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Abstract. We used unsupervised nonlinear clustering to reveal the
interplay between structure of nucleotide sequences and the taxonomy
of their bearers. Triplet frequency composition is referred to a structure,
and taxonomy is determined through standard morphology and physiol-
ogy of bacteria. Soft 16 × 16 elastic map has been used for clustering.
Some preliminary results are presented here approving the high efficiency
of such approach to phylogeny analysis. Further applications to medicine
are discussed.
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1 Introduction

An interplay between structure and function of genetic entities, and the taxon-
omy of their bearers still challenges researchers. A lot has been done here (see
e.g., [4–6,14,20] and much more others). Obviously, the answer depends on the
genetic matter taken into consideration: some entities show the strong prevalence
of the taxonomy over function [19], while another matter shows the prevalence
of the function over taxonomy [3]. This paper aims to further the studies of the
interplay mentioned above.

Here we study the relation of the structure encoded in 16 SRNA (that is a
triplet frequency dictionary) to taxonomy of the bearers of those moleculae. In
general, there are three entities: structure of a genetic sequence, the function
encoded in it, and taxonomy of the bearer of that former. Ultimately, we aim
to study an interplay between all of them. To do it, one must define rigorously
what is a structure. Hereafter we shall refer a structure as a triplet frequency
dictionary W (j) of the jth 16 SRNA sequence.

The index j enlists the genetic entities to be considered, with respect to their
taxonomy. Frequency dictionary (also known as k-mer ensemble) is well-known
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object in the studies of nucleotide sequences; it opposes to the widely spread
sequences comparison methods based on alignment. The main disadvantage of
alignment consists in the necessity to set up some informally determined param-
eters. On the contrary, k-mer based methods are free from that disadvantage
thus providing a researcher with more reliable and formally defined results. The
k-mer approach to sequence comparison has a long story and still goes through
a progress. We use here classical approach based on the count of the triplet fre-
quency determined over a sequence; however, some expansions of the method
could be found in [13], see also papers [1,2,21].

One may not expect a dependence on a function of the anticipated patterns
in interplay; here the function is the same. Indeed, we study the ribosomal RNA
(16S RNA, specifically) genes, hence all of them encode the same function. Thus,
we aim to reveal the dependence between triplet composition of the genes and
the taxonomy of their bearers.

To reveal the interplay between structure and taxonomy, we do the following
steps:

– choose the genetic entities with clearly determined and controlled function;
– convert them into a triplet frequency dictionary W (j) each;
– use up-to-date and powerful methods to cluster the points (frequency dictio-

naries) in the relevant metric space and identify the clusters;
– check whether a taxonomy of DNA donoring organisms or determine the

composition of the clusters (if any).

Suppose, the clusters are observed (otherwise no interplay takes place). Here
three possible outputs may be:

1. the clusters are apparent, and each cluster comprises the sequences belonging
to a specific taxon (or taxa);

2. the clusters are apparent, and each cluster comprises the sequences belonging
to organisms of various taxa (maybe, rather distant);

3. an hierarchy in the clusters composition takes place: e.g. there are super-
clusters gathering the higher taxa with fine pattern of each super-cluster
determined by lower taxonomy position of the organisms.

Here we present some preliminary results on the study of the relation between
triplet composition of 16S RNA genes and taxonomy of some bacteria. Ulti-
mately, this work aims to reveal the medically sounding effects in such pattern
appearance.

The medical value of a tool to retrieve knowledge from 16S pyrosequencing
and the determination of patterns characterizing healthy people vs. patients with
various neurological diseases or their predisposition is very high. The reliable
changes in qualitative and quantitative diversity of the microbiota for inflamma-
tory bowel diseases (Crohn’s disease and ulcerative colitis, Parkinson’s disease,
Alzheimer’s disease, multiple sclerosis, and other neurodegenerative and neu-
roinflammatory diseases) are reported.

However, the lack of correct and convenient interpretation follows in a severe
expansion of time spent on analysis; one must rigorously follow the same proto-
col that is not always possible elsewhere. However, a diagnosis of a number of
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gastroenterological, neurological, and possibly other diseases may be improved.
In the future, it will significantly contribute the personalized medical care based
on microbiota records. The most ambitious goal here is to create a preventive
strategy to correct the human microbiota due to targeted drugs prescription:
either eliminating harmful microflora or activating the necessary one. It is nec-
essary to assess the adequacy of the correction being carried out during this
treatment procedure.

2 Materials and Methods

2.1 Genetic Material

To reveal the interplay between structure and taxonomy over a set of 16S RNA
bacterial genes we use SILVA database1. It is freely accessible database gathering
SRNAs of a great variety of organisms, including bacteria. For the purposes of our
study we downloaded 52474 sequences of large subunits of bacterial 16S RNA. The
distribution of the genes over taxons is extremely inhomogeneous: some of higher
taxa comprise a few species (or strains), while others comprise hundreds or more.
Such bias results in a “signal loss”: numerous entries representing higher taxa with
few species fail to produce a signal, but make a noise just deteriorating a cluster
pattern. To avoid this effect, we hashed the database: we eliminated both over-
represented and under-represented taxa. Finally, we tried to balance the represen-
tativeness of various taxa in the dataset, so that the entries representing various
lower taxa ranged in number from a hundred to tens. The final size of the database
was 2143 entries. Taxonomic composition of the database is shown in Table 1. Of
course, the composition of the dataset is far from an ideally balanced; however, it
represents to some extent the natural distribution of taxa. it should be borne in
mind that any database is filled not according to nature, but following the prefer-
ences in the choice of species to be sequenced.

2.2 Triplet Frequency Dictionary

Triplet frequency dictionary W (j) is the list of all 64 triplets ωk, k = AAA, . . .,
TTT accompanied with their frequency fωk

; index j here enlists the sequences
in the dataset. To make a dictionary, place the reading frame of the length 3
at the very beginning of a sequence and count all the triplets identified by the
frame as it moves along a sequence from left to right (for determinacy), with the
given step t. Within this paper, t = 1. Obvious constraint

TTT∑

k=AAA

fω = 1 (1)

holds true.

1 https://www.arb-silva.de/.

https://www.arb-silva.de/
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Table 1. Abundances of various taxa and genetic entries in the dataset; N stands for
the number of genetic entities in the family.

Subdomain Class� Order Family N

Acidobacteriota Acidobacteriae Acidobacteriales Acidobacteriaceae 31

Acidobacteriota Acidobacteriae Acidobacteriales Koribacteraceae 1

Acidobacteriota Acidobacteriae Solibacterales Solibacteraceae 2

Actinobacteriota Acidimicrobiia Acidimicrobiales Acidimicrobiaceae 24

Verrucomicrobiota Chlamydiae Chlamydiales Chlamydiaceae 49

Verrucomicrobiota Chlamydiae Chlamydiales Parachlamydiaceae 39

Firmicutes Bacilli Mycoplasmatales Mycoplasmataceae 13

Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae 163

Verrucomicrobiota Chlamydiae Chlamydiales Chlamydiaceae 101

Bacteroidota Bacteroidia Bacteroidales Prevotellaceae 147

Bacteroidota Bacteroidia Bacteroidales Tannerellaceae 94

Bacteroidota Bacteroidia Bacteroidales Porphyromonadaceae 106

Bacteroidota Bacteroidia Bacteroidales Rikenellaceae 69

Bacteroidota Bacteroidia Bacteroidales Dysgonomonadaceae 58

Bacteroidota Bacteroidia Bacteroidales Marinifilaceae 58

Firmicutes Bacilli Staphylococcales Staphylococcaceae 150

Firmicutes Bacilli Bacillales Bacillaceae 151

Firmicutes Bacilli Lactobacillales Listeriaceae 148

Firmicutes Bacilli Paenibacillales Paenibacillaceae 124

Firmicutes Bacilli Bacillales Planococcaceae 101

Firmicutes Bacilli Brevibacillales Brevibacillaceae 147

Firmicutes Bacilli Exiguobacterales Exiguobacteraceae 191

Firmicutes Bacilli Alicyclobacillales Alicyclobacillaceae 176
�We use the term class to denote any subdomain higher than order

The transformation of a sequence into the triplet frequency dictionary con-
verts that latter into a point in 63-dimensional metric space; the constraint (1)
allows to eliminate a triplet, since there are 63 ones linearly independent only.
In theory, any triplet might be excluded from the analysis; practically, we have
excluded the triplet CAC, since it has the least standard deviation figure deter-
mined over the dataset. An idea standing behind such choice is that the triplet
with the minimal standard deviation contributes less of all into the distinguisha-
bility of the genetic entities.

The transformation maps symbol sequence into more convenient mathemat-
ical object that is the points in metric space, thus allowing to implement the
effective methods of analysis. To do it, one must introduce a metrics; further,
we use Euclidean metrics

ρ (Wj ,Wl) =

√√√√
TTT∑

k=AAA

(
f
(j)
k − f

(l)
k

)2

. (2)
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Thus, we investigate the distribution of the points corresponding to genetic
sequences in this metric space revealing patterns and clusters, if any.

2.3 Clustering and Visualization

A variety of methods to cluster the multidimensional data is huge. We used
k-means and elastic map technique to cluster the data. k-means is well known
linear classification method [7,9], so let’s focus on elastic map technique. It is the
non-linear statistics method based on the approximation of the multidimensional
data by a manifold of the lower dimension; further we shall use two-dimensional
manifolds [8].

The idea of this method consists in jamming the originally plain manifold
(a square in our case) in the manner to minimise the total deformation energy
of the elastic manifold, and mathematical springs connected to the manifold
in the projection points. It is highly powerful and efficient method to cluster
multidimensional data and visualise them.

Non-linear clustering of genes was provided by local density technique. In
simple words, local density is a specific number of point in a small site on map.
To calculate the local density, we supply each point on the map with bell-shaped
function

h
(
r, r(j)

)
= exp

{
− (r − r(j))2

σ2

}
, (3)

where r is a point position on the map, r(j) is the coordinate of a gene converted
into a point through triplet frequency transformation, and σ is the contrast
parameter. The function (3) looks like a normal distribution function, however
it is not.

As soon as all the points on the map are supplied with the function (3), one
should calculate the sum

H(r) =
∑

j∈Ω

h
(
r, r(j)

)
. (4)

Here Ω is the set of all the points from the dataset. One should plot the func-
tion (4) over the map to see the density of the points distribution (see Fig. 1(b));
Ω is the set all the points representing the considered genes.

3 Results and Discussion

16 SRNAs are typically used in the studies of the relations (phylogeny as well)
of bacteria [10,18,22]. Usually, the comparison of the sequences is provided by
alignment; here we present some preliminary results of the structure identifica-
tion provided through the implementation of alignment-free approach, namely
the unsupervised clustering based on elastic map technique.

Speaking in advance, we tried the unsupervised clustering to reveal a pattern
in taxa distribution of some bacteria; we aimed mainly to prove that such pattern
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Fig. 1. A distribution of 2143 points over the elastic map with no local density indi-
cation (Fig. 1(a)) and with that former (Fig. 1(b)).

exists. Figure 1 shows the raw distribution of 2143 genes of 16S RNA over the
soft elastic map. Figure 1(a) shows the distribution itself, and Fig. 1(b) shows
the same distribution over the local density mapped at the same map.

Figure 1 shows the overall distribution of the genes over the soft elastic map
16 × 16 (Fig. 1(a)). To compare with, Fig. 1(b) shows this distribution together
with the local density. Of course, the cluster pattern depends on the contrast
radius σ from (3); the choice of that latter is quite informal. We used by default
figure of 0.25 for this parameter. Doubtlessly, there is one highly dense cluster
located at the right of the map. There are three to four clusters more, as well.

Figure 2 shows the individual distributions of specific orders over the elastic
map. To do it, we made all markers of genes except those belonging to a specific
order invisible; however, the elastic map as well as the local density chart is
developed for the entire set of genes (these are 2143 entries). For technical rea-
sons, we had to merge two orders (these are Mycoplasmatales and Solibacterales)
into a single map (see Fig. 2(i)).

We explored the distinguishability of rather high taxa through the clustering
of 16S RNA bacterial genes converted into triplet frequency dictionaries. Thus, a
question arises what happens with lower taxa? In other words, if one implements
the same procedure for the set of genes belonging, say to the same order, then
what kind of clustering could be observed? Again, here two options may take
place: the former is that lower taxa yield the distinct clustering (regardless of
the peculiarities of the clusters composition, at the first step), and the latter is a
decomposition of a cluster pattern resulting in more or less uniform distribution
of the genes over the elastic map.
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Fig. 2. Individual distributions of various orders.
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Fig. 3. Family distributions of Clhlamydiales order.

The first option means a scalability of the cluster pattern observed through
the triplet composition analysis of the genes; the second one means the absence of
fine structure in the lower taxa distributions developed due to triplet composition
approach. Figure 3 illustrates the lower level distinguishability of the genes, for
chlamydiales order. There are three families comprised into the dataset, for this
order. Obviously, the distribution of the families is highly specific and the species
show significant speciality in the mutual location over the elastic map. The
orders Acidobacteriales and Acidomicrobiales comprise a single lower suborder
with 34 and 24 entries each, respectively, so we just omitted these orders from
consideration here.

Space limitation makes it impossible to show the in-order distribution for
all five orders shown above; however, two other orders (these are Bacillales,
1118 entries and Bacteroidia, 695 entries) have eight and seven families each, so
we studied the distribution of the families for them. Surprisingly, these two orders
show opposite patterns in the behaviour. Bacillales order shows three apparent
clusters: the first one is the most dense, are two others are less dense. So, the
distribution of the families over the clusters is pretty close to a uniform one: the
genders belonging to various families are distributed quite homogeneously over
these three clusters. It means that no dependence between lower taxonomy and
triplet composition of the genes for this order is observed.

The cluster comprising Chlamydiales order makes a clear and apparent group
located separately from other considered bacteria orders, in elastic map (see
Fig. 3(f) and 3). Such isolation of pathogenic bacteria makes a promising result
concerning the reliable diagnostics, in future. On the contrary, the order Bac-
teroidia exhibits very good and clear speciality in the cluster composition. It
comprises seven families and they are distributed over the elastic map separately.
The genes of this order yield four clusters; however, the genes are separated, for
each family.

The ultimate goal is to identify and verify the early predictors of some neu-
rological diseases, in particular the multiple sclerosis through the analysis of
microbiota [11,12,15–17]. This ambitious goal requires an implementation of
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the tool for fast and efficient analysis of some genetic markers of the microbiota,
and 16S RNA seems to be the best one here. A diagnostics of the mentioned
diseases requires a study of a normal pattern of the gut microbiota occurrence;
hence, we prove an efficiency in the microbial population investigation and a ref-
erence value, for further medically sounding studies. The method of clustering
and/or classification could complement the currently practising techniques of for
diagnostics and curation strategy implementation.

Here we present some preliminary results aimed to demonstrate the feasibility
and efficiency of the diagnostics based on 16S RNA analysis of the microbiota of
healthy and sick people. To implement such diagnostic tool, one should make sure
that a genetic marker used to distinguish sick people from healthy ones really
supports this distinguishability. The results provided here unambiguously prove
the efficiency of such approach, in principle. Doubtlessly, our current results to
not comprise a diagnostic tool; they just approve the feasibility of the tool if it
is implemented.

4 Conclusion

Here we explored the interplay between triplet composition of 16S RNA bac-
terial genes of five orders and taxonomy of those bacteria. Some preliminary
results are present aimed to approve the feasibility of triplet composition based
clustering of 16S RNA bacterial genes to identify the distinguishability of vari-
ous taxa in the 63-dimensional Euclidean space of triplets frequency. The results
unambiguously show that various taxa differ in terms of the triplets frequency so
that more detailed and exhaustive investigation of the interplay for sure makes
sense and may bring a lot. Moreover, the interplay is scalable: a transition from
higher taxon to lower ones reveals the new and more fine structuredness in the
clustering.

The study of interplay between taxonomy and k-tipple composition of genes
is of great interest and value itself. However, these studies may contribute a lot
in various applied areas including e.g. medicine.

Thus, a design and implementation of a tool for early diagnostics such hard
to detect diseases based on comparative analysis of formally identified structures
in bacterial 16S RNA is feasible.
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