
Time, Memory and Accuracy Tradeoffs
in Side-Channel Trace Profiling

Hen Hayoon(B)and Yossi Oren(B)

Department of Software and Information Systems Engineering,
Ben-Gurion University, Beersheba, Israel

hayoonh@post.bgu.ac.il and, yos@bgu.ac.iland

Abstract. Template attacks are one of the most powerful classes of side-
channel attacks. Template attacks begin with an offline step, in which the
side-channel traces are profiled, and decoders are created for each side-
channel leak. In this paper, we analyze the compression step of the trace
profiling process. This compression step, which is a central part of the
decoder’s training process, is used to reduce the amount of time, mem-
ory consumption, and data required to successfully perform the attack;
various practical methods have been proposed for this step, including
one which uses an efficient means both for selecting the points of interest
(POI) in the power trace and for preprocessing noisy data.

We investigate ways to improve the efficiency of the attack by imple-
menting several compression methods which select the most informative
power consumption samples from power traces. We develop a unique ded-
icated evaluation system to compare the performance of various decoders
with different compression methods on real-world power traces. Our find-
ings indicate that our proposed decoder for side-channel traces outper-
forms the current state of art in terms of speed, resource consumption,
and accuracy. We also demonstrate our decoder’s effectiveness under
resource-constrained conditions, and show that it achieves over 70% accu-
racy even if there are fewer than 1,000 traces in the profiling phase.

1 Introduction

Side-channel attacks (SCAs) [4,9,15] have been shown to be effective and prac-
tical for attacking implementations of cryptographic algorithms. These attacks
reveal cryptographic device secrets by observing the physical properties of the
device [15]. Adversaries can obtain sensitive information from side-channels, such
as the timing of operations, power consumption, electromagnetic emanations,
etc. [4,15,17]. When a cryptographic operation is performed, the device emits
a data dependent side-channel leak. Leaks are the internal state functions of
the device under test (DUT), and they are modulated into a power/EM trace,
along with some noise. In constrained devices, such as chip-cards, straightfor-
ward implementations of cryptographic algorithms can be broken easily, since
the power consumption of the cryptographic device is dependent on the inter-
mediate values of the cryptographic algorithm executed. When the amount of
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 29–46, 2022.
https://doi.org/10.1007/978-3-031-07689-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_3

30 H. Hayoon and Y. Oren

leakage is smaller relative to the noise, statistical techniques such as DPA are
applicable. As stated by Chari et al. [6], DPA relies on the statistical analysis
of a large number of samples where the same keying material is used to operate
on different data. The most powerful type of side-channel attack is called the
template attack (TA). The TA’s evaluation of side-channel information relies on
a multivariate model of the side-channel traces. This attack contains an offline
and online phase, and one of its advantages is that it requires just a few samples
in the online phase, and works well even if the DUT’s power consumption does
not conform to the Hamming weight leakage model.

In order to recover the secret key in a template-based side-channel attack, the
attacker’s operations consist of three phases. First, in the offline profiling phase,
a device totally controlled by the attacker and similar to the DUT is profiled
and characterized. This DUT analysis, like correlation power analysis (CPA) [4],
identifies the position of the leaking operations in the traces by identifying a
small section of the power trace T depending only on a few unknown key bits.
The profiling phase outputs a series of decoders, each mapping a certain set of
points of interest (POIs, also known as features) in the trace to a certain set of
secret values. The Hamming weight model is an example of the mapped output
of this phase [17,25]. The second phase consists of an online decoding phase,
where the attacker is provided with a few power traces, generally a single one,
and uses the decoders created in the profiling phase to recover leak vectors from
the power trace. These leak vectors may contain some errors due to noise. The
last phase is the solving phase, where the correct key is discovered from among
the most likely candidates by using the brutre force, the maximum-likelihood
method [12] or by the use of a constraint solver [14,25].

1.1 Contribution

Trace compression is the initial step of the profiling phase. In this step the
power trace is replaced with a smaller-sized vector, in order to improve the
decoder’s performance, in terms of the number power traces required, and its
overall performance in both the online and offline phases. In this paper, we
investigate which parameters for this compression step deliver the best combi-
nation of accuracy and runtime performance. Specifically, our paper makes the
following contributions: we design and implement a unique evaluation perfor-
mance system which can analyze the compression step. We then use this system
to explore and compare several profiling methods. The profiling methods differ
based on the compression techniques and preprocessing model (for the training
set traces) utilized. Three well-known and different classical compression meth-
ods were implemented. In addition, we implement the method used by the smart
decoder proposed in [18] and presented in Sect. 3.4, it offers an efficient searching
algorithm to find the most leaking points in the trace using a unique compres-
sion method. Finally, we propose our own optimal profiling method, based on
the guidelines of [24], as a tradeoff that performs well under conditions of data
and resource restrictions.

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 31

1.2 Related Work

Weisse et al. [18] presented a method for profiling the training set of power traces
into an accurate decoder to be used as part of an algebraic side-channel attack
aimed at recovering the secret key. The authors provided two scoring methods
used to identify the best leaking points in the trace; their methods are effective
when there is limited representation of some values in the training set traces.
Kocher et al. [13] were the first to present the difference of means (DOM) as
an alternative to correlation for power computation measurements analysis in
order to determine the secret keys of a DES operation. Before that, Chari et al.
[6] showed the best visualization for the DOM of side-channel samples for a TA
with a single sample against an RC4 implementation.

Mangard et al. [15] used the DOM as an alternative to correlation not only
for the binary power model but for the Hamming-weight model, directly on
power traces to perform a DPA attack on the S-box of an AES implementation
[8]. In another chapter of their book the authors suggested the model-based
integration of SNR (signal-to-noise ratio) techniques to compress power traces,
using the sum of their signal and noise in a defined time interval. Gierlichs et
al. [10] suggested the sum of squared pairwise differences (SOSD) instead of the
regular sum of pairwise of the DOM for the selection of interesting points in a
TA for an SCA against the AES. Rechberger et al. [24] presented a practical
TA using an advanced version of the maximum extraction compression method
to select the interesting points in a power trace. Instead of choosing the highest
points, the authors defined a few properties that must exist at the selected points.

Other authors revealed the importance of feature selection in an SCA and
compared them in other scenarios. Zheng et al. [31] compared known feature
selection techniques and evaluated their accuracy for profiled SCAs. Picek et al.
[23] investigated advanced feature selection techniques from the machine learning
domain used to improve attack accuracy, examining the influence of the number
of features in the process. Cagli et al. [5] presented an accuracy comparison
analysis for feature selection in SCAs through linear, non linear, and neural-
network models.

2 Background

In this work we assume a DUT conforming to the Hamming weight power leakage
model.

Let k be an encryption key (bytes), and p and c are respectively the plaintext
and ciphertext of the cryptographic algorithm, which is uniformly chosen. The
multivariate power trace measured is denoted as

−→
X = X1, ...,XS , where S is the

number of time samples (also called features).
In the offline phase, the attacker, who controls the DUT, estimates the leakage

model using a set of N profiling traces
−→
X 1,

−→
XN (multi dimensional S × N)

and the knowledge of k. In the online phase, additional power traces of the DUT−→
X 1,

−→
XM itself are measured (one or more), and the attacker’s objective is to

recover k from these power traces using signal classification techniques.

32 H. Hayoon and Y. Oren

2.1 Template Attacks

Template attacks are a method for performing power analysis attacks which
works by creating a characterization of a device. The attack usually consists
of an offline phase, in which device characterization takes place, followed by a
online phase, in which the characterization is used for the attack.

First, a series of templates of all possible operations (i.e., all of the crypto-
graphic algorithms are executed using all of the possible subkey values) is con-
structed. Then, the attack starts, and the trace of a single operation is captured.
Using the templates created, which represent all key values, the side-channel
information of the attacked device is classified and assigned to one or more of
the templates. The goal is to significantly reduce the number of possible keys,
optimally concluding the attack with a single possible value for the secret key.

Building Templates. In the state-of-the-art template attack the power sam-
ples are considered dependent by the TA; accordingly, the traces are charac-
terized with the multivariate normal distribution [6,7,15,24,26–28]. The char-
acterization defined by the “template” of the multivariate normal distribution,
is the pair (m,CM) where m represents the mean vector and CM represents
the covariance matrix for each class. When building templates with the power
model, we determine templates for certain sequences of instructions by execut-
ing them with different and known data di and keys kj , in order to record the
resulting power consumption. Then, we group the corresponding traces to the
pair of (di, kj) and estimate (m,CM).

As a result, we obtain a template for every data and key pair. Then, using
the template, along with (m,CM)di,kj

and the power trace x, we evaluate the
probability density function of the multivariate normal distribution :

p(x; (m,CM)di,kj
) =

exp(− 1
2 · (x − m)′ · CM−1 · (x − m))

√
(2π)τ · det(CM)

The probabilities for each template measure how well they fit to a given trace.
If the noise level is sufficiently low, the maximum-likelihood decision rule can be
applied, and the template with the highest probability indicates the correct key.

2.2 Dataset

The dataset used in this study is the DPA contest v4 dataset [20], which provides
measurements of a masked AES implementation. In that attack contest, the
goal was to use the smallest number of power consumption traces to identify
the first 128 bits of the encryption key. The hardware used for the cipher
implementation was the Atmel ATMega-163 smart card, which was sampled
using a LeCroy Waverunner 6100A oscilloscope at the rate of 500 MS/s. The
dataset provides 100,000 power traces, each of which consists of 435,002 samples
and corresponds to the execution of an AES-256 round. The countermeasure
of the AES-256 implementation was “Rotating S-Box Masking” (RSM) [21]; all

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 33

of the power traces provided were running the “AES-RSM” implementation with
the same 256-bit key, but different plaintext was used for each measurement. This
implementation contains the following features:

– An arbitrary fixed 16-byte mask is added on top of the classic AES. A random
offset 0 ≤ o ≤ 15 is drawn as the first stage of the encryption process. Let m0

denote the cyclic rotation of the mask added by offset o.
– The masked plaintext pm is the result of the XOR operation of the 16 bytes

of plaintext with m0. Let pmi denote the result pmi = pi ⊕ m0
i , 0 ≤ i ≤ 15.

– The AddRoundKey phase uses pm for each sub-round key.
– The masked S-boxes, which are derived from the value of m0 of, are used.
– The ShiftRows and MixColumns sub-round phases are unchanged.

We generated and parsed the plaintext, offsets and key files into comma-
separated value (CSV) files, according to the size expected by the parsing code
used by [18], and matched them (populating from index 0) with the RSM trace
indices, according to the trace index file found on the DPA contest site [21].

2.3 The Hamming Weight Leakage Model

GeneralAssumption. The assumed form of the Hamming weight (HW) leakage
of information in power consumption described in [15] is: Ptotal = Pexp(HW (si))+
Pn, where HW (si) denotes the HW of the intermediate state byte si for a certain
leak i, and Pn denotes the noise component which is assumed to be normally dis-
tributed with unknown parameters. This form is exactly the probabilistic model
used to construct a Bayesian classifier. As was done in [22,24,30], we therefore use
a naive Bayes (NB) classifier. The NB classifier returns, for each feature, a mean
and variance for each class of the 9 possible HW classes (0–8).

AES-RSM Leaks. The leakage model for the AES-RSM implementation is the
HW model. The desired leakage of information of the AES-RSM implementation
is the Hamming weight of the S-box state bytes they process. The following
leaks can be derived from the traces of DPA v4 used in our study: 16 bytes of
the masked plaintext pmi, as describe in Sect. 2.2, 16 bytes of the output of the
AddRoundKey computation, 16 bytes of the output of SubBytes, and finally 52
bytes from the MixColumns computation. The first 16 bytes were added by the
RSM countermeasure, The rest 84 bytes are the same as enumerated in [18]. In
aggregate, there are 100 leaks from 100 intermediate byte values.

3 Compression Methods

The compression step is the first step performed during the profiling phase of an
SCA. Compression methods are usually used to reduce the complexity of power
analysis attacks, by reducing the length (dimension) of the power traces. This
is done in cases in which there are not enough traces for a full rank covariance
matrix CM , to cope with computational or memory restrictions, as the size of
the CM grows quadratically with the number of samples in the trace.

34 H. Hayoon and Y. Oren

The motivation for using compression methods stems from the amount of
redundancy present in long power traces, as these methods are able to remove
this redundancy without significant loss of leak information. To ensure an effi-
cient compression process, it is necessary to know which points in the power
traces points the “points of interest” (POIs) and contain information relevant
to an attacker. These samples have the highest information leakage, which is
reflected in their high correlation to the number of transitions that occur in the
chip, where we implicitly assume that the number of transitions depends on the
operation performed and on the data being processed. Identification of the POI
by the attacker is the first step in device characterization, and this information
is used to build the templates.

There are two main compression method approaches: The first is the “selec-
tion of samples” approach, which is based on some criteria, and the second is
the “usage of linear combinations” of the leakage vectors approach, which based
on the principal components or Fisher’s linear discriminant.

In this section, we describe methods from both approaches in order to cover
a wide range of methods in our performance comparison. We first present a few
classical methods; then we discuss the compression method used by the smart
decoder proposed in [18], and finally we describe the compression method used
in our decoder.

3.1 Principal Component Analysis

Principal component analysis (PCA) is mainly used in multivariate statistics
to reduce the dimensionality of a dataset while retaining the most variance [3],
by finding patterns within the dataset. PCA searches for linear combinations
with the greatest variance, and divides them into principal components (PCs)
where the greatest variance is captured by the highest component. The first PC
is required to have the greatest variance. The second PC must be orthogonal to
the first component while capturing the greatest variance within the dataset in
that direction; subsequent components cover less and less of the remaining data
variance.

The maximum number of PCs (dimensionality) is equal to the number of
samples in the power trace. Choosing the right number of PCs (designated by
n) is essential for obtaining optimal results, as shown in [11], by maximizing the
variance in the original data and minimizing the reconstruction error of the data
transformation.

The PCA method is based on the usage of the linear combinations approach
(mentioned above), and we chose to implement it, since according to [7,19], its
success, unlike the Linear discriminant analysis (LDA) method, depends on the
condition of equal covariance (known as homoscedasticity). We use the MATLAB
implementation of PCA [1] which returns a vector containing the percentage of
the total variance explained by each PC. Then, the mean of each relevant feature
from all of the training traces is calculated.

The training part calculates the principal features by multiplying the coef-
ficient by the difference of each feature with the mean. The vector returned is

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 35

the implementation of the “cumulative percentage of total variation” method for
choosing n, which is the method recommended by [11,19]; we experiment with
n values in the range [5, 10, 30], since the performance measurements with n <
5 and n > 30 are extreme and unstable.

3.2 Difference of Means

The difference of means (DOM) compression method is based on the selection
of samples approach, as mentioned above. The point selection is based on a
pre-calculated signal strength estimate. The DOM method only considers the
differences of values, and not the corresponding variances of the power traces,
as essential for comparison – an important factor in our decision to implement
it.

The DOM method is used to determine the relationship between the recorded
power consumption matrix T (traces) and the columns of binary assumption-
based matrix H. The H matrix is created by the attacker under the assumption
that the power consumption for certain intermediate values is different for all
other values; the binary value of H is a function of the input data d and a key
hypothesis ki, hi,j = HW (vi,j), vi,j = f(di, kj). As suggested in [15], to reduce
the HW model to a binary model, we set hi,j = 1, if HW (vi,j ≥ 4) and hi,j = 0,
if HW (vi,j < 4).

According to hi, the attacker splits T into two sets of power traces (rows) for
ki’s correctness check. The first set contains those T row indices corresponding
to the indices of the zeros in the vector hi, while vector m′

0idenotes the mean of
those rows m0i,j =

∑n
l=1(1−hl,j)·tl,j

n0i
. The second set contains all remaining rows

in T, while vector m′
1i is their mean vector m0i,j =

∑n
l=1 hl,j ·tl,j

n1i
, where n denotes

the number of rows in H and n0i,j =
∑n

l=1(1 − hl,i), n1i,j =
∑n

l=1 hl,i.
A significant difference between the mean vectors m′

0i and m′
1i at some point

in time indicates the correctness of key hypothesis ki.
Each row in the results of matrix R: R = M1 − M0 corresponds to the

differences between the mean vectors m′
0i and m′

1i of one key hypothesis.

3.3 Integration SNR

The integration methodology is a robust compression technique based on the
selection of samples approach, which uses all of the recorded points in the power
traces, and not just the peak/diff values. Unlike the DOM method, the inte-
gration SNR method takes the variance of the traces into consideration, an
important factor in our decision to implement it.

The signal-to-noise ratio of a power sample is given by the following equation:

SNR =
V ar(Pexp)

V ar(Psn + Pen)

where Pexp is the exploitable power consumption, Psn is the switching noise,
and Pen is the electronic noise. The SNR quantifies how much information is

36 H. Hayoon and Y. Oren

leaking from a power trace. The higher the SNR, the greater the leakage. The
integration of power trace in a time interval affects the SNR, since the signal
and the noise of the recorded points in the time interval are summed. The SNR
can be increased or decreased by the integration, depending on the time interval
size used for the integration.

The time interval size is a decisive parameter for the compression’s success;
in cases in which there are many points with a strong signal in the time interval,
the SNR will be high, and in cases where a single point is combined with points
that leak little to no information (or no information at all), the SNR will be
lower than the single point. Therefore choosing an appropriate time interval
for the integration, like the length of a clock cycle (cc), is essential for a good
compression process [15,24].

We implemented the following methods for integration-based power trace
compression:

Integration Row (IR) computes the sum of all points of each time interval.
Sum of Absolute Values (SOA) computes the sum of the absolute values

of all points of each time interval.
Finally, Sum of Squares (SOS) computes the sum of the squares of all

points of each time interval.
We tested all methods with time interval ranges of [0.5, 1, 2] cc.

3.4 Top Score

The state-of-the-art profiling methods for this paper are based on the profiling
methodology of [18]. In this work, Weisse et al. introduced a smart method for
profiling the training set of power traces into an accurate decoder for an algebraic
side-channel attack. The authors developed an efficient searching algorithm to
identify the points in a trace that leak the most.

For the feature selection process, they proposed a scoring method for eval-
uating the amount of information each sample contains about a specific leak.
Their profiling phase consists of the following steps:
1. Find regions of interest (ROI) in the traces for every leak using the Pearson

correlation coefficient [4].
2. Calculate the feature scores for the features within the ROI of the evaluated

leak identified in the previous step. The feature score is set as the average of
200 a-posteriori probabilities (of 200 evaluation traces) assigned to the correct
Hamming weight by the Bayesian classier trained on the feature.

3. Create the best feature set (the set which contains the most information
regarding the specific leak), which is used as input for the classier. Using
the same Bayesian classifier and evaluation traces as the previous step, the
mutual scores of all features in the best feature set are calculated; eventually,
only the features that increase the score are included in the set. The best
feature set size was statically limited to 500 features.

In our research, we use the success-rate scoring method of Weiss et al.’s by
stabilizing the code from [29] and adjusting it as a compression method in the
following way:

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 37

– Download the code base of [29]
– Parsing the RSM traces as describe in Sect. 2.2
– Mapping and isolating only the relevant code parts for the profiling and decod-

ing analysis phases
– Adjusting the code base to matlab v2017 and rewriting respectively.

We denote this method as “Top Score” (TS). In our experiments, we limit the
best feature set size to half the size of the training set.

3.5 Optimal Selection

Rechberger et al. [24] presented a practical TA using an efficient means of select-
ing the POI in a power trace and preprocessing noisy data. Their method is based
on the maximum-extraction compression approach, in which the maximum peak
values of the recorded samples in a clock cycle are simply extracted [15]. Instead
of choosing the highest points, their advanced selection method defines a few
properties that must exist at the selected points in the compressed trace:

– The minimum distance between the points should be approximately one clock
cycle or more, since additional points in the same clock cycle do not provide
additional information.

– The minimal height of a selected point should be higher than the noise floor
of the sum of differences (SOD) trace.

In our research we implement the guidelines for the selection of POI from Rech-
berger’s paper [24], as a substitute for operations of correlation calculation and
scoring the features in the profiling phase. We adjust it as a compression method
in our optimal suggested decoder, We call it “Optimal Selection” (OS). The term
“optimal” was chosen due to its good trade-off between the performance param-
eters.

Three different minimum distances were chosen for testing; [0.5, 1, 2] cc. Not
in accordance with Rechberger’s recommendation, we also performed with 0.5 cc
to test the selection of features in a situation where at the same clock cycle there
are 2 samples at the same height (2 peaks).

The calculation of the noise floor is performed by multiplying the maximum
value in the SOD traces with the noise factor which we set as 0.6 after testing
the range of [0,1]. Unlike Rechberger, who considered constant numbers of POI
ranging from 1 to 40 and set the level of the noise factor accordingly, we con-
sidered all the points which are higher than the noise floor calculated with the
constant noise factor equal to 0.6, even if a higher number of points of interest
is chosen.

4 Evaluation of Methods

We analyzed the performance of many TA profiling phase variants on real-world
data, comparing all of the compression methods described in Sect. 3 using various
configurations.

38 H. Hayoon and Y. Oren

4.1 Evaluation System

Fig. 1. Evaluation system architecture

The design of our evaluation system is a black-box for benchmark of a given
decoder. The input of the system is decoder d, and the output is decoder d’s
training and test results for three parameters: runtime, memory consumption,
and convergence rate. The system contains a data-set of traces and leaks for the
training and test operation measurements. Our system architecture can be seen
in 1. In our performance analysis we measured the following:

Memory Consumption: We measured each decoder’s RAM usage (the total
memory usage in bytes) as it processed the training set during the profiling
phase. This was measured using the OS standard memory reporting function
vmstat (Linux), when only the decoding process was running in our development
environment.

Run-Time: We measured the operational runtime and overall convergence time
of decoder as it processed the training set in the profiling phase. For the run-time
measurements, we use the MATLAB timing functions timeit, to time how long
the decoder code takes to run, and tic-toc, to measure the convergence time and
operations’ performance timing (the total execution time in seconds).

Convergence Rate: We estimated each decoder’s quality based on its online
convergence rate. This was measured by examining the number of traces that
must be provided in the offline phase in order for each decoder to obtain rea-
sonable results in the online phase. The convergence vector for each decoder is
a Boolean vector representing the success/failure of the decoder’s test results,
with the overall convergence rate calculated as the mean of this vector.

4.2 Definition of the Training and Test Methods

The training method is used for model construction, classification and reten-
tion within its data structure; its input is pairs of (Trace T , Leak L). Training

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 39

consists of measuring run time and memory consumption and takes place in
three steps: First, in the feature extraction step, a compression method is used.
Next, in the feature pre-processing step, the selected features are grouped and
labeled. Finally, in the template learning step, a naive Bayes classifier is trained
for each leak (to distinguish between HW classes) using the features selected in
the feature extraction step.

Preprocessing operations, such as leak calculation in Sect. 2.3 or trace pars-
ing in Sect. 2.2, were not part of our measurements, since running them adds
constant time which is not correlated with the decoding method.

The test method evaluates decoder d by receiving trace T (the attacked
trace) as input, and examining its output, which consists of the HW of a certain
leak based on its training process. This is validated on its data structure during
testing. The validation results of true (success) or false (failure) are presented
in the Boolean convergence vector of decoder d.

4.3 Experimental Setup

In our experiments, we explore profiled template attacks’ feature selection (com-
pression) methods for extracting the best subset of power samples for the classi-
fication of features according to the HW classes. All experiments are performed
with MATLAB v2017, installed on an Intel Xeon E5-2620 CPU with 128 GB
of RAM, running Ubuntu 18.04. The compression methods previously described
are implemented to reduce the dimensions of the power traces. The subset sizes
are selected based on the guidelines described in related studies. For each tech-
nique, we analyzed several configurations, and only the one yielding the best
result is used in our overall comparison of the methods. Once the compressed
trace is set, we implement the training and test methods (describe in Sect. 4.2)
for each compression technique to evaluate its performance. We use 2,000 power
traces from the initial dataset.

The steps of training and measuring performance are implemented in the
following way:

We used Bayesian classifier for training template classifiers with HW leakage
model for every leak. Using the fitcnb matlab function [16] which fits a naive
Bayes classifier to data, we train a naive Bayes model on the selected features
with the HW classes using normal distributions. We train a Bayesian classifier
whose input features are those selected in the compression method. The train-
ing set consists of approximately half the number of traces examined in the
experiment, and the other half serves as the evaluation set, in order to avoid an
over-optimistic performance evaluation. The classifiers are trained to distinguish
between Hamming weights 0–8. To measure the classification accuracy (%) of
the trained classifiers during training, we used MATLAB’s predict function [2]on
the set of the evaluation traces (different from those used for training and test-
ing), where the accuracy is the number of correctly classified leaks divided by
the total number of leaks over the traces. To test the decoder, as described in
Sect. 4.2 we used the classifier’s data structure built during training and ran the
predict function on the attacked trace taken from the other half of the examined

40 H. Hayoon and Y. Oren

traces, which is denoted as the test set. We report the results of the performance
measured during training and testing for each decoder.

5 Results

Tables 1 and 2 present the memory consumption (KB) and runtime (seconds)
results during training. Table 3 presents the convergence rate (%) results for
the testing phase. In each table, the row with the best configuration for each
method appears in black (these results are included in our overall comparison).
Figure 2 present the overall performance results for the compression methods
examined. Table 1 presents the memory consumption results for each decoder
during the training phase, with different amounts of training traces. Optimal
Selection (OS) is the best performing compression method when considering
memory usage; except for its low usage, identical values were obtained for train-
ing using different distances (cc values). Difference of Means (DOM) has the
highest rates of memory consumption. Principal Component Analysis (PCA)
follows, with 10 pc to keep found as the best performing setting for PCA. All
SNR-based methods show the same trend in which the usage with 0.5 cc was
higher than it was with 1 cc, and the usage was slightly lower with 2 cc than it
was with 1 cc. The results obtained for all of the methods show that increasing
the number of training traces results in higher memory consumption.

Table 2 presents the training phase’s runtime results for each decoder, using
different amounts of training traces. As seen in the table, TS has the longest run-
times, and this is followed by DOM. Next comes OS and DOM, which shows
identical values for different distances (cc). PCA follows with similar results
found for 5 pc and 10 pc, while 30 pc shows longer results. The SNR methods
had the shortest run-times, with Sum of Absolute Values (SOA) being the faster
among these methods. In all methods we observed that increasing the distance
by one cc cuts the runtime in half. The results for all methods show that as the
number of training traces increases, the runtime also increases.

Table 3 presents the accuracy results for each decoder during testing phase,
based on the number of traces in the training set. The “Top Score” (TS) method
of [29] was found to be as the most accurate, and it is followed with OS, which
has an accuracy greater than 70%; similar results were obtained for 1 cc and
2 cc. DOM also obtained good results, while PCA, which obtained the same
results for all pc configurations, came next. The SNR methods obtained low
results; while SOA performed the worst, the same trend was observed for all
three SNR methods - increasing the distance by 1 cc significantly reduces the
accuracy, sometimes by half. The results for all methods show that as the amount
of training traces increases, the accuracy also increases.

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 41

Table 1. Memory consumption for all compression methods

Method Config 100T 200T 300T 400T 500T 600T 700T 800T

DOM 2413736 3998680 4124432 4753541 4902672 5694248 6044480 6100464

PCA 5 pc 783445 850248 2088544 4268990 4562111 4672332 5091123 5100939

PCA 10 pc 772504 851496 2085968 4272824 4523424 4609552 4961832 5139784

PCA 30 pc 1116992 1206768 2406654 4466343 4809202 4999765 5163442 5432887

TS 338160 954512 1182768 2180192 2749328 3894856 4733248 4812720

IR 0.5 cc 281396 4011232 4088761 4298778 4311023 4695341 4810116 4955809

IR 1 cc 182304 2931551 3116088 3353981 3385451 3722401 3774523 3911296

IR 2 cc 175772 2864598 3108973 3294332 3334423 3566878 3672445 3668915

SOA 0.5 cc 190203 1973771 2154481 3700231 4378922 4399872 4752112 4998213

SOA 1 cc 111408 1353984 1404264 2856560 3421216 3554512 3856481 4131128

SOA 2 cc 100897 1184562 1302213 2671333 3302451 3267763 3676884 4102893

SOS 0.5 cc 278965 338767 387291 3909845 4144521 4453201 5022318 5296659

SOS 1 cc 199432 442704 290176 3014256 3271528 3661376 4149342 4350296

SOS 2 cc 190567 240561 264367 2889416 3240567 3653299 4103292 4203389

OS 0.5 cc 96236 132271 280038 279913 450221 718134 841761 1125032

OS 1 cc 96160 130488 281840 282224 449848 715920 839288 1137648

OS 2 cc 95988 129850 282098 290013 451211 719656 836114 1135451

Table 2. Run-Time for all compression methods using various

Method Config 100T 200T 300T 400T 500T 600T 700T 800T

TS 617.2 964 995.2 1316.1 2037.3 2297.3 2418.9 2428

DOM 506.9 570.3 598.4 610.2 703.6 720.3 747.2 818.3

OS 0.5 cc 153.1 264 302.9 323.7 384.2 442.5 497.1 525.9

OS 1 cc 152.4 262.3 301.5 323.8 383.2 443.6 495.4 525.8

OS 2 cc 152.2 263.7 301.8 324.1 383.1 442.6 496.1 523.9

PCA 5 pc 91.2 173.1 211 235.4 289.5 325.9 353.2 387.8

PCA 10 pc 91.3 173.2 211.2 235.7 289.9 326.7 353.9 388.6

PCA 30 pc 102.5 181.9 220.7 248.1 301.4 339.8 377.8 405.2

IR 0.5 cc 78.2 91.3 168.9 230.8 257.8 293.6 310.3 341.8

IR 1 cc 37.1 46.8 85.6 115.5 130.4 145 156.6 171.9

IR 2 cc 16.2 23.6 43.4 59.1 66.6 74.1 79.8 85.2

SOS 0.5 cc 128.2 132.3 170.6 176.2 343.5 380.7 403.2 438.9

SOS 1 cc 65.9 68.7 87.2 139.4 174.2 192.2 206.8 222.8

SOS 2 cc 32.7 36.4 44.8 68.1 89.5 97.1 102.5 110.1

SOA 0.5 cc 92.5 132.7 177.5 236.8 264.2 280.6 361.7 431.2

SOA 1 cc 47.2 67.6 90.3 119 133.1 144.3 182.5 218.1

SOA 2 cc 25.8 34.8 47.1 62.6 66.6 73.5 94.7 111.3

42 H. Hayoon and Y. Oren

Table 3. Convergence rate for all compression methods

Method Config 100T 200T 300T 400T 500T 600T 700T 800T

TS 0.64 0.66 0.7 0.71 0.71 0.724 0.75 0.785

OS 0.5 cc 0.44 0.46 0.48 0.5 0.5 0.52 0.552 0.56

OS 1 cc 0.52 0.57 0.61 0.636 0.65 0.653 0.68 0.72

OS 2 cc 0.52 0.57 0.61 0.635 0.65 0.65 0.68 0.72

DOM 0.55 0.56 0.58 0.632 0.64 0.642 0.673 0.71

PCA 5 pc 0.2 0.24 0.24 0.23 0.25 0.257 0.271 0.29

PCA 10 pc 0.22 0.24 0.24 0.246 0.252 0.26 0.274 0.3

PCA 30 pc 0.22 0.241 0.244 0.248 0.255 0.26 0.27 0.3

IR 0.5 cc 0.06 0.07 0.07 0.08 0.09 0.092 0.092 0.097

IR 1 cc 0.18 0.19 0.2 0.2 0.204 0.21 0.219 0.22

IR 2 cc 0.1 0.11 0.114 0.114 0.115 0.117 0.12 0.126

SOS 0.5 cc 0.04 0.06 0.1 0.1 0.105 0.114 0.14 0.146

SOS 1 cc 0.11 0.145 0.17 0.18 0.185 0.2 0.2 0.21

SOS 2 cc 0.07 0.1 0.123 0.13 0.128 0.14 0.144 0.16

SOA 0.5 cc 0.03 0.03 0.03 0.034 0.04 0.04 0.041 0.047

SOA 1 cc 0.11 0.13 0.15 0.15 0.16 0.166 0.17 0.19

SOA 2 cc 0.06 0.08 0.09 0.09 0.09 0.098 0.1 0.1

5.1 Observations

We now compare the decoder’s best performing configurations for memory con-
sumption, runtime, and convergence rate and make some general observations
based on this comparison.

– Testing 0.5 cc as a minimum distance between the selected features presented
in all measurements of all characteristics provides identical or worse results
to the 1 cc configuration.

– The 10 pc configuration was determined to be the best PCA configuration,
since, on average, it has the same runtime as the 5 pc configuration, but
this is obtained with lower memory consumption. On the other hand, the 10
pc configuration has identical accuracy to the 30 pc configuration, but the
runtime and memory consumption of the 10 pc configuration are significantly
shorter and lower, respectively, than that of the 30 pc configuration.

– For the SNR methods, we determined that the 1 cc configuration was the
most accurate; its runtime was half that of the 0.5 cc configuration, and it
also had much lower memory consumption; when compared to 30 pc, the 1
cc configuration had significantly shorter run-times and lower memory con-
sumption.

– OS has identical runtime and memory consumption results for the various
configurations; in terms of accuracy, 1 cc and 2 cc were found to be identical,
so the configuration of 1 cc was selected for our overall comparison.

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 43

Fig. 2. Overall comparison

44 H. Hayoon and Y. Oren

Figure 2 presents a comparison of the performance of all of the compression
methods, using the best configuration for each method. Based on this compar-
ison, we can see that TS is never the best method in terms of runtime (see
Fig. 2b), and the same can be said for DOM in terms of memory consumption
(see Fig. 2a in the Appendix). The SNR-based methods show the same perfor-
mance trend for all measures, where in most cases, IR is the best performing of
these methods and SOA is the worst performing. The PCA method was never
abnormally slow or poor performing, but it was always outperformed by at least
one of the other methods we compared in this study. Optimal selection (OS),
our proposed compression method, had the lowest memory consumption of all
of the decoders (see Fig. 2a in the Appendix) and the shortest runtime of the
three decoders with the highest accuracy (see Fig. 2c). After TS, it was found to
be most accurate with a 72% convergence rate given only 800 traces used in the
training phase (see Fig. 2c).

6 Conclusion

In this paper, we strove to advance the profiling step of the template attack,
by seeking a practical compression method which requires a smaller dataset and
has better performance, both in the online and offline phases. We addressed
the challenge of finding the most informative traces regarding the leaked Ham-
ming weight values by building an optimal variant of the state-of-the-art decoder
presented in [18], based on the optimal feature selection guidelines of [24].

For the performance challenge, we designed a unique evaluation system which
measured runtime, memory consumption, and accuracy. This system used to
compare the performance of various decoders, which were found to differ based
on the compression methods and configurations used. We demonstrated the
importance of both choosing the correct number of principal components for
the PCA-based method, and the correct number of clock cycles as a minimum
distance between the selected points; one clock cycle was clearly found to be
optimal in all of the best performing configurations. In terms of accuracy, the
scoring, optimal, and DOM methods outperformed the PCA and SNR-based
methods. When considering runtime and memory the opposite is true, except in
case of our OS decoder.

The experimental results demonstrate our decoder’s ability to outperform
the other methods evaluated in terms of memory consumption; however, while
it also has shorter run-times than the state of the art, it is slightly less accurate.
There is thus a tradeoff in that while our decoder is fast and has low memory
consumption, this comes at a cost in terms of the accuracy rate; therefore, our
decoder is optimal in cases in which there are time or data restrictions, for
example, a small dataset or online data.

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 45

References

1. MATLAB PCA. https://www.mathworks.com/help/stats/pca.html
2. MATLAB predict. https://in.mathworks.com/help/ident/ref/predict.html
3. Bohy, L., Neve, M., Samyde, D., Quisquater, J.J.: Principal and independent com-

ponent analysis for crypto-systems with hardware unmasked units (2003)
4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Cagli, E.: Feature extraction for side-channel attacks. Ph.D. thesis, Sorbonne Uni-
versity, France (2018)

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

7. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

8. Division, C.S.: Announcing the Advanced Encryption Standard (AES). Informa-
tion Technology Laboratory, Gaithersburg, MD (2001)

9. Elaabid, M.A., Guilley, S.: Practical improvements of profiled side-channel
attacks on a hardware crypto-accelerator. In: Bernstein, D.J., Lange, T. (eds.)
AFRICACRYPT 2010. LNCS, vol. 6055, pp. 243–260. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12678-9 15

10. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 2

11. Hogenboom, J.: Principal component analysis and side-channel attacks (2010)
12. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Sig-

nal Processing Series, 1st edn. (1998)
13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 29

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, Cham (2007). https://doi.org/10.1007/978-0-387-38162-
6. ISBN 978-0-387-30857-9

16. MathWork: MATLAB fitcnb. https://in.mathworks.com/help/stats/fitcnb.html
17. Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks

beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33027-8 9

18. Oren, Y., Weisse, O., Wool, A.: Practical template-algebraic side channel attacks
with extremely low data complexity. In: HASP@ISCA, p. 7. ACM (2013)

19. Oswald, D., Paar, C.: Improving side-channel analysis with optimal linear trans-
forms. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 219–233. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37288-9 15

20. ParisTec: DPA contest v4 2013. http://www.dpacontest.org/v4/rsm traces.php

https://www.mathworks.com/help/stats/pca.html
https://in.mathworks.com/help/ident/ref/predict.html
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-642-12678-9_15
https://doi.org/10.1007/11894063_2
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-16342-5_29
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://in.mathworks.com/help/stats/fitcnb.html
https://doi.org/10.1007/978-3-642-33027-8_9
https://doi.org/10.1007/978-3-642-33027-8_9
https://doi.org/10.1007/978-3-642-37288-9_15
http://www.dpacontest.org/v4/rsm_traces.php

46 H. Hayoon and Y. Oren

21. ParisTec: Description of the masked AES - DPA contest v4 (2013). http://www.
dpacontest.org/v4/data/rsm/aes-rsm.pdf

22. Picek, S., Heuser, A., Guilley, S.: Template attack versus Bayes classifier. J. Cryp-
togr. Eng. 7(4), 343–351 (2017). https://doi.org/10.1007/s13389-017-0172-7

23. Picek, S., Heuser, A., Jovic, A., Batina, L.: A systematic evaluation of profil-
ing through focused feature selection. IEEE Trans. Very Large Scale Integr. Syst.
27(12), 2802–2815 (2019)

24. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31815-6 35

25. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04138-9 8

26. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting time samples for multivariate
DPA attacks. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
155–174. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-
8 10

27. Stallings, W.: Cryptography and Network Security, 6th edn. (2014)
28. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate

regression analysis. IEICE Electron. Express 7(15), 1139–1144 (2010)
29. Weiss, O.: Github - new methods for side channel cryptanalysis code base github

(2016). https://github.com/oweisse/dpav4-contest/commits/master
30. Weisse, O.: New methods for side channel cryptanalysis (2013)
31. Zheng, Y., Zhou, Y., Yu, Z., Hu, C., Zhang, H.: How to compare selections of

points of interest for side-channel distinguishers in practice? In: Hui, L.C.K., Qing,
S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 200–214. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21966-0 15

http://www.dpacontest.org/v4/data/rsm/aes-rsm.pdf
http://www.dpacontest.org/v4/data/rsm/aes-rsm.pdf
https://doi.org/10.1007/s13389-017-0172-7
https://doi.org/10.1007/978-3-540-31815-6_35
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-33027-8_10
https://doi.org/10.1007/978-3-642-33027-8_10
https://github.com/oweisse/dpav4-contest/commits/master
https://doi.org/10.1007/978-3-319-21966-0_15

	Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Background
	2.1 Template Attacks
	2.2 Dataset
	2.3 The Hamming Weight Leakage Model

	3 Compression Methods
	3.1 Principal Component Analysis
	3.2 Difference of Means
	3.3 Integration SNR
	3.4 Top Score
	3.5 Optimal Selection

	4 Evaluation of Methods
	4.1 Evaluation System
	4.2 Definition of the Training and Test Methods
	4.3 Experimental Setup

	5 Results
	5.1 Observations

	6 Conclusion
	References

