevent
ill-defined transitions in a more effective way than usual Event-B events.
We advocate that these WD conditions are sufficient to define transitions
that preserve (inductive) invariants and safety properties, thus providing
easier and reusable proof methods for model invariant preservation. We
rely on the finite automata example to illustrate our approach.

Keywords: State-based methods · Invariants preservation · Partial
definitions and well-definedness · Safety · Event-B

1 Introduction

Our proposal stems from the following two extensive research observations:
First, formal state-based methods have demonstrated their ability to model

complex systems and reason about them to establish properties reflecting the
modelled requirements. In particular, they have proven to be effective in ensuring
system safety through the verification of invariant properties. This ensures that
each reachable state of the modelled system fulfills these invariants, i.e. the
system state is always in a safe region and never leaves it. In general, invariants
verification is based on an induction principle over traces of transition systems,
i.e. invariants hold in the initial state and if they hold in any state, then they
hold in the next state (deterministic) or next states (non-deterministic). The
proof is carried out on the formalised model using the associated proof system.
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 18–35, 2022.
https://doi.org/10.1007/978-3-031-07727-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_2

Empowering the Event-B Method Using External Theories 19

Second, the modelling of complex systems in system engineering relies on
domain knowledge that is shared and reused in system models. It contains defi-
nitions as well as domain-specific properties. In general, this domain knowledge is
formalised as theories with data types, operators, axioms and theorems proved
using the associated proof system, independently of the designed models. In
these theories, a Well-Definedness (WD) condition is associated to each opera-
tor expressing the constraints to be fulfilled for its application (partial function).
The theories are used to type concepts in system models, to manipulate them
with operators, and finally to establish system specific properties with the help
of the axioms and theorems issued from these theories.

Our Claim. From our observations, we claim that it is possible to exploit exter-
nally defined theories and rely on the associated WD conditions to establish sys-
tem properties, in particular, safety ones. The idea consists in formalising state
changes (transitions) explicitly as partial function expressed by operators defined
in external theories. The WD conditions associated with each theory operator
when discharged as proof obligations (PO) prevent ill-defined transitions.

Objective of this Work. In the presence of theories that axiomatise domain spe-
cific data types, our approach defines another modelling and proof technique for
invariant preservation in Event-B [2]. It relies on the use of automatically gener-
ated WD proof obligations associated with operators coded as partial functions,
to circumscribe the states of the system under design to a given safety domain.

Organisation of the Paper. Next section discusses invariant and WD proof obli-
gations with respect to related work. Section 3 overviews the Event-B concepts
needed for our approach. Section 4 describes the formalism of finite automata,
used to illustrate our approach and Sect. 5 shows their formalisation as an Event-
B model. Section 6 presents our approach, and its correctness is justified in
Sect. 7. Section 8 shows its application on finite automata. Last, a conclusion
and future research directions are presented in Sect. 9.

2 Invariants and Well-Definedness (WD)

State-based methods are characterised by the explicit definition of a state, usu-
ally characterised by variables as well as a set of actions that modify them. These
actions rely on the generalised assignment operation based on the “becomes
such that” before-after predicate (for deterministic and non deterministic assign-
ments) introduced, in particular, by the seminal work of [1,9,11,14]. This oper-
ation defines a state transition and it is encapsulated in ASM rules [7], substi-
tutions or events in B and Event-B [2], Hoare triples [14], Guarded Commands
(GCL) [9], operations in RSL [13] and VDM [17], actions in TLA+ [18], schemas
in Z [26] and so on. All these methods provide a proof obligation (PO) genera-
tion mechanism that generates proof goals submitted to the underlying method’s
proof system. These ones are involved in the description and verification of invari-
ants defining safety properties resulting from requirements.

20 Y. Aı̈t-Ameur et al.

Invariants. The before-after predicate (BAP) allows to observe the state of a
system and state changes in traces describing system behaviours. Inductive-based
reasoning defined on such traces establishes properties, in particular invariant
preservation. Informally, it states that if a property holds for the initial state
and that, for any transition, this property holds before and after this transition,
then it holds for every state of the system.

Without loss of generality, let us consider an Event-B guarded event: WHEN
G(x) THEN x :| BAP (x, x′) END. x is a state variable, G(x) a guard (predicate)
and BAP (x, x′) a BAP relating before x and after x′ state variable values.
Under A(s, c) axiomatisation of sets and constants definitions, the invariant I(x)
preservation PO for such event is A(s, c) ∧ G(x) ∧ BAP (x, x′) ∧ I(x) =⇒ I(x′).
This PO shall be proved for each event of the model.

Well-Definedness (WD). According to [4], Well-Definedness describes the cir-
cumstances under which it is possible to introduce new term symbols by means of
conditional definitions in a formal theory as if the definitions in question were
unconditional, thus recovering completely the right to subsequently eliminate these
symbols without bothering about the validity of such an elimination. It avoids
describing ill-defined operators, formulas, axioms, theorems, and invariants.

In Event-B, each formula is associated to well-definedness POs [19] that
ensure that the formula is well-defined and that two-valued logic can be used.
A WD predicate WD(f) is associated with each formula f . This predicate is
defined inductively on the structure of f . For example, if we consider a and b
being two integers, P and Q two predicates, f of type P(D × R), the follow-
ing WD definitions can be written as WD(a ÷ b) ≡ WD(a) ∧ WD(b) ∧ b �= 0,
WD(P ∧Q) ≡ WD(P)∧ (P ⇒ WD(Q)), WD(P ∨Q) ≡ WD(P)∧ (P ∨WD(Q))
or WD(f(a)) ≡ WD(f) ∧ WD(a) ∧ a ∈ dom(f) ∧ f ∈ D �→ R where �→ denotes
a partial function. Once the WD POs are proved, they are added as hypotheses
in the proofs of the other POs [2].

Invariants andWD. When reporting an error in a proof by J-P. Verjus, A. J. M.
van Gasteren and G. Tel [12] identified the concepts of “always-true” and “invari-
ant”. In Event-B, “always-true” is expressed using theorems on variables, while
“invariant” is expressed as inductive invariants. In addition, invariant properties
shall be expressive enough to derive safety properties. Our approach is illustrated
on Event-B. We consider a state change as a transformation function on state vari-
ables. As this function is partial, it is associated with WD conditions.

Handling WD conditions and partial functions (�→) definitions in proofs and
proof systems is not new. The paper of C.B. Jones [15] clearly highlights the
importance of dealing with such definitions. In formal proof systems, it has been
addressed in different manners using two-valued and three-valued logic (with
weak and strong equality), subset types, denotational approaches, type-correct
conditions of total functions, etc. [4,5,16,19,23,24,27].

Our Proposal. Our research focuses on state-based modelling with Event-B
but may be transferred to other state-based methods. We view a state change

Empowering the Event-B Method Using External Theories 21

(transition) as a partial function Trans : State �→ P(State) (or Trans : State �→
State for a deterministic system). Here, State denotes the Cartesian product of
the type of each state variable. As an invariant must restrict state changes to
safe states, this function can be seen as a partial function, well-defined on the set
of safe states SafeSt as TransInv : SafeSt �→ P(State). To preserve the invariant,
one has to prove that: ran(TransInv) ⊆ P(SafeSt).

Based on the definition of such function, our proposal consists in describ-
ing an alternative approach to Event-B invariant preservation based on the
definition, in an Event-B theory, of a data type T describing a State with
a set of well-founded operators (well-defined partial functions). An operator
Op(x1 : T1, x2 : T2, . . . , xn : Tn) with n arguments returns an expression of type
T and is associated to a logical condition of the form WD(x1, x2, . . . , xn) stat-
ing that x1, x2, . . . , xn ∈ dom(Op). Each operator describes safe state changes
according to a given reusable property independently of any model. Below, we
show how this approach works for Event-B models.

3 Overview of Event-B

Event-B [2] is a correct-by-construction method based on set theory and first
order logic (FOL). It relies on an expressive state-based modelling language
where a set of events models state changes.

3.1 Contexts and Machines (Tables 1b and 1c)

Table 1. Global structure of Event-B Theories, Contexts and Machines

Theory Context Machine

THEORY Th CONTEXT Ctx MACHINE M
IMPORT Th1, ... SETS s SEES Ctx
TYPE PARAMETERS E, F , ... CONSTANTS c VARIABLES x
DATATYPES AXIOMS A INVARIANTS I(x)

Type1(E, ...) THEOREMS Tctx THEOREMS Tmch(x)
constructors END VARIANT V (x)

cstr1(p1: T1, ...) EVENTS
OPERATORS EVENT evt

Op1 <nature> (p1: T1, ...) ANY α
well−definedness WD(p1, ...) WHERE G(x, α)
direct definition D1 THEN

AXIOMATIC DEFINITIONS x :| BAP(α, x, x′)
TYPES A1, ... END
OPERATORS ...
AOp2 <nature> (p1: T1, ...): Tr END

well−definedness WD(p1, ...)
AXIOMS A1, ...

THEOREMS T1, ...
END

(a) (b) (c)

A Context component describes the static properties of a model. It introduces
the definitions, axioms and theorems needed to describe the required concepts
using carrier sets s, constants c, axioms A and theorems Tctx . A Machine
describes the model behaviour as a transition system. A set of guarded events

22 Y. Aı̈t-Ameur et al.

is used to modify a set of state variables using Before-After Predicates (BAP)
to record state changes. Machines are made of variables x, invariants I(x), the-
orems Tmch(x), variants V (x) and events evt (possibly guarded by G and/or
parameterized by α).

Refinements. Refinement (not used in this paper) decomposes a machine into a
less abstract one with more design decisions (refined states and events) moving
from an abstract level to a less abstract one (simulation relationship). Gluing
invariants relating abstract and concrete variables ensure property preservation.
We do not give more details on refinement as the approach we propose applies
to any Event-B machine being either a root machine or a refinement machine.

Proof Obligations (PO) and Property Verification. Table 2 provides a set of auto-
matically generated POs to guarantee Event-B machines consistency.

Table 2. Relevant proof obligations

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)

(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)

(3) Initialisation (Init) A(s, c) ∧ G(α) ∧ BAP(α, x′)⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)
(4) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x′ · BAP(x, α, x′)
(5) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

Core Well-definedness (WD). In addition, WD POs are associated to all Event-
B built-in operators of the Event-B modelling language. Once proved, these WD
conditions are used as hypotheses to prove further proof obligations.

3.2 Event-B Extensions with Theories

In order to handle more complex and abstract concepts beyond set theory and
first-order logic, an Event-B extension for supporting externally defined mathe-
matical objects has been proposed in [3,8]. This extension offers the capability
to introduce new data types by defining new types, operators, theorems and
associated rewrite and inference rules, all bundled in so-called theories. Close to
proof assistants like Coq [6], Isabelle/HOL [23] or PVS [24], this capability is
convenient to model concepts unavailable in core Event-B, using data types.

Theory description (See Table 1a). Theories define and make available new data
types, operators and theorems. Data types (DATATYPES clause) are associated
to constructors, i.e. operators to build inhabitant of the defined type. These
ones may be inductive. A theory may define various operators further used in
Event-B expressions. They may be FOL predicates, or expressions producing
actual values (<nature> tag). Operator application can be used in other Event-B
theories, contexts and/or machines. They enrich the modelling language as they
occur in the definition of axioms, theorems, invariants, guards, assignments, etc.

Empowering the Event-B Method Using External Theories 23

Operators may be defined explicitly in the DIRECT DEFINITION clause (case
of a constructive definition), or defined axiomatically in the AXIOMATIC DEFINI-
TIONS clause (a set of axioms). Last, a theory defines a set of axioms (AXIOMS
clause), completing the definitions, and theorems (THEOREMS clause). Theorems
are proved from the definitions and axioms. Many theories have been defined for
sequences, lists, groups, reals, differential equations, etc.

Well-Definedness (WD) in Theories. An important feature provided by Event-
B theories is the possibility to define Well-Definedness (WD) conditions. Each
defined operator (thus partially defined) is associated to a condition ensuring its
correct definition. When it is applied (in the theory or in an Event-B machine or
context), this WD condition generates a proof obligation requiring to establish
that this condition holds, i.e. the use of the operator is correct. The theory
developer defines these WD conditions for the partially defined operators. All
the WD POs and theorems are proved using the Event-B proof system.

Event-B Proof System and its IDE Rodin. Rodin1 is an open source IDE for
modelling in Event-B. It offers resources for model editing, automatic PO gen-
eration, project management, refinement and proof, model checking, model ani-
mation and code generation. Event-B’s theories extension is available under the
form of a plug-in. Theories are tightly integrated in the proof process. Depend-
ing on their definition (direct or axiomatic), operator definitions are expanded
either using their direct definition (if available) or by enriching the set of axioms
(hypotheses in proof sequents) using their axiomatic definition. Theorems may
be imported as hypotheses and, like other theorems, they may be used in proofs.
Many provers like first-order logic, or SMT solvers, are plugged to Rodin as well.

4 An Illustrative Case Study

We illustrate our approach for invariant preservation by using finite automata
as a running example. We define finite automata using a set of operators, and
consider the deterministic property as an invariant property we wish to study.
Finite automata are modelled as labelled state transitions systems (LTS). A set
of operators are defined on LTS together with a logical property formalising the
deterministic property.

A Lts ∈ LT S is defined as a tuple Lts = (s0, S,Σ,→) where s0 ∈ S is an
initial state belonging to the set of states S, Σ an alphabet and →⊆ S × Σ × S
is a transition relation. ε ∈ Σ denotes the empty label.

In order to keep the paper in reasonable length, we focus on two operators:
PrefixedUnion (Fig. 1d) builds the union of two Lts, each of which is prefixed by
discriminating labels ll and rl and linked to a new initial state, and PrefixedMerge
(Fig. 1c) merges two Lts using an intermediate label l. We require that each
operation preserves the deterministic property of Lts: if the Lts fed into these
operators are deterministic, then so are their output.
1 Rodin Integrated Development Environment http://www.event-b.org/index.html.

http://www.event-b.org/index.html

24 Y. Aı̈t-Ameur et al.

l1 st

l2 st

l4 st

l3 st

l1 l l2 l

l3 ll4 l

(

r1 st r2 st r3 st
r1 l r2 l

r3 l

(a) l lts b) r lts

l1 st

l2 st

l4 st

l3 st r1 st r2 st r3 st

l1 l l2 l

l3 ll4 l

r1 l r2 l

r3 l

l

l

l

l

(c) PrefixedMerge application

new init st

l1 st

l2 st

l4 st

l3 st

r1 st r2 st r3 st

l1 l l2 l

l3 ll4 l

r1 l r2 l

r3 l

rl

ll

(d) PrefixedUnion application

Fig. 1. Examples of LTS operators applications

Remark. It is worth noticing that finite automata are our objects of study, and
should not be confused with the state-based semantics of Event-B expressed as
transition systems.

Next Steps. Below, we present two Event-B developments: a classical one
(Sect. 5) relying on inductive proofs of the invariant using core Event-B and
a second one (Sect. 8), corresponding to the proposed approach relying on the
use of externally defined Event-B theories and on WD conditions. This enables us
to compare both modelling approaches by highlighting the differences between
the usual Event-B approach with invariant preservation, and the use of WD
conditions.

5 Invariant Preservation: Core Event-B

Modelling finite automata in Event-B follows the classical development pro-
cess of defining the context axiomatising the concepts required to model these
automata and the machine modelling transformations on them through a set of
events while ensuring invariants (here, determinism) are preserved.

As the purpose of the paper is to show that invariant preservation can be
guaranteed using theories and associated WD conditions, only extracts of the
model based on the classical approach using Event-B are shown.

An Event-B Context for LTS Definition. The Ltsbasic context of Listing 1
is a set of axioms defining LTS constructs. They introduce a ConsLts constructor
(axm5 bijection ��) and accessors to handle any Lts ∈ LT S. Last, axm8 defines a
specific LTS, namely InitLts, that will be used in the machine for initialisation.

Empowering the Event-B Method Using External Theories 25

CONTEXT Ltsba s i c
SETS S Σ LT S
CONSTANTS i n i t t r a n s i t i o n s t a t e UsedAlphabet ε ConsLts i n i t s t a t e
AXIOMS

axm1 : init ∈ LTS → P(S)
axm2 : transition ∈ LTS → P(S × Σ × S)
axm3 : state ∈ LTS → P(S)
axm4 : UsedAlphabet ∈ LTS → P(Σ)
axm5 : ConsLts ∈ (P(S) × P(S) × P(Σ) × P(S × Σ × S)) �� LTS
axm6 : ∀lts, init st, tr , s, a · lts = ConsLts(init st
→ s
→ a
→ tr) ⇔

init(lts) = init st ∧ transition(lts) = tr ∧ state(lts) = s ∧ UsedAlphabet(lts) = a
axm7 : ε ∈ Σ ∧ init state ∈ S
axm8 : InitLts = ConsLts({init state}
→ {init state}
→ ∅
→ ∅)

END

Listing 1. Basic Lts constructs.

An Event-B Machine to Manuipulate LTS. The objective is to define a
set of transformations formalised by events to build a deterministic automaton.
The idea is to use a trace of events leading to a deterministic LTS. For this
purpose, we use a correct-by-construction method relying on a set of events to
build deterministic LTS, preserving the invariant stating LTS determinism.

MACHINE l tsDeterm
SEES Ltsba s i c
VARIABLES lts
INVARIANTS

inv1 : lts ∈ LTS
inv2 : init(lts) = ∅// In i t s t a t e e x i s t s
inv3 : state(lts) = init(lts) ∪ dom(dom(transition(lts))) ∪ ran(transition(lts))// s t a t e s
inv4 : UsedAlphabet(lts) = ran(dom(transition(lts))) // we l l b u i l t Used Alphabet
inv5 : ∃i · init(lts) = {i}// Unique i n i t i a l s t a t e
inv6 : ε /∈ ran(dom(transition(lts)))// No ε t r an s i t i on
inv7 : transition(lts) ∈ S × Σ
→ S// Determinis t ic t r an s i t i on (funct ion)

Listing 2. Lts determinism invariants.

Listing 2 shows the list of invariants stating that an LTS is deterministic.
inv2-4 define constraints on the states and labels while inv5-7 define deter-
minism with single initial state, absence of ε label and finally the transition
relation is a function (single image �→).

EVENTS
INITIALISATION =̂
THEN

act1 : lts := InitLts
END
PrefixedMergeEvt =̂
ANY l lts ,r lts , l , l init st ,r init st , l st , r st , l UsedAlpha ,r UsedAlpha
WHERE

grd1 : l lts ∈ LTS ∧ r lts ∈ LTS ∧ l ∈ Σ
grd2−3 : init(l lts) = {l init st} ∧ init(r lts) = {r init st}
grd4−5 : l st = ({l init st} ∪ dom(dom(transition(l lts))) ∪ ran(transition(l lts)))∧

r st = ({r init st} ∪ dom(dom(transition(r lts))) ∪ ran(transition(r lts)))
grd6−7 : l UsedAlpha = ran(dom(transition(l lts))) ∧ r UsedAlpha = ran(. . .)
grd8 : (l st ∩ r st) = ∅
grd9−10 : l /∈ ran(dom(transition(l lts))) ∧ l = ε
grd11−12 : ε /∈ r UsedAlpha ∧ ε /∈ l UsedAlpha
grd13−14 : transition(r lts) ∈ S × Σ
→ S ∧ transition(l lts) ∈ S × Σ
→ S

THEN

26 Y. Aı̈t-Ameur et al.

act1 : lts := ConsLts(
{l init st}
→ l st ∪ r st
→
(l UsedAlpha ∪ r UsedAlpha ∪ {l})
→
(transition(l lts) ∪ transition(r lts) ∪ {s · s ∈ l st | s
→ l
→ r init st}))

END
PrefixedUnionEvt =̂ . . .
. . .

END

Listing 3. Model events building a deterministic Lts.
Listing 3 shows the set of events building a LTS (Fig. 1). Due to space con-

straints, only the PrefixedMergeEvt event is shown. It is parameterised by two
LTS (left l lts and right r lts) and a connecting label l. It is guarded by con-
ditions ensuring that l lts and r lts are well-built and that l �= ε (grd1-14).
Action act1 builds the resulting LTS by updating the state variable lts.

In this approach, it is necessary to describe the invariants ensuring that the
state variable defines a deterministic LTS so that the invariant preservation PO
(4 of Table 2) is discharged.

Although the studied example is well-known and simple, writing these invari-
ants may be a difficult task for the system designer.

6 Data Type Theory-Based Invariant Preservation

The invariant-preservation approach of Sect. 5 relies on an inductive proof where
invariants and state variables are directly modelled by the designer using Event-
B set theory and its type system (which can be seen as a weak typing system
compared to proof assistants like Coq or Isabelle/HOL).

In this approach, the designer describes explicitly safe states, invariants and
mandatory guards in the models. The designer has to prove invariant preserva-
tion POs for each event. Moreover, this invariant has to be written and proven in
further developments, so reusability is compromised. It is possible to design mod-
els of systems which exploit externally defined theories to type system features
and to manipulate these features using the operators associated to these types
defined as partial functions. When these operators are used, the WD conditions,
associated with them, generate POs on the system design model.

We claim that it is possible to use these WDs to enforce invariants and there-
fore ensure the safety requirements of the system being designed. In the context
of state-based formal methods, this claim is based on the view of invariants as
conditions for well-defined partial functions/transformations, defined in external
theories, with system state type corresponding to one parameter of each of these
functions. In addition, the proofs performed on the theory side, achieved once
and for all, are reused in system design models verification.

Three main steps are identified. The first one (Step 1) is to produce, once
and for all, the relevant theories formalising the data types and operators used in
the models. The second step (Step 2) requires to instantiate the defined theories
for the specific types used by the model. Finally, the third step (Step 3) uses
the defined types and operators for typing and manipulating the state variables.

Empowering the Event-B Method Using External Theories 27

6.1 An Event-B Datatype Based Domain-Specific Theory (Step 1)

Theories conforming to the template of Listing 4 are built and proved once
and for all. These theories provide generic and parameterised data types, with
operators (partial functions) associated to WD conditions and relevant theorems.

THEORY Theo
TYPE PARAMETERS ArgsTypes
DATA TYPES

T (ArgsTypes)
Cons(args : ArgsTypes)

OPERATORS
Op1 <Predicate> (el : T (ArgsType), args : ArgsTypes)

well−definedness condition WD Op1(args)
direct def init ion Op Exp1(el, args)

. . .
Opn <Predicate> (el : T (ArgsTypes), args : ArgsTypes) . . .

well−definedness condition WD Opn(args)
direct def init ion Op Expn(el, args)

Properties <Predicate> (el : T (ArgsTypes))
direct def init ion properties(el)

THEOREMS
ThmTheoOp1 : ∀x, args · x ∈ T (ArgsTypes) ∧ args ∈ ArgsTypes∧

WD Op1(args) ∧ Op1(x, args) ⇒ Properties(x)
. . .

ThmTheoOpn : ∀x, args · x ∈ T (ArgsTypes) ∧ args ∈ ArgsTypes∧
WD Opn(args) ∧ Opn(x, args) ⇒ Properties(x)

Listing 4. Data type theory template

Listing 4 shows a template of theory where the data type T is built from
type parameters ArgsType and a set of predicate operators Opi defining rela-
tions between concepts of type T and other parameters. These predicates are
used in a model to define before-after predicates as one of their type parameters
T (ArgsTypes) corresponds to the type of the model state.

The predicate Properties is defined to capture properties on data of type
T (ArgsTypes). It formalises requirements and many of them can be defined.

Last, the central theorems ThmTheoOpi state that, for each operator Opi, if
its WD condition holds then its application implies properties expressed on any
element x of type T (ArgsTypes) using the predicate Properties. It can be used
to check invariant preservation. It is worth noticing that these theorems encode
a structural induction principle. It is proved once and for all, independently
of any model behaviour description. Additional theorems, for other properties,
characterising the defined data type may be expressed.

6.2 An Event-B Instantiation Context (Step 2)

The theory of Sect. 6.1 is generic. Next step instantiates it with the specific
objects of interest, i.e. state manipulated by the Event-B machine.

The context Ctx of Listing 5 instantiates the theory of Listing 4. Type syn-
thesis and matching of Event-B is used to instantiate the generic data type T
with sets s as data type T (s). Then constants and axioms are defined classically.

28 Y. Aı̈t-Ameur et al.

CONTEXT Ctx
SETS s
CONSTANTS c
AXIOMS . . .
THEOREMS
ThmTheoOp1Inst : ∀x, args · x ∈ T (s) ∧ args ∈ s∧

WD Op1(args) ∧ Op1(x, args) ⇒ Properties(x)
. . .
ThmTheoOpnInst : ∀x, args · x ∈ T (s) ∧ args ∈ s∧

WD Opn(args) ∧ Opn(x, args) ⇒
Properties(x)

Listing 5. Context instantiation.

Here again, the import-
ant theorems ThmTheoOpi

Inst are introduced. They
instantiate the generic the-
orems ThmTheoOpi. As the
generic theorems ThmTheoOpi

are already proved, the proofs
of these theorems are trivial
provided that type checking
succeeds. These theorems are
the reduction of the polymorphic type of the theory to the concrete type of the
model, here the set s.

6.3 A Domain-Specific Event-B Machine (Step 3)

At this level, a machine template that exploits the defined theory and the instan-
tiated context is built. Listing 6 depicts an Event-B machine with a single state
variable x of type T (s) by typing invariant TypingInv . Then, a set of events Evt i,
including the initialisation event2, possibly parameterised, manipulate state vari-
able x. Action act1 of each event uses operators of the theory in the before-after
predicate (BAP) for state variables changes.

MACHINE Machine
SEES Ctx
VARIABLES x
INVARIANTS

TypingInv : x ∈ T (s)
AllowedOper : ∃∃args · args ∈ s ∧ (WD Op1(args) ∧ Op1(x, args))∨

(WD Opn(args) ∧ Opn(x, args) ∨ . . .)
THEOREMS

SafThm : Properties(x)
EVENTS

Evt1 =̂ . . . Evtn =̂
ANY α ANY α
WHEN WHEN

grd1 : α ∈ s ∧ WD Op1(α) grd1 : α ∈ s ∧ WD Opn(α)
THEN THEN

act1 : x :| Op1(x
′, α) act1 : x :| Opn(x

′, α)
END END

END

Listing 6. An Event-B machine with domain-specific properties

A useful consequence of the use of operators as before-after predicates of
events, is the identification of event guards. Indeed, operators application is
only possible if their WD conditions in the guards hold.

Two main properties are formalised. First, invariant AllowedOper expresses
that state variable x is only handled using the operators of the theory when
their WD hold; this is crucial in the method as it excludes any other type of
event from altering x (completeness). Second, theorem SafThm captures that
the properties Properties hold. According to the ThmMch PO (Table 2), this

2 For the initialisation event, the guard does not involve state variables.

Empowering the Event-B Method Using External Theories 29

theorem results from invariants TypingInv and AllowedOper , together with the
axioms and theories of the context Ctx.

7 The Proof Process

We have presented a revisited model relying on a data-type-based approach, sim-
ilar to proof assistants like Coq or Isabelle/HOL, in which a data type and a set of
operators are defined to manipulate system states through their type. Then, we
have encoded, in the invariant clause, the typing (TypingInv) and constraints
(AllowedOper) corresponding to closure and well-foundedness of operators to
strongly type the state variable with respect to the needed operators. Doing
so, we embed a stronger type system than Event-B provides. Last, as invariant
guarantees typing, safety property SafThm can be proved deductively.

Unlike the invariant-based approach of Sect. 5, this approach offers a system-
atic way to prove invariant preservation. Indeed, proving SafThm is straight-
forward, it is a direct use of the instantiated theorems ThmTheoOpInst proved
in the context as an instantiation of the generic theorems ThmTheoOp of the
theory using the modus-ponens proof rule (⇒-elimination rule). Concretely,
the proof effort is concentrated on the reusable proof once and for all of
ThmTheoOpi. Other POs are straightforward: AllowedOper consists in iden-
tifying which allowed operator is used in the disjunction, and SafThm is proven
deductively using ThmTheoOpiInst for each allowed operator.

The correctness of this approach consists in establishing that any property
P proven true in this approach can be proven true in the classical, invariant-
based approach. Concretely, correctness is captured by the ThmTheo ⇒ PO Inv
meta-theorem. We have formalised the proof of this theorem in the Coq [6] proof
assistant.

Finally, the approach presented here is similar to encapsulation and applica-
tion programming interfaces available in programming languages with modules.
The Theo theory offers a set of generic operators used by models (interface) and
the AllowedOper invariant encodes encapsulation as the defined state variable is
manipulated with the theory-based operators of its type only.

8 Revisited Event-B Models for LTS

Back to the case study of deterministic finite automata (Sect. 5), we describe
how the proposed approach is applied. We follow the steps identified in Sect. 6.

30 Y. Aı̈t-Ameur et al.

8.1 A Data Type for LTS (Step 1)

THEORY
TYPE PARAMETERS S , L
DATA TYPES

LT S(S, L)
ConsLts(init : P(S), state : P(S),

alphabet : P(L),
transition : P(S × L × S), eps : L)

Listing 7. A theory of Lts: data-
type and constructor.

Listings 7, 8 and 9 describe the theory of
LT S that we have formalised.

Listing 7 describes a theory of LTS defin-
ing a data type LT S(S,L) where S and L
are types for states and labels, respectively. A
constructor ConsLts is defined together with
accessors to retrieve LTS components (init ,
state, alphabet , transition and ε).

OPERATORS
UniqueLabelTrans i t ion <predicate> . . .
In i tUnique <predicate> . . .
NoEpsTransition <predicate> . . .
GetUniqueInit . . .
WellBui l t <predicate> (lts : LT S(S, L))

direct def init ion
init(lts) = ∅ ∧ alphabet(lts) = ran(dom(transition(lts)))∧
state(lts) = init(lts) ∪ dom(dom(transition(lts))) ∪ ran(transition(lts))

IsDeter <predicate> (lts : LT S(S, L))
direct def init ion

WellBuilt(lts) ∧ InitUnique(lts) ∧ NoEpsTransition(lts) ∧ UniqueLabelTransition(lts)

Wd ConsLtsDeter <predicate> . . .
ConsLtsDeter <predicate> . . .
ConsSingleStateLts <predicate> . . .
Wd PrefixedUnion <predicate> . . .
PrefixedUnion <predicate> . . .
Wd PrefixedUnionDeter <predicate> . . .
PrefixedUnionDeter <predicate> . . .
Wd PrefixedMerge <predicate> (l lts : LT S(S, L), l : L, r lts : LT S(S, L))

direct def init ion
InitUnique(r lts) ∧ state(l lts) ∩ state(r lts) = ∅ ∧ eps(l lts) = eps(r lts)

PrefixedMerge <predicate> (
lts : LT S(S, L), l lts : LT S(S, L), l : L, r lts : LT S(S, L))

well−definedness Wd PrefixedMerge(l lts, l, r lts)
direct def init ion

lts = ConsLts
(init(l lts), state(l lts) ∪ state(r lts), alphabet(l lts) ∪ alphabet(r lts) ∪ {l},
transition(l lts) ∪ transition(r lts)∪

{s, init r lts · s ∈ state(l lts) ∧ init r lts = GetUniqueInit(r lts) |
s
→ l
→ init r lts}, eps(l lts))

Wd PrefixedMergeDeter <predicate> (l lts : LT S(S, L), l : L, r lts : LT S(S, L))
direct def init ion

IsDeter(r lts) ∧ isDeter(l lts) ∧ state(l lts) ∩ state(r lts) = ∅∧
eps(l lts) = eps(r lts) ∧ l /∈ alphabet(l lts) ∧ l = eps(l lts)

PrefixedMergeDeter <predicate> (
lts : LT S(S, L), l lts : LT S(S, L), l : L, r lts : LT S(S, L))

well−definedness Wd PrefixedMergeDeter(l lts, l, r lts)
direct def init ion

PrefixedMerge(lts, l lts, l, r lts)

Listing 8. A theory of Lts: operators, WD conditions and theorems.

Listing 8 shows a subset of operators associated with the LT S(S,L) data
type. In particular, we show the PrefixedMerge and PrefixedUnion operators,
used in the development of our example (Sect. 5). Each operator is associated
to a relevant WD conditions for excluding wrong arguments (partial function).

Empowering the Event-B Method Using External Theories 31

General operators for LT S are defined: WellBuilt , stating that an LTS is cor-
rectly built from the constructor using the defined acessors, IsDeter asserting
that a LTS is deterministic, other operators required to manipulate LTS, such
as UniqueLabelTransition, InitUnique, NoEpsTranstion, etc. and other operators
required for our case study:

– ConsLtsDeter , a derived constructor for deterministic LTS. It restricts the
constructor ConsLts of LT S(S,L) with a WD condition Wd ConsLtsDeter
to build deterministic LTS only;

– consSingleStateLts , a specific operator, used for initialisation, building a LTS
with a single state;

– PrefixedUnion and PrefixedMerge applied to not necessarily deterministic
LTS with Wd PrefixedUnion and Wd PrefixedMerge WD conditions;

– deterministic union (PrefixedUnionDeter) and merge (PrefixedMergeDeter)
build deterministic LTS. Their WD conditions (Wd PrefixedUnionDeter and
Wd PrefixedMergeDeter respectively) express, in particular, that both l lts
and r lts parameters shall be deterministic;

Note that each operator outputs the lts parameter from two input parameters
l lts and r lts. This definition style defines a transformation allowing to write
Event-B before-after predicates.

This theory does not guarantee that the produced LTS are deterministic if
the operators are not applied in the appropriate manner.

THEOREMS
thm1-5 : . . .
ThmTheoConsOneSt : ∀lts,new init st, ε · lts ∈ LT S(S, L) ∧ ε ∈ L ∧ new init st ∈ S∧

ConsSingleStateLts(lts,new init st, ε) ⇒ IsDeter(lts)
ThmTheoUnion :∀lts, l lts, r lts, ll, rl,new init st·

l lts ∈ LT S(S, L) ∧ r lts ∈ LT S(S, L) ∧ ll
→ rl ∈ L × L ∧ new init st ∈ S∧
Wd PrefixedUnionDeter(new init st, ll, rl, l lts, r lts)∧

PrefixedUnionDeter(lts,new init st, ll, rl, l lts, r lts) ⇒ IsDeter(lts)
ThmTheoMerge : ∀lts, l lts, r lts, l·

l lts ∈ LT S(S, L) ∧ r lts ∈ LT S(S, L) ∧ l ∈ L ∧ eps(l lts) = eps(r lts)∧
Wd PrefixedMergeDeter(l lts, l, r lts)∧

PrefixedMergeDeter(lts, l lts, l, r lts) ⇒ IsDeter(lts)
END

Listing 9. A theory of LTS: operators, WD conditions and theorems.

The remaining part of the defined theory (Listing 9) contains a set of theo-
rems useful to prove model properties that use the defined types.

In particular, the proven theorems ThmTheoOp state that all the operators
manipulating deterministic LTS (by the WD condition as hypotheses) produce
deterministic automata. Thus, starting with a deterministic automaton, the cor-
rect application of any number of operators will always produce a deterministic
automaton. As mentioned in Sect. 6.1, these theorems encode structural induc-
tion. They guarantee that LTS are effectively deterministic.

32 Y. Aı̈t-Ameur et al.

8.2 An Instanciation Context for LTS (Step 2)

Next step, following Sect. 6.2, leads to an Event-B context describing specific
LTS through theory instantiation. It is obtained by instantiating theory type
parameters S and L with States and Σ, respectively.

CONTEXT CtxLts
SETS State s Σ
CONSTANTS i n i t s t a t e ε
AXIOMS

axm1 : init state
→ ε ∈ States × Σ// I n i t i a l i s a t i o n
THEOREMS

ThmTheoConsOneStInst : ∀lts,new init st, ε · lts ∈ LT S(States, Σ)∧
ε ∈ Σ ∧ new init st ∈ States∧

ConsSingleStateLts(lts,new init st, ε) ⇒ IsDeter(lts)
ThmTheoUnionInst : ∀lts, l lts, r lts, ll, rl,new init st · l lts ∈ LT S(States, Σ)∧

r lts ∈ LT S(States, Σ) ∧ ll
→ rl ∈ Σ × Σ ∧ new init st ∈ States∧
Wd PrefixedUnionDeter(new init st, ll, rl, l lts, r lts)∧

PrefixedUnionDeter(lts,new init st, ll, rl, l lts, r lts) ⇒ IsDeter(lts)
ThmTheoMergeInst : ∀lts, l lts, r lts, l · l lts ∈ LT S(States, Σ) ∧ r lts ∈ LT S(States, Σ)∧

l ∈ Σ ∧ eps(l lts) = eps(r lts)∧
Wd PrefixedMergeDeter(l lts, l, r lts)∧

PrefixedMergeDeter(lts, l lts, l, r lts) ⇒ IsDeter(lts)
END

Listing 10. An instantiated context of LTS.

Useful constants are defined and typed in axiom axm1. Theorem ThmTheoInst
corresponding to the instantiation of the generic theorem ThmTheo is also
described. Its proof is straightforward by instantiation of the hypotheses.

8.3 A Data Type Specific Machine for LTS (Step 3)

Last step, corresponding to Sect. 6.3, describes an Event-B machine in Listing 11
that is equivalent to the Event-B machine of Listing 3.

MACHINE MachineLts
SEES CtxLts

VARIABLES lts

INVARIANTS
TypingInv : lts ∈ LTS(S, L)
AllowedOper : ∃∃l lts, r lts, ll, rl, l,new init st, eps·

l lts ∈ LTS(S, L) ∧ r lts ∈ LTS(S, L) ∧ l
→ ll
→ rl ∈ L × L × L∧
new init st ∈ S ∧ eps ∈ L ∧ (
consOneStateLts(lts,new init st, eps)∨
(Wd PrefixedUnionDeter(new init st, ll, rl, l lts, r lts)∧

PrefixedUnionDeter(lts,new init st, ll, rl, l lts, r lts))∨
(Wd PrefixedMergeDeter(l lts, l, r lts)∧

PrefixedMergeDeter(lts, l lts, l, r lts)))

THEOREMS
SafThm : IsDeter(lts)

EVENTS
INITIALISATION =̂
THEN

act1 : lts :| ConsSingleStateLts(lts′, init state, ε)
END
PrefixedMergeEvt =̂
ANY l lts , r lts , l

Empowering the Event-B Method Using External Theories 33

WHERE
grd1 : l lts
→ r lts
→ l ∈ LTS(S, L) × LTS(S, L) × L
grd2 : Wd PrefixedMergeDeter(l lts, l, r lts)

THEN
act1 : lts :| PrefixedMergeDeter(lts′, l lts, l, r lts)

END
PrefixedUnionEvt =̂ . . .
. . .

END

Listing 11. A Machine of LTS with a type state variable.

The MachineLts of Listing 11 describes a single state variable lts and two
invariants. The first one TypingInv types the state variable lts with the data
type of the instantiated theory.

The second invariant AllowedOper states that, once initialised with ConsS-
ingleStateLts operator, the lts variable can be manipulated with PrefixedMerge
and PrefixedUnion operators only. None of the other operators are allowed to
manipulate the state variables (closure and well-foundedness). The SafThm the-
orem states that the lts state transition system is deterministic. Finally, the
events that manipulate the state variables are defined, they implement machine
state changes.

8.4 Proof Process

The development presented in this section is a reformulation of the one presented
in Sect. 5. However, the mechanism of proof of invariants provided by these two
developments differs. In this development, the proofs are eased thanks to the
WD conditions associated with each operator and used as guards, together with
the proved theorem instantiated in the context. All of the proofs follow and reuse
the proof schema shown in Sect. 7.

9 Conclusion

In this paper, we have presented an alternative approach for checking invariants
and thus safety properties in the Event-B state-based formal method. In the
same spirit as proof assistants like Coq or Isabelle/HOL, this approach relies on
the extension of Event-B with typing that enforces the checking of conditions
related to partial functions using well-definedness (WD) conditions. It consists in
encapsulating data types and allowing behavioural models to manipulate typed
state variables within events using a subset of operators as long as their WD
conditions are met. Furthermore, we demonstrated that it is possible to satisfy
invariant preservation proof obligations by using theorems expressed at the data
type level and instantiated at the model level.

The defined approach combines algebraically defined data types and their
useful properties expressed as WD conditions and theorems (Event-B theories)
with behavioural models based on state-transitions systems expressed as a set of
state changes using guarded events (Event-B machines). This approach comple-
ments the invariant-based approach by enabling inductive proofs at the machine

34 Y. Aı̈t-Ameur et al.

level, or proof of the structural induction principle on the data type theory side.
The designer can choose the most appropriate one depending on the difficulty
of the modelling and proving activities.

Finally, the proposed approach has been implemented in many different cases:
data types, operators and relevant properties (WD and theorems) have been
defined for hybrid systems [10] (mathematical extension with a data type for dif-
ferential equations), interactive critical systems [20–22] (a domain model with a
data type for aircraft cockpits widgets) and Event-B models analysis [25] (Event-
B reflexive meta-model with a data type for Event-B states and events).

In the future, we plan to integrate the proposed approach into a refinement
chain. On the theory side, we intend to describe refinement of data types so that
gluing invariants can be proved using the proposed approach. Studying liveness
properties by introducing variants is also targeted. Last, we intend to develop a
Rodin plug-in to automate the whole approach.

References

1. Abrial, J.: The B-book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.: Pro-
posals for mathematical extensions for Event-B. Technical report (2009). http://
deploy-eprints.ecs.soton.ac.uk/216/

4. Abrial, J.-R., Mussat, L.: On using conditional definitions in formal theories. In:
Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol.
2272, pp. 242–269. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45648-1 13

5. Barringer, H., Cheng, J.H., Jones, C.B.: A logic covering undefinedness in program
proofs. Acta Inform. 21, 251–269 (1984)

6. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer Publish-
ing Company Incorporated, Heidelberg (2010). https://doi.org/10.1007/978-3-662-
07964-5

7. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

8. Butler, M.J., Maamria, I.: Practical theory extension in Event-B. In: Theories of
Programming and Formal Methods - Essays Dedicated to Jifeng He on the Occasion
of His 70th Birthday, pp. 67–81 (2013)

9. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

10. Dupont, G., Aı̈t-Ameur, Y., Singh, N.K., Pantel, M.: Event-B hybridation: a
proof and refinement-based framework for modelling hybrid systems. ACM Trans.
Embed. Comput. Syst. 20(4), 1–37 (2021)

11. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposium in
Applied Mathematics - Mathematical Aspects of Computer Science, vol. 19, pp.
19–32 (1967)

http://deploy-eprints.ecs.soton.ac.uk/216/
http://deploy-eprints.ecs.soton.ac.uk/216/
https://doi.org/10.1007/3-540-45648-1_13
https://doi.org/10.1007/3-540-45648-1_13
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7

Empowering the Event-B Method Using External Theories 35

12. van Gasteren, A.J.M., Tel, G.: Comments on “on the proof of a distributed algo-
rithm”: always-true is not invariant. Inf. Process. Lett. 35(6), 277–279 (1990)

13. George, C.: The RAISE specification language a tutorial. In: Prehn, S., Toetenel,
H. (eds.) VDM 1991. LNCS, vol. 552, pp. 238–319. Springer, Heidelberg (1991).
https://doi.org/10.1007/BFb0019998

14. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

15. Jones, C.B.: Partial functions and logics: a warning. Inf. Process. Lett. 54(2), 65–67
(1995)

16. Jones, C.B., Middelburg, C.A.: A typed logic of partial functions reconstructed
classically. Acta Inform. 31(5), 399–430 (1994)

17. Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall Inter-
national Series in Computer Science, Prentice Hall, Hoboken (1986)

18. Lamport, L.: Specifying Systems. The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

19. Leuschel, M.: Fast and effective well-definedness checking. In: Dongol, B., Troubit-
syna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 63–81. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63461-2 4

20. Mendil, I., Singh, N.K., Aı̈t-Ameur, Y., Méry, D., Palanque, P.: An integrated
framework for the formal analysis of critical interactive systems. In: Liu, Y., Ma,
S.P., Chen, S., Sun, J. (eds.) The 27th Asia-Pacific Software Engineering Confer-
ence, June Sun, p. 10. IEEE, Singapore, Singapore, December 2020

21. Mendil, I., Aı̈t-Ameur, Y., Singh, N.K., Méry, D., Palanque, P.: Leveraging Event-
B theories for handling domain knowledge in design models. In: Qin, S., Woodcock,
J., Zhang, W. (eds.) SETTA 2021. LNCS, vol. 13071, pp. 40–58. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-91265-9 3

22. Mendil, I., Aı̈t-Ameur, Y., Singh, N.K., Méry, D., Palanque, P.: Standard
conformance-by-construction with Event-B. In: Lluch Lafuente, A., Mavridou, A.
(eds.) Formal Methods for Industrial Critical Systems, pp. 126–146. Springer Inter-
national Publishing, Cham (2021)

23. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL. A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

24. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

25. Riviere, P.: Formal meta engineering Event-B: extension and reasoning the EB4EB
framework. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709, pp. 153–
157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8 15

26. Spivey, J.M.: Z Notation - A Reference Manual, 2 edn. Prentice Hall International
Series in Computer Science, Prentice Hall, Hoboken (1992)

27. Stoddart, B., Dunne, S., Galloway, A.: Undefined expressions and logic in Z and
B. Formal Methods Syst. Des. 15(3), 201–215 (1999)

https://doi.org/10.1007/BFb0019998
https://doi.org/10.1007/978-3-030-63461-2_4
https://doi.org/10.1007/978-3-030-91265-9_3
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-030-77543-8_15

Cooperative and Relational Verification

Journal-First: Formal Modelling
and Runtime Verification of Autonomous

Grasping for Active Debris Removal

Marie Farrell1(B), Nikos Mavrakis2, Angelo Ferrando3, Clare Dixon4,
and Yang Gao5

1 Department of Computer Science and Hamilton Institute,
Maynooth University, Maynooth, Ireland

marie.farrell@mu.ie
2 Department of Electronic Engineering, University of York, York, UK

3 Department of Computer Science, University of Genova, Genova, Italy
4 Department of Computer Science, University of Manchester, Manchester, UK

5 STAR-Lab, Surrey Space Centre, University of Surrey, Guildford, UK

Abstract. Verifying that autonomous space robotic software behaves
correctly is crucial, particularly since such software is often mission-
critical, that is, a software failure can lead to mission failure. In this
paper, we describe the process that we used to verify the autonomous
grasp generation and capturing operation of a spent rocket stage in space.
This paper summarises a publication by the same authors in the journal
Frontiers in Robotics and AI (2022) which harnesses multiple formal and
non-formal methods to verify an autonomous grasping system.

1 Introduction

Active Debris Removal refers to the removal of debris, such as spent rocket
stages, from orbit. Current approaches include the use of autonomous robots
which are equipped with an arm to capture this kind of debris [10]. Identifying
a suitable grasping point on the target surface and ensuring a stable grasp is a
crucial function in systems that are deployed for active debris removal.

This paper summarises our work in [4] which describes our approach to verify-
ing a pre-existing system for autonomous grasping [10] for active debris removal
in space. To begin, the system was modelled using the Architecture Analysis and
Design Language (AADL) [5] to extract a modular system design, and require-
ments were formalised using the Formal Requirements Elicitation Tool (FRET)
[7]. The Dafny program verifier [8] was used to formally model and verify system
components against their requirements for the grasp generation algorithm.

From the FRET requirements and Dafny conditions, we synthesised run-
time monitors using ROSMonitoring [6] to provide runtime assurances for the

This work was supported by grants EP/R026092 (FAIR-SPACE) and EP/R026084
(RAIN) through UKRI/EPSRC under the Industrial Strategy Challenge Fund (ISCF)
for Robotics and AI Hubs in Extreme and Hazardous Environments.

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 39–44, 2022.
https://doi.org/10.1007/978-3-031-07727-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_3

40 M. Farrell et al.

system. We also described our experimentation and analysis of the testbed and
the associated simulation (shown in Fig. 1). We provided a detailed discussion of
our approach noting how the modularity of this particular autonomous system
simplified the usually complex task of verifying a system post-development.

Previous work argues that heterogeneous verification [1] and integrated for-
mal methods [2] are especially useful in autonomous robotics. Our work in [4]
illustrates this for an autonomous grasping system, and provides contributions
that are relevant for formal methods developers, particularly those interested in
integrating multiple tools as well as testing/simulation results. A first version of
the Dafny model that we used for verification was presented in [3] and was refac-
tored in [4]. We note that [4] is not a simple extension of [3], rather it provides
a detailed approach to verification where our modified Dafny model provides a
piece of the verification evidence. The next section summarises the verification
approaches and tools that were leveraged in [4] and the results obtained, and
discusses specific aspects of our approach.

2 Summary

In [4], we described our use of non-formal (AADL, simulation, physical experi-
ments) and formal (FRET, Dafny and ROSMonitoring) tools for the analysis of
a previously developed autonomous debris grasping system. This section sum-
marises the benefits that each approach offered, the resulting gaps in the require-
ments that were identified and our approach to post-implementation verification.

2.1 Verification Approaches

We briefly summarise the non-formal and formal verification approaches that
were used in our case study.

AADL: We started by creating an AADL model of the system. This largely
served as a reference point while we distilled the system into its component
elements (both hardware and software). We refactored our original method to
divide off the functions of imagepreprocessing and findoptimalgrasp. These
components were originally encoded as a single entity in our algorithm, to more
easily facilitate runtime monitoring for the system. This refactoring supported
the use of runtime monitors and the definition of detailed requirements for each
of these components. Using the AADL model (Fig. 1 in [4]) to define the system’s
requirements was advantageous since it allowed us to focus on certain compo-
nents of the system when specifying requirements. It also served as a point of ref-
erence for the variable and component names that were used in natural-language
requirements.

FRET: We used FRET to elicit and formalise our requirements (20 in total,
shown in Table 1 of [4]). We had previously [3], identified three requirements
specific to the software itself. However, in [4], we adopted a much broader view of
the system which allowed us to identify and formalise many more requirements.

Formal Verification of Autonomous Grasping 41

Fig. 1. Simulation setup (left) and physical testbed for experimentation (right). The
autonomous robotic arm on the left of each image must grasp the debris, in this case
an apogee kick motor (AKM) shown on the right of each image [4].

Our goal was to utilise formal methods, specifically Dafny and ROSMonitoring,
to verify our system. The intermediate FRET representation was desirable as
it more closely resembled formal properties than their natural-language descrip-
tion. FRET can export CoCoSpec verification code [11] but we did not use it
for this case study because it required Simulink-based tools, and our system was
built using ROS in Python. Instead, we based our Dafny verification and run-
time monitor generation on the requirements in FRET and the corresponding
FRET-generated LTL semantics.

Dafny: We had previously developed a Dafny model of the imagepreprocessing
and findoptimalgrasp components [3]. These were merged in the original Dafny
model and, similar to the implementation, we refactored this Dafny model to
fit the AADL model with minimal impact on the model’s verification. This
restructuring necessitated the addition of some specification structures for the
imagepreprocessing component’s auxiliary functions, but this was relatively
straightforward. Overall we were able to discharge all of the Dafny proof obliga-
tions automatically using version 2.3 of Dafny in version 1.48 of Visual Studio
Code on Ubuntu 18.04.

ROSMonitoring: For a subset of the FRET requirements, we created a catalog
of runtime monitors using ROSMonitoring. Dafny was used to verify some of
these requirements. However, the majority of the monitors were focused on those
requirements that would be difficult to verify in a static verification tool like
Dafny. It is worth noting that our use of FRET made the task of designing these
monitors much easier because it gave a succinct semantics for each requirement.
To check that the requirements were met, we ran these monitors offline (using
log files) for both the simulation and the real system. We also emphasised that,
due to the uniqueness of the autonomous grasping system, precise requirements
for specific components could not be provided without an implementation.

Simulations and Physical Experiments: As shown in Fig. 1, we developed a sim-
ulation, using the V-REP simulator [13], and a physical testbed debris capturing
scenario. The capturing scenario included a chasing spacecraft (service vehicle

42 M. Farrell et al.

SV) equipped with a 6-DOF robotic manipulator, a 2-fingered gripper and a
depth sensor for point cloud extraction. The captured target was an apogee kick
motor (AKM), modeled after the Thiokol STAR 13b family of rocket stages [12].
The arm generated a grasping point on the target nozzle, moved the gripper
towards the grasping point, executed the grasping, and pulled the target back
for a specified distance. The monitors that we developed were applied to both
the simulation and real (physical) testbed. We conducted an experiment which
intentionally injected a fault into the system to demonstrate the effectiveness
of the monitors in identifying violations of the requirements. Specifically, we
reduced the grasping force used by the gripper to grasp the target. As expected,
the applied force could not hold the target because it slipped through the gripper
fingers during the pulling phase, and the SV lost contact with the TGT. This fault
was correctly identified by our runtime monitors.

2.2 Gaps in the Requirements

The construction of monitors helped us to detect gaps in the requirements. In
particular, when we applied the monitors to the physical testbed (Fig. 1), the
monitors for two requirements returned a ‘violated’ verdict. Hardware limitations
were primarily to blame. The initial criterion indicated the pulling range to be
0.3 cm–0.5 cm for requirement R1.9 (Table 1 in [4]).

“R1.9: The total pulling distance shall be between 0.3 and 0.5m.”

Although possible in simulation, it was not feasible in the practical system
due to the robotic arm’s limitations (safety mode enforced a shorter pulling
range). We were able to better understand the hardware constraints as a result
of this, and we adjusted the pulling range in the requirement. Similar issues
occurred with requirement R2.3 (Table 1 in [4]) relating to the grasping force.
As before, whilst the requirement was satisfied in simulation it was not in the
testbed due to hardware restrictions.

“R2.3: The SVG shall apply a force of 180N once contact has been made
with the TGT.”

There were three requirements (R1.1, R1.2 and R1.7, Table 1, [4]) that we
did not formally verify or monitor. Of these, two were verified by construction
on the testbed and the third via physical tests. It is important to recognise
that requirements for autonomous robotic systems will contain elements that
cannot be formally verified so other, non-formal, methods must be used in such
cases. Specifically, R1.1 was verified by construction on the test bed where we
physically placed the camera 0.5m away from the TGT.

“R1.1: The Camera of the SV shall be positioned at least 0.5m from the
TGT.”

Formal Verification of Autonomous Grasping 43

With respect to R1.2, we didn’t impose an initial velocity on the TGT in
either the simulation or the testbed so this requirement was met by design.
However, if this system were to be deployed then we would have to encode a
way of determining whether the TGT was indeed motionless and potentially
synthesise a monitor for this.

“R1.2: The TGT shall be motionless before contact with the SVA.”

Finally, R1.7 was verified via physical testing and visual examination. We
intend to investigate whether it would be possible to develop a runtime monitor
for this property as future work.

“R1.7: Controller shall execute a joint trajectory to reach the BGP.”

2.3 Post-implementation Verification

The typical development approach is linear, with the system architecture devel-
oped, requirements elicited/formalised, formal models of system components ver-
ified, monitors generated, and finally the system is implemented. However, it is
often the case that system verification is forgotten about until the development
is almost finished. This makes verification more challenging, especially as the
complexity of the system grows [9]. Our situation was in the latter category: the
system was nearly complete when we attempted to verify it.

Despite the normal challenges that such an approach brings, we were able to
reverse engineer our verification method. Notably, the structure of our system
was not overly simple, but its functionality was not overly complicated, and we
were willing to make minor adjustments to the software to expedite the verifica-
tion step. While it is always preferable to create the system with verification in
mind from the start, having an implementation to evaluate against was also ben-
eficial from a verification standpoint. We could query the system when defining
the requirements to uncover exceptional circumstances where the requirements
were broken, and hence revise the requirements and accompanying formal mod-
els. In a sense, both the implementation and verification artefacts were used to
inform each other. The degree of modularity in the system would be the most
important component in expanding this method to a more complicated system.
It is evident from this research that the more modular a system is, the easier it
is to analyse and verify with heterogeneous or integrated verification methods.

3 Conclusions and Future Work

Our paper [4], presented a case study which illustrates how distinct verification
techniques can be used at various stages of the development process to ver-
ify an autonomous grasping system. We used AADL, FRET, Dafny and ROS-
Monitoring alongside simulation and physical system tests to verify that the
system behaved correctly. These verification approaches were not tightly inte-
grated in the sense that there were no automatic translations between them.

44 M. Farrell et al.

However, the results from each stage and method provided input for the next.
This demonstrates that even a loosely integrated approach to verification using
distinct methods can be beneficial. Our work in [4] bolsters the argument that,
for complex systems such as autonomous robotics, a combination of formal and
non-formal methods is useful [2,9]. This is acheived via a detailed case study.

References

1. Cardoso, R.C., Farrell, M., Luckcuck, M., Ferrando, A., Fisher, M.: Heterogeneous
verification of an autonomous curiosity rover. In: Lee, R., Jha, S., Mavridou, A.,
Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 353–360. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-55754-6 20

2. Farrell, M., Luckcuck, M., Fisher, M.: Robotics and integrated formal methods:
necessity meets opportunity. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS,
vol. 11023, pp. 161–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98938-9 10

3. Farrell, M., Mavrakis, N., Dixon, C., Gao, Y.: Formal verification of an
autonomous grasping algorithm. In: International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space. ESA (2020)

4. Farrell, M., Mavrakis, N., Ferrando, A., Dixon, C., Gao, Y.: Formal modelling
and runtime verification of autonomous grasping for active debris removal. Front.
Robot. AI (2022). https://doi.org/10.3389/frobt.2021.639282

5. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design lan-
guage (AADL): An introduction. Technical report, Carnegie-Mellon University,
Pittsburgh, PA Software Engineering Institute (2006)

6. Ferrando, A., Cardoso, R.C., Fisher, M., Ancona, D., Franceschini, L., Mascardi,
V.: ROSMonitoring: a runtime verification framework for ROS. In: Mohammad, A.,
Dong, X., Russo, M. (eds.) TAROS 2020. LNCS (LNAI), vol. 12228, pp. 387–399.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63486-5 40

7. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated
formalization of structured natural language requirements. Inf. Softw. Technol.
137, 106590 (2021)

8. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

9. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification
and verification of autonomous robotic systems: a survey. ACM Comput. Surv.
(CSUR) 52(5), 1–41 (2019)

10. Mavrakis, N., Gao, Y.: Visually guided robot grasping of a spacecraft’s apogee kick
motor. In: Symposium on Advanced Space Technologies in Robotics and Automa-
tion (2019)

11. Mavridou, A., Bourbouh, H., Garoche, P.L., Hejase, M.: Evaluation of the FRET
and CoCoSim tools on the ten Lockheed Martin cyber-physical challenge problems.
Technical report, TM-2019-220374, NASA (2019)

12. Orbital ATK, I.: ATK space propulsion products catalog (2016)
13. Rohmer, E., Singh, S.P., Freese, M.: V-REP: a versatile and scalable robot simu-

lation framework. In: International Conference on Intelligent Robots and Systems,
pp. 1321–1326. IEEE (2013)

https://doi.org/10.1007/978-3-030-55754-6_20
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.1007/978-3-319-98938-9_10
https://doi.org/10.3389/frobt.2021.639282
https://doi.org/10.1007/978-3-030-63486-5_40
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

Formal Specification and Verification
of JDK’s Identity Hash Map

Implementation

Martin de Boer1(B), Stijn de Gouw1, Jonas Klamroth2, Christian Jung3,
Mattias Ulbrich3 , and Alexander Weigl3

1 Open University, Heerlen, The Netherlands
2 FZI Research Center for Information Technology, Karlsruhe, Germany

3 Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. Hash maps are a common and important data structure in
efficient algorithm implementations. Despite their wide-spread use, real-
world implementations are not regularly verified.

In this paper, we present the first case study of the IdentityHashMap

class in the Java JDK. We specified its behavior using the Java Model-
ing Language (JML) and proved correctness for the main insertion and
lookup methods with KeY, a semi-interactive theorem prover for JML-
annotated Java programs. Furthermore, we report how unit testing and
bounded model checking can be leveraged to find a suitable specification
more quickly. We also investigated where the bottlenecks in the verifi-
cation of hash maps lie for KeY by comparing required automatic proof
effort for different hash map implementations and draw conclusions for
the choice of hash map implementations regarding their verifiability.

Keywords: Real-world case study · Deductive program verification ·
Java Modeling Language · Verified hash map · Verified data structure ·
Cooperative verification

1 Introduction

Maps are versatile data structures and a common foundation for important algo-
rithms as they provide a simple modifiable association between two objects: the
key and a value. A hash map realizes this association with a (constant time) hash
function, which maps a key to a memory location in the managed memory space.
Thus, the typical operations, i.e., lookup, update and deletion of associations,
achieve a constant run-time on average.

To optimize their performance, hash maps require complex memory layout
and collision resolution strategies. The memory layout describes where and how
associations are stored. The collision strategy handles the location resolution
when the memory location is already occupied by a different key with the same
hash. Further, an implementation needs to decide when and how a restructuring

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 45–62, 2022.
https://doi.org/10.1007/978-3-031-07727-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_4&domain=pdf
http://orcid.org/0000-0002-2350-1831
http://orcid.org/0000-0001-8446-4598
https://doi.org/10.1007/978-3-031-07727-2_4

46 M. de Boer et al.

of the memory layout is necessary to maintain the performance over time because
the addition and removal of association leads to fragmentation.

In this paper, we present the specification and verification of the Identity-

HashMap class of the Java SDK as it appears in the latest update of JDK7 and newer
JDK versions (up to JDK17)1. To our knowledge, this is the first case study, which
formally verifies a real-world hash map implementation from a mainstream pro-
gramming language library. In particular, it is part of the Java Collections Frame-
work, which is one of the most widely used libraries. We formally specify the behav-
ior of the implementation using the Java Modeling Language JML. The case study
with all artifacts is available at [5]. We show how we combined various JML-based
tools (OpenJML, JJBMC, and KeY) together to exploit their strengths and avoid
the weaknesses. In detail, we firstly used JUnit tests with generated runtime asser-
tion and JJBMC [2] to quickly prove contracts and strengthened the specification,
OpenJML [7] to automatically prove contracts, and finally KeY [1] to provide pre-
ciseness by the cost of performance and required user interaction. Finally, we were
able to prove 15 methods of the class with KeY.

Furthermore, we describe how various implementation choices of hash maps
affect the verification performance with KeY. For this, we re-implemented com-
monly used hash map concepts in Java and specified them with JML.

RelatedWork. The hash map/table data structure of a linked list has been studied
mainly in terms of pseudo code of an idealized mathematical abstraction, see [15]
for an Eiffel version and [16] for an OCaml version. Hiep et al. [10] and Knüppel et
al. [11] investigate correctness of some other classes of the Collections framework
using KeY, the latter mainly as a “stepping stone towards a case study for future
research”. In [4], the authors specify and verify the Dual Pivot Quicksort algorithm
(part of the default sorting implementation for primitive types) in Java.

2 Preliminaries

The Java Modeling Language (JML) [13] is a behavioral interface specification
language [9] for Java programs according to the of design-by-contract paradigm
[14]. Listing 1 shows an excerpt of the specification for the hash map method get;
the full specification is covered in detail in Sect. 4. JML annotations are enclosed
in comments beginning with /*@ or //@. The listing contains a method contract
(lines 5–10) covering the normal behavior case in which an exception must not be
thrown. The requires and ensures clauses specify the pre- and postcondition
respectively; the framing condition is given in the assignable clause which lists
the heap locations modifiable by the method. The special keyword \nothing

indicates that no existing heap location must be modified, but new objects may
be allocated. \strictly nothing specifies that the heap must not be modi-
fied at all. Multiple contracts for a method are separated with the keyword
also. JML also supports class invariants (line 3) which need to be established
1 http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/4dd5e486620d/src/share/classes/

java/util/IdentityHashMap.java.

http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/4dd5e486620d/src/share/classes/java/util/IdentityHashMap.java
http://hg.openjdk.java.net/jdk7u/jdk7u/jdk/file/4dd5e486620d/src/share/classes/java/util/IdentityHashMap.java

Specification and Verification of Identity Hash Map Implementation 47

1 class IdentityHashMap {
2 private /*@ nullable */ Object[] table;
3 //@ public invariant table != null;
4

5 /*@ public normal_behavior
6 @ requires (\exists \bigint i; 0 <= i < table.length/(\bigint)2;
7 @ table[i*2] == maskNull(key));
8 @ ensures (\exists \bigint i; 0 <= i < table.length/(\bigint)2;
9 @ table[i*2] == maskNull(key) && \result == table[i*2+1]);

10 @ assignable \nothing;
11 @ also public normal_behavior ...
12 @*/
13 public /*@ nullable */ Object get(/*@ nullable */ Object key) {
14 Object k = maskNull(key); Object[] tab = table;
15 int len = tab.length, i = hash(k, len);
16

17 //@ ghost \bigint hash = i;
18 /*@ // Index i is always an even value within the array bounds
19 @ maintaining 0 <= i < len && i % (\bigint)2 == 0;
20 @ maintaining ...
21 @ decreasing hash > i ? hash - i : hash + len - i;
22 @ assignable \strictly_nothing;
23 @*/
24 while (true) {
25 Object item = tab[i];
26 if (item == k) return tab[i+1];
27 if (item == null) return null;
28 i = nextKeyIndex(i, len);
29 }
30 }
31 }

Listing 1. The lookup method get of class IdentityHashMap as an introductory
example of JML specifications.

before and after every method invocation. To conduct inductive proofs for loops,
these can be annotated with loop specifications (lines 19–22). The loop invari-
ants (maintains) must hold when the loop is reached and after every iteration.
In the example, the variable i is specified to remain in range between 0 and
len and is always even. The loop variant expression (decreasing) computes to
a natural number which must be strictly decreased in every loop iteration. The
assignable clause specifies the heap locations all loop iterations are allowed
to change. JML extends the Java expression language by first-order logic con-
structs like existential (\exists) and universal quantification (\forall). Also,
the construct (\num of int x; G; C) is relevant for the case study. It counts
the number of values for x such that the guard G and the condition C are satis-
fied. For instance, (\num of int i; 0<=i<a.length; a[i] !=null) returns
the number of non-null elements in array a. The identifier \result refers to the
method’s return value in postconditions, and the expression \old(E) evaluates
the expression E in the pre-state of the method invocation. JML ghost variables
(line 17) behave like local Java variables during verification, but are not available
at runtime and must therefore not have an impact on the effects and result of
the method they are declared in. The special primitive JML value type \bigint

48 M. de Boer et al.

initial table:

0 1 2 3 4 5 6 7

1. k1,v1 : k1 v1

2. k2,v2 : k1 v1 k2 v2

3. k3,v3 : k3

0

v3

1 2 3

k1

4

v1

5

k2

6

v2

7

4. k1 : k2 v2 k3 v3

5. k2 : k3 v3

Fig. 1. Memory layout of the table array with length N = 8, hi = hash(ki,N) for
hashes h1 = 4, h2 = 4, and h3 = 6.

refers to the mathematical integers Z.2 Finally, JML adds a few modifiers to the
language like nullable which specifies that a field, method argument or return
value may be null. Without the modifier, the value must not be null and, in
the case of arrays, must not contain null values.

JML specifications can be used in different formal analyses, ranging from for-
mal documentation, test case generation, runtime assertion checking to deduc-
tive verification. This paper will focus on the deductive verification of JML-
annotated programs using two tools implementing different deductive JML ver-
ification approaches: KeY and JJBMC.

KeY is a theorem prover for JML-annotated Java programs that supports
automatic and interactive verification. KeY encodes method contracts as proof
obligations in dynamic logic, a program logic similar to the weakest precondi-
tion calculus or Hoare logic. The programs inside the dynamic logic formulas
are resolved by applying a series of inference rules, thus symbolically execut-
ing the code and hence producing the weakest preconditions in first order logic.
Further inference rules are applied to discharge these resulting obligations. KeY
possesses a powerful automatic strategy that can prove most obligations fully
automatically. In case of more sophisticated heavyweight specifications (like the
ones in the present hash map case study), the user can apply inference rules
interactively to guide the proof.

The tool JJBMC [2] on the other hand combines modular deductive verifica-
tion with bounded model checking. It translates JML specifications to Java state-
ments using additional assumptions and assertions. The enriched Java sources
are then submitted to the state-of-the-art Java bounded model checker JBMC [8].
In Sect. 5.1 we will report how the combination of bounded verification with
modular concepts inside JJBMC helped engineering the specifications.

3 The Verification Subject: JDK’s IdentityHashMap

The IdentityHashMap is a hash table implementation of the interface java.-

util.Map of the Java Collections Framework. Figure 2 shows an overview of
the class. Like any Map, it implements a modifiable mapping between keys and

2 At various places in the specifications, explicit casts like (\bigint)2 have been added.
These force the semantics of surrounding arithmetic operations to be in Z (rather than
in 32-bit int with overflows) which simplifies the verification considerably.

Specification and Verification of Identity Hash Map Implementation 49

values, s. t. every key ki is associated with exactly one value vi. In the Identity-

HashMap, two keys k1 and k2 are considered equal if and only if k1 = k2 (equality
by reference, see Listing 1 line 26 and Listing 4 line 33). In contrast, the equality
of keys in HashMap is defined by the equals method).

Fig. 2. Excerpt of the IdentityHashMap

class.

The IdentityHashMap stores the
key-value entries sequentially in a
one-dimensional array (private field
table). The class relies on the
built-in function System.identity-

HashCode(o) which returns a hash
code for the object o. The hash is
the first candidate spot in table to
lookup the entry, or locating a free
spot to store the entry.

When an entry (k1, v1) is added
(put(k1, v1), cf. Listing 4), a hash
h1 ∈ {0, 2, 4, . . . , [2]N−2} is calculated
based on the hash of the key k1 and
the length N of the table (line 28). The key k1 is then stored in table at the
(even) index h1, and the value v1 is stored adjacently at (odd) index h1 + 1 (line
40). Item 1. in Fig. 1 shows the case where an entry is added to an empty map.
In case k1 was already present in the table, it would not be inserted a second time
(this would break uniqueness), but its associated value would be overwritten with
v1. While keys are unique, there is no guarantee that their hash values are. Col-
lisions might occur: the calculated index in table can be already occupied by an
entry with a different key. The new entry is then stored at the next free position
in table (item 2. in Fig. 1, where (k2, v2) is stored at index 6, while its hash h2 is
4). If that index idx is taken as well, the next even index idx′ = idx + 2 mod N is
calculated by nextKeyIndex and tried, until a free spot is found (item 3. in Fig. 1).
This ensures that there is no gap (empty slots) between the calculated index and
the actual index of a key. This collision resolution strategy is called linear prob-
ing [12]. Section 6.1 discusses other strategies. IdentityHashMap supports using
the null value as a key. To distinguish the null key from an empty slot in the table,
a constant object reference, NULL KEY, is used in place of null.

The get(k) (Listing 1) method retrieves the value for a given key k. It
searches the table with the same process that we described above for insertion:
start at the hash of k (line 15+25) and move to the next key slot (two spots
further, modulo N, see line 28) until k is found (line 26). The search also termi-
nates when an empty element in the array is encountered: this means there is
no entry with key k (line 27). To ensure termination, it is thus crucial that the
array at all times contains at least one empty slot.

We do not discuss removing an entry (method remove) in detail, but only
note that table needs to be rearranged as if the entry had never been added in
the first place, so that remove introduces no gaps between the calculated and
actual index of a key. For an example, see last items in Fig. 1.

50 M. de Boer et al.

4 Specification and Verification of the IdentityHashMap

We now discuss the specification and verification of core parts of the Identity-

HashMap. The full case study comprises several hundred lines of source code and
specifications and over 1.4 million proof steps (Table 1). An exhaustive exposi-
tion is therefore clearly not feasible. Instead, we focus on the core methods and
highlight several of the main proof obligations and their proofs in this section.

Particularly with case studies of such a large size, it can be challenging, but is
crucial, to make and keep the formal specifications manageable and understand-
able. Developers of the specification must quickly see which properties were
formalized already and which remain to be fixed or added (if they turn out to
be flawed during analysis). During the proof, one must understand the specifica-
tions sufficiently well to use them in proving the verification conditions. Clients
of the IdentityHashMap should be able to use the class solely on the basis of the
specifications (without looking at particular implementation details). To facili-
tate understandability, our specifications include comments in natural language
that explain what the formal property expresses.

Some of the core properties maintained by the class invariant are for example
that the table contains at least one empty spot (so that lookup methods termi-
nate) (line 18 in Listing 2) and that all spots between the hash value and the
actual index (including the wrap-around behavior as described in Sect. 3) in the
table are occupied (lines 24 and 34) in Listing 2).

One could use the pure hash method from the Java code in the class invari-
ant to refer to the hash of an object. But this can be inconvenient for the proof
process: the hash method body must then be executed to derive that heap mod-
ifications do not alter hashes of existing objects (and that the result is determin-
istic, etc.). We simplify this by introducing a new mathematical (deterministic)
function dl genHash that does not rely on the heap to refer to an object hash
and adding a postcondition to hash that its return value is dl genHash. Let us
now discuss some of the main proof obligations that arise in the verification of
this class.

Termination of get(..). Listing 3 shows the specification of the loop in the get

method. This loop also appears (in slightly different forms) in many other core
methods of the hash map: the three contains* methods, put, and remove. The
main goal of this loop is to search for a given key. As the loop guard is true,
the loop only terminates if a return statement is encountered. Intuitively, if the
given key is not present, the loop eventually hits the empty spot in the table,
which the class invariant ensures to exist. If the key is present, eventually the
condition item == k becomes true.

Specification and Verification of Identity Hash Map Implementation 51

1 /*@ public invariant table != null &&
2 @ MINIMUM_CAPACITY * (\bigint)2 <= table.length && // 4
3 @ MAXIMUM_CAPACITY * (\bigint)2 >= table.length; // 2ˆ29
4 @
5 @ public invariant // Non-empty keys are unique
6 @ (\forall \bigint i; 0 <= i && i < table.length / (\bigint)2;
7 @ (\forall \bigint j;
8 @ i <= j && j < table.length / (\bigint)2;
9 @ (table[2*i] != null && table[2*i] == table[2*j]) ==> i==j));

10 @
11 @ public invariant // Size == number of non-empty keys
12 @ size == (\num_of \bigint i; 0 <= i < table.length / (\bigint)2;
13 @ table[2*i] != null);
14 @
15 @ public invariant // Table length is always an even number
16 @ table.length % (\bigint)2 == 0;
17 @
18 @ // Table must have at least one empty key-element to prevent
19 @ // infinite loops when a key is not present.
20 @ public invariant
21 @ (\exists \bigint i; 0 <= i < table.length / (\bigint)2;
22 @ table[2*i] == null);
23 @
24 @ // There are no gaps between a key’s hashed index and its actual
25 @ // index (if the key is at a higher index than the hash code)
26 @ public invariant
27 @ (\forall \bigint i; 0 <= i < table.length / (\bigint)2;
28 @ table[2*i] != null &&
29 @ 2*i > \dl_genHash(table[2*i], table.length) ==>
30 @ (\forall \bigint j;
31 @ \dl_genHash(table[2*i], table.length) / (\bigint)2 <= j < i;
32 @ table[2*j] != null));
33 @
34 @ // There are no gaps between a key’s hashed index and its actual
35 @ // index (if the key is at a lower index than the hash code)
36 @ public invariant
37 @ (\forall \bigint i; 0 <= i < table.length / (\bigint)2;
38 @ table[2*i] != null &&
39 @ 2*i < \dl_genHash(table[2*i], table.length) ==>
40 @ (\forall \bigint j; \dl_genHash(table[2*i], table.length)
41 @ <= 2*j < table.length || 0 <= 2*j < 2*i;
42 @ table[2 * j] != null)); @*/

Listing 2. Excerpt of the class invariant.

We now prove termination formally, using the variant in the decreasing

clause (line 21 in Listing 1). Suppose the loop invariant and the loop guard hold
at the start of a loop iteration. If a return statement is hit in the iteration,
then clearly the loop terminates promptly. Otherwise, we must show that the
variant has decreased at the end of the iteration (with an updated value of i),
but remains non-negative. The following cases (where i is the value at the start
of the iteration) may be encountered in this order during the execution of the
loop:

– If hash ≤ i < len − 2 then the updated value of i is i + 2, so clearly the
value of the variant has decreased from hash+len−i to hash+len− (i+2)
and remains non-negative (as hash ≥ 0 and i < len − 2.)

– If i = len − 2 then the new value of i is 0, so the variant decreases from
hash + len − (len − 2) = hash + 2 to hash (and hash ≥ 0).

– If 0 ≤ i < hash− 2, the updated value of i is i+ 2 and the variant decreases
from hash − i to hash − (i + 2) and so remains positive.

52 M. de Boer et al.

1 /*@ // Index i is always an even value within the array bounds
2 @ maintaining
3 @ i >= 0 && i < len && i % (\bigint)2 == 0;
4 @
5 @ // Suppose i > hash. This can only be the case when no key k
6 @ // and no null is present at an even index of tab in the
7 @ // interval [hash..i-2].
8 @ maintaining
9 @ i > hash ==>

10 @ (\forall \bigint n; hash <= (2*n) < i;
11 @ tab[2*n] != k && tab[2*n] != null);
12 @
13 @ // Suppose i < hash. This can only be the case when no key k
14 @ // and no null is present at an even index of tab in the
15 @ // intervals [0..i-2] and [hash..len-2].
16 @ maintaining
17 @ i < hash ==>
18 @ (\forall \bigint n; hash <= (2*n) < len;
19 @ tab[2*n] != k && tab[2*n] != null) &&
20 @ (\forall \bigint m; 0 <= (2*m) < i;
21 @ tab[2*m] != k && tab[2*m] != null);
22 @
23 @ decreasing hash > i ? hash - i : hash + len - i;
24 @ assignable \strictly_nothing; @*/

Listing 3. Loop specification of the loop in the get method and the inner loop of the
put method.

– If i = hash − 2 then the loop invariant implies that all slots for keys in the
tab array in the intervals [0, hash− 2] and [hash, len− 2] are not equal to k,
the key that we searched for, and non-null (in other words, all keys except the
one at i = hash−2). If tab[hash−2] = k then clearly the return statement on
line 26 is hit. Otherwise, since the assignable clause states that the heap is not
modified by the loop, we know the class invariant holds, which implies there
must be an empty key slot in the array. This must be tab[hash − 2] = null
since all other key slots were non-null. In this case, the return statement on
line 27 is hit and the loop terminates.

put(..) Inner Loop Assignable Clause. The assignable clause (Listing 3) is pecu-
liar: the code has an assignment to an array element (which is not dead code),
yet the clause states that no locations are modified. This is due to the meaning
of loop specifications: they must hold whenever the loop guard is checked. This
however is not the case after leaving the loop by a return statement. Therefore
in our case the assignable clause does not have to hold for the loop iteration
in which the return statement is reached, and this is the case whenever the
assignment that modifies the table is reached.

This strong assignable clause is very useful to prove the remainder of the
method: all facts true before the loop (this may include the class invariant) are
still valid and can be exploited after the inner loop!

put(..) Satisfies Contract and Preserves Class Inv. We distinguish three sce-
narios with respect to the put method and wrote a contract for each of them.
A so-called exceptional contract for the case that the hash map is full (it has

Specification and Verification of Identity Hash Map Implementation 53

reached max capacity): in that case the map is not modified and an exception is
thrown. Another contract for the case that the map already contains the given
key: then the corresponding value is updated. And a contract for the case where
the table does not contain the given key yet so that the new key/value pair must
be added. We shall focus on the proof of this last contract and discuss the main
reasoning to show formally that, assuming the class invariant and precondition
hold initially, put preserves the class invariant and satisfies the postconditions
of this contract. This is the proof obligation that must be proven at line 41.

Consider the postcondition on line 10 of Listing 4, about the preservation of
old entries. The table is modified at table[i] and table[i + 1] which are null,
as per the loop guard. So clearly, none of the entries that were already present
are overwritten. In particular, in the case where the table is not resized, the
old entries are at exactly the same index as at the beginning of the method. If
the table was resized, the postcondition in the contract of resize (not shown)
guarantees that they are present. The second main postcondition on line 18 is
easy to establish: it says that there exists an index in the new table at which the
new entry is stored. At line 41 we know that i is that index.

Next, we focus on two of the class invariants. The invariants that there are no
gaps (key indices with a null) between the hash of any key and its actual index
in the table (lines 24 and 34) are satisfied for the new entry: this follows from the
invariant of the inner loop in put, Listing 3 lines 7 and 15. For old entries, these
properties remain true, because the method only overwrites a null entry, so it does
not introduce new gaps. Hence, if there previously was no gap between an old key’s
hash and its index, then certainly there is not one after inserting the new key either.

Finally, we discuss the invariant that the map maintains at least one empty
spot in table (line 18). The main challenge here is that table[i] was previously
null (i.e. it was an empty spot) and is now overwritten with the key object, so is
there guaranteed to be an empty spot elsewhere? Note that the capacity of the
table, i.e. the number of entries that can be stored, is len/2 since every entry (key
and value) occupies two indices. If the old size is smaller than len/2 − 1, where
len is the new length of the table, we can establish the desired property from
the previous class invariant: as the size is the number of non-null entries (line 11)
there must have been at least two empty spots. We now show that the old size is
indeed smaller than len−1 whenever we reach the return-statement on line 41.
The if-statement prior to it must then have been false (otherwise control jumps
back to the beginning of the outer loop with the continue statement). Hence,
one of the following two cases is true:

– If s + (s<< 1) > len (where s is the new size) then resize must return false.
This happens when the table length was at the maximum capacity already
(so resize does not allocate a new table; it is a no-op) and the current size
is less than that capacity - 1. If the size is equal to the max capacity - 1,
resize (and put) throw an exception so the table is not modified.

– Otherwise s + (s<< 1) > len is false. Simplifying the left shift to 2s yields
2s + s > len. If s ≤ 3, at most six array indices in the table are used, but the
table length is at least eight (line 2, where MINIMUM CAPACITY = 4). So there

54 M. de Boer et al.

must be an empty spot. If s > 2 then 2s + s ≤ len implies 2s+2 < len. Some
arithmetic reasoning about inequalities then suffices to establish the desired
s < len/2 − 1.

1 /*@ also private exceptional_behavior ...
2 @ also ... // The key is already present in the table
3 @ also public normal_behavior // The key is not present in the table
4 @ requires size < MAXIMUM_CAPACITY - 1;
5 @ requires !(\exists \bigint i; 0 <= i < table.length/(\bigint)2;
6 @ table[i*2] == maskNull(key));
7 @ assignable size, table[*], modCount , table;
8 @ ensures size == \old(size) + 1 && modCount != \old(modCount)
9 @ && \result == null;

10 @ ensures // After execution, all old keys are still present
11 @ // and all old values are still present
12 @ (\forall \bigint i;
13 @ 0 <= i < \old(table.length)/(\bigint)2;
14 @ (\exists \bigint j;
15 @ 0 <= j < table.length/(\bigint)2;
16 @ (\old(table[i*2]) == table[j*2]) &&
17 @ \old(table[i*2+1]) == table[j*2+1]));
18 @ ensures // After execution, the table contains the new key
19 @ // associated with the new value
20 @ (\exists \bigint i;
21 @ 0 <= i < table.length/(\bigint)2;
22 @ table[i*2] == maskNull(key) && table[i*2+1] == value); @*/
23 public /*@ nullable @*/ Object put(/*@ nullable @*/ Object key,
24 /*@ nullable @*/ Object value) {
25 final Object k = maskNull(key);
26 retryAfterResize: for (;;) {
27 final Object[] tab = table; final int len = tab.length;
28 int i = hash(k, len);
29 //@ ghost \bigint hash = i;
30 /*@ // Loop invariant: see Listing 3 @*/
31 for (Object item; (item = tab[i]) != null;
32 i = nextKeyIndex(i, len)) {
33 if (item == k) {
34 java.lang.Object oldValue = tab[i+1];
35 tab[i+1] = value; return oldValue; } }
36 final int s = size + 1;
37 // Use optimized form of 3*s. Next capacity is len, 2*capacity
38 if (s + (s << 1) > len && resize(len))
39 continue retryAfterResize;
40 modCount++; tab[i] = k; tab[i + 1] = value;
41 size = s; return null; } }

Listing 4. The put method, including specifications.

4.1 Mechanic Proof

We specified 15 methods of the IdentityHashMap and verified in KeY that they
satisfy their contracts and preserve the class invariant: the default constructor
with accompanying capacity and init methods (responsible for establishing the
class invariant initially), the observers isEmpty, maskNull, nextKeyIndex, size,
unmaskNull, the lookup methods containsKeY, containsMapping, contains-
Value, get and mutators clear, put and the private resize method. Table
1 summarizes the main statistics. The observer methods all have short proofs
(<1,000 steps) and no interactive steps. All lookup methods have similar statis-
tics: around 50k steps per contract. KeY’s support for user interaction was crucial

Specification and Verification of Identity Hash Map Implementation 55

Table 1. Lines of code, lines of specification, and KeY statistics per method

Method Steps Br. IS SE QI OC LI MR PO JML LOC

Def.constructor 7,724 56 86 66 101 1 0 0 1 10 3

clear 17,588 78 0 115 79 0 1 0 1 19 7

containsMapping 55,611 146 8 484 458 6 1 0 1 17 14

put 973,404 4,088 1,655 2,221 1,564 26 4 2 3 70 24

resize 223,357 340 487 491 270 3 2 0 4 125 29

other 172,307 438 115 846 1,243 14 4 0 13 113 59

Totals 1,449,991 5,146 2,351 4,223 3,715 50 12 2 23 354 136

Br.: Number of branches in the proof tree, IS: Interactive Steps (number of inter-
actively (manually) applied rules), SE: Symbolic Execution steps, QI: Quantifier
Instantiations, OC: Operation Contract applications, LI: Loop Invariant applica-
tions, MR: Merge Rule applications, PO: Proof Obligations (contracts) for the
method, JML: lines of JML spec. (KeY only, not counting empty and comment
lines), LOC: Lines Of Code (Java code not counting empty and comment lines).

and used extensively to introduce intermediate lemmas and find suitable quanti-
fier instantiations in the proofs of the most complex methods: put and resize.

The IdentityHashMap uses features for performance that complicate reason-
ing, such as continue jumps in loops, bit shifts and exploiting integer overflows.
To match the intricate Java semantics, we took special care to analyze the source
code nearly verbatim. We stripped generics with an automated plug-in of the
KeY tool suite. The total effort of the case study amounts to roughly five person
months (800 h). The largest part of this consists of developing the formal spec-
ifications. This required many iterations of partial (failed) verification attempts
with KeY and other analysis techniques (see Sect. 5.1) that led to corrections or
additions to the specifications. With complete specifications, we estimate that
the KeY proofs alone can be done in about 80 h.

The put method, together with the private method resize was the largest
and most difficult, comprising about 1.2 million steps together. The size is caused
mainly because the class invariant is large and must be proven in every proof
branch of a return statement. To minimize the number of such branches, we
aggressively used a branch merging technique [17]. For example, line 41 of put

gives rise to three branches: s + (s<< 1) > len is false (branch 1), or it is true but
resize returns false (branch 2) or true (branch 3). In branch 1 and branch 2 the
heap is not modified, so we merged these branches. This prevents, for example,
having to proving the class invariant twice.

Another valuable feature in KeY for put was the flexibility to verify loops
by either unrolling the loop (with symbolic execution) or by supplying a loop
invariant on a case-by-case basis. Observe that the body of the outer loop (line 26
is executed either just once (in case no resize is necessary) or twice (in case of
a resize). To avoid having to write and use a (complex) loop invariant that
complicates the proof, we exploited the feature of KeY to unroll the loop body
instead. This is why there is no invariant for the outer loop.

56 M. de Boer et al.

5 Engineering Specifications Using Lightweight Analyses

Most of the time in a modular verification endeavor is spent on finding appropri-
ate specifications, and we need to distinguish between two types of specification:
While property specifications describe the exported guarantees one wants to ver-
ify, auxiliary specifications (like loop-invariants and contracts of helper methods)
partition the verification condition into smaller obligations and guide tools to
find proofs. In the present case study, coming up with both categories had chal-
lenges in store. To gain more confidence in the specifications and spot bugs early
in the process, we applied two lightweight verification techniques.

5.1 Bounded Analysis for Auxiliary Specifications

Coming up with appropriate auxiliary specifications is a challenging task, because
the specifications usually depend on each other in two directions: In modular ver-
ification, it is not possible to prove a method contract containing a method call
without a specification of the called method. On the other hand, the inner method
is difficult to specify while it is not clear what guarantees are needed at its call sites.
It is thus very desirable to reduce these interdependencies and to step back from
the design-by-contract paradigm for the inner method call. We achieved this by
using a bounded analysis to check partially specified programs.

We use JJBMC [3] with which modular and bounded verification techniques
can be combined: methods (and loops) with specifications are treated modularly
(exploiting user-given method contracts and loop invariants to abstract from the
program flow) while unspecified constructs can be formally treated using bounded
verification (performing loop unrolling and method inlining to obtain a finite pro-
gram to analyze), enabling a formal (albeit bounded) analysis of partially specified
programs. The bounded analysis is parameterized by the maximum number k ∈ N

of unwindings and unrollings to apply. For a too small value of k, specification vio-
lations may hence remain undiscovered by a bounded analysis.

The workflow to engineer auxiliary specifications is as follows: The user anno-
tates a top-level API method m0 with the desired property specification together
with candidate class invariants (but leaves inner methods unspecified). They then
run JJBMC to get feedback whether this specification is correct (within the set
bound). If it is not, a concrete counterexample trace is produced and presented
to the user who can use it for debugging. Once a suitable specification has been
found, the user can continue engineering the specification for a method m1 called
by m0. By continuously checking the bounded correctness of m0 and the modular
correctness of m0 (wrt. the contract for m1), the user hones in on an appropriate
specification (strong enough for the call sites and weak enough to be provable)
for m1. The process then continues with the next nested method call, and also
applies to (nested) loops. Using the bounded model checking analysis, we gained
confidence in the specifications and avoided a few tedious refactorings otherwise
needed for the proofs of the unbounded case.

As one example where this process helped us in the case study, reconsider the
specification of get in Listing 1. In the first specification attempt, the conditions

Specification and Verification of Identity Hash Map Implementation 57

in line 7 missed the call to maskNull, making code and specification inconsistent.
Using JJBMC we were able to spot and correct this flaw early on before the inner
mechanisms of get had been looked at. We used this approach to come up with
several parts of the specification, and while we do not have hard evidence, our
subjective impression is that it allowed us to get to correct specifications faster
than we would have without it. We spent about 0.14 person months to verify
the IdentityHashMap with JJBMC.

5.2 Unit Tests for Property Specifications

Dynamic techniques that check whether specifications hold at run-time could be
cheap to apply, provided those checks are generated automatically from the JML
specifications. There are tools designed for this purpose: JMLUnitNG [18] aims
to generate unit tests and OpenJML [6] is a general analysis framework that
includes support for run-time assertion checking. However, our application of
these tools to this case study was unsuccessful: the semantics of the source code
and specifications proved to be too complex and intricate to load the Identity-

HashMap. In particular, this triggered exceptions and we did not manage to get
useful output of the tools (despite contacting the main developer of OpenJML).

Confronted with this problem, we instead manually wrote (ad-hoc) JUnit
tests to perform checks on method contracts (both pre- and postconditions)
and a test method for the class invariant that checks all clauses. We can
then call the test method whenever the class invariant should hold. Since the
class invariant accesses private fields such as table, we used Java Reflection
(Class.getDeclaredField(..)) to read the values of these fields. We handled
quantifiers in JML specifications with for-loops (all quantifiers are bounded over
the integers in our case study, so they can be translated routinely to for-loops).

Conducting these tests helped us to gain confidence in our specifications and
even uncovered some errors in early versions of it. However, there are two main
limitations: first, since JUnit tests operate at the granularity of entire methods,
internal specifications such as loop invariants and assignable clauses are difficult to
cover. Secondly, the manual translation of the JML specifications could be incon-
sistent (e.g. due to a misunderstanding of the semantics of JML) with the actual
specification. Finally, as we use unit tests to discover errors quickly, one should
keep in mind that writing and maintaining the unit tests is very time-consuming.
We spent about 0.5 person months to develop the unit test framework.

6 Discussion

6.1 Empirical Identification of Verification Challenges

To learn more about the particular challenges imposed by the verification of
hash tables, we not only verified the IdentityHashMap, but also investigated
the contributing factors for the complexity of hash table verification endeavors
in KeY. We considered two families of hash table implementations with different

58 M. de Boer et al.

Table 2. Required number of rules applications for different hash table implementa-
tions. The dash “–” denotes a non-closed proof.

hashing paradigms. For each family, we provided three implementations with
different complexity and abstraction levels and compared the effort needed to
verify them using KeY. To make the results more comparable and not influenced
by user input, we have run KeY fully automatically without user interaction.
The specification has a similar degree of abstraction and follows similar lines as
the one outlined in Sect. 4. By comparing the required number of proof steps for
the different implementations we can draw conclusions about the complexity of
the verification obligations and the strengths and weaknesses of the automated
proof strategy in KeY.

The two compared hash collision resolution paradigms are linear probing and
separate chaining. They differ in situations in which two different keys map to the
same hash (index) into the hash map. Linear probing is used in the Identity-

HashMap, as described in Sect. 3. Separate chaining is used in the HashMap class
in the JDK. It allows storing multiple entries into one slot: each slot contains a
bucket (i.e. a linear list) with all entries that are mapped by the hash function
to the same index (slot). The collision resolution strategy affects the algorithms
for insertion and lookup routines since these have to take conflicting keys with
identical indices into account. The implementations of the two paradigms have
quite different method contracts and in particular the class invariants capturing
the properties of the hash structure differ considerably – with different challenges
both for the specifier and the automatic verification engine.

The three variants implemented for each conflict resolution strategy mainly
differ in the data types used for values and keys. In the first variant called With-
Integers (WI), keys and values are of type int and the identity operator (==) is
used to compare keys. The second variant is called NoEquals (NE), and keys are
objects of a specialized immutable Key class, while values are arbitrary Objects,
and it uses the identity operator (==) to compare keys, like the IdentityHash-

Map does. The third variant is called WithEquals (WE) and is similar to NE,
but uses the equals method to compare keys.

Table 2 shows the required effort to prove the respective method contracts
correct. The numbers of the WI variants represent the absolute number of rule
applications needed, whereas the other two variants (in italics) are stated as a

Specification and Verification of Identity Hash Map Implementation 59

ratio to the number in the WI column for the same method and hashing family.
Thus the relative overhead between the family members can be seen more easily.
The exact numbers of steps are not very important for the investigation, suffice
it to say that the WI proof for addNewPair with more than 380,000 steps took
12 min to complete. The hash method computes the hash value of a key and
getIndex returns the index of a key (if present). addNewPair inserts a new key-
value pair and is called by put, when the key is not already in the hash table.
Some proofs could not be finished (indicated as −) since the prover ran out of
memory resources. Since the solver is designed to be deterministic, the runs are
repeatable.

It can be observed that in most cases the complexity grows within a family
between the variants from WI to NE and from NE to WE. The variants that
introduce equals instead of == experience a vast increase in complexity for the
central method getIndex. This can be explained by the fact that the built-in
identity comparison is independent of the heap state (it only depends on the
compared values) and is inherently transitive and symmetric. Such properties
may (or may partially) be true for an equals implementation, but considerably
more effort must be taken to show consequences when dealing with this more
general form of equality. It can thus be safely said that one should use primitive
values as keys for hash maps as often as possible for KeY.

Contrary to what one might expect, some numbers decrease for the more
complex variants. This can be explained by the heuristic choices that are made
by the KeY strategy. In some cases, good decisions are made earlier than in other
cases, due to the presence/absence of certain trigger expressions.

6.2 Discovered Bugs and Recommendations

In this section, we discuss several issues that our analysis revealed.

Serialization. The IdentityHashMap supports serialization: writing a map to a
stream (e.g. a file) with a writeObject method and reading a map from a stream
with the readObject method. Effectively readObject acts as a constructor: it
creates a map object, so it should ensure that this object satisfies the class invari-
ant. To fill the map with serialized entries, readObject uses a putForCreate

method that does not resize (for performance reasons) but allocates a table based
on the size stored in the stream. Suppose an attacker serializes a map with a sin-
gle empty entry (satisfying the requirement from the class invariant that there is
an empty slot) to a file. The attacker can tamper with the file using a hex-editor
to overwrite the empty slot with a key. A victim who deserializes this rogue map
then inadvertently enters an infinite loop in putForCreate. We suggest solving
this by checking in the code whether the map to deserialize satisfies the class
invariant, and if not, throw an exception to prevent infinite loops or construction
of a map object that breaks the class invariant.

60 M. de Boer et al.

put in JDK7u80. The binaries distributed by Oracle for JDK7 (an older but still
widely used JDK) uses source code from an old JDK7u80 update3. The main
difference between JDK7u80 and the IdentityHashMap in this paper (which
is used in all newer JDK’s and the later source-only updates to JDK7) is in
the put method. The JDK7u80 version resizes after adding a new entry, rather
than before (see Fig. 3), and there is no outer loop with a continue statement.

Fig. 3. put(..) in JDK7u80

Suppose put is called on a map that is filled to
the maximum capacity. The last empty spot
in the table is first overwritten and only then
resize throws an exception. So, the map is
left in an inconsistent state: it breaks the class
invariant. If a client then calls get(k) on a
key k not stored in the map, an infinite loop
is triggered. In other words: this version of put breaks failure atomicity : put
fails (as the table is full) so the operation should have been a no-op.

There is a way to fix this without resorting to continue statements: extract
the code for the inner loop in put, get, etc., which searches for the index of a
given key, or returns the index of its insertion point if the key is not present
in the map, into a new private method search(k). The duplicated code for the
loop can then be eliminated from the various methods by calling search. In put,
call resize before modifying the table. This may shuffle around the existing keys:
the hashes are recalculated based on the new table length. If a resize occurred,
call search(k) again to obtain the new insertion point for the key. Now the
entries can be safely inserted at the index returned by search.

7 Conclusion

In this paper we specified and verified the core of the challenging, real-world
implementation IdentityHashMap in KeY and discovered several issues. To
speed up finding suitable specifications, we successfully leveraged model checking
and unit testing. We extended our analysis with an investigation on the effect
on the proof complexity in KeY of features and strategies used in other map
implementations.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice, Lec-
ture Notes in Computer Science, vol. 10001. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49812-6

2. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 60–80. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4 4

3 http://hg.openjdk.java.net/jdk7u/jdk7u-dev/jdk/file/70e3553d9d6e/src/share/
classes/java/util/IdentityHashMap.java.

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
http://hg.openjdk.java.net/jdk7u/jdk7u-dev/jdk/file/70e3553d9d6e/src/share/classes/java/util/IdentityHashMap.java
http://hg.openjdk.java.net/jdk7u/jdk7u-dev/jdk/file/70e3553d9d6e/src/share/classes/java/util/IdentityHashMap.java

Specification and Verification of Identity Hash Map Implementation 61

3. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 60–80. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4 4

4. Beckert, B., Schiffl, J., Schmitt, P.H., Ulbrich, M.: Proving JDK’s dual pivot quick-
sort correct. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712,
pp. 35–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2 3

5. de Boer, M., de Gow, S., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: Artifacts
of the formal specification and verification of JDK’s identity hash map implemen-
tation, March 2022. https://doi.org/10.5281/zenodo.6415339

6. Cok, D.: OpenJML: Software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: Electronic Proceedings in Theoretical Computer Science, vol. 149, April
2014. https://doi.org/10.4204/EPTCS.149.8

7. Cok, D.R.: OpenJML: JML for Java 7 by extending openJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

8. Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: a bounded
model checking tool for verifying Java bytecode. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 183–190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 10

9. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.J.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012).
https://doi.org/10.1145/2187671.2187678

10. Hiep, H.-D.A., Bian, J., de Boer, F.S., de Gouw, S.: History-based specification
and verification of java collections in KeY. In: Dongol, B., Troubitsyna, E. (eds.)
IFM 2020. LNCS, vol. 12546, pp. 199–217. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-63461-2 11

11. Knüppel, A., Thüm, T., Pardylla, C., Schaefer, I.: Experience report on formally
verifying parts of OpenJDK’s API with KeY. In: F-IDE 2018: Formal Integrated
Development Environment. EPTCS, vol. 284, pp. 53–70. OPA (2018). https://doi.
org/10.4204/EPTCS.284.5

12. Knuth, D.E.: Notes on “open” addressing, July 1963. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.56.4899

13. Leavens, G.T., et al.: JML Reference Manual (2008)
14. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992).

https://doi.org/10.1109/2.161279
15. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. In:

Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 414–434. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19249-9 26

16. Pottier, F.: Verifying a hash table and its iterators in higher-order separation logic.
In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIGPLAN Confer-
ence on Certified Programs and Proofs, CPP 2017, Paris, France, January 16–17,
2017. pp. 3–16. ACM (2017). https://doi.org/10.1145/3018610.3018624,https://
doi.org/10.1145/3018610.3018624

https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.5281/zenodo.6415339
https://doi.org/10.4204/EPTCS.149.8
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1007/978-3-030-63461-2_11
https://doi.org/10.1007/978-3-030-63461-2_11
https://doi.org/10.4204/EPTCS.284.5
https://doi.org/10.4204/EPTCS.284.5
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-319-19249-9_26
https://doi.org/10.1145/3018610.3018624,
https://doi.org/10.1145/3018610.3018624
https://doi.org/10.1145/3018610.3018624

62 M. de Boer et al.

17. Scheurer, D., Hähnle, R., Bubel, R.: A general lattice model for merging symbolic
execution branches. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS,
vol. 10009, pp. 57–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47846-3 5

18. Zimmerman, D.M., Nagmoti, R.: JMLUnit: the next generation. In: Beckert, B.,
Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 183–197. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18070-5 13

https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-642-18070-5_13

Reusing Predicate Precision
in Value Analysis

Marie-Christine Jakobs(B)

Technical University of Darmstadt, Department of Computer Science,
Darmstadt, Germany

jakobs@cs.tu-darmstadt.de

Abstract. Software verification allows one to examine the reliability of
software. Thereby, analyses exchange information to become more effec-
tive, more efficient, or to eliminate false results and increase trust in the
analysis result. One type of information that analyses provide are preci-
sions, which describe an analysis’ degree of abstraction (tracked predi-
cates, etc.). So far, analyses mainly reuse their own precision to reverify
a changed program. In contrast, we aim to reuse the precision of a predi-
cate analysis within a value analysis. To this end, we propose 13 options
to convert a predicate precision into a precision for value analysis. All
options compute precisions with various degrees of abstraction and are
broadly evaluated on three applications (cooperative verification, result
validation, and regression verification). Also, we compare our options
against using the coarsest and finest precision as well as a state-of-the-
art approach for each application. Our evaluation reveals that coarser
precisions work better for proof detection, while finer precisions perform
better in alarm detection. Moreover, reusing a predicate precision in value
analysis can be beneficial in cooperative verification and works well for
validating and reverifying programs without property violations.

1 Introduction

Software plays a major role in our daily lives and we often expect our software
to execute reliably. For safety critical software, reliable execution is even a neces-
sity. Hence, reliability is important for a software’s practicality and acceptance
up to becoming a critical factor for the software’s success. To ensure that a piece
of software is reliable, one may verify certain of its properties. To this end, veri-
fication must (1) successfully check, i.e., prove or disprove, those software prop-
erties, (2) produce correct results, and (3) efficiently reverify new versions of the
software. To accomplish all three needs, one may require cooperative verifica-
tion, result validation, and regression verification techniques. Cooperative veri-
fication techniques, e.g., [11,18,20,40,49,57,58,83,89,90], combine the strengths
of different approaches to become more effective. Result validation techniques,

This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project.

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 63–85, 2022.
https://doi.org/10.1007/978-3-031-07727-2_5

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_5&domain=pdf
http://orcid.org/0000-0002-5890-4673
https://doi.org/10.1007/978-3-031-07727-2_5

64 M.-C. Jakobs

Predicate Analysis

Value Analysis

program verdictprecision

(a) Cooperative verification

Predicate Analysis

Value Analysis

program

verdict rp

verdict rv

rp = rvprecision

(b) Result validation

program Predicate Analysis

Value Analysis
modified

program

precision

(c) Regression verification

Fig. 1. Our applications for reusing a predicate precision in a value analysis

e.g., [15,16,39,45,53,61,75] target the trust in verification results. Instead of
proving the correctness of a verification technique and its implementation, they use
information provided by the verifier to validate its result, often using a different
verifier. Regression verification techniques, e.g., [9,10,25,31,51,56,62,88,97,98],
aim to speed up the reverification of a changed software.

Many techniques in cooperative verification, result validation, and regres-
sion verification exchange information, but most exchange techniques are only
applicable in one of the three scenarios. Also, regression verification techniques
typically exchange information between different runs of the same verification
approach and not between different approaches, which hinders adapting regres-
sion verification to the latest development in software verification. Exceptions
are the exchange of conditions [20,25] and the exchange of constraint satisfiabil-
ity [97], which are both applied in cooperative verification and regression verifica-
tion. Furthermore, CoVeriTest [24] recently adapted precision reuse [31], which
was originally suggested to reverify a modified program with the same verifica-
tion approach, to reuse predicate precisions obtained during test-case generation
with predicate analysis in test-case generation with value analysis.

In this paper, we proceed to exchange precisions between predicate [28] and
value analysis [30], two abstraction-based model checkers that automatically
determine the precision (abstraction degree) required for program verification.
We let the value analysis reuse a predicate precision in a sequential composition
of predicate and value analysis (Fig. 1a), when validating results of the predicate
analysis (Fig. 1b), or when changing from predicate to value analysis for the
reverification of the modified program (Fig. 1c). In addition, we significantly
extend the reuse suggested by CoVeriTest with 12 new reuse configurations
that provide various options to adapt the reuse to the analyzed program.

Our extensive evaluation of the above applications (Fig. 1) reveals that
CoVeriTest’s reuse works well for programs meeting the properties of interest,
but we require a different reuse configuration for programs violating a property
of interest or sets of programs that contain both kinds of programs. Also, proof
validation and regression verification work better when reusing the predicate
precision than ignoring it or using a competing approach. While reusing the

Reusing Predicate Precision in Value Analysis 65

0: z:=0;

1: x:=1;

2: while 100 > x

3: if x==N

4: then i:=2;

5: else i:=3;

6: z:=z+1;

7: x:=x*i;

8: y:=x;

9: assert y!=0;

10: x:=z/y;

�0

�1

�2 �3

�4

�5

�6

�7

�8

�9 �10 �11

�e

z:=0;

x:=1;
100>x

!(100>x)

x=
=N

!(x==N)

i:=2;

i:
=3
;

z:=z+1;

x:=x*i;

y:=x;
y!=0 x:=z/y;

!(y!=0)

Fig. 2. Example program and its CFA representation

predicate precision is not always most effective, it often requires less verification
effort, e.g., number of refinements or verification time, than its competitors.

2 Programs and Precisions

Programs. We model a program as a control-flow automaton (CFA) P =
(L, �0, G, �e). The set L represents the locations, i.e., the values of the program
counter, �0 ∈ L reflects the initial location, and the set G ⊆ L×Ops×L models
the control flow plus the executed program instructions. For the sake of pre-
sentation, we restrict the set Ops of instructions to assume operations (boolean
expressions bexpr) and assignments var := expr.1 Finally, the location �e ∈ L is
the error location, which the program must not reach to be correct.2 Throughout
the paper, we assume that the set V ar(expr) contains the variables occurring in
(boolean) expression expr and that the set V ar describes all program variables,
i.e., it contains all variables that may occur in program instructions.

Figure 2 shows the program code and the CFA of our artificial example. We
observe that assignments are transferred, while a condition of an assertion, if or
while statement is translated into two assume edges (one per evaluation of the
condition). Moreover, a violation of the assertion leads to the error location �e.

Next, we define a program’s syntactical paths. A syntactical path of pro-
gram P is finite, starts in P ’s initial location, and adheres to P ’s control flow.

synP ((L, �0, G, �e)) :=
{

g0 . . . gn ∈ G+

∣∣∣∣g0 = (�0, ·, ·) ∧ ∀1 ≤ i ≤ n :
(gi−1 = (·, ·, �i) =⇒ gi = (�i, ·, ·))

}

Based on the syntactical program paths, we compute the subset Gerr of all
control-flow edges that occur on an error path, i.e., on a syntactical path that

1 Our implementation supports C programs.
2 Many safety properties can be encoded by the unreachability of an error location [61].

66 M.-C. Jakobs

ends in the error location �e. We use the set Gerr to focus the adaption of the
predicate precision on the paths relevant for verification (solid paths in Fig. 2).

Gerr((L, �0, G, �e)) :=
{

g ∈ G

∣∣∣∣∃g0 . . . gn ∈ synP ((L, �0, G, �e)) : gn = (·, ·, �e)
∧∃0 ≤ i ≤ n : g = gi

}

To retrieve additional relevant information for verification, our adaption also
examines dependencies among variables. For example, we consider which vari-
ables are used to define a variable. Hence, we need to know which variables a
control-flow edge defines and uses. A control-flow edge g defines variable v if its
instruction is an assignment and v occurs on its left-hand side. In contrast, a
control-flow edge g uses a variable v if its instruction is an assignment and v
occurs on its right-hand side or its instruction is an assume operation in which
v occurs. Then, the definitions (uses) of a control-flow edge g are all variables v
that the edge defines (uses). Formally, this is stated as follows.

DEF(g) :=
{{v} if g = (·, v := ·, ·)

∅ else

USE(g) :=
{

V ar(bexpr) if g = (·, bexpr, ·)
V ar(expr) if g = (·, v := expr, ·)

Definitions and uses are associated with data-flow dependencies. In contrast,
conditions of e.g. if and while statements, which are represented by assume oper-
ations in the CFA, guard the execution of certain control-flow edges and influence
their executability. Hence, a control-flow edge g is control dependent on edge g′ if
the execution of g is guarded by g′. For example, the edge (�4, i:=2;, �6) in Fig. 2
is control dependent on the edges (�2, 100>x, �3) and (�3, x==N, �4). To guard an
edge g, the edge g′ must describe an assume operation and each syntactical path
to g must pass through g′, i.e., g′ dominates g. Formally, the edges that an edge g
is control-dependent on in program P are defined as

CD(g, (L, �0, G, �e)) :=
{

g′ ∈ G

∣∣∣∣ (∀g0 . . . gn ∈ synP ((L, �0, G, �e)) : gn = g
=⇒ ∃0 ≤ i < n : gi = g′) ∧ g′ = (·, bexpr, ·)

}
.

Precisions. Precisions specify the degree of abstraction for abstraction-
based analyses. More concretely, abstraction-based analyses apply abstract inter-
pretation [43] to compute an abstraction, i.e., an abstract model of the program.
The analyses’ abstract domain, e.g., interval, predicate, or value domain, fixes
the type of abstraction, while the precision defines the abstraction degree of the
abstract domain, i.e., the information (e.g., the set of predicates) that the anal-
ysis may use to compute the abstract model. In this paper, we are interested in
the precisions of two analyses: predicate analysis and (explicit) value analysis.

The precision ΠP of a predicate analysis [28], named predicate precision,
assigns to each program location a set of predicates (typically, properties or
relations over program variables like x > 0 or x < y), which the predicate analysis
can combine with boolean operators to compute the predicate abstraction at the
respective location. Formally, a predicate precision is a function ΠP : L → 2Φ,

Reusing Predicate Precision in Value Analysis 67

where Φ denotes the set of all predicates. Note that similar to expressions, we
use V ars(p) to denote the variables occurring in predicate p ∈ Φ.

The (value) precision ΠV of the value analysis [30] originally stores for each
program location the variables that should be tracked, i.e., whose known values
must not be abstracted by any value. Due to efficiency reasons, CPAchecker’s
value analysis, which we consider, avoids such a location-based precision and uses
a scope-based value precision that stores the variables that should be tracked
throughout their scope. Hence, we formalize a value precision as ΠV ⊆ V ar.

Predicate and value analysis employ counterexample-guided abstraction
refinement (CEGAR) [42] to compute a precision appropriate for checking a
program’s correctness. While any precision is sound, a too fine precision may be
inefficient. Thus, CEGAR starts with an initial, coarse precision, e.g., no predi-
cates or no tracked variables, and iteratively refines it. To speed up CEGAR, pre-
cision reuse [31] suggests to start with a precision from a previous verification (of
an earlier version of the program), which is typically finer than the initial, coarse
precision. While precision reuse exchanges precisions between the same analysis,
we aim to reuse the predicate precision in the value analysis. Our approach uses
the exchange format for predicate precisions defined by Beyer et al. [31], but
it transforms the predicate precision into an initial value precision Π0

V , which
becomes the initial precision for CEGAR. We discuss the transformation next.

3 From Predicate Precision to Initial Value Precision

To make the predicate precision reusable for the value analysis, our goal is to
transform the predicate precision into a value precision. Hence, we aim to com-
pute the set of initially tracked variables (i.e., the initial value precision Π0

V)
based on information from the given predicate precision ΠP . We compute Π0

V
using algorithm P2V (see Algorithm 1). The algorithm gets as input a predi-
cate precision, a program, and a configuration, while it outputs the initial value
precision Π0

V . Its configuration is a tuple (adapt,allEdges,controlDep,ineq,
knownDefs)∈ B

5 of five boolean options that determine which dependencies
among variables in the program may be taken into account to compute the ini-
tial value precision. We explain the meaning of the options when describing the
algorithm in detail.

Assuming that predicates in precision ΠP are relevant for verification3, we
deduce that values of variables that occur in a predicate of ΠP likely play an
important role for verification. Thus, the value analysis should track these vari-
ables. The first line of algorithm P2V takes this into account and always adds
all variables occurring in a predicate of precision ΠP to the initial value preci-
sion. For instance given predicate precision Πex

P that assigns predicate x > 0 to
location �2 and no predicate to any other location, line 1 computes Π0

V = {x}.
The variables extracted in line 1 may be insufficient. Line 1 may miss vari-

ables relevant at certain locations because the predicate analysis we use performs
3 In our scenarios, the predicates have been used for the (incomplete) verification of

the same or a previous version of the program and therefore are likely relevant.

68 M.-C. Jakobs

Algorithm 1. P2V deriving an initial value precision from a predicate precision
Input: program P = (L, �0, G, �e), predicate precision ΠP , configuration config ∈ B

5

Output: initial value precision Π0
V

1: Π0
V =

⋃
�∈dom(ΠP)

⋃
p∈ΠP (�) V ars(p);

2: if config.adapt then
3: if config.allEdges then Gr := G;
4: else Gr := Gerr(P);

5: Vtbi = Π0
V ;

6: while Vtbi �= ∅ do
7: pop v from Vtbi;
8: Vadd =

⋃
g∈Gr∧v∈DEF(g) USE(g);

9: if config.knownDefs then
10: Vadd = Vadd ∪ ⋃

g∈Gr∧(USE(g)\Π0
V)=∅∧v∈USE(g) DEF(g);

11: if config.controlDep then
12: Vadd = Vadd ∪ trackable-dep(v, P, Π0

V ∪ Vadd, Gr, config.ineq);

13: Vtbi = Vtbi ∪ (Vadd \ Π0
V); Π0

V = Π0
V ∪ Vadd;

14: return Π0
V ;

adjustable block encoding (ABE) [28] and only abstracts at and computes pred-
icates for particular locations (loop heads). For instance, the predicate analysis
succeeds to prove the correctness of our example program (Fig. 2) with preci-
sion Πex

P . However, the value analysis fails to prove the unreachability of the
error location �e with precision Π0

V = {x} extracted at line 1. To succeed, it
requires the value of y, which depends on x, which depends on i. To handle
such dependencies between variables, we allow algorithm P2V to adapt the set
of variables extracted in line 1 when option adapt is set. The remaining options
determine which dependencies to consider and influence the degree of abstrac-
tion (i.e., number of tracked variables), which determines the efficiency of the
value analysis. For example, option allEdges configures whether P2V considers
all program edges (line 3) or only edges of error paths (line 4) when adapting.

During adaption, algorithm P2V inspects every variable v ∈ Π0
V once in

lines 5–13. To this end, the set Vtbi maintains the variables of Π0
V that still

need to be inspected. During inspection of a variable v, algorithm P2V identifies
variables Vadd that should be tracked, i.e., added to the initial value precision
in line 13, because (1) variable v is tracked and (2) they are in a dependency
relation with v that is considered by the given configuration. In the following
paragraphs, we explain the details for computing Vadd.

The value analysis can only realistically track a variable if it can compute
its concrete value. In our example program (Fig. 2), we depend on variables i, y,
and z to be able to always compute the value of variable x. When focusing on
definitions of x on edges g ∈ Gerr (solid edges) occurring on error paths, we only
require variable i. Line 8 determines those variables when inspecting variable x
in our example program either considering relevant edges Gr = G or Gr =
Gerr. More concretely, line 8 selects all relevant edges that define the currently
inspected variable v and adds all variables to Vadd that are used in one of those

Reusing Predicate Precision in Value Analysis 69

definitions of v. Hence, line 8 detects all variables required to compute the value
of variable v on relevant edges. To ensure that values of tracked variables can be
computed, we decided that the adaption always executes line 8.

Sometimes, it may be beneficial to track variables whose value one may com-
pute based on already tracked variables. For instance, in our example we require
the value of y to show the unreachability of the error location �e and we can
compute the value of variable y when knowing the value of variable x. Since
knowing the value of a variable at a particular location can already be benefi-
cial for verification, we decided to add a variable to the initial precision if its
value may be determined by at least one relevant edge. To determine those defin-
able variables, line 10 collects the definitions of all relevant edges that only use
tracked variables from Π0

V . Due to efficiency reasons and to exclude variables
assigned constant values, line 10 only will collect a definition if it uses the cur-
rently inspected variable. Hence, for our example line 10 will add variable y when
expecting variable x. Taking into account that not all variables whose value can
be defined need to be tracked and tracking them may slow down the value analy-
sis, algorithm P2V adds variables whose value can be defined with the currently
tracked variables only if option knownDefs is enabled (cf. lines 9–10).

To prove the unreachability of the error location �e in our example pro-
gram (Fig. 2), the value analysis needs to show that condition !(y!=0) never
evaluates to true, which requires tracking of variable y. In addition, the value
analysis may infer variable values from equalities (==, ! =) in boolean condi-
tions (assume operations), e.g., it derives y has value zero after assume opera-
tion y==0. Therefore, we may want to consider assume operation when adapt-
ing the set of extracted variables. Since equalities may be more valuable and
tracking too many variables can become inefficient, we allow the user to config-
ure via the option ineq whether the adaption should also consider inequalities
(i.e., operators <,≤,≥, >). Nevertheless, we decided to restrict the adaption to
(negated) assume operations of the form var opc expr and expr opc var with
opc ∈ {==, ! =, <,≤,≥, >} and expr ∈ (V ar ∪ Z). First, the tool in which
we integrate our approach translates complex boolean conditions into sequences
of assume operations without binary boolean operators (&&, ‖) and multiple
negations. Second, the tool can only derive values from assume operations like
var == expr or expr == var. Third, ignoring complex arithmetic expressions
simplifies our approach. When inspecting a boolean expression (assume opera-
tion) of that form, our adaption adds var to the tracked variables if expr is a
constant or a variable already tracked. The following definition summarizes this.

trackable-cond(Π0
V , bexpr, ineq) :=⎧

⎨

⎩
v′ ∈ V ar

∣
∣
∣
∣

(bexpr ≡ v′ opc expr ∨ bexpr ≡ expr opc v′

∨bexpr ≡!(v′ opc expr) ∨ bexpr ≡!(expr opc v′))∧
expr ∈ (Π0

V ∪ Z) ∧ (opc ∈ {=, �=} ∨ ineq ∧ opc ∈ {<, ≤, ≥, >})

⎫
⎬

⎭

The previous definition describes which variables should be tracked for a relevant
assume operation. Nevertheless, not all assume operations in a program are
relevant to check the unreachability of the error location. Therefore, the adaption
focuses on assume edges that are related to already tracked program behavior.

70 M.-C. Jakobs

More concretely, our adaption only considers assume edges in the set Gr of
relevant edges that control a definition of a variable already considered in the
initial precision. However, control dependency is no guarantee for relevance of
an assume edge. Hence, one may end up in tracking too many variables, which
can result in an inefficient value analysis, when considering assume edges. Thus,
one must enable option controlDep to derive initially tracked variables from
assume edges (cf. lines 11–12). The following definition now formally states how
to derive variables from assume edges for the currently inspected variable.

trackable-dep(v, P,Π0
V , Gr, ineq) :=⋃

g∈Gr∧v∈DEF(g)

⋃
(·,bexpr,·)∈CD(g,P) trackable-cond(Π

0
V , bexpr, ineq)

Next, we evaluate the options of Algorithm 1. Thereby, we use cno to refer
to controlDep =false as well as ceq (cineq) to describe controlDep=true and
ineq=false (=true).

4 Evaluation

In our evaluation, we aim to compare the different configurations of P2V
(Algorithm 1) on the three applications from Fig. 1. Also, we want to investigate
whether our reuse approach is beneficial. To this end, we compare our reuse app-
roach against the two extreme configurations of the initial value precision (track
no or track all variables) and against one competing approach per application.

4.1 Experimental Setup

Analysis Configurations. We integrated Algorithm 1 into the software analy-
sis framework CPAchecker4 [27], which supports predicate and value analysis as
well as reading and writing of predicate precisions. Its predicate analysis [28] uses
adjustable block encoding [28], only abstracts at loop heads, and computes the
predicates with CEGAR [42] and lazy refinement [63] starting with ΠP = ∅. Its
value analysis [30] applies CEGAR with path prefix slicing [33] and refinement
selection [32]. For our experiments, we use CPAchecker revision 38247.

For all three applications (see Fig. 1), we study 15 configurations to compute
the initial value precision Π0

V , namely all 13 options5 to configure Algorithm 1
(P2V configurations) plus configurations no reuse and all vars that do not
run P2V and use Π0

V = ∅ (coarsest precision) and Π0
V = V ar (track all variables).

For the cooperation and validation applications, P2V reuses the predicate pre-
cision resulting from running the predicate analysis on the same program, while in
regression verification P2V uses the predicate precision that the predicate anal-
ysis produced when run on the previous version of the program. The cooper-
ation setting runs a sequential combination of predicate and value analysis, in

4 https://cpachecker.sosy-lab.org/
5 Configurations config = (⊥, ⊥, ⊥, ⊥, ⊥), config = (�, ·, ⊥, ⊥, ·), config =

(�, ·, �, ⊥, ·), and config = (�, ·, �, �, ·), where · is either � (true) or ⊥ (false).

https://cpachecker.sosy-lab.org/

Reusing Predicate Precision in Value Analysis 71

which the predicate analysis is limited to at most 200 s of CPU time (its limit in
SV-COMP 2021). In contrast, the validation and regression verification applica-
tions execute the predicate and the value analysis in separate runs.

Also, we compare the configurations of each application against one state-of-
the-art approach. To this end, we compare our cooperation configurations against
conditional model checking (CMC) [20], which also uses a combination of predi-
cate and value analysis with a limit of 200 s for the predicate analysis. Moreover,
we compare the validation configurations against witness validation [15,16] using
the value analysis as validator and check our regression verification configura-
tions against reusing the predicate precision with the predicate analysis [31].

Programs. For the cooperation and validation applications, we consider the
software verification benchmark6 (tag sv-comp21), a common benchmark for the
evaluation of verification approaches, which is also used by SV-COMP [13]. Since
all our analyses support the unreach-call property, we select all programs from
the ReachSafety categories. However, we exclude all programs from category
SoftwareSystems-uthash since neither predicate nor value analysis can solve a
single program in this category. In total, we get 7 615 programs.

The above benchmark is not appropriate for regression verification. Only a
few of its tasks consider different versions of the same program. Hence for regres-
sion verification, we use the 4 193 programs from the precision reuse paper [31].7

Computing Resources. We run our experiments on machines with 33 GB
of memory and an Intel Xeon E3-1230 v5 CPU with 8 processing units and a
frequency of 3.4 GHz. The machines’ operating system is an Ubuntu 20.04 with
Linux kernel 5.4 and Java 11. Each run (a pair of an analysis configuration and
a program) may use up to 4 processing units, 15 min of CPU time, and 15 GB
of memory. We enforce those limits with BenchExec [34] (version 3.8).

4.2 Experimental Results

Discussion of Cooperative Verification. To study the effect of reusing the
predicate precision in cooperative verification, we study those programs that
may reuse a predicate precision. These are all programs that are non-trivial for
the value analysis, i.e., the value analysis requires at least one refinement, and
that the predicate analysis cannot solve in 200 s in any of the configurations,
but for which it provides a non-empty precision8. We get 1 017 incorrect pro-
grams (alarms) reaching the error location and 2 223 correct programs (proofs).

Table 1 shows for how many of the selected programs (row total) as well as for
how many alarms and proofs CMC and the 15 configurations of Π0

V report the
expected result. For all other programs, those configurations do not report a result,
e.g., timeout. Columns

⋃ P2V and
⋃

Π0�
V show the number of programs for which

at least one of the P2V configurations (columns 2–14) and for which columns 1

6 https://github.com/sosy-lab/sv-benchmarks/
7 https://www.sosy-lab.org/research/cpa-reuse/supplementary-archive.zip
8 Since we did not retrieve the temporary predicate precision, we checked that Π0

V �= ∅
if the value analysis with configuration no adapt ((⊥, ⊥, ⊥, ⊥, ⊥)) reports a result.

https://github.com/sosy-lab/sv-benchmarks/
https://www.sosy-lab.org/research/cpa-reuse/supplementary-archive.zip

72 M.-C. Jakobs

Table 1. Number of relevant alarms and proofs correctly reported by a sequential com-
bination of predicate and value analysis using either conditional model checking (CMC),
one of the 15 configurations of Π0

V , the optimal P2V configuration (
⋃ P2V), or the

optimal choice (
⋃

Π0�
V) from no reuse and all vars

allEdges ¬ allEdges

no
reuse

no
adapt

¬ knownDefs knownDefs ¬ knownDefs knownDefs
all
vars

⋃

P2V
⋃

Π0�
Vcorrect cno ceq cineq cno ceq cineq cno ceq cineq cno ceq cineq CMC

alarms 230 209 210 268 283 212 273 290 203 243 236 203 239 235 291 297 293 219

proofs 331 324 253 230 248 234 225 247 249 253 273 249 251 272 247 384 383 329

total 561 533 463 498 531 446 498 537 452 496 509 452 490 507 538 681 676 548

or 15 report the expected result. Also, we mark the best P2V configuration (best
Algorithm 1 configuration) in light gray, the best configuration of the initial pre-
cision Π0

V in italics, and the best configuration overall in bold, blue.
First, let us study the results for sequential combinations using algo-

rithm P2V (columns 2–14). P2V configurations that compute finer (larger) initial
precisions Π0

V , i.e., enable more of P2V’s configuration options, e.g., allEdges
or knownDefs, typically detect more alarms. The best configuration enables all
options and computes the finest precision. We conclude that initially tracking
more information is often better when detecting alarms because one avoids ruling
out spurious counterexamples in costly CEGAR iterations. However, sometimes
a fine, initial precision prevents the analysis from detecting a violation because it
takes too long to explore another part of the state space. Hence, one can detect
more alarms considering all P2V configurations (column

⋃ P2V).
The best P2V configuration for proof detection is no adapt, which computes

the coarsest precision in P2V. In general, configurations that compute coarser
initial precisions due to disabling allEdges or knownDefs often detect more
proofs. However, deriving the maximal information from assume operations (cineq
setting) seems to be better. We conclude that the value analysis must explore a
small, but sufficient abstract state space to effectively prove program correctness.
To this end, it may use a coarse precision or exclude infeasible paths, i.e., track
variables of assume operations. Combining these alternatives may explain why
the number of detectable proofs increases significantly in

⋃ P2V.
We do not know in advance whether a program violates its property. Thus, we

require a configuration that detects alarms and proofs well. Looking at row total,
we observe that it is mostly better to disable knownDefs, but enable allEdges.
Also, cineq configurations are better than ceq and cno. Compromising on the initial
precision level is typically better. Nevertheless, the best configuration is identical
to the best configuration for alarm detection because enabling knownDefs makes
a larger difference on alarm than on proof detection. Since the best alarm and
proof detection technique differ severely, the detection capability increases signif-
icantly when choosing the best configuration per program (cf. column

⋃ P2V).
Comparing the best P2V configuration with no reuse, all vars, and CMC,

we observe that all vars detects slightly more alarms, while no reuse and

Reusing Predicate Precision in Value Analysis 73

Fig. 3. Comparing maximal refinements per CPU time (left) and the CPU time of the
P2V configurations with no reuse (middle) and CMC (right)

CMC solve slightly more proofs and programs. However, when combining all
P2V configurations, P2V outperforms its individual competitors and is slightly
better than

⋃
Π0�

V . While the P2V configurations jointly solve 21 programs
that neither no reuse nor all vars solve and 155 programs that CMC does
not solve, CMC solves 22 programs that no P2V configuration solves and no
reuse plus all vars solve 16 programs not solvable by any P2V configuration.

Now, let us study the verification effort. We start with the number of refine-
ments. The quantile plot in Fig. 3 shows the maximal number of refinements x the
value analysis uses when the respective sequential combination solves a program
correctly in at most y seconds of CPU time. For programs that can be verified
quickly, the best individual P2V configuration (solid blue) requires fewer refine-
ments than no reuse (orange) and CMC (violet) and after about 250 s it again
requires fewer refinements than no reuse. Moreover, configuration

⋃ P2V usu-
ally requires fewer refinements than its competitors. Also, when comparing the
CPU times9 of combinations using one of the single P2V configurations (y-axis)
with combinations using no reuse (left scatter plot in Fig. 3) and CMC (right
scatter plot in Fig. 3), we observe that several points are in the lower right half,
i.e., our approach is faster. A detailed comparison of the best P2V configuration
with no reuse and CMC (points in dark blue and violet) on the 421 (412) pro-
grams solved by our approach and no reuse (CMC) shows that our approach is
faster than no reuse in 62% (263 of 421 programs) and faster than CMC in 82%
(339 of 412 programs). The median and average speedups of no adapt are 1.01
and 1.14 for no reuse and 1.07 and 1.22 for CMC. However, when comparing⋃ P2V and

⋃
Π0�

V on the commonly solved tasks,
⋃ P2V is only faster in 36%

(239 of 660 programs) and its median and average speedups are 0.99 and 1.11.
Discussion of Result Validation. The predicate analysis disproved 1 034

and proved 2 061 programs. To study the effect of reusing the predicate preci-
sion, we select the 782 disproved programs (alarms) and 1 712 proved programs
(proofs) for which the predicate analysis produced a precision10 and that are
non-trivial for the value analysis, i.e., the value analysis needs refinements.

9 We use a CPU time limit of 900 s for all unsolved programs.
10 We checked that the predicate analysis refined at least once and that Π0

V �= ∅ if the
value analysis with configuration no adapt ((⊥, ⊥, ⊥, ⊥, ⊥)) reports a result.

74 M.-C. Jakobs

Table 2. Number of relevant alarms and proofs generated by the predicate analysis
and confirmed by witness validation (wv) with value analysis and by the value analysis
using one of the 15 Π0

V configurations, the optimal P2V configuration (
⋃ P2V), or the

optimal choice (
⋃

Π0�
V) from no reuse and all vars

allEdges ¬ allEdges

no
reuse

no
adapt

¬ knownDefs knownDefs ¬ knownDefs knownDefs
all
vars

⋃

P2V
⋃

Π0�
Vconfirmed cno ceq cineq cno ceq cineq cno ceq cineq cno ceq cineq wv

alarms 306 309 299 399 460 306 445 468 306 356 359 302 349 350 474 476 476 758

proofs 1257 1266 1256 1253 1210 1253 1243 1200 1255 1258 1218 1254 1259 1217 1149 1314 1321 1138

Table 2 shows how many of the selected alarms and proofs witness valida-
tion (wv) and each of the 15 Π0

V configurations of the value analysis confirm
(i.e., find the alarm or proof). Similar to Table 1, columns

⋃ P2V and
⋃

Π0�
V

aggregate columns 2–14 (P2V configurations) and columns 1 and 15. Also, we
use the same highlighting. Note that witness validation rejects 23 alarms and
318 proofs and does not report a result for the remaining programs. All other
configurations either confirm the proof or alarm or do not report a result.

Since one knows whether one validates an alarm or proof, we study alarms
and proofs separately. Looking at the confirmed alarms (first row), we notice
that our approach confirms the largest number of alarms with the P2V con-
figuration that computes the largest set Π0

V (i.e., all options set to true) and
that configurations computing finer precisions, i.e., add more variables to Π0

V
e.g., enabling allEdges or knownDefs, confirm more alarms. For alarms, it is
often better to track more variables and to avoid spending costs on CEGAR
iterations. Hence, tracking all variables from the beginning (configuration all
vars) is even better, but the difference fades away when selecting the optimal
configuration per task (columns

⋃ P2V and
⋃

Π0�
V). Nevertheless, it is best to

perform witness validation that tracks all variables from the beginning and only
explores a restricted state space. Inspecting the results in detail, we observe that
configurations all vars,

⋃
Π0�

V , and witness validation confirm all except for
two alarms that are confirmed by the best P2V configuration. In addition, wit-
ness validation is always faster and all vars is faster for 82% (381 of 466) of
the commonly confirmed alarms. Comparing

⋃ P2V with
⋃

Π0�
V looks similar.

In contrast, P2V configurations that are coarser, e.g., disable allEdges or
knownDefs, often validate proofs more effectively and configuration no adapt, in
which P2V computes the smallest set Π0

V , confirms the largest number of proofs
of all studied validation approaches. However, combining different configurations
increases the number of validated proofs by about 4 %. In total, the value analysis
can validate 1 321 proofs when combining all 15 Π0

V configurations.
Studying the validation effort for proofs, wewill see that configurationno adapt

often outperforms the two best competitors no reuse and witness validation. First,
let us look at the number of refinements. The quantile plot in Fig. 4 shows the
maximal number of refinements x an analysis requires to confirm a proof in at
most y seconds of CPU time. We note that P2V configuration no adapt (

⋃ P2V)

Reusing Predicate Precision in Value Analysis 75

Fig. 4. For proof validation, comparing maximal refinements per CPU time (left) as
well as the CPU time of P2V configurations (value analysis plus Algorithm 1) with no

reuse (middle) and witness validation (right)

requires fewer refinements than no-reuse (
⋃

Π0�
V), while witness validation uses

Π0
V = V ar, i.e., it cannot refine. Next, we compare the validation times. The left

scatter plot in Fig. 4 compares the CPU times of the P2V configurations (value
analysis plus Algorithm1)with the CPU times of configuration no reuse, while the
right scatter plot compares them with witness validation. We use 900 s (maximal
time limit) for all rejected and unconfirmed programs and highlight configuration
no adapt in a darker color. We observe that several points are in the lower right
half, i.e., configuration no adapt is faster. A detailed analysis of our results reveals
that no adapt fails to confirm 24 proofs confirmed by no reuse and 49 confirmed
by witness validation, but confirms 33 proofs that the configuration no reuse can-
not confirm and 177 proofs that witness validation fails to confirm. Looking at the
1 089 proofs confirmed by no adapt and witness validation, we notice that config-
uration no adapt is faster for 59% of those proofs (639 of 1 089 proofs). Its median
speedup is 1.04 and the average speedup is 1.42. Also, the no adapt configura-
tion confirms 75% of the proofs (928 of 1 233 proofs) also confirmed by no reuse
faster. The median speedup is 1.05 and the average speedup is 1.24. We conclude
that no adapt profits from avoiding some CEGAR iterations, while its coarse ini-
tial abstraction still allows the value analysis to efficiently compute a sufficient
abstraction.

Discussion of Regression Verification. Finally, we study the effect of
reusing the predicate precision in regression verification. To this end, we choose
those 2 715 programs that are non-trivial for the value analysis (i.e., require at
least one refinement) and that have a previous version for which the predicate
analysis produced a precision11. No chosen program violates its property and
the previous versions typically differ in several hundred lines.

Table 3 shows how many of the chosen programs are correctly reverified by the
value analysis using one of the 15 Π0

V configurations or by the predicate analysis
with precision reuse (column reuse pred.). Additionally, columns

⋃ P2V and⋃
Π0�

V show the number of programs correctly reverified by at least one of the

11 We checked that the predicate analysis refined at least once and that Π0
V �= ∅ if the

value analysis with configuration no adapt ((⊥, ⊥, ⊥, ⊥, ⊥)) reports a result.

76 M.-C. Jakobs

Table 3. Number of relevant, modified programs correctly reverified by the predicate
analysis with precision reuse (reuse pred.) and by the value analysis when using one
of the 15 Π0

V configurations, the optimal P2V configuration (
⋃ P2V), or the optimal

choice (
⋃

Π0�
V) from no reuse and all vars

allEdges ¬ allEdges

no
reuse

no
adapt

¬ knownDefs knownDefs ¬ knownDefs knownDefs
all
vars

⋃

P2V
⋃

Π0�
V

reuse
pred.correct cno ceq cineq cno ceq cineq cno ceq cineq cno ceq cineq

proofs 2708 2708 1906 1733 1727 1906 1685 1682 1906 1906 1906 1906 1906 1907 2000 2708 2708 2401

Fig. 5. Comparing maximal refinements per CPU time (left) as well as the CPU time
of P2V configurations with no reuse (middle) and reuse pred. (right)

configurations in columns 2–14 (P2V configurations) and by columns 1 and 15.
For all other programs, no result is reported due to timeout, etc. As before, we
mark the best configuration of P2V in light gray, the best configuration of the
initial precision Π0

V in italics, and the best configuration overall in bold, blue.
Looking at Table 3, we once again notice that P2V configurations that com-

pute coarser precisions, i.e., disable some of the configuration options, typically
prove correctness of more programs and, thus, perform better. Furthermore,
once more configuration no adapt is the best configuration for P2V. In addi-
tion, we observe that no adapt solves more programs than all vars and reuse
pred. and as many programs as no reuse. A detailed comparison reveals that
no adapt and no reuse solve all programs that any other configuration solves.

Next, we compare the verification effort. First, let us consider the number
of refinements. The quantile plot in Fig. 5 shows the maximal number of refine-
ments x an analysis requires to correctly reverify a program in at most y seconds
of CPU time. We observe that we require fewer refinements for configuration no
adapt (blue) than for no reuse (orange), but only the predicate analysis with
precision reuse (reuse pred.) never requires any refinements. Now, let us look
at the verification times. We use 900 s (maximal time limit) for all unsolved
programs. The left scatter plot in Fig. 5 compares the CPU times of all P2V
configurations with the CPU times of configuration no reuse, while the right
scatter plot compares them with configuration reuse pred.. In both plots, our
approach is faster for points in the lower right half and we highlight configuration
no adapt in a darker color. Although some configurations of P2V may perform
worse than reuse pred., the best configuration no adapt is mostly faster—it is

Reusing Predicate Precision in Value Analysis 77

only slower for two solved programs—and shows a median and average speedup
of 1.39 and 4.39. One reason is that the value analysis is faster for the pro-
grams considered in the regression verification. Changing the analysis pays off.
In addition, no adapt is slightly faster for 86% of the solved programs (2 331
of 2 708 programs) than no reuse (the default value analysis). The median and
average speedup of no adapt over no reuse are 1.06 and 1.07. Saving refine-
ments and never becoming more precise than no reuse pays off.

Threats to Validity. In cooperative verification, we generate the predicate
precision in the sequential combination. Different P2V configurations may use
different precisions for the same program, which may invalidate our results for
cooperative verification. We think getting different precisions is unlikely because
the predicate analysis we use aims to be deterministic. Also, our results may not
be valid for other applications or programs. We believe that a comparison with
a competitor highly depends on the competitor. We already observe a difference
between the applications when comparing against no reuse. In addition, we use
a diverse benchmark for studying cooperative verification and result validation,
but evaluate regression evaluation on correct Linux driver programs. Therefore,
we expect that the results on cooperative verification and result validation more
likely carry over to other programs and that the results for regression verification
may not be valid on a different set of programs. Nevertheless, the insights on
the configuration of P2V (Algorithm 1) and the comparison against all vars
are similar for all three applications and likely apply to other applications and
programs. Finally, we require that the predicate analysis computes a non-empty
predicate precision (otherwise our approach becomes identical to no reuse). Our
results only apply to programs with loops that influence the program’s property,
i.e., programs for which the predicate analysis needs non-trivial abstractions.

5 Related Work

Originally, precisions are reused by the same analysis in context of regression
verification [31]. We reuse the predicate precision in the value analysis for coop-
erative verification, result validation, and regression verification. In the following,
we briefly discuss the related work in all three fields.

Cooperative Verification. Several verification tools apply different anal-
yses using no cooperation [1,2,38,49,54,64,65,76] or select a suitable analy-
sis from a set of analyses [2,14,50,83,96]. Further approaches split the veri-
fication effort among different analyses [20,23,26,29,40,41,46,47,52,54,89–91].
Also, several approaches testify alarms [1,38,39,45,48,49,53,72,82] to reduce
the number of reported false alarms. To make verification more effective, analy-
ses exchange information in sequential [5,22,66], alternating [3,11,24,55,57,60,
73,77,92,100], or parallel [18,21,44,58] combinations. Our approach exchanges
the predicate precision in a sequential combination. Closest to our approach is
CoVeriTest [24], which may exchange the predicate precision between pred-
icate and value analysis during test generation, but only supports extraction
(i.e., config.adapt = ⊥).

78 M.-C. Jakobs

Validating Verification Results. Witnesses [15,16] describe counterex-
amples or proofs in a standard format and allow validators [15–17,19,35,93]
to perform a verifier-independent check of a verifier’s result. Several coopera-
tive verification approaches [1,38,39,45,48,49,53,72,82] testify counterexamples.
In contrast, proof-carrying code (PCC) [75] aims at validating that a verifier
proved a property. To this end, PCC generates and checks certificates, which
contain some kind of proof. Many PCC approaches for abstraction-based anal-
yses use a subset of the abstract states [4,6,12,67,70,84] as certificate. Other
approaches [37,61,87] convert the abstract state space into a logic proof of pro-
gram correctness. We use the abstraction degree (precision) computed by the
predicate analysis to validate its proofs and alarms with a value analysis.

Regression Verification. Techniques that reverify a program after change
range from functional equivalence checking [10,36,51,56,68,78–80,95] over
updating the representation of the state space [9,62,71,86,88,94], or omitting
the verification of unchanged program parts [25,81,98,99] to reusing (intermedi-
ate) results [7,8,59,74,97,101]. In our approach, we reuse the abstraction degree
(precision). In contrast to existing techniques [31,85] that reuse the abstraction
degree for regression verification, we exchange the abstraction degree between
different analyses, i.e., the value analysis reuses the precision of the predicate
analysis.

6 Conclusion

Software becomes more and more important in our daily routines while we
require reliable software to experience smooth routines. Software verification
allows us to analyze the reliability of software, but often needs to exchange
information between different analyses to successfully inspect a software and its
revisions.

In this paper, we focus on the exchange of precisions, which describe an anal-
ysis’ degree of abstraction. Previously, analyses reused their own precisions in
regression verification [31] and a value analysis may use the precision of a pre-
vious predicate analysis in cooperative test-case generation [24]. We extend the
reuse of predicate precisions within a value analysis to three other applications:
a sequential composition of predicate and value analysis, validating the results
of a predicate analysis with a value analysis, and applying a value analysis to
reverify a modified program whose prior version has been verified with a predi-
cate analysis. To this end, we extend the transformation suggested by Beyer and
Jakobs [24] with 12 additional options to convert a predicate precision into a pre-
cision for the value analysis. All options compute precisions with various degrees
of abstraction. In addition, our new options consider the data- and control-flow
of the analyzed program to also adapt the precision to the program.

In our extensive evaluation on thousands of programs, we compare our differ-
ent options against each other, against using the coarsest and finest precision, as
well as against a state-of-the-art approach. Our results show that configurations
computing finer, more detailed precisions detect more alarms, while configu-
rations computing coarser precisions typically detect more proofs. Nevertheless,

Reusing Predicate Precision in Value Analysis 79

only in one of the three applications we detect less proofs when using our coarsest
reuse options instead of the coarsest precision. Moreover, on correct programs
we outperform the competitors (using the coarsest precision, the finest preci-
sion, or a state-of-the-art approach) in two of three applications. In scenarios
in which none of our reuse options outperforms all competitors, our approach
correctly analyzes some programs that better approaches cannot solve and it
analyzes many programs more efficiently, i.e., using fewer refinements or slightly
less CPU time. Hence, reusing predicate precisions in value analysis is beneficial.

Data Availability Statement. All experimental data is made publicly
available in a replication package [69].

References

1. Ádám, Z., Sallai, G., Hajdu, Á.: Gazer-Theta: LLVM-based verifier portfolio
with BMC/CEGAR (Competition Contribution). In: Groote, J.F., Larsen, K.G.
(eds.) TACAS 2021. LNCS, vol. 12652, pp. 433–437. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72013-1 27

2. Afzal, M., et al.: VeriAbs: Verification by abstraction and test generation. In:
ASE, pp. 1138–1141. IEEE (2019). https://doi.org/10.1109/ASE.2019.00121

3. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-
approximations and back. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 157–172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28756-5 12

4. Albert, E., Puebla, G., Hermenegildo, M.: Abstraction-carrying code. In: Baader,
F., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3452, pp. 380–397.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32275-7 25

5. Alhawi, O.M., Rocha, H., Gadelha, M.R., Cordeiro, L.C., de Lima Filho, E.B.:
Verification and refutation of C programs based on k-induction and invari-
ant inference. STTT 23(2), 115–135 (2021). https://doi.org/10.1007/s10009-020-
00564-1

6. Amme, W., Möller, M., Adler, P.: Data flow analysis as a general concept for the
transport of verifiable program annotations. Electron. Notes Theor. Comput. Sci.
176(3), 97–108 (2007). https://doi.org/10.1016/j.entcs.2006.06.019

7. Aquino, A., Bianchi, F.A., Chen, M., Denaro, G., Pezzè, M.: Reusing constraint
proofs in program analysis. In: ISSTA, pp. 305–315. ACM (2015). https://doi.
org/10.1145/2771783.2771802

8. Aquino, A., Denaro, G., Pezzè, M.: Heuristically matching solution spaces of
arithmetic formulas to efficiently reuse solutions. In: ICSE, pp. 427–437. IEEE
(2017). https://doi.org/10.1109/ICSE.2017.46

9. Arzt, S., Bodden, E.: Reviser: Efficiently updating IDE-/IFDS-based data-flow
analyses in response to incremental program changes. In: ICSE, pp. 288–298.
ACM (2014). https://doi.org/10.1145/2568225.2568243

10. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product pro-
grams. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

11. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests.
In: ISSTA, pp. 3–14. ACM (2008). https://doi.org/10.1145/1390630.1390634

https://doi.org/10.1007/978-3-030-72013-1_27
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-642-28756-5_12
https://doi.org/10.1007/978-3-642-28756-5_12
https://doi.org/10.1007/978-3-540-32275-7_25
https://doi.org/10.1007/s10009-020-00564-1
https://doi.org/10.1007/s10009-020-00564-1
https://doi.org/10.1016/j.entcs.2006.06.019
https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1109/ICSE.2017.46
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1145/1390630.1390634

80 M.-C. Jakobs

12. Besson, F., Jensen, T.P., Pichardie, D.: Proof-carrying code from certified abstract
interpretation and fixpoint compression. Theor. Comput. Sci. 364(3), 273–291
(2006). https://doi.org/10.1016/j.tcs.2006.08.012

13. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021).
In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS, vol. 12652, pp. 401–422.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 24

14. Beyer, D., Dangl, M.: Strategy selection for software verification based on boolean
features. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp.
144–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4 11

15. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchang-
ing verification results between verifiers. In: FSE, pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

16. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness vali-
dation and stepwise testification across software verifiers. In: FSE, pp. 721–733.
ACM (2015). https://doi.org/10.1145/2786805.2786867

17. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses. In:
Dubois, C., Wolff, B. (eds.) TAP 2018. LNCS, vol. 10889, pp. 3–23. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92994-1 1

18. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 622–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 42

19. Beyer, D., Friedberger, K.: Violation witnesses and result validation for multi-
threaded programs. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12476, pp. 449–470. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61362-4 26

20. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: FSE, pp. 57:1–
57:11. ACM (2012). https://doi.org/10.1145/2393596.2393664

21. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: ASE, pp. 29–38. IEEE (2008). https://doi.org/10.1109/ASE.
2008.13

22. Beyer, D., Holzer, A., Tautschnig, M., Veith, H.: Information reuse for multi-goal
reachability analyses. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 472–491. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6 26

23. Beyer, D., Jakobs, M.-C.: FRed: Conditional model checking via reducers and
folders. In: de Boer, F., Cerone, A. (eds.) SEFM 2020. LNCS, vol. 12310, pp.
113–132. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58768-0 7

24. Beyer, D., Jakobs, M.: Cooperative verifier-based testing with CoVeriTest. STTT
23(3), 313–333 (2021). https://doi.org/10.1007/s10009-020-00587-8

25. Beyer, D., Jakobs, M.-C., Lemberger, T.: Difference verification with conditions.
In: de Boer, F., Cerone, A. (eds.) SEFM 2020. LNCS, vol. 12310, pp. 133–154.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58768-0 8

26. Beyer, D., Jakobs, M., Lemberger, T., Wehrheim, H.: Reducer-based construction
of conditional verifiers. In: ICSE, pp. 1182–1193. ACM (2018). https://doi.org/
10.1145/3180155.3180259

27. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software veri-
fication. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

https://doi.org/10.1016/j.tcs.2006.08.012
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1109/ASE.2008.13
https://doi.org/10.1007/978-3-642-37036-6_26
https://doi.org/10.1007/978-3-642-37036-6_26
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1007/s10009-020-00587-8
https://doi.org/10.1007/978-3-030-58768-0_8
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16

Reusing Predicate Precision in Value Analysis 81

28. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: FMCAD, pp. 189–197. IEEE (2010). https://ieeexplore.ieee.
org/document/5770949/

29. Beyer, D., Lemberger, T.: Conditional testing. In: Chen, Y.-F., Cheng, C.-H.,
Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 189–208. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31784-3 11

30. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol.
7793, pp. 146–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37057-1 11

31. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: FSE, pp. 389–399. ACM (2013). https://doi.
org/10.1145/2491411.2491429

32. Beyer, D., Stefan, W.P.: Refinement selection. In: Fischer, B., Geldenhuys, J.
(eds.) SPIN 2015. LNCS, vol. 9232, pp. 20–38. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23404-5 3

33. Beyer, D., Löwe, S., Wendler, P.: Sliced path prefixes: An effective method to
enable refinement selection. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015.
LNCS, vol. 9039, pp. 228–243. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19195-9 15

34. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solu-
tions. STTT 21(1), 1–29 (2019). https://doi.org/10.1007/s10009-017-0469-y

35. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Lahiri,
S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 165–177. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53291-8 10

36. Böhme, M.D.S., Oliveira, B.C., Roychoudhury, A.: Partition-based regression ver-
ification. In: ICSE, pp. 302–311. IEEE (2013). https://doi.org/10.1109/ICSE.
2013.6606576

37. Chaieb, A.: Proof-producing program analysis. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 287–301. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11921240 20

38. Chalupa, M., Jašek, T., Novák, J., Řechtáčková, A., Šoková, V., Strejček, J.:
Symbiotic 8: Beyond symbolic execution. In: Groote, J.F., Larsen, K.G. (eds.)
TACAS 2021. LNCS, vol. 12652, pp. 453–457. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-72013-1 31

39. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances
a verification technique combining static and dynamic analysis. In: SAC, pp.
1284–1291. ACM (2012). https://doi.org/10.1145/2245276.2231980

40. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing
with explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012.
LNCS, vol. 7436, pp. 132–146. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 13

41. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: ICSE, pp. 144–155. ACM (2016).
https://doi.org/10.1145/2884781.2884843

42. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794
(2003). http://doi.acm.org/10.1145/876638.876643

43. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL,
pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

https://ieeexplore.ieee.org/document/5770949/
https://ieeexplore.ieee.org/document/5770949/
https://doi.org/10.1007/978-3-030-31784-3_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1007/978-3-319-23404-5_3
https://doi.org/10.1007/978-3-319-23404-5_3
https://doi.org/10.1007/978-3-319-19195-9_15
https://doi.org/10.1007/978-3-319-19195-9_15
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1007/11921240_20
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1145/2245276.2231980
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1145/2884781.2884843
http://doi.acm.org/10.1145/876638.876643
https://doi.org/10.1145/512950.512973

82 M.-C. Jakobs

44. Cousot, P., et al.: Combination of abstractions in the ASTRÉE static analyzer. In:
Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77505-8 23

45. Csallner, C., Smaragdakis, Y.: Check ‘n’ crash: Combining static checking and
testing. In: ICSE, pp. 422–431. ACM (2005). https://doi.org/10.1145/1062455.
1062533

46. Czech, M., Jakobs, M.-C., Wehrheim, H.: Just test what you cannot verify! In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 100–114. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-9 7

47. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In:
Jobstmann, B., Leino, K., Rustan, M.: (eds.) VMCAI 2016. LNCS, vol. 9583, pp.
328–347. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-
5 16

48. Dams, D.R., Namjoshi, K.S.: Orion: High-precision methods for static error anal-
ysis of C and C++ Programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 138–160. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192 7

49. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive pro-
grams and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 423–425. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 34

50. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV
2015. LNCS, vol. 9206, pp. 561–579. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21690-4 39

51. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: ASE, pp. 349–360. ACM (2014). https://doi.org/10.
1145/2642937.2642987

52. Ferles, K., Wüstholz, V., Christakis, M., Dillig, I.: Failure-directed program
trimming. In: FSE, pp. 174–185. ACM (2017). https://doi.org/10.1145/3106237.
3106249

53. Ge, X., Taneja, K., Xie, T., Tillmann, N.: Dyta: Dynamic symbolic execution
guided with static verification results. In: ICSE, pp. 992–994. ACM (2011).
https://doi.org/10.1145/1985793.1985971

54. Gerrard, M.J., Dwyer, M.B.: ALPACA: A large portfolio-based alternating con-
ditional analysis. In: ICSE, pp. 35–38. IEEE/ACM (2019). https://doi.org/10.
1109/ICSE-Companion.2019.00032

55. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: Unleashing the power of alternation. In: POPL, pp. 43–56.
ACM (2010). https://doi.org/10.1145/1706299.1706307

56. Godlin, B., Strichman, O.: Regression verification. In: DAC, pp. 466–471. ACM
(2009). https://doi.org/10.1145/1629911.1630034

57. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYN-
ERGY: A new algorithm for property checking. In: FSE, pp. 117–127. ACM
(2006). https://doi.org/10.1145/1181775.1181790

58. Haltermann, J., Wehrheim, H.: CoVEGI: Cooperative verification via externally
generated invariants. In: Guerra, E., Stoelinga, M. (eds.) FASE 2021. LNCS, vol.
12649, pp. 108–129. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
71500-7 6

59. He, F., Yu, Q., Cai, L.: Efficient summary reuse for software regression verification.
TSE (2020). https://doi.org/10.1109/TSE.2020.3021477

https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/11804192_7
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-319-21690-4_39
https://doi.org/10.1007/978-3-319-21690-4_39
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/3106237.3106249
https://doi.org/10.1145/3106237.3106249
https://doi.org/10.1145/1985793.1985971
https://doi.org/10.1109/ICSE-Companion.2019.00032
https://doi.org/10.1109/ICSE-Companion.2019.00032
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1007/978-3-030-71500-7_6
https://doi.org/10.1007/978-3-030-71500-7_6
https://doi.org/10.1109/TSE.2020.3021477

Reusing Predicate Precision in Value Analysis 83

60. Helm, D., Kübler, F., Reif, M., Eichberg, M., Mezini, M.: Modular collaborative
program analysis in OPAL. In: FSE, pp. 184–196. ACM (2020), https://doi.org/
10.1145/3368089.3409765

61. Henzinger, T.A., Necula, G.C., Jhala, R., Sutre, G., Majumdar, R., Weimer, W.:
Temporal-safety proofs for systems code. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 526–538. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45657-0 45

62. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model
checking. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol.
2772, pp. 332–358. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39910-0 16

63. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70. ACM (2002). https://doi.org/10.1145/503272.503279

64. Hoĺık, L., Kotoun, M., Peringer, P., Soková, V., Trt́ık, M., Vojnar, T.: Predator
shape analysis tool suite. In: HVC, pp. 202–209. LNCS 10028 (2016). https://doi.
org/10.1007/978-3-319-49052-6 13

65. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification. In: ASE, pp. 1–6. IEEE
(2008). https://doi.org/10.1109/ASE.2008.9

66. Inkumsah, K., Xie, T.: Improving structural testing of object-oriented programs
via integrating evolutionary testing and symbolic execution. In: ASE, pp. 297–306.
IEEE (2008). https://doi.org/10.1109/ASE.2008.40

67. Jakobs, M.-C.: Speed up configurable certificate validation by certificate reduction
and partitioning. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol.
9276, pp. 159–174. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22969-0 12

68. Jakobs, M.: PEQcheck: Localized and context-aware checking of func-
tional equivalence. In: FormaliSE, pp. 130–140. IEEE (2021). https://doi.
ieeecomputersociety.org/10.1109/FormaliSE52586.2021.00019

69. Jakobs, M.: Replication package for article ‘Reusing Predicate Precision in Value
Analysis’ In: iFM 2022 (2022). https://doi.org/10.5281/zenodo.5645043

70. Jakobs, M., Wehrheim, H.: Certification for configurable program analysis. In:
SPIN, pp. 30–39. ACM (2014). https://doi.org/10.1145/2632362.2632372

71. Lauterburg, S., Sobeih, A., Marinov, D., Viswanathan, M.: Incremental state-
space exploration for programs with dynamically allocated data. In: ICSE, pp.
291–300. ACM (2008). https://doi.org/10.1145/1368088.1368128

72. Li, K., Reichenbach, C., Csallner, C., Smaragdakis, Y.: Residual investigation:
Predictive and precise bug detection. In: ISSTA, pp. 298–308. ACM (2012)

73. Majumdar, R., Sen, K.: Hybrid concolic testing. In: ICSE, pp. 416–426. IEEE
(2007). https://doi.org/10.1109/ICSE.2007.41

74. Mudduluru, R., Ramanathan, M.K.: Efficient incremental static analysis using
path abstraction. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411,
pp. 125–139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54804-8 9

75. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119. ACM (1997). https://
doi.org/10.1145/263699.263712

76. Nguyen, T.L., Schrammel, P., Fischer, B., Torre, S.L., Parlato, G.: Parallel bug-
finding in concurrent programs via reduced interleaving instances. In: ASE, pp.
753–764. IEEE (2017). https://doi.org/10.1109/ASE.2017.8115686

77. Noller, Y., Kersten, R., Pasareanu, C.S.: Badger: Complexity analysis with fuzzing
and symbolic execution. In: ISSTA, pp. 322–332. ACM (2018). https://doi.org/
10.1145/3213846.3213868

https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1145/3368089.3409765
https://doi.org/10.1007/3-540-45657-0_45
https://doi.org/10.1007/3-540-45657-0_45
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1109/ASE.2008.9
https://doi.org/10.1109/ASE.2008.40
https://doi.org/10.1007/978-3-319-22969-0_12
https://doi.org/10.1007/978-3-319-22969-0_12
https://doi.ieeecomputersociety.org/10.1109/FormaliSE52586.2021.00019
https://doi.ieeecomputersociety.org/10.1109/FormaliSE52586.2021.00019
https://doi.org/10.5281/zenodo.5645043
https://doi.org/10.1145/2632362.2632372
https://doi.org/10.1145/1368088.1368128
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1007/978-3-642-54804-8_9
https://doi.org/10.1007/978-3-642-54804-8_9
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
https://doi.org/10.1109/ASE.2017.8115686
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1145/3213846.3213868

84 M.-C. Jakobs

78. Noller, Y., Pasareanu, C.S., Böhme, M., Sun, Y., Nguyen, H.L., Grunske, L.: Hy-
Diff: Hybrid differential software analysis. In: ICSE, pp. 1273–1285. ACM (2020).
https://doi.org/10.1145/3377811.3380363

79. Palikareva, H., Kuchta, T., Cadar, C.: Shadow of a doubt: Testing for divergences
between software versions. In: ICSE, pp. 1181–1192. ACM (2016). https://doi.
org/10.1145/2884781.2884845

80. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential symbolic
execution. In: FSE, pp. 226–237. ACM (2008). https://doi.org/10.1145/1453101.
1453131

81. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. In: PLDI, pp. 504–515. ACM (2011). https://doi.org/10.1145/1993498.
1993558

82. Post, H., Sinz, C., Kaiser, A., Gorges, T.: Reducing false positives by combining
abstract interpretation and bounded model checking. In: ASE, pp. 188–197. IEEE
(2008). https://doi.org/10.1109/ASE.2008.29

83. Richter, C., Hüllermeier, E., Jakobs, M., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. JASE 27(1), 153–186 (2020). https://
doi.org/10.1007/s10515-020-00270-x

84. Rose, E.: Lightweight bytecode verification. JAR 31(3–4), 303–334 (2003).
https://doi.org/10.1023/B:JARS.0000021015.15794.82

85. Rothenberg, B.-C., Dietsch, D., Heizmann, M.: Incremental verification using
trace abstraction. In: Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 364–382.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99725-4 22

86. Seidl, H., Erhard, J., Vogler, R.: Incremental abstract interpretation. In: Di Pierro,
A., Malacaria, P., Nagarajan, R. (eds.) From Lambda Calculus to Cybersecu-
rity Through Program Analysis. LNCS, vol. 12065, pp. 132–148. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-41103-9 5

87. Seo, S., Yang, H., Yi, K.: Automatic construction of Hoare proofs from abstract
interpretation results. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp.
230–245. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40018-
9 16

88. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means
of interpolation-based function summaries. In: FMCAD. pp. 114–121. FMCAD
Inc. (2012). http://ieeexplore.ieee.org/document/6462563/

89. Sherman, E., Dwyer, M.B.: Structurally defined conditional data-flow static anal-
ysis. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp.
249–265. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 15

90. Siddiqui, J.H., Khurshid, S.: Scaling symbolic execution using ranged analysis. In:
Leavens, G.T., Dwyer, M.B. (eds.) SPLASH, pp. 523–536. ACM (2012). https://
doi.org/10.1145/2384616.2384654

91. Staats, M., Pasareanu, C.S.: Parallel symbolic execution for structural test gen-
eration. In: ISSTA, pp. 183–194. ACM (2010). https://doi.org/10.1145/1831708.
1831732

92. Stephens, N., et al.: Driller: Augmenting fuzzing through selective symbolic exe-
cution. In: NDSS. The Internet Society (2016)

93. Švejda, J., Berger, P., Katoen, J.-P.: Interpretation-based violation witness val-
idation for C: NITWIT. In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS,
vol. 12078, pp. 40–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45190-5 3

https://doi.org/10.1145/3377811.3380363
https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1109/ASE.2008.29
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1007/s10515-020-00270-x
https://doi.org/10.1023/B:JARS.0000021015.15794.82
https://doi.org/10.1007/978-3-319-99725-4_22
https://doi.org/10.1007/978-3-030-41103-9_5
https://doi.org/10.1007/978-3-540-40018-9_16
https://doi.org/10.1007/978-3-540-40018-9_16
http://ieeexplore.ieee.org/document/6462563/
https://doi.org/10.1007/978-3-319-89963-3_15
https://doi.org/10.1145/2384616.2384654
https://doi.org/10.1145/2384616.2384654
https://doi.org/10.1145/1831708.1831732
https://doi.org/10.1145/1831708.1831732
https://doi.org/10.1007/978-3-030-45190-5_3
https://doi.org/10.1007/978-3-030-45190-5_3

Reusing Predicate Precision in Value Analysis 85

94. Szabó, T., Erdweg, S., Voelter, M.: IncA: A DSL for the definition of incremental
program analyses. In: ASE, pp. 320–331. ACM (2016). https://doi.org/10.1145/
2970276.2970298

95. Trostanetski, A., Grumberg, O., Kroening, D.: Modular demand-driven analysis of
semantic difference for program versions. In: Ranzato, F. (ed.) SAS 2017. LNCS,
vol. 10422, pp. 405–427. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66706-5 20

96. Tulsian, V., Kanade, A., Kumar, R., Lal, A., Nori, A.V.: MUX: Algorithm selec-
tion for software model checkers. In: MSR, pp. 132–141. ACM (2014). https://
doi.org/10.1145/2597073.2597080

97. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: Reducing, reusing, and recycling
constraints in program analysis. In: FSE, pp. 58:1–58:11. ACM (2012). https://
doi.org/10.1145/2393596.2393665

98. Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: ICSM, pp.
115–124. IEEE (2009). https://doi.org/10.1109/ICSM.2009.5306334

99. Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In:
ISSTA, pp. 144–154. ACM (2012). https://doi.org/10.1145/2338965.2336771

100. Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem proving: Better
together! In: ISSTA, pp. 145–156. ACM (2006). https://doi.org/10.1145/1146238.
1146255

101. Yu, Q., He, F., Wang, B.: Incremental predicate analysis for regression verification.
TOPLAS 4(OOPSLA), 184:1–184:25 (2020). https://doi.org/10.1145/3428252

https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1007/978-3-319-66706-5_20
https://doi.org/10.1007/978-3-319-66706-5_20
https://doi.org/10.1145/2597073.2597080
https://doi.org/10.1145/2597073.2597080
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1109/ICSM.2009.5306334
https://doi.org/10.1145/2338965.2336771
https://doi.org/10.1145/1146238.1146255
https://doi.org/10.1145/1146238.1146255
https://doi.org/10.1145/3428252

Certified Verification of Relational
Properties

Lionel Blatter1 , Nikolai Kosmatov2,3(B) , Virgile Prevosto2 ,
and Pascale Le Gall4

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
lionel.blatter@kit.edu

2 Université Paris-Saclay, CEA, List, 91120 Palaiseau, France
{nikolai.kosmatov,virgile.prevosto}@cea.fr

3 Thales Research and Technology, 91120 Palaiseau, France
4 CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

pascale.gall@centralesupelec.fr

Abstract. The use of function contracts to specify the behavior of
functions often remains limited to the scope of a single function call.
Relational properties link several function calls together within a sin-
gle specification. They can express more advanced properties of a given
function, such as non-interference, continuity, or monotonicity. They can
also relate calls to different functions, for instance, to show that an opti-
mized implementation is equivalent to its original counterpart. However,
relational properties cannot be expressed and verified directly in the tra-
ditional setting of modular deductive verification. Self-composition has
been proposed to overcome this limitation, but it requires complex trans-
formations and additional separation hypotheses for real-life languages
with pointers. We propose a novel approach that is not based on code
transformation and avoids those drawbacks. It directly applies a veri-
fication condition generator to produce logical formulas that must be
verified to ensure a given relational property. The approach has been
fully formalized and proved sound in the Coq proof assistant.

1 Introduction

Modular deductive verification [18] allows the user to prove that a function
respects its formal specification. More precisely, for a given function f , any indi-
vidual call to f can be proved to respect the contract of f , that is, basically an
implication: if the given precondition is true before the call and the call termi-
nates1, the given postcondition is true after it. However, some kinds of properties

1 Termination can be assumed (partial correctness) or proved separately (full correct-
ness) in a well-known way [15]; for the purpose of this paper we can assume it.

Part of this work was funded by the AESC project supported by the Ministry of Science,
Research and Arts Baden-Württemberg (Ref: 33-7533.-9-10/20/1).

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 86–105, 2022.
https://doi.org/10.1007/978-3-031-07727-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_6&domain=pdf
http://orcid.org/0000-0001-9058-2005
http://orcid.org/0000-0003-1557-2813
http://orcid.org/0000-0002-7203-0968
http://orcid.org/0000-0002-8955-6835
https://doi.org/10.1007/978-3-031-07727-2_6

Certified Verification of Relational Properties 87

are not easily reducible to a single function call. Indeed, it is frequently neces-
sary to express a property that involves several functions or relates the results
of several calls to the same function for different arguments. Such properties are
known as relational properties [6].

//C program Csw1 :
x3 = *x1;

*x1 = *x2;

*x2 = x3;

//C program Csw2 :
*x1 = *x1 + *x2;

*x2 = *x1 - *x2;

*x1 = *x1 - *x2;

//Composed C program Csw3 :
x3_1 = *x1_1;

*x1_1 = *x2_1;

*x2_1 = x3_1;

*x1_2 = *x1_2 + *x2_2;

*x2_2 = *x1_2 - *x2_2;

*x1_2 = *x1_2 - *x2_2;

csw1

x3 := ∗x1;
∗x1:= ∗x2;
∗x2:= x3;

csw2

∗x1:= ∗x1 + ∗x2;
∗x2:= ∗x1 − ∗x2;
∗x1:= ∗x1 − ∗x2

Fig. 1. Two C programs Csw1 and Csw2 swapping *x1 and *x2, their composition Csw3,
and their counterparts csw1 and csw2 in language L (defined below).

Examples of such relational properties include monotonicity (i.e. x ≤ y ⇒
f(x) ≤ f(y)), involving two calls, or transitivity (cmp(x, y) ≥ 0 ∧ cmp(y, z) ≥
0 ⇒ cmp(x, z) ≥ 0), involving three calls. In secure information flow [3], non-
interference is also a relational property. Namely, given a partition of program
variables between high-security variables and low-security variables, a program
is said to be non-interferent if any two executions starting from states in which
the low-security variables have the same initial values will end up in a final
state where the low-security variables have the same values. In other words,
high-security variables cannot interfere with low-security ones.

Relational properties can also relate calls to different functions. For instance,
in the verification of voting rules [5], relational properties are used for defining
specific properties (such as monotonicity, anonymity or consistency). Notably,
applying the voting rule to a sequence of ballots and a permutation of the same
sequence of ballots must lead to the same result, i.e. the order in which the
ballots are passed to the voting function should not have any impact on the
outcome.

Motivation. Lack of support for relational properties in verification tools was
already faced by industrial users (e.g. in [8] for C programs). The usual way to
deal with this limitation is to use self-composition [3,9,30], product program [2]
or other self-composition optimizations [31]. Those techniques are based on code
transformations that are relatively tedious and error-prone. Moreover, they are
hardly applicable in practice to real-life programs with pointers like in C. Namely,
self-composition requires that the compared executions operate on completely
separated (i.e. disjoint) memory areas, which might be extremely difficult to
ensure for complex programs with pointers.

88 L. Blatter et al.

Example 1 (Motivating Example). Figure 1 shows an example of two simple C
programs performing a swap of the values referred to by pointers x1 and x2 (of
type int*). Program Csw1 uses an auxiliary variable x3 (of type int), while Csw2

performs an in-place swap using arithmetic operations. As usual in that case, to
work correctly, each of these programs needs some separation hypotheses: point-
ers x1 and x2 should be separated (that is, point to disjoint memory locations)
and must not point to x1, x2 themselves and, for Csw1, to x3.

Consider a relational property, denoted Rsw, stating that both programs, exe-
cuted from two states in which each of *x1 and *x2 has the same value, will end up
in two states also having the same values in these locations. To prove this relational
property using self-composition, one typically has to generate a new C program
Csw3 (see Fig. 1) composing Csw1 and Csw2. To avoid name conflicts, we rename
their variables by adding, resp., suffixes “ 1” and “ 2”. The relational property
Rsw is then expressed by a contract of Csw3 with a precondition P and a postcon-
dition Q. Obviously, both P and Q must include the equalities: *x1 1==*x1 2 and
*x2 1==*x2 2, and P must also require the aforementioned separation hypotheses
necessary for each function. But for programs with pointers and aliasing, this is not
sufficient: the user also has to specify additional separation hypotheses between
variables coming from the different programs, that is, in our example, that each
of x1 1 and x2 1 is separated from each of x1 2 and x2 2. Without such hypothe-
ses, a deductive verification tool cannot show, for example, that a modification of
*x1 1 does not impact *x1 2 in the composed program Csw3, and is thus unable
to deduce the required property. For real-life programs, such separation hypothe-
ses can be hard to specify or generate. It can become even more complicated for
programs with double or multiple indirections. ��

Approach. This paper proposes an alternative approach that is not based on
code transformation or relational rules. It directly uses a verification condition
generator (VCGen) to produce logical formulas to be verified (typically, with
an automated prover) to ensure a given relational property. It requires no extra
code processing (such as sequential composition of programs or variable renam-
ing). Moreover, no additional separation hypotheses—in addition to those that
are anyway needed for each function to work—are required. The locations of
each program are separated by construction: each program has its own memory
state. The language L considered in this work was chosen as a minimal language
representative of the main issues relevant for relational property verification: it is
a standard While language enriched with annotations, procedures and pointers
(see programs csw1 and csw2 in Fig. 1 for examples; we use a lower-case letter c
for L programs and a capital letter C for C programs). Notably, the presence of
dereferencing and address-of operations makes it representative of various alias-
ing problems with (possibly, multiple) pointer dereferences of a real-life language
like C. We formalize the proposed approach and prove2 its soundness in the Coq
proof assistant [33]. Our Coq development contains about 3400 lines.

2 The Coq development is at https://github.com/lyonel2017/Relational-Spec, where
the version corresponding to this paper is tagged iFM2022.

https://github.com/lyonel2017/Relational-Spec

Certified Verification of Relational Properties 89

Contributions. The contributions of this paper include:

– a Coq formalization and proof of soundness of recursive Hoare triple veri-
fication with a verification condition generator on a representative language
with procedures and aliasing;

– a novel method for verifying relational properties using a verification condi-
tion generator, without relying on code transformation (such as self-composi-
tion) or making additional separation hypotheses in case of aliasing;

– a Coq formalization and proof of soundness of the proposed method of rela-
tional property verification for the considered language.

Outline. Section 2 introduces an imperative language L used in this work. Func-
tional correctness is defined in Sect. 3, and relational properties in Sect. 4. Then,
we prove the soundness of a VCGen in Sect. 5, and show how it can be soundly
extended to verify relational properties in Sect. 6. Finally, we present related
work in Sect. 7 and concluding remarks in Sect. 8.

2 Syntax and Semantics of the L Language

2.1 Notation for Locations, States, and Procedure Contracts

We denote by N = {0, 1, 2, . . . } the set of natural numbers, by N
∗ = {1, 2, . . . }

the set of nonzero natural numbers, and by B = {True,False} the set of Boolean
values. Let X be the set of program locations and Y the set of program (procedure)
names, and let x, x′, x1, ... and y, y′, y1, ... denote metavariables ranging over
those respective sets. We assume that there exists a bijective function N → X,
so that X = {xi | i ∈ N}. Intuitively, we can see i as the address of location xi.

Let Σ be the set of functions σ : N → N, called memory states, and let
σ, σ′, σ1, ... denote metavariables ranging over the set. A state σ maps a location
to a value using its address: location xi has value σ(i).

We define the update operation of a memory state set(σ, i, n), also denoted
by σ[i/n], as the memory state σ′ mapping each address to the same value as σ,
except for i, bound to n. Formally, set(σ, i, n) is defined by the following rules:

∀σ ∈ Σ, xi ∈ X, n ∈ N, xj ∈ X. i = j ⇒ σ[i/n](j) = n, (1)
∀σ ∈ Σ, xi ∈ X, n ∈ N, xj ∈ X. i �= j ⇒ σ[i/n](j) = σ(j). (2)

Let Ψ be the set of functions ψ : Y → C, called procedure environments,
mapping program names to commands (defined below), and let ψ,ψ1, ... denote
metavariables ranging over Ψ . We write bodyψ(y) to refer to ψ(y), the commands
(or body) of procedure y for a given procedure environment ψ.

Assertions are predicates of arity one, taking as parameter a memory state
and returning an equational first-order logic formula. Let metavariables P,Q, ...
range over the set A of assertions. For instance, using λ-notation, assertion P
assessing that location x3 is bound to 2 can be defined by P � λσ.σ(3) = 2.
This form will be more convenient for relational properties (than e.g. x3 = 2) as
it makes explicit the memory states on which a property is evaluated.

90 L. Blatter et al.

Finally, we define the set Φ of contract environments φ : Y → A × A, and
metavariables φ, φ1, ... to range over Φ. More precisely, φ maps a procedure name
y to the associated (procedure) contract φ(y) = (preφ(y),postφ(y)), composed
of a pre- and a postcondition for procedure y. As usual, a procedure contract
will allow us to specify the behavior of a single procedure call, that is, if we start
executing y in a memory state satisfying preφ(y), and the evaluation terminates,
the final state satisfies postφ(y).

a : := n natural const.

| x location

| ∗ x dereference

| &x address

| a1 opa a2 arithm. oper.

b : := true | false Boolean const.

| a1 opb a2 comparison

| b1 opl b2 | ¬b1 logic oper.

c : := skip do nothing

| x := a direct assignment

| ∗ x := a indirect assignment

| c1; c2 sequence

| assert(P) assertion

| if b then {c1} else {c2} condition

| while b inv P do {c1} loop

| call(y) procedure call

Fig. 2. Syntax of arithmetic and Boolean expressions and commands in L.

2.2 Syntax for Expressions and Commands

Let Ea, Eb and C denote respectively the sets of arithmetic expressions, Boolean
expressions and commands. We denote by a, a1, ...; b, b1, ... and c, c1, ... metavari-
ables ranging, respectively, over those sets. Syntax of arithmetic and Boolean
expressions is given in Fig. 2. Constants are natural numbers or Boolean values.
Expressions use standard arithmetic, comparison and logic binary operators,
denoted respectively opa :: = {+,×,−}, opb :: = {<=,=}, opl :: = {∨,∧}.
Since we use natural values, the subtraction is bounded by 0, as in Coq: if
n′ > n, the result of n − n′ is considered to be 0. Expressions also include
locations, possibly with a dereference or address operators.

Figure 2 also presents the syntax of commands in L. Sequences, skip and
conditions are standard. An assignment can be done to a location directly or after
a dereference. Recall that a location xi contains as a value a natural number,
say v, that can be seen in turn as the address of a location, namely xv, so the
assignment ∗xi := a writes the value of expression a to the location xv, while
the address operation &xi computes the address i of xi. An assertion command
assert(P) indicates that an assertion P should be valid at the point where the
command occurs. The loop command while b inv P do {c1} is always annotated
with an invariant P . As usual, this invariant should hold when we reach the
command and be preserved by each loop step. Command call(y) is a procedure
call. All annotations (assertions, loop invariants and procedure contracts) will
be ignored during the program execution and will be relevant only for program

Certified Verification of Relational Properties 91

crec

x1 := x4;
x2 := 0;
call(y1)

ψ =

⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1

if x1 > 0 then {
x2 := x2 + x3;
x1 := x1 − 1;
call(y1)

} else {
skip

}

, . . .

⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

φ = y1
λσ.σ(2) = σ(3) × (σ(4) − σ(1)) ∧ 0 ≤ σ(1) ∧ σ(1) ≤ σ(4),

λσ.σ(2) = σ(3) σ(4) ,

Fig. 3. Example of an L program crec with its environments.

ξa n σ n ξa xi σ σ(i) ξa xi σ σ(σ(i)) ξa &xi σ i

Fig. 4. Evaluation of expressions in L (selected rules).

verification in Sect. 5. Procedures do not have explicit parameters and return
values (hence we use the term procedure call rather than function call). Instead,
as in assembly code [22], parameters and return value(s) are shared implicitly
between the caller and the callee through memory locations: the caller must
put/read the right values at the right locations before/after the call. Finally, to
avoid ambiguity, we delimit sequences of commands with { }.

Example 2. Figure 3 shows an example of a command crec and a procedure envi-
ronment ψ where procedure y1 points to a recursive command, called in crec.
With the semantics of Sect. 2.3, from any initial state, the command will return
a state in which x2 = x3 × x4. Procedure y1 returns a state where x2 = x3 × x4

if the initial state satisfies x2 = x3 × (x4 − x1) ∧ 0 ≤ x1 ∧ x1 ≤ x4. This can be
expressed by the contract environment φ given (in λ-notation) in Fig. 3. ��

2.3 Operational Semantics

Evaluation of arithmetic and Boolean expressions in L is defined by functions ξa

and ξb. Selected evaluation rules for arithmetic expressions are shown in Fig. 4.
Operations ∗xi and &xi have a semantics similar to the C language, i.e. deref-
erencing and address-of. Semantics of Boolean expressions is standard [36].

Based on these evaluation functions, we can define the operational semantics
of commands in a given procedure environment ψ. Selected evaluation rules are
shown in Fig. 5. As said above, both assertions and loop invariants can be seen
as program annotations that do not influence the execution of the program itself.
Hence, command assert(P) is equivalent to a skip. Likewise, loop invariant P
has no influence on the semantics of while b inv P do {c}.

We write � 〈c, σ〉 ψ→ σ′ to denote that 〈c, σ〉 ψ→ σ′ can be derived from
the rules of Fig. 5. Our Coq formalization, inspired by [29], provides a deep
embedding of L, with an associated parser, in files Aexp.v, Bexp.v and Com.v.

92 L. Blatter et al.

3 Functional Correctness

We define functional correctness in a similar way to the original Hoare triple
definition [18], except that we also need a procedure environment ψ, leading to a
quadruple denoted ψ : {P}c{Q}. We will however still refer by the term “Hoare
triple” to the corresponding program property, formally defined as follows.

assert(P), σ
ψ

σ
ξa a σ = n

xi := a, σ
ψ

σ[i/n]

ξa a σ = n

xi := a, σ
ψ

σ[σ(i)/n]

bodyψ(y), σ1
ψ

σ2

call(y), σ1
ψ

σ2

Fig. 5. Operational semantics of commands in L (selected rules).

Definition 1 (Hoare triple). Let c be a command, ψ a procedure environ-
ment, and P and Q two assertions. We define a Hoare triple ψ : {P}c{Q} as
follows:

ψ : {P}c{Q} � ∀σ, σ′ ∈ Σ. P (σ) ∧ (� 〈c, σ〉 ψ→ σ′) ⇒ Q(σ′).

Informally, our definition states that, for a given ψ, if a state σ satisfies P
and the execution of c on σ terminates in a state σ′, then σ′ satisfies Q.

Next, we introduce notation CV (ψ, φ) to denote the fact that, for the given
φ and ψ, every procedure satisfies its contract.

Definition 2 (Contract Validity). Let ψ be a procedure environment and φ
a contract environment. We define contract validity CV (ψ, φ) as follows:

CV (ψ, φ) � ∀y ∈ Y. ψ : {preφ(y)}call(y){postφ(y)}).

The notion of contract validity is at the heart of modular verification, since it
allows assuming that the contracts of the callees are satisfied during the verifica-
tion of a Hoare triple. More precisely, to state the validity of procedure contracts
without assuming anything about their bodies in our formalization, we will con-
sider an arbitrary choice of implementations ψ′ of procedures that satisfy the
contracts, like in assumption (3) in Lemma 1. This technical lemma, taken from
[1, Equation (4.6)], gives an alternative criterion for validity of procedure con-
tracts: if, under the assumption that the contracts in φ hold, we can prove for
each procedure y that its body satisfies its contract, then the contracts are valid.

Lemma 1 (Adequacy of contracts). Given a procedure environment ψ and
a contract environment φ such that

∀ψ′ ∈ Ψ. CV (ψ′, φ) ⇒ ∀y ∈ Y, ψ′ : {preφ(y)}bodyψ(y){postφ(y)}, (3)

we have CV (ψ, φ).

Certified Verification of Relational Properties 93

Proof. Any given terminating execution traverses a finite number of procedure
calls (over all procedures) that can be replaced by inlining the bodies a sufficient
number of times. We first formalize a theory of k-inliners (that inline procedure
bodies a finite number of times k ≥ 0 and replace deeper calls by nonterminating
loops) and prove their properties. Relying on this elegant theory, the proof of
the lemma proceeds by induction on the number of procedure inlinings. ��

From that, we can establish the main result of this section. Theorem 1, taken
from [1, Th. 4.2] states that ψ : {P}c{Q} holds if assumption (3) holds and if
the validity of contracts of φ for ψ implies the Hoare triple itself. This theorem is
the basis for modular verification of Hoare Triples, as done for instance in Hoare
Logic [18,36] or verification condition generation.

Theorem 1 (Recursion). Given a procedure environment ψ and a contract
environment φ such that

∀ψ′ ∈ Ψ. CV (ψ′, φ) ⇒ ∀y ∈ Y, ψ′ : {preφ(y)}bodyψ(y){postφ(y)}, and

CV (ψ, φ) ⇒ ψ : {P}c{Q},

we have ψ : {P}c{Q}.

Proof. By Lemma 1. ��
We refer the reader to the Coq development, more precisely the results

recursive_proc and recursive_hoare_triple in file Hoare_Triple.v for
complete proofs of Lemma 1 and Theorem 1 for L. To the best of our knowledge,
this is the first mechanized proof of these classical results.

An interesting corollary can be deduced from Theorem 1.

Corollary 1 (Procedure Recursion). Given a procedure environment ψ and
a contract environment φ such that

∀ψ′ ∈ Ψ. CV (ψ′, φ) ⇒ ∀y ∈ Y, ψ′ : {preφ(y)}bodyψ(y){postφ(y)},

we have ∀y ∈ Y. ψ : {preφ(y)}bodyψ(y){postφ(y)}.

4 Relational Properties

Relational properties can be seen as an extension of Hoare triples. But, instead
of linking one program with two properties, the pre- and postconditions, rela-
tional properties link n programs to two properties, called relational assertions.
We define a relational assertion as a predicate taking a sequence of memory
states and returning a first-order logic formula. We use metavariables P̂ , Q̂, ... to
range over the set of relational assertions, denoted Â. As a simple example of a
relational assertion, we might say that two states bind location x3 to the same
value. This would be stated as follows: λ(σ1, σ2).σ1(3) = σ2(3).

A relational property is a property about n programs c1, ..., cn, stating that if
each program ci starts in a state σi and ends in a state σ′

i such that P̂ (σ1, ..., σn)

94 L. Blatter et al.

holds, then Q̂(σ′
1, ..., σ

′
n) holds, where P̂ and Q̂ are relational assertions over n

memory states.
We formally define relational correctness similarly to functional correct-

ness (cf. Definition 1), except that we now use sequences of memory states
and commands of equal length. We denote by (uk)n a sequence of elements
(uk)n

k=1 = (u1, . . . , un), where k ranges from 1 to n. If n ≤ 0, (uk)n is the empty
sequence denoted [].

ψ : {P} csw1 ∼ csw2 {Q},

P λσ1σ2. σ1(σ1(1)) = σ2(σ2(1)) ∧ σ1(σ1(2)) = σ2(σ2(2))∧
σ1(1) = σ1(2) ∧ σ2(1) = σ2(2) ∧ σ1(1) > 3 ∧ σ1(2) > 3 ∧ σ2(1) > 2 ∧ σ2(2) > 2,

Q λσ1σ2. σ1(σ1(1)) = σ2(σ2(1)) σ1(σ1(2)) = σ2(σ2(2)).

Fig. 6. A relational property for L programs csw1 and csw2 of Fig. 1.

Definition 3 (Relational Correctness). Let ψ be a procedure environment,
(ck)n a sequence of n commands (n ∈ N

∗), and P̂ and Q̂ two relational assertions
over n states. The relational correctness of (ck)n with respect to P̂ and Q̂, denoted
ψ : {P̂}(ck)n{Q̂}, is defined as follows:

ψ : {P̂}(ck)n{Q̂} �

∀(σk)n, (σ′
k)n. P̂ ((σk)n) ∧ (

n∧
i=1

� 〈ci, σi〉 ψ→ σ′
i) ⇒ Q̂((σ′

k)n).

This notation generalizes the one proposed by Benton [6] for relational prop-
erties linking two commands: ψ : {P̂}c1 ∼ c2{Q̂}. As Benton’s work mostly
focused on comparing equivalent programs, using symbol ∼ was quite natural.
In particular, Benton’s work would not be practical for verification of relational
properties with several calls such as transitivity mentioned in Sect. 1.

Example 3 (Relational property). Figure 6 formalizes the relational property
Rsw for L programs csw1 and csw2 discussed in Example 1. Recall that Rsw

(written in Fig. 6 in Benton’s notation) states that both programs executed from
two states named σ1 and σ2 having the same values in ∗x1 and ∗x2 will end up
in two states σ′

1 and σ′
2 also having the same values in these locations. Notice

that the initial state of each program needs separation hypotheses (cf. the second
line of the definition of P̂). Namely, x1 and x2 must point to different locations
and must not point to x1, x2 or, for csw1, to x3 for the property to hold. This
relational property is formalized in the Coq development in file Examples.v. ��

Certified Verification of Relational Properties 95

5 Verification Condition Generation for Hoare Triples

A standard way [15] for verifying that a Hoare triple holds is to use a verification
condition generator (VCGen). In this section, we formalize a VCGen for Hoare
triples and show that it is correct, in the sense that if all verification conditions
that it generates are valid, then the Hoare triple is valid according to Definition 1.

5.1 Verification Condition Generator

We have chosen to split the VCGen in three steps, as it is commonly done [23]:

– function Tc generates the main verification condition, expressing that the
postcondition holds in the final state, assuming auxiliary annotations hold;

– function Ta generates auxiliary verification conditions stemming from asser-
tions, loop invariants, and preconditions of called procedures;

– finally, function Tf generates verification conditions for the auxiliary proce-
dures that are called by the main program, to ensure that their bodies respect
their contracts.

c skip (σ, φ, f) ∀σ . σ = σ ⇒ f(σ)

c xi := a (σ, φ, f) ∀σ . σ = set(σ, i, ξa a σ) ⇒ f(σ)

c ∗xi := a (σ, φ, f) ∀σ . σ = set(σ, σ(i), ξa a σ) ⇒ f(σ)

c assert(P) (σ, φ, f) ∀σ . σ = σ ∧ P (σ) ⇒ f(σ)

c c0; c1 (σ, φ, f) c c0 (σ, φ, λσ . c c1 (σ , φ, f))

c if b then {c0} else {c1} (σ, φ, f) (ξb b σ ⇒ c c0 (σ, φ, f))∧
(¬ξb b σ ⇒ c c1 (σ, φ, f))

c call(y) (σ, φ, f) preφ(y)(σ) ⇒ (∀σ .postφ(y)(σ) ⇒ f(σ))

c while b inv inv do {c} (σ, φ, f) inv(σ) ⇒
(σ . inv(σ) (ξb b σ) f(σ))

Fig. 7. Definition of function Tc generating the main verification condition.

Definition 4 (Function Tc generating the main verification condition).
Given a command c, a memory state σ representing the state before the com-
mand, a contract environment φ, and an assertion f , function Tc returns a
formula defined by case analysis on c as shown in Fig. 7.

Assertion f represents the postcondition we want to verify after the command
executed from state σ. For each command, except sequence and branch, a fresh
memory state σ′ is introduced and related to the current memory state σ. The
new memory state is given as parameter to f . For skip, which does nothing, both

96 L. Blatter et al.

states are identical. For assignments, σ′ is simply the update of σ. An assertion
introduces a hypothesis over σ but leaves it unchanged. For a sequence, we
simply compose the conditions, that is, we check that the final state of c0 is such
that f will be verified after executing c1. For a conditional, we check that if the
condition evaluates to true, the then branch will ensure the postcondition, and
that otherwise the else branch will ensure the postcondition. The rule for calls
simply assumes that σ′ verifies postφ(y). Finally, Tc assumes that, after a loop, σ′

is a state where the loop condition is false and the loop invariant holds. As for an
assertion, the callee’s precondition and the loop invariant are just assumed to be
true; function Ta, defined below, generates the corresponding proof obligations.

Example 4. For c � skip;x1 := 2, and f � λσ. σ(1) = 2, we have:

Tc�c�(σ, φ, f) ≡ ∀σ′
1.σ = σ′

1 ⇒ (∀σ′
2.σ

′
2 = set(σ′

1, 1, 2) ⇒ σ′
2(1) = 2).

��

a skip (σ, φ) True

a xi := a (σ, φ) True

a ∗xi := a (σ, φ) True

a assert(P) (σ, φ) P (σ)

a c0; c1 (σ, φ) a c0 (σ, φ)∧
c c0 (σ, φ, λσ .(a c1 (σ , φ)))

a if b then {c0} else {c1} (σ, φ) ξb b σ ⇒ a c0 (σ, φ)∧
¬(ξb b σ) ⇒ a c1 (σ, φ)

a call(y) (σ, φ) preφ(y)(σ)

a while b inv inv do {c} (σ, φ) inv(σ)∧
(∀σ , inv(σ) ∧ ξb b σ ⇒ a c (σ , φ))∧
(σ , inv(σ) ξb b σ c c (σ , φ, inv))

Fig. 8. Definition of function Ta generating auxiliary verification conditions.

Definition 5 (Function Ta generating the auxiliary verification condi-
tions). Given a command c, a memory state σ representing the state before the
command, and a contract environment φ, function Ta returns a formula defined
by case analysis on c as shown in Fig. 8.

Basically, Ta collects all assertions, preconditions of called procedures, as well
as invariant establishment and preservation, and lifts the corresponding formulas
to constraints on the initial state σ through the use of Tc.

Finally, we define the function for generating the conditions for verifying that
the body of each procedure defined in ψ respects its contract defined in φ.

Certified Verification of Relational Properties 97

Definition 6 (Function Tf generating the procedure verification con-
dition). Given two environments ψ and φ, Tf returns the following formula:

Tf (φ, ψ) � ∀y, σ. preφ(y)(σ) ⇒ Ta�bodyψ(y)�(σ, φ)∧
Tc�bodyψ(y)�(σ, φ,postφ(y)).

The VCGen is defined in file Vcg.v of the Coq development. Interested
readers will also find a proof (in file Vcg Opt.v) of a VCGen optimization (not
detailed here), which prevents the size of the generated formulas from becoming
exponential in the number of conditions in the program [14], which is a classical
problem for “naive” VCGens.

5.2 Hoare Triple Verification

We can now state the theorems establishing correctness of the VCGen. Their
proof can be found in file Correct.v of the Coq development.

First, Lemma 2 shows that, under the assumption of the procedure contracts,
a Hoare triple is valid if for all memory states satisfying the precondition, the
main verification condition and the auxiliary verification conditions hold.

Lemma 2. Assume the following two properties hold:

∀σ ∈ Σ, P (σ) ⇒ Ta�c�(σ, φ),
∀σ ∈ Σ, P (σ) ⇒ Tc�c�(σ, φ,Q).

Then we have CV (ψ, φ) ⇒ ψ : {P}c{Q}.

Proof. By structural induction over c. ��
Next, we prove in Lemma 3 that if Tf (φ, ψ) holds, then for an arbitrary

choice of implementations ψ′ of procedures respecting the procedure contracts,
the body of each procedure y respects its contract.

Lemma 3. Assume that the formula Tf (φ, ψ) is satisfied. Then we have

∀ψ′ ∈ Ψ. CV (ψ′, φ) ⇒ ∀y ∈ Y, ψ′ : {preφ(y)}bodyψ(y){postφ(y)}.

Proof. By Lemma 2. ��
Finally, we can establish the main theorem of this section, stating that the

VCGen is correct with respect to our definition of Hoare triples.

Theorem 2 (Soundness of VCGen). Assume that we have Tf (φ, ψ) and

∀σ ∈ Σ, P (σ) ⇒ Ta�c�(σ, φ),
∀σ ∈ Σ, P (σ) ⇒ Tc�c�(σ, φ,Q).

Then we have ψ : {P}c{Q}.

98 L. Blatter et al.

Proof. By Theorem 1 and Lemmas 2 and 3. ��
Example 5. Consider again the command crec, procedure environment ψ, and
contract environment φ of Example 2 (presented in Fig. 3). We can apply Theo-
rem 2 to prove its functional correctness expressed by the following Hoare triple:

ψ : {λσ.True} crec {λσ.σ(2) = σ(4) × σ(3)}
(see command com_rec in file Examples.v). ��

6 Verification of Relational Properties

In this section, we propose a verification method for relational properties (defined
in Sect. 4) using the VCGen defined in Sect. 5 (or, more generally, any VCGen
respecting Theorem 2). First, we define the notation Tcr for the recursive call of
function Tc on a sequence of commands and memory states:

Definition 7 (Function Tcr). Given a sequence of commands (ck)n and a
sequence of memory states (σk)n, a contract environment φ and a predicate Q̂
over n states, function Tcr is defined by induction on n as follows.

– Basis: n = 0.
Tcr([], [], φ, Q̂) � Q̂([]).

– Inductive: n ∈ N
∗.

Tcr((ck)n, (σk)n, φ, Q̂) �
Tc�cn�(σn, φ, λσ′

n.Tcr((ck)n−1, (σk)n−1, φ, λ(σ′
k)n−1.Q̂((σ′

k)n))).

Intuitively, for n = 2, Tcr gives the weakest relational condition that σ1 and
σ2 must fulfill in order for Q̂ to hold after executing c1 from σ1 and c2 from σ2:
Tcr((c1, c2), (σ1, σ2), φ, Q̂) ≡ Tc�c2�(σ2, φ, λσ′

2.Tc�c1�(σ1, φ, λσ′
1.Q̂(σ′

1, σ
′
2))).

Remark 1. Assume we have n > 0, a command cn, a sequence of commands
(ck)n−1, and a sequence of memory states (σk)n−1. From Definition 1, it follows
that

∀σn, σ′
n. P̂ ((σk)n) ∧ (� 〈cn, σn〉 ψ→ σ′

n) ⇒
Tcr((ck)n−1, (σk)n−1, φ, λ(σ′

k)n−1.Q̂((σ′
k)n))

is equivalent to

ψ : {λσn.P̂ ((σk)n)}cn{λσ′
n.Tcr((ck)n−1, (σk)n−1, φ, λ(σ′

k)n−1.Q̂((σ′
k)n))}.

Example 6 (Relational verification condition). In order to make things more
concrete, we can go back to the relational property Rsw between two implemen-
tations csw1 and csw2 of swap defined in Example 1 and examine what would be
the main verification condition generated by Tcr. Let P̂ and Q̂ be defined as in

Certified Verification of Relational Properties 99

Example 3. In this particular case, we have n = 2, and φ is empty (since we do
not have any function call), thus Definition 7 becomes:

Tcr((csw1, csw2), (σ1, σ2), ∅, ̂Q)=Tc�csw2�(σ2, ∅, λσ′
2.Tc�csw1�(σ1, ∅, λσ′

1. ̂Q(σ′
1, σ

′
2))).

We thus start by applying Tc over csw1, to obtain, using the rules of Definition 4
for sequence and assignment, the following intermediate formula:

Tcr((csw1, csw2), (σ1, σ2), ∅, Q̂) =
Tc(csw2, σ2, ∅,

λσ′
2.∀σ3, σ5, σ7.

σ3 = σ1[3/σ1(σ1(1))] ⇒
σ5 = σ3[σ3(1)/σ3(σ3(2))] ⇒
σ7 = σ5[σ5(2)/σ5(3)] ⇒ Q̂(σ7, σ

′
2).

We can then do the same with csw2 to obtain the final formula:

Tcr((csw1, csw2), (σ1, σ2), ∅, Q̂) =

∀(σk)8.
σ4 = σ2[σ2(1)/σ2(σ2(1)) + σ2(σ2(2))] ⇒
σ6 = σ4[σ4(2)/σ4(σ4(1)) − σ4(σ4(2))] ⇒
σ8 = σ6[σ6(1)/σ6(σ6(1)) − σ6(σ6(2))] ⇒
σ3 = σ1[3/σ1(σ1(1))] ⇒
σ5 = σ3[σ3(1)/σ3(σ3(2))] ⇒
σ7 = σ5[σ5(2)/σ5(3)] ⇒ Q̂(σ7, σ8).

Here, σk with odd (resp., even) indices result from Tc for csw1 (resp., csw2). ��
We similarly define a notation for the auxiliary verification conditions for a

sequence of n commands.

Definition 8 (Function Tar). Given a sequence of commands (ck)n and a
sequence of memory states (σk)n, we define function Tar as follows:

Tar((ck)n, (σk)n, φ) �
n∧

i=1

Ta�ci�(σi, φ).

Remark 2. For n > 0, it trivially follows from Definition 8 that:

Tar((ck)n, (σk)n, φ) ≡ Ta�cn�(σn, φ) ∧ Tar((ck)n−1, (σk)n−1, φ).

Using functions Tcr and Tar, we can now give the main result of this paper: it
states that the verification of relational properties using the VCGen is correct.

100 L. Blatter et al.

Theorem 3 (Soundness of relational VCGen). For any sequence of com-
mands (ck)n, contract environment φ, procedure environment ψ, and relational
assertions over n states P̂ and Q̂, if the following three properties hold:

Tf (φ, ψ), (4)

∀(σk)n, P̂ ((σk)n) ⇒ Tar((ck)n, (σk)n, φ), (5)

∀(σk)n, P̂ ((σk)n) ⇒ Tcr((ck)n, (σk)n, φ, Q̂), (6)

then we have ψ : {P̂}(ck)n{Q̂}.

In other words, a relational property is valid if all procedure contracts are
valid, and, assuming the relational precondition holds, both the auxiliary verifi-
cation conditions and the main relational verification condition hold. We give the
main steps of the proof below. The corresponding Coq formalization is available
in file Rela.v, and the Coq proof of Theorem 3 is in file Correct Rela.v.

Proof. By induction on the length n of the sequence of commands (ck)n.

– Induction basis: n = 0. By Definition 3, our goal becomes:

ψ : {P̂}(ck)0{Q̂} ≡ P̂ ([]) ⇒ Q̂([]).

Indeed, by definition of Tcr and Hypothesis (6), P̂ ([]) ⇒ Q̂([]) holds.
– Induction step: assuming the result for n, we prove it for n+1. So, assume we

have a sequence of commands (ck)n+1, relational assertions and environments
respecting (4), (5), (6) (stated for sequences of n + 1 elements). We have to
prove ψ : {P̂}(ck)n+1{Q̂}, which, by Definition 3, is equivalent to:

∀(σk)n+1, (σ′
k)n+1. P̂ ((σk)n+1) ∧ (

n+1∧
i=1

� 〈ci, σi〉 ψ→ σ′
i) ⇒ Q̂((σ′

k)n+1). (7)

First, we can deduce from Hypothesis (5) and Remark 2:

∀(σk)n+1, P̂ ((σk)n+1) ⇒ Ta�cn+1�(σn+1, φ), (8)

∀(σk)n+1, P̂ ((σk)n+1) ⇒ Tar((ck)n, (σk)n, φ). (9)

By Hypothesis (6) and Definition 7, we have

∀(σk)n+1, P̂ ((σk)n+1) ⇒
Tc�cn+1�(σn+1, φ, λσ′

n+1.Tcr((ck)n, (σk)n, φ, λ(σ′
k)n.Q̂((σk)n+1))). (10)

Using (4), (8) and (10), we can now apply Theorem 2 (for an arbitrary sub-
sequence (σk)n, that we can thus put in an external universal quantifier) to
obtain:

Certified Verification of Relational Properties 101

∀(σk)n.

ψ : {λσn+1. P̂ ((σk)n+1)}cn+1{λσ′
n+1. Tcr((ck)n, (σk)n, φ, λ(σ′

k)n.Q̂((σ′
k)n+1))}. (11)

Using Remark 1 and by rearranging the quantifiers and implications, we can
rewrite (11) into:

∀σn+1, σ
′
n+1. � 〈cn+1, σn+1〉 ψ→ σ′

n+1 ⇒
∀(σk)n.P̂ ((σk)n+1) ⇒ Tcr((ck)n, (σk)n, φ, λ(σ′

k)n.Q̂((σ′
k)n+1)). (12)

For arbitrary states σn+1 and σ′
n+1 such that � 〈cn+1, σn+1〉 ψ→ σ′

n+1, using
(4), (9) and (12), we can apply the induction hypothesis, and obtain:

∀σn+1, σ
′
n+1. � 〈cn+1, σn+1〉 ψ→ σ′

n+1 ⇒
ψ : {λ(σk)n.P̂ ((σk)n+1)}(ck)n{λ(σ′

k)n.Q̂((σ′
k)n+1)}.

Finally, by Definition 3 and by rearranging the quantifiers, we deduce (7). ��
Example 7. The relational property of Example 3 is proven valid using the pro-
posed technique based on Theorem 3 in file Examples.v of the Coq development.
For instance, (6) becomes ∀σ1, σ2. P̂ (σ1, σ2) ⇒ Tcr((csw1, csw2), (σ1, σ2), ∅, Q̂),
where the last expression was computed in Example 6. Such formulas—long for
a manual proof—are well-treated by automatic solvers.

Notice that in this example we do not need any code transformations or
extra separation hypotheses in addition to those anyway needed for the swap
functions while both programs manipulate the same locations x1, x2, and—even
worse—the unknown locations pointed by them can be any locations xi, i > 3.

��

7 Related Work

Relational Property Verification. Significant work has been done on relational
program verification (see [26,27] for a detailed state of the art). We discuss below
some of the efforts the most closely related to our work.

Various relational logics have been designed as extensions to Hoare Logic,
such as Relational Hoare Logic [6] and Cartesian Hoare Logic [32]. As our app-
roach, those logics consider for each command a set of associated memory states
in the very rules of the system, thus avoiding additional separation assumptions.
Limitations of these logics are often the absence of support for aliasing or a
limited form of relational properties. For instance, Relational Hoare Logic sup-
ports only relational properties with two commands and Cartesian Hoare Logic
supports only k-safety properties (relational properties on the same command).
Our method has an advanced support of aliasing and supports a very general
definition of relational properties, possibly between several dissimilar commands.

102 L. Blatter et al.

Self-composition [3,9,30] and its derivations [2,13,31] are well-known appro-
aches to deal with relational properties. This is in particular due to their flexibil-
ity: self-composition methods can be applied as a preprocessing step to different
verification approaches. For example, self-composition is used in combination
with symbolic execution and model checking for verification of voting func-
tions [5]. Other examples are the use of self-composition in combination with
verification condition generation in the context of the Java language [12] or the
C language [9,10]. In general, the support of aliasing of C programs in these last
efforts is very limited due the problems mentioned earlier. Compared to these
techniques, where self-composition is applied before the generation of verifica-
tion conditions (and therefore requires taking care about separation of memory
states of the considered programs), our method can be seen as relating the con-
sidered programs’ semantics directly at the level of the verification conditions,
where separation of their memory states is already ensured, thus avoiding the
need to take care of this separation explicitly.

Finally, another advanced approach for relational verification is the transla-
tion of the relational problem into Horn clauses and their proof using constraint
solving [21,34]. The benefit of constraint solving lies in the ability to automati-
cally find relational invariants and complex self-composition derivations. More-
over, the translation of programs into Horn clauses, done by tools like Reve3,
results in formulas similar to those generated by our VCGen. Therefore, like our
approach, relational verification with constraint solving requires no additional
separation hypothesis in presence of aliasing.

Certified Verification Condition Generation. In a broad sense, this work contin-
ues previous efforts in formalization and mechanized proof of program language
semantics, analyzers and compilers, such as [7,11,17,19,20,24,25,28,29,35].
Generation of certificates (in Isabelle) for the Boogie verifier is presented in [28].
The certified deductive verification tool WhyCert [17] comes with a similar
soundness result for its verification condition generator. Its formalization fol-
lows an alternative proof approach, based on co-induction, while our proof relies
on induction. WhyCert is syntactically closer to the C language and the ACSL
specification language [4], while our proof uses a simplified language, but with a
richer aliasing model. Furthermore, we provide a formalization and a soundness
proof for relational verification, which was not considered in WhyCert or in [28].

To the best of our knowledge, the present work is the first proposal of rela-
tional property verification based on verification condition generation realized for
a representative language with procedure calls and aliases with a full mechanized
formalization and proof of soundness in Coq.

8 Conclusion

We have presented in this paper a method for verifying relational properties
using a verification condition generator, without relying on code transformations
3 https://formal.kastel.kit.edu/projects/improve/reve/.

https://formal.kastel.kit.edu/projects/improve/reve/

Certified Verification of Relational Properties 103

(such as self-composition) or making additional separation hypotheses in case of
aliasing. This method has been fully formalized in Coq, and the soundness of
recursive Hoare triple verification using a verification condition generator (itself
formally proved correct) for a simple language with procedure calls and aliasing
has been formally established. Our formalization is well-adapted for proving
possible optimizations of a VCGen and for using optimized VCGen versions for
relational property verification.

This work sets up a basis for the formalization of modular verification of
relational properties using verification condition generation. We plan to extend
it with more features such as the possibility to refer to the values of variables
before a function call in the postcondition (in order to relate them to the values
after the call) and the capacity to rely on relational properties during the proof of
other properties. Future work also includes an implementation of this technique
inside a tool like RPP [9] in order to integrate it with SMT solvers and to
evaluate it on benchmarks. The final objective would be to obtain a system
similar to the verification of Hoare triples, namely, having relational procedure
contracts, relational assertions, and relational invariants. Currently, for relational
properties, product programs [2] or other self-composition optimizations [31]
are the standard approach to deal with complex loop constructions. We expect
that user-provided coupling invariants and loop properties can avoid having to
rely on code transformation methods. Moreover, we expect termination and co-
termination [16,34] to be used to extend the modularity of relational contracts.

References

1. Apt, K., de Boer, F., Olderog, E.: Verification of Sequential and Concurrent Pro-
grams. Texts in Computer Science, Springer, London (2009). https://doi.org/10.
1007/978-1-84882-745-5

2. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

3. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
J. Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011). https://doi.org/10.1017/
S0960129511000193

4. Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language (2021). https://
frama-c.com/html/acsl.html

5. Beckert, B., Bormer, T., Kirsten, M., Neuber, T., Ulbrich, M.: Automated verifi-
cation for functional and relational properties of voting rules. In: Proceedings of
the 6th International Workshop on Computational Social Choice (COMSOC 2016)
(2016)

6. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on of Programming Languages (POPL 2004), pp. 14–25. ACM (2004). https://doi.
org/10.1145/964001.964003

7. Beringer, L., Appel, A.W.: Abstraction and subsumption in modular verification of
C programs. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 573–590. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 34

https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1017/S0960129511000193
https://frama-c.com/html/acsl.html
https://frama-c.com/html/acsl.html
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1007/978-3-030-30942-8_34
https://doi.org/10.1007/978-3-030-30942-8_34

104 L. Blatter et al.

8. Bishop, P.G., Bloomfield, R.E., Cyra, L.: Combining testing and proof to gain
high assurance in software: a case study. In: Proceedings of the 24th International
Symposium on Software Reliability Engineering (ISSRE 2013), pp. 248–257. IEEE
(2013). https://doi.org/10.1109/ISSRE.2013.6698924

9. Blatter, L., Kosmatov, N., Le Gall, P., Prevosto, V.: RPP: automatic proof of
relational properties by self-composition. In: Legay, A., Margaria, T. (eds.) TACAS
2017. LNCS, vol. 10205, pp. 391–397. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54577-5 22

10. Blatter, L., Kosmatov, N., Le Gall, P., Prevosto, V., Petiot, G.: Static and dynamic
verification of relational properties on self-composed C code. In: Dubois, C., Wolff,
B. (eds.) TAP 2018. LNCS, vol. 10889, pp. 44–62. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92994-1 3

11. Blazy, S., Maroneze, A., Pichardie, D.: Verified validation of program slicing. In:
Proceedings of the 2015 Conference on Certified Programs and Proofs (CPP 2015),
pp. 109–117. ACM (2015). https://doi.org/10.1145/2676724.2693169

12. Dufay, G., Felty, A., Matwin, S.: Privacy-sensitive information flow with JML. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 116–130. Springer,
Heidelberg (2005). https://doi.org/10.1007/11532231 9

13. Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 502–529. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1 18

14. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: Proceedings of the 28th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2001), pp. 193–205. ACM (2001).
https://doi.org/10.1145/360204.360220

15. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposia in
Applied Mathematics. Mathematical Aspects of Computer Science, vol. 19, pp.
19–32 (1967). https://doi.org/10.1090/psapm/019/0235771

16. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-
paring programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE
2013. LNCS (LNAI), vol. 7898, pp. 282–299. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38574-2 20

17. Herms, P.: Certification of a tool chain for deductive program verification. Ph.D.
thesis, Université Paris Sud - Paris XI, January 2013. https://tel.archives-ouvertes.
fr/tel-00789543

18. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

19. Jourdan, J., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2015), pp. 247–259.
ACM (2015). https://doi.org/10.1145/2676726.2676966

20. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018). https://doi.org/10.1017/S0956796818000151

21. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
IR. J. Autom. Reason. 60(3), 337–363 (2017). https://doi.org/10.1007/s10817-017-
9433-5

22. Kip, I.: Assembly Language for x86 Processors, 7th edn. Prentice Hall Press, Upper
Saddle River (2014)

https://doi.org/10.1109/ISSRE.2013.6698924
https://doi.org/10.1007/978-3-662-54577-5_22
https://doi.org/10.1007/978-3-662-54577-5_22
https://doi.org/10.1007/978-3-319-92994-1_3
https://doi.org/10.1007/978-3-319-92994-1_3
https://doi.org/10.1145/2676724.2693169
https://doi.org/10.1007/11532231_9
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1145/360204.360220
https://doi.org/10.1090/psapm/019/0235771
https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1007/978-3-642-38574-2_20
https://tel.archives-ouvertes.fr/tel-00789543
https://tel.archives-ouvertes.fr/tel-00789543
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/s10817-017-9433-5
https://doi.org/10.1007/s10817-017-9433-5

Certified Verification of Relational Properties 105

23. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

24. Krebbers, R., Leroy, X., Wiedijk, F.: Formal C semantics: CompCert and the C
standard. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 543–548.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 36

25. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. J. Autom. Reason. 41(1), 1–31 (2008). https://
doi.org/10.1007/s10817-008-9099-0

26. Maillard, K., Hritcu, C., Rivas, E., Van Muylder, A.: The next 700 relational pro-
gram logics. In: Proceedings of the 47th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL 2020), vol. 4, pp. 4:1–4:33 (2020). https://doi.
org/10.1145/3371072

27. Naumann, D.A.: Thirty-seven years of relational Hoare logic: remarks on its princi-
ples and history. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477,
pp. 93–116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6 7

28. Parthasarathy, G., Müller, P., Summers, A.J.: Formally validating a practical ver-
ification condition generator. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS,
vol. 12760, pp. 704–727. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-81688-9 33

29. Pierce, B.C., et al.: Logical Foundations. Software Foundations series, vol. 1, Elec-
tronic Textbook (2018). http://www.cis.upenn.edu/∼bcpierce/sf

30. Scheben, C., Schmitt, P.H.: Efficient self-composition for weakest precondition cal-
culi. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
579–594. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 39

31. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composi-
tion. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 161–179.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 9

32. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:
Proceedings of the 37th Conference on Programming Language Design and Imple-
mentation (PLDI 2016), pp. 57–69. ACM (2016). https://doi.org/10.1145/2908080.
2908092

33. The Coq Development Team: The Coq Proof Assistant (2021). https://coq.inria.
fr/

34. Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 742–766. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 35

35. Wils, S., Jacobs, B.: Certifying C program correctness with respect to CompCert
with VeriFast. CoRR abs/2110.11034 (2021). https://arxiv.org/abs/2110.11034

36. Winskel, G.: The Formal Semantics of Programming Languages - An Introduction.
Foundation of Computing Series, MIT Press, Cambridge (1993)

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-319-08970-6_36
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3371072
https://doi.org/10.1145/3371072
https://doi.org/10.1007/978-3-030-61470-6_7
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1007/978-3-030-81688-9_33
http://www.cis.upenn.edu/~bcpierce/sf
https://doi.org/10.1007/978-3-319-06410-9_39
https://doi.org/10.1007/978-3-030-25540-4_9
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/2908080.2908092
https://coq.inria.fr/
https://coq.inria.fr/
https://doi.org/10.1007/978-3-030-81685-8_35
https://arxiv.org/abs/2110.11034

B Method

Reachability Analysis and Simulation
for Hybridised Event-B Models

Yamine Aı̈t-Ameur1, Sergiy Bogomolov2, Guillaume Dupont1,
Neeraj Kumar Singh1, and Paulius Stankaitis2(B)

1 INPT–ENSEEIHT, 2 Rue Charles Camichel, Toulouse, France
{yamine,guillaume.dupont,nsingh}@enseeiht.fr

2 School of Computing, Newcastle University, Newcastle upon Tyne, UK
{sergiy.bogomolov,paulius.stankaitis}@newcastle.ac.uk

Abstract. The development of cyber-physical systems has become one
of the biggest challenges in the field of model-based system engineer-
ing. The difficulty stems from the complex nature of cyber-physical sys-
tems which have deeply intertwined physical processes, computation and
networking system aspects. To provide the highest level of assurance,
cyber-physical systems should be modelled and reasoned about at a
system-level as their safety depends on a correct interaction between dif-
ferent subsystems. In this paper, we present a development framework of
cyber-physical systems which is built upon a refinement and proof based
modelling language - Event-B and its extension for modelling hybrid
systems. To improve the level of automation in the deductive verifica-
tion of the resulting hybridised Event-B models, the paper describes a
novel approach of integrating reachability analysis in the proof process.
Furthermore, to provide a more comprehensive cyber-physical system
development and simulation-based validation, we describe mechanism for
translating Event-B models of cyber-physical systems to Simulink. The
process of applying our framework is evaluated by formally modelling
and verifying a cyber-physical railway signalling system.

Keywords: Hybrid systems · Formal verification · Event-B ·
Reachability analysis · Simulink

1 Introduction

Cyber-physical systems (CPS) are complex computer-based systems which have
closely intertwined physical processes, computation and networking system
aspects. Because of their universal application, complexity and often safety-
critical nature, one of the grand challenges in the field of model-based system
engineering is their development and safety assurance. Firstly, their develop-
ment and safety assurance difficulties arise from the need to model and reason
at a system-level, as CPS safety depends on interactions between the different
constituent subsystems [29]. Secondly, CPS generally exhibit discrete and con-
tinuous behaviours which are best captured by hybrid automata models that are
notably difficult to formally reason about [4].
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 109–128, 2022.
https://doi.org/10.1007/978-3-031-07727-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_7

110 Y. Aı̈t-Ameur et al.

In this paper, we propose an integrated framework for multifaceted design
and analysis of cyber-physical systems. The integrated framework utilises the
advantages of the refinement-based system development approach in order to
address complexity, productivity and verification scalability challenges in design-
ing cyber-physical systems. The proposed framework also enables modelling
parts of the cyber-physical system at different abstraction levels while still mak-
ing possible to formally reason about the system at a system-level (both chal-
lenges raised in [26]). Furthermore, the framework also provides a multifaceted
CPS design by supporting simulation-based system analysis and validation.

The framework revolves around Event-B [1] as the pivot formal method, thus
benefiting from its built-in refinement operation, which allows the designer to
provide details step-by-step and in a correct-by-construction way. The Event-B
method has been augmented with different continuous aspects to handle hybrid
modelling [17], and is associated to formal design patterns to assist in designing
CPS [15]. Verification of (hybridised) Event-B models is done by discharging
proof obligations (POs) generated by Event-B using automatic or interactive
provers. In the case of continuous behaviours, proof is often difficult due to the
use of complex continuous structures (e.g. as shown in [5,9]).

To address this issue, the idea of the framework is to combine Event-B’s
deductive proof system with the use of reachability analysis tools – in our case,
the JuliaReach toolbox [10] – to handle proof goals related to continuous aspects,
for which the interactive prover is not well adapted. Concretely, such verifica-
tion goals may be expressed as bounded-time reachability problems, and can be
given to reachability tools in order to obtain properties on the given continuous
dynamics, and in particular their feasibility/existence of solution. This process
is similar to the use of SAT/SMT solvers in the proving process, but aimed at
hybrid system verification. In addition, our framework is extended with the capa-
bility to encode hybrid models to a simulation tool (e.g., Matlab/Simulink [35])
in order to validate its specification, or to fine-tune its parameters. This is similar
to how ProB [32] is used in discrete Event-B developments, with the limitation
that ProB is unable to handle continuous dynamics.

The paper evaluates the integrated framework by formally modelling and
proving safety of a cyber-physical railway signalling system. The system is made
of trains, a hybrid system, which must stay within the issued safe travelling dis-
tance (model based on our previous work [41]). The other communicating sub-
systems are responsible for issuing safe travelling distances and managing rail-
way infrastructure. Firstly, the evaluation demonstrates the effectiveness of the
refinement-based framework in decomposing a complex cyber-physical system,
thus reducing modelling and verification effort. Secondly, the evaluation demon-
strates the benefits of integrating reachability analysis in automating proof-based
verification of hybridised Event-B models.

Structure of this Article. Section 2 discusses the state-of-the-art in cyber phys-
ical system verification and validation. In Sect. 3, we describe the integrated
framework we are proposing, including, an overall architecture and process.
Section 4 provides preliminary information about the Event-B method and its

Reachability Analysis and Simulation for Hybridised Event-B Models 111

extensions for capturing hybrid systems features. The preliminaries section also
briefly describes reachability analysis and the JuliaReach tool as well as intro-
duces the Simulink/Stateflow toolbox. In Sect. 5, we overview the cyber-physical
railway signalling system we use to evaluate the proposed methodology while in
Sect. 6 we describe its formal modelling and verification. Section 7 concludes the
article, and describes future work.

2 The State-Of-The-Art in CPS V&V

In this section we discuss approaches which have integrated proof and state-
exploration based verification and validation methods for cyber-physical and
hybrid systems.

In [33], the authors proposed a method for mapping the informally defined
execution semantics of hybrid Simulink model into formally defined semantics
of differential dynamic logic (dL). This approach supports verification of hybrid
Simulink models using the interactive theorem prover KeYMaera X, developed
by Andre Platzer and his group, which supports dL [37]. This approach lacks
a built-in refinement operation to model hybrid systems progressively. More-
over, there is no mechanism for simulating the hybrid system modelled using
differential dynamic logic.

R. Banach proposed Hybrid Event-B [6] modelling and analysing hybrid sys-
tems. The core concepts are based on Event-B language supporting both contin-
uous and discrete variables together for encoding differential equations. Several
operators, such as Solve, Comply, machine interfaces and compositions, clock
datatype, are introduced to handle differential equation. But, this approach is
not tool supported. Formalizing hybrid systems with Event-B has been studied in
[43]. The authors used Matlab to complement the Event-B modelling language
by simulating examples with a set of correct and incorrect parameters. They
model the discrete part of hybrid system in Event-B and they rely on Matlab
Simulink for the continuous part. The differential equations are not explicitly
formalised in the Event-B model and time progresses with fixed discrete jumps.

Lee et al. [31] proposed a hybrid system modelling framework, HyVisual,
for modelling discrete and continuous aspects using graphical blocks based on
Ptolemy II. The operational semantics of HyVisual is described in [30]. The key
property of this framework is to support superdense time, signals are modelled
as partial functions and continuous-time functions are defined as total function.
In addition, this framework support animation as well as simulation to show
evolution behaviour of hybrid systems. This approach is better for a posteriori
model verification rather than design and development, as systems cannot be
developed in a modular nor progressive way.

Vienna Development Method (VDM) [25] is a state-based formal method
supporting model refinement via data reification and operation decomposition.
It has been extended with the notion of time [44] and integrated into the cyber-
physical system development framework based on the model exchange and co-
simulation [28]. The primary goal of this work is simulation, but there is a lack

112 Y. Aı̈t-Ameur et al.

of proof support as well as reachability analysis for the studied hybrid systems.
Other well-known state and proof based formal modelling languages TLA+ [27]
and Z [18] have been extended with real-time and hybrid modelling concepts.

Zou et al. [46] proposed an approach for verifying Simulink models by encod-
ing them into hybrid CSP (HCSP)[24,45]. The formal verification of the HCSP
model is supported by the Hybrid Hoare Logic (HHL) [34] prover based on
Isabelle/HOL. This work is primarily concerned with the verification of Simulink
models. There is no support for reachability analysis and there is no progressive
modelling using refinement.

In [23], Isabelle/HOL theorem prover was used to address formal verifica-
tion of ODE solvers. This work results in a formalisation of the mathematics
required to reason about ODE properties and their resolution at the appropri-
ate abstraction level. This enables the formalisation and verification of an ODE
solver based on Runge-Kutta methods, and the computation of flow derivatives
and Poincaré maps. The resulting proofs and certified algorithms are embedded
in the HOL-ODE-Numerics tool. In [39], the authors proposed a framework to
express homogeneous linear differential equation in the higher order theorem
prover HOL4. They used several case studies to assess the proposed framework.
In this framework, there is no support for simulation or animation to validate
the modelled hybrid systems.

All the above discussed approaches face various challenges, such as a lack
of formal design strategies based on abstraction or refinement for dealing with
various aspects of hybrid systems, reachability analysis, and simulation analyses.
Nonetheless, the main contribution of these studies and research is to address
specific problems of hybrid systems, such as handling continuous and discrete
behaviour, simulation and others. To our knowledge there is no unified frame-
work that integrates formal modelling, refinement, reachability analysis, and
simulation all together. Our work is the first integrated framework for modelling
and designing cyber-physical systems using refinements, as well as performing
proofs, reachability analysis and simulation.

3 Framework for CPS Design and Analysis

As we discussed in the previous section, several successful modelling, analysis,
verification and validation approaches have been proposed. Each of them showed
its efficiency in handling specific requirements for a design of safe cyber phys-
ical systems (e.g. formal modelling, reachability analysis, simulation, etc.). By
integrating these techniques one would offer a unified framework supporting the
design of cyber physical systems. In this paper, we propose a cyber physical
system design and analysis framework which integrates three relevant modelling
and verification techniques (framework is visualised in Fig. 1).

First, Event-B [1], in its hybridised version [15,17], supported by the Rodin
platform [2] is set up to formalise a cyber physical system as a hybrid automa-
ton. Refinement is used to decompose a high level specification into a detailed
hybrid automata to be implemented (Fig. 1-(A)). Discharging the proof obliga-
tions associated to the intermediate models and to the refinement guarantees the

Reachability Analysis and Simulation for Hybridised Event-B Models 113

Simulation-based analysis
(C)

State-based pivot model
(A)

Reachability analysis
(B)

Model 1

refines

Model 2

Model i

Model n

Simulation
Model

(C.1)
Pivot model
simulation

Validation & Tuning
(C.2)

Reachability
Goal

(B.1)
Continuous specification

(B.2)
Specification witness

Fig. 1. The overview of the proposed design and analysis framework

correctness of these models. This refinement chain of Event-B models behaves
as a pivot model and steers the development.

Throughout the development of the pivot Event-B model external analysis
techniques may be invoked on the intermediate models in order to verify or vali-
date specific model properties. These techniques would be selected with respect
to their domain of efficiency. In addition to the external provers and model
checkers invoked in the Rodin tool, hybrid system modelling requires two other
fundamental analyses which are integrated in our framework:

– Reachability analysis (Fig. 1-(B)) specifically applied for the hybrid automa-
ton of the pivot model. In our case, it consists in guaranteeing that each
continuous behaviour (continuous transition) reaches an end-state (repre-
sented by the feasibility proof obligation CFIS in hybridised Event-B pre-
sented in Sect. 4.1). While formal methods state this problem clearly in the
discrete case, it is more complex in the continuous case. Indeed, a contin-
uous behaviour is specified by a differential equation, and thus it is impor-
tant to guarantee that there exists a solution of this equation fulfilling the
system specification constraints. Reachability analysis tools are invoked for
this purpose (Fig. 1-(B.1)) and in our framework the JuliaReach [10] toolbox
is used. It is in charge of producing a family of solutions, if they exist, to
the submitted differential equation and its constraints. These solutions are
returned back to the pivot model (Fig. 1-(B.2)) as possible witnesses for the
existentially quantified event parameters formalising possible solutions of the
submitted differential equations manipulated in the pivot model.

– Simulation-based analysis (Fig. 1-(C)) is used for simulating as well as vali-
dating the developed pivot model by performing simulation with a range of
possible values for discrete and continuous states. The discrete and continuous
components of the pivot model are transformed into the selected simulation

114 Y. Aı̈t-Ameur et al.

tool (i.e., Simulink [35]). Via simulation results analysis, we can validate the
discrete and dynamic behaviour of hybrid systems. This simulation emulates
the required behaviour based on the results of the formal models, allowing
them to be used effectively to evaluate the developing hybrid system. More-
over, the simulation results may aid in identifying potential flaws in the devel-
oped model as well as tuning the range of input values for state variables. If
an error is discovered during simulation, we can modify the pivot model. This
process can be applied iteratively to obtain a correct pivot model satisfying
continuous and discrete behaviour. In our case, we use Simulink for simula-
tion analysis. Note that the generation of Simulink models is cost effective
and it leads to a system implementation that can be used to deploy a real
system.

In the remainder of this paper, we give a brief description of each of the
techniques integrated to our framework and show how it is deployed on a complex
case study issued from the railway domain.

4 Preliminaries

4.1 Event-B and Hybridised Event-B

CONTEXT ctxt id 2
EXTENDS ctxt id 1
SETS s
CONSTANTS c
AXIOMS A(s, c)
THEOREMS Tc(s, c)
END

(a) Contexts

MACHINE mch id 2
REFINES mch id 1
SEES ctx id 2
VARIABLES v
INVARIANTS I(s, c, v)
THEOREMS Tm(s, c, v)
VARIANT V (s, c, v)
EVENTS
Event evt
ANY x
WHERE G(s, c, v, x)
THEN v : |

BAP(s, c, v, x, v′)
End

END

(b) Machines

THEORY theory id 2
IMPORT theory id 1
TYPE PARAMETERS E , F , . . .
DATATYPES
DT1(E, . . .)
c on s t ru c t o r s cstr1(p1 : T1, . . .)

OPERATORS
Op1 <nature> (p1 : T1 , . . .)
we l l−de f inedness WD(p1, . . .)
d i r e c t d e f i n i t i o n f(p1, . . .)

AXIOMATIC DEFINITIONS
TYPES AT1 , . . .
OPERATORS
AOp1 <nature> (p1 : T1 , . . .)
we l l−de f inedness WD(p1, . . .)

AXIOMS A1 , . . .
THEOREMS Th1 , . . .
PROOF RULES R1 , . . .
END

(c) Theories

Listing 1.1. Event-B model structure

Event-B is a correct-by-construction formal method for system design [1]. An
Event-B model consists of a context (Listing 1.1(a)) for the static part of the
system, and machines (Listing 1.1(b)) for the dynamic part.

Formally, a system ismodelled by variables representing its state, togetherwith
a set of guarded events describing their evolution, under the form of a predicate

Reachability Analysis and Simulation for Hybridised Event-B Models 115

linking the previous and the new value of the variable, called Before-After Predi-
cate (BAP). Invariants may be defined, i.e. predicates on the state that must be
true at all time. Any system is associated to proof obligations, that must be dis-
charged in order to ensure the system is correct, abides by its invariants, etc.

Event-B makes available the refinement operation, that allows to add details
to a system step-by-step while ensuring it remains sound. This operation is the
base of the correct-by-construction approach: starting with an abstract machine,
close to specification, and introducing specific features at each refinement step.

Event-B’s expression language is based on set theory and first order logic,
making it very expressive, but lacking in higher-level structures. To overcome
this, the theory extension has been proposed [11]. This extension enables the defi-
nition theory components (Listing 1.1(c)), and provides reusable and type-generic
custom datatypes, operators (with expression or predicate nature), axioms, the-
orems and proof rules.

Hybridised Event-B. A methodology has been proposed to model hybrid sys-
tems in Event-B [16,17], inspired by Hybrid Event-B [6]. The idea is to embed
continuous features (reals, differential equations) into Event-B using theories, and
use that to model continuous behaviours, side by side with discrete behaviours.

Discrete and Continuous Variables. Discrete variables in Event-B models are
associated with instantaneous, point-wise assignment, in the form of a Before-
After Predicate (BAP). Continuous variables, on the other hand, represent a
continuous behaviour on a time interval. For this reason, continuous variables
are modelled using functions of time, and they are updated using the introduced
continuous before-after predicate (CBAP) operator:

xp :|t→t′ P(xp, x
′
p) & H ≡ [0, t[�x′

p = [0, t[�xp (PP)

∧ P([0, t] � xp, [t, t′] � x′
p) (PR)

∧ ∀t∗ ∈ [t, t′], xp(t∗) ∈ H (LI)

This operator modifies continuous variable xp by appending a piece of func-
tion on interval [t, t′] while retaining its value on [0, t], thereby preserving its
“past” (past preservation, PP). The added piece is described using predicate P
PR), and must remain in the given evolution domain or local invariant H (LI).

MACHINE Generic
VARIABLES t, xs, xp

INVARIANTS
inv1 : t ∈ R

+

inv2 : xs ∈ STATES
inv3 : xp ∈ R �→ S
inv4 : [0, t] ⊆ dom(xp)

Listing 1.2. Generic
pattern header

Modelling Hybrid Systems in Event-B. The base of
the framework is the generic pattern, which generically
encodes controller-plant loop hybrid systems. A particular
hybrid system is designed by refining this generic pattern
and providing specific details for each parameters (using
witnesses).

116 Y. Aı̈t-Ameur et al.

The generic pattern defines two variables (Listing 1.2): one for discrete/con-
troller state (xs) and one for continuous/plant state (xp), which is a function of
time, valued in state space S, usually a vector space (e.g. Rn,m ∈ N). It also
define a read-only real variable for time (t), used for modelling and proving.

Sense
ANY s , p
WHERE
grd1 : s ∈ P1(STATES)
grd2 :

p ∈ P(STATES × R × S)
grd3 : (xs �→ t �→ xp(t)) ∈ p

THEN
act1 : xs :∈ s

END

(a) Sense event

Actuate
ANY P , s , H , t′

WHERE
grd0 : t′ > t

grd1 : P ⊆ (R+ �→ S) × (R+ �→ S)
grd2 : Feasible([t, t′], xp,P, H)
grd3 : s ⊆ STATES ∧ xs ∈ s
grd4 : H ⊆ S ∧ xp(t) ∈ H

THEN
act1 : xp :|t→t′ P(xp, x

′
p) & H

END

(b) Actuate event

Listing 1.3. Generic pattern events

In addition, the model provides two types of events: discrete (controller)
and continuous (plant). Sense (Listing 1.3a) is a discrete event, that models a
change in the controller induced by the reading of a value from the plant. Actuate
(Listing 1.3b) is a continuous event, that models the plant’s behaviour, according
to the controller, and using the CBAP operator previously defined.

These events are defined with parameters (ANY clause) that are instantiated
using witnesses during refinement.

Proving Process. When using the generic pattern, POs are generated, ensuring
its correct use. In particular, continuous events are associated to specific POs,
relate to the use of the CBAP operator:

Γ � ∃t′ · t′ ∈ R
+ ∧ t′ > t ∧ Feasible([t, t′], xp,P,Hsaf) (CFIS)

Γ, I([0, t] � xp), CBAP (t, t′, xp, x
′
p,P,H) � I([t, t′] � x′

p) (CINV)

Feasibility (CFIS) ensures that the continuous behaviour described in the
CBAP operator is sound. This requires to prove that there exists a time t′ for
which the predicate P is feasible, i.e. there exists an x′

p defined on [t, t′] such
that P(xp, x

′
p) holds.

Continuous invariant preservation (CINV) is a specialisation of invariant
preservation; it ensures that, if xp satisfies the invariant on [0, t], then it also
satisfies it on [t, t′].

4.2 Reachability Analysis and JuliaReach

Reachability analysis is a technique for computing all reachable states of dynam-
ical systems starting from some initial states. The reachable set of states Rt at

Reachability Analysis and Simulation for Hybridised Event-B Models 117

time t can be defined as a set containing all system’s trajectories starting from
some initial set, or formally:

Rt(X0) = {ς(t, x0, u) | x0 ∈ X0, u(s) ∈ U ,∀s ∈ [0, t]} (1)

where initial states X0 ⊆ R
n, system’s inputs U ⊆ R

m and ς(t, x0, u) is a
unique solution of the dynamical system. More generally reachability analysis
methods aim to construct a conservative flowpipe (2) which encompasses all
possible reachable sets of a dynamical system for time period [0, T].

R[0,T](X0) =
⋃

t∈[0,T]

Rt(X0) (2)

Computing reachable states of a hybrid automaton requires computing runs
of the hybrid system where a hybrid automaton run is an alternating N size
sequence of trajectories and location jumps (see Section 5.2 in [3]). The reacha-
bility methods have been widely used in applications which range from a formal
system verification to their synthesis [3]. Over the years, several reachability tools
have been developed, for example, SpacEx [19], Checkmate [13] or Flow∗ [12]
just to name a few. Furthermore, to efficiently and accurately over-approximate
reachable sets different convex and nonconvex set representations have been
developed.

The JuliaReach toolbox [10] is a set of Julia1 programming language [8]
libraries developed for an efficient prototyping of set-based reachability algo-
rithms. A particular advantage of JuliaReach is its Julia language implemen-
tation providing high-performance computation with an adequate compilation
time [20]. The Reachability package of the toolbox contains algorithms for per-
forming reachability analysis of continuous and hybrid systems, while LazySets
library contains algorithms for operation with convex sets. Crucially for this
work, JuliaReach supports nonconvex set representations (e.g. Taylor models)
which are required for a more conservative approximation of nonlinear systems.

4.3 Simulink and Stateflow

Simulink [35] is a Matlab add-on product that provides a graphical environ-
ment for modelling, simulating, and analyzing complex dynamic systems. It is
capable of modelling both linear and nonlinear systems in both continuous and
sample time. It provides a graphical user interface (GUI) for designing com-
plex models in the form of block diagrams. Simulink contains a comprehensive
list of pre-defined libraries for dealing with various modelling constructs such as
sinks, sources, linear and nonlinear components, and connectors. It also supports
domain-specific toolboxes like neural networks, signal processing, HDL, and so
on. All these blocks cooperate by data flow through connecting wires. A defined
simulink model can be simulated using various parameters, which can also be

1 Julia programming language website - https://julialang.org/.

https://julialang.org/

118 Y. Aı̈t-Ameur et al.

updated on the fly. During the simulation run, the main results can be analyzed
using scope and other display blocks.

Stateflow [36] is an interactive tool for simulating the behavior of reactive
systems. The syntax of Stateflow is similar to Statecharts [21]. It also supports
hierarchy (states can contain other states), concurrency (executes more than one
state at the same time), and communication (broadcast mechanism for commu-
nicating between concurrent components). It also has more complex features
such as inter level transitions, complex transitions through junctions, and event
broadcasting. A Stateflow model is made up of a set of states linked together by
arcs called transitions. A state can be decomposed into two types: 1) OR-states
and 2) AND-states. Different types of actions can be carried out in a state in
a sequential order. These actions are entry, exit, during, and on event name.
A transition is defined by a label, which can include event triggers, conditions,
condition actions, and transition actions. A general format for a transition label
can be represented as event [condition] condition action/transition action [40].

In our work, we use Stateflow to model discrete controller behaviour and
Simulink blocks to model the plant model of a hybrid system.

5 Case Study: Railway Signalling System

In this section, we semi-formally describe a generalised cyber-physical railway
signalling system which will be formally developed by using the proposed frame-
work. The signalling system is comprised of trains, communication centres, inter-
locking boxes and field elements. The former are continuously communicated a
safe distance they are allowed to travel, also known as the end of a movement
authority (EoA). The speed controller of the train must ensure that at all times
the train remains within the movement authority. The other sub-systems of the
signalling system must ensure that the communicated EoA guarantees a safe
train separation and prevents train derailment by passing over unlocked/moving
railway track switches.

In the following sections, we first describe the hybrid rolling stock model
which will be used to model train speed controller. Then, we briefly describe
remaining railway signalling sub-systems, more specifically, their functionality
and communication relation to other sub-systems.

5.1 Continuous Rolling Stock Model

A driver or an automated train operation system can only control a train engine
power (tractive force) which eventually yields an acceleration. From Newton’s
second law we know that acceleration is proportional to a net force (tractive
engines force) applied to the mass of that object. The train must also overcome
a resistance force, which acts in the opposite direction to engines traction force
and thus a total engines tractive force can be expressed as the difference between
two forces. The total rolling stock resistance is comprised of the mechanical and
air resistances, and commonly expressed as a second-order polynomial (Davis

Reachability Analysis and Simulation for Hybridised Event-B Models 119

Resistance equation Rtot.(t) in Eq. 3), where A,B,C are fixed parameters and
v(t) is the speed of a train at time t [38].

{
ṫv(t) = f − (A + B · tv(t) + C · tv(t)2)
ṫp(t) = tv(t) (3)

free
v̇ = f − (A + B · v(t) + C · v(t)2)

ṗ = v(t)

restricted
v̇ = f − (A + B · v(t) + C · v(t)2)

ṗ = v(t)

p(t) + StopDist > EoA

p(t) + StopDist < EoA

Fig. 2. Hybrid automaton model of rolling stock speed controller

The train speed controller we consider is continuously issued with the end
of movement authority (EoA) which is updated discretely in the time by the
communication centre. We assume that the speed controller is able to sense its
distance to EoA and, in particular, determine if with a given current speed and
acceleration it can stop before EoA. The stopping distance calculus is generally
done by a complex algorithm on the on-board computer, whereas in our train
model, we abstract the algorithm by a stopping distance function (StopDist)
which takes the current acceleration and speed as parameters, and returns the
distance needed by the train to stop, together with necessary assumptions, pro-
vided as axioms.

The train speed controller has two modes: free and restricted. If the stopping
distance of the train is shorter than the EoA, then the train is said to be in a
free mode and it can choose arbitrary values for f . Once the stopping distance
of the train becomes shorter than the EoA, the train enters a restricted mode in
which it is required to provide values for f such that it can stop before the EoA.
The train speed controller hybrid automata model is visualised in Fig. 2.

5.2 Communication-Based Railway Signalling Model

We base our railway signalling model on the radio-based communication and
in-cab signalling systems, which generally contain three sets of objects: trains,
interlocking boxes and communication centres. On the infrastructure side, our
railway model is made of railway tracks, which contain points that allow trains
to switch tracks and block markers for marking a spatial beginning and ending
of railway sections (P1 and M1..3 in Fig. 3).

The objective of the railway signalling model is ensuring a safe spatial sepa-
ration of trains and preventing train derailment by guaranteeing that only locked
switches are crossed by train. Our signalling model is based on a moving-block
signalling principle in which trains are issued the EoA up to the rear of the
next train (e.g. T3 in Fig. 3) or up to next block marker which protects trains
from moving over unlocked or incorrectly set points (T2 in Fig. 3). The system
must also ensure that only a single train enters a marked junction section (area
between M1..3 in Fig. 3).

120 Y. Aı̈t-Ameur et al.

Fig. 3. An example of the cyber-physical railway signalling system with three trains

The communication centre is the one sub-system which issues rolling stock
with EoA based on the information received from trains (e.g. position) and inter-
locking boxes (e.g. point locking and direction status). A centre contains and
continuously updates an internal railway network map with junction locations
(also their status: free or locked) and rolling stock positions.

6 Case Study: Formal Development

This section overviews the process of applying formal development methodology
to the railway signalling case study. In the following sections, we first describe
the modelling and verification of the pivotal railway signalling system Event-B
model, and then, discuss simulation of the train speed controller model.

6.1 Event-B Model Development and Verification

Modelling the railway signalling system starts by formally defining static infor-
mation. Common properties of the train are gathered in the Train domain Event-
B theory. This theory defines the coefficient a, b and c for a traction force of f ,
with initial condition p(t0) = p0 and v(t0) = v0. This equation corresponds to
Eq. 3.

In addition to the train’s dynamics, model-specific information are gathered
in the TrainCtx Event-B context defining several constants of the system, as well
as constraints on them. In particular, particular Davis coefficients (a, b, c), are
given as well as some bounds on the train’s traction power (fmin, fmax), plus a
special value for the minimum traction power for deceleration (fdec min).

Furthermore, in this context we define the train stopping distance function
StopDist as a function of the current speed and acceleration with associated func-
tion constraining axioms. Finally, we introduce train controller modes free move
and restricted move by refining the STATES set with an enumerated set.

The model of the dynamic part of the railway signalling system, refines the
generic hybridised Event-B model. Two refinement steps are defined. The first
one models the speed controller where the end of the movement authority is
regularly updated. At this refinement level, it is left abstract and under speci-
fied. We import theories defined in Train domain theory and static information

Reachability Analysis and Simulation for Hybridised Event-B Models 121

MACHINE TrainMach REFINES Generic
VARIABLES t, tp, tv, ta, f, EoA
INVARIANTS

. . .
inv4 : fmin ≤ f ∧ f ≤ fmax

saf1 : ∀t∗ · t∗ ∈ [0, t] ⇒ tp(t∗) ≤ EoA
saf2 : ∀t∗ · t∗ ∈ [0, t] ⇒ tv(t∗) ≥ 0

Listing 1.4. Train model header

from TrainCtx context model. Furthermore, we introduce several new events by
instantiating generic events to capture the hybrid automata depicted in Fig. 2.
Listing 1.4 presents the train model header featuring 5 variables in addition to
time. The train itself is modelled using its position, speed and acceleration (tp,
tv and ta respectively), as well as its traction power (f). Additionally, the end
of authority is modelled by a real variable, EoA. Each variable is associated to a
number of constraints (e.g. inv4 in Listing 1.4), plus a gluing invariant that links
the concrete and abstract continuous states. The safety and dynamics require-
ments, which were described in Sect. 5.1, were expressed as two invariants saf1
and saf2.

The Transition restricted move (see Listing 1.5) event models the change in
the speed controller by adjusting trains traction effort when the train is in the
restricted move mode. The event is guarded by a single predicate which enables
the event if and only if the status variable xs is set to restricted move. To control
train’s speed we introduce Variable f denoting the traction force. It is modified
by the action such that the stopping distance would not overshoot the end of
the movement authority. Then, one must prove an open proof obligation that
such traction force value can be found.

Transition restricted move
REFINES Transition
WHERE

grd1 : xs = restricted move
WITH

s : s = {restricted move}
THEN

act1 : f :| tp(t) + StopDist(f ′ �→ tv(t)) ≤ EoA
END

Listing 1.5. Example of Transition event: calculating traction power f in restricted
mode

The Actuate move event (see Listing 1.6) is the main continuous event of
the model. It models the dynamics of the train, using the CBAP operator (see
Sect. 4.1) together with the Davis equation defined in the Train theory. The
proposed evolution domain ensures that 1) the train remains before the end

122 Y. Aı̈t-Ameur et al.

of authority, and 2) the train’s speed remains positive, in accordance with the
system’s safety invariants.

Actuate move REFINES Actuate
ANY t′

WHERE
grd1 : tp(t) + StopDist(ta(t), tv(t)) ≤ EoA
grd2 : t < t′

WITH . . .
THEN

act1 : ta, tv, tp :∼t→t′ 〈ṫv = ta = f − (a + btv + ctv2), ṫp = tv〉
& tp + StopDist(ta, tv) ≤ EoA ∧ tv ≥ 0

END

Listing 1.6. Event updating train’s plant (actuation)

Fig. 4. Reachability analysis of the train speed controller in the free mode

To prove safety properties of the hybrid train speed controller, we rely on
the verification technique (B.1). Firstly, we strengthen local invariants of the
actuation event (see Listing 1.6) which in turn allows to automatically prove
invariant preservation of invariants saf1,2. The resulting CBAP feasibility proof
obligations requiring proof of solution existence, are translated to JuliaReach.
Reachability analysis results of both modes are shown in Fig. 4. Table 1 (Speed
Controller refinement step) provides statistics issued from proving speed con-
troller model. In total, 55 proof obligations were generated at this refinement
level and with reachability analysis additional 12 proofs were automated (8 fea-
sibility and 4 invariant preservation proof obligations).

The second refinement step extends TrainMach machine by introducing other
signalling sub-systems: interlocking, communication centres and field elements

Reachability Analysis and Simulation for Hybridised Event-B Models 123

and their communication protocol. At this step, we are interested in proving
safety of the cyber-physical railway signalling system, more specifically, proving
that the issued EoA ensures safe rolling stock separation and prevents derailment.
Based on Event-B communication modelling patterns [42] new events and vari-
ables are introduced to model message channels and capture message exchanges
between different sub-systems.

The model was proved correct by discharging all the proof obligations. Cor-
responding proofs statistics are summarised in Table 1. As proof obligations were
mostly related to discrete behaviour, the available automated theorem proving
tools (e.g. [14,22]) were able to discharge the majority of them automatically.
Observe that the already proven proof obligations of the first refinement model
are preserved thanks to the introduced gluing invariant linking first and second
refinement models.

Table 1. Proof statistics of the cyber physical railway signalling Event-B model (PO
Type: WD - well-definedness, GRD - guard strengthening, INV - invariant preservation,
FIS - feasibility and SIM - simulation [1]). The number in the brackets indicates the
number of proof obligations when reachability analysis was used to discharge feasibility
vproof obligations.

Refinement PO Type |POs| Auto. Inter. Refinement |POs| Auto. Inter.

Speed 55 36 (48) 19 (7) Comms. 85 71 14

Controller WD 12 12 0 Model 31 31 0

Model GRD 11 11 0 12 7 5

INV 18 10 (14) 8 (4) 42 33 9

FIS 8 0 (8) 8 (0) 0 0 0

SIM 6 3 3 0 0 0

6.2 Train Model Simulation and Validation

We describe the Simulink/Stateflow model translated from the train’s hybridised
Event-B model. Discrete and continuous parts of the train model are generated
in form of Stateflow block and a user defined matlab function block, respectively.
The Stateflow model contains two modes: restricted and free. These modes can be
switched between based on various parameters such as end of authority (EoA),
stopping distance (SD), engine power (f), position (p) and speed (v). Several
Matlab functions are defined within the Stateflow model to calculate EoA, engine
power and SD. For calculating SD, we use the Eq. 4, where U is the speed of the
train when the break command was issued; a is the acceleration provided by the
braking system; b is the acceleration provided by gravity; and td is the train’s
brake delay time [7].

SD = −(U + b ∗ td)2/2(a + b) − U ∗ td − b ∗ t2d/2 (4)

124 Y. Aı̈t-Ameur et al.

In each state, we use the entry and during actions to update the concrete
variables. Similarly to Event-B models, the restricted mode is chosen as an initial
state in the Stateflow model. The dynamic part of the train model is represented
by a user defined matlab block in which we encoded the Davis equation 3 to
calculate the train’s acceleration, speed and position. The output of this Simulink
block are connected as input to the Stateflow model. We use two scopes to display
the train’s position and speed. A step block is connected to the Stateflow model
as input to define the power engine (f).

The train simulation results show the evolution of the train position and
speed in Fig. 5. For this simulation, we use the standard coefficients for the Davis
equation collected from [38], to simulate the dynamic behaviour of TGV. More-
over, we use a range of values for different parameters to analyse the dynamic
behaviour of the train system. We simulate the train model using other stan-
dard passenger train coefficients to test scalability and coverage of other classes
of trains. The train simulation results ensures the correctness of train dynamic
behaviour as well as animation allows to validate the abstract functions of the
hybrid train model.

Fig. 5. TGV train simulation (engine power fmax = 50, Davis equation coefficients for
TGV: a = 25, b = 1.188 and c = 0.0703728, moving authority (MA) = 10, time delay
td = 2 s.

7 Conclusions and Future Work

In this paper, we presented a refinement-based development methodology of
cyber-physical systems. The evaluation has shown that by integrating reacha-
bility analysis and system simulation techniques into the hybrid Event-B frame-
work, the methodology provides a rigorous and comprehensive formal sys-
tem development approach. Furthermore, the multifaceted methodology also
addresses a major problem of proof automation of hybridised Event-B models
by integrating automatic reachability analysis into the proof process.

In future work, we foremost would like to facilitate an automatic and certi-
fied translation of Event-B models to Simulink and JuliaReach. But crucially,
in the future work, we would like to further explore synergies between proof
and reachability analysis in automating deductive system verification and code
generation.

Reachability Analysis and Simulation for Hybridised Event-B Models 125

Acknowledgements. This work was partially supported by the Air Force Office of
Scientific Research under award no. FA2386-17-1-4065. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the United States Air Force. This work
is also supported by the DISCONT project of the French National Research Agency
(ANR-17-CE25-0005, The DISCONT Project, https://discont.loria.fr).

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2013)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

3. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability
analysis. Ann. Rev. Control Robot. Autonom. Syst. 4(1), 369–395 (2021). https://
doi.org/10.1146/annurev-control-071420-081941

4. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the Ninth ACM
International Conference on Embedded Software, pp. 273–278. EMSOFT 2011,
ACM, New York, NY, USA (2011). https://doi.org/10.1145/2038642.2038685

5. Babin, G., Aı̈t-Ameur, Y., Nakajima, S., Pantel, M.: Refinement and proof based
development of systems characterized by continuous functions. In: Li, X., Liu, Z.,
Yi, W. (eds.) Dependable Software Engineering: Theories, Tools, and Applications,
pp. 55–70. Springer International Publishing, Cham (2015)

6. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid event-b I: single
hybrid event-b machines. Sci. Comput. Program. 105, 92–123 (2015)

7. Barney, D., Haley, D., Nikandros, G.: Calculating train braking distance. In: Pro-
ceedings of the Sixth Australian Workshop on Safety Critical Systems and Software
- Volume 3, pp. 23–29. SCS 2001, Australian Computer Society Inc., AUS (2001)

8. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to
numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/
141000671

9. Bogdiukiewicz, C., et al.: Formal development of policing functions for intelligent
systems. In: 2017 IEEE 28th International Symposium on Software Reliability
Engineering (ISSRE), pp. 194–204 (2017). https://doi.org/10.1109/ISSRE.2017.
40

10. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a
toolbox for set-based reachability. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 39–44. HSCC 2019,
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3302504.3311804

11. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4 5

12. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

https://discont.loria.fr
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1145/2038642.2038685
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1109/ISSRE.2017.40
https://doi.org/10.1109/ISSRE.2017.40
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18

126 Y. Aı̈t-Ameur et al.

13. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen,
J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48983-5 10

14. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Sci. Comput. Program. 94(P2), 130–143 (2014)

15. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: An Event-B based generic
framework for hybrid systems formal modelling. In: Dongol, B., Troubitsyna, E.
(eds.) IFM 2020. LNCS, vol. 12546, pp. 82–102. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-63461-2 5

16. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Proof-based approach to
hybrid systems development: dynamic logic and Event-B. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 11

17. Dupont, G., Ait-Ameur, Y., Singh, N.K., Pantel, M.: Event-B hybridation: A
proof and refinement-based framework for modelling hybrid systems. ACM Trans.
Embed. Comput. Syst. 20(4), 1–37 (2021). https://doi.org/10.1145/3448270

18. Fidge, C.J.: Specification and verification of real-time behaviour using Z and RTL.
In: Vytopil, J. (ed.) FTRTFT 1992. LNCS, vol. 571, pp. 393–409. Springer, Hei-
delberg (1992). https://doi.org/10.1007/3-540-55092-5 22

19. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

20. Geretti, L., et al.: ARCH-COMP20 category report: continuous and hybrid sys-
tems with nonlinear dynamics. In: Frehse, G., Althoff, M. (eds.) ARCH 2020. 7th
International Workshop on Applied Verification of Continuous and Hybrid Sys-
tems (ARCH20). EPiC Series in Computing, vol. 74, pp. 49–75. EasyChair (2020).
https://doi.org/10.29007/zkf6

21. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

22. Iliasov, A., Stankaitis, P., Adjepon-Yamoah, D., Romanovsky, A.: Rodin platform
why3 plug-in. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 275–281. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 21

23. Immler, F.: Verified reachability analysis of continuous systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 37–51. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 3

24. Jifeng, H.: A classical mind. chap. In: From CSP to Hybrid Systems, pp. 171–189.
Prentice Hall International (UK) Ltd. (1994)

25. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall
Inc., USA (1990)

26. Kim, K.D., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial.
In: Proceedings of the IEEE 100 (Special Centennial Issue), pp. 1287–1308, May
2012. https://doi.org/10.1109/JPROC.2012.2189792

27. Lamport, L.: Hybrid systems in TLA+. In: Grossman, R.L., Nerode, A., Ravn,
A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 77–102. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-57318-6 25

28. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical
systems: the INTO-CPS project. In: 2016 2nd International Workshop on Mod-
elling, Analysis, and Control of Complex CPS (CPS Data), pp. 1–6 (2016). https://
doi.org/10.1109/CPSData.2016.7496424

https://doi.org/10.1007/3-540-48983-5_10
https://doi.org/10.1007/978-3-030-63461-2_5
https://doi.org/10.1007/978-3-030-63461-2_5
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1145/3448270
https://doi.org/10.1007/3-540-55092-5_22
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.29007/zkf6
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-319-33600-8_21
https://doi.org/10.1007/978-3-319-33600-8_21
https://doi.org/10.1007/978-3-662-46681-0_3
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1007/3-540-57318-6_25
https://doi.org/10.1109/CPSData.2016.7496424
https://doi.org/10.1109/CPSData.2016.7496424

Reachability Analysis and Simulation for Hybridised Event-B Models 127

29. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pp. 363–369. IEEE (2008)

30. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In: Hybrid Sys-
tems: Computation and Control, 8th International Workshop, HSCC 2005, Zurich,
Switzerland, March 9–11, 2005, Proceedings, pp. 25–53 (2005). https://doi.org/10.
1007/978-3-540-31954-2 2

31. Lee, E.A., Zheng, H.: HyVisual: a hybrid system modeling framework based on
Ptolemy II. IFAC Proc. Vol. 39(5), 270–271 (2006). https://doi.org/10.3182/
20060607-3-IT-3902.00050

32. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

33. Liebrenz, T., Herber, P., Glesner, S.: Deductive Verification of Hybrid Control
Systems Modeled in Simulink with KeYmaera X. In: Sun, J., Sun, M. (eds.) ICFEM
2018. LNCS, vol. 11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02450-5 6

34. Liu, J., et al.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS,
vol. 6461, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17164-2 1

35. MathWorks, T.: Simulink user’s guide (2021)
36. MathWorks, T.: Stateflow user’s guide (2021)
37. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems

(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 15

38. Rochard, B.P., Schmid, F.: A review of methods to measure and calculate train
resistances. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 214(4), 185–199
(2000). https://doi.org/10.1243/0954409001531306

39. Sanwal, M.U., Hasan, O.: Formally analyzing continuous aspects of cyber-physical
systems modeled by homogeneous linear differential equations. In: Berger, C.,
Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 132–146. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25141-7 10

40. Singh, N.K., Lawford, M., Maibaum, T.S.E., Wassyng, A.: Stateflow to tabular
expressions. In: Proceedings of the Sixth International Symposium on Information
and Communication Technology, pp. 312–319. SoICT 2015, Association for Com-
puting Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2833258.
2833285

41. Stankaitis, P., Dupont, G., Singh, N.K., Ait-Ameur, Y., Iliasov, A., Romanovsky,
A.: Modelling hybrid train speed controller using proof and refinement. In: 2019
24th International Conference on Engineering of Complex Computer Systems
(ICECCS), pp. 107–113 (2019). https://doi.org/10.1109/ICECCS.2019.00019

42. Stankaitis, P., Iliasov, A., Ameur, Y.A., Kobayashi, T., Ishikawa, F., Romanovsky,
A.: A refinement based method for developing distributed protocols. In: IEEE
19th International Symposium on High Assurance Systems Engineering (HASE),
pp. 90–97 (2019)

43. Su, W., Abrial, J.-R.: Aircraft landing gear system: approaches with event-b to
the modeling of an industrial system. In: Boniol, F., Wiels, V., Ait Ameur, Y.,
Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 19–35. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07512-9 2

https://doi.org/10.1007/978-3-540-31954-2_2
https://doi.org/10.1007/978-3-540-31954-2_2
https://doi.org/10.3182/20060607-3-IT-3902.00050
https://doi.org/10.3182/20060607-3-IT-3902.00050
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1243/0954409001531306
https://doi.org/10.1007/978-3-319-25141-7_10
https://doi.org/10.1145/2833258.2833285
https://doi.org/10.1145/2833258.2833285
https://doi.org/10.1109/ICECCS.2019.00019
https://doi.org/10.1007/978-3-319-07512-9_2

128 Y. Aı̈t-Ameur et al.

44. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed embed-
ded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006). https://doi.
org/10.1007/11813040 11

45. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020972

46. Zou, L., Zhan, N., Wang, S., Fränzle, M.: Formal verification of Simulink/Stateflow
diagrams. In: Automated Technology for Verification and Analysis - 13th Interna-
tional Symposium, ATVA 2015, Shanghai, China, 12–15 October 2015, Proceed-
ings, pp. 464–481 (2015). https://doi.org/10.1007/978-3-319-24953-7 33

https://doi.org/10.1007/11813040_11
https://doi.org/10.1007/11813040_11
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1007/978-3-319-24953-7_33

Operation Caching and State
Compression for Model Checking

of High-Level Models
How to Have Your Cake and Eat It

Michael Leuschel(B)

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

michael.leuschel@hhu.de

Abstract. A lot of techniques try to improve the performance of explicit
state model checking. Some techniques, like partial order reduction, are
hard to apply effectively to high-level models, while others, like symmetry
reduction, rarely apply to more complex real-life models. In this paper
we present two techniques—state compression and operation caching—
that are applicable to a wide range of models. These techniques were
implemented in the ProB model checker and are available for B, Event-
B, TLA+, Z and CSP‖B models. The combination of both techniques is
surprisingly effective, reducing both memory consumption and runtimes
on a set of benchmark programs. The techniques were inspired by the
success of previous work integrating LTSMin and ProB. Earlier attempts
of integrating the LTSMin techniques directly into ProB (to overcome
limitations of the LTSMin integration) were not successful. Similarly,
earlier attempts of making the LTSMin integration available to a wider
range of models (e.g., combined CSP‖B models) were also not fruitful.

1 Introduction

ProB [22] is a constraint solver and model checker for high-level formal specifi-
cations. It supports B [1] and Event-B [2], but also related high-level formalisms
such as TLA+ and Z. It can also be used for CSP‖B specifications [27].

In this article we focus on explicit state model checking [13], where individual
states are explicitly constructed and individually checked and processed. Com-
pared to model checkers for low-level specifications languages like Spin [12], the
overhead for dealing with individual states in ProB is much higher due to the
high-level nature of the models. On the other hand, (sometimes) the state space
of a high-level model can be relatively small compared to that of an equivalent
lower level model (cf. [21]). Via its mixed search strategy, ProB can also be
beneficial for finding errors in very large or even infinite state spaces. Further-
more, model checking is often used as a debugging tool and not a verification
tool in B: exhaustive verification in B can be performed via proof which scales
to infinite state spaces (provided the right invariants are found).

Still, for many practical applications state explosion is a problem and
improved model checking performance would be highly beneficial. Hence, over
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 129–145, 2022.
https://doi.org/10.1007/978-3-031-07727-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_8&domain=pdf
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-031-07727-2_8

130 M. Leuschel

the years quite a few attempts have been made to improve the model checking
performance of ProB, ranging from symmetry reduction to partial order reduc-
tion. We have also developed two alternate model checking backends based on
TLC and LTSMin.

There are not that many model checkers for high-level languages, but TLC
[29] is one of them. In [10] we developed a translation from B to TLA+ to be able
to use TLC. TLC only has limited constraint solving capabilities, but is very
efficient for those specifications that do not require constraint solving. In other
work [4,18] we have made use of the generic LTSMin [16] model checking engine,
whose C language interface we used to link it up with the ProB interpreter.

The integration with LTSMin can lead to a dramatic reduction in the model
checking time, especially for specifications which consist of operations which only
inspect and modify a small part of the variables. LTSMin, however, also has a
few practical limitations: it does not use proof information [5], it is not suited for
CSP‖B models (and attempts to solve this limitation have not been fruitful thus
far), LTSMin is hard to install for end-users and the generated state space is not
available for other ProB features (e.g., state space projection or coverage). For
some models with larger individual states, the performance drops sharply.

The idea of this paper is to implement the most important aspects of LTSMin
directly in ProB, thereby addressing all of the above limitations. Indeed, we
believe that one of the most important improvements in [18] came from operation
caching. In [18] we already mentioned first attempts at replicating the caching
in ProB itself. But at that time, the experiments were discouraging. In this
article we return to this issue, and show that with an improved implementation,
we have managed to port the operation caching algorithm to Prolog and ProB.
The breakthrough came via combining operation caching with state compres-
sion, and ensuring that the implementation performs compression and hashing
of states incrementally. For several real-life industrial models, the new algorithm
provides an order of magnitude improvement, both compared to ProB alone
and the LTSMin integration. For some examples from [18] we do not attain the
full performance of LTSMin yet, but our technique still considerably improves
the performance, while providing many additional features not available with
LTSMin (such as state space inspection and visualization).

2 Current State of Model Checking for B

2.1 Prolog Default Model Checker

The existing ProB default model checking backend stores the state space in
memory as Prolog facts. These facts are indexed by the hash of the stored state.
This allows to quickly determine whether a state already exists in the state
space. The hash value is computed using a combination of two SICStus Prolog
hash functions. With this combination, collisions are very rare.1

1 Collisions, however, do not lead to unsoundness, as full states need to be compared
for a successful lookup.

Operation Caching and State Compression for Model Checking 131

The Prolog database enables some quite unique features of ProB: model
checking can be stopped and resumed at any point, and the state space can
be inspected at any point. For example, one can obtain coverage information
about the variables or transitions. In particular, it can be useful to obtain the
minimal and maximal values of the variables. This can help the user understand
why a state space becomes surprisingly large.2 It is also useful to know which
operations/events have not yet been covered; sometimes obtaining this coverage
information is an essential verification aspect, to ensure that every transition in
a formal model is feasible. For test-case generation it can be useful to instruct
the model checker to stop when full coverage has been reached. Other useful
debugging tools are projection diagrams [20], which project the state space onto
a user-provided formula.

The operational semantics to compute the state space for all specification
languages is specified in Prolog; Prolog being a convenient language for speci-
fying denotational and operational semantics. As such, ProB provides the only
“native” support for combined CSP and B specifications. (All other approaches
like csp2b work by compiling a subset of one formalism to the other.)

The LTL model checker is written in C, but accesses the Prolog state space
(and drives its construction on the fly). There is also a Prolog LTL model checker
for safety properties and a Prolog CTL model checker. LTL and CTL checking
can be performed interactively after the state space has been computed. ProB
can also perform proof-directed model checking [5]: the model checker uses the
Rodin proof information and the read-write matrix to avoid checking invariants
that are guaranteed to be preserved by executed events or operations.

2.2 TLC Backend

TLC [29] is an efficient explicit state model checker for TLA+. It can be used as
a backend [10] for ProB, by translating a subset of B to TLA+, and translating
TLC’s counter examples back to B.

When applicable, TLC can provide a very effective model checking back-
end, in particular for lower-level models. Here is a short summary of the key
differences with ProB’s default model checker:

– TLC can store states on disk and can be effectively parallelized,
– hash collisions are unlikely but possible and are not detected (then resulting

in incomplete checking of the state space),
– B models may have to be rewritten for TLC (so that no constraint solving is

required and identifiers are finitely enumerated in the right order),
– there is no support for Event-B and many classical B constructs are not

supported (machine inclusion, operation calls, sequential composition, refine-
ment, ...),

– counter example traces are replayed by ProB, but there is no access to the
full state space.

2 For example, for the drone model from [25] which we use later in the experiments,
this feature was essential to detect an unbounded queue variable, and then put an
upper bound on that queue for model checking.

132 M. Leuschel

2.3 LTSMin Backend

LTSMin [16] is another efficient model checker, which can target multiple lan-
guages via its Partitioned Next-State Interface (PINS). ProB can be integrated
with LTSMin via this interface for symbolic model checking [4] and explicit
state model checking [18]. The latter is more useful in practice, as it can gen-
erate counter-example traces. Compared to ProB’s default model checker this
backend

– provides a fast model checking engine implemented in C with partial order
support and an optimisation called “local transition caching” [7], similar to
our operation caching developed in this paper,3

– cannot currently check invariants and deadlocks at the same time,
– works with most languages supported by ProB, but the operation caching

is not working for CSP‖B models,
– has no proof-directed support [5], particularly important for Rodin models,
– has no Windows support, and generates occasional segmentation faults,
– its support activity in general has been reduced (the latest release 3.0.2 dates

from July 2018),
– models do not have to be rewritten for LTSMin (as the ProB interpreter is

used),
– counter example traces are replayed by ProB, but there is no access to the

full state space.

The main speedup of LTSMin seems to come from operation caching; partial
order reduction is seldom of use and most of the time even detrimental. In this
paper we try and integrate the operation caching technique into the ProB model
checker directly. Our hope is to gain its performance benefits, while keeping the
advantages of ProB’s model checker and make it available to more specification
languages like CSP‖B. Before providing a formal account of operation caching
in Sect. 4, we first present a few other optimisations which will later turn out to
be important in practice.

3 Compression and Other Improvements

3.1 Timeouts

ProB uses timeouts when evaluating invariants or computing the effect of an
operation. This means that, even when part of the model is too complex to
animate, a user can still inspect the other parts of the model.

The timeout mechanism, however, also induces a runtime overhead. This
overhead is more noticeable for lower-level models with many events (a timer is
started for every distinct event/operation of the model). We later realised that
part of the speedups reported in [4,18] were due to the fact that the LTSMin
backend did not use this time-out mechanism. It is now possible to disable time-
outs using the -disable-time-out flag of probcli.
3 Note, however, that local transition caching is not formally described in [7,16].

Operation Caching and State Compression for Model Checking 133

3.2 Reducing Stored Transitions

Some B models have a large number of events and thus also often a large num-
ber of transitions. Often, many transitions lead to an already explored state
in the state space. In some settings, e.g., when performing invariant checking,
these transitions are not relevant and just consume memory. To address this
issue we have added a new model checking flag: when setting the preference
SAFETY MODEL CHECK to true ProB will only store one incoming transi-
tion per state, so that a counter example can still be generated.

3.3 State Compression

A state of a B machine can consist of a mixture of variables and constants. ProB
stores constants separately from variables: a stored state contains a reference
to a constant valuation together with the variable values. When constants are
large, ProB is then more (memory) efficient than TLC. Typically the LTSMin
backend also slows down in that setting, because constants are also re-transferred
between ProB and LTSMin.

Generally, ProB has a dedicated module to pack and unpack states for
storage. It uses specialized Prolog functors to compress common data structures.
Furthermore, B strings are encoded as Prolog atoms and as such the string
content is stored only once.

An important data structure in B is the set. Here, ProB’s solver uses bal-
anced AVL-trees, enabling an efficient implementation of a variety of relation
and function operators. For storage, however, these trees are not optimal. First,
they have to be normalised (to ensure that a set representation is canonical).
Second, they take up more memory and ProB thus provides a variety of alter-
nate encodings when storing a set. By default, AVL-trees are flattened into a list
before storing. Furthermore, when ProB’s COMPRESSION preference is true
the following techniques are also applied:

– sets of enumerated values are represented using a bit-vector encoding, i.e., as
a Prolog integer,

– similarly finite total functions mapping to BOOL are represented as bit-
vectors for storage,

– finally sets of values can be stored in a separate table, allowing reuse of the
set value between multiple states and multiple variables (of the same type).

As we will see later in Sect. 5, this compression reduces memory consump-
tion. On some models this may lead to a reduction in runtime (due to reduced
swapping and more efficient state hashing), but the overhead of compression can
also lead to slowdown. However, in the context of operation caching described
in the next section, compression reduces both memory and runtime.

134 M. Leuschel

4 Operation Caching

In this section we suppose some familiarity with the B method. We will use
the classical B machine in Listing 1.1 as running example. The model uses the
ASCII notation, where <: stands for ⊆. The exposition below is not specific to
classical B and is also applicable to Event-B or TLA+, suitably replacing the
name “operation” by “event” or “action” respectively.

A state s of a B machine consists of values for all its variables and constants.
Formally, we view a state as a total function mapping identifiers to values. The
initial state of Listing 1.1 is thus {books �→ ∅, cust �→ ∅, onloan �→ ∅}. Basic
values in B are integers, booleans, strings and user-defined values. Sets, pairs
and records make up complex values in B and can be arbitrarily nested.

An update is simply a partial function mapping identifiers to values. We
denote applying an update δ to a state s by sδ.4

1 MACHINE LibrarySimple
2 SETS
3 BOOKS={b1,b2}; CUSTOMERS = {c1}
4 VARIABLES books , cust , onloan
5 INVARIANT
6 books <: BOOKS &
7 cust <: CUSTOMERS &
8 onloan : books +-> cust
9 INITIALISATION books ,cust ,onloan := {},{},{}

10 OPERATIONS
11 AddBook(b) = SELECT b /: books THEN books := books \/ {b} END;
12 AddCust(c) = SELECT c /: cust THEN cust := cust \/ {c} END;
13 DelBook(b) = SELECT b:books & b /: dom(onloan) THEN books := books \ {b}

END;
14 BorrowBook(c,b) = SELECT b:books & c:cust & b /: dom(onloan) THEN
15 onloan(b) := c
16 END;
17 ReturnBook(b) = SELECT b : dom(onloan) THEN onloan := {b} <<| onloan END
18 END

Listing 1.1. Running Library Example (<: stands for ⊆, : stands for ∈, /: for �∈, \/
for ∪, & for ∧, +-> for partial function, and <<| for domain subtraction)

We denote the fact that an operation op with parameters α is enabled in
a state s by op(α) ∈ en(s). If the execution of such an enabled operation in s

can lead to a new state s′ we write: s
op(α)−−−→ s′. As B operations can be non-

deterministic
op(α)−−−→ is a relation.

Example 1. For Listing 1.1 we have s0
AddBook(b1)−−−−−−−−→ s1, where s0 is the initial

state of the machine (cf. above) and s1 = {books �→ {b1}, cust �→ ∅, onloan �→
∅}. We also have that s1 = s0δ for the update δ = {books �→ {b1}}.

Below we need to reason about the identifiers read and variables written by
an operation. Formally, reads(Op) is the set of variables or constants read in
the entire operation Op, readsgrd(Op) is the set of variables or constants read

4 This corresponds almost to B override operator, except that variables can have
different types.

Operation Caching and State Compression for Model Checking 135

in the guard and writes(Op) is the set of variables (potentially) written by the
operation Op. Note that readsgrd(Op) ⊆ reads(Op).

We define the domain restriction operator � as applied to states: D � s =
{x �→ V | x ∈ D ∧ x �→ V ∈ s}.

Example 2. In Listing 1.1 we have reads(AddBook) = readsgrd(AddBook) =
writes(AddBook) = {books}. We have that writes(AddBook) � s1 = {books �→
{b1}}.

We now establish a few important properties about the read-write infor-
mations of operations. The first lemma allows us to draw conclusions about
enabledness of operations:

Lemma 1. Let x be a variable or constant and V a possible value for x. If
x �∈ readsgrd(o) then o(α) ∈ en(s) ⇔ o(α) ∈ en(s{x �→ V }).

Next we examine the effect of variables which are not read on the entire
execution of an operation.5

Lemma 2. Let x be a variable or constant and V a possible value for x. Let o
be an operation such that x �∈ reads(o).

If x �∈ writes(o) then

s
op(α)−−−→ s′ ⇔ s{x �→ V } op(α)−−−→ s′{x �→ V }.

If x ∈ writes(o) then

s
op(α)−−−→ s′ ⇔ s{x �→ V } op(α)−−−→ s′.

Note that some operations only conditionally write a variable x, in which
case x is also considered to be read! Take for example an operation o with body
IF cust={} THEN books := {b1} END. Here it is vital that books ∈ reads(o);
otherwise part 2 of Lemma 2 would not hold for x = books. The fact that
books ∈ reads(o) is more obvious if we rewrite the operation into the equivalent:
IF cust={} THEN books := {b1} ELSE books := books END.

The next result can be proven by repeated application of the above Lemma 2.
It allows us to capture the effect of an operation on one state via its updates Δ
and apply them safely to other states:

Lemma 3. Let x1, . . . , xk be variables or constants with xi �∈ reads(o). Let δ =
{x1 �→ V1, . . . , xk �→ Vk} be an update. We define Δ(s′, o) = writes(o) � s′ for
which the following holds:

s
op(α)−−−→ s′ ⇔ sδ

op(α)−−−→ (sδ)Δ(s′, o).

5 This lemma could actually also serve as a semantic definition of reads(Op) and
writes(Op).

136 M. Leuschel

Example 3. In Example 1 we had s0
AddBook(b1)−−−−−−−−→ s1. We have Δ(s1, AddBook)

= {books �→ {b1}}. Take s2 = {books �→ ∅, cust �→ {c1}, onloan �→ ∅}. For
δ = {cust �→ {c1}} we have s2 = s0δ. Hence we can apply Lemma 3 to deter-

mine without computation that s2
AddBook(b1)−−−−−−−−→ s2Δ(s1, AddBook) = {books �→

{b1}, cust �→ {c1}, onloan �→ ∅}. These two transitions are illustrated in Fig. 1.

books ,cust
,onloan

books {b1},cust
,onloan

AddBook(b1)

books ,cust
{c1},onloan

books {b1},cust
 {c1},onloan

AddBook(b1)

s0 s1

s2

Fig. 1. Two transitions for AddBook from Listing 1.1

Lemma 3 is the foundation of our operation caching algorithm. The idea is
to store updates Δ(s′, o) and then safely apply them to any new state sδ where
the read variables have not changed. So, instead of recomputing the effect of o,
we simply re-apply the cached updates.

This idea is presented in Algorithm 1; it shows how to compute the effect
of cached operations. Operations which read all variables (such as BorrowBook
in Listing 1.1) are not cached. The cached updates are stored for each cached
operation in a table Cacheop. This table can also be viewed as a projected state
space, showing only the transitions involving op and only showing the variables
in reads(op). This is illustrated in Fig. 2; every Cacheop is a projection of the
full state space. The two transitions of the full state space shown in Fig. 1 can
be reconstructed from a single AddBook transition in Fig. 2.

Algorithm 1 also contains a further improvement, by examining readsgrd(op)
to avoid computing operations which are guaranteed to be disabled by Lemma 1.
This improvement is only applied if readsgrd(op) ⊂ reads(op).

Below is a short summary of the transitions stored in Cacheop as compared to
the full state space with 14 states. (BorrowBook is not projected as it requires all
variables.) Even for this very small example there is a reduction in the amount
of work. For AddBook regular model checking computes the operation 14 times
resulting in 10 transitions. With operation caching we only compute the opera-
tion AddBook 4 times resulting in 4 transitions.

Operation Full Projected

Transitions Transitions States Variables

AddBook 10 4 4 1

AddCust 4 1 2 1

DelBook 10 6 9 2

ReturnBook 6 4 4 1

Operation Caching and State Compression for Model Checking 137

AddCust(c1)

AddBook(b1)

AddBook(b2) AddBook(b1)

AddBook(b2)

ReturnBook(b1)

ReturnBook(b2) ReturnBook(b1)

ReturnBook(b2)

Fig. 2. Projected state space (Cacheop) for three cached operations of Listing 1.1

In the next section we examine whether this theoretical advantage “on paper”
also materializes in practice. As mentioned in the introduction, this was not the
case for earlier implementations of this algorithm. Indeed, Algorithm 1 does not
address some of the practical issues that were relevant for performance.

To determine sproj ∈ dom(Cacheop), the implementation hashes the value of
sproj and first checks whether the hash is new. If not, only then the full values
in sproj are compared.6 The same is true for the check ¬Failsop(sgrd).

Now comes an interesting interplay with state compression: if compression is
enabled, the new implementation computes the hash not on the original values
but on the compressed values, which are typically much smaller. Furthermore,
for performance it is essential to perform compression and hashing incrementally,
e.g., reusing compressed values from predecessor states and sharing compressed
values between cached operations. Finally, the treatment of constants is also
important to avoid re-compressing and re-hashing them at every step.

5 Experiments

One of our goals was to achieve the improvements of the LTSMin backend in
[18] purely within ProB’s model checker. We have hence chosen benchmarks
from the previous articles [4,18] of the LTSMin backend. We have also added
a few benchmarks from the evaluation [10] of the TLC backend. We have only
included benchmarks with runtimes of at least a second (for the default model
checker). We have also added a few new benchmarks from recent applications of
ProB (a CSP‖B Interlocking, an ABZ’2020 automotive model, a GPU scheduler
from Meeduse, a drone model using UML-B and a railway demonstrator from

6 I.e., hash collisions reduce performance but do not affect correctness.

138 M. Leuschel

Algorithm 1. Outline of Operation Caching.
1: procedure ComputeCachedOperation(operation op, state s)
2: sproj ← reads(op) � s
3: if sproj ∈ dom(Cacheop) then
4: for (α, δ) ∈ Cacheop(sproj) do
5: yield (α, stateδ)

6: else
7: sgrd ← readsgrd(op) � s
8: if ¬Failsop(sgrd) then

9: for s′ s.t. s
op(α)−−−→ s′ do

10: Cacheop(sproj) ← Cacheop(sproj) ∪ {(α, Δ(op, s′))}
11: yield (α, s′)

12: if no transition yielded then
13: Failsop(sgrd) ← true

4SecuRail). For the latter two we have added scope predicates to restrict the
state space (so that the benchmarks run in reasonable time).

All benchmark models and a script to execute the experiments below can
be found in an artefact available at https://doi.org/10.5281/zenodo.6416981.
Table 1 contains the list of benchmark models with some statistics. In order, we
have a railway interlocking CSP‖B model [15], a Volvo cruise controller B model
used in [4,10], a GSM model from [6] used in [10], an ABZ’20 case study model
[24], GPU scheduler Meeduse model [14], a model of insertion sort adapted from
[26],7 two artificial benchmarks with large constants (used to benchmark ProB
and uncover performance bottlenecks of operation caching), a drone model [25]
generated from scxml via UML-B to Event-B, Abrial’s interlocking model [2] for
smaller topology with hand-coded partial-order reduction, a railway model of a
demonstrator developed by 4SecuRail [3], a ABZ landing gear case study (used
in [4]), a library information system model [9] (used in [10]) rether protocol and
Simpson four slot models used in [18], a Nokia nota model used in [4], a CAN
Bus model by Colley (used in [4,10,18]).

The tests were run using ProB 1.12.0-beta1 (b0e6595a09) on macOS 12.3.1
on a MacBook Pro (13” 2019, 2.8 GHz Quad-Core Intel Core i7).8 All times
are the total walltime (i.e., time including garbage collection and time spent in
non-Prolog code). ProB’s runtimes are the average of three runs.

The experiments were conducted using the command-line version probcli
using the -bench-csv flag to write statistics to a CSV file. All experiments in
the tables were conducting invariant checking using the -p SAFETY MODEL CHECK

7 The figures in Table 7 of [26] are wrong, however. Insertion sort is quadratic and the
reported timings are almost constant.

8 This version is also available as a separate artefact https://doi.org/10.5281/zenodo.
6415347.

https://doi.org/10.5281/zenodo.6416981
https://doi.org/10.5281/zenodo.6415347
https://doi.org/10.5281/zenodo.6415347

Operation Caching and State Compression for Model Checking 139

Table 1. Overview of the benchmark models (†: scope predicate provided to restrict
state space)

Model Kind Operations Vars + Csts Invariants States Transitions

interlocking [15] CSP‖B 10 31 10 341 739

Cruise B 26 15 25 1361 26149

GSM [6] B 6 14 15 1850 53594

Pitman [24] B 31 20 17 2096 16472

gpuScheduler [14] B 31 8 7 3180 26054

sort100 [26] B 4 6 6 5052 5052

incremental1 B 3 5 2 9002 44993

incremental2 B 3 5 2 9002 44993

drone0 [25] Event-B 15 21 4 † 21862 † 32394

Train1Lukas [2] B 8 11 14 24637 55370

SecuRail B 171 87 75 † 9566 † 28452

Ref5Switch [4] Event-B 38 30 30 29861 184845

Library33 [9] B 10 5 3 35544 372716

rether Event-B 8 8 3 42254 381074

Simpson4Slot B 9 13 10 46658 112754

nota B 11 16 13 80719 1864373

CanBus B 21 19 8 132600 340266

TRUE flag and -disable-time-out option (see Sect. 3.1). The experiments were
run with various combinations of the following flags:

– compression “no” : default compression settings of ProB, corresponds to -p
COMPRESSION FALSE

– compression “yes” : turns state compression on using -p COMPRESSION TRUE
– Caching “no” : default settings of ProB with no operation caching, corre-

sponds to -p OPERATION REUSE FALSE
– Caching “yes” : ProB with operation caching and guard-failure checking,

corresponds to -p OPERATION REUSE full
– Caching “partial” : ProB with operation caching but no guard-failure check-

ing, corresponds to -p OPERATION REUSE TRUE

Memory Consumption. Table 2 shows the memory consumption for five settings.
As we can, turning compression on leads for some models to a considerable
reduction of 13% on average and up to 81% for an artificial benchmark, and
46% reduction for the landing gear case study. Turning operation caching on
increases the memory consumption by 10% on average and up to 85% for Abrial’s
interlocking. However, using compression and caching together leads to an overall
reduction in memory usage, even though there are still some examples where
memory usage increases (up to 32% for Abrial’s interlocking). There are no
significant difference between partial and full caching.

Runtimes. Table 3 contains the walltimes for the experiments in Table 2. (Note:
the times do not include the time to startup ProB nor load the models.) We see

140 M. Leuschel

Table 2. Relative memory consumption of ProB model checking compared to no
compression and no caching (smaller is better)

Compression No Yes No Yes Yes

Caching No No Yes Yes Partial

Model

Interlocking 184.92 MB 1 0.92 1.01 0.93 0.93

Cruise 169.12 MB 1 1.00 1.00 1.00 1.00

GSM 170.43 MB 1 0.99 1.02 1.01 1.01

Pitman 170.80 MB 1 1.00 1.03 1.02 1.02

gpuScheduler 174.33 MB 1 0.99 1.14 1.08 1.08

sort100 203.12 MB 1 0.84 1.01 0.85 0.85

incremental1 174.06 MB 1 1.00 1.01 1.00 1.01

incremental2 894.11 MB 1 0.19 1.00 0.20 0.20

drone0 199.04 MB 1 0.97 1.02 0.98 0.98

Train1Lukas 209.14 MB 1 0.92 1.85 1.32 1.28

SecuRail 197.59 MB 1 0.99 1.01 1.00 1.00

Ref5Switch 392.16 MB 1 0.54 1.01 0.54 0.54

Library33 223.15 MB 1 0.92 1.50 1.11 1.12

Rether 213.39 MB 1 0.96 1.05 0.99 1.00

Simpson4Slot 231.27 MB 1 0.90 1.01 0.91 0.91

Nota 352.57 MB 1 0.78 1.00 0.78 0.78

CanBus 329.87 MB 1 0.93 1.01 0.93 0.93

Average 264.06 MB 1 0.87 1.10 0.92 0.92

Geometric Mean 1 0.83 1.08 0.87 0.87

that turning compression on reduces model checking time slightly (4% on aver-
age). Caching reduces the model checking time significantly (by 52% on average,
e.g. 90% for drone), and using caching with compression together reduces it fur-
ther (by 56% on average and up to 90% for landing gear and drone). Using only
partial compression is slightly worse on average, but beneficial for some models.

In summary, these Tables 2 and 3 show that we can have our cake and eat it:
compression on its own increases runtime, caching on its own increases memory,
adding compression to caching leads to even better runtime while resulting in
an overall reduction in memory consumption.

Comparison with TLC and LTSMin. Table 4 contains a comparison of walltimes
of the TLC and LTSMin backends as compared to ProB with operation caching
and compression (Table 3).

Unfortunately, TLC cannot be applied to Event-B or CSP‖B models, nor to
the SecuRail example because of the use of sequential composition. Also some
rewrites of the models (e.g., CanBus) were necessary to be able to use TLC;
these rewrites were not necessary for ProB or LTSMin. But when the TLC
backend is applicable it is often still faster than ProB. It is slower when the
size of the constants is considerable (incremental1 and 2 benchmarks), as TLC
does not separate constants from variables. TLC also slows down when there is

Operation Caching and State Compression for Model Checking 141

Table 3. Relative walltimes of ProB model checking compared to no compression and
no caching (smaller is better)

Compression No Yes No Yes Yes Yes

Caching No No Yes Partial Yes Yes

Model Speedup

Interlocking 0.86 s 1 1.03 0.79 0.77 0.77 1.29

Cruise 0.80 s 1 1.01 0.44 0.39 0.40 2.47

GSM 1.37 s 1 1.07 0.37 0.35 0.36 2.77

Pitman 2.00 s 1 0.99 0.45 0.45 0.44 2.26

GpuScheduler 3.31 s 1 1.04 0.93 0.93 0.92 1.09

Sort100 0.64 s 1 1.04 1.11 0.91 0.94 1.06

Incremental1 573.00 s 1 1.05 0.00 0.00 0.00 906.64

Incremental2 573.74 s 1 1.04 0.02 0.00 0.00 347.23

drone0 24.46 s 1 1.00 0.10 0.10 0.10 10.00

Train1Lukas 29.64 s 1 1.00 0.42 0.40 0.40 2.49

SecuRail 10.28 s 1 1.05 0.73 0.58 0.64 1.57

Ref5Switch 56.85 s 1 1.07 0.19 0.10 0.10 9.80

Library33 43.93 s 1 1.02 0.74 0.74 0.74 1.36

Rether 19.18 s 1 1.03 0.25 0.24 0.24 4.08

Simpson4Slot 5.73 s 1 1.05 0.71 0.60 0.63 1.60

Nota 70.59 s 1 1.10 0.24 0.22 0.22 4.51

CanBus 25.91 s 1 1.03 0.58 0.47 0.51 1.96

Average 1 1.04 0.48 0.43 0.44 76.60

Geometric Mean 1 1.04 0.26 0.21 0.22 4.65

a large number of variables or constants. For the Cruise and GSM benchmarks
ProB with operation caching is now faster than the TLC backend.

The LTSMin backend works in principle with all models, but a segmenta-
tion fault prevented using it for the first example and there is no support for
scope predicates to restrict the state space. Table 4 shows that LTSMin can still
be faster than ProB. However, in those cases the differences are much smaller
than in [18]. E.g., [18] reported a speedup of 15.97 for rether, now we are down
to a factor of 1.6. The best case for LTSMin is the nota example, which has
very simple and regular structure. This example is maybe not typical of indus-
trial models, but it shows that there is still scope for improving our operation
caching algorithm (but may require incremental hashing, packing and bit fid-
dling at C level; see Sect. 6). For some larger examples, ProB with operation
caching is now faster than LTSMin, e.g., more than 3 times faster for Abrial’s
interlocking. For the UML-B drone example LTSMin’s algorithm seems to break
down, possibly because the states are becoming too large. For the drone example
we did run LTSMin without the scope predicate and obtained a rough estimate
of the number of states processed (over 100 s for 2000 states).

In conclusion, operation caching and compression lead to significant perfor-
mance improvements, completely staying within ProB’s Prolog infrastructure,
with hardly any disadvantage. TLC and LTSMin backends still have their uses,

142 M. Leuschel

Table 4. Relative walltimes of TLC and LTSMin backends compared to ProB with
operation caching and compression, smaller is better (n/a: model not supported by
TLC, †: scope predicate not supported)

Model TLC LTSMin

Interlocking n/a Segfault

Cruise 2.05 1.75

GSM 1.09 1.16

Pitman 0.37 2.26

GpuScheduler 0.10 1.84

Sort100 2.83 9.36

Incremental1 28.94 1.05

Incremental2 19.32 0.40

Drone0 n/a † >50

Train1Lukas 0.42 2.94

SecuRail n/a †
Ref5Switch n/a 0.14

Library33 0.11 2.23

rether n/a 0.69

Simpson4Slot 0.43 0.20

Nota 0.32 0.06

CanBus 0.24 0.14

though, and can be beneficial when applicable. As some benchmarks show, there
is scope to improve the operation caching implementation further.

6 Discussion and Conclusion

Partial Order Reduction. Operation caching is related to partial order reduction
(POR). In contrast to POR, operation caching does not diminish the size of the
state space, it only avoids computing certain edges. Its applicability conditions
are, however, much more liberal than that of POR.

In fact, if two operations are independent operation caching can also derive
independent caching tables (Cacheop). In Listing 1.1 the operation AddCust is
syntactically independent of AddBook and operation caching computes inde-
pendent projected state spaces (see Fig. 2). Within each projected state space
POR might still be useful, e.g., for AddBook or ReturnBook in Fig. 2; but this
would require POR to split an operation according to parameters (see [17]).
Such a splitting could also be beneficial for operation caching. E.g., if we split
the onloan variable into one variable per book, we could derive separate caching
tables for ReturnBook(b1) and ReturnBook(b2).

Partial guard evaluation [8] is also somewhat related to operation caching.
But its gains are modest, probably because it only affects the guard evaluations
and like POR is dependent on precise static information.

State Compression. Spin [12] provides various compression techniques, such as
collapse mode [11]. LTSMin [16], uses TreeDBS [19] for fixed length states.

Operation Caching and State Compression for Model Checking 143

ProB, however, needs to support variable length states. Possibly the recent
DTREE approach [28] could be adapted for ProB states.

In future we could enable better sharing of subsets of B values amongst
different variables. Another improvement would be to store only incremental
updates to variables rather than full values of modified variables. For example,
rather than storing {books �→ {b1, b2}} in Fig. 2 for AddBook(b1), we would
simply store {books �→∪ {b1}}. Similarly, for an action like i := i + 1 we could
simply store {i �→+ 1} and thus be independent of the current value of i. This
would also make caching applicable to a larger set of projected states.

Various Improvements. As mentioned operation caching does not change the full
state space. In future we could try and avoid storing the full state space explicitly;
only implicitly by conjunction of projected state spaces of Fig. 2. Operation
caching is also orthogonal to symmetry reduction [23]. Looking at Fig. 2 we
can see that applying symmetry would also reduce the projected state spaces.
Symmetry and operation caching are both applicable and do not interfere.

There are still various ways to fine tune the current Prolog implementation
of Algorithm 1. In particular, we could share the hashing amongst different
operations with the same or similar set reads(Op).

Another important area is to devise a heuristic on when to automatically
enable operation caching. Currently, Algorithm 1 is applied to an operation Op
if at least one variable is projected away (reads(Op) ⊂ V ars). But this may
not be enough to warrant the overhead of caching. Hence, an improved heuristic
could take the number of read variables and their typing into account. Note
that some variables are dependent; projecting away a dependent variable is not
beneficial. Such problems could be detected in the fashion of a JIT compiler:
after a warmup phase the model checker evaluates the effectiveness of caching
and if the number of next state calls is similar to the number of states we stop
caching the affected operation.

Conclusion. This work was motivated by achieving similar model checking
improvements as with the LTSMin backend [18]. In Sect. 4.1 of [18] two early
unsuccessful attempts were reported, one in Prolog and one in C. For the for-
mer hashing was too slow, for the latter the serialization overhead (to convert
Prolog terms to C) was too costly. In this article we have developed a success-
ful Prolog implementation, with incremental hashing and combined with state
compression. Even though the development of the algorithm took considerable
development effort, and is certainly not optimal yet, the result is already very
satisfactory, yielding an order of magnitude improvements for several practical
examples. The technique integrates well with all other features of ProB (e.g.,
coverage analyses or state space projection and visualisation) and can be applied
to more formalisms such as CSP‖B. We have also provided a formal explanation
and justification of the operation caching approach, and conducted an empirical
evaluation. The latter has shown that we can have our cake and eat it too: state
compression alone increases runtime, operation caching alone increases memory

144 M. Leuschel

consumption, but combined compression and caching further improves runtime
while leading to an overall reduction in memory consumption.

Acknowledgements. Many thanks for Colin Snook for providing me with the UML-
B drone example and to anonymous referees for their useful feedback. I am also grateful
to Philipp Körner and Fabian Vu for insightful discussions.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
3. Basile, D., et al.: Designing a demonstrator of formal methods for railways infras-

tructure managers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12478, pp. 467–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61467-6 30

4. Bendisposto, J., et al.: Symbolic reachability analysis of B through ProB and
LTSmin. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp.
275–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 18

5. Bendisposto, J., Leuschel, M.: Proof assisted model checking for B. In: Breitman,
K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 504–520. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10373-5 26

6. Bernard, E., Legeard, B., Luck, X., Peureux, F.: Generation of test sequences from
formal specifications: GSM 11–11 standard case study. Softw. Pract. Exp. 34(10),
915–948 (2004)

7. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 31

8. Dobrikov, I., Leuschel, M.: Enabling analysis for Event-B. Sci. Comput. Program.
158, 81–99 (2018)

9. Frappier, M., Fraikin, B., Chossart, R., Chane-Yack-Fa, R., Ouenzar, M.: Com-
parison of model checking tools for information systems. In: Dong, J.S., Zhu, H.
(eds.) ICFEM 2010. LNCS, vol. 6447, pp. 581–596. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16901-4 38

10. Hansen, D., Leuschel, M.: Translating B to TLA+ for validation with TLC. Sci.
Comput. Program. 131, 109–125 (2016)

11. Holzmann, G.J.: State compression in SPIN: recursive indexing and compression
training runs. Technical report (1997)

12. Holzmann, G.J.: The model checker Spin. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

13. Holzmann, G.J.: Explicit-state model checking. In: Handbook of Model Checking,
pp. 153–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 5

14. Idani, A.: Meeduse: a tool to build and run proved DSLs. In: Dongol, B., Troubit-
syna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 349–367. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63461-2 19

15. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S.A., Treharne,
H.: On modelling and verifying railway interlockings: tracking train lengths. Sci.
Comput. Program. 96, 315–336 (2014)

https://doi.org/10.1007/978-3-030-61467-6_30
https://doi.org/10.1007/978-3-030-61467-6_30
https://doi.org/10.1007/978-3-319-33693-0_18
https://doi.org/10.1007/978-3-642-10373-5_26
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/978-3-642-16901-4_38
https://doi.org/10.1007/978-3-319-10575-8_5
https://doi.org/10.1007/978-3-030-63461-2_19

Operation Caching and State Compression for Model Checking 145

16. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

17. Körner, P., Leuschel, M.: Towards practical partial order reduction for high-level
formalisms (2022). (Submitted)

18. Körner, P., Leuschel, M., Meijer, J.: State-of-the-art model checking for B and
event-B using ProB and LTSmin. In: Furia, C.A., Winter, K. (eds.) IFM 2018.
LNCS, vol. 11023, pp. 275–295. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98938-9 16

19. Laarman, A., van de Pol, J., Weber, M.: Parallel recursive state compression for
free. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp. 38–56.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22306-8 4

20. Ladenberger, L., Leuschel, M.: Mastering the visualization of larger state spaces
with projection diagrams. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 153–169. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 10

21. Leuschel, M.: The high road to formal validation. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 4–23. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87603-8 2

22. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

23. Leuschel, M., Massart, T.: Efficient approximate verification of B via symmetry
markers. Ann. Math. Artif. Intell. 59(1), 81–106 (2010)

24. Leuschel, M., Mutz, M., Werth, M.: Modelling and validating an automotive system
in classical B and Event-B. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020.
LNCS, vol. 12071, pp. 335–350. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-48077-6 27

25. Morris, K., Snook, C., Hoang, T.S., Hulette, G., Armstrong, R., Butler, M.: Formal
verification of run-to-completion style statecharts using event-B. In: Muccini, H.,
Avgeriou, P., Buhnova, B., Camara, J., Caporuscio, M., Franzago, M., Koziolek,
A., Scandurra, P., Trubiani, C., Weyns, D., Zdun, U. (eds.) ECSA 2020. CCIS,
vol. 1269, pp. 311–325. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59155-7 24

26. Rivera, V., Cataño, N., Wahls, T., Rueda, C.: Code generation for event-B. STTT
19(1), 31–52 (2017)

27. Treharne, H., Schneider, S.: How to drive a B machine. In: Bowen, J.P., Dunne,
S., Galloway, A., King, S. (eds.) ZB 2000. LNCS, vol. 1878, pp. 188–208. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44525-0 12

28. Berg, F.I.: Recursive variable-length state compression for multi-core software
model checking. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
(eds.) NFM 2021. LNCS, vol. 12673, pp. 340–357. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-76384-8 21

29. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-319-98938-9_16
https://doi.org/10.1007/978-3-319-98938-9_16
https://doi.org/10.1007/978-3-642-22306-8_4
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-540-87603-8_2
https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/978-3-030-59155-7_24
https://doi.org/10.1007/978-3-030-59155-7_24
https://doi.org/10.1007/3-540-44525-0_12
https://doi.org/10.1007/978-3-030-76384-8_21
https://doi.org/10.1007/978-3-030-76384-8_21
https://doi.org/10.1007/3-540-48153-2_6

Time

Conservative Time Discretization:
A Comparative Study

Marcelo Forets1 and Christian Schilling2(B)

1 DMA, CURE, Universidad de la República, Montevideo, Uruguay
2 Aalborg University, Aalborg, Denmark

christianms@cs.aau.dk

Abstract. We present the first review of methods to overapproximate
the set of reachable states of linear time-invariant systems subject to
uncertain initial states and input signals for short time horizons. These
methods are fundamental to state-of-the-art reachability algorithms for
long time horizons, which proceed in two steps: First they use such
a method to discretize the system for a short time horizon, and then
they efficiently obtain a solution of the new discrete system for the long
time horizon. Traditionally, both qualitative and quantitative compar-
ison between different reachability algorithms has only considered the
combination of both steps. In this paper we study the first step in isola-
tion. We perform a variety of numerical experiments for six fundamental
discretization methods from the literature. As we show, these methods
have different trade-offs regarding accuracy and computational cost and,
depending on the characteristics of the system, some methods may be
preferred over others. We also discuss preprocessing steps to improve the
results and efficient implementation strategies.

Keywords: Time discretization · Linear system · Reachability

1 Introduction

We study the fundamental problem of reachability for a system of linear differ-
ential equations. Given a set of initial states X0 ⊆ R

n, we are interested in the
set of states that can be reached by any trajectory up to some time horizon.

The classical analysis approach is numerical simulation, which has several
drawbacks. First, one can only simulate finitely many trajectories, but a system
has infinitely many trajectories. Second, a simulated trajectory is only available
at finitely many discrete points in time. Third, even for these discrete points in
time, a standard simulation is not guaranteed to be exact. For all these reasons,
simulation may miss critical behaviors, which can lead to wrong conclusions.

In contrast, reachability algorithms construct a finite sequence of sets cov-
ering all possible continuous trajectories of the system. In general it is not
possible to represent the exact set of reachable states, but for linear systems one
can obtain arbitrary-precision approximations as a union of convex sets [6,28].
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 149–167, 2022.
https://doi.org/10.1007/978-3-031-07727-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_9&domain=pdf
http://orcid.org/0000-0002-9831-7801
http://orcid.org/0000-0003-3658-1065
https://doi.org/10.1007/978-3-031-07727-2_9

150 M. Forets and C. Schilling

(a) Sketch of the reachability problem. (b) Two possible solutions for Ω0.

(c) First three steps of the iteration in a reachability algorithm.

Fig. 1. Left: Starting from the initial states X0 (yellow), we want to enclose the states
reachable within [0, δ], R[0,δ], covering the random trajectories (magenta). Right: The
purple set is the smallest convex solution for Ω0. The blue set is a zonotope solution for
Ω0 computed with the method in [9]. Bottom: The first three sets of the discretized
system computed by a reachability algorithm. (Color figure online)

The fundamental procedure behind all modern reachability algorithms [5]
consists of two stages. In the first stage, the system is discretized, i.e., approxi-
mated by a discrete system. This requires to find a Euclidean set Ω0 ⊆ R

n that
includes all states reachable starting from any initial state x(0) ∈ X0 up to a
small time horizon δ, as illustrated in Fig. 1(a). Two possible solutions for Ω0

are presented in Fig. 1(b). In the second stage, the set Ω0 is propagated forward
in time until the time horizon is reached, which is sketched in Fig. 1(c). Thus
computing a precise Ω0 is important for the precision of the overall result.

All state-of-the-art reachability tools such as CORA [3], the continuous ver-
sion of Hylaa [12], HyPro [30], JuliaReach [13], and SpaceEx [21] follow this pro-
cedure of discretizing and computing an approximation Ω0. Over the years, mul-
tiple methods to obtain such sets Ω0 have been proposed [4,9,11,14,16,21,22,28].
These methods are tailored toward different set representations as a requirement
of the second stage of the reachability algorithm. The two prevalent options are

Conservative Time Discretization: A Comparative Study 151

a concrete representation with a zonotope and a lazy representation based on
the support function. Nevertheless, the different sets Ω0 solve the same problem
and can be partially interchanged between different algorithms. However, to our
knowledge, these methods have never been compared to each other.

In this article we study different methods to compute Ω0. We introduce this
problem formally in the next section. Our study has these particular goals:

– Present the methods in a unified way (Sect. 3).
– Discuss potential gains of system transformations (Sect. 4).
– Discuss aspects of an efficient implementation (Sect. 5).
– Assess the effect of different system characteristics and evaluate the methods

on different systems (Sect. 6).

An extended version of this paper is available in [18].

2 Problem Statement

In this work we study linear time-invariant (LTI) systems, which have the state-
space form

ẋ(t) = Ax(t) + u(t), (1)

where x is an n-dimensional state vector, A ∈ R
n×n is the flow matrix, and

u is a bounded but arbitrarily varying input signal that belongs to the input
domain U ⊆ R

n, i.e., u(t) ∈ U for all t ≥ 0. It is common to associate a
linear map B with u in (1), but this map can be absorbed in U (via U �→ BU ,
which is no restriction in practice because common set representations for U
such as zonotopes are closed under linear maps). An LTI system is homogeneous
if U = {0} and heterogeneous otherwise. We consider initial-value problems for
system (1) where the initial state x(0) ∈ R

n is taken from a set of initial states
X0 ⊆ R

n. The solution of (1) for a particular initial state x0 and input signal
u is the trajectory ξx0,u(t), which is a function of time. The set of solutions at
time t is the set of reachable states

Rt = {ξx0,u(t) : x0 ∈ X0, u ∈ U}, (2)

and we generalize this set to time intervals

R[t0,t1] = {ξx0,u(t) : x0 ∈ X0, u ∈ U , t ∈ [t0, t1]}. (3)

The time-bounded reachability problem asks to compute the set of reachable
states R[0,T] up to a time horizon T . Solving this problem exactly for LTI systems
is generally not possible [26]. Hence an overapproximation Ω ⊇ R[0,T] is sought
in practice. The common approach to compute the set Ω proceeds in two stages.

In the first stage, conservative time discretization is applied to compute a set
Ω0 with the property that it encloses the exact reachable states for an initial
time interval [0, δ], i.e., Ω0 ⊇ R[0,δ]; usually one chooses a small value for δ,
much smaller than T . We illustrate two possible choices for Ω0 in Fig. 1(b).

152 M. Forets and C. Schilling

For efficiency reasons, in practice one restricts Ω0 to convex sets. Under this
restriction, the smallest set Ω0 is the convex hull of R[0,δ] (purple set in Fig. 1(b)).

In a similar fashion to Ω0, the second stage also requires a discretized input
set V, which encloses the trajectories of system (1) but starting from the origin
(x(0) = 0), up to the time horizon δ. Since the set U is often assumed to have
a simple shape, the computation of V is straightforward and mostly identical
across the different discretization methods, and we do not discuss it further.

The second stage propagates the set Ω0 through consecutive time intervals
until reaching the time horizon T , which we sketch briefly because the technical-
ities are not of interest. The sequence of sets Ωk, k ≥ 0, is given by the following
recurrence, where ⊕ denotes the Minkowski sum, X ⊕Y = {x+y : x ∈ X , y ∈ Y}:

Ωk = eAδkΩ0 ⊕
k−1⊕

j=0

eAδjV (4)

We finally define our approximation of the reachable states (see Fig. 1(c)) as

Ω =
⋃

k=0

Ωk. (5)

We note that state-of-the-art reachability algorithms for LTI systems are
wrapping-free, i.e., they do not accumulate errors over time; as such, the precision
of these algorithms is mainly determined by the precision of Ω0 and V.

The reader may wonder why reducing the problem of computing Ω ⊇ R[0,T]

to the problem of computing Ω0 ⊇ R[0,δ], which is structurally equivalent, makes
sense. It is important to remark that there are good convex approximation meth-
ods for small enough values of δ, but these methods fail for large values of δ (as
we shall see later). While Ω0 is convex, Ω is a union of convex sets (and thus
typically not convex). We also note the analogy to numerical simulation meth-
ods, which may also require that the time step is small enough, for instance by
the well-known Courant-Friedrichs-Lewy condition.

In summary, the fundamental problem that we study here is:

Problem 1. Given an LTI system and a time horizon δ, find a set Ω0 ⊇ R[0,δ].

3 Discretization Methods

In this section, after fixing some common notation and mentioning approaches
for nonlinear systems, we introduce various methods to obtain a conservative dis-
cretization Ω0 for solving Problem 1. The presentation follows the chronological
order in which these methods have been proposed. The methods for computing
Ω0 we consider here assume that X0 and U are at least compact and convex.
Under this condition it is known that Rt is also compact and convex for any
t (unlike the sets R[t1,t2]). We end the section with pointers to related works
outside the scope of this study.

Conservative Time Discretization: A Comparative Study 153

3.1 Notation

In this article, when the norm of an operator is not specified, we assume a p-norm
with 1 ≤ p ≤ ∞. We denote the ball of radius ε in some p-norm and centered
in the origin by Bε, and Bp

ε when the p-norm is relevant. Let X ,Y ⊆ R
n be

sets. The norm of X is defined as ‖X‖ = supx∈X ‖x‖. The symmetric interval
hull of X , written �(X), is the smallest hyperrectangle that contains X and is
centrally symmetric in the origin. We write CH (X ,Y) to denote the convex hull
of the union of X and Y, and ρ(d,X) to denote the support function of X along
direction d ∈ R

n (see for instance [19] for a formal definition and examples).
Given system (1), we define the state-transition matrix Φ = eAδ as the matrix
exponential of Aδ. The following matrix function is also relevant:

Φ2(A, δ) =
∞∑

i=0

δi+2

(i + 2)!
Ai. (6)

If A is invertible, Φ2(A, δ) = A−2(Φ− I −Aδ). See Sect. 5.2 for the computation.

3.2 Methods for Nonlinear Systems

In principle, we can apply reachability algorithms for nonlinear systems to LTI
systems as a special case. However, the methods developed specifically for LTI
systems are much more precise and scalable. Hence we do not include nonlinear
approaches in our study and only briefly mention some relevant works below.

A polyhedral enclosure Ω0 can be computed for any dynamical system by
choosing a set of normal directions (di)i and solving the corresponding optimiza-
tion problems maxt∈[0,δ] d

T
i x(t) [16]. This scheme relies on a sound optimizer and

the run time depends on the number of directions and is difficult to predict. For
LTI systems, the analytic expression of x(t) can be used [27, Sect. 5.3].

The work in [10], describes how to deal with nondeterministic inputs for
Lipschitz-continuous systems. If L is the Lipschitz constant, the reachable states
of the heterogeneous system are contained in the bloated reachable states of the
homogeneous system: fheterog ⊆ fhomog ⊕ Bε, where ε = ‖U‖

L (eLδ − 1).

3.3 Common Structure of Methods for Linear Systems

Examining the different methods that we study in the remainder of this section,
the following common structure emerges:

Ω0 = CH (X0, ΦX0 ⊕ H) ⊕ J , (7)

for suitable sets H and J (possibly empty). In short, the idea is to compute
the convex hull between the reachable states at time 0 and at time δ, X0 and
ΦX0. That would suffice if the trajectories were just following straight lines. To
correct for the curvature, the bloating terms H and J need to be added.

154 M. Forets and C. Schilling

3.4 First-Order d/dt Method

The earliest work specifically designed for linear systems we are aware of was
developed for the tool d/dt [11]. This work only considers homogeneous systems.
The definition is

Ω0 = CH (X0, ΦX0) ⊕ Bε, (8)

where
ε =

(
e‖A‖δ − 1 − ‖A‖δ

)
‖X0‖ − 3

8
‖A‖2δ2‖X0‖. (9)

We note that the authors also claim that their method can be used to obtain
an underapproximation, but this is not correct (see [18] for details).

3.5 First-Order Zonotope Method

The work in [22] computes a zonotope enclosure. The idea is to cover
CH (X0, ΦX0) with a zonotope and then bloat with another zonotope (here: a
ball in the infinity norm):

Ω0 = zonotope(CH (X0, ΦX0)) ⊕ B∞
ε (10)

where
ε =

(
e‖A‖∞δ − 1 − ‖A‖∞δ

)(
‖X0‖∞ +

‖U‖∞
‖A‖∞

)
+ δ‖U‖∞. (11)

3.6 Correction-Hull Method

The method in [9] is designed for interval dynamics matrix A, which represents
uncertain parameters and has the scalar matrix as a special case. The resulting
set, a zonotope, is constructed from interval linear maps, which is described in [9,
Theorem 4]. The approach is based on truncating the Taylor series at a chosen
order p, and this order must satisfy the following inequality:

α =
‖A‖∞δ

p + 2
< 1. (12)

The method assumes that the input domain U contains the origin. If this
is not the case, a simple transformation can bring the system to this form [2,
Sect. 3.2.2], which we describe in Sect. 4.1. Then we have the following definitions:

Ω0 = CH (X0, ΦX0) ⊕ FpX0 ⊕ GpU , (13)

where the correction matrices F and G are

Fp = E +
p∑

i=2

[δi(i
−i
i−1 − i

−1
i−1), 0]

Ai

i!
(14)

Conservative Time Discretization: A Comparative Study 155

and

Gp = Eδ +
p∑

i=0

Aiδi+1

(i + 1)!
. (15)

The remainder matrix E to bound
∑∞

i=p+1 Aiδi/i! is a diagonal interval matrix
based on results in [29]; here the assumption (12) is relevant to make the geo-
metric series

∑
i αi converge. Define

E = [−ε, ε]1 (16)

where 1 is the n × n matrix filled with ones and

ε =
(‖A‖∞δ)p+1

(p + 1)!
1

1 − α
. (17)

The method was later extended in [8] and in our implementation we use the
remainder term E from that work instead.

3.7 First-Order Method

The method in [28] uses a first-order approximation similar to [22] in Sect. 3.5,
but in contrast it is not restricted to zonotopes and the infinity norm:

Ω0 = CH (X0, ΦX0 ⊕ δU ⊕ Bε) (18)

where
ε =

(
e‖A‖δ − 1 − ‖A‖δ

) (
‖X0‖ +

‖U‖
‖A‖

)
. (19)

3.8 Forward-Backward Method

The approach in [21] describes an optimization procedure similar in spirit to the
one discussed in Sect. 3.2 but specialized for LTI systems. Here one only needs
to optimize over a quadratic function. First we define some auxiliary terms.

E+ = �(Φ2(|A|, δ) � (A2X0)) (20)

E− = �(Φ2(|A|, δ) � (A2ΦX0)) (21)
Eψ = �(Φ2(|A|, δ) � (AU))

Yλ = (1 − λ)X0 ⊕ λΦX0 ⊕ λδU ⊕ (λE+ ∩ (1 − λ)E−) ⊕ λ2Eψ (22)

Here the term E+ goes forward from X0 and the term E− goes backward
from ΦX0, and it is sufficient to consider their intersection. The solution is then
obtained by optimizing Yλ (where the objective function is piecewise-linear for
homogeneous systems and piecewise-quadratic for heterogeneous systems):

Ω0 = CH (
⋃

λ∈[0,1]

Yλ). (23)

156 M. Forets and C. Schilling

3.9 Forward-Only Method

The work in [14] uses a simplified version of (23) with only a forward approxi-
mation, which works without an optimization procedure. It can be seen that

CH (
⋃

λ∈[0,1]

Yλ) ⊆ CH (Y0,Y1 ⊕ E+) (24)

and this method accordingly uses

Ω0 = CH (X0, ΦX0 ⊕ δU ⊕ Eψ ⊕ E+), (25)

where E+ and Eψ are defined in (20) and (22). Analogously one can define a
“backward-only” method by using E− instead of E+.

3.10 Combining Methods

It should be noted that if Ωa
0 and Ωb

0 are two solutions to Problem 1, then their
intersection Ωa

0 ∩ Ωb
0 is also a solution. (The dual statement holds for under-

approximations and their unions.) It is hence possible to combine the different
methods outlined above. This idea was used in [17] where the authors combined
the “forward-only” method with the mentioned “backward-only” method; this
method yields solutions that are closer to the “forward-backward” method than
these methods individually but is more efficient than the latter.

3.11 Application to High-Dimensional Systems

The approach in [4] shows how to efficiently work with high-dimensional systems.
The construction of Ω0 is similar to the “correction-hull” method, including the
focus on zonotopes as set representation. The difference is that the structure of
the solution is rewritten to rely on matrices in the Krylov subspace. The idea is
to compute two matrices W and H to approximate the effect of a vector v on
the matrix exponential eA without computing it:

eAv ≈ ‖v‖WeHe1. (26)

The matrix exponential eH can be computed efficiently, and there exist esti-
mates to bound the above approximation error [4].

In [17] the authors demonstrated that the “forward-only” method can also be
efficiently implemented with Krylov techniques.

3.12 Application to Time-Varying Systems

Linear systems whose dynamics are time-varying due to uncertain parameters
can be represented with interval matrices. This setting differs from the one in
[9] from Sect. 3.6 where the system dynamics are uncertain but time-invariant.
Methods based on zonotopes to handle such systems are presented in [2,7].

Conservative Time Discretization: A Comparative Study 157

4 Problem Transformations

In this section we shortly explain possible transformations of system (1) to a
normal form. These transformations are simple but yield interesting results.

For illustration, we use a simple harmonic oscillator with inputs f ,

ÿ(t) + ω2y(t) = f, (27)

where ω2 = 4π, m = 1 and y(t) is the unknown. This problem can be associated
with a spring-mass system, where y(t) is the elongation of the spring at time
t and ω is the natural frequency. Bringing Eq. (27) to the first-order form of
Eq. (1) with the change of variables x(t) = [y(t), ẏ(t)]T , we obtain

ẋ(t) =
(

0 1
−4π 0

)
x(t) +

(
0
f

)
. (28)

4.1 Homogenization

The first transformation, which was used in [2, Sect. 3.2.2] for the “correction-
hull” method (although with a different goal) and in [17], expresses some of
the inputs’ effect with a fresh state variable. For deterministic systems (i.e.,
where the input domain U is a singleton), this allows to completely eliminate
the inputs. For proper nondeterministic systems, this extracts the “central” effect
of the input signals into a state variable and only leaves the deviation from this
central effect, effectively re-centering the input domain U in the origin. The
transformation is motivated because U is treated rather pessimistically in the
methods to compute Ω0 (e.g., it may appear in the form of its norm ‖U‖).

We illustrate the issue in one dimension. For the p-norms considered here and
any a ∈ R we have ‖a‖ = ‖ − a‖. Hence the norm of the singleton U1 = {a} is
equivalent to the norm of the proper interval U2 = [−a, a]. Thus Ω0 is identical
in both cases, but since it must cover the U2 case, with many more possible
behaviors, it is coarse for U1 and large a.

Now suppose that the input domain U is centrally symmetric but not centered
in the origin. The idea of the transformation is to shift U to the origin and add
another state variable to account for this shift. Formally, assume a heterogeneous
system (1), an initial set X0, and a domain U centered in a point c �= 0. We define
a new system ẏ(t) = Cy(t) + u(t), where we have the block matrix

C =
(

A b
α

0 0

)
(29)

for some value α �= 0, Y0 = X0×{α} is the new initial set, and U⊕{−c} is the new
input domain. The parameter α can be used to trade off the impact in the norm of
C (for methods where this term appears) and Y0. This transformation increases
the state dimension n by one and removes the input dimension. The modification
of the initial states (i.e., the construction of Y0 from X0) is efficient for typical

158 M. Forets and C. Schilling

(a) Homogenizing a deterministic system. (b) Reduced time step.

Fig. 2. Left: Several trajectories and the sets Ω0 for a deterministic heterogeneous
system (blue) and for the (projected) homogenized system (green). Right: Several
trajectories and the sets Ω0 obtained with a time step δ = 0.1 (blue) and obtained by
first computing the sets Ω′

0, . . . , Ω
′
9 with a time step γ = 0.01 (light gray, below the

trajectories) and then computing the convex hull of their union (green). We use the
“forward-only” method in all cases. (Color figure online)

set representations of X0. Likewise, projecting away the auxiliary dimension
in the end is efficient for common set representations since this dimension is
independent of all other dimensions and has the constant value 1.

It is easy to see that the set of trajectories of the latter system, after project-
ing away the auxiliary dimension, is equivalent to the set of trajectories of the
original system. Yet, discretization methods typically yield more precise results
for the latter system. We illustrate this claim in Fig. 2(a) for the deterministic
harmonic oscillator. The effect for nondeterministic systems is similar [18].

4.2 Shrinking the Time Step

The time step δ has a large impact on the precision of Ω0. Recall that Ω0 is
convex while R[0,δ] is generally not, so we have Ω0 ⊇ CH (R[0,δ]) ⊇ R[0,δ]. The
gaps between these three sets grow with larger δ. Indeed, most methods have
the property that they converge to R[0,δ] for δ → 0. The reason for not choosing
a very small δ in practice is that the reachability algorithm requires �T

δ � steps to
cover the time horizon T . Hence one needs to find a balance for δ: small enough
to obtain a precise Ω0 and large enough to be efficient later.

Observe that the gap between CH (R[0,δ]) and R[0,δ] only depends on δ. Say
that we fix δ to keep �T

δ � in a feasible range. The best we can do is minimize
the gap between Ω0 and CH (R[0,δ]). We can achieve this by choosing a positive
integer k and a smaller time step γ = δ/k, computing the corresponding dis-
cretization Ω′

0 and propagating it (using some reachability algorithm) until time
horizon δ, which yields sets Ω′

0, . . . , Ω
′
k−1, and finally constructing Ω0 from their

convex hull CH (Ω′
0 ∪ · · · ∪ Ω′

k−1). We illustrate this idea in Fig. 2(b).

Conservative Time Discretization: A Comparative Study 159

5 Efficient Implementation

As mentioned in Sect. 3.3, the different methods can be phrased in the structure
of Eq. (7). Exceptions to this rule are the “first-order zonotope” method and the
“forward-backward” method. The former applies an intermediate simplification
to the CH, while the latter involves a CH in a continuous variable. In this section
we describe how to operate with Eq. (7) numerically in an efficient way, even in
high dimensions. We show example code for the set library LazySets.jl1 [19]. If
we allow for a post-processing operation, all the discretization methods can be
cast into the same symbolic-numeric framework. In [18] we briefly describe the
user interface for the implementation of the discretization methods available in
the library ReachabilityAnalysis.jl2.

5.1 The Concept of a Lazy Set

The key to an efficient implementation is lazy evaluation, that is, to delay compu-
tational effort until a result is needed. For example, we show how the “first-order
d/dt” method from Sect. 3.4 can be implemented using LazySets, with the har-
monic oscillator from Sect. 4 as running example. In this case, the sets H and
J in Eq. (7) are the empty set and Bε, respectively. The following command
defines the set Ω0 as a lazy representation of Eq. (8).

� �

1 # first - o r d e r d / dt m e t h o d
2 j u l i a > Ω0 = CH (X 0 , Φ* X 0) ⊕ B

� �

In other words, the lazy set operations (Minkowski sum, con-
vex hull, and linear map) are not evaluated. The execution is
instantaneous, while obtaining a concrete representation such
as a polyhedron scales with the dimension of the sets. The
operations are internally represented in the form of a tree as
shown in the diagram on the right. Further operations such as
the support function, conversion, and approximation can be
efficiently applied to that symbolic representation [19].

⊕

CH

X0 *

Φ X0

B

5.2 Computation of Matrix Functions

Some discretization methods require special matrix functions such as Φ2 defined
in Eq. (6). If A is not invertible, it can be obtained as the sub-matrix of the
exponential of a higher-order matrix [21]. However, for large systems (typically
n > 2000 depending on the sparsity pattern of A), such an approach can be
prohibitively expensive. Instead, it is possible to use Krylov-subspace meth-
ods as discussed in Sect. 3.11, provided that we reformulate the problem as the

1 See github.com/JuliaReach/LazySets.jl.
2 See github.com/JuliaReach/ReachabilityAnalysis.jl.

https://github.com/JuliaReach/LazySets.jl
https://github.com/JuliaReach/ReachabilityAnalysis.jl

160 M. Forets and C. Schilling

Table 1. Average run times (in seconds) for different heat model instances.

Model instance HEAT01 HEAT02 HEAT03 HEAT04
Mesh points 53 103 203 503

Forward 0.134 23.6 – –
Forward & Krylov 0.001 0.004 0.07 1.367

action of a matrix function over a direction. To illustrate this point, consider
the “forward-only” from Sect. 3.9. Assume that the system is homogeneous and
X0 is a hyperrectangle with center and radius vectors c, r ∈ R

n respectively. A
priori, the Krylov method does not apply to Eq. (20) because Φ2 is acting on the
set Hin := �(A2X0). However, we observe that Hin is a hyperrectangle centered
in the origin with radius rin = |A2c| + |A2|r. Therefore, it suffices to compute
|Φ2(|A|, δ)|rin = Φ2(|A|, δ)rin using Krylov methods.

As an application, we consider the discretized heat partial differential equa-
tion models. The model is obtained from a spatial discretization of a partial
differential equation for heat transfer in three dimensions. Originally presented
in [23] for two dimensions and later extended to three dimensions, it was used
as a benchmark example for reachability analysis [5,12]. The model dimension
is scalable and here we consider four different instances of increasing complex-
ity, which are labeled HEAT0x, for grids of size n × n × n mesh points, i.e., the
associated ODEs are n3-dimensional. The goal is to find the maximum temper-
ature reached at the center of the spatially discretized domain, where one of its
edges is initially heated. Since each mesh point corresponds to a given direction,
it is sufficient to compute the support function along the center of the mesh.
Furthermore, the set of initial states is a hyperrectangle contained in [0, 1]3 and
the matrix A is hermitian.

We use Krylov subspace dimension m = 30 for instance HEAT01 and m = 100
for the rest (see [25] for details). A run-time comparison is presented in Table 1.
The computation of the matrix exponential with the non-Krylov implementation
runs out memory for the larger instances. The Krylov method additionally offers
a significant speedup.

5.3 Simplification of the Set Representation

It is possible to post-process the set Ω0 with another set that makes it easier
to operate with in reachability algorithms. For example, an approximation with
an axis-aligned box can be used. The main advantage of such a representation
is that the support function can be computed efficiently. This is shown in the
following comparison when computing the support function of Ω0 resp. its box
approximation along direction d = (1, 1)T . The box approximation of Ω0 has
approximately the same support value, but the computation is 13× faster.

Conservative Time Discretization: A Comparative Study 161

� �

1 j u l i a > b o xΩ0 = b o x _ a p p r o x i m a t i o n (Ω0) ;
2
3 j u l i a > d = [1 .0 , 1 .0] ;
4
5 j u l i a > ρ (d , Ω0)
6 10 .3 2 8 7 7 6 2 2 3 5 8 5 6 9 9
7
8 j u l i a > ρ (d , b o xΩ0)
9 10 .3 5 3 9 0 3 7 0 1 3 5 6 1 3

10
11 j u l i a > @ b t i m e ρ ($ d , $Ω0)
12 97 .7 62 ns (1 a l l o c a t i o n : 80 b y t e s)
13
14 j u l i a > @ b t i m e ρ ($ d , $ b o xΩ0)
15 7 .2 09 ns (0 a l l o c a t i o n s : 0 b y t e s)

� �

6 Experimental Evaluation

In this section we evaluate the discretization methods from Sect. 3 in two exper-
iments.3 In the first experiment, we visually compare the sets Ω0 for variants
of the harmonic oscillator (see Sect. 4). In the second experiment, we evaluate
the methods on representative models while varying the time step δ. Next we
describe the experimental setup, show the results, and finally discuss them.

6.1 Setup

We implemented the different methods (called here d/dt, Zonotope, Correc-
tion hull, First-order, Forward/backward, and Forward) in JuliaReach [13]. For
matrix-exponential functionality we use [1]. For the correction-hull method we
use the truncation order p = 4 (higher orders led to numerical errors for the
biggest model). To plot results for the forward-backward method, one needs to
choose a set of directions to evaluate the support function. In the plots we choose
30 uniform directions from the unit circle; we choose this high precision to show
the theoretical power of the method, even if in practice this is rarely required.
We obtained the results on a notebook with a 2.20GHz CPU and 8GB RAM.

6.2 Models

Two Degree of Freedom. We consider a two-degree-of-freedom model from
[24, Chapt. 9]. The model has characteristics that are typical of large systems,
containing both low-frequency and high-frequency components. It is given by

Mÿ(t) + Ky(t) = 0, y(t) = [y1(t), y2(t)]T (30)

where the mass (M) and stiffness (K) matrices are respectively

M =
(

m1 0
0 m2

)
, K =

(
k1 + k2 −k2

−k2 k2

)
. (31)

3 The scripts are available at [20].

162 M. Forets and C. Schilling

Table 2. Average run times (in milliseconds) for the different methods.

Model d/dt Zonotope Correction hull First-order Fwd/bwd Forward

Oscillator 0.01 0.02 0.23 0.01 6.56 0.03

TDoF 0.03 0.05 0.51 0.01 6.17 0.06

ISS – 32.99 4 701.20 25.93 657.80 476.96

Equation (30) is brought to first-order form of Eq. (1) by introducing the variable
x(t) = [y1(t), y2(t), ẏ1(t), ẏ2(t)]T , from which we obtain

ẋ(t) = Ax(t), where A =

⎛

⎜⎜⎝

0 0 1 0
0 0 0 1

−k1+k2
m1

k2
m1

0 0
k2
m2

− k2
m2

0 0

⎞

⎟⎟⎠ . (32)

The initial states are the box centered at [1, 10, 0, 0] with radius [0.1, 0.5, 0.5, 0.5].
The numerical values for the parameters are m1 = m2 = k2 = 1 and k1 = 10,000.

ISS. The ISS (International Space Station) model was originally presented in
[15] and later proposed as a benchmark example for order-reduction techniques
[31] and reachability analysis [5]. It is a structural model of the component 1R
(Russian service module) and models the vibration during the docking maneuver
of a spacecraft. There are 270 state variables and three nondeterministic inputs.
The matrices A and eA are sparse (>99% sparsity) with ‖A‖∞ ≈ 3763, ‖X0‖∞ =
10−4, and ‖U‖∞ ≈ 0.98.

6.3 Visual Evaluation of Varying Parameters

We evaluate the methods on the harmonic oscillator for three different analysis
and model parameters. In Fig. 3 we vary the step size δ. In Fig. 4 we vary the size
of the initial set X0. In Fig. 5 we vary the size of the input domain U . The plots
also show a tight approximation of the true reachable states. For homogeneous
systems, the analytic solution at time t can be computed (eAtX0) and we show
several sets Rt (for uniformly chosen time points t from [0, δ]) instead.

6.4 Quantitative Evaluation by Scaling δ

We run a quantitative analysis on the harmonic oscillator and two other mod-
els described in Sect. 6.2. The latter represent challenging model classes: The
second model, a two-degree-of-freedom system, has a system matrix A of large
norm; this shows the corresponding sensitivity of the methods. The third model,
representing a docking maneuver at the International Space Station (ISS), is
high-dimensional; this shows the scalability of the methods. For comparing the
precision, we vary the time step δ and compute the support function ρ(d,Ω0) of

Conservative Time Discretization: A Comparative Study 163

Fig. 3. The sets Ω0 obtained with different methods for varying values of δ. In gray
we show Rt for uniform t ∈ [0, δ].

Fig. 4. The sets Ω0 obtained with different methods for δ = 0.005 and varying sets X0.
In gray we show Rt for uniform t ∈ [0, δ].

164 M. Forets and C. Schilling

Fig. 5. The sets Ω0 obtained with different methods for δ = 0.01 and varying sets U .
In gray we show Rt for uniform t ∈ [0, δ].

the sets Ω0 in direction d = (1, . . . , 1)T . The results are shown in Fig. 6. Average
run times (which are independent of δ) are given in Table 2. Note that Ω0 is
computed lazily except for the “zonotope” and the “correction-hull” methods.

6.5 Summary

We generally observe that the first-oder methods (d/dt, Zonotope, First-order)
yield coarser results and are more sensitive to the different model characteris-
tics. In particular, for the two degree of freedom, a very small time step 10−5

is required to obtain precise results. This shows the sensitivity to the norm of
A. The other three methods yield higher and similar precision, although the
“correction-hull” method, which it is restricted to zonotopes, is generally incom-
parable (see for instance the first plot in Fig. 5). The “forward-backward” method
is typically the most precise but also the most expensive method; recall that we
computed a lazy representation of Ω0 here and in a reachability application
one needs to evaluate the support function of Ω0 in multiple directions. The
forward-only method is a simplification that yields a good compromise. The
“correction-hull” method is much slower than the other methods for the largest
model (ISS), but it computes a concrete zonotope. (Zonotopes enable an efficient
“second stage” reachability analysis, which we ignore here.) Since this method
is designed for interval matrices, it may be possible to devise a more efficient
scalar variant.

Conservative Time Discretization: A Comparative Study 165

10−210−1.910−1.810−1.710−1.610−1.510−1.410−1.310−1.2
101

101.1

101.2

(harmonic oscillator)

ρ
(d

,Ω
0
)

d/dt Zonotope Correction hull
First-order Forward/backward Forward

10−510−410−310−2

101.2

101.4

101.6

(two degree of freedom)

ρ
(d

,Ω
0
)

10−410−310−2

10−1

100

101

(ISS)

ρ
(d

,Ω
0
)

Fig. 6. Benchmark results with the graphs of ρ(d, Ω0) (log axes). In the second plot,
the methods “forward-backward” and “forward-only” yield identical results. In the third
plot, the “d/dt” method is not applicable.

7 Conclusion

In this article we have studied six methods for conservative time discretization.
We have discussed potential ways to improve their output in practice and how
to efficiently implement them. Our empirical evaluation shows that the meth-
ods have different characteristics. In particular, methods based on a first-order
approximation are generally less precise than the other methods. In the future
we plan to perform a similar study of the full-fledged reachability algorithms
using the insights gained in this study to use a precise discretization model.

Acknowledgments. This research was partly supported by DIREC - Digital Research
Centre Denmark and the Villum Investigator Grant S4OS.

166 M. Forets and C. Schilling

References

1. ExponentialUtilities.jl (2022). https://github.com/SciML/ExponentialUtilities.jl
2. Althoff, M.: Reachability Analysis and its Application to the Safety Assessment of

Autonomous Cars. Ph.D. thesis, Technische Universität München (2010)
3. Althoff, M.: An introduction to CORA 2015. In: ARCH. EPiC Series in Computing,

vol. 34, pp. 120–151. EasyChair (2015). https://doi.org/10.29007/zbkv
4. Althoff, M.: Reachability analysis of large linear systems with uncertain inputs in

the Krylov subspace. IEEE Trans. Autom. Control 65(2), 477–492 (2020). https://
doi.org/10.1109/TAC.2019.2906432

5. Althoff, M., et al.: ARCH-COMP21 category report: continuous and hybrid sys-
tems with linear continuous dynamics. In: ARCH. EPiC Series in Computing, vol.
80, pp. 1–31. EasyChair (2021). https://doi.org/10.29007/lhbw

6. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability
analysis. Ann. Rev. Control Robot. Auton. Syst. 4(1), 369–395 (2020). https://
doi.org/10.1146/annurev-control-071420-081941

7. Althoff, M., Guernic, C.L., Krogh, B.H.: Reachable set computation for uncertain
time-varying linear systems. In: HSCC, pp. 93–102. ACM (2011). https://doi.org/
10.1145/1967701.1967717

8. Althoff, M., Krogh, B.H., Stursberg, O.: Analyzing reachability of linear dynamic
systems with parametric uncertainties. In: Rauh, A., Auer, E. (eds.) MATHEN-
GIN, vol. 3, pp. 69–94. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-15956-5_4

9. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of linear systems with
uncertain parameters and inputs. In: CDC, pp. 726–732. IEEE (2007). https://doi.
org/10.1109/CDC.2007.4434084

10. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using
conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 20–35. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36580-X_5

11. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of
piecewise-linear dynamical systems. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000.
LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-46430-1_6

12. Bak, S., Tran, H., Johnson, T.T.: Numerical verification of affine systems with up
to a billion dimensions. In: HSCC, pp. 23–32. ACM (2019). https://doi.org/10.
1145/3302504.3311792

13. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: Juliareach: a
toolbox for set-based reachability. In: HSCC, pp. 39–44. ACM (2019). https://doi.
org/10.1145/3302504.3311804

14. Bogomolov, S., Forets, M., Frehse, G., Viry, F., Podelski, A., Schilling, C.: Reach
set approximation through decomposition with low-dimensional sets and high-
dimensional matrices. In: HSCC, pp. 41–50. ACM (2018). https://doi.org/10.1145/
3178126.3178128

15. Chahlaoui, Y., Van Dooren, P.: Benchmark examples for model reduction of linear
time-invariant dynamical systems. In: Benner, P., Sorensen, D.C., Mehrmann, V.
(eds.) Dimension Reduction of Large-Scale Systems. LNCSE, vol. 45, pp. 379–392.
Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27909-1_24

https://github.com/SciML/ExponentialUtilities.jl
https://doi.org/10.29007/zbkv
https://doi.org/10.1109/TAC.2019.2906432
https://doi.org/10.1109/TAC.2019.2906432
https://doi.org/10.29007/lhbw
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1145/1967701.1967717
https://doi.org/10.1145/1967701.1967717
https://doi.org/10.1007/978-3-642-15956-5_4
https://doi.org/10.1007/978-3-642-15956-5_4
https://doi.org/10.1109/CDC.2007.4434084
https://doi.org/10.1109/CDC.2007.4434084
https://doi.org/10.1007/3-540-36580-X_5
https://doi.org/10.1007/3-540-36580-X_5
https://doi.org/10.1007/3-540-46430-1_6
https://doi.org/10.1007/3-540-46430-1_6
https://doi.org/10.1145/3302504.3311792
https://doi.org/10.1145/3302504.3311792
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3178126.3178128
https://doi.org/10.1145/3178126.3178128
https://doi.org/10.1007/3-540-27909-1_24

Conservative Time Discretization: A Comparative Study 167

16. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen,
J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48983-5_10

17. Forets, M., Caporale, D.F., Zerpa, J.M.P.: Combining set propagation with finite
element methods for time integration in transient solid mechanics problems. Com-
put. Struct. 259 (2022). https://doi.org/10.1016/j.compstruc.2021.106699

18. Forets, M., Schilling, C.: Conservative time discretization: a comparative study.
CoRR abs/2111.01454 (2021). https://arxiv.org/abs/2111.01454

19. Forets, M., Schilling, C.: LazySets.jl: scalable symbolic-numeric set computations.
Proc. JuliaCon Conf. 1(1), 11 (2021). https://doi.org/10.21105/jcon.00097

20. Forets, M., Schilling, C.: Package for repeatability evaluation (2022)
21. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-

ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

22. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2_19

23. Han, Z., Krogh, B.H.: Reachability analysis of large-scale affine systems using
low-dimensional polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006.
LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006). https://doi.org/10.
1007/11730637_23

24. Hughes, T.J.: The finite element method: linear static and dynamic finite element
analysis. Courier Corporation (2012)

25. Koskela, A.: Approximating the matrix exponential of an advection-diffusion oper-
ator using the incomplete orthogonalization method. In: Abdulle, A., Deparis, S.,
Kressner, D., Nobile, F., Picasso, M. (eds.) ENUMATH 2013. LNCSE, vol. 103, pp.
345–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10705-9_34

26. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for
families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001). https://
doi.org/10.1006/jsco.2001.0472

27. Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous
dynamics. Ph.D. thesis, Université Joseph-Fourier-Grenoble I (2009)

28. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support
functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010). https://doi.org/10.
1016/j.nahs.2009.03.002

29. Liou, M.L.: A novel method of evaluating transient response. Proc. IEEE 54(1),
20–23 (1966). https://doi.org/10.1109/proc.1966.4569

30. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: Hypro: A C++ library of
state set representations for hybrid systems reachability analysis. In: NFM. LNCS,
vol. 10227, pp. 288–294 (2017). https://doi.org/10.1007/978-3-319-57288-8_20

31. Tran, H., Nguyen, L.V., Johnson, T.T.: Large-scale linear systems from order-
reduction. In: ARCH. EPiC Series in Computing, vol. 43, pp. 60–67. EasyChair
(2016). https://doi.org/10.29007/xk7x

https://doi.org/10.1007/3-540-48983-5_10
https://doi.org/10.1016/j.compstruc.2021.106699
https://arxiv.org/abs/2111.01454
https://doi.org/10.21105/jcon.00097
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/11730637_23
https://doi.org/10.1007/11730637_23
https://doi.org/10.1007/978-3-319-10705-9_34
https://doi.org/10.1006/jsco.2001.0472
https://doi.org/10.1006/jsco.2001.0472
https://doi.org/10.1016/j.nahs.2009.03.002
https://doi.org/10.1016/j.nahs.2009.03.002
https://doi.org/10.1109/proc.1966.4569
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.29007/xk7x

Untangling the Graphs of Timed
Automata to Decrease the Number

of Clocks

Neda Saeedloei1(B) and Feliks Kluźniak2

1 Towson University, Towson, USA
nsaeedloei@towson.edu

2 LogicBlox, Atlanta, USA
feliks.kluzniak@logicblox.com

Abstract. For timed automata, the question of whether the number of
clocks can be decreased without violating the semantics is known to be
undecidable. It is, however, possible to obtain a number of clocks that
is optimal, in a well-defined sense, for a timed automaton with a given
graph and set of constraints. Such an optimal allocation of clocks can
be improved further by changing the automaton’s graph or its set of
constraints. We address the first kind of change, and develop a novel
method that may allow us to convert the automaton to one that requires
fewer clocks, without changing its semantics.

1 Introduction

Timed automata [2] have been used as a standard formalism for specification
and verification of real-time systems. Model checking [7] has been applied as an
effective approach to formal verification of complex systems, including real-time
systems. However, verification of a timed automaton can be computationally
expensive, and the cost crucially depends on the number of clocks [3]. Although,
for a given timed automaton, it is in general undecidable whether there exists a
language-equivalent automaton with fewer clocks [10], the problem of decreasing
the number of clocks of timed automata has been an active area of research
[5,6,9,11,12]. The existing approaches for tackling the problem are based on
either the syntactic form (e.g., [9,12]) or the semantics (e.g., [6,11]) of timed
automata. Regardless of the particular approach—syntax or semantics based—
the problem has been addressed mostly by constructing bisimilar timed automata
[9,11].

In UPPAAL [6] a technique called “active clock reduction on the fly” is used
during verification of timed automata [8]. This approach is semantic-based and
works by identifying inactive clocks, i.e., clocks whose values do not matter in
certain states. If two states differ only in the values of such variables, they are
bisimilar, and therefore resetting these variables to a known value will make
the two states identical, thus reducing the state space. (These results were later
subsumed by those of Behrmann et al. [5], who reduce the state space—in a
more general setting—by using a refined static analysis of the constraints.)
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 168–187, 2022.
https://doi.org/10.1007/978-3-031-07727-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_10&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_10

Untangling the Graphs of Timed Automata 169

Daws and Yovine [9] combine two methods for reducing the number of clocks.
The first one is based on identifying the set of active clocks in each location of
the automaton, and then applying a clock renaming to this set locally, to obtain
a bisimilar automaton. The second method is based on equality between clocks:
if two clocks are equal in a location, one is deleted. Their method will not always
yield optimal results, as shown by Guha et al. [11].

The work of Guha et al. [11] is based on clock “zones” and constructing zone
graphs. Given a timed automaton A, their method constructs an automaton
bisimilar to A that has the smallest number of clocks in the class of timed
automata that are bisimilar to A. It can be constructed in time that is doubly
exponential in the number of clocks of A. There is an exponential increase in
the number of locations of the original automaton.

A more recent approach [12] is not based on constructing bisimilar timed
automata, but on a compiler-like static flow analysis of a given automaton A.
This is made possible by abstracting from the particulars of the various con-
straints in A and considering an equivalence class of all automata that have the
same graph and the same pattern of clock resets and uses. The resulting clock
allocation is optimal for that equivalence class, in the sense that it is impossible
to use a smaller number of clocks without violating the semantics of at least
one member of the class (as long as all the members have their original graphs
and constraints, modulo clock renaming). It turns out that this can be achieved
when A belongs to TAS : this is the class of automata that have at most one
clock reset on any transition. Moreover, every clock has to be well-defined, i.e.,
on any path from the initial location to the use of a clock in a constraint, the
clock is reset before it is used1.

In the current paper we investigate what can be done by adopting the general
approach of the cited work [12], but relaxing one of its assumptions: namely,
that the underlying graph cannot be modified. We show that the graph of an
automaton A can sometimes be “untangled” to decrease the number of clocks.

We present two original contributions. First, under the assumption that the
original constraints in a timed automaton A ∈ TAS cannot be changed, i.e.,
replaced by an equivalent set, we determine A’s real cost. Intuitively, the real cost
of A is the maximum of the smallest number of clocks that must be maintained
on any path through the automaton. If the real cost of A is smaller than the
number of clocks in an optimal clock allocation [12] for A, then there is at least
one language-equivalent automaton in TAS that requires only as many clocks
as the real cost of A. By transforming A to such an automaton we improve the
results obtained in the cited work [12]. This is our second contribution.

For example, the automaton on the left of Fig. 1 has two clocks, c0 and c1.
It is not possible to lower the number of clocks of the automaton in its current
form without violating its semantics. However, the real cost of this automaton

1 This is a common-sense condition of a strictly technical nature. In the literature it is
often assumed that all the clocks are implicitly reset to zero before the initial location:
we would accommodate that by adding a sequence of extra epsilon transitions before
the initial location, each such transition annotated by a reset.

170 N. Saeedloei and F. Kluźniak

n0

n1

n2

n3

c0 := 0a

c1 := 0b

c1 ≥ 5c

c 0
≥

1

d

n0

n1

n2 n3

n4

c0 := 0a

b c0 := 0b

c0 ≥ 5c

c 0
≥

1

d

Fig. 1. Two equivalent automata

n0

n1

n2

n3n0

c0a

c1b

c1 ≥ 5
c

c0 ≥ 1
d

Fig. 2. Initial tree

n0 n1

n2

n5 n3

n2l2n2l1

n4

n3l3

c0

b

i

c1c

d

e
c0 ≤ 2

c1
c1 ≤ 1
c0

f

g
c2

h

c
2

≥
1

Fig. 3. A tree

computed by our method is one. The automaton on the right of the figure is
language-equivalent, but has only one clock.

2 Timed Automata

A timed automaton [2] is a tuple A = 〈Σ,Q, q0, Qf , C, T 〉, where Σ is a finite
alphabet, Q is the (finite) set of locations, q0 ∈ Q is the initial location, Qf ⊆ Q
is the set of final locations, C is a finite set of clock variables (clocks for short),
and T ⊆ Q × Q × Σ × 2C × 2Φ(C) is the set of transitions. In each transition
(q, q′, e, λ, φ), λ is the set of clocks to be reset with the transition and φ ⊂ Φ(C)
is a set of clock constraints over C of the form c ∼ a (where ∼ ∈ {≤, <,≥, >,=},
c ∈ C and a is a constant in the set of rational numbers, Q).

A clock valuation for C is a mapping from C to R
≥0. ν satisfies a set of clock

constraints φ over C iff every clock constraint in φ evaluates to true after each
clock c is replaced with ν(c). For τ ∈ R, ν + τ denotes the clock valuation which
maps every clock c to the value ν(c) + τ . For Y ⊆ C, [Y
→ τ]ν is the valuation
which assigns τ to each c ∈ Y and agrees with ν over the rest of the clocks.

A timed word over an alphabet Σ is a pair (σ, τ) where σ = σ1σ2... is a finite
[1,4] or infinite [2] word over Σ and τ = τ1τ2... is a finite or infinite sequence of
(time) values such that (i) τi ∈ R

≥0, (ii) τi ≤ τi+1 for all i ≥ 1, and (iii) if the
word is infinite, then for every t ∈ R

≥0 there is some i ≥ 1 such that τi > t.
A run ρ of A over a timed word (σ, τ) is a sequence of the form 〈q0, ν0〉 σ1−→

τ1

〈q1, ν1〉 σ2−→
τ2

〈q2, ν2〉 σ3−→
τ3

. . . , where for all i ≥ 0, qi ∈ Q and νi is a clock valuation

such that (i) ν0(c) = 0 for all clocks c ∈ C and (ii) for every i > 1 there is a
transition in T of the form (qi−1, qi, σi, λi, φi), such that (νi−1+τi−τi−1) satisfies
φi, and νi equals [λi
→ 0](νi−1 + τi − τi−1). The set inf (ρ) consists of q ∈ Q
such that q = qi for infinitely many i ≥ 0 in the run ρ.

A run over a finite timed word is accepting if it ends in a final location [4].
A run ρ over an infinite timed word is accepting iff inf (ρ) ∩ Qf = ∅ [2]. The
language of A, L(A), is the set {(σ, τ) | A has an accepting run over (σ, τ)}.

Untangling the Graphs of Timed Automata 171

3 Constructing a Better Automaton

A timed automaton belongs to the class TAS if and only if for every transition
r = (q, q′, e, λ, φ), |λ| ≤ 1 [12]. In the remainder of this paper we limit our atten-
tion to timed automata in TAS . Moreover, we assume that A ∈ TAS satisfies
the following properties:

– In the graph of A there is a path from the initial location to every other
location, and from every location to a final location.2

– Every clock c in A is well-defined : if c occurs in a constraint on transition r,
then c must be reset on every path from the initial location to r.

Given an automaton A ∈ TAS , we want to know whether it is possible to
transform it to a language-equivalent automaton A′ by changing its underlying
graph, but not its clock constraints, in such a way that an optimal clock allocation
[12] for A′ would require fewer clocks than that for A. We begin by first building
a tree TA that represents the same semantics as A, but in a way that is more
convenient for our purposes. TA is then analyzed to determine whether the
aforementioned automaton A′ exists. If so, we transform TA to an equivalent
tree TA′

, which can then be converted to the full automaton A′ (i.e., possibly
with cycles). Finally, optimal clock allocation [12] can be performed for A′.

In the remainder of this paper the term “equivalence” will always denote
language equivalence.

3.1 Building a Tree from a Timed Automaton

Given A, we build a tree TA that is a somewhat more direct representation of
the paths in the graph of A. Specifically, the root of TA is a copy of the initial
location of A. For every acyclic path of A that begins in the initial location
there is an identical path in TA that begins at the root. If A includes cycles,
we must make sure that TA is finite and that it is equivalent to A. We do so
by extending the tree with the remaining transitions and associating “looping
leaves” with “looping ancestors”.

The general idea can be illustrated by an example. Consider the original
automaton of Fig. 1: n0 is the initial location and n3, enclosed in double circles,
is the only final location. The corresponding tree is shown in Fig. 2 (we omit “:=0”
from clock resets). The node and the leaf that are labeled with n0 in the tree are
the “looping ancestor” and the “looping leaf” : they both correspond to the same
location in the original automaton. After we perform our transformations, the
final automaton will be built by “unifying” looping leaves with the corresponding
looping ancestors, thus re-introducing cycles into the graph.

Let A = 〈Σ,Q, q0, Qf , C, T 〉 be a given timed automaton. We assume that
each location of A is associated with a unique label in L. The initial tree for A is
constructed by a simple function (which is not presented here). In the worst case
2 If there is no path from a location l to a final location, then l can be removed without

affecting the language of the automaton.

172 N. Saeedloei and F. Kluźniak

the size of the tree is exponentially greater than the size of the original graph
(see Sect. 4).

We assume TA = 〈Σ,V, n0, Vf , C, R〉 is the tree corresponding to A. V is the
set of nodes and R is the set of transitions. n0 is the root of TA (it corresponds
to q0) and Vf is the set of final nodes in TA. A location of A might correspond
to a number of different nodes in TA. All the nodes that correspond to a final
location in A are final nodes in TA.

As we build TA, we associate most of its nodes with unique labels. However,
each looping leaf will have the same label as its looping ancestor. MTA

: V → L
denotes the labeling function in TA. We use the following auxiliary notation:

– if r = (ni, nj , e, λ, φ) ∈ R, then source(r) = ni, target(r) = nj , clock(r) = λ
(recall that A ∈ TAS , so |λ| ≤ 1) and constraints(r) = φ;

– if n ∈ V , then out(n) = {r | source(r) = n} and in(n) = {r | target(r) = n};
– if p = r1 . . . rk is a path, then origin(p) = source(r1), end(p) = target(rk).

In our examples different transitions will often be associated with different
events. This will allow us to refer to a transition by the name of its event.

Most of the definitions in the remainder of this subsection are either taken
directly from our earlier work [12], or are customized for the case of trees.

Definition 1. Given TA, we introduce the following notions:

– Let r ∈ R and let c ∈ C. An occurrence of c in constraints(r) is called a use
of clock c on r. An occurrence of c in clock(r) is called a reset of c on r. All
the uses on a given transition precede the reset on that transition (if any).

– Let p be a path between the root and a leaf, r be a transition on p and c be
used on r. The use of c is well-defined iff it is reset on some transition r′

that appears before r on p.
– Let n be a leaf such that MTA

(n) = μ for some μ ∈ L. n is a looping leaf
if there is a node na on the path from the root to n such that MTA

(na) = μ.
Then na is the looping ancestor of n, and the path between na and n is an
open cycle whose origin is na.

– A path p is complete iff origin(p) = n0 and end(p) ∈ Vf .

A looping leaf has a unique looping ancestor. A final leaf might also be looping.
Figure 3 shows a tree corresponding to some automaton. The looping ances-

tors and looping leaves are drawn with thick lines, while the final node is drawn
with a double circle. The path between n0 and n5 is complete. The node labeled
with n2 is the looping ancestor of the leaves labeled with n2 (i.e., l1 and l2) and
the two paths between n2 and l1 and between n2 and l2 are open cycles. The
other open cycle is between the two nodes labeled with n3.

Observation 1. TA has the following properties:

– Let p be a path such that origin(p) = n0 and end(p) is a looping leaf. There is
exactly one label μ ∈ L that labels more than one node on p. Moreover, there
are exactly two nodes n and na on p such that MTA

(n) = MTA
(na) = μ: the

looping leaf that terminates the path and its looping ancestor.
– On every transition all uses of clocks are well-defined.

Untangling the Graphs of Timed Automata 173

Henceforth whenever we refer to a tree, we assume it is obtained from a timed
automaton that satisfies the assumptions spelled out at the beginning of Sect. 3.

Definition 2. Let TA be a tree with set R of transitions and set V of nodes.

– Function act_target : R → V maps transition r to target(r) if target(r) is
not a looping leaf, and otherwise to the looping ancestor of target(r).

– A sequence of transitions r0r1 . . . rn in TA is called a graph-path (g-path for
short), if source(ri+1) = act_target(ri), for 0 ≤ i < n.

Intuitively, the “actual target” of a transition is its target in the final automaton,
after the looping leaves are unified with their looping ancestors (thus making
them identical).

A g-path of TA corresponds to a path in A. For instance, in the tree of Fig. 2,
abda is a g-path corresponding to path abda in the original automaton of Fig. 1.

Definition 3. Let p be a g-path and c be a clock that has a use on a transition
of p. The use is made visible by p if it is not preceded on p by a reset of c.

For a given TA we define the following functions:

– used : R → 2C maps transition r to the set {c | c has a use on r}.
– visible : R → 2C , where c ∈ visible(r) iff a use of c is made visible by some

g-path that begins at r.
– born : R → 2C maps transition r to a set of clocks that is either a singleton

or the empty set. c ∈ born(r) iff c ∈ clock(r) and there is a g-path rr1 . . .
such that c ∈ visible(r1).

– needed : R → 2C is defined by needed(r) = born(r) ∪ visible(r).
If c ∈ needed(r), we say that c is needed on r.

Notice that visible(r) = (needed(r) \ born(r)) ∪ used(r).
In the tree of Fig. 3, born(b) = born(f) = {c0}, born(c) = born(e) = {c1}

and born(g) = {c2}. visible(b) = visible(i) = ∅, visible(c) = visible(e) =
{c0}, visible(f) = {c1}, visible(d) = visible(g) = {c0, c1}, and visible(h) =
{c0, c1, c2}. Observe that c0 and c1 are needed not only on c, d, f and e, but
also on g and h. This is because in the final automaton the leaf labeled with
n3 will be unified with its looping ancestor (the actual target of h) and both c0
and c1 will be needed on paths that begin at this looping ancestor: c0 is used on
transition e and c1 is used on transition f .

In the final automaton, the clocks of TA will be replaced by a new set of clocks
whose size cannot be smaller than the value of needed(r) for any transition r,
with one exception: if there are two different clocks, ci and cj , such that ci “dies”
on r (i.e., the value of ci is not used on any subsequent transitions), cj is not
used on r and cj ∈ born(r), then they both belong to needed(r), but ci and cj

can be assigned the same clock.

Definition 4. Let TA be a tree with set R of transitions. Function weight : R →
N maps r to |needed(r)| − 1 iff

174 N. Saeedloei and F. Kluźniak

n1

n2

n3

n4

n2

c1c

c0d

c1 ≤ 5
e

c0 ≥ 1
c1

f

Fig. 4. A tree

n0 n1

n2

n3

n4

n5 n6

n7 n8

c0
a

c1b

c2c

d

c2 ≥ 3

g

c0 ≤ 3

h

c0 ≥ 3

e

c1 ≤ 3

f

n0 n1

n2

n2

n3

n4

n8

n3

n5

n3

n4

n6

n7

c0
a

c1b

c1

b
c2c

d

c1 ≤ 3f
g c2 ≥ 3

c2c

c
c2

d
c0 ≤ 3h

c0 ≥ 3e

Fig. 5. Two equivalent trees

– there is a clock c ∈ used(r) such that ∀r′∈out(act_target(r)) c /∈ visible(r′), and
– born(r) = ∅ ∧ born(r) ⊂ used(r).

Otherwise weight(r) = |needed(r)|.

Intuitively, weight(r) is the number of clocks that will have to be “alive” on r.
In the tree of Fig. 4 the weight of every transition is one. In particular,

consider transition f : c0 ∈ used(f), c0 /∈ visible(d) and c0 /∈ visible(e) (where d
and e are the outgoing transitions of the actual target of f), moreover, born(f) =
{c1} ⊂ used(f) = {c0}, so weight(f) = |needed(f)| − 1 = 1.

Observation 2. Let TA be a tree with the set R of transitions. The number of
clocks in an optimal clock allocation [12] for TA is max{weight(r) | r ∈ R}.

We will say “the cost of an allocation” instead of “the number of clocks in a clock
allocation”.

3.2 Untangling Trees: An Overview

We begin this section with a motivating example. Consider the tree on the
left of Fig. 5. Three clocks are used, and the weight of transition c is three:
weight(c) = |needed(c)| = |{c0, c1, c2}|. By Observation 2, an optimal allocation
[12] for this tree would require three clocks. An equivalent tree is shown on the
right of the figure: the weight of every transition is one, and therefore an optimal
allocation would require only one clock.

The new tree is obtained by acting on the observation that there are four
complete paths, each of which uses only one clock. By modifying the tree in such
a way that the complete paths that use a clock are untangled from those that use
other clocks, we effectively decrease the weight of each transition to one. This
intuition will be formalised in what follows.

Definition 5. Let TA be a tree with root n0 and nf be a final node of TA. By
f_tree(nf) we denote the set of transitions of the maximal subtree of TA, rooted
at n0, such that each of its transitions can reach nf via a g-path.

Untangling the Graphs of Timed Automata 175

n0 n1

n2

n3 n4

n2 n1

n5

c0

b
c1c

c0 ≤ 5
d

c1 ≤ 4
e

f g

h

Fig. 6. Three f _trees

n0

n1

n2

n3 n4n2 l1

c0

b

c1c

c0 ≤ 5 d
c1 ≤ 4fe

Fig. 7. A tree

n0 n1

n2

n5 n3

n2 l2

n3

n4

n3 l3

n2l1

n4

n3l3

c0

b
c1
c

di

c1 ≤ 1
c0

f

g

c2
g c2

d

e
c0 ≤ 2
c1

h
c2 ≥ 1

h

c
2

≥
1

Fig. 8. Untangled tree of Fig. 3

We will sometimes use the term f _tree to denote the underlying (sub)tree.
Each complete path in Fig. 5 is an f _tree. The tree of Fig. 3 is a single

f _tree.

Observation 3. Let m and n be two final nodes in TA. f_tree(m) ⊆ f_tree(n)
iff there is a g-path from m to n. We say f_tree(m) is embedded in f_tree(n).

In Fig. 6 f_tree(n3) = f_tree(n4): they include all the transitions of the tree
except for h. They are embedded in each other, and each is embedded in
f_tree(n5), which is the entire tree.

Given tree TA corresponding to an automaton A ∈ TAS , we are interested
in transforming it into an equivalent “untangled” tree, whose transitions would
weigh less: this tree would then require fewer clocks than TA. One way of doing
this is to make sure that f _trees that are not embedded in each other do not
share any transitions. For instance, the tree on the left of Fig. 9 is such an
untangled form of the tree of Fig. 7. Notice that to preserve the semantics of
the original tree each f _tree must have access to the open cycle (with origin
n2). This is the reason for duplicating it at n′

2, the copy of n2. The original tree
requires two clocks, the untangled one requires only one.

Observation 4. If a looping ancestor LA is duplicated during untangling, then
all the open cycles that originate in LA must also be duplicated with it.

It turns out that untangling within a single f _tree might also be beneficial.
Figure 8 shows the untangled form of the tree of Fig. 3. Notice—again—the
duplication of open cycles.

Definition 6. An f_tree is fully untangled iff every node that has more than
one outgoing transition is a looping ancestor, and each looping ancestor LA has
at most one outgoing transition that does not belong to an open cycle originating
in LA. A tree TA is fully untangled iff (1) each of its f_trees is fully untangled
and (2) if f_tree A is not embedded in f_tree B and vice versa, then the two
share only the root node.

Figure 10 shows a fully untangled f _tree which is also a fully untangled tree.
The tree on the left of Fig. 9 is another fully untangled tree.

176 N. Saeedloei and F. Kluźniak

n0

n1 n1

n2 n2

n4n2l1n3 n2l1

c0 b

c c1

c0b

c1c

e

c
1 ≤

4fec 0
≤
5

d

n0

n1

n2 n2

n2l1n3 n2 l1 n4

c0b

c1c c1c

e ec 0
≤
5

d

c
1 ≤

4f

Fig. 9. Fully untangled and untangled trees of Fig. 7

n0 n1

n2

n5
n3

n3l2n3l1

n4

n3 l3

c0

b

i

c1c

d

ec0 ≤ 2
c1

c1 ≤ 1
c0

f

g

c2

h

c
2

≥
1

Fig. 10. Impossible to untangle

A fully untangled tree shows the limits of what can be achieved. Our goal is
to reach that limit by untangling as little as we can (compare the two equivalent
trees of Fig. 9).

We will now present a semantics-preserving3 untangling method that consists
of two steps. In step one we analyse a tree TA to determine whether it may have
an untangled form for which the cost of an optimal clock allocation would be
smaller than that for its original form. If this is the case then we proceed with
step two: obtaining the untangled form of TA.

3.3 Step One: Computing the Real Cost and Group Analysis

Definition 7. The real cost of an f_tree is the cost of an optimal clock alloca-
tion for its fully untangled form (cf. Definition 6). The real cost of a tree TA,
denoted by real_cost(TA), is the maximum of the real costs of its f_trees.

Recall that the cost of an optimal allocation is equal to the maximum weight of
a transition (Observation 2). To determine the real cost of an f _tree one could
untangle it fully and compute needed (and hence weight) by means of standard
flow analysis with backward propagation (see, e.g., [12]).

Algorithm 1 simulates this by performing a backward traversal of the g-paths
in the original f _tree, from the final node to the root, while carrying a “payload”
that is the set of clocks whose uses are made visible by the g-path traversed
(backwards) so far. When the traversal encounters a looping ancestor (i.e., an
actual target of more than one transition) there is more than one possible route
to take. Information about the alternative route(s) and the current payload is
then pushed onto a stack, so that the traversal can later be resumed on the other
route(s): this is similar to a standard backtracking search. A payload “seen” upon
traversing a transition r is saved in a list associated with the target of r, so that r
will not be traversed again with a payload that contains no new information: this
is very much like the suppression of further propagation in data-flow analysis.

A slight complication is introduced by the fact that the open cycles that
originate in the same looping ancestor cannot be separated from it without
3 In the sense of language equivalence.

Untangling the Graphs of Timed Automata 177

violating the semantics (Observation 4). This is dealt with by associating each
looping ancestor LA with cycle_uses(LA), which is added to the payload when-
ever LA is passed. Intuitively, cycle_uses(LA) is the union of the sets of uses
made visible by the open cycles that originate in LA. These sets are computed
in advance, with at most one visit per transition. For the tree of Fig. 3 we have
cycle_uses(n2) = {c0, c1}.

Each f _tree is analysed separately. If f_tree(mf) ⊆ f_tree(nf), then it is
enough to analyse f_tree(nf): we say that mf is irrelevant. If a final node mf is
on a path from the root to another final node, then we can treat mf as irrelevant:
the number of analysed f _trees will then not exceed the number of leaves.

Algorithm 1: Computing the real cost
Input : A tree TA = 〈E, V, n0, Vf , C, R〉
Output: real_cost(TA).

stack := [];
real_cost := 0;
foreach relevant final node nf ∈ V do

foreach node n ∈ V do
Seen(n) := ∅;

try_to_push(nf , ∅);
while stack is not empty do /* Propagate */

(current_node, payload) := stack .pop();
if current_node is a looping ancestor then

payload := payload ∪ cycle_uses(current_node);
real_cost := max(real_cost , |payload |);
foreach looping leaf ll of current_node do

try_to_push(ll, payload);

if current_node �= n0 then
r := in(current_node); parent := source(r);
payload := (payload \ clock(r)) ∪ used(r);
real_cost := max(real_cost , |payload |);
try_to_push(parent, payload);

return real_cost

Procedure try_to_push(a node node, a set of clocks payload)
if there is no g ∈ Seen(node) such that payload ⊂ g then

stack .push((node, payload));
foreach g ∈ Seen(node) do

if g ⊂ payload then
Seen(node) := Seen(node) \ {g};

Seen(node) := Seen(node) ∪ {payload}

178 N. Saeedloei and F. Kluźniak

Procedure computeCycleUses(tree TA)
cycle_uses := ∅;
foreach looping ancestor la in TA do

ensureCycleUsesFor(la);

Procedure ensureCycleUsesFor(node la)
if la is not in domain of cycle_uses then

s := ∅;
foreach looping leaf ll of la do

s := s ∪ usesMadeVisible(ll, la);

cycle_uses := cycle_uses ∪ {(la, s)};

Function usesMadeVisible(node n, looping ancestor la)
uses := ∅;
while n �= la do

if n is a looping ancestor then
ensureCycleUsesFor(n);
uses := uses ∪ cycle_uses(n);

trans := in(n); /* there is only one */
uses := (uses \ clock(trans)) ∪ used(trans);
n := source(trans);

return uses

Let V be the set of nodes, L be the set of leaves, and C be the set of clocks.
The inner loop (for one f _tree) terminates after at most |V | · 2|C| steps, since
each step is accompanied by adding a new set to Seen(n) (for some n ∈ V). The
cost of each step is dominated by the check for membership in Seen(n): at most
O(2|C|). So the total worst-case cost does not exceed O(|L| · |V | ·22·|C|), where |C|
cannot exceed the number of edges in the original graph (for automata in TAS).

Theorem 1. Algorithm 1 is correct. That is, given a tree TA, it computes
real_cost(TA) in the sense of Definition 7.4

After determining the real cost, we must find out whether profitable untangling is
possible. To this end we perform group analysis, whose results will not only allow
us to determine the weight of each transition, but also provide useful guidance
in the process of untangling itself.

Definition 8. A group is a set of clocks. An l-group is a pair consisting of the
label of a leaf and a non-empty group. An l-group (l, g) belongs to a transition
r if
4 An outline of the proof, too long to include here, is available from the authors.

Untangling the Graphs of Timed Automata 179

1. there is a (possibly empty) path from target(r) to l; and
2. g is the greatest set such that for every c ∈ g there is at least one (possibly

empty) g-path p from target(r) to a final node that passes through l, and (a)
c is used on r, or (b) a use of c is made visible by p.

In the example of Fig. 7 the l-groups that belong to transition c are (n3, {c0}),
(l1, {c0, c1}) and (n4, {c1}). If e had a use of c1, then we would have (n3, {c0, c1})
(because cycle_uses(n2) would contain c1).

The purpose of group analysis is to annotate each transition with all the
l-groups that belong to it. This can be done by piggybacking on Algorithm 1
(see Algorithm 2). The payload is extended with information about the latest
visited leaf, and at each visited transition the current payload is added to the
annotations of that transition. In the worst case the number of visited transitions
is multiplied by |L|.

Algorithm 2: Group analysis
Input : A tree TA = 〈E, V, n0, Vf , C, R〉
Output: Transition annotations and real_cost(TA).

stack := [];
real_cost := 0;
foreach transition r ∈ R do

annot(r) := ∅;

foreach relevant final node nf ∈ V do
foreach node n ∈ V do

Seen(n) := ∅;

try_to_push(nf , (nf , ∅));
while stack is not empty do /* Propagate: */

(current_node, (n, group)) := stack .pop();
if current_node is a looping ancestor then

group := group ∪ cycle_uses(current_node);
real_cost := max(real_cost , |group|);
foreach looping leaf ll of current_node do

try_to_push(ll, (ll, group));

if current_node �= n0 then
r := in(current_node); parent := source(r);
if n is a leaf and group �= ∅ and there is no g such that
((n, g) ∈ annot(r) ∧ group ⊂ g) then

augment((n, group), annot(r));

group := (group \ clock(r)) ∪ used(r));
real_cost := max(real_cost , |group|);
try_to_push(parent, (n, group));

return annot , real_cost

180 N. Saeedloei and F. Kluźniak

Procedure try_to_push(node, (n, group))
if there is no (n, g) ∈ Seen(node) such that group ⊂ g then

stack .push((node, (n, group)));
augment((n, group), Seen(node));

Procedure augment((n, group), setOfPairs)
foreach g such that ((n, g) ∈ setOfPairs ∧ g ⊂ group) do

setOfPairs := setOfPairs \ {(n, g)};
setOfPairs := setOfPairs ∪ {(n, group)}

After group analysis terminates, we can rearrange the annotations to produce
the mapping, MR : R → 22

V ×2C
, which associates each transition r with a set

of pairs of the form (LS , group), where LS is a set of leaves such that, for each
l ∈ LS , (l, group) belongs to r. The union of all the groups in MR(r) and used(r)
is needed(r). For the tree of Fig. 3 we will obtain:

MR(b) = {({n5, l1, l2, l3}, {c0})}, MR(c) = {({n5, l1, l2, l3}, {c0, c1})},
MR(d) = {({l1, l3}, {c0}), ({l2, l3}, {c1})}, MR(e) = {({l1}, {c0, c1})},
MR(g) = {({l3}, {c1, c2}), ({l3}, {c0, c2})}, MR(f) = {({l2}, {c0, c1})},
MR(h) = {({l3}, {c1}), ({l3}, {c0})}, MR(i) = {}.

The real cost is two. needed(b) = {c0}, needed(c) = needed(d) = needed(e) =
needed(f) = {c0, c1}, needed(g) = needed(h) = {c0, c1, c2}, and needed(i) = {}.

3.4 Step Two: Untangling

Now that we have developed a method for computing the real cost of a tree, we
return to our original problem. Given TA with its real cost we want to know
whether we must untangle the tree to achieve the real cost. If so, can we do it
by producing a tree that is smaller than its fully untangled form?

To answer this question, we examine the transitions of TA to see if there is a
transition whose weight is greater than the tree’s real cost. If there are such tran-
sitions, then TA would require more clocks than the real cost (Observation 2).
But for a sufficiently untangled form of TA the cost will be the real cost.

Definition 9. A transition r of tree TA is heavy if weight(r) > real_cost(TA).

For the tree of Fig. 3 weight(g) = weight(h) = 3, so both g and h are heavy
transitions (remember that the real cost is 2). The tree of Fig. 10 is very similar
to this one: n2 is not a looping ancestor and all the non-final leaves (i.e., l1, l2
and l3) are the looping leaves of n3. The annotations on transitions are

Untangling the Graphs of Timed Automata 181

MR(b) = {({n5, l1, l2, l3}, {c0})}, MR(g) = {({l3}, {c0, c1, c2})},
MR(c) = MR(d) = {({n5, l1, l2, l3}, {c0, c1})}, MR(h) = {({l3}, {c0, c1})},
MR(e) = {({l1}, {c0, c1})}, MR(f) = {({l2}, {c0, c1})}, MR(i) = {}.

The real cost is 3. There is no heavy transition: weight(g) = weight(h) = 3 and
the weight of other transitions is at most 2. In fact, the tree is fully untangled.

The second step of our untangling method takes TA with some heavy tran-
sitions, along with real_cost(TA), and returns the untangled form of the tree.

In Sect. 3.3 we showed the role of groups of clocks in computing the function
needed . Next we show that l-groups also play an important role in the actual
untangling: they are used to determine not only the paths that should be untan-
gled, but also the nodes at which the untangling should begin and end (see
Sects. 3.4.1 and 3.4.2). This is essential for ensuring that the number of nodes
and transitions in the untangled tree stays reasonably low.

For simplicity of presentation and to help the reader’s intuition we present
this step in two phases. In the first phase we consider trees without open cycles,
similar to the trees of Fig. 5. In the second phase we consider general trees.

3.4.1 Untangling Trees Without Open Cycles
If TA does not include open cycles, then all its leaves are final. Moreover, if
TA has a heavy transition, then it must have at least two final leaves, and two
f _trees (not embedded in each other). The heavy transition can become light
only by separating parts of the appropriate f _trees from each other.

Observation 5. Let TA be a tree without open cycles, and let r be a heavy
transition. Then there must exist two pairs (LS 1, g1) and (LS 2, g2) in MR(r)
such that LS 1 ∩ LS 2 = ∅, g1 ⊆ g2 and g2 ⊆ g1.

Procedure split(transition r, set of leaves friends, set of leaves enemies)
choose some join ∈ joins(friends, enemies);
while join �= source(r) do

join := split_join(friends, enemies, join);

182 N. Saeedloei and F. Kluźniak

Function split_join(set of leaves friends, set of leaves enemies, a node
join): a node
foreach transition r ∈ out(join) do

(tfriends, tenemies) := refine_leaves(friends, enemies, r);
if tfriends �= ∅ ∧ tenemies �= ∅ then

split(r, friends, enemies);

friendlyTransitions := ∅;
foreach transition r ∈ out(join) do

(tfriends, tenemies) := refine_leaves(friends, enemies, r);
if tfriends �= ∅ ∧ tenemies = ∅ then

friendlyTransitions := friendlyTransitions ∪ {r};

otherTransitions := out(join) \ friendlyTransitions;
join ′ := a copy of join;
foreach transition r ∈ otherTransitions do

source(r) := join ′;

NewTrans := a copy of in(join);
target(NewTrans) := join ′;
update the annotations on in(join) and NewTrans;
return source(in(join));

Function refine_leaves(set of leaves f , set of leaves e, a transition r): two
sets of leaves
all_leaves := ∅;
foreach (LS , group) ∈ MR(r) do

all_leaves := all_leaves ∪ LS ;

tfriends := f ∩ all_leaves;
tenemies := e ∩ all_leaves;
return (tfriends, tenemies);

Definition 10. Let e and f be two different leaves in TA. Then join(e, f) is
their nearest common ancestor (i.e., the one furthest from the root).

Definition 11. Let E and F be two disjoint sets of leaves in TA. We define
joins(E,F) = {join(e, f) | e ∈ E ∧ f ∈ F}.

Untangling TA is performed by successively invoking procedure split on some
heavy transition, until no heavy transitions are left. The order in which the heavy
transitions are considered does not affect the correctness of the result.

The steps of the algorithm are illustrated by an example. Consider the tree
on the left-hand side of Fig. 5. The tree requires three clocks in its current form,
while its real cost is one. c is the heaviest transition: weight(c) = 3. b is the heavy
transition that is closest to the root: weight(b) = 2. From group analysis we have
MR(b) = {({n6, n7}, {c0}), ({n8}, {c1})}: this indicates that the paths ending at

Untangling the Graphs of Timed Automata 183

n6 and n7 must be separated from the path ending at n8. Equivalently, a part
of f_tree(n8) must be separated from f_tree(n6) and f_tree(n7). It is convenient
to think of {n6, n7} and {n8} as disjoint sets of friends and enemies.

The process begins by invoking split(b, {n6, n7}, {n8}). Untangling can begin
either at n3 or at n4: joins({n6, n7}, {n8}) = {n3, n4}. Suppose we begin at n4

by invoking split_join({n6, n7}, {n8}, n4). This duplicates n4 and its incoming
transition, in effect moving the join one node up: the new join is n3.

Procedure split_join begins its task by examining all the outgoing transitions
of the join. If one of them is a transition r for which MR(r) includes two groups
of leaves, LS1 and LS2 , such that friends∩LS1 = ∅ and enemies∩LS2 = ∅ then
split(r, friends , enemies) is invoked recursively. Once all the outgoing paths of a
join are untangled (if necessary) then the paths are divided into two sets: a set
where the paths lead to leaves in friends and another one where the paths lead
to leaves outside friends.

Transitions that begin the paths in the latter set are re-rooted in a new node,
which is connected to the parent of the join. Annotations (i.e., sets of l-groups)
on the transitions that lead from the parent to the old join and its new copy are
updated to reflect the new situation: the join has thus been split.

This process continues until the source of the original heavy transition is
reached. The heavy transition has then been split into two lighter ones.

3.4.2 Untangling General Trees
Untangling trees with open cycles requires extra care. In particular, when a
looping ancestor n is being duplicated, we must make sure that all the nodes
that were previously reachable from n, remain reachable from the copies of n.
This is captured in Observation 4.

As we discussed in Sect. 3.4.1 a tree without cycles but with a heavy transition
must include at least two f _trees that are not embedded in each other. This is
not the case in the presence of cycles: it might be possible to reduce the weight of
a transition by untangling within a single f _tree. Observe that in this case all the
heavy transitions must reside in an open cycle. Figure 3 shows one such example:
the entire tree is one f _tree. g and h are the heavy transitions with weight 3.
MR(g) = MR(h) = {({l3}, {c1, c2}), ({l3}, {c0, c2})}. The groups are separable,
but associated with the same set of leaves, so there are no joins reachable from
g and h where untangling can begin. However, this indicates that the incoming
transition of the looping ancestor of l3 (i.e., d), must be annotated with separable
groups that contain c0 and c1. Indeed, MR(d) = {({l1, l3}, {c0}), ({l2, l3}, {c1})}.
Since joins(l1, l2) = {n3} we can begin untangling by duplicating n3 and its
incoming transition. This is enough to make both the heavy transitions lighter.
The resulting tree is shown in Fig. 8: g and h on the left and on the right are
now annotated with {({l3}, {c0, c2})}, and {({l′3}, {c1, c2})}, respectively.

We can now adjust our untangling method to account for open cycles. The
main steps are as before: split is successively invoked on heavy transitions until
no heavy transitions are left. There are two main extensions of the algorithm:

184 N. Saeedloei and F. Kluźniak

n0

n1

n2

n3 n4

n5 n6n7

c0 := 0b

c1 := 0c

d d

i

e
c0 ≤ 2

c1 := 0 f
c1 ≤ 1
c0 := 0

g
c1 := 0

h

c 1
≥
1

g

c0 := 0

h

c
0 ≥

1

Fig. 11. The automaton for the tree of Fig. 8

n0

n1

n2 n3

c0
c1

a

c 0
≤
2

c b

c
1 ≥

2

Fig. 12. An automaton outside TAS

– When a looping ancestor n is duplicated, we must make sure that all the open
cycles originating at n are duplicated and attached to the copy of n.

– If a heavy transition r can be made lighter only by separating two groups that
are associated with the same leaf l, then l is a looping leaf. Then untangling
must begin with the incoming transition of the looping ancestor of l.

It is worth mentioning that if the root of a tree is also a looping ancestor, then the
root is never split/duplicated by the algorithm: by the time the root is reached
the current payload must have become empty (since all clocks are well-defined).

3.5 Obtaining the Final Automaton

The graph of the untangled TA might not be the graph of the target automaton
yet, if TA includes open cycles. The open cycles must be replaced with actual
cycles in order to obtain the graph of the final automaton. This step can be
performed by a simple algorithm that unifies each looping leaf with its looping
ancestor by removing the leaf and setting the target of its incoming transition
to the looping ancestor. We use GA to denote the resulting graph.

After obtaining the graph of the target automaton, we use the existing algo-
rithm [12] to optimally allocate clocks in GA to obtain the final automaton.

Figure 11 shows the final automaton for the tree of Fig. 8.

4 Implementation and Experimental Results

All our algorithms are implemented (in Python). The implementation has been
applied to all the examples in the paper. We have also run a set of benchmarks
consisting of timed automata that were generated randomly within the bounds
of a set of parameters such as the number of locations and clocks.

Table 1 shows a selection of results from this set of benchmarks. These results
suggest that our method can, indeed, be beneficial in practice.

In the course of our experiments we occasionally encountered very large initial
trees. This occurred when the random graph became very complicated, with

Untangling the Graphs of Timed Automata 185

many nested cycles and converging paths. It is doubtful that such complication
would arise in practice, i.e., in a timed automaton that is produced by humans
and intended for human inspection.

Table 1. Experimental results

A TA Untangled TA Optimal allocation Real cost Final automaton
|Q| |T | |Qf | nodes nodes (A) |Q| |T | |Qf |

1 11 11 3 12 16 7 4 15 15 3

2 15 19 3 38 46 7 3 39 45 16

3 11 11 3 12 17 6 3 16 16 3

4 21 33 3 190 194 6 3 123 193 32

5 17 20 3 21 34 5 3 28 33 4

6 16 20 4 22 29 5 2 27 28 4

7 12 14 3 15 21 5 2 19 20 3

8 12 14 2 16 25 4 2 22 24 4

9 16 23 3 39 41 3 2 28 40 5

10 7 9 2 11 12 3 2 8 11 4

11 8 11 2 14 17 3 1 14 16 6

12 7 9 2 11 13 2 1 10 12 4

5 Stepping Outside TAS

After a few trivial modifications our method can be profitably applied to all
automata that have well-defined clocks, i.e., also automata that have more
than one reset per transition. We did not consider them here, because for such
automata the notion of optimal clock allocation is problematic [12]. For a very
simple example of the kind of difficulties that might arise, consider Fig. 12, which
depicts both an automaton and its tree. Our method would reduce the number
of clocks from two to one by duplicating node n1 and transition a. But for this
example the same result could be achieved just by conflating the two clocks, i.e.,
by replacing c1 ≥ 2 with c0 ≥ 2 on transition b. In other cases a similar improve-
ment can be obtained by splitting a clock into two clocks [12]. In general, the
two operations (conflation and splitting) make it computationally very difficult
to obtain an allocation that is optimal (in the sense used here): for automata in
TAS there are no such operations, and a strictly optimal result is within reach.

6 Conclusions

We study the problem of minimizing the number of clocks for timed automata
in the class TAS [12]. For any automaton in TAS there is at most one clock reset
on any transition. Additionally, we assume that every clock is well-defined, i.e.,
it is reset before being used.

186 N. Saeedloei and F. Kluźniak

Given an automaton A ∈ TAS with an optimal clock allocation (“optimal”
in the sense of the cited work [12]) whose cost (i.e., number of clocks) is n, we
compute the real cost of A, i.e., the minimum of the costs of clock allocations for
automata in U(A) (the set containing A and the language-equivalent automata
that can be obtained by changing the graph of A—via “untangling” its paths—
but without changing the constraints). If the real cost of A is smaller than n,
then we know that there is a non-empty set S ⊂ U(A) of automata for which the
cost of an optimal clock allocation is the same as the real cost of A. We present
an algorithm that transforms A to an automaton in S.

References

1. Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.: Decidability and complexity
results for timed automata via channel machines. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
1089–1101. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_88

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_1

4. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata deter-
minizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 43–54. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02930-1_4

5. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 254–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X_18

6. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

7. Clarke, E.M., Jr., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

8. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

9. Daws, C., Yovine, S.: Reducing the number of clock variables of timed automata.
In: Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS ’96),
December 4–6, 1996, Washington, DC, USA. pp. 73–81 (1996)). https://doi.org/
10.1007/978-3-642-33365-1_12

10. Finkel, O.: Undecidable Problems About Timed Automata. CoRR abs/0712.1363
(2007)

https://doi.org/10.1007/11523468_88
https://doi.org/10.1007/978-3-540-30080-9_1
https://doi.org/10.1007/978-3-642-02930-1_4
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1007/978-3-642-33365-1_12
https://doi.org/10.1007/978-3-642-33365-1_12

Untangling the Graphs of Timed Automata 187

11. Guha, S., Narayan, C., Arun-Kumar, S.: Reducing clocks in timed automata while
preserving Bisimulation. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS,
vol. 8704, pp. 527–543. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44584-6_36

12. Saeedloei, N., Kluźniak, F.: Clock allocation in timed automata and graph colour-
ing. In: Proceedings of the 21st International Conference on Hybrid Systems: Com-
putation and Control (part of CPS Week), HSCC 2018, Porto, Portugal, 11–13
April 2018, pp. 71–80 (2018). http://doi.acm.org/10.1145/3178126.3178138

https://doi.org/10.1007/978-3-662-44584-6_36
https://doi.org/10.1007/978-3-662-44584-6_36
http://doi.acm.org/10.1145/3178126.3178138

Probability

Probabilistic Model Checking of BPMN
Processes at Runtime

Yliès Falcone, Gwen Salaün, and Ahang Zuo(B)

Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble, France

ahang.zuo@inria.fr

Abstract. Business Process Model and Notation (BPMN) is a stan-
dard business process modelling language that allows users to describe
a set of structured tasks, which results in a service or product. Before
running a BPMN process, the user often has no clear idea of the prob-
ability of executing some task or specific combination of tasks. This is,
however, of prime importance for adjusting resources associated with
tasks and thus optimising costs. In this paper, we define an approach to
perform probabilistic model checking of BPMN models at runtime. To
do so, we first transform the BPMN model into a Labelled Transition
System (LTS). Then, by analysing the execution traces obtained when
running multiple instances of the process, we can compute the probabil-
ity of executing each transition in the LTS model, and thus generate a
Probabilistic Transition System (PTS). Finally, we perform probabilistic
model checking for verifying that the PTS model satisfies a given proba-
bilistic property. This verification loop is applied periodically to update
the results according to the execution of the process instances. All these
steps are implemented in a tool chain, which was applied successfully to
several realistic BPMN processes.

1 Introduction

A business process describes a set of structured tasks that follow a specific order
and thus results in a product or service. The business process model and nota-
tion (BPMN), proposed by OMG, is the de facto standard for developing busi-
ness processes [15]. BPMN relies on a graphical workflow-based notation that
describes the structured tasks in a business process and the relationships between
these tasks.

The BPMN standard was quickly adopted by industry and academia, even
though several flaws were identified. One of them regards the lack of formal
semantics. Several approaches proposed to use Petri nets or automata-based lan-
guages for filling this gap. Related to formal semantics, the lack of formal analysis
techniques appeared as another weakness. The final goal is to provide (ideally
automated) verification techniques and tools for ensuring that processes respect
some functional and non-functional properties of interest (e.g. the absence of
deadlocks, the execution of the process within a reasonable amount of time, the

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 191–208, 2022.
https://doi.org/10.1007/978-3-031-07727-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_11

192 Y. Falcone et al.

occupancy of resources, etc.). All these checks are particularly useful for opti-
mising processes and thus reducing the costs associated with their execution.

In this paper, we tackle the problem of computing the probability of exe-
cuting certain tasks or combination of tasks when running the processes. The
possibility of executing one task or another comes from the use of different kinds
of gateways in the BPMN process (e.g. exclusive gateways). These probabilities
are difficult to determine, especially when multiple instances of the process are
executed at the same time. In that case, since resources are necessary for exe-
cuting some specific tasks, knowing these probabilities is of prime importance
for better adjusting the corresponding resources and thus converging to an opti-
mal allocation of resources. It is worth noting that before executing the process
multiple times, the developer has often no clear idea regarding the probability of
executing some task or a specific sequence of tasks. Therefore, there is a need for
automated techniques that can compute (and update) at runtime these proba-
bilities, thus allowing the verification of probabilistic properties (e.g. what is the
probability to execute task T? Is the probability to execute task T1 followed by
T2 higher than 40%?).

In this work, we define an approach to perform probabilistic model checking
of BPMN processes at runtime. To do so, we assume that a process is described
using an executable version of BPMN. The process can be executed multiple
times, each execution of the process is called an instance. Different instances
may perform different tasks in the process. Our approach first monitors these
executions to extract from the corresponding logs the probability of executing
each individual task. These probabilities are used to build a semantic model
of the BPMN process where these probabilities appear explicitly. This model
is called a Probabilistic Transition System (PTS). Then, given a probabilistic
property expressed in a dedicated temporal logic and this PTS, a probabilistic
model checker is called for verifying whether the property is true/false or for
computing the expected probability of that property. Note that this approach
is not applied once and for all, because more instances of the process can keep
executing including variations in terms of frequency of the executed tasks. Based
on these variations, the probability of each transition of the LTS evolves over
time. Therefore, the PTS is updated periodically, and the model checker is called
again. The result of our approach is thus not a single value, but a dynamic curve
indicating the evolution of the property evaluation over time.

To summarise, the main contributions of this work are as follows:

• Monitoring techniques for extracting at runtime relevant information about
the execution of multiple instances of a process.

• Periodic computation of a Probabilistic Transition System by analysing exe-
cution logs resulting of the monitoring of the process.

• Integrated toolbox for probabilistic model checking of BPMN processes at
runtime.

• Validation of our approach on a large set of realistic BPMN processes.

The remainder of this paper is organised as follows. In Sect. 2, we describe the
concepts and definitions used in the subsequent sections. In Sect. 3, we present

Probabilistic Model Checking of BPMN Processes at Runtime 193

the approach in detail. Section 4 focuses on the tool support and the experiments
performed for validation purposes. Section 5 describes related work. Finally, in
Sect. 6, we present our conclusions and future work.

2 Models

In this section, we introduce the preliminary concepts.

BPMN. Business process model and notation (BPMN) is a workflow-based nota-
tion for describing business processes [15]. Originally, it was a modelling notation,
but recent frameworks also allow the execution of such processes using a process
automation engine or by translation to an executable language. The syntax of
a BPMN process is given by a graph-based structure where vertices (or nodes)
correspond to events, tasks and gateways, and edges (or flows) connect these
nodes.

Figure 1 describes a fragment of the BPMN notation showing the main ele-
ments. Events include the initial/start event and the end event, which are used
to initialise and terminate processes. We assume there is only one start event,
and at least one end event. A task is an atomic activity containing only one
incoming flow and one outgoing flow. Gateways are used to describe the control
flow of the process. There are two patterns for each type of gateway: the split
pattern and the merge pattern. The split pattern consists of a single incoming
flow and multiple outgoing flows. The merge pattern consists of multiple incom-
ing flows and a single outgoing flow. Several types of gateways are available, such
as exclusive, parallel, and inclusive gateways. An exclusive gateway corresponds
to a choice among several flows. A parallel gateway executes all possible flows at
the same time. An inclusive gateway executes one or several flows. The choice of
flows to execute in exclusive and inclusive gateways depends on the evaluation
of data-based conditions.

Task

Initial Event End Event

Split gateways: inclusive, exclusive, parallel Merge gateways: inclusive, exclusive, parallel

Task Flow

Fig. 1. Excerpt of the BPMN notation

In this paper, we consider multiple executions of a single process. Each exe-
cution is called an instance and is characterised by an identifier and the list

194 Y. Falcone et al.

of consecutive tasks executed by this process. We assume that a BPMN process
cannot run infinitely and that each instance terminates at some point. Therefore,
the list of tasks associated to an instance is always finite.

LTS. We use Labelled Transition Systems as a semantic model of BPMN pro-
cesses, as described in [17,20,23].

Definition 1 (LTS). A labelled transition system (LTS) is a tuple 〈Q,Σ, qinit,
Δ〉 where: Q is a set of states; Σ is a finite set of labels/actions; qinit ∈ Q is the
initial state; Δ ⊆ Q × Σ × Q is the transition relation.

A transition (q, a, q′) ∈ Δ, written q
a−→ q′, means that the system can move

from state q to state q′ by performing action a.

PTS. We also need a more expressive model than LTS because we want to asso-
ciate transitions with probabilities. We therefore rely on Probabilistic Transition
Systems [18], which is a probabilistic extension of the LTS model.

Definition 2 (PTS). A probabilistic transition system (PTS) is a tuple 〈S,A,
sinit, δ, P 〉 such that 〈S,A, sinit, δ〉 is a labelled transition system as per Defini-
tion 1 and P : δ → [0, 1] is the probability labelling function.

P (s a→ s′) ∈ [0, 1] is the probability for the system to move from state s to state
s′, performing action a. For each state s, the sum of the probabilities associated
to its outgoing transitions is equal to 1, that is ∀s ∈ S :

∑
s′∈S P (s, a, s′) = 1.

MCL. Model Checking Language (MCL) [21] is an action-based branching-time
temporal logic suitable for expressing properties of concurrent systems. MCL
is an extension of alternation-free μ-calculus [6] with regular expressions, data-
based constructs, and fairness operators. We rely on MCL for describing proba-
bilistic properties, using the following construct [19]: prob R is op [?] E end prob,
where R is a regular formula on transition sequences, op is a comparison operator
among “<”, “≤”, “>”, “≥”, “=”, “<>”, and E is a real number corresponding
to a probability. MCL is interpreted over a PTS model.

3 Probabilistic Model Checking of BPMN

This section first gives an overview of the different steps of our approach. Then,
we present with more details the solution for monitoring BPMN processes and
the computation of a probabilistic model from the execution traces observed
during the monitoring step.

3.1 Overview

Recall that before executing a process, it is unclear how often a certain task or
combination of tasks are executed. This is of prime importance for adjusting the
resources necessary for executing the tasks involved in a process. The goal of our

Probabilistic Model Checking of BPMN Processes at Runtime 195

approach is to analyse the multiple instances of a process at runtime to precisely
measure the probabilities of executing the tasks involved in a process, and thus
to evaluate automatically probabilistic properties on that process.

Our approach takes as input a BPMN process and a probabilistic property,
and returns as output the verdict returned by the model checker. The verdict
indicates whether the property holds on the system. Such a verdict is obtained
by passing the process and the property to a model checker. This verdict is peri-
odically updated, since the process keeps on executing, and our approach runs
as long as there are new instances of the process completing. Figure 2 overviews
the approach. First, we monitor and analyse the multiple instances resulting of
the execution of the BPMN process. These instances are used to compute the
probability of execution for each task. Then, these probabilities are added to
the LTS semantic model obtained from the BPMN process, resulting in a PTS.
Finally, we call a model checker to verify that the PTS satisfies the given prob-
abilistic property. Since the process keeps running, the probability of each task
and thus the PTS are periodically updated. The period is a parameter of the
approach. Every time the PTS is updated, the model checker is called again. Let
us now give a little more details on the three main parts of the approach.

Fig. 2. Overview of the approach

Monitoring. The monitoring part focuses on the data streams generated by the
execution of the BPMN process. A BPMN process may be executed multiple
times, each of its executions produces an instance. Each time a new instance
completes (meaning that the process has terminated), the information about that

196 Y. Falcone et al.

instance execution is stored into a database. We have implemented a technique
for extracting from this database the events related to a set of instances that
have completed, and we convert these events into execution traces (one trace per
process instance). This extraction is applied periodically, where the period can
be a duration (e.g. every hour) or a fixed number of completed instances (e.g.
when 100 instances have completed).

Model Generation. The first step of this part is to generate an LTS from the
BPMN process. This LTS stands as a semantic model, and exhibits all pos-
sible execution paths for the given process. There are several ways to trans-
form BPMN to LTS. Here, we rely on an existing work, which proposes to first
transform BPMN into the LNT (LOTOS New Technology) [10] process algebra.
Since LNT operational semantics maps to LTS, the generation of that LTS is
thus straightforward. Due to lack of space, the reader interested in more details
regarding the transformation from BPMN to LTS can refer to [17,20,23]. Note
that this transformation from BPMN to LTS is only computed once. In a second
step, by analysing the execution traces built during the monitoring stage, we
compute the probabilities of executing each task involved in the process, and
add these probabilities to the LTS, which thus becomes a PTS. This PTS is
updated periodically, every time a new set of execution traces is provided by the
monitoring techniques.

Verification. This step of the approach takes as input a probabilistic model
(PTS) and a probabilistic property, and computes as output a Boolean or numer-
ical verdict depending on the property. This check is performed by using an
existing model checker (the latest version of the CADP model checker [9] in this
work). Since the PTS is updated periodically, the model checker is thus called
whenever this update takes place. Therefore, the final result does not consist
of a single value, but all successive values are gathered on a curve, which is
dynamically updated every time the model checker is called with a new PTS.

3.2 BPMN Process Monitoring

In this section, we introduce monitoring techniques for BPMN processes at run-
time. These techniques are useful because a process is usually not executed only
once. Instead, a process can be executed multiple times. Each execution of the
process is called an instance. An instance of the process can be in one of the
following states: initial means that the instance is ready to start (one token in
the start event), running means that the instance is currently executing and is
not yet completed, completed means that all tokens have reached end events.
Tokens are used to define the behaviour of a process. When a process instance
is triggered, a token is added to the start node. The tokens move through nodes
and flows of the process. When a token meets a split gateway (e.g. parallel
gateway), it may be divided into multiple ones, depending on the type of split
gateway. On the contrary, when multiple tokens meet a merge gateway (e.g.
inclusive gateway), they are merged into a single token depending on the type

Probabilistic Model Checking of BPMN Processes at Runtime 197

of merge gateway. An identifier is used to characterise a specific instance, and
this identifier is associated to all nodes (e.g. tasks) executed by this instance.

Monitoring techniques (see Fig. 3 for an overview) aim at analysing the infor-
mation stored in a database, and extracting for each instance the corresponding
execution trace. An execution trace corresponds to a list of tasks executed by this
specific instance. The order of execution of these tasks is established by using
timestamps at which each task is executed. These timestamps are computed by
the process execution engine (Activiti [1] in this work), which relies on a global
clock. The execution trace corresponding to a specific instance can be computed
only when the instance is in its completed state.

Fig. 3. Runtime monitoring of multiple executions of a BPMN process

Since new instances can execute at any time, we should extract execution
traces periodically. There are several possible strategies that can be followed by
taking into account different criteria. In this work, we propose to use one of the
two following strategies:

– the time-based strategy means that the trace extraction is performed every
fixed period of time;

– the instance-based strategy is based on the number of instances, and the trace
extraction is triggered whenever the total number of new completed instances
reaches a certain value.

It is worth noting that a hybrid strategy combining these two strategies is also
an option, e.g. we extract traces whenever 100 instances have completed or every
hour if after one hour less than 100 instances have completed. In addition, the
choice of these different strategies may have a different impact on the actual
results.

There are two similar algorithms for extracting execution traces depending on
the strategy. We illustrate below with the algorithm relying on the time-based
strategy. The first goal of this algorithm is to extract the relevant completed
instances of this process from the database. These instances are then traversed
in order to generate the corresponding execution traces.

Let us now go through the algorithm to give more details. Algorithm 1
describes the execution of the time-based extraction of execution traces. The
inputs of the algorithm are the process identifier (pid), a timestamp (ts), and a

198 Y. Falcone et al.

time duration (td). This timestamp is the start time of the period to identify the
new instances that have completed. The output is a set of execution traces (T).

Algorithm 1. Algorithm for extracting execution traces
Inputs: A process ID (pid), a timestamp (ts), and a time duration (td)
Output: A set of execution traces (T)
1: I := ∅, T := ∅
2: I := getInstances(pid)
3: for each I ∈ I do
4: if I .hasEndEvent() and ts < I .endts() ≤ ts + td then
5: T := T ∪ I .computeSortedTasks()

return T

Algorithm 1 first connects to the database and retrieves all the instances
corresponding to the process identifier by using function getInstances(). These
instances are stored in variable I. Each instance consists of the identifier of
the instance and a set of tasks (lines 1 to 2). These instances are traversed to
keep only those that have completed during the last period of time (presence
of an end event and completion time lower than timestamp + duration, line 4).
The resulting instances are all eligible instances. For each completed instance,
function computeSortedTasks() sorts the tasks using their completion times, and
returns an execution trace consisting of the instance identifier and an ordered
list of tasks (line 5). The algorithm finally returns the set of execution traces T .

The time complexity of the algorithm is O(n × m × log m), where n is the
number of completed instances over a period, and m is the maximum number
of tasks executed by an instance (O(m × log m) is the complexity of the timsort
algorithm used for sorting tasks).

3.3 Transforming LTS into PTS

Given a BPMN process, we can generate its LTS semantic model using existing
techniques such as [17,20,23]. The LTS model exhibits all possible execution
paths of the input BPMN process. This generated model is non-deterministic,
and it has only one final state1. In this section, we show how by analysing exe-
cution traces (one trace per instance) extracted during the monitoring of the
process, we can extend this LTS with probabilities of execution for each transi-
tion included in this LTS model. These probabilities are added as annotations
to the transitions of the LTS, which thus becomes a PTS.

Before explaining how we generate a PTS given an LTS and a set of execution
traces, it is worth noting that, similarly to trace extraction, the PTS should be

1 A final state is a state without outgoing transitions. If an LTS exhibits several final
states, these states can be merged into a single one, resulting into an LTS strongly
bisimilar [22] to the original one.

Probabilistic Model Checking of BPMN Processes at Runtime 199

updated periodically as well due to the execution of multiple instances. There-
fore, this part of the approach also relies on one of the two aforementioned
strategies (time or instance-based strategy) for defining the period.

Algorithm 2 takes as input the LTS model corresponding to the BPMN pro-
cess and a set of execution traces, and returns as output a PTS model. The main
idea of the algorithm is to count the number of times each transition is executed
using the information from the execution traces. This is achieved by associating
a counter to each transition and by traversing the execution traces one after the
other. Essentially, each time a task appears in an execution trace, we increment
the counter of the corresponding transition. After traversing all execution traces,
we compute the probability of executing each transition outgoing from a state
by using the associated counter value. We augment the LTS model with these
probabilities to obtain the PTS model.

Algorithm 2. Algorithm for transforming LTS into PTS
Inputs: LTS = 〈Q, Σ, qinit, Δ〉, a finite set of execution traces T = 〈T1, T2, . . . , Tn〉
Output: PTS = 〈S, A, sinit, δ, P 〉
1: S := Q, A := Σ, sinit := qinit, δ := Δ
2: Path := [],Fpaths := [],Bpaths := [],Ttasks := [] /* [] indicates an empty list */

3: for each (s, a, s′) ∈ Δ do cnt((s, a, s′)) := 0

4: for each T ∈ T do
5: Qcurrent := {qinit}, Qnext := ∅, Qpre := ∅,Ttasks := T .getTasks()
6: for each task ∈ Ttasks do
7: qsucc := {q′ ∈ Q | ∃q ∈ Qcurrent, (q, task, q′) ∈ Δ}
8: if task 	= Ttasks[Ttasks.length() − 1] then
9: Qnext := qsucc, Qcurrent := Qnext

10: else
11: qnext := {q ∈ Q | ∃q ∈ qsucc and q 	= q′, (q, task, q′) ∈ Δ}
12: Qnext := qsucc \ qnext

13: for each (q, task, q′) ∈ Δ, q ∈ Qcurrent, q
′ ∈ Qnext do

14: Fpaths.append((q, task, q′))

15: for each task ∈ Ttasks.reverseOrder() do
16: Qpre := {q ∈ Q | ∃q′ ∈ Qnext, (q, task , q′) ∈ Δ}
17: for each (q, task, q′) ∈ Δ, q ∈ Qpre, q

′ ∈ Qnext do
18: Bpaths.append((q, task, q′))

19: Qnext := Qpre

20: Path := Fpaths ∩ Bpaths
21: for each (s, a, s′) ∈ Path do cnt((s, a, s′)) := cnt((s, a, s′)) + 1

22: P := {(s, a, s′) �→ cnt((s, a, s′))/
∑

q∈S,a′∈A,(s,a′,q)∈δ cnt((s, a
′, q)) | (s, a, s′) ∈ δ}

return 〈S, A, sinit, δ, P 〉

Let us now present with more details how this algorithm for generating the
PTS model works. The PTS model is first initialised, and a counter (initialised
to 0) is added to each transition of the LTS model (lines 1 to 3). The algorithm

200 Y. Falcone et al.

starts by traversing the set of execution traces T . For each execution trace,
the algorithm proceeds in three steps: (a) traversing the tasks of the execution
trace, (b) finding the corresponding valid path into the LTS model, (c) increasing
the value of the counters. As a final step, all execution traces are traversed for
computing the probability of each transition. Qcurrent is the set of current states
in the LTS during the traversal, Qnext is the set of successor states of a current
state, and Qpre is the set of predecessor states of a current state. We now present
these steps with more details:

(a) Traversing the tasks of the execution trace (lines 5 to 14). Since the LTS
may exhibit non-deterministic behaviours, this step (and the following one)
computes the valid path in the LTS corresponding to an execution trace.
This step relies on a forward traversal of the LTS (from initial state to final
state). Each execution trace T consists of an identifier and a sequence of
tasks Ttasks. For each trace, these tasks are handled one after the other,
and by using transitions Δ, the successor states for each current state are
obtained until all tasks of the current execution trace have been traversed.
We use Fpaths (Forward-paths) to record the sequence of transitions in the
LTS corresponding to the execution paths of the current execution trace.

(b) Finding the corresponding valid path into the LTS model (lines 15 to 20).
This step relies on a backward traversal of the LTS (from final state to ini-
tial state). Therefore, we start by reversing the sequence of tasks for the
current execution trace. By using this reversed list and the final state which
is stored in the last Qnext of the previous step, we then traverse backwards
to the initial state. We use Bpaths (Backward-paths) to record all the tran-
sitions from the final state to the initial state (lines 15 to 19). Next, we
take the intersection of each element in Fpaths and Bpaths, and store the
result in Path. This intersection operation eliminates the invalid paths, or
more precisely the invalid transitions, in Fpaths and Bpaths. Thus, the Path
variable finally stores all the transitions of the LTS model corresponding to
the current execution trace (line 20).

(c) Increasing the value of the counters (line 21). The values of the counters for
the transitions in Path are increased by 1.

(d) Computing the probability of each transition (line 22). The probability of
each transition is computed. To do so, the value of each transition counter
is divided by the total number of transitions with the same starting state.

When we have traversed all the execution traces, the algorithm finally returns
the resulting PTS.

The time complexity of this algorithm is O(|T | × n × |Δ|), where |T | is the
number of execution traces, n is the number of tasks in the longest trace, and
|Δ| is the number of transitions in the LTS/PTS.

Figure 4 illustrates the execution of the algorithm. Figure 4(a) depicts the
input of the algorithm: an LTS and a set of execution traces, where the number
in the first column (e.g. 1003) is the identifier of the execution trace. In this
example, we assume that State 2 is the end/final state of the LTS. Figure 4(b)
depicts an example of traversing an execution trace, where the dashed lines

Probabilistic Model Checking of BPMN Processes at Runtime 201

Fig. 4. Example describing the execution of the algorithm

indicate all possible transitions. Figure 4(c) depicts an example of filtering the
invalid paths in it based on the paths obtained in the previous step, which is
indicated by dotted lines. Dashed lines are used to represent the valid path.
In this example, after the previous step, we get a total of two paths. One path
contains two transitions of (0 Task A−→ 1) and (1 Task C−→ 4). The final state reached
by this path is 4, which is not the final state of the LTS. Therefore, this path is
invalid. For the other one, its final state is the final state of the LTS, and hence,
this is a valid path. Figure 4(d) shows each relevant transition coming from
the valid path (dashed lines) whose counter is incremented by 1. Figure 4(e)
then describes the computation of the probability for each transition of the
LTS. Finally, the PTS corresponding to the LTS extended with probabilities is
returned.

4 Tool Support

In this section, we present the tool chain automating the different steps of our
approach. We then illustrate the application of these tools to a case study, and
end with additional experiments to evaluate performance of the tools on a set
of realistic examples.

4.1 Tool

Figure 5 overviews the tool chain. First, we use the Activiti framework [1] for
developing and executing BPMN processes. Activiti is a lightweight Java-centric
open source tool. When running a BPMN process once or several times, all data
related to these executions are stored into a MySQL database.

Beyond a BPMN process, the second input required by our approach is a
probabilistic property. In this work, the property is specified using the MCL [21]

202 Y. Falcone et al.

temporal logic, which is one of the input languages of the CADP toolbox [9].
CADP is a toolbox for the design and verification of asynchronous concurrent
systems. Note that the approach can take several properties as input, not just
a single one. We also use the Script Verification Language [8] (SVL), which
is convenient for automating all verification tasks, particularly when there are
several properties given as input.

The VBPMN tool [17] is used for transforming BPMN into LTS. The gen-
eration of the PTS from the analysis of the execution traces is automated by
a Python program we implemented. The property is then evaluated by call-
ing the CADP probabilistic model checker [19]. As a result, it returns either a
Boolean or Numerical value. Since the BPMN process keeps executing (multi-
ple instances), the PTS is updated periodically according to an update strategy
defined in Sect. 3. Whenever the PTS is updated, the model checker is called
again. The final result is thus not a single value, but a series of values, which
we represent as a curve (x: time or number of instances, y: verification result).
This curve is drawn using Matplotlib, which is a plotting library for the Python
programming language.

Fig. 5. Overview of the tool chain

4.2 Case Study

Let us illustrate our approach with the shipment process of a hardware retailer,
which comes from [20]. This example, shown in Fig. 6, describes a realistic deliv-
ery process of goods. More precisely, this process starts when there are goods
to be shipped (E1). Two tasks are then processed in parallel (PG1), one is the
packaging of the goods (T7) and the other decides whether the goods require
normal or special shipment (T1). Depending on that decision, a first option
checks whether there is a need for additional insurance (T2), followed by the
possibility to buy additional insurance (T4) and/or fill in a post label (T5).

Probabilistic Model Checking of BPMN Processes at Runtime 203

A second option is to request quotes from carriers (T3), followed by the assign-
ment of a carrier and preparation of the paperwork (T6). Before completing the
whole process, the package is moved to a pick-up area.

Decide: normal
post or

special carrier

Check extra
insurance

Move package to
pick area

Assign a carrierRequest quotes
from carriers

Fill in a post label

Take out extra
insurance

Package goods

Goods to ship

Goods available
for pick

E1 PG1
T1 Normal post

T8

T6

T5

T4

T2

T3

T7

Special carrier

EG1

IG1 IG2

EG2

PG2

E2

Always

Extra insurance
required

Fig. 6. BPMN shipment process of a hardware retailer

Probabilistic Property. For illustration purposes, we choose a property checking
that the probability of executing task T4 after task T2 is less than 0.4. This is
important because the choice of taking extra insurance (T4) comes with a cost,
and if this decision is taken too often (e.g. more than four times out of ten), this
may become a problem in terms of budget. This property is written in MCL
as follows: prob true*. T2. true*. T4 is < ? 0.4 end prob. Since we use the ‘?’
symbol, the model checker returns both a Boolean value (indicating whether the
property is true or false) and a numerical value (indicating the probability to
execute T4 after T2).

Simulation. We implemented a simulator in Java in charge of executing many
instances of the BPMN process, varying the order and frequency of task exe-
cutions in order to simulate a realistic operating environment. Figure 7 shows
the Boolean and numerical results for a simulation consisting of 1400 instances,
executed over a period of about 4 minutes, where the property is the one men-
tioned earlier. The update strategy used here relies on the number of completed
instances. Every time there are ten completed instances, we compute again the
execution probability of each transition of the LTS, generate a new PTS, and
we call the model checker to obtain a new result. Figure 7 shows a variation of
the truth and numerical values of the evaluated property over time. This is due
to our simulator, which favours the execution of some specific tasks during some
periods, resulting in the curve given in the figure.

204 Y. Falcone et al.

Fig. 7. Simulation results for the shipment process

4.3 Additional Experiments for Performance Evaluation

The goal of this section is to measure the execution times of the different steps of
our approach in practice. To do so, we rely on a set of realistic BPMN processes
found in existing papers and frameworks shown in Table 1. We used an Ubuntu
OS laptop running on a 1.7 GHz Intel Core i5 processor with 8 GB of memory
to carry out these experiments. Table 1 shows the results of these experiments.
Each process is characterised by its size (number of tasks and gateways), the
size of the generated PTS (number of states and transitions), and the execution
time of each step is decomposed as follows:

(1) Time for transforming the BPMN process into an LTS (executed only once);
(2) Time for extracting a certain number of execution traces (100 in these exper-

iments) from the database;
(3) Time for analysing these execution traces and for computing the PTS;
(4) Time for verifying the property on that PTS using the CADP model checker.

Let us now focus on the results presented in Table 1 for each step. The first
step focuses on the transformation of the BPMN process to an LTS model.
Table 1 shows this can be a time-consuming step compared to the other ones.
This computation time depends on the structure of the BPMN process and
increases with the number of parallel and inclusive gateways (in particular when
they are nested). Rows 8 and 11 in the table illustrate this point. However,
it is worth noting that this step of the approach is only executed once at the
beginning, so this extra-time is not really a problem. The second step focuses on
the computation time for connecting to the database and extracting a certain
number of execution traces (100 in these experiments) from it. We can see that
the computation time of this step is less than 0.5 s for all the examples in the
table. The third step aims to analyse these execution traces, calculating the
probabilities of each transition for building a PTS by annotating the previously
computed LTS. The algorithm (and its complexity) for computing that PTS was
presented in Sect. 3. According to our experiments, we can see that this time

Probabilistic Model Checking of BPMN Processes at Runtime 205

Table 1. Experimental results for some case studies

No.
BPMN

Process

Characteristics PTS Time (s)

Tasks
Gateways

States Transitions (1) (2) (3) (4)

Exclusive Inclusive Parallel

1 Shipment [20] 8 2 2 2 18 38 15 0.32 0.61 1.45

2 Recruitment [7] 10 1 0 6 19 31 25 0.21 0.64 1.32

3 Shopping [17] 22 8 2 2 59 127 50 0.26 1.12 1.68

4 AccoutOpeningV2 [17] 15 3 2 2 20 33 31 0.25 0.71 0.84

5 Publish [17] 4 0 2 0 16 61 22 0.42 0.58 0.77

6 Car [17] 10 2 0 2 18 31 18 0.44 0.67 0.84

7 Online-Shop [17] 19 7 2 0 36 74 41 0.33 0.79 1.21

8 Multi-Inclusive [17] 9 0 6 0 47 194 42 0.23 2.32 1.39

9 Multi-Exclusive [17] 8 6 0 0 6 9 22 0.01 0.51 0.82

10 Multi-Parallel [17] 8 0 0 6 15 22 12 0.12 0.63 0.67

11 Multi-InclusiveV2 [17] 12 0 6 0 141 1201 78 0.25 4.29 1.58

12 Booking [17] 11 2 4 0 53 242 22 0.19 2.37 1.24

increases with the size of the LTS (number of transitions). It takes less than a
second to compute this step for most examples and it is slightly longer for a
few examples (about 4 s for example Multi-InclusiveV2 for instance). The final
computation time corresponds to the verification of the PTS model by calling
the probabilistic model checker. We can see in the table that it takes about 1 or
2 s for each example to make this computation.

To conclude, these experiments show that, except for the LTS computation
that might be costly, the other steps of the approach are computed in a reason-
able time for realistic processes. This shows that conducting probabilistic model
checking of BPMN processes at runtime is feasible. Last but not least, the sum
of the times observed for steps (2), (3) and (4) could be used to obtain a lower
bound value to the period of time used by the time-based strategy. Indeed, this
would not make sense to use as period a value that would be smaller than this
lower bound.

5 Related Work

In this section, we overview some existing research efforts proposing probabilistic
models and analysis for BPMN.

The approaches in [2,3] focus on the use of Bayesian networks to infer the
relationship between different events. As an example, [3] introduces a BPMN
normal form based on Activity Theory that can be used for representing the
dynamics of a collective human activity from the perspective of a subject. This
workflow is then transformed into a Causal Bayesian Network that can be used
for modelling human behaviours and assessing human decisions.

206 Y. Falcone et al.

The approach in [4] extends BPMN with time and probabilities. Specifically,
the authors expect that a probability value is provided for each flow involved in
an inclusive or exclusive split gateway. These BPMN processes are then trans-
formed to rewriting logic and analysed using the Maude statistical model checker
PVeStA. This work is extended in [5] to explicitly model and analyse resource
allocation. This series of works allows one to compute at design time generic
properties, such as average execution times, synchronisation times or resource
usage, whereas the goal of this paper is to compute probabilistic properties at
runtime by dynamically analysing the executions of multiple process instances.

The approach in [14] presents a framework for the automated restructuring
of workflows that allows minimising the impact of errors on a production work-
flow. To do so, they rely on a subset of BPMN extended to include the tracking
of real-valued quantities associated with the process (such as time, cost, tem-
perature), and the modelling of probabilistic- or non-deterministic branching
behaviour, and the introduction of error states. The main goal of this approach
is to reduce the risk of production faults and restructure the production work-
flows for minimising such faults.

In [16,23], the authors first propose to give a formal semantics to BPMN via
a transformation to Labelled Transition Systems (LTSs). This is achieved via
a transformation to process algebra and use of existing compilers for automati-
cally generating the LTS from the process algebraic specification. Once the LTS
model is generated, model checking of functional properties is possible as well as
comparison of processes using equivalence checking. This work does not provide
any probabilistic model for BPMN nor any kind of quantitative analysis.

In [12,13], the authors present a framework for modelling and analysis of busi-
ness workflows. These workflows are described with a subset of BPMN extended
with probabilistic nondeterministic branching and general-purpose reward anno-
tations. An algorithm translates such models into Markov decision processes
(MDP) written in the syntax of the PRISM model checker. This enables quan-
titative analysis of business processes for properties such as transient/steady-
state probabilities, reward-based properties, and best- and worst-case scenarios.
These properties are verified using the PRISM model checker. This work sup-
ports design time analysis, but does not focus on the dynamic execution and
runtime verification of processes.

Statistical model checking [11], which uses simulation and statistical meth-
ods, facilitates the generation of approximate results to quantitative model
checking. Although it has a low memory requirement, the cost is expensive if
high accuracy is required. In comparison, probabilistic model checking produces
highly accurate results, despite the potential problem of state explosion.

6 Conclusion

We have presented a new approach that allows BPMN analysts to automat-
ically carry out probabilistic model checking of BPMN processes at runtime.
This approach takes as input an executable BPMN process and one (or several)
probabilistic property. To evaluate this property, we build a probabilistic model

Probabilistic Model Checking of BPMN Processes at Runtime 207

(PTS) by analysing the execution traces extracted from the multiple execution
of this process. This analysis allows us to annotate the LTS semantic model
corresponding to the BPMN process with probabilities, thus obtaining a PTS
model. Finally, we can call the probabilistic model checker with the probabilis-
tic model and the property. Since the process keeps executing, the probabilistic
model is updated periodically and the model checker is called periodically as
well. Therefore, we do not return a single value as a result but a curve display-
ing the successive truth or numerical values returned by the model checker. Our
approach is fully automated by a tool chain consisting of existing and new tools.
The tool chain was applied to several realistic examples for validation purposes.

As far as future work is concerned, we first plan to take advantage of
the results computed by our approach to effectively adjust resource alloca-
tion depending on the runtime analysis results. This requires having an explicit
description of resources associated with tasks and dynamically modifying the
resource allocation with respect to the analysis results. A second perspective is
to not only analyse properties at runtime, but predict the result of the evalua-
tion of these properties in the near future. This would allow the anticipation of
changes in the resource allocation for instance. This prediction can be achieved
by relying on the computed probabilistic model or by using machine learning
techniques.

Acknowledgements. This work was supported by the Région Auvergne-Rhône-Alpes
within the “Pack Ambition Recherche” programme, the H2020-ECSEL-2018-IA call -
Grant Agreement number 826276 (CPS4EU), the French ANR project ANR-20-CE39-
0009 (SEVERITAS), and LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

References

1. Activiti: open source business automation. https://www.activiti.org/. Accessed
Dec 2021

2. Ceballos, H.G., Cantu, F.J.: Discovering causal relations in semantically-annotated
probabilistic business process diagrams. In: Global Conference on Artificial Intel-
ligence, GCAI, pp. 29–40 (2018)

3. Ceballos, H.G., Flores-Solorio, V., Garcia, J.P.: A probabilistic BPMN normal
form to model and advise human activities. In: Baldoni, M., Baresi, L., Dastani,
M. (eds.) EMAS 2015. LNCS (LNAI), vol. 9318, pp. 51–69. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26184-3 4

4. Durán, F., Rocha, C., Salaün, G.: Stochastic analysis of BPMN with time in rewrit-
ing logic. Sci. Comput. Program. 168, 1–17 (2018)

5. Durán, F., Rocha, C., Salaün, G.: Analysis of resource allocation of BPMN pro-
cesses. In: Yangui, S., Bouassida Rodriguez, I., Drira, K., Tari, Z. (eds.) ICSOC
2019. LNCS, vol. 11895, pp. 452–457. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-33702-5 35

6. Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propositional
mu-calculus (extended abstract). In: LICS (1986)

7. Falcone, Y., Salaün, G., Zuo, A.: Semi-automated modelling of optimized BPMN
processes. In: Proceedings of SCC 2021, pp. 425–430. IEEE (2021)

https://www.activiti.org/
https://doi.org/10.1007/978-3-319-26184-3_4
https://doi.org/10.1007/978-3-030-33702-5_35
https://doi.org/10.1007/978-3-030-33702-5_35

208 Y. Falcone et al.

8. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification. In:
Kim, M., Chin, B., Kang, S., Lee, D. (eds.) Proceedings of FORTE 2001. IFIP
Conference Proceedings, vol. 197, pp. 377–394. Kluwer (2001)

9. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

10. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 1

11. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

12. Herbert, L., Sharp, R.: Precise quantitative analysis of probabilistic business pro-
cess model and notation workflows. J. Comput. Inf. Sci. Eng. 13(1), 011007 (2013)

13. Herbert, L.T., Sharp, R.: Quantitative analysis of probabilistic BPMN workflows.
In: International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, vol. 45011, pp. 509–518. American Society
of Mechanical Engineers (2012)

14. Herbert, L.T., Hansen, Z.N.L., Jacobsen, P.: Automated evolutionary restructuring
of workflows to minimise errors via stochastic model checking. In: Probabilistic
Safety Assessment and Management Conference 2014 (2014)

15. ISO/IEC: International standard 19510, information technology - business process
model and notation (2013)

16. Krishna, A., Poizat, P., Salaün, G.: VBPMN: automated verification of BPMN
processes (tool paper). In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 323–331. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66845-1 21

17. Krishna, A., Poizat, P., Salaün, G.: Checking business process evolution. Sci. Com-
put. Program. 170, 1–26 (2019)

18. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

19. Mateescu, R., Requeno, J.I.: On-the-fly model checking for extended action-based
probabilistic operators. Int. J. Softw. Tools Technol. Transfer 20(5), 563–587
(2018). https://doi.org/10.1007/s10009-018-0499-0

20. Mateescu, R., Salaün, G., Ye, L.: Quantifying the parallelism in BPMN processes
using model checking. In: The 17th International ACM Sigsoft Symposium on
Component-Based Software Engineering (CBSE 2014), Lille, France, June 2014

21. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68237-0 12

22. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

23. Poizat, P., Salaün, G., Krishna, A.: Checking business process evolution. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 36–53.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4 4

https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.1007/s10009-018-0499-0
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-319-57666-4_4

HyperPCTL Model Checking
by Probabilistic Decomposition

Eshita Zaman1(B), Gianfranco Ciardo1, Erika Ábrahám2,
and Borzoo Bonakdarpour3

1 Iowa State University, Ames, IA 50011, USA
{ezaman,ciardo}@iastate.edu

2 RWTH Aachen University, 52062 Aachen, Germany
abraham@informatik.rwth-aachen.de

3 Michigan State University, East Lansing, MI 48824, USA
borzoo@msu.edu

Abstract. Probabilistic hyperproperties describe system properties
involving probability measures over multiple runs and have numerous
applications in information-flow security. However, the poor scalability
of existing model checking algorithms for probabilistic hyperproperties
limits their use to small models. In this paper, we propose a model check-
ing algorithm to verify discrete-time Markov chains (DTMC) against
HyperPCTL formulas by integrating numerical solution techniques. Our
algorithm is based on a probabilistic decomposition of the self-composed
DTMC into variants of the underlying DTMC. Experimentally, we show
that our algorithm significantly outperforms both a symbolic approach
and the original approach based on brute-force self-composition.

1 Introduction

Important information-flow policies like noninterference [17] and observational
determinism [26], or properties like fault tolerance and system robustness [25],
service level agreements, and average response time cannot be expressed as
single-trace properties. For such properties related to multiple execution traces,
the theory of hyperproperties was introduced by Clarkson and Schneider in [9]. In
non-probabilistic setting, various temporal logics have been proposed to express
hyperproperties, e.g., HyperLTL and HyperCTL∗ [8] and A-HLTL [5]. These
logics provide explicit and simultaneous quantification over multiple paths on
LTL [21] and CTL∗ [14], respectively. HyperCTL∗ supports nested quantifica-
tion over paths, while its syntactic fragment HyperLTL assumes formulas in
prenex normal form. For these logics, several model checking tools have been
developed to verify their formulas [6,10,16,19].

Probabilistic hyperproperties have been defined to formalize probabilistic
relations between independent executions of systems with uncertainties. The
temporal logic HyperPCTL [4], first proposed for discrete-time Markov chains
(DTMCs) and later extended to Markov decision processes (MDPs) [3], allows
quantification over states to relate executions starting in different states. The
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 209–226, 2022.
https://doi.org/10.1007/978-3-031-07727-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_12

210 E. Zaman et al.

original HyperPCTL model checking algorithm [4] reduces the model checking
problem for a formula with n state quantifiers to PCTL model checking on the
n-ary self-composition (i.e., the composition of n copies) of the input DTMC.
Another temporal logic, PHL, has been proposed in [11]. Both [4] and [11] proved
that model checking probabilistic hyperproperties for MDPs is undecidable.

Recently, Wang et al. [23] introduced the temporal logic HyperPCTL∗, which
supports probabilistic quantification over explicit path variables, but evaluation
of HyperPCTL∗ formulas has only been studied using statistical model checking.
This and other statistical model checking approaches [23,24] have strong practi-
cal contributions but cannot provide exhaustive formal correctness guarantees.

HyperPCTL can express properties like probabilistic noninterference, dif-
ferential privacy [13], and probabilistic causation [15]. For instance, probabilis-
tic noninterference [22] requires the probability of each low-observable trace to
be the same for all low-equivalent initial states, as illustrated by the following
scheduling scenario [22], where threads t and t′ execute the code

t : while h > 0 do {h ← h − 1} endwhile; l ← 2; t′ : l ← 1;

and are uniformly scheduled on a processor. If h is a high-security input and
l is a low-security output, probabilistic noninterference requires the probability
of observing l = 1 or l = 2 upon termination to be the same, regardless of the
initial value of h. However, if this program is run multiple times for different
values of h, the probability of observing l = 2 increases for larger values of h,
thus an attacker gains knowledge about h’s initial value by observing l’s final
value. The HyperPCTL probabilistic noninterference formula for this example,

∀σ.∀σ′.
(
hσ �= hσ′

)
⇒

(
P(F (l = 1)σ) = P(F (l = 1)σ′) ∧ P(F (l = 2)σ) = P(F (l = 2)σ′)

)
,

requires the probability of observing l = 1 or l = 2 upon termination to be the
same for every pair of initial states σ and σ′ having different values for h. As
mentioned above, the HyperPCTL model checking algorithm in [4] builds the
n-ary self-composition of the input DTMC, thus it suffers from an exponential
state-space growth in the number of quantifiers and cannot scale beyond small
toy examples. The symbolic method in [3] remedies the problem to some extent,
but it must still solve a constraint problem with a large number of variables.

In this paper, we propose a HyperPCTL model checking algorithm that inte-
grates an efficient numerical technique that avoids building the self-composition.
Our technique, based on probabilistic decomposition, computes (backward or for-
ward) reachability probabilities for the states of DTMCs with size similar to
that of the input DTMC, and is based on the fact that different traces involved
in the self-composition are independent, except for evolving synchronously. In
other words, the probability of a series of events in the self-composed DTMC is
the product of the probabilities of events in the individual DTMCs, subject to
enforcing that the number of steps is the same in these DTMCs. This numerical
approach can be implemented by computing multiple probability vectors of size
equal to the state space of the original DTMC. Unfortunately, not all proba-
bility calculations in a HyperPCTL formula can be decomposed independently;

HyperPCTL Model Checking by Probabilistic Decomposition 211

sometimes we need to store or recompute the history of traces, which increases
the runtime cost.

To the best of our knowledge, this is the first numerical approach for model
checking the complete class of HyperPCTL formulas that can cope with mod-
els having significant state spaces. We have fully implemented our algorithm
and we report experimental results through rigorous comparison with the exist-
ing techniques in [3,4]. Our experiments on multiple case studies on verifica-
tion information-flow security policies (e.g., probabilistic noninterference, din-
ing cryptographers, side-channel timing attack) and mission safety show that
the proposed numerical approach outperforms the techniques in [3,4] by several
orders of magnitude, while providing results with the same accuracy.

Organization. Section 2 presents preliminary concepts. Sections 3 and 4 intro-
duce our novel decomposition-based technique. Section 5 provides an experimen-
tal evaluation on several case studies, and Sect. 6 concludes.

2 Preliminaries

We consider systems modeled as discrete-time Markov chains.

Definition 1. A (labeled)discrete-timeMarkovchain (DTMC)M = (S,P,A, L)
has the following components:

– a finite nonempty set of states S;
– a transition probability matrix P : S × S → [0, 1] with

∑

v′∈S
P(v, v′) = 1 for all v ∈ S;

– a set of atomic propositions A;
– a function L : S → 2A labeling each state with the propositions holding in it.

s0 s1

s2 s3 s4

s5 s6

{init} {init}

{a}

{a,b}

0.4 0.2

0.4

0.7 0.3

1 0.8 0.2 1

1 1

Fig. 1. A DTMC.

Figure 1 shows an example DTMC. A path
of a DTMC M = (S,P,A, L) is an infinite
sequence of states γ = v0v1v2 · · · ∈ Sω s.t.
P(vi, vi+1) > 0 for all i ≥ 0. Let γ[i] denote vi

and let Pathsv(M) be the set of paths of M
starting in v. The atomic propositions hold-
ing in a state, if any, are shown enclosed in
braces; for example, a and b hold in state s6.

2.1 HyperPCTL Syntax

A HyperPCTL quantified formula ρ for DTMCs [4] is defined as follows:

ρ ::= ∀σ.ρ | ∃σ.ρ | ψ ψ ::= true | aσ | ψ ∧ ψ | ¬ψ | p ∼ p
p ::= P(ϕ) | f(p, . . . , p) ϕ ::= Xψ | ψ U [k1,k2] ψ | ψ U [k1,∞) ψ

where σ is a state variable from a countably infinite set V = {σ1, σ2, ...}, ψ is
a state formula, a ∈ A is an atomic proposition, ∼∈ {<,≤,=,≥, >}, p is a

212 E. Zaman et al.

probability expression, f is an n-ary measurable function (a constant if n = 0),
ϕ is a path formula, and k1, k2 ∈ N, with k1 ≤ k2. Besides standard syntactic
sugar, we omit bound [0,∞), let [k] denote interval [k, k], and let G[k]ψ

def=
ψU [k+1]true and FIψ

def= trueU Iψ, where I is a time interval. A HyperPCTL
formula is a HyperPCTL quantified formula where each aσ is in the scope of a
quantifier for σ.

2.2 HyperPCTL Semantics

The semantics of HyperPCTL is based on the n-ary self-composition of a DTMC.

Definition 2. The n-ary self-composition of a DTMC M = (S,P,A, L) is a
DTMC Mn = (Sn,Pn,An, Ln) where:

– Sn = S × · · · × S is the n-ary Cartesian product of S with itself;
– Pn(v, v′) =

∏n
i=1 P(vi, v

′
i) for all v = (v1, ..., vn) ∈ Sn and v′ = (v′

1, ..., v
′
n) ∈

Sn;
– An =

⋃n
i=1 Ai, where Ai = {ai | a ∈ A} for i ∈ {1, ..., n};

– Ln(v) =
⋃n

i=1 Li(vi) for v = (v1, ..., vn) ∈ Sn, where Li(vi) = {ai|a ∈ L(vi)}.

Intuitively, Mn represents the DTMC decribing the synchronous evolution
of n independent copies of M.

The satisfaction of a HyperPCTL formula ρ by a DTMC M = (S,P,A, L),
written M, () |= ρ, is defined recursively as follows, where v = (v1, . . . , vn) ∈ Sn

stores quantifier instantiations:

M, v |= true
M, v |= ai iff a ∈ L(vi)
M, v |= ψ1 ∧ ψ2 iff M, v |= ψ1 and M, v |= ψ2

M, v |= ¬ψ iff M, v � |= ψ
M, v |= p1 ∼ p2 iff �p1�M,v ∼ �p2�M,v

M, v |= ∀σ.ψ iff ∀vn+1 ∈ S. M, (v1, ..., vn, vn+1) |= ψ[An+1/Aσ]
M, v |= ∃σ.ψ iff ∃vn+1 ∈ S. M, (v1, ..., vn, vn+1) |= ψ[An+1/Aσ]
�f(p, . . . , p)�M,v = f(�p�M,v, ..., �p�M,v)
�P(ϕ)�M,v = Pr{γ ∈ Pathsv(Mn) | M, γ |= ϕ}

where ψ, ψ1, and ψ2 are HyperPCTL state formulas and ψ[An+1/Aσ] replaces
each free occurrence of aσ in ψ with an+1, for each atomic proposition a ∈ A.
The satisfaction relation for HyperPCTL path formulas is defined as follows:

M, γ |= Xψ iff M, γ[1] |= ψ

M, γ |= ψ1 U [k1,k2]ψ2 iff ∃j ∈ [k1, k2].
(
M, γ[j] |= ψ2 ∧ ∀i ∈ [0, j).M, γ[i] |= ψ1

)

M, γ |= ψ1 U [k1,∞)ψ2 iff ∃j ≥ k1.
(
M, γ[j] |= ψ2 ∧ ∀i ∈ [0, j).M, γ[i] |= ψ1

)

where γ is a path of Mn for some n ∈ N>0, ψ, ψ1, and ψ2 are HyperPCTL state
formulas, and k1, k2 ∈ N with k1 ≤ k2.

HyperPCTL Model Checking by Probabilistic Decomposition 213

Example 1. Consider the DTMC M in Fig. 1 and the HyperPCTL formula

ψ = ∀σ1.∀σ2.(init1 ∧ init2) ⇒ P(Fa1) = P(Fa2).

M satisfies ψ if, for all pairs of initial states (labeled by atomic proposition init),
the probability to eventually reach a state satisfying a is the same, i.e., for each
(si, sj) ∈ S2 s.t. init ∈ L(si) and init ∈ L(sj), we have M, (si, sj) |= P(Fa1) =
P(Fa2). The probability of reaching a from s0 is 0.4 + (0.2 · 0.2) = 0.44 and the
probability of reaching a from s1 is 0.3 + (0.7 · 0.2) = 0.44. Hence, M |= ψ.

3 A Probabilistic Decomposition Approach

The HyperPCTL semantics reduces the evaluation of a HyperPCTL formula
with n (quantified) state variables on DTMC M = (S,P,A, L) to the evaluation
of a PCTL formula on the n-fold self-composition Mn. However, this comes at
the cost of exponentially higher space and time requirements, due to the state
space being Sn instead of S. We then propose a HyperPCTL formula evaluation
approach that avoids self-composition and only requires solving DTMCs of size
similar to that of M. Its time complexity depends on the number and locations
of state variables in P(ϕ) expressions. This section introduces the main idea for
simpler but common cases where the time complexity is of the same order as the
transient solution of the original DTMC M, while Sect. 4 addresses the more
complex (and computationally more expensive) cases. In the following, we let
σi, for i ≥ 1, denote state variables and symbols like ai or bi denote atomic
propositions for the corresponding ith DTMC in the self-composition.

The simplest subformulas P(ϕ) refer to only one quantified state variable:

ψ = ∀σ1.∀σ2.(init1 ∧ init2) ⇒ P(a1 U b1) = P(a2 U b2)

states that the probability of being on a path of states satisfying a until reaching
a state satisfying b is the same for all initial states. Obviously, self-composition
is “overkill” in this case, as one could just compute the probabilities P(a1 U b1)
starting from each initial state v1, and simply check that they are equal. Indeed,
we can determine that the model does not satisfy ψ as soon as we find two dif-
ferent initial states v1 and v2 in which P(aU b) evaluates to different probability
values. As HyperPCTL can express this comparison of probabilities starting from
different states but PCTL cannot, self-composition is theoretically needed but
practically, and easily, avoidable in this case. For a numerical example, consider
the DTMC in Fig. 1 and the HyperPCTL formula

ψ = ∀σ1.∀σ2.(init1 ∧ init2) ⇒ P(Fa1) = P(Fa2).

Since a holds in states s2 and s6, make them absorbing, obtaining matrix P′

and initialize π[0] accordingly (Fig. 2). Then, iteratively compute the backward
probabilities [20] π[k+1] ← P′ · π[k] until convergence to π[k∗] at time k = k∗.
The probabilities π(F[k∗]a)[0] and π(F[k∗]a)[1] of reaching a states from the initial
states of M, s0 and s1, are both 0.44, thus M satisfies ψ.

214 E. Zaman et al.

Probability expressions P(ϕ) with two state variables are more challenging:

ψ = ∀σ1.∀σ2.(init1 ∧ init2) ⇒ P(a1 U b2) ≥ 0.8

states that, considering two copies of a DTMC, both starting execution in an
initial state, the probability to move along states satisfying a in the first copy
until we reach a state satisfying b in the second copy is at least 0.8. While
this seems to inextricably tie the two DTMCs, we can avoid self-composition
by observing that copies of the DTMC in any self-composition interact
only through their shared “clock”. Thus, in this case, we can write

� P(a1 U b2) �M,v =
∞∑

k=0

� P(G[k−1]a1) �M,v · � P(b2 U [k]b2) �M,v,

where G[k]ψ means “ψ holds continuously during time [0, k]” and ψU [k]ψ means
“ψ holds for the first time at time k”; also, in the following, we will slightly abuse
notation and simply write “P(...)” instead “� P(...) �M,v”. To compute P(a1 U b2)
using this equality, define DTMC M′ with transition probability matrix P′

obtained from the original M by making all states not satisfying a absorbing by
substituting their outgoing transitions with a self loop, so that M′ cannot leave
them. Then, for k ∈ N, let π(G[k]a) be vectors of size |S|, defined as follows:

– for k = −1: π(G[−1]a)[v] = 1, for all v ∈ S.
– for k = 0: π(G[0]a)[v] = δa∈L(v), i.e., 1 if a ∈ L(v), 0 otherwise, for all v ∈ S.
– for k > 0, use backward reachability: π(G[k]a) = P′ · π(G[k−1]a).

Thus, entry π(G[k]a)[v] for k ≥ 0 is the probability that the original DTMC M
remains in states satisfying a for k steps if it was in state v at time 0.

Analogously, define DTMC M′′ with a defective transition probability matrix
P′′ obtained from P by redirecting all outgoing transitions of any state satisfying
b to a fresh absorbing state. Then, define

– for k = 0: π(bU [0]b)[v] = δb∈L(v), for all v ∈ S.
– for k > 0, use backward reachability: π(bU [k]b) = P′′ · π(bU [k−1]b).

Thus, π(bU [k]b)[v] is the probability that the original DTMC M enters a state
satisfying b at step k for the first time if it was in state v at time 0.

Then, for any two states v1, v2 ∈ S of M and a “sufficiently large” value k∗,
we can (under-)approximate the value of P(a1 U b2) in state v = (v1, v2) of the
2-ary self-composition of M with the truncated sum

P(a1 U b2) ≈
k∗
∑

k=0

π(G[k−1]a)[v1] · π(bU [k]b)[v2]. (1)

Of course, bounded-until formulas involve a finite summation, so have no trun-
cation error. For example, the following is an equality, not an approximation:

P(a1 U
[0,t]b2) =

t∑

k=0

P(G[k−1]a1) · P(b2 U [k]b2).

HyperPCTL Model Checking by Probabilistic Decomposition 215

Importantly, Eq. 1 is a lower bound of the exact value, since all the elements
ignored by the partial sum are products of probabilities, thus non-negative. More-
over, (i) for any state v1, the values π(G[k]a)[v1] are non-increasing in k, actu-
ally strictly decreasing unless v1 reaches a recurrent class containing only states
satisfying a (a recurrent class is a set of mutually reachable states that can-
not be exited once entered, an absorbing state being a special case); and (ii)
the values π(bU [k]b)[v2] are instead not necessarily monotonic in k, but their
sum Γk∗ [v2] :=

∑k∗

k=0 π(bU [k]b)[v2] is non-decreasing and upper-bounded by the
probability Γ [v2] of eventually reaching a state satisfying b from v2, a quan-
tity we can compute. From (i) and (ii) we can then derive a practical stopping
criterion, as they imply that the error when summing up to k∗ is bounded by
π(G[k∗−1]a)[v1] · (Γ [v2] − Γk∗ [v2]), which in turn gives us the following upper
bound on the desired value P(a1 U b2):

[
k∗
∑

k=0

π(G[k−1]a)[v1] · π(bU [k]b)[v2]

]

+ π(G[k∗−1]a)[v1] ·
(
Γ [v2] − Γk∗ [v2]

)
. (2)

This requires storing two additional vectors, Γ and Γk∗ , a fair price to pay for a
method that provides both a lower and an upper bound on the numerical result.

Considering now the efficiency of this computation, the described approach
appears to require storing 2(k∗ + 1) vectors of size |S|, but this can be avoided
in various ways. Let z be the number of initial states.

– Compute all the required vectors up to k∗, then approximate P(a1 U b2) using
Eq. 1 for each of the z2 pairs of initial states (v1, v2). This requires us to store
2(k∗ + 1)|S| floating point numbers, plus just one accumulator for pv1,v2 =
P(a1 U b2), which can be discarded after comparing it with 0.8.

– Compute π(G[k−1]a) and π(bU [k]b), add their contribution to P(a1 U b2) for
each initial state pair (v1, v2), use them to compute π(G[k]a) and π(bU [k+1]b),
and then discard them. This requires storing only four vectors of size |S|, but
also all the z2 accumulators p(v1,v2), one for each pair of initial states (v1, v2).
The time complexity of this approach is the same as that of the first approach,
so we could choose between them based on how large 2(k∗+1)|S| is compared
to 4|S| + z2. If z is substantially smaller than |S|, i.e., if there are only a few
initial states, this second approach is preferable, especially since it is hard to
know a priori how large k∗ must be.

– A variant of the previous approach computes p(v1,v2) only for a subset of the
z2 initial state pairs, and repeats the entire computation, including that of
the vectors π(G[k−1]a) and π(bU [k]b), for the next subset of the initial state
pairs, until all z2 pairs have been considered (a time-memory tradeoff).

– In the limit, one can compute π(G[k−1]a)[v1] and π(bU [k]b)[v2] for a single
pair of initial states (v1, v2), in which case potentially more efficient forward
reachability probability computations could be used (in forward reachability
computations, π[0] is the initial probability vector of M′ and π[k] is calculated
iteratively as π[k] ← π[k−1] · P′). This requires z2 such computations, thus
is likely efficient only when z is small, although it would have the smallest
memory requirements, just 4|S| floating point numbers.

216 E. Zaman et al.

P =

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 .4 .2 0 .4 0
0 0 0 .7 .3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 .8 .2
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎟⎟⎟⎟⎟⎟⎟⎟⎠
P′ =

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 .4 .2 0 .4 0
0 0 0 .7 .3 0 0
0 0 1 0 0 0 0
0 0 0 0 0 .8 .2
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎟⎟⎟⎟⎟⎟⎟⎟⎠
P′′ =

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 .4 .2 0 .4 0
0 0 0 .7 .3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 .8 .2
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎟⎟⎟⎟⎟⎟⎟⎟⎠

π[0]= 0 0 1 0 0 0 1
)

π[k∗]= .44 .44 1 .2 1 0 1
)

π(bU [0]b)= 0 0 0 0 0 0 1 π(bU [1]b)= 0 0 0 .2 1 0 0 π(bU [2]b)= .04 .44 0 0 0 0 0

Fig. 2. Quantities computed by the probabilistic decomposition for our example.

Let’s now instead evaluate the following formula on the same DTMC:

ψ = ∀σ1.∀σ2.(init1 ∧ init2) ⇒ P(a1 U b2) > 0.8.

Define the same transition probability matrix P′ as above, where states not
satisfying a (thus satisfying a) are now absorbing (the outgoing transition from
state s2 is redirected back to s2, while state s6 is already an absorbing state),
and let P′′ be the defective transition probability matrix after zeroing rates from
b states (again, as shown in Fig. 2).

After initializing π(bU [0]b), compute the probability of first reaching b at time
1, π(bU [1]b) = P′′ · π(bU [0]b), and time 2, π(bU [2]b) = P′′ · π(bU [1]b). Analo-
gously, initialize π(G[−1]a) and π(G[0]a) and compute the probability of staying
in a states for two time units, π(G[1]a) = P′ · π(G[0]a). We need π(G[k−1]a)
and π(bU [k]b) only up to k = 2 because the DTMC has cycles only on the
absorbing states, which are reached in at most two steps from s0 and s1. Then,
the probability to satisfy (a1 U b2) starting from (s0, s0) is computed to be
0.024, by summing π(G[−1]a)[s0] · π(bU [0]b)[s0], π(G[0]a)[s0] · π(bU [1]b)[s0], and
π(G[1]a)[s0] · π(bU [2]b)[s0], according to Eq. 1; similarly, the probabilities from
the pairs of initial states (s0, s1), (s1, s0), and (s1, s1) are 0.264, 0.040, and 0.440,
respectively. None of these probabilities exceed 0.8, so DTMC M does not satisfy
the formula. Indeed, we could have already concluded that ψ is false after con-
sidering just the first pair of initial states (s0, s0), since the universal quantifiers
in formula ψ require all possible pairs of initial states to satisfy the property;
violation of the property by even just one pair of initial states is enough to decide
the overall unsatisfiability of ψ and terminate the algorithm.

4 Probabilistically Dependent Markov Chains

A HyperPCTL formula with nested probability operators is evaluated “inside
out”, analogously to nested CTL formulas. For example, given the formula

∀σ1.∀σ2.(init1 ∧ init2) ⇒ P(a1 U (P(Fb2) > 0.8)) > 0.9,

HyperPCTL Model Checking by Probabilistic Decomposition 217

s0

s1

s2

s3

s4

{a} {a} {a}
0.3

0.7

1.0
1

1
1.0

s5 s6 s7{b} 1.0 1.0
1

Fig. 3. A Markov chain illustrating the difficulty with P((a1 ∨ a2)U b3).

we evaluate P(Fb2) first, using backward reachability probabilities in the DTMC
M′ obtained from the original DTMC M by making the b-states absorbing,
as explained in Sect. 3. This gives us a size-|S| vector π of probabilities, which
we can use to label all states v that satisfy π[v] > 0.8 with a fresh atomic
proposition, say c. This way we have reduced the problem to a form handled in
the previous section, namely checking the truth of formula

∀σ1.∀σ2.(init1 ∧ init2) ⇒ P(a1 U c2) > 0.9.

Next, we tackle instead the more difficult cases where the logic operators
combining propositions associated to different variables appearing in a P operator
imply a dependence between the evolution of otherwise independent DTMCs.

For example the formula

ψ = ∀σ1. · · · ∀σn.P((a1 ∨ · · · . ∨ am) U (bm+1 ∧ · · · ∧ bn)) > 0.9 (3)

(for n > m ≥ 2), asserts that, in the n-fold self-composition starting at
(σ1, ..., σn), the probability that

∧
m<i≤n bi holds for the first time at some time

k, while
∨

1≤i≤m ai held at every time h < k, is greater than 0.9.
Even for m = 2 and n = 3, this case is difficult. Recall how the equality

P(a1 U b2) =
∑∞

k=0 P(G[k−1]a1)·P(b2 U [k]b2) allows us to compute P(a1 U b2) with
two Markov chains of the same size as the original one, avoiding self-composition:
we simply compute a pair of independent probability vectors for each time step k.
Using the same approach, we rewrite probability P((a1 ∨ a2)U b3) as:

P((a1 ∨ a2)U b3) =
∞∑

k=0

P(G[k−1](a1 ∨ a2)) · P(b3 U [k]b3).

However, the computation of P(G[k](a1∨a2)) requires examining the joint history
of a1’s and a2’s along the respective evolutions started at σ1 and σ2. To see
why, consider Fig. 3 and assume that σ1 = s0 and σ2 = s5. At time k = 0,
P(a1 ∨ a2) = 1 in state pair (s0, s5); at time k = 1, P(X(a1 ∨ a2)) = 0.3 since
the probability of state pair (s1, s6) is 0.3, and a1 holds in s1; at time k = 2,
P(X[2](a1 ∨ a2)) = 0.7 since the probability of state pair (s4, s7) is 0.7, and a2

holds in s4; however, P(G[2](a1 ∨ a2)) = 0 because if the composed DTMC is in
state (s1, s6) at time k = 1, it cannot be in state (s4, s7) at time k = 2.

In other words, not satisfying a1 at time k (in executions starting from σ1)
requires a2 to be satisfied at time k (in executions starting from σ2), thus knowl-
edge of the first execution impacts our probabilistic assessment of the second one,

218 E. Zaman et al.

α1

αY
1

αY Y
1

...
...

αY N
1

...
...

αN
1

αNY
1

...
...

αNN
1

...
...

β2

βX
2

βXX
2

...
...

βXY
2

...
...

βY
2

βY X
2

...
...

βY Y
2

...
...

Fig. 4. Trees organizing the vectors needed to compute P(G[k](a1 ∨ a2)).

and vice versa, independence is lost : if a sequence δ ∈ ({a1, a1} × {a2, a2})k in
the 2-fold self-composition satisfies (a1 ∨ a2) for the first k steps, the derived
sequence δ1 ∈ {a1, a1}k restricts the possible sequences δ2 ∈ {a2, a2}k, since
δ1[h] = a1 implies δ2[h] = a2, thus in turn affects the probability of a2 holding
at time k + 1.

We now show how to compute the desired result using size-|S| (possibly
defective) probability vectors, but their number may be exponential in k∗. We
use one binary tree to organize vectors αδ

1, where δ ∈ {Y,N}h, for h = 0, 1, ..., k∗,
and another for “matching” vectors β

λ(δ)
2 , where λ(δ) is the sequence obtained

from δ by changing all Y ’s into X’s and all N ’s into Y ’s (Fig. 4).
For h = 0, we initialize the entries of α1 and β2 to 0 except for α1[σ1] = 1

and β2[σ2] = 1. Then, we compute further vectors using the recurrence

αδY
1 [v′] =

∑
v |= a1

αδ
1[v] · P[v, v′] αδN

1 [v′] =
∑

v 	|= a1
αδ
1[v] · P[v, v′]

β
λ(δ)X
2 [v′] =

∑
v∈S β

λ(δ)
2 [v] · P[v, v′] β

λ(δ)Y
2 [v′] =

∑
v |= a2

β
λ(δ)
2 [v] · P[v, v′] .

The intuition behind the mapping λ is that, at any given time h, if a1 holds
(Y), a2 may or may not hold (X) but, if a1 does not hold (N), a2 must hold (Y).
This probabilistic splitting is similar to traditional conditioning, except that we
do not normalize the vectors. Letting || · || indicate the 1-norm, at level h we have∑

δ∈{Y,N}h ||αδ
1|| = 1 (i.e., the sum of all αδ

1 vectors at level h is a full probability

vector), while ||βXh

2 || = 1 (i.e., βXh

2 is by itself a full probability vector) and,
if λ(δ′) is obtained from λ(δ) changing some X’s into Y ’s, i.e., if δ′ is obtained
from δ by changing some Y ’s into N ’s, then ||βλ(δ)

2 || ≥ ||βλ(δ′)
2 ||. The probability

of continuously satisfying a1 ∨ a2 during [0, h] is then

P(G[h](a1 ∨ a2)) =
∑

δ∈{Y,N}h

||αδ
1|| · ||βλ(δ)

2 ||.

This approach can be generalized to a disjunction of m terms by defining
m − 1 trees of vectors with nodes αδ

i , for i = 1, ...,m − 1, δ ∈ {Y,N}h, and
h = 0, 1, ..., k (these are analogous to the tree for αδ

1 when m = 2) and one tree
of vectors with nodes βδ

m (analogous to the tree for βδ
2 when m = 2). Then, let

pδ
l = ||αδ

l || and define m − 1 trees of scalars with nodes

pδ
1:1 = pδ

1 and, for l = 2, ...,m − 1, pδ
1:l =

∑

δ′∨δ′′=δ

pδ′
1:l−1 · pδ′′

l ,

HyperPCTL Model Checking by Probabilistic Decomposition 219

1

pY1:1

pY Y
1:1

...
...

pY N
1:1

...
...

pN1:1

pNY
1:1

...
...

pNN
1:1

...
...

2

pY2

pY Y
2

...
...

pY N
2

...
...

pN2

pNY
2

...
...

pNN
2

...
...

1:2

pY1:2

pY Y
1:2

...
...

pY N
1:2

...
...

pN1:2

pNY
1:2

...
...

pNN
1:2

...
...

Fig. 5. Trees of scalars used for the disjunction of three or more terms.

where δ′∨δ′′ is the elementwise disjunction of same-length sequences, e.g. (Fig. 5)

pY Y
1:2 = pNN

1:1 pY Y
2 + pNY

1:1 (pY N
2 + pY Y

2) + pY N
1:1 (pNY

2 + pY Y
2) + pY Y

1:1 (p
NN
2 + p

NY
2 + p

Y N
2 + p

Y Y
2︸ ︷︷ ︸

=1

)

pY N
1:2 = pNN

1:1 · pY N
2 + pY N

1:1 (pNN
2 + pY N

2)

pNY
1:2 = pNN

1:1 · pY N
2 + pNY

1:1 (pNN
2 + pY N

2)

pNN
1:2 = pNN

1:1 · pNN
2

In other words, rather than considering all 2m − 1 combinations of a1, ..., am

(and their negations) that satisfy a1∨· · ·∨am, we incrementally consider a1, ..., al,
so that pδ

1:l is the probability of a1 ∨ · · · ∨ al holding or not, according to the
sequence δ, without detailing the individual value of each a1, ..., al that con-
tributed to having δ[h] = Y , while obviously none of them held at time h if
δ[h] = N .

Finally, we can compute P(G[h](a1 ∨· · ·∨am)) =
∑

δ∈{Y,N}h pδ
1:m−1 · ||βλ(δ)

2 ||.
We conclude by observing that conjunctions to the right of an until operator
present a similar difficulty, since computing the probability that bm+1 ∧ · · · ∧ bn

holds for the first time at time h requires to check that bm+1 ∨ · · · ∨ bn held
continuously during the interval [0, h − 1]. Thus, in a sense, Eq. 3 is “a worst
case” for our approach, while conjunctions on the left and disjunctions on the
right of the until operator are much simpler because of the independence of
DTMC executions in the n-fold semantics.

We now address the stopping criterion for our approach. If the HyperPCTL
formula is a bounded-until with upper time bound t, or if the DTMC is acyclic
and the maximum distance from the start nodes to the absorbing node(s) is t,
or if, after time t, the DTMC can only visit states satisfying the same set of
atomic propositions involved in the formula (a lucky but unlikely case), then we
only need to perform at most t iterations.

Otherwise, we need to decide the level k∗ at which to stop expanding the
trees. Since the probability mass of the vectors αi decreases exponentially with
the level h as long as the DTMC keeps branching on a1 and a1, the contribution
of exploring additional levels eventually becomes negligible. Even better, we can
use an A∗-style search [18] to expand first tree nodes (vectors) with the highest
probability mass. If the HyperPCTL formula is of the form P(·) < C or P(·) ≥ C,
we can stop as soon as the accumulated probability reaches C (and determine
that the formula is true or false, respectively). We observe that the difficulty of
determining a stopping point is shared by the self-composition approach (which

220 E. Zaman et al.

requires the same number k∗ of iterations as our method), and it is well-known
that the satisfiability problem for PCTL is undecidable.

However, there is a case where our probabilistic decomposition approach fails.
Consider a 2-state DTMC M with states s0 (satisfying init and a) and s1 (sat-
isfying b), and P[s0, s1] = P[s1, s0] = 1, so that both states are periodic with
period 2. The formula ψ = ∀σ1.∀σ2.(init1 ∧ init2) ⇒ P(F(a1 ∧ b2)) > 0.1 is obvi-
ously false because, if the 2-fold self-composition M2 starts from (s0, s0), it can
only alternate with (s1, s1), thus either a1 or b2 is satisfied at a given time, but
not both. The self-composition approach detects this situation when exploring
the transition probability matrix of M2. Our approach, instead, will compute
sequences of probability vectors [1, 0], [0, 1], [1, 0], ... attempting to find times
when both a1 and b2 hold, but obviously never succeeding. While detecting such
situation, is likely quite difficult (and may essentially be equivalent to examining
the transition probability matrix of M2), a simple analysis of P can alert us that
the DTMC has periodic states, thus the method may fail.

4.1 Time and Memory Complexity

We have seen how, for a disjunction of the form a1 ∨ · · · ∨ am, the number of
(defective) size-|S| probability vectors to be computed grows exponentially in the
truncation time k∗ but only linearly in m. Since each probability vector of size
O(|S|) is obtained from its parent through a multiplication with a matrix having
no more nonzero entries than P, the overall time complexity for our approach
is O(2k∗ · η(P) · m), where η(P) is the number of nonzeros in P (we assume
the use of a sparse data structure in the common case where P has many zero
entries). This should be compared with the time O(k∗ · η(P)m) required by self-
composition, since self-composition also requires k∗ iterations, but now each of
them requires multiplying a probability vector of size O(|S|m) with a transition
probability matrix with η(P)m nonzeros. In practice, m is small, but |S| and
η(P) are large, thus our approach is faster up to moderate values of k∗.

More importantly, though, our approach will require substantially less mem-
ory, since not all vectors computed by our approach are needed at the same time.
First of all, we can obviously build a tree of vectors αδ

l at a time, and delete
it before moving to the next tree, as long as we record the probability mass of
these vectors in the tree of scalars pδ

l . In fact, we do not even need to store all
the vectors αδ

l at the same time, as we can compute them in depth-first order,
which requires to store only the vectors on a path from the root, without this
requiring any duplicate work. Thus, the memory consumption due to vectors is
just k∗ · |S|. Considering instead the trees of scalars, it is easy to see that we
can discard the trees for pδ

1:l−1 and for pδ
l once we have computed the tree for

pδ
1:l, so we only need to store simultaneously three trees of scalars, each requiring

2k+1 − 1 scalars. Thus, the overall memory for our approach, including the stor-
age for P, is O(η(P)+k∗ · |S|+2k∗

), independent of m. For self-composition, the
memory requirements are O(|S|m) if the transition probability matrix of Mm is
not built explicitly but instead computed on-the-fly (a memory-time tradeoff),
otherwise they are even worse, O(η(P)m).

HyperPCTL Model Checking by Probabilistic Decomposition 221

5 Case Studies and Evaluation

We now describe a set of applications related to information flow security and
mission safety. Table 1 shows the number of states and transitions in the cor-
responding DTMCs and the times (in seconds) to verify the respective Hyper-
PCTL formulas, for three different solution approaches: our probabilistic decom-
position implemented in C++ using the STORM [1] API, a prototype imple-
mentation of the symbolic approach of [3], and our Python implementation of
self-composition [4]. “t/o” means runtime over 1 h; “o/m” means out-of-memory.

Probabilistic Noninterference. Considering the example described in the
introduction, we compute the probability of l having the same value upon ter-
mination of the concurrent threads, for different initial values hσ and hσ′ of h.
We use a non-uniform probabilistic scheduler, where the probability of schedul-
ing thread t vs. t′ is as specified in [2], and verify that, indeed, the value of h is
not probabilistically disclosed by the value of the low observable output l.

Dining Cryptographers [7]. After finishing dinner, n cryptographers want to
find out whether the NSA or one of them (but not which one) paid for the meal by
executing this protocol: (1) each cryptographer flips a fair coin and shows it to the
cryptographer on his right; (2) if a cryptographer did not pay, she/he announces
whether her/his coin and the one she/he has been shown “agree” or “disagree”;
(3) if a cryptographer paid, she/he announces the opposite: “disagree” if the
coins agree, “agree” if they disagree. If n and the number of “agrees” ai are
both odd, or both even, then NSA paid, otherwise a cryptographer paid:

∀σ.∀σ′.
(n∨

i=1

payi
σ

)
∧

(n∨
i=1

payi
σ′

)
⇒ P

(
F(endσ ∧

n⊕
i=1

ai
σ

)
= P

(
F(endσ′ ∧

n⊕
i=1

ai
σ′

)
.

Varying n from 3 to 10, we see that self-composition fails for n ≥ 5.

1 void mexp () {
2 c = 0 ; d = 1 ; i = k ;
3 whi le (i >= 0) {
4 i = i −1; c = c ∗2 ;
5 d = (d∗d) % n ;
6 i f (b (i) = 1)
7 c = c+1;
8 d = (d∗a) % n ;
9 }

10 }
11 t = new Thread (mexp ()) ;
12 j = 0 ; m = 2 ∗ k ;
13 whi le (j < m & ! t . stop)
14 j++;

Fig. 6. Modular exponentiation.

Side-Channel Timing Attack. Gen-
erally speaking, a side channel timing
attack may disclose a secret value to an
attacker by observing the execution time
of a function. For instance, the core of the
RSA public-key encryption algorithm uses
the modular exponentiation algorithm to
compute ab mod n, where a is the inte-
ger representing the plain text and b is
the integer encryption key. With a poor
implementation, b can be leaked through
a probabilistic side channel timing attack
because the two if branches in Fig. 6 can
exhibit different timing behavior (lines 6–
8). Using a uniform scheduler for parallel
threads, an attacker thread can infer the

222 E. Zaman et al.

value of b by running in parallel to a modular exponentiation thread and itera-
tively incrementing a counter variable until the other thread terminates.

We model this system using a DTMC where the two if branches correspond
to two different states. Upon termination, the probability of having the same
counter value j should be equal for different bit configurations b(i) of the key b.
This can be formalized in HyperPCTL as:

∀σ.∀σ′.
(

initσ ∧ initσ′

)

⇒
m∧

l=0

(

P(F(j = l)σ) = P(F(j = l)σ′)
)

.

To evaluate this property, we vary the number of encryption bits k from 1 to 5
and check whether the probability to reach the same counter value j depends
on the choice of the encryption bits.

Triple Modular Redundancy. Fault tolerant systems use redundancy to
ensure continuous operation. The following HyperPCTL formula for a TMR
(Triple Modular Redundancy) system states that, with probability at least C,
two or more of the three subsystems are “up” (atomic proposition a) at all times
prior to reaching mission completion (atomic proposition b), where ia and ib

denote the starting state for the portions of the DTMC modeling the failure
time of one subsystem and the mission time, respectively:

∀σ1.∀σ2.∀σ3.∀σ4.(ia1 ∧ia2 ∧ia3 ∧ib4) ⇒ P

(
(a1∧a2)∨(a1∧a3)∨(a2∧a3)∨(a1∧a2∧a3)U b4

)
≥ C.

The DTMC of Fig. 7 models the failure time distribution of a subsystem (on
the left) and the mission time (on the right, assumed to be uniformly distributed
between 1 and a maximum T , with T = 3 in the figure). Unlike the case of TMR
with repairable subsystems, our subsystem remains “down” once it fails, thus
the tree for the probability vectors αδ

i , for i = 1, 2, 3, can only have sequences of
the form Y · · · Y and Y · · · Y N · · · N (in fact, we can stop expanding a sequence
at the first N , i.e., at Y · · · Y N). In other words, there is no need to compute
an exponential number of vectors in this case, nor to store a full tree of scalars:
our memory and time requirements are linear in k∗ in this case.

Analysis of Results. As can be seen in Table 1, our numerical method sig-
nificantly outperforms the brute-force method in [4] and the symbolic approach
based on constraint solving in [3]. In most cases our verification time is in the
order of milliseconds, while the alternative approaches easily require minutes. For
the first case study, probabilistic non-interference, given a pair (hσ, hσ′) of val-
ues, each value of h is decremented until it reaches 0 Higher values of h add more
states and transitions in the system model thus require more time to verify the
hyperproperty. For the dining cryptographers, the state space grows so fast that
both self-composition and symbolic verification approach run out of memory. For
the side-channel timing attack, we increased the encryption key up to four bits,
then we check whether the secret is leaked through the timing channel. Finally,
the verification time for TMR is significantly higher using self-composition or
the symbolic approach, as the former requires 4-ary self-composition and the
latter requires to generate symbolic expressions for four copies of the model.

HyperPCTL Model Checking by Probabilistic Decomposition 223

s0

s1

s2

s3

s4

s5{a}

{a} {a}

{a} {a}

.6

.4

.3

.4
.9

.8

.2

1.7

.6 .1 s6 s7 s8 s9

{b}
1/3

2/3

1/2

1/2 1
1

Fig. 7. Markov chain for the TMR system. The left portion model the failing distribu-
tion of a subsystem, the right one models the uniform [0, 3] distribution of the mission
time. According to the HyperPCTL definition, the two portions form a single DTMC
but, in practice, they could be considered separately.

Table 1. Experimental results for each choice of parameter model.

Parameters States Transitions PD-based(s) Symbolic(s)[3] Self-composition(s)[4]

hσ hσ′ Probabilistic noninterference

0 1 22 28 0.003 0.008 0.055

0 5 46 60 0.003 0.011 0.723

0 10 76 100 0.006 0.018 0.918

0 15 106 140 0.005 0.051 1.986

3 5 64 84 0.005 0.027 0.995

4 8 88 116 0.004 0.078 2.031

8 14 148 196 0.026 0.043 5.129

N Dining cryptographers

3 156 184 0.023 8.074 17.9

4 475 550 0.027 159.011 6,965.8

5 1,338 1,524 0.032 o/m o/m

6 3,577 4,018 0.073 o/m o/m

7 9,208 10,224 0.094 o/m o/m

10 135,157 146,410 0.271 o/m o/m

m Side-channel timing attack

1 24 42 0.006 0.020 0.48

2 60 120 0.012 0.040 12.98

3 112 238 0.016 1.010 134.68

4 180 396 0.019 4.270 832.08

5 264 594 0.025 6.370 t/o

T TMR

10 17 32 0.06 118.39 1176.96

11 18 34 0.11 180.37 1,797.29

12 19 36 0.19 274.24 2,696.89

13 20 38 0.36 402.63 3,922.58

14 21 40 0.77 590.73 5,721.39

15 22 42 2.99 837.59 8,175.37

224 E. Zaman et al.

6 Conclusion and Future Work

In recent years, much research has targeted new temporal logics to express hyper-
properties, and different model checking algorithms have been proposed to verify
them. However, none of them has defined efficient algorithms for HyperPCTL
model checking. We proposed a numerical approach to model check HyperPCTL
formulas based on a probabilistic decomposition of the self-composed DTMC into
variants of the underlying DTMC, which requires truncation if time intervals are
unbounded.

We stress that, for HyperPCTL, the DTMCs formally used in the self-
composition differ only in their initial state, but our approach would apply even
if they were completely different DTMCs, thus could have applications beyond
HyperPCTL model checking. We showed that our proposed technique signifi-
cantly outperforms existing algorithms through multiple case studies.

In the future, we plan to generalize our algorithm to MDPs, which is a
substantially harder problem in terms of computation complexity. We are also
planning to extend our numerical approach to verification of continuous-time
Markov chains, by defining a CSL-style logic analogous to HyperPCTL. We also
plan to include this new algorithm in our tool HyperProb [12].

References

1. STORM: a tool for the analysis of systems involving random or probabilistic phe-
nomena. http://www.stormchecker.org/index.html

2. Ábrahám, E., Bartocci, E., Bonakdarpour, B., Dobe, O.: Parameter synthesis for
probabilistic hyperproperties. In: Proceedings of the 23rd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), pp. 12–31
(2020)

3. Ábrahám, E., Bartocci, E., Bonakdarpour, B., Dobe, O.: Probabilistic hyperproper-
ties with nondeterminism. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS,
vol. 12302, pp. 518–534. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59152-6 29

4. Ábrahám, E., Bonakdarpour, B.: HyperPCTL: a temporal logic for probabilistic
hyperproperties. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024,
pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2 2

5. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 694–717. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 33

6. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproperties.
In: Proceedings of the 31st IEEE Computer Security Foundations Symposium,
CSF, pp. 162–174 (2018)

7. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

http://www.stormchecker.org/index.html
https://doi.org/10.1007/978-3-030-59152-6_29
https://doi.org/10.1007/978-3-030-59152-6_29
https://doi.org/10.1007/978-3-319-99154-2_2
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33

HyperPCTL Model Checking by Probabilistic Decomposition 225

8. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

10. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

11. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of Markov
decision processes. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 484–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59152-6 27

12. Dobe, O., Ábrahám, E., Bartocci, E., Bonakdarpour, B.: HyperProb: a model
checker for probabilistic hyperproperties. In: Huisman, M., Păsăreanu, C., Zhan,
N. (eds.) FM 2021. LNCS, vol. 13047, pp. 657–666. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-90870-6 35

13. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

14. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branch-
ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

15. Fetzer, J.H. (ed.): Probability and Causality. Synthese Library, Springer, Dordrecht
(1988). https://doi.org/10.1007/978-94-009-3997-4

16. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

17. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

18. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968).
https://doi.org/10.1109/TSSC.1968.300136

19. Hsu, T.-H., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyper-
properties. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS, vol. 12651,
pp. 94–112. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2 6

20. Katoen, J.-P., Kwiatkowska, M., Norman, G., Parker, D.: Faster and symbolic
CTMC model checking. In: de Alfaro, L., Gilmore, S. (eds.) PAPM-PROBMIV
2001. LNCS, vol. 2165, pp. 23–38. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44804-7 2

21. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science (FOCS), pp. 46–57 (1977)

22. Smith, G.: Probabilistic noninterference through weak probabilistic bisimulation.
In: Proceedings of the 16th IEEE Computer Security Foundations Workshop
(CSF), pp. 3–13 (2003)

23. Wang, Y., Nalluri, S., Bonakdarpour, B., Pajic, M.: Statistical model checking for
hyperproperties. In: Proceedings of the IEEE 34th Computer Security Foundations
(CSF), pp. 1–16 (2021)

24. Wang, Y., Zarei, M., Bonakdarpour, B., Pajic, M.: Statistical verification of hyper-
properties for cyber-physical systems. ACM Trans. Embed. Comput. Syst. 18(5s),
92:1–92:23 (2019)

https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-90870-6_35
https://doi.org/10.1007/978-3-030-90870-6_35
https://doi.org/10.1007/978-94-009-3997-4
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/3-540-44804-7_2
https://doi.org/10.1007/3-540-44804-7_2

226 E. Zaman et al.

25. Wang, Y., Nalluri, S., Pajic, M.: Hyperproperties for robotics: planning via Hyper-
LTL. In: International Conference on Robotics and Automation (ICRA), pp. 8011–
8017 (2019)

26. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of the 16th IEEE Computer Security Foundations Work-
shop (CSFW), p. 29 (2003)

Learning and Synthesis

Learning Finite State Models from
Recurrent Neural Networks

Edi Muškardin1,2(B) , Bernhard K. Aichernig2 , Ingo Pill1 ,
and Martin Tappler1,2

1 Silicon Austria Labs, TU Graz - SAL DES Lab, Graz, Austria
2 Institute of Software Technology, Graz University of Technology, Graz, Austria

edi.muskardin@silicon-austria.com

Abstract. Explaining and verifying the behavior of recurrent neural
networks (RNNs) is an important step towards achieving confidence in
machine learning. The extraction of finite state models, like deterministic
automata, has been shown to be a promising concept for analyzing RNNs.
In this paper, we apply a black-box approach based on active automata
learning combined with model-guided conformance testing to learn finite
state machines (FSMs) from RNNs. The technique efficiently infers a
formal model of an RNN classifier’s input-output behavior, regardless
of its inner structure. In several experiments, we compare this approach
to other state-of-the-art FSM extraction methods. By detecting impre-
cise generalizations in RNNs that other techniques miss, model-guided
conformance testing learns FSMs that more accurately model the RNNs
under examination. We demonstrate this by identifying counterexam-
ples with this testing approach that falsifies wrong hypothesis models
learned by other techniques. This entails that testing guided by learned
automata can be a useful method for finding adversarial inputs, that is,
inputs incorrectly classified due to improper generalization.

Keywords: Verifiable machine learning · Active automata learning ·
Finite state machines · Recurrent neural networks

1 Introduction

The impressive performance of artificial neural networks (ANNs) has made them
an effective asset in our computing toolbox, and has been an enabler for innova-
tive intelligent systems like autonomous vehicles. Prompted by their popularity,
we have also seen significant advancements in their verification [11,15,31], which
needs new concepts since ANNs differ significantly from traditional software (or
hardware). Huang et al. [15], e.g., address robustness by checking for adversarial
examples, i.e., misclassified inputs that are hardly distinguishable from similar
correctly classified inputs and that can be used to fool an ANN.

So far, most verification research has been focusing on feed-forward neu-
ral networks that can be abstractly viewed as stateless mathematical functions.

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 229–248, 2022.
https://doi.org/10.1007/978-3-031-07727-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_13&domain=pdf
http://orcid.org/0000-0001-8089-5024
http://orcid.org/0000-0002-3484-5584
http://orcid.org/0000-0002-8420-6377
http://orcid.org/0000-0002-4193-5609
https://doi.org/10.1007/978-3-031-07727-2_13

230 E. Muškardin et al.

q(icwof:False
)(przfr:False
crna(pp:False
vuuyduxf:True
txhjswjt:True
t(obajk):True

Training Data RNN

s0 0

s1

1 1

s2

0

s3

1

s4

0

0 1

0

1

Finite State Model

train
RNN

learn
model

Fig. 1. The learning pipeline used in this paper.

In contrast, we analyze recurrent neural networks (RNNs) due to their ability to
model sequential data which makes them well-suited for applications with state-
ful reactive behavior [1]. The connection between neural networks with recur-
rent connections and finite automata has already been studied by Kleene in the
1950s [18]. The ability of RNNs to learn regular languages prompted research
on extracting formal models that explain the internal mechanisms underlying
trained RNNs [26]. More recently, we have seen renewed interest in extracting
finite-state models from RNNs [20,25,39]. Such models enable a manual inspec-
tion of RNN behavior on one hand, and the application of automated verification
techniques like model checking on the other hand—both would be practically
impossible otherwise.

Approaches based on active automata learning are promising techniques for
learning concise, yet accurate finite-state models representing RNN behavior. In
this paper, we will examine such approaches. First, we discuss how to learn finite-
state models from RNNs by applying active automata learning to analyze their
input-output behavior. In this context, we propose to apply model-guided con-
formance testing in combination with active automata learning, which is applica-
ble in a black-box setting. We compare this approach with two other approaches
based on active automata learning, which have been applied to extract FSMs
from RNNs; one white-box [39] and one black-box approach [20]. Since models
undoubtedly should faithfully model the system that they represent, we examine
the accuracy of learning. We compare the three different approaches based on
the properties of the learned models and of the learning process. In line with
research in this area [20,25,39], we train RNNs on words sampled from regular
languages that can be represented by small finite automata. Finite automata as
ground truth enable a manual analysis, while following a black-box approach
enables scaling to RNNs of different sizes and architectures.

Figure 1 illustrates the learning pipeline that we consider and that consists of
training an RNN from labeled sequences and then learning a finite state model
from the RNN. Active automata learning generally follows a black-box approach,
where hypothesis models of an RNN’s behavior are learned iteratively, by interac-
tion through input stimuli and the observation of output behavior. With model-
guided conformance testing, we aim to validate or falsify hypotheses. The results
of our experiments in the scope of several benchmark models show that in com-
parison to a state-of-the-art white-box approach [39], model-guided conformance
testing enables us to investigate more of an RNN’s behavior. This, in turn, results

Learning Finite State Models from Recurrent Neural Networks 231

in more complete models that can improve trust in an ANN. On the same bench-
mark models, we also compare to a black-box learning approach in the probably
approximately correct (PAC) framework [33], similar to the approach proposed
by Mayr and Yovine [20]. While PAC learning provides probabilistic guarantees,
we highlight potential weaknesses of such guarantees that we discover with con-
formance testing. These guarantees essentially only hold under the conditions,
i.e., interaction patterns that were used for model learning. As a result, learned
models may provide little insight into the RNN’s input-output behavior when
facing unknown situations. This hinders using learned models to analyze the
RNN’s robustness in and generalization to such situations. We demonstrate that
model-guided conformance testing can quickly generate interaction patterns that
falsify learned models although they are probably approximately correct under
different conditions.

Our main contributions comprise (1) the application of black-box model
learning through active automata learning supported by coverage-guided con-
formance testing, (2) an implementation of this approach with AALpy [22],
and (3) experiments comparing said approach to a state-of-the-art white-box
approach [39] and a black-box approach similar to the one proposed in [20].

The rest of this paper is structured as follows. We introduce background
knowledge in Sect. 2 and active automata learning from RNNs in Sect. 3.
In Sect. 4, we present experimental results comparing the different learning
approaches. We discuss related work in Sect. 5 and conclude the paper in Sect. 6.

2 Preliminaries

Recurrent Neural Networks. An ANN consists of computational units, called
neurons, that are connected via weighted edges. The neurons are usually orga-
nized into ordered layers with a dedicated input layer, a dedicated output layer,
and intermediate layers, called hidden layers. ANNs can abstractly be viewed as
functions f(x) = y mapping an n-dimensional real-valued input x ∈ R

n to an
m-dimensional real-valued output y ∈ R

m. We consider a specifc form of ANN,
called RNNs, that can model sequential behavior through connections from one
layer to itself or to a previous layer [42]. Through such connections, the output
of an RNN depends not only on the current input, but on accumulated hidden
state from computations involving inputs from previous time steps. This enables
RNNs to model stateful reactive systems. The behavior of an RNN can be recur-
sively defined as f(xi,hi) = yi and hi = g(xi,hi−1), where xi, yi, hi are the
input, the output, and the hidden state vector at time step i, and h0 is the initial
hidden state. There is a function f computing the RNN’s output and a function
g updating the RNN’s state based on the current state and input.

In this paper, we generally view RNNs as acceptors that map sequences
over a finite input alphabet I to Boolean values denoting acceptance. We rep-
resent both inputs and outputs via a one-hot encoding. Inputs are encoded as
n-dimensional vectors, where n is the size of I. We further map every i ∈ I to
a distinct standard-basis vector in the n-dimensional input space of the RNN.

232 E. Muškardin et al.

The Boolean outputs are encoded analogously. Training plain RNNs to learn
long-term dependencies in data faces challenges [42], therefore we use long short-
term memory (LSTM) [13] and gated recurrent unit (GRU) [6] networks. Like
Weiss et al. [39], we define adversarial inputs as words misclassified by an RNN,
not included in the training or validation data.

Automata Learning. We apply Angluin’s L∗ algorithm [4] to learn finite-
state models. L∗ is an active automata learning algorithm in the minimally
adequate teacher (MAT) framework. Such learning algorithms infer automata
by interaction with a teacher through queries. To illustrate L∗-based learning,
suppose that we aim to learn a deterministic finite automaton (DFA) accepting
an unknown regular language L over alphabet Σ. The learner starts by posing
membership queries to the teacher. A membership query checks whether a word
over Σ is in L. Once the learner has sufficient membership information to create
a hypothesis DFA H, it performs an equivalence query. Such a query checks
whether H accepts exactly L. In case of a positive response from the MAT,
learning can be stopped with H as result. Otherwise, the teacher additionally
provides a counterexample to equivalence, which is a word in the symmetric
difference between L and the language accepted by H. The learner integrates
the counterexample into its knowledge and starts a new learning round.

Test-Based Automata Learning. In theory, a teacher needs perfect knowl-
edge of L in order to answer equivalence queries. However, in a black-box app-
roach this assumption does not hold. The absence of exact equivalence queries is
commonly approached by simulating such queries by randomly sampling words
and asking membership queries [4,21]. We take a test-based view of black-box
automata learning, where we implement membership queries and equivalence
queries through testing of a system under learning (SUL), from which want to
learn a model. This is a common approach in automata-learning-based testing
and verification [2]. Rather than sampling words completely randomly for equiv-
alence queries, we use conformance-testing techniques to select words (a single
word w refers basically to a test case). To perform a membership query for w,
we provide w to the SUL, and an equivalence query is implemented by a series
of membership queries.

Conformance testing usually takes a specification model of a software system
and generates test cases from this model to reveal non-conformance between
model and system [9]. Here, we take a hypothesis model H and generate test
cases to reveal non-equivalence between H and the SUL. In other words, we want
to find words where H disagrees with the SUL. Note that we use equivalence
as a conformance relation. When implementing equivalence queries via testing,
automata learning may not find the true, correct automaton underlying the SUL
due to the incompleteness of testing. Instead, learning will halt upon finding a
hypothesis that is deemed to conform to the SUL. An important property of L∗-
based learning is that the learned hypothesis is the minimal automaton, in terms
of the number of states, that is consistent with the queried information [4]. This
means that additional information in the form of counterexamples adds states.
Hence, we can compare equivalence-query implementations based on the size of

Learning Finite State Models from Recurrent Neural Networks 233

learned models. A larger model means that the corresponding equivalence-query
implementation is better and found more counterexamples.

3 Automata Extraction from RNNs

In this section, we outline the methods we apply to learn automata from RNNs,
focusing on test-based implementations. We start by discussing the testing of
RNNs that enables test-based automata learning. Then, we cover the implemen-
tation of equivalence queries, an essential aspect of active automata learning. We
conclude the section with research questions on the experimental comparison of
active automata learning instantiated with different equivalence queries.

3.1 Test-Based Learning from RNNs

While techniques like LIME [27] work well to explain what neural-network-based
classifiers do for individual examples, they are not well suited for modeling
of RNN behavior as it would have to train a linear model for each variable-
length sequence. As RNNs have an unbounded input space of sequences, active
automata learning is well-suited to handle such input data and thus to extract
models from the input-output behavior of RNNs. What is more, it provides a
guidance for exploring this input space through membership queries and confor-
mance testing provides guidance for exploration during equivalence queries.

Since we learn models from RNNs, we use the terms SUL and RNN inter-
changeably. To avoid confusion between automata learning and training of the
RNNs, we will exclusively use the word learning in the context of automata learn-
ing and training in the context of RNNs. To execute a test case, we first reset the
RNN’s internal state to a fixed value and then perform a sequence of steps. Each
step stimulates the RNN with an element of the input alphabet and observes
an output on the output layer of the RNN. In the case of RNN acceptors, we
observe Boolean values. If the RNN framework does not support the step-by-
step creation of variable-length sequences, then the whole input sequence can be
passed to the RNN, and the output associated with the whole input sequence
can be obtained.

Until now we implicitly assumed that the SUL’s behavior can be described
by a regular language. However, RNNs are theoretically Turing-complete [29]. If
we try to learn a DFA from an RNN modeling a non-regular language, learning
may not halt, as equivalence queries may find infinitely many counterexamples.
To counter such issues, we need to extend learning with a secondary stopping cri-
terion in addition to positive results from equivalence queries. By stopping after
a maximum number of learning rounds or upon reaching a maximum number of
hypothesis states, we can learn automata accepting a regular approximation of a
non-regular language modeled by an RNN. A similar approach has been coined
bounded L∗ [20]. Alternatively, we may limit the scope of the equivalence oracle
to specific parts of the input space. This solution is appealing in a verification
context. For example, a regular language describing a safety property could be

234 E. Muškardin et al.

Algorithm 1. Random-W Equivalence Oracle
Input: # tests per state n, random walk length distribution μ, inputs I, hypothesis hyp, SUL
Output: counterexample or ∅
1: E ← characterizationSet(hyp)
2: for all state ∈ hyp.states do
3: prefix ← shortestPathTo(state)
4: for i ← 1 to n do
5: lenMiddle ← geometricSample(μ)

6: middle ← choose(I lenMiddle) � random uniform choice of random walk
7: suffix ← choose(E) � random choice of characterization sequence
8: testCase ← prefix · middle · suffix
9: reset(SUL, hyp) � Start query from the initial state.
10: for index ← 1 to len(testCase) do
11: hypOutput = step(hyp, testCase[index])
12: sulOutput = step(SUL, testCase[index])
13: if hypOutput �= sulOutput then
14: return testCase[1 . . . index]

15: return ∅

used to learn a safe subset of an RNN’s behavior. In Sect. 4.2, we present experi-
ments with a context-free grammar, where we limit the scope of the equivalence
queries by bounding the number of recursive rule expansions.

3.2 Equivalence Queries from a Practical Perspective

We distinguish three types of equivalence queries implemented via testing: (1)
formally proving equivalence between hypothesis and SUL up to some bound,
(2) pure random sampling, and (3) testing guided by models. Weiss et al. [39]
follow an orthogonal approach, where they use information about the hidden
state space of RNNs to implement equivalence queries.

Formally proving equivalence with the W-Method [7] in the context of RNNs
faces inherent challenges. The W-Method can be used to prove the equivalence
between the hypothesis and the SUL up to an assumed upper bound on the
number of RNN states. However, to prove equivalence, the W-method performs
an exponential (with respect to the difference between the maximum number of
states and the current number of states in the hypothesis) number of test cases.
This limits the applicability of the W-Method, and often it is not a feasible
option in practice [14]. Furthermore, defining the maximum number of states for
models extracted from RNNs is not practically possible.

Random sampling has been used to extract DFAs from RNNs in a testing con-
text [3,14]. Random-sampling-based equivalence queries enable a probabilistic
notion of correctness, known as probably approximately correct (PAC) learn-
ing [33]. More generally, PAC learning is possible with using a (potentially
unknown) fixed distribution to sample words in order to simulate equivalence
queries with membership queries [21]. In the PAC framework, the number of
tests performed by a random-sampling-based equivalence query can be config-
ured to ensure that the returned hypothesis is an ε-approximation of the correct
hypothesis with a probability of at least 1 − δ [21]. Here, an ε > 0 bounds the
generalization error, the expected number of examples incorrectly classified by
the final hypothesis w.r.t. the sampling distribution D. To achieve such PAC

Learning Finite State Models from Recurrent Neural Networks 235

guarantees, the number of tests performed by the tth equivalence query should
be chosen according to

mt =
1
ε
(log(

1
δ
) + t log(2)) [21]. (1)

Note that the PAC guarantees are relative to D, which may not reflect all inter-
action patterns with the SUL. Hence, a PAC learned model may have an error
rate higher than ε when used under interaction patterns that differ from D.
Consequently, such models may be quickly falsified with other testing methods,
as shown in Sect. 4.

Fixing a sampling distribution enables probabilistic guarantees, but ignores
learned information that is available in form of the intermediate hypotheses.
This may cause improper sampling of certain parts of SUL, leading to premature
halting of the learning procedure. Such issues are most prominent in non-strongly
connected automata, automata with sink states, and combination lock automata.
Nonetheless, for many systems, random testing has proved efficient.

Model-guided equivalence oracles use the structure of the current hypothesis
as a basis for test-case generation. A prominent example of a guided explo-
ration equivalence oracle is the Random-W equivalence oracle [16], shown in
Algorithm 1. Its test cases consist of three parts: a prefix leading to a state in
the hypothesis, a random walk, and an element of the characterization set. Such
test cases provide better transition and state coverage of the hypothesis and were
used successfully in many domains [14]. Another example of a coverage-based
equivalence oracle is discussed in Sect. 4.2. Other equivalence oracles such as
hybrid ADS [30] could achieve results comparable to the ones found in Sect. 4.

When extracting automata from RNNs, a coverage-guided equivalence oracle
may produce more accurate models than random sampling. Since the sampling
distribution changes during the course of learning, PAC guarantees cannot be
provided in the same way as for random sampling. However, coverage-guided
testing uses the available information gained throughout learning. It assures bet-
ter coverage than purely random testing, and its variations are especially suited
for discovering hard-to-find cases of non-conformance. Purely random sampling-
based equivalence oracles have been used to learn models of the RNN’s behav-
ior [20], but they often fail to find counterexamples or adversarial inputs [39].
These findings are consistent with our experimental evaluation presented in the
following section.

A white-box refinement-based equivalence oracle was proposed by Weiss et
al. [39]. They keep track of two hypotheses: One hypothesis H1 is learned using
Angluin’s L∗ and the other hypothesis H2 is a finite abstraction of the RNN
obtained by partitioning the RNN’s state space, thus they follow a white-box
approach. That is, the approach is based on knowledge about the internal struc-
ture of the RNN under consideration.

The intuition behind the oracle is that H1 and H2 need to be equivalent in
order for them to be equivalent to the RNN. Whenever H1 and H2 disagree on
a sample s, the true classification label of s is queried from the RNN. If H1

incorrectly classifies s, then s is returned as a counterexample to L∗. Otherwise,

236 E. Muškardin et al.

the partitioning used to construct H2 is refined. While this approach can benefit
from additional information encoded in the RNN’s state space, it may also suffer
from exactly that. Improper partitioning of the high-dimensional state space may
cause counterexamples to be left undetected.

3.3 Research Questions

We have outlined approaches to implement equivalence oracles in active
automata learning above. Despite their attractive theoretical properties, we
disregard approaches like the W-method, as they are highly inefficient. In our
experiments, we will analyze coverage-guided conformance testing, learning in
the PAC framework, and learning with the refinement-based oracle proposed
by Weiss et al. [39]. We use the size of learned models to measure which app-
roach produces the model closest to the true model capturing the input-output
behavior of the RNN. This is motivated by the fact that every counterexample
detected by an equivalence query increases the hypothesis size. Hence, model size
provides us with a measure of accuracy. Therefore our first research question is:

RQ1: Learning with which equivalence oracle creates the most accurate models?

Since different counterexamples may lead to the different intermediate
hypotheses, the size of learned models alone is not an ideal measure of the effec-
tiveness of equivalence oracles. A potential issue is that two learning approaches
may learn two models with x and y states, respectively. Unless the larger value
of x and y is equal to the number of states of true model underlying the RNN,
there may be covered by one of the models but not by the other and vice versa.
To compare equivalence oracles more directly, we take a model learned by one
approach and try to find counterexamples with another approach. Put differ-
ently, we try to falsify a model that was deemed correct by a different approach.
This leads us to the second research question:

RQ2: Can the most effective equivalence oracle according to RQ1 falsify models
that were deemed correct by the other two equivalence-oracle implementations?

RQ2 essentially aims to strengthen the conclusions from RQ1. RQ1 com-
pares learning where all approaches share the same initial starting conditions.
In contrast, RQ2 focuses on the most effective approach when starting from the
conditions (the final hypotheses) found at the termination of the less effective
approaches. In cases of positive answers to RQ2, we will also examine the effort
necessary to falsify a learned model. This can, for instance, be measured as the
number of test cases required for falsification. Alternatively to checking the size
of learned models, other approaches are possible too. For example, we could
consider measures on the language accepted by learned models with respect to
a ground truth that we know, like precision and recall [35]. Since we solely com-
pare L∗-based approaches and due to the properties of L∗, we opted to consider
the number of states as an objective criterion.

Learning Finite State Models from Recurrent Neural Networks 237

4 Experiments on Learning Automata from RNNs

We experimentally evaluated active automata learning instantiated with three
different equivalence queries. We examine (1) our proposed approach of model-
guided conformance testing, (2) a white-box refinement-based equivalence oracle
proposed by Weiss et al. [39], and (3) a black-box approach providing PAC guar-
antees similar to the one proposed by Mayr and Yovine [20], who additionally
introduced bounds. In the remainder of this section, we will dub the latter app-
roach as PAC sampling-based learning.

Benchmarks. Tomita grammars [32] and the balanced parentheses gram-
mar [39] are common benchmarks in automata learning and RNN-related
domains [19,20,24,36,39]. We will use them to evaluate model-learning perfor-
mance.

RNN Training Setup. We used a consistent approach for training all RNNs.
That is, while the type (LSTM, GRU) or size (number of hidden layers, size
of each layer) might vary, the other parameters of the training setup were con-
sistent for all our experiments. For obtaining a training data set, we randomly
generated sequences of various length using an FSM representing the considered
language. Accepted sequences (i.e., words in the language) were labeled True,
while sequences not in this language were labeled False. Training and validation
data was split in an 80:20 ratio. All RNNs were trained to 100% accuracy on the
training and validation data sets.

Implementation. We implemented1,2 our RNNs with DyNet [23] and we
implemented automata learning and the equivalence oracles using AALpy
v1.1.1 [22]. For the direct comparison with refinement-based learning we used
the authors’ original implementation3. All experiments were performed on a Dell
Lattitude 5410 with an Intel Core i7-10610U processor, 8 GB of RAM running
Windows 10 and using Python 3.6. All experiments were conducted on both
types of supported RNNs (LSTM and GRU). Experiments were repeated multi-
ple times to account for randomness found in the training and learning process.
For each experiment a representative example was chosen such that it approxi-
mately corresponds to the average observed case.

4.1 Learning Models of RNNs Trained on Tomita Grammars

Before examining RQ1, let us illustrate learning models from RNNs for the
example of the Tomita 3 grammar. Figure 2 depicts on the right a learning
procedure, and on the left the DFA extracted from an RNN trained on a dataset
generated for said grammar. This five-state DFA was extracted and returned as
a final hypothesis by multiple white-box [19,39] and black-box [20] approaches.
Furthermore, we see that the learned automaton is indeed the same as the DFA

1 Source code, experiments, and interactive examples can be found at: https://github.
com/DES-Lab/Extracting-FSM-From-RNNs.

2 DOI of the artifact: https://doi.org/10.5281/zenodo.6412571.
3 https://github.com/tech-srl/lstar extraction.

https://github.com/DES-Lab/Extracting-FSM-From-RNNs
https://github.com/DES-Lab/Extracting-FSM-From-RNNs
https://doi.org/10.5281/zenodo.6412571
https://github.com/tech-srl/lstar_extraction

238 E. Muškardin et al.

s0 0

s1

1 1

s2

0

s3

1

s4

0

0 1

0

1

Hypothesis 1: 1 states.
Hypothesis 2: 4 states.
Hypothesis 3: 5 states.

Learning Finished.
Learning Rounds: 3
Number of states: 5
Time (in seconds)
Total : 0.01

Learning algorithm : 0.004
Conformance checking : 0.01

Learning Algorithm
Membership Queries : 17
MQ Saved by Caching : 20
Steps : 67

Equivalence Query
Membership Queries : 50
Steps : 267

Fig. 2. DFA extraction process from RNN trained on Tomita 3 grammar.

Table 1. Comparison of refinement-based [39], PAC sampling-based [20] and model-
guided learning. All GRU RNNs have 2 hidden layers with 50 nodes and were trained
till 100% train and test set accuracy.

Refinement-based

learning

PAC sampling-based

learning

Model-guided

learning

Tomita

grammar

Cex. found Model size Cex. found Model size Cex. found Model size

1 1 2 4 25 11 46

2 2 3 3 8 11 44

3 3 5 3 5 85 3945

4 1 4 1 4 1 4

5 3 5 6 32 115 4953

6 67 11975 6 318 121 15084

7 1 2 1 5 7 33

of the Tomita 3 grammar itself, which would indicate that the behavior of the
RNN conforms to the ground truth.

Conformance testing guided by hypotheses, i.e., also guided by the model
shown in Fig. 2, enables a deeper investigation of the RNN’s behavior. While
other approaches were not able to find any further counterexamples and con-
cluded the learning process with reporting said DFA, by testing with the random-
W method, we were able to find additional counterexamples. Since the DFA
shown in the Fig. 2 is equivalent to that of the model learned by the RNN, it is
important to note that such counterexamples thus reveal a faulty generalization
by an RNN, i.e. they are adversarial inputs. By identifying such counterexam-
ples, the model-guided conformance testing essentially falsifies the hypotheses
returned by other approaches, such that a more detailed automaton can be
learned. We observed that once a fault in the RNN generalization is found (i.e.,
an adversarial input), the size of learned automata increases substantially (for
the example shown in Fig. 2, the next two hypotheses have 60 and 350 states).

Learning Finite State Models from Recurrent Neural Networks 239

The effectiveness of model-guided testing stems from the fact that it uses infor-
mation gained throughout the automata-learning process. In contrast to random
sampling, it revisits identified states and explores new paths from there to find
new states.

Table 1 shows the results of our experiments performed towards answering
RQ1. In the experiments, we compare all three learning approaches based on the
size of learned models, which provides us with a measure of accuracy. In the table,
we report the number of counterexamples isolated during the learning process
as well as the final hypothesis’ size. When conducting the model extraction
experiments, we set a time limit of 500 s. Without such a time limit the learning
process might not terminate if the RNN behavior cannot be captured by a regular
language (see Sect. 3.1).

From the results we can conclude that model-guided learning creates larger
automata than both refinement-based and PAC sampling-based learning, which
can be explained by this approach finding more counterexamples. Recall that
learned automata are minimal automata that are consistent with all queried
information including all counterexamples. This means that the conformance-
testing equivalence query finds more information and covers more of an RNN’s
input space. In fact, most models obtained via refinement-based learning conform
to the ground truth models used for data generation. With PAC sampling-based
learning and model-guided conformance testing, we were able to learn larger
models. Hence, by using the black-box approaches we detected generalization
issues that resulted in larger models that approximate the true input-output
behavior underlying the examined RNNs more precisely.

For all 7 Tomita grammars, the RNNs generalized very accurately within the
length bound of the training set. This in turn caused refinement-based learning
to learn models that conform to the models used for generating the training
data. It did so by finding all counterexamples that are not adversarial inputs.
Such non-adversarial inputs are words misclassified by intermediate hypothe-
sis automata, but classified correctly by the RNN. Additionally, the technique
managed to find adversarial inputs only for the RNN trained on the Tomita 6
grammar. By performing extensive model-guided testing, we did not only find
all non-adversarial counterexamples, but we also found adversarial inputs for all
Tomita grammars except for Tomita 4. Finding all non-adversarial counterexam-
ples means that we are able to learn an intermediate hypothesis that is equivalent
to the ground truth, whereas adversarial inputs allow us to detect discrepancies
between the RNN under considerations and the ground truth.

PAC sampling-based learning managed to find adversarial inputs for some
RNNs, while for others it found only counterexamples that led to learning of
the model that corresponds to the ground truth model. From the minimality of
models learned with L∗, we can conclude that the models created by refinement-
based learning and PAC sampling-based learning are incorrect, except for the
Tomita 4 grammar. Note that they are incorrect in the setting of exact learning,
while models created by PAC learning are probably approximately correct.

240 E. Muškardin et al.

Algorithm 2. Transition-Focus Equivalence Oracle
Input: number of tests n, test length L, same state probability p, hypothesis hyp, SUL
Output: counterexample or ∅
1: for i ← 1 to n do
2: testCase ← ε � Initialize test case to empty sequence ε
3: state ← reset(SUL, hyp)
4: for j ← 1 to L do
5: if random ∈ [0, 1] < p then
6: input ← choose(sameStateTransitions(state))
7: else
8: input ← choose(diffStateTransitions(state))

9: testCase ← testCase · input
10: hypState = step(hyp, input)
11: sulState = step(SUL, input)
12: if hypState.output �= sulState.output then
13: return testCase
14: state ← hypState

15: return ∅

s0

[a-z]

s1(
)

[a-z]

s2(s4

[a-z]

s3
)

s5(
)

[a-z]

((
)

[a-z]

)

[a-z]

Fig. 3. DFA of the balanced parentheses grammar bound to the depth 5.

Based on these results, we can answer RQ1. Learning with model-guided
conformance testing created the largest models and therefore the most accurate
models. This means that the learned models are the closest to the RNNs from
which they were learned.

Apart from the findings concerning the accuracy of learned finite state mod-
els, we discovered that generalization issues and overfitting impacts the automata
interpretation of the language learned by RNNs. Our evaluation shows that even
RNNs trained from a simple ground truth with only two states (Tomita 1), can
lead to a finite state model with at least 46 states—due to generalization issues
and overfitting. We generally observed that for well-trained networks finding
counterexamples that are not adversarial inputs is less resource-intensive than
finding generalization errors. To put this into perspective, it took usually several
hundred test cases to find non-adversarial counterexamples, whereas the detec-
tion of the first adversarial input required up to 7000 test cases. It is important
to note that finding subsequent adversarial inputs requires significantly fewer
testing resources. This finding is explained in more detail in Sect. 4.2.

4.2 Learning Models of RNNs Trained on Balanced Parentheses

Balanced paraphrases is a context-free grammar that accepts sequences of char-
acters where all opening parentheses have matching closing parentheses. Any
or no characters can be found in between parentheses. As balanced parentheses
form a context-free language, we create a regular subset from it and use it for
data generation. E.g., the bounded parentheses model limited to a depth of 5
nested parentheses is shown in Fig. 3. We repeated the experiments on models

Learning Finite State Models from Recurrent Neural Networks 241

Table 2. Counterexamples obtained during the refinement-based [39] learning pro-
cess and counterexamples falsifying the learned model via model-guided conformance
testing.

Refinement-based Eq. oracle Random-W Eq. oracle Transition-focus Eq. oracle

Counterexample Time (s) Counterexample Time (s) Counterexample Time (s)

)) 0.34 ((ik()fa)) 4.6 (((()((i)y)t))()) 0.01

(()) 0.16 ((xvplzcmqzry()esp)sj) 4.3 (()(()())()pu) 0.02

– – ((dkulbgh(ajczy)o)lax) 0.39 xs(()(())b) 0.01

((i(h)dcaqgi)silnfg) 4.77 (y)k()((()v)m) 0.01

(((uuldz)t)zc) 3.83 (cr(s)()(cu())(())h) 0.03

(((fvtdjb)oeive)e) 1.16 a((j)))e)(((0.02

with increasing depth of nested parentheses. Training and learning results were
consistent irrespective of the balanced parentheses’ nested depth. That is, the
language learned by the RNN stayed mostly the same regardless of the depth
that we tested.

We use experiments with this grammar as a basis for answering RQ2. For
this purpose, we directly compare model-guided conformance testing, which
produced the most accurate models, with the refinement-based and the PAC
sampling-based learning. In contrast to Sect. 4.1, where we compared the entire
extraction processes, we now focus on the falsification of the models obtained
with the latter two approaches. That is, we applied refinement-based and PAC
sampling-based learning to learn an automaton and use it as a basis for model-
guided conformance testing.

In addition to RQ2, we want to briefly highlight how to integrate domain
knowledge into the model-guided testing process. Knowledge about the structure
of the balanced parentheses allows to develop a custom model-guided equivalence
oracle especially suited for, but not limited to, this example. The transition-focus
equivalence oracle is a model-guided equivalence oracle shown in Algorithm 2.
The parameter p defines the focus of the test-case generation. E.g., a p value of
0.2 states that a newly chosen input will lead to a new hypothesis state 80% of
the time and 20% of the time it will lead to the current state, i.e., correspond to
a self loop in the hypothesis model. This equivalence oracle is especially suited
for balanced parentheses, because only parentheses define transitions between
states, whereas other inputs should lead to the same state. The transition-focus
equivalence oracle generates test cases that explore the hypothesis structure
primarily focusing on transitions between states. Compared to the random-W
method, Algorithm 2 increases the probability of detecting a counterexample
and potentially even an adversarial input.

Comparison with Refinement-Based Learning. Table 2 shows the coun-
terexamples obtained during the complete refinement-based learning process
and counterexamples found with two model-guided oracles that the white-box
technique did not find. The random-W method was able to falsify the learned
model and transition-focused testing increased the efficiency of falsification.

242 E. Muškardin et al.

Table 3. Counterexamples obtained during learning with the PAC sampling-based
oracle and counterexamples falsifying the learned model via model-guided testing.

PAC random word Eq. oracle Random-W Eq. oracle Transition-focus Eq. oracle

Counterexample # Tests Counterexample # Tests Counterexample # Tests

dnhugps)bch) 8 ((gzbmcjin()weu)) 15 ((()p)) 1

om(a(jvu)) 2163 ((qcss(sizx)uevu)) 173 k(()(x(xv))) 4

– – ((u()tysjxu)) 157 (zz((t))) 14

((isr(t)u)) 354 ((x(()(gh)())z)) 5

(((wdwv)onvu)) 234 (t(v())) 9

((aao()kgkfk)) 61 ((j()q)) 11

This demonstrates that model-guided conformance testing can find additional
counterexamples that falsify models created with refinement-based learning,
leading to more precise model learning. Hence, we can provide a first positive
answer to RQ2.

Furthermore, these experiments show that model-guided testing improves
accuracy also for non-regular languages and domain knowledge further improves
efficiency. The transition-focus oracle improved the efficiency of falsification sig-
nificantly. The found counterexamples are often adversarial inputs revealing the
RNN’s generalization faults. This shows that model-guided testing can be used
as a tool for finding adversarial inputs, even with incomplete models.

Comparison with PAC Learning. Now, we address RQ2 w.r.t. learning in
the PAC framework, which has been used for analyzing RNNs by Mayr and
Yovine [20]. We compare model-guided conformance testing and PAC sampling-
based learning, by using the former approach to falsify a model learned by the
latter approach. Finally, we will conclude with a discussion of PAC guarantees.

First, let us recap PAC-learning of automata. Equivalence queries are simu-
lated through membership queries on words sampled according to a distribution
D. By performing mt membership queries for the tth equivalence query (see
Eq. 1 for mt), we learn a model with a generalization error of at most ε with a
probability of at least 1 − δ [21]. This requires the sampled words to be inde-
pendently and identically distributed according to the fixed distribution D. As
a result, testing guided by hypotheses does not directly permit PAC guaran-
tees, since the distribution with which words are sampled changes throughout
learning. For learning in the PAC framework, we fix a distribution for sampling
at the beginning of learning. We sample input symbols according to a uniform
distribution over the inputs and we choose the length of each test case according
to a uniform distribution over the integer interval [4..20]. In every equivalence
query, we perform mt random tests with ε = 0.001 and δ = 0.01. Values of ε and
δ were selected to ensure high PAC guarantees, providing the PAC sampling-
based oracle with a high amount of testing resources. Note that we examine the
number of test cases needed to find a counterexample, which may be lower than
mt, the maximum number of test cases executed by an equivalence query.

Learning Finite State Models from Recurrent Neural Networks 243

Table 4. Learning processes of PAC sampling-based and model-guided learning of an
RNN trained on Tomita 3 grammar. The size of the current hypothesis and number of
tests needed to falsify it are given for each round.

Learning round 1 2 3 4 5 6 7 8 9 10

PAC sampling-based

learning

Hypothesis size 1 4 5 21 25 46 –

Tests to Falsify 10 3 33929 20143 30111 –

Model-guided

learning

Hypothesis size 1 4 5 26 39 257 291 316 346 431

Tests to Falsify 4 5 1428 11 124 12 4 9 13 –

To answer RQ2, we perform the same experiments as above for refinement-
based learning. We learn a model with the PAC sampling-based oracle and try
to falsify it with model-guided testing. Table 3 shows results from these experi-
ments. We can see that the PAC sampling-based learning managed to find only
two counterexamples. This finding is consistent with the experiments presented
by [39]. Even with the imprecise model learned with the PAC sampling-based
oracle that found only two counterexamples, model-guided testing was able to
quickly falsify said model. Hence, we can answer RQ2 positively. In Table 3, we
can also see that it took a low number of test cases. It took on average only about
166 test cases to find additional counterexamples with the random-W method.

4.3 Analyzing RQ2 on the Tomita 3 Grammar

In further experiments, we compared model-guided learning with PAC-based
learning when learning models from an RNN trained on the Tomita 3 grammar.
Table 4 shows the results from these experiments. These experiments further
demonstrate the advantage of exploiting the structure of the learned model dur-
ing test-case generation. For both approaches, we observe that finding the first
two counterexamples was equally fast, as those are the counterexamples leading
to the creation of a model conforming to the ground truth. From that point
onward, we notice significant differences between the two approaches. To falsify
the ground truth model (learning round three) a substantial increase in test-
ing resources is needed. We can observe that the process of finding subsequent
counterexamples (adversarial inputs) by the PAC sampling oracle required sig-
nificantly more test cases than its model-guided counterpart. Furthermore, the
PAC sampling-based oracle was unable to find all counterexamples, terminating
the learning in round 6 and returning 46-state model. An interesting observation
can be made concerning the number of tests needed to falsify the hypothesis in
the case of model-guided testing. To falsify the ground truth model, the random-
W method required 1428 tests, while all subsequent equivalence queries returned
a counterexample with a low amount of testing. This is due to the fact that once
the counterexample falsifying the ground truth model is found, it is processed,
which leads to an increase of the hypothesis size. This increased hypothesis
encodes more knowledge about the structure of the system under learning, thus
making the search for counterexamples easier. This observation confirms the
need for exploiting the model structure in the test-case generation.

244 E. Muškardin et al.

Finally, let us examine the guarantees provided by PAC learning. Note the
meaning of the error-rate parameter ε in the PAC-based setting: random testing
may also be able to falsify a learned model, but it would require on average at
least 1

ε tests. We see in Table 3 that model-guided testing requires between 11
and 354 tests for falsification, which is consistently lower than 1

ε = 1000. Hence,
it tests the SUL more efficiently. Although PAC results in automata learning
provide a quantification of correctness, such a quantification may result in a false
sense of security. If the sampling distribution for simulating equivalence queries
does not match usage patterns, PAC guarantees are not very useful. Hence, if
expected usage patterns are not known, model-guided testing is preferable. This
approach creates diverse data and it benefits from the knowledge gained during
learning.

5 Related Work

Explaining the behavior of black-box systems [12] is a well-studied problem in
computer science. In recent years, active automata learning approaches infer-
ring the input-output behavior of RNNs have received much attention. Several
white-box and black-box approaches were proposed. We focus on model learning
from RNNs. The relationship between the internal state representation of RNNs
and FSMs [10,24,37] is out of scope of this paper. Wang et al. [38] present an
overview of rule-extraction-based verification for RNNs. A formal approach to
explainable RNNs has been proposed by Ghosh and Neider [10], where they use
linear temporal logic to explain RNN decision making.

Weiss et al. [39] proposed an L∗-based approach to extract automata from
RNNs that encode their input-output behavior. The authors use a white-box
equivalence oracle to learn binary classifiers as DFAs. Their equivalence oracle
is based on the iteratively refined abstraction of an RNN’s state space. We com-
pared our approach to theirs in Sect. 4. In subsequent work, they also learned
probabilistic automata [40] and a subset of context-free grammars [41] from
RNNs. Another white-box approach has been proposed by Koul et al. [19]. They
use a technique called quantized bottleneck insertion to extract Moore machines.
Such models help them better understand the memory use in RNN-based con-
trol policies. Probably approximately correct black-box extraction of DFAs via
Bounded-L∗ and random testing has been presented by Mayr and Yovine [20].
They use a random sampling-based equivalence oracle with the number of sam-
ples chosen so as to achieve PAC learning [21,33]. We reasoned about the effec-
tiveness of such an approach in Sect. 4. With our experiments, we found that
the sampling distribution in the equivalence oracle is essential to learn com-
plete models of RNNs. Khmelnitsky et al. propose a similar approach [17]. They
use statistical model-checking to answer equivalence queries and formalize a
property-directed verification method for RNNs. An algorithm for Angluin-style
DFA learning from binarized neural networks over some input region has been
presented by Shih et al. [28]. They use SAT solvers to answer equivalence queries.
Dong. et al. [8] presented a white-box method for the extraction of probabilistic

Learning Finite State Models from Recurrent Neural Networks 245

finite automata from RNNs. They achieve this through a symbolic encoding of
the RNN’s hidden state vectors and using a probabilistic learning algorithm that
tries to recover the probability distribution of the symbolic data. Carr et al. [5]
extracted a finite-state controller from an RNN via model learning. They demon-
strate their technique by synthesizing policies for partially observable Markov
decision processes.

6 Conclusion

We experimentally compared three approaches to actively learn automata cap-
turing the input-output behavior of an RNN. Our experiments show that the
choice of equivalence oracle greatly affects learning performance. They also show
that using model-guided conformance testing leads to the most accurate learn-
ing. In direct comparisons, it managed to falsify models learned by two other
approaches. Since it is a black-box testing approach, it does not require any
knowledge of the RNN’s internals. It exploits the structure of the current hypoth-
esis obtained by the learning algorithm. The positive experimental results sug-
gest that automata-learning-based testing is a promising method for efficiently
finding adversarial inputs. These adversarial input could be used to extend the
training data set such that they are correctly classified by the retained RNN.

In future work, we will examine the application of formal methods, more
concretely automata learning, on RNNs and transformers [34] trained with high-
dimensional input alphabets, as is often done in practice. To achieve this, we
will apply methods, such as suitable dimensionality reduction techniques and
clustering, to learn abstract automata. Furthermore, we will examine the hidden
state space of RNNs trained on regular languages. By doing so, we hope to enable
formal reasoning about the RNN’s internal decision-making process.

The presented work demonstrates that model learning can play a role in
explainable AI. Model-based conformance testing helps to raise the level of trust
in RNN decision making, and learned models can be used as a basis for model
checking and manual analysis.

Acknowledgments. This work has been supported by the “University SAL Labs”
initiative of Silicon Austria Labs (SAL) and its Austrian partner universities for applied
fundamental research for electronic based systems.

References

1. Aichernig, B.K., et al.: Learning a behavior model of hybrid systems through com-
bining model-based testing and machine learning. In: Gaston, C., Kosmatov, N.,
Gall, P.L. (eds.) Testing Software and Systems - 31st IFIP WG 6.1 International
Conference, ICTSS 2019, Paris, France, 15–17 October 2019, Proceedings. LNPSE,
vol. 11812, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31280-0 1

https://doi.org/10.1007/978-3-030-31280-0_1
https://doi.org/10.1007/978-3-030-31280-0_1

246 E. Muškardin et al.

2. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8 3

3. Aichernig, B.K., Tappler, M., Wallner, F.: benchmarking combinations of learning
and testing algorithms for active automata learning. In: Ahrendt, W., Wehrheim,
H. (eds.) TAP 2020. LNCS, vol. 12165, pp. 3–22. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-50995-8 1

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

5. Carr, S., Jansen, N., Topcu, U.: Verifiable RNN-based policies for POMDPs under
temporal logic constraints. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 4121–
4127. ijcai.org (2020). https://doi.org/10.24963/ijcai.2020/570

6. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neu-
ral machine translation: Encoder-decoder approaches. CoRR abs/1409.1259 (2014).
http://arxiv.org/abs/1409.1259

7. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

8. Dong, G., Wang, J., Sun, J., Zhang, Y., Wang, X., Dai, T., Dong, J.S., Wang, X.:
Towards interpreting recurrent neural networks through probabilistic abstraction.
In: 35th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2020, 21–25 September 2020, pp. 499–510. IEEE, Melbourne, Australia
(2020). https://doi.org/10.1145/3324884.3416592

9. Gargantini, A.: 4 conformance testing. In: Broy, M., Jonsson, B., Katoen, J.-
P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 87–111. Springer, Heidelberg (2005). https://doi.org/10.1007/
11498490 5

10. Ghosh, B., Neider, D.: A formal language approach to explaining RNNs. CoRR
abs/2006.07292 (2020). https://arxiv.org/abs/2006.07292

11. Gopinath, D., Katz, G., Pasareanu, C.S., Barrett, C.W.: Deepsafe: a data-
driven approach for checking adversarial robustness in neural networks. CoRR
abs/1710.00486 (2017). http://arxiv.org/abs/1710.00486

12. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
93:1–93:42 (2019). https://doi.org/10.1145/3236009

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

14. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS - lessons learned in the
ZULU challenge. In: ISoLA 2010. LNCS, vol. 6415, pp. 687–704 (2010)

15. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

16. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

17. Khmelnitsky, I., et al.: Property-directed verification and robustness certification
of recurrent neural networks. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 364–380. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-88885-5 24

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.24963/ijcai.2020/570
http://arxiv.org/abs/1409.1259
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1145/3324884.3416592
https://doi.org/10.1007/11498490_5
https://doi.org/10.1007/11498490_5
https://arxiv.org/abs/2006.07292
http://arxiv.org/abs/1710.00486
https://doi.org/10.1145/3236009
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24

Learning Finite State Models from Recurrent Neural Networks 247

18. Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata. RAND
Corporation, Santa Monica, CA (1951)

19. Koul, A., Fern, A., Greydanus, S.: Learning finite state representations of recur-
rent policy networks. In: 7th International Conference on Learning Representa-
tions, ICLR 2019, 6–9 May 2019. OpenReview.net, New Orleans, LA, USA (2019).
https://openreview.net/forum?id=S1gOpsCctm

20. Mayr, F., Yovine, S.: regular inference on artificial neural networks. In: Holzinger,
A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol.
11015, pp. 350–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99740-7 25

21. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
The MIT Press (2012)

22. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 67–73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88885-5 5

23. Neubig, G., et al.: DyNet: The dynamic neural network toolkit. CoRR
abs/1701.03980 (2017). http://arxiv.org/abs/1701.03980

24. Oliva, C., Lago-Fernández, L.F.: On the interpretation of recurrent neural networks
as finite state machines. In: Tetko, I.V., Kurková, V., Karpov, P., Theis, F. (eds.)
ICANN 2019. LNCS, vol. 11727, pp. 312–323. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30487-4 25

25. Oliva, C., Lago-Fernández, L.F.: Stability of internal states in recurrent neural net-
works trained on regular languages. Neurocomputing 452, 212–223 (2021). https://
doi.org/10.1016/j.neucom.2021.04.058

26. Omlin, C.W., Giles, C.L.: Extraction of rules from discrete-time recurrent neu-
ral networks. Neural Networks 9(1), 41–52 (1996). https://doi.org/10.1016/0893-
6080(95)00086-0

27. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should I trust you?”: explaining the
predictions of any classifier. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggar-
wal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 13–17 August
2016. pp. 1135–1144. ACM,San Francisco, CA, USA (2016). https://doi.org/10.
1145/2939672.2939778

28. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by angluin-
style learning. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp.
354–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 25

29. Siegelmann, H.T., Sontag, E.D.: Turing computability with neural nets. Appl.
Math. Lett. 4(6), 77–80 (1991). https://doi.org/10.1016/0893-9659(91)90080-F,
https://www.sciencedirect.com/science/article/pii/089396599190080F

30. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25423-4 5

31. Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., Kroening, D.: Concolic
testing for deep neural networks. In: Huchard, M., Kästner, C., Fraser, G. (eds.)
Proceedings of the 33rd ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE 2018, 3–7 September 2018, pp. 109–119. ACM, Montpellier,
France (2018). https://doi.org/10.1145/3238147.3238172

32. Tomita, M.: Dynamic construction of finite automata from examples using hill-
climbing. In: Conference of the Cognitive Science Society, pp. 105–108 (1982)

https://openreview.net/forum?id=S1gOpsCctm
https://doi.org/10.1007/978-3-319-99740-7_25
https://doi.org/10.1007/978-3-319-99740-7_25
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
http://arxiv.org/abs/1701.03980
https://doi.org/10.1007/978-3-030-30487-4_25
https://doi.org/10.1007/978-3-030-30487-4_25
https://doi.org/10.1016/j.neucom.2021.04.058
https://doi.org/10.1016/j.neucom.2021.04.058
https://doi.org/10.1016/0893-6080(95)00086-0
https://doi.org/10.1016/0893-6080(95)00086-0
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/978-3-030-24258-9_25
https://doi.org/10.1016/0893-9659(91)90080-F
https://www.sciencedirect.com/science/article/pii/089396599190080F
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1145/3238147.3238172

248 E. Muškardin et al.

33. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984).
https://doi.org/10.1145/1968.1972

34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Guyon, I., von Luxburg, U.,
Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4–9 December 2017, pp. 5998–6008.
Long Beach, CA, USA 2017), https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

35. Walkinshaw, N., Bogdanov, K.: Automated comparison of state-based software
models in terms of their language and structure. ACM Trans. Softw. Eng.
Methodol. 22(2), 13:1–13:37 (2013). https://doi.org/10.1145/2430545.2430549

36. Wang, C., Niepert, M.: State-regularized recurrent neural networks. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9–15 June 2019. Proceedings of Machine Learn-
ing Research, vol. 97, pp. 6596–6606. PMLR,Long Beach, California, USA (2019).
http://proceedings.mlr.press/v97/wang19j.html

37. Wang, Q., Zhang, K., II, A.G.O., Xing, X., Liu, X., Giles, C.L.: A comparison
of rule extraction for different recurrent neural network models and grammatical
complexity. CoRR abs/1801.05420 (2018). http://arxiv.org/abs/1801.05420

38. Wang, Q., Zhang, K., Liu, X., Giles, C.L.: Verification of recurrent neural networks
through rule extraction. CoRR abs/1811.06029 (2018). http://arxiv.org/abs/1811.
06029

39. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural
networks using queries and counterexamples. In: Dy, J.G., Krause, A. (eds.) Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, 10–15 July 2018. Proceedings of Machine Learning Research,
vol. 80, pp. 5244–5253. PMLR, Stockholm, Sweden (2018). http://proceedings.mlr.
press/v80/weiss18a.html

40. Weiss, G., Goldberg, Y., Yahav, E.: Learning deterministic weighted automata
with queries and counterexamples. In: Wallach, H.M., Larochelle, H., Beygelz-
imer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, pp. 8558–8569.
Vancouver, BC, Canada (2019). https://proceedings.neurips.cc/paper/2019/hash/
d3f93e7766e8e1b7ef66dfdd9a8be93b-Abstract.html

41. Yellin, D.M., Weiss, G.: Synthesizing context-free grammars from recurrent neural
networks. In: TACAS 2021. LNCS, vol. 12651, pp. 351–369. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72016-2 19

42. Zachary Chase Lipton, John Berkowitz, C.E.: A critical review of recurrent neural
networks for sequence learning. CoRR abs/1506.00019 (2015). http://arxiv.org/
abs/1506.00019

https://doi.org/10.1145/1968.1972
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/2430545.2430549
http://proceedings.mlr.press/v97/wang19j.html
http://arxiv.org/abs/1801.05420
http://arxiv.org/abs/1811.06029
http://arxiv.org/abs/1811.06029
http://proceedings.mlr.press/v80/weiss18a.html
http://proceedings.mlr.press/v80/weiss18a.html
https://proceedings.neurips.cc/paper/2019/hash/d3f93e7766e8e1b7ef66dfdd9a8be93b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d3f93e7766e8e1b7ef66dfdd9a8be93b-Abstract.html
https://doi.org/10.1007/978-3-030-72016-2_19
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019

Kaki: Concurrent Update Synthesis
for Regular Policies via Petri Games

Nicklas S. Johansen, Lasse B. Kær, Andreas L. Madsen, Kristian Ø. Nielsen,
Jǐŕı Srba(B), and Rasmus G. Tollund

Department of Computer Science, Aalborg University, Aalborg, Denmark

srba@cs.aau.dk

Abstract. Modern computer networks are becoming increasingly com-
plex and for dependability reasons require frequent configuration
changes. It is essential that forwarding policies are preserved not only
before and after the configuration update but also at any moment dur-
ing the inherently distributed execution of the update. We present Kaki,
a Petri game based approach for automatic synthesis of switch batches
that can be updated in parallel without violating a given (regular) for-
warding policy like waypointing and service chaining. Kaki guarantees
to find the minimum number of concurrent batches and it supports
both splittable and nonsplittable flow forwarding. In order to achieve an
optimal performance, we introduce two novel optimization techniques
based on static analysis: decomposition into independent subproblems
and identification of switches that can be collectively updated in the
same batch. These techniques considerably improve the performance of
our tool, relying on TAPAAL’s verification engine for Petri games as its
backend. Experiments on a large benchmark of real networks from the
topology Zoo database demonstrate that Kaki outperforms the state-of-
the-art tool FLIP as it provides shorter (and provably optimal) concur-
rent update sequences at similar runtime.

1 Introduction

Software defined networking (SDN) [7] delegates the control of a network’s rout-
ing to the control plane, allowing for programmable control of the network and
creating a higher degree of flexibility and efficiency. If a group of switches fail,
a new routing of the network flows must be established in order to avoid send-
ing packets to the failed switches, resulting ultimately in packet drops. While
updating the routing in an SDN network, the network must preserve a number
of policies like waypointing that requires that a given firewall (waypoint) must
be visited before a packet in the network is delivered to its destination. The
update synthesis problem [7] is to find an update sequence (ordering of switch
updates) that preserves a given policy.

In order to reduce the time of the update process, it is of interest to update
switches in parallel. However, due to the asynchronous nature of networks,
attempting to update all switches concurrently may lead to transient policy
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 249–267, 2022.
https://doi.org/10.1007/978-3-031-07727-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_14&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_14

250 N. S. Johansen et al.

violations before the update is completed. This raises the problem related to
finding a concurrent update strategy (sequence of batches of switches that can
be updated concurrently) while preserving a given forwarding policy during
the update. We study the concurrent update synthesis problem and provide an
efficient translation of the problem of finding an optimal (shortest) concurrent
update sequence into Petri net games. Our translation, implemented in the tool
Kaki, guarantees that we preserve a given forwarding policy, expressed as a reg-
ular language over the switches describing the sequences of all acceptable hops
under the given policy.

Popular routing schemes like Equal-Cost-MultiPath (ECMP) [8] allow for
switches to have multiple next hops that split a flow along several paths to its
destination in order to account for traffic engineering like load balancing, using
e.g. hash-based schemes [1]. In our translation approach, we support concurrent
update synthesis taking into account such multiple forwarding (splittable flows)
modelled using nondeterminism.

To solve the concurrent update synthesis problem, our framework, Kaki,
translates a given network and its forwarding policy into a Petri game and
synthetises a winning strategy for the controller using TAPAAL’s Petri game
engine [9,10]. Kaki guarantees to find a concurrent update sequence that is min-
imal in the number of batches. We provide two novel optimisation techniques
based on static analysis of the network that reduce the complexity of solving
a concurrent update synthesis problem, which is known to be NP-hard even if
restricted only to the basic loop-freedom and waypointing properties [14]. The
first optimisation, topological decomposition, effectively splits the network with
its initial and final routing into two subproblems that can be solved indepen-
dently and even in parallel. The second optimisation identifies collective update
classes (sets of switches) that can always be updated in the same batch.

Finally, we conduct a thorough comparison of our tool against the state-of-
the-art update synthesis tool FLIP [22] and another Petri game tool [4] (allowing
though only for sequential updates). We benchmark on the set of 8759 realistic
network topologies with various policies required by network operators. Kaki
manages to solve almost as many problems as FLIP, however, in almost 9% of
cases it synthesises a solution with a smaller number of batches than FLIP. When
Kaki is specialized to produce only singleton batches and policies containing only
reachability and single waypointing, it performs similarly as the Petri game app-
roach from [4] that is also using TAPAAL verification engine as its backend but
solves a simpler problem. This demonstrates that our more elaborate translation
that supports concurrent updates does not create any considerable performance
overhead when applied to the simpler setting.

Related Work. The update synthesis problem recently attracted lots of atten-
tion (see e.g. the recent overview [7]). State-of-the-art solutions/tools include
NetSynth [17], FLIP [22], Snowcap [21] and a Petri game based approach [4].

The tool NetSynth [17] uses the generic LTL logic for policy specification
but supports only the synthesis of sequential updates via incremental model
checking. The authors in [4] argue that their tool outperforms NetSynth.

Kaki: Concurrent Update Synthesis 251

The update synthesis tool FLIP [22] supports general policies and more-
over it allows to synthetise concurrent update sequences. Similarly to Kaki, it
handles every flow independently but Kaki provides more advanced structural
decomposition (that can be possibly applied also as a preprocessing step for
FLIP). FLIP provides a faster synthesis compared to NetSynth (see [22]) but
the tool’s performance is negatively affected by more complicated forwarding
policies. FLIP synthesises policy-preserving update sequences by constructing
constraints that enforce precedence of switch updates, implying a partial order
of updates and hence allowing FLIP to update switches concurrently. FLIP, con-
trary to our tool Kaki, does not guarantee to find the minimal number of batches
and it sometimes reverts to an undesirable two-phase commit approach [20] via
packet tagging, which is suboptimal as it doubles the expensive ternary content-
addressable memory (TCAM) [13]. To the best of our knowledge, FLIP is the
only tool supporting concurrent updates and we provide an extensive perfor-
mance comparison of FLIP and Kaki.

A recent work introduces Snowcap [21], a generic update synthesis tool allow-
ing for both soft and hard specifications. A hard specification specifies a forward-
ing policy, whereas the soft specification is a secondary objective that should be
minimized. Snowcap uses LTL logic for the hard specification but it supports
only sequential updates and hence is not included in our experiments.

Update synthesis problem via Petri games was recently studied in [4]. Our
work generalizes this work in several dimensions. The translation in [4] considers
only sequential updates and reduces the problem to a simplistic type of game
with only two rounds and only one environmental transition. Our translation
uses the full potential of Petri games with multiple rounds where the controller
and environment switch turns—this allows us to encode the concurrent update
synthesis problem. Like many others [15,16], the work in [4] fails to provide
general forwarding policies and defines only a small set of predefined policies.
Our tool, Kaki, solves the limitation by providing a regular language for the
specification of forwarding policies and it is also the first tool that considers
splittable flows with multiple (nondeterministic) forwarding.

Other recent works relying on the Petri net formalism include timing analysis
for network updates [2] and verification of concurrent network updates against
Flow-LTL specifications [6], however, both approaches focus solely on the analy-
sis/verification part for a given update sequence and do not discuss how to
synthesise such sequences.

2 Concurrent Update Synthesis

We shall now formally define a network, routing of a flow in a network, flow
policy as well as the concurrent update synthesis problem.

A network is a directed graph G = (V,E) where V is a finite set of switches
(nodes) and E ⊆ V × V is a set of links (edges) such that (s, s) /∈ E for all
s ∈ V . A flow in a network is a pair F = (SI , SF) of one or more initial
(ingress) switches and one or more final (egress) switches where ∅ �= SI , SF ⊆

252 N. S. Johansen et al.

V . A flow aims to forward packets such that a packet arriving to any of the
ingress switches eventually reaches one of the egress switches. Packet forwarding
is defined by network routing, specifying which links are used for forwarding of
packets. Given a network G = (V,E) and a flow F = (SI , SF), a routing is a
function R : V → 2V such that s′ ∈ R(s) implies that (s, s′) ∈ E for all s ∈ V ,
and R(sf) = ∅ for all sf ∈ SF . We write s → s′ if s′ ∈ R(s), as an alternative
notation to denote the edges in the network that are used for packet forwarding
in the given flow.

s1 s2

s3 s4

s5ingress

egress

egress

Fig. 1. Network and a routing function (dot-
ted lines are links present in the network but
not used in the routing) where R(s1) = {s3},
R(s2) = {s3, s4, s5}, R(s3) = {s2} and
R(s4) = R(s5) = ∅.

Figure 1 shows a network exam-
ple together with its routing. Note
that we allow nondeterministic for-
warding as there may be defined mul-
tiple next-hops—this enables split-
ting of the traffic through several
paths for load balancing purposes.

We now define a trace in a
network as maximal sequence of
switches that can be observed when
forwarding a packet under a given
routing function. A trace t for a rout-
ing R and a flow F = (SI , SF) is a finite or infinite sequence of switches starting
in an ingress switch s0 ∈ SI where for the infinite case we have t = s0s1 . . . where
si ∈ R(si−1) for i ≥ 1, and for the finite case t = s0s1 . . . sn where si ∈ R(si−1)
for 1 ≤ i ≤ n and R(sn) = ∅ for the final switch in the sequence sn. For a given
routing R and flow F , we denote by T (R,F) the set of all traces.

In our example from Fig. 1, the set T (R, ({s1}, {s4, s5})) contains e.g. the
traces s1s3s2s4, s1s3s2s3s2s4 as well as the infinite trace s1(s3s2)ω that exhibits
(undesirable) looping behaviour as the packets are never delivered to any of the
two egress switches.

2.1 Routing Policy

A routing policy specifies all allowed traces on which packets (in a given flow)
can travel. Given a network G = (V,E), a policy P is a regular expression over V
describing a language L(P) ⊆ V *. Given a routing R for a flow F = (SI , SF), a
policy P is satisfied by R if T (R,F) ⊆ L(P). Hence all possible traces allowed by
the routing must be in the language L(P). As L(P) contains only finite traces,
if the set T (R,F) contains an infinite trace then it never satisfies the policy P .

Our policy language can define a number of standard routing policies for a
flow F = (SI , SF) in a network G = (V,E).

– Reachability is expressed by the policy (V \ SF)*SF . It ensures loop and
blackhole freedom as it requires that an egress switch must always be reached.

– Waypoint enforcement requires that packets must visit a given waypoint
switch sw ∈ V before they are delivered to an egress switch (where by our
assumption the trace ends) and it is given by the policy V *swV *.

Kaki: Concurrent Update Synthesis 253

– Alternative waypointing specifies two waypoints s and s′ such that at least
one of them must be visited and it is given by the union of the waypoint
enforcement regular languages for s and s′, or alternatively by V *(s + s′)V *.

– Service chaining requires that a given sequence of switches s1, s2, . . . , sn

must be visited in the given order and it is described by the policy (V \
{s1, · · · , sn})*s1(V \ {s2, · · · , sn})*s2 · · · (V \ {sn})*snV *.

– Conditional enforcement is given by a pair of switches s, s′ ∈ V such that
if s is visited then s′ must also be visited and it is given by the policy (V \
{s})* + V *s′V *.

Regular languages are closed under union and intersection, hence the standard
policies can be combined using Boolean operations. As reachability is an essential
property that we always want to satisfy, we shall assume that the reachability
property is always assumed in any other routing policy.

In our translation, we represent a policy by an equivalent nondeterministic
finite automaton (NFA) A = (Q,V, δ, q0, F) where Q is a finite set of states, V is
the alphabet equal to set of switches, δ : Q × V → 2Q is the transition function,
q0 is the initial state and F is the set of final states. We extended the δ function
to sequences of switches by δ(q, s0s1 . . . sn) =

⋃
q′∈δ(q,s0)

δ(q′, s1 . . . sn) in order
to obtain all possible states after executing s0s1 . . . sn. We define the language
of A by L(A) = {w ∈ V ∗ | δ(q0, w) ∩ F �= ∅}. An NFA where |δ(q, s)| = 1 for
all q ∈ Q and s ∈ V is called a deterministic finite automaton (DFA). It is a
standard result that NFA, DFA and regular expressions have the same expressive
power (w.r.t. the generated languages).

2.2 Concurrent Update Synthesis Problem

Let Ri and Rf be the initial and final routing, respectively. We aim to update
the switches in the network so that the packet forwarding is changed from the
initial to the final routing. The goal of the concurrent update synthesis problem
is to construct a sequence of nonempty sets of switches, called batches, such
that when we update the switches from their initial to the final routing in every
batch concurrently (while waiting so that all updates in the batch are finished
before we update the next batch), a given routing policy is transiently preserved.
Our aim is to synthesise an update sequence that is optimal, i.e. minimizes the
number of batches.

During the update, only switches that actually change their forwarding func-
tion need to be updated. Given a network G = (V,E), an initial routing Ri and
a final routing Rf , the set of update switches is defined by U = {s ∈ V | Ri(s) �=
Rf (s)}. An update of a switch s ∈ U changes its routing from Ri(s) to Rf (s).

Definition 1. Let G = (V,E) be a network and let R and Rf be the current and
final routing, respectively. An update of a switch s ∈ U results in the updated
routing Rs given by

254 N. S. Johansen et al.

s1 s2

s3

s4

s5

s6

egress

ingress

(a) Initial routing (solid lines) and a
final routing (dashed lines).

s1 s2

s3

s4

s5

s6

egress

ingress

(b) Intermediate routing after updat-
ing s3 and s4 in the first batch.

Fig. 2. Network with an optimal concurrent update sequence {s3, s4}{s2, s5}

Rs(s′) =

{
R(s′) if s �= s′

Rf (s) if s = s′.

A concurrent update sequence ω = X1 . . . Xn ∈ (2U \ ∅)* is a sequence of
nonempty batches of switches such that each update switch appears in exactly
one batch of ω. As a network is a highly distributed system with asynchronous
communication, even if all switches in the batch are commanded to start the
update at the same time, in the actual execution of the batch the updates can
be performed in any permutation of the batch. An execution π = p1p2 · · · pn ∈ U∗

respecting a concurrent update sequence ω = X1 . . . Xn is the concatenation of
permutations of each batch in ω such that pi ∈ perm(Xi) for all i, 1 ≤ i ≤ n,
where perm(Xi) denotes the set of all permutations of switches in Xi.

Given a routing R and an execution π = s1s2 · · · sn where si ∈ U for all i,
1 ≤ i ≤ n, we inductively define the updated routing Rπ by (i) Rε = R and
(ii) Rsπ = (Rs)π where s ∈ U and ε is the empty execution. An intermediate
routing is any routing Rπ′

where π′ is a prefix of π. We notice that for any
given routing R and any two executions π, π′ that respect a concurrent update
sequence ω = X1 . . . Xm, we have Rπ = Rπ′

, whereas the sets of intermediate
routings can be different.

Given an initial routing Ri and a final routing Rf for a flow (SI , SF), a
concurrent update sequence ω where Rω

i = Rf satisfies a policy P if R′ satisfies
P for all intermediate routings R′ generated by any execution respecting ω.

Definition 2. The concurrent update synthesis problem (CUSP) is a 5-tuple
U = (G,F , Ri, Rf , P) where G = (V,E) is a network, F = (SI , SF) is a flow, Ri

is an initial routing, Rf is a final routing, and P is a routing policy that includes
reachability i.e. L(P) ⊆ L((V \ SF)*SF). A solution to a CUSP is a concurrent
update sequence ω such that Rω

i = Rf where ω satisfies the policy P and the
sequence is optimal, meaning that the number of batches, |ω|, is minimal.

Consider an example in Fig. 2a where the initial routing is depicted in solid
lines and the final one in dashed ones. We want to preserve the reachability
policy between the ingress and egress switch. The set of update switches is
{s2, s3, s4, s5}. Clearly, all update switches cannot be placed into one batch

Kaki: Concurrent Update Synthesis 255

because the execution starting with the update of s2 creates a possible blackhole
at the switch s4. Hence we need at least two batches and indeed the concurrent
update sequence ω = {s3, s4}{s2, s5} satisfies the reachability policy. Any exe-
cution of the first batch preserves the reachability of the switch s6 and brings
us to the intermediate routing depicted in Fig. 2b. Any execution order of the
second batch also preserves the reachability policy, implying that ω is an optimal
concurrent update sequence.

3 Optimisation Techniques

Before we present the translation of CUSP problem to Petri games, we introduce
two preprocessing techniques that allow us to reduce the size of the problem.

3.1 Topological Decomposition

The intuition of topological decomposition is to reduce the complexity of solving
CUSP U = (G,F , Ri, Rf , P) where G = (V,E) by decomposing it into two
smaller subproblems. In the rest of this section, we use the aggregated routing
Rc(s) = Ri(s) ∪ Rf (s) for all s ∈ V (also denoted by the relation →) in order to
consider only the relevant part of the network.

We can decompose our problem at a switch sD ∈ V if sD splits the network
into two independent networks and there is at most one possible NFA state that
can be reached by following any path from any of the ingress switches to sD,
and the path has a continuation to some of the egress switches while reaching
an accepting NFA state. By Q(s) we denote the set of all such possible NFA
states for a switch s. Algorithm 1 computes the set Q(s) by iteratively relaxing
edges, i.e. by forward propagating the potential NFA states and storing them in
the function Qf and in a backward manner it also computes NFA states that
can reach a final state and stores them in Qb. An edge s → s′ can be relaxed if
it changes the value of Qf (s′) or Qb(s) and the algorithm halts when no more
edges can be relaxed.

Lemma 1. Let U = (G,F , Ri, Rf , P) be a CUSP where F = (SI , SF) is a flow
and let (Q,V, δ, q0, F) be an NFA describing its routing policy P . Algorithm 1
terminates and the resulting function Q has the property that q ∈ Q(si) iff
there exists a trace s0 . . . si . . . sn ∈ T (Rc,F) such that s0 ∈ SI , sn ∈ SF , q ∈
δ(q0, s0 . . . si) and δ(q, si+1 . . . sn) ∩ F �= ∅.

Let U = (G,F , Ri, Rf , P) be a CUSP where G = (V,E), F = (SI , SF) and
where P is expressed by an equivalent NFA A = (Q,V, δ, q0, F). A switch sD ∈ V
is a topological decomposition point if |Q(sD)| = 1 and for all s ∈ V \{sD} either
(i) s →* sD and sD �→* s or (ii) s �→* sD and sD →* s.

Let sD be a decomposition point. We construct two CUSP subproblems U ′

and U ′′, the first one containing the switches V ′ = {s ∈ V | s →* sD} and the
latter one with switches V ′′ = {s ∈ V | sD →* s}. Let G[V] be the induced
subgraph of G restricted to the set of switches V ⊆ V .

256 N. S. Johansen et al.

Algorithm 1: Potential NFA state set
input : A CUSP U = (G, F , Ri, Rf , P) and NFA A = (Q, V, δ, q0, F).
output: Function Q : V → 2Q of potential NFA states at a given switch.

1 Qf (s) := ∅ and Qb(s) := ∅ for all s ∈ V
2 Qf (si) := δ(q0, si) for all si ∈ SI

3 Qb(sf) := F for all sf ∈ SF

// s → s′ can be relaxed if it changes Qf (s′) or Qb(s)
4 while there exists s → s′ ∈ Rc that can be relaxed do
5 Qf (s′) := Qf (s′) ∪ ⋃

q∈Qf (s) δ(q, s′)

6 Qb(s) := Qb(s) ∪ {q ∈ Q | δ(q, s′) ∩ Qb(s
′) �= ∅}

7 return Q(s) := Qf (s) ∩ Qb(s) for all s ∈ V

The first subproblem is given by U ′ = (G[V ′],F ′, R′
i, R

′
f , P ′) where (i) F ′ =

(SI , {sD}), (ii) R′
i(s) = Ri(s) and R′

f (s) = Rf (s) for all s ∈ V ′ \ {sD} and
R′

i(sD) = R′
f (sD) = ∅, and (iii) L(P ′) = L(A′) ∩ L((V ′ \ {sD})*sD) where

A′ = (Q,V, δ, q0, F
′) with F ′ = Q(sD). In other words, the network and routing

are projected to only include the switches from V ′ and the policy ensures that
we must reach sD as well as the potential NFA state of sD.

The second subproblem is given by U ′′ = (G[V ′′],F ′′, R′′
i , R′′

f , P ′′) where (i)
F ′′ = ({sD}, SF), (ii) R′′

i (s) = Ri(s) and R′′
f (s) = Rf (s) for all s ∈ V ′′, and

(iii) L(P ′′) = L(A′′) where A′′ = (Q,V, δ, q′
0, F) and {q′

0} = Q(sD). The policy
of the second subproblem ensures that starting from the potential NFA state q′

0

for the switch sD, a final state of the original policy can be reached.
We can now realise that a solution to U implies the existence of solutions to

both U ′ and U ′′.

Theorem 1. If ω = X1 . . . Xn is a solution to U then ω′ = (X1 ∩ V ′) . . . (Xn ∩
V ′) and ω′′ = (X1 ∩ V ′′) . . . (Xn ∩ V ′′), where empty batches are omitted, are
solutions to U ′ and U ′′, respectively.

Even more importantly, from the optimal solutions of the subproblems, we
can synthesise an optimal solution for the original problem.

Theorem 2. Let ω′ = X ′
1X

′
2 . . . X ′

j and ω′′ = X ′′
1 X ′′

2 . . . X ′′
k be optimal solutions

for U ′ and U ′′, respectively. Then ω = (X ′
1 ∪X ′′

1)(X ′
2 ∪X ′′

2) . . . (X ′
m ∪X ′′

m) where
m = max{j, k} and where by conventions X ′

i = ∅ for i > j and X ′′
i = ∅ for

i > k, is an optimal solution to U .

Hence, if the original problem has a solution and can be decomposed into two
subproblems, then these subproblems also have solutions and from the optimal
solutions of the subproblems, we can construct an optimal solution for the orig-
inal problem. Importantly, since the subproblems are themselves also CUSPs,
they may be subject to further decompositions.

Kaki: Concurrent Update Synthesis 257

s1 s2 s3 s4 s5 s6 s7

Fig. 3. Chain structure with initial (solid) and final (dashed) routings.

3.2 Collective Update Classes

We now present the notion of a collective update class, or simply collective
updates, which is a set of switches that can be always updated in the same batch
in an optimal concurrent update sequence. The switches in a collective update
class can then be viewed only as a single switch, thus reducing the complexity
of the synthesis by reducing the number of update switches.

The first class of collective updates is inspired by [4] where the authors realize
that in case of sequential updates, update switches that are undefined in the
initial routing can be always updated in the beginning of the update sequence
and similarly update switches that should become undefined in the final routing
can always be moved to the end of the update sequence. We generalize the proof
of this observation also to concurrent update sequences.

Theorem 3. Let U = (G,F , Ri, Rf , P) be a CUSP. Let ℵi = {s ∈ V | Ri(s) =
∅ ∧Rf (s) �= ∅} and ℵf = {s ∈ V | Rf (s) = ∅ ∧Ri(s) �= ∅}. If U is solvable then
it has an optimal solution of the form X1 . . . Xn where ℵi ⊆ X1 and ℵf ⊆ Xn.

In Fig. 3 we show another class of collective updates with a chain-like struc-
ture where the initial and final routings forward packets in opposite directions.
We claim that the switches ℵc = {s3, s4, s5} can be always updated in the same
batch because updating any switch in ℵc introduces looping behaviour, as long
as the intermediate routing is passing through the switches. Once the switches
in ℵc are not part of the intermediate routing, we can update all of them in the
same batch without causing any forwarding issues. The notion of chain-reducible
collective updates is formalized as follows.

Definition 3. Let C ⊆ V be a strongly connected component w.r.t. → such that
|C| ≥ 4. The triple (se, se′ , C), where se, se′ ∈ C, is chain-reducible whenever
(i) if s ∈ C \ {se, se′} and s′ → s then s′ ∈ C, and (ii) if s ∈ C \ {se, se′} and
s → s′ then s′ ∈ C, and (iii) for every s ∈ C \ {se, se′} if there exists a switch
s′ ∈ Rf (s) then s′ →* s using only the initial routing or Ri(s′) = ∅.

The restriction |C| ≥ 4 is included so that reduction in size can be achieved.
Cases (i) and (ii) ensure that the switches in C \ {se, se′} do not influence or
are influenced by any of the switches not in C and can be part of a collective
update. Case (iii) guarantees that updating a reachable switch s ∈ C \ {se, se′}
induces either a loop or a blackhole.

258 N. S. Johansen et al.

Theorem 4. Let U = (G,F , Ri, Rf , P) be a CUSP and let (se, se′ , C) be chain-
reducible and let ℵc = C \ {se, se′}. If U has an optimal solution ω = X1 . . . Xn

then there exists another optimal solution ω′ = X1 \ℵc . . . Xk ∪ℵc . . . Xn \ℵc for
some k, 1 ≤ k ≤ n.

4 Translation to Petri Games

We shall first present the formalism of Petri games and then reduce the concur-
rent update synthesis problem to this model.

4.1 Petri Games

A Petri net is a mathematical model for distributed systems focusing on con-
currency and asynchronicity (see [18]). A Petri game [4,10] is a 2-player game
extension of Petri nets, splitting the transitions into controllable and environ-
mental ones. We shall reduce the concurrent update synthesis problem to finding
a winning strategy for the controller in a Petri game with a reachability objective.

A Petri net is a 4-tuple (P, T,W,M) where P is a finite set of places, T is a
finite set of transitions such that P ∩ T = ∅, W : (P × T) ∪ (T × P) → N

0 is a
weight function and M : P → N

0 is an initial marking that assigns a number of
tokens to each place. We depict places as circles, transitions as rectangles and
draw an arc (directed edge) between a transition t and place p if W (t, p) > 0,
or place p and transition t if W (p, t) > 0. When an arc has no explicit weight
annotation, we assume that it has the weight 1.

The semantics of a Petri net is given by a labeled transition system where
states are Petri net markings and we write M

t−→ M ′ if M(p) ≥ W (p, t) for all
p ∈ P (the transition t is enabled in M) and M ′(p) = M(p)−W (p, t)+W (t, p).

Marking properties are given by a formula ϕ which is a Boolean combination
of the atomic predicates of the form p �� n where p ∈ P , �� ∈ {<,≤, >,≥,=, �=}
and n ∈ N

0. We write M |= p �� n iff M(p) �� n and extend this naturally
to the Boolean combinators. We use the classical CTL operator AF and write
M |= AF ϕ if (i) M |= ϕ or (ii) M ′ |= AF ϕ for all M ′ such that M

t−→ M ′ for
some t ∈ T , meaning that on any maximal firing sequence from M , the marking
property ϕ must eventually hold.

A Petri game [4,10] is a two-player game extension of Petri nets where transi-
tions are partitioned T = Tctrl Tenv into two distinct sets of controller and envi-
ronment transitions, respectively. During a play in the game, the environment has
a priority over the controller in the decisions: the environment can always choose
to fire its own fireable transition, or ask the controller to fire one of the control-
lable transitions. The goal of the controller is to find a strategy in order to satisfy
a given AF ϕ property whereas the environment tries to prevent this. Formally,
a (controller) strategy is a partial function σ : MN ⇀ T , where MN is the set
of all markings, that maps a marking to a fireable controllable transition (or it
is undefined if no such transition exists). We write M

t−→σ M ′ if M
t−→ M ′ and

Kaki: Concurrent Update Synthesis 259

t ∈ Tenv ∪{σ(M)}. A Petri game satisfies the reachability objective AF ϕ if there
exists a controller strategy σ such that the labelled transition system under the
transition relation −→σ satisfies AF ϕ.

4.2 Translation Intuition

We now present the intuition for our translation from CUSP to Petri games.
For a given CUSP instance, we compositionally construct a Petri game where
the controller’s goal is to select a valid concurrent update sequence and the
environment aims to show that the controller’s update sequence is invalid. The
game has two phases: generation phase and verification phase.

The generation phase has two modes where the controller and environment
switch turns in each mode. The controller proposes the next update batch (in
a mode where only controller’s transitions are enabled) and when finished, it
gives the turn to the environment that sequentializes the batch by creating
an arbitrary permutation of the update switches in the batch (in this mode
only environmental transitions are enabled). At any moment during the batch
sequentialisation, the environment may decide to enter the second phase that is
concerned with validation of the current intermediate routing.

The verification phase begins when the environment injects a packet (token)
to the network and wishes to examine the currently generated intermediate rout-
ing. In this phase, one hop of the packet is simulated in the network according
to the current switch configuration; in case of nondeterministic forwarding it is
the environment that chooses the next switch. A hop in the network is followed
by an update of the current state of a DFA that represents the routing policy.
These two steps alternate, until (i) an egress switch is reached, (ii) the token
ends in a blackhole (deadlock) or (iii) the packet forwarding forms a loop, which
also makes the net execution to deadlock as soon as the same switch is visited
the second time. The controller wins the game only in situation (i), providing
that the currently reached state in the DFA is an accepting state.

The controller now has a winning strategy if and only if the CUSP problem has
a solution. By restricting the number of available batches and using the bisection
method, we can further identify an optimal concurrent update sequence.

4.3 Translation of Network Topology and Routings

Let (G,F , Ri, Rf , P) be a concurrent update synthesis problem where G =
(V,E) is a network and F = (SI , SF) is the considered flow. We now construct
a Petri game N(U) = (P, T,W,M). This subsection describes the translation of
the network and routings, next subsection deals with the policy translation.

Figure 4 shows the Petri game building components for translating the net-
work and the routings. Environmental transitions are denoted by rectangles with
a white fill-in and controller transitions are depicted in solid black; if a transi-
tion/place is framed by a dashed line then it is shared across the components.

Network Topology Component (Fig. 4a). This component represents the network
and its current routing. For each s ∈ V , we create the shared places ps and a

260 N. S. Johansen et al.

ps ps′

punvs

t(s,s′)

(a) Topology component for each
switch s and s′ ∈ Ri(s) ∪ Rf (s). pqueueing

pupdatingpbatches

p#queued

#n

p#queued

tconup

tready

#n

p#updated

nn

(b) Update mode component where n = |U |.

pinits
pqueueds

tupdates

pfinals

plimiter
s

t(s,s1)

...

{s1, . . . , sm} = Ri(s)

t(s,sm)

t(s,s′
1)

...

t(s,s′
m′)

{s′
1, . . . , s

′
m′} = Rf (s)

tqueues

pqueueing

pupdating

(c) Switch component for each s ∈ U . Tran-
sitions t(s, s1) . . . t(s, sm) are for the initial
routing; t(s, s′

1) . . . t(s, s′
m′) for the final one.

p#queued

#n

p#queued

tupdates

tqueues

#n

p#updated

(d) Counter component where
n = |U | added for each s ∈ U .

pupdating tinjects ps

(e) Packet injection component
for every s SI in flow (SI , SF).

Fig. 4. Construction of Petri game components; U is the set of update switches

shared unvisited place punv
s with 1 token. The unvisited place tracks whether

the switch has been visited and prevents looping. We use uncontrollable transi-
tions so that the environment can decide how to traverse the network in case of
nondeterminism. The switch component ensures that these transitions are only
fireable in accordance with the current intermediate routing.

Update Mode Component (Figs. 4b and 4d). These components handle the book-
keeping of turns between the controller and the environment. A token present in
the place pqueueing enables the controller to queue updates into a current batch.
Once the token is moved to the place pupdating, it enables the environment to
schedule (in an arbitrary order) the updates from the batch. The dual places
p#queued and p#queued count how many switches have been queued in this batch
and how many switches have not been queued, respectively. The place p#updated

is decremented for each update implemented by the environment. Hence the

Kaki: Concurrent Update Synthesis 261

pq ts pq′

(a) Component for each DFA transition
q

s−→ q′; if q = q0 then pq gets a token.

t(s′,s) ptracks ts

(b) Tracking component for each already
added transition t(s′,s) and each switch
s ∈ V ; creates a new transition ts.

pturn pturn pturn

tinjects
t(s,s′) ts

(c) Turn component for all created tran-
sitions tinject

s and t(s,s′) and ts.

tinjects ptracks

(d) Injection component for each s ∈ SI

in the flow (SI , SF).

Fig. 5. Policy checking components

environment is forced to inject a token to the network, latest once all update
switches are updated. Additionally, the number of produced batches is repre-
sented by the number of tokens in the place pbatches.

Switch Component (Fig. 4c). This component handles the queueing (by con-
troller) and activation (by environment) of updates. For every s ∈ V where
Ri(s) �= Rf (s) we create a switch component. Let U be the set of all such update
switches. Initially, we put one token in pinit

s (the switch forwards according to its
initial routing) and plimiter

s (making sure that each switch can be queued only
once). Once a switch is queued (by the controller transition tqueue

s) and updated
(by the environment transition tupdate

s), the token from pinit
s is moved into pfinal

s

and the switch is now forwarding according to the final routing function.

Packet Injection Component (Fig. 4e). The environment can at any moment
during the sequentialisation mode use the transition tinject

s to inject a packet
into any of the ingress routers and enter the second verification phase.

4.4 Policy Translation

Given a CUSP (G,F , Ri, Rf , P), we now want to encode the policy P into the
Petri game representation. We assume that P is represented by a DFA A(P)
such that L(P) = L(A(P)). We translate A(P) into a Petri game so that DFA
states/transitions are mapped into corresponding Petri net places/transitions
which are connected to earlier defined Petri game for the topology and routing.

Figure 5 presents the components for the policy translation.

1. DFA transition component (Fig. 5a). This component creates places/
transitions for each DFA state/transition. Note that if a Petri game

262 N. S. Johansen et al.

transition is of the form ts then it corresponds to a DFA-transition, contrary
to transitions of the form t(s,s′) that represent network topology links.

2. Policy tracking component (Fig. 5b). For all s ∈ V , we create the place ptrack
s

in order to track the current position of a packet in the network.
3. Turn component (Fig. 5c). The intuition here is that whenever the environ-

ment fires the topology transition t(s,s′) then the DFA-component must match
it by firing a DFA-transition ts′ . The token in the place pturn means that it is
the environment turn to challenge with a next hop in the network topology.

4. DFA injection component (Fig. 5d). For all inject transitions tinject
s to the

switch s, we add an arc to its tracking place ptrack
s . This initiates the second

phase of verification of the routing policy.

4.5 Reachability Objective and Translation Correctness

We finish by defining the reachability objective C(k) for each positive number k
that gives an upper bound on the maximum number of allowed batches (recall
that F is the set of final DFA states): C(k) = AF pbatches ≤ k ∧ ∨

q∈F pq = 1.
The query expresses that all runs must use less than k batches and eventually

end in an accepting DFA state. Note that since reachability is assumed as a part
of the policy P and that the final switch has no further forwarding, there can
be no next-hop in the network after the DFA gets to its final state.

The query can be iteratively verified (e.g. using the bisection method) while
changing the value of k, until we find k such that C(k) is true and C(k − 1) is
false (which implies that also C(�) is false for every � < k − 1). Then we know
that the synthesised strategy is an optimal solution. If C(k) is false for k = |U |
where U is the set of update switches then there exists no concurrent update
sequence solving the CUSP. The correctness of the translation is summarized in
the following theorem.

Theorem 5. A concurrent update synthesis problem U has a solution with k ≥ 1
or fewer batches if and only if there exists a winning strategy for the controller
in the Petri game N(U) for the query C(k).

Let us note that a winning strategy for the controlled in the Petri game can
be directly translated to a concurrent update sequence. The firing of controllable
transitions of the form tqueue

s indicates that the switch s should be scheduled in
the current batch and the batches are separted from each other by the firings of
the controllable transitions tconup.

5 Experimental Evaluation

We implemented the translation approach and optimisation techniques in our
tool Kaki. The tool is coded in Kotlin and compiled to JVM. It uses the Petri
game engine of TAPAAL [3,9,10] as its backend for solving the Petri games. The
source code of Kaki is publicly available on GitHub1.
1 https://github.com/Ragusaen/Kaki.

https://github.com/Ragusaen/Kaki

Kaki: Concurrent Update Synthesis 263

0 2000 4000 6000 8000
0.1

1

10

100

T
ot

al
ti
m
e
[s
]

Kaki (all)
Collective
Decomposition
Baseline
FLIP

Fig. 6. Optimization techniques and FLIP comparison (y-axis is logarithmic)

We shall discuss the effect of our novel optimisation techniques and com-
pare the performance of our tool to FLIP [22] as well as the tool for sequential
update synthesis from [4], referred to as SEQ. We use the benchmark [5] of
update synthesis problems from [4], based on 229 real-network topologies from
the topology ZOO database [12]. The benchmark includes four update synthesis
problems for reachability and single waypointing for each topology, totalling 916
problem instances. As Kaki and FLIP support a richer set of policies, we further
extend this benchmark with additional policies for multiple waypointing, alter-
native waypointing and conditional enforcement, giving us 8759 instances of the
concurrent update synthesis problem.

All experiments (each using a single core) are conducted on a compute-cluster
running Ubuntu version 18.04.5 on an AMD Opteron(tm) Processor 6376 with
a 1 GB memory limit and 5 min timeout. A reproducibility package is available
in [11] and it includes executable files to run Kaki, pre-generated outputs that
are used to produce the figures as well as the benchmark and related scripts.

5.1 Results

To compare the optimization techniques introduced in this paper, we include a
baseline without any optimisation techniques, its extension with only topological
decomposition technique and only collective update classes, and also the combi-
nation of both of them. Each method decides the existence of a solution for the
concurrent update synthesis problem and in the positive case it also minimizes
the number of batches. Figure 6 shows a cactus plot of the results where the
problem instances on the x-axis are (for each method independently) sorted by

264 N. S. Johansen et al.

Table 1. Number of solved problems (suboptimal and tagging refers to FLIP)

Reachability 1-wp 2-wp 4-wp 8-wp 1-alt-wp 2-alt-wp 4-alt-wp 1-cond-enf 2-cond-enf All Percentage

Total 856 916 916 844 647 916 916 916 916 916 8759 100.0%

Only Kaki 0 0 17 37 63 0 5 8 1 2 133 1.5%

Only FLIP 0 0 0 0 0 17 20 35 40 84 196 2.2%

Suboptimal 0 11 18 14 4 283 198 104 41 114 787 8.9%

Tagging 0 0 47 55 21 4 39 100 1 1 268 3.0%

the increasing synthesis time shown on y-axis. Both of the optimization tech-
niques provide a significant improvement over the baseline and their combination
is clearly beneficial as it solves 97% of the problems in the benchmark in less
than 1 s.

In Fig. 6 we also show a cactus plot for FLIP on the full benchmark of
concurrent update synthesis problems. As Kaki has to first generate the Petri
game file and then call the external TAPAAL engine for solving the Petri game,
there is an initial overhead that implies that the single-purpose tool FLIP is faster
on the smaller and easy-to-solve instances of the problem that can be answered
below 1 s. For the more difficult instances both Kaki and FLIP quickly time out
and exhibit similar performance.

More importantly, FLIP does not always produce the minimal number of
batches, which is critical for practical applications because updating a switch
can cause forwarding instability for up to 0.4 s [19]. Hence minimizing the num-
ber of batches where switches can be updated in parallel significantly decreases
the forwarding vulnerability (some networks in the benchmark have up to 700
switches). In fact, FLIP synthesises a strictly larger number of batches in 787
instances, compared to the minimum number of possible batches (that Kaki is
guaranteed to find). The distribution of the solved problems for the different
policies is shown in Table 1. Here we can also notice that FLIP uses the less
desirable tag-and-match update strategy in 268 problem instances, even though
there exists a concurrent update sequence as demonstrated by Kaki. In conclu-
sion, Kaki has a slightly larger overhead on easy-to-solve instances but scales
almost as well as FLIP, however, FLIP in almost 12% of cases does not find
the optimal update sequence or reverts to the less desirable two-phase commit
protocol.

Comparison with SEQ from [4] is more difficult as SEQ supports only reach-
ability and single waypointing and computes only sequential updates (single
switch per batch). When we restrict the benchmark to the subset of these poli-
cies and adapt our tool to produce sequential updates, we observe that Kaki’s
performance is in the worst case 0.06 s slower than SEQ when measuring the
verification time required by the TAPAAL engine. We remark that SEQ solved
all problems in under 0.55 s, except for two instances where it timed out while
Kaki was able to solve both of them in under 0.1 s.

Kaki: Concurrent Update Synthesis 265

We also extended the benchmark with nondeterministic forwarding that mod-
els splittable flows (using the Equal-Cost-MultiPath (ECMP) protocol [8] that
divides a flow along all shortest paths from an ingress to an egress switch). We
observe that verifying the routing policies in this modified benchmark implies
only a negligible (3.4% on the median instance) overhead in running time.

6 Conclusion

We presented Kaki, a tool for update synthesis that can deal with (i) concurrent
updates, (ii) synthesises solutions with minimum number of batches, (iii) extends
the existing approaches with nondeterministic forwarding and can hence model
splittable flows, and (iv) verifies arbitrary (regular) routing policies. It extends
the state-of-the-art approaches with respect to generality but given its efficient
TAPAAL backend engine, it is also fast and provides more optimal solutions
compared to the competing tool FLIP.

Kaki’s performance is the result of its efficient translation in combination with
optimizations techniques that allow us to reduce the complexity of the problem
while preserving the optimality of its solutions. Kaki uses less than 1 s to solve
97% of all concurrent update synthesis problems for real network topologies and
hence provides a practical approach to concurrent update synthesis.

Acknowledgments. We thank Peter G. Jensen for his help with executing the exper-
iments and Anders Mariegaard for his assistance with setting up FLIP. This work was
supported by DFF project QASNET.

References

1. Cao, Z., Wang, Z., Zegura, E.W.: Performance of hashing-based schemes for inter-
net load balancing. In: Proceedings IEEE INFOCOM 2000, The Conference on
Computer Communications, Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, Reaching the Promised Land of Com-
munications, Tel Aviv, Israel, 26–30 March 2000, pp. 332–341. IEEE Computer
Society (2000). https://doi.org/10.1109/INFCOM.2000.832203

2. Christesen, N., Glavind, M., Schmid, S., Srba, J.: Latte: Improving the latency of
transiently consistent network update schedules. In: IFIP PERFORMANCE 2020.
Performance Evaluation Review, vol. 48, no. 3, pp. 14–26. ACM (2020)

3. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for Timed-Arc Petri Nets.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 36

4. Didriksen, M., et al.: Automatic synthesis of transiently correct network updates
via petri games. In: Buchs, D., Carmona, J. (eds.) PETRI NETS 2021. LNCS, vol.
12734, pp. 118–137. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
76983-3 7

5. Didriksen, M., et al.: Artefact for: automatic synthesis of transiently correct net-
work updates via petri games, February 2021. https://doi.org/10.5281/zenodo.
4501982

https://doi.org/10.1109/INFCOM.2000.832203
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-030-76983-3_7
https://doi.org/10.1007/978-3-030-76983-3_7
https://doi.org/10.5281/zenodo.4501982
https://doi.org/10.5281/zenodo.4501982

266 N. S. Johansen et al.

6. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.-R.: AdamMC: a
model checker for petri nets with transits against flow-LTL. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 64–76. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8 5

7. Foerster, K., Schmid, S., Vissicchio, S.: Survey of consistent software-defined net-
work updates. IEEE Commun. Surv. Tutor. 21(2), 1435–1461 (2019)

8. Hopps, C., et al.: Analysis of an equal-cost multi-path algorithm. Tech. rep., RFC
2992, November 2000

9. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability
analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4 16

10. Jensen, P., Larsen, K., Srba, J.: Real-time strategy synthesis for timed-arc Petri
net games via discretization. In: Proceedings of the 23rd International SPIN Sym-
posium on Model Checking of Software (SPIN’16). LNCS, vol. 9641, pp. 129–146.
Springer-Verlag (2016)

11. Johansen, N., Kær, L., Madsen, A., Nielsen, K., Srba, J., Tollund, R.: Artefact
for Kaki: Concurrent update synthesis for regular policies via Petri games (2022).
https://doi.org/10.5281/zenodo.6379555

12. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R.A., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011), https://doi.
org/10.1109/JSAC.2011.111002

13. Liu, A.X., Meiners, C.R., Torng, E.: TCAM razor: a systematic approach towards
minimizing packet classifiers in TCAMs. IEEE/ACM Trans. Netw. 18(2), 490–500
(2010), http://doi.acm.org/10.1145/1816262.1816274

14. Ludwig, A., Dudycz, S., Rost, M., Schmid, S.: Transiently secure network updates.
ACM SIGMETRICS Perform. Eval. Rev. 44(1), 273–284 (2016)

15. Ludwig, A., Marcinkowski, J., Schmid, S.: Scheduling loop-free network updates:
It’s good to relax! In: Georgiou, C., Spirakis, P.G. (eds.) Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-
San Sebastián, Spain, 21–23 July 2015. pp. 13–22. ACM (2015). https://doi.org/
10.1145/2767386.2767412

16. Ludwig, A., Rost, M., Foucard, D., Schmid, S.: Good network updates for bad
packets: waypoint enforcement beyond destination-based routing policies. In: Katz-
Bassett, E., Heidemann, J.S., Godfrey, B., Feldmann, A. (eds.) Proceedings of the
13th ACM Workshop on Hot Topics in Networks, HotNets-XIII, Los Angeles, CA,
USA, 27–28 October 2014. pp. 15:1–15:7. ACM (2014). https://doi.org/10.1145/
2670518.2673873

17. McClurg, J., Hojjat, H., Černý, P., Foster, N.: Efficient synthesis of network
updates. SIGPLAN Not. 50(6), 196–207 (2015). https://doi.org/10.1145/2813885.
2737980

18. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

19. Peréıni, P., Kuzniar, M., Canini, M., Kostić, D.: ESPRES: transparent SDN update
scheduling. In: Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, pp. 73–78. HotSDN 2014, Association for Computing Machin-
ery, New York, NY, USA (2014).https://doi.org/10.1145/2620728.2620747

20. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for
network update. In: Eggert, L., Ott, J., Padmanabhan, V.N., Varghese, G. (eds.)
ACM SIGCOMM 2012 Conference, Helsinki, Finland, pp. 323–334. ACM (2012)

https://doi.org/10.1007/978-3-030-53291-8_5
https://doi.org/10.1007/978-3-030-53291-8_5
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.5281/zenodo.6379555
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
http://doi.acm.org/10.1145/1816262.1816274
https://doi.org/10.1145/2767386.2767412
https://doi.org/10.1145/2767386.2767412
https://doi.org/10.1145/2670518.2673873
https://doi.org/10.1145/2670518.2673873
https://doi.org/10.1145/2813885.2737980
https://doi.org/10.1145/2813885.2737980
https://doi.org/10.1145/2620728.2620747

Kaki: Concurrent Update Synthesis 267

21. Schneider, T., Birkner, R., Vanbever, L.: Snowcap: synthesizing network-wide con-
figuration updates. In: Kuipers, F.A., Caesar, M.C. (eds.) ACM SIGCOMM 2021
Conference, Virtual Event, USA, 23–27 August 2021, pp. 33–49. ACM (2021).
https://doi.org/10.1145/3452296.3472915

22. Vissicchio, S., Cittadini, L.: FLIP the (flow) table: fast lightweight policy-
preserving SDN updates. In: 35th Annual IEEE International Conference on Com-
puter Communications, INFOCOM 2016, San Francisco, CA, USA, 10–14 April
2016, pp. 1–9. IEEE (2016)

https://doi.org/10.1145/3452296.3472915

Security

Verified Password Generation
from Password Composition Policies

Miguel Grilo1, João Campos2, João F. Ferreira2(B), José Bacelar Almeida3,
and Alexandra Mendes4

1 INESC TEC and IST, University of Lisbon, Lisbon, Portugal
2 INESC-ID and IST, University of Lisbon, Lisbon, Portugal

joao@joaoff.com
3 HASLab, INESC TEC and University of Minho, Braga, Portugal
4 HASLab, INESC TEC and Faculty of Engineering, University of Porto,

Porto, Portugal

Abstract. Password managers (PMs) are important tools that enable
the use of stronger passwords, freeing users from the cognitive burden
of remembering them. Despite this, there are still many users who do
not fully trust PMs. In this paper, we focus on a feature that most PMs
offer that might impact the user’s trust, which is the process of gen-
erating a random password. We present three of the most commonly
used algorithms and we propose a solution for a formally verified refer-
ence implementation of a password generation algorithm. We use Easy-
Crypt to specify and verify our reference implementation. In addition,
we present a proof-of-concept prototype that extends Bitwarden to only
generate compliant passwords, solving a frequent users’ frustration with
PMs. This demonstrates that our formally verified component can be
integrated into an existing (and widely used) PM.

Keywords: Password manager · Random password generator ·
Formal verification · Security · EasyCrypt · Jasmin · Interactive
theorem proving · Verified compilation · Bitwarden

1 Introduction

To address many of the existing problems regarding password authentication [16,
22,28], security experts often recommend using password managers (PMs) for
storing and generating strong random passwords. Indeed, a key feature of PMs is
random password generation, since it helps prevent the use of weaker passwords
and password reuse [21]. Moreover, it provides users with a greater sense of
security [1], thus contributing to a wider adoption of PMs.

However, users frequently express concern and disapproval when PMs do
not generate passwords compliant [6,26] with the password composition policies
stipulated by the services they use [12]. Stajano et al. [25] argue that this problem
arises due to very restrictive password composition policies that services usually
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 271–288, 2022.
https://doi.org/10.1007/978-3-031-07727-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_15

272 M. Grilo et al.

have [13]. These policies present a greater challenge to password managers since
randomly generated passwords have a higher chance of being non-compliant with
more restrictive policies.

This problem leads to frustrated users and can be an obstacle to the adop-
tion of PMs. Therefore, it is important to ensure that the password generation
component of a PM is reliable. In particular, it is desirable to guarantee that gen-
erated passwords (1) satisfy the requirements specified by the user (or service),
and (2) are uniformly sampled from the universe induced by the password policy,
thus guaranteeing unpredictability of the password generator. In this paper, we
propose a formally verified reference implementation for a Random Password
Generator (RPG) that addresses these two points. Our main contributions are:

1. We use EasyCrypt [7] to prove that all the passwords generated by our refer-
ence implementation satisfy the given password composition policy and that
when the given policy is unsatisfiable, the implementation does not generate
any password.

2. We formalize the security property stating that our reference implementa-
tion samples the set of passwords according to a uniform distribution, using
the game-based approach for cryptographic security proofs [8,24]. This jus-
tifies the use of EasyCrypt, since we the need to reason about probability
distributions.

3. We extend the open-source PM Bitwarden to (1) read Apple’s Password Aut-
ofill Rules [5] and to (2) generate passwords using a Jasmin [2] implementa-
tion provably equivalent to our reference implementation. This case study is
a proof-of-concept that integrates interactive theorem proving (EasyCrypt)
and verified compilation (Jasmin) to solve an existing frustration with PMs
generating non-compliant passwords. It also demonstrates that our formally
verified component can be integrated into an existing (and widely used) PM1.
Part of this extension was submitted to the Bitwarden team, who accepted
it and will merge it into the product after a process of code review.

After reviewing current password generation algorithms in Sect. 2, we present
our reference implementation and its verification in Sect. 3. In Sect. 4 we present
the end-to-end case study and in Sect. 5 we discuss related work. We conclude
the paper in Sect. 6, where we also discuss future work.

2 Current Password Generation Algorithms

In this section we present a brief description of widely-used password gener-
ation algorithms. We focus on the password generation algorithms of three
PMs: Google Chrome’s PM (v89.0.4364.1)2, Bitwarden (v1.47.1)3, and KeeP-
ass (v2.46)4. These were chosen because they are widely used and open-source,
which allows us to access their source code and study them in detail.
1 https://github.com/passcert-project/pw generator server.
2 https://source.chromium.org/chromium/chromium/src/+/master:components.
3 https://github.com/bitwarden.
4 https://github.com/dlech/KeePass2.x.

https://github.com/passcert-project/pw_generator_server
https://source.chromium.org/chromium/chromium/src/+/master:components
https://github.com/bitwarden
https://github.com/dlech/KeePass2.x

Verified Password Generation from Password Composition Policies 273

2.1 Password Composition Policies

In general, PMs allow users to define password composition policies that the
generated passwords must satisfy. These policies define the structure of the pass-
word, including its length and the different character classes that may be used.
These policies are used to restrict the space of user-created passwords, thus
precluding some that are easily guessed. Table 1 shows the policies that can be
specified in the studied PMs. In the second row, the Alphabetic set in Chrome is
the union of Lowercase Letters and Uppercase Letters. The set of Special Char-
acters in Chrome and Bitwarden is {- . : !}, while in KeePass it is {! ” # $ %
& ’ * + , . / : ; = ? @ \ˆ |}. The Brackets set in KeePass is {() { } [] 〈〉}.
The Space, Minus, and Underline are the single element sets { }, {-}, and { },
respectively.

Table 1. Available policy options a user can define.

Chrome Bitwarden KeePass

Password length 1–200 5–128 1–30000

Available sets Lowercase Letters
Uppercase Letters
Alphabetic
Numbers
Special Characters

Lowercase Letters
Uppercase Letters
Numbers
Special Characters

Lowercase Letters
Uppercase Letters
Numbers
Special Characters
Brackets
Space
Minus
Underline

Minimum and maximum
occurrences of characters
per set

Yes Yes. Can only
define minimum

No

Exclude similar
characters

Yes {l o I O 0 1} Yes {l I O 0 1} Yes {l I O 0 1 |}

Define by hand a
character set

No No Yes

Define by hand a
character set to be
excluded

No No Yes

Remove duplicates No No Yes

2.2 Random Password Generation

The main idea of the surveyed algorithms is to generate random characters
from the different character sets until the password length is fulfilled, taking
also into consideration the minimum and maximum occurrences of characters
per set. Chrome’s algorithm starts by randomly generating characters from the
sets which have the minimum number of occurrences defined. Then, it generates
characters from the union of all sets which have not already reached their maxi-
mum number of occurrences. Lastly, it generates a permutation on the characters

274 M. Grilo et al.

of the string, resulting in a random generated password. Bitwarden’s algorithm
is similar, but it makes the permutation before generating the characters. For
example, it starts by creating a string like ‘llunl’ to express that the first two
characters are lowercase letters, followed by an uppercase letter, then a num-
ber, and finally a lowercase letter. Only then it generates the characters from
the respective sets. KeePass does not support defining the minimum and maxi-
mum occurrences of characters per set, so the algorithm just randomly generates
characters from the union of the sets defined in the policy.

String Permutation. Given the need to generate a random permutation of
the characters of a string, Bitwarden and Chrome both implement an algorithm
to do so. The basic idea for both PMs is the same, which is to randomly choose
one character from the original string for each position of the new string.

Random Number Generator. The RPG needs to have an implementation of
a Random Number Generator (RNG) that generates random numbers within a
range of values. Chrome and KeePass use similar RNGs that generate numbers
from 0 to an input range. Bitwarden’s RNG allows generating numbers from an
arbitrary minimum value up to an arbitrary maximum value, but it can trivially
be reduced to the former approach. The main idea of these RNGs is (1) to rely
on a random byte generator, (2) to perform some form of rejection sampling to
ensure uniformly distributed values up to a given bound, and (3) finally reducing
it to the required range.

The three PMs adopt different approaches regarding the source of random
bytes: Chrome uses system calls depending on the operating system it is running,
Bitwarden uses the NodeJS randomBytes() method, while KeePass defines its
own random bytes generator based on ChaCha20. Because of these different
strategies, in this work we choose not to address the pseudo-random nature of
the random byte generator—instead, we assume the existence of a mechanism
allowing to sample bytes according to an uniform distribution. Specifically, we
assume an operation that uniformly samples 64-bit words, and then reason on
the remaining steps towards the construction of an arbitrary integer range RNG.

3 Verified Password Generation

In this section, we present our reference implementation and the properties that
we formally prove. We separate the specifications into an abstract overview,
followed by a concrete one in EasyCrypt.

3.1 Reference Implementation

Abstract Overview. Based on the information presented in Sect. 2, we propose
a reference implementation for an RPG which offers the following policy adjust-
ments: (1) the user can define the password length (1–200); (2) the user can

Verified Password Generation from Password Composition Policies 275

choose which sets to use (from Lowercase Letters, Uppercase Letters, Numbers,
and Special Characters); (3) the user can define the minimum and maximum
occurrences of characters per set. The restriction on the maximum length is the
same as in Chrome’s algorithm (also, we argue that 200 is a reasonable limit,
since that arbitrary passwords with at least 16 characters seem to be hard to
guess and considered secure [23]).

The pseudo-code of the proposed reference implementation is shown in Algo-
rithm 1. The entry point is the procedure GeneratePassword, which receives
as input a password composition policy and, if it is satisfiable, a password is
generated and returned. Otherwise, a password is not generated and null is
returned. The policy is satisfiable if the defined length is in the interval [1, 200],
if all min values are non-negative, if all max values are greater or equal to the
corresponding min value, if the sum of all min values is less or equal to length,
and if the sum of all max values is greater or equal to length. If any of these
conditions is not true, then no password is able to satisfy the policy.

To output a random generated password, the algorithm first randomly gener-
ates characters from the sets that have a min value greater than 0, and appends
them to the password (initially an empty string). Then, it randomly generates
characters from the union of all sets which have fewer occurrences of characters
in password than their max value defined in the policy until the size of password
becomes equal to the length defined in the policy. Finally, it generates a random
permutation of the string, and returns it.

EasyCrypt Implementation. EasyCrypt [7] is an interactive framework for
verifying the security of cryptographic constructions and protocols using a game-
based approach [8,24]. EasyCrypt implements program logics for proving proper-
ties of imperative programs. Its main logics are Hoare Logic and Relational Hoare
Logic. Relational Hoare Logic is essential in EasyCrypt, because it provides the
ability to establish relations between programs, and how they affect memory
values, which is fundamental in the game-based approach. Notice that we do not
consider any cryptographic assumption—our use of EasyCrypt is rather justified
on the need to reason about probability distributions (e.g. in reasoning on the
RNG procedure, as explained above), alongside with more standard Hoare Logic
reasoning used for proving correctness assertions.

To model our reference implementation in EasyCrypt, we need to be more
precise regarding the types and methods of the algorithm. Figure 1 shows the
definitions of the types used to reason about password generation. Instances
of type char are integers (which can be directly mapped to the corresponding
ASCII character), and both the types password and charSet are lists of chars.
The type policy is a record type, with the necessary fields to specify a password
composition policy. All this information is in a repository in GitHub5, as well
as some other previously explained definitions (e.g., satisfiability of a policy),
theorems, and properties about these types.
5 https://github.com/passcert-project/random-password-generator/blob/main/EC/

PasswordGenerationTh.eca.

https://github.com/passcert-project/random-password-generator/blob/main/EC/PasswordGenerationTh.eca
https://github.com/passcert-project/random-password-generator/blob/main/EC/PasswordGenerationTh.eca

276 M. Grilo et al.

type char = int.

type password = char list.

type charSet = char list.

type policy = {

length : int;

lowercaseMin : int;

lowercaseMax : int;

uppercaseMin : int;

uppercaseMax : int;

numbersMin : int;

numbersMax : int;

specialMin : int;

specialMax : int

}.

Fig. 1. Type definitions

Regarding the methods, it is easy to see
how the abstract version of the reference imple-
mentation maps to the EasyCrypt implemen-
tation6. The main difference is when defining
the unionSet. In the abstract implementation,
we just say that this variable is the union of
all sets such that their max values are greater
than 0. In EasyCrypt we have the method
define_union_set which implements this idea.
To simplify the proofs, instead of decrementing
the max value of a set after sampling a charac-
ter from it, our algorithm has some extra vari-
ables (e.g., lowercaseAvailable for the Low-
ercase Set) which say how many characters we
can still sample from the respective set. The
method define_union_set receives these vari-
ables as arguments, and defines the union of the sets which we can still sample
characters from.

3.2 Formal Proofs

In this section we present the two main properties to be proved about our RPG:
functional correctness and security.

Functional Correctness (Abstract). We say that an RPG is functionally
correct if generated passwords satisfy the input policy. This property guarantees
that users will always get an output according to their expectations.

CorrectnessRPG(policy)

if policy is satisfiable

pwd RPG.generate password(policy)

return satisfiesPolicy(policy, pwd)

else
return isNone(pwd)

fi

Fig. 2. Correctness experiment (abstract)

We follow the standard app-
roach of expressing correctness
of the scheme by a probabilis-
tic experiment that checks if the
specification is fulfilled. Figure 2
shows the Correctness experiment,
which is parameterized by an RPG
implementation that, for any pol-
icy, outputs true if the RPG
behaves according to the specifica-
tion. Specifically, if the input pol-
icy is satisfiable, it checks if the
password satisfies that policy. Oth-
erwise, it returns whether it is equal to None. To simplify the reasoning around
this property, when the policy is satisfiable, one can separate the proof into two
steps: first we prove that the length defined in the policy is satisfied, and then
6 https://github.com/passcert-project/random-password-generator/blob/main/EC/

passCertRPG ref.ec.

https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_ref.ec
https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_ref.ec

Verified Password Generation from Password Composition Policies 277

Algorithm 1. RPG Reference Implementation
1: procedure GeneratePassword(policy)
2: if policy is satisfiable then
3: pwLength ← policy.pwLength
4: charSets ← policy.charSets
5: password ← ε
6: for all set ∈ charSets do
7: for i = 1, 2, . . . , set.min do
8: char ← RandomCharGenerator(set)
9: password ← password||char

10: end for
11: end for
12: while len(password) < pwLength do
13: unionSet ← ⋃

set∈charSets set such that set.max > 0
14: char ← RandomCharGenerator(unionSet)
15: password ← password||char
16: end while
17: password ← Permutation(password)
18: return password
19: else
20: return null
21: end if
22: end procedure
23:
24: procedure RandomCharGenerator(set)
25: choice ← RNG(set.size)
26: set.max ← set.max − 1
27: return choice
28: end procedure
29:
30: procedure Permutation(string)
31: for i = len(string) − 1, . . . , 0 do
32: j ← RNG(i)
33: string[i], string[j] ← string[j], string[i]
34: end for
35: return string
36: end procedure
37:
38: procedure RNG(range)
39: maxV alue ← (uint64.maxV alue/range) ∗ range − 1
40: do
41: value ← (uint64) GenerateRandomBytes
42: while value > maxV alue
43: return value mod range
44: end procedure

278 M. Grilo et al.

we prove that the different bounds of minimum and maximum occurrences per
set are also satisfied.

Functional Correctness (EasyCrypt). In EasyCrypt, the correctness exper-
iment is modelled as the module Correctness, shown in Fig. 3. It is parame-
terized by a password generator implementation (being RPG_T its signature),
and has a single method main encoding the experiment. We note the use of
password option for the output of the generate_password method, which
extends the password type with the extra element None – is_some and is_none
are predicates that query the constructor used in an optional value, and oget
extracts a password from it (if available). The experiment simply executes the
RPG and, depending on the satisfiability of the policy, either checks if the gen-
erated password satisfies it, or if it is equal to None. The EasyCrypt code is
available online7,8.

module Correctness(RPG : RPG_T) = {

proc main(policy:policy) : bool = {

var pw : password option;

var satisfied : bool;

pw <@ RPG.generate_password(policy);

if(satisfiablePolicy policy) {

satisfied <- is_some pw /\ satisfiesPolicy policy (oget pw);

}

else {

satisfied <- is_none pw;

}

return satisfied;

}

}.

Fig. 3. Correctness procedure (Easycrypt)

The correctness property can be expressed in EasyCrypt as follows:

lemma rpg_correctness :
Pr[Correctness(RPGRef).main : true ==> res] = 1%r.

7 https://github.com/passcert-project/random-password-generator/blob/main/EC/
passCertRPG ref.ec.

8 https://github.com/passcert-project/random-password-generator/blob/main/EC/
RPGTh.eca.

https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_ref.ec
https://github.com/passcert-project/random-password-generator/blob/main/EC/passCertRPG_ref.ec
https://github.com/passcert-project/random-password-generator/blob/main/EC/RPGTh.eca
https://github.com/passcert-project/random-password-generator/blob/main/EC/RPGTh.eca

Verified Password Generation from Password Composition Policies 279

It states that, running the correctness experiment (main method) of the
Correctness module instantiated with our RPG reference implementation, pro-
duces the output true with probability 1 (without any constraint on input pol-
icy). The proof of this lemma amounts essentially to prove termination of the
main method, while also proving that this method always returns true, indepen-
dently on the policy given as input. These two properties can be expressed by
the two following lemmas, respectively:

lemma c_lossless :
islossless Correctness(RPGRef).main.

lemma c_correct p:
hoare[Correctness(RPGRef).main : policy = p ==> res].

The islossless assertion states that Correctness(RPGRef).main termi-
nates with probability 1 for any input. Notice that this is indeed non-trivial,
as our RPG performs rejection sampling. Hence, we are not able to prove a
concrete bound for the number of iterations for the loop in the RNG procedure
(Algorithm 1), but we nevertheless establish that it eventually terminates (actu-
ally, in expected constant time).

The second lemma is an Hoare triple. In EasyCrypt an Hoare triple is writ-
ten as hoare [Command : Precondition ==> Postcondition]. To prove this
Hoare triple, we need to prove that the main method outputs a password that
satisfies the input policy, in case it is satisfiable, and None if it is not satisfiable.
These ideas can be expressed with the following lemmas:

lemma rpg_correctness_sat_pcp_hl (p:policy) :
hoare [RPGRef.generate_password : policy = p /\

satisfiablePolicy p
==>

is_some res /\ satisfiesLength p (oget res)
/\ satisfiesBounds p (oget res)

].

and

lemma rpg_correctness_unsat_pcp_hl (p:policy) :
hoare [RPGRef.generate_password : policy = p /\

!(satisfiablePolicy p)
==>

res = None
].

The second lemma is trivial to prove, because the first thing our RPG imple-
mentation does is to check if the input policy is satisfiable. If it is not, our RPG
outputs None. As mentioned in Sect. 3.2, the first lemma can be proved by sep-
arately reasoning about the generated password satisfying the length defined in
the policy, and then about the different set bounds. This means that we should
first prove the lemmas:

280 M. Grilo et al.

lemma rpg_correctness_length_hl (p:policy) :
hoare [RPGRef.generate_password : policy = p /\

satisfiablePolicy p
==>

is_some res /\ satisfiesLength p (oget res)
].

and

lemma rpg_correctness_bounds_hl (p:policy) :
hoare [RPGRef.generate_password : policy = p /\

satisfiablePolicy p
==>

is_some res /\ satisfiesBounds p (oget res)
].

It is easy to see that we can combine these two lemmas to prove the lemma
rpg_correctness_sat_pcp_hl since we can use hoare [C : P ==> Q1] and
hoare [C : P ==> Q2], to conclude hoare [C : P ==> Q1 /\ Q2]. Using
rpg_correctness_sat_pcp_hl and rpg_correctness_unsat_pcp_hl, we can
prove the lemma c_correct using Hoare logic rules. With the lemmas
c_lossless and c_lossless proved, we can combine them to finally prove our
main lemma rpg_correctness, which ensures that our RPG implementation is
correct.

Security (Abstract). We say that an RPG is secure if, given any policy, the
generated password has the same probability of being generated as any other pos-
sible password that satisfies that policy. In other words, the generate_password
method samples the set of passwords that satisfy the policy according to a uni-
form distribution. To prove this property we can use the game-based approach
for cryptographic security proofs [8,24].

proc IdealRPG(policy)

if policy is satisfiable

password $ p ⊂ P

return password

else

return None

fi

Fig. 4. Ideal RPG. p is the sub-
set of the set of all possible pass-
words P that satisfy the given
policy.

As shown abstractly in Fig. 4, we create
a module called IdealRPG which, in case it
receives as input a satisfiable policy, outputs a
password sampled from the subset of passwords
that satisfy the policy, according to a uniform
distribution over that subset (here, sampling is
denoted by the operator ←$).

If the policy is not satisfiable, it outputs
None. In order to consider our implementation
secure, we must show that any program (e.g.,
attacker) that has oracle access to the Ideal-
RPG and our RPG can not distinguish whether
it is interacting with one or the other.

To achieve this, we can use probabilistic
relational Hoare Logic (pRHL) to show that

Verified Password Generation from Password Composition Policies 281

both modules’ generate password methods produce the same result (they have
the same distribution over their output, given any input). We can avoid directly
reasoning about the indistinguishability between these two modules, since their
implementations are significantly different. By using the game-based approach,
we can implement intermediate modules that are more closely related, thus
breaking the proof into smaller steps that are easier to justify.

Security (EasyCrypt). To construct the IdealRPG module, we start by
axiomatizing uniform distributions over the type of passwords:

op dpassword : password distr.

axiom dpassword_ll : is_lossless dpassword.

axiom dpassword_uni : is_uniform dpassword.

axiom dpassword_supp : forall p, p \in dpassword => validPassword p.

The operator dpassword is the declared distribution over the type password.
The axioms defined are important properties about this distribution: (1) lossless
means that it is a proper distribution (its probability mass function sums to
one); (2) uniform means that all elements in its support have the same mass;
(3) the support of the distribution is the set of all valid passwords (length and
admissible chars). Here, validPassword p is true if p contains only valid char-
acters (lowercase, uppercase, digits, and allowed symbols) and if its length is at
most 200. This distribution can be used to construct the IdealRPG module that
meets the requirements for our RPG security definition.

module IdealRPG = {

proc generate_password(policy:policy) = {

var pw;

var out;

if(satisfiablePolicy policy) {

pw <$ dpassword \ (fun pass => !(satisfiesPolicy(policy pass)));

out <- Some pw;

} else {

out <- None;

}

return out;

}

}.

In this module, a password is sampled if the policy is satisfiable, otherwise
outputs None. The sampling makes use of the axiomatized distribution over
passwords, restricting its support by removing the passwords that do not satisfy
the policy. Given these definitions, we can write the lemma that we need to prove
to consider our RPG secure:

lemma rpg_security :
equiv [IdealRPG.generate_password ~ RPGRef.generate_password :

={policy} ==> ={res}].

282 M. Grilo et al.

This is a pRHL judgement which means that for all memories m1 and m2
(sets of variables of IdealRPG and RPGRef, respectively), if = {policy} holds
(the input policy has the same value in both memories), then the distribution on
memories dm1 and dm2, obtained by running the respective methods from the
initial memory, satisfy = {res} (res, the output value, has the same mass in both
distributions). If we prove this lemma for our RPG reference implementation,
we prove that these methods produce the same distributions over their output,
hence establishing security of the RPG reference implementation.

General Steps to Prove Security. To prove the security lemma stated above,
we need to establish that the induced distribution from the execution of Real-
RPG is uniform among all passwords satisfying the policy. It requires fairly
detailed reasoning on the distribution level in EasyCrypt. The mechanised proof
is work in progress; here, we present a proof sketch. The general structure of
the argument follows the structure of Algorithm 1: (1) It starts by generating a
password where each character class prescribed in the policy is placed in a spe-
cific position (what we have called policy-normalised password); (2) It randomly
shuffles the password. The result follows from arguing that policy-normalised
passwords are sampled according to a uniform distribution, and that the final
shuffle allows to reach any possible password satisfying the policy. In the course
of the formalisation of the above points, auxiliary results such as the correctness
of the well-known probabilistic algorithm of rejection sampling (procedure Rng)
and the Fisher-Yates shuffle algorithm (procedure Permutation) have to be
tackled.

4 Case Study: From Apple Password Rules to Verified
Password Generation in Bitwarden

This section describes a proof-of-concept prototype that integrates a Jasmin [2]
implementation provably equivalent to our reference implementation into a
widely-used PM. In particular, we extend Bitwarden to (1) read Apple’s Pass-
word Autofill Rules [5], which are password composition policies in a format
defined by Apple, and (2) to generate compliant passwords using our Jasmin
implementation.

The proof-of-concept offers a solution to the common problem of users being
concerned and disappointed by the fact that passwords generated by the PM
are often not compliant with the password composition policies stipulated by the
websites they use [12]. One way to solve this problem is to, first, provide a domain
specific language (DSL) that services can use to specify their required password
composition policies, and, second, ensure that PMs use the DSL specifications in
their password generation algorithms. There have been some proposals for this:
Stajano et al. proposed the creation of HTML semantic labels [25] and Horsch et
al. proposed the Password Policy Markup Language [18]. Oesch and Ruoti [20]
recently reinforced this idea, suggesting that this type of annotations could help
the users with using PMs, as well as increase the accuracy of the password

Verified Password Generation from Password Composition Policies 283

<rule> ::= (<required> | <allowed> | <length_reqs> | <max_consecutive>)*

<required> ::= "required: " <list_ids_classes> "; "

<allowed> ::= "allowed: " <list_ids_classes> "; "

<length_reqs> ::= "minlength: " <non_negative_integer> "; "

| "maxlength: " <non_negative_integer> "; "

<max_consecutive> ::= "max-consecutive: " <non_negative_integer> "; "

<id_class> ::= (<identifier> | <character_class>)

<list_ids_classes> ::= <id_class> | <id_class> ", " <list_ids_classes>

<identifier> ::= "lower" | "upper" | "digits" | "special"

| "ascii-printable" | "unicode"

<character_class> ::= "[" (<upper> | <lower> | <special> | <digit>)+ "]"

Fig. 5. Grammar used by Apple’s password autofill rules.

generator. While investigating a way to achieve this with modern PMs, we found
that Apple has also developed a DSL to express Password Autofill Rules [5]. The
idea is to add a specification to the HTML code, in the form of annotations.

4.1 Apple’s Password Autofill Rules

Apple’s DSL is based on five properties—required, allowed, max-consecutive,
minlength, and maxlength—and some identifiers that describe character
classes—upper, lower, digits, special, ascii-printable, and unicode. These are the
elements that allow the description of the password rules. It is also possible to
specify a custom set of characters by surrounding it with square brackets (e.g.,
[abcd] denotes the lowercase letters from a to d). For example, to require a
password with at least eight characters consisting of a mix of uppercase and
lowercase letters, and at least one number, the following rule can be used:

required: upper; required: lower; required: digit; minlength: 8;

A more formal description of the grammar is shown in Fig. 5.

Properties Description. The required property is used when the restrictions
must be followed by all generated passwords. The allowed property is used to
specify a subset of allowed characters, i.e., it is used when a password is permit-
ted to have a given character class, but it is not mandatory. If allowed is not
included in the rule, all the required characters are permitted. If both properties
are specified, the subspace of all required and allowed is permitted. If neither is
specified, every ASCII character is permitted. The max-consecutive property
represents the maximum length of a run of consecutive identical characters that
can be present in the generated password, e.g., the sequence aah would be possi-
ble with max-consecutive: 2, but aaah would not. If multiple max-consecutive
properties are specified, the value considered will be the minimum of them all.
The minlength and maxlength properties denote the minimum and maximum
number of characters, respectively, that a password can have to be accepted.

284 M. Grilo et al.

returns
a password

Jasmin
Password
Generator

interprets
password policies

Website
Password Generator

Server

requests
a password

Fig. 6. Overview of proof-of-concept prototype

Both numbers need to be greater than 0 and minlength has to be at most
maxlength ; otherwise, the default length of the PM will be used.

Identifiers. Next to the allowed or required properties, we can use any of the
default identifiers, which describe conventional character classes. The identifier
upper describes the character class that includes all uppercase letters, i.e., [A–
Z] ; the identifier lower describes the character class that includes all lowercase
letters, i.e., [a–z] ; the digits identifier describes the character class that includes
all digits, i.e., [0–9] ; and the special identifier describes the character class
that includes -˜!@#$%ˆ&* +=‘|(){}[:;”’<>,.?] and . The identifiers ascii-
printable and unicode describe the character classes that include all ASCII
printable characters and all the unicode characters, respectively. Additionally,
users of the DSL can choose to describe their custom character classes, e.g.,
[aeiou] is the character class that contains all the vowels, in lowercase.

4.2 Jasmin Password Generator

We coded our reference implementation in Jasmin [2], a framework for develop-
ing high-speed and high-assurance cryptographic software. The Jasmin program-
ming language combines high-level and low-level constructs while guaranteeing
verifiability of memory safety and constant-time security. The compiler trans-
forms Jasmin programs into assembly, while preserving behavior, safety, and
constant-time security of the source code. The Jasmin compiler is formally ver-
ified for correctness. We chose Jasmin because it is possible to automatically
generate an EasyCrypt model from a Jasmin program. This ensures that when
reasoning about the model, we are reasoning about the correspondent Jasmin
program, making it possible to formally establish an equivalence between the
Jasmin implementation and our reference implementation.

4.3 Integration with Bitwarden

An overview of our integration of the Jasmin password generator with the Bit-
warden browser extension is shown in Fig. 6. We first extended Bitwarden to

Verified Password Generation from Password Composition Policies 285

interpret Apple’s Password Autofill Rules. We start by searching in the entire
DOM for the HTML attribute passwordrules. When found, we parse its value.
For this we used the official Apple’s Javascript parser9. We then pass this infor-
mation to the password generator component, using the browser’s native mes-
saging API. We also replaced the default password generator with our Jasmin
password generator. Since in the context of the browser extension it is not pos-
sible to directly run local processes, we exposed our password generator as a
RESTful service: the extension sends a POST request, with the body of the
request containing the required password policy.

To demonstrate the impact of our proof-of-concept, we generated 20 test
files, each one containing 1000 randomly generated passwords: 10 of these files
were generated by Bitwarden’s generator and the other 10 were generated by our
Jasmin generator. Bitwarden’s generator used its default settings—14-character
password with uppercase characters, lowercase characters, and numbers. We
used the following policy, which is actually used by British government services,
according to a community-updated file in Apple’s repo10:

minlength: 10; required: lower; required: upper; required: digit;
required: special;

We checked if the passwords generated by Bitwarden satisfy this policy. All pass-
words failed this test, since Bitwarden’s default settings do not include symbols.
This is an instance of the problem discussed above, regarding users’ frustration
with the generation of non-compliant passwords. We then used the same app-
roach with our Jasmin generator and found that all passwords generated satisfy
the policy.

Since our extension improves the usability of Bitwarden, we submitted the
code that parses the password rules and passes them to the password generator
to the Bitwarden team, who has internally approved our extension and will go
through a code review process to get it ready to be merged11.

5 Related Work

To the best of our knowledge, our work is the first to address formal verification
of random password generators12. However, the area of formal verification of
security and cryptographic software has attracted much interest in recent years.
Regarding implementation correctness, HACL� [27] is a high-assurance cryp-
tographic C library that has been formally verified against a readable math-
ematical specification in F�. Similarly, FiatCrypto [14] proposes a framework
9 https://github.com/apple/password-manager-resources/blob/main/tools/

PasswordRulesParser.js.
10 https://github.com/apple/password-manager-resources/blob/main/quirks/

password-rules.json.
11 https://github.com/bitwarden/browser/pull/2047#issuecomment-978846599.
12 A search on Google Scholar shows one relevant paper [17], which is the abstract of

an informal talk delivered by our team.

https://github.com/apple/password-manager-resources/blob/main/tools/PasswordRulesParser.js
https://github.com/apple/password-manager-resources/blob/main/tools/PasswordRulesParser.js
https://github.com/apple/password-manager-resources/blob/main/quirks/password-rules.json
https://github.com/apple/password-manager-resources/blob/main/quirks/password-rules.json
https://github.com/bitwarden/browser/pull/2047#issuecomment-978846599

286 M. Grilo et al.

written in Coq for deriving correct-by-construction C code. It has been deployed
in Google’s BoringSSL library which is used by Chrome and Android. Target-
ing directly assembly, Vale [9] builds on Microsoft’s Dafny and Z3 SMT prover
to verify annotated assembly code. Finally, the Jasmin framework [2], that we
have adopted in our development, has been previously used to produce highly-
efficient certified executable code [3], combining it with security proofs in an
unified framework [4].

Regarding other uses of formal verification in the domain of password secu-
rity, there is previous work on creating certified password composition policy
enforcement software, implemented from within the Coq proof assistant and
extracted to Haskell [15]. The extracted Haskell is then compiled into a plug-
gable authentication module readily usable from a real Linux system. Johnson
et al. [19] also used Coq to model password composition policies and verify the
immunity or vulnerability of 14 password composition policies to the password
guessing attacks utilised by the Mirai and Conficker botnet worms. The Pass-
Cert project13 is exploring formal verification applied to password managers and
aims to determine whether formal verification can increase users’ confidence in
PMs and thus increase their adoption [10,11].

6 Conclusion

We propose a formally verified reference implementation for a Random Password
Generator. We prove that, given a password composition policy, generated pass-
words are compliant, and we formalize the property that the generator samples
the set of passwords according to a uniform distribution. In addition, we present
a proof-of-concept prototype that solves the identified frustration with PMs of
generating non-compliant passwords and demonstrates that our formally verified
component can be integrated into a widely used PM.

As future work, we plan to fully formalize the proof of security informally
discussed in Sect. 3.2 and to further develop the proof-of-concept prototype so
that other browser-based PMs can benefit from it. We might also add support
for further password composition policies (e.g. policies that require characters
from at least three different classes). While generally speaking strict password
composition policies are preferable, these can still generate easily guessed pass-
words (e.g., a policy that enforces the use of all character classes may generate
the easily guessed password “P@ssw0rd”) [23]. So, it might also be interesting to
formalize properties regarding password strength, which would guarantee that
our RPG would only generate strong passwords (according to some metric).

Acknowledgments. This work was partially funded by the PassCert project, a CMU
Portugal Exploratory Project funded by Fundação para a Ciência e Tecnologia (FCT),
with reference CMU/TIC/0006/2019 and supported by national funds through FCT
under project UIDB/50021/2020.

13 PassCert project: https://passcert-project.github.io.

https://passcert-project.github.io

Verified Password Generation from Password Composition Policies 287

References

1. Alkaldi, N., Renaud, K.: Why do people adopt, or reject, smartphone password
managers? In: 1st European Workshop on Usable Security-EuroUSEC 2016 (2016)

2. Almeida, J.B., et al.: Jasmin: high-assurance and high-speed cryptography. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1807–1823 (2017)

3. Almeida, J.B., et al.: The last mile: high-assurance and high-speed cryptographic
implementations. In: 2020 IEEE Symposium on Security and Privacy (SP) (2020)

4. Almeida, J.B., et al.: Machine-checked proofs for cryptographic standards: indif-
ferentiability of sponge and secure high-assurance implementations of SHA-3. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security (2019)

5. Apple. Customizing Password AutoFill Rules (2021). https://developer.apple.
com/documentation/security/password autofill/customizing password autofill
rules. Accessed 31 July 2021

6. Apple. Web sites won’t accept Safari generated strong passwords due to dashes or
other criteria (2021). https://discussions.apple.com/thread/251341081. Accessed
26 Oct 2021

7. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

8. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. IACR Cryptology ePrint Archive 2004/331 (2004)

9. Bond, B., et al.: Vale: verifying high-performance cryptographic assembly code. In:
26th USENIX Security Symposium, pp. 917–934 (2017)

10. Carreira, C., Ferreira, J.F., Mendes, A.: Towards improving the usability of pass-
word managers. In: INFORUM (2021)

11. Carreira, C., Ferreira, J.F., Mendes, A., Christin, N.: Exploring usable security to
improve the impact of formal verification: a research agenda. In: First Workshop
on Applicable Formal Methods (Co-Located with Formal Methods 2021) (2021)

12. Chiasson, S., van Oorschot, P.C., Biddle, R.: A usability study and critique of two
password managers. In: USENIX Security Symposium, vol. 15, pp. 1–16 (2006)

13. EA. Password Does Not Meet Requirements (2021). https://web.archive.org/
web/20210817105229/answers.ea.com/t5/EA-General-Questions/quot-Password-
Does-Not-Meet-Requirements-quot/td-p/5744758. Accessed 26 Oct 2021

14. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: 2019 IEEE
Symposium on Security and Privacy, SP 2019, pp. 1202–1219. IEEE (2019)

15. Ferreira, J.F., Johnson, S.A., Mendes, A., Brooke, P.J.: Certified password quality.
In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 407–421.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1 27

16. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Pro-
ceedings of the 16th International Conference on World Wide Web, pp. 657–666
(2007)

17. Grilo, M., Ferreira, J.F., Almeida, J.B.: Towards formal verification of password
generation algorithms used in password managers. arXiv preprint arXiv:2106.03626
(2021)

https://developer.apple.com/documentation/security/password_autofill/customizing_password_autofill_rules
https://developer.apple.com/documentation/security/password_autofill/customizing_password_autofill_rules
https://developer.apple.com/documentation/security/password_autofill/customizing_password_autofill_rules
https://discussions.apple.com/thread/251341081
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://web.archive.org/web/20210817105229/answers.ea.com/t5/EA-General-Questions/quot-Password-Does-Not-Meet-Requirements-quot/td-p/5744758
https://web.archive.org/web/20210817105229/answers.ea.com/t5/EA-General-Questions/quot-Password-Does-Not-Meet-Requirements-quot/td-p/5744758
https://web.archive.org/web/20210817105229/answers.ea.com/t5/EA-General-Questions/quot-Password-Does-Not-Meet-Requirements-quot/td-p/5744758
https://doi.org/10.1007/978-3-319-66845-1_27
http://arxiv.org/abs/2106.03626

288 M. Grilo et al.

18. Horsch, M., Schlipf, M., Braun, J., Buchmann, J.: Password requirements markup
language. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp.
426–439. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40253-6 26

19. Johnson, S., Ferreira, J.F., Mendes, A., Cordry, J.: Skeptic: automatic, justified
and privacy-preserving password composition policy selection. In: Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security, pp.
101–115 (2020)

20. Oesch, S., Ruoti, S.: That was then, this is now: a security evaluation of password
generation, storage, and autofill in browser-based password managers. In: USENIX
Security Symposium (2020)

21. Pearman, S., Zhang, S.A., Bauer, L., Christin, N., Cranor, L.F.: Why people (don’t)
use password managers effectively. In: Fifteenth Symposium on Usable Privacy and
Security (SOUPS 2019), pp. 319–338. USENIX Association, Santa Clara (2019)

22. Pereira, D., Ferreira, J.F., Mendes, A.: Evaluating the accuracy of password
strength meters using off-the-shelf guessing attacks. In: 2020 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 237–
242. IEEE (2020)

23. Shay, R., et al.: Designing password policies for strength and usability. ACM Trans.
Inf. Syst. Secur. (TISSEC) 18(4), 1–34 (2016)

24. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive 2004/332 (2004)

25. Stajano, F., Spencer, M., Jenkinson, G., Stafford-Fraser, Q.: Password-manager
friendly (PMF): semantic annotations to improve the effectiveness of password
managers. In: Mjølsnes, S.F. (ed.) PASSWORDS 2014. LNCS, vol. 9393, pp. 61–
73. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24192-0 4

26. TechNet. Can’t create local user “Password does not meet password policy require-
ments” - but it does (2021). https://web.archive.org/web/20211026082725/.
https://social.technet.microsoft.com/Forums/en-US/12b06881-ea1a-403d-aafb-
99bbe7d4d1b0/cant-create-local-user-quotpassword-does-not-meet-password-
policy-requirementsquot-but-it?forum=win10itprosecurity. Accessed 26 Oct 2021

27. Zinzindohoué, J.-K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a
verified modern cryptographic library. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, pp. 1789–1806.
Association for Computing Machinery, New York (2017). ISBN: 9781450349468

28. Zuo, C., Lin, Z., Zhang, Y.: Why does your data leak? Uncovering the data leakage
in cloud from mobile apps. In: 2019 IEEE Symposium on Security and Privacy
(SP). IEEE (2019)

https://doi.org/10.1007/978-3-319-40253-6_26
https://doi.org/10.1007/978-3-319-24192-0_4
https://web.archive.org/web/20211026082725/
https://social.technet.microsoft.com/Forums/en-US/12b06881-ea1a-403d-aafb-99bbe7d4d1b0/cant-create-local-user-quotpassword-does-not-meet-password-policy-requirementsquot-but-it?forum=win10itprosecurity
https://social.technet.microsoft.com/Forums/en-US/12b06881-ea1a-403d-aafb-99bbe7d4d1b0/cant-create-local-user-quotpassword-does-not-meet-password-policy-requirementsquot-but-it?forum=win10itprosecurity
https://social.technet.microsoft.com/Forums/en-US/12b06881-ea1a-403d-aafb-99bbe7d4d1b0/cant-create-local-user-quotpassword-does-not-meet-password-policy-requirementsquot-but-it?forum=win10itprosecurity

A Policy Language to Capture Compliance
of Data Protection Requirements

Chinmayi Prabhu Baramashetru(B) , Silvia Lizeth Tapia Tarifa ,
Olaf Owe , and Nils Gruschka

Department of Informatics, University of Oslo, Oslo, Norway
{cpbarama,sltarifa,olaf,nilsgrus}@ifi.uio.no

Abstract. From the very outset of the digital era, the protection of
personal data against unauthorized usage and distribution has been one
of the most significant challenges in distributed services. For this rea-
son, new regulations such as the European Union’s the General Data
Protection Regulation grant users tight control over their data that is
handled by service providers. Compliance with such regulations can take
expensive refitting of the existing systems and manual work. We propose
a formal language that can define properties like informed consent, data
subject rights, and the lawfulness to capture data protection require-
ments. The language is designed to abstract ownership information to
make data dependencies explicit. We formalise a notion of policy com-
pliance. This can be useful in service architecture with various actors who
necessarily do not trust each other and may have conflicting interests.

1 Introduction

Nowadays, users knowingly or unknowingly provide their personal data to dig-
ital systems, e.g., online purchases, social media, surveillance cameras, digital
IDs, etc. In data privacy, users are known as data subjects (DS) whose personal
data is generally handled by service providers, who are known as data con-
trollers (DC), for purposes beyond the user’s vision. There are instances where
service providers have traded personal data without explicit consent from the
users [19,28]. To protect the human right to privacy, several data protection
regulations such as the General Data Protection Regulation (GDPR) [10], Cal-
ifornia Consumer Privacy Act (CCPA) [23], and Health Insurance Portability
and Accountability Act (HIPAA) [7] came into practice to primarily target dif-
ferent audiences. For instance, HIPAA in the United States mainly focuses on
organizations, business associations, and their authority towards data handling.
In contrast, the GDPR concentrates on end-users (data subjects) and makes
it mandatory for organizations to grant the data subject rights such as “right
to access” and “right to be forgotten” to endow users with significant control
and power over their data. Non-compliance with the GDPR will result in fines
up to 4% of annual turnover and there are many instances of severe fines for
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 289–309, 2022.
https://doi.org/10.1007/978-3-031-07727-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_16&domain=pdf
http://orcid.org/0000-0001-5344-0032
http://orcid.org/0000-0001-9948-2748
http://orcid.org/0000-0003-0976-5678
http://orcid.org/0000-0001-7360-8314
https://doi.org/10.1007/978-3-031-07727-2_16

290 C. P. Baramashetru et al.

mishandling user’s data [33]. Data protection regulations are mainly expressed
in generic terms, and do not provide clear evidence of how they should be sys-
tematically implemented in distributed environments. Therefore providing useful
ways to comply with the data protection requirements is an open research chal-
lenge. The situation becomes more critical with existing privacy policies. Users
are often overwhelmed with lengthy and unclear privacy policies by the service
provider and end up accepting broader consent without actually reading it.

We present a formal language that can capture data protection requirements.
We envision using the language in a framework with systematic methods to
enforce such requirements. The language can be used by both DSs and DCs to
declare their policies. DCs can express their policies to propose the minimum
conditions necessary to provide their services to customers. Furthermore, DS
can use the same language to express their privacy preferences, can come to
a negotiation, and can provide granular consent on data handling procedures.
For instance, healthcare systems need user’s personal information such as name,
address, phone number as a minimum requirement for providing health services
and both DSs and DCs should agree on these requirements.

In addition, every entity collecting personal data has to be compliant with
legal regulations like the GDPR or the CCPA, where data subject’s rights need
to be exercised. How to incorporate compliance among stake-holders is an open
question. Towards this direction, we define formal compliance checks in our lan-
guage to make sure all parties with legal processing rights comply with each
other. The language is designed to provide flexible granularity of policies, allow-
ing user-centric selection and filtering of information to express preferences and
exceptions in their policies. The main benefit of this language is keeping all the
stakeholders in line with the current privacy preferences. For instance, data sub-
jects cannot foresee all the possible purposes and entities that might need to
use their data while agreeing to privacy policies. Several languages have been
proposed in the state of art to address privacy policies. However, in Sect. 8, we
discuss some of the advantages and limitations of these approaches. We draw
our motivation from various previous results, expectations, and preferences and
define a language that is flexible, expressive, and endowed with formal semantics.

Outline. In Sect. 2, we introduce the main legal requirements that we consider
in our language. In Sect. 3, we define the language, and in Sect. 4, we define
the underlying classification that is used in the language’s attributes. In Sect. 5,
we define policy compliance for the language. In Sect. 6, we present a proof of
concept implementation using Maude [8]. In Sect. 7, we introduce a case study
on a health wearable tracker. In Sect. 8, we analyze and compare the related
work on privacy policy languages, and in Sect. 9 we conclude the paper.

A Policy Language to Capture Compliance of Data Protection Requirements 291

2 Main Principles of the GDPR

There are currently 99 Articles in the GDPR to ensure data protection across
EU members states. However in this section, we detail few principles which serve
the sole purpose of the GDPR to ensure data protection by design and default.

Purpose Limitation: Art. 5 Sec 1(b) of the GDPR [10] states purpose lim-
itation as “Personal data shall be collected for specified, explicit and legitimate
purposes and not further processed in a manner that is incompatible with those
purposes; . . . not be considered to be incompatible with the initial purposes” This
sentence can be interpreted in technical terms as, purposes for which personal
data is collected should be made explicit for Ds’s, and data should not be further
processed for any other purpose. According to the purpose limitation, DCs are
subjected to use personal data only for specific and well-defined purposes. This
principle mainly focuses on imposing restrictions on systems collecting a vast
amount of data for explicit and broadly classified purposes. For instance, sensor
fusion [22] is a data processing technique that combines and integrates data from
different sources, like Fitbit and health records, to infer future health damage.
Under such conditions, sensor fusion data processing could use data analytics
for purposes that are different from the initial ones.

Similarly, Art. 6 Sec 1(f) of the GDPR [10] states the legitimate reasons
for processing data: “Processing is necessary for the purposes of the legitimate
interests pursued by the DC or by a third party, except where such interests are
overridden by the interests or fundamental rights and freedoms of the DS’s . . . ”
This statement can be interpreted as the DC’s operating purposes need to be
subsumed in the DS’s approved purposes.

Conditions for Consent: Art. 6.1(a) specifies that DS’s giving consent for
processing his/her data for one or more purposes is vital for lawful processing.
Under Art. 7 [10], the GDPR specifies various conditions for consent from DS’s.
Consent should be obtained freely before processing any form of personal data.
The terms and conditions presented to receive consent from DS’s should be clear,
intelligible, and easy to understand. The GDPR also blueprints that DS’s should
be able to revoke their consent at any time and DC should facilitate this choice.
If we translate this into a technical solution for service-oriented systems, any
processing or collection of data should be attached to the respective consent
from the users. Once the consent is withdrawn, the data should no longer be
used for any processing. According to Art. 7, DC’s should have a clear consent
that states what kind of data is necessary for the offered services and what kind
of data can be optional. In other words, privacy policies on pre-ticked boxes
(e.g., third-party data sharing) will no longer be considered legitimate as it is
not required to use their services. To comply with this, DC’s need to collect
consent in a more informed way, where users do not accept their consent on the
fly because they want to avoid reading long and ambiguous privacy policies.

Data Subject Rights: The GDPR specifies a set of rights for DS’s under Art.
15 – 21 that should be accommodated by any service provider while processing

292 C. P. Baramashetru et al.

DS’s personal data. Art. 15 remarks that a “data subject shall have the right to
access to the purpose of processing categories of personal data, the recipients to
whom personal data is disclosed or transferred, and the period for which the data
will be stored.”. However, at the same time, Art.15 and recital 63 allows the DC’s
to limit the right to access based on conflicts and the freedom of others. Freedom
of others focuses on intellectual property rights, privacy rights, and the interests
of other DS’s. These stipulations motivate to consider the crucial elements in a
policy language to bring a fair balance between the interests of DC’s and DS’s.
Regulations also indicate the necessity of fine-grained policies to restore the right
to object to any form of processing of personal data at any time.

3 A Policy Language for Main Data Protection Principles

In this section, we present our policy language to meet the objectives of Sect. 2.
We first define the attributes considered in our language and clarify why these
attributes are vital in determining policies, we later provide its formalization.

Policy Attributes. We consider the following attributes for our language.

Entities. We define entities as identifiable organizations, organizational units or
roles in an organization which have or can handle data. For instance, doctor or
nurse are entities, but individuals in such categories (e.g., doctor Alice Anderson)
are not entities. In this definition, both DCs and DSs can be included as part of
the entities. If we have DCs declaring their policy requirements, they can mention
DSs in such requirements. In our formalization, entities are classified using a
taxonomy to facilitate fine-grained manipulation and to capture preferences and
exceptions using selection and filtering of elements in such taxonomy. See Fig. 1
for an example of a graphical representation of an entity taxonomy.

Actions. We define actions as operations that provide fine-grained access of sen-
sitive data along their whole data life-cycle. More specifically, we define the set
A = {Use,Collect,Transfer,Store,Delete} to capture the possible actions on pro-
tected data. Actions are mainly introduced to capture informed consent through
system design, e.g., to capture data usage, data collection, and data transfer for
specific purposes. These actions can be further refined in terms of read, write,
and append accesses, where append only allows the addition of new information
without being able to read it. In the future, we plan to express actions using
such well-studied read and write accesses.

Purposes. We identify purposes as a key attribute to express constraints while
handling sensitive data. Regulations such the GDPR and HIPAA [7] constantly
indicate purpose restrictions to be incorporated in data handling. However, most
of the frameworks do not give good support to represent purpose within the
system design, as required by regulations. We design a language to capture fine-
grained purposes using taxonomies (in the same way as we capture entities).

A Policy Language to Capture Compliance of Data Protection Requirements 293

hospital

healthProf

doctor healthAsso

admin

billing marketing

thirdParty others

Fig. 1. Example of a tree with name hcSysProf, for the attribute entity.

Retention Time. This attribute is included to enforce the right to be forgotten
under the GDPR. In our formalization, it is defined as a date in ISO format [15],
capturing the date at which that data is no longer available for further manipu-
lation. Currently, we define the retention time as a fixed date. In the future, we
plan to include infinite retention time. In our language, retention time, purposes
and actions go together to express data handling constrains over time.

Locations. This attribute expresses location constraints, and can be interpreted
together with actions e.g., to capture storage location and restrict data migration
by actions, i.e., transfer. We aim to capture locations at different granularity by
using taxonomies (in the same way as we evaluate entities and purposes).

Policy Language. We now formally define a language to capture policy privacy
requirements that we later use for compliance checks. The language uses:

– taxonomies τ to express hierarchical structures organizing elements. The lan-
guage also defines a function elem(τ) that returns the elements in the leaves of
a given taxonomy τ as a set. We use taxonomies τent, τpp, and τloc to capture
the attributes entity, purpose, and location. See Sect. 4, for further details of
the formal definition of taxonomies.

– expressions in a given grammar Ψ to express selection and filtering of elements
in a given τ (see Definition 4, in Sect. 4 for the formal syntax of the gram-
mar), where the function eval(e, τ) ⊆ elem(τ) returns the intended leaves in
τ according to expression e. We use the grammars Ψent, Ψpp and Ψloc that
accept expressions for selecting and filtering elements in τent, τpp, and τloc,
respectively.

– a function duration(di, dj) that returns a natural number representing the
number of days between the date values di and dj .

We use the items above to define the language.

Definition 1 (Policy language). Let us define a policy language as a set of
policy entries PE, where over-bar denotes set, and where each policy entry PE
is a tuple (E,A, P,R,L) where the attributes E, A, P , R, L are defined as:

– E is an expression in the grammar Ψent, such that eval(E, τent) ⊆ elem(τent)
represents a set of entities in the leaves of τent.

294 C. P. Baramashetru et al.

healthServ

treatm

gnrlTreatm spclTreatm

admin

billing ITServ

marketing

research advertise

Fig. 2. Example of a tree with name hcSysPurp, for the attribute purpose

– A ⊆ A represents the subset of actions that can be performed over data.
– P is an expression in the grammar Ψpp, such that eval(P, τpp) ⊆ elem(τpp)

represents a set of purposes in the leaves of τpp.
– R is an expression in the format of a Date, capturing the expiration date for

data retention, such that duration(now, R) returns a natural number repre-
senting the retention time in days (letting now represent the current date).

– L is an expression in the grammar Ψloc, such that eval(L, τloc) ⊆ elem(τloc)
represents a set of locations in the leaves of τloc.

We envision for the language to bring transparency between the stakeholders, it
can be used by DSs to express their consent and obligations and DCs to declare
their requirements for service provision. DSs declare their privacy policies and
DCs should include such policies while operating on the user’s sensitive data.

Example 1. Taxonomies in Figs. 1 and 2 are graphical representations for the
attributes entity and a purpose, respectively. The taxonomy in Fig. 1 is cap-
turing a classification of various professionals in a healthcare system, while the
taxonomy in Fig. 2 is capturing a classification for the purposes of data manipu-
lation in the healthcare domain. Assuming a taxonomy of countries, representing
locations in the world, we can express a very coarse-grained policy entry for a
user Alice as follows: (hospital, {Collect,Store}, healthServ, 21/02/2023, Europe),
capturing that Alice allows a hospital organization to collect and store data for
health care service purposes within Europe until February 21st, 2023. Similarly
the more fine-grained policy entry (healthProf, {Use}, treatm, 01/01/2023, Norway)
is capturing that Alice allows health care professionals to use her data for treat-
ment purposes within Norway until January 1st, 2023.

4 Taxonomies as Tree Structures

To study the expressiveness of the language along with systematic compliance
(see Sect. 5), we capture the semantics of expressions for selecting and filtering
elements in the attributes entities, purposes and locations using taxonomies,

A Policy Language to Capture Compliance of Data Protection Requirements 295

allowing to express preferences and exceptions, while defining policy require-
ments. We define taxonomies as tree structures with well-formedness properties.
We plan to investigate in the future what well-formedness properties can be
weakened to allow other sorts of classification, e.g., using Semantic Technol-
ogy [14]. In the rest of this section, we present a formalization of tree structures.

Definition 2 (Tree Structures). Let α be a set of elements in some domain
language. We organize such elements into a tree structure. Let β = αi → αj be a
constructor of the tree, where αi and αj are two elements in α, and the relation
→ indicate that αi is the parent of αj. Let β denote the set of constructors in
the tree. We define τ = (α, α, β) to be a tree structure, where:

– α ∈ α, is the root of the tree,
– ∀β = αi → αj s.t. β ∈ β ⇒ αi, αj ∈ α,
– τ is well-formed, defined as,

WF(τ) = reachability(τ) ∧ SingleParent(τ) ∧ SingleNode(τ), where
i) reachability(τ) denotes that all elements are reached from the root ele-

ment,
ii) singleParent(τ) denotes that all elements have only one parent, and
iii) singleNode(τ) denotes that each element appears only once in the tree.

Properties reachability and singleParent are needed to maintain the shape of a
tree (e.g., discard directed graphs with cycles), and singleNode is needed to rule
out ambiguities while classifying elements in the tree. Observe that a tree should
have at least one element, namely the root (e.g., τ0 = ({el }, el, ∅)).

Example 2. Figure 1 shows a graphical example of a tree structure for the
attribute entity. Following Definition 2, we can express the tree as follows:

hcSysProf = ({hospital, healthProf, admin, doctor, healthAsso, billing, marketing,
thirdParty, others}, hospital, {hospital → healthProf, hospital → admin,
healthProf → doctor, healthProf → healthAsso, admin → billing,
admin → marketing, marketing → thirdParty, marketing → others}).

In this tree, the leaf elements are:

elem(hcSysProf) = {doctor, healthAsso, billing, thirdParty, others}

We can define the tree in Fig. 2 in a similar manner.
In our language for policy requirements, we envisage flexible granularity of

policy entries by allowing the selection and filtering of elements inside trees,
e.g., data controllers can express their obligations/exceptions by selecting and
filtering certain parts in the trees for the different attributes. We now extend
Definition 2 for pruned trees with phantom branches to capture the filtering of
elements.

296 C. P. Baramashetru et al.

hospital

healthProf

doctor healthAsso

admin

billing marketing

thirdParty others

Fig. 3. Example of a pruned tree with name hcSysProfPr, for the attribute entity.

Definition 3 (Pruned trees). A pruned tree is defined by a triple (α, α, δ),
denoted τ̂ , where δ is a set of terms of the form αi 	→ αj or αi → αj, for
αi, αj ∈ α. A pruned tree (α, α, δ) is well-formed if it is a well-formed tree when
replacing all occurrences of 	→ by → in δ.

Thus, 	→ is a constructor for pruned trees, and the term αi 	→ αj indicates that
the sub-tree with root αj is pruned in the tree. We extend WF(τ̂) and elem(τ̂)
accordingly. Observe that the trees in Definition 2 are a special case of pruned
trees.

Example 3. Figure 3 shows an example of a pruned tree. Following Definition 3,
we can express this pruned tree as follows:

hcSysProfPr = ({hospital, healthProf, admin, doctor, healthAsso, billing, marketing,
thirdParty, others}, hospital, {hospital → healthProf, hospital → admin,
healthProf → doctor, healthProf → healthAss, admin → billing,
admin �→ marketing, marketing → thirdParty, marketing → others}).

In this pruned tree, the leaf elements are:

elem(hcSysProfPr) = {doctor, healthAsso, billing}.

Definition 4 (Filtering expressions over trees). We define a grammar Ψ
for selecting and filtering elements in well-formed pruned trees τ̂ . The grammar
accepts the following expressions:

e ::= ψ | e\ψ

where ψ ranges over α. The expression ψ selects the sub-tree in τ̂ that has as
its root ψ, and it is well-formed if the sub-tree with root ψ is a sub-tree of τ̂ .
The expression e\ψ is pruning the sub-tree with root ψ from a tree τ̂0 that is
generated after the selection and pruning of τ̂ , according to the expression e,
and it is well-formed if the sub-tree with root ψ is a sub-tree of τ̂0.

A Policy Language to Capture Compliance of Data Protection Requirements 297

The evaluation of the expression e\ψ in τ̂ , will return a newly pruned tree τ̂ ′
0,

where the sub-tree with root ψ is pruned from τ̂0. Observe that due to the
singleNode property, there is only one sub-tree with root ψ in τ̂ .

Example 4. The expression healthProf is a well-formed expression for the tree
structure in Fig. 1. This expression selects the sub-tree with root healthProf, where
the leaf elements are {doctor, healthAsso} . The expression hospital\marketing is a
well-formed expression for the tree structure in Fig. 1, this expression will prune
the sub-tree with root marketing as shown in Fig. 3.

Definition 5 (Evaluating filtering expressions in trees). Let τ be a well-
formed tree structure. Let e be a well-formed expression using a grammar Ψ . Let
τ̂ be the pruned tree generated after selecting and pruning in τ according to the
expression e. We define the function eval(e, τ) = elem(τ̂).

The function eval selects and/or filters the tree τ , according to the expression e
and returns the leaf elements (in a set) after selection and filtering.

We can also express the evaluation of an expression α1\α2\α3\... over a tree
by selecting the branch with root α1, and then doing filtering by α2, α3 and so
on, where the filtering operation over pruned trees can be defined as follows

filter(y, (α, α, δ ∪ (x → y))) = (α, α, δ ∪ (x 	→ y))
filter(y, (α, α, δ)) = (α, α, δ) [owise]

assuming an associative and commutative, pattern matching modulo for the
set constructor ∪ and that the equation marked with owise only match when
no other equation matches. We can similarly define a function select(α, τ̂) that
returns the sub-tree in τ̂ with root α.

Example 5. We use the tree hcSysProf and pruned tree hcSysProfPr in
Fig. 1 and 3, respectively, to illustrate the function eval:

eval(healthProf, hcSysProf) = elem(select(healthProf, hcSysProf)) and
elem(select(healthProf, hcSysProf)) = {doctor, healthAsso}

eval(hospital\marketing, hcSysProf) = elem(hcSysProfPr) = {doctor, healthAsso, billing}
where hcSysProfPr = filter(marketing, select(hospital, hcSysProf)).

Example 6. We now show how to express exceptions using trees in the policy
language. Let us consider the trees in Figs. 1 and 2 for entities and purposes.
Alice wants to express an exception in the context of these trees, i.e., ‘She wants
to block the marketing team from transferring her data for marketing
purposes’, the filtering operator helps in defining the exceptions as shown below:

(hospital\marketing, {Transfer}, healthServ\marketing, 21/02/2023, Europe)

298 C. P. Baramashetru et al.

Here the expression hospital\marketing is evaluated as in Example 5, return-
ing {doctor, healthAsso, billing}. Similarly, healthServ\marketing is evaluated to
{gnrlTreatm, spclTreatm, billing, ITServ}.

5 Policy Compliance

A major challenge in the existing multi-stakeholder service architecture is pol-
icy compliance. DSs and DCs are bound by service-level agreements, data usage
agreements, and data protection agreements. There are also agreements shared
between the DC and a data processor (DP) to ensure that processing is according
to regulations and to the DSs interests, as stated in Art. (28) [10]. Agreements
are usually expressed in natural language and a DS is often unaware of the
agreements between DCs and DPs. This opens for opportunities, where stake-
holders might tamper with the agreements to benefit their businesses. Hence, the
language proposed in Sect. 3 can help to unambiguously capture the interpreta-
tions that the different stakeholders have for such agreements. In this section, we
explore the support for systematic checks of compliance in a distributed setting,
where a transitive and reflexive compliance relation � between sets of policies
PEDP for DP, PEDC for DC and PEDS for DS, is capturing the commonly
unattended, however existing compliance relation between PEDP and PEDS .

PEDP � PEDC � PEDS

We first check the compliance between two policy entries and compliance with
a set of policy entries to finally define compliance between sets of policy entries.
We use compliance between sets of policies to capture compliance between dif-
ferent stakeholders, as defined above. The idea behind the compliance between
two policies is that the policy on the right-hand side should be able to subsume
the policy on the left-hand side. For the trees defined in Sect. 4, this is straight-
forward. We use the function eval in Definition 5, to simplify compliance checks
and work with sets instead of trees.

Definition 6 (Compliance between two policy entries).
Let PEi = (Ei, Ai, Pi, Ri, Li) and PEj = (Ej , Aj , Pj , Rj , Lj) be policy entries.
Let τent, τpp and τloc be well-formed trees (see Definition 2) for entity, purpose
and location, respectively. Let Ψent be a grammar that accepts expressions Ei

and Ej in τent (see Definition 4). Similarly, let Ψpp be a grammar that accepts
expression Pi and Pj in τpp, and Ψloc be a grammar that accepts expressions Li

and Lj in τloc. PEi complies with PEj, denoted by PEi � PEj if

eval(Ei, τent) ⊆ eval(Ej , τent) ∧ Ai ⊆ Aj ∧ eval(Pi, τpp) ⊆ eval(Pj , τpp) ∧
duration(now, Ri) ≤ duration(now, Rj) ∧ eval(Li, τloc) ⊆ eval(Lj , τloc).

A Policy Language to Capture Compliance of Data Protection Requirements 299

Example 7. Consider PE1, PE2, and PE3 evaluated in the tree of Fig. 1 for
entity, Fig. 2 for purpose and a tree for locations in the world, where

PE1 = (doctor {Use,Store}, healthServ\marketing\admin, 2022-02-21, Europe)
PE2 = (hospital\admin, {Use,Collect,Store}, treatm, 2024-02-21, Europe)
PE3 = (doctor, {Use,Transfer}, healthServ\marketing\billing, 2022-02-21,Europe)

PE1 � PE2 since,

– eval(doctor, hcSysProf) ⊆ eval(hospital\admin, hcSysProf), which reduces to
{doctor} ⊆ {doctor, helathAsso}

– {Use,Store} ⊆ {Use,Collect,Store}
– eval(healthServ\marketing\admin, hcSysPurp) ⊆ eval(treatm, hcSysPurp), which

reduces to {gnrlTreatm, spclTreatm} ⊆ {gnrlTreatm, spclTreatm}
– duration(now, 2022-02-21) ≤ duration(now, 2024-02-21)
– eval(Europe, locWorld) ⊆ eval(Europe, locWorld)

PE3 	� PE2 since the Transfer action is not allowed in the action set of PE2 and
healthServ\marketing\billing evaluates to {gnrlTreatm, spclTreatm, ITserv}.

To lift this compliance relation to PE � PE we distinguish two cases: (a) there is
one entry on the right-hand side set which alone can give compliance, (b) we need
to extend the policy set on the right-hand side with entries that combine other
exiting entries (this subsumes the first case). We define two functions, a function
that reduces policy entries with expressions into an intermediate representation,
which we call reduced policy entries and a function that combines such entries
and recursively extends the right-hand side set with all possible combinations of
policies, until we reach a fixed point.

Definition 7 (Reduction function over policy entry).
Let PE = (E,A, P,R,L) be a policy entry. Let τent, τpp and τloc
be well-formed trees capturing entities purposes and locations, respectively.
We define a reduced policy entry PE = R(PE) as a tuple that we
obtain after evaluating each expression in PE, such that R(PE) =
(eval(E, τent), A, eval(P, τpp), duration(now, R), eval(L, τloc)). We define PE as
well-formed if A is not empty, if each set returned by the eval function is not
empty and if the number returned by the duration function is greater than zero.

We now define the same reduction function which takes sets of policy entries
as input and returns a set of reduced policy entries, where all the elements are
well-formed. Let PE be a set of policy entries. Let us define a reduction function
R over PE such that, R(PE) = {R(PE)|PE ∈ PE ∧ R(PE) is well-formed}.

The reduction function over sets of policies discards reduced policy entries that
are not well-formed, because such policies are not adding information, they are
not expressing possible selections or exceptions. If the intention is to disallow
some actions, then by not being included in the set, they are expressing exactly
such intention.

300 C. P. Baramashetru et al.

Example 8. Consider the policy set PE = {PE4, PE5, PE6, PE7} , where

PE4 = (healthAsso, {Use}, treatm, 2022-12-21,Europe)
PE5 = (healthAsso, {Use}, admin, 2022-12-21,Europe)
PE6 = (admin, {Use}, treatm, 2022-12-21,Europe)
PE7 = (admin, {Use}, admin, 2022-12-21,Europe)

Based on Definition 7, we apply the reduction function over PE to calculate a
set of reduced policy entries PE = R(PE) where, R(PE) = {PE1, PE2, PE3, PE4},
and

PE1 = ({healthAsso}, {Use}, {spclTreatm, gnrlTreatm}, n, eur)
PE2 = ({healthAsso}, {Use}, {billing, ITServ}, n, eur)
PE3 = ({billing, marketing, thirdParty, others}, {Use}, {spclTreatm, gnrlTreatm}, n, eur)
PE4 = ({billing, marketing, thirdParty, others}, {Use}, {billing, ITServ}, n, eur))

Here n and eur are variables representing a natural number greater than zero,
and a set of countries in Europe, respectively.

Definition 8 (Closure function over policy entries). Let PE be a set of
policy entries. Let PE0 = R(PE), we define a closure function closure(PE0)
which returns a set PE, calculated according to the following iterative steps:

1. PE = PE0 ∪ C(PE0)
2. The combine function C(PE0) returns a set of well-formed policy entries such

that ∀ PE i, PEj ∈ PE0 . C(PE i,PEj), where

PE i = (αenti , Ai, αppi
, ni, αloci),PEj = (αentj , Aj , αppj

, ni, αlocj), and

C(PE i,PEj) = PE∪E ∪ PE∪A ∪ PE∪P ∪ PE∪R ∪ PE∪L, and

– PE∪E = (let PE =
(
αenti ∪ αentj , Ai ∩ Aj , αppi

∩ αppj
, Rr, αloci ∩ αlocj

)
in

if αenti �= αentj and PE is well-formed and PE �
 PE0, then {PE} else ∅),
– PE∪A = (let PE =

(
αenti ∩ αentj , Ai ∪ Aj , αppi

∩ αppj
, Rr, αloci ∩ αlocj

)
in

if Ai �= Aj and PE is well-formed and PE �
 PE0, then {PE} else ∅),
– PE∪P = (let PE =

(
αenti ∩ αentj , Ai ∩ Aj , αppi

∪ αppj
, Rr, αloci ∩ αlocj

)
in

if αppi
�= αppj

and PE is well-formed and PE �
 PE0, then {PE} else ∅),
– PE∪R = (let PE =

(
αenti ∩ αentj , Ai ∩ Aj , αppi

∩ αppj
, Rm, αloci ∩ αlocj

)

in if ni �= nj and PE is well-formed and PE �
 PE0, then {PE} else ∅),
– PE∪L = (let PE =

(
αenti ∩ αentj , Ai ∩ Aj , αppi

∩ αppj
, Rr, αloci ∪ αlocj

)
in

if αloci �= αlocj and PE is well-formed and PE �
 PE0, then {PE} else ∅),
here the integer Rr = min(ni, nj) and Rm = max(ni, nj).

3. if PE0 ∪ C(PE0) == PE0 then return PE, else PE0 = PE0 ∪ C(PE0) and go
to step 1.

A Policy Language to Capture Compliance of Data Protection Requirements 301

The closure function uses a combine function that performs a union operation
on one of the attributes in the tuple, while performing an intersection on other
attributes, generating a set with at most five elements. This is done for each
pair of elements in the set PE0. Some of these elements are discarded if there
exists already some other entry in PE0 that subsumes the newly generated policy
entries or if they are not well-formed.

Example 9. We extend Example 8 to illustrate the combine function on the
set PE = {PE1,PE2,PE3,PE4}, where we can combine the entity attribute in
PE1,PE3 and PE2,PE4 since they can produce the new policy entries PE5 and
PE6, and we can combine the attribute purpose in PE1,PE2 and PE3,PE4 to
produce PE7 and PE8.

PE5 = ({healthAsso, billing, marketing, thirdParty, others}, {Use},
{spclTreatm, gnrlTreatm}, n, eur)

PE6 = ({healthAsso, billing, marketing, thirdParty, others},
{Use}, {billing, ITServ}, n, eur)

PE7 = ({healthAsso}, {Use}, {spclTreatm, gnrlTreatm, billing ,ITServ}, n, eur)
PE8 = ({billing, marketing, thirdParty, others}, {Use},

{spclTreatm, gnrlTreatm, billing, ITServ}, n, eur)}

Since we don’t have two distinct policies present in the policy set PE where Ai 	=
Aj , ni 	= nj , αloci 	= αlocj , we have found all possible combinations in iteration
number 1. Observe that a second iteration will not find new combinations. Thus,
we have reached a fix point in one iteration.

We now define compliance with a policy set using the closure function and assum-
ing an straightforward extension of compliance between a policy entry PE and
a reduced policy entry PE .

Definition 9 (Compliance with a policy set).
Let PE be a policy entry and PE be a set of policy entries.

PE � PE if ∃PE ∈ closure(R(PE)) . PE � PE .

Example 10. We extend Example 9 to illustrate the compliance of three policy
entries PE′, PE′′ and PE′′′ with PE where,

PE′ = (hospital\doctor, {Use}, treatm, 2022-10-21,Europe)
PE′′ = (billing, {Use}, spclTreatm, 2022-10-21,Europe)
PE′′′ = (healthAsso, {Use,Store}, spclTreatm, 2022-10-21,Europe)

We have from Example 9,

closure(R(PE)) = {PE1, PE2, PE3, PE4, PE5, PE6, PE7, PE8}.

302 C. P. Baramashetru et al.

∗∗∗Compliance between two policy entries :
op : Policy Policy Bool .
ceq P1 \C P2 = true if entity(P1) subse entity(P2)

/\ Actions(P1) subse Actions(P2) /\ purpose(P1) subse purpose(P2)
/\ Ret(P1) ≤Ret(P2) /\ Loc(P1) subse Loc (P2) .

eq P1 \C P2 = false [owise] .

∗∗∗Associative constructor for policy lists :
op : NePolicyList NePolicyList NePolicyList [ctor assoc] .

∗∗∗Compliance with a policy set :
op complyrule1 : Policy NePolicyList Bool .
eq complyrule1(P1, P2) = if (P1 \C P2) then true else false fi .
eq complyrule1(P1, (P2 ; Ps)) = if (P1 \C P2) then

true else complyrule1(P1 ,Ps) fi .
eq complyrule1(P1, Ps) = false [owise].
op totalCompl : NePolicyList NePolicyList Bool .
eq totalCompl(P1,Ps1) = if complywithset(P1,Ps1) then

true else false fi.
eq totalCompl((P1,,P2), Ps1) = if complywithset(P1, Ps1) and

complywithset(P2, Ps1) = true then true else false fi .
ceq totalCompl((P1,,P2,,Ps), Ps1) = true if

complywithset(P1, Ps1) = true /\ complywithset(P2, Ps1) = true
/\ complywithset(Ps, Ps1) = true .

eq totalCompl((P1,,P2,,Ps), Ps1) = false [owise].

Fig. 4. Implementation of compliance rules in Maude

According to o Definition 9

PE′
 PE, since PE5 ∈ closure(R(PE)) and E′
 PE5,

PE′′
 PE, since PE8 ∈ closure(R(PE)) and PE′′
 PE8 and
PE′′′ �
 PE, since there isn’t any PE ∈ closure(R(PE)) that complies with PE′′′.

We now lift Definition 9 to compliance between the two policy sets.

Definition 10 (Compliance between two policy sets).
Let PEi and PEj be two set of policy entries. PEi complies with PEj, denoted
as PEi � PEj if ∀PE ∈ PEi . PE � PEj.

Example 11. Consider the policy set PE = {PE4, PE5, PE6, PE7} in Exam-
ple 8 and consider PE′ and PE′′ in Example 10, where both PE′ and PE′′

complies with closure(R(PE)). Hence, {PE′, PE′′} � {PE4, PE5, PE6, PE7}.

6 Proof of Concept Implementation

We have developed a proof of concept implementation in Maude [8], a rewrit-
ing logic system. Maude’s formal framework allows us to build an executable
implementation of the compliance checking using sorts, operations, terms t, and

A Policy Language to Capture Compliance of Data Protection Requirements 303

equations of the form ceq t = t′ if cond and eq t = t′, for conditional and
non-conditional equations, respectively.

The proof of concept makes the checking of compliance executable. We imple-
mented the structures (e.g., trees, pruned trees, policy entries, etc.) and functions
(e.g., elem, eval, reachability, compliance �, etc.) from Sects. 3–5. While struc-
tures are translated almost straightforward from the definitions, all functions
other than constructors needed to be implemented. In this section we show a
selected snippet in Fig. 4, implementing policy compliance, based on the compli-
ance definitions. We present the code for our Definition 6 (compliance between
policy entries), which is further used in implementing part of Definition 9 (where
the equation complyrule1 implements the base case) and finally checking com-
pliance between two sets (with the equation totalCompl). Observe that our
implementation explicitly checks the base case using complyrule1 (the policy
entry on the left-hand side complies with a distinct policy on the right-hand
side) to make the computation more efficient, which is not explicitly consider
in the compliance of Definition 9. The whole implementation in Maude, along
with examples can be downloaded from https://github.com/Chinmayiprabhu/
PL-ComplianceChecking-PoC-Maude-.git.

7 Case Study: Health Wearable

In this section, we introduce a case study to illustrate the use of policy language
and compliance checking. In recent years, wearable technology has burgeoned,
particularly fitness wearable and medical device trackers. As the underlying tech-
nology advances, many investors and manufacturers are producing advanced
health wearables. The rise of this technology comes with an attached risk of
breaching data privacy. Currently, EU medical devices regulations [17] clarify
when wearables can be considered medical devices, where the software works in
conjunction with the product. Even though prominent fitness device manufac-
turers like Fitbit and Apple claim that the user’s health data will not be used for
advertising, there have been instances [26] when third-party platforms exposed
fitness tracking data to the world. We analyze part of the privacy policy of a
health wearable company. Consider a DC, Ava bracelet [32], which produces a
wrist band that measures skin temperature continuously during sleep and devel-
ops services that support women across their reproductive cycles. According to
their privacy policy [5], “ ... When worn, the device collects data on key physi-
ological parameters such as skin temperature, resting pulse, breathing rate, etc.
(collectively ‘Fertility Information’ or ‘FI’) . . .FI is then stored on servers
operated by a third-party service provider on behalf of Ava.” Addition-
ally, Ava mentions “. . .may partner with other companies who provide insurance
and or benefit services. When those parties have a payment obligation for the
device, Ava will transfer certain personally identifiable information
(PII), excluding FI, to the partner for the exclusive purpose of pay-
ment processing.” and “... As part of our business activities, we may disclose
your PII to third parties (as listed below) in Switzerland, the EU or

https://github.com/Chinmayiprabhu/PL-ComplianceChecking-PoC-Maude-.git
https://github.com/Chinmayiprabhu/PL-ComplianceChecking-PoC-Maude-.git

304 C. P. Baramashetru et al.

AvaBracelet

logistics finance thirdParty

(a) Example entity tree

AppServ

medicalServs research marketing

(b) Example purpose tree

Fig. 5. Tree structures of policy attributes entity and purpose

other countries for the purposes set out above and where appropriate.”
Let us now analyze these fragments of privacy requirements in the context of a
user Alice. Let Alice be the DS and PE1 be Alice’s privacy preference.

PE1 = (AvaBracelet, {Use,Collect,Store,Transfer},medicalServs, 2024-02-21,Europe).

This policy can be expressed in natural language as follows: Ava bracelet can use,
collect, store and transfer Alice’s data for the purpose of application services until
2024-02-21 only specified for the Europe region.

For exceptions, Alice can extend her preferences in PE2.

PE2 = (AvaBracelet\thirdParty, {Transfer},AppServ\marketing, 2024-02-21,Europe).

Expressed in natural language as: All entities associated with Ava bracelet, except
third parties, can transfer Alice’s data for all the purpose of application services,
except for marketing, until 2024-02-21 only specified for the Europe region.

Figure 5 shows the filtered trees for both purposes and entities. Now both of
Alice’s policies are accumulated in the form of policy set PEAlice = {PE1, PE2}.
Consider a data processor DP such as a logistics company who processes Alice’s
data on behalf of Ava bracelet. Using the various definitions of policy compliance
in Sect. 5, we can check that Ava bracelet policies i.e., PEAvaBracelet, and the
logistics company policies i.e., PElogistics comply with PEAlice, for Alice to safely
give her data to the logistics company, as shown in Fig. 6, even though her policy
preferences are only agreed with Ava bracelet.

PElogistics
 PEAvaBracelet
 PEAlice

In a scenario where Alice’s policy set is more restrictive than the policies of the
DC Ava bracelet, the compliance check fails and the DS Alice is notified. In prac-
tice, Alice and Ava bracelet can initiate negotiations on minimum requirements.
Negotiations are not further discussed in this paper. We plan to investigate such
an extension in the future.

A Policy Language to Capture Compliance of Data Protection Requirements 305

Fig. 6. Sample service model architecture for Ava bracelet

8 Analysis of Related Work

Privacy policy languages1 are a widely explored area with many research con-
tributions. P3P [9] was an initial attempt to define privacy policies with the
intention to give users more control over their personal data on the web. P3P
is complex and has not been used as a way of communication between dis-
tributed systems. Many languages similar to P3P have been proposed, some
web-based, such XPref [1], APPEL [9] and fewer enterprise-based, such as E-
P3P [4], EPAL [3]. However, they have not been thought to be combined with
system execution. Languages like EPAL, P2U [16], and XACML [2] do not have a
formal foundation with no guarantee of the correctness of properties [18]. Access
control models like MAC, DAC, and RBAC [11] are mainly attribute-based mod-
els that associate policies with data-types and grant access to particular infor-
mation, they fail to achieve the GDPR and focus on modeling the regulations
rather than enhancing the awareness among DSs.

Gerl et al. [12] proposed a GDPR compliant policy language considering
purpose, retention time, and user consent. However, it lacks several conditions
and the centralized architecture makes it difficult to apply in a distributed envi-
ronment. Previous work of one of the authors of this paper [29–31] develops a
framework for the specification and analysis of privacy requirements via triples
specifying access control, purpose, and consent, in asynchronously communicat-
ing distributed systems using static and run-time analysis to check compliance.
Consent is given by a list of positive and negative policy entries, somewhat
similar to selection and filtering. Location and retention are not considered. In
contrast to the present work, it does not give an overall view of the resulting
policy specification, something which is useful for users when viewing their pref-
erences. Pardo et al. [24] proposed a privacy policy language that is designed
to be used by both DCs (by defining their privacy rules) and DSs (to provide
their consent). We take our motivation from this work and propose this double
view as one of the characteristics to be considered in a privacy policy language.

1 In this context, we consider privacy as a functionality of the modeling approach which
should be complemented by appropriate security measures. Such security measures
are not discussed in this paper.

306 C. P. Baramashetru et al.

Modeling privacy in distributed services has recently gained importance due to
privacy regulations such as HIPAA, COPAA, and GLBA. Initiatives towards
combining executable languages with privacy policies and requirements for the
modeling and analysis of privacy specification, policies enforcement, and mon-
itoring is an area that is starting to be explored. Witt et al. [27,34] present
an approach to model check privacy requirements in business process models
(BPM) using an extension of CTL. However, their analysis focuses on intra-
process rather than inter-process. Hayati and Abadi [13] describe an approach
to model and verify aspects of privacy policies with a focus on principles and
purpose. Yang et al. [35,36] propose a programming model that allows pro-
grammers to separate privacy concerns from core program functionality. In a
distributed setting, Myers and Liskov [21] propose a decentralized label model
and its static analysis for the control of information flow in systems with mutual
distrust and decentralized authority. However, their approach does not consider
the GDPR compliance. Basin et al. [6] propose a methodology that relates a
purpose with a business process to verify compliance for inter-process commu-
nication. An important outcome of this approach is the automatic generation
of compliant privacy policies from business process models. Extended languages
such as GeoXACML [20] use policies for location-based access control. How-
ever, they do not address other crucial requirements like purpose, retention, and
transfer.

In summary, we noticed there is a lack of expressiveness in the languages and
frameworks previously discussed. By looking at the previous work, there has
been very little work in the state-of-the-art where languages are built to comply
with legal regulations. We emphasize that the languages discussed in this section
have complex structures. Our proposal in this paper aims to define a language
that has fewer attributes and has the capacity to express wider preferences.

9 Conclusion and Future Work

This paper presents a flexible language with a formal foundation that can cap-
ture data protection requirements at different granularity. Currently, our lan-
guage focuses on the main principles of the GDPR such as, informed consent,
purpose limitation and data subject rights like the right to modify, access, and
be forgotten. In the future, we plan to extend the language by including more
vital principles from the GDPR. The main contribution of our work compared to
earlier work is the increased expressiveness of the policy specification language
due to taxonomies, which allows specifying different granularity of policies using
selection and filtering over taxonomies. We consider this language as part of a
work in progress framework, where compliance checking helps to establish trust
within a service-oriented architecture with various actors, who do not neces-
sarily have the same interests in mind. We plan to extend the framework to
explore further static and run-time analysis for a core active object language,
e.g., based on ABS [25]. In this paper, we assume that both DCs and DSs have
already negotiated the minimum requirements before establishing a compliance

A Policy Language to Capture Compliance of Data Protection Requirements 307

environment. In the future, we plan to incorporate negotiation rules between
DCs and DSs focusing on their conflicting interests. We also plan to explore
compliance based on other classification frameworks for domain knowledge, e.g.,
Semantic Technology [14], where we would need to define compliance checks in
open graphs.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: XPref: a preference language for
P3P. Comput. Netw. 48(5), 809–827 (2005)

2. Anderson, A., et al.: Extensible access control markup language (XACML) version
1.0. OASIS (2003)

3. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (EPAL). IBM Res. 30, 31 (2003)

4. Ashley, P., Hada, S., Karjoth, G., Schunter, M.: E-P3P privacy policies and pri-
vacy authorization. In: Proceedings of the 2002 ACM Workshop on Privacy in the
Electronic Society, pp. 103–109 (2002)

5. AvaWomen. Your privacy - avawomen. https://www.avawomen.com/privacy.
Accessed 02 Jan 2022

6. Basin, D., Debois, S., Hildebrandt, T.: On purpose and by necessity: compliance
under the GDPR. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957,
pp. 20–37. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-
6_2

7. Centers for Medicare & Medicaid Services. The Health Insurance Portability and
Accountability Act of 1996 (HIPAA) (1996). http://www.cms.hhs.gov/hipaa/

8. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

9. Cranor, L.F.: P3P: making privacy policies more useful. IEEE Secur. Priv. 1(6),
50–55 (2003)

10. European Parliament and Council: Regulation (EU) 2016/679 of the European
parliament and of the council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing directive 95/46/EC (general data protection regulation) (text
with EEA relevance)

11. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): features
and motivations. In: Proceedings of 11th Annual Computer Security Application
Conference, pp. 241–248 (1995)

12. Gerl, A., Bennani, N., Kosch, H., Brunie, L.: LPL, towards a GDPR-compliant pri-
vacy language: formal definition and usage. In: Hameurlain, A., Wagner, R. (eds.)
Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXVII.
LNCS, vol. 10940, pp. 41–80. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-662-57932-9_2

13. Hayati, K., Abadi, M.: Language-based enforcement of privacy policies. In: Mar-
tin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 302–313. Springer,
Heidelberg (2005). https://doi.org/10.1007/11423409_19

14. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman and Hall/CRC Press, London (2010)

https://www.avawomen.com/privacy
https://doi.org/10.1007/978-3-662-58387-6_2
https://doi.org/10.1007/978-3-662-58387-6_2
http://www.cms.hhs.gov/hipaa/
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-662-57932-9_2
https://doi.org/10.1007/978-3-662-57932-9_2
https://doi.org/10.1007/11423409_19

308 C. P. Baramashetru et al.

15. ISO.org. ISO - ISO 8601 - date and time format. https://www.iso.org/iso-8601-
date-and-time-format.html. Accessed 28 Mar 2022

16. Iyilade, J., Vassileva, J.: P2u: a privacy policy specification language for secondary
data sharing and usage. In: 2014 IEEE Security and Privacy Workshops, pp. 18–22.
IEEE (2014)

17. Eur law. Eur-lex - 01990l0385-20071011 - en - eur-lex. https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=CELEX%3A01990L0385-20071011. Accessed 13
Apr 2022

18. Leicht, J., Heisel, M.: A survey on privacy policy languages: expressiveness concern-
ing data protection regulations. In: 2019 12th CMI Conference on Cybersecurity
and Privacy (CMI), pp. 1–6. IEEE (2019)

19. Lyon, D.: Surveillance, Snowden, and big data: capacities, consequences, critique.
Big Data Soc. 1(2), 2053951714541861 (2014)

20. Matheus, A., Herrmann, J.: Geospatial extensible access control markup language
(GeoXACML). Open Geospatial Consortium Inc, OGC (2008)

21. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000)

22. Neubert, S., et al.: Multi-sensor-fusion approach for a data-science-oriented preven-
tive health management system: concept and development of a decentralized data
collection approach for heterogeneous data sources. Int. J. Telemed. App. 2019, 1
(2019)

23. S. of California Department of Justice: California consumer privacy act (CCPA) |
state of California - department of justice - office of the attorney general. https://
oag.ca.gov/privacy/ccpa. Accessed 02 Oct 2022

24. Pardo, R., Le Métayer, D.: Analysis of privacy policies to enhance informed consent.
In: Foley, S.N. (ed.) DBSec 2019. LNCS, vol. 11559, pp. 177–198. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22479-0_10

25. Schlatte, R., Johnsen, E.B., Kamburjan, E., Tapia Tarifa, S.L.: Modeling and ana-
lyzing resource-sensitive actors: a tutorial introduction. In: Damiani, F., Dardha,
O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 3–19. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78142-2_1

26. Scott: Mass leak of fitness tracking data hits fitbit, apple, microsoft, google;
60 million records exposed by improperly configured third-party database - cpo
magazine. https://www.cpomagazine.com/cyber-security/mass-leak-of-fitness-
tracking-data-hits-fitbit-apple-microsoft-google-60-million-records-exposed-by-
improperly-configured-third-party-database/. Accessed 02 Oct 2022

27. Speck, A., Witt, S., Feja, S., Feja, S., Pulvermüller, E.: Integrating validation tech-
niques for process-based models. In: ENASE 2013 - Proceedings of the 8th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering,
Angers, France, 4–6 July 2013, pp. 246–253. SciTePress (2013)

28. New York Times: As Facebook raised a privacy wall, it carved an opening for tech
giants - The Netherlands New York Times. https://www.nytimes.com/2018/12/
18/technology/facebook-privacy.html. Accessed 02 Dec 2021

29. Tokas, S., Owe, O.: A formal framework for consent management. In: Gotsman,
A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 169–186. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50086-3_10

30. Tokas, S., Owe, O., Ramezanifarkhani, T.: Language-based mechanisms for
privacy-by-design. In: Friedewald, M., Önen, M., Lievens, E., Krenn, S., Fricker,
S. (eds.) Privacy and Identity 2019. IAICT, vol. 576, pp. 142–158. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-42504-3_10

https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/iso-8601-date-and-time-format.html
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01990L0385-20071011
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01990L0385-20071011
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://doi.org/10.1007/978-3-030-22479-0_10
https://doi.org/10.1007/978-3-030-78142-2_1
https://www.cpomagazine.com/cyber-security/mass-leak-of-fitness- tracking-data-hits-fitbit-apple-microsoft-google-60-million-records-exposed-by-improperly-configured-third-party-database/
https://www.cpomagazine.com/cyber-security/mass-leak-of-fitness- tracking-data-hits-fitbit-apple-microsoft-google-60-million-records-exposed-by-improperly-configured-third-party-database/
https://www.cpomagazine.com/cyber-security/mass-leak-of-fitness- tracking-data-hits-fitbit-apple-microsoft-google-60-million-records-exposed-by-improperly-configured-third-party-database/
https://www.nytimes.com/2018/12/18/technology/facebook-privacy.html
https://www.nytimes.com/2018/12/18/technology/facebook-privacy.html
https://doi.org/10.1007/978-3-030-50086-3_10
https://doi.org/10.1007/978-3-030-42504-3_10

A Policy Language to Capture Compliance of Data Protection Requirements 309

31. Tokas, S., Owe, O., Ramezanifarkhani, T.: Static checking of GDPR-related pri-
vacy compliance for object-oriented distributed systems. J. Log. Algebr. Methods
Program. 125, 100733 (2022)

32. Ava Fertility Tracker: Ava fertility tracker - avawomen. https://www.avawomen.
com/. Accessed 02 Jan 2022

33. G.E. Tracker. GDPR enforcement tracker - list of GDPR fines. https://www.
enforcementtracker.com/. Accessed 02 Aug 2022

34. Witt, S., Feja, S., Speck, A.: Applying pattern-based graphical validation rules to
business process models. In: Seventh IEEE International Conference on Software
Testing, Verification and Validation, ICST 2014 Workshops Proceedings, pp. 274–
283. IEEE Computer Society (2014)

35. Yang, J.: Preventing information leaks with policy-agnostic programming. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2015)

36. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforcing
privacy policies. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, 22–28 January 2012, pp. 85–96. ACM (2012)

https://www.avawomen.com/
https://www.avawomen.com/
https://www.enforcementtracker.com/
https://www.enforcementtracker.com/

Static Analysis and Testing

Extending Data Flow Coverage to Test
Constraint Refinements

Alexander Kolchin(B) and Stepan Potiyenko

V.M. Glushkov Institute of Cybernetics NAS of Ukraine, Kyiv, Ukraine
kolchin_av@yahoo.com

Abstract. This paper presents a new data flow coverage criterion for a deeper
analysis of possible refinements to the constraints on paths unfolding of soft-
ware program’s behavior. Such refinements represent a feasible chain of usages of
the same variable without redefinitions in-between. An algorithm for reasonable
chains selection is proposed.

Keywords: Testing · Coverage criteria · Data flow analysis

1 Introduction

The effectiveness of different types of test coverage is an important issue [1–4] in devel-
opment, testing and maintenance of software systems used in the safety-critical domain;
the development of effective test cases is a challenging task [5–7]. This paper is ded-
icated to applying data flow coverage criteria which is a popular white-box test case
design strategy. It analyzes variables definitions and usages allowing to explore causal
relationships, input-output dependencies etc. [6, 8–10].

Relying on the conventional data flow coverage criteria in industrial projects, we
faced the problem of weak analysis of possible constraints refinements. The fact is
that the existing criteria do not directly require a sub-path in which a value assigned
at the def-point (like input signal or message parameter) to pass through a possible
sequence of uses in conditions before reaching a use-point directly associated with the
def-use pair. A conditional statement in such sequence is the usage itself, and therefore
the corresponding def-use pair can be covered in a short stand-alone test case. Such
strategy, however, leads to a decrease in the ability to detect faults [3–5] and may lose
interesting scenarios, especially in cases where a def-point is an input parameter with
arbitrary value, which becomes instantiated only after some conditionals whereas such
instantiation itself does not play a role of a def-point in existing data flow coverage
criteria. This work is aimed to extend data flow coverage with chains of usages to fill
the gap.

2 Motivation Examples

This section describes three small examples, which are inspired by real-world testing
problems in industrial systems. Typically, the validation of an input value being in some

© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 313–321, 2022.
https://doi.org/10.1007/978-3-031-07727-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_17&domain=pdf
http://orcid.org/0000-0001-7809-536X
https://doi.org/10.1007/978-3-031-07727-2_17

314 A. Kolchin and S. Potiyenko

admissible region is required by software development standards; however, data flow
coverage criteria are not specially adapted to test this requirement. There is still a small
chance to catch the ‘missed validation’ defect – in case the input valuewould accidentally
be selected outside of that admissible range, but relying on chance is not a systematic
approach.

Example 1. Let us consider a small formal model described using the Event-B notation
style. In the beginning, it has two requirements:

Here ‘voltage’ comes as an input with an arbitrary value. The main idea of the
system is to control enabling/disabling of a certain machine depending on the voltage
measurement. Later, after being additionally investigated, the model was enhanced with
one more requirement:

Adding new requirements is a typical sit-
uation in the development process; the
problem of our model is that the previ-
ous requirements were not consistently
updated (R1 still does not care about
the overvoltage), and scenario R3->R1,
while obviously unwanted, nevertheless
is possible. Of course, this problem could

be detected at the verification phase if an appropriate property was explicitly formulated,
but the question is – what coverage type shall be used in order to obtain a test suite that
is capable to reveal the problem? Neither applying the all-uses [9], nor MC/DC [11] can
guarantee the desired test case.

1. input(x, parity_check);
2. if(x >= 0)
3. print(“non-negative”);
4. else
5. print(“negative”);
6. if(parity_check)
7. if(x mod 2 != 0)
8. print(“odd”);
9. else

Fig. 1. Program with sign and parity checks

Example 2. The more restrictive
checks the input parameter has
passed, the more options there are
for selecting its specific values to be
used as a test data. Example of a C
program in Fig. 1 shows the way to
exploit the data flow coverage tai-
loring to extend a test suite when
the input parameter passes through
a sequence of checks that refine its
constraints.

Extending Data Flow Coverage to Test Constraint Refinements 315

Note that test cases covering the sequence of conditions {4,7} and {4,9} (printing
“negative”, “even” and “negative”, “odd”) are not required by the all-uses adequate test
suite (see Fig. 2). Notation [Def_loc:Use_loc]var is used to denote a def-use
pair.

inputs outputs def-use pairs for x covered
1 (1,0) “non-negative” [1:2]x
2 (-1,0) “negative” [1:4]x
3 (1,1) “non-negative”,“odd” [1:2]x, [1:7]x

Fig. 2. Test cases for the all-uses criterion (example #2)

1. input(x, y);
2. if(x != 0)
3. print(“x != 0”);
4. else
5. print(“x = 0”);
6. if(y != 0)
7. print(“y != 0”);
8. else
9. print(“y = 0”);

10. return Error;

Fig. 3. Program with division by zero faul

Example 3. Another example shows the
opposite problem. A test case guides some
input value through its validation, but does
not subsequently lead to its computational
usage. Such an incoherence often occurs
in automatically generated tests [3, 5]. Let
us consider a code snippet described in
Fig. 3. It includes a path like this: valida-
tion of x at line 4 and then return at line 10
before usage at line 11.This program has
a fault – ‘return Error’ statement is
missed after line 5, and therefore, the pro-
gram can reach division-by-zero exception.
Figure 4 depicts the test suite produced to satisfy the all-uses criterion: in order to cover
all def-use pairs it is sufficient to include only two tests. None of them catches the
exception.

inputs outputs def-use pairs covered
1 (1,1) “x != 0”, “y != 0”, 2 [1:2]x, [1:6]y,

[1:11]x, [1:11]y

Fig. 4. Test cases for the all-uses criterion (example #3)

3 Background

Let G = (C, E, s, f) be a flow graph of a program, where C – set of vertices, E – set of
edges, s – the initial vertex, and f – the final vertex. Each variable occurrence is classified
as being a definitional occurrence (i.e., where it is assigned with a new value), or a use
occurrence (c-use type – in the right part of an assignment or in the parameter of an

316 A. Kolchin and S. Potiyenko

output signal; p-use type – in a predicate of a condition). A path on the graph G is a finite
sequence of vertices c0, c1,…,ck, where there exists an edge (ci-1,ci) ∈ E for all i, (0< i
≤ k). A complete path is a path where c0 = s and ck = f. Let v be a variable and c∈C.
Then defs(c)/uses(c) denotes the set of all variables which are defined/used at vertex c
respectively. A path (n,c1,…,ck,m), k ≥ 1, is called def-clear from vertex n to vertex m
with respect to v if v/∈defs(ci) for all 1 ≤ i ≤ k. A path p covers def-use pair [D:U]v
if p = (s,D,q,U,f), where D,U∈C, v∈defs(D), v∈uses(U), and q is a def-clear path with
respect to variable v. We will use DU to denote set of all def-use pairs. Test suite T
satisfies the all-uses [9] criterion if for every vertex c and every variable v∈defs(c), T
includes a def-clear path w.r.t. v from c to all associated use-elements, meaning that each
computation and condition affected by definition of v will be tested.

4 The Required k-Use Chains

Now let us introduce a notion of the required k-use chains coverage criterion.

Definition. Apath p covers a k-use chain [D:U1:U2:…:Uk]v if it covers all def-use pairs
[D:U1]v, [D:U2]v, … [D:Uk]v in the given order. A test suite satisfies the required k-use
chains criterion if it includes paths covering each chain from the predefined set.

For the first example, the scenario R3->R1 will be required to satisfy coverage of
2-use chain for vasriable voltage. The second example requires two more test cases
additionally to the all-uses criterion on demand of the 2-use chains [1:4:7]x and [1:4:9]x
covered by test inputs #5 and #6 respectively (see Fig. 5).

inputs outputs def-use pairs covered
1 (1,0) “non-negative” [1:2]x
2 (-1,0) “negative” [1:4]x
3 (1,1) “non-negative”, “odd” [1:2]x, [1:7]x
4 (2,1) “non-negative”, “even” [1:2]x, [1:9]x
5 (-1,1) “negative”, “odd” [1:4]x, [1:7]x

Fig. 5. Test cases for the k-uses criterion (example #2)

For the third example, Fig. 6. describes a test suite with one additional test input
leading to the div-by-zero exception. It was generated to cover the 2-use chain [1:4:11]x.

Selecting the Chains. The problem of this approach is to identify the required set and
the length of such k-use chains. Number of possible chains grows rapidly, and may
become infinite in case of loops. One way to manage its size is to restrict those lengths
to some reasonable value. Another approach is to extend the use-chain only if iteratively
applying subsequent usage will indeed refine the value of the variable and skip if it
does not. For example, after condition ‘if(a == 2)’ upcoming usage ‘if(a > 0)’
will not contribute to the chain. The chain can also break after the UNSAT-usage, e.g.,
after applying condition ‘if(a== 2)’ upcoming ‘if(a < 0)’ will terminate the chain
(otherwise the chain will require a non-executable path).

Extending Data Flow Coverage to Test Constraint Refinements 317

inputs outputs def-use pairs covered
1 (1,1) “x != 0”, “y != 0”, 2 [1:2]x, [1:6]y,

[1:11]x, [1:11]y
2 (0,0) “x = 0”, “y = 0”, Error [1:4]x, [1:8]y
3 (0,1) “x = 0”, “y != 0”, [1:4]x, [1:6]y,

Fig. 6. Test cases for the k-uses criterion (example #3)

Algorithm for the Required k-Use Chains Selection. The algorithm is presented in
Fig. 7. It has two procedures select_k_use_chains and continue_chain. It essentially
relies on SSA-form [12] (the algorithm assumes each variable to have a unique definition
point) which allows identifying set of uses for each definition and on analysis of the
control flow graph, which gives answers about the feasibility of continuing the chain.

The main procedure select_k_use_chains takes as inputs the name of a variable,
its definition location and the maximum length of the required use-chains. Initially, the
resulting set Req_chains is empty, formula F keeps restrictions (or just a specific value)
set up at the definition point, and U_set is a set of all use-locations associated with
the given definition. In case of loops, U_set can be extended to include the appropriate
use-locations twice, distinguishing the first and iterative occurrences.

Procedure continue_chain recursively enumerates the use-locations (lines 13–31)
increasing the length of the chain under construction and refines the constraints on
the specified variable at each step (lines 21, 24 and 30). Line 17 prevents multiple
consideration of a usage in one chain. Lines 19 and 26 together with their conditionals
are needed to prevent going through infeasible paths. Usages of c-use type are processed
at lines 20 and 21. If the p-use is not a comparisonwith a constant, and thus, the procedure
can not reason about the satisfiability of the overall use-chain, then such a chain will
be terminated by a recursive call with an empty u_set at line 24. Line 27 checks if the
formula will be strengthened. If the new predicate will not actually refine the constraints
already formed, then, for the reasons of test suite size, it will be skipped at line 28. The
argument in favor of this rule is that a conventional test case concretization procedure,
which is based on boundary checking, will not find any additional value for the test input
in this case. The condition at line 15 is responsible for safely avoiding the generation
of redundant combinations: indeed, a path covering an element implies covering all
the elements included in the tree of its pre-dominators (the notion w< <u means that
every path that reaches u goes through the vertex immediately preceding w), therefore,
there is no need to consider u before considering w. In other cases, the recursion will
terminate upon the chain length exceeds predefined maximum (lines 11–12) or u_set
becomes empty. Lines 32 and 33 are responsible for storing the newly generated chain
in Req_chains.

Let us consider the example of k-use chains generation for the program presented
in Fig. 8. The only def-point for variable x is the input at line L1, thus we can assume
select_k_use_chains (x, L1, 9) as an entry call.

318 A. Kolchin and S. Potiyenko

01. proc select_k_use_chains(var, d_loc, k)
02. begin
03. Req_chains := Ø;
04. Let F = a constraint (or a value) defined for var at d_loc;
05. Let U_set = a set of usage locations {u_loc C : [d_loc:u_loc]var DU};
06. continue_chain(d_loc, F, U_set, [d_loc]var, 0, k);
07. return Req_chains;
08. end

09. proc continue_chain(curr_loc, formula, u_set, [curr_chain]var, i, k)
10. begin
11. if (i > k)
12. return;
13. for each u u_set do,
14. begin
15. if (w: w u_set ˄ w curr_chain ˄ w<<u)
16. continue;
17. remove u from u_set;
18. if(u is unreachable from curr_loc)
19. continue;
20. if usage of var at u is of c-use type
21. continue_chain(u, formula, u_set, [curr_chain: u]var, i+1, k);
22. Let pred is a predicate over var at u for p-use type;
23. if (pred is not a comparison of var with a constant)
24. continue_chain(u, (formula ˄ pred), , [curr_chain: u]var, i+1, k);
25. if (UNSAT(formula ˄ pred))
26. continue;
27. if (i > 0 ˄ formula formula ˄ pred)
28. continue_chain(u, formula, u_set, [curr_chain]var, i, k);
29. else
30. continue_chain(u, (formula ˄ pred), u_set, [curr_chain: u]var, i+1, k);
31. end
32. if (i > 0 ˄ (: [curr_chain: [q]]var Req_chains))
33. Req_chains := Req_chains [curr_chain]var;
34. end

Fig. 7. Algorithm for the required k-use chains selection

The formula F at line 04 of the selection algorithm is trivial (−∞ < x < ∞) since
the definition itself does not apply restrictions. The set of usage locations U_set at line
05 consists of 9 elements: {L2, L4, L5, L7, L9, L11, L13, L15, L16}, so the potential
number of k-use chains can be expressed as the sum of all permutations of each non-
empty subset of U_set, i.e.,

∑9
i=1

9!
(9−i)! = 986409. However, the number of test goals

selected by the algorithm is only 5 (see Fig. 9). This reduction is achieved due to the
rules that restrict the selection of chains. For example, after the usage at L2 only the
usage at 17 is feasible: usages at L4, L5, L7 will not be included in the chain due to the

Extending Data Flow Coverage to Test Constraint Refinements 319

L1. input(x);
L2. if(x < 0)
L3. print(“less than 0”);
L4. else
L5. if(x == 0)
L6. print(“equal to 0”);
L7. else if(x > 0)
L8. print(“more than 0”);
L9. if(x > 10)

L10. print(“more than 10”);
L11. else
L12. print(“no more than 10”);
L13. if(x > 20)
L14. print(“more than 20”);
L15. else
L16. print(“no more than 20”);

Fig. 8. Example of a program for k-use chains generation

k-use chains
1
2
3
4
5

[L1: L2: L17]x
[L1: L4: L5: L17]x
[L1: L4: L7: L9: L13: L17]x
[L1: L4: L7: L9: L15: L17]x
[L1: L4: L7: L11: L17]x

Fig. 9. The required k-use chains

#val.

of
x

achieved coverage of uses
locations, associated with
the definition of x at L1

1
2
3
4
5

-1
0

21
11

1

L2, L11, L15, L17
L4, L11, L15, L17
L4, L7, L9, L13, L17
L4, L7, L9, L15, L17
L4, L7, L11, L15, L17

Fig. 10. Test inputs and
def-use coverage achieved

condition at line 18 (these locations are unreachable after L2); usages at L11, L15 – due
to the condition at line 27 (formula will not be strengthened); usages at L9, L13 – due
to the condition at line 25 (formula becomes unsatisfiable). Also note that the chain of
usages can only start at L2 or L4 according to the condition at line 15 (reaching all other
locations inevitably passes through L2 or L4). Figure 10 shows that in order to cover all
def-use pairs it is sufficient to have only the first three test inputs, which represent the
ranges x < 0, x > 20 and x = 0; the required k-use chains criterion additionally selects
inputs from the ranges 10 < x ≤ 20 (test #4) and 0 < x ≤ 10 (test #5).

5 Related Work and Conclusions

Data flow coverage is extensively utilized to improve the efficiency of test suites [5–7,
13, 17]. Approaches [8–10, 15, 16] propose different kinds of def-use pairs, chains of
pairs and paths examination. The required k-use chains criterion subsumes all-uses [9]
and avoids redefinitions [16]. Combinations of conditions, produced on demand of the
required k-use chains examined by test cases #5 and #6 for the second example and case
#3 for the third, will be required neither by Laski and Korel [10] nor MC/DC criteria
because the refinements to constraints are split into different conditionals. In a sense,
our proposal resembles Ural and Hong ‘dependence chain’ [8] and Ntafos ‘k-dr tuples’
criterion [15], the main differences being that (1) the k-use chain has no redefinitions
of the given variable in-between and it does not rely on control dependency between
usages and (2) our approach to selecting the required k-use chains keeps the number of
test goals manageable: in our practice, the maximum value of k reached 5, the average
value is 2, and the total number of chains is comparable to the number of def-use pairs.

We have developed a prototype of the described method using algorithms [13, 14]
adapted to generate test suites in accordance with the required k-use chains criterion, and

320 A. Kolchin and S. Potiyenko

provided experiments with several medium-sized formal models of different industrial
systems. First results show that the required k-use chain coverage increases number of
test goals (and correlatively the mutation score) by roughly 7–20% when compared to
all-uses criterion. It is worth noting that in addition to the quantitative improvement,
the resulting tests become more ‘interesting’ in their scenarios – they often describe a
longer and coherent story; situations when two def-use pairs (with the same variable and
definition location) which were initially covered by different test cases, fell into one test
case, increasing the data cohesion score, were not unique. With regard to the problems
in coverage-directed test generation [1, 3–5, 13, 18], our approach can be used as a
supplement heuristic to guide test generation and increase the thoroughness of testing
of the safety-critical parts of software.

References

1. Miranda, B., Bertolino, A.: Testing relative to usage scope: revisiting software coverage
criteria. ACM Trans. Softw. Eng. Methodol. 29(3), 18. 24p. (2020)

2. Lee, J., Kang, S., Pilsu, J.: Test coverage criteria for software product line testing: Systematic
literature review. Inf. Softw. Techn. 122, 106272 (2020)

3. Gay, G., Staats, M., Whalen, M., Heimdahl, M.: The risks of coverage-directed test case
generation. IEEE Trans. Softw. Eng. 41, 803–819 (2015)

4. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite effectiveness.
In: Proceedings of ACM ICSE, pp. 435–445 (2015)

5. Kolchin, A., Potiyenko, S., Weigert, T.: Challenges for automated, model-based test scenario
generation. Comm. Comput. Inf. Sci. 1078, 182–194 (2019)

6. Su T., et al.: A survey on data-flow testing. ACM Comput. Surv. 50, 35p (2017)
7. Sahoo, R.R., Ray, M.: Metaheuristic techniques for test case generation: a review. Research

anthology on agile software. Softw. Dev. Test. 1043–1058 (2022)
8. Hong, H.S., Ural, H.: Dependence testing: extending data flow testing with control depen-

dence. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502, pp. 23–39.
Springer, Heidelberg (2005). https://doi.org/10.1007/11430230_3

9. Rapps, S., Weyuker, E.: Data flow analysis techniques for test data selection. In: Proceedings
of the International Conference of Software Engineering. pp. 272–277 (1982)

10. Laski, J., Korel, B.: A data flow oriented program testing strategy. IEEE Trans. Softw. Eng.
9(3), 347–354 (1983)

11. Chilenski, J., Miller, S.: Applicability of modified condition/decision coverage to software
testing. Softw. Eng. J. 7(5), 193–200 (1994)

12. Static single assignment book (2018). https://pfalcon.github.io/ssabook/latest/book-full.pdf.
Accessed 6 Apr 2022

13. Weigert, T., et al.: Generating test suites to validate legacy systems. In: Fonseca i Casas, P.,
Sancho, M.-R., Sherratt, E. (eds.) SAM 2019. LNCS, vol. 11753, pp. 3–23. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30690-8_1

14. Kolchin, A.: A novel algorithm for attacking path explosion inmodel-based test generation for
data flow coverage. In: Proceedings of IEEE 1st International Conference on SystemAnalysis
and Intelligent Computing, SAIC. pp. 226–231 (2018)

15. Ntafos, S.: On required element testing. IEEE Trans. Softw. Eng. 10, 795–803 (1984)
16. Kolchin, A., Potiyenko, S., Weigert, T.: Extending data flow coverage with redefinition

analysis. In: Proceedings of the IEEE International Conference on Information and Digital
Technologies. pp. 293–296 (2021)

https://doi.org/10.1007/11430230_3
https://pfalcon.github.io/ssabook/latest/book-full.pdf
https://doi.org/10.1007/978-3-030-30690-8_1

Extending Data Flow Coverage to Test Constraint Refinements 321

17. Chaim, M.L., Baral, K., Offutt, J., Concilio, M.: Araujo, R.P.A.: Efficiently finding data flow
subsumptions. In: Proceedings of 14th IEEE Conference on Software Testing, Verification
and Validation (ICST). pp. 94–104 (2021)

18. Gal, R., Haber, E., Ibraheem, W., Irwin, B., Nevo, Z., Ziv, A.: Automatic scalable system for
the coverage-directed generation (CDG) problem. In: Proceedings of Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 206–211 (2021)

Scalable Typestate Analysis
for Low-Latency Environments

Alen Arslanagić1(B), Pavle Subotić2, and Jorge A. Pérez1

1 University of Groningen, Groningen, The Netherlands
a.arslanagic@rug.nl

2 Microsoft, Belgrade, Serbia

Abstract. Static analyses based on typestates are important in certi-
fying correctness of code contracts. Such analyses rely on Deterministic
Finite Automata (DFAs) to specify properties of an object. We target
the analysis of contracts in low-latency environments, where many use-
ful contracts are impractical to codify as DFAs and/or the size of their
associated DFAs leads to sub-par performance. To address this bottle-
neck, we present a lightweight typestate analyzer, based on an expres-
sive specification language that can succinctly specify code contracts.
By implementing it in the static analyzer Infer, we demonstrate con-
siderable performance and usability benefits when compared to existing
techniques. A central insight is to rely on a sub-class of DFAs with effi-
cient bit-vector operations.

1 Introduction

Industrial-scale software is generally composed of multiple interacting compo-
nents, which are typically produced separately. As a result, software integration
is a major source of bugs [18]. Many integration bugs can be attributed to vio-
lations of code contracts. Because these contracts are implicit and informal in
nature, the resulting bugs are particularly insidious. To address this problem,
formal code contracts are an effective solution [12], because static analyzers can
automatically check whether client code adheres to ascribed contracts.

Typestate is a fundamental concept in ensuring the correct use of contracts
and APIs. A typestate refines the concept of a type: whereas a type denotes
the valid operations on an object, a typestate denotes operations valid on an
object in its current program context [20]. Typestate analysis is a technique used
to enforce temporal code contracts. In object-oriented programs, where objects
change state over time, typestates denote the valid sequences of method calls
for a given object. The behavior of the object is prescribed by the collection of
typestates, and each method call can potentially change the object’s typestate.

Given this, it is natural for static typestate checkers, such as Fugue [9],
SAFE [23], and Infer’s Topl checker [2], to define the analysis property using
Deterministic Finite Automata (DFAs). The abstract domain of the analysis is a
set of states in the DFA; each operation on the object modifies the set of possible
reachable states. If the set of abstract states contains an error state, then the
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 322–340, 2022.
https://doi.org/10.1007/978-3-031-07727-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_18&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_18

Scalable Typestate Analysis for Low-Latency Environments 323

analyzer warns the user that a code contract may be violated. Widely applicable
and conceptually simple, DFAs are the de facto model in typestate analyses.

Here we target the analysis of realistic code contracts in low-latency envi-
ronments such as, e.g., Integrated Development Environments (IDEs) [21,22]. In
this context, to avoid noticeable disruptions in the users’ workflow, the analysis
should ideally run under a second [1]. However, relying on DFAs jeopardizes this
goal, as it can lead to scalability issues. Consider, e.g., a class with n methods
in which each method enables another one and then disables itself: the contract
can lead to a DFA with 2n states. Even with a small n, such a contract can be
impractical to codify manually and will likely result in sub-par performance.

Interestingly, many practical contracts do not require a full DFA. In our
enable/disable example, the method dependencies are local to a subset of meth-
ods: a enabling/disabling relation is established between pairs of methods. DFA-
based approaches have a whole class expressivity; as a result, local method
dependencies can impact transitions of unrelated methods. Thus, using DFAs
for contracts that specify dependencies that are local to each method (or to a
few methods) is redundant and/or prone to inefficient implementations. Based
on this observation, we present a lightweight typestate analyzer for locally depen-
dent code contracts in low-latency environments. It rests upon two insights:

1. Allowed and disallowed sequences of method calls for objects can be succinctly
specified without using DFAs. To unburden the task of specifying typestates,
we introduce lightweight annotations to specify method dependencies as anno-
tations on methods. Lightweight annotations can specify code contracts for
usage scenarios commonly encountered when using libraries such as File,
Stream, Socket, etc. in considerably fewer lines of code than DFAs.

2. A sub-class of DFAs suffices to express many useful code contracts. To
give semantics to lightweight annotations, we define Bit-Vector Finite
Automata (BFAs): a sub-class of DFAs whose analysis uses bit-vector opera-
tions. In many practical scenarios, BFAs suffice to capture information about
the enabled and disabled methods at a given point. Because this information
can be codified using bit-vectors, associated static analyses can be performed
efficiently; in particular, our technique is not sensitive to the number of BFA
states, which in turn ensures scalability with contract and program size.

We have implemented our lightweight typestate analysis in the industrial-strength
static analyzer Infer [7]. Our analysis exhibits concrete usability and performance
advantages and is expressive enough to encode many relevant typestate properties
in the literature. On average, compared to state-of-the-art typestate analyses, our
approach requires less annotations than DFA-based analyzers and does not exhibit
slow-downs due to state increase. We summarise our contributions as follows:

– A specification language for typestates based on lightweight annotations
(Sect. 2). Our language rests upon BFAs, a new sub-class of DFA based on
bit-vectors.

– A lightweight analysis technique for code contracts, implemented in Infer
(our artifact is available at [4]).1

1 Our code is available at https://github.com/aalen9/lfa.git.

https://github.com/aalen9/lfa.git

324 A. Arslanagić et al.

– Extensive evaluations for our lightweight analysis technique, which demon-
strate considerable gains in performance and usability (Sect. 4).

2 Bit-Vector Typestate Analysis

2.1 Annotation Language

We introduce BFA specifications, which succinctly encode temporal properties
by only describing local method dependencies, thus avoiding an explicit DFA
specification. BFA specifications define code contracts by using atomic combina-
tions of annotations ‘@Enable(n)’ and ‘@Disable(n)’, where n is a set of method
names. Intuitively, ‘@Enable(n) m’ asserts that invoking method m makes call-
ing methods in n valid in a continuation. Dually, ‘@Disable(n) m’ asserts that a
call to m disables calls to all methods in n in the continuation. More concretely,
we give semantics for BFA annotations by defining valid method sequences:

Definition 1 (Annotation Language). Let C = {m0, . . . ,mn} be a set of
method names where each mi ∈ C is annotated by

@Enable(Ei) @Disable(Di) mi

where Ei ⊆ C, Di ⊆ C, and Ei ∩ Di = ∅. Further, we have E0 ∪ D0 = C.
Let s = x0, x1, x2, . . . be a method sequence where each xi ∈ C. A sequence s is
valid (w.r.t. annotations) if there is no substring s′ = xi, . . . , xk of s such that
xk ∈ Di and xk �∈ Ej, for j ∈ {i + 1, . . . , k}.

The formal semantics for these specifications is given in Sect. 2.2. We note,
if Ei or Di is ∅ then we omit the corresponding annotation. Moreover, the BFA
language can be used to derive other useful annotations defined as follows:

@EnableOnly(Ei) mi
def= @Enable(Ei) @Disable(C \ Ei) mi

@DisableOnly(Di) mi
def= @Disable(Di) @Enable(C \ Ei) mi

@EnableAll mi
def= @Enable(C) mi

This way, ‘@EnableOnly(Ei) mi’ asserts that a call to method mi enables only calls
to methods in Ei while disabling all other methods in C; ‘@DisableOnly(Di) mi’
is defined dually. Finally, ‘@EnableAllmi’ asserts that a call to method mi enables
all methods in a class; ‘@DisableAll mi’ can be defined dually.

To illustrate the expressivity and usability of BFA annotations, we consider
the SparseLU class from Eigen C++ library2. For brevity, we consider represen-
tative methods for a typestate specification (we also omit return types):
1 class SparseLU {
2 void analyzePattern(Mat a);
3 void factorize(Mat a);
4 void compute(Mat a);
5 void solve(Mat b); }

2 https://eigen.tuxfamily.org/dox/classEigen 1 1SparseLU.html.

https://eigen.tuxfamily.org/dox/classEigen_1_1SparseLU.html

Scalable Typestate Analysis for Low-Latency Environments 325

1 class SparseLU {
2 states q0, q1, q2, q3;
3 @Pre(q0) @Post(q1)
4 @Pre(q3) @Post(q1)
5 void analyzePattern(Mat a);
6 @Pre(q1) @Post(q2)
7 @Pre(q3) @Post(q2)
8 void factorize(Mat a);
9 @Pre(q0) @Post(q2)

10 @Pre(q3) @Post(q2)
11 void compute(Mat a);
12 @Pre(q2) @Post(q3)
13 @Pre(q3)
14 void solve(Mat b); }

Listing (1.1) SparseLU DFA
Contract

class SparseLU {

@EnableOnly(factorize)
void analyzePattern(Mat a);

@EnableOnly(solve)
void factorize(Mat a);

@EnableOnly(solve)
void compute(Mat a);

@EnableAll
void solve(Mat b); }

Listing (1.2) SparseLU BFA
Contract

q0start q1

q2 q3

aP

factorize
compute

solve

compute, factorize

aP

solve

Fig. 1. SparseLU DFA

The SparseLU class implements a lower-upper (LU) decomposition of a sparse
matrix. Eigen’s implementation uses assertions to dynamically check that: (i)
analyzePattern is called prior to factorize and (ii) factorize or compute
are called prior to solve. At a high-level, this contract tells us that compute (or
analyzePattern().factorize()) prepares resources for invoking solve.

We notice that there are method call sequences that do not cause errors, but
have redundant computations. For example, we can disallow consecutive calls
to compute as in, e.g., sequences like ‘compute().compute().solve()’ as the
result of the first compute is never used. Further, compute is essentially imple-
mented as ‘analyzePattern().factorize()’. Thus, it is also redundant to call
factorize after compute. The DFA that substitutes dynamic checks and avoids
redundancies is given in Fig. 1. Following the literature [9], this DFA can be
annotated inside a class definition as in Listing 1.1. Here states are listed in
the class header and transitions are specified by @Pre and @Post conditions on
methods. However, this specification is too low-level and unreasonable for soft-
ware engineers to annotate their APIs with, due to high annotation overheads.

In contrast, using BFA annotations the entire SparseLU class contract can
be succinctly specified as in Listing 1.2. Here, the starting state is unspecified;
it is determined by annotations. In fact, methods that are not guarded by other
methods (like solve is guarded by compute) are enabled in the starting state. We
remark that this can be overloaded by specifying annotations on the constructor

326 A. Arslanagić et al.

method. We can specify the contract with only 4 annotations; the corresponding
DFA requires 8 annotations and 4 states specified in the class header. We remark
that a small change in local method dependencies by BFA annotations can result in
a substantial change of the equivalent DFA. Let {m1,m2,m3, . . . ,mn} be meth-
ods of some class with DFA associated (with states Q) in which m1 and m2 are
enabled in each state of Q. Adding @Enable(m2) m1 doubles the number of states
of the DFA as we need the set of states Q where m2 is enabled in each state, but
also states from Q with m2 disabled in each state. Accordingly, transitions have to
be duplicated for the new states and the remaining methods (m3, . . . ,mn).

2.2 Bit-Vector Finite Automata

We define a class of DFAs, dubbed Bit-vector Finite Automata (BFA), that cap-
tures enabling/disabling dependencies between the methods of a class leveraging
a bit-vector abstraction on typestates.

Definition 2 (Sets and Bit-vectors). Let Bn denote the set of bit-vectors of
length n > 0. We write b, b′, . . . to denote elements of Bn, with b[i] denoting the
i-th bit in b. Given a finite set S with |S| = n, every A ⊆ S can be represented by
a bit-vector bA ∈ Bn, obtained via the usual characteristic function. By a small
abuse of notation, given sets A,A′ ⊆ S, we may write A ⊆ A′ to denote the
subset operation applied on bA and bA′ (and similarly for ∪,∩).

We first define a BFA per class. Let us write C to denote the finite set of all classes
c, c′, . . . under consideration. Given a c ∈ C with n methods, and assuming a total
order on method names, we represent them by the set Σc = {m1, . . . ,mn}.

A BFA for a class with n methods considers states qb, where, following Defi-
nition 2, the bit-vector bA ∈ Bn denotes the set A ⊆ Σc enabled at that point.
We often write ‘b’ (and qb) rather than ‘bA’ (and ‘qbA ’), for simplicity. As we will
see, the intent is that if mi ∈ b (resp. mi �∈ b), then the i-th method is enabled
(resp. disabled) in qb. Definition 3 will give a mapping from methods to triples of
bit-vectors. Given k > 0, let us write 1k (resp. 0k) to denote a sequence of 1s (resp.
0s) of length k. The initial state of the BFA is then q10n−1 , i.e., the state in which
only the first method is enabled and all the other n − 1 methods are disabled.

Given a class c, we define its associated mapping Lc as follows:

Definition 3 (Mapping Lc). Given a class c, we define Lc as a mapping from
methods to triples of subsets of Σc as follows

Lc : Σc → P(Σc) × P(Σc) × P(Σc)

Given mi ∈ Σc, we shall write Ei, Di and Pi to denote each of the elements of
the triple Lc(mi). The mapping Lc is induced by the annotations in class c: for
each mi, the sets Ei and Di are explicit, and Pi is simply the singleton {mi}.

In an BFA, transitions between states qb, qb′ , · · · are determined by Lc. Given
mi ∈ Σc, we have j ∈ Ei if and only if the mi enables mj ; similarly, k ∈ Di if and
only if mi disables mk. A transition from qb labeled by method mi leads to state

Scalable Typestate Analysis for Low-Latency Environments 327

qb′ , where b′ is determined by Lc using b. Such a transition is defined only if a
pre-condition for mi is met in state qb, i.e., P ⊆ b. In that case, b′ = (b∪Ei)\Di.

These intuitions should suffice to illustrate our approach and, in particular,
the local nature of enabling and disabling dependencies between methods. The
following definition makes them precise.

Definition 4 (BFA). Given a c ∈ C with n > 0 methods, a Bit-vector Finite
Automaton (BFA) for c is defined as a tuple M = (Q,Σc, δ, q10n−1 ,Lc) where:

– Q is a finite set of states q10n−1 , qb, qb′ , . . ., where b, b′, . . . ∈ Bn;
– q10n−1 is the initial state;
– Σc = {m1, . . . ,mn} is the alphabet (method identities);
– Lc is a BFA mapping (cf. Definition 3);
– δ : Q × Σc → Q is the transition function, where δ(qb,mi) = qb′ (with b′ =

(b ∪ Ei) \ Di) if Pi ⊆ b, and is undefined otherwise.

We remark that in a BFA all states in Q are accepting states.

Example 1 (SparseLU). We give the BFA derived from the annotations in the
SparseLU example (Listing 1.2). We associate indices to methods:

[0 : constructor , 1 : aP , 2 : compute, 3 : factorize, 4 : solve]

The constructor annotations are implicit: it enables methods that are not
guarded by annotations on other methods (in this case, aP and compute). The
mapping LSparseLU is as follows:

LSparseLU = {0 	→ ({1, 2}, {}, {0}), 1 	→ ({3}, {1, 2, 4}, {1}),
2 	→ ({4}, {1, 2, 3}, {2}), 3 	→ ({4}, {1, 2, 3}, {3}), 4 	→ ({1, 2, 3}, {}, {4})}

The set of states is Q = {q1000, q1100, q0010, q0001, q1111} and the transition func-
tion δ is given by following nine transitions:

δ(q1000, constr) = q1100 δ(q1100, aP) = q0010 δ(q1100, compute) = q0010
δ(q0010, factorize) = q0001 δ(q0001, solve) = q1111 δ(q1111, aP) = q0010
δ(q1111, compute) = q0001 δ(q1111, factorize) = q0001 δ(q1111, solve) = q1111

BFAs vs DFAs. First, we need define some convenient notations:

Definition 5 (Method sequences and concatenation). We use m̃ to
denote a finite sequence of method names in Σ. Further, we use ‘·’ to denote
sequence concatenation, defined as expected.

In the following theorem, we use δ̂(qb, m̃) to denote the extension of the one-
step transition function δ(qb,mi) to a sequence of method calls (i.e., m̃). BFAs
determine a strict sub-class of DFAs. First, because all states in Q are accepting
states, BFA cannot encode the “must call” property (cf. Sect. 5). Next, we define
the context-independency property, satisfied by all BFAs but not by all DFAs:

328 A. Arslanagić et al.

Theorem 1 (Context-independency). Let M = (Q,Σc, δ, q10n−1 ,Lc) be a
BFA. Also, let L = {m̃ : δ̂(q10n−1 , m̃) = q′ ∧ q′ ∈ Q} be the language accepted by
M . Then, for mn ∈ Σc we have

1. If there is p̃ ∈ L and mn+1 ∈ Σc s.t. p̃ ·mn+1 /∈ L and p̃ ·mn ·mn+1 ∈ L then
there is no m̃ ∈ L s.t. m̃ · mn · mn+1 /∈ L.

2. If there is p̃ ∈ L and mn+1 ∈ Σc s.t. p̃ ·mn+1 ∈ L and p̃ ·mn ·mn+1 /∈ L then
there is no m̃ ∈ L s.t. m̃ · mn · mn+1 ∈ L.

Proof. Directly by Definition 4. See [3] for details.

Informally, the above theorem tells that previous calls (m̃) (i.e., context) can-
not impact the effect of a call to mn to subsequent calls (mn+1). That is,
Item 1. (resp. Item 2.) tells that method mn enables (resp. disables) the same
set of methods in any context. For example, a DFA that disallows modify-
ing a collection while iterating is not a BFA (as in Fig. 3 in [5]). Let it be a
Java Iterator with its usual methods for collection c. For the illustration, we
assume a single DFA relates the iterator and its collection methods. Then, the
sequence ‘it.hasNext;it.next;c.remove;it.hasNext’ should not be allowed,
although ‘c.remove;it.hasNext’ should be allowed. That is, c.remove disables
it.hasNext only if it.hasNext is previously called. Thus, the effect of calling
c.remove depends on the calls that precedes it.

BFAs Subsumption. Using BFAs, checking class subsumption boils down to
usual set inclusion. Suppose M1 and M2 are BFAs for classes c1 and c2, with c2
being the superclass of c1. The class inheritance imposes an important question
on how we check that c1 is a proper refinement of c2. In other words, c1 must
subsume c2: any valid sequence of calls to methods of c2 must also be valid for
c1. Using BFAs, we can verify this simply by checking annotations method-wise.
We can check whether M2 subsumes M1 only by considering their respective
annotation mappings Lc2 and Lc1 . Then, we have M2 � M1 iff for all mj ∈ Lc1

we have E1 ⊆ E2, D1 ⊇ D2, and P1 ⊆ P2 where 〈Ei,Di, Pi〉 = Lci(mj) for
i ∈ {1, 2}.

3 Compositional Analysis Algorithm

Since BFAs can be ultimately encoded as bit-vectors, for the non-compositional
case e.g., intra-procedural, standard data-flow analysis frameworks can be
employed [15]. However, in the case of member objects methods being called, we
present a compositional algorithm that is tailored for the Infer compositional
static analysis framework. We motivate our compositional analysis technique
with the example below.

Example 2. Let Foo be a class that has member lu of class SparseLU (cf. List-
ing 1.3). For each method of Foo that invokes methods on lu we compute a
symbolic summary that denotes the effect of executing that method on types-
tates of lu. To check against client code, a summary gives us: (i) a pre-condition

Scalable Typestate Analysis for Low-Latency Environments 329

1 class Foo {
2 SparseLU lu; Matrix a;
3 void setupLU1(Matrix b) {
4 this.lu.compute(this.a);
5 if (?) this.lu.solve(b); }
6 void setupLU2 () {
7 this.lu.analyzePattern(this.a);
8 this.lu.factorize(this.a); }
9 void solve(Matrix b) {

10 this.lu.solve(b); } }

Listing (1.3) Class Foo using
SparseLU

void wrongUseFoo () {
Foo foo; Matrix b;
foo.setupLU1 ();
foo.setupLU2 ();
foo.solve(b);

}

Listing (1.4) Client code for
Foo

(i.e., which methods should be allowed before calling a procedure) and (ii) the
effect on the typestate of an argument when returning from the procedure. A
simple instance of a client is wrongUseFoo in Listing 1.4.

The central idea of our analysis is to accumulate enabling and disabling
annotations. For this, the abstract domain maps object access paths to triplets
from the definition of LSparseLU. A transfer function interprets method calls in
this abstract state. We illustrate the transfer function, presenting how abstract
state evolves as comments in the following code listing.
1 void setupLU1(Matrix b) {

2 // s1 = this.lu -> ({}, {}, {})

3 this.lu.compute(this.a);

4 // s2 = this.lu -> ({solve}, {aP, factorize , compute}, {compute })

5 if (?) this.lu.solve(b); }

6 // s3 = this.lu -> ({solve , aP, factorize , compute}, {}, {compute })

7 // join s2 s3 = s4

8 // s4 = sum1 = this.lu -> ({solve}, {aP, factorize , compute}, {compute })

At the procedure entry (line 2) we initialize the abstract state as a triplet with
empty sets (s1). Next, the abstract state is updated at the invocation of compute
(line 3): we copy the corresponding tuple from LSparseLU(compute) to obtain s2
(line 4). Notice that compute is in the pre-condition set of s2. Further, given the
invocation of solve within the if-branch in line 5 we transfer s2 to s3 as fol-
lows: the enabling set of s3 is the union of the enabling set from LSparseLU(solve)
and the enabling set of s2 with the disabling set from LSparseLU(solve) removed
(i.e., an empty set here). Dually, the disabling set of s3 is the union of the dis-
abling set of LSparseLU(solve) and the disabling set of s1 with the enabling set of
LSparseLU(solve) removed. Here we do not have to add solve to the pre-condition
set, as it is in the enabling set of s2. Finally, we join the abstract states of two
branches at line 7 (i.e., s2 and s3). Intuitively, join operates as follows: (i) a method
is enabled only if it is enabled in both branches and not disabled in any branch;
(ii) a method is disabled if it is disabled in either branch; (iii) a method called in
either branch must be in the pre-condition (cf. Definition 6). Accordingly, in line
8 we obtain the final state s4 which is also a summary for SetupLU1.

Now, we illustrate checking client code wrongUseFoo() with computed sum-
maries:
1 void wrongUseFoo () {

2 Foo foo; Matrix b;

3 // d1 = foo.lu -> ({aP, compute}, {solve , factorize}, {})

330 A. Arslanagić et al.

4 foo.setupLU1 (); // apply sum1 to d1

5 // d2 = foo.lu -> ({solve}, {aP, factorize , compute}, {})

6 foo.setupLU2 (); // apply sum2 = {this.lu -> ({solve}, {aP, factorize ,

compute}, {aP}) }

7 // warning! ‘analyzePattern ’ is in pre of sum2 , but not enabled in d2

8 foo.solve(b); }

Above, at line 2 the abstract state is initialized with annotations of con-
structor Foo. At the invocation of setupLU1() (line 4) we apply sum1 in the
same way as user-entered annotations are applied to transfer s2 to s3 above.
Next, at line 6 we can see that aP is in the pre-condition set in the summary
for setupLU2() (sum2), computed similarly as sum1, but not in the enabling
set of the current abstract state d2. Thus, a warning is raised: foo.lu set up by
foo.setupLU1() is never used and overridden by foo.setupLU2().

Class Composition. In the above example, the allowed orderings of method
calls to an object of class Foo are imposed by the contracts of its object members
(SparseLU) and the implementation of its methods. In practice, a class can have
multiple members with their own BFA contracts. For instance, class Bar can use
two solvers SparseLU and SparseQR:

1 class Bar {

2 SparseLU lu; SparseQR qr; /* ... */ }

where class SparseQR has its own BFA contract. The implicit contract of Bar
depends on contracts of both lu and qr. Moreover, a class as Bar can be a
member of some other class. Thus, we refer to those classes as composed and to
classes that have declared contracts (as SparseLU) as base classes.

Integrating Aliasing. Now, we discuss how aliasing information can be inte-
grated with our technique. In Example 2 member lu of object foo can be aliased.
Thus, we keep track of BFA triplets for all base members instead of constructing
an explicit BFA contract for a composed class (e.g., Foo). Further, we would need
to generalize an abstract state to a mapping of alias sets to BFA triplets. That
is, the elements of abstract state would be {a1, a2, . . . , an} 	→ 〈E,D,P 〉 where
{a1, a2, . . . , an} is a set of access paths. For example, when invoking method
setupLU1 we would need to apply its summary (sum1) to triplets of each alias
set that contains foo.lu as an element. Let d1 = {S1 	→ t1, S2 	→ t2, . . .} be
an abstract state where S1 and S2 are the only keys such that foo.lu ∈ Si for
i ∈ {1, 2} and t1 and t2 are some BFA triplets.
1 // d1 = S1 -> t1, S2 -> t2, ...
2 foo.setupLU1 (); // apply sum1 = {this.lu -> t3}
3 // d2 = S1 -> apply t3 to t1, S2 -> apply t3 to t2, ...

Above, at line 2 we would need to update bindings of S1 and S2 (.resp) by apply-
ing an BFA triplet for this.foo from sum1, that is t3, to t1 and t2 (.resp). The
resulting abstract state d2 is given at line 4. We remark that if a procedure does
not alter aliases, we can soundly compute and apply summaries, as shown above.

Algorithm. We formally define our analysis, which presupposes the control-flow
graph (CFG) of a program. Let us write AP to denote the set of access paths.

Scalable Typestate Analysis for Low-Latency Environments 331

Access paths model heap locations as paths used to access them: a program
variable followed by a finite sequence of field accesses (e.g., foo.a.b). We use
access paths as we want to explicitly track states of class members. The abstract
domain, denoted D, maps access paths AP to BFA triplets:

D : AP →
⋃

c∈C
Cod(Lc)

As variables denoted by an access path in AP can be of any declared class c ∈ C,
the co-domain of D is the union of codomains of Lc for all classes in a program.
We remark that D is sufficient for both checking and summary computation, as
we will show in the remaining of the section.

Definition 6 (Join Operator). We define
⊔

: Cod(Lc)×Cod(Lc) → Cod(Lc)
as follows: 〈E1,D1, P1〉�〈E2,D2, P2〉 = 〈E1 ∩ E2\(D1∪D2), D1∪D2, P1∪ P2〉.
The join operator on Cod(Lc) is lifted to D by taking the union of un-matched
entries in the mapping.

The compositional analysis is given in Algorithm 1. It expects a program’s
CFG and a series of contracts, expressed as BFAs annotation mappings (Def-
inition 3). If the program violates the BFA contracts, a warning is raised. For
the sake of clarity we only return a boolean indicating if a contract is violated
(cf. Definition 8). In the actual implementation we provide more elaborate error
reporting. The algorithm traverses the CFG nodes top-down. For each node v,
it first collects information from its predecessors (denoted by pred(v)) and joins
them as σ (line 3). Then, the algorithm checks whether a method can be called
in the given abstract state σ by predicate guard() (cf. Algorithm 2). If the pre-
condition is met, then the transfer() function (cf. Algorithm3) is called on a
node. We assume a collection of BFA contracts (given as Lc1 , . . . ,Lck), which is
input for Algorithm1, is accessible in Algorithm 3 to avoid explicit passing. Now,
we define some useful functions and predicates. For the algorithm, we require
that the constructor disabling set is the complement of the enabling set:

Definition 7 (well formed(Lc)). Let c be a class, Σ methods set of class c,
and Lc. Then, well formed(Lc) = true iff Lc(constr) = 〈E,Σ \ E,P 〉.
Definition 8 (warning(·)). Let G be a CFG and L1, . . . ,Lk be a collection
of BFAs. We define warning(G,L1, . . . ,Lk) = true if there is a path in G that
violates some of Li for i ∈ {1, . . . , k}.
Definition 9 (exit node(·)). Let v be a method call node. Then, exit node(v)
denotes exit node w of a method body corresponding to v.

Definition 10 (actual arg(·)). Let v = Call−node[mj(p0 : b0, . . . , pn : bn)] be
a call node where p0, . . . , pn are formal and b0, . . . , bn are actual arguments and
let p ∈ AP. We define actual arg(p, v) = bi if p = pi for i ∈ {0, . . . , n}, otherwise
actual arg(p, v) = p.

For convinience, we use dot notation to access elements of BFA triplets:

332 A. Arslanagić et al.

Algorithm 1: BFA Compositional Analysis
Data: G : A program’s CFG, a collection of BFA mappings: Lc1 , . . . , Lck over

classes c1, . . . ck such that well formed(Lci) for i ∈ {1, . . . , k}
Result: warning(G, Lc1 , . . . , Lck)

1 Initialize NodeMap : Node → D as an empty map;
2 foreach v in forward(G)) do
3 σ =

⊔
w∈pred(v) w;

4 if guard(v, σ) then NodeMap[v] := transfer(v,σ); else return True;

5 return False

Algorithm 2: Guard Predicate
Data: v : CFG node, σ : Domain
Result: False iff v is a method call that cannot be called in σ

1 Procedure guard (v, σ)
2 switch v do
3 case Call-node[mj(p0 : b0, . . . , pn : bn)] do
4 Let w = exit node(v);
5 for i ∈ {0, . . . , n} do
6 if σw[pi].P ∩ σ[bi].D �= ∅ then return False;
7 return True

8 otherwise do
9 return True

Definition 11 (Dot notation for BFA triplets). Let σ ∈ D and p ∈ AP.
Further, let σ[p] = 〈Eσ,Dσ, Pσ〉. Then, we have σ[p].E = Eσ, σ[p].D = Dσ, and
σ[p].P = Pσ.

Guard Predicate. Predicate guard(v, σ) checks whether a pre-condition for
method call node v in the abstract state σ is met (cf. Algorithm 2). We rep-
resent a call node as mj(p0 : b0, . . . , pn : bn) where pi are formal and bi are
actual arguments (for i ∈ {0, . . . , n}). Let σw be a post-state of an exit node of
method mj . The pre-condition is met if for all bi there are no elements in their
pre-condition set (i.e., the third element of σw[bi]) that are also in disabling
set of the current abstract state σ[bi]. For this predicate we need the property
D = Σci \E, where Σci is a set of methods for class ci. This is ensured by condi-
tion well formed(Lci) (Definition 7) and by definition of transfer() (see below).

Transfer Function. The transfer function is given in Algorithm3. It distin-
guishes between two types of CFG nodes:

Entry-node: (lines 3–6) This is a function entry node. For simplicity we
represent it as mj(p0, . . . , pn) where mj is a method name and p0, . . . , pn are
formal arguments. We assume p0 is a reference to the receiver object (i.e., this).
If method mj is defined in class ci that has user-supplied annotations Lci , in
line 5 we initialize the domain to the singleton map (this mapped to Lci(mj)).

Scalable Typestate Analysis for Low-Latency Environments 333

Algorithm 3: Transfer Function
Data: v : CFG node, σ : Domain
Result: Output abstract state σ′ : Domain

1 Procedure transfer (v, σ)
2 switch v do
3 case Entry-node[mj(p0, . . . , pn)] do
4 Let ci be the class of method mj(p0, . . . , pn);
5 if There is Lci then return {this �→ Lci(mj)};
6 else return EmptyMap ;

7 case Call-node[mj(p0 : b0, . . . , pn : bn)] do
8 Let σw be an abstract state of exit node(v);
9 Initialize σ′ := σ;

10 if this not in σ′ then
11 for ap in dom(σw) do
12 ap′ = actual arg(ap{b0/this}, v);
13 if ap′ in dom(σ) then
14 E′ = (σ[ap′].E ∪ σw[ap].E) \ σw[ap].D;
15 D′ = (σ[ap′].D ∪ σw[ap].D) \ σw[ap].E;
16 P ′ = σ[ap′].P ∪ (σw[ap].P \ σ[ap′].E);
17 σ′[ap′] = 〈E′, D′, P ′〉;
18 else
19 σ′[ap′] := σw[ap];

20 return σ′

21 otherwise do
22 return σ

Otherwise, we return an empty map meaning that a summary has to be com-
puted.

Call-node: (lines 7–20) We represent a call node as mj(p0 : b0, . . . , pn : bn)
where we assume actual arguments b0, . . . , bn are access paths for objects and b0
represents a receiver object. The analysis is skipped if this is in the domain (line
10): this means the method has user-entered annotations. Otherwise, we trans-
fer an abstract state for each argument bi, but also for each class member whose
state is updated by mj . Thus, we consider all access paths in the domain of σw,
that is ap ∈ dom(σw) (line 11). We construct access path ap′ given ap. We distin-
guish two cases: ap denotes (i) a member and (ii) a formal argument of mj . By line
12 we handle both cases. In the former case we know ap has form this.c1.cn.
We construct ap′ as ap with this substituted for b0 (actual arg(·) is the identity
in this case, see Definition 10): e.g., if receiver b0 is this.a and ap is this.c1.cn

then ap′ = this.a.c1.cn. In the latter case ap denotes formal argument pi and
actual arg(·) returns corresponding actual argument bi (as pi{b0/this} = pi). Now,
as ap′ is determined we construct its BFA triplet. If ap′ is not in the domain of σ
(line 13) we copy a corresponding BFA triplet from σw (line 19). Otherwise, we
transfer elements of anBFA triplet at σ[ap′] as follows. The resulting enabling set is
obtained by (i) adding methods that mj enables (σw[ap].E) to the current enabling

334 A. Arslanagić et al.

set σ[ap′].E, and (ii) removing methods that mj disables (σw[ap].D), from it. The
disabling set D′ is constructed in a complementary way. Finally, the pre-condition
set σ[ap′].P is expanded with elements of σw[ap].P that are not in the enabling set
σ[ap′].E. We remark that the property D = Σci \ E is preserved by the definition
of E′ and D′. Transfer is the identity on σ for all other types of CFG nodes. We can
see that for each method call we have constant number of bit-vector operations per
argument. That is, BFA analysis is insensitive to the number of states, as a set of
states is abstracted as a single set.

Note, in our implementation we use several features specific to Infer:
(1) Infer’s summaries which allow us to use a single domain for intra and
inter procedural analysis; (2) scheduling on CFG top-down traversal which sim-
plify the handling of branch statements. In principle, BFA can be implemented
in other frameworks e.g., IFDS [19].

Correctness. In a BFA, we can abstract a set of states by the intersection of
states in the set. That is, for P ⊆ Q all method call sequences accepted by
each state in P are also accepted by the state that is the intersection of bits of
states in the set. Theorem 2 formalizes this property. First we need an auxiliary
definition; let us write Cod(·) to denote the codomain of a mapping:

Definition 12 (� · �(·)). Let 〈E,D,P 〉 ∈ Cod(Lc) and b ∈ Bn. We define
�〈E,D,P 〉�(b) = b′ where b′ = (b ∪ E) \ D if P ⊆ b, and is undefined otherwise.

Theorem 2 (BFA ∩-Property). Let M = (Q,Σc, δ, q10n−1 ,Lc), P ⊆ Q, and
b∗ =

⋂

qb∈P b, then

1. For m ∈ Σc, it holds: δ(qb,m) is defined for all qb ∈ P iff δ(qb∗ ,m) is defined.
2. Let σ = Lc(m). If P ′ = {δ(qb,m) : qb ∈ P} then

⋂

qb∈P ′ b = �σ�(b∗).

Proof. By induction on cardinality of P and Definition 4. See [3] for details.

Our BFA-based algorithm (Algorithm 1) interprets method call sequences in
the abstract state and joins them (using join from Definition 6) following the
control-flow of the program. Thus, we can prove its correctness by separately
establishing: (1) the correctness of the interpretation of call sequences using a
declarative representation of the transfer function (Definition 13) and (2) the
soundness of join operator (Definition 6). For brevity, we consider a single pro-
gram object, as method call sequences for distinct objects are analyzed indepen-
dently. We define the declarative transfer function as follows:

Definition 13 (dtransferc(·)). Let c ∈ C be a class, Σc be a set of methods of
c, and Lc be a BFA. Further, let m ∈ Σc be a method, 〈Em,Dm, Pm〉 = Lc(m),
and 〈E,D,P 〉 ∈ Cod(Lc). Then,

dtransferc(m, 〈E,D,P 〉) = 〈E′,D′, P ′〉
where E′ = (E ∪ Em)\Dm, D′ = (D ∪ Dm)\Em, and P ′ = P ∪ (Pm \ E),
if Pm ∩ D = ∅, and is undefined otherwise. Let m1, . . . ,mn,mn+1 be a method
sequence and φ = 〈E,D,P 〉, then

dtransferc(m1, . . . ,mn,mn+1, φ) = dtransferc(mn+1, dtransferc(m1, . . . ,mn, φ))

Scalable Typestate Analysis for Low-Latency Environments 335

Relying on Theorem 2, we state the soundness of join:

Theorem 3 (Soundness of �). Let qb ∈ Q and φi = 〈Ei,Di, Pi〉 for i ∈
{1, 2}. Then, �φ1�(b) ∩ �φ2�(b) = �φ1 � φ2�(b).

Proof. By Definitions 6 and 12, and set laws. See [3] for details.

With these auxiliary notions in place, we show the correctness of the transfer
function (i.e., summary computation that is specialized for the code checking):

Theorem 4 (Correctness of dtransferc(·)). Let M = (Q,Σ, δ, q10n−1 ,Lc). Let
qb ∈ Q and m1 . . . mn ∈ Σ∗. Then

dtransferc(m1 . . .mn, 〈∅, ∅, ∅, 〉) = 〈E′,D′, P ′〉 ⇐⇒ δ̂(qb,m1 . . . mn) = qb′

where b′ = �〈E′,D′, P ′〉�(b).
Proof. By induction on the length of the method call sequence. See [3] for details.

4 Evaluation

We evaluate our technique to validate the following two claims:

Claim-I: Smaller annotation overhead. The BFA contract annotation
overheads are smaller in terms of atomic annotations (e.g., @Post(...),
@Enable(...)) than both competing analyses.

Claim-II: Improved scalability on large code and contracts. Our analysis
scales better than the competing analyzers for our use case on two dimensions,
namely, caller code size and contract size.

Experimental Setup. We used an Intel(R) Core(TM) i9-9880H CPU at
2.3 GHz with 16 GB of physical RAM running macOS 11.6 on the bare-metal.
The experiments were conducted in isolation without virtualization so that run-
time results are robust. All experiments shown here are run in single-thread for
Infer 1.1.0 running with OCaml 4.11.1.

We implement two analyses in Infer, namely BFA and DFA, and use the
default Infer typestate analysis Topl as a baseline comparison. More in details:
(1) BFA: The Infer implementation of the technique described in this paper.
(2) DFA: A lightweight DFA-based typestate implementation based on an DFA-
based analysis implemented in Infer. We translate BFA annotations to a mini-
mal DFA and perform the analysis. (3) Topl: An industrial typestate analyzer,
implemented in Infer [2]. This typestate analysis is designed for high preci-
sion and not for low-latency environments. It uses Pulse, an Infer memory
safety analysis, which provides it with alias information. We include it in our
evaluation as a baseline state-of-the-art typestate analysis, i.e., an off-the-shelf
industrial strength tool we could hypothetically use. We note our benchmarks
do not require aliasing and in theory Pulse is not required.

336 A. Arslanagić et al.

We analyze a benchmark of 18 contracts that specify common patterns of
locally dependent contract annotations for a class. Moreover, we auto-generate
122 client programs parametrized by lines of code, number of composed classes,
if-branches, and loops. Note, the code is such that it does not invoke the need
for aliasing (as we do not support it yet in our BFA implementation). Client
programs follow the compositional patterns we described in Example 2; which
can also be found in [13]. The annotations for BFA are manually specified; from
them, we generate minimal DFAs representations in DFA annotation format and
Topl annotation format.

Our use case is to integrate static analyses in interactive IDEs e.g., Microsoft
Visual Studio Code [21], so that code can be analyzed at coding time. For this
reason, our use case requires low-latency execution of the static analysis. Our
SLA is based on the RAIL user-centric performance model [1].

Usability Evaluation. Figure 2 outlines the key features of the 18 contracts we
considered, called CR-1 – CR-18. In [3] we detail CR-4 as an example. For each
contract, we specify the number of methods, the number of DFA states the con-
tract corresponds to, and number of atomic annotation terms in BFA, DFA, and
Topl. An atomic annotation term is a standalone annotation in the given anno-
tation language. We can observe that as the contract sizes increase in number of
states, the annotation overhead for DFA and Topl increase significantly. On the
other hand, the annotation overhead for BFA remain largely constant wrt. state
increase and increases rather proportionally with the number of methods in a
contract. Observe that for contracts on classes with 4 or more methods, a man-
ual specification using DFA or Topl annotations becomes impractical. Overall,
we validate Claim-I by the fact that BFA requires less annotation overhead on
all of the contracts, making contract specification more practical.

Performance Evaluation. Recall that we distinguish between base and com-
posed classes: the former have a user-entered contract, and the latter have con-
tracts that are implicitly inferred based on those of their members (that could
be either base or composed classes themselves). The total number of base classes
in a composed class and contract size (i.e., the number of states in a minimal
DFA that is a translation of a BFA contract) play the most significant roles in
execution-time. In Fig. 3 we present a comparison of analyzer execution-times

Contract #methods #states #BFA #DFA #TOPL
CR-1 3 2 3 5 9
CR-2 3 3 5 5 14
CR-3 3 5 4 8 25
CR-4 5 5 5 10 24
CR-5 5 9 8 29 71
CR-6 5 14 9 36 116
CR-7 7 18 12 85 213
CR-8 7 30 10 120 323
CR-9 7 41 12 157 460

Contract #methods #states #BFA #DFA #TOPL
CR-10 10 85 18 568 1407
CR-11 14 100 17 940 1884
CR-12 14 1044 32 7766 20704
CR-13 14 1628 21 13558 33740
CR-14 14 2322 21 15529 47068
CR-15 14 2644 24 26014 61846
CR-16 16 3138 29 38345 88134
CR-17 18 3638 23 39423 91120
CR-18 18 4000 27 41092 101185

Fig. 2. Details of the 18 contracts in our evaluation.

Scalable Typestate Analysis for Low-Latency Environments 337

(y-axis) with contract size (x-axis), where each line in the graph represents a
different number of base classes composed in a given class (given in legends).

Comparing BFA Analysis Against DFA Analysis. Figure 3a compares various
class compositions (with contracts) specified in the legend, for client programs of
500-1K LoC. The DFA implementation sharply increases in execution-time as the
number of states increases. The BFA implementation remains rather constant,
always under the SLA of 1 s. Overall, BFA produces a geometric mean speedup
over DFA of 5.52×. Figure 3b compares various class compositions for client
programs of 15K LoC. Both implementations fail to meet the SLA; however,
the BFA is close and exhibits constant behaviour regardless of the number of
states in the contract. The DFA implementation is rather erratic, tending to
sharply increase in execution-time as the number of states increases. Overall,
BFA produces a geometric mean speedup over DFA of 1.5×.

0.1 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Number of states [k states]

T
im

e
[in

s]

BFA vs DFA

BFA: 4
DFA: 4
BFA: 6
DFA: 6
BFA: 8
DFA: 8
BFA: 10
DFA: 10

(a) DFA vs execution comparison on com-
posed contracts (500-1k LoC)

5 10 20 30 40 50 60 70 80 90

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

Number of states

T
im

e
[in

s]

BFA vs DFA

BFA: 8
DFA: 8
BFA: 20
DFA: 20

(b) DFA vs execution comparison on com-
posed contracts (15k LoC)

0.1 0.5 1 1.5 2 2.5 3 3.5 4

100

101

102

Number of states [k states]

T
im

e
[in

s]

BFA vs TOPL

BFA: 4
TOPL: 4
BFA: 6
TOPL: 6
BFA: 8
TOPL: 8
BFA: 10
TOPL: 10

(c) Topl vs comparison on composed con-
tracts (500-1k LoC)

5 10 20 30 40 50 60 70 80 90

3
5

10

20

30

40

50

60

Number of states

T
im

e
[in

s]

BFA vs TOPL

BFA: 8
TOPL: 8
BFA: 20
TOPL: 20

(d) Topl vs comparison on composed con-
tracts (15k LoC)

Fig. 3. Runtime comparisons. Each line represents a different number of base classes
composed in a client code.

338 A. Arslanagić et al.

Comparing BFA-Based Analysis vs TOPL Typestate Implementations (Execution
Time). Here again client programs do not require aliasing. Figure 3c compares
various class compositions for client programs of 500-1K LoC. The Topl imple-
mentation sharply increases in execution-time as the number of states increases,
quickly missing the SLA. In contrast, the BFA implementation remains con-
stant always under the SLA. Overall, BFA produces a geometric mean speedup
over Topl of 6.59×. Figure 3d compares various class compositions for client
programs of 15K LoC. Both implementations fail to meet the SLA. The Topl
implementation remains constant until ∼30 states and then rapidly increases in
execution time. Overall, BFA produces a geometric mean speedup over Topl of
287.86×.

Overall, we validate Claim-II by showing that our technique removes state as
a factor of performance degradation at the expense of limited but suffice contract
expressively. Even when using client programs of 15K LoC, we remain close to
our SLA and with potential to achieve it with further optimizations.

5 Related Work

We focus on comparisons with restricted forms of typestate contracts. We refer to
the typestate literature [6,8,9,16,20] for a more general treatment. The work [14]
proposes restricted form of typestates tailored for use-case of the object con-
struction using the builder pattern. This approach is restricted in that it only
accumulates called methods in an abstract (monotonic) state, and it does not
require aliasing for supported contracts. Compared to our approach, we share
the idea of specifying typestate without explicitly mentioning states. On the
other hand, their technique is less expressive than our annotations. They cannot
express various properties we can (e.g., the property “cannot call a method”).
Similarly, [11] defines heap-monotonic typestates where monotonicity can be seen
as a restriction. It can be performed without an alias analysis.

Recent work on the Rapid analyzer [10] aims to verify cloud-based APIs
usage. It combines local type-state with global value-flow analysis. Locality of
type-state checking in their work is related to aliasing, not to type-state specifica-
tion as in our work. Their type-state approach is DFA-based. They also highlight
the state explosion problem for usual contracts found in practice, where the set
of methods has to be invoked prior to some event. In comparison, we allow more
granular contract specifications with a very large number of states while avoid-
ing an explicit DFA. The Fugue tool [8] allows DFA-based specifications, but
also annotations for describing specific resource protocols contracts. These anno-
tations have a locality flavor—annotations on one method do not refer to other
methods. Moreover, we share the idea of specifying typestate without explicitly
mentioning states. These additional annotations in Fugue are more expressive
than DFA-based typestates (e.g. “must call a release method”). We conjecture
that “must call” property can be encoded as bit-vectors in a complementary way
to our BFA approach. We leave this extension for future work.

Scalable Typestate Analysis for Low-Latency Environments 339

Our annotations could be mimicked by having a local DFA attached to each
method. In this case, the DFAs would have the same restrictions as our anno-
tation language. We are not aware of prior work in this direction. We also note
that while our technique is implemented in Infer using the algorithm in Sect. 2,
the fact that we can translate typestates to bit-vectors allows typestate analy-
sis for local contracts to be used in distributive dataflow frameworks, such as
IFDS [19], without the need for modifying the framework for non-distributive
domains [17].

6 Concluding Remarks

In this paper, we have tackled the problem of analyzing code contracts in low-
latency environments by developing a novel lightweight typestate analysis. Our
technique is based on BFAs, a sub-class of contracts that can be encoded as bit-
vectors. We believe BFAs are a simple and effective abstraction, with substantial
potential to be ported to other settings in which DFAs are normally used.

Acknowledgements. We are grateful to the anonymous reviewers for their construc-
tive remarks. This work has been partially supported by the Dutch Research Council
(NWO) under project No. 016.Vidi.189.046 (Unifying Correctness for Communicating
Software).

References

1. RAIL model. https://web.dev/rail/. Accessed 30 Sep 2021
2. Infer TOPL (2021). https://fbinfer.com/docs/checker-topl/
3. Arslanagić, A., Subotić, P., Pérez, J.A.: Scalable Typestate Analysis for Low-

Latency Environments (Extended Version). CoRR abs/2201.10627 (2022). https://
arxiv.org/abs/2201.10627

4. Arslanagić, A., Subotić, P., Pérez, J.A.: LFA checker: scalable typestate analysis
for low-latency environments (2022). https://doi.org/10.5281/zenodo.6393183

5. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: Pro-
ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, pp. 301–320. OOPSLA 2007,
Association for Computing Machinery, New York, NY, USA (2007). https://doi.
org/10.1145/1297027.1297050

6. Bodden, E., Hendren, L.: The Clara framework for hybrid typestate analysis. Int.
J. Softw. Tools Technol. Transf. 14(3), 307–326 (2012)

7. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

8. Deline, R., Fähndrich, M.: The fugue protocol checker: is your software baroque?
Technical report MSR-TR-2004-07, Microsoft Research, April 2004

9. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24851-4 21

https://web.dev/rail/
https://fbinfer.com/docs/checker-topl/
https://arxiv.org/abs/2201.10627
https://arxiv.org/abs/2201.10627
https://doi.org/10.5281/zenodo.6393183
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21

340 A. Arslanagić et al.

10. Emmi, M., et al.: RAPID: checking API usage for the cloud in the cloud. In:
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1416–
1426. ESEC/FSE 2021, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3468264.3473934

11. Fahndrich, M., Leino, R.: Heap monotonic typestate. In: Proceedings of
the first International Workshop on Alias Confinement and Ownership
(IWACO), July 2003. https://www.microsoft.com/en-us/research/publication/
heap-monotonic-typestate/

12. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18070-5 2

13. Jakobsen, M., Ravier, A., Dardha, O.: Papaya: global typestate analysis of aliased
objects. In: 23rd International Symposium on Principles and Practice of Declara-
tive Programming. PPDP 2021, Association for Computing Machinery, New York,
NY, USA (2021). https://doi.org/10.1145/3479394.3479414

14. Kellogg, M., Ran, M., Sridharan, M., Schäf, M., Ernst, M.D.: Verifying object
construction. In: ICSE 2020, Proceedings of the 42nd International Conference on
Software Engineering. Seoul, Korea, May 2020

15. Khedker, U., Sanyal, A., Sathe, B.: Data Flow Analysis: Theory and Practice. CRC
Press, Boca Raton (2017). https://books.google.rs/books?id=9PyrtgNBdg0C

16. Lam, P., Kuncak, V., Rinard, M.: Generalized typestate checking using set inter-
faces and pluggable analyses. SIGPLAN Not. 39(3), 46–55 (2004). https://doi.org/
10.1145/981009.981016

17. Naeem, N.A., Lhoták, O., Rodriguez, J.: Practical extensions to the IFDS algo-
rithm. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 124–144. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-11970-5 8

18. Paul, R., Turzo, A.K., Bosu, A.: Why security defects go unnoticed during code
reviews? A case-control study of the chromium OS project. In: 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22–
30 May 2021, pp. 1373–1385. IEEE (2021). https://doi.org/10.1109/ICSE43902.
2021.00124

19. Reps, T., Horwitz, S., Sagiv, M.: precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 49–61. POPL 1995, Association
for Computing Machinery, New York, NY, USA (1995). https://doi.org/10.1145/
199448.199462

20. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986). https://doi.
org/10.1109/TSE.1986.6312929

21. Subotić, P., Milikić, L., Stojić, M.: A static analysis framework for data science
notebooks. In: ICSE 2022: The 44th International Conference on Software Engi-
neering, 21–29 May 2022

22. Szabó, T., Erdweg, S., Voelter, M.: IncA: a DSL for the definition of incremental
program analyses. In: Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 320–331. ASE 2016, Association
for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/
2970276.2970298

23. Yahav, E., Fink, S.: The SAFE Experience, pp. 17–33. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19823-6 3

https://doi.org/10.1145/3468264.3473934
https://www.microsoft.com/en-us/research/publication/heap-monotonic-typestate/
https://www.microsoft.com/en-us/research/publication/heap-monotonic-typestate/
https://doi.org/10.1007/978-3-642-18070-5_2
https://doi.org/10.1145/3479394.3479414
https://books.google.rs/books?id=9PyrtgNBdg0C
https://doi.org/10.1145/981009.981016
https://doi.org/10.1145/981009.981016
https://doi.org/10.1007/978-3-642-11970-5_8
https://doi.org/10.1109/ICSE43902.2021.00124
https://doi.org/10.1109/ICSE43902.2021.00124
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1007/978-3-642-19823-6_3

PhD Symposium Presentations

Studying Users’ Willingness to Use
a Formally Verified Password Manager

Carolina Carreira(B)

INESC-ID and IST, University of Lisbon, Lisbon, Portugal

carolina.carreira@tecnico.ulisboa.pt

Abstract. Password Managers (PMs) help users manage their pass-
words safely but many users do not trust them. To mitigate users’ doubts,
formal verification can be used. Formal verification can guarantee the
absence of errors and make PMs more reliable. Nonetheless, the impact
it has on the adoption of formally verified software is unknown. In pre-
vious work, we performed a preliminary user study which suggests that
formal verification increases users’ willingness to use PMs. However, a
large-scale study is required to confirm our findings. As such we designed
and plan to deploy a large-scale study to confirm our previous work and
gather further insight on users’ perceptions of formal verification in PMs.

Keywords: Usable security · Formal verification · Password manager

1 Introduction

While text passwords are one of the most used security mechanisms, users fail to
use them effectively and safely [8,10,12,14]. To combat this, experts recommend
the use of Password Managers (PMs) to help users generate and manage their
passwords. However, their adoption is low as users do not trust PMs [13]. For-
mal verification can provide strong assurances, making software more reliable.
Previous uses of formal verification in password security include the creation of
certified password composition policy (PCP) enforcement software [3] and the
use of Coq to model PCPs [6].

A formally verified PM that guarantees properties (e.g. on password gener-
ation [1,4,5]) was built in the context of the PassCert project1. Even though
formal verification could help increase users’ trust, we do not know the impact
it effectively has on users. Therefore, we designed the first user-studies on users’
perceptions of formal verification. Preliminary results from a first study suggest
that formal verification has a positive impact on users’ willingness to use PMs [1].
A second, larger-scale, study is now being designed.

Our main goals are to gather insights on users’ perceptions of formal verifica-
tion in PMs and to assess if formal verification has an impact on their willingness
to use PMs.

1 The PassCert project aims to build a formally verified PM and to investigate ways
to effectively convey to users the formally verified properties. Project URL: https://
passcert-project.github.io.

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 343–346, 2022.
https://doi.org/10.1007/978-3-031-07727-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_19&domain=pdf
https://passcert-project.github.io
https://passcert-project.github.io
https://doi.org/10.1007/978-3-031-07727-2_19

344 C. Carreira

2 Current Work

Our current work gathers conclusions from two studies on PMs and formal ver-
ification. This section briefly describes these two studies.

2.1 First Study

In the first small-scale study with 15 users, we compare a baseline PM (without
formal verification) with a PM that includes visual aids (icons) to highlight
formally verified features and brief explanations about them. Our goal was to
gather preliminary insights on users’ overall perception of formal verification in
PMs. The emerging themes from the interviews were: (a) Users associated formal
verification with security; (b) The use of formal verification may have increased
some users’ trust; (c) Users may be more willing to use a formally verified PM [1].

2.2 Second Study

To confirm the preliminary results obtained in the first study, we designed a
large-scale study focused on the impact that formal verification has on PMs’
users. Specifically, in this second study, we aim to answer:

RQ1. How does formal verification impact users’ willingness to use PMs?
RQ2. What features would users like to see formally verified in a PM?
RQ3. Do users value the guarantees that formal verification can provide in PMs?

The design process of this study includes the use of techniques more adequate
for large-scale surveys such as Likert scales and closed survey questions. To
immerse users in the topic of a formally verified PMs we use vignette scenarios,
which describe a protagonist faced with a realistic situation pertaining to the
construct under consideration [7]. This study will be deployed in Prolific2.

To answer RQ1 we present a scenario where we explain what is a PM and
we ask users what factors impact their willingness to use a PM. Among these,
we include formal verification. If users state that formal verification would affect
their willingness to use a PM, we ask why. With this question, we hope to under-
stand why users value (or not) the use of formal verification in PMs. The insights
gathered here may provide relevant information about how users perceive formal
verification in software and may be applied to other domains (e.g., Decentralized
Finance Protocols [2]).

To answer RQ2 and RQ3 we begin by gathering all the common features of
a PM (e.g. Password Generator and Clipboard clearing). For each of these, we
present scenarios that represent the impact that formal verification can have on
each feature. For example, for the Password Generator, the scenario is: “Imagine
that you are creating a new account on a website (e.g. twitter, facebook). To
increase security, you ask the Password Manager to generate a password with 7

2 Prolific is a crowd-sourcing platform that enables large scale user studies by con-
necting research and users https://prolific.com.

https://prolific.com

Studying Users’ Willingness to Use a Formally Verified Password Manager 345

characters and with at least 2 numbers. However, the password generated does
not include any numbers.” After each scenario, we ask users if that scenario
would make them stop using a PM with a 5-point Likert agreement scale.

To minimize the introduction of biases, when designing these scenarios we: (a)
remove mentions of formal verification; (b) randomize the order of the scenario
descriptions; (c) remove jargon (e.g. “memory” and “encrypted”). By presenting
the advantages of formal verification and excluding the term “formal verification”
we aim to: (i) mitigate the Hawthorne effect3 by hiding that the study is about
formal verification; (ii) and better understand what specific advantages of formal
verification users find important in PMs.

Another important concern is the sample of participants taking part in the
study. To help characterize it we ask demographic questions (e.g., age, gender,
and ethnicity) and questions specific to our study, including questions about
users’ previous experience with PMs.

Users’ perceptions when using a product are influenced by their assumptions
about it (e.g. previous experience or recommendations from friends can shape
users trust in a website [11]). As we are studying the impact of formal verification,
it is thus important to understand if users are familiar with the concept. With
this goal in mind we ask questions about users’ familiarity with the term “formal
verification” and ask them to define it.

3 Conclusion and Impact

Investigating users’ views of formal verification is largely unexplored. We hope
to fill a gap in knowledge with the first large-scale user study on users’ views of
formal verification in PMs. Our work will provide insights on users’ motivations
and may be used to increase the adoption of PMs.

Correctly identifying where formal verification is valued by users will help
understanding the priorities for future implementations of formally verified fea-
tures in PMs. These insights may lead to: (i) the formally verification of features
not yet formally verified; (ii) and, a higher adoption of PMs by matching the
users’ preferences with the software that is offered to them.

We also anticipate that our findings can be applied to other domains where
formal verification is used. Learning about users’ current perceptions of formal
verification will enable us to address identified issues and misconceptions [2].
Moreover, our methodology can easily be replicated in other domains by ade-
quately adapting the scenarios mentioned in Sect. 2.2.

Acknowledgments. I thank João F. Ferreira, Alexandra Mendes, Nicholas Christin,
and Sarah Pearman for their valuable and constructive support. This work was par-
tially funded by the PassCert project, a CMU Portugal Exploratory Project funded
by Fundação para a Ciência e Tecnologia (FCT), with reference CMU/TIC/0006/2019
and supported by national funds through FCT under project UIDB/50021/2020.

3 Hawthorne effect consists in users being inclined to agree with researchers [9].

346 C. Carreira

References

1. Carreira, C., Ferreira, J.F., Mendes, A.: Towards improving the usability of pass-
word managers. InFORUM (2021)

2. Carreira, C., Ferreira, J.F., Mendes, A., Christin, N.: Exploring usable security to
improve the impact of formal verification: a research agenda. In: First Workshop
on Applicable Formal Methods (Co-located with Formal Methods 2021) (2021)

3. Ferreira, J.F., Johnson, S., Mendes, A., Brooke, P.: Certified password quality:
a case study using Coq and Linux pluggable authentication modules. In: 13th
International Conference on Integrated Formal Methods (2017)

4. Grilo, M., Campos, J., Ferreira, J.F., Mendes, A., Almeida, J.B.: Verified password
generation from password composition policies. In: 17th International Conference
on Integrated Formal Methods (2022)

5. Grilo, M., Ferreira, J.F., Almeida, J.B.: Towards formal verification of password
generation algorithms used in password managers. arXiv:2106.03626 (2021)

6. Johnson, S., Ferreira, J.F., Mendes, A., Cordry, J.: Skeptic: automatic, justified
and privacy-preserving password composition policy selection. In: 15th ACM Asia
Conference on Computer and Communications Security (2020)

7. Lavrakas, P.J.: Encyclopedia of Survey Research Methods. Sage Publications,
Thousand Oaks (2008)

8. Lyastani, S.G., Schilling, M., Fahl, S., Backes, M., Bugiel, S.: Better managed than
memorized? Studying the impact of managers on password strength and reuse. In:
27th USENIX Security Symposium (USENIX Security 2018), pp. 203–220 (2018)

9. Merrett, F.: Reflections on the Hawthorne effect. Educ. Psychol. 26(1), 143–146
(2006). https://doi.org/10.1080/01443410500341080

10. Pearman, S., Zhang, S.A., Bauer, L., Christin, N., Cranor, L.F.: Why people (don’t)
use password managers effectively. In: Fifteenth Symposium on Usable Privacy and
Security, pp. 319–338. USENIX Association, Santa Clara, CA (2019)

11. Seckler, M., Heinz, S., Forde, S., Tuch, A.N., Opwis, K.: Trust and distrust on
the web: user experiences and website characteristics. Comput. Human Behav. 45,
39–50 (2015)

12. Shay, R., et al.: Can long passwords be secure and usable? In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp. 2927–2936
(2014). https://doi.org/10.1145/2556288.2557377

13. Silver, D., Jana, S., Boneh, D., Chen, E., Jackson, C.: Password managers: attacks
and defenses. In: 23rd USENIX Security Symposium, pp. 449–464 (2014)

14. Ur, B., et al.: “I Added ’ !’ at the End to Make It Secure”: observing password
creation in the lab. In: Eleventh Symposium On Usable Privacy and Security, pp.
123–140 (2015)

http://arxiv.org/abs/2106.03626
https://doi.org/10.1080/01443410500341080
https://doi.org/10.1145/2556288.2557377

Modeling Explanations in Autonomous
Vehicles

Akhila Bairy(B)

Department of Computing Science, Universität Oldenburg, Oldenburg, Germany

akhila.bairy@uni-oldenburg.de

Abstract. This research approach deals with rational methods for gen-
erating explanations provided by autonomous vehicles. The first part
concerns a new model for generating explanation content. In the second
part, we describe a method for providing explanations at time instants
demanding less cognitive workload using game theory.

Keywords: Explanation · Autonomous vehicles · Conflict resolution ·
Game theory · SAT · Trust

1 Introduction

The autonomous vehicle (AV) vision includes the idea to reduce the number
of accidents caused by human error during driving. However in order for AVs
to establish themselves on the market, public acceptance of AVs is required.
One way of increasing trust, and thus acceptance, is through situational aware-
ness [10] by providing explanations of AV decisions and actions [2,4–6]. Several
research approaches exist on providing an explanation [2,4]. In addition to the
type of explanation, also its timing and relevance are crucial to ensure trust [2].

2 Related Work and Current Progress

There are two directions in which an explanation can flow. One is unidirec-
tional explanation provided by the automated cyber physical systems (ACPS)
to humans. For the ACPS to be accepted by people, they need to make accu-
rate predictions and help the public to understand how they reached their predic-
tions [5]. The other type of explanation is bidirectional debates to understand the
AV’s actions and its conflict resolution. Conflicts could be the incompatibility of
goals between occupants, control systems in the car or supervisory control in each
dynamic driving situation. An increase in conflicts would decrease the acceptance
of the system. Current constraint solvers, such as Conflict Driven Clause Learn-
ing (CDCL) [7] and Craig Interpolation (CI) [8], achieve their results by exploiting

Supported by Research Training Group (RTG) “Social Embeddedness of Autonomous
Cyber Physical Systems” (SEAS) at Universität Oldenburg.

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 347–351, 2022.
https://doi.org/10.1007/978-3-031-07727-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_20&domain=pdf
http://orcid.org/0000-0002-8796-1474
https://doi.org/10.1007/978-3-031-07727-2_20

348 A. Bairy

methods providing concise logical explanations of conflicts. Existing methods for
conflict resolution are built on global introspection into the constraint problem.
Our approach to tackling conflicts is a conflict resolution strategy using CI and
propositional logic which utilises only the locally available variables.

Fig. 1. Stylized traffic scenario

To understand the need for
this method, a real-world scenario
is presented in Fig. 1. In Fig. 1a,
cars allowed to exit the highway
are highlighted in orange. The ego
car shown in green is granted the
right to bypass the traffic jam,
leading to an expected arrival in
one hour and 15 min. Here, the
goals of individuals and the high-
way supervisory control would be
non-conflicting. Figure 1b depicts
a hypothetic further development
of the situation, in which a
medical emergency situation has
occurred in a neighbouring car,
which is then (Fig. 1c) signalled
to the supervisory control sys-
tem and the neighbouring cars.
The supervisory control system
now gives priority to this request
by granting the corresponding car
rights to bypass the traffic jam,
and simultaneously withdraws the right to bypass the traffic jam from the ego
car (Fig. 1d). Now there exists a potential conflict between the goals of the ego
car driver, of the supervisory system (prevent clogging of the side-road), and the
car with the medical situation (quickly obtain medical support). Acceptance of
the supervisory system’s conflict resolution strategy by the driver in the ego car,
and consequently future acceptance of the whole assistance system, will depend
on factors such as the personal criticality level of reaching the destination in
time (Fig. 1e).

A1 I1 B1
A2 I2 B2
. . .
. . .
. . .

An In Bn

∨Ai

I

∧Bi

B

I

I ′

B

Fig. 2. CI based model for explanation
generation

Our model (Fig. 2) takes into con-
sideration different scenarios and cre-
ates interpolants for each scenario.
Then, all these interpolants are com-
bined to get a new, simpler interpolant.
This model is being implemented in
iSAT [3]. According to CI [1], if there
exists an implication A → B in some
logic, then a Craig interpolant I is such
that A → I and I → B are valid and I
contains only the common variables of

Modeling Explanations in Autonomous Vehicles 349

A and B. Figure 2 is based on CI; A1,2,..,n and B1,2,..,n represent A-local and
B-local symbols; I1,2,..,n represents the interpolants for these n scenarios. I is
the combined interpolant. I ′ (interpolant of an interpolant) is the new simpler
interpolant of I and it represents concise explanation extracted using locally
available information.

The above mentioned method is helpful in conflict resolution. But there is
more to an explanation than just conflict resolution. Explanations in AVs can be
divided into two types: content and timing. The most commonly explored types
in explanation content are: (1) what (2) why and (3) what + why [4]. There are
also counterfactual explanations: “what if”, which details alternatives and could
be invaluable in situations where the occupant is called back for taking control,
but very little research is done on this for AVs [9]. Explanation timing refers to
the timing when an explanation is provided (before or after an event) [14]. Timing
can also be based on the attention level/cognitive workload of the occupant; i.e.,
does the occupant have low or high workload? Shen et al., in their online survey
with 38 different driving scenarios, found that attentive participants needed more
explanation [11]. Explanations are not required in all scenarios [13]; they are
required only in emergency or near-crash situations [11].

Scenario
occurring
at time ts

Wait until ts − t

t argmin(WL(t))
Human

AV

Expl.

Workload

(WL)

Fig. 3. Conceptual Expl. model using a reactive game

Our aim is to exploit
reactive game theory to
tweak explanation tim-
ing to minimise cogni-
tive workload. Our app-
roach to this uses a reac-
tive game explanation
mechanism with the AV
and the occupant as the
two players. Figure 3 shows a scenario occurring at time ts. The AV waits until
time ts− t to provide an explanation to the human. The induced cognitive work-
load (WL) of the human is measured and the explanation timing t is updated.
This process repeats whenever the scenario is encountered, iteratively optimising
the timing. The reactive game builds on the SEEV model [12], which is an atten-
tion model, to provide a stochastic dynamic model on when the occupant would
start their own attention strategy (WL) scanning environmental conditions at
corresponding cognitive effort. The explanation mechanism moves by the AV in
the game represent decisions on whether and when to display an explanation.
The explanation also induces cognitive cost, albeit lower cost than an attention
shift. So, timely explanations may save overall accumulated cognitive cost by
rendering an imminent attention superfluous. Untimely/redundant explanations
do however increase overall cost. Construction of a winning strategy in such a
game would thus provide a rational mechanism for deciding about explanation
display and optimising their timing.

350 A. Bairy

3 Conclusion and Future Work

This paper presents an overview of explanation generation models using SAT
and game theory. The next step is to test SAT model on different scenarios and
extend it to produce counterfactual explanations. The goals of this project are to
generate explanations using the chosen strategy in a way that is understandable
to the occupants in real-time and to improve the trust of the humans in AVs.

References

1. Craig, W.: Linear reasoning. a new form of the Herbrand-Gentzen theorem. J.
Symb. Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

2. Du, N., et al.: Look who’s talking now: Implications of AV’s explanations on driver’s
trust, AV preference, anxiety and mental workload. CoRR abs/1905.08878 (2019).
http://arxiv.org/abs/1905.08878

3. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure. J.
Satisf. Boolean Model. Comput. 1(3–4), 209–236 (2007). https://doi.org/10.3233/
sat190012

4. Koo, J., Kwac, J., Ju, W., Steinert, M., Leifer, L., Nass, C.: Why did my car just do
that? Explaining semi-autonomous driving actions to improve driver understand-
ing, trust, and performance. Int. J. Interact. Des. Manuf. (IJIDeM) 9(4), 269–275
(2014). https://doi.org/10.1007/s12008-014-0227-2

5. Koo, J., Shin, D., Steinert, M., Leifer, L.: Understanding driver responses to voice
alerts of autonomous car operations. Int. J. Veh. Des. 70(4), 377–392 (2016).
https://doi.org/10.1504/IJVD.2016.076740

6. Körber, M., Prasch, L., Bengler, K.: Why do I have to drive now? Post hoc expla-
nations of takeover requests. Hum. Factors 60(3), 305–323 (2018). https://doi.org/
10.1177/0018720817747730

7. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: an efficient SAT solver. In: Hoos,
H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 360–375. Springer,
Heidelberg (2005). https://doi.org/10.1007/11527695 27

8. McMillan, K.: Applications of Craig interpolation to model checking. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 22–23.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30124-0 3

9. Omeiza, D., Kollnig, K., Webb, H., Jirotka, M., Kunze, L.: Why not explain?
Effects of explanations on human perceptions of autonomous driving. In: Interna-
tional IEEE Conference on Advanced Robotics and Its Social Impacts, pp. 194–199.
IEEE (2021). https://doi.org/10.1109/ARSO51874.2021.9542835

10. Petersen, L., Robert, L., Yang, X.J., Tilbury, D.M.: Situational awareness, driver’s
trust in automated driving systems and secondary task performance. CoRR
abs/1903.05251 (2019). http://arxiv.org/abs/1903.05251

11. Shen, Y., et al.: To explain or not to explain: a study on the necessity of expla-
nations for autonomous vehicles. CoRR abs/2006.11684 (2020). https://arxiv.org/
abs/2006.11684

12. Wickens, C., Helleberg, J., Goh, J., Xu, X., Horrey, W.: Pilot task management:
testing an attentional expected value model of visual scanning. Savoy, IL, UIUC
Institute of Aviation Technical report (2001)

https://doi.org/10.2307/2963593
http://arxiv.org/abs/1905.08878
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.1007/s12008-014-0227-2
https://doi.org/10.1504/IJVD.2016.076740
https://doi.org/10.1177/0018720817747730
https://doi.org/10.1177/0018720817747730
https://doi.org/10.1007/11527695_27
https://doi.org/10.1007/978-3-540-30124-0_3
https://doi.org/10.1109/ARSO51874.2021.9542835
http://arxiv.org/abs/1903.05251
https://arxiv.org/abs/2006.11684
https://arxiv.org/abs/2006.11684

Modeling Explanations in Autonomous Vehicles 351

13. Wiegand, G., Eiband, M., Haubelt, M., Hussmann, H.: ”I’d like an explanation
for that!” exploring reactions to unexpected autonomous driving. In: MobileHCI
2020: 22nd International Conference on HCI with Mobile Devices and Services, pp.
36:1–36:11. ACM (2020). https://doi.org/10.1145/3379503.3403554

14. Zhang, Q., Yang, X.J., Robert, L.P.: What and when to explain? A survey of
the impact of explanation on attitudes toward adopting automated vehicles. IEEE
Access 9, 159533–159540 (2021). https://doi.org/10.1109/ACCESS.2021.3130489

https://doi.org/10.1145/3379503.3403554
https://doi.org/10.1109/ACCESS.2021.3130489

A Requirements-Driven Methodology:
Formal Modelling and Verification
of an Aircraft Engine Controller

Oiśın Sheridan(B), Rosemary Monahan, and Matt Luckcuck

Department of Computer Science/Hamilton Institute,
Maynooth University, Maynooth, Ireland

oisin.sheridan.2019@mumail.ie

Abstract. The formal verification of software systems often requires the
integration of multiple tools and techniques. To ensure the accuracy of
any verification done and to ensure the applicability of formal methods
to industrial use cases, traceability must be maintained throughout the
process so that it is clear what the requirements for the system are and
how they are fulfilled. We propose a three-phase methodology for formal
verification with the aim of ensuring traceability, built around the Formal
Requirements Elicitation Tool (FRET). Our current case study applies
this methodology to the use of FRET, Simulink and Event-B for the
verification of the software controller for a civilian aircraft engine.

Keywords: Software verification · Formal methods · FRET · Event-B

1 Overview

Despite the wide applicability of formal methods in industrial applications, par-
ticularly safety-critical domains such as aerospace, offshore oil and gas, and the
nuclear industry, uptake of formal techniques in industry has historically been
slow. To remedy this, the VALU3S project1 aims to evaluate the state-of-the-art
verification and validation (V&V) methods and tools and their application to a
number of use cases across different sectors.

We have been working on the elicitation of formal requirements for a software
controller using the Formal Requirements Elicitation Tool (FRET), an open
source tool developed by NASA that allows requirements to be encoded in a
structured natural-language called FRETISH [1]. These requirements can be
automatically translated into other formalisms, and the use of FRET reduces
ambiguity and simplifies the verification process.
1 The VALU3S project: https://valu3s.eu/.

This research was funded by the European Union’s Horizon 2020 research and inno-
vation programme under the VALU3S project (grant No 876852), and by Enterprise
Ireland (grant No IR20200054). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 352–356, 2022.
https://doi.org/10.1007/978-3-031-07727-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_21&domain=pdf
https://valu3s.eu/
https://doi.org/10.1007/978-3-031-07727-2_21

A Requirements-Driven Methodology 353

Our example application is a software controller for a civilian aircraft engine;
the model of the controller in Simulink was provided by our industrial partner
on the VALU3S project. The controller is a representative example of a Full
Authority Digital Engine Control (FADEC), which is a software system moni-
toring and controlling everything about the engine, including thrust control, fuel
control, health monitoring of the engine, and so on. The controller’s high-level
objectives are that it should continue to control the engine and respect specified
operating limits in the presence of various sensor faults, perturbations of system
parameters, and other low-probability hazards.

In this research, we address two main research questions:

1. Can we accurately support traceability of formalised requirements in the
implementation of (safety-)critical systems using a combination of formal and
non-formal methods?

2. How can we reuse diverse V&V artefacts (proofs, models, etc.) to modularise
and simplify the software verification process?

We are interested in the integration of multiple software V&V techniques,
to provide a framework for reasoning about the correctness of concrete software
implementations with respect to their abstract software models, to provide and
evaluate practical tool support for software engineers. To this end, we propose
a three-phase methodology for the verification of software systems.

2 Three-Phase Methodology

Phase 1: Eliciting
and Formalising
Requirements

Phase 2A:
FRET-Supported

Toolchain

Phase 2B:
FRET-Guided

Toolchain

Phase 3:
Verification Report

Fig. 1. High-Level Flowchart of
our Methodology. After Phase 1 is
complete, Phases 2A and 2B can
occur in parallel. Phases 2A and
2B can both highlight deficiencies
in the requirements, prompting a
return to Phase 1.

Our workflow takes requirements in natural-
language and a Simulink diagram as input,
and enables the formal verification of the sys-
tem’s design against the requirements. In the
case of our current use case, these require-
ments and Simulink model have been provided
by our industrial partner on the VALU3S
project. Our approach is split into three dis-
tinct phases, shown in Fig. 1. First, in Phase
1 we elicit and formalise the natural lan-
guage requirements using FRET. Then we
move on to formal verification either sup-
ported (Phase 2A) or guided (Phase 2B) by
FRET. The ‘FRET-Supported’ toolchain uses
FRET’s built-in translation function to pro-
duce contracts in the CoCoSpec language that
can be incorporated into a Simulink diagram.
The ‘FRET-Guided’ toolchain uses the formalised requirements to drive the
(manual) translation into other formal methods as chosen by the verifier. Both
verification phases can be applied in parallel. Finally, Phase 3 involves the assem-
bly of a verification report to capture the verification results and traceability of

354 O. Sheridan et al.

requirements. The methodology is presented in full in [2]. A report on our expe-
rience using FRET is presented in [3].

3 ‘FRET-Guided’ Modelling

The current focus of this PhD is on Phase 2B of our methodology, ‘FRET-
Guided’ verification in Event-B. A flowchart of this phase is shown in Fig. 2.

Fig. 2. Flowchart of Phase 2B: Verifica-
tion guided by FRET requirements. The
circular nodes are start and end points,
the rectangular nodes are processes, the
diamond nodes are decisions, and the
rhomboid nodes are inputs or outputs.

Rather than using a direct trans-
lation of the FRET requirements, the
elicited semi-formal requirements and the
Simulink model of the software controller
are used to construct a formal model in
the Event-B language, which can then
be verified. Event-B is a set-theoretic
modelling language that supports formal
refinement [4]. Event-B has been used to
verify models of cyber-physical systems,
similar to our case study [5]. However,
unlike this previous work, our goal is to
model the behaviour of the entire engine
control system, rather than using Event-
B to model a particular self-contained
algorithm. Work has also been done on
using FRET as a basis for runtime mon-
itoring with Copilot in [6], rather than
theorem proving with Event-B.

Event-B offers an intuitive path to
constructing a model of the Simulink dia-
gram. We use a context to define vari-
ables external to the system we want to
model; in this case, we have a compos-
ite input signal including operating lim-
its for the engine (e.g. the shaft speed
limit) and commands from the pilot (e.g.
the desired thrust). Within the Event-
B machine itself, we model the blocks
from the system diagram as events where
the guards are that the respective input
variables have been set, and which then
apply the specified function and set the
variables representing their outputs. By
using the Simulink block diagram as a
basis and incorporating a consistent naming scheme to tie the events to their
respective blocks, we can easily preserve traceability between the models.

Once the Simulink diagram has been adequately modelled, we can refine
the Event-B model by incorporating the semi-formal FRETISH requirements

A Requirements-Driven Methodology 355

as additional guards and invariants. If a conflict is found between the require-
ments and the existing model, we can return to the Simulink diagram to check
whether this represents an error in the translation to Event-B or a failure of
the diagram to meet the requirement in question. We may also find an error in
the requirements themselves, prompting a return to the requirements elicitation
phase.

4 Future Work

After modelling the system in Event-B, we will compare the verification process
in Phase 2A and 2B of our methodology, investigating how both techniques
can be utilised in parallel to reuse V&V artefacts to modularise and simplify
the software verification process. We will also look into techniques to formally
guarantee consistency in translation between models and ensure traceability in
both directions, such as using institution theory to verify the translation or
checking the Event-B model against the LTL specification using ProB.

Additionally, we are looking at ways to improve FRET with new function-
ality. Currently, FRET allows the user to define informal parent-child relation-
ships between requirements, but we would like to expand this to support true
formal refinement. This would be a great aid to both the requirements elicita-
tion process and supporting traceability alongside other formalisms. We are also
working on applying refactoring techniques to FRETISH requirements. Refac-
toring would minimise duplication of information across requirements, and so
would streamline the elicitation process and remove opportunities for error. We
discuss refactoring in full in [7].

References

1. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation of
formal requirements from structured natural language. In: Madhavji, N., Pasquale,
L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 19–35. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44429-7 2

2. Luckcuck, M., Farrell, M., Sheridan, O., Monahan, R.: A methodology for developing
a verifiable aircraft engine controller from formal requirements. In: IEEE Aerospace
Conference (2022)

3. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: Fretting about requirements:
formalised requirements for an aircraft engine controller. In: Gervasi, V., Vogelsang,
A. (eds) Requirements Engineering: Foundation for Software Quality 2022. LNCS,
vol. 13216, pp. 96–111. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
98464-9 9

4. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

5. Bourbouh, H., et al.: Integrating formal verification and assurance: an inspection
rover case study. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
(eds.) NFM 2021. LNCS, vol. 12673, pp. 53–71. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-76384-8 4

https://doi.org/10.1007/978-3-030-44429-7_2
https://doi.org/10.1007/978-3-030-98464-9_9
https://doi.org/10.1007/978-3-030-98464-9_9
https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4

356 O. Sheridan et al.

6. Perez, I., Mavridou, A., Pressburger, T., Goodloe, A., Giannakopoulou, D.: Auto-
mated Translation of Natural Language Requirements to Runtime Monitors. In:
Fisman, D., Rosu, G. (eds) Tools and Algorithms for the Construction and Analy-
sis of Systems 2022. LNCS, vol. 13243, pp. 387–395. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-99524-9 21

7. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: Towards Refactoring
FRETish Requirements. (2022). https://arxiv.org/abs/2201.04531. (to appear)

https://doi.org/10.1007/978-3-030-99524-9_21
https://doi.org/10.1007/978-3-030-99524-9_21
https://arxiv.org/abs/2201.04531

A Dialogue Interface for Low Code
Program Evolution

Lúıs Carvalho(B)

NOVA LINCS - NOVA University of Lisbon, Lisbon, Portugal

la.carvalho@campus.fct.unl.pt

Abstract. Low code development platforms allow for the design,
deployment, and maintenance of software applications through a graph-
ical user interface which is targeted, primarily, at non-expert users.
Despite the graphical interface being more accessible than plain text
programming, the end user still needs to identify and put together the
required building blocks to achieve the intended behavior, and this gen-
erally requires some basic knowledge of programming. To tackle this
problem, I present an approach to low code programming by introduc-
ing a dialogue interface to such platforms.

A dialogue interface allows the user to write natural language instruc-
tions stating what they want in the application. The dialogue is mapped
to an ontology representation. From these facts and the current state of
the application, we infer a set of operations which must be applied to
fulfill the user intent and reach the desired state ensuring that, at each
interaction, we only apply the necessary operations.

1 Introduction

In this document, I propose an approach to designing a dialogue interface for
program evolution, specifically targeting low code applications such as the Out-
sytems Platform [1]. In this setting, an application is typically described in terms
of high-level components which can be manipulated graphically on the screen.

The core contribution of this work is a program synthesizer that takes natural
language instructions regarding the development of a low code application as
input, and generates the appropriate operations to satisfy those instructions.
This involves having an abstract representation of the application state, as well as
mapping the natural language sentences to ontology facts. The domain of those
facts represents abstract application components such as actions (e.g. Show) and
collections (e.g. MultiValue).

The approach presented in this document proposes to ensure that, given an
abstract system representation of a low code application, and a set of ontology
facts, we are able to infer which operations to apply in order to guarantee that the
application will transition from its current state to the state intended from the
natural language instructions. Consider the example of an application containing
only a database entity products with attribute name. A user stating “I want to

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 357–360, 2022.
https://doi.org/10.1007/978-3-031-07727-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_22&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_22

358 L. Carvalho

see a list of products with name and price in the Homepage” would result in
applying 1) an operation to add the price attribute to the products entity; 2)
an operation to create a screen called Homepage; and 3) an operation to create a
table of product records with columns name and price in the Homepage screen.
The design of this tool involves four critical aspects which are detailed in the
following section.

2 Approach

Generate ontology facts fromnatural language instructions.The first step
in the pipeline is to semantically represent a natural language utterance into
an instruction ontology. The approach presented in [4] is used to map the user
utterances to ontology facts. The authors define an ontology domain which
models generic concepts for describing application components in low code plat-
forms, such as the Outsytems Platform. If needed, the system can ask questions
to the user to clarify the intendedmeaning of the user utterance. As an example,
some of the concepts inferred from the interaction described in the Introduction,
would be: MultiValue(products), Location(Homepage), Show(products,
Homepage), IsComposedOf(produts, price).

Abstract system representation. The pipeline described here uses an
abstract representation of an application in the style of [3]. An application
comprises a set of entities (e.g. database tables), screens, database queries
(associated with each screen), and template instances (e.g. a table of records
or a record creation form). We infer the initial system representation from the
current application state. To do so, we start by inferring which abstract com-
ponents are present in the application. For instance, if the application already
contains a database entity called E with a set of attributes A, then the ini-
tial system representation will contain Entity(E, A). Finally, we also infer
which ontology facts would yield such a representation. Following the same
example, by inversion of rule (Entity), we can infer the fact MultiValue(E).
This allows the system representation to be manipulated by either our natu-
ral language tool or the low code platform in which the application is being
developed.

Infer system components. From the total set of ontology facts (both from
the dialogue and from the initial application state, as described in the
previous paragraph) we can infer what abstract components will need to
be present in the system to satisfy the user instructions. A simple rule-
based inference system is used, partially shown in Fig. 1, which is then
applied in a forward-chaining fashion. At this stage we infer, from the
ontology facts, which entities, screens, queries, and templates will com-
prise the next state of the application. As an example, consider the sen-
tence “I want to see a list of products in the Homepage.”, and its cor-
responding ontology facts: MultiValue(products), Location(Homepage),
Show(products, Homepage). Then, from rules (Entity), (Query-Ent) and

A Dialogue Interface for Low Code Program Evolution 359

MultiValue(E)
Entity(E , {}) (Entity)

Show(E ,L) Location(L)Entity(E ,T)
Query(N ,L, {}, {E}, {}, {}) (Query-Ent)

Show(E ,L) Location(L) MultiValue(E)
Query(N ,L,S ,C ,F ,W) E ∈ F

Template(List, k, L,Query(N ,L,S ,C ,F ,W))
(Temp-List)

Fig. 1. Inference rules for entities, queries, and list templates.

(S,Entity(E ,T);Entity(E ,T), D)
update

(S,Entity(E ,T);D)
(Update-Entity)

Fig. 2. Transition rule for updating entities.

(Temp-List) (Fig. 1), we can infer that the system will have a products
entity, a query on the products table, and a template instance for that same
query in the screen Homepage.

Compute system deltas and generate operations. The last stage of the
pipeline involves computing the deltas between the system components that
we infer and the existing components in the application, generating abstract
operations for these deltas, and finally compiling them to a specific low code
platform. For this, we use a labeled transition system. These are rules of
the form (S;D) label−−−→ (S′;D′), where S represents the current state of the
system and D represents the components that are inferred from the user
instructions. Each transition indicates what deltas need to be applied, and
the label corresponds to the abstract operation that needs to be executed
in order to obtain the desired state. Consider the previous example of an
application with an existing products table with attribute name. If, from the
user instructions, we infer the component Entity(products, {name, price}),
then, by rule (Update-Entity) (Fig. 2), we will generate an operation to
update the entity.

3 Conclusions

We have developed a the tool that supports the development of simple web and
mobile applications targeting the Outsystems Platform [1]. In this setting, we
are able to create and update screens, queries, database tables and template
instances (record list, detail form, and searchable list) [2] in an existing appli-
cation. The prototype allows the input of natural language sentences which are
ultimately compiled to operations in the Outsystems application model using
the approach presented in this document. Future work involves adding support
for nested data representations (e.g. one-to-many relationships), as well as static
analysis to ensure the soundness of the labeled transition system, in particular

360 L. Carvalho

ensuring that the operations are applied in a correct order, and a mechanism to
identify and allow the upgrade between compatible template types (e.g. update
a list of records to become a searchable list of records).

Acknowledgements. This work is supported by FCT/MCTES under Grant NOVA
LINCS - UIDB/04516/2020 and GOLEM Lisboa-01-0247-Feder-045917.

References

1. Outsystems: The modern application development platform. https://www.
outsystems.com/platform/

2. Hugo Lourenço, Carla Ferreira, J.C.S.: OSTRICH - a type-safe Template Language
for Low-Code Development. In: 2021 ACM/IEEE 24th International Conference on
Model Driven Engineering Languages and Systems (MODELS), pp. 216–226 (2021)

3. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)

4. Silva, J., Melo, D., Rodrigues, I., Seco, J., Ferreira, C., Parreira, J.: An ontology
based task oriented dialogue. In: Proceedings of the 13th International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineering and Knowledge Management
- KEOD, pp. 96–107. INSTICC, SciTePress (2021)

https://www.outsystems.com/platform/
https://www.outsystems.com/platform/

Simple Dependent Types for OSTRICH

Joana Parreira(B)

NOVA LINCS - NOVA University Lisbon, Lisbon, Portugal
jb.parreira@campus.fct.unl.pt

Abstract. The demand to develop more applications and in a faster
way has been increasing over the years. Even non-experienced developers
are jumping into the market thanks to low-code development platforms
such as OutSystems. OSTRICH, a type-safe rich template language for
the OutSystems platform, allows for the definition and instantiation of
type-safe templates while ensuring a clear separation between compile-
time and runtime computations. We formalise this two-stage language
and introduce new features to the OSTRICH language, namely para-
metric polymorphism and a simplified form of dependent types. Such
features enable instantiating the most commonly used OutSystems tem-
plates, reducing the knowledge required by the developer and easing the
development process.

Keywords: Staged computation · Dependent types · Parametric
polymorphism · Meta-programming · Low-code · Template

1 Introduction

With the increasing demand in the application development market, more inex-
perienced programmers started to build applications. Several metaprogramming
tools and low-code development platforms emerged to aid software develop-
ment [5–7].

OutSystems [5] is a low-code development platform with an intuitive visual
interface that automatically manages several details about deployment, stream-
lining the development process. This platform contains reusable pre-built screens,
such as lists, and dashboards, that aid and speed up the development of an appli-
cation. So, for instance, if one were to build an application that lists elements
on a screen, one could select a pre-built screen containing a list. However, such
pre-built screens pose a problem: they contain temporary dummy data, meaning
that developers must manually adjust them to their data to ensure that their
application works as expected. Often, such adjustments require the developer to
have a good understanding of programming basics. This contributes to a steeper
learning curve, hindering the use and adoption of the platform.

That is the motivation behind the development of the OSTRICH language.
OSTRICH is a rich type-safe template language for OutSystems [4]. This lan-
guage supports the definition and instantiation of templates with input param-
eters. Templates, in this setting, are analogous to the previously mentioned pre-
built screens, but their input parameters are the data to which the template
c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 361–364, 2022.
https://doi.org/10.1007/978-3-031-07727-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_23&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_23

362 J. Parreira

Template Parameters
e : Entity<N, R>

attr : Attribute<N', T>

Column
Title = attr.DisplayName

Expression
Value = (NameOf e).List.Current.(LabelOf attr)

Fig. 1. Model fragment of a template definition and its expressions.

is applied. This language eases the developer’s work by automatically adapting
the template to the received parameters, thus avoiding time-consuming error-
prone manual adjustments. The automated adjustments are defined by annota-
tion nodes present in the language. These nodes contain expressions built during
instantiation according to the template input parameters.

However, to create templates based on the most used pre-built screens, some
templates require additional verifications and constraints regarding the input
parameters [4]. To address this problem, we extend OSTRICH with new features.
We introduce polymorphic functions and dependency between type declarations,
allowing the definition of templates for more than half of the screen instantiations
in OutSystems.

2 Approach

The OutSystems model comprises several user interface elements (tables, wid-
gets, and others), database elements (entities and their attributes), and annota-
tion elements. During template instantiation, the values of nodes’ properties can
be compile-time expressions, like the title of a column that depends on the name
of an attribute (available at compile-time), or runtime expressions, like the val-
ues of an attribute’s entity displayed in a table cell (only available at runtime).
Figure 1 depicts an example of a template definition containing various nodes
and both compile-time and runtime expressions.

We formalise OSTRICH, a language that guarantees that all template instan-
tiations are valid and produce valid runtime expressions by ensuring phase dis-
tinction [1] to prevent dependencies between compile-time and runtime expres-
sions; OSTRICH accomplishes this through staged computation [3,4,6,7].

That means it is a multi-stage language with a typechecking algorithm that
reports both type and phase errors, thus ensuring that runtime and compile-
time expressions are well-formed before execution. The algorithm (Algorithm1)
detects phase errors using a supplementary environment, r-env, that maps run-
time variables to their types. This restricts the typing of runtime expressions so
that they only enclose other runtime expressions and variables from r-env.

We can delve into Fig. 1, specifically the runtime expression:

(NameOf e) � List � Current � (LabelOf attr)

Notice the variables e and attr are compile-time variables. When instanti-
ated in compile-time with an entity Product and its attribute Description, for
example, this expression evaluates to Product � List � Current � Description,

Simple Dependent Types for OSTRICH 363

Algorithm 1. Typechecking algorithm (partial)
input

expression: Term � term expression to be typed
c-env: Env � compile-time environment
r-env: Env � runtime environment

1: function typeOf(expression, c-env, r-env)
2: match expression with
3: x | x : τ ∈ c-env � τ
4: u | u : τ ∈ r-env � Box(τ)

5: NameOf(M) | typeOf(M, c-env, r-env) = Entity(N, τ) �
6: Box({List : {Current : RecordAttr(N)}})
7: LabelOf(M) | typeOf(M, c-env, r-env) = Attribute(N, τ) �
8: Box(LabelAttr(N, τ))
9: box(M) | typeOf(M, Empty, r-env) = τ � Box(τ)

10: let box u = M1 in M2 | typeOf(M1, c-env, r-env) = Box(τ1)

11: and typeOf(M2, c-env, r-env ∪{u �→ τ1}) = τ2 � τ2
12: M1 � M2 | typeOf(M1, c-env, r-env) = {Li : τi i∈1..n}
13: and typeOf(M2, c-env, r-env) = Lj j∈1..n � τj
14: M1 � M2 | typeOf(M1, c-env, r-env) = RecordAttr(N)
15: and typeOf(M2, c-env, r-env) = LabelAttr(N ′, τ)

16: and N = N ′ � τ
17: end

which is a runtime expression that may be later evaluated. Both NameOf and
LabelOf are compile-time built-in functions that receive compile-time argu-
ments (e and attr) and evaluate as runtime expressions, thus securing the well-
formedness of the overall expression.

Inspired by [3], we delimit runtime expressions using a box constructor and
use the let box destructor to compose such expressions with other runtime
subexpressions. Hence, the previous expression example is written as follows:

let box name = NameOf e in

let box label = LabelOf attr in

box(name � List � Current � label)

Algorithm 1 shows part of the typechecking algorithm necessary for typing
this expression. Note, in line 9, that a boxed expression is typed solely according
to its runtime environment (the compile-time environment is empty). Also, the
let box sentence (lines 10 and 11) only accepts runtime expressions, as declared
by its first guard.

Often, some templates require the verification of dependencies between types
of parameters to ensure some relation between values. For instance, the template
depicted in Fig. 1 requires type dependency verification due to the aforemen-
tioned runtime expression. Within an entity, we can only access its attributes,
and therefore attr must be an attribute of entity e for the whole expression to
be well-typed. We ensure it through the entity and attribute types, the resulting

364 J. Parreira

types of the functions NameOf (lines 5 and 6 of Algorithm 1) and LabelOf (lines
7 and 8), and the selection operation type represented as “ �” (lines 12 and 13).

Besides, both functions (NameOf and LabelOf) are implemented as paramet-
ric polymorphic [2] functions, meaning they can be applied to different entities
with different numbers and types of attributes while maintaining full-static type
safety.

3 Conclusions

To summarise, in this work, we formalise a multi-stage language, OSTRICH,
paired with some extensions, such as the abstraction of types and names, and
dependencies between type declarations. These extensions help create more Out-
Systems templates with increasing variety and possibilities, easing the applica-
tion development process in this low-code development platform.

There is still plenty of room for improvement in future work by extending the
restrictions and dependencies between parameters to allow for the instantiation
of more complex templates. Additionally, the developer might want to customise
a template after instantiating it. However, if the original template suffers an
update, reapplying the new one might cause some conflicts to emerge. Keeping
a log of the customisation progress allows instantiating the newly updated tem-
plate and reapplying such customisations on the new instantiation, unless they
do not produce type-safe results.

Acknowledgements. This work is supported by FCT/MCTES grants NOVA LINCS
- UIDB/04516/2020 and GOLEM Lisboa-01-0247-Feder-045917.

References

1. Cardelli, L.: Phase Distinctions in Type Theory (1988)
2. Cardelli, L., Wegner, P.: On Understanding types, data abstraction, and polymor-

phism. ACM Comput. Surv. 17(4), 471–523 (1985). https://doi.org/10.1145/6041.
6042

3. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001). https://doi.org/10.1145/382780.382785

4. Lourenço, H., Ferreira, C., Seco, J.C.: OSTRICH - a type-safe template language
for low-code development. In: ACM/IEEE 24th International Conference on Model
Driven Engineering Languages and Systems, pp. 216–226 (2021). https://doi.org/
10.1109/MODELS50736.2021.00030

5. OutSystems: Platform Overview (2021). https://www.outsystems.com/platform/
6. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. In: Proceedings

of the ACM SIGPLAN Workshop on Haskell, pp. 1–16. ACM (2002). https://doi.
org/10.1145/581690.581691

7. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit annota-
tions. Theoret. Comput. Sci. 248, 211–242 (1999)

https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/382780.382785
https://doi.org/10.1109/MODELS50736.2021.00030
https://doi.org/10.1109/MODELS50736.2021.00030
https://www.outsystems.com/platform/
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691

SNITCH: A Platform for Information
Flow Control

Eduardo Geraldo(B)

NOVA LINCS - NOVA University Lisbon, Lisbon, Portugal

e.geraldo@campus.fct.unl.pt

Abstract. Data confidentiality is critical. Existing approaches to data
confidentiality often see their use restricted. To tackle the issue, we
present a framework for hybrid value-dependent information flow con-
trol in low-level representations to boost the adoption of formal methods
for certifying data confidentiality. We pair our framework with a concolic
test generator to ensure significant coverage. We aim to support major
frameworks such as Spring to ease the certification of web applications.

Keywords: Information flow control · Value-dependent labels ·
Hybrid analysis · Language-based security · Data confidentiality

1 Introduction

Due to increasing amounts of information traveling through the internet, data
confidentiality has become a primary concern for users and companies. Those
who neglect this property come under the prying eye of regulatory entities. Test-
based certification is not enough to detect information leaks. Alternatives based
on information flow control exist but have some issues; they are too restrictive,
require significant specification effort, or lack expressiveness.

Information flow control [5] (IFC), the core of many tools, languages, and
models [6–8,10], pairs security labels with sensitive data, posteriourly tracking
them to ensure noninterference [4]. A central piece in IFC is the security lattice,
a partially ordered set of labels with unique least upper and greatest lower
bounds for every two labels. The lattice defines how information may flow in a
program. Only entities with a label higher or equal in the lattice can, directly
or indirectly, access information with a given label. Direct/explicit flows
result from operations like assignments or sending data through channels, while
indirect/implicit flows stem from programs’ control structure, c.f. Fig. 1 and
Fig. 2, respectively.Depending on the underlying techniques, information flow
control mechanisms can be:

– Static [9,11] - Analyze programs’ source or object code and enforce noninter-
ference. These mechanisms require complete specification and tend to signal
false leaks but work in a single passage and cause no overhead in systems.

Supported by FCT/MCTES under grants SFRH/BD/149043/2019 and NOVA LINCS
- UIDB/04516/2020.

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 365–368, 2022.
https://doi.org/10.1007/978-3-031-07727-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_24&domain=pdf
https://doi.org/10.1007/978-3-031-07727-2_24

366 E. Geraldo

var l //Low
var h //High
l := h
// l e ak s s e c r e t in fo rmat ion

Fig. 1. Explicit leak.

var l //Low
var h //High
if h 0 then l = 0 else l = 1
// can i n f e r h through l

Fig. 2. Implicit leak.

– Dynamic [1,2] - Rely on reference monitors to enforce flow policies. These
mechanisms analyze executions and introduce some overhead. Dynamic IFC
mechanisms avoid false leaks and accept incomplete specifications.

– Hybrid [12] - Combine static and dynamic mechanisms, minimizing the dis-
advantages of each IFC mechanism. Hybrid approaches reduce monitors’ over-
head and the number of tests required to ensure good code coverage, avoid
false leaks, and enable gradual specification.

2 Approach

To encourage the adoption of formal verification techniques for data confi-
dentiality, we propose an approach based on hybrid value-dependent informa-
tion flow control to intermediate low-level code. Hybrid information flow con-
trol addresses the disadvantages of standalone static and dynamic mechanisms.
Value-dependent security labels [7], i.e. security labels parameterized with run-
time values, allow for finer-grained policies that better meet developers’ needs.
Targeting intermediate low-level code confers support to multiple high-level lan-
guages (e.g. Java, Kotlin, Clojure, and Scala all compile to bytecode), and allows
for a more stable and easier to maintain solution. Furthermore, we aim to sup-
port the analysis of web applications using frameworks like Spring and supply
a concolic test generation framework to feed the information flow monitor, that
is, the dynamic component of our analysis.

Fig. 3. Dependent lattice.

Value-dependent labels (k) are user-defined
security classes (SC) parameterized with fields
(f), method parameters (p), return values (r),
�, or ⊥:

Label k := SC (v)
Values v := f | p | r | � | ⊥

� and ⊥ act as least upper bound and great-
est lower bound between arguments, cf. Fig. 3.
Parametrizing labels allows for the allocation of
new security compartments at run-time.

Label parametrization enhances the flexibility of policy definition mecha-
nisms, allowing for richer policies while avoiding some pitfalls of regular labels.
For instance, when analysing a system using regular security labels, one would
define a label User defining a single security compartment for all of the system’s

SNITCH: A Platform for Information Flow Control 367

users, allowing for users to access other users’ secret information. To avoid this
with regular labels, one would need to know how many users a system would
have, an unreasonable requirement in systems dealing with ever-growing user-
bases. Using a value-dependent security label User(id), we can define individual
security compartments, one for each different user id (known only at runtime).
Thus we can avoid unwanted accesses while maintaining a scalable lattice, like
the one in Fig. 3, able to accommodate as many users as needed.

Following a hybrid approach, we rely both on a type system and a reference
monitor to ensure programs’ correctness. The type system works with abstract
labels (̂k), as concrete security labels are known only at run-time. The type
system also inlines the monitor in target programs, injecting only the necessary
run-time checks. In Fig. 4 and Fig. 5 we present a fragment of our hybrid seman-
tics, inspired on [3] where ̂Γ maps variables to labels, p̂c is the computation’s
security label, x is a variable, and e an expression. Γ , pc , and k are the dynamic
counterparts of ̂Γ , p̂c, and ̂k respectively.

S-variable-write
Γ̂ (x) = k̂1 Γ̂ , p̂c � e � e ′ : k̂2

pc � k1 k3 = pc � k2
pc Γ x := e � x := e ′ Γ [x : k3]

S-variable-write-unsafe
Γ̂ (x) = k̂1 Γ̂ , p̂c � e � e ′ : k̂2
pc � k1 k3 = pc � k2

pc Γ x := e � x := e ′ Γ [x : k3]

Fig. 4. Type system semantics for assignments.

D-variable-write
Γ (x) = v ′k1 Γ � e ⇓pc vk2 � Γ ′

pc � {Γ} x := e {Γ ′[x = vpc�k]}

D-variable-write-guarded
Γ (x) = v ′k1 Γ � e ⇓pc vk2 � Γ ′

pc � k1
pc Γ x := e Γ ′[x = vpc�k : T]

Fig. 5. Monitor semantics for assignments.

The static semantic takes a ̂Γ and an instruction, rewriting the instruc-
tion if necessary and producing a ̂Γ ′ reflecting the changes associated with the
instruction. According to the semantic in Fig. 4, an assignment has possible
three outcomes: (1) by [S-variable-write], the assignment is correct; (2) by
[S-variable-write-unsafe], the assignment is not correct nor incorrect, we
need runtime checks; (3) no rule applies, the assignment is incorrect. Tracking
the p̂c allows to avoid implicit information leaks. Where purely static approaches
may reject programs, our type system delegates the decision to the monitor as
pc � k1 may hold at runtime.

The monitor evaluates statements or expressions under a certain pc perform-
ing verifications only where necessary. Hence, the semantics (Fig. 5) foresees two
instruction types, safe and unsafe. The former ([D-variable-write]) only prop-
agates labels, while the latter ([D-variable-write-guarded]) entails runtime

368 E. Geraldo

checks (pc � k1). The monitor avoids false leaks and supports scarce specifica-
tions. Combining the type system with the monitor reduces the number of traces
required and the overhead induced in target systems.

The test generation framework, still ongoing work, relies on concolic exe-
cution to generate inputs for program’s under analysis; test required for the
monitor to achieve good code coverage. Concolic test generation allows for a con-
trolled exploration of untouched control flow paths without exponential memory
consumption. By tweaking the test generation parameters, we can increase the
coverage of monitored code executed while reducing the total number of tests.

3 Conclusion

To summarize, we propose an approach based on hybrid IFC; combining static
and dynamic mechanisms reduces the downsides of each mechanism. Value-
dependent security labels allow for richer and more detailed policies. We target
low-level code, conferring our approach the ability to analyze programs in mul-
tiple mainstream languages. Finally, we aim to supply a concolic test generator
to further automate program verification while obtaining better code coverage
and, therefore, better guarantees of the absence of information leaks.

References

1. Arzt, S., et al.: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps, pp. 259–269. PLDI 2014 (2014)

2. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis.
PLAS 2009 (2009)

3. Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement in
a java-like language, p. 253. CSFW 2002 (2002)

4. Barthe, G., Rezk, T.: Non-interference for a JVM-like language, pp. 103–112. TLDI
2005 (2005)

5. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19,
236–243 (1976)

6. Fennell, L., Thiemann, P.: Gradual security typing with references. In: CSF, pp.
224–239 (2013)

7. Lourenço, L., Caires, L.: Dependent information flow types. SIGPLAN Not, pp.
317–328 (2015)

8. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol 19, 410–442 (2000)

9. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0: Java infor-
mation flow (2006). Accessed 15 Oct 2021

10. Polikarpova, N., Stefan, D., Yang, J., Itzhaky, S., Hance, T., Solar-Lezama, A.:
Liquid information flow control. Lang. In: Proc. ACM Program (2020)

11. Simonet, V.: The Flow Caml System: Documentation and user’s manual (2003).
https://bit.ly/35E5lJ6. Accessed 15 Oct 2021

12. Toro, M., Garcia, R., Tanter, E.: Type-driven gradual security with references.
ACM Trans. Program. Lang. Syst. 40, 1–55 (2018)

https://bit.ly/35E5lJ6

Machine-Assisted Proofs for Institutions
in Coq

Conor Reynolds(B) and Rosemary Monahan

Department of Computer Science/Hamilton Institute, Maynooth University,
Maynooth, Ireland

conor.reynolds@mu.ie

Abstract. The theory of institutions provides an abstract mathemati-
cal framework for specifying logical systems and their semantic relation-
ships. Institutions are based on category theory and have deep roots in
a well-developed branch of algebraic specification. However, there are
no machine-assisted proofs of correctness for institution-theoretic con-
structions, making them difficult to incorporate into mainstream formal
methods. This paper provides an overview of our approach to formalizing
the theory of institutions in the Coq proof assistant. We instantiate this
framework with the institutions FOPEQ for first-order predicate logic
and EVT for the Event-B specification language.

1 Introduction

The theory of institutions dates to Goguen and Burstall’s 1984 paper [6] and
the subsequent more detailed analysis in 1992 [7]. An institution is a mathemat-
ical realisation of the notion of “logical system” which does not commit to any
one concrete system. The key insight is that many general results about logical
systems do not depend in any interesting way on the details of those systems.
In her PhD thesis, Marie Farrell [5] uses the theory of institutions to provide
a semantics for the Event-B formal modelling method with an eye to address-
ing some drawbacks of the Event-B language—namely the lack of standardised
modularisation constructs. EVT was shown in [5], on paper, to support such
constructs.

Indeed, the theory of institutions has been applied to a wide variety of lan-
guages and formal methods: CLEAR [2], CSP [12], and UML [10] have been
given an institution-theoretic semantics, to name a few. The Hets tool for het-
erogeneous specification [11] has the largest single repository of such institutions
and their logical relationships, represented mainly by institution morphisms and
comorphisms. The cost is that it can be difficult to set up a formalism in the
theory of institutions, and to ensure that the encoding satisfies the constraints
of that theory. Furthermore, there are, as far as we know, no machine-checked
proofs that these constructions are correct. This research intends to address both
problems.

Funded by the Irish Research Council (GOIPG/2019/4529).

c© Springer Nature Switzerland AG 2022
M. H. ter Beek and R. Monahan (Eds.): IFM 2022, LNCS 13274, pp. 369–372, 2022.
https://doi.org/10.1007/978-3-031-07727-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07727-2_25&domain=pdf
http://orcid.org/0000-0002-6598-5512
http://orcid.org/0000-0003-3886-4675
https://doi.org/10.1007/978-3-031-07727-2_25

370 C. Reynolds and R. Monahan

To this end, we built a framework in the Coq proof assistant [4] for interactive
machine-assisted proofs for institutions. To date it has been instantiated to two
institutions: the institution FOPEQ for first-order predicate logic and the insti-
tution EVT for Event-B. Many of the requirements and supporting proofs are
novel and interesting, but some amount to little more than tedious bookkeeping;
an interactive proof assistant such as Coq provides just enough automation to
handle simple proofs, while allowing the user to step in and prove more complex
results manually via Coq’s sophisticated tactic language, if necessary.

Our framework relies on John Wiegley’s category theory developments [14]
and builds on the work done by Gunther, Gadea, and Pagano [8] formalizing
multi-sorted universal algebra in Agda. We also note some other work in this
direction in Coq by Capretta [3], and by Amato, Maggesi, Parton, and Brogi [1]
which makes use of homotopy type theory. None go quite as far as defining
institutions or instantiating first-order logic at the time of this writing; this is
the first such formalization of which we are aware.

2 Mathematical Background and Contributions

An institution [6] consists of

– a category Sig of signatures;
– a sentence functor Sen : Sig → Set;
– a model functor Mod : Sigop → Cat; and
– a semantic entailment relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ Sig,

such that for any signature morphism σ : Σ → Σ′, any sentence φ ∈ Sen(Σ),
and any model M ′ ∈ Mod(Σ′), the satisfaction condition holds:

M ′ |=Σ′ Sen(σ)(φ) iff Mod(σ)(M ′) |=Σ φ

ensuring that a change in signature induces a consistent change in the satisfaction
of sentences by models.

The signature category Sig comprise the non-logical symbols of a logical
system: data types, constants, functions, and so on. The sentence functor Sen
explains how to build sentences over the non-logical symbols. The model functor
Mod explains how to interpret the symbols in any given signature. The semantic
entailment relation |= explains how to decide if a sentence is true or false in a
given model.

The institution FOPEQ can be defined briefly as follows: A first-order signa-
ture is a triple 〈S,F ,P〉, where S is a set of sorts, F is a (List(S)×S)-indexed
set of function symbols, and P is a List(S)-indexed set of predicate symbols.
The indices decide the arity and result sort of the symbols. A first-order model
is a triple of functions interpreting the sorts as sets, the function symbols as
set-functions, and the predicate symbols as predicates. First-order sentences are
built from the logical symbols =,¬,∧,∨,→,∀,∃, in the usual way; the semantics
for first-order sentences are well known.

Machine-Assisted Proofs for Institutions in Coq 371

The institution EVT [5] provides a semantics for the Event-B formal method.
It is used to model systems which can be abstractly represented as a discrete
transition system. A transition in this framework is called an event, and is repre-
sented by a sequence of variable-update statements xi := Ti, where xi is a vari-
able and Ti a term. In EVT this is rendered as an equation x′

i = Ti in first-order
logic, with Ti consisting of only unprimed variables. Primed variables represent
the next state, and unprimed variables represent the current state. Hence EVT ,
at its core, can be thought of as FOPEQ with state-variables—though of course
modelling the full system requires us to be more specific.

We define both institutions fully in Coq and prove their satisfaction condi-
tions. According to the cloc tool1 we currently have over 3,000 significant lines
of Coq developments. Around 1,200 of those are directly related to FOPEQ ,
with 500 directly related to EVT . The remainder comprise core modules com-
mon to both and further developments not discussed here. One thing is certainly
clear: considerably less effort is required when one institution builds on another.
Additionally, both institutions required for their development many reusable
components which will aid in the construction of other concrete institutions and
with proving their satisfaction conditions.

A major difficulty was deciding on a representation of first-order logic which
is clear, concise, and which captures beyond doubt the mathematical structure
being represented. Proofs involving indexed types in Coq are also notoriously
difficult, but we suspect the difficulties to be uniform across most institutions.
The lessons we have learned should be applicable to many other institutions—
and could even be encoded into sophisticated automatic tactics.

3 Conclusions and Future Work

Having a formal framework for defining institutions continues to be useful in
our own work. Indeed, we have already begun applying it to the problem of
integrating linear-time temporal logic with Event-B, with a similar semantics to
Hoang et al. [9]. Much work is already done in this direction, and we can say
confidently that the guidance of the formal infrastructure has been invaluable.
We hope in the future that this framework could facilitate wider adoption of the
theory of institutions by alleviating some of the pain of constructing them.

We have also defined some institution-independent constructions, specifically
modal and linear-time temporal logics over an arbitrary institution. We also
have defined a very straightforward comorphism between FOPEQ and EVT ,
an entailment system for FOPEQ , and a basic theory of derived signature mor-
phisms and the term monad.

We intend in the future to show that both FOPEQ and EVT have the
amalgamation property [13], since model amalgamation is key for modularity.
We also intend to add more concrete institutions to this framework, link them
with institution (co)morphisms, and improve proof automation for institutions.

1 https://github.com/AlDanial/cloc.

https://github.com/AlDanial/cloc

372 C. Reynolds and R. Monahan

This work could also, in time, become a fully formal basis for the work already
done for the Hets tool for heterogeneous specification.

References

1. Amato, G., Maggesi, M., Parton, M., Brogi, C.P.: Universal algebra in UniMath
(2020). http://arxiv.org/abs/2007.04840

2. Burstall, R.M., Goguen, J.A.: The semantics of clear, a specification language. In:
Bjøorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10007-5 41

3. Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G., Théry,
L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp.
131–148. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48256-3 10.
https://doi.org/10/fqj9bm

4. Coq Development Team: The Coq Proof Assistant (2022). https://coq.inria.fr/
5. Farrell, M.: Event-B in the Institutional Framework: Defining a Semantics, Mod-

ularisation Constructs and Interoperability for a Specification Language (2017).
http://mural.maynoothuniversity.ie/9911/

6. Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E., Kozen, D.
(eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg
(1984). https://doi.org/10.1007/3-540-12896-4 366. https://doi.org/10/dtcsqb

7. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992). https://doi.org/10/d9h9wf

8. Gunther, E., Gadea, A., Pagano, M.: Formalization of universal alge-
bra in Agda. Electron. Notes Theor. Comput. Sci. 338, 147–166 (2018).
https://doi.org/10/gh36j7

9. Hoang, T.S., Schneider, S., Treharne, H., Williams, D.M.: Foundations for using lin-
ear temporal logic in Event-B refinement. Formal Aspects Comput. 28(6), 909–935
(2016). https://doi.org/10.1007/s00165-016-0376-0. https://doi.org/10/f864wr

10. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An institution for simple
UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 3–18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-
9 1. https://doi.org/10/gjsjxn

11. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–
522. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 40.
https://doi.org/10/b9w795

12. Roggenbach, M.: CSP-CASL-a new integration of process algebra and algebraic
specification. Theor. Comput. Sci. 354(1), 42–71 (2006). https://doi.org/10/
cwjgw4. http://www.sciencedirect.com/science/article/pii/S0304397505008534

13. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Monographs in Theoretical Computer Science. An EATCS
Series, Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-17336-3

14. Jwiegley: Jwiegley/category-theory (2014). https://github.com/jwiegley/catego
ry-theory

http://arxiv.org/abs/2007.04840
https://doi.org/10.1007/3-540-10007-5_41
https://doi.org/10.1007/3-540-48256-3_10
https://doi.org/10/fqj9bm
https://coq.inria.fr/
http://mural.maynoothuniversity.ie/9911/
https://doi.org/10.1007/3-540-12896-4_366
https://doi.org/10/dtcsqb
https://doi.org/10/d9h9wf
https://doi.org/10/gh36j7
https://doi.org/10.1007/s00165-016-0376-0
https://doi.org/10/f864wr
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10/gjsjxn
https://doi.org/10.1007/978-3-540-71209-1_40
https://doi.org/10/b9w795
https://doi.org/10/cwjgw4
https://doi.org/10/cwjgw4
http://www.sciencedirect.com/science/article/pii/S0304397505008534
https://doi.org/10.1007/978-3-642-17336-3
https://github.com/jwiegley/category-theory
https://github.com/jwiegley/category-theory

Author Index

Ábrahám, Erika 209
Aichernig, Bernhard K. 229
Aït-Ameur, Yamine 18, 109
Almeida, José Bacelar 271
Arslanagić, Alen 322

Bairy, Akhila 347
Baramashetru, Chinmayi Prabhu 289
Blatter, Lionel 86
Boer, Martin de 45
Bogomolov, Sergiy 109
Bonakdarpour, Borzoo 209

Campos, João 271
Carreira, Carolina 343
Carvalho, Luís 357
Ciardo, Gianfranco 209

Dennis, Louise A. 3
Dixon, Clare 39
Dupont, Guillaume 18, 109

Falcone, Yliès 191
Farrell, Marie 39
Ferrando, Angelo 39
Ferreira, João F. 271
Forets, Marcelo 149

Gao, Yang 39
Geraldo, Eduardo 365
Gouw, Stijn de 45
Grilo, Miguel 271
Gruschka, Nils 289

Jakobs, Marie-Christine 63
Johansen, Nicklas S. 249
Jung, Christian 45

Kær, Lasse B. 249
Klamroth, Jonas 45
Kluźniak, Feliks 168
Kolchin, Alexander 313
Kosmatov, Nikolai 86

Le Gall, Pascale 86
Leuschel, Michael 129
Luckcuck, Matt 352

Madsen, Andreas L. 249
Mavrakis, Nikos 39
Mendes, Alexandra 271
Mendil, Ismail 18
Méry, Dominique 18
Monahan, Rosemary 352, 369
Muškardin, Edi 229

Nielsen, Kristian Ø. 249

Owe, Olaf 289

Pantel, Marc 18
Parreira, Joana 361
Pérez, Jorge A. 322
Pill, Ingo 229
Potiyenko, Stepan 313
Prevosto, Virgile 86

Reynolds, Conor 369
Rivière, Peter 18

Saeedloei, Neda 168
Salaün, Gwen 191
Schilling, Christian 149
Sheridan, Oisín 352
Singh, Neeraj Kumar 18, 109
Srba, Jiří 249
Stankaitis, Paulius 109
Subotić, Pavle 322

Tapia Tarifa, Silvia Lizeth 289
Tappler, Martin 229
Tollund, Rasmus G. 249

Ulbrich, Mattias 45

Weigl, Alexander 45

Zaman, Eshita 209
Zuo, Ahang 191

	Preface
	Organization
	Side Channel Secure Software (Abstract of Invited Talk)
	Contents
	Invited Presentations
	Verifying Autonomous Systems
	1 Introduction
	2 A Cognitive Agent Decision Maker
	3 Verifying Autonomous Choices
	3.1 The MCAPL Framework

	4 The Problem with Environments
	5 Compositional Verification
	5.1 Module Level vs. System Level Properties
	5.2 Combining Results

	6 Conclusion
	References

	Empowering the Event-B Method Using External Theories
	1 Introduction
	2 Invariants and Well-Definedness (WD)
	3 Overview of Event-B
	3.1 Contexts and Machines (Tables1b and 1c)
	3.2 Event-B Extensions with Theories

	4 An Illustrative Case Study
	5 Invariant Preservation: Core Event-B
	6 Data Type Theory-Based Invariant Preservation
	6.1 An Event-B Datatype Based Domain-Specific Theory (Step 1)
	6.2 An Event-B Instantiation Context (Step 2)
	6.3 A Domain-Specific Event-B Machine (Step 3)

	7 The Proof Process
	8 Revisited Event-B Models for LTS
	8.1 A Data Type for LTS (Step 1)
	8.2 An Instanciation Context for LTS (Step 2)
	8.3 A Data Type Specific Machine for LTS (Step 3)
	8.4 Proof Process

	9 Conclusion
	References

	Cooperative and Relational Verification
	Journal-First: Formal Modelling and Runtime Verification of Autonomous Grasping for Active Debris Removal
	1 Introduction
	2 Summary
	2.1 Verification Approaches
	2.2 Gaps in the Requirements
	2.3 Post-implementation Verification

	3 Conclusions and Future Work
	References

	Formal Specification and Verification of JDK's Identity Hash Map Implementation
	1 Introduction
	2 Preliminaries
	3 The Verification Subject: JDK's IdentityHashMap
	4 Specification and Verification of the IdentityHashMap
	4.1 Mechanic Proof

	5 Engineering Specifications Using Lightweight Analyses
	5.1 Bounded Analysis for Auxiliary Specifications
	5.2 Unit Tests for Property Specifications

	6 Discussion
	6.1 Empirical Identification of Verification Challenges
	6.2 Discovered Bugs and Recommendations

	7 Conclusion
	References

	Reusing Predicate Precision in Value Analysis
	1 Introduction
	2 Programs and Precisions
	3 From Predicate Precision to Initial Value Precision
	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Certified Verification of Relational Properties
	1 Introduction
	2 Syntax and Semantics of the L Language
	2.1 Notation for Locations, States, and Procedure Contracts
	2.2 Syntax for Expressions and Commands
	2.3 Operational Semantics

	3 Functional Correctness
	4 Relational Properties
	5 Verification Condition Generation for Hoare Triples
	5.1 Verification Condition Generator
	5.2 Hoare Triple Verification

	6 Verification of Relational Properties
	7 Related Work
	8 Conclusion
	References

	B Method
	Reachability Analysis and Simulation for Hybridised Event-B Models
	1 Introduction
	2 The State-Of-The-Art in CPS V&V
	3 Framework for CPS Design and Analysis
	4 Preliminaries
	4.1 Event-B and Hybridised Event-B
	4.2 Reachability Analysis and JuliaReach
	4.3 Simulink and Stateflow

	5 Case Study: Railway Signalling System
	5.1 Continuous Rolling Stock Model
	5.2 Communication-Based Railway Signalling Model

	6 Case Study: Formal Development
	6.1 Event-B Model Development and Verification
	6.2 Train Model Simulation and Validation

	7 Conclusions and Future Work
	References

	Operation Caching and State Compression for Model Checking of High-Level Models
	1 Introduction
	2 Current State of Model Checking for B
	2.1 Prolog Default Model Checker
	2.2 TLC Backend
	2.3 LTSMin Backend

	3 Compression and Other Improvements
	3.1 Timeouts
	3.2 Reducing Stored Transitions
	3.3 State Compression

	4 Operation Caching
	5 Experiments
	6 Discussion and Conclusion
	References

	Time
	Conservative Time Discretization: A Comparative Study
	1 Introduction
	2 Problem Statement
	3 Discretization Methods
	3.1 Notation
	3.2 Methods for Nonlinear Systems
	3.3 Common Structure of Methods for Linear Systems
	3.4 First-Order d/dt Method
	3.5 First-Order Zonotope Method
	3.6 Correction-Hull Method
	3.7 First-Order Method
	3.8 Forward-Backward Method
	3.9 Forward-Only Method
	3.10 Combining Methods
	3.11 Application to High-Dimensional Systems
	3.12 Application to Time-Varying Systems

	4 Problem Transformations
	4.1 Homogenization
	4.2 Shrinking the Time Step

	5 Efficient Implementation
	5.1 The Concept of a Lazy Set
	5.2 Computation of Matrix Functions
	5.3 Simplification of the Set Representation

	6 Experimental Evaluation
	6.1 Setup
	6.2 Models
	6.3 Visual Evaluation of Varying Parameters
	6.4 Quantitative Evaluation by Scaling
	6.5 Summary

	7 Conclusion
	References

	Untangling the Graphs of Timed Automata to Decrease the Number of Clocks
	1 Introduction
	2 Timed Automata
	3 Constructing a Better Automaton
	3.1 Building a Tree from a Timed Automaton
	3.2 Untangling Trees: An Overview
	3.3 Step One: Computing the Real Cost and Group Analysis
	3.4 Step Two: Untangling
	3.5 Obtaining the Final Automaton

	4 Implementation and Experimental Results
	5 Stepping Outside TAS
	6 Conclusions
	References

	Probability
	Probabilistic Model Checking of BPMN Processes at Runtime
	1 Introduction
	2 Models
	3 Probabilistic Model Checking of BPMN
	3.1 Overview
	3.2 BPMN Process Monitoring
	3.3 Transforming LTS into PTS

	4 Tool Support
	4.1 Tool
	4.2 Case Study
	4.3 Additional Experiments for Performance Evaluation

	5 Related Work
	6 Conclusion
	References

	HyperPCTL Model Checking by Probabilistic Decomposition
	1 Introduction
	2 Preliminaries
	2.1 HyperPCTL Syntax
	2.2 HyperPCTL Semantics

	3 A Probabilistic Decomposition Approach
	4 Probabilistically Dependent Markov Chains
	4.1 Time and Memory Complexity

	5 Case Studies and Evaluation
	6 Conclusion and Future Work
	References

	Learning and Synthesis
	Learning Finite State Models fromRecurrent Neural Networks
	1 Introduction
	2 Preliminaries
	3 Automata Extraction from RNNs
	3.1 Test-Based Learning from RNNs
	3.2 Equivalence Queries from a Practical Perspective
	3.3 Research Questions

	4 Experiments on Learning Automata from RNNs
	4.1 Learning Models of RNNs Trained on Tomita Grammars
	4.2 Learning Models of RNNs Trained on Balanced Parentheses
	4.3 Analyzing RQ2 on the Tomita 3 Grammar

	5 Related Work
	6 Conclusion
	References

	Kaki: Concurrent Update Synthesis for Regular Policies via Petri Games
	1 Introduction
	2 Concurrent Update Synthesis
	2.1 Routing Policy
	2.2 Concurrent Update Synthesis Problem

	3 Optimisation Techniques
	3.1 Topological Decomposition
	3.2 Collective Update Classes

	4 Translation to Petri Games
	4.1 Petri Games
	4.2 Translation Intuition
	4.3 Translation of Network Topology and Routings
	4.4 Policy Translation
	4.5 Reachability Objective and Translation Correctness

	5 Experimental Evaluation
	5.1 Results

	6 Conclusion
	References

	Security
	Verified Password Generation from Password Composition Policies
	1 Introduction
	2 Current Password Generation Algorithms
	2.1 Password Composition Policies
	2.2 Random Password Generation

	3 Verified Password Generation
	3.1 Reference Implementation
	3.2 Formal Proofs

	4 Case Study: From Apple Password Rules to Verified Password Generation in Bitwarden
	4.1 Apple's Password Autofill Rules
	4.2 Jasmin Password Generator
	4.3 Integration with Bitwarden

	5 Related Work
	6 Conclusion
	References

	A Policy Language to Capture Compliance of Data Protection Requirements
	1 Introduction
	2 Main Principles of the GDPR
	3 A Policy Language for Main Data Protection Principles
	4 Taxonomies as Tree Structures
	5 Policy Compliance
	6 Proof of Concept Implementation
	7 Case Study: Health Wearable
	8 Analysis of Related Work
	9 Conclusion and Future Work
	References

	Static Analysis and Testing
	Extending Data Flow Coverage to Test Constraint Refinements
	1 Introduction
	2 Motivation Examples
	3 Background
	4 The Required k-Use Chains
	5 Related Work and Conclusions
	References

	Scalable Typestate Analysis for Low-Latency Environments
	1 Introduction
	2 Bit-Vector Typestate Analysis
	2.1 Annotation Language
	2.2 Bit-Vector Finite Automata

	3 Compositional Analysis Algorithm
	4 Evaluation
	5 Related Work
	6 Concluding Remarks
	References

	PhD Symposium Presentations
	Studying Users' Willingness to Use a Formally Verified Password Manager
	1 Introduction
	2 Current Work
	2.1 First Study
	2.2 Second Study

	3 Conclusion and Impact
	References

	Modeling Explanations in Autonomous Vehicles
	1 Introduction
	2 Related Work and Current Progress
	3 Conclusion and Future Work
	References

	A Requirements-Driven Methodology: Formal Modelling and Verification of an Aircraft Engine Controller
	1 Overview
	2 Three-Phase Methodology
	3 `FRET-Guided' Modelling
	4 Future Work
	References

	A Dialogue Interface for Low Code Program Evolution
	1 Introduction
	2 Approach
	3 Conclusions
	References

	Simple Dependent Types for OSTRICH
	1 Introduction
	2 Approach
	3 Conclusions
	References

	SNITCH: A Platform for Information Flow Control
	1 Introduction
	2 Approach
	3 Conclusion
	References

	Machine-Assisted Proofs for Institutions in Coq
	1 Introduction
	2 Mathematical Background and Contributions
	3 Conclusions and Future Work
	References

	Author Index

