
A Linear-Time 2-Party Secure Merge
Protocol

Brett Hemenway Falk1, Rohit Nema2(B), and Rafail Ostrovsky2

1 University of Pennsylvania, Philadelphia, USA
fbrett@cis.upenn.edu

2 UCLA, Los Angeles, USA

rnema@ucla.edu, rafail@cs.ucla.edu

Abstract. We present a linear-time, space and communication data-
oblivious algorithm for securely merging two private, sorted lists into a
single sorted, secret-shared list in the two party setting. Although merg-
ing two sorted lists can be done insecurely in linear time, previous secure
merge algorithms all require super-linear time and communication. A key
feature of our construction is a novel method to obliviously traverse per-
muted lists in sorted order. Our algorithm only requires black-box use
of the underlying Additively Homomorphic cryptosystem and generic
secure computation schemes for comparison and equality testing.

Keywords: Secure computation · Homomorphic encryption ·
Oblivious protocols

1 Introduction

Securely merging two sorted lists into a single, globally sorted list with the
same asymptotic complexity as in the insecure setting has been a long-standing
open problem. It is a fundamental tool in many machine learning and data-
processing applications [6,42,57], Oblivious RAM [31,45], and Private Set Inter-
section (PSI) [36]. A series of works [1,13,32,33] have shown that securely sorting
a list can be done with the same asymptotic complexity as insecure sorting. On
the other hand, for merging, a gap remains. In the past, it has been solved with
complicated techniques that either run in super-linear time or communication,
or make unnatural assumptions.

In the insecure setting, and in the three-party ORAM setting, where there
are three servers and a trusted client, merging two sorted lists of length n can be
done in O(n) time, [10], whereas in the secure setting, the best existing 2-party
secure merge algorithm requires O(n log log n) communication [26].

Our main result is to close this gap. More explicitly, we show

Theorem 1 (Main Theorem). There exists a 2-party protocol for merging
two locally sorted lists in linear-time, space and communication that provides

B. H. Falk, R. Nema and R. Ostrovsky—Work done while consulting for Stealth Soft-
ware Technologies, Inc.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 408–427, 2022.
https://doi.org/10.1007/978-3-031-07689-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_30&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_30


A Linear-Time 2-Party Secure Merge Protocol 409

security against semi-honest adversaries. The protocol only requires black-box use
of an Additively-Homomorphic cryptosystem and a generic secure computation
protocol for comparison and equality-testing on secret shares.

Secure 2-party merge protocols arise naturally, since the two participants can
each sort their list locally before the protocol begins. Three-party protocols for
secure merge are less natural, since there are still only two lists being merged,
but these lists are secret-shared amongst the three computation parties. If the
two lists being merged were initially held in the clear by two parties, then it’s
unnatural to require a third party to aid in the secure merge procedure. On the
other hand, if the two lists were initially secret-shared among two parties (e.g. as
the output of a previous 3-party computation) it becomes less natural to assume
that they are pre-sorted (since they cannot have been sorted locally).

One application of two-party merge protocols is in Private Set Intersection
(PSI). There are many PSI protocols, but most output the intersection in the
clear (e.g. [11,12,16,20–22,24,28,35,37–41,47,48,51–53]). In many applications,
however, PSI is only a first step in a larger computation, and in these settings the
PSI must return secret shares of the intersection, rather than the list itself – but
these secret-shared PSI protocols (e.g. [17,49,50]) tend to be less efficient than
protocols that reveal the intersection in the clear. One of the earliest methods
for secret-shared PSI is the sort-compare paradigm [36], where the participants
sort their joint list, then compare adjacent elements in a linear pass, deleting
singletons. The problem with this approach is that the initial sorting step takes
O(n log n) communication. Using our novel linear-time secure merge protocol,
the sort-compare paradigm gives a simple, efficient linear-communication secret-
shared PSI protocol.

Our protocol is inspired by the 3-server ORAM merge protocol of [10], where
the two sorted lists are treated as linked lists, then each linked list is shuffled
with a collection of “dummy” elements using a linear-time three-party secure
shuffle [43]. Thereafter, the trusted client can traverse the shuffled linked lists,
comparing one element at a time, as in the standard insecure merge protocol.

There are several obstacles that need to be overcome in order to eliminate
the trusted client and one of the servers from the [10] merge protocol. We can
use a linear-time 2-party secure shuffle [26] to replace the 3-party shuffle, but
updating the pointers in the shuffled lists is challenging without a trusted client.

To overcome this obstacle, we develop a technique for converting values
encrypted under the key of one participant into additive secret shares of the
same underlying plaintext (See Sect. 5.2). This conversion process is extremely
efficient, and only relies on the cryptosystem being additively homomorphic.
Moreover, the trusted client in [10] can easily switch from the real to dummy
list obliviously once the real list is exhausted; however, this is non-trivial in our
2-party setup since obviously neither party should learn when a real list has been
exhausted. We combat this issue by creating a unique, partially circular linked
list (Sect. 5.1 and Fig. 1) such that the protocol can seamlessly switch from the
real to dummy list.

Using this novel linked list construction and ciphertext-to-secret-sharing tool,
we give a two party secure merge protocol, where each participant treats their



410 B. H. Falk et al.

input as a linked list, then allows the other participant to shuffle this linked list
(while updating the pointers). The parties then re-share these permuted linked
lists, and compare elements one at a time (using a secure comparison protocol),
while the exact sequence of data accesses from each list is independent of the
underlying data. See Sect. 5 for the full construction.

The detailed security proofs and analysis are presented in the full version of
the paper [25].

2 Previous Work

2.1 Secure Sorting

Merging two sorted lists can be seen as a special case of sorting, and thus any
sorting protocol is also a merge protocol. When security is not required, a simple
counting argument shows that any comparison-based sorting algorithm requires
O(n log n) comparisons, whereas two sorted lists can be merged using only O(n)
comparisons. Although secure merge protocols are a building block for many
secure multiparty computations, most applications focus on the more general
(and more difficult) problem of secure sorting.

One route for building a secure sorting protocol is to securely implement a
data-oblivious sorting network using a generic circuit-based secure multiparty
computation (MPC) protocol (e.g. GMW [30], BGW [7] or Garbled Circuits
[59,60]). Asymptotically, the best sorting network is the AKS network [1], which
requires O(n log n) comparisons. Although the AKS network is asymptotically
optimal, the hidden constants are extremely large [2], and so the AKS network
has little practical value. In practice, Batcher’s bitonic sort [5] which requires
O(n log2 n) comparisons is much faster and is widely implemented in practice,
including in the ABY [23], Obliv-C [61] and EMP [58] compilers. Batcher’s
sorting network is defined recursively, and thus when using Batcher’s network
to merge two pre-sorted input lists, all but the final level of the recursion can be
omitted. Unfortunately, this does not improve the asymptotic complexity, but it
does increase the concrete performance by about a factor of 2.

One problem with implementing traditional sorting algorithms (e.g. quick-
sort, mergesort, radix sort) using generic secure computation, is that the they are
not data-oblivious – even if the comparisons are implemented securely, the data
movement depends on the underlying values being sorted. The shuffle-then-sort
paradigm [13,32,33], solves this problem by first obliviously shuffling the input
lists, then securely executing a traditional sorting algorithm. The initial shuffle
ensures that the data movement (which is not hidden by the secure computation)
is independent of the underlying data. These techniques yield an asymptotically
optimal (O(n log n)) sorting algorithms, that are also efficient in practice.

The efficiency of the shuffle-then-sort paradigm rests on the efficiency of the
secure shuffle protocol. In the 3-party setting there are linear-time secure shuffles
(based on one-way functions) [43], and in the 2-party there are linear-time secure
shuffles (based on additively homomorphic encryption) [29].

Applying the shuffle-then-sort paradigm to the problem of merging immedi-
ately yields O(n log n)-communication oblivious merge protocols, but does not



A Linear-Time 2-Party Secure Merge Protocol 411

achieve the O(n)-time merging that is possible in the insecure setting. In fact,
the Ω(n log n) lower bound on comparison-based sorting means that this app-
roach will never yield a linear-time secure merge algorithm – unless we can take
advantage of the fact that the initial lists being merged are pre-sorted.

Alternative sorting schemes (e.g. Radix sort) avoid the Ω(n log n) lower
bounds on comparison-based sorting. Another example is [34] in the random-
ized setting which sorts integers in O(n

√
log log n) expected running time. These

sorting algorithms are efficient, but rely on the RAM model of computation, and
their data-dependent access patterns cannot be efficiently implemented in the
circuit model. One exception is [4], which uses non-comparison based techniques
to beat the Ω(n log n) lower bound, but still remains in the circuit model.

2.2 Secure Merging

Secure, multiparty merge protocols have been studied separately from secure
sorting protocols, and just as in the insecure case, focusing on the problem of
merging allows us to circumvent the Ω(n log n) lower bound for sorting.

The first secure merge protocol with (asymptotically) less communication
than a corresponding secure sort was given in the 3-server ORAM setting (which
requires 3-servers and a trusted client), where there is an information-theoretic
secure merge protocol with only O(n) communication [10]. In general, any k-
server ORAM protocol, the client can be emulated using secure multiparty com-
putation (MPC), thus the protocol of [10] also yields a 3-server secure merge pro-
tocol. Unfortunately, using MPC to securely emulate an ORAM client can dra-
matically hurt performance since the ORAM client may not be “MPC friendly”,
e.g. the client may have a very large circuit complexity, which leads inefficiencies
when emulating the ORAM client under MPC.

The key idea of [10] is to apply “shuffle-then-sort” [13,32,33] to the idea
of merging. Essentially, the participants shuffle the two (sorted) linked-lists –
updating the pointers to each element’s new, shuffled location. Then the partici-
pants apply a standard (non-oblivious) merge protocol to traverse these shuffled
linked lists (without needing to hide the data movement). These techniques yield
a linear-communication secure merge protocol, but the construction of [10] only
works in the 3-party ORAM setting, i.e., when there are four parties, three
servers and a trusted client.

The “shuffle-then-merge” paradigm is a bit more delicate than the “shuffle-
then-sort” paradigm, since the input lists in a merge are pre-sorted, and the
merge protocol must process them in this sorted order (even after the oblivious
shuffle). To overcome this difficulty, the pre-sorted input lists can be turned into
linked lists, and the oblivious shuffle can update each item’s pointer to point to
the permuted position of its successor [10].

In the two-party setting, [26] gives a protocol based on additively homomor-
phic encryption that securely merges two lists using O(n log log n) communication.
The key idea of [26] is that since the input lists are pre-sorted, we can divide the
entire list into poly-logarithmic sized blocks, and focus on moving these blocks into
(nearly) the correct positions. Once the large blocks are in place, the small number
of remaining “strays” that are out of place, can be identified and moved efficiently.



412 B. H. Falk et al.

Although our solution is fundamentally different, like [26], we also rely on a linear-
time 2-party shuffle.

Our protocol follows a shuffle-then-merge paradigm that is similar to [10],
but in order to adapt this to the two-party setting, we create a new protocol for
shuffling linked lists in the two-party setting (which can be seen as an extension
of the two-party oblivious shuffle of [26,29]).

3 Overview

3.1 Challenges

In the insecure setting, two parties can merge their locally sorted lists by sim-
ply comparing their smallest elements and advancing the list with the smaller
element. This operation is linear in the length of the two lists. The core issue in
translating this linear-time merge algorithm to a secure version is that advancing
a list is not data-oblivious – it reveals which list contained the smaller element.

Protocol 1. A basic, data-dependent merge.
Input: Two sorted input lists A, B of lengths nA and nB

Output: A sorted output list C of length nA + nB

1: Initialize iA = iB = iC = 0
2: while iC < nA + nB do
3: if A[iA] <B[iB ] or iB ≥ nB then
4: C[ic] =A[iA]
5: iA = iA + 1
6: else
7: C[ic] =B[iB ]
8: iB = iB + 1
9: end if

10: iC = iC + 1
11: end while

There are two key challenges when trying to adapt the non-oblivious näıve
merge protocol (Protocol 1), into an oblivious variant.

1. Which list is being accessed: Whether the algorithm reaches Line 4 or
Line 7 reveals which list is being accessed.

2. Which location is being accessed: When the algorithm reaches Line 4
(resp. Line 7), it reveals which element of A’s (resp. B’s) list is being accessed
at iteration iC .

We also face an additional challenge: we have only two participants in the
protocol unlike these prior works which had three, either two servers and a
trusted client [44] or three servers and trusted client [10].

3.2 Intuition and Construction Overview

Oblivious Shuffle with Linked List: To address challenge 2, we rely on an
oblivious permutation. In the multiparty setting, it is possible to perform efficient



A Linear-Time 2-Party Secure Merge Protocol 413

(linear-time), oblivious shuffles of secret-shared lists [43]. Similarly, in the two-
party scenario, the participants can use additively homomorphic encryption to
obliviously shuffle ciphertexts in linear time [26,29]. These linear-time multiparty
shuffles are a key building block of many secure multiparty sorting protocols
[13,32,33], and secure merge algorithms [10,26].

By viewing each participant’s sorted input as a linked list, then shuffling that
list, the parties can decouple the locations being accessed from the iteration of
the loop – for example, at Line 4 the protocol would read location ΠA(iA) for
some random permutation ΠA, instead of directly reading iA.

There are some subtleties here, as the parties need to obliviously permute
their linked lists, and then obliviously traverse them.

In order to allow the parties to traverse the permuted linked lists in the
original (sorted) order, the parties must also update the pointers. Thus if π is
a permutation of [n], and the original list is (v[0], . . . , v[n − 1]), the parties will
create two new arrays

w =
(
v

[
π−1(0)

]
, . . . , v

[
π−1(n − 1)

])
Permuted data

t =
(
π

(
π−1 (0) + 1

)
, . . . , π

(
π−1 (n − 1) + 1

))
Permuted tags

With t[π(n − 1)]= ⊥. Thus if w [i] = v [j], then w [t [i]] = v [j + 1].
This structure allows the parties to traverse the permuted list, w, by first

revealing π (0) and then, selectively revealing elements of t, starting with t[π(0)],
t[π(1)], . . .

Our goal is for each party to achieve a secret-shared, permutation of their
own list permuted (as well as the updated pointers) by the other party. In our
construction, the second party acts as a permuting party for the first and gen-
erates both the permuted list and the corresponding linked list to traverse it.
To maintain privacy of the data and obliviousness of the memory accesses, the
second party’s permutation, and the first party’s data must remain private.

Now, if the permuting party holds on to its share of the owner party’s list,
it is not clear how to obliviously traverse the permutation since the permuting
party knows the position of each accessed share, and thus each element.

When there are three participants this can be done information-theoretically,
by having each participant generate a permutation and secret-share to the other
two participants [10]. In the two party setting, we can use additively homomor-
phic encryption to (obliviously) permute a private list [26,29], but we cannot use
those constructions in a black-box manner, since they do not allow us to create
the shared tags needed to traverse the permuted list.

Instead, we recombine the shares at the owner party but to maintain oblivi-
ousness, i.e. to hide the data itself so as to not leak the permutation, both parties
somehow convert their shares into shares encrypted using the permuting party’s
public key. The owner party can then use the additive homomorphism of the
encryption scheme to add the encrypted shares and obtain an encryption of the
element under the other (permuting) party’s public key. Therefore, it cannot
decrypt to learn the underlying value (and thus, permutation).



414 B. H. Falk et al.

Adding Dummies and Oblivious Pointer Advancement: To address chal-
lenge 1, we add “dummy” elements to each party’s list so that we are able to
advance both lists every iteration of the loop. For simplicity, suppose both parties’
lists are of size n. Then, both parties can generate n dummy elements and main-
tain two separate pointers to keep track of the real and dummy elements respec-
tively. These dummies are interspersed with the real elements to create a list of 2n
elements. At every iteration, the party with the smaller element advances its real
pointer, while the other party advances its dummy pointer. This ensures that an
element is consumed from both lists every iteration of the merge.

Finally, we are left with two more operations: (1) comparing encrypted real
values efficiently and (2) advancing lists obliviously. We achieve (1) using a
trick to convert ciphertexts into secret shares which can be passed to any state-
of-the-art 2-party comparison protocol [18,55] to avoid executing an expensive
decryption circuit jointly; and we accomplish (2) by a clever construction of the
linked list. The detailed shuffle and merge protocol is shown in Sect. 5.

4 Preliminaries

4.1 Secret Sharing

Our protocol makes use of an additive secret sharing scheme, where a secret x∈G
is shared as (x − r, r), for some random r ← G where G is the finite group that
parameterizes the Group Homomorphic Encryption scheme. In the two-party
setting all linear secret-sharing schemes are essentially equivalent [19], so we can
focus on this scheme without loss of generality.

As is standard, we use the notation �x� to denote a secret sharing of the
plaintext x. Using the linearity of the secret sharing scheme, the participants
can compute �x + y� from �x� and �y� with no communication.

For more complex calculations on shares, we rely on secure multiparty com-
putation (MPC), described below.

4.2 Secure Computation

Our protocol makes use of a few simple primitives for processing on secret shares,
comparisons, multiplexing and equality tests. These basic primitives are imple-
mented in essentially every secure computation framework, including ABY [23],
EMP [58], SCALE-MAMBA [3] and MPyC [54].

We assume that there is an underlying ordering on the elements of G – this
is a necessary assumption since the parties want to sort their elements.

Our construction is compatible with both arithmetic and boolean secure
computation protocols, although comparisons and equality tests are likely to be
more efficient in boolean-circuit-based secure computation protocols.

4.3 Additively Homomorphic Encryption

Our construction makes use of a semantically secure, additively homomorphic
cryptosystem, (KeyGen,Enc,Dec,Add). Our system is compatible with classical



A Linear-Time 2-Party Secure Merge Protocol 415

Comparisons

�x < y� =

{
�0� if x ≥ y
�1� if x < y

Multiplexing

mux (�b�, �x�, �y�) =

{
�x� if b = 0
�y� if b = 1

Multiplexes are often implemented as a simple multiplication

mux (�b�, �x�, �y�) = �x� + �b� · (�y� − �x�)

Equality tests

�x = y� =

{
�0� if x ≠ y
�1� if x = y

additively homomorphic schemes like Paillier [46], or lattice-based schemes that
natively work over Z/2Z, e.g. BFV [9,27] or CGGI [14,15], both of which are
widely supported by current FHE implementations [56]. Note that the security
we require for the Add(·, ·, ·) is much weaker than full circuit privacy [8], since
in our application the summations being computed are known to both parties,
and only the summands are private.

In order for our final merge protocol to achieve linear communication, the
underlying additively homomorphic cryptosystem must have constant ciphertext
expansion.

4.4 Notation

As there are only two parties, and each party has a unique public key (for the
additively homomorphic cryptosystem), when we say “key i” we mean the public
key of party i, pki.

We denote each party as Pi where i∈{0, 1}. As all our protocols are two-party
protocols (and most are completely symmetric), we take all subscripts modulo
2, thus if Pi is one party, Pi+1 is the other party.

Several protocols below must be run twice, one time for each party, so we
give such protocols an index with respect to which we write the steps within the
protocol. For example, Protocoli will be called twice, for i ∈ {0, 1} and we use
index i within the protocol to identify the parties. Similarly, we use the same
index to define the ideal functionality.

We introduce some more notation in Table 1.



416 B. H. Falk et al.

Additively Homomorphic Encryption
Semantic security: for all x, y ∈ G

{
(pk, cx) :

pk, sk ← KeyGen
(
1λ

)
cx ← Enc(pk, x)

}
≈c

{
(pk, cy) :

pk, sk ← KeyGen
(
1λ

)
cy ← Enc(pk, y)

}
.

Security of Add: for all x, y ∈ G
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c,
cx, cy,
pk, sk

:

pk, sk ← KeyGen
(
1λ

)
cx ← Enc(pk, x)
cy ← Enc(pk, y)
r ← G
cr ← Enc(pk, r)
c ← Add(pk, cx, cr)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

≈c

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c,
cx, cy,
pk, sk

:

pk, sk ← KeyGen
(
1λ

)
cx ← Enc(pk, x)
cy ← Enc(pk, y)
r ← G
cr ← Enc(pk, r)
c ← Add(pk, cy, cr)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Decrypting the sum of two ciphertexts yields nothing about the individual sum-
mands.
Correctness: for any x, y ∈ G, and c > 0

Pr

⎡
⎢⎢⎣

⎧⎪⎪⎨
⎪⎪⎩

Dec(sk, cx+y) :

pk, sk ← KeyGen
(
1λ

)
cx ← Enc(pk, x)
cy ← Enc(pk, y)
cx+y ← Add(pk, cx, cy)

⎫⎪⎪⎬
⎪⎪⎭
= x + y

⎤
⎥⎥⎦ > 1 −O

(
λ−c)

Table 1. More notation

�x� A secret sharing of the value x

�x�i Party i’s secret share of the value x

⟪m⟫i An encryption of the message m under public key of party i

5 Construction and Protocol Definitions

In this section we describe our construction. First, we present a two-party algo-
rithm for creating and shuffling linked lists. Second, we present a technique for
converting encryptions (encrypted by one party) into secret shares. Third, we
show how to combine these tools into our main construction which is a linear-
communication secure merge protocol.

We assume that party i has a key pair (pki, ski) for an additively homomor-
phic cryptosystem (KeyGen,Enc,Dec,Add).

5.1 Obliviously Shuffling Input Lists

In this section, we describe our novel two-party protocol for padding and shuffling
private linked lists. ShuffleLLi (Protocol 2). The goal of the ShuffleLLi protocol
is for party i to achieve a random permutation of its input list with dummies



A Linear-Time 2-Party Secure Merge Protocol 417

encrypted under party (i + 1)’s public key. The protocol takes a parameter, m,
defining how many “dummy” elements are created. Although ShuffleLLi takes m
as a parameter, in our final merge protocol, P1 should set m equal to the length
of its input list. The ShuffleLLi protocol realizes the ideal functionality, F i

shuffle

below.

Ideal Functionality F i
shuffle

1. Input: Pi with sorted list v of size n, and Pi+1 with permutation
π : [m + n] → [m + n] for some m > 0.

2. Create v′ by concatenating m dummy elements to the end of v and shuffle
v′ using π, w [j] ← v′ [π−1 (j)

]
for j ∈ {0, . . . , n +m − 1}.

3. Create linked list t to traverse w, such that if w [j] = v [k], then w [t [i]] =
v [k + 1].

4. For j ∈ {0, . . . , n +m − 1}, output ⟪w [j] ⟫i+1, and ⟪t [j] ⟫i+1 to Pi, and ⊥
to Pi+1.

5. Output (�π (n + 1)�i, �π (0)�i) to Pi, and (�π (n + 1)�i+1, �π (0)�i+1) to
Pi+1.

6. Output �π (n)�i to Pi and �π (n)�i+1 to Pi+1.

In the second last step, we output a 2-tuple which are secret shares of the
head pointers (positions) of the dummy and real list respectively. In the last
step, we output the secret share of the position of a special end-of-list dummy
element. This special element is used to obliviously switch between the real and
dummy list. It is explained in detail in Sect. 5.1 and 5.3.

Below, we describe the shuffle for party P0 but in the final protocol they also
swap positions and rerun. Assume that P0 holds a sorted list v of length n, and
P1 generates a random permutation π over [m + n]. Then, the protocol proceeds
as follows,

1. Encrypt sorted list: To hide its real elements (input list), P0 encrypts each
element using its public key pk0 and sends the list of ciphertexts (in sorted
order of the underlying value) to P1.

2. Generate shares: Given a value v′, party 1 can create an additive sharing of
v′ as (v′

− r, r) for some random value r ∈ G. In our setting, however, P1 does
not have the plaintext value, v′, but instead has an encryption ⟪v′

⟫0.
Using the additively homomorphism, given a ciphertext ⟪v′

⟫0, party 1 creates
the encrypted pair (⟪v′

− r⟫0, ⟪r⟫1). See Line 2.
3. Concatenate encrypted dummies: Party P1 creates a special dummy known

as the end-of-list element, and m − 1 random dummy elements. The end-of-
list element marks the end of both the real and dummy list but also points
to the first element of the dummy list. Therefore, the end-of-list element
along with the dummy elements form a cycle. The end-of-list element stores
the largest real value in sorted order instead of a random number as its
value. P1 easily constructs the end-of-list element encrypted under pk0 by



418 B. H. Falk et al.

just duplicating ⟪v [n − 1]⟫0. Instead of a linked list terminating by pointing
to ⊥, we will have it point to the this end-of-list element. The purpose of the
special element becomes apparent when either party’s real list is exhausted
and we must obliviously switch to traversing the dummy list while we access
the remaining real elements from the other party (See Sect. 5.3).

4. Permute ciphertexts and create linked list: Party P1 permutes the pair of
shares using π by assigning the kth element of the permuted list to the
π−1 (k)th element of the concatenated list as shown in Line 5. To traverse
the permuted list in sorted order, P1 also generates a linked list such that the
ith element is the position of the next element in sorted order (see Line 6).
We also point the last dummy element to the end-of-list element. Therefore,
the real (resp. dummy) list reaches the end-of-list element after n (resp. m)
steps. See Fig. 1 below which illustrates this construction.
To hide the linked list from party P0 (and thus, the underlying permutation),
P1 encrypts each element of the linked list using its public key, pk1. Finally,
it secret shares the position of the first dummy and the first real element as
a 2-tuple head pointer, and the end-of-list element.

5. Recombine shares: P1 sends both the shuffled ciphertext pairs and the
encrypted linked list to P0. Party P0 first decrypts the ciphertexts which were
encrypted under its own public key, pk0 and then re-encrypts them using pk1,
P1’s public key. Using the additive property of the encryption scheme, P0 adds
the newly obtained ciphertexts to their corresponding ciphertexts in the pair.
Due to the homomorphic property, P0 obtains an encryption of the sum of
the underlying value which is in fact, the original set of real/dummy elements
as the pairs were constructed precisely from those values.

Fig. 1. Construction of the linked list. d[1] and v[0] (as pair of encrypted shares) are
the at the head of the dummy and real pointer respectively. Both the last real element,
v[n − 1] and last dummy element, d[m − 1] point to the end-of-list element.

Therefore, at the end of Protocol 2, P0 obtains a permutation (oblivious to
itself) of its original list with dummies encrypted under P1’s public key, along
with an encrypted linked list to traverse it. Note that the end-of-list element is



A Linear-Time 2-Party Secure Merge Protocol 419

treated as a dummy element but stores a real value which is crucial in proceeding
obliviously when either party exhausts its real list. We further elaborate on this
in Sect. 5.3.

We prove ShuffleLLi securely computes the ideal functionality F i
shuffle in [25].

Protocol 2. ShuffleLLi: Pad and Permute Linked Lists
Input: Party Pi holds sorted list v of size n; Pi+1 holds random permutation π : [m +

n] → [m + n] for some m > 0.
Output: Pi obtains a permutation (under π) of its elements (with m dummies) and

linked list, both encrypted using Pi+1’s public key.

(index j ∈ {0, . . . , n +m − 1})
1: For k ∈ {0, . . . , n − 1}, Pi encrypts c [k] ← ⟪v [k] ⟫i, and sends c to Pi+1

2: For k ∈ {0, . . . , n − 1}, Pi+1 generates random value rk ← G, and creates
ci [k] ← (c [k] − ⟪rk⟫i, ⟪rk⟫i+1) � 2-tuples of the form (ci [k] [0], ci [k] [1])

3: Pi+1 generates random r ← G and sets c′
i [0] ← (c [n − 1] − ⟪r⟫i, ⟪r⟫i+1)

� end-of-list element. c [n − 1] − ⟪r ⟫i = ⟪ v [n − 1] − r⟫i

4: For k ∈ {1, . . . , m − 1}, Pi+1 generates dummies, d [k] = d0 [k] + d1 [k] where
d0 [k] , d1 [k] ← G are random, and creates, c′

i [k] ← (⟪di [k] ⟫i, ⟪di+1 [k] ⟫i+1)
5: Pi+1 permutes, cπ

i [j] ← (ci‖c′
i)

[
π−1 (j)

]
6: Pi+1 creates linked list, t′ [π (j)] ← π (j + 1) with t′ [π(n +m − 1)] = π (n) � point

the last dummy to the end-of-list element
7: Pi+1 encrypts ti[j] ← ⟪t′[j]⟫i+1

8: Pi+1 secret shares pi = (π (n + 1) , π (0)) � head pointers tuple
9: Pi+1 secret shares ei = π (n) � end-of-list element

10: Pi+1 sends cπ
i , and ti to Pi

11: Pi recombines cπ[j] ← cπ
i [j][1] + ⟪Dec(sk0, c

π
i [j][0])⟫i+1

5.2 Converting Ciphertexts to Secret Shares

In this section, we give an efficient 2-party protocol for converting ciphertexts
from an additively homomorphic cryptosystem into secret shares of the same
underlying value. A similar idea was used implicitly for creating “blinded per-
mutations” [29].

In principle, a general-purpose MPC protocol can always be used to con-
vert ciphertexts to secret shares by evaluating the decryption circuit for the
encryption scheme within the MPC, but, in general, this is extremely ineffi-
cient. EncToSSi (Protocol 3) gives an extremely efficient two-party protocol for
achieving the same result when the underlying cryptosystem is additively homo-
morphic. EncToSSi realizes the ideal functionality, F i

decrypt defined below.



420 B. H. Falk et al.

Ideal Functionality F i
decrypt

1. Input: Pi with ciphertext, ⟪v⟫i+1.
2. Output secret shares of value v: �v�i to Pi, and �v�i+1 to Pi+1.

In our setting, party i holds a ciphertext c = ⟪v⟫i+1 of a private value, v,
encrypted under party (i + 1)’s key. At the end of the protocol, the parties hold
additive secret shares of the underlying value v, and neither party learns anything
about v.

We prove that EncToSSi securely computes F i
decrypt in [25].

Protocol 3. EncToSSi: Convert Ciphertext to Secret Share
Input: Party Pi inputs ciphertext, c = ⟪v⟫i+1 (encrypted using pki+1).
Output: Returns secret sharing of the underlying plaintext, v.
1: Pi generates random value, ri ← G
2: Pi encrypts ⟪ri⟫i+1

3: Pi uses the additive homomorphism to compute ⟪v + ri⟫i+1

4: Pi sends c′
= ⟪v + ri⟫i+1 to Pi+1

5: Pi+1 decrypts v′ ← Dec(ski+1, c
′)

6: Pi+1 shares v′

7: Pi sets �v′′�i = �v′�i − ri

8: return �v′′�

5.3 Securely Merging Obliviously Shuffled Lists

We are finally ready to securely merge the two parties’ lists. Our Merge protocol
realizes the ideal functionality, Fmerge defined below.

Ideal Functionality Fmerge

1. Input: For i ∈ {0, 1}, Pi with list vi of size ni.
2. Fmerge merges the two lists v1 and v2 such that the resultant list, v is

sorted.
3. Output secret shares of each element of v, �v [j]�0 to P0, and �v [j]�1 to

P1, for j ∈ {0, . . . , n0 + n1}.

Suppose party Pi holds list vi of size ni. The protocol proceeds as described
below.

1. Obliviously shuffle padded list with linked list: First, both parties call
ShuffleLLi (for i ∈ {0, 1} (as described in Protocol 2) to obtain an encrypted,
permuted version of their input list padded with dummies (including the end-
of-list element). ShuffleLLi also outputs an encrypted linked list that party i



A Linear-Time 2-Party Secure Merge Protocol 421

later uses to traverse their list without leaking the accessed positions to party
i + 1 (who knows the permutation).

2. Access elements from shuffled list: The parties maintain a secret-shared bit
for each party, �bi�, and bi = 1 at iterations where Pi needs to access a real
element, and bi = 0 at iterations where Pi needs to access a dummy element.
In the first step, both parties access their first real element, in all subsequent
steps b0 ≠ b1 since only one party advances its real list.1 The bit, bi, allows
the parties to select and update the appropriate values obliviously using the
mux operation (e.g. Protocol 5 line 9).
At every step in the protocol, the parties also maintain a secret sharing of
the last observed real value in Pi’s list, curi. In any iteration where a dummy
element must be consumed from party i’s list, we use bi to obliviously select
curi over the dummy value, effectively discarding it in place of the actual real
value to be compared. See Line 14 of Protocol 5.

3. Compare real values: Using bi, we obtain the real values at the head of each
real list. To find the smaller element, we use a generic comparison protocol
(Sect. 4.2) which returns a (secret-shared) bit equal to 1 if party 0’s real value
was smaller than party 1’s. Therefore, we set b0 to the result of the comparison
protocol (line 15) and b1 ← 1−b0 (line 16) allowing us to appropriately update
the head pointer for the next step.

4. Update head pointer: Now, we advance one party’s real list and the other
party’s dummy list as follows. First, we find the next position from the
encrypted linked list using EncToSSi. Then, we update the appropriate entry
of the head pointer using bit, bi (line 1). If bi = 1, then this means that Pi’s
real value was smaller and we must advance the real (resp. dummy) pointer
to obtain the next real (resp. dummy) value from Pi’s (resp. Pi+1’s) list. Pro-
tocol 4 details how the head pointer is advanced. We prove in [25] that that
every memory location in the shuffled list is accessed exactly once, which
makes the overall access pattern independent of the underlying data.

5. Switching from an exhausted list: When either party exhausts their real list,
we must somehow notify the protocol and secret-share the remaining values
of the other real list.
We keep track of when a real list is exhausted by checking when the real
pointer reaches the end-of-list element. We do so securely using a generic
equality testing MPC protocol as described in Sect. 4.2. We maintain another
secret-shared bit, fin initialized to 0, which acts like a boolean flag and is
inverted as soon as either real pointer reaches its corresponding end-of-list
element. See line 10 of Protocol 5.
Without loss of generality, suppose that party 0 exhausted its real list first.
This implies that b0 = 1 (and b1 = 0) from the previous iteration, and the real
pointer has been advanced to store the position of the end-of-list element.
Recall that the underlying value of the end-of-list element is exactly the same
as the largest real value, i.e., the most recent element that party 0 accessed in

1 Since b0 =¬b1 at every iteration after the first, we could increase efficiency by storing
only a single bit, but the exposition is simpler if we forego this minor optimization.



422 B. H. Falk et al.

the previous iteration. So on Line 14, val0 will equal the end-of-list element
i.e., the largest real value of party 0, and val1 will equal cur1, the most recent
real value from party 1 that has not been advanced and secret-shared yet.
Therefore, essentially, we will perform the same comparison as the previous
iteration and conclude that val0 is smaller. However, val0 is a duplicate of
the most recent real value that was secret-shared in the previous iteration.
This is where we use the fin bit to “reverse” the bits so that we instead
select val1 as the next real value, and advance the real pointer of party 1
(and dummy pointer of party 0) as required since we’re only left with real
values from party 1’s list. As val0 is smaller than every remaining real value
in party 1’s list, every comparison hereafter will always return b0 =1 which we
always invert hereafter using fin. We prove fin remains 1 once set in [25],
thus proving the correctness of the algorithm. In summary, performing these
dummy comparisons allows the protocol to remain oblivious by still accessing
elements from the permuted list, and using the fin bit allows the protocol to
correctly compute the merge.
Lastly, notice that if party 1 exhausts it real list first, then by construction,
party 0’s dummy pointer will reach the end-of-list element as we consume
one dummy for each real element after the first one and thus, cycle back from
the last dummy element to the end-of-list element. And since party 1 just
exhausted its real list, we know b0 = 0 and b1 = 1. So, pos0 is equal to the
position of the dummy pointer, i.e., the position of the end-of-list element.
Therefore, in either case (whether party 0 or 1 exhausts a real list), pos0 will
always equal the position of the end-of-list element and it is sufficient to only
test pos0 for setting fin (line 10).

Protocol 4. UpdateHeadi: Update Head Pointer to Linked Lists
Input: Bit, �b�; Head pointer tuple, �p�; linked list, t held by party Pi.
Output: Head pointer tuple updated with the next real or dummy position from t

according to bit, b.
1: �pos� ← mux (�b�, �p[0]�, �p[1]�)
2: Reveali (pos) � The revealed pos is an index in the shuffled list
3: �next� ← EncToSSi (t[pos])
4: �pnew[1]� ← mux (�b�, �p[1]�, �next�)
5: �pnew[0]� ← mux (�b�, �next�, �p[0]�)
6: return �pnew�

In the end, both parties obtain element-wise secret shares of the merge of
their two sorted lists such that the resulting list is also in sorted order. We prove
Merge securely computes Fmerge in [25].

Our algorithm runs in time linear in the length of the two lists requires
only linear communication between the two parties assuming the underlying
encryption scheme produces ciphertexts with constant factor expansion. The
concrete costs are outlined in [25].



A Linear-Time 2-Party Secure Merge Protocol 423

Protocol 5. Merge: Securely Merge Sorted Lists
Input: Party Pi holds input list vi of size ni.
Output: Parties obtain a secret sharing of the merge of the lists in sorted order.
1: For i ∈ {0, 1}, Pi locally generates random permutation, πi : [n0 + n1] → [n0 + n1].
2: For i ∈ {0, 1}, run ShuffleLLi (vi, πi+1) so that Pi obtains ciphertext list, ci, linked

list, ti and secret shares, �pj�i and �ej�i for j ∈ (0, 1).
3: For i ∈ {0, 1}, �bi� ← �1� � bi indicates real or dummy list
4: For i ∈ {0, 1}, �curi� ← �⊥� � curi is the current value in the real list
5: �end� ← �e0� � position of the end-of-list element
6: �fin� ← �0� � fin = 1 if either real list is exhausted
7: k ← 0
8: while k < n0 + n1 do
9: For i ∈ {0, 1}, �posi� ← mux (�bi�, �pi[0]�, �pi[1]�) � Choose posi based on bi

10: �fin� ← �fin� ⊕ �pos0 = end� � If fin = 1 it will remain 1
11: For i ∈ {0, 1}, Reveali (�posi�)
12: For i ∈ {0, 1}, �pi� ← UpdateHeadi(�bi�, �pi�, ti) � Move to new head
13: For i ∈ {0, 1}, �tempi� ← EncToSSi (ci [posi]) � Access next position
14: For i ∈ {0, 1}, �vali� ← mux (�bi�, �curi�, �tempi�) � Choose real values
15: �b0� ← �val0 < val1� ⊕ �fin� � Compare real values
16: �b1� ← �1 − b0�
17: �l[k]� ← mux (�b0�, �val1�, �val0�) � l[k] is the smaller value
18: For i ∈ {0, 1}, �curi� ← �vali� � Store most recent real value
19: k ← k + 1
20: end while
21: return (�l [0]�, . . . , �l [n0 + n1 − 1]�) � secret-sharing of sorted merged list

6 Conclusion

In this paper, we presented the first linear-communication 2-party secure merge
protocol. The protocol is asymptotically optimal, and efficient enough for prac-
tical applications. To achieve this protocol, we introduced a 2-party method to
obliviously traverse a permuted list using a novel linked list construction and an
extremely efficient technique to convert ciphertexts to secret shares.

Our secure merge protocol makes only black-box use of an additively homo-
morphic cryptosystem, and a secure computation protocol supporting compar-
isons, equality tests, and multiplexing on secret shared values.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log(n) steps. Combinatorica 3,
1–19 (1983)

2. Al-Haj Baddar, S., Batcher, K.: The AKS sorting network. In: Designing Sorting
Networks: A New Paradigm, pp. 73–80. Springer, New York (2011). https://doi.
org/10.1007/978-1-4614-1851-1 11

3. Aly, A., Keller, M., Rotaru, D., Scholl, P., Smart, N.P., Wood, T.: SCALE-
MAMBA (2019). https://homes.esat.kuleuven.be/∼nsmart/SCALE/

https://doi.org/10.1007/978-1-4614-1851-1_11
https://doi.org/10.1007/978-1-4614-1851-1_11
https://homes.esat.kuleuven.be/~nsmart/SCALE/


424 B. H. Falk et al.

4. Asharov, G., Lin, W., Shi, E.: Sorting short keys in circuits of size o(n log n). In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, 10–13 January 2021. pp. 2249–2268. SIAM (2021)

5. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, pp. 307–314. ACM (1968)

6. Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., Rogers, J.: SMCQL: secure
querying for federated databases. Proc. VLDB Endow. 10(6), 673–684 (2017)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10. ACM,
New York (1988)

8. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for
free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

10. Chan, T.-H.H., Katz, J., Nayak, K., Polychroniadou, A., Shi, E.: More is less:
perfectly secure oblivious algorithms in the multi-server setting. In: Peyrin, T.,
Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 158–188. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03332-3 7

11. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: CCS, pp. 1223–1237. ACM (2018)

12. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: CCS, pp. 1243–1255 (2017)

13. Chida, K., Hamada, K., Ikarashi, D., Kikuchi, R., Kiribuchi, N., Pinkas, B.: An
efficient secure three-party sorting protocol with an honest majority. IACR ePrint
2019/695 (2019)

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

16. Chongchitmate, W., Ishai, Y., Lu, S., Ostrovsky, R.: PSI from ring-OLE. In: CCS
2022. ACM (2022)

17. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035,
pp. 464–482. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-
0 25

18. Couteau, G.: New protocols for secure equality test and comparison. In: Preneel,
B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 303–320. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 16

19. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-030-03332-3_7
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-93387-0_16
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19


A Linear-Time 2-Party Secure Merge Protocol 425

20. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9 8

21. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

22. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection.
In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang,
X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30921-2 4

23. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

24. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: CCS, pp. 789–800 (2013)

25. Falk, B.H., Nema, R., Ostrovsky, R.: A linear-time 2-party secure merge protocol.
Cryptology ePrint Archive, Report 2022/380 (2022)

26. Falk, B.H., Ostrovsky, R.: Secure merge with o(nloglogn) secure operations. In: 2nd
Conference on Information-Theoretic Cryptography (ITC 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2021)

27. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
ePrint 2012/144 (2012)

28. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

29. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychron-
akis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28166-7 9

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC,
pp. 218–229 (1987)

31. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM (JACM) 43(3), 431–473 (1996)

32. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an effi-
cient sorting algorithm for practical secure multi-party computation. IACR ePrint
2014/121 (2014)

33. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5 15

34. Han, Y., Thorup, M.: Integer sorting in 0(n sqrt (log log n)) expected time and
linear space. In: Proceedings of the 43rd Symposium on Foundations of Computer
Science, FOCS 2002, pp. 135–144. IEEE Computer Society (2002)

35. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. J. Cryptol. 23(3), 422–456
(2010)

36. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-30921-2_4
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-319-28166-7_9
https://doi.org/10.1007/978-3-642-37682-5_15


426 B. H. Falk et al.

37. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 34

38. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

39. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for
unequal set sizes with mobile applications. PoPETs 4, 97–117 (2017)

40. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

41. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: CCS, pp. 818–829 (2016)

42. Laud, P., Pankova, A.: Privacy-preserving record linkage in large databases using
secure multiparty computation. BMC Med. Genom. 11(4), 84 (2018)

43. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 18

44. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 22

45. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC, pp. 514–523
(1990)

46. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

47. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 13

48. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: USENIX Security Symposium, pp. 515–530
(2015)

49. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 5

50. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7 5

51. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX, pp. 797–812 (2014)

52. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. IACR Cryptology ePrint Archive (2016)

53. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 9

54. Schoenmakers, B.: MPyC: secure multiparty computation in Python. Github,
February 2019

https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-56620-7_9


A Linear-Time 2-Party Secure Merge Protocol 427

55. Veugen, T., Blom, F., de Hoogh, S.J., Erkin, Z.: Secure comparison protocols in
the semi-honest model. IEEE J. Sel. Top. Signal Process. 9(7), 1217–1228 (2015)

56. Viand, A., Jattke, P., Hithnawi, A.: SoK: fully homomorphic encryption compilers.
arXiv preprint arXiv:2101.07078 (2021)

57. Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M., Lapets, A., Bestavros,
A.: Conclave: secure multi-party computation on big data. In: EuroSys, p. 3. ACM
(2019)

58. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient multiparty computa-
tion toolkit (2016). https://github.com/emp-toolkit/emp-sh2pc

59. Yao, A.: Protocols for secure computations (extended abstract). In: FOCS 1982,
pp. 160–164 (1982)

60. Yao, A.: How to generate and exchange secrets. In: FOCS 1986, pp. 162–167 (1986)
61. Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious computa-

tion. IACR Cryptology ePrint Archive 2015/1153 (2015)

http://arxiv.org/abs/2101.07078
https://github.com/emp-toolkit/emp-sh2pc

	A Linear-Time 2-Party Secure Merge Protocol
	1 Introduction
	2 Previous Work
	2.1 Secure Sorting
	2.2 Secure Merging

	3 Overview
	3.1 Challenges
	3.2 Intuition and Construction Overview

	4 Preliminaries
	4.1 Secret Sharing
	4.2 Secure Computation
	4.3 Additively Homomorphic Encryption
	4.4 Notation

	5 Construction and Protocol Definitions
	5.1 Obliviously Shuffling Input Lists
	5.2 Converting Ciphertexts to Secret Shares
	5.3 Securely Merging Obliviously Shuffled Lists

	6 Conclusion
	References




