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Abstract. Systems are commonly monitored for health and security
through collection and streaming of multivariate time series. Advances in
time series forecasting due to adoption of multilayer recurrent neural net-
work architectures make it possible to forecast in high-dimensional time
series, and identify and classify novelties early, based on subtle changes in
the trends. However, mainstream approaches to multi-variate time series
predictions do not handle well cases when the ongoing forecasts must
include uncertainty, nor they are robust to missing data. We introduce
a new architecture for time series monitoring based on combination of
state-of-the-art methods of forecasting in high-dimensional time series
with full probabilistic handling of uncertainty. We demonstrate advan-
tage of the architecture for time series forecasting and novelty detection,
in particular with partially missing data, and empirically evaluate and
compare the architecture to state-of-the-art approaches on a real-world
data set.

1 Introduction

Modern information systems and operation environments are commonly mon-
itored through collection and streaming of multivariate time series. The moni-
toring tasks comprise both forecasting, for planning of resource allocation and
decision making, and novelty detection and characterization, for ensuring fault-
less functioning and early mitigation of failures and threats. Advances in time
series forecasting due to adoption of multilayer recurrent neural network archi-
tectures made it possible to forecast in high-dimensional time series, and identify
and classify novelties (anomalies) early, based on subtle changes in the trends.
However, mainstream approaches to multi-variate time series modelling do not
handle well cases when uncertainty is involved, either in the input, when some
of the observations are missing, or in the output when the distribution of future
observations, rather than their point values, is predicted. For forecast uncer-
tainty modelling, stochastic latent variable variants of high-dimensional time
series models where introduced, but so far have had to rely on sampling to
account for uncertainty, limiting the performance of data handling. Imputation
schemes were proposed for dealing with missing data, however, they do not gen-
erally give a satisfactory solution in presence of transient unavailability of some
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of the data sources (e.g. when a sensor stops working, or a transport channel
malfunctions), which is a common case with monitoring of complex systems.

A systematic and theoretically founded approach to handling both input and
output uncertainty would thus constitute a significant and welcome contribution
to the theory and practice of monitoring of multivariate time series. It would
also be highly desirable for such approach to facilitate efficient offline (learning)
and online (inference) computations. In this ongoing research, we propose a deep
learning architecture which uses a simple but powerful extension of traditional
recurrent neural network (RNN) architecture which allows both

– to handle missing inputs in some or all of the components in a multivariate
time series,

– and to accomplish multi-step probabilistic forecasting

in high-dimensional time series, paving a path to better decision making and
finer and more robust anomaly detection and characterization. We evaluate the
architecture on a real-world data set of multivariate time series collected from
a network for cloud computing, and empirically demonstrate advantage of the
proposed architecture over commonly used approaches.

2 Problem: Multivariate Time Series Forecasting

The core problem we address is forecasting in a multivariate time series. For-
mally, a time series is a matrix X of shape T × N , where T is the number of
time steps and N is the number of dimensions. The time steps are assumed to be
equispaced. A k-step probabilistic forecast Ftk at time t is the belief distribution
of time series Xt+1:t+k for time steps t + 1...t + k given the observed time series
X1:t for time steps 1...t.

The forecasting is accomplished by applying model Mθ parameterized by
parameters θ to the observed time series:

Ftk = Mθ(X1:t) (1)

The machine learning task is to devise θ∗ that gives the best forecast, in terms of
a certain loss function. A natural loss in the probabilistic setting is the average
negative log likelihood of θ given a training data set X of multiple time series:

θ∗ = arg min
θ

EX∈X ,t∈1...T−k [− log Pr(Xt+1:t+k|Mθ(X1:t))] (2)

When the model is differentiable by θ, the task is usually accomplished by per-
forming a stochastic gradient loss minimization.

In the basic case, X is real-valued, X ∈ R
T×N . Here, we are interested in an

extension of the basic case, in which some of the elements can be missing from
X, that is X ∈ (R ∪ ⊥)T×N .
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3 Architecture: Recurrent Neural Network
with Uncertainty Propagation

We introduce here a recurrent neural network architecture which facilitates
uncertainty propagation. The architecture is capable both of handling missing
values and of multi-step forecasting. We begin with description of conventional
forecasting with RNNs. Then, we describe our proposed architecture as an exten-
sion to the conventional model.

Fig. 1. Time series models

3.1 Conventional Forecasting

A popular realization of the forecasting model Mθ is a recurrent neural net-
work (RNN), with θ corresponding to the network parameters. There is a range
of neural recurrent models of varying complexity to deal with time series fore-
casting. Most models include a recurrent unit which threads the state through
the time steps, accepts data as inputs and produces next step predictions as
outputs. The simplest model is an RNN with a fully-connected readout layer
to produce forecasts (Fig. 1a). RNN can be based on LSTM [12], GRU [8], or
another architectural variant, and is often multi-layer. Architectures may also
include intermediate modules, and sampling-based variational layers [10,20]. The
overall architecture stays almost the same, with more connections, intermediate
modules and sampling-based variational layers.

Input and Output. This architecture normally accepts observation vectors and
outputs vectors of distribution parameters for the belief distribution of the obser-
vations at the next time step. In the simplest case, the network produces a single
output for each input, that is the dimensions of the input and the output vector
coincide. This corresponds to the assumption of homoskedasticity of epistemic
noise, and either the mean squared error (corresponding to the Gaussian error
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distribution) or the mean absolute error (corresponding to the Laplace error
distribution) is minimized.

More generally though, the epistemic noise is better modelled heteroskedas-
tically, using a two-parameter loss distribution, with the location and the scale
as the parameters. In the case of the frequently used normal (Gaussian) distri-
bution, the output vector consists of means μ (location) and standard deviations
σ (scale) of all dimensions and is twice as wide as the input.

Training. The model is trained to maximize probability of prediction. In the
most basic case, called out-of-sample one-step forecasting, a single step is pre-
dicted for each time step in the series. In an n-step time series, steps 1...n−1 are
used as the input, and steps 1...n as the ground truth. Following (2), the network
is trained to minimize negative log probability of true observations given the pre-
dicted belief distributions. More generally, a model can also be trained to predict
more than a single step at once into the future, however this is rarely used in
practice because the necessary size of the training data set grows exponentially
with the prediction depth. Instead, future predictions are produced recurrently
during forecasting.

Forecasting. Forecasting is accomplished by passing past observations through
the model to obtain forecasts for the future time steps. In the out-of-sample
one-step mode, a single step into the future is forecast. If a longer forecast is
required, the current forecast is entered as the input at the next time step, time
after time, up to the required length. Either the location (the point forecast)
or a random sample from the belief distribution is used as the future input.
Using random samples also allows to assess uncertainty multiple steps into the
future: one can repeatedly sample from the belief distribution at each future
step, and feed the sample as the input to the following step. Then, based on
produced samples at future steps, one can estimate uncertainty intervals. Such
Monte-Carlo handling of uncertainty is quite expensive computationally though,
because the standard deviation of prediction error decreases as slowly as

√
N

with the number of samples N , on one hand, and uncertainty may, in general,
grow exponentially with prediction depth, on the other hand.

Novelty Detection. Forecasts produced by the model can be used for a number
of purposes, including decision making and, in particular, novelty (anomaly)
detection. There are two related but different phenomena indicating a novelty
in time series behavior:

1. Predicted volatility of the time series is high, that is, future observations can
only be forecast uncertainly (with high variance).

2. Probability of actual observations, when observed, given a prediction from a
past state, is low.

Either phenomenon, or both of them, can be used to alert about novelties in the
time series. In recurrent neural network architectures, the hidden state (ht in
Fig. 1) can be used to identify and classify anomalies.
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3.2 Forecasting with Uncertainty Propagation

The basic scheme outlined above poses difficulty in applications with high-
dimensional time series and partially missing observations. Sampling based
uncertainty assertion impacts performance, and missing observations are often
imputed heuristically [15,17]. An architecture which incorporates confidence
about data and in which observed and predicted data are interchangeable is
highly desirable. For example, if out of 5 components 3 were measured and 2
predicted from an earlier step we want to input all of them into the next time
step for further forecasting. In addition, the model architecture should be capa-
ble of robust uncertainty prediction and benefit from training with multiple steps
of out-of-sample data.

Our proposed architecture is based on the observation that if (at least) the
location and the scale are used to represent forecasts, an observation (that is,
certain knowledge at a given step) can also be expressed using two parame-
ters, by setting the location to the observation, and the scale to 0. For the
normal distribution N (μ, σ), the location and scale parameterization is straight-
forward, corresponding to μ and σ, however other belief distributions can be
parameterized by location and scale as easily, e.g. the log-normal, Gamma, or
Laplace distribution. For conciseness, we will confine further discussion to the
case of independent normal belief distributions for each component; however,
other distribution shapes can also be used. Based on this observation, we pro-
pose the following extension to the conventional RNN-based forecasting
model (Fig. 1b):

1. The input, as well as the output, is a vector of distribution parameters. For the
independent normal distributions, the distribution parameter vector consists
of the means followed by the standard deviations. If the data has 5 compo-
nents, the input will be 10-dimensional. For observed data—measurements
present at the current time step—the standard deviation is zero. For missing
data the input is the mean and the standard deviation as predicted from the
preceding time steps.

2. Training can, in principle, be accomplished on data with missing values,
but training on data with missing values incurs performance drawbacks and
should be avoided. First, handling missing values and replacing them with
early predictions introduces contingency in the forward run of the RNN and
slows down significantly the execution during training. Second, missing values
should, in general, themselves be viewed as anomalies. One must be able to
handle them during inference, but should not rely on their presence in the
training data.
Therefore, we devise a scheme for training our model on data that does not
contain missing values. Even in applications where missing values are common
in inference, training data without missing values is usually readily available.
However, since we introduce confidence into the input, we cannot train the
network myopically, in out-of-sample one-step manner—the standard devia-
tions in the input data will always be zero, and the network will never learn
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how to use them. To overcome this, we train on multiple predicted steps. We
feed each prediction, without sampling, as input to the next step and compute
the loss as negative log probability of this number of future points versus our
prediction.

To illustrate, given the data set of 5 dimensions, the input has 10 dimensions.
If we train with 3 time steps lookahead, the ground truth will be a matrix of
size 3 × 5. The prediction against which the likelihood of this ground truth
is computed will be a matrix of size 3 × 10. Intuitively, we would expect the
predicted standard deviation to increase along the time axis for each component.

The ability of probabilistic forecasting with uncertainty, in the form of mul-
tivariate normal distributions, far into the future, opens opportunity for appli-
cation to more robust novelty detection approaches. Instead of detecting novelty
based on log probability of observations given predictions from the past [6], which
is prone to false positives due to observation noise, novelties can be detected and
analysed by comparing predictions of the same time point from different points
in the past. In this case, KL-divergence between predictions provides a theoreti-
cally sound and robust mechanism for detection of anomalies, and is in particular
relevant for monitoring of large operation environments with high dimensionality
of time series and occasional missing values and heteroskedastic noise [2,18].

4 Case Study: Monitoring a Computer Cloud

We evaluate the proposed architecture on a data set of monitoring a cluster
of 100 computing nodes in the cloud. For each node, the incoming and the
outgoing network traffic (in bytes) and the CPU usage (relative) are logged with
1 min resolution. 240 h were logged, resulting in 12000 120-minute 3-dimensional
samples. We split the dataset into the training, validation, and test as 80%, 10%,
and 10% correspondingly. Since the original data set does not have many missing
data points, we emulated data sets with missing data by randomly removing 5%,
10%, 20%, and 50% of the data.

We used a 3-layer GRU-based recurrent neural network with hidden size 64
and 20% dropout between layers. We trained the network with lookahead depths
(number of steps to forecast in the future) 2, 4, 8, and 16 using the Adam opti-
mizer with learning rate 0.001, training for 20 epochs (sufficient for convergence).
We performed the training on a cloud computing node with 1 NVIDIA T4 GPU,
4 Intel Xeon Platinum CPUs, and 64 Gb memory. The training of a single model
took 20 min.

We compared our approach with conventional imputation methods ‘replace
by the mean’ and ‘replace by a random sample’. In the ‘replace by the mean’
method, a missing value is replaced by the mean of the forecast. In the ‘replace
by a random sample’ method, a missing value is replaced by a random sample
drawn from the forecast. As a performance metrics, we used per-point negative
log-likelihood loss on the test set. Tables 1 and 2 show the difference in loss
between uncertainty propagation and ‘replace by the mean’ and ‘replace by a
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Table 1. Uncertainty propagation vs. ‘replace by the mean’.

Missing 2 4 8 16

5% 0.001 0.001 0.06 0.10

10% 0.001 0.002 0.08 0.11

20% 0.003 0.003 0.11 0.13

50% 0.004 0.006 0.12 0.16

Table 2. Uncertainty propagation vs. ‘replace by a random sample’.

Missing 2 4 8 16

5% 0.04 0.04 0.13 0.14

10% 0.06 0.06 0.16 0.24

20% 0.11 0.12 0.20 0.27

50% 0.18 0.19 0.28 0.30

random sample’, correspondingly. The greater is the number, the worse is the
forecasting by each of the methods compared to uncertainty propagation. One
can see that in all cases uncertainty propagation provides better forecasts than
either of the conventional methods.

Fig. 2. Uncertainty propagation vs ‘replace by the mean’. 95% confidence intervals are
shaded.

As an illustration of the advantage of uncertainty propagation, consider
Fig. 2, which shows forecasts using uncertainty propagation and ‘replace by the
mean’ in presence of missing values. Forecasts through uncertainty propaga-
tion result in adequate confidence intervals. However, when missing values are
replaced by the mean of the belief distribution, further forecasts are overconfi-
dent and too many observations fall outside of 95% confidence intervals.

The code and data for the case studies are available at https://bitbucket.
org/dtolpin/dbts-studies/.

https://bitbucket.org/dtolpin/dbts-studies/
https://bitbucket.org/dtolpin/dbts-studies/
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5 Related Work

There appear to be two interconnected areas related to this research. One area
is uncertainty representation and propagation in recurrent neural models. The
other area is handling of missing values in time series, again in the context of
recurrent neural models in particular.

The importance of uncertainty quantification in deep learning is well under-
stood [1]. Recurrent neural networks can express forecast uncertainty through
predicting distribution parameters, such as the mean and the standard devi-
ation, instead of point values [12]. When expressing uncertainty by closed-
form distributions is insufficient, stochastic latent variables are introduced into
RNNs [10,11,20]. Uncertainty representation in RNNs is related to uncertainty
propagation and multi-step forecasting. For multi-step forecasting, uncertainty
must be propagated multiple steps into the future. Uncertainty propagation is
usually achieved through random sampling during training or inference [3,14,20].
Our approach differs in that conventional RNN architectures are leveraged to
represent uncertainty in both the input and the output, and that uncertainty
propagation is accomplished deterministically, without resorting to random sam-
pling, which facilitates efficient training and inference.

Handling of missing values in time series has inspired research for decades
due to the fact that many otherwise efficient and robust algorithms, in particular
those based on recurrent neural architectures, require that all values in the time
series are present and lie within a valid range [19]. A widespread approach is
to impute the data, that is, to replace missing values with values inferred from
other values in the same time series or in other time series in the data set [13,
17]. Alternatively, a missing value is treated as an observation itself, often by
introducing an auxiliary indicator variable [4,15]. In our work, we take a third
approach—a missing value, either due to an absent observation or in the course of
multi-step forecasting, is replaced by a parametrically specified belief distribution
of the value based on the past observations.

6 Discussion and Future Research

We presented a deep probabilistic architecture for uncertainty propagation in
multivariate time series. This architecture organically handles two important
problems in deep time series modelling: missing data and multi-step forecasting.
Empirical evaluation demonstrated that our approach outperforms conventional
baselines in terms of forecasting accuracy, while still being easy to implement.
Since, unlike some other approaches to uncertainty propagation, our architecture
avoids sampling, uncertainty can be propagated efficiently and represented in
closed parametric form, rather than approximated by samples and posterior
intervals.

We confined most of the discussion to the normal uncertainty shape. Other
distributions can be used instead of the normal distributions where appropri-
ate, provided their parameterization allows to express a certain observation as
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well as an uncertain belief. Analysis of distributions for representing uncertainty
and their feasible parameterization is a subject of ongoing research. Another
research direction worth exploring is extension of the presented architecture to
bidirectional recurrent neural networks [5]. Bidirectional RNNs allow to account
for both past and future observations where appropriate, but apparently make
uncertainty propagation more complicated. Still, preliminary results suggest that
uncertainty in bidirectional RNNs can be handled in a similar manner, further
facilitating efficient probabilistic uncertainty propagation in a broader class of
deep learning models for time series.
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