
Shlomi Dolev
Jonathan Katz
Amnon Meisels (Eds.)

LN
CS

 1
33

01

Cyber Security,
Cryptology, and
Machine Learning
6th International Symposium, CSCML 2022
Be’er Sheva, Israel, June 30 – July 1, 2022
Proceedings

Lecture Notes in Computer Science 13301

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Shlomi Dolev · Jonathan Katz ·
Amnon Meisels (Eds.)

Cyber Security,
Cryptology, and
Machine Learning
6th International Symposium, CSCML 2022
Be’er Sheva, Israel, June 30 – July 1, 2022
Proceedings

Editors
Shlomi Dolev
Ben-Gurion University of the Negev
Be’er Sheva, Israel

Amnon Meisels
Ben-Gurion University of the Negev
Be’er Sheva, Israel

Jonathan Katz
University of Maryland
College Park, MD, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-07688-6 ISBN 978-3-031-07689-3 (eBook)
https://doi.org/10.1007/978-3-031-07689-3

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-07689-3

Preface

CSCML, the International Symposium on Cyber Security, Cryptography, and Machine
Learning, is an international forum for researchers, entrepreneurs, and practitioners in the
theory, design, analysis, implementation, or application of cyber security, cryptography,
andmachine learning systems and networks and, in particular, of conceptually innovative
topics in these research areas. Information technologyhas becomecrucial to our everyday
lives, an indispensable infrastructure of our society, and therefore a target for attacks
by malicious parties. Cyber security is one of the most important fields of research
these days because of these developments. Two of the (sometimes competing) fields of
research, cryptography and machine learning are the most important building blocks of
cyber security.

Topics of interest for CSCML include: cyber security design; secure software devel-
opment methodologies; formal methods, semantics, and verification of secure systems;
fault tolerance, reliability, and availability of distributed secure systems; game-theoretic
approaches to secure computing; automatic recovery self-stabilizing and self-organizing
systems; communication, authentication, and identification security; cyber security for
mobile systems and the Internet of Things; cyber security of corporations; security and
privacy for cloud, edge, and fog computing; cryptocurrency; blockchain; cryptogra-
phy; cryptographic implementation analysis and construction; secure multi-party com-
putation; privacy enhancing technologies and anonymity; post-quantum cryptology and
security; machine learning and big data; anomaly detection and malware identification;
business intelligence and security; digital forensics, digital rights management; trust
management and reputation systems; and information retrieval, risk analysis, and DoS.

The 6th CSCML took place during June 30–July 1, 2022, in Beer-Sheva, Israel.
The keynote speakers were Michal Braverman-Blumenstyk, Microsoft Corporate Vice
President, Cloud and AI Division CTO, and Israel R&D Center General Manager; Dr.
Burt Kaliski, Jr., SVP and Chief Technology Officer at Verisign; and Shlomo Dovrat,
Co-founder and General Partner at Viola Ventures. The conference was organized in
cooperation with the International Association for Cryptologic Research (IACR), and
selected papers will appear in a dedicated special issue of the Journal of Computer and
System Sciences.

This volume contains 24 contributions selected by the Program Committee from
51 submissions, and also includes 11 short papers. All submitted papers were read and
evaluated by members of the Program Committee assisted by external reviewers. We
thank the members of the Program Committee for all their hard work.

We are grateful to the EasyChair system that was used for the reviewing process.
We also gratefully acknowledge the support of IBM and Ben-Gurion University of the
Negev (BGU), in particular BGU-NHSA, the BGU Lynne and William Frankel Center

vi Preface

for Computer Science, the BGU Cyber Security Research Center, and the Department
of Computer Science.

March 2022 Shlomi Dolev
Jonathan Katz

Amnon Meisels

Organization

CSCML, the International Symposium on Cyber Security, Cryptography, and Machine
Learning, is an international forum for researchers, entrepreneurs, and practitioners in the
theory, design, analysis, implementation, and application of cyber security, cryptography,
or machine-learning systems.

Founding Steering Committee

Orna Berry Google Cloud, Israel
Shlomi Dolev (Chair) Ben-Gurion University of the Negev, Israel
Yuval Elovici Ben-Gurion University of the Negev, Israel
Bezalel Gavish Southern Methodist University, USA
Ehud Gudes Ben-Gurion University of the Negev, Israel
Jonathan Katz University of Maryland, USA
Rafail Ostrovsky University of California, Los Angeles, USA
Jeffrey D. Ullman Stanford University, USA
Kalyan Veeramachaneni MIT, USA
Yaron Wolfsthal IBM, Israel
Moti Yung Columbia University and Google, USA

Organizing Committee

General Chair

Shlomi Dolev Ben-Gurion University of the Negev, Israel

Program Chairs

Jonathan Katz University of Maryland, USA
Amnon Meisels Ben-Gurion University of the Negev, Israel

Organizing Chair

Rosemary Franklin Ben-Gurion University of the Negev, Israel

viii Organization

Program Committee

Gilad Asharov Bar-Ilan University, Israel
Manuel Barbosa HASLAB-INESC TEC and FCUP, Portugal
Don Beaver Meta, Novi Research, USA
Alex Biryukov University of Luxembourg, Luxembourg
Dor Bitan University of California, Berkeley, USA
Carlo Blundo Università degli Studi di Salerno, Italy
Harry Buhrman CWI, University of Amsterdam, and QuSoft,

The Netherlands
Ashish Choudhury IIIT Bangalore, India
Hadassa Daltrophe Sami Shamoon College of Engineering, Israel
Stefan Dziembowski University of Warsaw, Poland
Oren Freifeld Ben-Gurion University of the Negev, Israel
Felix Freiling FAU, Germany
Benjamin Fuller University of Connecticut, USA
Juan A. Garay Texas A&M University, USA
Craig Gentry Algorand Foundation, USA
Niv Gilboa Ben-Gurion University of the Negev, Israel
Ehud Gudes Ben-Gurion University of the Negev, Israel
Shay Gueron University of Haifa and Amazon, Israel
David Heath Georgia Institute of Technology, USA
Gene Itkis MIT Lincoln Lab and US Military Academy,

West Point, USA
Bhavana Kanukurthi Indian Institute of Science, India
Çetin Kaya Koç University of California, Santa Barbara, USA
Vladimir Kolesnikov Georgia Institute of Technology, USA
Benjamin Kreuter University of Virginia and Google, USA
Ranjit Kumaresan University of Maryland, USA
Daniel Masny Meta, USA
Thomas Peyrin Nanyang Technological University, Singapore
Rami Puzis Ben-Gurion University of the Negev, Israel
Eyal Ronen Tel Aviv University, Israel
Alexander Russell University of Connecticut, USA
Alessandra Scafuro North Carolina State University, USA
Berry Schoenmakers Eindhoven University of Technology,

The Netherlands
Gil Segev Hebrew University of Jerusalem, Israel
Qiang Tang University of Sydney, Australia
Tamir Tassa The Open University of Israel, Israel
Nikos Triandopoulos Stevens Institute of Technology, USA
Ni Trieu Arizona State University, USA
Eran Tromer Tel Aviv University, Israel

Organization ix

Boaz Tsaban Bar-Ilan University, Israel
Marten van Dijk CWI, The Netherlands
Daniele Venturi Sapienza University of Rome, Italy
Avishai Wool Tel Aviv University and AlgoSec, Israel
Vassilis Zikas Purdue University, USA

External Reviewers

Siddharth Agarwal Indian Institute of Science, India
Sohaib Ahmad University of Connecticut, USA
Lior Aronshtam Sami Shamoon College of Engineering, Israel
Alexander Binun Ben-Gurion University of the Negev, Israel
Benjamin Bond Purdue University, USA
Anirudh Chandramouli The International Institute of Information

Technology Bangalore, India
Philip Derbeko enSilo Inc. Fortinet Company, USA
Duong Do Arizona State University, USA
Nurit Gal-Oz Sapir Academic College, Israel
Daniel Khankin NextSilicon, Israel
Manish Kumar Ben-Gurion University of the Negev, Israel
Thi Kim Phung Lai New Jersey Institute of Technology, USA
Ximing Li Jilin University, China
Yin Li Dongguan University of Technology, China
Matan Liber Ben-Gurion University of the Negev, Israel
Rahul Madhavan Indian Institute of Science, India
Truong Son Nguyen Arizona State University, USA
Kaihua Qin Imperial College London, UK
Tian Qiu University of Stuttgart, Germany
Ramakrishnan K. Indian Institute of Science, India
Girisha Shankar Indian Institute of Science, India
Tammar Shrot Sami Shamoon College of Engineering, Israel
David Tolpin Offtopia and Ben-Gurion University of the Negev,

Israel
Nadav Voloch Ben-Gurion University of the Negev, Israel
Yu Wei Purdue University, USA
Trevor Yap Nanyang Technological University, Singapore

x Organization

Sponsors

In cooperation with

Contents

Blind Rotation in Fully Homomorphic Encryption with Extended Keys 1
Marc Joye and Pascal Paillier

Monitoring Time Series with Missing Values: A Deep Probabilistic
Approach . 19
Oshri Barazani and David Tolpin

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 29
Hen Hayoon and Yossi Oren

Design of Intrusion Detection System Based on Logical Analysis of Data
(LAD) Using Information Gain Ratio . 47
Sneha Chauhan and Sugata Gangopadhyay

Simulating a Coupon Collector . 66
Dina Barak-Pelleg and Daniel Berend

On the Undecidability of the Panopticon Detection Problem 78
Vasiliki Liagkou, Panagiotis E. Nastou, Paul Spirakis,
and Yannis C. Stamatiou

Privacy-Preserving Contrastive Explanations with Local Foil Trees 88
Thijs Veugen, Bart Kamphorst, and Michiel Marcus

Timing Leakage Analysis of Non-constant-time NTT Implementations
with Harvey Butterflies . 99
Nir Drucker and Tomer Pelleg

Predicting the Direction of Changes in the Values of Time Series
for Relatively Small Training Samples . 118
Sergey Frenkel

Machine-Learning Based Objective Function Selection for Community
Detection . 135
Asa Bornstein, Amir Rubin, and Danny Hendler

Randomness for Randomness Testing . 153
Daniel Berend, Shlomi Dolev, and Manish Kumar

xii Contents

Botnet Attack Identification Based on SDN . 162
Avresky Dimiter and Dobrin Dobrev

Setting Up an Anonymous Gesture Database as Well as Enhancing It
with a Verbal Script Simulator for Rehabilitation Applications 170
Yoram Segal and Ofer Hadar

Fake News Detection in Social Networks Using Machine Learning
and Trust . 180
Nadav Voloch, Ehud Gudes, Nurit Gal-Oz, Rotem Mitrany, Ofri Shani,
and Maayan Shoel

Reinforcement Based User Scheduling for Cellular Communications 189
Nimrod Gradus, Asaf Cohen, Erez Biton, and Omer Gurwitz

A Heuristic Framework to Search for Approximate Mutually Unbiased
Bases . 208
Sreejit Chaudhury, Ajeet Kumar, Subhamoy Maitra, Somjit Roy,
and Sourav Sen Gupta

Counter Mode for Long Messages and a Long Nonce . 224
Shay Gueron

Transfer Learning for Time Series Classification Using Synthetic Data
Generation . 232
Yarden Rotem, Nathaniel Shimoni, Lior Rokach, and Bracha Shapira

Non-stopping Junctions via Traffic Scheduling . 247
Shlomi Dolev, Ehud Gudes, and Hannah Yair

Predicting Subscriber Usage: Analyzing Multidimensional Time-Series
Using Convolutional Neural Networks . 259
Benjamin Azaria and Lee-Ad Gottlieb

Smart Cybercrime Classification for Digital Forensics with Small Datasets 270
Isfaque Al Kaderi Tuhin, Peter Loh, and Zhengkui Wang

Auditable, Available and Resilient Private Computation on the Blockchain
via MPC . 281
Christopher Cordi, Michael P. Frank, Kasimir Gabert,
Carollan Helinski, Ryan C. Kao, Vladimir Kolesnikov, Abrahim Ladha,
and Nicholas Pattengale

Contents xiii

Union Buster: A Cross-Container Covert-Channel Exploiting Union
Mounting . 300
Novak Boskov, Naor Radami, Trishita Tiwari, and Ari Trachtenberg

Mutual Accountability Layer: Accountable Anonymity Within
Accountable Trust . 318
Vanesa Daza, Abida Haque, Alessandra Scafuro,
Alexandros Zacharakis, and Arantxa Zapico

Faster Post-Quantum TLS Handshakes Without Intermediate CA
Certificates . 337
Panos Kampanakis and Michael Kallitsis

Enhancing Cybersecurity of Satellites at Sub-THz Bands . 356
Rajnish Kumar and Shlomi Arnon

Polynomial Approximation of Inverse sqrt Function for FHE 366
Samanvaya Panda

Detecting Clickbait in Online Social Media: You Won’t Believe How We
Did It . 377
Aviad Elyashar, Jorge Bendahan, and Rami Puzis

Etherless Ethereum Tokens: Simulating Native Tokens in Ethereum 388
John Andrews, Michele Ciampi, and Vassilis Zikas

A Linear-Time 2-Party Secure Merge Protocol . 408
Brett Hemenway Falk, Rohit Nema, and Rafail Ostrovsky

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 428
Michele Ciampi, Muhammad Ishaq, Malik Magdon-Ismail,
Rafail Ostrovsky, and Vassilis Zikas

In-App Cryptographically-Enforced Selective Access Control
for Microsoft Office and Similar Platforms . 447
Karim Eldefrawy, Tancrede Lepoint, and Laura Tam

Differentially-Private “Draw and Discard” Machine Learning: Training
Distributed Model from Enormous Crowds . 468
Vasyl Pihur, Aleksandra Korolova, Frederick Liu,
Subhash Sankuratripati, Moti Yung, Dachuan Huang, and Ruogu Zeng

Privacy Preserving DCOP Solving by Mediation . 487
Pablo Kogan, Tamir Tassa, and Tal Grinshpoun

xiv Contents

BFLUT Bloom Filter for Private Look Up Tables . 499
Shlomi Dolev, Ehud Gudes, Erez Segev, Jeffrey Ullman,
and Grisha Weintraub

Author Index . 507

Blind Rotation in Fully Homomorphic
Encryption with Extended Keys

Marc Joye(B) and Pascal Paillier

Zama, Paris, France

marc.joye@zama.ai

Abstract. Most solutions for fully homomorphic encryption rely on
hard lattice problems. Accordingly, the resulting ciphertexts must con-
tain a certain level of noise to guarantee the security of the encryp-
tion. Running homomorphic operations on these noisy ciphertexts in
turn further increases the noise level in the resulting ciphertexts. If the
noise exceeds a given threshold, the ciphertexts are no longer decrypt-
able. Bootstrapping enables to deal with this issue by resetting the noise
present in a ciphertext to a nominal level.

Certain fully homomorphic encryption schemes require the use of
binary keys for the bootstrapping operation. This paper describes how
to extend the underlying blind rotation so as to efficiently support a
wider number of key formats. It also investigates a multi-digit approach
wherein multiple key digits are processed concurrently. All in all, the
proposed solutions offer more flexibility in the parameter selection and
yield a variety of new trade-offs for better performance.

Keywords: Fully homomorphic encryption · FHEW · TFHE · Key
generation · Private machine learning

1 Introduction

Fully homomorphic encryption (FHE) [16] is a very powerful cryptographic prim-
itive. It allows performing arbitrary computation directly on encrypted data—
without ever requiring intermediate decryption.

All known FHE instantiations follow the same blueprint, as originally devised
in Gentry’s seminal paper [11]. The idea is (i) to start with a “somewhat”
homomorphic encryption scheme which supports a bounded number of homo-
morphic operations and (ii) to convert it into a fully homomorphic encryption
scheme. The conversion step is referred to as the bootstrapping. Basically, this
is accomplished by homomorphically evaluating the decryption function on the
ciphertext. The resulting ciphertext encrypts the same plaintext but is somehow
“refreshed”. Homomorphic operations can therefore be further iterated again
and again. This is particularly appealing in the case of private machine learning,
where inference is performed homomorphically over user-encrypted data using
substantially deep models with a number of layers in the hundreds.
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 1–18, 2022.
https://doi.org/10.1007/978-3-031-07689-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_1

2 M. Joye and P. Paillier

The bootstrapping is however a relatively demanding operation and, despite
of being intensively studied (e.g., [2,3,6,7,9,10,12,17]), remains the main bot-
tleneck in current FHE implementations. Another approach is to avoid boot-
strappings altogether and to increase the cryptographic parameters accordingly
in order to accommodate the circuit being evaluated in a leveled way [5]. This,
in turn, limits homomorphic inference to smaller models with at most a few tens
of layers.

Our Contributions. The most efficient bootstrappings to date are achieved by
GSW-derived cryptosystems [7,9] and their variants. The TFHE cryptosys-
tem [7] displays a time of a few tens of milliseconds to perform a bootstrapping
with typical parameters on a regular laptop. By design, TFHE (and its variants
like [8]) requires binary keys in an essential way for the bootstrapping.

In a recent work, Micciancio and Polyakov [15] remark that a ternary key
can be viewed as a difference of two binary keys. This allows them to evaluate
a bootstrapping with ternary keys as a series of two original bootstrappings
(i.e., with binary keys). Moving from binary keys to ternary keys or more can
be useful at it allows for trade-offs (speed/size of the bootstrapping keys/noise
level) otherwise not necessarily applicable for a given security level.

Another important motivation to switch from binary to ternary (or more)
is to easily fall back to the next best alternative, should e.g. the special case
of binary keys reveal less secure than expected. Our extended settings allow
one to carefully reevaluate the new best trade-offs available after any kind of
security-impacting breakthrough.

Our main results are:

– The core operation for the bootstrapping in TFHE and the likes is a blind
rotation. It consists of a succession of external products which comprise poly-
nomial multiplications and integer recodings. If n denotes the number of dig-
its of a ternary key, the method of Micciancio–Polyakov requires 2n external
products. We rely on an additive representation and show how a bootstrap-
ping with ternary keys can be done with only n external products. Further-
more, our method features the same memory requirements as in Micciancio–
Polyakov’s method for storing the corresponding bootstrapping keys.

– We demonstrate that our approach is generic and can be adapted to sup-
port arbitrary key formats. Specifically, we extend our ternary approach to
keys expressed in a general radix. Somewhat surprisingly, for an encryption
key represented with n digits, the number of external products required to
complete a bootstrapping is equal to n. We note that the dimension n is a
decreasing function of the radix.

– In [17], Zhou et al. point out that two bits of the secret key can be processed
concurrently during the bootstrapping of the TFHE scheme. Their approach
was later refined in [4]. We extend our additive splitting to higher radices
and detail how the number of external products can be reduced to n/d by
processing d digits per iteration. The number of bootstrapping keys however
increases very quickly. In practice, d is likely restricted to small values like
d = 2 or d = 3.

Blind Rotation in Fully Homomorphic Encryption with Extended Keys 3

Outline of the Paper. The rest of the paper is organized as follows. In the
next section, we review the bootstrapping behind TFHE, including its extension
to programmable bootstrapping. Section 3 introduces our main technique. We
explain how the multiplicative splitting in Micciancio–Polyakov’s approach can
be turned into an additive one. This gives rise to a more efficient bootstrapping
for ternary keys. We then generalize our new approach to higher-radix represen-
tations in Sect. 4. We also cover the case of multiple digits processed concurrently.
Section 5 provides a performance analysis according to the parameter selection.
Finally, we conclude the paper in Sect. 6.

2 Programmable Bootstrapping

The bootstrapping is an essential technique for FHE as it enables to control
the noise growth and to refresh ciphertexts whenever the noise exceeds a given
level. In this section, we review the bootstrapping for the TFHE family and its
extension to programmable bootstrapping.

The (Discretized) TFHE Scheme. For our purposes, we consider the TFHE fam-
ily. We follow the presentation of [8,14].1 Define the polynomial ring ZN,q[X] =
(Z/qZ)[X]/(XN + 1) where q and N are powers of 2. Define also the binary set
B = {0, 1} and BN [X] = B[X]/(XN + 1). For a secret key s

$← BN [X]k, the
GLWE encryption of a plaintext µ ∈ ZN,q[X] is given by c= (a1, . . . , ak, b) ∈
ZN,q[X]k+1 where aj

$← ZN,q[X] and b =
∑k

j=1 sj aj + µ∗ with µ∗ = µ + e for
some (small) random noise e. We write c← GLWEs(µ). When (N, k) = (1, n),
it turns out that ZN,q[X] = Z/qZ and the above procedure leads to an LWE
ciphertext. We then write c ← LWEs(μ) = (a1, . . . , an, b) ∈ (Z/qZ)n+1 as the
encryption of a plaintext μ ∈ Z/qZ under the secret key s = (s1, . . . , sn) ∈ B

n,
where aj

$← Z/qZ and b =
∑n

j=1 sj aj + μ∗ with μ∗ = μ + e for some (small)
random noise e.

Blind Rotation. The main step in the TFHE bootstrapping is the so-called blind
rotation. It converts an LWE ciphertext c ← LWEs(μ) ∈ (Z/qZ)n+1 into a
ciphertext c′ ← GLWEs′(X−μ̃∗ · v) ∈ ZN,q[X]k+1; namely, a GLWE encryption
of X−μ̃∗ · v under key s′ ∈ BN [X]k, where μ̃∗ is a rounded approximation of
μ∗ = μ + e and v is a “test” polynomial. Specifically, if c = (a1, . . . , an, b) then

−μ̃∗ = −b̃ +
n∑

j=1

sj ãj (mod 2N)

where ⎧
⎨

⎩

b̃ =
⌈
2N(b mod q)

q

⌋

ãj =
⌈
2N(aj mod q)

q

⌋
(1 ≤ j ≤ n)

1 As originally described, TFHE is defined over the real torus R/Z. We rather consider
the discretized torus q−1

Z/Z and identify its elements with integers modulo q.

4 M. Joye and P. Paillier

and the test polynomial v is programmed as a look-up table so that X−μ̃∗ ·v, up
to a random indexing error (a.k.a. drift), encodes f(μ) for a chosen function f ;
see [8,14] for details.

The blind rotation is detailed in Algorithm 1. It requires n bootstrapping
keys, bsk[j] ← GGSWs′(sj) for 1 ≤ j ≤ n; GGSW denotes a (general) Gentry–
Sahai–Waters encryption [13] derived from a gadget matrix G. The blind rota-
tion can be calculated as a series of CMux operations. On input a GGSW cipher-
text C encrypting a bit b ∈ {0, 1} and two GLWE ciphertexts c0 and c1, the
CMux operation outputs a ciphertext encrypting the same plaintext as cb,

c′ ← CMux(C, c0, c1) := c0 + C� (c1 − c0)

where � denotes the external product of ciphertexts. The external product dom-
inates the cost in a blind rotation. Given a GGSW ciphertext C1 ← GGSW(µ1)
and a GLWE ciphertext c2 ← GLWE(µ2), their external product is defined as
C1 � c2 = G−1(c2) · C1 where G−1(c2) is the gadget decomposition of c2.
The transformation G−1 flattens the vector of polynomials c2 ∈ ZN,q[X]k+1

into a row vector of (k + 1)� polynomials of Z[X]/(XN + 1) with small signed
coefficients. The goal is to contain the noise growth. For better efficiency, the
underlying polynomial multiplications are carried out in the Fourier domain
(dyadic multiplications). Most of the time in an external product of ciphertexts
is spent in going back and forth in the Fourier domain. Again, we refer the reader
to [8,14] for details.

Algorithm 1: Blind rotation (binary case).

1 acc ← (0, . . . , 0, X−b̃ · v)
2 for j = 1 to n do
3 acc ← CMux(bsk[j], acc, X ãj · acc)

/* acc ← acc + bsk[j] �
(
(X ãj − 1) · acc) */

4 end for

5 return acc

It can be verified that at the end of the for-loop in Algorithm 1, the accu-
mulator acc contains a GLWE encryption of X−μ̃∗ · v under key s′.

Proposition 1. Algorithm 1 is correct.

Proof. First, at initialization, acc contains (0, . . . , 0,X−b̃ · v) ∈ ZN,q[X]k+1,
which is a valid GLWE encryption of X−b̃ · v. We so have c′

0 := (0, . . . , 0,X−b̃ ·
v) = GLWEs′(X−b̃ · v). Next, by induction, we assume that the result is correct
for i = j − 1. We must prove that it remains correct for i = j. We have:

Blind Rotation in Fully Homomorphic Encryption with Extended Keys 5

c′
j := CMux(bsk[j], c′

j−1,X
ãj · c′

j−1)

=

{
c′
j−1 if sj = 0

X ãj · c′
j−1 if sj = 1

= Xsj ãj · c′
j−1

= Xsj ãj · GLWEs′(X−b̃+
∑j−1

i=1 si ãi · v) = GLWEs′(X−b̃+
∑j

i=1 si ãi · v)

which proves the correctness of Algorithm 1. ��

3 Using Ternary Keys

As seen in the above proof, the bootstrapping for the TFHE family crucially
makes use of the identity

Xsj ãj =

{
1 if sj = 0
X ãj if sj = 1

= sj (X ãj − 1) + 1

for sj ∈ {0, 1}. It is therefore inherently restricted to binary keys. This section
exposes two different strategies to extend TFHE and the likes to ternary keys.

3.1 Micciancio–Polyakov’s Approach

In [15], Micciancio and Polyakov astutely notice that any vector s = (s1, . . . , sn)
with ternary entries sj ∈ {0, 1,−1}, 1 ≤ j ≤ n, can be expressed as the difference
of two binary vectors s1 = (s11, . . . , s

1
n) and s2 = (s21, . . . , s

2
n) ∈ B

n:

(s1, . . . , sn) = (s11, . . . , s
1
n) − (s21, . . . , s

2
n)

where, for 1 ≤ j ≤ n,

(s1j , s
2
j) =

⎧
⎪⎨

⎪⎩

(0, 0) if sj = 0
(1, 0) if sj = 1
(0, 1) if sj = −1

.

The number of bootstrapping keys is doubled and is equal to 2n. They are given
by

bsk[2(j − 1) + i] ← GGSWs′(si
j)

for all 1 ≤ j ≤ n and for all 1 ≤ i ≤ 2. With the previous notation, the
authors of [15] exploit the multiplicative nature of the bootstrapping. The GLWE
encryption of X−b̃+

∑n
j=1 sj ãj · v =

(∏n
j=1 Xs1

j ãj (X−1)s2
j ãj

) · (X−b̃ · v) is then
obtained iteratively as

6 M. Joye and P. Paillier

{
c′
2j−1 ← CMux(bsk[2j − 1], c′

2j−2,X
ãj · c′

2j−2)
c′
2j ← CMux(bsk[2j], c′

2j−1,X
−ãj · c′

2j−1)

for j = 1, . . . , n, with c′
0 ← (0, . . . , 0,X−b̃ · v). Algorithmically, we have:

Algorithm 2: Blind rotation (ternary case).

1 acc ← (0, . . . , 0, X−b̃ · v)
2 for j = 1 to n do
3 acc ← acc + bsk[2j − 1] �

(
(X ãj − 1) · acc)

4 acc ← acc + bsk[2j] �
(
(X−ãj − 1) · acc)

5 end for

6 return acc

With ternary keys, the evaluation of GLWEs′
(
X−b̃+

∑n
j=1 sj ãj · v

)
thus

involves 2n external products. For a same value of n, this is twice more than
in the binary case.

3.2 Proposed Approach

The blind rotation with ternary keys of Algorithm 2 can be largely improved.
Instead of a multiplicative split, we observe that the monomial Xsj ãj =
X(s1

j−s2
j) ãj with s1j , s

2
j ∈ {0, 1} can be expressed in an additive way as

Xsj ãj = s1j (X ãj − 1) + s2j (X−ãj − 1) + 1 . (1)

Remark 1. It is interesting to note that Eq. (1) can be equivalently expressed
as Xsj ãj = (1 − s1j − s2j) + s1j X ãj + s2j X−ãj = (1 − s1j − s1j)X0·ãj + s1j X1·ãj +
s2j X(−1)·ãj .

As in Sect. 3.1, we define the 2n bootstrapping keys bsk[2(j − 1) + i] ←
GGSWs′(si

j) for all 1 ≤ j ≤ n and for all 1 ≤ i ≤ 2. An application of the
GGSW encryption to the above relation (1) leads to

GGSWs′(Xsj ãj) ←
(X ãj − 1) bsk[2j − 1] + (X−ãj − 1) bsk[2j] + GGSWs′(1) .

We therefore obtain a new algorithm for the blind rotation. It is given in
Algorithm 3.

Interestingly, the calculation of a blind rotation with ternary keys using
Algorithm 3 only requires n external products.

Blind Rotation in Fully Homomorphic Encryption with Extended Keys 7

Algorithm 3: Blind rotation (ternary case), revisited.

1 acc ← (0, . . . , 0, X−b̃ · v)
2 for j = 1 to n do
3 acc ← acc +

(
(X ãj − 1) bsk[2j − 1] + (X−ãj − 1) bsk[2j]

)
� acc

4 end for

5 return acc

4 Extensions and Generalizations

4.1 Higher Radices

The proposed approach can be extended to support arbitrary formats of keys.
For full generality, we suppose that the keys are drawn from an arbitrary set S

(e.g., S = {0, 1,−1} for ternary keys). We let m = #S denote the cardinality
of S. The monomial Xsj ãj can be written additively as

Xsj ãj =
∑

t∈S
1l{t = sj}
︸ ︷︷ ︸

:=σj,t

Xt ãj . (2)

In the above equation, 1l denotes the predicate function (i.e., 1l{t = sj} = 1
when t = sj and 1l{t = sj} = 0 otherwise).

We define the set I = {0, . . . , m − 1}. We also define the “alphabet” vector
A ∈ Sm whose components are the different elements of S. For example, back to
ternary keys, we have m = 3 and write A = (0, 1,−1) so that A[0] = 0, A[1] = 1
and A[2] = −1. Vector A gives rise to function

A : I → S, i �→ A(i) = A[i]

taking on input an index i ∈ I and returning the ith component2 of A. Equation
(2) can therefore be equivalently rewritten as

Xsj ãj =
m−1∑

i=0

1l{A(i) = sj}XA(i) ãj . (3)

The first digit in the alphabet vector is τ0 := A[0] = A(0). As the predicate
function 1l{A(i) = sj} is true for exactly one index i ∈ {0, . . . , m−1}, we deduce
from Eq. (3) that

Xsj ãj = XA(0) ãj +
m−1∑

i=1

1l{A(i) = sj}
(
XA(i) ãj − XA(0) ãj

)
. (4)

Interestingly, compared to Eq. (3), the formulation of Eq. (4) involves only m−1
predicate evaluations.
2 Starting at i = 0.

8 M. Joye and P. Paillier

Hence, defining n(m − 1) bootstrapping keys bsk[(m − 1)(j − 1) + i] ←
GGSWs′(σj,t) with σj,t = 1l{t = sj} and t = A(i), for all 1 ≤ j ≤ n and
for all 1 ≤ i ≤ m − 1, we obtain Algorithm 4. Somewhat surprisingly, the num-
ber of external products remains equal to n. For a given security level, we note
the value of n is a decreasing function of m; see Appendix A.

Algorithm 4: Blind rotation (higher-radix case).

1 acc ← (0, . . . , 0, X−b̃ · v)
2 for j = 1 to n do

3 acc ← XA(0) ãj ·acc+
(∑m−1

i=1 (XA(i) ãj −XA(0) ãj) bsk[(m−1)(j−1)+i]
)
�acc

4 end for

5 return acc

Remark 2. If the digit alphabet S contains the digit 0, it is advantageous to set
the first digit τ0 to 0 (and thus A(0) = 0) so that Line 3 in Algorithm 4 simplifies
to

acc ← acc +
(m−1∑

i=1

(XA(i) ãj − 1) bsk[(m − 1)(j − 1) + i]
)

� acc

4.2 Multi-digit Approach

The number of external products can be further decreased. We combine and
extend the multi-bit approach of [4,17] to the case of a secret key expressed as a
series of digits in a higher radix. The idea is to process several digits concurrently.

In the previous section, the monomial Xsj ãj is additively expressed under
the form Xsj ãj =

∑
t∈S σj,t · Xt ãj with σj,t = 1l{t = sj}. Let τ0 = A[0] = A(0)

denote the first digit in the alphabet vector. With two digits, we can express the
corresponding monomial as

Xsj1 ãj1+sj2 ãj2

= Xsj1 ãj1 Xsj2 ãj2

=
(∑

t∈S
σj1,t · Xt ãj1

)(∑

t∈S
σj2,t · Xt ãj2

)

=
∑

t1∈S

∑

t2∈S
σj1,t1σj2,t2 · Xt1 ãj1 Xt2 ãj2

= Xτ0(ãj1+ãj2) +
∑

(t1,t2)∈S2\{(τ0,τ0)}
σj1,t1σj2,t2 · (

Xt1 ãj1+t2 ãj2 − Xτ0(ãj1+ãj2)
)

.

Blind Rotation in Fully Homomorphic Encryption with Extended Keys 9

More generally, for d digits, we get

X
∑d

l=1 sjl
ãjl = Xτ0

∑d
l=1 ãjl +

∑

(t1,...,td)∈Sd\{(τ0,...,τ0)}

(∧d
l=1 σjl,tl

) · (
X

∑d
l=1 tl ãjl − Xτ0

∑d
l=1 ãjl

)
.

To ease the presentation, we henceforth assume that d | n. We can write
∑n

j=1 sj ãj =
∑n/d

h=1

∑d
l=1 s(h−1)d+l ã(h−1)d+l. We define n

d (md − 1) bootstrap-
ping keys

bsk[(md − 1)(h − 1) +
∑d

l=1 il m
l−1] ← GGSWs′

(∧d
l=1 σ(h−1)d+l,tl

)

with (t1, . . . , td) = (A(i1), . . . ,A(id)), for all 1 ≤ h ≤ n/d and for all (i1, . . . , id) ∈
{0, . . . , m − 1}d with (i1, . . . , id) 	= (0, . . . , 0). The number of external products
decreases to n/d.

Algorithm 5: Blind rotation (multi-digit case).

1 acc ← (0, . . . , 0, X−b̃ · v)
2 for h = 1 to n/d do

3 acc ← XA(0)
∑d

l=1 ã(h−1)d+l · acc +
(∑

0≤i1,...,id≤m−1
(i1,...,id) �=(0,...,0)

(X
∑d

l=1 A(il) ã(h−1)d+l −

XA(0)
∑d

l=1 ã(h−1)d+l) bsk[(md − 1)(h − 1) +
∑d

l=1 il m
l−1]

)
� acc

4 end for

5 return acc

Remark 3. Again, similarly to Remark 2, when digit 0 ∈ S, setting A[0] =
A(0) = 0, Line 3 in Algorithm 5 simplifies and becomes

acc ← acc +
(∑

0≤i1,...,id≤m−1
(i1,...,id) �=(0,...,0)

(X
∑d

l=1 A(il) ã(h−1)d+l − 1) bsk[(md − 1)(h − 1)

+
∑d

l=1 il m
l−1]

)
� acc

5 Performance Analysis and Experiments

In this section, we analyze the performance of our extended blind rotation. Our
efficiency comparisons are based on a C library called zlib specifically designed
to conduct experiments on TFHE. Lightweight and modular, the purpose of
zlib is to finely tune the bootstrapping procedure, establish the performance
profile of various algorithmic strategies on CPUs, and see how they compare
depending on their parameters.

10 M. Joye and P. Paillier

5.1 LWE Estimator for Security Estimates

The security of LWE encryption depends on its parameters in a way that is
dictated by the current state-of-the-art attacks on LWE. We rely on the LWE
Estimator [1]3 to enforce a desired security level. Given an LWE dimension n, a
secret key uniformly drawn from Sn with #S = m, a ciphertext precision p and
a noise variance v, this tool provides a security estimate

λ = LWE-security(n,m, p, v)

against an IND-CPA adversary to whom an unbounded number of encryptions
of zero are given. The LWE-security function is also valid for GLWE and GGSW
ciphertexts when n is replaced with kN .

5.2 Nominal Setting

Our nominal setting, and basis for comparison, is set to (d,m) = (1, 2). This
means that the LWE secret key embedded in the bootstrapping key is a usual
(non-sparse) binary key s ∈ {0, 1}n and each element of the bootstrapping key
is a GGSW encryption of bit sj , 1 ≤ j ≤ n.

FFT-Based External Product. Each external product is performed as follows.
The input accumulator is a GLWE ciphertext; i.e., a vector of k + 1 torus poly-
nomials modulo XN + 1 with coefficients of pacc bits. We fix k = 1, N = 1024
and pacc = 64. Each torus polynomial is decomposed into � integer polynomials
with coefficients in {−B/2, . . . , B/2} where we pick � = 3 and B = 2β = 28. We
then apply a radix-2 negacyclic FFT to every one of these integer polynomials,
resulting in a matrix of �(k + 1) complex arrays in C

N/2. We easily compute the
tensor

T = (X ãj − 1) · bsk[j]
on the fly since the FFT coefficients of X ãj are just cyclic powers of eiπ/N and
can be derived from the twiddle factors of the FFT that are already precomputed
and stored. Applying a complex matrix-tensor product then gives us k+1 arrays
in C

N/2, which are converted back to torus polynomials in the standard domain
by applying a radix-2 backward FFT and rounding. The k + 1 polynomials are
then added up to the accumulator modulo 2pacc = 264, which gives the output
value of the accumulator.

Running Time. Instrumenting zlib with this setting allows us to measure the
average number of clock cycles timeXP(1, 2) required to perform one external
product on a reference architecture. The total running time of the blind rotation
is then

timeBR(1, 2) = n · timeXP(1, 2)

where we fix n = 640. This particular setting for n,N, k, �, β, pacc complies with
a parameter set often used in implementations of TFHE.
3 Available at https://bitbucket.org/malb/lwe-estimator/src/master/.

https://bitbucket.org/malb/lwe-estimator/src/master/

Blind Rotation in Fully Homomorphic Encryption with Extended Keys 11

Output Variance. We neglect the approximation errors that are due to the use
of 64-bit floating-point numbers in FFT conversions and operations in the FFT
domain. One can show that one external product increases the variance of the
accumulated noise by

varXP(1, 2) = (k + 1) · N · M2(�,B) · varbsk

where the term

M2(�,B) = � · (B + 2)(B2 − B + 1)
12 · (B + 1)

+ (1 − (− 1
B)�) · B2

4 · (B + 1)2

is the second statistical moment of the coefficients of the decomposed integer
polynomials right before their conversion to the FFT domain. Finally, varbsk is
the noise variance of the GGSW ciphertexts that compose the bootstrapping
key. We fix the overall security level to λ = 128 and find varbsk by solving

LWE-security(kN, pacc, 2, varbsk) = 128

which yields varbsk = 2−50.32. The output variance of the blind rotation is then

varBR(1, 2) = n · varXP(1, 2) .

5.3 Extended Setting

Keeping the same parameters as in the nominal setting, we now generalize it to
arbitrary pairs (d,m) with d ≥ 1 and m ≥ 2.

Extended External Product. In comparison with the nominal setting, the only
adaptation in the external product is that the tensor

T = (X ãj − 1) · bsk[j]

is now generalized to

T =
∑

0≤i1,...,id≤m−1
(i1,...,id) �=(0,...,0)

(X
∑d

l=1 A(il) ã(h−1)d+l − 1) bsk[(md − 1)(h − 1) +
∑d

l=1 il m
l−1]

which requires md − 1 operations of the form (Xα − 1) · bsk[j] instead of just
one.

Running Time. We measure the average number of clock cycles timeXP(d,m)
using zlib and find that

timeXP(d,m) =
(
1 +

(
md − 2

) · Δ
) · timeXP(1, 2)

with Δ ≈ 0.1557.

12 M. Joye and P. Paillier

Output Variance. The noise variance added by an external product is now

varXP(d,m) = (k + 1) · N · M2(�,B) · (
md − 1

) · varbsk =
(
md − 1

) · varXP(1, 2)

and the output variance of the blind rotation is

varBR(d,m) =
n

d
· varXP(d,m)

However, the value of n can now be decreased slightly due to m ≥ 2. Indeed,
n = 640 was chosen to verify

LWE-security(n, 2, 64, v) = 128

for a certain noise variance v, whereas we now require

LWE-security(n,m, 64, v) = 128

for the same variance v in our extended setting. Based on the data-points col-
lected from LWE Estimator and given in Appendix A, we experimentally find
replacement values for n = n(m) as shown on Table 1.

Table 1. Optimal values of n as a function of m ∈ {2, . . . , 10} for 128-bit security.

m 2 3 4 5 6 7 8 9 10

n(m) 640 610 591 579 569 561 555 549 544

5.4 Finding Optimal Settings

Putting it all together, our generalization gives the following ratios:

varBR(d,m)
varBR(1, 2)

=
n(m)
n(2)

· md − 1
d

, (5)

timeBR(d,m)
timeBR(1, 2)

=
n(m)
n(2)

· 1 +
(
md − 2

) · Δ

d
, Δ ≈ 0.1557 (6)

keysizeBR(d,m)
keysizeBR(1, 2)

=
n(m)
n(2)

· md − 1
d

. (7)

We see that the ratios (5) and (7) are identical and we denote them by 2u, while
the ratio (6) is denoted 2v. A given (u, v) pair indicates that a degradation of
the output variance and key size by a factor 2u yields a speedup factor of 2−v.

Blind Rotation in Fully Homomorphic Encryption with Extended Keys 13

What we are after is to find the values of (d,m) that provide the most interesting
(u, v) pairs, namely, ones where both u and v are minimized.

Due to the nature of these formulas, we easily see that no optimum exists
for (d,m) that would simultaneously minimize the key size on one hand and the
running time on the other. Instead, we take the set S of pairs (u, v) derived from
all the possible settings (d,m) where d ∈ {1, . . . , 10} and m ∈ {2, . . . , 10}, and
eliminate from S the dominated points; i.e., pairs (u2, v2) ∈ S such that there
exists (u1, v1) ∈ S verifying

(u1 ≤ u2 and v1 < v2) or (u1 < u2 and v1 ≤ v2) .

Dominated points can be safely eliminated since they are strictly less efficient
than other reachable points. We end up with a subset Sbest ⊆ S of non-dominated
points known as the Pareto front of S. The elements of Sbest identify the best
possible trade-offs among all possible settings, and are displayed on Fig. 1.

Fig. 1. Points (u, v) obtained from screening m through {2, . . . , 10} and d through
{1, . . . , 10}, and their Pareto front (orange triangles). Other points exist outside of
the displayed range but they are all dominated. The nominal parameters of the blind
rotation are N = 1024, k = 1, � = 3, β = 8 and n = 640. (Color figure online)

To conclude our experiments, we see that in addition to the nominal setting
that we have chosen (u = v = 0), two other trade-off points of interest appear:

– (d,m) = (2, 2), for which a 50% increase in key size and output variance
increases speed by 52.5%, and

– (d,m) = (3, 2), for which a 133% increase in key size and output variance
increases speed by 55.1%.

14 M. Joye and P. Paillier

Should one move away from binary keys for security reasons, the next best
trade-off points become

– (d,m) = (1, 3), for which a 91% increase in key size and output variance
decreases speed by 9.22%, and

– (d,m) = (2, 3), for which a 281% increase in key size and output variance
increases speed by 0.4%.

This assumes that the security estimates for ternary keys and m ≥ 4 are left
untouched by an alleged attack against binary keys.

6 Conclusion

This paper adapted the blind rotation as used in the bootstrapping in FHEW
or TFHE to support ternary keys. The resulting implementation is about twice
faster than a previous method by Micciancio and Polyakov and with the same
memory requirements for the bootstrapping keys as in their method. We also
extended the proposed approach to higher radices and generalized it by process-
ing several digits at a time—at the expense of further memory requirements. An
analysis of the various trade-offs provided by the choice of the radix and of the
number of processed digits was provided. In particular, useful trade-offs include
processing 2 or 3 bits concurrently for binary keys and 1 or 2 digits for ternary
keys.

Acknowledgements. We are grateful to Ben Curtis for his help in compiling Tables 2
and 3. We are also grateful to the anonymous referees for useful comments.

A Tables

Although for higher radices the number of external products remains equal to
n, the value of n is a decreasing function of m. Playing with LWE Estimator, at
a security level of 128 bits, we get the following tables.

Blind Rotation in Fully Homomorphic Encryption with Extended Keys 15

Table 2. LWE dimension n as a function of m for different values for the noise standard
deviation σ, for q = 232

σ m

2 3 4 5 6 7 8 9 10

−30 1208 1176 1160 1152 1136 1128 1120 1120 1112

−29 1168 1144 1120 1112 1104 1088 1088 1080 1072

−28 1136 1104 1088 1072 1064 1056 1048 1040 1040

−27 1096 1064 1048 1032 1024 1016 1008 1000 1000

−26 1056 1024 1008 1000 984 976 968 968 960

−25 1016 992 968 960 952 944 936 928 920

−24 976 952 936 920 912 904 896 888 880

−23 944 912 896 880 872 864 856 848 848

−22 904 872 856 848 832 824 816 816 808

−21 864 840 816 808 800 784 784 776 768

−20 824 800 784 768 760 752 744 736 728

−19 792 760 744 728 720 712 704 696 696

−18 752 720 704 688 680 672 664 664 656

−17 712 680 664 656 640 632 632 624 616

−16 672 648 624 616 608 600 592 584 576

−15 640 608 592 576 568 560 552 544 544

−14 600 568 552 536 528 520 512 512 504

−13 560 528 512 496 488 480 472 472 464

−12 528 496 472 464 456 448 440 432 424

−11 488 456 432 424 416 408 400 392 392

−10 448 416 400 384 376 368 360 352 352

−9 408 376 360 344 336 328 320 320 312

−8 376 336 320 312 296 288 288 280 272

−7 336 304 280 272 256 256 248 240 240

−6 296 264 240 232 224 216 208 208 200

16 M. Joye and P. Paillier

Table 3. LWE dimension n as a function of m for different values for the noise standard
deviation σ, for q = 264

σ m

2 3 4 5 6 7 8 9 10

−62 2424 2392 2376 2368 2352 2344 2336 2336 2328

−61 2384 2360 2336 2328 2320 2304 2304 2296 2288

−60 2344 2320 2304 2288 2280 2272 2264 2256 2248

−59 2304 2280 2264 2248 2240 2232 2224 2216 2208

−58 2272 2240 2224 2208 2200 2192 2184 2176 2176

−57 2232 2200 2184 2176 2160 2152 2144 2144 2136

−56 2192 2168 2152 2136 2128 2120 2112 2104 2096

−55 2152 2128 2112 2096 2088 2080 2072 2064 2056

−54 2120 2088 2072 2056 2048 2040 2032 2024 2024

−53 2080 2056 2032 2024 2016 2000 2000 1992 1984

−52 2048 2016 2000 1984 1976 1968 1960 1952 1952

−51 2008 1976 1960 1952 1936 1928 1920 1912 1912

−50 1968 1944 1920 1912 1896 1888 1880 1880 1872

−49 1928 1904 1888 1872 1864 1856 1848 1840 1832

−48 1888 1864 1848 1832 1824 1816 1808 1800 1792

−47 1856 1824 1808 1792 1784 1776 1768 1760 1760

−46 1816 1784 1768 1760 1744 1736 1728 1728 1720

−45 1776 1752 1728 1720 1712 1696 1696 1688 1680

−44 1736 1712 1696 1680 1672 1664 1656 1648 1640

−43 1704 1672 1656 1640 1632 1624 1616 1608 1608

−42 1664 1640 1616 1608 1600 1592 1584 1576 1568

−41 1624 1600 1584 1568 1560 1552 1544 1536 1528

−40 1592 1560 1544 1528 1520 1512 1504 1496 1496

−39 1552 1520 1504 1488 1480 1472 1464 1456 1456

−38 1512 1480 1464 1456 1440 1432 1424 1424 1416

−37 1472 1448 1424 1416 1408 1400 1392 1384 1376

−36 1432 1408 1392 1376 1368 1360 1352 1344 1336

−35 1400 1368 1352 1336 1328 1320 1312 1304 1304

−34 1360 1336 1312 1304 1296 1280 1280 1272 1264

−33 1320 1296 1280 1264 1256 1248 1240 1232 1224

−32 1288 1256 1240 1224 1216 1208 1200 1192 1192

−31 1248 1216 1200 1184 1176 1168 1160 1152 1152

−30 1208 1176 1160 1152 1136 1128 1120 1120 1112

−29 1168 1144 1120 1112 1104 1088 1088 1080 1072

−28 1136 1104 1088 1072 1064 1056 1048 1040 1040

−27 1096 1064 1048 1032 1024 1016 1008 1000 1000

(continued)

Blind Rotation in Fully Homomorphic Encryption with Extended Keys 17

Table 3. (continued)

σ m

2 3 4 5 6 7 8 9 10

−26 1056 1024 1008 1000 984 976 968 968 960

−25 1016 992 968 960 952 944 936 928 920

−24 976 952 936 920 912 904 896 888 880

−23 944 912 896 880 872 864 856 848 848

−22 904 872 856 848 832 824 816 816 808

−21 864 840 816 808 800 784 784 776 768

−20 824 800 784 768 760 752 744 736 728

−19 792 760 744 728 720 712 704 696 696

−18 752 720 704 688 680 672 664 664 656

−17 712 680 664 656 640 632 632 624 616

−16 672 648 624 616 608 600 592 584 576

−15 640 608 592 576 568 560 552 544 544

−14 600 568 552 536 528 520 512 512 504

−13 560 528 512 496 488 480 472 472 464

−12 528 496 472 464 456 448 440 432 424

−11 488 456 432 424 416 408 400 392 392

−10 448 416 400 384 376 368 360 352 352

−9 408 376 360 344 336 328 320 320 312

−8 376 336 320 312 296 288 288 280 272

−7 336 304 280 272 256 256 248 240 240

−6 296 264 240 232 224 216 208 208 200

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015). https://doi.org/10.1515/jmc-2015-
0016

2. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 1–20. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 1

3. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

4. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6(3):13:1–13:36
(2014). https://doi.org/10.1145/2633600. Earlier version in ITCS 2012

https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1145/2633600

18 M. Joye and P. Paillier

6. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) 5th Innovations in Theoretical Computer Science (ITCS 2014), pp. 1–12.
ACM Press (2014). https://doi.org/10.1145/2554797.2554799

7. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2019). https://doi.org/
10.1007/s00145-019-09319-x

8. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Dolev, S., Margalit, O., Pinkas,
B., Schwarzmann, A. (eds.) CSCML 2021. LNCS, vol. 12716, pp. 1–19. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-78086-9 1

9. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

10. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction:
generalized worst-case to average-case reductions and homomorphic cryptosystems.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 528–
558. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 19

11. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM
53(3), 97–105 (2010). https://doi.org/10.1145/1666420.1666444. Earlier version in
STOC 2009

12. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

13. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

14. Joye, M.: Guide to fully homomorphic encryption over the [discretized] torus. Cryp-
tology ePrint Archive, Report 2021/1402 (2021). https://ia.cr/2021/1402

15. Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. In:
Brenner, M., et al. (eds.) 9th Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography (WAHC 2021), pp. 17–28. ACM Press (2021). https://doi.
org/10.1145/3474366.3486924

16. Rivest, R.L., Adleman, L., Detouzos, M.L.: On data banks and privacy homomor-
phisms. In: DeMillo, R.A., et al. (eds.) Foundations of Secure Computation, pp.
165–179. Academic Press (1978). https://people.csail.mit.edu/rivest/pubs.html#
RAD78

17. Zhou, T., Yang, X., Liu, L., Zhang, W., Li, N.: Faster bootstrapping with multiple
addends. IEEE Access 6, 49868–49876 (2018). https://doi.org/10.1109/ACCESS.
2018.2867655

https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-40041-4_5
https://ia.cr/2021/1402
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1145/3474366.3486924
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://doi.org/10.1109/ACCESS.2018.2867655
https://doi.org/10.1109/ACCESS.2018.2867655

Monitoring Time Series with Missing
Values: A Deep Probabilistic Approach

Oshri Barazani1 and David Tolpin2(B)

1 PUB+, Beersheba, Israel
2 Ben-Gurion University of the Negev, Beersheba, Israel

david.tolpin@gmail.com

Abstract. Systems are commonly monitored for health and security
through collection and streaming of multivariate time series. Advances in
time series forecasting due to adoption of multilayer recurrent neural net-
work architectures make it possible to forecast in high-dimensional time
series, and identify and classify novelties early, based on subtle changes in
the trends. However, mainstream approaches to multi-variate time series
predictions do not handle well cases when the ongoing forecasts must
include uncertainty, nor they are robust to missing data. We introduce
a new architecture for time series monitoring based on combination of
state-of-the-art methods of forecasting in high-dimensional time series
with full probabilistic handling of uncertainty. We demonstrate advan-
tage of the architecture for time series forecasting and novelty detection,
in particular with partially missing data, and empirically evaluate and
compare the architecture to state-of-the-art approaches on a real-world
data set.

1 Introduction

Modern information systems and operation environments are commonly mon-
itored through collection and streaming of multivariate time series. The moni-
toring tasks comprise both forecasting, for planning of resource allocation and
decision making, and novelty detection and characterization, for ensuring fault-
less functioning and early mitigation of failures and threats. Advances in time
series forecasting due to adoption of multilayer recurrent neural network archi-
tectures made it possible to forecast in high-dimensional time series, and identify
and classify novelties (anomalies) early, based on subtle changes in the trends.
However, mainstream approaches to multi-variate time series modelling do not
handle well cases when uncertainty is involved, either in the input, when some
of the observations are missing, or in the output when the distribution of future
observations, rather than their point values, is predicted. For forecast uncer-
tainty modelling, stochastic latent variable variants of high-dimensional time
series models where introduced, but so far have had to rely on sampling to
account for uncertainty, limiting the performance of data handling. Imputation
schemes were proposed for dealing with missing data, however, they do not gen-
erally give a satisfactory solution in presence of transient unavailability of some
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 19–28, 2022.
https://doi.org/10.1007/978-3-031-07689-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_2

20 O. Barazani and D. Tolpin

of the data sources (e.g. when a sensor stops working, or a transport channel
malfunctions), which is a common case with monitoring of complex systems.

A systematic and theoretically founded approach to handling both input and
output uncertainty would thus constitute a significant and welcome contribution
to the theory and practice of monitoring of multivariate time series. It would
also be highly desirable for such approach to facilitate efficient offline (learning)
and online (inference) computations. In this ongoing research, we propose a deep
learning architecture which uses a simple but powerful extension of traditional
recurrent neural network (RNN) architecture which allows both

– to handle missing inputs in some or all of the components in a multivariate
time series,

– and to accomplish multi-step probabilistic forecasting

in high-dimensional time series, paving a path to better decision making and
finer and more robust anomaly detection and characterization. We evaluate the
architecture on a real-world data set of multivariate time series collected from
a network for cloud computing, and empirically demonstrate advantage of the
proposed architecture over commonly used approaches.

2 Problem: Multivariate Time Series Forecasting

The core problem we address is forecasting in a multivariate time series. For-
mally, a time series is a matrix X of shape T × N , where T is the number of
time steps and N is the number of dimensions. The time steps are assumed to be
equispaced. A k-step probabilistic forecast Ftk at time t is the belief distribution
of time series Xt+1:t+k for time steps t + 1...t + k given the observed time series
X1:t for time steps 1...t.

The forecasting is accomplished by applying model Mθ parameterized by
parameters θ to the observed time series:

Ftk = Mθ(X1:t) (1)

The machine learning task is to devise θ∗ that gives the best forecast, in terms of
a certain loss function. A natural loss in the probabilistic setting is the average
negative log likelihood of θ given a training data set X of multiple time series:

θ∗ = arg min
θ

EX∈X ,t∈1...T−k [− log Pr(Xt+1:t+k|Mθ(X1:t))] (2)

When the model is differentiable by θ, the task is usually accomplished by per-
forming a stochastic gradient loss minimization.

In the basic case, X is real-valued, X ∈ R
T×N . Here, we are interested in an

extension of the basic case, in which some of the elements can be missing from
X, that is X ∈ (R ∪ ⊥)T×N .

Monitoring Time Series with Missing Values: A Deep Probabilistic Approach 21

3 Architecture: Recurrent Neural Network
with Uncertainty Propagation

We introduce here a recurrent neural network architecture which facilitates
uncertainty propagation. The architecture is capable both of handling missing
values and of multi-step forecasting. We begin with description of conventional
forecasting with RNNs. Then, we describe our proposed architecture as an exten-
sion to the conventional model.

Fig. 1. Time series models

3.1 Conventional Forecasting

A popular realization of the forecasting model Mθ is a recurrent neural net-
work (RNN), with θ corresponding to the network parameters. There is a range
of neural recurrent models of varying complexity to deal with time series fore-
casting. Most models include a recurrent unit which threads the state through
the time steps, accepts data as inputs and produces next step predictions as
outputs. The simplest model is an RNN with a fully-connected readout layer
to produce forecasts (Fig. 1a). RNN can be based on LSTM [12], GRU [8], or
another architectural variant, and is often multi-layer. Architectures may also
include intermediate modules, and sampling-based variational layers [10,20]. The
overall architecture stays almost the same, with more connections, intermediate
modules and sampling-based variational layers.

Input and Output. This architecture normally accepts observation vectors and
outputs vectors of distribution parameters for the belief distribution of the obser-
vations at the next time step. In the simplest case, the network produces a single
output for each input, that is the dimensions of the input and the output vector
coincide. This corresponds to the assumption of homoskedasticity of epistemic
noise, and either the mean squared error (corresponding to the Gaussian error

22 O. Barazani and D. Tolpin

distribution) or the mean absolute error (corresponding to the Laplace error
distribution) is minimized.

More generally though, the epistemic noise is better modelled heteroskedas-
tically, using a two-parameter loss distribution, with the location and the scale
as the parameters. In the case of the frequently used normal (Gaussian) distri-
bution, the output vector consists of means μ (location) and standard deviations
σ (scale) of all dimensions and is twice as wide as the input.

Training. The model is trained to maximize probability of prediction. In the
most basic case, called out-of-sample one-step forecasting, a single step is pre-
dicted for each time step in the series. In an n-step time series, steps 1...n−1 are
used as the input, and steps 1...n as the ground truth. Following (2), the network
is trained to minimize negative log probability of true observations given the pre-
dicted belief distributions. More generally, a model can also be trained to predict
more than a single step at once into the future, however this is rarely used in
practice because the necessary size of the training data set grows exponentially
with the prediction depth. Instead, future predictions are produced recurrently
during forecasting.

Forecasting. Forecasting is accomplished by passing past observations through
the model to obtain forecasts for the future time steps. In the out-of-sample
one-step mode, a single step into the future is forecast. If a longer forecast is
required, the current forecast is entered as the input at the next time step, time
after time, up to the required length. Either the location (the point forecast)
or a random sample from the belief distribution is used as the future input.
Using random samples also allows to assess uncertainty multiple steps into the
future: one can repeatedly sample from the belief distribution at each future
step, and feed the sample as the input to the following step. Then, based on
produced samples at future steps, one can estimate uncertainty intervals. Such
Monte-Carlo handling of uncertainty is quite expensive computationally though,
because the standard deviation of prediction error decreases as slowly as

√
N

with the number of samples N , on one hand, and uncertainty may, in general,
grow exponentially with prediction depth, on the other hand.

Novelty Detection. Forecasts produced by the model can be used for a number
of purposes, including decision making and, in particular, novelty (anomaly)
detection. There are two related but different phenomena indicating a novelty
in time series behavior:

1. Predicted volatility of the time series is high, that is, future observations can
only be forecast uncertainly (with high variance).

2. Probability of actual observations, when observed, given a prediction from a
past state, is low.

Either phenomenon, or both of them, can be used to alert about novelties in the
time series. In recurrent neural network architectures, the hidden state (ht in
Fig. 1) can be used to identify and classify anomalies.

Monitoring Time Series with Missing Values: A Deep Probabilistic Approach 23

3.2 Forecasting with Uncertainty Propagation

The basic scheme outlined above poses difficulty in applications with high-
dimensional time series and partially missing observations. Sampling based
uncertainty assertion impacts performance, and missing observations are often
imputed heuristically [15,17]. An architecture which incorporates confidence
about data and in which observed and predicted data are interchangeable is
highly desirable. For example, if out of 5 components 3 were measured and 2
predicted from an earlier step we want to input all of them into the next time
step for further forecasting. In addition, the model architecture should be capa-
ble of robust uncertainty prediction and benefit from training with multiple steps
of out-of-sample data.

Our proposed architecture is based on the observation that if (at least) the
location and the scale are used to represent forecasts, an observation (that is,
certain knowledge at a given step) can also be expressed using two parame-
ters, by setting the location to the observation, and the scale to 0. For the
normal distribution N (μ, σ), the location and scale parameterization is straight-
forward, corresponding to μ and σ, however other belief distributions can be
parameterized by location and scale as easily, e.g. the log-normal, Gamma, or
Laplace distribution. For conciseness, we will confine further discussion to the
case of independent normal belief distributions for each component; however,
other distribution shapes can also be used. Based on this observation, we pro-
pose the following extension to the conventional RNN-based forecasting
model (Fig. 1b):

1. The input, as well as the output, is a vector of distribution parameters. For the
independent normal distributions, the distribution parameter vector consists
of the means followed by the standard deviations. If the data has 5 compo-
nents, the input will be 10-dimensional. For observed data—measurements
present at the current time step—the standard deviation is zero. For missing
data the input is the mean and the standard deviation as predicted from the
preceding time steps.

2. Training can, in principle, be accomplished on data with missing values,
but training on data with missing values incurs performance drawbacks and
should be avoided. First, handling missing values and replacing them with
early predictions introduces contingency in the forward run of the RNN and
slows down significantly the execution during training. Second, missing values
should, in general, themselves be viewed as anomalies. One must be able to
handle them during inference, but should not rely on their presence in the
training data.
Therefore, we devise a scheme for training our model on data that does not
contain missing values. Even in applications where missing values are common
in inference, training data without missing values is usually readily available.
However, since we introduce confidence into the input, we cannot train the
network myopically, in out-of-sample one-step manner—the standard devia-
tions in the input data will always be zero, and the network will never learn

24 O. Barazani and D. Tolpin

how to use them. To overcome this, we train on multiple predicted steps. We
feed each prediction, without sampling, as input to the next step and compute
the loss as negative log probability of this number of future points versus our
prediction.

To illustrate, given the data set of 5 dimensions, the input has 10 dimensions.
If we train with 3 time steps lookahead, the ground truth will be a matrix of
size 3 × 5. The prediction against which the likelihood of this ground truth
is computed will be a matrix of size 3 × 10. Intuitively, we would expect the
predicted standard deviation to increase along the time axis for each component.

The ability of probabilistic forecasting with uncertainty, in the form of mul-
tivariate normal distributions, far into the future, opens opportunity for appli-
cation to more robust novelty detection approaches. Instead of detecting novelty
based on log probability of observations given predictions from the past [6], which
is prone to false positives due to observation noise, novelties can be detected and
analysed by comparing predictions of the same time point from different points
in the past. In this case, KL-divergence between predictions provides a theoreti-
cally sound and robust mechanism for detection of anomalies, and is in particular
relevant for monitoring of large operation environments with high dimensionality
of time series and occasional missing values and heteroskedastic noise [2,18].

4 Case Study: Monitoring a Computer Cloud

We evaluate the proposed architecture on a data set of monitoring a cluster
of 100 computing nodes in the cloud. For each node, the incoming and the
outgoing network traffic (in bytes) and the CPU usage (relative) are logged with
1 min resolution. 240 h were logged, resulting in 12000 120-minute 3-dimensional
samples. We split the dataset into the training, validation, and test as 80%, 10%,
and 10% correspondingly. Since the original data set does not have many missing
data points, we emulated data sets with missing data by randomly removing 5%,
10%, 20%, and 50% of the data.

We used a 3-layer GRU-based recurrent neural network with hidden size 64
and 20% dropout between layers. We trained the network with lookahead depths
(number of steps to forecast in the future) 2, 4, 8, and 16 using the Adam opti-
mizer with learning rate 0.001, training for 20 epochs (sufficient for convergence).
We performed the training on a cloud computing node with 1 NVIDIA T4 GPU,
4 Intel Xeon Platinum CPUs, and 64 Gb memory. The training of a single model
took 20 min.

We compared our approach with conventional imputation methods ‘replace
by the mean’ and ‘replace by a random sample’. In the ‘replace by the mean’
method, a missing value is replaced by the mean of the forecast. In the ‘replace
by a random sample’ method, a missing value is replaced by a random sample
drawn from the forecast. As a performance metrics, we used per-point negative
log-likelihood loss on the test set. Tables 1 and 2 show the difference in loss
between uncertainty propagation and ‘replace by the mean’ and ‘replace by a

Monitoring Time Series with Missing Values: A Deep Probabilistic Approach 25

Table 1. Uncertainty propagation vs. ‘replace by the mean’.

Missing 2 4 8 16

5% 0.001 0.001 0.06 0.10

10% 0.001 0.002 0.08 0.11

20% 0.003 0.003 0.11 0.13

50% 0.004 0.006 0.12 0.16

Table 2. Uncertainty propagation vs. ‘replace by a random sample’.

Missing 2 4 8 16

5% 0.04 0.04 0.13 0.14

10% 0.06 0.06 0.16 0.24

20% 0.11 0.12 0.20 0.27

50% 0.18 0.19 0.28 0.30

random sample’, correspondingly. The greater is the number, the worse is the
forecasting by each of the methods compared to uncertainty propagation. One
can see that in all cases uncertainty propagation provides better forecasts than
either of the conventional methods.

Fig. 2. Uncertainty propagation vs ‘replace by the mean’. 95% confidence intervals are
shaded.

As an illustration of the advantage of uncertainty propagation, consider
Fig. 2, which shows forecasts using uncertainty propagation and ‘replace by the
mean’ in presence of missing values. Forecasts through uncertainty propaga-
tion result in adequate confidence intervals. However, when missing values are
replaced by the mean of the belief distribution, further forecasts are overconfi-
dent and too many observations fall outside of 95% confidence intervals.

The code and data for the case studies are available at https://bitbucket.
org/dtolpin/dbts-studies/.

https://bitbucket.org/dtolpin/dbts-studies/
https://bitbucket.org/dtolpin/dbts-studies/

26 O. Barazani and D. Tolpin

5 Related Work

There appear to be two interconnected areas related to this research. One area
is uncertainty representation and propagation in recurrent neural models. The
other area is handling of missing values in time series, again in the context of
recurrent neural models in particular.

The importance of uncertainty quantification in deep learning is well under-
stood [1]. Recurrent neural networks can express forecast uncertainty through
predicting distribution parameters, such as the mean and the standard devi-
ation, instead of point values [12]. When expressing uncertainty by closed-
form distributions is insufficient, stochastic latent variables are introduced into
RNNs [10,11,20]. Uncertainty representation in RNNs is related to uncertainty
propagation and multi-step forecasting. For multi-step forecasting, uncertainty
must be propagated multiple steps into the future. Uncertainty propagation is
usually achieved through random sampling during training or inference [3,14,20].
Our approach differs in that conventional RNN architectures are leveraged to
represent uncertainty in both the input and the output, and that uncertainty
propagation is accomplished deterministically, without resorting to random sam-
pling, which facilitates efficient training and inference.

Handling of missing values in time series has inspired research for decades
due to the fact that many otherwise efficient and robust algorithms, in particular
those based on recurrent neural architectures, require that all values in the time
series are present and lie within a valid range [19]. A widespread approach is
to impute the data, that is, to replace missing values with values inferred from
other values in the same time series or in other time series in the data set [13,
17]. Alternatively, a missing value is treated as an observation itself, often by
introducing an auxiliary indicator variable [4,15]. In our work, we take a third
approach—a missing value, either due to an absent observation or in the course of
multi-step forecasting, is replaced by a parametrically specified belief distribution
of the value based on the past observations.

6 Discussion and Future Research

We presented a deep probabilistic architecture for uncertainty propagation in
multivariate time series. This architecture organically handles two important
problems in deep time series modelling: missing data and multi-step forecasting.
Empirical evaluation demonstrated that our approach outperforms conventional
baselines in terms of forecasting accuracy, while still being easy to implement.
Since, unlike some other approaches to uncertainty propagation, our architecture
avoids sampling, uncertainty can be propagated efficiently and represented in
closed parametric form, rather than approximated by samples and posterior
intervals.

We confined most of the discussion to the normal uncertainty shape. Other
distributions can be used instead of the normal distributions where appropri-
ate, provided their parameterization allows to express a certain observation as

Monitoring Time Series with Missing Values: A Deep Probabilistic Approach 27

well as an uncertain belief. Analysis of distributions for representing uncertainty
and their feasible parameterization is a subject of ongoing research. Another
research direction worth exploring is extension of the presented architecture to
bidirectional recurrent neural networks [5]. Bidirectional RNNs allow to account
for both past and future observations where appropriate, but apparently make
uncertainty propagation more complicated. Still, preliminary results suggest that
uncertainty in bidirectional RNNs can be handled in a similar manner, further
facilitating efficient probabilistic uncertainty propagation in a broader class of
deep learning models for time series.

Acknowledgements. We thank PUB+ for providing computational facilities for con-
ducting the empirical evaluation. David Tolpin is partially supported by Israel-U.S.
Industrial Research and Development Foundation’s Cybersecurity technology for criti-
cal power infrastructure AI-based centralized defense and edge resilience project.

References

1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: tech-
niques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

2. Afgani, M., Sinanovic, S., Haas, H.: Anomaly detection using the Kullback-Leibler
divergence metric. In: 2008 First International Symposium on Applied Sciences on
Biomedical and Communication Technologies, pp. 1–5 (2008)

3. Alaa, A., Van Der Schaar, M.: Frequentist uncertainty in recurrent neural networks
via blockwise influence functions. In: III, H.D., Singh, A. (eds.) Proceedings of
the 37th International Conference on Machine Learning. Proceedings of Machine
Learning Research, 13–18 July 2020, vol. 119, pp. 175–190. PMLR (2020)

4. Bansal, P., Deshpande, P., Sarawagi, S.: Missing value imputation on multidimen-
sional time series. Proc. VLDB Endow. 14(11), 2533–2545 (2021)

5. Berglund, M., Raiko, T., Honkala, M., Kärkkäinen, L., Vetek, A., Karhunen,
J.T.: Bidirectional recurrent neural networks as generative models. In: Cortes,
C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural
Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)

6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 1–58 (2009)

7. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks
for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)

8. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: encoder-decoder approaches. In: Wu, D., Carpuat, M.,
Carreras, X., Vecchi, E. (eds.) Proceedings of SSST 2014–8th Workshop on Syn-
tax, Semantics and Structure in Statistical Translation, pp. 103–111. Proceedings
of SSST 2014–8th Workshop on Syntax, Semantics and Structure in Statistical
Translation, Association for Computational Linguistics (ACL) (2014). Funding
Information: The authors would like to acknowledge the support of the follow-
ing agencies for research funding and computing support: NSERC, Calcul Québec,
Compute Canada, the Canada Research Chairs and CIFAR. Publisher Copyright:
2014 Association for Computational Linguistics; 8th Workshop on Syntax, Seman-
tics and Structure in Statistical Translation, SSST 2014; Conference date: 25-10-
2014

28 O. Barazani and D. Tolpin

9. Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-
series data: review, analysis, and guidelines. IEEE Access 9, 120043–120065 (2021).
https://doi.org/10.1109/ACCESS.2021.3107975

10. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., Bengio, Y.: A recurrent
latent variable model for sequential data. In: Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 2, NIPS 2015, pp.
2980–2988. MIT Press, Cambridge (2015)

11. Fraccaro, M., Sønderby, S.R.K., Paquet, U., Winther, O.: Sequential neural models
with stochastic layers. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett,
R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran
Associates, Inc. (2016)

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

13. Kim, Y.J., Chi, M.: Temporal belief memory: Imputing missing data during RNN
training. In: Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18, pp. 2326–2332. International Joint Conferences
on Artificial Intelligence Organization (2018)

14. Li, L., Yan, J., Yang, X., Jin, Y.: Learning interpretable deep state space model
for probabilistic time series forecasting. In: Proceedings of the 28th International
Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 2901–2908. AAAI Press
(2019)

15. Lipton, Z.C., Kale, D., Wetzel, R.: Directly modeling missing data in sequences
with RNNs: improved classification of clinical time series. In: Doshi-Velez, F., Fack-
ler, J., Kale, D., Wallace, B., Wiens, J. (eds.) Proceedings of the 1st Machine
Learning for Healthcare Conference. Proceedings of Machine Learning Research,
18–19 August 2016, vol. 56, pp. 253–270. PMLR, Northeastern University, Boston
(2016)

16. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In: Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD 2019, pp. 2828–2837. Association for Computing Machinery,
New York (2019)

17. Suo, Q., Yao, L., Xun, G., Sun, J., Zhang, A.: Recurrent imputation for multi-
variate time series with missing values. In: 2019 IEEE International Conference
on Healthcare Informatics (ICHI), pp. 1–3 (2019). https://doi.org/10.1109/ICHI.
2019.8904638

18. Tolpin, D.: Population anomaly detection through deep gaussianization. In: Pro-
ceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019,
pp. 1330–1336. Association for Computing Machinery, New York (2019)

19. Wen, Q., et al.: Time series data augmentation for deep learning: a survey. In:
Zhou, Z.H. (ed.) Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pp. 4653–4660. International Joint Conferences
on Artificial Intelligence Organization (2021). Survey Track

20. Yin, Z., Barucca, P.: Stochastic recurrent neural network for multistep time series
forecasting. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N.
(eds.) ICONIP 2021. LNCS, vol. 13108, pp. 14–26. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92185-9 2

https://doi.org/10.1109/ACCESS.2021.3107975
https://doi.org/10.1109/ICHI.2019.8904638
https://doi.org/10.1109/ICHI.2019.8904638
https://doi.org/10.1007/978-3-030-92185-9_2
https://doi.org/10.1007/978-3-030-92185-9_2

Time, Memory and Accuracy Tradeoffs
in Side-Channel Trace Profiling

Hen Hayoon(B)and Yossi Oren(B)

Department of Software and Information Systems Engineering,
Ben-Gurion University, Beersheba, Israel

hayoonh@post.bgu.ac.il and, yos@bgu.ac.iland

Abstract. Template attacks are one of the most powerful classes of side-
channel attacks. Template attacks begin with an offline step, in which the
side-channel traces are profiled, and decoders are created for each side-
channel leak. In this paper, we analyze the compression step of the trace
profiling process. This compression step, which is a central part of the
decoder’s training process, is used to reduce the amount of time, mem-
ory consumption, and data required to successfully perform the attack;
various practical methods have been proposed for this step, including
one which uses an efficient means both for selecting the points of interest
(POI) in the power trace and for preprocessing noisy data.

We investigate ways to improve the efficiency of the attack by imple-
menting several compression methods which select the most informative
power consumption samples from power traces. We develop a unique ded-
icated evaluation system to compare the performance of various decoders
with different compression methods on real-world power traces. Our find-
ings indicate that our proposed decoder for side-channel traces outper-
forms the current state of art in terms of speed, resource consumption,
and accuracy. We also demonstrate our decoder’s effectiveness under
resource-constrained conditions, and show that it achieves over 70% accu-
racy even if there are fewer than 1,000 traces in the profiling phase.

1 Introduction

Side-channel attacks (SCAs) [4,9,15] have been shown to be effective and prac-
tical for attacking implementations of cryptographic algorithms. These attacks
reveal cryptographic device secrets by observing the physical properties of the
device [15]. Adversaries can obtain sensitive information from side-channels, such
as the timing of operations, power consumption, electromagnetic emanations,
etc. [4,15,17]. When a cryptographic operation is performed, the device emits
a data dependent side-channel leak. Leaks are the internal state functions of
the device under test (DUT), and they are modulated into a power/EM trace,
along with some noise. In constrained devices, such as chip-cards, straightfor-
ward implementations of cryptographic algorithms can be broken easily, since
the power consumption of the cryptographic device is dependent on the inter-
mediate values of the cryptographic algorithm executed. When the amount of
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 29–46, 2022.
https://doi.org/10.1007/978-3-031-07689-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_3

30 H. Hayoon and Y. Oren

leakage is smaller relative to the noise, statistical techniques such as DPA are
applicable. As stated by Chari et al. [6], DPA relies on the statistical analysis
of a large number of samples where the same keying material is used to operate
on different data. The most powerful type of side-channel attack is called the
template attack (TA). The TA’s evaluation of side-channel information relies on
a multivariate model of the side-channel traces. This attack contains an offline
and online phase, and one of its advantages is that it requires just a few samples
in the online phase, and works well even if the DUT’s power consumption does
not conform to the Hamming weight leakage model.

In order to recover the secret key in a template-based side-channel attack, the
attacker’s operations consist of three phases. First, in the offline profiling phase,
a device totally controlled by the attacker and similar to the DUT is profiled
and characterized. This DUT analysis, like correlation power analysis (CPA) [4],
identifies the position of the leaking operations in the traces by identifying a
small section of the power trace T depending only on a few unknown key bits.
The profiling phase outputs a series of decoders, each mapping a certain set of
points of interest (POIs, also known as features) in the trace to a certain set of
secret values. The Hamming weight model is an example of the mapped output
of this phase [17,25]. The second phase consists of an online decoding phase,
where the attacker is provided with a few power traces, generally a single one,
and uses the decoders created in the profiling phase to recover leak vectors from
the power trace. These leak vectors may contain some errors due to noise. The
last phase is the solving phase, where the correct key is discovered from among
the most likely candidates by using the brutre force, the maximum-likelihood
method [12] or by the use of a constraint solver [14,25].

1.1 Contribution

Trace compression is the initial step of the profiling phase. In this step the
power trace is replaced with a smaller-sized vector, in order to improve the
decoder’s performance, in terms of the number power traces required, and its
overall performance in both the online and offline phases. In this paper, we
investigate which parameters for this compression step deliver the best combi-
nation of accuracy and runtime performance. Specifically, our paper makes the
following contributions: we design and implement a unique evaluation perfor-
mance system which can analyze the compression step. We then use this system
to explore and compare several profiling methods. The profiling methods differ
based on the compression techniques and preprocessing model (for the training
set traces) utilized. Three well-known and different classical compression meth-
ods were implemented. In addition, we implement the method used by the smart
decoder proposed in [18] and presented in Sect. 3.4, it offers an efficient searching
algorithm to find the most leaking points in the trace using a unique compres-
sion method. Finally, we propose our own optimal profiling method, based on
the guidelines of [24], as a tradeoff that performs well under conditions of data
and resource restrictions.

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 31

1.2 Related Work

Weisse et al. [18] presented a method for profiling the training set of power traces
into an accurate decoder to be used as part of an algebraic side-channel attack
aimed at recovering the secret key. The authors provided two scoring methods
used to identify the best leaking points in the trace; their methods are effective
when there is limited representation of some values in the training set traces.
Kocher et al. [13] were the first to present the difference of means (DOM) as
an alternative to correlation for power computation measurements analysis in
order to determine the secret keys of a DES operation. Before that, Chari et al.
[6] showed the best visualization for the DOM of side-channel samples for a TA
with a single sample against an RC4 implementation.

Mangard et al. [15] used the DOM as an alternative to correlation not only
for the binary power model but for the Hamming-weight model, directly on
power traces to perform a DPA attack on the S-box of an AES implementation
[8]. In another chapter of their book the authors suggested the model-based
integration of SNR (signal-to-noise ratio) techniques to compress power traces,
using the sum of their signal and noise in a defined time interval. Gierlichs et
al. [10] suggested the sum of squared pairwise differences (SOSD) instead of the
regular sum of pairwise of the DOM for the selection of interesting points in a
TA for an SCA against the AES. Rechberger et al. [24] presented a practical
TA using an advanced version of the maximum extraction compression method
to select the interesting points in a power trace. Instead of choosing the highest
points, the authors defined a few properties that must exist at the selected points.

Other authors revealed the importance of feature selection in an SCA and
compared them in other scenarios. Zheng et al. [31] compared known feature
selection techniques and evaluated their accuracy for profiled SCAs. Picek et al.
[23] investigated advanced feature selection techniques from the machine learning
domain used to improve attack accuracy, examining the influence of the number
of features in the process. Cagli et al. [5] presented an accuracy comparison
analysis for feature selection in SCAs through linear, non linear, and neural-
network models.

2 Background

In this work we assume a DUT conforming to the Hamming weight power leakage
model.

Let k be an encryption key (bytes), and p and c are respectively the plaintext
and ciphertext of the cryptographic algorithm, which is uniformly chosen. The
multivariate power trace measured is denoted as

−→
X = X1, ...,XS , where S is the

number of time samples (also called features).
In the offline phase, the attacker, who controls the DUT, estimates the leakage

model using a set of N profiling traces
−→
X 1,

−→
XN (multi dimensional S × N)

and the knowledge of k. In the online phase, additional power traces of the DUT−→
X 1,

−→
XM itself are measured (one or more), and the attacker’s objective is to

recover k from these power traces using signal classification techniques.

32 H. Hayoon and Y. Oren

2.1 Template Attacks

Template attacks are a method for performing power analysis attacks which
works by creating a characterization of a device. The attack usually consists
of an offline phase, in which device characterization takes place, followed by a
online phase, in which the characterization is used for the attack.

First, a series of templates of all possible operations (i.e., all of the crypto-
graphic algorithms are executed using all of the possible subkey values) is con-
structed. Then, the attack starts, and the trace of a single operation is captured.
Using the templates created, which represent all key values, the side-channel
information of the attacked device is classified and assigned to one or more of
the templates. The goal is to significantly reduce the number of possible keys,
optimally concluding the attack with a single possible value for the secret key.

Building Templates. In the state-of-the-art template attack the power sam-
ples are considered dependent by the TA; accordingly, the traces are charac-
terized with the multivariate normal distribution [6,7,15,24,26–28]. The char-
acterization defined by the “template” of the multivariate normal distribution,
is the pair (m,CM) where m represents the mean vector and CM represents
the covariance matrix for each class. When building templates with the power
model, we determine templates for certain sequences of instructions by execut-
ing them with different and known data di and keys kj , in order to record the
resulting power consumption. Then, we group the corresponding traces to the
pair of (di, kj) and estimate (m,CM).

As a result, we obtain a template for every data and key pair. Then, using
the template, along with (m,CM)di,kj

and the power trace x, we evaluate the
probability density function of the multivariate normal distribution :

p(x; (m,CM)di,kj
) =

exp(− 1
2 · (x − m)′ · CM−1 · (x − m))

√
(2π)τ · det(CM)

The probabilities for each template measure how well they fit to a given trace.
If the noise level is sufficiently low, the maximum-likelihood decision rule can be
applied, and the template with the highest probability indicates the correct key.

2.2 Dataset

The dataset used in this study is the DPA contest v4 dataset [20], which provides
measurements of a masked AES implementation. In that attack contest, the
goal was to use the smallest number of power consumption traces to identify
the first 128 bits of the encryption key. The hardware used for the cipher
implementation was the Atmel ATMega-163 smart card, which was sampled
using a LeCroy Waverunner 6100A oscilloscope at the rate of 500 MS/s. The
dataset provides 100,000 power traces, each of which consists of 435,002 samples
and corresponds to the execution of an AES-256 round. The countermeasure
of the AES-256 implementation was “Rotating S-Box Masking” (RSM) [21]; all

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 33

of the power traces provided were running the “AES-RSM” implementation with
the same 256-bit key, but different plaintext was used for each measurement. This
implementation contains the following features:

– An arbitrary fixed 16-byte mask is added on top of the classic AES. A random
offset 0 ≤ o ≤ 15 is drawn as the first stage of the encryption process. Let m0

denote the cyclic rotation of the mask added by offset o.
– The masked plaintext pm is the result of the XOR operation of the 16 bytes

of plaintext with m0. Let pmi denote the result pmi = pi ⊕ m0
i , 0 ≤ i ≤ 15.

– The AddRoundKey phase uses pm for each sub-round key.
– The masked S-boxes, which are derived from the value of m0 of, are used.
– The ShiftRows and MixColumns sub-round phases are unchanged.

We generated and parsed the plaintext, offsets and key files into comma-
separated value (CSV) files, according to the size expected by the parsing code
used by [18], and matched them (populating from index 0) with the RSM trace
indices, according to the trace index file found on the DPA contest site [21].

2.3 The Hamming Weight Leakage Model

GeneralAssumption. The assumed form of the Hamming weight (HW) leakage
of information in power consumption described in [15] is: Ptotal = Pexp(HW (si))+
Pn, where HW (si) denotes the HW of the intermediate state byte si for a certain
leak i, and Pn denotes the noise component which is assumed to be normally dis-
tributed with unknown parameters. This form is exactly the probabilistic model
used to construct a Bayesian classifier. As was done in [22,24,30], we therefore use
a naive Bayes (NB) classifier. The NB classifier returns, for each feature, a mean
and variance for each class of the 9 possible HW classes (0–8).

AES-RSM Leaks. The leakage model for the AES-RSM implementation is the
HW model. The desired leakage of information of the AES-RSM implementation
is the Hamming weight of the S-box state bytes they process. The following
leaks can be derived from the traces of DPA v4 used in our study: 16 bytes of
the masked plaintext pmi, as describe in Sect. 2.2, 16 bytes of the output of the
AddRoundKey computation, 16 bytes of the output of SubBytes, and finally 52
bytes from the MixColumns computation. The first 16 bytes were added by the
RSM countermeasure, The rest 84 bytes are the same as enumerated in [18]. In
aggregate, there are 100 leaks from 100 intermediate byte values.

3 Compression Methods

The compression step is the first step performed during the profiling phase of an
SCA. Compression methods are usually used to reduce the complexity of power
analysis attacks, by reducing the length (dimension) of the power traces. This
is done in cases in which there are not enough traces for a full rank covariance
matrix CM , to cope with computational or memory restrictions, as the size of
the CM grows quadratically with the number of samples in the trace.

34 H. Hayoon and Y. Oren

The motivation for using compression methods stems from the amount of
redundancy present in long power traces, as these methods are able to remove
this redundancy without significant loss of leak information. To ensure an effi-
cient compression process, it is necessary to know which points in the power
traces points the “points of interest” (POIs) and contain information relevant
to an attacker. These samples have the highest information leakage, which is
reflected in their high correlation to the number of transitions that occur in the
chip, where we implicitly assume that the number of transitions depends on the
operation performed and on the data being processed. Identification of the POI
by the attacker is the first step in device characterization, and this information
is used to build the templates.

There are two main compression method approaches: The first is the “selec-
tion of samples” approach, which is based on some criteria, and the second is
the “usage of linear combinations” of the leakage vectors approach, which based
on the principal components or Fisher’s linear discriminant.

In this section, we describe methods from both approaches in order to cover
a wide range of methods in our performance comparison. We first present a few
classical methods; then we discuss the compression method used by the smart
decoder proposed in [18], and finally we describe the compression method used
in our decoder.

3.1 Principal Component Analysis

Principal component analysis (PCA) is mainly used in multivariate statistics
to reduce the dimensionality of a dataset while retaining the most variance [3],
by finding patterns within the dataset. PCA searches for linear combinations
with the greatest variance, and divides them into principal components (PCs)
where the greatest variance is captured by the highest component. The first PC
is required to have the greatest variance. The second PC must be orthogonal to
the first component while capturing the greatest variance within the dataset in
that direction; subsequent components cover less and less of the remaining data
variance.

The maximum number of PCs (dimensionality) is equal to the number of
samples in the power trace. Choosing the right number of PCs (designated by
n) is essential for obtaining optimal results, as shown in [11], by maximizing the
variance in the original data and minimizing the reconstruction error of the data
transformation.

The PCA method is based on the usage of the linear combinations approach
(mentioned above), and we chose to implement it, since according to [7,19], its
success, unlike the Linear discriminant analysis (LDA) method, depends on the
condition of equal covariance (known as homoscedasticity). We use the MATLAB
implementation of PCA [1] which returns a vector containing the percentage of
the total variance explained by each PC. Then, the mean of each relevant feature
from all of the training traces is calculated.

The training part calculates the principal features by multiplying the coef-
ficient by the difference of each feature with the mean. The vector returned is

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 35

the implementation of the “cumulative percentage of total variation” method for
choosing n, which is the method recommended by [11,19]; we experiment with
n values in the range [5, 10, 30], since the performance measurements with n <
5 and n > 30 are extreme and unstable.

3.2 Difference of Means

The difference of means (DOM) compression method is based on the selection
of samples approach, as mentioned above. The point selection is based on a
pre-calculated signal strength estimate. The DOM method only considers the
differences of values, and not the corresponding variances of the power traces,
as essential for comparison – an important factor in our decision to implement
it.

The DOM method is used to determine the relationship between the recorded
power consumption matrix T (traces) and the columns of binary assumption-
based matrix H. The H matrix is created by the attacker under the assumption
that the power consumption for certain intermediate values is different for all
other values; the binary value of H is a function of the input data d and a key
hypothesis ki, hi,j = HW (vi,j), vi,j = f(di, kj). As suggested in [15], to reduce
the HW model to a binary model, we set hi,j = 1, if HW (vi,j ≥ 4) and hi,j = 0,
if HW (vi,j < 4).

According to hi, the attacker splits T into two sets of power traces (rows) for
ki’s correctness check. The first set contains those T row indices corresponding
to the indices of the zeros in the vector hi, while vector m′

0idenotes the mean of
those rows m0i,j =

∑n
l=1(1−hl,j)·tl,j

n0i
. The second set contains all remaining rows

in T, while vector m′
1i is their mean vector m0i,j =

∑n
l=1 hl,j ·tl,j

n1i
, where n denotes

the number of rows in H and n0i,j =
∑n

l=1(1 − hl,i), n1i,j =
∑n

l=1 hl,i.
A significant difference between the mean vectors m′

0i and m′
1i at some point

in time indicates the correctness of key hypothesis ki.
Each row in the results of matrix R: R = M1 − M0 corresponds to the

differences between the mean vectors m′
0i and m′

1i of one key hypothesis.

3.3 Integration SNR

The integration methodology is a robust compression technique based on the
selection of samples approach, which uses all of the recorded points in the power
traces, and not just the peak/diff values. Unlike the DOM method, the inte-
gration SNR method takes the variance of the traces into consideration, an
important factor in our decision to implement it.

The signal-to-noise ratio of a power sample is given by the following equation:

SNR =
V ar(Pexp)

V ar(Psn + Pen)

where Pexp is the exploitable power consumption, Psn is the switching noise,
and Pen is the electronic noise. The SNR quantifies how much information is

36 H. Hayoon and Y. Oren

leaking from a power trace. The higher the SNR, the greater the leakage. The
integration of power trace in a time interval affects the SNR, since the signal
and the noise of the recorded points in the time interval are summed. The SNR
can be increased or decreased by the integration, depending on the time interval
size used for the integration.

The time interval size is a decisive parameter for the compression’s success;
in cases in which there are many points with a strong signal in the time interval,
the SNR will be high, and in cases where a single point is combined with points
that leak little to no information (or no information at all), the SNR will be
lower than the single point. Therefore choosing an appropriate time interval
for the integration, like the length of a clock cycle (cc), is essential for a good
compression process [15,24].

We implemented the following methods for integration-based power trace
compression:

Integration Row (IR) computes the sum of all points of each time interval.
Sum of Absolute Values (SOA) computes the sum of the absolute values

of all points of each time interval.
Finally, Sum of Squares (SOS) computes the sum of the squares of all

points of each time interval.
We tested all methods with time interval ranges of [0.5, 1, 2] cc.

3.4 Top Score

The state-of-the-art profiling methods for this paper are based on the profiling
methodology of [18]. In this work, Weisse et al. introduced a smart method for
profiling the training set of power traces into an accurate decoder for an algebraic
side-channel attack. The authors developed an efficient searching algorithm to
identify the points in a trace that leak the most.

For the feature selection process, they proposed a scoring method for eval-
uating the amount of information each sample contains about a specific leak.
Their profiling phase consists of the following steps:
1. Find regions of interest (ROI) in the traces for every leak using the Pearson

correlation coefficient [4].
2. Calculate the feature scores for the features within the ROI of the evaluated

leak identified in the previous step. The feature score is set as the average of
200 a-posteriori probabilities (of 200 evaluation traces) assigned to the correct
Hamming weight by the Bayesian classier trained on the feature.

3. Create the best feature set (the set which contains the most information
regarding the specific leak), which is used as input for the classier. Using
the same Bayesian classifier and evaluation traces as the previous step, the
mutual scores of all features in the best feature set are calculated; eventually,
only the features that increase the score are included in the set. The best
feature set size was statically limited to 500 features.

In our research, we use the success-rate scoring method of Weiss et al.’s by
stabilizing the code from [29] and adjusting it as a compression method in the
following way:

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 37

– Download the code base of [29]
– Parsing the RSM traces as describe in Sect. 2.2
– Mapping and isolating only the relevant code parts for the profiling and decod-

ing analysis phases
– Adjusting the code base to matlab v2017 and rewriting respectively.

We denote this method as “Top Score” (TS). In our experiments, we limit the
best feature set size to half the size of the training set.

3.5 Optimal Selection

Rechberger et al. [24] presented a practical TA using an efficient means of select-
ing the POI in a power trace and preprocessing noisy data. Their method is based
on the maximum-extraction compression approach, in which the maximum peak
values of the recorded samples in a clock cycle are simply extracted [15]. Instead
of choosing the highest points, their advanced selection method defines a few
properties that must exist at the selected points in the compressed trace:

– The minimum distance between the points should be approximately one clock
cycle or more, since additional points in the same clock cycle do not provide
additional information.

– The minimal height of a selected point should be higher than the noise floor
of the sum of differences (SOD) trace.

In our research we implement the guidelines for the selection of POI from Rech-
berger’s paper [24], as a substitute for operations of correlation calculation and
scoring the features in the profiling phase. We adjust it as a compression method
in our optimal suggested decoder, We call it “Optimal Selection” (OS). The term
“optimal” was chosen due to its good trade-off between the performance param-
eters.

Three different minimum distances were chosen for testing; [0.5, 1, 2] cc. Not
in accordance with Rechberger’s recommendation, we also performed with 0.5 cc
to test the selection of features in a situation where at the same clock cycle there
are 2 samples at the same height (2 peaks).

The calculation of the noise floor is performed by multiplying the maximum
value in the SOD traces with the noise factor which we set as 0.6 after testing
the range of [0,1]. Unlike Rechberger, who considered constant numbers of POI
ranging from 1 to 40 and set the level of the noise factor accordingly, we con-
sidered all the points which are higher than the noise floor calculated with the
constant noise factor equal to 0.6, even if a higher number of points of interest
is chosen.

4 Evaluation of Methods

We analyzed the performance of many TA profiling phase variants on real-world
data, comparing all of the compression methods described in Sect. 3 using various
configurations.

38 H. Hayoon and Y. Oren

4.1 Evaluation System

Fig. 1. Evaluation system architecture

The design of our evaluation system is a black-box for benchmark of a given
decoder. The input of the system is decoder d, and the output is decoder d’s
training and test results for three parameters: runtime, memory consumption,
and convergence rate. The system contains a data-set of traces and leaks for the
training and test operation measurements. Our system architecture can be seen
in 1. In our performance analysis we measured the following:

Memory Consumption: We measured each decoder’s RAM usage (the total
memory usage in bytes) as it processed the training set during the profiling
phase. This was measured using the OS standard memory reporting function
vmstat (Linux), when only the decoding process was running in our development
environment.

Run-Time: We measured the operational runtime and overall convergence time
of decoder as it processed the training set in the profiling phase. For the run-time
measurements, we use the MATLAB timing functions timeit, to time how long
the decoder code takes to run, and tic-toc, to measure the convergence time and
operations’ performance timing (the total execution time in seconds).

Convergence Rate: We estimated each decoder’s quality based on its online
convergence rate. This was measured by examining the number of traces that
must be provided in the offline phase in order for each decoder to obtain rea-
sonable results in the online phase. The convergence vector for each decoder is
a Boolean vector representing the success/failure of the decoder’s test results,
with the overall convergence rate calculated as the mean of this vector.

4.2 Definition of the Training and Test Methods

The training method is used for model construction, classification and reten-
tion within its data structure; its input is pairs of (Trace T , Leak L). Training

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 39

consists of measuring run time and memory consumption and takes place in
three steps: First, in the feature extraction step, a compression method is used.
Next, in the feature pre-processing step, the selected features are grouped and
labeled. Finally, in the template learning step, a naive Bayes classifier is trained
for each leak (to distinguish between HW classes) using the features selected in
the feature extraction step.

Preprocessing operations, such as leak calculation in Sect. 2.3 or trace pars-
ing in Sect. 2.2, were not part of our measurements, since running them adds
constant time which is not correlated with the decoding method.

The test method evaluates decoder d by receiving trace T (the attacked
trace) as input, and examining its output, which consists of the HW of a certain
leak based on its training process. This is validated on its data structure during
testing. The validation results of true (success) or false (failure) are presented
in the Boolean convergence vector of decoder d.

4.3 Experimental Setup

In our experiments, we explore profiled template attacks’ feature selection (com-
pression) methods for extracting the best subset of power samples for the classi-
fication of features according to the HW classes. All experiments are performed
with MATLAB v2017, installed on an Intel Xeon E5-2620 CPU with 128 GB
of RAM, running Ubuntu 18.04. The compression methods previously described
are implemented to reduce the dimensions of the power traces. The subset sizes
are selected based on the guidelines described in related studies. For each tech-
nique, we analyzed several configurations, and only the one yielding the best
result is used in our overall comparison of the methods. Once the compressed
trace is set, we implement the training and test methods (describe in Sect. 4.2)
for each compression technique to evaluate its performance. We use 2,000 power
traces from the initial dataset.

The steps of training and measuring performance are implemented in the
following way:

We used Bayesian classifier for training template classifiers with HW leakage
model for every leak. Using the fitcnb matlab function [16] which fits a naive
Bayes classifier to data, we train a naive Bayes model on the selected features
with the HW classes using normal distributions. We train a Bayesian classifier
whose input features are those selected in the compression method. The train-
ing set consists of approximately half the number of traces examined in the
experiment, and the other half serves as the evaluation set, in order to avoid an
over-optimistic performance evaluation. The classifiers are trained to distinguish
between Hamming weights 0–8. To measure the classification accuracy (%) of
the trained classifiers during training, we used MATLAB’s predict function [2]on
the set of the evaluation traces (different from those used for training and test-
ing), where the accuracy is the number of correctly classified leaks divided by
the total number of leaks over the traces. To test the decoder, as described in
Sect. 4.2 we used the classifier’s data structure built during training and ran the
predict function on the attacked trace taken from the other half of the examined

40 H. Hayoon and Y. Oren

traces, which is denoted as the test set. We report the results of the performance
measured during training and testing for each decoder.

5 Results

Tables 1 and 2 present the memory consumption (KB) and runtime (seconds)
results during training. Table 3 presents the convergence rate (%) results for
the testing phase. In each table, the row with the best configuration for each
method appears in black (these results are included in our overall comparison).
Figure 2 present the overall performance results for the compression methods
examined. Table 1 presents the memory consumption results for each decoder
during the training phase, with different amounts of training traces. Optimal
Selection (OS) is the best performing compression method when considering
memory usage; except for its low usage, identical values were obtained for train-
ing using different distances (cc values). Difference of Means (DOM) has the
highest rates of memory consumption. Principal Component Analysis (PCA)
follows, with 10 pc to keep found as the best performing setting for PCA. All
SNR-based methods show the same trend in which the usage with 0.5 cc was
higher than it was with 1 cc, and the usage was slightly lower with 2 cc than it
was with 1 cc. The results obtained for all of the methods show that increasing
the number of training traces results in higher memory consumption.

Table 2 presents the training phase’s runtime results for each decoder, using
different amounts of training traces. As seen in the table, TS has the longest run-
times, and this is followed by DOM. Next comes OS and DOM, which shows
identical values for different distances (cc). PCA follows with similar results
found for 5 pc and 10 pc, while 30 pc shows longer results. The SNR methods
had the shortest run-times, with Sum of Absolute Values (SOA) being the faster
among these methods. In all methods we observed that increasing the distance
by one cc cuts the runtime in half. The results for all methods show that as the
number of training traces increases, the runtime also increases.

Table 3 presents the accuracy results for each decoder during testing phase,
based on the number of traces in the training set. The “Top Score” (TS) method
of [29] was found to be as the most accurate, and it is followed with OS, which
has an accuracy greater than 70%; similar results were obtained for 1 cc and
2 cc. DOM also obtained good results, while PCA, which obtained the same
results for all pc configurations, came next. The SNR methods obtained low
results; while SOA performed the worst, the same trend was observed for all
three SNR methods - increasing the distance by 1 cc significantly reduces the
accuracy, sometimes by half. The results for all methods show that as the amount
of training traces increases, the accuracy also increases.

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 41

Table 1. Memory consumption for all compression methods

Method Config 100T 200T 300T 400T 500T 600T 700T 800T

DOM 2413736 3998680 4124432 4753541 4902672 5694248 6044480 6100464

PCA 5 pc 783445 850248 2088544 4268990 4562111 4672332 5091123 5100939

PCA 10 pc 772504 851496 2085968 4272824 4523424 4609552 4961832 5139784

PCA 30 pc 1116992 1206768 2406654 4466343 4809202 4999765 5163442 5432887

TS 338160 954512 1182768 2180192 2749328 3894856 4733248 4812720

IR 0.5 cc 281396 4011232 4088761 4298778 4311023 4695341 4810116 4955809

IR 1 cc 182304 2931551 3116088 3353981 3385451 3722401 3774523 3911296

IR 2 cc 175772 2864598 3108973 3294332 3334423 3566878 3672445 3668915

SOA 0.5 cc 190203 1973771 2154481 3700231 4378922 4399872 4752112 4998213

SOA 1 cc 111408 1353984 1404264 2856560 3421216 3554512 3856481 4131128

SOA 2 cc 100897 1184562 1302213 2671333 3302451 3267763 3676884 4102893

SOS 0.5 cc 278965 338767 387291 3909845 4144521 4453201 5022318 5296659

SOS 1 cc 199432 442704 290176 3014256 3271528 3661376 4149342 4350296

SOS 2 cc 190567 240561 264367 2889416 3240567 3653299 4103292 4203389

OS 0.5 cc 96236 132271 280038 279913 450221 718134 841761 1125032

OS 1 cc 96160 130488 281840 282224 449848 715920 839288 1137648

OS 2 cc 95988 129850 282098 290013 451211 719656 836114 1135451

Table 2. Run-Time for all compression methods using various

Method Config 100T 200T 300T 400T 500T 600T 700T 800T

TS 617.2 964 995.2 1316.1 2037.3 2297.3 2418.9 2428

DOM 506.9 570.3 598.4 610.2 703.6 720.3 747.2 818.3

OS 0.5 cc 153.1 264 302.9 323.7 384.2 442.5 497.1 525.9

OS 1 cc 152.4 262.3 301.5 323.8 383.2 443.6 495.4 525.8

OS 2 cc 152.2 263.7 301.8 324.1 383.1 442.6 496.1 523.9

PCA 5 pc 91.2 173.1 211 235.4 289.5 325.9 353.2 387.8

PCA 10 pc 91.3 173.2 211.2 235.7 289.9 326.7 353.9 388.6

PCA 30 pc 102.5 181.9 220.7 248.1 301.4 339.8 377.8 405.2

IR 0.5 cc 78.2 91.3 168.9 230.8 257.8 293.6 310.3 341.8

IR 1 cc 37.1 46.8 85.6 115.5 130.4 145 156.6 171.9

IR 2 cc 16.2 23.6 43.4 59.1 66.6 74.1 79.8 85.2

SOS 0.5 cc 128.2 132.3 170.6 176.2 343.5 380.7 403.2 438.9

SOS 1 cc 65.9 68.7 87.2 139.4 174.2 192.2 206.8 222.8

SOS 2 cc 32.7 36.4 44.8 68.1 89.5 97.1 102.5 110.1

SOA 0.5 cc 92.5 132.7 177.5 236.8 264.2 280.6 361.7 431.2

SOA 1 cc 47.2 67.6 90.3 119 133.1 144.3 182.5 218.1

SOA 2 cc 25.8 34.8 47.1 62.6 66.6 73.5 94.7 111.3

42 H. Hayoon and Y. Oren

Table 3. Convergence rate for all compression methods

Method Config 100T 200T 300T 400T 500T 600T 700T 800T

TS 0.64 0.66 0.7 0.71 0.71 0.724 0.75 0.785

OS 0.5 cc 0.44 0.46 0.48 0.5 0.5 0.52 0.552 0.56

OS 1 cc 0.52 0.57 0.61 0.636 0.65 0.653 0.68 0.72

OS 2 cc 0.52 0.57 0.61 0.635 0.65 0.65 0.68 0.72

DOM 0.55 0.56 0.58 0.632 0.64 0.642 0.673 0.71

PCA 5 pc 0.2 0.24 0.24 0.23 0.25 0.257 0.271 0.29

PCA 10 pc 0.22 0.24 0.24 0.246 0.252 0.26 0.274 0.3

PCA 30 pc 0.22 0.241 0.244 0.248 0.255 0.26 0.27 0.3

IR 0.5 cc 0.06 0.07 0.07 0.08 0.09 0.092 0.092 0.097

IR 1 cc 0.18 0.19 0.2 0.2 0.204 0.21 0.219 0.22

IR 2 cc 0.1 0.11 0.114 0.114 0.115 0.117 0.12 0.126

SOS 0.5 cc 0.04 0.06 0.1 0.1 0.105 0.114 0.14 0.146

SOS 1 cc 0.11 0.145 0.17 0.18 0.185 0.2 0.2 0.21

SOS 2 cc 0.07 0.1 0.123 0.13 0.128 0.14 0.144 0.16

SOA 0.5 cc 0.03 0.03 0.03 0.034 0.04 0.04 0.041 0.047

SOA 1 cc 0.11 0.13 0.15 0.15 0.16 0.166 0.17 0.19

SOA 2 cc 0.06 0.08 0.09 0.09 0.09 0.098 0.1 0.1

5.1 Observations

We now compare the decoder’s best performing configurations for memory con-
sumption, runtime, and convergence rate and make some general observations
based on this comparison.

– Testing 0.5 cc as a minimum distance between the selected features presented
in all measurements of all characteristics provides identical or worse results
to the 1 cc configuration.

– The 10 pc configuration was determined to be the best PCA configuration,
since, on average, it has the same runtime as the 5 pc configuration, but
this is obtained with lower memory consumption. On the other hand, the 10
pc configuration has identical accuracy to the 30 pc configuration, but the
runtime and memory consumption of the 10 pc configuration are significantly
shorter and lower, respectively, than that of the 30 pc configuration.

– For the SNR methods, we determined that the 1 cc configuration was the
most accurate; its runtime was half that of the 0.5 cc configuration, and it
also had much lower memory consumption; when compared to 30 pc, the 1
cc configuration had significantly shorter run-times and lower memory con-
sumption.

– OS has identical runtime and memory consumption results for the various
configurations; in terms of accuracy, 1 cc and 2 cc were found to be identical,
so the configuration of 1 cc was selected for our overall comparison.

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 43

Fig. 2. Overall comparison

44 H. Hayoon and Y. Oren

Figure 2 presents a comparison of the performance of all of the compression
methods, using the best configuration for each method. Based on this compar-
ison, we can see that TS is never the best method in terms of runtime (see
Fig. 2b), and the same can be said for DOM in terms of memory consumption
(see Fig. 2a in the Appendix). The SNR-based methods show the same perfor-
mance trend for all measures, where in most cases, IR is the best performing of
these methods and SOA is the worst performing. The PCA method was never
abnormally slow or poor performing, but it was always outperformed by at least
one of the other methods we compared in this study. Optimal selection (OS),
our proposed compression method, had the lowest memory consumption of all
of the decoders (see Fig. 2a in the Appendix) and the shortest runtime of the
three decoders with the highest accuracy (see Fig. 2c). After TS, it was found to
be most accurate with a 72% convergence rate given only 800 traces used in the
training phase (see Fig. 2c).

6 Conclusion

In this paper, we strove to advance the profiling step of the template attack,
by seeking a practical compression method which requires a smaller dataset and
has better performance, both in the online and offline phases. We addressed
the challenge of finding the most informative traces regarding the leaked Ham-
ming weight values by building an optimal variant of the state-of-the-art decoder
presented in [18], based on the optimal feature selection guidelines of [24].

For the performance challenge, we designed a unique evaluation system which
measured runtime, memory consumption, and accuracy. This system used to
compare the performance of various decoders, which were found to differ based
on the compression methods and configurations used. We demonstrated the
importance of both choosing the correct number of principal components for
the PCA-based method, and the correct number of clock cycles as a minimum
distance between the selected points; one clock cycle was clearly found to be
optimal in all of the best performing configurations. In terms of accuracy, the
scoring, optimal, and DOM methods outperformed the PCA and SNR-based
methods. When considering runtime and memory the opposite is true, except in
case of our OS decoder.

The experimental results demonstrate our decoder’s ability to outperform
the other methods evaluated in terms of memory consumption; however, while
it also has shorter run-times than the state of the art, it is slightly less accurate.
There is thus a tradeoff in that while our decoder is fast and has low memory
consumption, this comes at a cost in terms of the accuracy rate; therefore, our
decoder is optimal in cases in which there are time or data restrictions, for
example, a small dataset or online data.

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling 45

References

1. MATLAB PCA. https://www.mathworks.com/help/stats/pca.html
2. MATLAB predict. https://in.mathworks.com/help/ident/ref/predict.html
3. Bohy, L., Neve, M., Samyde, D., Quisquater, J.J.: Principal and independent com-

ponent analysis for crypto-systems with hardware unmasked units (2003)
4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Cagli, E.: Feature extraction for side-channel attacks. Ph.D. thesis, Sorbonne Uni-
versity, France (2018)

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

7. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

8. Division, C.S.: Announcing the Advanced Encryption Standard (AES). Informa-
tion Technology Laboratory, Gaithersburg, MD (2001)

9. Elaabid, M.A., Guilley, S.: Practical improvements of profiled side-channel
attacks on a hardware crypto-accelerator. In: Bernstein, D.J., Lange, T. (eds.)
AFRICACRYPT 2010. LNCS, vol. 6055, pp. 243–260. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12678-9 15

10. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 2

11. Hogenboom, J.: Principal component analysis and side-channel attacks (2010)
12. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Sig-

nal Processing Series, 1st edn. (1998)
13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 29

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, Cham (2007). https://doi.org/10.1007/978-0-387-38162-
6. ISBN 978-0-387-30857-9

16. MathWork: MATLAB fitcnb. https://in.mathworks.com/help/stats/fitcnb.html
17. Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks

beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33027-8 9

18. Oren, Y., Weisse, O., Wool, A.: Practical template-algebraic side channel attacks
with extremely low data complexity. In: HASP@ISCA, p. 7. ACM (2013)

19. Oswald, D., Paar, C.: Improving side-channel analysis with optimal linear trans-
forms. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 219–233. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37288-9 15

20. ParisTec: DPA contest v4 2013. http://www.dpacontest.org/v4/rsm traces.php

https://www.mathworks.com/help/stats/pca.html
https://in.mathworks.com/help/ident/ref/predict.html
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-642-12678-9_15
https://doi.org/10.1007/11894063_2
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-16342-5_29
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://in.mathworks.com/help/stats/fitcnb.html
https://doi.org/10.1007/978-3-642-33027-8_9
https://doi.org/10.1007/978-3-642-33027-8_9
https://doi.org/10.1007/978-3-642-37288-9_15
http://www.dpacontest.org/v4/rsm_traces.php

46 H. Hayoon and Y. Oren

21. ParisTec: Description of the masked AES - DPA contest v4 (2013). http://www.
dpacontest.org/v4/data/rsm/aes-rsm.pdf

22. Picek, S., Heuser, A., Guilley, S.: Template attack versus Bayes classifier. J. Cryp-
togr. Eng. 7(4), 343–351 (2017). https://doi.org/10.1007/s13389-017-0172-7

23. Picek, S., Heuser, A., Jovic, A., Batina, L.: A systematic evaluation of profil-
ing through focused feature selection. IEEE Trans. Very Large Scale Integr. Syst.
27(12), 2802–2815 (2019)

24. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31815-6 35

25. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04138-9 8

26. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting time samples for multivariate
DPA attacks. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
155–174. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-
8 10

27. Stallings, W.: Cryptography and Network Security, 6th edn. (2014)
28. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate

regression analysis. IEICE Electron. Express 7(15), 1139–1144 (2010)
29. Weiss, O.: Github - new methods for side channel cryptanalysis code base github

(2016). https://github.com/oweisse/dpav4-contest/commits/master
30. Weisse, O.: New methods for side channel cryptanalysis (2013)
31. Zheng, Y., Zhou, Y., Yu, Z., Hu, C., Zhang, H.: How to compare selections of

points of interest for side-channel distinguishers in practice? In: Hui, L.C.K., Qing,
S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 200–214. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21966-0 15

http://www.dpacontest.org/v4/data/rsm/aes-rsm.pdf
http://www.dpacontest.org/v4/data/rsm/aes-rsm.pdf
https://doi.org/10.1007/s13389-017-0172-7
https://doi.org/10.1007/978-3-540-31815-6_35
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-04138-9_8
https://doi.org/10.1007/978-3-642-33027-8_10
https://doi.org/10.1007/978-3-642-33027-8_10
https://github.com/oweisse/dpav4-contest/commits/master
https://doi.org/10.1007/978-3-319-21966-0_15

Design of Intrusion Detection System
Based on Logical Analysis of Data (LAD)

Using Information Gain Ratio

Sneha Chauhan1,2(B) and Sugata Gangopadhyay1

1 Department of Computer Science and Engineering, Indian Institute of Technology
Roorkee, Roorkee, India

sugata.gangopadhyay@cs.iitr.ac.in
2 Department of Computer Science and Engineering, National Institute of

Technology Uttarakhand, Srinagar, India

schauhan1@cs.iitr.ac.in

Abstract. An intrusion detection system is proposed which is capable
of detecting penetration, break-ins and other security breaches in near
real time. The system has been developed using Logical Analysis of Data
(LAD) where the attack is detected by monitoring the network traffic.
LAD generates positive and negative patterns from historical observa-
tions to classify the unknown observations. It uses the concepts of par-
tially defined Boolean functions and its extensions to extract patterns for
classification. The Information Gain ratio technique is used to produce
the support set of features. The performance of the proposed technique
has an advantage over other techniques as it can detect anomalous behav-
ior in near real time. WEKA tool has been used to build the classifiers
and their performance is compared with the proposed model. Detection
of abnormal behaviour is significantly achieved by the proposed imple-
mentation than the LAD-WEKA.

Keywords: Logical Analysis of Data (LAD) · Intrusion Detection
System (IDS) · Partially defined Boolean function (pdBf) · Information
gain ratio

1 Introduction

We live in an era of technologies and the Internet has taken up services in almost
each and every field, such as education, finance, industry etc. Along with the
increase in use of the Internet, the network attacks and security threats have
also become the harsh reality in today’s world. Denial of Service (DoS) attack,
network scanning activity, spreading of malware files are some cyber attacks
which exploit the shortfalls of the software and disrupt the routine activities of
a system [20]. Firewall, Antivirus and Intrusion Detection Systems (IDS) are
some of the softwares which are used to fight against the attackers. An IDS is a
software that monitors the network traffic and detect abnormal behavior of the
traffic and alerts the system administrator.
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 47–66, 2022.
https://doi.org/10.1007/978-3-031-07689-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_4&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_4

48 S. Chauhan and S. Gangopadhyay

The intrusion detection algorithms can be broadly classified into two types:
Misuse detection and Anomaly detection [14]. In misuse detection, rules are
generated from previous attack signatures to look for an attack. In this type of
IDS, new attacks cannot be detected as they may not have similar patterns as
the known attacks. The anomaly detection is based on the hypothesis that the
suspicious activity has different pattern from the normal activity [1]. If a new
activity has deviations from the known behavior, it is classified as an attack by
an anomaly based IDS. Such IDSs are useful in detecting new (zero-day) attacks.

The detection of cyber attacks by monitoring the network audit trails was
first introduced by Denning [13]. The IDS model proposed by Denning was based
on the assumption that abnormal behavior in system usage can be used to detect
attacks. Machine learning algorithms and soft computing techniques have been
used to develop IDS in recent times. The techniques like Neural Network, Self
Organizing Map (SOM), Decision Tree, Support Vector Machine (SVM) etc. are
machine learning algorithms that have performed excellent in intrusion detection
[20].

Performance statistics of such systems are better as they have low false posi-
tive rates but parameters such as usability, competence and accuracy make them
unreliable in a system that handles large volume of data on a daily basis. The
training process of IDS model may require huge amount of data, which is a chal-
lenge, as sufficient data given a specific problem domain, may not be available.
Also such models require high computational power and memory to train large
amount of data. Due to the complex decision making process, these models may
not detect anomalous behavior in real time.

In order to detect and prevent an intrusion, it is important to have knowledge
of the patterns related to normal and abnormal activity. LAD is a technique that
focuses on generating patterns that can differentiate the abnormal behavior from
the normal behavior. The LAD technique was first proposed by Hammer et al.
[10,16] for binary data. In this they used partially defined Boolean function to
find the suitable combination of food items resulting in headache.

Logical Analysis of Data is a technique that aims at study of numerical data
based on combinatorial and optimization approach. The solution of this tech-
nique can help us to understand how a certain phenomena works, the factors
which govern them and also find ways which can directly affect their develop-
ment. The Logical Analysis of Data can be used to solve variety of problems
including classification, detection of abnormalities and inconsistencies in the
network traffic and databases, selection of features, analysis of medical data
[2], recognition of patterns for decision support system etc.

In this paper, we have combined LAD with Gain ratio method to design an
intrusion detection system. The C4.5 is a classification algorithm which produces
decision rules based on entropy and information gain ratio pair of each feature.
The feature having maximum Information Gain Ratio will be selected. The Infor-
mation Gain Ratio criteria has been included with LAD to select features. The
LAD technique is then used to extract patterns for classification.

Design of Intrusion Detection System based on LAD using Gain Ratio 49

The significant contribution of the paper are: 1) Use of information gain
ratio to calculate the discriminating power of features and generate support set
based on the score. 2) Developed an IDS model based on LAD technique that
can detect intrusions in near real time. 3) Compared different classifiers using
WEKA tool.

The paper is organized as follows. In Sect. 2, existing intrusion detection
models have been described. An implementation of LAD based IDS model is
presented in Sect. 3. Section 4 describes the results obtained by the proposed
model and comparative results are also mentioned. Finally, the study is con-
cluded in Sect. 5.

2 Related Work

The author in the paper [24] has proposed a technique to detect intrusions
using Classification and Regression trees. A decision tree is built to verify the
incoming traffic depending on the data available. The approach to build the
system involves 3 stages: the preprocessing stage, normalization stage and deci-
sion tree building. The preprocessing stage assigns a random number to each
string present in the dataset as strings cannot be compared directly. The dataset
obtained from this stage may not be uniform. The next stage normalizes the
dataset to provide the characteristic data shrink. In the last stage, decision tree
is obtained by applying the Classification and Regression Trees methodology.
The results are analyzed based on the computation time.

The paper [7] focuses on implementing decision tree and KNN techniques on
IDS and evaluate their performance based on their accuracy. Data preprocessing
is carried out to handle the missing data and also to apply one hot encoding to
convert categorical data to quantitative variables. Feature selection process is
important in order to remove redundant attributes from the data set. Feature
selection technique consists of 4 steps: 1. Selection of required features for a
particular problem. 2. Function that evaluates the set of features selected. 3.
A criteria that will identify if the features are able to stop the search. 4. A
validation process to assess the quality of features. In order to find the features
for a label, the univariate selection with ANOVA F-test is performed which
determines the relationship between features and label. Decision tree is used
as a classifier in the paper. To classify the data, gini impurity is used. Gini
impurity is a variation of entropy that measures how often a random element
from the dataset is incorrectly labeled if it was randomly classified according
to the distribution of labels in the subset. Decision tree evaluates all possible
outcomes and makes the best possible decision. But any small change in the
dataset will lead to large change in the decision tree.

Another classifier used here is KNN(K-nearest neighbour). This classifier
produces results only when requested as it does not have a learning phase. It
has to compute the value of K and Euclidean distance only so it is simple and
fast algorithm. It is efficient for multiclass problems.

50 S. Chauhan and S. Gangopadhyay

Both the classifiers are tested on the NSL-KDD dataset and result is shown by
confusion matrix. As per the result obtained, the overall performance of decision
tree is better than KNN with accuracy of 99.15%.

Mishra et al. [20] provided a survey in which they have tried to find out the
drawbacks of various machine learning techniques in detecting the intrusions.
They have also discussed the importance of factors in selection of algorithms
to detect a specific type of attack. Machine learning techniques consists of two
phases: Training where mathematical calculations are performed on the training
dataset to learn the patterns in the traffic and Testing where a new observation
is classified as positive or negative based on the learned patterns. Following are
the techniques used to detect intrusions:

Decision Tree: A tree like structure is developed to illustrate the outcome of a
decision. This method works on both discrete and continuous dataset. The three
elements of a tree are decision node which represents a condition over a feature,
branch indicates the possible values of a feature and leaf node represents the class
label to which the instance belongs. ID3 algorithm uses greedy search approach
in which the conditions are selected based on information gain criteria. In ID3
algo, the data may be overfitted and overclassified. Also it cannot handle missing
values and numeric features. A better version of ID3 is C4.5. It can handle dis-
crete and continuous values and also use error based pruning technique to solve
overfitting. Information gain ratio is used to split the tree. CART algorithm uses
towing criteria to split tree. Logistic Model Tree (LMT) uses linear regression
model to develop decision trees. Decision trees outperform other classifiers as
it uses entropy and information gain for feature selection. The feature having
higher information gain is more capable of discriminating the output classes. In
a decision tree, finding the probabilities of different branches possible, choosing
the best split for each node and pruning are complicated tasks requiring high
computational cost.

Naive Bayes Classifier: This classifier can detect intrusions at a high speed
and its design is simple compared to other classifiers. Due to its assumption
that features are independent, it is not suitable to use it on KDD’99 dataset.
However, Hidden Naive Bayes is an exception as it achieves an accuracy of 99.6%
for detecting DoS attack.

The researchers in [6] proposed a deep neural network based Network Intru-
sion Detection (NID) model. Four hidden layers have been used with Rectified
Linear Unit (ReLU) as the activation function. Principal Component Analysis
(PCA) has been applied for dimensionality reduction. This model is applied
to NSL-KDD, UNSW-NB15 and CSE-CIC-IDS2018 dataset. Each dataset was
split into 70% training and 30% testing set. The Accuracy achieved for the
datasets were CSE-CIC-IDS2018 (76.47%), UNSW-NB15 (89.99%) and NSL-
KDD (97.89%).

The paper [5] describes the use of machine learning classifier such as Deci-
sion Tree, Random Forest and XGBoost for detecting malicious behaviour in
the Software Defined Network. NSL-KDD dataset has been used to carry out

Design of Intrusion Detection System based on LAD using Gain Ratio 51

the experiment. Five features were selected after some trials. Tree based algo-
rithms have been used to do multi class classification. To evaluate the model’s
performance, accuracy, precision, recall and F1-measure were used.

The authors of the paper [18] have introduced a wrapper approach that incor-
porates Genetic Algorithm (GA) as a feature selection and Logistic Regression
(LR) as a learning method. This approach is used to find the feature subset which
has minimum features but gives maximum classification accuracy. To perform the
classification, C4.5, Random Forest (RF) and Naive Bayes Tree (NBTree) which
are different categories of decision tree classifiers are used. The performance of
the proposed approach is measured on KDD99 and UNSW-NB15 datasets.

In the paper [11], authors have proposed an Anomaly Detection System
(ADS) that can detect anomalies by monitoring at physical level. Thus, fault
can be identified in real time leading to financial and operational benefits. The
disadvantage suffered by most of the techniques used to model the Cyber Phys-
ical System(CPS) IDS is the requirement of high computing power and time.
Thus, with this proposed model, the authors have tried to achieve near real time
detection capability and also provide reason behind the anomalous behavior
which may help in prevention and localization of error. The patterns or signa-
tures from historical observations have to be extracted which can differentiate
normal and abnormal activity. A LAD based classifier is a binary classifier with
the ability to explain the classification result using rules. In this paper, a rule
based Anomaly Detection System is designed using the data from a secure water
treatment testbed (SWaT). When a plant starts operating, initially it remains
unstable. Similarly, when an attack occurs, the system becomes unstable for
some duration. So the aim of Anomaly detection system should be to detect
attacks as well determine the stability of the system. Two LAD based classifier
have been used to achieve these objectives. The first classifier uses pure patterns
to label records as stable or unstable. The second classifier uses impure patterns
to label the unstable records as attack or normal. The designed classifier has
the best F1 score among the other classifiers. The LAD based ADS can perform
using laptop class processing power.

One disadvantage of LAD is that if data is large then processing will be
difficult as patterns cannot be learned incrementally. In case of power networks,
in order to cope with failure or faults, system dynamics may be altered which
may change the behavior of normal patterns. Thus, the LAD classifier has to be
redesigned.

3 Proposed Work

The computer systems may have vulnerabilities which lead to network intru-
sions compromising the confidentiality, integrity and availability of the services.
In order to develop an effective IDS model, use of logical analysis of data is
proposed.

The Logical Analysis of Data (LAD) is a data analysis method that uses com-
binatorics and optimization models for classifying the observations into positive

52 S. Chauhan and S. Gangopadhyay

and negative results. The LAD combines differentiation/integration approach
on a subspace of Rn which contains positive and negative observations and also
the new ones. In the differentiation step, a family of small subsets of Rn which
has same structural properties as well as strong positive and negative character-
istics is identified. In the integration step, union of subsets of such positive or
negative subsets are proposed as approximations of the areas of Rn containing
the positive or negative new or old observations [2]. The basic steps of LAD are
described in the following subsections.

3.1 Binarization

The Logical Analysis of Data (LAD) was originally developed to deal with anal-
ysis of datasets having attributes that take only binary (0–1) values. In real
life scenario, the features mostly take real values so a binarization method was
proposed. The idea behind binarization method is to associate several binary
attributes to each numerical attribute. A numerical attribute α is represented
by a binary attribute using two types of Boolean variables, i.e., level and inter-
val variables. The parameter that decide what values will these variables will
take are called cut-points. A level variable b(α, cp) is introduced such that each
binary attribute either takes value 1 or 0 according to the value of the numerical
attribute lying above or below a certain threshold given by a cut-point cp [17].

b(α, cp) =

{
1, if α ≥ cp.

0, otherwise

Interval variables b(α, cip, c
j
p) are introduced for each pair of cutpoints cip and cjp

as follows

b(α, cip, c
j
p) =

{
1, if cip ≤ α < cjp.

0, otherwise

The cut-points should be chosen such that they can easily distinguish between
positive and negative observations. Consider an attribute X with values
X1,X2, . . . Xn arranged in descending order. In order to maintain the disjoint-
ness of the positive and negative set of observation denoted by Ω+ and Ω−,
only those threshold values are considered which belong to the interval Xi,Xi+1

where Xi and Xi+1 are the values that produce different result (one being a
positive observation and other being negative one). The threshold value is given
by Xi+Xi+1

2 for each of the intervals.
The binarization method is described here. Table 1 is the table with real

world data [8]. The first and fourth attributes in this table are numerical while
second and third column correspond to nominal attributes. A nominal attribute
is converted into binary by associating each value vi of α with a Boolean variable
b(α, vi) such that

b(α, vi) =

{
1, if α = vi.

0, otherwise

Design of Intrusion Detection System based on LAD using Gain Ratio 53

Table 2 is obtained after binarization using the level variables given in Table 3
and the interval variables shown in Table 4.

Table 1. Original table

x1 x2 x3 x4

S+ 1 Green Yes 31

4 Blue No 29

2 Blue Yes 20

4 Red No 22

S− 3 Red Yes 20

2 Green No 14

4 Green No 7

Table 2. Binarized table

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13

a 0 0 0 1 0 0 1 1 1 0 0 0 0

b 1 1 1 0 1 0 0 1 1 0 0 0 0

c 1 0 0 0 1 0 1 1 0 1 1 0 1

d 1 1 1 0 0 1 0 1 1 0 0 0 0

e 1 1 0 0 0 1 1 1 0 0 1 1 1

f 1 0 0 1 0 0 0 0 0 1 1 0 0

g 1 1 1 1 0 0 0 0 0 0 0 0 0

Table 3. Level variables

b1 b2 b3 b4 b5 b6 b7 b8 b9

x1 ≥ 1.5 x1 ≥ 2.5 x1 ≥ 3.5 x2 = green x2 = blue x2 = red x3 = yes x4 ≥ 17 x4 ≥ 21

Table 4. Interval variables

b10 b11 b12 b13

1.5 ≤ x1 < 2.5 1.5 ≤ x1 < 3.5 2.5 ≤ x1 < 3.5 17 ≤ x4 < 21

3.2 Support Set Minimization

The data set obtained by binarization of numerical attributes may contain a
number of redundant attributes which needs to be eliminated. A set of binary
features is called Support Set if the dataset obtained after elimination of all
other features will remain “contradiction-free” (i.e. the positive and negative
observations are disjoint) [8]. A support set is said to be irredundant or minimal
if eliminating an attribute from the set, results in the collision of positive and
negative observation i.e. there exists an observation in the dataset that is posi-
tive as well as negative. The problem of obtaining a minimal support set for a
binary dataset can be considered as a set covering problem. A few algorithms on
solving the set cover problem are discussed in [4,10]. In order to find a minimal
support set for our binary dataset, we have proposed the use of Information
Gain ratio to select the best attribute in our dataset. The gain ratio is used in
the C4.5 algorithm to select the best feature for building the decision tree [19].
The information gain ratio of each attribute is calculated based on its entropy.

54 S. Chauhan and S. Gangopadhyay

The attribute having high information gain ratio is added to the support set.
The entropy for binary classification is calculated using the Eq. 1 where D rep-
resents the dataset. Assume a feature X has n distinct values then the dataset
can be partitioned into n disjoint subsets. The information gain of a feature X
in dataset D is calculated in Eq. 2 using the entropy given in Eq. 1. In order to
find the gain ratio, we use split information given in Eq. 3 as it normalizes the
information gain [19]. The support set generated for the data given in Table 2 is
{b8, b12}.

E(D) = −(P (0) ∗ log2(P (0)) + P (1) ∗ log2(P (1))) (1)

Info-Gain(D,X) = E(D) −
n∑

i=0

|Di|
|D| ∗ E(x) (2)

SplitInfo (X) = −
n∑

j=1

|Dj |
|D| ∗ log2

|Dj |
|D|

Gain Ratio = Info-Gain(D,X) / SplitInfo (X)

(3)

3.3 Pattern Generation

In Boolean algebra, a Boolean variable or its complement is called a literal. The
conjunction of literals is called a term. A term T covers a point p ∈ {0, 1}n if
T (p) = 1. A term covering only positive (negative) observations is termed as
positive (negative) pattern [11].

Pattern play an important role in LAD in detection of subclasses, selec-
tion of feature, classification and other problems. A positive ω - pattern where
ω ∈ {0, 1}t, is a pattern that covers ω. A maximum positive ω - pattern P is a
positive ω - pattern having maximum coverage (i.e. the cardinality of |P ∩ Ω+

S |
is maximum where Ω+

S is the set of positive observations projected on sup-
port set S). Similarly, a maximum negative ω - pattern can be defined [17]. A
pattern can be generated using a combinatorial enumeration technique which is
explained below. Let us associate an elementary conjunction C which is a product
of some complemented Boolean variables and some uncomplemented variables to
a binary vector ω = (ω1, ω2, . . . , ωt) ∈ {0, 1}t. Next, we define a binary variable
yi(i = 1, 2, . . . , t) which is associated to each attribute xi(i = 1, 2, . . . , t). If an
attribute xi is in support set S then yi = 1 otherwise yi = 0. Now,

1. if ωi = yi = 1 then xi is included in C,
2. if ωi = 0, yi = 1 then xi is included in C,
3. if ωi = yi = 0 then neither xi nor xi is included in C.

Design of Intrusion Detection System based on LAD using Gain Ratio 55

In our implementation, we have used Breadth first enumerative technique
which involves a top-down approach using bottom-up strategy. Bottom-up app-
roach is used to generate small degree patterns and then top-down approach is
applied to cover all the remaining uncovered observations. Using this technique,
all the positive patterns are produced at each stage d along with the candidate
terms which are to be examined in the next stage d+1. A candidate term covers
at least one positive and one negative observation. The terms of degree d are
obtained at stage d by eliminating any of its literals from the candidate term
generated at stage d − 1. These terms of degree d are partitioned into 3 sets:

– Pd is the set of terms that cover only positive observation and no negative
observation.

– Cd is the set of candidate terms covering at least one positive and one negative
observation.

– Gd is the set of remaining terms.

Hence, Pd is the set of all positive patterns of degree d. In order to generate
terms of degree d+1, literals are added in lexicographical order to a term T ∈ Cd.
Consider the literals in T be in order i1 < i2 < . . . < id. Let a literal i > id is
added to T to obtain T1. Now T2 is obtained by dropping ith literals. If T2 /∈ Cd,
then no need to examine T1 as T1 cannot be a prime pattern or a candidate term
[8]. Now we have to check whether T1 covers at least k positive observations and
no negative observation then T1 is a prime pattern otherwise T1 ∈ Cd+1. The
value of k can be set greater than or equal to 1. If value of k is correctly chosen
then it ensures that 90–95 % instances are covered by the patterns. The authors
in the paper [11] and [12] have described the pattern generation algorithm which
we have used in our model to generate the patterns. The Algorithm 1 describes
how the patterns are generated to distinguish normal observation from abnormal
ones.

3.4 Classifier Design

The patterns generated above are transformed into rules which are used to build
a classifier. Let’s consider b8b12 is the pattern obtained for the data given in
Table 2. The meaning of b8 is whether (x4 ≥ 17) is true or false. Similarly, b12
means whether (2.5 ≤ x1 ≤ 3.5) is true or false. Thus the rule generated from
the pattern b8b12 is (x4 ≥ 17) ∧ ¬(2.5 ≤ x1 ≤ 3.5) =⇒ L = 1. The pseudo code
for the above rule is as follows:

if ((x4 ≥ 17) ∧ ¬(2.5 ≤ x1 ≤ 3.5)) then
Class Label L = 1
end if

Similarly, rules from other positive patterns can be combined into an ‘if else’
structure to build a classifier [12].

56 S. Chauhan and S. Gangopadhyay

Algorithm 1. Pattern Generation Algorithm
Input: Ω+

S , Ω−
S ⊂ {0, 1}n

D: maximum degree of generated patterns
n : no. of input variables
Result: P : Set of prime patterns.
P = φ
C0 = {φ}
for d = 1, . . . , D do

if d < D then
Cd = φ

end
for T ∈ Cd−1 do

p = maximum index of literal in T
for s = p + 1, . . . , n do

for lnew ∈ {ls, l̄s} do
T1 = T ||lnew

for i = 1, . . . , d − 1 do

T2 = remove ith literal from T1

if T2 ∈ Cd−1 then
Continue

else
Break and continue with next term of Cd−1

end

end

end
if k ≤ ∑

v∈Ω+
S

T1(v) then

if 1 /∈ T1(Ω
−
S) then

P = P ∪ {T1}
Delete the covered observations from the dataset

else
if d < D then

Cd = Cd ∪ {T1}
end

end

end

end

end

end

4 Results and Discussion

For our experiment, NSL-KDD and UNSW-NB15 dataset is used. NSL-KDD is a
widely used dataset for IDS models. The dataset contains 41 features including
the class label. Different attacks are presented in the dataset which we have
combined to form a single class label as ‘anomaly’. There are two classes in
our dataset namely, ‘normal’ and ‘abnormal or anomaly’ represented by 1 and
0 respectively. For training the classifier, we have used KDDTrain 20 percent

Design of Intrusion Detection System based on LAD using Gain Ratio 57

dataset containing 25000 observations and to test the classifier, KDDTest+ and
KDDTest21 are used. Both the datasets are part of NSL-KDD dataset.

The UNSW-NB15 is a more recent dataset as compared to NSL-KDD
dataset. As per [21], UNSW-NB15 includes modern normal and contemporary
attack scenarios of the network traffic. This dataset consists of observations that
are grouped under nine different cyberattack categories namely Analysis, Back-
doors, DoS, Exploits, Fuzzers, Generic, Shellcode, Reconnaissance and Worms
and rest of the observations are under Normal category. For performing binary
classification, we have labelled all the attack observations as Attack/Abnormal
or 0 and normal observations as Normal or 1. There are 43 features includ-
ing class label in the dataset. Three of them are categorical features and rest
are numeric. There are two sets of dataset, one for training which has 82,332
observations and other one is for testing having 175,341 observations.

The experiments have been performed using HP Z440 Workstation loaded
with Windows 10 with Intel Xeon processor and 32 GB RAM and using python
language. The performance of the intrusion detection system is evaluated using
accuracy, sensitivity, precision, specificity and F1-score. The confusion matrix
shown in Table 5 is considered for our experiment. For comparing the results
of the classifiers, WEKA tool has been used to build the machine learning IDS
models on the same dataset.

Table 5. Confusion matrix

Predicted label

Normal Abnormal

True label Normal True positive False negative

Abnormal False positive True negative

The first step of LAD is binarization which is a preprocessing step for gener-
ating binary variables for all the numeric variables. In the binarization step, both
level and interval variables are generated for all features. In order to avoid large
number of binary variables associated with a feature, we have used a threshold of
175 i.e. if number of cutpoints of a feature is greater than 175 then that feature
is neglected. The idea behind the threshold is that more number of cutpoints
for a feature indicates more randomness in the feature. Thus, such a feature
will have less influence on the classification of observations. In this step, 11565
binary variables were produced in case of NSL-KDD dataset. For the UNSW-NB
15 dataset, binarization process produced a dataset of 4804 binary variables.

The second step is support set minimization in which we have used Infor-
mation Gain ratio criteria to measure how effective is the feature on the clas-
sification. For NSL-KDD dataset, total 42 features were selected depending on
their discriminating power. 30 features were obtained in the support set for the
UNSW-NB15 dataset.

58 S. Chauhan and S. Gangopadhyay

In pattern generation step, patterns are extracted using the reduced dataset
obtained after the second step. In the Algorithm 1, k denotes the number of
observations covered by a pattern. If k = 1 then we noted that many patterns are
generated and they overlap with each other. Hence after conducting experiments,
we fixed k value at 60 for NSL-KDD dataset. Twenty one positive patterns of
degree 3 and 4 are generated with the NSL-KDD dataset. In case of UNSW-
NB15 dataset, 17 positive or normal patterns of degree 3 and 4 are generated
where each pattern covers more than 100 normal observations and less than
10 abnormal observations. This value has been considered to cover maximum
observations in the dataset.

The classifiers for both the datasets (NSL-KDD and UNSW-NB15) are devel-
oped using the patterns obtained from the pattern generation process.

The KDDTest+ and KDDTest21 dataset are used to validate the classifier
having 21 rules. The confusion matrix for KDDTest+ and KDDTest21 dataset
obtained by the proposed method are shown in Fig. 1. We can deduce from
the confusion matrices that most abnormal observations are correctly classi-
fied. The proposed method correctly classifies 12406 abnormal observations on
KDDTest+ and only 427 abnormal observations are incorrectly classified as nor-
mal. Thus, the specificity is 96.67% and only 3% abnormal observations were
incorrectly detected by the proposed IDS. 922 normal observations out of the
total 9411 observations, have been incorrectly classified as attack. Therefore,
the precision and recall value is 95.36% and 90.5% respectively. Based on the
confusion matrices, the overall performance of the classifier on both datasets
in terms of accuracy, sensitivity, specificity and F1-score are shown in Table 6.
The proposed classifier achieves accuracy of 94.02% and precision 95.36% on the
KDDTest+. The results for the KDDTest21 are lower than that of KDDTest+ as
the instances which are easily classified by KDDTest+ have been removed from
the KDDTest21.

Table 6. Result of the proposed IDS based on LAD

Dataset Accuracy Precision Sensitivity Specificity F1-score

KDDTest+ 0.940 0.953 0.905 0.966 0.929

KDDTest21 0.906 0.774 0.681 0.956 0.723

UNSW-NB15 0.930 0.975 0.801 0.991 0.875

For the UNSW-NB15 dataset, the classifier has 17 rules which is validated
by the UNSW-NB15 testing dataset. The confusion matrix for the UNSW-NB15
dataset (Fig. 1c) shows that the classifier is able to detect abnormal observa-
tions with detection rate of 99.1%. The precision is 97.5%. The sensitivity is
80.1% as many normal instances have been misclassified as attack. The overall
performance of the classifier on the UNSW-NB15 dataset is given in the Table 6.

Design of Intrusion Detection System based on LAD using Gain Ratio 59

Fig. 1. Confusion Matrix for LAD based IDS

Table 7 shows the performance comparison of our proposed classifier with
some of the classifiers mentioned in the paper [5] and [9] with respect to accuracy,
sensitivity, specificity and F1-score. From the table, we can conclude that our
method has second highest accuracy, first being the XGBoost algorithm [5]. The
sensitivity and F1 score is low compared to XGBoost algorithm as our classifier
has misclassified normal instances as attack. But our method has a detection rate
of 96.67% for abnormal instances which is higher than the other methods. The
Fig. 2 shows that our LAD based IDS has an equivalent performance with other
methods with accuracy of 94.02%. We have included only those results which
were obtained on the smaller dataset i.e. only 20% of the NSL-KDD dataset. In
some research, 10 fold cross validation and splitting of the dataset has been used
so those results have not been shown here.

The classifier on UNSW-NB15 dataset is compared with other machine learn-
ing classifiers based on accuracy and false alarm rate. The LAD based IDS has
achieved an accuracy of 93.01% which is higher than the classifiers like Support
Vector Machine (SVM) (90.11%), J48 (90.48%) [3], Geometric Area Analysis-
Anomaly-based Detection System (GAA-ADS) (91.8 %), GAA-principal com-
ponents (92.8%) [23] etc. The false alarm rate of our model is 10.41% which
is higher than the GALR-DT method (6.39%) [18] due to high false negatives.
These results are shown in the Table 8.

Apart from python implementation, we have used WEKA (Waikato Envi-
ronment for Knowledge Analysis) tool to implement traditional classifiers and
LAD on the NSL-KDD and UNSW-NB15 dataset. WEKA consists of 49 tools

60 S. Chauhan and S. Gangopadhyay

Table 7. Performance of our proposed method compared to other machine learning
methods for NSL-KDD dataset

Classifiers KDDTest+ accuracy Sensitivity Specificity F1-score

BayesNet 90.66 85.8 96.18 90.7

Logistic 84.96 87.34 82.2 86.0

J48 89.67 86.48 93.29 89.9

Random Forest 91.52 88.68 88.04 91.7

RandomTree 90.87 87.74 94.43 91.1

XGBoost 95.5 98.0 – 95.55

Proposed IDS 94.02 90.5 96.67 92.9

Fig. 2. Performance comparison of proposed IDS based on LAD against machine learn-
ing algorithms based on the accuracy using NSL-KDD dataset.

for data preprocessing, 15 methods for attribute evaluation, 10 feature selection
techniques and 76 classifiers [15]. The training and testing dataset are same as
used in the above implementation. We have used Naive Bayes, SVM, Logistic
Regression, J48, Random Forest, Random Tree and LAD classifiers on both the
datasets. The WEKA configuration used is presented below:

weka.classifiers.bayes.NaiveBayes, weka.classifiers.functions.LibSVM -S 0 -K
2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -model, weka.classifiers.
functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4, weka.classifiers.trees.
J48 -C 0.25 -M 2, weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots
1 -K 0 -M 1.0 -V 0.001 -S 1, weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V
0.001 -S 1.

The performance of all the classifiers evaluated using WEKA is shown in the
Table 9 and Table 10 along with the results of our classifier on respective datasets.
Table 9 shows that our method has achieved higher accuracy, specificity and

Design of Intrusion Detection System based on LAD using Gain Ratio 61

Table 8. Comparison Results of implemented classifier with other ML methods on
UNSW-NB15 Dataset

Classifiers Accuracy (%) FAR (%)

SVM [3] 90.11 −
J48 [3] 90.48 −
GALR-DT [18] 81.42 6.39

DT [22] 85.56 15.78

LR [22] 83.15 18.48

NB [22] 82.07 18.56

ANN [22] 81.34 21.13

EM [22] 78.47 23.79

GAA-ADS-original features (K = 10) [23] 91.8 −
GAA-principal-components (K = 10) [23] 92.8 −
Proposed IDS 93.01 10.41

Table 9. Comparison of proposed IDS with the results obtained using WEKA on
NSL-KDD Dataset

Classifiers KDDTest+ accuracy Sensitivity Specificity F1-score

NaiveBayes 0.765 0.926 0.643 0.773

SVM 0.712 0.980 0.509 0.746

Logistic Regression 0.745 0.929 0.606 0.758

J48 0.790 0.971 0.653 0.80

Random Forest 0.775 0.973 0.625 0.788

RandomTree 0.784 0.970 0.644 0.795

LAD-WEKA 0.708 0.982 0.501 0.744

Proposed IDS 0.940 0.905 0.966 0.929

F1-score over NSL-KDD dataset. The sensitivity or recall of all the classifiers
is in range of 0.90 to 0.98 which shows that they are able to distinguish the
normal observation correctly as normal observation is considered positive in our
experiment. But the detection of abnormal observation or negative observation
is not satisfactory as the specificity of all the classifiers is below 0.75. WEKA
also has an implementation of LAD. The result of which has been included in
the Table 9. The Fig. 3 shows the comparison of our LAD with respect to LAD-
WEKA tool. From the Fig. 3, it is evident that the accuracy of our LAD python
implementation is better than LAD-WEKA which is 94.02%. Though LAD-
WEKA has higher sensitivity, the true negative rate and F1-score of our model
is 96.6% and 92.9% which is far better than LAD-WEKA (in our implementation,
abnormal observation is considered negative). Thus, our LAD implementation
performs better than LAD-WEKA.

62 S. Chauhan and S. Gangopadhyay

Fig. 3. Comparison of the proposed LAD implementation with LAD-WEKA on NSL-
KDD dataset, using Accuracy, Sensitivity, Specificity and F1-score.

Table 10. Comparison of proposed IDS with the results obtained using WEKA on
UNSW-NB15 dataset

Classifiers Accuracy Sensitivity Specificity F1-score

NaiveBayes 0.625 0.933 0.481 0.614

SVM 0.677 0.998 0.527 0.664

Logistic Regression 0.831 0.941 0.780 0.781

J48 0.894 0.975 0.855 0.854

Random Forest 0.900 0.980 0.862 0.862

RandomTree 0.885 0.967 0.846 0.843

Proposed IDS 0.930 0.801 0.991 0.875

With respect to UNSW-NB15 dataset, Table 10 has all the results obtained
using WEKA. NaiveBayes and SVM do not achieve good accuracy on this
dataset. Random Forest, J48 and Random Tree have achieved an accuracy of
90.0%, 89.4% and 88.5% which is comparable to our IDS model with accuracy
93%. These classifiers have high sensitivity as they have correctly classified more
normal instances compared to our model. Our model is able to detect abnormal
behaviour better than the WEKA classifiers which is shown by the specificity of
our model being 99.1%. It is highest among all the classifiers. The F1-Score of
our model is 87.5% which is highest with respect to other WEKA classifiers.

Design of Intrusion Detection System based on LAD using Gain Ratio 63

5 Conclusion

In our paper, we have used NSL-KDD and UNSW-NB15 datasets, popular
datasets for intrusion detection, to train and test our LAD based IDS model.
LAD is the data analysis technique which works on combinatorics and opti-
mization. To reduce the dimension of the binarized dataset, information gain
ratio is used, for selecting minimal support set. The patterns generated are able
to classify the unknown observations. The study shows that the LAD based
IDS is robust and has similar performance with the existing techniques using
less amount of data and computational resources. The machine learning classi-
fiers are trained and tested on WEKA tool and average performance has been
recorded. Further, we have compared our python implementation of LAD with
the LAD-WEKA tool and results show that our model has performed signif-
icantly better than the LAD-WEKA tool in detecting attacks for NSL-KDD
dataset. Even though some techniques perform better than the LAD based tech-
nique in few attack scenarios, these techniques cannot localize the error and also
they cannot perform detection in near real time. LAD has an advantage over
other machine learning techniques as it is able to identify the features involved
in an attack. Thus we can focus on those attributes which are more vulnerable
for intrusions. In future, the performance of LAD can be improved further by
training it on larger dataset and also combining it with other feature selection
techniques and classifiers.

References

1. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection tech-
niques. J. Netw. Comput. Appl. 60, 19–31 (2016). https://doi.org/10.1016/j.jnca.
2015.11.016

2. Alexe, G., Alexe, S., Bonates, T.O., Kogan, A.: Logical analysis of data-the vision
of Peter L. Hammer. Ann. Math. Artif. Intell. 49(1–4), 265–312 (2007). https://
doi.org/10.1007/s10472-007-9065-2

3. Almomani, O.: A feature selection model for network intrusion detection system
based on PSO, GWO, FFA and GA algorithms. Symmetry 12(6), 1046 (2020).
https://doi.org/10.3390/sym12061046

4. Almuallim, H., Dietterich, T.G.: Learning Boolean concepts in the presence of
many irrelevant features. Artif. Intell. 69(1–2), 279–305 (1994). https://doi.org/
10.1016/0004-3702(94)90084-1

5. Alzahrani, A.O., Alenazi, M.J.F.: Designing a network intrusion detection system
based on machine learning for software defined networks. Future Internet 13(5)
(2021). https://doi.org/10.3390/fi13050111

6. Amaizu, G.C., Nwakanma, C.I., Lee, J.M., Kim, D.S.: Investigating network intru-
sion detection datasets using machine learning. In: 2020 International Conference
on Information and Communication Technology Convergence (ICTC), pp. 1325–
1328 (2020). https://doi.org/10.1109/ICTC49870.2020.9289329

https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.1007/s10472-007-9065-2
https://doi.org/10.1007/s10472-007-9065-2
https://doi.org/10.3390/sym12061046
https://doi.org/10.1016/0004-3702(94)90084-1
https://doi.org/10.1016/0004-3702(94)90084-1
https://doi.org/10.3390/fi13050111
https://doi.org/10.1109/ICTC49870.2020.9289329

64 S. Chauhan and S. Gangopadhyay

7. Ashwini Pathak, S.P.: Study on decision tree and KNN algorithm for intrusion
detection system. Int. J. Eng. Res. Technol. (IJERT) 9, 376–381 (2020). https://
doi.org/10.17577/IJERTV9IS050303

8. Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An
implementation of logical analysis of data. IEEE Trans. Knowl. Data Eng. 12(2),
292–306 (2000). https://doi.org/10.1109/69.842268

9. Choudhury, S., Bhowal, A.: Comparative analysis of machine learning algorithms
along with classifiers for network intrusion detection. In: 2015 International Con-
ference on Smart Technologies and Management for Computing, Communication,
Controls, Energy and Materials (ICSTM), pp. 89–95 (2015). https://doi.org/10.
1109/ICSTM.2015.7225395

10. Crama, Y., Hammer, P.L., Ibaraki, T.: Cause-effect relationships and partially
defined Boolean functions. Ann. Oper. Res. 16(1), 299–325 (1988). https://doi.
org/10.1007/BF02283750

11. Das, T.K., Adepu, S., Zhou, J.: Anomaly detection in industrial control systems
using logical analysis of data. Comput. Secur. 96, 101935 (2020). https://doi.org/
10.1016/j.cose.2020.101935

12. Das, T.K., Gangopadhyay, S., Zhou, J.: SSIDS: semi-supervised intrusion detection
system by extending the logical analysis of data. CoRR arXiv:2007.10608 (2020)

13. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 2, 222–232
(1987). https://doi.org/10.1109/TSE.1987.232894

14. Depren, O., Topallar, M., Anarim, E., Ciliz, M.K.: An intelligent intrusion detec-
tion system (IDS) for anomaly and misuse detection in computer networks. Expert
Syst. Appl. 29(4), 713–722 (2005). https://doi.org/10.1016/j.eswa.2005.05.002

15. Dua, M., et al.: Attribute selection and ensemble classifier based novel approach to
intrusion detection system. Procedia Comput. Sci. 167, 2191–2199 (2020). https://
doi.org/10.1016/j.procs.2020.03.271

16. Hammer, P.L.: Partially defined Boolean functions and cause-effect relationships.
In: Proceedings of the International Conference on Multi-attribute Decision Mak-
ing via OR-Based Expert Systems. University of Passau (1986)

17. Hammer, P.L., Bonates, T.O.: Logical analysis of data - an overview: from com-
binatorial optimization to medical applications. Ann. Oper. Res. 148(1), 203–225
(2006). https://doi.org/10.1007/s10479-006-0075-y

18. Khammassi, C., Krichen, S.: A GA-LR wrapper approach for feature selection in
network intrusion detection. Comput. Secur. 70, 255–277 (2017). https://doi.org/
10.1016/j.cose.2017.06.005

19. Li, L., Yu, Y., Bai, S., Hou, Y., Chen, X.: An effective two-step intrusion detection
approach based on binary classification and k-nn. IEEE Access 6, 12060–12073
(2018). https://doi.org/10.1109/ACCESS.2017.2787719

20. Mishra, P., Varadharajan, V., Tupakula, U., Pilli, E.S.: A detailed investigation
and analysis of using machine learning techniques for intrusion detection. IEEE
Commun. Surv. Tutor. 21(1), 686–728 (2019). https://doi.org/10.1109/COMST.
2018.2847722

21. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: 2015 Military Commu-
nications and Information Systems Conference (MilCIS), pp. 1–6 (2015). https://
doi.org/10.1109/MilCIS.2015.7348942

22. Moustafa, N., Slay, J.: The evaluation of network anomaly detection systems: sta-
tistical analysis of the UNSW-NB15 data set and the comparison with the KDD99
data set. Inf. Secur. J. Glob. Perspect. 25(1–3), 18–31 (2016). https://doi.org/10.
1080/19393555.2015.1125974

https://doi.org/10.17577/IJERTV9IS050303
https://doi.org/10.17577/IJERTV9IS050303
https://doi.org/10.1109/69.842268
https://doi.org/10.1109/ICSTM.2015.7225395
https://doi.org/10.1109/ICSTM.2015.7225395
https://doi.org/10.1007/BF02283750
https://doi.org/10.1007/BF02283750
https://doi.org/10.1016/j.cose.2020.101935
https://doi.org/10.1016/j.cose.2020.101935
http://arxiv.org/abs/2007.10608
https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1016/j.eswa.2005.05.002
https://doi.org/10.1016/j.procs.2020.03.271
https://doi.org/10.1016/j.procs.2020.03.271
https://doi.org/10.1007/s10479-006-0075-y
https://doi.org/10.1016/j.cose.2017.06.005
https://doi.org/10.1016/j.cose.2017.06.005
https://doi.org/10.1109/ACCESS.2017.2787719
https://doi.org/10.1109/COMST.2018.2847722
https://doi.org/10.1109/COMST.2018.2847722
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1080/19393555.2015.1125974

Design of Intrusion Detection System based on LAD using Gain Ratio 65

23. Moustafa, N., Slay, J., Creech, G.: Novel geometric area analysis technique for
anomaly detection using trapezoidal area estimation on large-scale networks. IEEE
Trans. Big Data 5(4), 481–494 (2019). https://doi.org/10.1109/TBDATA.2017.
2715166

24. Shilpashree, S.: Decision tree: a machine learning for intrusion detection. Int. J.
Innov. Technol. Explor. Eng. 8, 5 (2019). https://doi.org/10.35940/ijitee.F1234.
0486S419

https://doi.org/10.1109/TBDATA.2017.2715166
https://doi.org/10.1109/TBDATA.2017.2715166
https://doi.org/10.35940/ijitee.F1234.0486S419
https://doi.org/10.35940/ijitee.F1234.0486S419

Simulating a Coupon Collector

Dina Barak-Pelleg1(B) and Daniel Berend2

1 Department of Mathematics, Ben-Gurion University, 84105 Beer Sheva, Israel
dinabar@post.bgu.ac.il

2 Departments of Mathematics and Computer Science, Ben-Gurion University,
84105 Beer Sheva, Israel

berend@math.bgu.ac.il

Abstract. The coupon collector’s problem (CCP) reads as follows: How
many drawings are needed on average in order to complete a collection
of n types of coupons, if at each step a single coupon is drawn uniformly
randomly, independently of all the other drawings?

Since CCP was first introduced, numerous questions have been posed
on its basis, and it also turned out to appear in many applications, such
as DDoS cyber attacks and machine learning. It is well known that, in
CCP, the convergence of various quantities of interest to their asymptotic
values is rather slow. Thus, simulating the process to get a feeling for
their behavior is often impractical.

We present here an alternative view of the process, which allows us,
for equally probable coupons, to perform fast simulation for large values
of the parameters.

Keywords: Coupon collector’s problem · Simulation

1 Introduction

1.1 The Coupon Collector’s Problem

Suppose that a company distributes a commercial product and that each package
contains a single coupon. There are n types of coupons, and a customer wants
to collect at least one of each. We want to know how many packages need to be
bought on the average until getting all coupons. This is referred to as the coupon
collector’s problem (CCP). The problem goes back at least as far as de Moivre
[24], who mentioned it in a collection of problems regarding various games of
chance.

The expected number of drawings is calculated in a straightforward manner.
(Note, though, that if one does not take the right approach, the problem may
become quite intricate; see [23].) After exactly j distinct coupons have been seen,
the probability of drawing an as yet unseen coupon is n−j

n . Hence, the number
Dj of drawings until we see such a new coupon is Geom(1− j

n)-distributed. The

Research supported in part by the Milken Families Foundation Chair in Mathematics
and the Cyber Security Research Center at Ben-Gurion University.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 66–77, 2022.
https://doi.org/10.1007/978-3-031-07689-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_5&domain=pdf
http://orcid.org/0000-0002-2819-1828
http://orcid.org/0000-0002-5756-5921
https://doi.org/10.1007/978-3-031-07689-3_5

Simulating CCP 67

total number of drawings is the sum of all these Dj ’s. The expected number of
drawings is therefore nHn, where Hn is the n-th harmonic number:

Hn = 1 +
1
2

+
1
3

+ · · · +
1
n

, n = 1, 2, 3,

Asymptotically, this expectation is n(ln n+γ)+O(1), where γ = 0.577 . . . is the
Euler-Mascheroni constant. We refer to [13] for more information.

1.2 Various Extensions of the CCP

The problem, and various extensions thereof, have drawn much attention for
many years. Laplace [20], and also Erdős and Rényi [12], found the normalized
asymptotic distribution of the number of drawings. Schelling [33,34] and Flajolet,
Gardy, and Thimonier [14] considered the case where distinct coupons may show
up with distinct probabilities. A (very lengthy) formula for the expected required
time in this case was given in the latter of these papers. It turns out that various
real-world problems may be modelled by this version. For example, see [3,4,29,
30,32] for an application to dealing with DDoS cyber attacks and [2,10,31,35]
for applications to machine learning and cryptography.

The Collector’s Brotherhood Problem. Suppose the collector wants to
obtain at least m copies of each coupon and we ask how much time would he
need to obtain his collection.

Denote this quantity by Tn,m. For fixed m and large n, Newman and Shepp
[25] calculated the asymptotic expected number of required drawings

E(Tn,m) = n (log n + (m − 1) log log n + Cm + o(1)) , (1)

where Cm is a constant depending on m. This version is known as the dixie cup
problem [25] or as the collector’s brotherhood problem [16]. For other questions
related to this case, see [11,19].

Given a sequence (Xn)∞
n=1 of random variables and a probability law L,

write Xn
D−−−−→

n→∞ L if the sequence converges to L in distribution. Recall that a
random variable X is Gumbel distributed with parameters μ ∈ R and β > 0,
and we write X ∼ Gumbel(μ, β), if its distribution function is given by [17,26]:

F (x) = e−e−(x−μ)/β

, x ∈ R.

Again, for fixed m, Erdős and Rényi [12] found the limiting distribution of
Tn,m:

Tn,m − n(log n + (m − 1) log log n)
n

D−−−−→
n→∞ Gumbel (− log(m − 1)!, 1) , (2)

and Flatto [15] provided an estimate on the tail of the distribution. This also let
Erdős and Rényi find explicitly the constant Cm in (1):

E(Tn,m) = n (log n + (m − 1) log log n − log(m − 1)! + γ + o(1)) .

68 D. Barak-Pelleg and D. Berend

Finally, they left open the question as to the distribution of Tn,m if m increases
with n [12, p. 219].

1.3 Simulating CCP

It has been observed in several coupon collecting problems that the convergence
of the various relevant quantities is quite slow [7,18,19]. It is natural to run
some simulations of the process to help verifying the behavior of such quantities.
However, to obtain reliable asymptotic estimates, one needs to use very large
values n (and on top of it run the simulation many times). Several papers discuss
simulating the process [1,8,9], but their method is infeasible for large n.

In this paper we develop a fast simulation method, which allows us running
thousands of iterations for very large values of n in a matter of minutes. The
method relies on an alternative view of the process of collecting the coupons. As
mentioned above, the asymptotic behavior of the time for collecting m coupons
has not been studied for the case where m grows with n. Thus, to test the
performance of our simulation algorithm, we run it on the collector’s brotherhood
problem, for large values of n and m.

2 A Fast Simulation for the Collector’s Brotherhood
Problem

A naive simulation of the process is trivial to design and implement. We simply
choose a coupon uniformly randomly until all n coupons have arrived at least m
times.

The problem is that, since at each step we “draw” a single coupon, each run
costs Ω(n log n) time w.h.p. Moreover, to save the data regarding the number
of times each coupon has been seen, we need Θ(n) space. On top of that, as
convergence of the various quantities in CCP is very slow [7,18,19], to get a
feeling for the asymptotics, large values of n need to be examined. Thus, for
large n, the naive algorithm becomes infeasible.

Algorithms for simulating the process have been suggested in [1,8,9]. How-
ever, even though they are interesting for theoretical purposes, and have the
advantage of dealing with coupons of different probabilities also, they are infea-
sible for large n.

We developed faster and much less space-consuming methods. We first
observe that it is unnecessary to know at each stage how many copies of each
coupon have arrived by this time. It rather suffices to know how many coupons
have:

– not arrived at all;
– arrived once;
– arrived twice;

...
– arrived m − 1 times;

Simulating CCP 69

– arrived m or more times.

Indeed, this information lets us know what is the probability of obtaining at
the next step a coupon who has arrived by now i times, where i is one of the
numbers 0, 1, 2, . . . ,m − 1 or is in the range [m,∞). Thus, the required amount
of memory is only Θ(m).

We start with an array of length m, denoted by Current. The first entry of
Current indicates the number of coupons which have not been seen until now,
the second – the number of coupons which appeared once, the third – twice, ...,
the m-th – the number of coupons which appeared m − 1 times. Initially, this
array consists of the number n in the first entry and zeros elsewhere. To run
the simulation faster, we proceed in multi-step leaps. At each leap, we take a
coupon with a minimal number of appearances so far. We draw the time at which
its m-th copy is obtained by a negative binomial variate. For example, suppose
this coupon had appeared r times before this leap. Thus, T ′ ∼ NB(m − r, 1/n)
(where NB denotes the negative binomial distribution) is the number of steps it
will take us to finish collecting m copies of this coupon. Now we discount this
coupon from Current, namely decrement the first non-zero entry (which is the
(r+1)-st entry) of Current. Consider the other deficient coupons – coupons that
have arrived less than m times before the leap. (These are precisely the coupons
accounted for in Current.) We draw binomially, for each of these coupons, the
number of times it has arrived throughout the leap. For example, for the first
deficient coupon we draw X ′

1 ∼ Binom(T ′ − m + r, 1/(n − 1)) arrivals, for the
second – X ′

2 ∼ Binom(T ′ −m+ r −X ′
1, 1/(n−2)), and so on. In this process, we

“move” the coupons which are still deficient from Current to a new array Next
of size m and dispose of the others, as follows: Each treated coupon is discounted
from Current. If it is still deficient after the leap, then it is accounted for in the
cell of Next: corresponding to its updated number of arrivals so far; otherwise,
it is disposed of. After dealing with all coupons accounted for in Current, we
replace Current by Next, reset Next to 0, and continue to the next leap. We
repeat the leaps until all coupons have been obtained m times, namely, Current
consists of zeros. The process is defined more formally in Algorithm 1.

How long does the simulation run? At the first time we perform a leap, we
take a coupon (which, as all coupons, has 0 appearances so far), and draw (using
a negative binomial variate) the time until it arrives m times. A priori, each of
the other coupons has a probability of 1

2 of arriving m (or more) times before
the first coupon does so. Thus, we expect roughly half the coupons to have been
obtained at least m times by the time the first leap has finished. Since in the
other leaps we take each time a coupon with a minimal number of appearances
so far, we may expect to get rid of at least half the deficient coupons at each
subsequent leap. Thus, we may expect the number of leaps to be at most about
log2 n. The number of deficient coupons we need to deal with at the k-th leap is
at most about n/2k−1. Altogether, the runtime of Algorithm 1 is Θ(n) and the
required memory is Θ(m).

In principle, suppose someone told us, at some point in the process, after some
T0 coupon drawings, how many coupons have not arrived, how many arrived

70 D. Barak-Pelleg and D. Berend

Algorithm 1: Rapid Coupon Collecting
Input: n – number of coupon types,

m – number of required copies of each type
Output: T – completion time
T ← 0;
Current ← (n, 0, . . . , 0); /* vector of length m */

while Current �= 0 do
Next ← 0; /* vector of length m */

Take a coupon with a minimal number j of copies:
j = min{k : Current[k] > 0} − 1;

Draw T ′ ∼ NB(m − j, 1/n), the additional time required to have m copies of
this coupon;

Current[j + 1] −−; /* discount the coupon from Current */

T ← T + T ′;
EmptySlots ← T ′ − m + j;
i ← 1; /* start a counter of the deficient coupons */

while Current �= 0 do
Take any coupon accounted for in Current;
Decrement the entry corresponding to it in Current;
Draw X ∼ Binom(EmptySlots, 1/(n − i)); /* appearances of this

coupon in leap */

if the coupon is still deficient then
Update Next; /* account for the this coupon in Next */

EmptySlots ← EmptySlots − X;
i ++;

Current ← Next;

return T

once, twice, ..., m − 1 times. This would let us know the array Current at time
T0, and we would have all necessary information to continue running Algorithm
1 from that point. Moreover, if it turned out that, by time T0, most coupons
have arrived m or more times, the runtime would be reduced even further, as we
would need to simulate only the remaining part of the process. Note that, on the
other hand, T0 should not be too large. Indeed, if it turned out that all coupons
have arrived at least m times by T0, we would only know that the process ended
earlier. Summing up, we would like to find a time T0 with the two properties (i)
most coupons have probably arrived at least m times until T0, and (ii) there is
probably at least one coupon who has arrived less than m times by T0.

Perhaps somewhat surprisingly, it turns out to be indeed possible to find a
T0 with the desired properties. To this end, let us recall the continuous model
of coupon collecting (see [5,6,18,19]). In this model, the coupons arrive at con-
tinuous times rather than discrete. Consider the interarrival times of any partic-
ular type of coupon. Whereas in the discrete model these times are distributed
Geom(1/n), in the continuous model they are distributed according to the contin-
uous analogue, namely Exp(1/n). Thus, each coupon type arrives according to a

Simulating CCP 71

Poisson process with Exp(1/n) interarrival times [28, Chapter 7]. The advantage
of this model is that the arrival times of distinct coupon types are independent.
When we consider all coupon types combined, the arrival times follow again a
Poisson process, but now with interarrival times distributed Exp(1) (being the
minimum of independent exponential variables whose sum of parameters is 1).

One readily observes that the global statistics of coupon arrivals is quite
similar in the discrete and the continuous models. The interarrival times of
each coupon type are distributed according to a geometric distribution or its
continuous analogue. In both models, coupons arrive on average once every unit
time. Moreover, by the lack-of-memory property of the exponential distribution,
each time we get a coupon, there is a probability of 1/n for each type to appear,
same as in the discrete model. Thus, the order of the arriving coupons in the
continuous model has the same distribution as that in the discrete one.

We start by choosing a large time t0 for the continuous model, such that we
may guess that most, but not all, coupons have arrived at least m times until
t0. More formally, we take a small (see below) ε > 0 and look for a t0 such
that P (Tn,m ≤ t0) = ε. According to the discussion above, the probability of
each coupon to arrive exactly k times until time t0 is (t0/n)ke−t0/n/k! for every
k ≥ 0. Hence, our requirement from t0 amounts to

(
1 − e−λ − e−λλ − e−λλ2/2! − · · · − e−λλm−1/(m − 1)!

)n
= ε, (3)

where λ = t0/n. (Alternatively, one may also use the technique presented in
[21].) Note that a proportion of ε of the runs will be over by time t0. In this
case, we have actually collected more coupons than needed, and do not know how
many coupons have been collected by the end of the process. (We will explain
below what is actually done in this case.) Hence ε should be small. On the other
hand, if it is too small, we will usually have many coupons who have not arrived
m times by t0, and therefore the memory and runtime required for the rest of
the simulation will be large. In our experiments, we have taken ε between 10−4

and 10−3 and got a reasonable balance.
Given t0, the probability of each coupon to arrive k times until t0, in the

continuous model, is λke−λ/k!, k ≥ 0. Moreover, as the flows of the various
coupons are independent, the number of coupons arriving exactly k times is
distributed Binom(n, e−λλk/k!). However, these numbers are dependent for dif-
ferent k-s. Thus, we draw the number Y ′

0 of coupons that do not arrive by time t0
from Binom(n, e−λ). The number of those that appear once is Y ′

1 ∼ Binom(n −
Y ′
0 , e

−λλ/(1−e−λ)), twice – Y ′
2 ∼ Binom(n−Y ′

0−Y ′
1 , e

−λλ2/(2!(1−e−λ−e−λλ))),
and so on. We continue until all coupons are accounted for.

By the process described above, we easily find the number T0 of coupons
that have arrived until (continuous) time t0. This process is given more formally
in Algorithm 2. To complete the process of obtaining m copies of all types of
coupons, we continue similarly to Algorithm 1. There are two differences with
respect to Algorithm 1: (i) Instead of starting with T = 0, we start with T = T0

coupons collected until now. In particular, if by time t0 all coupons have been
collected at least m times, we take T0 as the number of coupons collected in

72 D. Barak-Pelleg and D. Berend

Algorithm 2: First Stage of the Process – Improved
Input: n – number of coupon types,

m – number of copies we want to collect,
ε – error parameter

Output: Current – array of length m, the i-th cell contains the number of
coupons which have obtained exactly i copies,
T0 – number of coupons collected during this stage

Initiate variables:
Current ← 0;
T0 ← 0;
copies ← 0;
λ0 ← (numerical) solution of (3);

p1 ← e−λ0 ;
p2 ← 1;
TreatedCoupons ← 0;
while TreatedCoupons < n do

Draw W ∼ Binom(n − TreatedCoupons, p1/p2);
TreatedCoupons ← TreatedCoupons + W ;
T0 ← T0 + W · copies;
if copies < m then

Current[copies] ← W ;

Increment copies;
p2 ← p2 − p1;

p1 ← (λ0)
copies · e−λ0/copies!;

return T0 and Current

this iteration. This introduces a relative error of at most ε on average in the
simulation results. (ii) Instead of starting with the array Current = (n, 0, . . . , 0),
we start with Current corresponding to the state we are at (discrete) time T0.

By [27, Theorem 1], the maximum number of copies we obtain for any coupon
until time T0 is Θ(max{m, log n}). Hence, the runtime of the first part of the algo-
rithm, in which we obtain Current for some large time T0, is Θ(max{m, log n}).
Altogether, the runtime of the whole algorithm is Θ (max{log n,m} + R), where
R is the number of coupons arriving less than m times in the first T0 drawings.
According to our experiments, R is always very small relative to n, but it would
be interesting to estimate it theoretically. The required memory is Θ(m).

We note in passing that drawing variates from some distributions takes a lot
of time [22]. Thus, whenever appropriate, we have used the Poisson approxima-
tion of the binomial.

3 Simulation Results

We have tested the runtime of our algorithms versus that of the naive algorithm.
Thus, we have three algorithms:

Simulating CCP 73

– Algorithm 0 – the naive algorithm which, draws the coupons one by one.
– Algorithm 1.
– Algorithm 2’ – this is Algorithm 1, which is preceded by Algorithm 2, as

explained in the previous section.

To illustrate the performance of the algorithms, we have run a simulation
with several parameter pairs (n,m), as follows:

– m = 1 and n = 103, 104, 105.
– m = 6, 8, 10, 12, 14, 20, 30, 40, 50 and n = round(em−1).

The point of taking m = 1 is to compare the simulation results with Erdős-
Rényi’s theoretical result (see (2) above). The point of the larger m-s is to
illustrate a case in which the simulation may help predicting a pattern. As men-
tioned above, Erdős-Rényi’s result relates to fixed m, and a natural question
is how the time T required to collect all coupons behaves when m varies as a
function of n (in our case, as log n + 1). For each (n,m) we have performed
a number of iterations, and then calculated the sample mean and variance. We
also estimated, by the method of moments, the parameters of the Gumbel distri-
bution corresponding to T . The simulation was carried out using Mathematica
on a laptop.

In Table 1 we present the results for Algorithms 0, 1, and 2’, where the
collector wants to obtain at least one copy from each coupon and the number of
coupons is n = 103, 104, 105. In this case we have preformed 103 iterations. In the
first column we present the value of n, in the second – the algorithm’s runtime,
and in the following two columns – the sample mean and variance, respectively.
The last four columns provide the values of the parameters μ and β of the
Gumbel distribution corresponding to T . We present both the (approximate)
theoretical values following from Erdős-Rényi’s asymptotic result, namely μ =
n log n and β = n, and the estimates μ̂ and β̂ for these parameters according to
the simulation, based on the method of moments. For each n we have three rows
of results, one for each algorithm.

Note that here the results obtained by the three algorithms agree with one
another and with the theoretical results. As far as runtimes go, Algorithm 1
improves upon Algorithm 0 for the larger values of n by about 50%. Algorithm 2’
provides a very major improvement over the first two algorithms.

One may wonder why the runtimes of Algorithm 2’ drop when passing
from n = 104 to n = 105. We have found out that most of the running time
of the algorithm is spent on drawing the binomial random variates. The drop in
the runtimes is probably connected to the way Mathematica draws such variates.
Namely, one needs to know for what values of the parameters Mathematica uses
a normal approximation. We guess that, for n = 105, most drawing of binomial
random variates were replaced by Mathematica by drawings of normal variates,
while this was not the case for n = 104. We have not delved deeper into this
issue.

In Table 2 we present similar data for m = 6, 8, 10, 12, 14, 20, 30, 40, 50, and
n = round(em−1). For each (n,m) we have preformed 104 iterations. Algorithm 0

74 D. Barak-Pelleg and D. Berend

Table 1. Results of simulation with 1000 iterations where m = 1 and various n-s.

n Alg. Runtime
(min.)

Sample
mean

Sample
variance

μ̂
(sample)

β̂
(sample)

μ
(theory)

β
(theory)

103 0 0.93 7467 1.72 · 106 6877 1022

1 0.98 7482 1.62 · 106 6908 993 6908 1000

2’ 0.04 7406 1.55 · 106 6846 970

104 0 22.32 97868 1.64 · 108 92110 9976

1 10.37 97430 1.48 · 108 91965 9468 92103 10000

2’ 0.21 97583 1.70 · 108 91713 10170

105 0 162.77 1.21 · 106 1.69 ·1010 1.15 · 106 101382

1 99.17 1.21 · 106 1.65 ·1010 1.15 · 106 100022 1.15 · 106 100000

2’ 0.07 1.21 · 106 1.57 ·1010 1.15 · 106 97691

Table 2. Simulation with 10000 iterations; various m-s, n = round(em−1).

m Alg. Runtime
(min.)

Sample
mean

Sample
variance

μ̂
(sample)

β̂
(sample)

μ
“theory”

β
“theory”

6 0 2.58 2151 72235 2030 210

1 1.26 2154 69676 2035 206 1222 148

2’ 0.36 2149 73813 2027 212

8 0 28.51 22592 4.18 · 106 21677 1593

1 8.64 22595 4.15 · 106 21678 1589 13270 1097

2’ 2.61 22576 4.05 · 106 21671 1568

10 0 289.79 216679 2.39 · 108 209718 12060

1 60.80 216377 2.29 · 108 209560 11810 129431 8103

2’ 4.44 216531 2.30 · 108 209709 11817

12 0 — — — — —

1 481.85 1.97 · 106 1.29 ·1010 1.92 · 106 88451 1.19 · 106 59874

2’ 10.63 1.97 · 106 1.28 ·1010 1.92 · 106 86192

14 2’ 1.42 1.73 · 107 6.63 ·1011 1.69 · 107 634648 1.05 · 107 442413

20 2’ 2.39 1.03 ·1010 1.12 ·1017 1.01 ·1010 2.60 · 108 6.35 · 109 1.78 · 108
30 2’ 3.69 3.49 ·1014 5.63 ·1025 3.46 ·1014 5.85 ·1012 2.18 ·1014 3.93 ·1012
40 2’ 5.37 1.04 ·1019 2.63 ·1034 1.03 ·1019 1.26 ·1017 6.52 ·1018 8.66 ·1016
50 2’ 8.90 2.89 ·1023 1.30 ·1043 2.87 ·1023 2.82 ·1021 1.81 ·1023 1.91 ·1021

did not finish running within ten hours for m = 12 and n = round(e11), and
Algorithm 1 – for m = 14 and n = round(e13). Thus, from that point on we
have results only for Algorithm 2’.

Note that, differently from Table 1, in Table 2 the values obtained for μ̂ and
β̂ do not agree with those of μ and β. This is consistent with the fact that the
theoretical results are valid for fixed m. Hence the quotes for “theory” in the
columns corresponding to μ and β. Performing this simulation has been possible
only by Algorithm 2’, whose running times remain very reasonable even for huge
values of n.

Simulating CCP 75

Regarding the runtime in Algorithm 2’, we note that, as in Table 1, it is not
monotonous in n. It drops, when passing from m = 12 and n = round(e11)
to m = 14 and n = round(e13), for the same reason explained above

4 Conclusions and Future Work

The algorithm we have developed lets us estimate the distribution of the time
by which we have finished collecting the desired number m of copies of each
coupon. Other statistics of interest are not gathered. For example, one may
ask how many coupons have appeared “few” times. Thus, Adler, Oren, and
Ross [1] were interested, for the case of m = 1, in the number of coupons that
arrived 2, 3, . . . , k times for some k. Performing the simulation by Algorithm 0,
we have immediate access to this data. When using Algorithm 2’, we need some
adaptations to get such data.

Moreover, it would be interesting to consider the case of unequal probabilities.
This adaptation needs to take into consideration various aspects which effect the
space needed for the algorithm and its runtime. For example, already the initial
probability vector is of size n. Each time we deal with a coupon we must know
its probability of being drawn. Therefore, at each leap, we need to keep track of
the drawing probability of each deficient coupon as well as the number of times
it arrived until now.

References

1. Adler, I., Oren, S., Ross, S.M.: The coupon-collector’s problem revisited. J. Appl.
Probab. 40(2), 513–518 (2003)

2. Anderson, J., Goyal, N., Rademacher, L.: Efficient learning of simplices. In: Con-
ference on Learning Theory, PMLR, pp. 1020–1045 (2013)

3. Barak-Pelleg, D., Berend, D.: The Time For Reconstructing the Attack Graph in
DDoS Attacks (Submitted)

4. Barak-Pelleg, D., Berend, D., Robinson, T.J., Zimmerman, I.: Algorithms for
Reconstructing DDoS Attack Graphs Using Probabilistic Packet Marking (Sub-
mitted)

5. Barbour, A., Holst, L.D., Janson, S.: Poisson Approximation. The Clarendon Press,
Oxford (1992)

6. Boneh, A., Hofri, M.: The coupon-collector problem revisited - a survey of engineer-
ing problems and computational methods. Commun. Stat. Stochast. Mod. 13(1),
39–66 (1997)

7. Brayton, R.K.: On the asymptotic behavior of the number of trials necessary to
complete a set with random selection. J. Math. Anal. Appl. 7(1), 31–61 (1963)

8. Brown, M., Peköz, E.A., Ross, S.M.: Coupon collecting. Probab. Eng. Inf. Sci.
22(2), 221–229 (2008)

9. Brown, M., Ross, S.M.: Optimality results for coupon collection. J. Appl. Probab.
53(3), 930–937 (2016)

10. Brunskill, E., Li, L.: The online coupon-collector problem and its application to
lifelong reinforcement learning. arXiv preprint arXiv:1506.03379 (2015)

http://arxiv.org/abs/1506.03379

76 D. Barak-Pelleg and D. Berend

11. Doumas, A.V., Papanicolaou, V.G.: The siblings of the coupon collector. Theory
Probab. Appl. 62(3), 444–470 (2018)

12. Erdős, P., Rényi, A.: On a classical problem of probability theory. Publ. Math.
Inst. Hung. Acad. Sci. Ser. A 6, 215–220 (1961)

13. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd
edn. Wiley, New York, London, Sydney (1968)

14. Flajolet, P., Gardy, D., Thimonier, L.: Birthday paradox, coupon collectors,
caching algorithms and self-organizing search. Discret. Appl. Math. 39(3), 207–
229 (1992)

15. Flatto, L.: The Dixie Cup Problem and FKG inequality. High Frequency 2(3–4),
1–6 (2019)

16. Foata, D., Zeilberger, D.: The collector’s brotherhood problem using the Newman-
Shepp symbolic method. Algebra Universalis 49(4), 387–395 (2003)

17. Gumbel, E.J.: Statistical Theory of Extreme Values and Some Practical Applica-
tions. A Series of Lectures. National Bureau of Standards Applied Mathematics
Series No. 33, U. S. Government Printing Office, Washington, D. C. (1954), viii+51

18. Holst, L.: On birthday, collectors’, occupancy and other classical urn problems.
Int. Stat. Rev. 54, 15–27 (1986)

19. Ilienko, A.: Limit theorems in the extended coupon collector’s problem. arXiv
preprint arXiv:2002.00650 (2020)

20. Laplace, P.S.: Théorie Analytique des Probabilités, vol. 2, p. 1812, Éditions Jacques
Gabay, Paris (1995). (Reprint of the 1820 third edition)

21. Li, A., Chen, Y.: Convergence of coupon collecting process via Wormald’s differ-
ential equation method. arXiv preprint arXiv:1912.02582 (2019)

22. Loukas, S., Kemp, C.D.: The computer generation of bivariate binomial and neg-
ative binomial random variables. Commun. Stat. Simul. Comput. 15(1), 15–25
(1986)

23. Maunsell, F.G.: A problem in cartophily. Math. Gaz. 22(251), 328–331 (1938)
24. de Moivre, A.: The Doctrine of Chances. 1756, Republished 1967 by Chelsea, New

York (1967)
25. Newman, D.J., Shepp, L.: The double Dixie Cup Problem. Am. Math. Mon. 67(1),

58–61 (1960)
26. Pinheiro, E.C., Ferrari, S.L.P.: A comparative review of generalizations of the Gum-

bel extreme value distribution with an application to wind speed data. J. Stat.
Comput. Simul. 86(11), 2241–2261 (2016)

27. Raab, M., Steger, A.: “Balls into Bins” — a simple and tight analysis. In: Luby,
M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49543-6 13

28. Ross, S.M.: Introduction to Probability Models, 10th edn. Academic Press, Oxford
(2009)

29. Sairam, A.S., Saurabh, S.: A more accurate completion condition for attack-graph
reconstruction in probabilistic packet marking algorithm. In: 2013 National Con-
ference on Communications (NCC), pp. 1–5. IEEE (2013)

30. Sairam, A.S., Saurabh, S.: Increasing accuracy and reliability of IP traceback for
DDoS attack using completion condition. Int. J. Netw. Secur. 18(2), 224–234 (2016)

31. Sasaki, Yu., Li, Y., Sakamoto, H., Sakiyama, K.: Coupon collector’s problem for
fault analysis against AES—high tolerance for noisy fault injections. In: Sadeghi,
A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 213–220. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39884-1 18

http://arxiv.org/abs/2002.00650
http://arxiv.org/abs/1912.02582
https://doi.org/10.1007/3-540-49543-6_13
https://doi.org/10.1007/978-3-642-39884-1_18

Simulating CCP 77

32. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Practical network support for
IP traceback. In: Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pp. 295–306 (2000)

33. von Schelling, H.: Auf Der Spur Des Zufalls. Deutsches Statistisches Zentralblatt
26, 137–146 (1934)

34. von Schelling, H.: Coupon collecting for unequal probabilities. Am. Math. Mon.
61, 306–311 (1954)

35. Zhou, M.G., et al.: Experimental quantum advantage with quantum coupon col-
lector. arXiv preprint arXiv:2112.07884 (2021)

http://arxiv.org/abs/2112.07884

On the Undecidability of the Panopticon
Detection Problem

Vasiliki Liagkou1,5, Panagiotis E. Nastou6,7, Paul Spirakis2,3,
and Yannis C. Stamatiou1,4(B)

1 Computer Technology Institute and Press - “Diophantus”,
University of Patras Campus, 26504 Patras, Greece

liagkou@cti.gr, stamatiu@ceid.upatras.gr
2 Department of Computer Science, University of Liverpool, Liverpool, UK

P.Spirakis@liverpool.ac.uk
3 Computer Engineering and Informatics Department,

University of Patras, 26504 Patras, Greece
4 Department of Business Administration, University of Patras, 26504 Patras, Greece

5 Department of Informatics and Telecommunications,
University of Ioannina, 47100 Kostakioi, Arta, Greece

6 Department of Mathematics, Applied Mathematics and Mathematical Modeling
Laboratory, University of the Aegean, Samos, Greece

pnastou@aegean.gr
7 Center for Applied Optimization, University of Florida, Gainesville, USA

Abstract. In this paper we provide a theoretical framework for studying
the detectability status of Panopticons based on two theoretical defini-
tions. We show, using Oracle Turing Machines, that detecting modern
day, ICT-based, Panopticons is an undecidable problem.

Keywords: Formal methods · Security · Privacy · Undecidability ·
Panopticon · Turing Machine · Oracle computations

1 Introduction

In this paper we, formally, investigate the complexity of detecting Panopticons
(see the pioneering works of Bentham and Foucault [1,4]), as synonyms of mas-
sive survaillance in modern societies, based on Turing Machines. We provide two
different, but not unrealistic, theoretical models of a Panopticon and show that
there is no algorithm that can detect, systematically, all Panopticons under these
two definitions. In other words, detecting Panopticons, at least the ones that fall
under these two plausible definitions, is an undecidable problem, in principle.

The Research of P.E. Nastou has been co-financed by the European Regional Devel-
opment Fund of the European Union and Greek national funds through the Oper-
ational Program Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH - CREATE - INNOVATE (project code:T2EDK-01862). The work of
the first, third and fourth coauthors was partially supported by the CyberSec4Europe
project, funded by the European Union under the H2020 Programme Grant Agreement
No. 830929.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 78–87, 2022.
https://doi.org/10.1007/978-3-031-07689-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_6

On the Undecidability of the Panopticon Detection Problem 79

More specifically, the first formal model we examine studies Panopticons
whose Panopticon behaviour is manifested through the execution of states
(actions) that belong to a specific set of states that characterizes Panopticon
behaviour. In some sense, since the focal point of this model is the execution
of states of a particular type, the model captures the visible behaviour of the
Panopticon, according to the actions it performs, and, thus we call this model
behavioural. The second formal model focuses on the impact or consequences
of the actions of the Panopticon and not the actions themselves. In particular,
this model captures an essential characteristic of Panopticons: acquiring, rather,
effortlessly information through surveillance and eavesdropping. We model this
characteristic using Oracle Turing Machines with the oracle having the role of
information acquired “for free” based on surveillance (observations) and eaves-
dropping actions, without requiring computational effort. This model is, in some
sense, based on the information that a Panopticon deduces using “free” infor-
mation and, thus, we call it deductive. The focus is on the semantics of a Turing
Machine, i.e. outcomes of operation, while the first model focuses on the syntax,
i.e. definition, of a Turing Machine.

2 Definitions and Notation

In this section we briefly state the relevant definitions and notation that will be
used in the subsequent sections. We, first, define a simple extension of a Turing
Machine, following the notation in [6].

Definition 1 (Turing Machines). A Turing Machine can be defined as a sep-
tuple M = (Q,Σ, Γ, δ, q0, B, F) where Q is a finite set of normal operation
states, Γ is a finite set called the tape alphabet, where Γ contains a special sym-
bol B that represents a blank, Σ is a subset of Γ − {B} called the input alphabet,
δ is a partial function from Q× Γ to Q× Γ × {L,R} called the transition func-
tion, q0 ∈ Q is a distinguished state called the start state, F ⊂ Q is a set of final
states.

With <M> we will denote the encoding or code of the Turing Machine.
One of the main outcomes of Turing’s pioneering work [8] was that there

exist problems that Turing machines cannot solve. The first, such, problem was
the, so called, Halting problem:

The Halting Problem
Input: A string x = <M,w> which is actually the encoding (description) of a
Turing machine <M> and its input w.
Output: If the input Turing M machine halts on w, output True. Otherwise,
output False.

80 V. Liagkou et al.

The language corresponding to the Halting problem is Lu = {<M,w>|w ∈
L(M)}. In other words, the language Lu contains all possible Turing machine-
input pair encodings <M,w> such that w is accepted by M . This is why Lu is
also called universal language. The language Lu was the first language proved
to be non-recursive or undecidable by Turing in his seminal work [8].

In order to discuss Panopticons, we need an important variant of Turing
machines, called oracle Turing Machines. Such a machine has a special tape on
which it can write queries to which they obtain the answer instantaneously in
one step, no matter what query it is. This type of Turing Machines was, first,
discussed, briefly, by Turing himself in [9] under the name O-machine. Post’s
collaboration with Kleene in [7] resulted to the definition that is used today in
computability theory.

Below, we give a formal definition of an Oracle Turing Machine:

Definition 2 (Oracle Turing Machine). Let A be a language, A⊆ Σ∗. A
Turing machine with oracle A is a single-tape Turing machine with three special
states q?, qy and qn. The special state q? is used to ask whether a string is in
the set A. When the Turing machine enters state q? it asks: “Is the string of
non-blank symbols to the right of the tape head in A?’’ The answer is provided
by having the state of the Turing machine change on the next move to one of
the states qy or qn. The computation proceeds normally until the next time q? is
reached.

With respect to notation, we denote by MA the Turing machine M with oracle
A. Also, a set (language) L is recursive with respect to A if L = L(MA) for
some Turing machine MA that always halts while two oracle sets (languages)
are called equivalent if each of them is recursive in the other (see [6]).

3 The Panopticon Detection Problem and Our Approach

In Cohen’s pioneering work (see [2,3]) a natural, formal, definition of a virus is
provided based on Turing machines. Specifically, Cohen defined a virus to be a
program, or Turing machine, that simply copies itself to other programs, or more
formally, injects its transition function into other Turing machines’ transition
functions (see Definition 1) replicating, thus, itself indefinitely. Then, he proves
that Lu reduces to the problem of deciding whether a given Turing Machine
behaves in this way proving that detecting viruses is an undecidable problem.

Following Cohen’s paradigm, we will propose two reasonable definitions of a
Panopticon. A Panopticon is a Turing machine that when executed will demon-
strate a specific, recognizable, behaviour particular to Panopticons manifested
by the execution (not simply the existence) of a sequence of actions, e.g. it will
publish secret information about an entity, it will download information illegally
etc., actions that can be reflected by reaching, during its operation, particular
states in a set Qpan.

On the Undecidability of the Panopticon Detection Problem 81

Definition 3 (Behavioural Panopticons). A Behavioural Panopticon is an
octuple

M = (Q,Qpan, Σ, Γ, δ, q0, B, F)

where Q is a finite set of normal operation states, Γ is a finite set called the
tape alphabet, where Γ contains a special symbol B that represents a blank, Σ
is a subset of Γ−{B} called the input alphabet, δ is a partial function from
Q× Γ to Q× Γ × {L,R} called the transition function, q0 ∈Q is a distinguished
state called the start state, F ⊂ Q is a set of final states, and Qpan ⊂ Q,
Qpan∩F = ∅, is a distinguished set of states linked to Panopticon behaviour. We
assume that transitions from states in Qpan do not change the Turing Machine’s
tape contents, i.e. they are purely interactions with the external environment of
the Turing Machine and can affect only the environment.

Beyond displayed behaviour, however, Panopticons can be reasonably
assumed to also possess deductive powers, not directly visible or measurable.
In other words, one type of such Panopticons may operate by gathering or com-
puting totally new information, distinct from the information already known to
it. We model this behaviour with the language S′

1 defined later in this Section.
Moreover, another type of Panopticons can take advantage of easily acquired, or
even stolen, freely provided (in some sense) information. In other words, based
on information the Panopticon acquires for free, in a sense, it deduces further
information, perhaps expending some computational effort this time. We model
the characteristic Panopticon action, i.e. observation or surveillance, using oracle
Turing Machines, where the freely acquired information is modeled by the ora-
cle set of the machine. Based on this information, the Turing machine deduces,
through its normal computation steps, further information about its targets.
This behaviour is modelled with the language S′

2 defined later in this Section.
Below, we describe both types of Panopticons, the ones based on S′

1 and the
ones based on S′

2 since their common characteristicc is the deduction of new
information from already known information.

Definition 4. (Deductive Panopticons) A Panopticon is a Turing Machine that
either by itself (language S′

1) or based on observed or stolen information and,
thus, acquired without expending computational effort to deduce or produce it
(language S′

2), deduces (perhaps with computational effort) further information
about entities.

In the definition above, the Panopticon operating by itself, i.e. without oracles
(language S′

1), is weaker (as we will show in what follows) than the one with ora-
cles (language S′

2) since the latter is allowed to obtain free advice or information,
in the form of an oracle.

Naturally, many other deductive Panopticon definitions would be reasonable
or realistic. Our main motivation behind the ones stated above was a balance
of theoretical simplicity and plausibility in order to spark interest on the study
on formal properties of Panopticons as well as the difficulty of detecting them
algorithmically.

82 V. Liagkou et al.

Based on the two Panopticon definitions we gave above, we can define the
corresponding Panopticon detection problems. The aim of a Panopticon detec-
tion algorithm or Turing machine, is to take as input the encoding of another
Turing machine and decide whether it is Panopticon or not based on the formal
definition.

The Panopticon Detection Problem 1
Input: A description of a Turing machine (program).
Output: If the input Turing machine behaves like a Panopticon according to
Definition 3 output True. Otherwise, output False.

More formally, if by Lb we denote the language consisting of Turing machine
encodings <M> which are Panopticons according to Definition 3, then we want
to decide Lb, i.e. to design a Turing machine that, given <M>, decides whether
<M> belongs in Lb or not. Then (we omit the proof due to lack of space) the
following can be proved:

Theorem 1. (Impossibility of detecting behavioural Panopticons) The language
Lb is undecidable.

The Panopticon Detection Problem 2
Input: A description of a Turing machine (program).
Output: If the input Turing machine behaves like a Panopticon according to
Definition 4 output True. Otherwise, output False (essentially, this problem asks
to decide the languages S′

1 and S′
2).

Our approach is different for each of the two Panopticon models we propose
since they are of a different nature, i.e. syntactic (for the behavioural model)
vs. semantic (for the deductive model). For the behavioural model, we provide
a simple adaptation of Cohen’s pioneering formal model of a virus and prove
a Panopticon detection impossibility result much like Cohen’s result for virus
detection. For the deductive model, we follow a completely different approach
using Oracle Turing Machines and a technique that can be applied to prove
undecidabililty results for this type of machines.

More specifically, in Chapter 8 of [6] a technique from [5] is presented that
establishes a hierarchy of undecidable problems for Oracle Turing Machines.
In particular, the technique targets the oracle set S1 = {<M> |L(M) = ∅},
with <M> denoting the encoding of Turing machine M , as we discussed before.
Then, the sets Si+1 =

{
<M> |L(MSi) = ∅} can be, recursively, defined and

the following can be proved (see [5,6]):

Theorem 2. The membership problem for TM’s without oracles is equivalent
to S1 (i.e. Lu is equivalent to S1).

Theorem 3. The problem of deciding whether L(M) = Σ∗ is equivalent to S2.

Our first contribution is to propose a plausible Panopticon model which incor-
porates the information gathering and deduction element of its behaviour
(see Definition 4). More formally, let Ni =

{
Li
1, L

i
2, . . . , L

i
k

}
be a set of

On the Undecidability of the Panopticon Detection Problem 83

recursively enumerable languages, for some fixed integer k ≥ 1, such that
∅ /∈ Ni for all i. Also, let M i

1,M
i
2, . . . , M

i
k the Turing machines that, corre-

spondingly, accept these languages. These Turing machines and their corre-
sponding languages model the fixed, finitely many, information sets already
known to the Panopticon. We, also, say that a set is disjoint from a collec-
tion of sets if it is disjoint from all the sets in the collection. We will, now,
define the oracle set S′

1 = {<M>|L(M) is disjoint from N1} (<M> is the
encoding of Turing machine M), and, recursively, in analogy with [5,6], the
sets S′

i+1 =
{

<M>|L(MS′
i) is disjoint from Ni+1

}
. The sets S′

1 and S′
2 =

{
<M>|L(MS′

1) is disjoint from N2

}
in particular, are central to our approach.

Based on this framework, in Sect. 4 we prove two theorems analogous to
Theorems 2 and 3 on the undecidability of the problem of detecting a deductive
Panopticon. The first one, Theorem 4, is focused on the weaker form of the
deductive Panopticons, related to the set S′

1, while the more powerful one, based
on oracle computation for “free” information gathering, related to the set S′

2, is
handled by Theorem 5. In particular, in Theorem 4 we prove that Lu is equivalent
to S′

1 and in Theorem 5 we prove that the problem of whether L(M) = Σ∗ is
equivalent to S′

2.
Before continuing, we should remark that the essential element of the pro-

posed definition of deductive Panopticons is that the oracle consultations model
the “effortless”, through surveillance, interception or eavesdropping, information
gathering by Internet surveillance agencies and organizations. In this context,
the sets S′

i+1 define an infinite hierarchy of deductive Panopticons in which a
Panopticon whose accepted language belongs in S′

i+1 operates by consulting a
(weaker) lower-level Panopticon whose language belongs in S′

i, with the weakest
Panopticons being the ones whose accepted languages belong in S′

1. These last
level Panopticons do not have oracle consultations.

4 Deductive Panopticons

In the following two theorems, we prove the undecidability of S′
1 and S′

2.
Although their undecidability follows, directly, from Rice’s Theorem (see [6]),
the proofs we give below provide more insightful information as they place S′

2

in a higher undecidability level than S′
1.

Theorem 4. The Halting Problem for Turing machines without oracles, i.e. Lu,
is equivalent to S′

1.

Proof. We first prove that given an oracle for S′
1 we can recognize Lu. We

construct MS′
1 such that given 〈M,w〉 constructs a Turing machine M

′
which

operates as follows. It ignores its input and simulates, internally, M on w. M
′

accepts its input if M accepts w which means that L(M
′
) = Σ∗ otherwise, i.e. if

M does not accept w then M
′
does not accept its input and L(M

′
) = ∅. Then,

MS′
1 asks the oracle whether <M

′
> ∈ S′

1. If yes, i.e. L(M
′
) = ∅, then M does

84 V. Liagkou et al.

not accept w. If no, then L(M
′
) = Σ∗ and, thus, M accepts w. We, thus, can

recognize Lu.
Now, we show that given an oracle for Lu we can recognize S′

1. We will construct
a Turing machine M

′′
such that, given M , it constructs another Turing machine

M
′
that operates as follows. M

′
ignores its own input and uses a generator of triples

(i, j, l), 1 ≤ l ≤ k+1, for simulating the lth Turing machine, Ml, with Mk+1 = M ,
on the ith string lexicographically constructed for j steps. The triples are generated
in increasing order of the sum n = i + j + l of their components and for triples of
equal component sum, in increasing i, then in increasing j (if the i components are
equal), and finally in increasing l (if the i and j components are equal). Each time
one of M1, M2, . . . , Mk accepts a particular input, this input is recorded on M

′
’s

second tape. Each time Mk+1 accepts an input, it is also recorded on M
′
’s second

tape separately from the inputs accepted by M1, M2, . . . , Mk. Then, M
′
checks

(using the recorded inputs stored on its second tape) whether this Mk+1 input, or
one accepted previously by Mk+1, has been accepted by one of M1, M2, . . . , Mk.
If no, the process continues. If yes, M

′
stops the simulation and accepts its own

input. Thus, <M>∈ S′
1 if L(M

′
) = ∅ since this means that L(M) is disjoint from

N1 while <M>/∈S′
1 if L(M

′
) = Σ∗, i.e. M

′
accepts all its inputs, ε in particular.

Then, M
′′Lu may query its oracle set Lu for

〈
M

′
, ε

〉
. If the answer is yes then

M
′′

rejects <M> which means that <M> ∈ S′
1, otherwise it accepts <M> i.e.

<M> /∈ S′
1. Thus, S′

1 is recognizable. �
Theorem 5. The problem of deciding whether L(M) = Σ∗ is equivalent to S′

2.

Proof. We first show that deciding whether L(M) = Σ∗ is recursive in S′
2. We

construct M̂
′S′

2 that takes as input a Turing machine M and constructs from
itM̂S′

1 , that is a Turing machine with oracle set S′
1, that operates in the following

way. It enumerates strings x over the alphabet Σ, and for each such string it
uses oracle S′

1 in order to decide whether M accepts x. This can be accomplished
by constructing M ′ which ignores its input and simulates M on x. If M accepts
x then M ′ accepts its input which means that L(M ′) = Σ∗ while L(M ′) = ∅ if
M does not accept x. Then, M̂S′

1 asks the oracle whether <M ′> ∈ S′
1. If the

answer is yes, which means that M accepts x, then M̂S′
1 does not accept its

input.
Thus, M̂S′

1 accepts its own input if and only if there is a string x not accepted
by M . Consequently,

L(M̂S′
1) =

{∅, if L(M) = Σ∗

Σ∗ otherwise.

Now M̂
′S′

2 asks its oracle S′
2 whether <M̂S′

1> ∈ S′
2, i.e. whether L(M̂S′

1) is
disjoint from all sets in N2. If the answer is yes, then L(M̂S′

1) = ∅ and, thus,
L(M) = Σ∗. If no, then L(M̂S′

1) = Σ∗ and, thus, L(M) �= Σ∗. Thus, deciding
whether L(M) = Σ∗ is recursive in S′

2. We show that S′
2 is recursive in the

problem of whether L(M) = Σ∗. If L∗ contains the codes of the Turing machines
accepting all their inputs, then we will prove that there exists a Turing machine
M̂

′′L∗ , i.e. a Turing machine with oracle set L∗, recognizing S′
2.

On the Undecidability of the Panopticon Detection Problem 85

Given a Turing machine MS′
1 , we define the notion of a valid computation

of MS′
1 using oracle S′

1 in a way similar to the notion defined in [5,6]. A valid
computation is a sequence of Turing Machine step descriptions, called Instanta-
neous Descriptions or ID, such that the next one follows from the current one
after a computational (not oracle query) step, according to the internal operation
details (i.e. transition function or program) of the Turing machine. Roughly, an
ID describes fully the status of a Turing Machine computation at each time step,
containing information such as tape contents, head position, and current state.
However, if a query step is taken, i.e. the Turing machine MS′

1 enters state q?,
and the next state is qn, this means that MS′

1 submitted a query to the oracle
S′
1 with respect to whether some given Turing machine, say T , belongs to the set

S′
1, receiving the answer no. In other words, the oracle replied that <T> /∈ S′

1

or, equivalently, L(T) is not disjoint from all sets in N1. As evidence for the cor-
rectness of this reply from the oracle, we substitute the query step with a valid
computation of the ordinary (i.e. with no oracle) Turing machine T that shows
that a particular string from a language in N1 is, also, accepted by T . If, how-
ever, after q? the state qy follows, no computation is inserted. Intuitively, such
a computation would be infinite. By definition, all valid computations conclude
in a halting, i.e. acceptance state (see [5,6] for details).

We describe the operation of M̂
′′L∗ with <MS′

1> as input. Given MS′
1 , M̂

′′L∗

constructs M
′
which accepts all computations of MS′

1 which show that they are
not a Panopticon. We call these computations non-Panopticon computations
and they are of two disjoint types: (i) invalid computations, i.e. computations
which contain invalid successions of IDs, and ii) unsuccessful computations, i.e.
computations which, although not invalid, they demonstrate that MS′

1 is not a
Panopticon.

M
′

interprets its inputs as computations of MS′
1 . Given such an input, M

′

first checks if the string is malformed (i.e. not of correct format) or when one
step does not follow from the previous one according to the internals of the
Turing machine MS′

1 , or when the inserted, non-oracle, computation in a q?-qn
step is not valid. In all these cases M

′
accepts the input string as an invalid

computation.
However, there is some difficulty in the q?-qy cases since, as we stated above,

there is no obvious finite computation evidence for the correctness or not of the
reply. Now the Turing machine M

′
must decide on its own whether the reply to

each q?-qy query is correct. Let us assume there are t ≥ 1 such queries in the
examined computation (otherwise there are no q?-qy cases to check). Let, also,
w be the input string to the computation of MS′

1 that is checked by M
′
whether

it is invalid, so as to accept it.
In particular, the reply qy to the ith, 1 ≤ i ≤ t, query means that the language

recognized by Ti is disjoint from all the sets in N1, i.e. <Ti> ∈ S′
1. Using a round

robin technique similar to the triples generation technique described in the proof
of Theorem 4, M

′
cycles, concurrently

86 V. Liagkou et al.

– (Simulation A) over all the t q?-qy queries in the examined computation of
MS′

1 , trying to locate a string accepted by a queried Turing Machine Ti and
one of the Turing Machines M1

1 ,M1
2 , . . . , M1

k in S′
1.

– (Simulation B) over MS′
1 and the Turing Machines M2

1 ,M2
2 , . . . , M2

k in S′
2,

with the same input w, trying to discover whether w, which is accepted by
the examined (by M

′
) computation of MS′

1 , if valid, is, also, accepted by one
of the Turing Machines M2

1 ,M2
2 , . . . , M2

k in S′
2.

As long as none of the above simulations concludes, M
′
continues the search.

If one of them concludes, then M
′

stops the simulation and accepts its input
string (which represents a computation of MS′

1) since the computation it repre-
sents was either invalid (Simulation A concludes) or unsuccessful (Simulation B
concludes). In other words, the computation was a non-Panopticon computation.

Based on the above, L(M
′
) = Σ∗ if and only if <MS′

1> �∈ S′
2. Thus, M̂

′′L∗

can, now, ask its oracle whether L(M
′
) = Σ∗ or not, deciding in this way S′

2

and, thus, detecting deductive Panopticons. �

5 Conclusions

In this paper we addressed the problem of detecting Panopticons and their
activity based on Oracle Turing Machines. Comparing Theorems 1, 4, and 5,
Theorem 1 examines the detection of Panopticons based on the execution of
specific visible or detectable actions, i.e. on a behavioural level, such as connect-
ing to a server and sending eavesdropped information or sending an email to
the unlawful recipient. Theorems 4 and 5 examine Panopticon detection not
based on their visible behaviour but from what languages they may recognize,
without having any visible clue of behaviour or actions, only their descriptions
as Turing machines (i.e. programs or systems). These theorems, that is, exam-
ine the detection of Panopticons at a metabehavioural level. With respect to
the difference between Theorems 4 and 5, we first observe that Lu is recur-
sively enumerable but not recursive while the {<M>|L(M) = Σ∗} language is
not recursively enumerable (see, e.g., [6]). Although they are, both, not recur-
sive (i.e. not decidable), their “undecidabilities” are of different levels, with the
{<M>|L(M) = Σ∗} language considered “more difficult” than Lu in restricted
types of Turing machines (Panopticons). For example, the Lu language is decid-
able for Context-free Grammars (i.e. for Turing machines modeling Context-free
Grammars) while the {<M>|L(M) = Σ∗} language is still undecidable. Also,
for regular expressions, the problem of deciding Lu is solvable efficiently (i.e.
by polynomial time algorithms) while the {<M>|L(M) = Σ∗} language has
been shown, almost certainly, to require exponential time (in the length of the
given regular expression) to solve (see, e.g., [6]). Therefore, a similar decidability
complexity status is expected from S′

1 (deductive Panopticons without external
advice) and S′

2 (deductive Panopticons with external advice in the form of an
oracle) since they are equivalent to the languages Lu and {<M>|L(M) = Σ∗}
respectively. That is, when we consider more restricted definitions of Panopticons

On the Undecidability of the Panopticon Detection Problem 87

that render the detection problem decidable, then deciding which Panopticons
belong in S′

1 is expected to be easier than deciding which Panopticons belong in
S′
2.

In conclusion, we feel that the formal study of the power and limitations
of massive surveillance establishments and mechanisms of today’s as well as of
the future Information Society can be, significantly, benefited from fundamental
concepts and deep results of computability and computational complexity theory.

References

1. Bentham, J.: Panopticon or The Inspection House. Written as a Series of Letters in
1787

2. Cohen, F.: Computer viruses. Ph.D. thesis, University of Southern California (1985)
3. Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35

(1987)
4. Foucault, M.: Discipline and Punish: The Birth of the Prison. Random House, New

York (1977)
5. Hartmanis, J., Hopcroft, J.E.: Structure of undecidable problems in automata the-

ory. In: Proceedings of 9th Annual IEEE Symposium on Switching and Automata
Theory (SWAT 1968), pp. 327–333 (1968)

6. Hopcroft, J., Ullman, J.D.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley series in Computer Science (1979)

7. Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of recursive unsolvability.
Ann. Math. 59, 379–407 (1954)

8. A.M. Turing: On Computable Numbers, with an Application to the Entscheidungs
problem. Proc. London Math. Soc. 2, 230–265 (1936–1937)

9. Turing, A.M.: Systems of logic based on ordinals. Proc. London Math. Soc. 45(Part
3), 161–228 (1939)

Privacy-Preserving Contrastive
Explanations with Local Foil Trees

Thijs Veugen1,2(B) , Bart Kamphorst1 , and Michiel Marcus1

1 TNO, The Hague, The Netherlands
{thijs.veugen,bart.kamphorst,michiel.marcus}@tno.nl

2 CWI, Amsterdam, The Netherlands
http://www.tno.nl,http://www.cwi.nl

Abstract. We present the first algorithm that combines privacy-
preserving technologies and state-of-the-art explainable AI to enable
privacy-friendly explanations of black-box AI models. We provide a
secure algorithm for contrastive explanations of black-box machine learn-
ing models that securely trains and uses local foil trees. Our work shows
that the quality of these explanations can be upheld whilst ensuring the
privacy of both the training data, and the model itself. An extended
version of this paper is found at Cryptology ePrint Archive [16].

Keywords: Explainable AI · Secure multi-party computation ·
Decision tree · Foil tree

1 Introduction

The field of explainable AI focuses on improving the interpretability of machine
learning model behaviour. Popular algorithms are the LIME [12] and SHAP [10]
algorithms, which take a data point and its classification according to a trained
machine learning model, and output the importance of each feature for that
particular classification. The downside is that often a large number of features
are used, which makes it hard to interpret. In a successful attempt at reducing
the features in the explanation, Van der Waa et al. [15] created an algorithm
called local foil trees that explains why someone was classified as class A instead
of another class B, by providing a set of decisions rules that need to apply for
that point to be classified as class B. This provides an increased understanding
of the AI system [14], which can for instance be used to infer what can be done
to change the classification, and is therefore actionable.

Our work focuses on creating a secure algorithm that provides the same
functionality as the local foil tree algorithm in a setting where the black-box
machine learning model needs to remain secret to protect the confidentiality of
the machine learning model and the training data.

We assume that the black-box machine learning model cannot be revealed,
because of commercial reasons, or its known leakage of sensitive training data
[8,17,18]. This poses a new challenge for black-box explainable AI, because it is

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 88–98, 2022.
https://doi.org/10.1007/978-3-031-07689-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_7&domain=pdf
http://orcid.org/0000-0002-9898-4698
http://orcid.org/0000-0002-9490-5841
http://orcid.org/0000-0003-0936-2289
https://doi.org/10.1007/978-3-031-07689-3_7

Privacy-Preserving Contrastive Explanations with Local Foil Trees 89

not trivial to train a decision tree and extract an explanation when some of the
inputs to the tree need to remain hidden.

There is a variety of cryptographic techniques that can be used to securely
train models. When multiple organisations are involved, common techniques are
secret sharing [3] and homomorphic encryption [11]. In this work, we address
the aforementioned challenge and provide an algorithm that can produce con-
trastive explanations when the model is either secret shared, or homomorphically
encrypted.

An additional challenge comes from the fact that explainable AI works best
when rule-based explanations, as provided through the local foil tree algorithm,
are accompanied by an example-based explanation, such as a data point that is
similar to the user, but is classified as class B instead of A [14]. The use of a data
point (having class B) from the sensitive training data would violate privacy in
the worst way possible. As we will discuss in Sect. 3, we address this challenge
using synthetic data.

In summary, we present a secure solution to explain AI, consisting of:

– A cryptographic protocol to securely train a binary decision tree when the
target variable is hidden;

– An algorithm to securely generate synthetic data based on numeric sensitive
data;

– A cryptographic protocol to extract a rule-based explanation from a hidden
foil tree, and construct an example data point for it.

In the remainder of this introduction, we discuss related work. In the sections
following after, we explain the local foil tree algorithm [15] and present a secure
solution. Thereafter, we discuss the complexity of the proposed solution and
share experimental results. Finally, we provide closing remarks in the conclusion.

1.1 Related Work

Our solution is based on the local foil tree algorithm by Van der Waa et al. [15],
for which we design a privacy-preserving solution based on MPC. There is related
work in the area of securely training decision trees, but these results are never
applied to challenges in explainable AI. As we will elaborate on further in Sect. 3,
we have a special setting where the feature values of the synthetic data to train
the decision tree are not encrypted, but the classifications of these data points
are encrypted. As far as we know, no training algorithm for such a setting has
been proposed yet.

We mention the work of de Hoogh et al. [4], who present a secure variant
of the well-known ID3 algorithm (with discrete variables). Their training data
points remain hidden, whereas in our case that is not necessary. Furthermore, as
the number of children of an ID3 decision node reflects the number of categories
of the chosen feature, the tree decision is not completely hidden. Furthermore,
Abspoel et al. [1] have implemented C4.5 and CART in the MP-SPDZ frame-
work, but their solution is less efficient, because they work with encrypted feature

90 T. Veugen et al.

Table 1. Notation as used throughout the document. Some symbols are seen in the
context of a certain point (node) within the decision tree, in which case they can be
sub- or superscripted with l or r to denote the same variable in the left or right child
node that originates from the current node.

A Fact (class); classification of the user as indicated by the black-box

B Foil (class); target class for contrastive explanation to the user

B Decision tree or, equivalently, foil tree

Gs Gini index for split s ∈ {1, . . . , ς}
G̃s = Ns/Ds Adjusted Gini index for split s ∈ {1, . . . , ς}
kA, kB Index of classes A and B, respectively

K Number of classes

n Number of available synthetic data points in a particular node

N Number of synthetic data points |X |
P Number of features per data point

ς Number of splits |S|
Ss = (ps, ts) Feature index ps ∈ {1, . . . , m} and threshold ts of split Ss,

1 ≤ s ≤ ς

xi, xU Vector (xi,1, . . . , xi,P) of feature values of synthetic data point i.
With subscript U , it refers to the data point of the user

X Set of all synthetic data points xi, i = 1, . . . , N

yi Indicator vector (yi,1, . . . , yi,K) of the class of data point i as
indicated by the black-box

ξi Bit that indicates whether data point i is available (1) or
unavailable (0) in the current node

values. In a similar approach, Adams et al. [7] scale the continuous features to a
small domain to avoid the costly secure operations, at the expense of a potential
drop in accuracy.

The work of [9] presents a new class of machine learning models that are
interpretable and privacy-friendly with respect to the training data. Our work
does not introduce new models, but provides an algorithm to improve the inter-
pretation of existing complex models that have been securely trained on sensitive
data.

1.2 Notation

Due to the inherent complexity of both explainable AI and cryptographic pro-
tocols, we require many symbols in our presentation. These symbols are all
introduced in the body of this paper; however, for the reader’s convenience we
also summarize the most important symbols in Table 1.

Sets are displayed in curly font, e.g. X , and vectors in bold font, e.g. xU .
The vector ej represents the j-th elementary vector of appropriate, context-
dependent length. The notation (x ≥ y) is used to denote the Boolean result
of the comparison x ≥ y. Any symbol between square brackets [·] represents a
secret-shared version of that symbol. Finally, a reference to line y of Protocol x
is formulated as line x.y.

Privacy-Preserving Contrastive Explanations with Local Foil Trees 91

Protocol 1. Foil-tree based explanation
Input: Data point xU that is classified as class A; foil class B
Output: Explanation why xU was not classified as the foil class

1: Obtain a classification for the user � cf. Sect. 3.1
2: Prepare the synthetic data points for the foil tree � 3.2
3: Classify all synthetic data points through the black-box � 3.3
4: Train a decision tree � 3.4
5: Locate fact leaf (leaf node of xU) � 3.5
6: Determine the foil leaf (leaf node of class B closest to fact leaf) � 3.6
7: Determine the decision node at which the root-leaf paths of the fact and foil leaf

split � 3.7
8: Construct the explanation (and provide an example data point). � 3.7

2 Explainable AI with Local Foil Trees

In this section we present the local foil tree method of Van der Waa et al. [15]
and discuss the challenges when the black-box classifier needs to remain secret.
We assume that this classifier returns a secret-shared classification.

If a user-supplied data point xU is classified as some class A, our goal is
to construct an explanation why xU was not classified as another class B. The
explanation will contain decision rules of the form that a certain feature of xU is
less (or greater) than a certain threshold value. An overview of the different steps
is formalized in Protocol 1. Note that we deviate from Van der Waa et al. by
providing an example data point in the final step. In each step of the protocol,
we also refer to the section of our work where we present secure protocols for
that step.

To train the decision tree, we adapt the CART algorithm [2] to work with
secret-shared labels. We use the CART algorithm, because it generates binary
trees. Other algorithms, such as ID3, generate non-binary trees, so their structure
can reveal which feature is used in a node. The result of the adapted CART
procedure is a binary decision tree whose decision rules and leaf classifications are
secret-shared. As a consequence, we need a secure protocol for determining the
position of a foil data point, and all nodes that are relevant for the explanation.

3 Secure Solution

In this section we describe the secure version of the local foil tree algorithm. In
the rest of this work, we will refer to training data when we talk about the data
used to train the black-box machine learning model and to synthetic data when
we refer to the synthetically generated data that we use to train the foil tree.

The secure protocol generates N synthetic data points xi, i = 1, . . . , N , with
P features that each can be categorical, or continuous. To increase the efficiency
of the secure solution, we make use of one-hot encoding to represent categorical
values. We assume that the class k ∈ {1, . . . , K} of data point xi is represented

92 T. Veugen et al.

by a secret binary indicator vector [yi] = ([yi,1], . . . , [yi,K]), such that yi,k = 1,
if data point xi is classified as class k by the black-box, and yi,k = 0, otherwise.

During the decision tree training, we maintain an indicator vector ξ of length
N , such that ξi = 1, if and only if, the i-th synthetic data point is still present
in this branch.

3.1 Classify User Data

We assume that the user is allowed to learn the black-box classification of her
own data point xU , so this step is trivial. Without loss of generality, we assume
that the user received classification A.

3.2 Generating Synthetic Data

In order to support example-based explanations in a privacy-preserving way, we
generate synthetic data based on the sensitive training data. We use a simple
algorithm that only requires the secure computation of the mean and standard
deviation of the training data for each feature. To increase privacy guarantees,
differential privacy [6] could be applied to the secure computation of the means
and standard deviations.

We sample the synthetic data values from an interval around the values of
data point xU . For example, w.l.o.g., if feature fi of xU has value vi, then we
sample from the interval [vi − di, vi + di] for some relatively small value di.

Constrained to this interval, we use the (normalized) normal distribution
defined by the mean and standard deviation of the training data. This method
ensures privacy, and provides synthetic data that are realistic and similar to xU .
We refer to the full paper [16] for more details.

3.3 Classify Synthetic Data

All synthetic training data points xi can now be classified securely by the model
owner(s). This results in secret-shared classification vectors [yi]. The secure com-
putation depends on the model, and is beyond our scope.

3.4 Training a Decision Tree

In this section, we explain the secure CART algorithm that we use to train a
secure decision tree, which is described in Protocol 2. We start with an empty
tree, and all training data points are marked as available. First, the stopping
criterion uses the number of elements of the most common class (line 2.8), and
the total number of elements in the availability vector (line 2.7). The stopping
criterion from line 2.10 is securely computed by

1 − (1 − [(n ≤ τ · N)] · (1 − [(n = nk∗)])

This stopping criterion is revealed afterwards to determine whether the algorithm
should continue, or not.

Privacy-Preserving Contrastive Explanations with Local Foil Trees 93

If the stopping condition is equal to one, a leaf node with the secret-shared
indicator vector of the most common class is generated. In order to facilitate the
efficient extraction of a foil data point as mentioned at the start of Sect. 3, we
also store the availability vector ξ in this leaf node. How this indicator vector is
used to securely generate a foil data point is discussed in Sect. 3.8.

If the stopping criterion is not met, a decision node is created by computing
the best split (lines 2.13–19) using the adjusted Gini indices of each split in S.
Normally, the best split is the split with the lowest Gini Index. However, for
efficiency, we translate the problem of minimizing the Gini Index into a problem
of maximizing the Adjusted Gini Index. The Adjusted Gini Index G̃s of a split
Ss is given by

G̃s =
nr

∑K
k=1(n

l
k)

2 + nl
∑K

k=1(n
r
k)

2

nl · nr
=:

Ns

Ds
. (1)

Here, nl is the number of available data points in the left set that is induced
by split Ss and nl

k denotes the number of available data points in the left node
with class k. The symbols nr and nr

k are defined analogously for the right set.
We refer to our full paper [16] for more details. We note that we do not compute
G̃s as one secure fixed-point number, but securely compute the numerator Ns

and denominator Ds separately, and store both for efficiency reasons. Protocol 3
shows how the adjusted Gini index can be computed securely.

After determining the optimal split, an availability vector is constructed for
each child based on this split in lines 2.21–22. For each synthetic data point, we
check that it is present in the node, and whether it meets the splitting criterion.
The entry-wise difference with [ξ] then gives the availability vector for the right
child. The CART algorithm is called recursively with the new availability vectors
to generate the children of the decision node.

In protocol 2, the max subroutine securely computes the maximum value in
a list using secure comparisons, and the find subroutine finds the secret-shared
location of the maximum computed by max in the list that was input to max.
The functions max and find are already implemented in MPyC. However, since
we always use the two in conjunction, we implemented a slight variation. This
variation and some comments on the convergence of this secure CART algorithm
can be found in our full paper [16].

3.5 Locate the Fact Leaf

Once the decision tree has been constructed, we need to find the leaf that contains
the fact class of xU . As the fact leaf will be revealed, the path from the root to
the fact leaf will be revealed as well. Therefore, we can traverse the decision tree
from the root downwards and reveal each node decision. First, the feature value
that is relevant for the current decision node is securely determined through
[xU,ps∗] =

∑P
p=1[eps∗ ,p] · [xU,p]. Second, the secure comparison [(xU,ps∗ ≤ ts∗)]

is performed and revealed. The result directly indicates the next decision node
that needs to be evaluated. This process is repeated until a leaf is encountered:
the fact leaf.

94 T. Veugen et al.

Protocol 2. cart
Secure CART training of a binary decision tree.

Input: Training set X , split set S, convergence parameter τ ∈ [0, 1], secret-shared
binary availability vector [ξ]
Output: Decision tree B

1: B ← ∅
2: N ← |X|
3: while B is not fully constructed do
4: for k = 1, . . . , K do
5: [nk] ← ∑N

i=1[yi,k] · [ξi] � nr available data points per class
6: end for
7: [n] ← ∑K

k=1[nk] � nr available data points
8: [nk∗] ← max(([n1], . . . , [nK]))
9: [ek∗] ← find([nk∗], ([n1], . . . , [nK])) � indicates most common class

10: if [(n ≤ τ · N)] or [(n = nk∗)] then � branch fully constructed
11: Extend B with leaf node with class indicator [ek∗]
12: else � branch splits
13: for s = 1, . . . , ς do
14: [Gs] ← adjusted gini(Ss)
15: end for
16: [Gs∗] ← max([G])
17: [ek∗] ← find([Gs∗], [G]) � indicates best split
18: [ps∗] ← ∑ς

s=1[es∗,s] · ps � feature of optimal split
19: [ts∗] ← ∑ς

s=1[es∗,s] · ts � threshold of optimal split
20: b ← decision node that corresponds with split ([ps∗], [ts∗])
21: ξl ← left child availability(X , [xi], [p∗], [ts∗])
22: [ξr] ← [ξ] − [ξl]
23: Extend b to the left with result of cart(X , S, τ, [ξl])
24: Extend b to the right with the result of cart(X , S, τ, [ξr])
25: Extend B with b
26: end if
27: end while
28: Return B

3.6 Locate the Foil Leaf

Since we know the fact leaf and the structure of the decision tree, we can create
an ordered list of all tree leaves, starting with the closest leaf and ending with the
farthermost leaf. We can traverse this list and find the first leaf that is classified
as class B, without revealing the classes, but only whether they equal B or not,
i.e. by revealing the Boolean [(ek∗,kB

= 1)] for every next leaf. This does not
require any extra computations, as these vectors have already been computed
and stored during the training algorithm. We use the number of steps between
nodes within the decision tree as our distance metric, but as Van der Waa et
al. [15] note, there are more advanced options.

Privacy-Preserving Contrastive Explanations with Local Foil Trees 95

Protocol 3. adjusted gini
Compute the adjusted Gini index of a split.

Input: Synthetic data set X , vector of available transactions ξ, split
(ps, ts) = Ss ∈ S
Output: Encrypted numerator and denominator of adjusted Gini index
[G̃s] = [Ns]/[Ds]

1: for i=1,. . . ,N do
2: δi ← (xi,ps ≤ ts) � 1 if data point meets split criterion, else 0
3: end for
4: [n] ← ∑N

i=1[ξi], [nl] ← ∑N
i=1 δi · [ξi], [nr] ← [n] − [nl]

5: [nk] ← ∑N
i=1[yi,k] · [ξi], [nl

k] ← ∑N
i=1 δi · [yi,k] · [ξi], [nr

k] ← [nk] − [nl
k]

6: Return [Ns] ← [nr]
∑K

k=1([n
l
k])2 + [nl]

∑K
k=1([n

r
k])2 and [Ds] ← [nl] · [nr]

3.7 Construct the Explanation

As the structure of the decision tree is known, we can identify the lowest common
node between the fact and foil leaf without secure computations. The relevant
nodes for the explanation lay on the path between the lowest common node and
the foil leaf, as they explain what changes need to happen for xU to end up in
the foil leaf. The feature and threshold in the nodes on this path are revealed
only to the user, as it could possibly leak information about the values we are
trying to protect. These pairs of features and thresholds can be interpreted as
rules, e.g., (fi, ti) =⇒ fi < ti if it is a left child, and fi ≥ ti otherwise. For each
rule, the user determines whether it applies to xU . For instance, if a rule states
that xU,i ≥ 3, and xU already satisfies this rule, then it is not relevant for the
explanation. After this filter is applied, the remaining rules are combined where
applicable. For example, if one rule requires xU,i ≥ 3 and another rule requires
xU,i ≥ 4, we take the strictest rule, which in this case is xU,i ≥ 4.

3.8 Retrieving a Foil Data Point

We now show how to securely compute a synthetic data point that is classified
as class B and ends up in the foil leaf node, which we call a foil data point.1

We can retrieve the binary availability vector ξfoil of the foil leaf, as this was
stored while training the foil tree. A protocol for retrieving a foil data point is
presented in Protocol 4, which returns the first foil data point of the synthetic
data set.

It is important that the foil data point is only revealed to the user, and not
to the computing parties, since the foil data point can leak information on the
classifications of the synthetic data points according to the secret-shared model,
which are the values we are trying to protect. In practice this means that all
computing parties send their shares of the feature values in vector s to the user,
who can then combine them to reconstruct the secret values.
1 Note that it is possible for samples in a foil leaf to have a classification different from

B, so care needs to be taken in determining the foil sample.

96 T. Veugen et al.

Protocol 4. retrieve foil
Retrieve foil data point

Input: Availability vector [ξ] of the foil leaf, class index kB

Output: Foil data point s

1: [ε] ← [0] � flips to [1] when a foil data point is found
2: for i = 1, . . . , n do
3: [δi] ← (1 − [ε]) · [ξi] · [yi,kB]
4: [ε] ← [ε] + [δi]
5: end for
6: for p = 1, . . . , P do
7: [sp] ← ∑N

i=1[δi] · [xi,p]
8: end for
9: Reveal s to the user

4 Security

We use the MPyC platform [13], which is known to be passively secure. The
computing parties jointly and securely train the foil tree and produce an expla-
nation, which is revealed to the user. The machine learning model is out of scope,
we simply assume that the computing parties can securely obtain secret-shared
classifications of the synthetic data, without any party learning the classifica-
tions.

During the protocol, the computing parties will learn the data point xU of
the user, its class A, and the foil class B, together with the average and variance
of each feature in the training data, which are used to generate synthetic data
set X . Furthermore, the (binary) structure of the decision tree, including the
fact leaf, foil leaf, and therefore also the lowest common node, will be revealed.
Other than this, no training data or model information will be known to the
computing parties.

The explanation, consisting of a feature index and threshold for each node
on the path from lowest common node to the foil leaf, and the foil data point s,
is revealed only to the user.

5 Experiments

We implemented our secure foil tree algorithm in the MPyC framework [13]. In
our experiments, we ran MPyC with three parties, and used secure fixed point
numbers with a 64-bit integer part and 32-bit fractional part. For the secret-
shared black-box model, we secret-shared a neural network with three hidden
layers of size 10 each. We used the iris data set [5] as our training data for the
neural network (using integer encoding for the target variable) and generated
three synthetic data sets based on the iris data set of sizes 50, 100 and 150
respectively.

Table 2 shows the results of our performance tests. We report the timing in
seconds of our secure foil tree training algorithm under ‘Tree Training’, for the

Privacy-Preserving Contrastive Explanations with Local Foil Trees 97

Table 2. Performance results (timing in seconds) of our algorithms in MPyC.

N Tree training Explanation Data Point Accuracy

Avg Min Max Avg Min Max Avg Min Max

50 20.396 19.594 21.158 0.033 0.027 0.041 0.157 0.112 0.219 0.96

100 94.455 93.133 95.234 0.061 0.058 0.062 0.277 0.269 0.361 0.89

150 130.575 129.681 131.327 0.050 0.038 0.052 0.404 0.387 0.425 0.91

explanation construction under ‘Explanation’, and for the extraction of the data
point under ‘Data Point’. For each of these, we report the average timing, the
minimum and the maximum that we observed. The column ‘Accuracy’ denotes
the accuracy of the foil tree with respect to the neural network. We do not provide
any performance results on the training algorithm or classification algorithm of
the secret-shared black-box model, since our solution is model-agnostic.

We see that the accuracy does not necessarily increase when we use more
samples. A synthetic data set size of 50 seems to suffice for the iris data set, and
shows performance numbers of less than half a minute for the entire algorithm.

6 Conclusion

We presented the first cryptographic protocol that is able to explain black-box
AI models that are trained by sensitive data, in a privacy-preserving way. The
explanation is constructed by means of local foil trees. After generating synthetic
data close to a fact data point, a binary tree is securely computed to find the
so-called fact and foil leaves. Using both fact and foil leaf, an explanation of the
AI model is constructed that explains to the user why they were classified as
the fact class, and not as the foil class. We additionally provide a synthetic data
point from the foil leaf to strengthen the explanation.

Our solution hides the classification model and its training data, in order
to provide explanations towards users without leaking commercially or privacy
sensitive data. We implemented our solution with MPyC on the iris data set with
different sizes of synthetic data sets. With 50 samples, we achieved an accuracy
of 0.96 within half a minute.

Acknowledgements. The research of this paper has been done within the FATE
project, which is funded by the TNO Appl.AI program (internal AI program). We
additionally thank Jasper van der Waa for his helpful comments and suggestions.

References

1. Abspoel, M., Escudero, D., Volgushev, N.: Secure training of decision trees with
continuous attributes. Priv. Enhanc. Technol. 2021(1), 167–187 (2021)

2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regres-
sion trees. Wadsworth (1984)

98 T. Veugen et al.

3. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press (2015)

4. de Hoogh, S., Schoenmakers, B., Chen, P., op den Akker, H.: Practical secure
decision tree learning in a teletreatment application. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 179–194. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 12

5. Dua, D., Graff, C.: UCI machine learning repository (2017)
6. Dwork, Cynthia: Differential privacy. In: Bugliesi, Michele, Preneel, Bart, Sassone,

Vladimiro, Wegener, Ingo (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer,
Heidelberg (2006). https://doi.org/10.1007/11787006 1

7. Adams, S., et al.: Privacy-preserving training of tree ensembles over continuous
data, CoRR abs/2106.02769 (2021)

8. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in
pharmacogenetics: an end-to-end case study of personalized warfarin dosing. In:Fu,
K., Jung, J. (eds.) Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, 20–22 August 2014. USENIX Association, pp. 17–32 (2014)

9. Harder, F., Bauer, M., Park, M.: Interpretable and differentially private predic-
tions. In: The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI. AAAI Press, pp. 4083–4090 (2020)

10. Lundberg, S.M., Lee, S.-I: A unified approach to interpreting model predictions.
In: Annual Conference on Neural Information Processing Systems. Advances in
Neural Information Processing Systems, vol. 30, pp. 4765–4774 (2017)

11. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

12. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 13–17 August 2016. ACM, pp. 1135–1144 (2016)

13. Schoenmakers, B.: MPyC - Secure Multiparty Computation in Python. https://
github.com/lschoe/mpyc

14. van der Waa, J., Nieuwburg, E., Cremers, A.H.M., Neerincx, M.A.: Evaluating
XAI: a comparison of rule-based and example-based explanations. Artif. Intell.
291, 103404 (2021)

15. van der Waa, J., Robeer, M., van Diggelen, J., Brinkhuis, M., Neerincx, M.: Con-
trastive explanations with local foil trees, CoRR abs/1806.07470 (2018)

16. Veugen, T., Kamphorst, B., Marcus, M.: Privacy-preserving contrastive explana-
tions with local foil trees. IACR Cryptology ePrint Archive, no. 360, pp. 1–20
(2022)

17. Yang, Z., Zhang, J., Chang, E.C., Liang, Z.: Neural network inversion in adversarial
setting via background knowledge alignment. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security CCS. ACM, pp.
225–240, November 2019

18. Zhang, Y., Jia, R., Pei, H., Wang, W., Li, B., Song, D.: The secret revealer: gener-
ative model-inversion attacks against deep neural networks. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020, pp. 250–
258, June 2020

https://doi.org/10.1007/978-3-662-45472-5_12
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/3-540-48910-X_16
https://github.com/lschoe/mpyc
https://github.com/lschoe/mpyc

Timing Leakage Analysis of
Non-constant-time NTT Implementations

with Harvey Butterflies

Nir Drucker(B) and Tomer Pelleg

IBM Research - Haifa, Haifa, Israel

drucker.nir@gmail.com

Abstract. Harvey butterflies and their variants are core primitives in
many optimized number-theoretic transform (NTT) implementations,
such as those used by the HElib and SEAL homomorphic encryption
libraries. However, these butterflies are not constant-time algorithms and
may leak secret data when incorrectly implemented. Luckily for SEAL
and HElib, the compilers optimize the code to run in constant-time.

We claim that relying on the compiler is risky and demonstrate how
a simple code modification, näıve compiler misuse, or even a malicious
attacker that injects just a single compiler flag can cause leakage. This
leakage can reduce the hardness of the ring learning with errors (R-LWE)
instances used by these libraries, for example, from 2128 to 2104.

Keywords: NTT · Harvey’s butterflies · Constant-time code ·
Compiler optimizations · Ring-LWE · Side-channel attacks

1 Introduction

Constant-time implementations are today considered a requirement for crypto-
graphic libraries that provide production-level code. Commonly, an implementa-
tion is considered “constant-time” if code branches and memory access patterns
are independent of secret information. Efficiently achieving this property is not
always easy, and the literature is full of examples that exploit optimized code
that does not run in constant-time, for example, [12,14,22].

The number-theoretic transform (NTT) algorithm is used by many cryp-
tographic implementations to achieve fast polynomial multiplications. Some
examples include post-quantum schemes such as Kyber [24], NTTRU [21], and
Dilithium [11], or homomorphic encryption (HE) libraries such as SEAL [18],
HELib [15], Palisade [27], and HEAAN [7]. Despite the performance benefits
provided by NTT, it is still the bottleneck in many of these implementations,
which makes it an ideal target for optimization. The list of works that deal with
NTT optimizations in hardware and software is large. In this work, we analyze
the constant-time property in the optimizations of [16,19] that are also used by
SEAL, HElib, and other software [3,16,17] and hardware [10,23] implementa-
tions. Specifically, we consider Harvey butterflies [16] that involve branches for
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 99–117, 2022.
https://doi.org/10.1007/978-3-031-07689-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_8&domain=pdf
http://orcid.org/0000-0002-7273-4797
http://orcid.org/0000-0001-7609-1138
https://doi.org/10.1007/978-3-031-07689-3_8

100 N. Drucker and T. Pelleg

performing fast modular reduction and therefore are not considered constant-
time algorithms. Nevertheless, some constant-time implementations for them
exist, such as the implementation of [19] [Sect. 5] and the vectorized implemen-
tations of [3].

SEAL uses the following C macro to perform the modular reduction branch
of Harvey’s butterfly:

1 #define SEAL_COND_SELECT(cond ,if_true ,if_false) (cond ? if_true:if_false
)

and states that “This is a temporary solution that generates constant-time code
with all compilers on all platforms.” We tested this claim on Linux for all the
supported compilers “Clang++ (≥5.0) or GNU G++ (≥6.0)” and observed that
the Assembly code generated by the compiler indeed always used a conditional
move (CMOV) instruction.

The same ternary pattern used in SEAL COND SELECT is used in NTL [26],
an optimized mathematical library that HElib uses for its NTT implementation.
However, unlike SEAL, NTL also includes a branch-less implementation that
is controlled by the flag NTL AVOID BRANCHING. The reason for including the
flag seems to be related to performance and not to security. This is indicated in
the code comment:

“On some modern machines, this is usually faster and NTL uses this
non-branching strategy. However, on other machines (modern x86’s are
an example of this), conditional move instructions can be used in place
of branching, and this code can be faster than the non-branching code.
NTL’s performance-tuning script will figure out the best way to
do this.”

or in the comment

“With this option, branches are replaced at several key points with equiv-
alent code using shifts and masks. It may speed things up on machines
with deep pipelines and high branch penalties.”

As a final example, we consider the Palisade code [27], which does not seem to
implement Harvey’s butterflies but still uses a simple if-else code.

Despite requests (e.g., [5]) to include a built-in directive-API in GCC that
will force compilers to use a conditional move, it does not yet exist. Conse-
quently, SEAL’s assumption could be wrong in new compilers and OSs. With-
out continuous integration tests to test this assumption, secret information
can be leaked. In fact, this may already happen today. The SEAL function
multiply plain normal performs multiplication of plaintext by HE cipher-
text, with cases where the plaintext is a secret as indicated therein: “Optimiza-
tions for constant/monomial multiplication can lead to the presence of a timing
side-channel in use-cases where the plaintext data should also be kept private”.
This function uses the macro SEAL COND SELECT, but its translation to Assem-
bly involves branches, which contradicts the original comment.

Timing Leakage Analysis of Non-constant-time NTT Implementations 101

A side-channel analysis of the NTT algorithm in the context of ring learning
with errors (R-LWE) was presented, for example, by [22]. Specifically, this attack
relies on a Hamming-weight leakage model, where the data for the model was col-
lected from real traces using electromagnetic (EM) measurements. In contrast,
our attack targets high-end CPUs (e.g., x86-64), where collecting EM data is
rarely possible. Instead, we rely only on timing differences and specifically the
binary knowledge of whether a branch was taken or not. This knowledge can
be collected for example when the code is called from within Intel R©SGX R©by
using the SGX-step framework [25]. Another difference between our work and
[22] is that our attack focuses on NTT implementations with Harvey butterflies,
as in the case for SEAL and HElib code. The work of [22] assumed the following
modular reduction operation a (mod q) = a− q

⌊
a
q

⌋
, which allowed them to col-

lect leakage information from the variable-time DIV instruction on Cortex-M4F.
This knowledge allowed them to report a full key recovery attack on NTT. In
contrast, we are restricted to a smaller leakage and therefore report only partial
key extraction. Still, this partial key extraction can lead to a reduction in the
hardness of the R-LWE instances and should be taken into account by security
researchers who evaluate potential risks for using a certain implementation.

Our Contribution. This work identifies places in the code of SEAL, HElib and
other HE libraries that depend on the compiler for generating a constant-time
code. We show why this assumption is risky and analyze the security loss caused
by the potential leakage in the key generation code of SEAL, which uses NTT
with Harvey butterflies. Our analysis shows that if the generated Assembly is
not a constant-time code, we can extract more than 9% of the secret key, which
reduces the hardness of the R-LWE instance by more than 10%. For example,
from 2128 to 2104 security estimation.

Organization. The document is organized as follows. Section 2 provides some
background and describes our notation. We describe the risk of depending on
the compiler in Sect. 3. Section 4 analyzes the leaked data in the case of a sparse
secret and reports our results. We conclude in Sect. 6.

2 Background and Notation

Let Fq be a finite field of characteristic q, where q is prime. The residue classes
of Fq are represented as elements from Z ∩ [0, q) and are ordered according
to their integer values. The elements in the polynomial quotient ring Rq =
Fq[X]/(XN + 1) are polynomials of a degree at most N − 1 with residue class
coefficients in Fq represented as integers, where q ≡ 1 (mod 2N) and N is a
power of two. We may refer to a polynomial a =

∑
aix

i by its coefficients i.e.,
a = (a0, . . . , aN−1). For a specific platform, we denote its word-size with β. For
example, for typical CPUs β = 232 or β = 264. We use ∧ to denote the binary
logical-and operator and u ⇒ v to denote that a boolean statement u implies
another boolean statement v.

102 N. Drucker and T. Pelleg

2.1 Distribution of an HE Secret Key

Modern HE schemes rely on the R-LWE assumption [20]. The plaintext, key,
and error domains are the polynomials ring Rq, where the keys and errors are
randomly derived from the χkey, χerr distributions, respectively. Let Ru

q ⊂ Rq

be the set of all polynomials from Rq with coefficients in {0,±1}N , then the
commonly used options for χkey are the

1. uniform distribution over Ru
q

2. uniform distribution over Ru
q with Hamming weight h, for h > 0

3. distribution over Ru
q , where each coefficient has a probability α

2 , α
2 , 1 − α of

being +1,−1, 0, respectively

The χerr distribution is commonly a Gaussian distribution. We target the residue
number system (RNS) variant of CKKS [6] and its key generation method,
where a secret key s is sampled from χkey. The original CKKS variant [6]
sets χkey according to Option 2 with h = 64. In contrast, SEAL implements
Option 1 and HElib implements Option 3 with α = 0.5. In SEAL, the func-
tion generate sk calls the function sample poly ternary and in HElib,
the function SecKey::GenSecKey calls sampleSmallBounded. We demon-
strate the potential leakage on SEAL and set χkey according to Option 1, which
simplifies the attack computations. We conjecture that similar exploits can be
generated for the other distributions. After generating the secret key s, the
SEAL generate sk function invokes the NTT algorithm on s. This behavior
is common to other libraries as well.

2.2 NTT

The NTT algorithm is a variant of the fast Fourier transform (FFT) algorithm
over Rq. It receives a polynomial a = (a0, . . . , aN−1) ∈ Rq and a fixed N ’s
primitive root of unity ω as inputs; it outputs ã = (ã0, . . . , ãN−1) ∈ Rq, where
ãi =

∑N−1
j=0 ajω

ij . The inverse function a = InvNTTω(ã) is given by ai =
1
N

∑N−1
j=0 ãjω

−ij . The powers of ω are called twiddles.
Appendix A presents one variant of the NTT and inverse-NTT (InvNTT)

algorithms as specified in [19]. These algorithms are implemented in different
libraries such as SEAL. Variants of these algorithms are available in NTL and
inherently in HElib. The main bottleneck of these algorithms is the Cooley-
Tukey (CT) [8] and Gentleman-Sande (GS) [13] butterflies, respectively. These
are implemented in SEAL using Harvey butterflies [16], which we present in
Algorithm 1. For brevity, we use ShoupModMul(t, ω, ω′, q) = ωt − q

⌊
ω′t
β

⌋
to

denote Shoup’s multiplication [16], which performs a lazy reduction and leaves
the output in the range [0, 2q − 1]. Here, β is a fixed global parameter, and
ω′ =

⌊
ωβ
q

⌋
is a precomputed value.

Timing Leakage Analysis of Non-constant-time NTT Implementations 103

Algorithm 1. Harvey’s Butterflies [16]

Global parameters: A word-size β, a modulus q < β
4
; ω ∈ Fq; ω′ =

⌊
ωβ
q

⌋
< β

Input: 0 ≤ x, y < 4q
Output: x = x + ωy, y = x − ωy (mod 4q)

1: procedure HarveyFwdButterfly(x, y, ω, ω′, q, β)
2: if x ≥ 2q then x = x − 2q

3: t =ShoupModMul(y, ω, ω′, q)
4: return (x + t, x − t + 2q)

Input: 0 ≤ x, y < 2q
Output: x = x + y, y = ω(x − y) (mod 2q)

1: procedure HarveyInvButterfly(x, y, ω, ω′, q, β)
2: x′ = x + y
3: if x′ ≥ 2q then x′ = x′ − 2q

4: t = x − y + 2q
5: y′ =ShoupModMul(t, ω, ω′, q)
6: return x′, y′

3 Compiler Optimizations

The compiler’s decision to use a conditional move or branch depends on the
penalty that the compiler believes a program hits when it executes the specific
branch. Controlling this penalty and observing the changes in the compiler out-
put is possible using the compiler’s target flag -mbranch cost=x, where x is
in {0, . . . , 5}. Indeed, when setting x ≤ 2 and compiling the SEAL code, the
output Assembly does not include conditional moves.

The reasons that led the compiler to add conditional moves to begin with,
are performance-related and not security-related. Thus, other flags may affect
its decision. For example, the following GCC optimization flags -O0, -fno-if-
conversion, -fno-if-conversion2, -fno-tree-loop-if-convert,
and -fno-tree-loop-if-convert-stores may turn off this optimization.

Someone may inadvertently compile a cryptographic library using the above
flags, for example in debug mode. It can also be the case that an adversary
intentionally injects these compilation flags in order to convert the code be non
constant-time. Putting these two options aside, it is still interesting to explore
some examples where the compiler simply does not know how to compute the
branch penalty and thus even when using the default optimization mode, it uses
branches because this is its default behavior. Consider the next example:

1 uint64_t foo(uint32_t *a) {
2 uint64_t i = 0;
3 while (i < 5) {
4 i = (i >= a[i]) ? i+2 : i;
5 }
6
7 return i;
8 }

104 N. Drucker and T. Pelleg

Here, the compiler does not know the content and size of a and thus the
generated Assembly (using Clang-10) is

1 0: 31 c0 xor %eax ,%eax
2 2: eb 12 jmp 16 <foo+0x16 >
3 4: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax ,%rax ,1)
4 b: 00 00 00
5 e: 66 90 xchg %ax ,%ax
6 10: 48 83 f8 05 cmp $0x5 ,%rax
7 14: 73 0e jae 24 <foo+0x24 >
8 16: 8b 0c 87 mov (%rdi ,%rax ,4) ,%ecx
9 19: 48 39 c8 cmp %rcx ,%rax

10 1c: 72 f2 jb 10 <foo+0x10 >
11 1e: 48 83 c0 02 add $0x2 ,%rax
12 22: eb ec jmp 10 <foo+0x10 >
13 24: c3 retq

which involves the jb branch on line 10, instead of a conditional move.
Another, perhaps simpler example, is the function

1 uint64_t foo2(uint32_t a, uint32_t b) {
2 return (a > b ? a : b);
3 }

which when compiled with GCC-9 uses conditional moves (cmovb).

1 44: 39 fe cmp %edi ,%esi
2 46: 0f 42 f7 cmovb %edi ,%esi
3 49: 89 f0 mov %esi ,%eax
4 4b: c3 retq

However, once we perform a simple modification to it

1 uint64_t foo3(uint32_t a, uint32_t b) {
2 if (b < 100000) return b;
3 return (a > b ? a : (a < 2*b ? b : a));
4 }

the output assembler involves branches.

1 54: 39 f7 cmp %esi ,%edi
2 56: 77 10 ja 68 <foo3+0x18 >
3 58: 8d 04 36 lea (%rsi ,%rsi ,1) ,%eax
4 5b: 39 f8 cmp %edi ,%eax
5 5d: 76 09 jbe 68 <foo3+0x18 >
6 5f: 89 f0 mov %esi ,%eax
7 61: c3 retq
8 62: 66 0f 1f 44 00 00 nopw 0x0(%rax ,%rax ,1)
9 68: 89 f8 mov %edi ,%eax

10 6a: c3 retq

Note that the logic in foo3 is the same logic as in foo2. The false condition
of the first ternary operator should be considered only when a ≤ b; in which
case it also follows that a ≤ 2b. In this example, for the logic to stay the same,
it is important that the 2 · b operation does not result in an integer overflow.
To accommodate this, we added the first if statement to bound b. Another
example involves lookup tables where the key is a secret, as in [9].

Timing Leakage Analysis of Non-constant-time NTT Implementations 105

The above examples show that even a small code modification may break
SEAL’s assumption as already happened for the function multiply plain
normal. Therefore, even if a code is currently compiled with a conditional
move, it is important to understand the consequences of a compilation mistake
that leads to leaking secret information.

4 Exploiting NTT over Secret Keys

We already saw how a simple code modification or a simple malicious injection
of a compilation flag can result in a variable time implementation that may
leak secret information. In this section, we provide an example that exploits
an NTT implementation that may leak information. Specifically, we target the
NTT transformation that SEAL applies to every secret key. We focus on this
scenario for two reasons. First, the distribution of the key is over polynomials
with small coefficients in {−1, 0, 1}, hereafter denoted small polynomials. Second,
this example uses the forward NTT of [19], which involves a smaller number of
twiddles in its first few iterations. This is in contrast to analyzing the inverse
NTT of [19], which is more complex since it involves a different twiddle for every
butterfly.

Although we focus on the SEAL code, the methods we apply here should
work with minor modifications on other key distributions, butterflies, or NTT
implementations. For example, we could have performed the same analysis to
extract data on the encryption error polynomial, which is derived from a some-
what wider distribution, i.e., its coefficients are sampled from a discrete Gaussian
distribution with mean zero and standard deviation σ ≈ 3.2.

In this demonstration, we analyze, measure, and accumulate the leakage
knowledge after every NTT iteration. We use analytical methods for the first
and second iterations and empirical methods for the other iterations, in which
the number of options to analyze grows exponentially. Figure 1 shows the first
few iterations of the NTT and InvNTT algorithms over polynomials of degree
N = 16. The yellow ovals (x) demonstrate values that go through the branch
x > 2q ? x : x − 2q from which we attempt to extract information.

Observation 1. For a small polynomial input, no information is leaked from
the branches of the first NTT iteration.

Proof. The NTT inputs are always in {0, 1, q−1} < 2q thus, the Harvey butterfly
branch is never taken, and the branch leakage is independent of the input. ��

Second Iteration. For the second iteration, we first define the variable

s = ShoupModMul(q − 1, ω, ω′, q)

and observe some of its properties in Lemmas 1, 2. Note that s = 0 and s = q
by definition.

106 N. Drucker and T. Pelleg

(a) NTT (b) InvNTT

Fig. 1. The first few iterations of the NTT (panel a) and invNTT (panel b) algorithms
over polynomials of degree N = 16. Yellow ovals (x) demonstrate values that will go
through the branch x > 2q ? x : x − 2q in a subsequent iteration.

Lemma 1. For a given set of parameters β, ω, q of the NTT algorithm (Algo-
rithm 3) if ωβ (mod q) < (q−ω)

(q−1) β then s < q otherwise q ≤ s < 2q

Proof. First, we compute

(q − 1)ω′

β
=

(q − 1)
⌊

ωβ
q

⌋

β
=

q
⌊

ωβ
q

⌋

β
−

⌊
ωβ
q

⌋

β

=
ωβ − (ωβ (mod q))

β
− ωβ − (ωβ (mod q))

βq

= ω −
[
ωβ + (q − 1)(ωβ (mod q))

βq

]
. (1)

Let η = ωβ+(q−1)(ωβ (mod q))
βq , where for 0 ≤ η < 1 we have

ωβ (mod q) <
(βq − βω)

(q − 1)
=

(q − ω)
(q − 1)

β

as in our assumption. We obtain the first claim by

s = ShoupModMul(q − 1, ω, ω′, q) = ω(q − 1) − q

⌊
ω′(q − 1)

β

⌋

=
Eq (1), 0≤η≤1

ω(q − 1) − q(ω − 1) = q − ω < q

When 1 < η < 2 we have
⌊
(q−1)ω′

β

⌋
= ω − 2 and q ≤ s = 2q − w < 2q. Note that

η < 2; otherwise s > 2q, which contradicts Harvey’s proof [16][Theorem 1]. ��

Timing Leakage Analysis of Non-constant-time NTT Implementations 107

Lemma 2. For a positive integer γ, when q < β
γ and ω < γ−1

γ q + 1
γ , it follows

that s < q.

Proof. Lemma 1 states that s < q when

ωβ (mod q) <
(q − ω)
(q − 1)

β

but ωβ (mod q) < q < β
γ , which implies that s < q at least for

β

γ
<

(q − ω)
(q − 1)

β

which after rearrangement becomes

ω <
(γ − 1)

γ
q +

1
γ

��
Example 1. For HarveyFwdButterfly, q < β

4 . Thus, ω < 0.75q + 0.25 ⇒ s < q.

Example 2. For β = 264 and q < 232, it holds that ω < 232−1
232 q + 1

232 ⇒ s < q.

The last example emphasizes that in SEAL, where the implementation uses
64-bit scalars (β = 264), for primes that are orders of magnitude smaller than
264 we will rarely encounter the q < s < 2q case.

Theorem 1. Given the NTT parameters q, ω, ω′, β and N = 2m, and k ≤ 2m−1,
for the input variable s =ShoupModMul(q−1, ω, ω′, q) and the branches brk and
brk+2m−1 , Algorithm 2 returns a list of the possible coefficients at position k and
k + 2m−1 after applying HarveyFwdButterfly on a small polynomial.

Proof. Let xk, xk+2m−1 be the inputs to HarveyFwdButterfly and denote by
x′

k, x′
k+2m−1 its output. Table 1 shows the possible outputs of the HarveyFwd

Butterfly after the first NTT iteration.

Table 1. Possible x′
k (left) and x′

k+2m−1 (right) values.

xk

xk+2m−1 0 1 q − 1

0 0 1 q − 1

1 ω ω + 1 ω + q − 1

q − 1 s s + 1 s + q − 1

xk

xk+2m−1 0 1 q − 1

0 2q 2q + 1 2q + q − 1

1 2q − ω 2q − ω + 1 2q − ω + q − 1

q − 1 2q − s 2q − s + 1 2q − s + q − 1

108 N. Drucker and T. Pelleg

Algorithm 2. Second iteration exploit
Input: s (see text), branches parameters brk, brk+2m−1 .
Output: Possible input pairs for the coefficients at position k and k + 2m−1

1: procedure SecondIterExploit(s, brk, brk+2m−1):
2: out = {0, 1, q − 1} × {0, 1, q − 1}
3: if brk is taken: then
4: return {(q − 1, q − 1)}
5: if brk+2m−1 is taken then
6: out = {(0, 0), (1, 0), (q − 1, 0), (q − 1, 1)}
7: if s < q then
8: out = out ∪ {(q − 1, q − 1)}
9: if brk+2m−1 is not-taken then

10: out = {(0, 1), (0, q − 1), (1, 1), (1, q − 1)}
11: if s > q and brk is unknown then
12: out = out ∪ {(q − 1, q − 1)}
13: return out

First, recall that ω ∈ {1, q − 1} as there are no primitive roots of unity
for primes bigger than 3 and that 0 < ω, s < 2q. Then, by looking at the
table, we see that the only case for bk to be taken (x′

k > 2q, Step 3) is when
(xk, xk+2m−1) = (q−1, q−1) and q < s < 2q. We continue the analysis assuming
that brk is not taken or is unknown. Here,

(xk, xk+2m−1) ∈ {(0, 0), (1, 0), (q − 1, 0), (q − 1, 1)} ⇒ (x′
k+2m−1 ≥ 2q)

⇒ bk+2m−1 is taken

(xk, xk+2m−1) ∈ {(0, 1), (0, q − 1), (1, 1), (1, q − 1)} ⇒ (x′
k+2m−1 < 2q)

⇒ bk+2m−1 is not taken

((xk, xk+2m−1) = (q − 1, q − 1)) ∧ (s < q)
⇒ bk+2m−1 is taken

((xk, xk+2m−1) = (q − 1, q − 1)) ∧ (q < s < 2q)
⇒ (bk+2m−1 is not taken) ∧ (bk is unknown)

The correctness of the algorithm follows. ��

4.1 Extracted Leakage After the Second Iteration

Algorithm 2 provides us with a way to reduce the number of options for the
inputs xk and xk+2m−1 of the NTT algorithm. Theorem 2 summarizes the
expected leakage and Fig. 2 illustrates it. The theorem uses the following four
intervals I0 = [0, N

4), I1 = [N
4 , N

2), I2 = [N
2 , 3N

4), I3 = [3N
4 , N).

Theorem 2. Let the input to Algorithm 3 be a small polynomial and let 0 ≤
ρ ≤ 1 be the percentage of the extracted branches (distributed uniformly).

Timing Leakage Analysis of Non-constant-time NTT Implementations 109

1. The probability that a coefficient (xk, k ∈ I0 ∪ I2) has only one option when
q < s < 2q is P1 = ρ

9 .
2. The probability for a coefficient (xk) to have only two options is

P2 =

⎧
⎪⎪⎨
⎪⎪⎩

4ρ
9 (s < q) ∧ (k ∈ I0 ∪ I2)
4ρ2

9 (q ≤ s < 2q) ∧ (k ∈ I0)
3ρ2+5ρ

9 (q ≤ s < 2q) ∧ (k ∈ I2)

Proof. We define the following events:

E1 := (brk+2m−1 is not taken) | (0 < s < q)
E2 := (brk is taken) | (q < s < 2q)
E3 := (brk is not taken) ∧ (brk+2m−1 is not taken) | (q < s < 2q)
E4 := (brk is not taken) ∧ (brk+2m−1 is taken) | (q < s < 2q)
E5 := (brk is unknown) ∧ (brk+2m−1 is not taken) | (q < s < 2q)

where Algorithm 2 outputs

{(0, 1), (0, q − 1), (1, 1), (1, q − 1)} for E1, E3

⇒ xk ∈ {0, 1} and

xk+2m−1 ∈ {1, q − 1}
{(0, 0), (1, 0), (q − 1, 0), (q − 1, 1)} for E4

⇒ xk+2m−1 ∈ {1, q − 1}
{(0, 1), (0, q − 1), (1, 1), (1, q − 1), (q − 1, q − 1)} for E5

⇒ xk+2m−1 ∈ {1, q − 1}
{(q − 1, q − 1)} for E2

⇒ xk = xk+2m−1 = q − 1

The coefficients of small polynomials are uniformly distributed and independent
of ρ. Thus, the above events will happen with probability

Pr(E1) =
4ρ

9
Pr(E2) =

ρ

9
Pr(E3) = Pr(E4) =

4ρ2

9
Pr(E5) =

5ρ(1 − ρ)
9

.

At the second iteration we only perform branches over inputs at positions
I0 ∪ I2 (see illustration in Fig. 1), which limits the leakage to the coefficients
xk, k ∈ I0 ∪ I2 of the original input polynomial to the NTT algorithm. When
q < s < 2q, the probability that a coefficient (xk, k ∈ I0 ∪ I2) has only one
option is P1 = Pr(E2) = ρ

9 .
The probability of a coefficient having two options is

P2 =

⎧
⎪⎪⎨
⎪⎪⎩

Pr(E1) = 4ρ
9 (s < q) ∧ (k ∈ I0 ∪ I2)

Pr(E3) = 4ρ2

9 (q ≤ s < 2q) ∧ (k ∈ I0)
(Pr(E3) + Pr(E4) + Pr(E5)) = 3ρ2+5ρ

9 (q ≤ s < 2q) ∧ (k ∈ I2)

��

110 N. Drucker and T. Pelleg

Let X1,X2 denote the number of coefficients with only one or two options,
respectively, for a given ρ. In addition, for a polynomial of degree N and ρ = 1,
we define Y1 = E(X1)/N , Y2 = E(X2)/N to be the portion of coefficients we
identified to have a reduced number of options (one or two, respectively).

Corollary 1. For an input of a small polynomial of degree N , and a fixed ρ,

E(X1) =

{
0 s < q
ρ
18N q < s < 2q

E(X2) =

⎧
⎨
⎩

2ρ
9 N s < q(
1
4 · 4ρ2

9 + 1
4 · 3ρ2+5ρ

9

)
N = 7ρ2+5ρ

36 N q < s < 2q

(a) When 0 < s < q (b) When q < s < 2q

Fig. 2. Second iteration leakage for a given branch extraction probability ρ. The orange
triangles show the portion of coefficients (out of N) that are completely identified (Y1).
The blue dots show the portion of coefficients (out of N) that now have only two
options out of three (Y2). (Color figure online)

Third Iteration. The input to the third iteration is the output of the sec-
ond iteration, which we can view as the output of a radix-4 NTT, where every
branch depends on a coefficients-quartet of the original polynomial xk, xk+2m−2 ,
xk+2·2m−2 , xk+3·2m−2 for k ∈ I0. For every such quartet we may know two branch
results from the second iteration. In addition, at the third iteration, for half the
quartets 0 ≤ k < 2m−3, we add the knowledge of all four branches, while for the
other half, we learn nothing.

Using an analytical approach, as we did for analyzing the leakage at the
second iteration, is more complex because the number of cases increases expo-
nentially. For example, in the second iteration, we only had two cases where we
needed to consider whether or not s < q.

To assess the complexity of analyzing the third iteration, we performed an
exploratory empirical experiment, which revealed more than 80 cases that need
to be analyzed. We note that, unlike post-quantum schemes where a prime is
usually fixed by design, many HE implementations generate the required prime

Timing Leakage Analysis of Non-constant-time NTT Implementations 111

numbers on-the-fly and according to the users’ needs. For these reasons, we
decided to use an empirical approach to demonstrate the potential data leakage
from the third iteration. We stress that this can be fine-tuned when the set of
primes is predefined (fixed).

Our experiment involves a program, which for a given modulo N and a prime
q, computes the minimal 2N primitive root of unity ω. It then executes the first
three iterations of the NTT, brute-forcing over all possible quartet inputs. The
program generates a branching table as we did for the second iteration (Table 2)
and outputs the answers to the following questions:

1. What is the probability of this branch combination occurring, assuming uni-
form distribution of the original coefficients?

2. How many coefficients does it reduce to one or two options (Y1, Y2)?

(a) Y1 (b) Y2

Fig. 3. Third and fourth iterations leakage extraction (Y1, Y2). Blue and orange box-
plots show the distribution results when using information up to the third and fourth
iteration, respectively. (Color figure online)

We repeated the above process for the fourth iteration, where every branch
affects eight inputs at a time.

For our experiments we generated 1, 000 NTT-friendly primes using the code
from Appendix B, and fixed N = 215. Figure 3 shows the portion of coefficients
we identified as having a reduced number of options (one or two). As these
numbers depend on the values of q and N , we use box-plots to demonstrate
the resulting distributions. The left and right box-plots show the distributions
after the third and fourth iterations, respectively. As expected, at the fourth
iteration, Y1 increases on average while Y2 decreases. This phenomenon is also
demonstrated in Fig. 4, where we see a negative correlation between Y1 and Y2.

Moving into Deeper Iterations. It is possible to extend the search to deeper
iterations. However, the number of options that our program checks grows super-
exponentially. In the ith iteration, it considers 2i−1 coefficients per one of the

112 N. Drucker and T. Pelleg

(a) Third Iteration (b) Fourth Iteration

Fig. 4. Correlation between Y1 and Y2, using the information from the third and
fourth iterations. The number of dots indicates the number of cases to consider for the
experimented primes.

two tables, with three options per coefficient. Thus, the total number of options
to consider is 32

i−1
. For example, for i = 5 and i = 6 the number of options per

table to consider is ∼ 225 and ∼ 250, respectively.

4.2 Hardness of RLWE Instances After the Leakage

Modern HE libraries follow the HE standard [1] when considering security
parameters. The standard, in turn, uses the LWE estimator [2] to compute the
relevant values. We followed the standard and re-evaluated the security guaran-
tees provided when using the same values of N and log2 q. Specifically, we used
the command

n = 2048; q = 2^54; alpha = 8/q; m = 2*n

estimate_lwe(n, alpha , q, secret_distribution =(-1,1),

reduction_cost_model=BKZ.sieve , m=m)

from [2], which is designed for SEAL. To assess the security impact, we only
considered the coefficients that we completely extracted by replacing n with
n − nY1 in the script above. Table 2 summarizes the results. For the second
iteration, we used Y1 = ρ

18 from Theorem 2. For the third and forth iterations,
we first evaluated the entropy per experiment using the equation

(Y2 + log2 3 · (1 − Y1 − Y2))
log2 3

and then chose the pairs (Y1, Y2) that yielded the minimal and maxi-
mal entropy per iteration. Specifically, we used (0.0555556, 0.259259) and

Timing Leakage Analysis of Non-constant-time NTT Implementations 113

(0.146605, 0.2824075) for the third iteration, and (0.08916325, 0.2458845) and
(0.17332525, 0.35162325) for the fourth iteration. It can be observed that when
including the leakage from the fourth iteration, the security estimate drops from
2128 to around 2104 − 2115, an 18% gap. Taking Y2 into consideration will result
in an even higher estimation for the drop in security.

Table 2. Estimated security level of HE instances after combining data from our
extracted leakage. For our baseline we use N and q for 2128 classical bits security from
[1].

N log2 q Security estimation

2nd iter. 3rd iter. 4th iter.

1, 024 27 2124 2111 − 2124 2107 − 2119

2, 048 54 2121 2109 − 2121 2105 − 2117

4, 096 109 2120 2107 − 2120 2103 − 2115

8, 192 218 2120 2107 − 2120 2104 − 2115

16, 384 438 2120 2108 − 2120 2104 − 2115

32, 768 881 2120 2108 − 2120 2104 − 2115

5 Responsible Disclosure

The paper was disclosed to the HEAAN, HELib, Palisade and SEAL teams
before its publication.

6 Conclusions

In this work, we identified a potential vulnerability that can occur in almost all
HE libraries, where the NTT algorithm and specifically the Harvey butterflies
can be compiled näıvely or with a malicious intention to have a non constant-
time Assembly. While there is, no immediate vulnerability when the libraries are
used as intended, we explained how a simple code modification, a simple misuse
of the library (e.g., compiling and using it in debug mode), or even a malicious
adversary that messes with the library setup can flip the situation. Specifically,
we evaluated the potential leakage of a secret from the NTT implementation
of SEAL and showed the hardness degradation of the R-LWE instances used
therein. In fact, the degradation can be further reduced by considering more
NTT layers or taking into account the coefficients that are limited to two values.

While it is not always possible to control the compiler results, we recommend
that library owners either use hand-written Assembly for critical code paths
or modify the code so it won’t use branches. Such code exists, for example, in
HElib when compiled with the flag NTL AVOID BRANCHING or in the vectorized
implementation of [3,4].

114 N. Drucker and T. Pelleg

We hope that this paper will increase the awareness of cryptographic libraries
owners to the implications of trusting modern compilers that are designed to
bring optimized binaries without always taking security aspects into considera-
tion.

A NTT Algorithms

Algorithms 3 and 4 are the forward and inverse NTT algorithms from [19],
respectively.

Algorithm 3. CT radix-2 NTT [19]
Input: a ∈ Rq, N a power of 2, q a prime satisfying q ≡ 1 (mod 2N), ψrev, which
holds the powers of ψ in bit-reversed order.
Output: ã = NTTψ(a) in bit-reversed order.

1: procedure CT radix-2 NTT(a, N, q, ψrev)
2: t = N , ã = a
3: for (m = 0; m < N ; m = 2m) do
4: t = t/2
5: for i = 0; i < m; i++ do
6: w = ψrev[m + i]
7: for (j = 2it; j < (2i + 1)t; j++) do
8: (X, Y) = (ãj , ãj+tw)
9: (ãj , ãj+t) = (X + Y, X − Y) (mod q)

10: return ã

Algorithm 4. Gentleman-Sande (GS) Radix-2 InvNTT [19]
Input: ã ∈ Rq, N a power of 2, q a prime satisfying q ≡ 1 (mod 2N), ψ−1

rev, which
holds the powers of ψ−1 in bit-reversed order.
Output: a = InvNTT (ã) in bit-reversed order.

1: procedure Gentleman-Sande (GS) Radix-2 InvNTT(ã, N, q, ψ−1
rev)

2: t = 1, a = ã
3: for (m = N/2; m > 0; m �= 1) do
4: for (i = 0; i < m; i++) do
5: w = ψ−1

rev[m + i]
6: for j = 2it; j < (2i + 1)t; j++) do
7: (X, Y) = (aj , aj+t)
8: (aj , aj+t) = (X + Y, w(X − Y)) (mod q)

9: t = 2t
10: for (j = 0; j < N ; j++) do
11: aj = aj · N−1

12: return a

Timing Leakage Analysis of Non-constant-time NTT Implementations 115

B Generating the Primes

For reproduction purposes, we provide the SageMath script we used to generate
the primes in Sect. 4.

import numpy as np

import math

import random

Generate a random prime p in [n+1, n^3+1],

where p = 1 mod n

def primeGen(n):

i=0;

while True:

x = randrange(n^2);

if is_prime(x*n +1):

return x*n+1

random.seed (120)

primes = [primeGen (2^16) for i in range (1000)]

References

1. Albrecht, M., et al.: Homomorphic encryption security standard. Technical
report, HomomorphicEncryption.org, Toronto, Canada, November 2018. https://
homomorphicencryption.org/standard/

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015). https://doi.org/10.1515/jmc-2015-
0016

3. Boemer, F., Kim, S., Seifu, G., de Souza, F.D., Gopal, V.: Intel HEXL: accelerating
homomorphic encryption with Intel AVX512-IFMA52. Technical report (2021).
https://eprint.iacr.org/2021/420

4. Bradbury, J., Drucker, N., Hillenbrand, M.: NTT software optimization using an
extended Harvey butterfly. Technical report (2021). https://eprint.iacr.org/2021/
1396

5. GCC bugs: [Bug c++/98801] New: Request for a conditional move built-in function
(2021). https://www.mail-archive.com/gcc-bugs@gcc.gnu.org/msg676288.html

6. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. In: Cid, C., Jacobson Jr., M.J. (eds.) Selected
Areas in Cryptography - SAC 2018, pp. 347–368. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-10970-7 16

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

8. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of Complex
Fourier Series. Math. Comput. 19(90), 297–301 (1965). https://doi.org/10.2307/
2003354

https://homomorphicencryption.org/standard/
https://homomorphicencryption.org/standard/
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://eprint.iacr.org/2021/420
https://eprint.iacr.org/2021/1396
https://eprint.iacr.org/2021/1396
https://www.mail-archive.com/gcc-bugs@gcc.gnu.org/msg676288.html
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.2307/2003354
https://doi.org/10.2307/2003354

116 N. Drucker and T. Pelleg

9. Daan, S.: LLVM provides no side-channel resistance (2019). https://dsprenkels.
com/cmov-conversion.html

10. Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In:
Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–
186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7 11

11. Ducas, L., et al.: CRYSTALS-Dilithium Algorithm Specifications and Sup-
porting Documentation (2017). https://pq-crystals.org/dilithium/data/dilithium-
specification.pdf

12. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures: exploiting branch tracing against StrongSwan and elec-
tromagnetic emanations in microcontrollers. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1857–1874,
CCS 2017. Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3133956.3134028

13. Gentleman, W.M., Sande, G.: Fast Fourier transforms-For fun and profit. In:
AFIPS Conference Proceedings - 1966 Fall Joint Computer Conference, AFIPS
1966, pp. 563–578 (1966). https://doi.org/10.1145/1464291.1464352

14. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its application
on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 13

15. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

16. Harvey, D.: Faster arithmetic for number-theoretic transforms. J. Symbolic Com-
put. 60, 113–119 (2014). https://doi.org/10.1016/j.jsc.2013.09.002

17. Jung, W., et al.: HEAAN demystified: accelerating fully homomorphic encryption
through architecture-centric analysis and optimization (2020)

18. Laine, K.: Simple encrypted arithmetic library 2.3.1. Technical report, Microsoft,
WA, USA (2017). https://www.microsoft.com/en-us/research/uploads/prod/
2017/11/sealmanual-2-3-1.pdf

19. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 1–35 (2013). https://doi.org/10.1145/2535925

21. Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT 2019. IACR
Trans. Cryptographic Hardware Embed. Syst. 2019, 180–201 (2019). https://doi.
org/10.13154/tches.v2019.i3.180-201

22. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 513–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 25

23. Sadegh Riazi, M., Laine, K., Pelton, B., Dai, W.: HEAX: an architecture for com-
puting on encrypted data. In: International Conference on Architectural Support
for Programming Languages and Operating Systems - ASPLOS, pp. 1295–1309
(2020). https://doi.org/10.1145/3373376.3378523

24. Schwabe, P., et al.: CRYSTALS-KYBER (2020). https://pq-crystals.org/kyber/

https://dsprenkels.com/cmov-conversion.html
https://dsprenkels.com/cmov-conversion.html
https://doi.org/10.1007/978-3-319-29172-7_11
https://pq-crystals.org/dilithium/data/dilithium-specification.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification.pdf
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1016/j.jsc.2013.09.002
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1145/2535925
https://doi.org/10.13154/tches.v2019.i3.180-201
https://doi.org/10.13154/tches.v2019.i3.180-201
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1145/3373376.3378523
https://pq-crystals.org/kyber/

Timing Leakage Analysis of Non-constant-time NTT Implementations 117

25. Van Bulck, J., Piessens, F., Strackx, R.: SGX-Step: a practical attack framework
for precise enclave execution control. In: 2nd Workshop on System Software for
Trusted Execution (SysTEX), pp. 4:1–4:6. ACM, October 2017. https://doi.org/
10.1145/3152701.3152706

26. Victor, S.: NTL - a library for doing numbery theory - version 11.5.1, commit
91acd5b3a7df709c0d8bf88a99a24bc340dc34f7 (2021). https://github.com/libntl/
ntl

27. Yuriy, P., Kurt, R., Gerard, R.W., Dave, C.: PALISADE Lattice Cryptography
Library, commmit d76213499af44558170cca6c72c5314755fec23c (2021). https://
gitlab.com/palisade/palisade-release

https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3152701.3152706
https://github.com/libntl/ntl
https://github.com/libntl/ntl
https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release

Predicting the Direction of Changes
in the Values of Time Series for Relatively Small

Training Samples

Sergey Frenkel(B)

Federal Research Center “Computer Science and Control”, Russian Academy of Sciences,
Moscow, Russia

fsergei51@gmail.com

Abstract. Among the tasks of prediction, the task of predicting the signs of incre-
ments (direction of change) of the time series process is singled out separately.
The essential difference of this problem from the prediction of values (ordinates)
of time series implementations is the weak correlation of increments, which, from
the point of view of the classical theory of time series forecasting, leads to certain
difficulties. First of all, this refers to a non-stationary process, the prediction of
which requires constant retraining of the parameters of the predictors used (for
example, the weight coefficients of the neural network) over relatively short time
intervals, which leads to time costs. This may be unacceptable, for example, when
using the prediction of traffic characteristics in telecom networks, when predicting
the direction of the gradient in optimization problems, etc.

The paper proposes the use of some results of the theory of random processes
for the estimated fast prediction of increments with acceptable accuracy. The
proposed procedure of the fast prediction is a simple heuristic rule for predicting
the sign of the increment of two neighboring values of a random sequence.

Keywords: Prediction · Time series · Networks traffic

1 Introduction

Among the tasks of forecasting, the task of predicting signs of increments (direction
of change) of random time series is singled out separately [1, 2]. Under time series is
understood as a sequence of numerical data that occur in successive order over some
period of time. The mathematical model of prediction in this case are mainly various
models of random processes theory [3], and the increment is xt+1 − xt, where xt+1, xt
are the time series members (or ordinates of the corresponding random process) in the
neighbor moments t, t+1.

Let’s call such data and prediction models probabilistic. As the analysis of publi-
cations shows, the main consumer of models, methods and tools for Machine Learning
based (ML) forecasting the sign of changes is the field of financial predictions (“financial
mathematics” [4]) and econometrics. Within these models, problems are solved due to
a combination of the properties of predictability used in the modeling of mathematical

© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 118–134, 2022.
https://doi.org/10.1007/978-3-031-07689-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_9

Predicting the Direction of Changes in the Values of Time Series 119

objects (for example, random processes [3]) and specific assumptions and properties of
financial trading, for example, the postulated relationship between the dependence on
the volatility of asset returns and the dependence on the sign of asset returns (and, hence
sign predictability) [2]. For example, they use the fact that volatility and higher-order
conditional moments of return are related when predicting the sign.

At the same time the question of the predictability of the direction of change (that
is sign) in the ordinate of the process is interesting for many problems not related to
financial and economic issues, and for which there are no analogues of the theoretical
results of financial mathematics.

An example of such tasks of sign prediction of increments is the optimal real-time
correction of changes in the amount of resources that a cloud service provider can allocate
to serve its customers, depending on the direction (decrease or increase) of the evolution
of the state indicators (traffic volume, for example) of the network [5].

Another example is when attacks on a network are performed in a way that cannot be
detected by anti-virus software, and analysts must rely on analysis of changes in network
traffic (volume of traffic), changes in service activity, or direction of changes in traffic
intensity entries in the log file.

Packet count reversal sign prediction can be useful to prevent packet loss under threat
of buffer overflow [9]. The question of predicting the sign of the increment of random
variables is also interesting in the problems of studying brain activity [1].

This paper considers the possibility of the sign increment prediction without using
any theoretical assumption and conceptions from financial area.

Within the framework of probabilistic models, prediction in modern literature [6,
17] is understood as the computation of the conditional probability γ(xt+1|x1, x2,…, xt),
defined on all elements of the sequence (time series), all members of which take these
values from a domain A (binary, natural, numerical etc.) for which the natural condition
is satisfied

∑
a∈Aγ(xt+1 = a|x1, x2,…, xt)= 1. The function γ() is called a predictor [2].

Note, that the predictor is also called software products (for example, some modules
of cloud MS AWS Azure ML, Google Cloud ML, etc.), which are used for prediction.

In the following, these software products will be referred to as “Prediction tools”
(PT), which may be a subsystem of Intelligent Decision Support (IDS) [7], and use the
word “predictor” in both senses with the necessary explanations, if this does not follow
directly from the context.

In many modern tools based on Machine Learning (ML), the formation of a forecast
for data values at the moments in the future is performed as a search for internal patterns
and relationships without using any classical mathematical procedures (Markov models
or other models of mathematical probability theory) or lying in their basis of formal
theories. Training is performed on examples rather than a mathematical model, although
using various mathematical tools such as linear or logistic regression in intermediate
stages - for example, algorithms based on search trees and boosting (XGB etc.), neural
networks [8]. These circumstances are often supplemented by the opacity of the trans-
formation of the input data (i.e., the construction of features), which makes it difficult
to assess the impact of certain properties of the input data on the result.

This is why the a prior estimation of how a specific prediction tool is effective from
the point of view of a PT user is difficult and ambiguous.

120 S. Frenkel

At the same time, although most of the modern ML tools do not explicitly use
probabilistic models, indirectly certain statistical properties, primarily indicators of the
dependence of past and future values, affect the effectiveness of the forecast. There-
fore, it is interesting to consider the possibility of these characteristics in the field of
Predictability for predicting changes in processes of various nature that meet only the
mathematical constraints of Predictability using only directly measured characteristics
of the random processes under consideration, and not those that follow from theoretical
and empirical representations of a certain subject area.

Such a consideration makes sense for operational decision-making systems, for
essentially non-stationary operation modes, when it is not possible to consider long
sequences for predictor training. The fact is that for highly non-stationary time series,
the learning process is associated with constant retraining (in a certain sliding window).
At the same time, parameters (for example, weight coefficients of neural network pre-
dictors) updated as a result of training should be constantly calculated. This indicates
possible large time costs even on the most expensive computing equipment (GPU, clus-
ters) [10]. Therefore, one of the questions is to predict on relatively small stationary
sequences, so that the sequence (x1, x2,…, xt) in the expression γ(xt+1|x1, x2,…, xt),
can be considered as stationary.

To connect the abovewith our problemof predicting the sign of a time seriesmembers
increments,wepoint out that this problemhas a certain specificity compared to predicting
their values themselves, for which the existing methods and tools for predicting time
series weremainly developed. One of themanifestations of this is that we cannot directly
use the results of predicting the value of the time series xi+1 (the amplitude of the
corresponding random process) using well-established tools (for example, ARIMA) to
predict the sign of the difference xi+1 − xi. Firstly, this is due to the fact that the main
time series prediction algorithms are tuned to the criterion of minimizing the root-mean-
square loss function,which is not sensitive to changes in the sign of increments. Secondly,
this is due to the complex non-linear nature of the dependence between the amplitude
of the time series changes and the sign of the increments [1]. Further, the correlations
between the differences xi+1 − xi themselves are very weak, which makes it difficult
to predict within the framework of the binary sequence model, where 0 and 1 would
correspond to the signs of the differences.

In the paper, we consider possible approaches to predicting the sign of the change
in the increments of a random process, for example, the distribution of extrema of a
stationary random process [11]. The parameters of the probability distribution function
of the time series are also considered as possible characteristic of predictability of the
sign of the increment.We study one of the previously proposedmodels for predicting the
[12] sign from the point of view of its suitability for real data, for example, predicting the
sign of changes in corporate network traffic volume. This model of behavior of the sign
of the increment of a continuous random process is supplemented by a purely binary
model of predicting the sign from samples of relatively small length.

The goal of this consideration is to study the possibility of predicting only by directly
observed and measured data characteristics, without using computationally complex
tools such as Artificial Neural Networks or boosting, which may be unacceptable, for
example, for operational control in networks. On the other hand, by using simple data

Predicting the Direction of Changes in the Values of Time Series 121

characteristics and receiving some a pro pry understanding about theie intrinsic pre-
dictability, one can try to improve the performance of complex instruments. There-
fore, we consider of the sample autocorrelation function along with other directly esti-
mated characteristics which are similar to the frequency of increments sign change on
a training interval as a possible preliminary characteristics of possibility of forecasting
implementation for management of a specific system.

The use of these models is illustrated by comparison with known prediction algo-
rithms present in Python libraries. It is shown that such easily calculated characteristics
of random processes as the value of the autocorrelation function in the first lag and the
proportion of positive increments in the considered interval can give a priori estimates
of the predictability of the sign, i.e. play the role of a characteristic of predictability.

2 On the Predictability of the Increments Sign of Random
Sequences and Processes

Since the most natural and most used and discussed in the prediction community are
probabilistic data models, first of all we will consider the possibility of using the main
models of random theory to solve problems of predicting signs in modern prediction
algorithms. First of all, in accordance with the approaches to Predictability accepted in
the theory of random processes (see also [9]), we will say that predicting the sign of
the difference (increment) xt+1 − xt = �t+1 of the original process X = x1, …, xt+1
at time t+1 is possible if the prehistory �t somehow affects the conditional expectation
E(sign(�t+1)/�t)). Let us clarify that �t corresponds to filtration in the theory of random
processes [3]. A filtration �s ⊆ �t on a probability space (�, �t , P) is a set (collection)
of sub-sigma-algebras satisfying whenever s ≤ t. As usual in the practical application of
the theory of random processes, sigma-algebra is understood as possible combinations
of events associated with the implementation of the process, combined with the help of
known set-theoretic operations. Accordingly, at a fixed t, �t is the set of possible events
occurring up to and including time t. Some examples of such events are listed in the
following definition.

Definition 1. The change in the sign of the increment of values in random data
is predictable (and the data has the Predictability property) if E(sign(�t+1)/�t) �=
E(sign(�t+1)), where �t is a part of that probabilistic space, on which a random process
considered defined, which corresponds to the observed values xt, or xt−k, …, xt, or, say,
to the regression estimate of the conditional mean xt+1, etc.

From the point of view of the approach to forecasting adopted in mathematical
statistics, this means that we can express, say, the probability of a positive increment
as Pr(�t+1 > 0|�t) = E(I(�t+1 > 0)|�t), where I() is the indicator function, E() (as
before, and in the future) is the signature of mathematical expectation (according to the
distribution of values �t).

Assume, for example, that the source process is normal, and that a normal approxi-
mation of the conditional distribution is used (and about which the developer or user of
PT/IDS might have considerations about the acceptability of such an approximation).

122 S. Frenkel

If we assume that the probability distribution of increments really has a good normal
approximation with respect to the conditional variance, with the mathematical expec-
tation determined over the entire region of (time) increments of the process under con-
sideration, i.e., the distribution F(�t+1|�t) can be approximated by normal distribution
N(a, σ2(t + 1|t)), where:

a = E(�), � = {�1, …, �t, �t+1} are the increments over the entire area of
consideration of the random sequence X = {xt−k, …, xt,…},

σ2(t + 1|t) = E(� − E(�))2 is conditional variance of the increments over time
in which events from �t occur, in particular, over the entire time interval (t−k,…,t) on
which the values xt−k, …, xt are observed.

Then it is easy to show [2] that the probability of a positive sign:

Pr(�t+1 > 0) = �(a/σ(t + 1|t)),
where � is the standard normal distribution function.

It is clear from above, that zero mean will make the sign unpredictable (at least for
the normal distribution of the increment) in the sense of the definition given above.

For an arbitrary distribution F from [13] it can be obtained that theminimum estimate
of the forecast error�′

t+1 relative to the true sign (�t+1) of the estimated “loss function”:
Loss (�t+1, �

′
t+1) = Et(I(�t+1 > 0) − �′

t+1|t)2 is achieved by the estimate:

�′
t+1|t = EI(�t+1 > 0|�t) = P(�t +1 > 0|Wt) = 1 − F(−at+1|t/σ(t + 1|t))

where �t is a set of events related to �t. We repeat, the conditional expression (…|t)
means the calculation of the observed values up to the moment t inclusive.

Consequently, the dynamics of change in variationswill affect the forecast of the sign
in all cases when the conditional mean is not equal to zero. Then the sign of the increment
is predictable, even if the conditional mean is unpredictable at zero expectation.

Note also that if the distribution of F is skewed, then the sign can be predicted even
if the mean is zero: in this case, the time-varying skewness can be the determining factor
in predicting the sign.

But for a non-zero conditional mean, even if the distribution is symmetric about the
conditional mean and the conditional mean is constant by assumption (in contrast to the
t-dependent variation σ(t + 1|t), the sign of the increment is predictable from the point
of view of the above definition.

So, conclusions about the predictability of a sign can only be based on knowledge
of the distribution law of time series modeled by a random process with this law, and on
the parameter of the distribution, namely, average, variance, skew coefficient etc.

For further, we note that the considered approach to determining the predictability of
the sign of increments has a number of contacts with another sign prediction paradigm
based on the consideration of a binary sequence corresponding to signs. For example,
it is natural to assume that the value of the new binary sequence is 0 if xt − xt−1 ≤
0, and 1 in the case of a positive increment, and use this binary sequence to predict
the corresponding statistics of this binary sequence. At the same time, obviously, this
statistics corresponds to the statistics of changes in increment signs or extrema.

In the most general form, the concept of predictability for binary sequences can be
represented in the following form.

Predicting the Direction of Changes in the Values of Time Series 123

Definition 2. A sequence s1, s2, …sn from some distribution S is predictable for a
predictor that implements some polynomial algorithm A in complexity if for each 1 ≤
i ≥ n and any polynomial algorithm for estimating the next value rejects any statistical
test [14] for inequality

∣
∣
∣Prob

{
A

(
si−1
1

)
= si − 1/2

}∣
∣
∣ ≤ O(ν(n))

where A
(
si−1
1

)
is an event consisting in observing a segment of the sequence up to the

moment i,
O(ν(n)) denotes a function decreasing faster than any polynomial in n.
Let’s emphasize, however, that themeasure of predictability must allow the choice of

the most suitable prediction algorithm-and-tool from the point of view of a given quality
criterion. Therefore, it is impractical to focus on type of probabilistic distribution of the
random process and the increments, the evaluation of which is a very difficult problem
when choosing prediction tools. In view of this, we will consider simpler and more
practical approaches to assessing predictability when choosing prediction tools.

3 On the Use of the Random Processes Conceptions to Predict
the Sign

Let us first of all consider the possibility of using the properties of the local structure of
random processes that model the predicted data. As such a characteristic, consider the
extrema of a random process.

3.1 Change of Sign and Local Extremes

It is possible to formulate the problem of predicting the sign of the change in si as pre-
dicting the appearance of a local extremum of the implementation of the corresponding
random process at time t.

Indeed, it is easy to see that for any interval [t−2, t]:

if xt−1 = max[t−2, t] (X) then sign(xt − xt−1) = “−”.
if xt−1 = min[t−2, t](X) then sign(xt − xt−1) = “+”.
if at time t−1 the process reaches neither maximum nor minimum, then the sign of the
increment xt − xt−1 at time t coincides with the sign of the increment xt−1 − xt−2.
if at time t−1 the process reaches neither maximum nor minimum, then the sign of the
increment xt − xt−1 at time t coincides with the sign of the increment xt−1 − xt−2.

Accordingly, the probability distribution of the number of negative and positive
increments coincides with the distribution of the number of corresponding local extrema.
Since the predictor for us, as stated in the Introduction, the prediction is in any case
associated with the calculation of the conditional distribution γ(xt+1|x1, x2,…, xt), the
conditional probabilities of the occurrence of maxima and minima with known past
observed values can be used to predict.

124 S. Frenkel

In the theory of extrema of random sequences and processes, by now, a huge number
of results have been accumulated on the probability distribution of the number of local
extrema over finite intervals [t0, t], mainly for Gaussian stationary random processes.
In addition, results were obtained on the conditions (probabilities) of the absence of
extrema at a certain level (values of xj) [11]. In other words, these are the conditions
for a monotonous change in the values of a random process on a given interval, and,
accordingly, the absence of a sign change.

The first one gives a simple sufficient condition for a one-parameter random process
not to have, almost certainly, critical points at a certain specified level of the data x1,…xt
values. The second result states that under mild conditions, a Gaussian process defined
on a quite general parameter set, with probability one does not have local extrema at a
given level [11].

An analysis of the models for the distribution of extrema shows the possibility of
using characteristics that are directly calculated from samples of random processes,
which, within the framework of the considered process models, allow us to see the
nature of their influence on the prediction accuracy. For example, the mathematical
expectation of the number of local extrema (maxima and minima) depends on the spec-
tral characteristics of the random processes under consideration, which, under broad
assumptions about the probabilistic model of the process, are associated both with the
characteristics of the autocorrelation function (which does not require any model of the
process behavior to calculate), and with the frequency of change of maxima and minima
[11].

However, in reality, all these results can only be used for stationary Gaussian pro-
cesses, which, as well as for the approach considered above [2], is a serious limitation,
since, in this case, the prediction turns out to be dependent on the data model, and the
associated assumptions about the probabilistic properties data, which is desirable to
avoid. At the same time, most of the results are asymptotic in nature (both in time and
in terms of the values (amplitudes) xi.

Let us therefore consider how these model-independent characteristics of a random
process can be used to predict the sign of increments.

3.2 Impact of Time Series Autocorrelation on the Sign Prediction

It is well known (and intuitively clear) the influence of correlation properties on the
prediction of numerical values (amplitudes) of random processes (ARIMA, etc.) [15].
For example, the prediction error for the simplest known linear forecast for a stationary
time series y is ε = (1 − ρ2)var(y), where the correlation coefficient is ρ = ACF(1),
ACF(1) means the autocorrelation function in the lag 1.

In [12] the question is raisedwhether it is possible to predict the sign of the difference
of neighboring distributed observations x1, x2,…,with a probability of correct prediction
>1/2 (i.e., more than with the probability of a decision on the outcome of a fair coin
toss).

Consider a sequence of centered randomvariables y= {yi = xi − (Exi)}, i= 1,…t…,
with zeromean and probability density distribution P(y). Note that centering is often used
in the practice of predicting various processes to eliminate the trend. This is necessary
to work with models of stationary processes, and the selected trend is used as additional

Predicting the Direction of Changes in the Values of Time Series 125

information [1]. If we assume independence of yi, then the conditional expectation of
its increments yi+1 − yi at the last observed value of yi:

E
(
yi+1 − yi|yi

) = E
(
yi+1|yi

) − E
(
yi|yi

) = −yi.

Indeed, E(yi|yi) = yi, and since the mathematical expectation is zero and all
increments {yi} are independent E(yi + 1|yi) = 0, which implies E(yi+1 − yi|yi) = − yi.

Accordingly, considering the conditional mean as a sign predictor, the following rule
is proposed for predicting the sign of the difference yi+1 − yi:

sign
(
yi+1 − yi

) = −sign
(
yi

)
(1)

In [12] it is stated that uncorrelated increments are sufficient to fulfill the indicated
sign relation, which is not always true, although it can be used in practice. Indeed, on
the one hand, in real processes, the dependence often takes place due to a non-stationary
trend, which is eliminated by centering yi = xi – Exi. However, most of the real data,
such as changing traffic volumes, changes in the number of requested IP addresses, etc.
somehow connected with a random change (decrease-increase) of some factors, and can
be represented by random walk processes that are close to processes with independent
increments [1].

It is possible to give more subtle mathematical reasoning on this matter [1].
The fraction of successful predictions according to (1) for sufficiently long

(sequences proposed to be assessed as

R = 1/2 + (1 − F(0))F(0) (2)

where:

F(x) =
∫ x

−∞
dyP(y)

y = yi+1 − yi; recall that P() is the corresponding probability distribution function
(pdf).

Obviously, (1 − F(0)) F(0)) ≤ 1/4, because F(0) as a probability <1, and the
maximum is reached at F(0) = 1/2.

Thus, under certain situations, it is possible to achieve R up to 0.75, which is a very
good result from the point of view of forecasting practice.

If the analytical model (expression) of the probability density P(y) is known, then
F() can be expressed as an ordinary integral (and not Stieltjes one, as in [12]).

In what follows, we will call rule (2) SC - (“Sign criterion-based” or CS - predictor).
Formulas (1) and (2) mathematically express, at first glance, a paradoxical result,

that when guessing the sign of the increment of independent random variables from
the previous value of the centered process, one can get an average success rate of 0.75.
The formal explanation is that difference is a differential operator known to introduce
short-range correlations (reflected by autocorrelation function of the time series) into
uncorrelated process [16], corresponding to (1).

126 S. Frenkel

It is possible, however, to give (1) a certain elementary probabilistic substantiation.
As it is easy to see, the truth of (1) depends on combinations of 3 conditions for yt+1,
yt (all possible relations “>0” “0<” “yt+1< >yt”) in total such conditions are 23 = 8,
namely, it will be true in the cases (considering that zero values is impractical because
of measurement practice):

yt+1 > 0, yt > 0, yt+1 < yt
yt+1 < 0, yt > 0,

∣
∣yt+1

∣
∣ > yt

.
∣
∣yt+1

∣
∣ < yt

yt+1 > 0, yt < 0,
∣
∣ yt+1

∣
∣ < yt

.
∣
∣yt+1

∣
∣ > yt

yt+1 < 0, yt < 0,
∣
∣yt+1

∣
∣ < yt

And it will be false if :

yt+1 > 0, yt > 0, yt+1 > yt
yt+1 < 0, yt < 0,

∣
∣yt+1

∣
∣ <

∣
∣yt

∣
∣

Assuming that all of them are equally probable, we obtain the a priori probability of
fulfilling the “true” inequality 0.75!

Of course, the assumption of equiprobability may not be completely satisfied. If the
probability of true combination is p1, and false one is p2, then the probability of correct
prediction is (Bayesian formulas):

Pcorr = 0.75p2/
(
0.75p1 + 0.25p2

)

That is if p1 even less then p2 in two times, Pcorr > 0.6, that is enough form the
point of view of current prediction practice. However, there is no reason to believe that
2 combinations leading to incorrect predictions will occur on some interval in several
times more often than leading to correct.

We will review the experimental evidence and give some explanations based on it
that such a simple prediction method can be used for arbitrary data sets.

Note that the authors [12] use a slightly different result (obtained from the same
model), but they consider the sign of the increment as probably opposite to the past
increment, not to the centered last value of the predicted time series, i.e. if δyt = yt −
yt−1. They are trying to predict the change in δyt with the strategy that δyt+1 = yt+1 −
yt predicts the opposite sign as

sign
(
δyt+1

) = −sign
(
δyt

)
(3)

Will call it as “delta-sign” (DS)-predictor.
They demonstrate it proposing to use the above considerations about predicting

the sign of the increment as the opposite sign of the last observation in relation to daily
closing quotes q(t) and, estimating price fluctuations. This is based on some assumptions
of financial mathematics, primarily on the “efficient market hypothesis” [18], according
to which market prices should only respond to new information (i.e., the latest data), and

Predicting the Direction of Changes in the Values of Time Series 127

randomwalk patterns that are consistent (say, daily) the price returns of liquid organized
markets with essentially approximately symmetrical distributions.

Experiments were performedwith prediction by (1) and (3) for a network traffic data,
for which the assumptions about the random walk and the nature of the dependence on
the previous values are obviously not fulfilled. The results obtained indicate a significant
advantage of (1) (“SC-predictor”).

Let us consider a possible practical application of rule (1), which we will call the
SC-predictor (Sign criterion-based) for real data sets for which it is difficult to test the
hypothesis of sample independence, for example, due to the small sample size, according
to which a statistical test could be performed, but the empirical autocorrelation function
can be computed.

4 Ways to Use SC as a Predictor of the Increments Sign

Consider two conditions for using the SC predictor following from the previous section.
First of all, one of the signs of the possibility of using (2) is the uncorrelated (or

extremely weak correlation) of successive differences in the values of the considered
time series (process) with a tendency to negative correlation of the values yi+1 − yi and
yi, since the “anti-correlation” of two random variables means a tendency to change in
the opposite direction.

It is intuitively clear that this should be expressed in terms of the frequencies
(probability) of fulfilling the equality (1), as it has been shown in the previous Section.

Considering that our task is to study the possibility of using directly measured char-
acteristics of the time series for prediction (albeit preliminary) and to evaluate the pre-
dictability of this time series based on them, for a better understanding of the possibility
of using the predictor (1), it would be desirable to consider the study of the use of the
sample autocorrelation function along with other directly estimated characteristics.

Set the sign of each y increment to binary 0 if it’s negative, and 1 if it’s positive.
Suppose that the resulting sequence of zeros and ones is a sequence of independent

Bernoulli trials. Let “0/1loss” (or simply “0/1”) be the measure of predictor user losses
from prediction errors of the form “zero is predicted instead of the true value” and vice
versa, equal to the proportion of incorrect predictions on a sequence of length n, i.e.

en = Ep((
∑

i=1,n
I(bt �= xt))/n)

where p = Prob(xt = 1) - Bernoulli distribution parameter, I() - indicator function, bt,
xt - predicted and true value, respectively.

It is known [17] that the optimal prediction rule (predictor) according to the criterion
of minimum loss with respect to the measure en is the following:

bt = 1, if Prob(1) > 1/2
bt = 0, if Prob(1) < 1/2
and “rejection of the forecast” in case Prob(0) = Prob(1) = 1/2

128 S. Frenkel

In this case, as it is easy to see, the average losses are equal to the error probability
1 − p, with p > 1/2, and p, if 0 is considered “success”, which can be expressed as

Lp = min(p, 1 − p)

Sincewe are dealingwith relatively small sample sizes,whichmakes testing hypothe-
ses about probabilistic characteristics inefficient, it is more practical to consider not
probability estimates, but the frequencies of the corresponding events, in particular “1”
(n1) and “0” (n0), (n1 + n0) = M is the length of the sequence.

In this case, we consider all measured and calculated in the window of length M
as a characteristic of only this segment of the data set without assumptions about its
belonging to a stochastic ensemble of sequences. Accordingly, we draw conclusions
about the effectiveness of the predictor only on this time interval, and therefore get rid
of the need to evaluate the confidence intervals of probabilistic estimates.

Accordingly, the rule will be changed as:

1 if n1 > n0,
0 if n0 > n1,

Prediction is not performed if n1 = n0, and the loss (optimal according to the 0/1loss
criterion) of incorrect predictions

Ln = min(n0, n1) (4)

That is the wrong predicted points in corresponding time interval is min(n0, n1).
Let’s call the considered prediction rule as “0/1” predictor.

The possibility of sharing SC and 0/1 predictors, the algorithms of which use only
directlymeasureddata characteristics,was experimentally evaluated using sets of records
obtained both from Internet sources and sources devoted to the study of changes in the
volume of traffic in networks [19], and from measurements using the IBM QRadar-
NETflow tool of the number of so-called. “flows of events” for traffic in a network that
implements a geographically distributed hybrid high-performance computing cluster of
the Russian Academy of Sciences at different times of the day [10] (Fig. 1).

Fig. 1. “Flow” record snippet examples (from IBM QRadar NETflow). The abscissa axis is the
time of day, the ordinate axis is the number of recorded event streams.

Predicting the Direction of Changes in the Values of Time Series 129

For example, for two plots of selected records, considered as a time series, the
centered realizations (a, b) looks like this (Fig. 2).

Fig. 2. Examples of centered records.

Autocorrelation function of increments of a centered process for the implementation
of Fig. 2(a) (Fig. 3):

Fig. 3. Autocorrelation function for an example from Fig. 2(a).

The autocorrelation function in lag 1(ACF(1)) between successive increments is near
zero, with a slight shift to the negative area (autocorrelation function ACF(1) = −0.04).
The number of increments for which y = sign(yi+1 − yi) = −sign(yi) is equal to 40

130 S. Frenkel

(that is #(sign(yi+1 − yi) = −sign(yi)) = 40). Therefore, out of 63 increments at 64 time
points, in 40 cases it is possible to correctly predict the signs of the increments if the
sign of each next increment is predicted as a negation of the current one.

At the same time, the estimate of the proportion of positive increments (represented
as binary 1) on the sample under consideration is P = 31/61 and, therefore, using the
optimal 1/0 predictor, namely, assigning 1 (positive change) to all increments, we will
make a mistake at 32 points, and not at 21, as when using the SC–predictor.

Note that if in this sample we consider the binary sequence as a segment of the
Bernoulli sequence, with the parameter p= 32/63, then with a high degree of confidence
we can talk about its randomness, and this is naturally reflected in the close-to-zero
correlation of the original sequence of differences.

For another sample from the same dataset (shifted by about 4 months in terms of
recording time), with a plot of differences (Fig. 2(b)):

The SC predictor gives 38 correct predictions over 64 records (R= 0.6). In this case,
n1 = 35, i.e. predicting for all points of the time interval “1” (i.e., minimizing the error
of the 1/0loss type) we will get 3 more errors than using the SC predictor. That is these
are already comparable, and 0/1 type predictor can be considered in the decision making
about way of prediction along with SC type. The value of the autocorrelation function
ACF(1) = −0.21. According to the rules accepted in statistics, random variables, the
correlation (correlation coefficient) of which is less than 0.7, are considered as weakly
correlated, since the probability of a strictly unidirectional or multidirectional change
(for negative correlations) of these variables is extremely small, regardless of the type
of probability distribution. Therefore, for us, the main indicator of the applicability of
the SC predictor is precisely the extremely weak correlation, and the frequency of zeros
- ones of the binary representation. Therefore (under the above assumptions about the
properties of the random process) the following rule for predicting the value sgn(xt+1 −
xt+1) at the point t can be proposed.

SC-0/1-procedure:

– for time points ti ∈ {t − M, t}, where M is the size of the observation window, i.e. the
number of values of the time series available for observation up to the moment t+1,
we perform the prediction of the signs of the increment, as

yi = −sign(xt−M+i)

– Compute #SC = �iI(sign(yi+1) = sign(xt−M+i+1 − xt−M+i))
where I is an indicator function, i ∈ ti ∈ {t − M, t}).

– calculate the number of units n1 in the window M; n0 = M − n1.
– if (#SC − max(n1, n0)) > k1, −k1 = 1, 2,…- some natural number, chosen as the

difference threshold between the accuracy of predictions, then we accept the forecast:

sign
(
yt+1 − yt

) = −sign
(
yt

)

Use 1/0 predictor if #SC < max(n1, n0), and max(n1, n0) > k2 = 1, 2, …
Otherwise, or one should abandon the prediction of the next value beyond the

window, or start working with accessible ML-predictors (e.g., ANN, XGB, etc.).

Predicting the Direction of Changes in the Values of Time Series 131

Let us explain the meaning of the comparison #SC andmax(n1, n0). We can consider
the 0/1 predictor as trivial, in the sense that it makes it possible to predict the next value,
and often with a high probability of correct prediction, if the proportion of 1 (or zeros) is
significantly greater than>1/2. It does not use any information about the sequence other
than the specified proportion of zeros and ones. Therefore, if the difference between SC
and 0/1 is small, say 5% relative to the length of M, then we can say that SG works as
a trivial predictor, and if the requirements for the quality of the forecast are very high,
one should try some ML predictor. Note also, that if the loss function used gives large
(inappropriate) value for a small number k, this may also be a reason to think that using
a predictor close to trivial in its properties does not make sense, and try using more
complex ML predictors. However, our experience shows that SC and sometimes 0/1
predictors are not worse than MLs (Table 1).

The same consideration is for the k2 threshold. If the loss min(n0, n1) (4) is inappro-
priate, say the fraction estimated errors is>k2/M and it is very high from some informal
viewpoint, the predictor is rejected. The considered windowM corresponds to the train-
ing sequence of any modern predictor used in practice, when prediction is performed
based on the results of predictions based on predictions inside the correspondingwindow,
and checking their results (usually, the modes of preparing the predictor for predicting
an unknown value are called “training” and “testing”). In this case, it is assumed that
the main data properties (statistical characteristics, structure) do not change over a short
period of time outside the training window (in particular, in one step, at time t+1 as in
the described procedure).

Thus, the essence of this procedure is that predictions are made only using
directly performed calculations - an increment at neighboring times and the number
of positive/negative signs (“1/0”).

The choice of the thresholds value k1, k2 is determined by the specifics of the problem
and the goals of the prediction.

If from the point of view of the user of the forecast (it does not matter whether it is
a real decision maker or a program that forms some control based on the forecast made
and formalized estimates of its reliability and usefulness) it is unacceptable, then either
the forecast is abandoned altogether, or more complex predictors are used, the use of
which, however, may require significant hardware and time resources.

Table 1 illustrates the possibility of using the SC-1/0 procedure to predict the signs
of increments over relatively short intervals, and how the uncorrelated of the increments
reflects the possibility of using the sign of the current value to predict the sign of the
increment. Natural numbers in the predictor columns mean the number of correct pre-
dictions, n1 is the number of ones among 65 values of the binary transformation of the
original record (according to Sect.) Obviously, n1 = 33 means that according to the 0/1
prediction rule there would be 65 − 32 = 33 correct predictions, and 32 incorrect (0s).

We can see, that the DS predictor (Sect. 3, suggested in [12]) is worse essentially that
SC, because of reasons, considered above (the assumption from financials mathematics
in not fairly for arbitrary time series).

Table 1 also shows the results of prediction by well-known self-learning-based pre-
dictors from the Python libraries for the same data intervals, using training on a segment
of 66 records.

132 S. Frenkel

Default predictor hyperparameters were used and training was performed on default
function parameters.

Table 1. Characteristics of the SG-0/1 procedure in comparison with self-learning based
predictors.

SC n1 ACF(1) Length MLP XGB LSTM DS

41 32 −0.04 64 35 43 25 36

37 35 −0.25 64 30 46 31 32

53 53 −0.12 90 48 42 45 44

61 54 0.09 100 56 51 59 52

56 50 −0.22 100 59 51 60 53

5 Discussion and Conclusion

The choice and use of modern software tools for predicting the values of time series in
various subject areas requires significant financial, hardware and time resources, since
the quality of predictions depends on various properties of the series that are not explicitly
reflected in predictor models. At the same time, modern predictors, such as XGB, MLP,
SVM, LSTM etc. use a large set of options specified by parameters and hyperparameters
(choice of which may take a long time), e.g., type of activation function (say, Sigmoid
or RELU).

In addition, two levels of predictor optimization are required - by model (Sigmoid or
RELU, Linear regression of logit etc.) and by parameters of each model, which can be
very time consuming. Also as follows from the above, certain properties of time series
can prevent high quality prediction. Therefore, it is desirable to have simple means for
a preliminary assessment of possible predictability.

Such a pre-estimation procedure may make sense for operational decision-making
systems in the conditions of the need to make predictions about significantly non-
stationary data streams, when it is impossible to consider long sequences for predic-
tor training. For highly non-stationary time series, the learning process is associated
with enumeration of parameters (for example, neural network coefficients) if necessary,
retraining of models caused by the above non-stationarity, which can be time-consuming
even on the most expensive computing equipment (GPU, clusters) [10].

We can consider SC and 1/0 as indicators of predictability at some subsequence
xt−M, xt−M+1,…, xt, from which it may be necessary to predict the increment XM =
xt − xt+1 at the next moment (interval). If we use a number series model, then as such
a criterion, we can use the estimation of correlations of increments and prediction of
the sign of increments according to the SC procedure in the M-window considered in
the previous section, namely, the proportion of correct forecasts in the time interval
immediately preceding t+1, and which is an estimate of the conditional mathematical

Predicting the Direction of Changes in the Values of Time Series 133

expectation of a correct forecast. If the assessment result satisfies the consumer of the
forecast (a real or virtual user, for example, a program that decides on the type of forecast
based on this assessment), then he accepts it.

Otherwise, the conditional expectation of the 0/1 predictor is estimated, and if the
result exceeds the proportion (or number) of correct SC, then its prediction is used. If
the resulting estimate also does not satisfy the conditions, the issue of using professional
PT from the set of available predictors, for example, as a cloud resource, is decided.

If we consider a subset XM as a binary sequence obtained from the increment signs
(see above) of length |XM| − 1, it is possible to check two aspects of predictability: the
degree of difference from randomness, and the proportion of correct predictions achieved
by the 0/1 predictor under the assumption that the sequence in question is a sequence
Bernoulli.

Benefit from the proposed technique may consist in the fact that in a fairly large
number of cases (if the prediction must be performed on a fairly long time interval (T1,
T2) so that the sequences mentioned above.

In fact, the proposed procedure is a simple heuristic rule for predicting the sign of the
increment of two neighboring values of a random sequence [12], formulated as follows:
predict the sign of the increment of a centered sequence opposite to the sign of the
last observed value. It is shown that the probability of correctness of such a prediction
will be >1/2. There are cases when this rule obviously does not work (Subsect. 3.2),
but it is considered specifically for cases where a quick preliminary assessment of the
predictability of specific data sets is needed, when the main criterion for predictive
effectiveness is the proportion of correct predictions. There are two reasons for this rule.

One comes from elementary probability-theoretic ideas, naturally under the assump-
tion of independence of the centered sequence. The second justification I would call
“elementary-probabilistic”, since it is based simply on an estimate of the number of
chances of this heuristic rule being fulfilled. These justifications somehow explain the
somewhat paradoxical conclusion that the sign of a sequence of independent increments
can be predicted better than by simply tossing a coin.

The considerations given in the article show the presence of significant scientific and
practical potential in the study of the influence of characteristics directly calculated from
data sets, with respect towhich it is required tomake certain predictions, on the efficiency
of prediction algorithms. These characteristics are the parameters and characteristics of
the probabilistic models that model the data.

References

1. Assaf Almog, A., Garlaschelli, D.: Binary versus non-binary information in real time series:
empirical results and maximum-entropy matrix models. New J. Phys. 16(9), 093015 (2014)

2. Christoffersen, P., Diebold, F.: Financial asset returns, direction-of-change forecasting, and
volatility dynamics. Manage. Sci. 52(8), 1273–1287 (2006)

3. Bosq, D., Nguyen, H.T.: A Course in Stochastic Processes. Stochastic Models and Statistical
Inference. Kluwer, Dordrecht (1996)

4. Pliska, S.R.: Introduction to Mathematical Finance: Discrete Time Models. Blackwell,
Maldon, Mass (1997)

134 S. Frenkel

5. Mozo, A., Ordozgoiti, B., Gómez-Canaval, S.: Forecasting short-term data center network
traffic load with convolutional neural networks. PLoS ONE 13(2), e0191939 (2018). https://
doi.org/10.1371/journal.pone.0191939

6. Lysyak, A.S., Ryabko, B.Y.: Time series prediction based on data compression methods.
Probl. Inf. Transm. 52(1), 92–99 (2016). https://doi.org/10.1134/S0032946016010075

7. Hodgea, V., Krishnanb, R., Austina, J., Polakb, J., Jackson, T.: Short-Term Prediction of
Traffic Flow Using a Binary Neural Network. Neural Comput. Appl. 25(7–8), 1639–1655
(2014)

8. Chen, A., Law, J., Aibin, M.: A survey on traffic prediction techniques using artificial intelli-
gence for communication networks. Telecom 2, 518–535 (2021). https://doi.org/10.3390/tel
ecom2040029

9. Shimall, T.: Traffic Analysis for Network Security: Two Approaches for Going Beyond Net-
work Flow Data, 16 September 2016. https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.513.7546&rep=rep1&type=pdf

10. Volovich, K.I., Denisov, S.A., Shabanov, A.P., Malkovsky, S.I.: Aspects of the assessment
of the quality of loading hybrid high-performance computing cluster. In: 5th International
Conference on Information Technologies and High-Performance Computing, ITHPC 2019.
CEUR Workshop Proceedings, 16–19 September 2019, vol. 2426, pp. 7–11 (2019)

11. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random
Sequences and Processes. Springer, New York (1983). https://doi.org/10.1007/978-1-4612-
5449-2

12. Sornette, D., Andersen, J.V.: Increments of uncorrelated time series can be predicted with a
universal 75% probability of success. Int. J. Mod. Phys. 11(4), 713–720 (2000)

13. Andersen, T.G., Bollerslev, T., Christoffersen, P.F., Diebold, F.X.: Volatility and correlation
forecasting. In: Elliot, G., Granger, C.W.J., Timmermann, A. (eds.), Handbook of Economic
Forecasting, pp. 778–878. North-Holland, Amsterdam (2006)

14. Lavasani, A., Eghlidos, T.: Bit test for evaluating pseudorandom sequences. Comput. Sci.
Eng. Electr. Eng. 16(1), 19–33 (2009)

15. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control.
Wiley, New York (2008)

16. Rabiner, L.R., Rader, C.M.: Digital Signal Processing. IEEE Press Selected Reprint Series,
1 December 1994

17. Feder, M., Merhav, N., Gutman, M.: Universal prediction of individual sequences. IEEE
Trans. Inf. Theor. 38(4), 887–892 (1992)

18. Campbell, J.Y., Lo, A.W., MacKinlay, A.C.: The Econometrics of Financial Markets.
Princeton University Press (1997)

19. Hasanov, V., Bayramov, H.,Mehdiyev, H.: Prediction of network traffic based on neural-fuzzy
analysis of changes in the volume of IP-packets. In: 9th International Conference on Theory
and Application of Soft Computing, Computing with Words and Perception, ICSCCW 2017,
pp. 438–445 (2017)

https://doi.org/10.1371/journal.pone.0191939
https://doi.org/10.1134/S0032946016010075
https://doi.org/10.3390/telecom2040029
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.513.7546&rep=rep1&type=pdf
https://doi.org/10.1007/978-1-4612-5449-2

Machine-Learning Based Objective
Function Selection for Community

Detection

Asa Bornstein1(B) , Amir Rubin1,2 , and Danny Hendler1,2

1 Ben-Gurion University of the Negev, 8410501 Beersheba, Israel
asabor@post.bgu.ac.il

2 Department of Computer Science, Ben-Gurion University of the Negev,

8410501 Beersheba, Israel

Abstract. NECTAR, a Node-centric ovErlapping Community deTec-
tion AlgoRithm, presented by Cohen et al., chooses dynamically between
two objective functions which to optimize, based on the network on which
it is invoked. It was shown that this approach outperforms six state-of-
the-art algorithms for overlapping community detection. In this work,
we present NECTAR-ML, an extension of the NECTAR algorithm that
uses a machine-learning based model for automating the selection of the
objective function, trained and evaluated on a dataset of 15,755 syn-
thetic and 7 real-world networks. Our analysis shows that in approx-
imately 90% of the cases our model was able to successfully select the
correct objective function. We conducted a competitive analysis of NEC-
TAR and NECTAR-ML. NECTAR-ML was shown to significantly out-
perform NECTAR’s ability to select the best objective function. We also
conducted a competitive analysis of NECTAR-ML and two additional
state-of-the-art multi-objective evolutionary community detection algo-
rithms. NECTAR-ML outperformed both algorithms in terms of average
detection quality. Multi-objective evolutionary algorithms are considered
to be the most popular approach to solve multi-objective optimization
problems and the fact that NECTAR-ML significantly outperforms them
demonstrates the effectiveness of ML-based objective function selection.

Keywords: Community detection · Complex networks · Machine
learning · Overlapping community detection · Supervised learning

1 Introduction

Social networks tend to exhibit community structure: They are partitioned
to sets of nodes called communities (a.k.a. clusters), each of which relatively
densely-interconnected, with relatively few connections between different com-
munities. Revealing the community structure underlying complex networks is

This work was supported in part by the Cyber Security Research Center at Ben-Gurion
University.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 135–152, 2022.
https://doi.org/10.1007/978-3-031-07689-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_10&domain=pdf
http://orcid.org/0000-0001-9607-2233
http://orcid.org/0000-0001-5356-6786
http://orcid.org/0000-0001-7152-7828
https://doi.org/10.1007/978-3-031-07689-3_10

136 A. Bornstein et al.

the focus of intense research (see e.g. [1,9,17,19,28]). While research focus was
initially on detecting disjoint communities, in recent years there is growing inter-
est also in the detection of overlapping communities, where a node may belong
to several communities.

Many community detection algorithms are guided by an objective function
that provides a quality measure of the clusterings they examine in the course
of their execution (see e.g. [2,10,13,26,32]). Since exhaustive-search optimiza-
tion of these functions is generally intractable (see e.g. [4,31]), existing methods
search for an approximation of the optimum and employ heuristic search strate-
gies. A key example of such heuristic is Blondel et al.’s algorithm [2], also known
as the Louvain method (LM). The method aims to maximize the modularity
objective function [34] as it employs a greedy local search heuristic that iterates
over all nodes, assigning each node to the community it fits most (as quanti-
fied by modularity). Modularity assumes disjoint communities. Which objective
functions should be used for overlapping community detection? According to
what criteria should they be chosen? NECTAR, a Node-centric ovErlapping
Community deTection AlgoRithm - presented in 2016 by Cohen et al. [7], gener-
alized Blondel et al.’s method, so that it can be applied also to the overlapping
case. NECTAR chooses dynamically between two objective functions which to
optimize, based on the network on which it is invoked. The selection is made
between QE , an extension of modularity for overlapping communities [5], and
WOCC - Weighted Overlapping Community Clustering, an extension of WCC
(Weighted Community Clustering) [29] for overlapping community detection.
NECTAR selects which objective function to use based on the rate of closed
triangles (out of all possible triangles) in the graph. This approach, as shown
by Cohen et al. [7], outperforms six state-of-the-art algorithms for overlapping
community detection.

In this work, we extend NECTAR, by taking into account multiple features of
the input graph and using an ML-based classification model. This model selects
an objective function which maximizes the quality of the clusters computed by
NECTAR. Since there are several commonly-used metrics that can be used to
quantify this quality, we generate an ML model per each such metric.

We analyzed 3,933 synthetic and 7 real-world networks, measuring the quality
of our models, aiming to dynamically select, based on the properties of the graph
at hand, which objective function should be used. Our analysis shows that in
approximately 90% of the cases our model was able to successfully select the
correct objective function to maximize the desired metric.

1.1 Our Contributions

We present NECTAR-ML, a node-centric overlapping community detection algo-
rithm which employs a machine learning model for the selection of the objective
function. To train our models, we generated a dataset of 15,755 synthetic networks,
of various sizes and properties1. We conducted a competitive analysis of NECTAR
1 The dataset was generated using a parallel computing framework we developed, avail-

able at https://github.com/asaborn/GenericMultiTasking.

https://github.com/asaborn/GenericMultiTasking

Machine-Learning Based Objective Function Selection 137

and NECTAR-ML. NECTAR-ML was proven to be superior over NECTAR as it
significantly outperformed NECTAR’s ability to select the best objective function
out of QE and WOCC. In addition, we have conducted an extensive competitive
analysis of NECTAR-ML and two additional state-of-the-art multi-objective com-
munity detection algorithms. NECTAR-ML outperformed also both these algo-
rithms in terms of average detection quality.

The rest of this paper is organized as follows. We survey key related work
in Sect. 2. We present the NECTAR-ML algorithm in Sect. 3. We report on our
experimental evaluation in Sect. 4. We conclude in Sect. 5.

2 Related Work

Blondel et al.’s algorithm [2], a.k.a. the Louvain method, is a widely-used dis-
joint community detection algorithm. It is based on a simple search heuristic that
seeks to maximize modularity [34]—a global objective function that estimates
the quality of a graph partition to disjoint communities. Chen et al. extended the
definition of modularity to the overlapping setting [5] and their extended defi-
nition is denoted QE . Yang and Leskovec [39] observed that objective functions
that are based on triadic closure—identification of nodes which close a triangle
with other nodes in the graph, provides the best results when there is significant
overlap between communities. Weighted Community Clustering (WCC) [29] is
such an objective function, defined only for disjoint community structures.

Cohen et al. presented NECTAR [7], an overlapping community detection
algorithm, that generalized Blondel et al.’s algorithm so it can be applied also to
networks possessing overlapping community structure. They presented WOCC—
Weighted Overlapping Community Clustering, a generalization of WCC to the
overlapping case. In addition to WOCC, NECTAR also employed the QE objec-
tive function. A unique feature of NECTAR is that it chooses dynamically
whether to use WOCC or QE , depending on the structure of the graph at hand.
NECTAR’s decision as to which of the above objective functions to choose is
based solely on the average number of closed triangles per node in the graph.
If this average is below a certain threshold, QE will be employed, otherwise
WOCC will be used. This approach, as shown by Cohen et al. [7], provided good
separation between communities with high overlap (on which WOCC, in most
cases, is superior) and low overlap (on which extended modularity, in most cases,
is superior). An extensive experimental evaluation was conducted, comparing
NECTAR and six other state-of-the-art overlapping community detection algo-
rithms. The evaluation was done using both synthetic and real-world networks
with ground-truth. The evaluation of the clusterings output by the algorithms
was made using the commonly-used metrics ONMI [21], Omega Index [8] and
Average F1 score [38]. NECTAR outperformed all other algorithms in terms of
average detection quality. It was ranked first (on average) for both synthetic and
real-world networks, leading in 33 out of 96 of synthetic networks and was best
for one real-world network and second-best for another.

138 A. Bornstein et al.

Another approach for the problem of approximating the optimum of the
objective function is by employing evolutionary algorithms (EAs) (see e.g. [6,11–
14,20,25–27,30,32,33,35]). EAs are a class of optimization heuristics methods
inspired by biological evolution. Candidate solutions to the optimization prob-
lem play the role of individuals in a population, and a fitness function is used
to determine the quality of the solutions. A common approach is to consider the
community detection problem as a single-objective optimization problem (see
e.g. [13,26,32]). However, it is plausible to assume that a community should have
dense intraconnections and sparse interconnections, implying that two objectives
should be optimized simultaneously in community detection, i.e., maximizing
internal links and minimizing external links [6,11,20]. Therefore, the commu-
nity detection problem can also be modelled as a multi-objective optimization
problem (MOP). Multi-objective EAs (MOEAs) are considered to be the most
popular approach to solve MOP and indeed, several MOEAs [12,14,25,27,30]
have been proposed for community detection.

A unique feature of such algorithms is that they find a set of optimal solutions
instead of a single solution in one run, as each solution corresponds to a partition
of the given network. Most of the existing works focus on developing MOEAs
for detecting nonoverlapping communities, but there are also a few works (see
e.g. [33,35]) that focus on detecting overlapping communities. Unfortunately,
MOEAs’ scalability on large-scale real-world networks is limited, causing them
to be impractical for graphs containing over 10,000 nodes.

Among the few MOEAs which are able to detect overlapping communities,
we focus on two leading algorithms: The Maximal Clique based Multi Objec-
tive Evolutionary Algorithm (MCMOEA), introduced by Wen et al. [35], and
the Evolutionary Multiobjective Optimization based Fuzzy Method (EMOFM),
introduced by Tian et al. While in [33] three approaches of EMOFM are pre-
sented, in this paper, we use its best approach in terms of performance and run
time compared to the other two, denoted EMOFM-DK. DK stands for the use
of Diffusion Kernel similarity for measuring the distance between nodes in the
graph [18]. Both the MCMOEA and the EMOFM-DK algorithms use two exact
metrics for quantitatively comparing the quality of overlapping communities
obtained by different approaches on the benchmark networks, i.e., the extended
modularity QE and the generalized normalized mutual information (gNMI) [21].
Similarly to ONMI, which is used as an evaluation criteria in our work, gNMI is
also a version of Normalized Mutual Information (NMI), suitable for overlapping
clustering evaluation.

We emphasize that the main difference between NECTAR’s approach to
that of MOEA algorithms is the fact that NECTAR is striving to select the
best objective function among multiple objective functions for the optimization
problem, while the MOEA algorithms are simultaneously optimizing multiple
objective functions. Another important difference between the two approaches
is that NECTAR was designed to handle large-scale networks, while MOEA algo-
rithms are capable of processing networks comprised of at most a few thousand
nodes.

Machine-Learning Based Objective Function Selection 139

3 The NECTAR-ML Algorithm

The high-level pseudo-code of the NECTAR-ML algorithm is given by Algorithm
1 with modified lines w.r.t. NECTAR coloured in light blue. As described in
Sect. 2, NECTAR’s decision as to which objective functions to choose, is based
on the average number of closed triangles per node in the graph. NECTAR-ML
optimizes this selection using a machine learning model (lines 5–7 in Algorithm
1). It extracts features from the graph G and provides them as input to the
model, which then predicts which of the two objective functions is best to use.

NECTAR proceeds in iterations, in each of which, it iterates over all nodes v ∈ V
(in some random order), attempting to determine the set of communities to
which node v belongs such that the objective function is maximized. Parameter
β ≥ 1 is used by NECTAR (as well as by NECTAR-ML) to determine the
number of communities to which a node should belong in a dynamic manner. A
detailed description of NECTAR can be found in the full version of this paper [3].

3.1 Learning a Model for Objective Function Selection

For a given graph, we can either use WOCC or QE as our objective function.
Thus, we need to construct a binary ML classifier which, given a network, selects
between the two. Towards this goal, we constructed a large labeled dataset of
networks for the training and evaluation of our model. A detailed description
of the data collection process is provided later. As for model evaluation, since
our key goal is for the model to select an objective function that will optimize
a specific quality metric, we selected to use the Accuracy and Recall scores per
class as the performance evaluation metrics of the model. We consider several
supervised ML algorithms for generating the model, including decision trees,
deep learning and linear classifiers. We use the default threshold of 0.5 to select
which objective function to use. Our training dataset is imbalanced. We therefore
use the Balanced Accuracy metric, which is the average of TPR and TNR. In
order to improve the models’ accuracy, we tune the hyperparameters according
to the average of the Balanced Accuracy metric over 5-folds of the data.

Data Generation. Lancichinetti, Fortunato and Radicchi et al. [22] intro-
duced a set of benchmark graphs (named the LFR benchmark) that provide
heterogeneity in terms of node degree and community size distributions, as well
as control of the degree of overlap between ground truth communities. LFR is
widely used in the field of overlapping community detection research (see e.g.
[7,15,16,23,33,35–37]). We used LFR to generate a dataset of 15,755 networks,
by using the following parameters: The number of nodes, n, is in the range
10K–65K; average node degree, k, is set to 10, 20, 40, 60 or 80; The number of
overlapping nodes, On, is 10%, 25%, or 50% for networks with an average node
degree of 10, 20 or 40 and 75% for networks with an average node degree of 60
or 80. The number of communities an overlapping node belongs to, Om, is set to
{2, . . . , 10} (networks with low average degree are parameterized only with the

140 A. Bornstein et al.

lower portion of this range). The mixing parameter for the topology, mut, is set
to values from {0.1, . . . , 0.5} (networks with low average degree are parameter-
ized only with the lower portion of this range). Maximum node degree maxK is
set to 50 for networks with low average degree and to 100 or 120 for networks
with higher degrees. The full list of parameter values can be found in the full
version of this paper [3]. For each combination of parameters we generated two
distinct graph instances. The features we extracted for classification are:

1. GCC (Global clustering coefficient): 3×NumberOfTriangles
NumberOfTriplets , where a triplet

consists of three nodes that are connected by either two (open triplet) or three
(closed triplet) undirected edges. The expression 3 × NumberOfTriangles
can also be referred as to the total number of closed triplets in the graph, as
one triangle contains three closed triplets.

2. ACC (Average clustering coefficient):
∑

u∈G Cu

NumberOfNodes , where Cu is defined
as

Cu =

{
2×|Ev,w|

ku×(ku−1) , if ku > 1

0, otherwise,
.

where Ev,w is the set of edges among node u’s neighbours and ku is the degree
of u

3. RatioOfNodesInTriangle: NumberOfNodesInTriangles
NumberOfNodes .

4. AverageNodeDegree: 2×NumberOfEdges
NumberOfNodes .

5. AverageTrianglesRate: NumberOfTriangles
NumberOfNodes .

As for the labels, we invoked NECTAR on each network, once using the
WOCC objective function and once using the QE objective function with 10
different values of β ∈ {1.01, 1.05, 1.09, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.0}. Using the
ground truth of the those networks, we evaluated NECTAR’s outputs per net-
work and β value in terms of ONMI [21], Omega Index [8] and Average F1 score
[38] which served as the evaluation criteria in [7] for the NECTAR algorithm. A
full description of those metrics can be found in the full version of this paper [3].

We then label the networks as follows. For each metric type and network,
the objective function which provides the best metric score, over all β values, is
selected as the label of that network for that metric. In addition, a network is
also labeled, in the same manner, according to the average of the three metrics.
Therefore, four different labels are generated (one per metric and a 4th for their
average scores). It is possible that for some metric, the gap in scores between
the result of NECTAR, when invoked using one objective function to the other,
is very small. We would like the model to reflect the fact that, in these cases,
it is not that important which objective function is selected. Consequently, we
weighted each of the networks according to the gap between the two results,
according to Eq. (1):

Weight(G,m) =
|WOCCScorem(G) − ModScorem(G)|

max(WOCCScorem(G),ModScorem(G))
, (1)

Machine-Learning Based Objective Function Selection 141

where G denotes the network and m denotes the metric type. WOCCScorem(G)
is the best metric score over all β values for the network, using the WOCC
objective function. ModScorem(G) is the equivalent term for the QE objective
function case. The labels distribution, with and without consideration of the
networks weight, for a total of 15,755 synthetic networks indicates that all metric
types present a significant class imbalance (Approximately 80% labeled as QE

and 20% as WOCC). The full distribution data can be found in the full version
of this paper [3].

Training and Evaluation. Synthetic Networks: We generated NECTAR-
ML models and evaluated each of them according to the following metrics: ONMI
[21], Omega Index [8], Average F1 score [38] and their average value. All com-
prised datasets, one per metric, were partitioned into a training set and a test set
in the same manner: Networks containing 10K–50K vertices, which constitute
75% of the dataset (11,822/15,755), were used as the training set while networks
containing 55K-65K vertices which constitute 25% of the dataset (3,933/15,755),
were used as the test set. The purpose of this setting is to validate that the mod-
els are robust, in terms of their ability to scale to the size of the network, as
large scale networks share similar attributes, regardless of their size. This will
imply that the models possess the ability to infer, with high accuracy, the suit-
able objective function for networks that are larger than those used for their
training. Oversampling is used in training to handle data imbalance.

Algorithm 1 NECTAR-ML algorithm pseudo-code.
1 const maxIter ← 20 /* max iterations */
2 const α ← 0.8 /* merge threshold */

3 Procedure NECTAR-ML(G=<V,E>, β){
4 /*hparGmorfserutaeftcartxE*/
5 features ← ExtractFeatures(G)

/*noitcnuf.jbotciderP*/
6 objFunc ← model.predict(features)
7 use objFunc as the objective function
8

3 Procedure NECTAR ML(G <V,E>, β){
4 /*hparGmorfserutaeftcartxE*/
5 features ← ExtractFeatures(G)

/*noitcnuf.jbotciderP*/
6 objb Func ← model.predict(features)
7 use objb Func as the objective function

Initialize communities
9 i ← 0 /* number of extern. iterations */

10 repeat
11 s ← 0 /* number of stable nodes */
12 forall v ∈ V do
13 Cv ← communities to which v belongs
14 Remove v from all the communities of Cv

15 Sv ← {C ∈ C∣∣∃u : u ∈ C ∧ (v, u) ∈ E}
16 D ← {Δ(v, C)|C ∈ Sv}
17 C′

v ← {C ∈ Sv |Δ(v, C) · β ≥ max(D)}
18 Add v to all the communities of C′

v
19 if C′

v = Cv then
20 s++
21 end
22 merge(α) /* merge communities */
23 if merge reduced number of communities then
24 s ←0
25 i++
26 until (s = |V |) ∨ (i = maxIter)

142 A. Bornstein et al.

Table 1. Performance of selected ML algorithms in terms of balanced accuracy (BA)
on synthetic networks dataset. The 5th column presents averaged BA results for 5-folds
cross-validation runs. The remaining columns present the BA and recall per class over
the test-set.

Metric Best
algorithm

Hyperparameter type Opt.
value

BA 5-
folds

BA test
set

Recall -
QE test set

Recall - WOCC
test set

ONMI GBDT Number of estimators 400 0.880 0.881 0.806 0.956

Max. depth 4

Min. samples split 3

Min. samples leaf 2

Learning rate 0.1

Average F1 GBDT Number of estimators 400 0.884 0.883 0.838 0.928

Max. depth 4

Min. samples split 3

Min. samples leaf 2

Learning rate 0.1

Omega-Index ExtraTrees Number of estimators 300 0.905 0.907 0.842 0.971

Max. depth 25

Min. samples split 2

Min. samples leaf 2

Metrics-Average ExtraTrees Number of estimators 300 0.901 0.899 0.844 0.954

Max. depth 40

Min. samples split 2

Min. samples leaf 2

Overall average 0.893 0.893 0.833 0.952

We considered several supervised ML algorithms and hyperparameters for all
models (The full list of algorithms can be found in the full version of this paper [3]).
To select the best hyper-params, we use 5-fold cross validation, keeping the ratio
between classes equal in each fold. Each trained classifier Cm was applied to the
corresponding test set fold. Table 1 summarizes the performance of the models in
the setting described above. It presents the ML algorithms and hyperparameters
values which obtained the best balanced accuracy results per metric. The balanced
average achieved over the validation and test sets for all metrics is close to 90%
with a low std of less than 0.01. This indicates that the models are not overfitted.
In addition, the recall for both WOCC and QE is high.

Real World Networks: To validate the quality of our model, we evaluated
it on real world networks from the Stanford Large Network Dataset Collection
[24]. Five undirected, unweighted networks from three different domains were
considered:

1. The Co-product purchasing network (Amazon).
2. The Co-publishing network (DBLP).
3. 3 Social networks: LiveJournal, Friendster and Youtube.

A summary of the properties of these graphs is presented in Table 2.
Similarly to the synthetic networks, the labels of the real-world networks were

assigned by applying NECTAR to each real-world network, applying both the
WOCC and QE objective functions with the 10 different values of β. Then, each
network is labeled for the best objective function per metric. Table 3 presents

Machine-Learning Based Objective Function Selection 143

Table 2. Properties of real-world networks used.

Sub-graphs

Network Number of vertices Number of edges Number of clusters

Amazon 16,716 48,739 1,517

DBLP 93,432 335,520 4,961

Youtube 39,841 224,235 4,771

LiveJournal 84,438 1,521,988 4,703

Friendster 220,015 4,031,793 4,914

Full graphs

DBLP 317,080 1,049,866 13,477

Amazon 334,863 925,872 75,149

Table 3. Ground truth labels and weights for real world networks. For each real world
network, the best objective function and network weight are presented.

Metric ONMI Average F1 Omega-Index Metrics average

Sub-Graphs Best Weight Best Weight Best Weight Best Weight

Amazon QE 0.074 QE 0.050 QE 0.273 QE 0.100

Youtube QE 0.235 QE 0.171 QE 0.401 QE 0.192

DBLP QE 0.012 QE 0.008 QE 0.226 QE 0.045

LiveJournal WOCC 0.038 WOCC 0.020 QE 0.619 QE 0.032

Friendster WOCC 0.003 WOCC 0.0002 QE 0.204 QE 0.056

Full graphs

DBLP QE 0.071 QE 0.014 QE 0.695 QE 0.027

Amazon QE 0.127 QE 0.075 QE 0.259 QE 0.128

the labels for each metric and real-world network, including the network weight
according to Eq. (1). It can be seen that the extended Modularity objective
function is the preferable choice in 85% of the cases (24/28) as the models for
the ONMI and Average F1 metrics contain WOCC labels for the LiveJournal
and Friendster networks while the other metrics models contain only QE labels.

Table 3 reveals the motivation behind splitting the analysis per metric, as
some users might have different needs in evaluating the clustering results. For
instance, from Table 3, a user who chooses to use the Metrics Average model
with NECTAR-ML for the Friendster or LiveJournal social networks will indeed
receive better results for this metric, but if the user is only interested in the
ONMI or Average F1 metric scores, it would be best to use the ONMI or Average
F1 models for that purpose.

In order to evaluate the models’ performance on the real world networks, each
classifier Cm was trained using the selected hyperparameters on the whole syn-
thetic networks dataset (10K–65K) and then applied on the real-world networks.
Figure 1 presents the weighted hit/miss results of the predictions of all classi-
fiers. The values in the heatmap represent networks weight and signify the level of
importance in selecting the objective function. A hit is represented by a positive

144 A. Bornstein et al.

Fig. 1. A heat-map of the weighted hit/miss results on real world networks using the
classifiers per metric.

value of the network weight and therefore coloured in red. A miss is represented
by a negative value of the network weight and therefore coloured in blue. Weights
close to zero are coloured in grey. By examining the weights values, we can see
that the classifiers presented a high level of accuracy on both low and high weight
values. It can also be seen that there is a single miss, by the Average F1 classifier,
whose significance is very low (the weighted value is practically zero). Table 4 sum-
marizes the averaged results of the experiments conducted on the real-networks.
The network weights are calculated using Eq. (1) and presented in Table 3. The
2nd column presents the averaged balanced accuracy results per metric while the
remaining two columns present the averaged recall results for each of the objective
functions. Recall values for WOCC are missing for the Omega-Index and Metrics-
Average since no WOCC ground truth labels exist for those metrics. The balanced
accuracy weighted average of all metrics reaches nearly 100%.

4 Experimental Evaluation

This section includes a comparison of NECTAR-ML to NECTAR and MOEA
algorithms on synthetic and real world networks.

Table 4. Averaged test set results for real world networks with respect to the networks
weights.

Metric Balanced accuracy Recall QE Recall WOCC

ONMI 1.000 1.000 1.000

Average F1 0.990 1.000 0.980

Omega-Index 1.000 1.000 —

Metrics average 1.000 1.000 —

Weighted average 0.999 1.000 0.999

Machine-Learning Based Objective Function Selection 145

4.1 Competitive Analysis to NECTAR

In this section we present a competitive analysis between NECTAR-ML and
NECTAR. We analyse the performance of the two methods on the test sets of
both synthetic and real world networks, presented in Sect. 26. We compare the
accuracy provided by each algorithm in selecting the best objective function for
each of the test set networks. The specific model, per metric type, was applied
on the test set networks and its objective function predictions are compared to
NECTAR’s dynamic selections according to the AverageTriangleRate threshold
value.

Synthetic Networks: Figure 2 presents the competitive analysis of Cohen
et al.’s NECTAR[7] and NECTAR-ML algorithms using the average metrics for
labelling. Competitive analysis figures using ONMI, Omega-index and average
F1 metrics follow similar trends and are presented in the full version of this paper
[3]. In the figure, each cell in the heatmap represents a certain LFR configura-
tion which is comprised out of four variables, k On, Om and mut. The networks
which match the cell’s configuration are given a calculated weight according to
Eq. (1). The value of the cell is calculated as follows. First, a total sum variable
is initialized to 0. Then, for each network, If NECTAR-ML selects the objective
function correctly while NECTAR does not, the calculated weight value of the
network is added to the total sum. If NECTAR selects the objective function
correctly while NECTAR-ML does not, the calculated weight value is subtracted
from the sum. If both algorithms are wrong/correct, no value is added nor sub-
tracted from/to the sum. Since there are multiple networks per configuration,
in order to normalise the value between −1 to 1, the summed value is divided
by the number of networks which comprised the sum. The cell’s color and inten-
sity, with respect to the cell’s value, are defined by the colour palette which is
placed at the right of the heatmap. Therefore, a red colour indicates that for a
specific configuration, NECTAR-ML provided better selections than NECTAR
while a blue colour indicates the opposite. A grey colour indicates that both
algorithms provided similar results. It can be seen that, except for only a few
minor cases, NECTAR-ML is on average, equal to or better than the NECTAR
algorithm. NECTAR-ML’s better selections of the objective functions are more
noticeable for the configurations containing On values equal to 50% and 75%
of the number of total nodes. In addition, we can see that this pattern is being
strengthened with the increase of k and Om values, meaning that NECTAR-ML
presents supremacy over NECTAR especially in dense networks, as it can be
seen from the bottom table in the figure.

Real-World Networks: Figure 3 presents the competitive analysis of the NEC-
TAR [7] and NECTAR-ML algorithms, with respect to all metric types. As in
Fig. 2, the colour of the cell, represent a hit/miss of NECTAR-ML vs NEC-
TAR while its opacity is controlled by the network’s weight. The Amazon and
Amazon-Full networks shared the same algorithms selections for all metric cases
and are therefore omitted from the heatmap. It can be seen that NECTAR-
ML’s selections are equal or better than NECTAR, apart from one selection

146 A. Bornstein et al.

Fig. 2. NECTAR vs NECTAR-ML competitive analysis on synthetic networks using
the average metrics model. The comparison was made using the 55K–65K test set
networks.

Fig. 3. NECTAR vs NECTAR-ML competitive analysis on real world networks per
metric.

whose importance is very low, as the weighted value of this network is practically
zero (Average F1 metric over the Friendster network). NECTAR-ML’s superior
objective function selections are reflected both on low and high weights values
of the networks and therefore positions NECTAR-ML as significantly superior
to NECTAR over real-world networks, for all four metrics.

Machine-Learning Based Objective Function Selection 147

4.2 Competitive Analysis to MOEA Algorithms

In this section we analyse and describe the results of an extensive competitive
analysis we have conducted between NECTAR-ML and the two MOEA algo-
rithms presented in Sect. 2. First, all three algorithms are compared using the
same benchmark of networks due to the network size limitation of the EMOFM-
DK algorithm. Then, NECTAR-ML is compared to the MCMOEA algorithm
over large scale networks.

NECTAR-ML vs MOEAs: To evaluate correctly EA algorithms, a suitable
benchmark was selected, which reflects a common ground of all algorithms. For
this, the following considerations were taken into account. First, due to the
runtime limitation of EMOFM-DK, the number of total nodes selected for the
comparison was set to 1000. This network size is much smaller than the large
scale networks we used for evaluating NECTAR-ML, but it enabled us to com-
pare the algorithms properly. Second, the evaluation of the clusterings output by
the algorithms was made using the commonly-used metrics, ONMI [21], Omega
Index [8] and Average F1 score [38]. Since ONMI and gNMI are versions of NMI
and both are suitable for overlapping clustering evaluation, as stated in Sect. 2,
we decided to continue to use the ONMI metric, in order to use it consistently
all throughout this work. Third, evolutionary multiobjective optimization based
approaches can obtain multiple solutions of overlapping community structures in
a single run, while NECTAR-ML is producing only a single solution per objective
function and β value (10 values of β are used). To mitigate this gap, we decided
to compare MOEAs best score per metric, selected from the entire set of runs and
clustering outputs to NECTAR-ML’s best score per metric, retrieved using the
predicted objective function over the β values. Finally, the number of runs for a
MOEA algorithm to be executed is set to 30, which is the number of runs used by
Wen et al. and Tian et al. in their competitive analysis. Both MOEA algorithms
run with their default parameters values. We created a dataset of 785 synthetic
networks for the competitive analysis. Specifically, the LFR parameters used by
[36] can be found in the full version of this paper [3]. The parameters, which
were used in both MCMOEA [35] and EMOFM-DK [33] competitive analysis to
other algorithms, are contained in this set of parameters. Due to the fact that
NECTAR-ML’s learning based model was designed for large scale networks and
the analysis of significantly smaller ones present a different view on the classes
and features distributions, the model was re-trained using smaller network sizes.
The network sizes which were selected for the training phase were 100, 300, 500,
1400, 1600, 1800 and 2000. All networks sizes share the same configurations as
the 1000 network size configurations. The labels distribution, for a total of 5,918
synthetic networks, with and without consideration of the networks weight, can
be found in the full version of this paper [3].

Table 5 presents the results of the model evaluation on the test data for all
metric types. The 1st column presents the balanced accuracy results for the 5-
folds cross-validation runs. The maximum standard deviation for the folds is less
than 0.014. The remaining columns present the results for the networks test set.
The 2nd column present the balanced accuracy result and the last two columns

148 A. Bornstein et al.

Table 5. Synthetic networks results for the classifiers on networks of size 1000.

Metric Balanced
accuracy 5-Folds

Balanced
accuracy test set

Recall - QE

test set

Recall - WOCC
test set

ONMI 0.887 0.920 0.928 0.911

Average F1 0.922 0.924 0.936 0.912

Omega-Index 0.876 0.897 0.910 0.883

Metrics average 0.917 0.933 0.935 0.931

Overall average 0.901 0.919 0.927 0.909

present the recall results for each of the objective functions. All models are using
the default threshold value of 0.5 to select between the objective functions. As
can be seen, the balanced average achieved over the test set of the networks of
size 1000 is close to 92%. Also, the 5-folds cross validation results present similar
results and have a low standard deviation of less than 0.014 for all metrics. This
indicates that the models are not overfitted.

Using our dedicated framework, we were able to process, for the EMOFM-
DK and MCMOEA algorithms, approximately 9,891,000 and 1,177,500 clus-
tering outputs respectively, as there were 785 compared networks, 30 runs per
network, 420 clustering outputs for EMOFM-DK, and 50 clustering outputs for
MCMOEA per run. A timeframe of 48 h was given for the MOEA algorithms
to complete their runs per network. Figure 4a presents the average performance
of the algorithms in terms of average value of the three known metrics for all
785 networks. As can be seen in Fig. 4a, NECTAR-ML outperformed both algo-
rithms, while MCMOEA is the second-best, with a score lower than NECTAR-
ML’s by approximately 17%. EMOFM-DK comes last with a score lower than
NECTAR-ML’s by approximately 30%. Competitive analysis figures related to
the ONMI, Omega-index and average F1 metrics follow the same trend and can
be found in the full version of this paper [3].

NECTAR-ML vs. MCMOEA: We created a dataset of 195 synthetic net-
works for the large-scale networks competitive analysis. The selected LFR
parameters extend the networks configuration used in MCMOEA [35], for the
performance analysis of large-scale networks, as follows: The total number of
nodes, n, is 10K, the average node degree, k, is set to 20. The number of over-
lapping nodes, On, is set to 10%, 25%, 50%. The number of communities an
overlapping node belongs to, Om, is set to {2, . . . , 8}. The mixing parameter for
the topology, mut, is set to values from the range {0.1, . . . , 0.5}. The maximum
node degree maxK is set to 50. Using the same platform used for the 1K com-
petitive analysis, we were able to produce MCMOEA clustering outputs for the
dataset. As for NECTAR-ML, since this dataset contains network configurations
which are contained in the training set, the model was re-trained with these net-
works excluded. Then, the model was applied on the dataset. Figure 4b presents
the average performance of the algorithms in terms of average value of the three
known metrics for all 195 networks.

Machine-Learning Based Objective Function Selection 149

Fig. 4. Average performance of the average metrics value as a function of Om.

As can be seen in Fig. 4b, NECTAR-ML outperformed MCMOEA, which
obtained an averaged score lower than NECTAR-ML’s by approximately 22%.
Competitive analysis figures related to The ONMI, Omega-index and average
F1 metrics follow the same trend and can be found in the full version of this
paper [3].

5 Conclusion

We introduced NECTAR-ML, an extension of the NECTAR algorithm that uses
a machine-learning based model for automating the selection of the objective
function by leveraging features based on the input graph. To train the model,
we created a dataset of 15,755 synthetic networks, with various sizes and proper-
ties. We analyzed 3,933 synthetic and 7 real networks, measuring the quality of
our models, aiming to dynamically select, based on the properties of the graph
at hand, which objective function should be used. Our analysis shows that in
approximately 90% of the cases our model was able to successfully select the
correct objective function to maximize the desired metric.

NECTAR-ML was proven to be superior over NECTAR as it significantly
outperformed NECTAR’s ability to select the best objective function out of
QE and WOCC. In addition, we have conducted an extensive competitive anal-
ysis of NECTAR-ML and two additional state-of-the-art multi-objective algo-
rithms based on the MOEA approach for the multiobjective optimization prob-
lem (MOP). NECTAR-ML outperformed both algorithms in terms of average
detection quality. Multiobjective EAs (MOEAs) are considered to be the most
popular approach to solve MOP and the fact that NECTAR-ML significantly
outperforms them demonstrates the effectiveness of ML-based objective function
selection.

150 A. Bornstein et al.

This work can be extended in several ways. First, by using multi-class rather
than binary classification, NECTAR-ML can be trained to select from a broader
set of objective functions, possibly based on additional structural graph proper-
ties. As proposed in [7] for the NECTAR algorithm, search heuristics that target
some weighted average of several objective functions, rather than selecting just
one of them, might further improve performance.

Also, despite the fact that most community detection algorithms require at
least one user-provided parameter, decreasing their number makes it easier to
use the algorithm. In future work, we will attempt to do so by learning them
from the input graph’s structural features as well. For instance, predicting the
optimal value for the β parameter could be addressed as a regression problem.

References

1. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(7307), 761–764 (2010). https://doi.org/10.1038/
nature09182

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008
(2008). https://doi.org/10.1088/1742-5468/2008/10/p10008

3. Bornstein, A., Rubin, A., Hendler, D.: Machine-learning based objective function
selection for community detection (2022). https://doi.org/10.48550/ARXIV.2203.
13495. https://arxiv.org/abs/2203.13495

4. Brandes, U., et al.: On finding graph clusterings with maximum modularity. In:
Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp.
121–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-
7 12

5. Chen, M., Kuzmin, K., Szymanski, B.K.: Extension of modularity density for over-
lapping community structure. In: 2014 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2014), pp. 856–863
(2014). https://doi.org/10.1109/ASONAM.2014.6921686

6. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction
of missing links in networks. Nature 453(7191), 98–101 (2008). https://doi.org/
10.1038/nature06830

7. Cohen, Y., Hendler, D., Rubin, A.: Node-centric detection of overlapping commu-
nities in social networks. In: Shmueli, E., Barzel, B., Puzis, R. (eds.) NetSci-X
2017. SPC, pp. 1–10. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55471-6 1

8. Collins, L.M., Dent, C.W.: Omega: a general formulation of the rand index of
cluster recovery suitable for non-disjoint solutions. Multivar. Behav. Res. 23(2),
231–242 (1988). https://doi.org/10.1207/s15327906mbr2302 6. pMID: 26764947

9. Flake, G., Lawrence, S., Giles, C., Coetzee, F.: Self-organization and identification
of web communities. Computer 35(3), 66–70 (2002). https://doi.org/10.1109/2.
989932

10. Gao, Y., Zhang, H., Zhang, Y.: Overlapping community detection based on
conductance optimization in large-scale networks. Phys. A Stat. Mech. Appl.
522, 69–79 (2019). https://doi.org/10.1016/j.physa.2019.01.142. https://www.
sciencedirect.com/science/article/pii/S0378437119301487

https://doi.org/10.1038/nature09182
https://doi.org/10.1038/nature09182
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.48550/ARXIV.2203.13495
https://doi.org/10.48550/ARXIV.2203.13495
https://arxiv.org/abs/2203.13495
https://doi.org/10.1007/978-3-540-74839-7_12
https://doi.org/10.1007/978-3-540-74839-7_12
https://doi.org/10.1109/ASONAM.2014.6921686
https://doi.org/10.1038/nature06830
https://doi.org/10.1038/nature06830
https://doi.org/10.1007/978-3-319-55471-6_1
https://doi.org/10.1007/978-3-319-55471-6_1
https://doi.org/10.1207/s15327906mbr2302_6
https://doi.org/10.1109/2.989932
https://doi.org/10.1109/2.989932
https://doi.org/10.1016/j.physa.2019.01.142
https://www.sciencedirect.com/science/article/pii/S0378437119301487
https://www.sciencedirect.com/science/article/pii/S0378437119301487

Machine-Learning Based Objective Function Selection 151

11. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/
pnas.122653799. https://www.pnas.org/ content/99/12/7821

12. Gong, M., Cai, Q., Chen, X., Ma, L.: Complex network clustering by multiobjective
discrete particle swarm optimization based on decomposition. IEEE Trans. Evol.
Comput. 18(1), 82–97 (2014). https://doi.org/10.1109/TEVC.2013.2260862

13. Gong, M., Fu, B., Jiao, L., Du, H.: Memetic algorithm for community detection in
networks. Phys. Rev. E 84, 056101 (2011). https://doi.org/10.1103/PhysRevE.84.
056101. https://link.aps.org/doi/ 10.1103/PhysRevE.84.056101

14. Gong, M., Ma, L., Zhang, Q., Jiao, L.: Community detection in networks by
using multiobjective evolutionary algorithm with decomposition. Phys. A Stat.
Mech. Appl. 391(15), 4050–4060 (2012). https://doi.org/10.1016/j.physa.2012.03.
021. https://www.sciencedirect.com/science/article/pii/S0378437112002579

15. Gregory, S.: Finding overlapping communities in networks by label propagation.
New J. Phys. 12(10), 103018 (2010). https://doi.org/10.1088/1367-2630/12/10/
103018

16. Gregory, S.: Fuzzy overlapping communities in networks. J. Stat. Mech. The-
ory Exp 2011(02), P02017 (2011). https://doi.org/10.1088/1742-5468/2011/02/
p02017

17. King, A.D., Pržulj, N., Jurisica, I.: Protein complex prediction via cost-based
clustering. Bioinformatics 20(17), 3013–3020 (2004). https://doi.org/10.1093/
bioinformatics/bth351

18. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete structures.
In: Proceedings of the ICML, pp. 315–322 (2002)

19. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast saccha-
romyces cerevisiae. Nature 440(7084), 637–643 (2006)

20. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative
analysis. Phys. Rev. E 80, 056117 (2009). https://doi.org/10.1103/PhysRevE.80.
056117. https://link.aps.org/doi/10.1103/PhysRevE.80.056117

21. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hier-
archical community structure in complex networks. New J. Phys. 11(3), 033015
(2009). https://doi.org/10.1088/1367-2630/11/3/033015

22. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for test-
ing community detection algorithms. Phys. Rev. E 78, 046110 (2008).
https://doi.org/10.1103/PhysRevE.78.046110. https://link.aps.org/doi/10.1103/
PhysRevE.78.046110

23. Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community
structure by greedy clique expansion (2010)

24. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

25. Liu, C., Liu, J., Jiang, Z.: A multiobjective evolutionary algorithm based on simi-
larity for community detection from signed social networks. IEEE Trans. Cybernet.
44(12), 2274–2287 (2014). https://doi.org/10.1109/TCYB.2014.2305974

26. Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social net-
works. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN
2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87700-4 107

27. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex
networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2012). https://doi.org/10.
1109/TEVC.2011.2161090

https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://www.pnas.org/
https://doi.org/10.1109/TEVC.2013.2260862
https://doi.org/10.1103/PhysRevE.84.056101
https://doi.org/10.1103/PhysRevE.84.056101
https://link.aps.org/doi/
https://doi.org/10.1016/j.physa.2012.03.021
https://doi.org/10.1016/j.physa.2012.03.021
https://www.sciencedirect.com/science/article/pii/S0378437112002579
https://doi.org/10.1088/1367-2630/12/10/103018
https://doi.org/10.1088/1367-2630/12/10/103018
https://doi.org/10.1088/1742-5468/2011/02/p02017
https://doi.org/10.1088/1742-5468/2011/02/p02017
https://doi.org/10.1093/bioinformatics/bth351
https://doi.org/10.1093/bioinformatics/bth351
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117
https://link.aps.org/doi/10.1103/PhysRevE.80.056117
https://doi.org/10.1088/1367-2630/11/3/033015
https://doi.org/10.1103/PhysRevE.78.046110
https://link.aps.org/doi/10.1103/PhysRevE.78.046110
https://link.aps.org/doi/10.1103/PhysRevE.78.046110
http://snap.stanford.edu/data
https://doi.org/10.1109/TCYB.2014.2305974
https://doi.org/10.1007/978-3-540-87700-4_107
https://doi.org/10.1007/978-3-540-87700-4_107
https://doi.org/10.1109/TEVC.2011.2161090
https://doi.org/10.1109/TEVC.2011.2161090

152 A. Bornstein et al.

28. Pizzuti, C., Rombo, S.E.: Algorithms and tools for protein-protein interaction net-
works clustering, with a special focus on population-based stochastic methods.
Bioinformatics 30(10), 1343–1352 (2014). https://doi.org/10.1093/bioinformatics/
btu034

29. Prat-Pérez, A., Dominguez-Sal, D., Brunat, J.M., Larriba-Pey, J.L.: Shaping com-
munities out of triangles. In: Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management, CIKM 2012, pp. 1677–1681.
Association for Computing Machinery, New York (2012). https://doi.org/10.1145/
2396761.2398496

30. Shi, C., Yan, Z., Cai, Y., Wu, B.: Multi-objective community detection in
complex networks. Appl. Soft Comput. 12(2), 850–859 (2012). https://doi.org/
10.1016/j.asoc.2011.10.005. https://www.sciencedirect.com/science/article/pii/
S1568494611003991

31. Š́ıma, J., Schaeffer, S.E.: On the NP-completeness of some graph cluster measures.
In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM
2006. LNCS, vol. 3831, pp. 530–537. Springer, Heidelberg (2006). https://doi.org/
10.1007/11611257 51

32. Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks
using genetic algorithms (2007)

33. Tian, Y., Yang, S., Zhang, X.: An evolutionary multiobjective optimization based
fuzzy method for overlapping community detection. IEEE Trans. Fuzzy Syst.
28(11), 2841–2855 (2020). https://doi.org/10.1109/TFUZZ.2019.2945241

34. Viamontes Esquivel, A., Rosvall, M.: Compression of flow can reveal overlapping-
module organization in networks. Phys. Rev. X 1, 021025 (2011). https://doi.
org/10.1103/PhysRevX.1.021025. https://link.aps.org/doi/10.1103/PhysRevX.1.
021025

35. Wen, X., et al.: A maximal clique based multiobjective evolutionary algorithm
for overlapping community detection. IEEE Trans. Evol. Comput. 21(3), 363–377
(2017). https://doi.org/10.1109/TEVC.2016.2605501

36. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks:
the state-of-the-art and comparative study. ACM Comput. Surv. 45(4) (2013).
https://doi.org/10.1145/2501654.2501657

37. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection
in social networks. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD
2012. LNCS (LNAI), vol. 7302, pp. 25–36. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30220-6 3

38. Yang, J., Leskovec, J.: Community-affiliation graph model for overlapping net-
work community detection. In: 2012 IEEE 12th International Conference on Data
Mining, pp. 1170–1175 (2012). https://doi.org/10.1109/ICDM.2012.139

39. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015). https://doi.org/10.1007/
s10115-013-0693-z10.1007/s10115-013-0693-z

https://doi.org/10.1093/bioinformatics/btu034
https://doi.org/10.1093/bioinformatics/btu034
https://doi.org/10.1145/2396761.2398496
https://doi.org/10.1145/2396761.2398496
https://doi.org/10.1016/j.asoc.2011.10.005
https://doi.org/10.1016/j.asoc.2011.10.005
https://www.sciencedirect.com/science/article/pii/S1568494611003991
https://www.sciencedirect.com/science/article/pii/S1568494611003991
https://doi.org/10.1007/11611257_51
https://doi.org/10.1007/11611257_51
https://doi.org/10.1109/TFUZZ.2019.2945241
https://doi.org/10.1103/PhysRevX.1.021025
https://doi.org/10.1103/PhysRevX.1.021025
https://link.aps.org/doi/10.1103/PhysRevX.1.021025
https://link.aps.org/doi/10.1103/PhysRevX.1.021025
https://doi.org/10.1109/TEVC.2016.2605501
https://doi.org/10.1145/2501654.2501657
https://doi.org/10.1007/978-3-642-30220-6_3
https://doi.org/10.1007/978-3-642-30220-6_3
https://doi.org/10.1109/ICDM.2012.139
https://doi.org/10.1007/s10115-013-0693-z10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z10.1007/s10115-013-0693-z

Randomness for Randomness Testing

Daniel Berend, Shlomi Dolev, and Manish Kumar(B)

Ben-Gurion University of the Negev, Be’er Sheva, Israel
berend@bgu.ac.il, dolev@cs.bgu.ac.il, manishk@post.bgu.ac.il

Abstract. Given a binary sequence, one may inquire whether it is pro-
duced by a true random source. There are several tests designed to answer
this question, such as the statistical test suite of the National Institute
of Standard and Technology (NIST) and the Diehard tests.

The problem is that, given deterministic tests of randomization, an
adversary may know/learn, the adversary may tailor a non-random
(deterministic) sequence, guided by the deterministic tests, that passes
the tests.

We suggest to use a true random source for randomness tests and
thus make the tests significantly harder to being misled. We design tests
that use true random sources and demonstrate their ability to detect
non-random sequences that NIST classifies as random.

Keywords: Property testing · Randomness testing · Truly random
generator

1 Introduction

The need for true randomness in cryptography and randomized algorithms is
inherent to the validity of the results. One may ask whether the used randomness
is based on a truly random source or (a malicious) non-random source. Verifying
that a given sequence is produced by a truly random source is impossible for any
bounded length sequence, as there is an automaton (with the number of states
proportional to the sequence length) that produces the sequence. Still, one can
examine the sequence according to statistical tests.

What is a truly (uniformly) random sequence? Out of the three sequences
0000000000, 0101010101, and 0111001001, of length 10, most people would prob-
ably classify the first two as non-random, but agree to pass the third as random.
Note that a truly random generator (TRG), asked to provide a random sequence
of length 10, has the same probability of 1/210 of producing each of the sequences
above. So why is the third sequence “more random” than the first two?

D. Berend—Research supported in part by the Milken Families Foundation Chair in
Mathematics and the Cyber Security Research Center at Ben-Gurion University.
S. Dolev—This research was (partially) funded by a grant from the Ministry of Science
and Technology, Israel & the Japan Science and Technology Agency (JST), the German
Research Funding (DFG, Grant #8767581199), Genesis Consortium, the Rita Altura
trust chair in computer science, and by the Lynne and William Frankel Center for
Computer Science.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 153–161, 2022.
https://doi.org/10.1007/978-3-031-07689-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_11&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_11

154 D. Berend et al.

Similar questions are relevant in the context of gambling. A casino will have
a hard time convincing a judge that a roulette, that has shown red for an entire
day, is honest, even though this sequence of results is just as likely as any other
sequence. One expects that, if a (long) sequence of length n is produced by a
TRG, each sequence of some fixed length k << n will show up with a frequency
of about 1/2k among the sub-blocks of sequence.

A judge may decide to base a test of the distribution of the sub-blocks of
some length k within the considered sequence. The problem is that, if the test
is known in advance (as is the case with NIST’s tests), an adversary may use
this knowledge to design structured sequences that will pass it. To overcome this
problem, we suggest using a non-deterministic judge, who will use many random
tests. If the sequence fails in at least one of these tests, we decide that it was
not generated by a TRG.

The suggestion of testing randomness with randomness seems circular. How
do we verify that a supposedly random source we use is indeed random? Fortu-
nately, there are several suppliers of true random devices based on quantum (or
other similar physical) phenomena [22]. We may bit-wise XOR several sequences
produced by such sources to obtain a more trusted true random sequence. Even
if but one of the sources is indeed truly random, the resulting sequence is also
such. Once we have (typically expensive) truly random devices, we can test a
supplier of a cheaper device/procedure for the (level of) randomness claimed,
prior to approving the new device for use.

Throughout the paper, a truly random source is a source generating binary
sequences of an arbitrary length, such that (i) each bit has the same probabilities
1/2 and 1/2 of being 0 or 1, and (ii) distinct bits are statistically independent.
When discussing a random sequence, we refer to a sequence generated by a truly
random source. If we want to refer to a sequence generated by some source
(random or not), which does not satisfy these requirements, we will emphasize
this fact.

Organization of the Paper. In Sect. 2 we present some related work. Section 3
introduces NIST’s tests. Section 4 is devoted to the idea of the tests proposed
in this paper. In Sect. 5 we detail the sequences on which we have tested
both NIST’s tests and ours. Section 6 presents and discusses the results of the
evaluation.

2 Related Work

Statistical Test Suite. Randomness tests are used to analyze the distribu-
tion pattern of a set of data. Researchers proposed a variety of algorithms for
randomness testing. In 1938, Kendall and Smith [11] introduced the first ran-
domness test, based on Pearson’s chi-squared test. In 1995, Marsaglia introduced
the Diehard tests for checking the quality of a random number generator and
applied it to some data. Nowadays, the standard tests in use are published by
the National Institute of Standards and Technology (NIST); their set of tests
was published in 2001.

Randomness for Randomness Testing 155

The NIST Test Suite [17] is a statistical package consisting of 15 tests that
were developed to test the randomness of (arbitrarily long) binary sequences,
produced by either hardware or software-based cryptographic random or Pseudo
Random Number Generators (PRNG). (In fact, there were initially 16 tests, but
one of them – Lempel-Ziv’s test – was later removed due to implementation
problems). These tests are widely used in many applications. For example, in the
evaluation of the Advanced Encryption Standard (AES) candidate algorithms,
one of the criteria was their performance as PRNGs. The NIST test suite was
used in order to determine the number of rounds in which the algorithms behave
like a PRNG, to understand the security level of the algorithms [20].

All of the NIST’s tests are parameterized by a parameter n, denoting the
length (in bits) of the processed bitstream. Some of the tests use an additional
parameter M . In these tests, the given bitstream is divided into n/M chunks of
equal length M each, and the distribution of some specific feature in these parts
is examined.

Property Testing. Property testing, as introduced in the seminal works [8,16],
deals with algorithms for deciding whether a given object has a pre-determined
property or is far from every object having this property. Property testing has
been used for many specific properties, such as testing linearity, testing mono-
tonicity, testing graph properties, testing properties of distributions, etc.

In the distribution property testing [1,2,7], given sample access to one or more
unknown distributions, we have to determine whether they satisfy some global
property or are far from satisfying it. The roots of distribution testing lie in statis-
tical hypothesis testing [14,15]. One of the most fundamental tasks in this field
is deciding whether or not an unknown discrete distribution is approximately
uniform on its domain. The problem is known as the problem of uniformity
testing.

Uniformity testing was discussed by Goldreich and Ron in [9], motivated
by the question of testing the expansion of graphs. They proposed a simple
and natural uniformity tester that relies on the collision probability of unknown
distribution. The collision probability of a discrete distribution P is the proba-
bility that two samples, drawn independently from P, are the same. The main
idea here is that the uniform distribution has the minimum collision probabil-
ity among all distributions on the same domain, and that any distribution that
is ε-far from uniform has a noticeably larger collision probability. Diakonikolas
et al. [4] showed that a collision-based uniformity tester succeeds after drawing
O(N1/2/ε2) samples from the unknown distribution. Chan et al. [3] introduced a
chi-squared type tester that uses O(N1/2/ε2) samples. Here and below, ε denotes
the “allowed” deviation from uniformity.

A related uniformity testing problem is the following: Given two distribu-
tions over an N element set, we wish to check whether these distributions are
statistically close by only sampling. Batu et al. [1] showed that Ω(N2/3) samples
are necessary but Õ(N2/3/ε4) samples are sufficient in order to distinguish a
pair of identical distributions from a pair of distinct distributions, where N is
an upper bound on the support of the distribution.

156 D. Berend et al.

3 NIST Randomness Tests Suite

The NIST test suite implements 15 empirical tests developed to test the random-
ness of binary sequences. Some of the NIST tests have a preprocessing phase.

We go here over some of the tests. The first NIST randomness test is the
frequency test. This test checks whether the frequencies of 0-s and 1-s across
the sequence are approximately equal. Thus, for example, the periodic sequence
010101... passes the test. The second NIST randomness test is the frequency test
within a block. It examines the proportion of 1-s within blocks of some arbitrary
length. The third NIST randomness test is the run (oscillation) test. It focuses
on the total number of runs in the sequence, where a run is an uninterrupted
sequence of identical bits. It checks whether the numbers of runs of 0-s and of 1-s
of various lengths are, as may be expected for a random sequence. In particular,
it verifies that the number of oscillations from 0-s to 1-s and vice versa is neither
too small nor too large.

In general, NIST’s tests may be divided into three classes [21], as follows:

– The fastest tests, that process each bit of the bitstream but once – Frequency,
Block frequency, Runs, Longest run, Cumulative sums, Random excursion,
and Random excursion variant.

– Fast tests that process M -bit blocks – Non-overlapping template matching,
Overlapping template matching, Universal, Serial, and Approximate entropy.

– Slow and complicated tests – Linear complexity, Discrete Fourier transform,
Binary matrix rank.

4 Using (True) Randomness for Randomness Testing

In this section, we present our approach for randomness testing. Unlike the best
deterministic algorithms used in practice, we propose probabilistic algorithms.
Thus, an attacker, who wants to produce sequences passing the randomness test,
has a much harder task.

Random Sampling of Blocks. Our approach consists of sampling random
blocks. Here, a “block” may be a string made of several consecutive entries in
the given sequence, but it may also consist of any random entries. The basic
observation is that, once the entries are distinct, the probability of such a block
of a given length M being any specific binary block of length M is 1/2M . We
would like to choose the blocks in such a way that, if the sequence is not a TRG
sequence, the statistics of the blocks we sample will indicate this fact.

Suppose the given sequence is a TRG sequence. We select randomly K blocks
a1, . . . , aK of length M each. There may be some overlapping between the blocks,
but the number K of blocks is usually sufficiently small relative to n to make the
overlapping negligible. We count the pairs (ai, aj), 1 ≤ i < j ≤ K, of blocks for
which ai = aj . We use the proportion of these pairs out of all

(
K
2

)
pairs to decide

whether or not our sequence is random. It is easy to verify that, if the sequence

Randomness for Randomness Testing 157

is random, then the proportion is on average 1/2M . The key observation is that,
if the sequence is constructed by a random generator, but not a TRG, regardless
of the precise randomness mechanism, the proportion in question is on average
strictly larger than 1/2M . Given a parameter ε, denoting the “allowed error”,
we take K =

√
2M/ε4. The sequence is accepted as a TRG sequence if the

proportion of equal pairs is less than (1 + 2ε2)/2M , and rejected otherwise [7,
Algorithm 11.3].

In our experiment below, we have used the following four types of blocks. All
blocks are of length M = 5.

– Test 1: Consecutive blocks with a uniformly random initial bit.
– Test 2: Blocks of length M , consisting of M uniformly random bits.
– Test 3: Blocks of the form [i, i + Δ, i + 2Δ, . . . , i + (M − 1)Δ]. Here, the

locations are to be understood modulo n, the parameter Δ is a pre-determined
integer between 1 and n − 1, and i is chosen uniformly randomly between 1
and n at each iteration. In our experiment, we used Δ = 5.

– Test 4: Blocks of the form [i, i + Δ, i + 2Δ, . . . , i + (M − 1)Δ], where Δ
is chosen uniformly randomly for the whole test, and i is chosen uniformly
randomly at each iteration.

In all tests, we have used an error parameter ε = 0.1.

5 Types and Parameters of Tested Sequences

Some types of non-TRG data may be harder to detect than others. Let us con-
sider a few types of such sequences, used later in our tests for comparing the
various algorithms for randomness testing.

– Type 1: Perhaps the simplest way to generate a non-random sequence is
to take each entry of the sequence as 0 or as 1 with distinct probabilities,
keeping the assumption that bits are independent. The non-randomness of
such a sequence should be easily detected unless the two probabilities are
very close to 1/2. In our tests below, we have taken P (0) = 0.6, P (1) = 0.4.

– Type 2: Markov chain based sequences. The first bit is chosen uniformly
randomly, and then we continue according to some 2 × 2 transition matrix
(P (i, j)1i,j=0). That is, if some bit in the sequence is i ∈ {0, 1}, then the
next bit is 0 with probability P (i, 0) and is 1 with probability P (i, 1) =
1 − P (i, 0). The interesting case is when the stationary probability vector is
still (1/2, 1/2). Thus, in our experiments we have used the matrix

(
p 1 − p

1 − p p

)
.

With this matrix (for p �= 1/2), the overall proportion of 0-s and of 1-s is 1/2
each, but consecutive bits are dependent. Each bit tends to be followed by
the same bit if p > 1/2 and by the opposite bit if p < 1/2. We have tested
the resulting sequences for p = 1/3 and for p = 2/3.

158 D. Berend et al.

– Type 3: Sequences based on higher-order Markov chains. The first several
bits are chosen uniformly randomly and independently, and then each bit
depends on several preceding bits. Again, we wanted the stationary probabil-
ity vector to be (1/2, 1/2). Specifically, we have taken the transition matrix

⎛

⎜
⎜
⎝

p 1 − p
1/2 1/2
1/2 1/2

1 − p p

⎞

⎟
⎟
⎠ .

Here, the first row provides the transition probabilities from 00 to 0 and to 1,
the second – from 01 to 0 and to 1, and so forth. We have used this matrix
with p = 1/3 and with p = 2/3.

– Type 4: Sequences with some number of initial bits chosen uniformly ran-
domly, and continuing periodically from that place on. Here, the sequence
looks locally as truly random, and it seems to be trickier to detect the non-
randomness. In our experiment, we have used a period of 100.

– Type 5: A de Bruijn sequence of order N is a binary sequence of length 2N ,
such that every binary string of length N appears exactly once as a substring.
Here, the sequence is considered as cyclic, so that the number of substrings
of length N is 2N . We mention in passing that one may extend this notion
to sequences over any finite alphabet. (For more information on de Bruijn
sequences, we refer to [6,18,19].)

While de Bruijn sequences are constructed by various algorithms (see, for
example [6,18,19]), and thus do not qualify as TRG sequences, they display
“better behavior” on various statistics than do TRG sequences. For example,
the proportion of 0-s in a de Bruijn sequence is exactly 1/2, whereas in a
TRG sequence, it is expected only to be approximately 1/2. The same holds
for blocks of any length ≤ N . These facts allow de Bruijn sequences to pass
various randomness tests with flying colors.
In our experiments, we have taken random de Bruijn sequences, using the
python code at [10].

6 Results

In our experiment, we have generated TRG sequences, as well as non-TRG
sequences of all the types described in the preceding section. All sequences were
of length n = 106, except for the de Bruijn sequences, which were of order 20,
and so of length 220, which is the power of 2 closest to 106. We have taken 100
sequences of each type.

All TRG sequences passed all randomness tests, both NIST’s and ours. Thus
in Table 1 we present the results for the non-TRG sequences only. If a certain
test has succeeded in identifying all 100 sequences of a certain type as non-TRG,
we marked a “+” in the corresponding entry of the table, while if it failed for all
sequences we marked a “−”. When it succeeded for some sequences and failed
for others, we marked in the table the percentage of successes.

Randomness for Randomness Testing 159

Table 1. Rate of success for various non-TRG sequences

Random P(0) =

0.6 P(1) = 0.4

Markov Markov order 2 Random

periodic

Random

de Bruijnp = 1/3 p = 2/3 p = 1/3 p = 2/3

Frequency + 5% − − − 92% −
Block frequency + + − − − 41% −
Runs + + + + + + −
Longest run + + + + 3% + −
Binary matrix rank 2% 1% 1% − − + −
Discrete Fourier

transform

+ + + + + + 9%

Non-overlapping

template matching

+ + + 46% + + −

Overlapping

template matching

+ + + 7% 2% + −

Universal + + + + + + +

Linear complexity − 1% − 2% − + 3%

Serial + + + + + + −
Approximate

entropy

+ + + + + + +

Cumulative sums + 8% − − − 94% −
Random excursions 47% 69% 31% − 2% 33% −
Random excursions

variants

2% + 4% 2% 1% 11% −

Our test 1 + + + + + + −
Our test 2 + − − − − 44% −
Our test 3 + − − − − + +

Our test 4 + − − − − 61% −

The results are mixed. Each test succeeds more in detecting that some types
of non-TRG sequences are such, but succeeds less on others. Altogether, the
tests we propose seem to perform well on some types, and may add credibility
to the claim that certain sequences are TRG.

Throughout our experiments, we have used pseudo-random sequences instead
of TRG sequences. The reader should bear with us, as we were able to present to
the judge a pattern in the examined sequence that reveals a deterministic pat-
tern. This is just like a competition between two sequences, with a judgeable evi-
dence as an output. Thus, a better (pseudo or true) random sequence may be able
to “fight” a weaker pseudo-random sequence. Specifically, the pseudo-random
sequences we have used instead of TRG sequences are based on Math.random().
This function returns a double value in the interval [0, 1). The returned value
is chosen pseudo-randomly with (approximately) uniform distribution in that
range. When the function is invoked to generate a random sequence, the seed
is initialized to a value based on the current time in milliseconds. Two random
sequences, generated using this same seed, will be identical. According to the
documentation of the Util Java package, Math.random() uses a linear congruen-
tial pseudo-random number generator, as defined by Lehmer and described by
Knuth [12, Sect. 3.2.1].

160 D. Berend et al.

7 Concluding Remarks

We have initiated a study on using randomness to test randomness. The moti-
vation is to cope with an algorithm designed to produce deterministic sequences
that pass the (NIST) randomness tests. In other words, the (accumulating [5])
automata that represent the (NIST) tests define a language of sequences (just
as automaton defines languages) that are considered as sequences produced by
non-true random source, and at the same time defined sequences not in the
language, including, non-random sequences that can be constructed to pass the
tests. Introducing randomness to the testing can imply the need to extend the
input by augmenting possible random sequences (with exponential possibilities
for such sequences) in order to (surely) identify a non-random sequence that
passes the randomness testing.

A randomized test allows repeated examination of a sequence claimed to be
random. Even if the conclusion is due to be that the sequence is a TRG-sequence,
but one of the random choices made during the examination reveals a pattern in
the examined sequence, this random choice may serve as an evidence in court.
This, in turn, may be an incentive for the sequence creator to use a truly random
device.

The implementation of our randomness tests is available on Github [13].
For instance, we have a sequence [13, HarvestedSequence.txt], in which we have
planted in equally spaced locations (821 bits away) 1-s and 0-s, in an alternating
order, within a random sequence. Thus, the sequence 010101... can be found
in the sequence if one reads the bits at the indices 821 · j for j = 1, 2 The
resulting sequence passes all of NIST’s tests. A version of Test 3 in which a
very “large block” (or sub-sequence) is constructed and then examined by the
existing tests, for example finding the sequence 010101... by randomly choosing
i = 1 and Δ = 821 or i = 822 and Δ = 821. A sequence 101010... together with
i = 822 and Δ = 821 can obviously serve as an evidence in court.

Acknowledgment. We thank Dean Doron for many interesting discussion related to
this research.

References

1. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that distri-
butions are close. In: 41st Annual Symposium on Foundations of Computer Science,
FOCS 2000, 12–14 November 2000, Redondo Beach, California, USA, pp. 259–269
(2000)

2. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing closeness of
discrete distributions. J. ACM 60(1), 4:1–4:25 (2013)

3. Chan, S., Diakonikolas, I., Valiant, P., Valiant, G.: Optimal algorithms for testing
closeness of discrete distributions. In: Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, 5–7 January 2014, pp. 1193–1203 (2014)

Randomness for Randomness Testing 161

4. Diakonikolas, I., Gouleakis, T., Peebles, J., Price, E.: Collision-based testers are
optimal for uniformity and closeness. Chic. J. Theor. Comput. Sci. 2019, 1–21
(2019). http://cjtcs.cs.uchicago.edu/articles/2019/1/contents.html

5. Dolev, S., Gilboa, N., Li, X.: Accumulating automata and cascaded equations
automata for communicationless information theoretically secure multi-party com-
putation. Theor. Comput. Sci. 795, 81–99 (2019)

6. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discret. Math. 23(3), 207–210 (1978)

7. Goldreich, O.: Introduction to Property Testing. Cambridge University Press,
Cambridge (2017)

8. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. J. ACM 45(4), 653–750 (1998)

9. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. In: Stud-
ies in Complexity and Cryptography. Miscellanea on the Interplay between Ran-
domness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare,
Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam
Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson,
David Zuckerman, pp. 68–75 (2011)

10. jmviz: random-debruijn (2020). https://github.com/jmviz/random-debruijn/blob/
master/debruijn.py

11. Kendall, M.G., Smith, B.B.: Randomness and random sampling numbers. J. R.
Stat. Soc. 101(1), 147–166 (1938). http://www.jstor.org/stable/2980655

12. Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, vol.
2, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1997)

13. Kumar, M.: Randomness test of sequences (2022). https://github.com/manishkk/
Randomness-Test-of-Sequences

14. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. STS, Springer, New
York (2005). https://doi.org/10.1007/0-387-27605-X

15. Neyman, J., Pearson, E.S.: On the problem of the most efficient tests of statistical
hypotheses. Philos. Trans. R. Soc. London Ser. A 231, 289–337 (1933). http://
www.jstor.org/stable/91247

16. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

17. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Technical report, Booz-Allen and Hamilton Inc. McLean VA (2001)

18. Sawada, J., Williams, A., Wong, D.: A surprisingly simple de Bruijn sequence
construction. Discret. Math. 339(1), 127–131 (2016)

19. Siu, M., Tong, P.: Generation of some de Bruijn sequences. Discret. Math. 31(1),
97–100 (1980)

20. Soto, J., Bassham, L.: Randomness testing of the advanced encryption standard
finalist candidates, 1 April 2000

21. Sýs, M., Ř́ıha, Z.: Faster randomness testing with the NIST statistical test suite.
In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS,
vol. 8804, pp. 272–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12060-7 18

22. Turan, M.S., Barker, E., Kelsey, J., McKay, K.A., Baish, M.L., Boyle, M., et al.:
Recommendation for the entropy sources used for random bit generation. NIST
Special Publication 800(90B), 102 (2018)

http://cjtcs.cs.uchicago.edu/articles/2019/1/contents.html
https://github.com/jmviz/random-debruijn/blob/master/debruijn.py
https://github.com/jmviz/random-debruijn/blob/master/debruijn.py
http://www.jstor.org/stable/2980655
https://github.com/manishkk/Randomness-Test-of-Sequences
https://github.com/manishkk/Randomness-Test-of-Sequences
https://doi.org/10.1007/0-387-27605-X
http://www.jstor.org/stable/91247
http://www.jstor.org/stable/91247
https://doi.org/10.1007/978-3-319-12060-7_18
https://doi.org/10.1007/978-3-319-12060-7_18

Botnet Attack Identification Based on SDN

Avresky Dimiter1 and Dobrin Dobrev2(B)

1 IRIANC, Munich, Germany
autonomic@irianc.com
2 TU – Sofia, Sofia, Bulgaria
d_dobrev@tu-sofia.bg

Abstract. The framework that we are proposing is based on Virtual Security
Functions (VSF), Openflow, Wasuh (Open-Source Security Platform), Software
Define Network, Mininet, Pox Controller, Virtual Switches. By using Openflow
protocol through virtualized environment of SDNwe are capable to analyse entire
data stream in network environment. By creating botnet identification virtual secu-
rity functions, we are capable to increase network security by blocking the attack
at the time of the initiation.We are constantly monitoring the network connections
and in case of malicious activities Pox Controller is blocking it. VSF will allow to
use the capability of framework, in order to protect against different botnet attacks.
Each security functions can be activated concurrently for anomaly detection. All
functions can be run in parallel and based on stream analyses of Openflow table
can identify anomaly.

Keywords: Security function · Botnet · Distributed denial-of-service attack ·
Network function virtualization · Virtualization · Openflow · Flowtable ·
Controller ·Wasuh

1 Motivation

Nowadays DDoS attacks initiated by Botnet has become one of the most reproduced
methods for stopping businesses operations. Potential lost for lack of operations has
been evaluated for millions of dollars a year [1]. Ransom Distributed Denial of Service
(DDoS) has become very popular due to the directmonetarization from attackers. During
AWS DDoS attack more than 2.3 Tbit attack has been observed. DDoS attacks are the
primary driver of larger network volumetric events. Themost commonly observed vector
of this attack were DNS reflection, NTP reflection [2] and SYN flood [3]. Based on this
motivation, the need of an efficient solution to block and significantly reduce DDoS
attacks has emerged.

2 Selected Features of SDN for Solving Security Problems

Software-defined networking (SDN) consist of multiple kinds of network technologies
designed to make the network more flexible and agile [4]. It is a new approach of using

© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 162–169, 2022.
https://doi.org/10.1007/978-3-031-07689-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_12

Botnet Attack Identification Based on SDN 163

open protocols, such as OpenFlow, to apply globally aware software control [5]. The
decision how packet is to be transferred from one hop to another is taken by SDN
Controller or Control plan [6]. The delivery is possible with the network virtualization
and the separation of Data plan and Control plan [7]. Several research ideas based on
SDN have been proposed in [8], since the publication of DDoS protection for SDN [9],
which is a key component in realizing the SDN concept for decentralized protection.
We will focus on security protection realized by VSF. Botnet attacks initiating DDoS
attacks are targeting directly availability of the systems. This area needs to be developed
to assure a proper level of protection. Current possible solutions on the market consist
of big and expensive scrubbing centers where the entire traffic is inspected and black
hole [10]. Most of the cases attacks are generated from botnets. A Botnet is a group
of computers which have been infected by malware and have come under the control
of a malicious actor [11]. Our approach is to identify those compromised host and to
stop their activities by cutting the connection with the Command-and-Control server
or by quarantine the entire host. In order to have full visibility of the internal segment
we are including Wasuh [12] agent as open-source security platform. The main goal of
DDoS identification as security function is to identify that some of the hosts are part
of Botnet network and is sending malicious packets or spoofed request. As soon as this
malicious device is identified Botnet Mitigation [13] security function is triggered by
the Pox Controller. This VSF is capable of send blocked request over the virtualized
environment and to put directly dynamic access list to the firewall. To prove our theory,
we are building our environment totally virtualized. On the hypervisor we have installed
one Linux with Ubuntu 14.04.4 and customized version on Mininet version 2.2.2 [14].
We use also install Pox Controller [15], Mininet we use to emulate SDN environment. In
Mininet environment, we have one SDN switch and emulated hosts [14]. Botnet machine
will send spoofed request to the victim over the Sflow Switch [16] and over the edge
router. Incoming traffic is mirrored in order to be analyzed by the Pox Controller [17].
Wasuh agent is installed on host and all logs are centralized to the Wasuh Management.
Suspicious IPs are identified by the amount of generated traffic. If the generated traffic
is bigger than the acceptable functional level, this traffic should be blocked in order to
preserve the system. Based on the proposed security function we had prepared a model
covering actions in case of suspicious activities are identify (Fig. 1).

Fig. 1. Theoretical model based on Mininet environment

164 A. Dimiter and D. Dobrev

The novelty of our work is by programming the SDN controller to identify com-
promised host part of Botnet used for DDoS attacks. The entire dataflow is presented
on Fig. 2. On this flow we are inspecting the outcoming traffic. The first request is for
examining the if the communication is known for us. We are looking in our internal
database to identify if the packet is from known source. After that we are verifying if
this IP is from blocked country. We have a list of countries that are blocked for commu-
nication due to excessive number of attacks generated by them. We are we are verifying
the public IP addresses by sending queries in the public databases. Next verification that
we are applying is for abnormal amount of request generated from this IP. By this ver-
ification we can establish if this IP address is used as command-and-control server. As
next step we are pushing this IP to the Botnet mitigation security function for restricting
it. Our goal is to block the possibility of the compromised host to communicate with
the command-and-control server. If we block this illegal communication channel, host
is not part of Botnet network. By minimizing the number of hosts in the Botnet we
are minimizing the amount of packet sent for DDoS attack. DNS requests are one of
the most common ways for generating amplification attack. And in case of excessive
amount of traffic IP is sent to Botnet Mitigation function for blocking. Similar approach
we are applying for NTP amplification attack. An NTP amplification attack is a volu-
metric DDoS attack in which an attacker exploits a Network Time Protocol (NTP) server
functionality in order to overwhelm a targeted network. For monitoring purposes, we are
sending alerts to system for further analyses. All those details may be seen in Fig. 2 as
functional blocks. In order to protect our segment, we had used model presented in [15]
as a foundation in order to discover anomalies in the dataflow. As soon as one address
is classified as malicious it is pushed to Botnet Mitigation function. Details scheme of
this Security function can be seen in Fig. 2.

Fig. 2. Block diagram DDoS Identification function

Botnet Attack Identification Based on SDN 165

In our work we are analyzing if the provided IP is malicious and in it is classified as
suspicious, we are applying different blocks on it. 3 types of alerts are classified based on
the frequency of the register events. In case, the IP address is identified for the first time,
we are blocking only the communication between the source and the destination for
60 s. In case there are second attempts for communication we are blocking the port for
5 min. If for a third time is registered such activity, we are putting the hardest sanitation
measures that we can apply. Source host is assigning with null route, in this situation it is
not able to send any packet even in the internal network. This kind restriction is needed
in order to minimize the risk for compromising another host in the local network. And as
second measure respective user account is blocked in the active directory. This measure
is needed for eliminating the possibility for compromising the entire infrastructure and
to eliminate the risk for starting other type of DDoS attacks. In this function we are
operating on two device edge firewalls by applying dynamic access lists and the Active
Directory to enforce the active response for the malicious host. Information is collected
from two nodes Wasuh Management Console and flow traffic from the Sflow Switch.
With all this collecting information we have full visibility of the entire segment. This
approach give is the possibility to increase the protection of our network. We are easily
identifying if there is a compromised host. We can enforce direct remediation to limit
the spread of attack.

3 Experimental Results

By using Mininet different type of topologies have been created. We can use those type
of graphs in order to describe our framework’s environment and to test our concepts and
models. One example for a simple topology is shown in Fig. 3.

Fig. 3. Emulated environment for testing DDoS environment.

By using Mininet functionalities, we are emulating the real environment. Each host
is virtualized. For verification of the connectivity between hosts, we are establishing
connection over IP. We would like to clarify that in Fig. 3, we are flooding the remote
host called Botnet. All send packet are with changed source IP in order all replies to
be sent to the Victim. We will use Network Time Protocol (NTP) request in order to
prove our concepts. It is important to point out that this type of protocol is most used for
such type of attack. The main reason is that the packet reply is much bigger set of data

166 A. Dimiter and D. Dobrev

comparing to the request. This type of attack is used for reflective attacks, where the
initiator spoofs the destination and send fake request. On this topology, we also use Sflow
Switch. This device is used for visualization of the result in the emulated environment.
For validation of users and rights it is necessary to represent Windows Active Directory,
it is presented as “AD”. The monitoring system is also represented on the diagram. For
this service, we are using dedicated host and we are connecting it to the same virtual
environment. Wasuh console will be used for a visualization of the result and a real
time analysis of the generated events from all hosts. As soon as, Pox Controller identify
compromised host a Push request are sent to the AD. This is used for minimizing the
exposure of compromised host. To obtain more specific logs and to identify real threat
scenarios we hadmad special configuration in theWindows Event Viewer [18]. Also, we
may identify if information gathering tools and malicious applications are running on
this host. Some examples are Netcat, Metasploit or PsExec presented in reference [19].
For avoiding such cases, reports are generated in the Wasuh management interfaces.
Also, the push request is sent to the Pox Controller. The main idea is to recognize when
the host is compromised. On the remote host which is named Attacker presented in
Fig. 3 we are using open-source tool for Denial-of-Service attacks. This tool is called
LowOrbit Ion Cannon (LOIC) [20]. It is used for network stress testing or for generation
of targeted attack. For the testing case we are generating 10000 packets. Used protocol
is NTP working on port 123 over UDP. UDP requests have been sent without waiting
for reply for more effective attacks. The configuration of the tool is presented in Fig. 4.
The IP address of the targeted host is the following: 10.104.254.119.

Fig. 4. Low Orbit Ion Cannon

Looking to the bandwidth generated from the Attacker, we may see that the entire
interface is flooded. Only for 2 min, we are able to generate traffic up to 118 Mbit/s of
outgoing NTP requests as shown on Fig. 5.

Fig. 5. Attackers interface statistics.

For validation of our result, we start flooding the single host for 20 min. During the
first 2 min the system receives big number of packets. After those 2 min the protection

Botnet Attack Identification Based on SDN 167

starts blocking the packets. As a result, for 1 min the interface bandwidth goes down.
Then the amount of traffic goes to the normal state. After that, the protection was stopped
based on the algorithm presented in Fig. 2. As a result, the interface become overloaded
again since the flooding was not stopped. After identifying the same attempt for attacks
the protection was started again. In this case, the traffic was normalized for 5 min. After
the expiration of this time interval, the traffic increases again and we see the anomaly
of the traffic in the statistics. At this point, the permanent access list was applied on the
firewall. These results are presented in detailed graph in Fig. 6. Based on the proposed
algorithm for mitigation of DDoS attacks, we are able to eliminate one of the host from
theBotnet network. In the proposed scenario, we are identifying ifmalicious information
is generated.

Fig. 6. Round Trip Time and packet lost distribution

For validation of the second method for protection, we started Tor browser on one of
the host. The idea is to test the possibility for detecting malicious applications. Sysmon
identify it as malicious application and has been sent this request toWasuhManagement
interface. View from the interface is presented in Fig. 7.

Fig. 7. Wasuh alarm triggered by Tor browser

Statistics with all triggered events can be find under Wasuh management console
presented in Fig. 8. It is possible to identify the destination IP of the malicious host, the
host that is used as Botnet Command and Control server and filtering. Sequence number
and agent ID can be parsed for monitoring. Under the same console we can monitor
different domain. In each packet we see the source domain and the main services that
are triggering this event.

Based on the configuration of Sysmon, we can inspect different services and com-
mands that are logged and analyzed. The novelty of our work is focused on the com-
bination of different tools and technics for protection. By using the Software Defined

168 A. Dimiter and D. Dobrev

Fig. 8. Tor Browser activity statistics

Network, we are having better visibility of the protected segment. Based on this, we have
the possibility to interact directly with the data flow by the Pox Controller. It is capable of
filtering the traffic in both directions. In this case, we can protect externally for malicious
Slowloris attack, or we can protect the internal segment for compromised host trying
to establish malicious communication. The interaction with the host is visible based on
the integration of active directory and Wasuh Management Server. By using enhanced
feature of the configured Sysmon and Wasuh agent we see all activities from the host.
Based on the analyses of the created alarm, we may perform remediation action either
on the firewall or on the active directory. This kind of approach give us better protection
for all our services.

4 Future Work

As a future work, we are planning to adopt threat intelligence report as additional attack
knowledge base. This will automatically update our functions for the new upcoming
threats. It is possible to create security functions and to identify threats as a part of the
behavior of specific attack. Different sub protocols can be used in the current DDoS
identification mechanism. When a specific threat activity is identified, we will update
our knowledge base. It will allow us to trigger security alerts. As soon as Pox Controller
has managed all network traffic, then the specific threat can be blocked. Email alerts
can be configured for specific threats for further analyses. Our goal is to implement a
prediction model for Botnet detections and detections of compromised host in a real
time. This prediction model will increase the automation of the service and can interact
in a faster way for mitigating attacks. Current model is focusing of the approach of
identifying the compromised host and quarantine him. Main idea for this detection is to
identify the Command-and-Control servers that are interacting with the compromised
host and to notify other users for such malicious actor. By this approach we will be able
to increase global security.

5 Conclusion

In the paper, it was identified that one of the current problems in SDN is the security.
Based on the proposed framework, using Pox Controller and Wasuh monitoring service
we are capable to control dataflow by creating different security functions. This frame-
work can work in a real-time. As well, it will be capable to detect different type attacks
and block specific type of network traffic.We can analyse the Botnet traffic and by this to
reduce DDoS attacks. This is achievable based on Pox Controller possibility to control
the entire protected segment. As a result, the legitimate traffic cannot be lost. We can
see that after filtering the traffic with our proposed Security Functions, it is possible to
control the malicious request and to block them at the beginning of the generation of

Botnet Attack Identification Based on SDN 169

the attacks. In this way, we can protect the web server (Victim) from overloading. Mon-
itoring service detects malicious activities in the level of initiation. Alerts are tiggered
and full visibility is achieved on the protected segment. As a result, we are capable to
increase network’s security.

References

1. Pinho, M.: AWS Shield Threat Landscape Report - Q1 2020, 29 May 2020
2. Herzberg, B., Bekerman, D., Zeifman, I.: Breaking Down Mirai: An IoT DDoS Botnet

Analysis – Imperva reading, 26 October 18
3. Antonakakis, M., April, T.: Understanding the Mirai Botnet. In: Proceedings of the 26th

USENIX Security Symposium, Vancouver, Canada (2017)
4. Braga, R.S., Mota, E., Passito, A.: Lightweight DDoS flooding attack detection using

NOX/OpenFlow. In: Proceedings of the 35th Annual IEEE Conference on Local Computer
Networks (LCN) (2010)

5. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., McKeown, N.: Elas-
tictree: saving energy in data centernet works. In: 7th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2010 (2010)

6. Popa, L., Yu, M., Ko, S.Y., Stoica, I., Ratnasamy, S.: Cloud Police: taking access control out
of the network. In: Proceedings of the 9th ACM Hot Topics in Networks, Hot Nets (2010)

7. Bholebawa, I.Z., Dalal, U.D.: Performance analysis of SDN/OpenFlow controllers: POX
versus floodlight. Wirel. Pers. Commun. 98(2), 1679–1699 (2017). https://doi.org/10.1007/
s11277-017-4939-z

8. Shin, S., Porras, P., Yegneswaran, V., Fong, M., Gu, G., Tyson, M.: FRESCO: modular com-
posable security services for software defined networks. In: Proceedings of the 20th Annual
Network and Distributed System Security Symposium, NDSS 2013 (2013)

9. Yoon, C., Park, T., Lee, S., Kang, H., Shin, S., Zhang, Z.: Enabling security functions with
SDN: a feasibility study. Comput. Netw. 85, 19–35 (2015)

10. McKeown, N., et al.: Open Flow: enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev. 38, 69–74 (2008)

11. Cloudflare knowledge base - What is blackhole routing
12. Vukalović, J., Delija, D.: Advanced persistent threats - detection and defense. In: 2015 IEEE

38th International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO) (2015)

13. Feily, M., Shahrestani, A., Ramadass, S.: A survey of botnet and botnet detection. In: 2009
3rd International Conference on Emerging Security Information, Systems and Technologies.
IEEE (2009)

14. Bawany, N.Z., Shamsi, J.A., Salah, K.: DDoS Attack Detection and Mitigation Using SDN:
Methods, Practices, and Solutions. Computer Engineering and Computer Science

15. Kaur, S., Singh, J., Ghumman, N.S.: Network programmability using POX controller. In:
International Conference on Communication, Computing & Systems (2014)

16. Sflow-RT Telemetry, analytics, and control with sFlow standard
17. Medeiros, I., Neves, N., Correia, M.: Statically Detecting Vulnerabilities by Processing

Programming Languages as Natural Languages. 1, 1, Article 1 (2016)
18. Manso, P., Moura, J., Serrão, C.: SDN-based intrusion detection system for early detection

and mitigation of DDoS attacks. Information 10(3), 106 (2019). https://doi.org/10.3390/inf
o10030106

19. Sazak, S., Rebane, J.: Sysmon - Wazuh Sigma Rules – GitHub, 29 June 2007. GNU Public
License

20. Praetox, A.B.: Low Orbit Ion Cannon (LOIC) 2018 network stress testing tool

https://doi.org/10.1007/s11277-017-4939-z
https://doi.org/10.3390/info10030106

Setting Up an Anonymous Gesture Database
as Well as Enhancing It with a Verbal Script
Simulator for Rehabilitation Applications

Yoram Segal(B) and Ofer Hadar(B)

Communication Systems Engineering Department, Ben Gurion University of the Negev (BGU),
84105 Beer-Sheva, Israel

yoramse@post.bgu.ac.il, hadar@bgu.ac.il

Abstract. Physical therapy patients are rehabilitated by performing exercises at
home that do not consider proper movement and can be detrimental to the heal-
ing process. Maintaining patient anonymity is an important aspect of collecting
patient data. Using our method, we are able to collect information about limb
movements in a completely anonymous manner by taking a picture of the patient
in the clinic and immediately converting the picture into an anatomical skeleton.
A human gesture database accompanied by a verbal script simulator and anony-
mous tagging was created with the intention of tagging, measuring, and inferring
human gestures using neural networks. We have developed a system that utilizes
neural network autoencoder architecture to classify the quality and accuracy of
patients’ movements in videos. Since there is a lack of videos of tagged physio-
therapy exercises, we simulate patients’ movements to enhance the database. The
purpose of this paper is to describe a simulator that mimics the output of OpenPose
software so that synthetic human skeletal movements can be computed without
utilizing OpenPose. As inputs, these vectors are fed to the autoencoder which,
after compressing them into low dimension vectors, classifies them according to
their movement using the Dynamic Time Warping (DTW) distance algorithm.
Validation of the research was performed on a dataset of 7 different physiotherapy
exercises, and 91.8% accuracy was achieved.

Keywords: OpenPose · Anonymous Gestures · Simulation · Siamese network ·
Physiotherapy exercises ·Metaverse

1 Introduction

The purpose of this paper is to identify and describe body gestures by using machine
learning technologies in order to create a “dictionary of gesture” - the Vocabulary Dic-
tionary (VOCD). The VOCDwill enable users to design a vowel-based textual language.
Thus, it will be able to transform gestures to text and vice versa. Similarly, sign language

This work was supported a grant from theMinistry of Science&Technology, Israel & theMinistry
of Education, Youth and Sports of the Czech Republic.

© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 170–179, 2022.
https://doi.org/10.1007/978-3-031-07689-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_13

Setting Up an Anonymous Gesture Database 171

for the deaf/mute can be transformed to text and vice versa; an avatar can then read the
text strings and deliver the sign language. Lip-reading can also be converted to text
and vice versa, resulting in an avatar whose mouth moves when the words are spoken.
Aside from that, the tags will be used to compress and convert digital video to a written
summary. In this paper we will show how to extract human body movements from a
video, including gesture name, gesture time, repetition count, gesture speed, movement
acceleration (e.g., calories), and so on. Through the use of algorithms such as OpenPose
[1] and Mediapipe [2], we will characterize human motions by feeding them into neural
network architectures such as Autoencoder [3], Siam’s Twines [4], and DTWNet [5]. In
this paper, we will address common denominator questions with respect to human ges-
ture, such as synchronization and normalization. We will describe a neural network as a
tool for analyzing, measuring, and labeling skeleton graphs in time and space. We will
present practical results of our research study through collaboration with the University
of Prague and within the framework of the Israeli Ministry of Science and Technology,
by exposing software that enables learning and assessment of physiotherapy activity
in a home environment during rehabilitation. This innovative solution indicates that our
study’s resultswill help to lower the danger of physical contact and the associated costs of
rehabilitation. We demonstrated how to combine data from multiple sources and extract
metrics, to provide a quantitative description and labeling of motions using only one
or a few cameras. Deep-Learning-extracted patient metrics was utilized to calculate the
deviation from the doctor’s initial exercises. The underlying concept of the algorithm is
to demonstrate how the study findings could be used, for example, for remote patient
rehabilitation. Our aim is to explain how to provide patients with quantifiable data, and
also to inform them of the discrepancy between their necessary and actual gestures.
The VOCD will also be utilized to identify transient patterns of motion in the patient’s
motions while performing the exercise, as well as to generate a therapy report for the
therapist. Especially in cases involving a large number of patients recuperating from hip,
knee, elbow, or shoulder surgeries, this capability may be employed for remote therapy.
Participants might be able to create a family of neural network architectures with the
tutorial outcomes, by creating a wide range of contactless medical solutions.

2 Related Work

2.1 OpenPose (OP) as a Tool to Extract Human Body Skeleton

A real-time multi-person system named OpenPose is the first to jointly detect human
body, hand, facial, and foot key points (in total, 135 points) on single images (or frames in
videos) [6, 7]. For this paper, we only use the joints of the body which contain 25 vertices
per frame. An individual vertex is composed of three components: the x, y location, and
the c component which represents the level of confidence, where zero means there is no
confidence and onemean that there is 100%confidence.As a result, it produces a skeleton
vector on the basis of 75 components (25 vertexes and each has three components -
x, y, and c). In this case, the data is presented in the form of a.json file. OpenPose
requires a powerful computer in order to run, so we decided to develop a method to
accelerate OpenPose’s performance by using the H264 video encoder motion vector as
a vertex tracking method [8, 9]. Another way to eliminate the need to use OpenPose is

172 Y. Segal and O. Hadar

by developing a simulator. Body tracking is the first element that forms the basis for the
presented algorithm. As there are precise systems with perfect tracking possibilities, the
price is relatively high. Usually, assistance is required before or during the operation, so
these systems are not suitable for use in the home environment. As part of our research,
we are focusing on a system with affordable prices that is as easy to use as possible.
There is something like a gold standard when it comes to body tracking. A system based
on infrared markers is an expensive and complicated system. In the early 1980s, one of
the most well-known systems was Vicon, which was the first commercial motion capture
system. Some of the similar systems with similar features are OptiTrack [10], Qualysis
[11], or BTS [12]. Many systems are based on multiple synchronous infrared cameras,
several infrared reactive markers, and individual body models. It has several advantages,
includingVery precise, Long-term research, andmany existingmodels. Its disadvantages
are: costly, it takes a long time to prepare for measuring, it requires qualified operators,
and it cannot be used in a home environment. For this paper, we will use algorithms
such as OpenPose, which provide good skeleton extraction quality. Google Mediapipe
[2], PoseNe [13], or WrnchAI [14] can be considered as an alternative. The research of
OpenPose is presented in detail by the authors of the system and publications [1, 15], and
[16]. The pose estimation is based on pre-trained models of body parts. A deep neural
network is used to construct themodels.As the name suggests, the system is frame-based.
A separate estimate of position is made for every single image. One of the most well-
known 3D scanners currently available [17] is theMicrosoft Kinect. Xsens [18], Rokoko
[19], and even the intelligent captain suit developed by [20] can be used as an example
of a full-body commercial capturing suit. The systems can be used for both full-body or
specific applications. A framework presented by researchers at Dublin University was
used to capture the 3D trajectory of a golf swing or other sports equipment [21]. The
technique is based on inertial sensors, such as accelerometers, gyroscopes, and magnetic
sensors. Using mathematical transformations, Kalman filters from acceleration, angular
velocity, and gravitational force to obtain a 3D position in space.

2.2 Human Body Simulation

Simulation of human characters is often critical in the development of video games, vir-
tual reality, and fiction films, as well as in NN synthetic datasets. Deep neural networks
have driven recent developments in deep learning and deep reinforcement learning in
order to achieve this. The authors in the article [22] present a thorough assessment of
state-of-the-art techniques for the animation of skeleton-based human characters that are
based either on deep learning or deep reinforcement learning. To begin, they explained
motion data formats, the most commonly used human motion datasets, and how fun-
damental deep models can be upgraded to allow the discovery of spatial and temporal
patterns within motion data. They proceed to discuss state-of-the-art methodologies
in three broad categories of human animation pipeline applications: motion synthesis,
character control, and motion editing. Last but not least, they discuss the constraints
of existing state-of-the-art approaches for the animation of skeletal human characters
based on deep learning and/or deep reinforcement learning, as well as potential avenues
for future research to relieve current restrictions and meet expectations. In this article, it
is demonstrated that there is an extensive amount of activity taking place in the area of

Setting Up an Anonymous Gesture Database 173

simulations of human movements. It is important to mention that the simulator we have
developed is innovative in two ways: the first is that it calculates human skeletal struc-
tures instead of the human’s body, and the second is that it does not rely on OpenPose
software, which is a heavy consumer of computing resources and requires computers
with GPU-based parallel processing capabilities.

3 Proposed Method

The main objective of the study is to investigate human body movements as compared
to a ground truth movement (i.e. an exercise performed by a physiotherapist). In order
to accomplish this objective, we must extract the body movements from a video stream
and represent them as a collection of vectors that depict a graph of the human skeleton.
The OpenPose algorithm is used to extract the human posture from a video frame and
convert it into a vector with 75 components (75 dimensions). One of the problems is that
each exercise has its own dominant vertices. During clapping hands for example, the
feet vertexes are irrelevant, meaning that they do not move. In order to determine which
vertices appear to be dominant, an algorithmmust be used. Essentially, a dominant vertex
is a vertex in which the variance is high and exactly this is what the PCA algorithm
measures. The PCA algorithm is implemented by using an autoencoder network to
implement the general PCA algorithm. Using the pose vector, an autoencoder is then
used to reduce the 75-dimensional vector to 15 main dimensions (similar to performing
PCA by using NN, but in a more general manner that includes support for nonlinear
behavior as well). This restricted vector is then fed into the DTW algorithm, which
calculates the distance between the therapist and the patient vectors. This distance is
normalized, and it produces an indication of the extent to which the exercise is applicable
(exercise scoring). It is the Autoencoder network which is used to provide the dominant
vertices to be selected, which has been designed and trained in the manner explained
above. One of the problems is that neural networks require a large database to work with.
The creation of a large database in the world of medicine is a very challenging task. To
address this problem, we have developed an algorithm that generates human movement
from a textual description that is then converted into a vector representation similar to
that produced by OpenPose. To be more specific, we generate for each frame a vector
that describes a graph that is a representation of a human skeleton. The result of this
process is a 75-dimensional matrix. The number of rows is the number of frames that
are needed in an exercise cycle, and the number of columns is 75 (25 vertices and for
each vertex, three components, x, y, c, totaling 75 columns). After the synthesized data
set has been processed through NN, the vector dimension of the vector is reduced.

4 Patients Database

4.1 General Description

The proposed training set is based on physiotherapy exercises developed by Ben-Gurion
University and the University of Prague with the support of the Chief Scientists of Israel
and the Czech Republic. There are six basic physiotherapy exercises in the database,
which have been carefully selected to be suitable for analyzing and processing with a
single camera (two-dimensional processing).

174 Y. Segal and O. Hadar

4.2 Database Exercises Content

There are 100 participants in the database, who each perform six exercises.

(1) AFR - Exercise arm full range (side view)
(2) ARO - Exercise arm rotation (front view)
(3) LBE - Exercise leg backward extension (exercise with a chair, side view)
(4) LFC - Exercise lifting from the chair (side view)
(5) SLL - Exercise side leg lift (lower limb abduction, front view)
(6) TRO - Exercise trunk rotation (front view)

Ten cycles comprise each exercise (e.g. rotating the right arm). Exercises are per-
formed once with a right tilt and once with a left tilt (for example, once with a right foot
rotation and once with a left foot rotation). A total of about 7500 motion cycle videos
have been tagged and timed in the database.

4.3 Database as Human Skeletons

The entire database has been encoded as skeletons - a skeleton in every frame.ANUMPY
array file, aMATLABfile, and a JSONfile are used tomaintain the database. Performing
exercises creates skeletal structures. Thehumanbody is representedby25vertices in each
skeleton. The vertex has three components: Coordinate X, Coordinate Y, and Coordinate
C, which indicates the level of certainty about each point in the skeleton on a scale from 0
to 1 (1-absolute certainty, 0 absolute uncertainty). Therefore, a single skeleton extracted
from a frame is represented by a single vector with 75 components (3× 25). The JSON
files are structured so that one file exists for each frame, and inside each file is a list
of several skeletons, one for each person in the image. Both the MATLAB files and
the NUMPY files are organized in the same manner. Every file contains a matrix. The
matrix contains 75 columns and the number of rows is equal to the number of frames in
the video. In other words, each row describes an individual skeleton. If more than one
skeleton was sampled in a single frame, then only the first skeleton, marked with ID 0,
will be extracted.

5 Gesture Generator via Text Script

AI (artificial intelligence) is a revolutionary technology that is finding applications in
a wide range of products and services that we use on a daily basis. An amazing appli-
cation of AI technology is Deep Learning, which is based on neural networks. Deep
learning-based application development requires a large dataset with a sufficient num-
ber of training examples. In the absence of such databases, researchers and data scientists
use synthetic data to circumvent the problem. The work target is performing body move-
ment classification from synthetic human skeletal vectors. The proposed solution for the
classification is designing and training a NN. The process began with gathering and
filming videos of predetermined movements and then converting these videos to OP
format and manually tagging them. Our next step was to create a “Pose Dictionary”,

Setting Up an Anonymous Gesture Database 175

which corresponds to each pose that is defined according to OP and compliments the
vertices of a skeletal human body. Each movement is built from a sequence of poses in
the pose dictionary; each movement is derived from a sequence of poses. The second
step was to create a movement vector database. An artificial skeletal vector was created
in order to train the NN with a large number of artificial skeletons. A Python program
that uses a CSV file as input and creates a set of vectors that represent human skeletal
movement from a set of input parameters including the name, the speed, the number of
repetitions, and noise from the movement. The database has been divided into training
and testing sets. We then created a NN autoencoder model and trained and optimized it
on the training set, and evaluated it on the test set.

6 Synthetic Motion Simulator

The simulator receives a CSV file as an input that includes movement names, speed,
repetitions, and noise. The output consists of a.npy matrix of the synthetic movements
and a video file of the skeletal movement in a.mp4 format.

6.1 The Simulator Algorithm

The process of creating one movement can be seen in Fig. 1. Using this process, several
movements can be repeated. As a consequence, we can create a choreography of one long
movement as a result of the input. The movement can be combined into one motion by
performingmultiplemovements in parallel or sequentially. Once themotion is complete,
the.npymatrix of the new syntheticmotion is saved, and from that, wemake an animation
of the.npy matrix that is saved in a.mp4 video file.

Fig. 1. Simulator flow

In order to build the simulator, we performed the work in several stages. In the
beginning, we only updated the vertices that were relevant to the movement while the
other parts of the body remained still. Because of this, it does not reflect real human
movement because when an organ moves, the rest of the body moves slightly along with

176 Y. Segal and O. Hadar

Fig. 2. ARO right movement. Fig. 3. ARO right and ARO left combined

it as well. We can see in Fig. 2 that the relevant vertices have changed, however, the
body as a whole remains the same.

It is possible to see from Fig. 3 that we have added noise to the movement of the
objects. It now looks like the objects aremovingmore naturally.Additionally, the number
of repetitions and the speed ofmovementwere also added to the parameters. To conclude,
we combined several movements into one motion. By combining several movements, a
new human movement was created. This can be accomplished in a parallel manner or
by combining them in a sequence.

7 Experimental Results

The neural network that we built for evaluated the quality of the simulator was used.
We test 2800 (400per motion × 7predefined motions) motions, the data differs in type, speed,
number of repetitions, the noise of the movement. The confusion matrix visualizes the
performance of the system. Each rowof thematrix represents the actual class of the tested
motion while each column represents the predicted class. The accuracy is 91.82%:

8 Discussion

In this study, a new framework for the evaluation of rehabilitation exercises is presented
using an enlarged database provided by a simulator. Measurements of performance,
scores and neural network models are all part of the system. The effectiveness of various
measures for assessing the consistency of rehabilitative motions is compared. In the
study, Euclidean distances and DTW distances are taken into account. The dimension-
ality reduction of human motions has been achieved using the autoencoder NNs instead
of PCAs and maximum variances. The goal of our deep learning architecture is to model
rehabilitation activities through hierarchical Spatio-temporal modeling at several levels
of abstraction. NNs are taught to perform all of these activities by using an autoencoder,
which identifies quality ratings from inputs consisting of exercise repetitions. Despite
the fact that the human body is not completely static, the simulator can accommodate
this. Changing the position of the hand will cause the entire body to move. We were able
to achieve a more natural movement by including noise in the movement. Simulators

Setting Up an Anonymous Gesture Database 177

now have the option to choose from a variety of noise levels. The OpenPose software
format does not offer a suitable tool for displaying animation. Consequently, we devel-
oped a Python-based program that receives a multidimensional matrix corresponding to
a human skeleton as an input and converts it into the MP4 file format for the anima-
tion of the skeletal movements. In order to avoid overfitting of the neural network, we
perform movement augmentation and inject this augmented skeletal information into a
neural network to get a more reliable network that answers the expectations. Because
the human body produces complex movements in which more than one limb moves at
the same time, we chose to create a script that combines several movements executed
one after the other, creating a motion that looks natural. Using the Euclid distance as a
tagging and classification method, we were able to identify the movements. Therefore,
we need to synchronize the movements of the compared images (the same movement
in the same frame). It is a significant problem because the speed at which the motions
are performed and the number of repetitions vary from person to person. A parameter
that affects how many frames are generated. We were able to solve this problem using
the DTW algorithm which allows signal comparison between signals that are not syn-
chronized. An OpenPose matrix is created for each patient session (each row contains
a vector that represents a human pose). Using the NN autoencoder, we were able to
reduce the matrix dimension from 75 to 15 principal components. In order to be able to
assign a score to the quality of the patient’s movement relative to that of the therapist,
we determined the DTW distances between each pair of matching columns - a column
from the therapist’s matrix (reference matrix) and a column from the patient’s matrix.
In order to determine the accuracy of the exercise, we accumulated all the results and
averaged them to obtain the score for the degree of accuracy of the exercise in relation
to the required.

9 Conclusions

We created a simulator of synthetic movements and generated over 4000 movements
for the Neural Network database and testing. The simulator can create “choreography”
by combining seven predefined movements. Adding more movements in the future is
a simple operation. We have added parameters for each movement as speed, number
of repetitions, and the volume of noise. These parameters differentiate the movements
from each other generate a diverse database and avoid overfitting. Moreover, we have
created an innovative suitable tool for displaying animation in the format of Open Pose
software. Our system can classify synthetic movements out of 7 predefined movements.
There is no limit of length, speed, noise, and number of repetitions. The same as the
performance specification, the number of layers in the NN that give the best result is 5
hidden layers. Although we expected accuracy of 86% according to OpenPose accuracy,
the overall system manages to produce and classify synthetic data with high accuracy
of 91.82%. We met the project goals. Created a “Movement Dictionary” and built a
synthetic motion simulator, generated a large motion database, and built and trained a
model of an autoencoder Neural Network that classified the motions.

178 Y. Segal and O. Hadar

10 Further Work

The validation of such a solution is typically performed with expensive optical motion
capture systems on healthy volunteers undergoing rehabilitation activities. Further, the
majority of the validation relies on data without any ground truth evaluation by a physi-
cian regarding the quality of the simulated movements. As a result of the shortcomings
in the current work, we intend to provide solutions by ensuring that the framework is
fully validated by focusing on rehabilitation exercises done by patients and labeled by
a panel of doctors who will award a quality rating in future work. Our main focus is on
improving the simulator and the system in general by proposing a series of actions as
follows: (1) Adding more motions to the simulator could result in a wider dataset and a
broader variety of choreography by adding more poses to it. (2) Develop a deep neural
network based on the DTW classification and employ it in the model. (3) To improve
the performance of the NN, we can introduce a capability to determine the accuracy of
the motions in addition to the ability to classify more complex motions.

Acknowledgment. This work was supported a grant from theMinistry of Science & Technology,
Israel & The Ministry of Education, Youth and Sports of the Czech Republic.

References

1. Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., Sheikh, Y.: OpenPose: realtime multi-person 2D
pose. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7291–
7299 (2017)

2. Lugaresi, C., et al.: MediaPipe: a framework for perceiving and processing reality. In: Third
Workshop on Computer Vision for AR/VR at IEEEComputer Vision and Pattern Recognition
(CVPR) (2019)

3. Liao, Y., Vakanski, A., Xian, M.: A deep learning framework for assessing physical
rehabilitation exercises. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 468–477 (2020)

4. Koch, G.: Siamese Neural Networks for One-Shot Image Recognition. Graduate Department
of Computer Science University of Toronto, Toronto (2015)

5. Cai, X., Xu, T., Yi, J., Huang, J., Rajasekaran, S.: DTWNet: a dynamic TimeWarping network.
In: Advances in Neural Information Processing Systems, vol. 32 (2019)

6. Tanaka, R., Oshima, C., Nakayama, K.: Intention inference from 2D poses of preliminary
action. In:GECCO’19: Proceedings of theGenetic andEvolutionaryComputationConference
Companion, pp. 1697–1700, July 2019

7. Cao, Z., Hidalgo, G., Simon, T., Wei, S., Sheikh, Y.: OpenPose: realtime multi-person 2D
pose estimation using Part Affnity Fields. arXiv preprint arXiv:1812.08008 (2018)

8. Segal, Y., et al.: Camera setup and OpenPose software without GPU for calibration and
recording in telerehabilitation. In: IEEE E-Health and Bioengineering, Lasi, Romania (2021)

9. Segal, Y., Hadar, O.: Interpolation of missing frames of human body movements via video
motion vectors - OpenPose accelerator. In: IEEE Conference on IoT for Rural Health Care,
IEEE, CIRH-2021, Guntur, India (2021)

10. Cheung, K.H.: Optitrack - Estimation of Opti-track motion capture system data. Department
of Electrical Engineering (2020)

11. Qualisys | motion capture systems, March 2020. https://bit.ly/YS-Qualisys

http://arxiv.org/abs/1812.08008
https://bit.ly/YS-Qualisys

Setting Up an Anonymous Gesture Database 179

12. Motion capture system | BTS bioengineering, SMART-DX, March 2020. https://www.btsbio
engineering.com/

13. Chen, Y., Shen, C., Wei, X., Liu, L., Yang, J.: Adversarial PoseNet: a structureaware con-
volutional network for human pose estimation. In: 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 1212–1221, October 2017

14. Wrnch - teaching cameras to read human body language, March 2020. https://wrnch.ai/
15. Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using

multiview bootstrapping. In: Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 1145–1153 (2017)

16. Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724–4732
(2016)

17. Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)
18. Home - Xsens 3D motion tracking, March 2020. www.xsens.com
19. Rokoko - motion capture system - Smartsuit Pro, March 2020. https://www.rokoko.com/en/
20. Shadow motion capture system, March 2020. https://www.motionshadow.com/
21. Ahmadi, A., Destelle, F., Monaghan, D., O’Connor, N.: A framework for comprehensive

analysis of a swing in sports using low-cost inertial sensors. In: SENSORS, 2014 IEEE,
pp. 2211–2214, November 2014

22. Lucas, M., Hoyet, L., Le Clerc, F., Schnitzler, F., Hellier, P.: A survey on deep learning for
skeleton-based human animation. In: COMPUTER GRAPHICS Forum (CGF) (2021)

https://www.btsbioengineering.com/
https://wrnch.ai/
http://www.xsens.com
https://www.rokoko.com/en/
https://www.motionshadow.com/

Fake News Detection in Social Networks Using
Machine Learning and Trust

Nadav Voloch1(B), Ehud Gudes1, Nurit Gal-Oz2, Rotem Mitrany1, Ofri Shani1,
and Maayan Shoel1

1 Ben-Gurion University of the Negev, P.O.B. 653, 8410501 Beer-Sheva, Israel
voloch@post.bgu.ac.il

2 Sapir Academic College, 79165 Sderot, Israel

Abstract. Fakenewspropagation is amajor challenge forOnlineSocialNetworks
(OSN) security, which is not yet resolved. Fake news propagates because of several
reasons, one of which is non-trustworthy users. Non-trustworthy users are those
who spread misleading information either for malicious intentions or innocently
as they lack social media awareness. As a result, they expose their sub networks
to false or inaccurate information.

In our previous research we have devised a comprehensive Trust-based model
that can handle this problem from the user Trust aspect. Themodel involvesAccess
Control for the direct circle of friends and Flow Control for the friends’ networks.
In this paper we use this model and extend it for the purpose of preventing Fake
News. We analyze user’s activity in the network (posts, shares, etc.) to learn
their contexts. Using Machine Learning methods on data items that are fake or
misleading, we detect suspicious users. This addition facilitates a much more
accurate mapping of OSN users and their data which enables the identification of
the Fake News propagation source. The extended model can be used to create a
strong and reliable data infrastructure for OSN.

Keywords: Online social networks security · Fake News detection · Trust-based
security models

1 Background and Related Work

One of themajor socialmedia problems today is the spreading of fake news.Users spread
information even if not necessarily procured from a reliable source or went through
proper fact checking. The term Fake News may refer to all sorts of disinformation
and misinformation. While disinformation implies false information that is deliberately
created, misinformation refers to false or inaccurate information that are created by
mistake. At extreme cases, fake news can get a lot of exposure and cause harm.

For example, text based on fabricated data about vaccines can cause a significant
percentage of a population to not get vaccinated, and vice versa, whichmay consequently
affect people’s health.

In our previous work, we have created an OSN security model for the Ego network,
that is composed of three main phases addressing three of its major aspects: Trust,

© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 180–188, 2022.
https://doi.org/10.1007/978-3-031-07689-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_14

Fake News Detection in Social Networks Using Machine Learning 181

Role-based Access Control [1, 2] and information flow, by creating an Information
Flow-Control model for adversary detection [3], or a trustworthy network [4], as we did
in [5]. In this paper we use this model as a basis to address the problem of Fake News in
OSN. Social network users are daily exposed to a lot of information from their network:
posts by people with whom they are connected, or posts shared by their connections.

Fake News involve two major concerns which have become subjects for research:

a. Detecting and identifying fake news. This is a complicated task and has only partial
success. The detection on social media is defined and presented in [6], and in [7]
an important typology of Fake News is done in categorizing six different categories
of Fake News: Native advertising, News satire, Propaganda, Manipulation, News
parody, and Fabrication. The most severe form of Fake News is Fabrication since it
has a very high Author’s immediate intention to deceive, and a very low Level of
facticity.

[8] presents an approach that uses psychological estimation of OSN users to
detect misinformation spreading in the network, and [9] uses semantic context to
detect and analyze different categories of Fake News.

b. Preventing Fake News propagation. [10] deals with the propagation of Fake News
and shows that the spreading of Fake News is done in a fast and thorough manner,
since its nature is one of an extensive content, that has the potential of extremity.

In [11] different types of data spreading scenarios are described. Most of these
vulnerabilities occur from discretionary privacy policies of OSN users.

These privacy policies create a misleading knowledge concerning the number and
type of users exposed to this shared data.Most of the solutions suggested demand changes
in these specific policies.

Figure 1 describes an Ego user’s information spreading to friends of friends (Users
A1, A2 and A3), triggered by an action (a comment in this example) taken by the ego
node’s direct friend (User A) on the Ego node’s data.

The use of NLP in information security is currently researched and used (e.g. [12,
13]), and the implementation of such techniques is an important feature that is used to
evaluate the users’ content in different types of action on the OSN.

For identifying Fake News with our context model, we need to compute the different
Trust values per context for the user’s network - different users are expected to have
different Trust values in different context categories. For that, we need to identify the
context of a data instance. Such identifications are presented in [14] and [15].

Detecting Fake News by different types of learning is the topic of many very recent
research papers such as [16], that proposes a linguistic model to find out the properties
of content that will generate language-driven features, and [17] that uses geometric deep
learning to detect Fake News in OSN.

[18] uses supervised learning for this detection, and the work was done specifically
on Twitter datasets, that are naturally very accessible due to twitter’s publicly open
infrastructure. [19] surveys FakeNews in a comprehensivemanner, in terms of detection,
characterization and mitigation of false news that propagate on social media, using a
data-driven approach.

182 N. Voloch et al.

Fig. 1. Data spread, not necessarily intended, in OSN

The research presented here is based on the papers mentioned above, and its novel
contribution is the uniquemethod for Fake News detection bymeans of calculating Trust
based on OSN features and context. A data instance can be characterized by its context
(e.g., politics, sports, etc.), and the trust measure must be refined by this context. For
context evaluation, we categorize different users in the Ego network by their Trust per
context.

We calculate this Trust for the friends in the Ego network: different trust values for
every category, meaning that they have a User Trust Value per category denoted here as
UTV κ for each category κ. The calculation is presented in [20].

2 Prevention of Fake News Propagation

An important use of the context extension to the model is the detection of Fake News
and the prevention of their propagation. The model analyzes the network in a deep
and comprehensive manner trust wise. The users and their social content are monitored
and users that are identified by the model as not trustworthy, are suspected as potential
spreaders of false data, and even as the possible source of this data. In this part we use
the Sentiment Analysis Factor for an Action α in a κ category denoted SAFαAκ (taken
from [20]) as an important indicator of Fake News. This is because Fake News usually
contain polarized emotions (very positive or negative), as described thoroughly in [21].
The second indicator we use is the user’s Trust value UTV j

κ , that is described in [22].
The actions that were used to compute the SAFiAκ for the UTV j

κ are different from
SAFαAκ - which is a new action that we now examine whether it is considered as Fake
News or not. To calculate the possible prediction that we here denote FNPi (Fake News
Propagation) whether a certain user or a page indexed i, can be Fake news propagators
we combine three different factors:UTV, SAF and the Machine Learning Factor (MLF),
on which we will elaborate on the next section. We give as default equal weights to these

Fake News Detection in Social Networks Using Machine Learning 183

factors as described here:

FNPi = wUTVUTV + wSAFSAF + wMLFMLF

〈w〉 (1)

As a basis for our sentiment analyzer, we used our predecessors’ analyzer as well,
to which we added some changes.

Instead of using a threshold to determine whether the post is very positive or very
negative and then return a binary result, we took into consideration the negative and
positive results and calculated a grade between zero and one. Zero indicates a neutral
post, and one indicates an extreme post: either very positive, very negative, or both. Our
basic premise in this part of the model is that actions that have very high, or very low
(polar) values of SAFαAκ , done by users that have low UTV j

κ values, have the potential
of being Fake News. For this purpose, we set at the initial state of the system, threshold
values for these parameters, that can dynamically change in the process of learning.
Although SAFiAκ , is used as a part of the calculation of UTV j

κ , it serves a different
purpose here- not as Trust estimator, but as a detector of polarized sentiment of data,
thus it must be considered separately.

At the end of the learning process,we aim to detect users that have themost prominent
potential of being Fake News propagators. These values can be adapted to another
important parameter mentioned above, the Total number of Friends (TF). The higher
this number is, the higher is the potential harm of this user. Thus, we can apply stricter
thresholds for users that have a large network.

2.1 Our System - The Fake News Trust Based Analyzer

The purpose of our ML analyzer it to scrape Facebook post of different Facebook users
that can be people, pages or groups. By analyzing their posts that have the most traffic,
thus, most of the public influence, we can detect their potential of being fake news
propagators. We denote these posts in the parameter numOfPosts. Our Scraper is based
on Selenium WebDriver. The Scraper relies heavily on the structure of Facebook web
pages, which differ greatly from one another. We support various page structures, but
if an inspected web page is of a structure we don’t support, some or all the data is not
retrieved. Initially the Scraper checks the URL type. It then redirects to the appropriate
function; there is a designated function for each type of URL:

Post: Retrieve the text in the post and account information of the writer. If the post was
posted by a page, Page information is extracted (instead of account information). Return
a Post object.

Group: Retrieve group information, such as group age and how many members it has.
Retrieve the topmost numOfPosts posts. Return a Group object.

Account: If the user is logged in, retrieve account information such as account age,
friendship duration, etc. Retrieve the topmost numOfPosts posts. Return an Account
object.

184 N. Voloch et al.

Page: Retrieve page information, such as age and number of followers. The topmost
numOfPosts posts are retrieved as well. Return a Page object.

If something other than these four URL types was entered, the function produces an
error. When the scraping is finished, the returned object is sent to the Analyzer (via the
manager). The architecture of the system is presented in Fig. 2.

In general, three different analyses can be calculated by the Analyzer: User Trust
Value (UTV), Sentiment Analysis, and Machine Learning. These are calculated inde-
pendently, and each returns a value between zero to one which is then converted to
percentages. Finally, the Analyzer calculates a (non-weighted) average of the three, and
produces a single grade, which is a percentage between 0–100, indicating reliability: 0
indicates low reliability (highest potential of spreading Fake News), and 100 indicates
high reliability (lowest potential to spread Fake News). Four parameters are defined as
prerequisites for all three analyses to be made; if they are not satisfied, then one or more
will return N/A value, indicating it has not been calculated. In these cases, only the cal-
culated grades will enter the final average calculation.UTV is calculated for an account,
page, or group. We used our predecessors’ code [23] as a basis and made some changes.

Fig. 2. System architecture for the implementation of the ML Fake News analyzer

We used similar parameters for Page and Group, with slight changes in thresholds.
For an account, the parameters are age of user account (AUA), total friends (TF), mutual
friends (MF), and friendship duration (FD). The FD parameter can be calculated only
when the user is connected, and they are Facebook friends with this account. If these
requirements are not met, N/A is returned. For a group or page, we calculate age, total
friends or likes/followers, and mutual friends. The difference is in the threshold for TF:
in an account it’s 23.82. For a page it’s 25000, and for a group it’s 50000. A trust value,
a number between 0 and 1 is returned, and converted to percentages.

Fake News Detection in Social Networks Using Machine Learning 185

3 Experimental Evaluation

For the experimental part of this research, we used a dataset of a real Facebook network.
Like in the Sentiment Analysis part, the test using our ML model can also be calculated
for all URL types and is performed on the text for text/single post check, and on the
topmost numOfPosts posts for the other cases, where we return the average of the scores.
In this case, since our model is fined-tuned for checking fake news regarding Covid-
19, we require that the text is Covid-19 related. Furthermore, we require at least one
Covid-related post, in order to perform calculation. The analysis is thus done in two
steps. First, we perform a simple check to confirm that the post is covid-related. This
check is done in the Analyzer level. We have a list of words related to covid, such as
COVID, vaccinations, masks, etc. We assume that if a post contains at least one word
from this list, then the post is related to covid. In the second step, the post is evaluated
using our neural network. Training was done in advance. We saved the trained model
in a designated.pkl file, and when the program runs, this model is loaded and used to
evaluate a given post. ML return a value between 0 and 1, zero stands for fake and one
stands for real. This value is also converted to percentages.

For training we used a pre-trained BERT-based model – AlephBERT [24]. We fine-
tuned AlephBERT by adding layers to the neural network. AlephBERT is a pre-trained
Language Model (PLM), trained on unlabeled modern Hebrew data, which provides
contextualized word representations.

The purpose of the model is to provide a basis for language-specific tasks, that has
a deeper understanding of the semantics of the language (Hebrew in this case). We
added further training to this fine-tuned model, on 85% of a dataset that we created
specifically for this task. We conducted basic cleaning of the data; removed punctuation,
removed links, and transformed recurring words written in English such as ‘FDA’ to
Hebrew. Finally, we evaluated the model on the remaining 15% of the data, achieving
76% accuracy. We fine-tuned the model to our specific task of Covid-19 related Fake
News Classification. We added two layers to the model: the first is a Dropout layer,
a technique that temporarily removes neurons (along with their connections) from the
neural network and has been proven effective to avoid overfitting.

The output from this layer is fed into the next layer we added: a Linear layer, a fully
connected layer which applies linear transformation to the incoming data. Finally, the
output from Linear is further transformed by the sigmoid function, to return a single
floating-point number between 0 and 1.

We trained this fine-tuned model on a labeled dataset that we created specifically for
this task, consisting of Facebook posts and comments regarding Covid.We tried training
with different values for the parameters epoch number, batch size and learning rate. The
best results were achieved with 6 epochs, 16 batch size, and learning rate 3 · 10−6. We
evaluated the model’s performance on the test portion of the data, which consisted of 51
posts. We used Binary Cross Entropy as the loss function. We achieved 76% accuracy,
which is the highest accuracy score we have achieved in training, compared to training
on this model with different parameter values, and compared to previous MLmodels we
built for this task (SVM, CLF, LSTM).

We expect that an experiment on a larger dataset, will produce a higher accuracy
score. Data was the biggest challenge we dealt with in the ML part of the project. There

186 N. Voloch et al.

is no open Hebrew dataset regarding fake news. Initially we tried using datasets in
English and deep translation in order to overcome this issue. However, we encountered
problemswhile using this method, and obtained very poor results. There were significant
differences between the posts in the English datasets and the Hebrew posts we examined
and used to test the model. For example, in English the virus is usually referred to as
‘Covid’, ‘Covid-19’, ‘Coronavirus’, whereas in Hebrew it’s referred to as ‘Corona’.

Another big difference is in the content - many posts in English refer to things
happening in countries that posts in Hebrew don’t reference, and a lot of posts in Hebrew
are about vaccine-related issues, a topic not widely covered in the English datasets.
We tried to overcome some of the differences, for example by replacing all ‘Covid-
19’ instances with ‘Corona’ instances. After still achieving poor results, we decided to
change direction and work with a Hebrew dataset directly.

Fig. 3. Results of an Anti-Vaccination page of the ML Fake News analyzer

Since there is no available Hebrew dataset for this (or related) purposes. We created
our own small dataset of posts, comments, and statements in Hebrew. It is available
on the GitHub repository of our project [25]. We used two common data augmentation
techniques: random swap and random deletion. Our model randomly chose 7% of the
sentences from the training set, and in each sentence randomly chose two words and
swapped their positions.

This produced new sentences that were inserted to the training data. Then, 7% sen-
tences were randomly chosen from the new training data, and from each sentence some
words were deleted randomly (with a probability of 17% for each word to be deleted).

We can see an example of the analyzer results in Fig. 3 that gives the results of one
of the Anti-vaccination pages in Hebrew after analyzing 40 of the pages’ posts.

Fake News Detection in Social Networks Using Machine Learning 187

4 Conclusion and Future Work

In this research we presented a Trust-based model that uses context and user evaluation
for preventing the propagation of Fake News. The model is based on attributes are
hard to fake since they are built on real OSN user presence and real numerical assets.
Other experiments can be done in different OSN-setting such as different categories,
other sizes of networks, etc. Methodically the categorizing of Fake News instances, as
explained in the beginning of this paper (Fabrication, Satire, propaganda, etc.), could
lead to interesting research directions for example:

Is there a correlation between the type of Fake news and the parameters or methods
that should be applied to identify it and/or a correlation between the trust attributes of
fake news propagators and the type of Fake news they spread.

In future work we also intend to improve the ML result and the Sentiment Analysis
result. Furthermore, the thresholds for trust value calculation for non-accounts will be
explored. For ML, we will create a larger and more accurate dataset, by collecting more
data and reviewing the labels with experts from the field.

Regarding sentiment analysis, it is agreed that our method of using translation and
analyzing in English has limited results. Currently sentiment analyzers in Hebrew are
not abundant, and they are either difficult to use or produce poor results. Work on such
analyzers continues to develop and better these tools, so we expect that in the future it
will be possible to perform a more accurate sentiment analysis.

References

1. Voloch, N., Nissim, P., Elmakies, M., Gudes, E.: A Role and Trust Access Control model for
preserving privacy and image anonymization in Social Networks. In: Meng, W., Cofta, P.,
Jensen, C.D., Grandison, T. (eds.) IFIPTM 2019. IAICT, vol. 563, pp. 19–27. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-33716-2_2

2. Voloch, N., Levy, P., Elmakies, M., Gudes, E.: An Access Control model for Data Security in
Online Social Networks based on role and user credibility. In: Dolev, S., Hendler, D., Lodha,
S., Yung, M. (eds.) CSCML 2019. LNCS, vol. 11527, pp. 156–168. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-20951-3_14

3. Gudes, E., Voloch, N.: An Information-FlowControl model for Online Social Networks based
on user-attribute credibility and connection-strength factors. In: Dinur, I., Dolev, S., Lodha,
S. (eds.) CSCML 2018. LNCS, vol. 10879, pp. 55–67. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94147-9_5

4. Voloch, N., Gudes, E.: An MST-based information flow model for security in online social
networks. In: The 11th IEEE International Conference on Ubiquitous and Future Networks
(2019)

5. Voloch, N., Gudes, E., Gal-Oz, N.: Preventing fake news propagation in social networks
using a context trust-based security model. In: Yang, M., Chen, C., Liu, Y. (eds.) NSS 2021.
LNCS, vol. 13041, pp. 100–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92708-0_6

6. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data
mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

7. Tandoc, E.C., Jr., Lim,Z.W., Ling,R.:Defining ‘fake news’ a typologyof scholarly definitions.
Digit. Journal. 6(2), 137–153 (2018)

https://doi.org/10.1007/978-3-030-33716-2_2
https://doi.org/10.1007/978-3-030-20951-3_14
https://doi.org/10.1007/978-3-319-94147-9_5
https://doi.org/10.1007/978-3-030-92708-0_6

188 N. Voloch et al.

8. Kumar, K.P.K., Geethakumari, G.: Detecting misinformation in online social networks using
cognitive psychology. HCIS 4(1), 1–22 (2014). https://doi.org/10.1186/s13673-014-0014-x

9. Levi, O., Hosseini, P., Diab, M., Broniatowski, D.A.: Identifying nuances in fake news vs.
satire: using semantic and linguistic cues. arXiv preprint arXiv:1910.01160. (2019)

10. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380),
1146–1151 (2018)

11. Li, Y., Li, Y., Yan,Q., Deng, R.H.: Privacy leakage analysis in online social networks. Comput.
Secur. 49, 239–254 (2015)

12. Atallah, M.J., McDonough, C.J., Raskin, V., Nirenburg, S.: Natural language processing for
information assurance and security: an overview and implementations. In: NSPW, pp. 51–65,
September 2000

13. Tsoumas, B., Gritzalis, D.: Towards an ontology-based security management. In: 20th Inter-
national Conference on Advanced Information Networking and Applications (AINA 2006),
vol. 1, pp. 985–992. IEEE, April 2006

14. Wang, X., Tokarchuk, L., Poslad, S.: Identifying relevant event content for real-time event
detection. In: 2014 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2014), Beijing, pp. 395–398 (2014)

15. May, C., Ferraro, F., McCree, A., Wintrode, J., Garcia-Romero, D., Van Durme, B.: Topic
identification and discovery on text and speech. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 2377–2387, September 2015

16. Choudhary, A., Arora, A.: Linguistic feature based learning model for fake news detection
and classification. Expert Syst. Appl. 169, 114171 (2021)

17. Monti, F., Frasca, F., Eynard, D., Mannion, D., Bronstein, M.M.: Fake news detection on
social media using geometric deep learning. arXiv preprint arXiv:1902.06673. (2019)

18. Helmstetter, S., Paulheim, H.: Weakly supervised learning for fake news detection on Twitter.
In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pp. 274–277. IEEE, August 2018

19. Pierri, F., Ceri, S.: False news on social media: a data-driven survey. ACM SIGMOD Rec.
48(2), 18–27 (2019)

20. Voloch, N.: Using Sentiment Analysis and context evaluation for preserving Trust-based
privacy in Social Networks (2020). https://www.cs.bgu.ac.il/~voloch/FinalProjectReport.pdf

21. Cui, L., Wang, S., Lee, D.: SAME: sentiment-aware multi-modal embedding for detecting
fake news. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, pp. 41–48, August 2019

22. Voloch, N., Gal-Oz, N., Gudes, E.: A trust based privacy providing model for online social
networks. Online Soc. Netw. Media 24, 100138 (2021)

23. https://www.youtube.com/watch?v=uSPknKXaWJ4&ab_channel=voloch
24. Chen,Y.P., Chen,Y.Y., Lin, J.J.,Huang,C.H., Lai, F.:Modifiedbidirectional encoder represen-

tations from transformers extractive summarization model for hospital information systems
based on character-level tokens (AlphaBERT): development and performance evaluation.
JMIR Med. Inform. 8(4), e17787 (2020)

25. https://github.com/rotemit/FakeNewsDetector

https://doi.org/10.1186/s13673-014-0014-x
http://arxiv.org/abs/1910.01160
http://arxiv.org/abs/1902.06673
https://www.cs.bgu.ac.il/~voloch/FinalProjectReport.pdf
https://www.youtube.com/watch?v=uSPknKXaWJ4&ab_channel=voloch
https://github.com/rotemit/FakeNewsDetector

Reinforcement Based User Scheduling
for Cellular Communications

Nimrod Gradus1,2(B), Asaf Cohen1(B), Erez Biton2(B), and Omer Gurwitz1(B)

1 Department of Communication Systems Engineering,
Ben-Gurion University of the Negev, Beersheba, Israel

gradusn@post.bgu.ac.il, {coasaf,gurewitz}@bgu.ac.il
2 Parallel Wireless, Kefar Sava, Israel

ebiton@parallelwirelss.com

Abstract. Scheduling in cellular networks is one of the most influential
factors in performance in wireless deployments such as 4G and 5G and
is one of the most challenging and influential resource allocation tasks
performed by the base station. It requires the handling of two important
performance metrics, throughput and fairness. Fundamentally, these two
metrics challenge one another, and maximization of one might come at
the expense of the other. On the one hand maximizing the throughput,
which is the goal of many communication networks, requires allocating
the resources to users with better channel conditions. On the other hand,
fairness requires allocating some resources to users with poor channel
conditions. One of the prevalent scheduling schemes relies on maximiza-
tion of the proportional fairness criterion that balances between the two
aforementioned metrics with minimal compromise. Proportional fairness
based schedulers commonly rely on a greedy approach in which each
resource block is allocated to the user that maximizes the proportional
fairness criterion. However, typically users can tolerate some delay espe-
cially if it boosts their performance.

Motivated by this assertion, we suggest a reinforcement-based
proportional-fair scheduler for cellular networks. The suggested sched-
uler incorporates users’ channel estimates together with predicted future
channel estimates in the process of resource allocation, in order to
maximize the proportional fairness criterion in predefined periodic time
epochs. We developed a reinforcement learning tool that learns the users’
channel fluctuations and decides upon the best user selection at each
time slot in order to achieve the best fairness in throughput trade-off
over multiple time slots. We demonstrate through simulations how such
a scheduler outperforms the standardized proportional fairness. We fur-
ther implemented the suggested scheme on a real live 4G base station,
also known as an EnodeB, and showed similar gains.

1 Introduction

The desire to cope with the fast proliferation of services and applications such as
Internet-of-Things (IoT) and machine-to-machine communications (M2M), cou-
pled with the never-ending growth and complexity in global mobile data traffic,
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 189–207, 2022.
https://doi.org/10.1007/978-3-031-07689-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_15&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_15

190 N. Gradus et al.

has driven the broadband cellular network industry (5G and the upcoming 6G)
to rely on novel disciplines such as Machine Learning (ML) and Artificial Intelli-
gence (AI). Resource allocation and in particular scheduling remains one of the
biggest challenges of the cellular industry.

The scheduler in a cellular-based network, which determines which user(s)
shall be given resources (e.g., channels, power) at each downlink and uplink data
transmission opportunity, plays a fundamental role in every cellular generation
base station [3]. Such scheduling decisions should be determined according to
predefined performance criteria and goals, such as maximizing the overall rate,
minimizing the average latency, supporting due date constraints, etc. (e.g., [1]).
Many scheduling algorithms have been adapted to wireless systems which, for
the sake of simplicity, are oblivious to the users’ channel, e.g., Round Robin (RR)
and Weighted Fair Queuing (WFQ) [17]. Even though such schedulers are simple
and save the burden (and overhead) of acquiring such information, they compro-
mise performance. Accordingly, modern cellular networks (3G and beyond have
given rise to Opportunistic schedulers that take into account physical layer infor-
mation, such as user channel states [1]. Since in a wireless network, users are not
homogeneous and different users not only have different abilities, but they expe-
rience distinct channel conditions due to fading, multipath and interference, an
approach that favors users based on their wireless channel quality and abilities
can result in severe unfairness and even starvation of some users. Many sched-
ulers adopt some fairness metric to avoid such significant differences between
the throughput attained by various users, ensuring that users receive a “fair”
share of the system resources. However, as maximizing the overall throughput
can be at the expense of fairness, also fairness might come at the expense of the
overall throughput. For example, balancing the throughput attained by all users
can result in a severe sum throughput degradation, as a user with poor channel
conditions can consume most of the resources. Furthermore, in contrast to max-
imizing the overall throughput metric, the fairness metric is ambiguous and can
assume different definitions. Indeed, several fairness metrics have been devised
over the years in general and have been adapted to communication networks
in particular, e.g., max-min fairness criterion, Jain’s fairness index, Weighted
Fair Queuing (WFQ) [9]. One of the most acceptable fairness metrics, according
to which many communication network schedulers operate, is the proportional
fairness (PF) criterion that balances between the two aforementioned metrics,
maximizing the aggregate throughput while distributing the resources “fairly”
between the users.

While the problem of proportionally fair scheduling has been studied thor-
oughly, with many different variations and implementations, common schedulers
maximize the proportional fairness metrics at each scheduling instance, based on
current users’ channel states and on the aggregate throughput each user attained
so far. Specifically, the scheduler (at the cellular base station) utilizes the users’
current channel condition feedback and a moving average of the throughput
attained by each user to allocate resources to the user that maximizes the pro-
portional fairness metric at each scheduling instance. However, typical QoS con-

Reinforcement Based User Scheduling for Cellular Communications 191

straints do not require the optimization of any performance metric on each and
every instance and typically measure such key performance indicators (KPI)
only periodically. Accordingly, taking into account estimations of users’ future
channel condition, delaying allocation for a user with poor channel condition
that maximizes the current proportional fairness metric, waiting for the user to
get better channel condition within the KPI periodicity can improve the propor-
tional fairness performance at the evaluation instances.

This study explores a PF downlink scheduler that is examined at the end of a
number of scheduling instances, rather than maximizing performance after every
instance. Accordingly, it not only examines the past received rates and current
channel conditions, it also tries to predict future channel conditions. We utilize
Reinforcement Learning (RL) for this purpose, specifically, Q-learning, which
does not require knowing the transition probability distribution and hence it
is termed a model-free algorithm. Q-learning’s goal is to estimate the optimal
action-state value, and iteratively update the values estimated, by storing them
in a table. We evaluated the suggested RL-PF algorithm via simulation, show-
ing its gains over the greedy PF scheduler and a round-robin-based scheduler
(giving equal timeshare to each user) under various network scenarios. Then, we
implemented the RL-PF algorithm in an operational LTE base station, evaluat-
ing the scheduling of users under different path losses, giving a proof of concept
to utilize such a scheduler in a cellular base station.

Specifically, the main contributions of this study are: (i) We formalize the PF
scheduling, which measures performance only at periodic scheduling instances.
(ii) We devise an RL-based downlink scheduler that predicts and incorporates
near future users’ channel conditions to allocate each resource block to the user
that is expected to maximize the PF metric at the end of the periodic schedul-
ing instances. The suggested scheduler utilizes Q-learning to learn each user’s
channel fluctuations and select the user at each time slot accordingly. (iii) Based
on the scheduling simulator we implement, which supports different downlink
channel models to the connected users, we demonstrate that our algorithm out-
performs the standard PF both in fairness and throughput. (iv) We implement
the RL-PF algorithm in an operational LTE base station, with three connected
users, showing that such an algorithm is practical and can work on real-life
deployment.

2 Proportional Fairness (PF) Background

In this section, we briefly explain the proportional fairness (PF) metric and
describe the conventional PF algorithm, which is commonly used, and to which
we compare our results.

The proportional fairness criterion, which was suggested in the seminal paper
by Kelly [10], introduced an alternative to the max-min fair metric that can
sacrifice a considerable amount of system resources in order to improve the
performance of the most inferior user even if just by a little. In the context
of throughput distribution in wireless networks and in particular in this study,

192 N. Gradus et al.

the proportional fairness criterion can be defined as follows: consider a network
where K users share a single link. Each user, k ∈ K, is associated with rate
r ∈ R, denoted as rk, where R is the set of all possible rates a user can support.
Proportional fair distribution is the one that maximizes:

K∑

k=1

log rk (1)

In contrast to Kelly’s model, which considers that the service can be parti-
tioned such that all users can receive allocations simultaneously, usually in com-
munication networks there are atomic resource units that cannot be partitioned
(see appendix, Sect. 8.2 for more details). Accordingly, the proportional fairness
metric was modified to consider the average throughput a user has received at
the end of a time interval. Denoting by Tk the average rate user k has received,
the proportional fair distribution is the one that maximizes:

K∑

k=1

log Tk (2)

In order to attain the proportional fairness criteria in 2, [18] suggested a
user selection algorithm. The proposed algorithm relies on the users’ channel
quality in time slot t, which is translated to an instantaneous data rate Rk(t)
and a moving average of each user attained throughput Tk(t). The scheduling
algorithm chooses the user k∗ which,

arg max
k∈K

Rk(t)
Tk(t)

The average throughputs Tk(t) are updated using an exponentially weighted
low-pass filter

Tk(t + 1) =

{
(1 − 1

tc
)Tk(t) + 1

tc
Rk(t), k = k∗

(1 − 1
tc

)Tk(t), k �= k∗ (3)

[18] proved that the suggested proportional fair algorithm with time window
tc = ∞, maximizes 2. Note that real-life networks such as LTE and 5G measure
performance (e.g., KPI) on a finite time scale, hence taking tc to ∞ or even
keeping it very high is usually not practical.

Since the adaptation of Kelly’s proportional fairness metric to communication
networks, several other studies have suggested different proportional fairness-
based algorithms. For example In [2], an analysis of the gains in utilizing channel
predictions for the proportional fair scheduler was made, assuming that future
channel states are known (the estimates of the users’ supported data rates for
the current L− 1 future time slots are available to the scheduler upon each time
slot), and computed the optimal allocations for the finite L time slots, comparing
it to the PFS greedy allocation.

Reinforcement Based User Scheduling for Cellular Communications 193

3 Model Description

Consider a single cellular base station, supporting bidirectional data traffic to
K users, however in this work, we focus on the downlink traffic. We assume
that time is divided into periods of L time slots and we shall refer to such
periods as cycles. We further assume that users’ downlink transmission rates
which are based on the user’s channel quality and link adaptation module (see
appendix, Sect. 8.2 for details), are known to the scheduler prior to each time
slot. We assume that the wireless channel remains static within the time slot, as
in [12],[15],[13]. Prior to each time slot, the scheduler selects a user and transmits
to it at a certain rate which with some probability might fail. The rates values
received by the users are reset at the beginning of each cycle and are evaluated
at the end of the cycle, Fig. 1. We generally followed the conventional frequency
division duplex (FDD) cellular resource structure, in which the time is slotted
and divided into constant 1 ms intervals, where each slot is divided into atomic
parts of resource units (Sect. 8.1 for more information).

The performance is measured at the end of each cycle based on the propor-
tional fairness metric. Specifically, denoting the accumulated throughput of user
k at the end of cycle i by T i

k, i.e., T i
k =

∑L
j=1 T i

k(j). The system’s proportional
fairness utility metric at the end of the i-th cycle is:

U
i =

K∑

k=1

log T i
k (4)

Since we mainly deal with the scheduling of a single cycle throughout this
study, to ease notations, we will omit the cycle index when discussing a general
cycle, i.e., Tk(j) denotes the throughput attained by user k in the j-th time slot
and Tk denotes user k’s accumulated throughput at the end of the cycle.

0 1 2 3 4

Time Slot

…

Cycle, L Time Slots

Scheduling Decision
#0

Scheduling Decision
#L-1

Performance
Evalua�on

L-1

Fig. 1. Our model, where a cycle is divided into L time slots, and a scheduling decision
is made at the beginning of each time slot, while we evaluate the performance at the
end of the cycle.

4 Reinforcement Learning Proportional Fairness Based
Scheduler

Since the performance is measured only at the end of each cycle, sometimes it
is beneficial to delay an allocation for a user waiting to receive better channel

194 N. Gradus et al.

conditions within the same cycle. To get some intuition, we exemplify this via a
simple toy example. Assume two users are receiving data from the BS (K = 2).
And assume each cycle has ten time slots (L = 10).

Fig. 2. The supported rates for two users with L = 10. A superimposed cross corre-
sponds to an allocated slot. (a) Schedule according to the PF algorithm. (b) Schedule
according to the Predicted PF algorithm. (c) Sum log throughputs of PF and predicted
PF at the end of each time slot.

The Figures in 2 depict the supported rates for two users (UE 1 and UE 2,
depicted by the blue and orange curves, respectively) over a single cycle. The
asterisks in figure (a) depict the user selected at each time slot according to
the PF algorithm described in Sect. 2, e.g., the first slot is allocated to UE-1,
and the second slot is allocated to UE-2. Figure (b) time-slot allocation is based
on a scheduler that postpones the allocation for UE-2, waiting for it to attain
better channel conditions. Figure (c) is the sum log throughput of the two users
(Eq. 2) after every time slot. As can be seen in the example, allocating slots 2
and 4–8 to UE-2 by the PF scheduler provides a better instantaneous gain in
Eq. 2, however, allocating it slots 9–10 when it has better channel conditions,
attains higher PF utilization at the end of the cycle. Additional motivation can
be found in [2] that showed that the availability of future channel estimations
could help improve the proportional fairness criterion.

Maximization of U, as defined in Eq. 4 encounters two main challenges: i) it
requires the scheduler to know the channel condition of the users throughout
the entire cycle, a priori. ii) it requires an exhaustive search over all users’
scheduling possibilities. To overcome both challenges in this study we utilize a
Reinforcement Learning scheme.

Reinforcement learning associates actions to states to maximize a numeri-
cal reward in an uncertain environment. Accordingly, reinforcement learning is
characterized by the tuple: agent, environment (states), actions and rewards.
The agent is the one carrying out the actions, in our case the scheduler, which
is deployed at the base station. The environment is characterized by the state
space, which consists of all possible system setups. The action space includes
the possible actions the agent can take and the policy that describes the agent’s

Reinforcement Based User Scheduling for Cellular Communications 195

strategy to associate actions to states. In the sequel, we formalize the main
components in the PF scheduling setup.

– The state space is defined by a K element vector, an entry for each user,
in which each entry comprises of the 2-tuple (Ti(n), CQIi(n)), wherein Ti(n)
represents the accumulated throughput user i has attained so far in the cycle
(at the beginning of time slot n), and CQIi(n) represents user i channel
condition at the beginning of time slot n. In this respect, there is a set of
states associated with each time slot in the cycle. Specifically,

Sn = {(T1(n), CQI1(n))(T2(n), CQI2(n)), . . . (TK(n), CQIK(n))}

∀1 ≤ n ≤ L, denotes the set of states that are associated with the beginning
of time slot n.

– The action space, denoted by An is defined by the designated user equip-
ment (UE), which will be scheduled at the beginning of time slot n, and will
be provided with the whole bandwidth. In the problem we have herein, the
challenge is that the action (which UE to schedule next) taken at each time
slot should be evaluated based on the reward attained in the future (delayed
rewards).

– The reward, denoted by R, is calculated based upon the system’s proportional
fairness criterion, also formulated in Eq. 4 (R =

∑K
k=1 log Tk), at the end of

each scheduling cycle. It is worth noting that instantaneous rewards are not
given after each intermediate action (before the cycle has ended).

The reinforcement learning algorithm we utilized in this paper is Q-learning,
a model-free learning algorithm that learns the value of each action for each
state. In order to explore different scheduling decisions, the scheduler either
selects a user based on the already learned policy for the current state or,
with probability ε tries to schedule a random user. After every scheduling deci-
sion, a Q-value, corresponding with the pair (state, action), at time slot n,
denoted by, Qn(Sn, an), is calculated and stored in the Q-table. The calcula-
tion of the aforementioned value is based on the previous value and the max-
imal value of the next state multiplied by the discount rate, γ, formalized as,
Qn(Sn, an) = Qn(Sn, an)+α[Rn(Sn, an)+γ maxQn+1(Sn+1)−Qn(Sn, an)]. The
exploration/exploitation parameter, ε, in the algorithm is based on the ε−Greedy
policy, which is a well-known policy in reinforcement learning, [16]

Algorithm 1 depict a pseudo code of the suggested Q-learning algorithm.

196 N. Gradus et al.

Algorithm 1. Q-Learning Scheduler
1: Initialize Q-table
2: while Training do
3: Update Sn with UEs’ CQI reports
4: if Sn not in Q-table then
5: Add Sn to Q-table
6: end if
7: With probability ε select a random UE to schedule
8: Otherwise select the UE that corresponds to ak = arg maxa Q(Sn,A)
9: Allocate DL transmissions to UE k

10: Update UE k throughput with the corresponding rate, Tk = Tk + rk
11: if n < L then
12: proceed to next time slot n = n + 1
13: Receive CQI reports
14: R = 0
15: Transit to next state Ŝn

16: else if n = L then
17: Calculate reward R =

∑K
k=1 log Tk

18: Initialize Tk, ∀k ∈ K
19: end if
20: Update Q(Sn, ak) = Q(Sn, ak) + α[R + γ maxQ(Ŝn, â) − Q(Sn, ak)]
21: end while

The basic blocks in the Q-learning scheduler that we implemented are as
follows; the algorithm works by first deciding which UE to schedule at each
time slot through the exploration/exploitation policy (lines 7–9), either choosing
a random UE or choosing the UE that maximizes the reward as was learned.
Upon downlink transmission to the chosen UE, the next state is updated with the
throughput and new CQI reports observed (lines 10–15). The reward calculation
is made at the end of the scheduling cycle, i.e., there is no reward calculation
in the mid of a cycle and therefore the reward is equal to zero. (lines 16–18)
depicts the state initialization for the next cycle. The Q-value calculation is
found at line 20 where, the current Q-value for time slot n is updated with
the current reward together with the difference between the maximum possible
discounted future Q-value and the current Q-value, adjusting the Q-value steps
in the direction of maximum reward at the end of the cycle. Worth noting that
the reward calculated at the end backward-propagates to all states that were
involved in the cycle.

5 Simulations

In this section, we evaluate via simulations the performance of the suggested
RL-based scheduler under different parameters and configurations. We start by
presenting the simulation setup.

Reinforcement Based User Scheduling for Cellular Communications 197

5.1 Simulation Setup

We devised a python-based simulation platform that was utilized to implement
the suggested reinforcement-learning algorithm (Q-learning) for the downlink
scheduling. We considered a single base station and assumed K UEs were con-
nected; all were fully downlink backlogged (i.e., the base station always had
backlogged data to each UE). We also assumed that a single UE was scheduled
per time slot. We assumed a time-varying block-fading channel model, in which
the channel of each user was modeled as a two-state Markov chain as introduced
by Gilbert [8] and Eliot [7], and that the users supported two rates, r1, r2 ∈ R,
where R is the set of rates applicable for data transmission, which were the
same for each user. We followed the usual notation of a good (G) and bad (B)
state that corresponded with a user’s supported rate, i.e., without loss of gen-
erality, we assumed that r1 > r2; hence, r1 was denoted as good and r2 as bad
channel states. The channel transition probabilities between the channel states
Prob(G → B) and Prob(B → G) were denoted by 1−pk and 1−qk, respectively.
The channel state was assumed to remain fixed during the course of a time slot
(transmission). We explored various pk and qk, chosen independently between
the users. We assumed that the scheduler knew the channel state of each user
before each schedule decision (see Sects. 3 and 10 for details) and transmitted at
a rate appropriate for this channel state. In the first part of the simulations, we
assumed that each transmission rate was appropriate to the channel state; hence
all transmissions were successfully received. In the second part, we extended the
simulations to more realistic scenarios where downlink transmissions weren’t
always received successfully, and there was some probability for an erroneous
transmission. We assumed cycles of L time slots each and ran each setup for at
least 1000 cycles. The results presented the average PF attained throughout the
simulations.

We compared our algorithm to the prevalent opportunistic PF scheme pre-
sented in Sect. 2. As baselines, we compared our approach to the traditional
round-robin scheme, in which the users were allocated slots sequentially in a
predetermined order, regardless of channel condition or any fairness criteria,
and to the optimal scheduling, which searches a-posteriori at the end of each
cycle for the scheduling that would have maximized the PF criterion (4) based
on the attained users’ channel states. Note that the optimal scheduling is not
feasible as it needs to determine which UEs should have been scheduled in the
already finished cycle (in retrospect) when all users’ channel state instantiations
are already known to the BS. Furthermore, note that the optimal scheduling is
also not scalable.

Besides the average PF metric (Avgi(
∑K

k=1 log T i
k)) we also present the aver-

age accumulated user’s throughput per cycle (Avgi(
∑K

k=1 T i
k). Even though the

objective is to maximize the PF criterion, we also present the Jain’s fairness
index, due to its popularity as a common fairness criterion:

Jain′s index =
(
∑K

k=1 Tk)2

K × ∑K
k=1 Tk

2
.

198 N. Gradus et al.

Due to the enormous state space involved, we shall focus on a small number
of users starting from only two users, which is extended later to three and four
users.

Two UEs Scenario. In order to gain some insight, we start with a simple
two UE setup in which the channel of one user (UE-1) is constantly in a good
channel state, i.e., p1 = 1, and q1 = 0, while the second user (UE-2) alternates
between good/bad channel state. Specifically, p2 = 0.3, and q2 = 0.7. The down-
stream traffic for both UEs is fully backlogged. Figure 3 compare the average
sum log throughput, average Jain’s fairness index and average cell throughputs,
respectively, for a scheduling cycle of L = 5. The average of all three metrics
was calculated over all scheduling cycles.

Fig. 3. 2 UE setup with L = 5. (a) Sum log throughput. (b) Jain’s fairness index. (c)
Average cell throughput.

Figure 3(a), shows a 3% increase in the PF metric of the RL algorithm com-
pared with the standard PF, indicating that even in a small-scale environment,
RL scheduling brings some gains over PF. A comparison with the optimal sched-
uler shows that the RL scheduler attains nearly the performance of the optimal
one. Examining the detailed results shows that the RL scheduler attained the
optimal schedule in over 95% of the scheduling cycles. Figure 3b shows that
also with respect to the Jains fairness index, the RL scheduler outperforms the
PF scheduler. Figure 3c compares the overall cell throughput which shows that
using RL scheduling results in 12% aggregated cell throughput increase com-
pared with the standard PF scheduler, and about 36% increase over the RR
scheduler, which doesn’t take into consideration the UEs’ channel conditions or
the attainable rates.

We leverage this simple example to better understand the gains from utilizing
RL, in this setup, in which one of the UEs always experiences good channel con-
ditions, while the other mostly experiences bad channel conditions and only occa-
sionally experiences good channel conditions. Accordingly, the scheduler needs
to try and schedule the second user whenever it experiences good channel con-
ditions, yet no more than two times per cycle. Accordingly, the scheduler can

Reinforcement Based User Scheduling for Cellular Communications 199

postpone allocations to UE-2 waiting for it to have good channel conditions.
If UE-2 has received no allocations in the first three slots it will get the last
two slots regardless of its channel condition. In contrast, the PF algorithm will
always allocate at least one of the three first slots to UE-2, even if in all of them
UE-2 experienced bad channel conditions. Note that in the case that after three
bad channel conditions the last two slots UE-2’s channel was good, the scenario
is similar to the one presented in Fig. 2. Similarly, if UE2’s channel was in good
condition in the first two slots, the RL scheduler will assign both slots to it while
the PF scheduler will assign only one of the to it and the other to UE 1.

Four UEs Scenario. Next, we examine a four UE comparison for three setups,
where L = 5. (i) UE-1 and UE-2 are kept at constant good state, i.e., p1 = p2 = 1,
UE-3 is kept at a constant bad state, q3 = 1, and the last UE alternates between
good and bad with probabilities, p4 = 0.3, and q4 = 0.7. (ii) UE-1 was kept at a
constant good state, p1 = 1, q1 = 0, while UE-2 and UE-3 alternate between good
and bad, i.e., p2, p3 = 0.3 and q2, q3 = 0.7, while UE-4 is kept at a constant bad
state, i.e., q4 = 1. (iii) UE-1 is kept at a constant good state, i.e., p1 = 1 while
UE-2, UE-3 and UE-4 alternate between good and bad with p2 = p3 = p4 = 0.3
and q2 = q3 = q4 = 0.7.

Fig. 4. 4 UE setup with L = 5 for three different setups. (a) Average sum log through-
put. (b) Average cell throughput.

Figures 4(a) and 4(b) depict the average sum log throughputs and the average
cell throughput, respectively, for all three setups. Figure 4(a), which depicts the
average sum log throughput, clearly shows the gain of using RL scheduling when
a 3%, 5%, and 6% increase was found for each setup, respectively. Figure 4(b),
which shows the results of the average cell throughput, indicates a 3%, 8% and
16% gain over the standard PF for each setup, respectively. As in the two UEs
scenario, the RL-PF scheduler attains almost the same PF results as the optimal
one.

200 N. Gradus et al.

5.2 Unsuccessful Transmissions

In the first part of the results, we assumed that all downlink transmissions were
received successfully. In this part of the results, we considered a more realis-
tic scenario in which each downlink transmission had a certain probability of
being unsuccessful. We denoted the probability for successful transmission by
P succ

k < 1, for UE k. As in operational cellular networks, we assumed that the
feedback (ACK/NACK) was delayed and was received only after the cycle had
ended. Results presented in this section took into consideration the throughputs
attained by the UEs at the end of each cycle, i.e., considered only the successful
transmissions.

In this part, we examined the simple two UE scheduling in which UE-1
always experienced a good channel condition and In contrast, UE-2 channel state
alternated between good and bad states with probabilities, p2 = 0.3, q2 = 0.7.
We assumed that the transmissions of UE-1 were always successful, i.e., P succ

1 =
1 and examined two different success probabilities for UE 2, (i) P succ

2 = 0.3
(most of the downlink allocations for UE-2 were not received successfully). (ii)
P succ
2 = 0.9 (most UE-2’s transmissions were received successfully). Note that for

the optimal scheduler to be able to compute the attainable rates for all possible
schedules, at each time slot, we simulated a transmission by each UE and noted,
based on the success probability of each UE, whether it was successfully received.

Fig. 5. 2 UE setup with L = 5 and probability for unsuccessful transmissions for two
different setups. (a) Average sum log throughput. (b) Average cell throughput.

Figure 5 depict the average sum log throughputs and the average cell through-
put for both setups. Figure 5(a) depicts, that with respect to the PF metric
(average sum log throughput), the RL-based algorithm outperforms the PF
algorithm (25% gain in setup (i) and 6% gain in setup (ii). However, as can
be seen in Fig. 5(b), the PF metric gain came at the expense of the average cell
throughput, i.e., the PF scheduling resulted in a higher cell throughput than
the RL based scheduler for both setups. The reason for this degradation relies
on the fact that the RL-based scheduler learns that UE 2’s transmissions are
not always successful hence allocates more resources (time slots) to it; some of

Reinforcement Based User Scheduling for Cellular Communications 201

these extra transmissions are at a low rate, and some will also fail (especially in
setup (i)). On the other hand, the PF-based scheduler ignores the failed trans-
missions, hence favors UE 1, whose transmissions are always successful and at
a high rate. Accordingly, even though the proportional fairness criterion tries to
balance fairness and channel utilization, a significant number of resources are
still spent on the less advantaged user(s). As can be seen, both schedulers are
far from attaining the optimal scheduler results, which can examine all schedule
possibilities (25 different schedules) and the outcome for each possible schedule,
concerning the number of successful transmissions for each UE.

6 Implementation

6.1 Testbed

Fig. 6. The different splits in RAN archi-
tecture, split 8 is between the RF and upper
layers

Fig. 7. Testbed illustration

We have implemented the Q-learning RL-PF algorithm inside an operational
LTE base station with three connected users. Details of the testbed and results
are discussed in brief next.

Implementation testbed comprises a 10 MHz bandwidth single cell running
4G network, specifically, option 8, where there is a split between the RF, also
known as the remote radio head (RRH), and the upper layers, e.g., PHY, MAC,
which are implemented in a COTS server, also known as baseband unit (BBU),
Fig. 6. The scheduling decisions are made in the scheduler entity that resides
in the MAC layer and is configured to schedule one user in each time slot. The
RRH is connected to two RF splitters, which allows us to connect the 2× 2 RRH
to three RF cages where the users are placed. Variable attenuators (V/A) are
placed in each RF connection in order to control the users’ path loss to the LTE
cell. The testbed architecture is illustrated in 7. In our system, we examined the
described setup, where UE-1 is in almost perfect channel condition, path loss of

202 N. Gradus et al.

60 [db], UE-2 is experiencing 117 [db] path loss, and UE-3 is experiencing a path
loss of 123[db]. Apart from our RL-PF scheduler, we have implemented the PF
scheduler, as formulated in Sect. 2 as well. UDP downlink data is generated for
each UE such that all UEs are fully backlogged.

6.2 Adaptation of RL-PF Model for Implementation

As described in Sect. 4, a state in our RL-PF scheduler consists of the UEs’
CQI reports, which indicate the channel quality of each UE. The assumption
was that such reports were available to the scheduler prior to every time slot.
Such an assumption is invalid when dealing with an actual base station, where
CQI reports for each UE are received every 80 ms. However, common operational
base stations utilize implicit channel feedback in the forms of ACKs/NACKs,
which are received for each transmitted packet and give an indication to the
rate adaptation module with respect to the current supported transmission rate.
Accordingly, we cope with the aforementioned CQI reporting granularity by
re-defining the RL-PF state presentation to include the transport block index
(ITBS) instead of CQI, where ITBS is the output of the link adaptation mecha-
nism corresponding to the CQI reports and ACK/NACKs feedback. We further
elaborate on this in Appendix 8.2.

6.3 Implemented RL-PF Learning Methodology

The learning process is performed offline after a measurement session where the
UEs’ ITBS and throughputs at each time slot were gathered. ACK/NACK feed-
back is considered and is received at the scheduler 4 ms after the downlink trans-
mission, as defined by the 4G standard. Therefore, after gathering all feedback
from each UE, actual throughputs at the end of a scheduling cycle are collected,
and calculation of PF criteria is made and used for the learning process.

6.4 Implementation Results

We implemented both schedulers, RL-PF, and PF schemes. We kept the cycle
length of 5 slots (L = 5), and compared the results attained by the RL-based sched-
uler with the PF and optimal scheduling scheme for the setup described in 6.1.

0

5

10

15

20

25

30

35

40

PF RL-PF OPTIMAL

Av
er

ag
e

Su
m

 L
og

 T
hr

ou
gh

pu
ts

[B
/L

]

Scheduling Algorithm

Fig. 8. RL-PF vs PF vs Optimal , aver-
age sum log throughputs, where L = 5.

0

5

10

15

20

25

30

35

PF RL-PF OPTIMAL

Av
er

ag
e

Ce
ll

Th
ro

ug
hp

ut
[M

b/
s]

Scheduling Algorithm

Fig. 9. RL-PF vs PF vs Optimal, aver-
age cell throughput, where L = 5.

Reinforcement Based User Scheduling for Cellular Communications 203

Figures 8 and 9 depict the average sum log throughputs and the average cell
throughput, respectively. The basic trend for both metrics agrees with the results
presented in the simulations for two users with a probability for unsuccessful
transmission. Specifically, Fig. 8 which presents the average sum log throughputs,
depicts an 18% gain over PF in the measured setup. On the other hand, the
average cell throughput presented in Fig. 9 shows that the PF scheme has a
higher cell throughput, as also observed in the simulations 5.2. This is explained
by the fact that the RL-PF allocates extra resources to the UEs, which tend
to lose packets. These UEs have inferior channel conditions, hence transmit at
lower rates, at the expense of allocation to the superior UEs, contributing much
more to the overall cell throughput. Explicitly, the RL-PF scheduling strategy
allocates more slots to the UEs that are more likely to return a NACK, hence,
in our setup UE-1 will get only one slot (almost perfect channel conditions, i.e.,
very low block error rate), while the other two UEs will share the other four
slots, as those UEs have a higher probability of failure due to their path loss. In
contrast, the PF scheduler will allocate at least two slots to UE-1 and share the
other three slots between the other two UEs. Accordingly, the effect is twofold
(i) PF allocates more slots to UEs with higher data rates. (ii) PF allocates more
slots to UEs with higher success probabilities hence a higher number of utilized
slots. Moreover, the downlink link adaptation (DLLA) mechanism, explained in
Appendix 8.2, is responsible for converging the users to a target block error rate
(which is, as per design, the same for all users) and therefore, UE-2 and UE-3
will have the same probability of successful transmission, however, with different
transmission rates. With that in mind, RL-PF will learn to allocate two slots
to UE-2 and UE-3. Note that since the RL-based scheduler strategy is based on
the anticipated loss probabilities in some cycles it can lose with respect to both
metrics. For example, when all five slots were successfully transmitted, the PF
scheduling policy outperforms the RL based on both the sum log throughputs
and the aggregate cell throughput metrics. On the other hand, based on the PF
scheduler, the BS allocates only a single transmission (time-slot) to one of the
UEs with inferior channel conditions, which occasionally will fail. Accordingly,
this UE attains zero throughput on many cycles, which is unacceptable in terms
of the proportional fairness criterion. We note that in order for the sum log
throughput results to be in scale, for these unfair PF slots, we assumed that the
logT of the UE that received T = 0 contributes 0 to the sum rather than minus
infinity.

7 Conclusions

This work presents a novel PF scheduling algorithm that estimates and predicts
users’ future channel rates, specifically, utilizes a reinforcement learning tool,
Q-learning, for optimal user selection allocation at each time slot. We presented
a simulation framework that consists of different scenarios, specifically, different
number of users to be scheduled. We have also implemented a POC, showing the
achievable gains with a real base-station and users, which both show results that

204 N. Gradus et al.

outperform other scheduling algorithms, such as PF, in the latter, sometimes at
the expense of maximum throughput. We believe that our work opens a gateway
for better practical schedulers that may utilize ML in their scheduling decisions.
Future research is recommended for scaling our algorithm to a higher number of
users and time slots, utilizing more complex ML concepts such as deep learning

8 Appendix

8.1 LTE Basic Terms

In this study we generally follow the conventional frequency division duplex
(FDD) cellular resource units, in which the time is slotted into frames, and
each frame is divided into constant 1 ms intervals, denoted as sub-frames. Each
subframe is divided into parts termed physical resource resource blocks, which
we shall refer to as simply resource blocks. Each such resource block comprises
a bandwidth and time duration, e.g., in LTE each resource block comprises 12
sub-carriers in the frequency domain and 14 OFDM symbols in the time domain.

8.2 Downlink Link Adaptation (DLLA)

As mentioned earlier, opportunistic scheduling, e.g., proportional fairness, takes
into consideration the users channel quality reports for better scheduling deci-
sions. In particular, note that in the algorithm presented above, in order for
the scheduler to select the user according to Eq. arg max

k

Rk(t)
Tk(t)

it needs to know

the instantaneous rates of all users. In wireless networks, these channel states
of users are attained via reports indicating the users’ supported rates for trans-
mission. Furthermore, each practical system supports only a finite set of rates.
Link Adaptation is the mechanism where the users’ transmission code rates and
modulation schemes are selected based on the channel conditions.

In this section, we briefly explain the concepts and processes of DLLA that is
utilized in simulations and experimental results for scheduling using RL. since in
the evaluation part both in the simulations and experimental results we follow
a typical LTE DLLA, in the following subsection we will provide a technical
description of the DLLA we utilized. Our description follows the common ter-
minology and the accepted acronyms hence it is somewhat cumbersome.

The DLLA process is a crucial part of current wireless communication sys-
tems. Such technique increases the data rate that can be reliably transmitted [4]
and has been adopted as a core feature in cellular standards such as LTE. The
LA role in the MAC layer of the base station (BS) is to suggest the scheduler an
appropriate modulation and coding scheme (MCS) to be used in the next trans-
missions to a certain user equipment (UE) in order to keep the block error rate
(BLER) below a target. The proposed MCS is signaled from the UE by means
of channel quality indicator (CQI) in the form of reports it sends to the BS,
[14]. Afterwards, the BS uses a pre-calculated table for the mapping of CQI to a
transport block size index (ITBS), an integer ranging from 1–26, which is used

Reinforcement Based User Scheduling for Cellular Communications 205

in the decision of the transport block (TB) size to be transmitted to the UE. The
TB size is also determined by the number of physical resource blocks (PRBs)
which can be allocated to the UE. In LTE the radio resources are allocated in
the time/frequency domain. In particular, the time is slotted into intervals of 1
ms corresponding to 14 OFDM symbols. and in the frequency domain, the total
bandwidth is divided into sub-channels of 180 kHz, each one with twelve consec-
utive and equally spaced OFDM sub-carriers. A time/frequency radio resource
spanning over 1 ms time slot/14 OFDM symbols and twelve consecutive sub-
carriers is called a physical resource block(PRB), or just RB, and corresponds
to the smallest radio resource unit that can be assigned to a user for transmis-
sion. As the sub-channel size is fixed, the number of RBs varies according to the
system bandwidth configuration, and it is the scheduler’s decision to divide the
total number of RBs to each scheduled UE in the time slot. The ITBS, together
with the number of RBs that are allocated to the UE are mapped to the size of
the TB.

The CQI reported by the UE on a per transmission time interval (TTI) basis,
delivers information on how good/bad the downlink communication channel is.
The UE’s measurement of CQI depends solely on the chipset vendors and is
derived from UE’s measurement of the reference signals transmitted by the BS.
The reference signals received power (RSRP) that is measured by the UE is than
used to calculate the link quality metric (LQM) which quantifies the quality of
the downlink and is used to determine the CQI. The LQM that is mostly used
in LTE is the exponential effective SNR mapping (EESM) [5]. The process of
selecting the most suitable MCS based on the link quality measurements is called
inner loop link adaptation (ILLA) [6].

Due to various errors in the CQI measurements of the UE, the delay in
the reporting process and deviations from the assumed channel conditions, e.g.,
multi-path environment, UE speed [11], a compensation process is needed and
called outer loop link adaptation (OLLA). The correction of OLLA is based on
the hybrid automatic repeat request (HARQ) feedback and is depicted as follows,
the mapped ITBS from the UE’s CQI report, defined as, ITBS(CQI), is updated
by a margin, ITBSmargin, for each received positive/negative acknowledgment
(ACK/NACK) from the UE. When an ACK is received, ITBSmargin is decreased
by Δdown, and when a NACK is received, the margin is increased by, Δup. The
ratio Δdown

Δup
is controlled by the target BLER that OLLA is designed to converge

to, given by

Δdown

Δup
=

BLERT

100 − BLERT

Intuitively, if BLERT is set to 10%, this means that the user should receive at
least 90% successful downlink transmissions. As explained the OLLA process is
formulated as such,

ITBS = ITBS(CQI) − ITBSmargin

206 N. Gradus et al.

ITBSmargin =

{
ITBSmargin − Δdown if ACK
ITBSmargin + Δup if NACK

(5)

Fig. 10. DLLA block diagram

References

1. Asadi, A., Mancuso, V.: A survey on opportunistic scheduling in wireless commu-
nications. IEEE Commun. Surv. Tutor. 15(4), 1671–1688 (2013)

2. Bang, H.J., Ekman, T., Gesbert, D.: Channel predictive proportional fair schedul-
ing. IEEE Trans. Wirel. Commun. 7(2), 482–487 (2008)

3. Capozzi, F., Piro, G., Grieco, L.A., Boggia, G., Camarda, P.: Downlink packet
scheduling in ITE cellular networks: key design issues and a survey. IEEE Commun.
Surv. Tutor. 15(2), 678–700 (2012)

4. Chung, S.T., Goldsmith, A.J.: Degrees of freedom in adaptive modulation: a unified
view. IEEE Trans. Commun. 49(9), 1561–1571 (2001)

5. Donthi, S.N., Mehta, N.B.: An accurate model for EESM and its application to
analysis of CQI feedback schemes and scheduling in ITE. IEEE Trans. Wirel.
Commun. 10(10), 3436–3448 (2011)

6. Duran, A., Toril, M., Ruiz, F., Mendo, A.: Self-optimization algorithm for outer
loop link adaptation in ITE. IEEE Commun. Lett. 19(11), 2005–2008 (2015)

7. Elliott, E.O.: Estimates of error rates for codes on burst-noise channels. Bell Syst.
Tech. J. 42(5), 1977–1997 (1963)

8. Gilbert, E.N.: Capacity of a burst-noise channel. Bell Syst. Tech. J. 39(5), 1253–
1265 (1960)

9. Huaizhou, S.H.I., Venkatesha Prasad, R., Onur, E., Niemegeers, I.G.M.M.: Fairness
in wireless networks: issues, measures and challenges. IEEE Commun. Surv. Tutor.
16(1), 5–24 (2013)

10. Kelly, F.: Charging and rate control for elastic traffic. Eur. Trans. Telecommun.
8(1), 33–37 (1997)

11. Morales-Jimnez, D., Scnchez, J.J., Gmez, G., Aguayo-Torres, M.C., Entram-
basaguas, J.T.: Imperfect adaptation in next generation OFDMA cellular systems
(2009)

12. Ouyang, W., Eryilmaz, A., Shroff, N.B.: Downlink scheduling over Markovian fad-
ing channels. IEEE/ACM Trans. Netw. 24(3), 1801–1812 (2015)

13. Piazza, D., Milstein, L.B.: Multiuser diversity-mobility tradeoff: modeling and per-
formance analysis of a proportional fair scheduling. In: Global Telecommunications
Conference, 2002 (GLOBECOM’02), vol. 1, pp. 906–910. IEEE (2002)

Reinforcement Based User Scheduling for Cellular Communications 207

14. Sesia, S., Toufik, I., Baker, M.: LTE-the UMTS Long Term Evolution: From Theory
to Practice. Wiley (2011)

15. Shmuel, O., Cohen, A., Gurewitz, O.: Performance analysis of opportunistic dis-
tributed scheduling in multi-user systems. IEEE Trans. Commun. 66(10), 4637–
4652 (2018)

16. Tokic, M., Palm, G.: Value-difference based exploration: adaptive control between
epsilon-greedy and softmax. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS
(LNAI), vol. 7006, pp. 335–346. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24455-1 33

17. Tsai, T.-Y., , Chung, Y.-L., Tsai, Z.: Introduction to packet scheduling algorithms
for communication networks. Sciyo (2010)

18. Viswanath, P., Tse, D.N.C., Laroia, R.: Opportunistic beamforming using dumb
antennas. In: Proceedings IEEE International Symposium on Information Theory,
p. 449. IEEE (2002)

https://doi.org/10.1007/978-3-642-24455-1_33
https://doi.org/10.1007/978-3-642-24455-1_33

A Heuristic Framework to Search
for Approximate Mutually

Unbiased Bases

Sreejit Chaudhury1, Ajeet Kumar2, Subhamoy Maitra2(B), Somjit Roy3,
and Sourav Sen Gupta4

1 Jadavpur University, Kolkata, India
2 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India

subho@isical.ac.in
3 Department of Statistics, University of Calcutta, Kolkata, India

4 Nanyang Technological University, Singapore, Singapore

Abstract. Mutually Unbiased Bases (MUBs) have varied applications
in quantum information. However, obtaining the optimal number of
MUBs is a challenging problem for different dimensions. The problem
has received serious attention for several decades and still number of
questions are unsolved in this domain. As optimal number of MUBs may
not always be available for different composite dimensions, Approximate
MUBs (AMUBs) received serious attention in recent time. In this paper,
we present a heuristic to obtain AMUBs with significantly good param-
eters. Given a non-prime dimension d, we note the closest prime d′ > d
and form d′ +1 MUBs through the existing methods. Then our proposed
idea is (i) to apply basis reduction techniques (that are well studied
in Machine Learning literature) in obtaining the initial solutions, and
finally (ii) to exploit the steepest ascent kind of search to achieve further
improved results. The efficacy of our technique is shown through con-
struction of AMUBs in dimensions d = 6, 10, 46 from d′ = 7, 11 and 47
respectively. Our technique provides a novel framework in construction
of AMUBs that can be refined in a case-specific manner. From a more
generic view, this approach considers approximately solving a challenging
(where efficient deterministic algorithms are not known) mathematical
problem in discrete domain through state-of-the-art heuristic ideas.

Keywords: Mutually Unbiased Bases (MUBs) · Approximate
Mutually Unbiased Bases (AMUBs) · Quantum Key Distribution ·
Dimension reduction · Singular Value Decomposition (SVD) · Gradient
ascent

1 Introduction

MUBs form a very interesting and well studied mathematical structure that have
applications in Quantum Key Distribution (QKD), dense coding, teleportation,
entanglement swapping, covariant cloning and state tomography (see [6] and the
references therein).
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 208–223, 2022.
https://doi.org/10.1007/978-3-031-07689-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_16

A Heuristic Framework to Search for Approximate Mutually Unbiased Bases 209

Definition 1. Two orthonormal bases A = {|a1〉, |a2〉, . . . , |ad〉} and B =
{|b1〉, |b2〉, . . . , |bd〉} of a d-dimensional Hilbert space C

d are Mutually Unbiased
Bases (MUBs) if

| 〈ai|bj〉 | =
1√
d
, ∀ i, j = 1, 2, . . . , d. (1)

MUBs over high-dimensional Hilbert spaces are of practical significance
in quantum cryptology (see [1] and the references therein, and in particular
to Quantum Key Distribution [3]), and construction of MUBs pose interest-
ing research questions in combinatorics (see [6,9] and references therein). If
d = pn1

1 pn2
2 · · · pns

s , it is known that the number of MUBs of the Hilbert space
C

d is bounded by

min{pn1
1 , pn2

2 , . . . , pns
s } + 1 ≤ M(d) ≤ d + 1. (2)

Thus, if d = pk is a prime power (or a prime), there exist M(d) = d + 1
MUBs. The initial methods to construct such MUBs, based on Galois fields,
are described in [18]. However, for the other dimensions, it is an extremely chal-
lenging question when the lower bound of M(d) can be defeated. Even for d as
small as 2×3 = 6, the smallest non-prime-power composite dimension, construc-
tion exists for only 2 + 1 = 3 MUBs, the lower bound. No larger set of MUBs
could be discovered to date for d = 6, let alone the upper bound 6 + 1 = 7. This
resulted in recent studies on an approximate version of the problem (see [14] and
the references therein).

Definition 2. Two orthonormal bases A = {|a1〉, |a2〉, . . . , |ad〉}, B =
{|b1〉, |b2〉, . . . , |bd〉} over a Hilbert space C

d are Approximate Mutually Unbiased
Bases (AMUBs) if

| 〈ai|bj〉 | ≤ ε, ∀ i, j = 1, 2, . . . , d, (3)

for a certain upper bound ε (a small constant less than 1) on the inner product
of the basis vectors from the two orthonormal bases.

For example, one may consider β-AMUBs [12], which is formally defined as
follows.

Definition 3. Two orthonormal bases A = {|a1〉, |a2〉, . . . , |ad〉}, B =
{|b1〉, |b2〉, . . . , |bd〉} over a Hilbert space C

d are β-Approximate Mutually Unbi-
ased Bases (β-AMUBs) if

| 〈ai|bj〉 | ≤ β/
√

d (4)

with β upper-bounded by a certain constant.

Exact theoretical bounds based on our techniques could be a very interest-
ing work, but for the time being the performance of our heuristics are mea-
sured numerically through experiments. Thus formalizing and proving theoret-
ical bounds on the approximation are not in the scope of this paper. However,

210 S. Chaudhury et al.

the measures of closeness of AMUBs to MUBs are quantified by two well known
measures as explained in Sect. 1.2.

Construction of AMUBs have been attempted using techniques in combinato-
rial designs and algebraic techniques (see [11,12,16] and the references therein),
where the approximation to MUBs is measured by the dispersion of the values
| 〈ai|bj〉 | from 1√

d
, the ideal case. For example, algebraic techniques are pre-

sented in [16] for construction of Approximate MUBs. Recently, combinatorial
designs are used in [12] to construct β-AMUBs for d = pk(pk + 1), where β
remains bounded by a certain constant. While several interesting properties for
β-AMUBs have been explored in [12], such combinatorial constructions suffer
from limitations when d is of certain forms. Particularly if d = 2q, where q is
some power of odd prime, such combinatorial designs although gives a large num-
ber of AMUBs but fails to construct good β-AMUBs. That is why we consider
6, 10 and 46 as our examples. The most encouraging results for dimension d = 6
are presented in [14]. In this case we have the lower bound of 2 + 1 = 3 MUBs.
This is extended through the construction of 4 AMUBs in [14] using a para-
metric structure. The structure is quite interesting as altering the parameters
result in different sets of AMUBs and among those the best result is considered.
However, there has been no theoretical advancement in this direction for over
a decade, and the construction of such a parametric structure for AMUBs for
any arbitrary dimension seems elusive. We also note that, there has been recent
advancements in search of Mutually Unbiased Bases and the approximate ones
through computational approaches [4], where the three broadly used numeri-
cal methods obtain relatable and coinciding results to that of [14]. However, no
discussions have been made so far about the approximate version of the higher
dimensional Mutually Unbiased Bases. That is where we explore the heuristic
ideas that can work efficiently for higher dimensions.

1.1 Motivation, Contribution and Organization

Combinatorial constructions (see [11,12] and references therein) and algebraic as
well as search based techniques (see [14] and the references therein) are trending
techniques in AMUB literature. However, the strategies have their respective
limitations too. The combinatorial constructions work on dimensions of certain
kinds, and the computations for the rich but restricted class of unitary trans-
formations explored in [14] are not applicable for higher dimensions. Thus, we
explore alternative heuristics to construct AMUBs in any dimension with good
computational efficiency.

We propose a generic approach in constructing AMUBs through dimension
reduction, using Singular Value Decomposition (SVD) as the primary and initial
component of our algorithm. Given an arbitrary dimension d, we start from d′,
the closest prime power larger than d. As the construction for (d′+1) MUBs exist
for prime power d′, we apply dimension reduction to those MUBs to obtain a
potential collection of AMUBs in dimension d. Finally, a heuristic search on this
collection produces (d + 1) AMUBs in the d-dimensional Hilbert space C

d. This
approach works for any dimension d, and is quite efficient for higher dimensional

A Heuristic Framework to Search for Approximate Mutually Unbiased Bases 211

spaces. Although SVD is quite prominent for its dimensionality-related applica-
tions in mathematics and machine learning [15], to the best of our knowledge,
such an SVD-based dimension reduction technique has never been studied for
constructions of AMUB. For a more detailed background, let us refer to Sect. 1.2,
where we present the two measures used in this paper to determine the approx-
imation closeness of AMUBs to MUBs. We also briefly explain the basics of
dimension reduction using Singular Value Decomposition (SVD) here.

Let us now formally propose the framework. We devise two strategies for
dimension reduction using the general idea of SVD – merged and non-merged.
We treat the reduced bases obtained from the SVD routine as our initial solution
set for prospective AMUBs, which will further be subjected to a steepest ascent
kind of heuristic search, as proposed in [14]. It is thus natural that for d = 6, we
do not obtain results as good as in [14], as the algebraic structure is not used
at all. However, our results for d = 6 is encouraging and only slightly weaker
than that of [14], though we relax the restrictions related to the parametrization
and proceed with a general class of bases. More important is that, our proposed
technique can be adapted easily in case of higher dimensions to construct more
number of AMUBs exceeding the lower bound on MUBs. These we present in
details in Sect. 2. The algorithm is presented in two parts – ‘Creation of Bases’
and ‘Choice of Bases’. We also highlight the heuristic search technique in [14],
as we subject the reduced bases obtained from our dimension reduction step to
this search routine.

It is generally accepted that to construct large number of MUBs in C
d, where

d = 2 mod 4 is quite difficult and in such dimensions using known construction
methods for prime powers, we get only 3 MUBs. Hence we implement our tech-
niques for dimensions of the form d = 2p, where p is a Sophie Germain prime [5]
(that is, both p and 2p + 1 are primes), as large number of MUBs are available
in dimension d′ = d + 1 = 2p + 1. In particular we consider the dimensions
d = 6, 10, 46, where our proposed strategy yields AMUBs with good parame-
ters. Section 3 describes the experimental results. Section 4 concludes the paper
by summarizing our contribution in the domain of AMUB constructions, and
by indicating the scope for further generalization of our framework to higher-
dimensional Hilbert spaces.

1.2 Closeness Measures for AMUBs

We broadly use two measures to validate our results in terms of the closeness
of AMUBs to MUBs: (i) Average Squared Distance (ASD) among the bases and
(ii) maximum distance of 〈ai|bj〉 from 1√

d
, termed as Drift Measure.

D2 – Average Squared Distance (ASD) Between Bases. To measure the
quality of AMUBs generated by our algorithm, we use the concept of distance
between two bases, following Bengtsson et al. [2], who used the distance between
two bases as a yardstick to measure the unbiasedness, and Raynal et al. [14], who
used a similar measure to determine the results of their proposed algorithms.

212 S. Chaudhury et al.

The squared distance between two orthonormal bases A = {|a1〉, . . . , |ad〉}
and B = {|b1〉, . . . , |bd〉} of a d-dimensional Hilbert space C

d is defined as

D2
AB = 1 − 1

d − 1

d∑

i,j=1

(
|〈ai|bj〉|2 − 1

d

)2

, (5)

and for a set of k orthonormal bases in C
d, the Average Squared Distance (ASD)

between the k(k − 1)/2 pairs of bases is defined as the average over all pairs:

D2 =
2

k(k − 1)

∑

A<B

D2
AB. (6)

The value of ASD is maximum (D2 = 1) for a perfect set of MUBs, that is, when
|〈ai|bj〉| = 1√

d
for all i, j = 1, . . . , d and for all pairs of bases A, B in the set.

Thus, deviation of D2 from one in Eq. (6) provides a measure of closeness for
AMUBs.

S – Maximum Distance of | 〈ai|bj〉 | from 1√
d
. Consider a set of m orthonor-

mal bases in C
d, where we choose pairs of bases A = {|a1〉, . . . , |ad〉} and

B = {|b1〉, . . . , |bd〉} at a time. One may choose
(
m
2

)
pairs of bases A,B, and for

each pair A,B, one may compute d2 inner products |〈ai|bj〉| for i, j = 1, . . . , d.
We define the Drift Measure S as the maximum of absolute values of the

distance |〈ai|bj〉| − 1/
√

d over all such choices of base pairs and inner products:

S = max
A,B

max
i,j

||〈ai|bj〉| − 1/
√

d| (7)

The value of Drift is minimum (S = 0) for a perfect set of MUBs, that is, when
|〈ai|bj〉| = 1√

d
for all i, j = 1, . . . , d for all pairs of bases A, B in MUBs. Thus,

deviation of S from 0 in Eq. (7) provides a measure of closeness for AMUBs. In
order to understand how is the maximum departure in the form of some α√

d
we

also refer to α such that,
α =

√
d · S, (8)

in the results section (Sect. 3).
In case of β-AMUBs (refer to Definition 3), it can be easily shown that (for

a detailed derivation, refer to [13]),

S =
β − 1√

d
(9)

Therefore, we have,

β = α + 1 (10)

A Heuristic Framework to Search for Approximate Mutually Unbiased Bases 213

1.3 Dimension Reduction Using SVD

The primary idea of generating AMUBs in our proposal revolves around the con-
cept of dimension reduction. Several dimension reduction techniques are avail-
able in the literature [8,10], where the main purpose of these algorithms is to
reduce certain high-dimensional data to a suitable lower dimension, preserving
the characteristics and properties of the data as much as possible. In case of
dimension reduction in this paper, we focus on Singular Value Decomposition
(SVD).

The techniques related to SVD for real square matrices were proposed by
Beltrami and Jordan and for complex matrices by Autonne (see [17] and refer-
ences therein). The generic algorithm for SVD in case of rectangular matrices
was proposed by Eckart and Young in the Autonne-Eckart-Young Theorem [7].
SVD decomposes a matrix of higher dimension into two unitary (orthogonal)
matrices and a diagonal matrix containing the singular values. The singular val-
ues are ordered by their magnitudes (importance) in the data. The mathematical
formulation of SVD is as follows.

Singular Value Decomposition. Over C, a matrix Ap×q of rank ρ(A) = r
can be decomposed as Ap×q = Up×p Σp×q Vq×q, where Up×p and Vq×q are
unitary matrices, and Σ comprises of the r nonnegative real singular values of the
matrix A along its diagonal as Diag(σ1, σ2, . . . , σr) with σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0,
and with all other values equal to 0. The columns of U are called the left singular
vectors of A and the columns of V are called the right singular vectors of A.
The complete Singular Value Decomposition (SVD) of the matrix Ap×q can be
expressed using the partitioning of matrices as follows.

U (p × p)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|
|
|
|

u1 · · · ur | ur+1 · · · up

|
|
|
|

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Σ (p × q)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

...
. . . · · · 0 · · ·

σr

...
...

...
· · · 0 · · · · · · 0 · · ·

...
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

VT (q × q)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vT
1
...

vT
r

vT
r+1
...

vT
q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SVD in Our Proposal. We intend to generate AMUBs in C
d by dimension

reduction from C
d′

, where d′ is the closest prime power higher than d. In this
paper, we provide examples where d′ = d + 1 is a prime, and d

2 is a prime
too. To accomplish this, we reduce a z × d′ matrix to a z × d matrix, where
z ∈ Z

+ varies depending on the choice of our algorithms. We perform SVD
on the z × d′ matrix to obtain Uz×z, Σz×d′

and Vd′×d′
. Finally, to obtain the

214 S. Chaudhury et al.

reduced matrix of order z × d for generating AMUBs, we take the product of
Uz×z, the first d singular values from Σ and a sub-matrix of order d × d from
V. If consecutive singular values are identical, there would be various choices to
construct reduced matrices. In such cases, we try to optimize choices through
exhaustive or heuristic searches.

2 Construction of AMUBs

The algorithm proposed in this section for generating d-dimensional Approxi-
mate Mutually Unbiased Bases (AMUBs) is a combination of dimension reduc-
tion and then search techniques to obtain appropriate bases with maximum
possible ASD and a small value of S, as defined in Sect. 1.2. In the first part, we
prepare the suitable bases for AMUB selection through dimension reduction. In
the second part, we search for the best set of AMUBs from the bases developed
in the first part. Finally, we apply a gradient-ascent kind of heuristic search as
in [14] on the available AMUBs to obtain further improved results.

2.1 Creation of Bases

We use SVD to reduce suitable bases from a higher prime power (or prime)
dimension d′ to the target composite dimension d < d′. There are two aspects
that we investigate here. That is, we propose two techniques to apply SVD –
Merging Technique and Non-Merging Technique. First let us explain the merging
technique through Fig. 1 and then Algorithm 1 follows.

Fig. 1. Merging technique: schematic representation

As one may note, corresponding to d′ + 1 many MUBs of dimension d′, we
naturally have each matrix with d′ × d′ entries. Thus, one can see that we have
total (d′+1)·d′ vectors here. Now the dimension will be reduced to d. Now we will
consider all the (d′ +1) · d′ vectors for input to the SVD technique and then put

A Heuristic Framework to Search for Approximate Mutually Unbiased Bases 215

them in different d′+1 buckets. Each bucket will contain d′ many vectors. We will
consider d vectors from those d′ and orthogonalize them to have a basis. Thus,
there will be several options of a basis from a bucket, and we will choose different
buckets to obtain the bases corresponding to an AMUB. This will continue to
obtain the best result. Naturally while considering d′ = 7 and d = 6, such buckets
can be searched exhaustively. However, the computational requirement becomes
much higher and while running on a laptop, such exhaustive searches cannot be
completed in reasonable time (say one hour) for d′ = 11, d = 10. Thus, in these
case exhaustive searches are not possible, and we go for only reasonable random
samples of the complete possibilities. Nevertheless, one must note that given a
powerful computational set-up, such exhaustive search is possible for even higher
dimension and the computational effort can be estimated beforehand.

Algorithm 1: Merging Technique
Data: Target dimension d
Step 1 : Generate d′ + 1 many MUBs of dimension d′, where d′ is the
next higher prime to d.
Step 2 : Merge the bases as generated in Step 1 in a matrix of order
((d′ + 1) · d′) × d′.
Step 3 : Implement the routine of SVD to reduce the dimension of the
matrix formed in Step 2 to ((d′ + 1) · d′) × d.
Step 4 : The matrix as developed in Step 3 is split into d′ + 1 many
boxes, each containing a matrix of order d′ × d.
Step 5 : In each box, decompose the matrix into

(
d′

d

)
many matrices of

order d × d and then orthogonalize to form the possible candidates for
AMUB selection.

In the second effort, we consider each d′ × d′ matrix separately and apply
SVD on each of them to construct each bucket and provide the results.

Fig. 2. Non-merging technique: schematic representation

As one can observe in Sect. 3, the results out of merging and non-merging tech-
niques do not differ much. This needs further effort to study these, and several

216 S. Chaudhury et al.

other theoretical issues and we plan to put those in journal version of this paper.
In this technique (Non-Merged) of dimension reduction, the MUBs of dimension
d′ comes out to be unitary matrices. Hence, the SVD decomposition gives all the
singular values as identity. Therefore, we always eliminate the last row and last
column of the right singular matrix obtained from the decomposition and the cor-
responding singular value is made 0, post which an exhaustive search is performed
as in the Merged Technique and the dimension reduction proceeds as usual. We
explain the non-merging technique in Fig. 2 and then in Algorithm 2.

Algorithm 2: Non-Merging Technique
Data: Target dimension d
Step 1 : Generate d′ + 1 many MUBs of dimension d′, where d′ is the
next higher prime to d.
Step 2 : Instead of merging the bases as generated in Step 1, implement
the routine of SVD directly to these d′ + 1 bases to obtain d′ + 1 many
matrices of order d′ × d, and then arrange them into d′ + 1 many boxes.
Step 3 : In each box, decompose the the matrix into

(
d′

d

)
many matrices

of order d × d and then orthogonalize to form the possible candidates for
AMUB selection.

Thus, from both of our techniques as illustrated above in Algorithms 1 and
2, the idea of dimension reduction results in d′ + 1 many boxes, each containing(
d′

d

)
bases of dimension d, and we thereby, proceed to our next step of choosing

the appropriate bases.

2.2 Choice of Bases

The next component of our AMUB construction technique involves searching
through the bases created and stored in d′+1 many boxes (as in Sect. 2.1) to obtain
the set of required AMUBs, which will result in best possible measures (as defined
in Sect. 1.2) used for the experimentation. In general, the search procedure used to
create n many AMUBs of dimension d, as illustrated through the following algo-
rithmic steps relates to an exhaustive combinatorial search procedure.

Algorithm 3: The Exhaustive Search Procedure

Step 1 : Choose n boxes from d′ + 1 many boxes in
(
d′+1

n

)
ways.

Step 2 : From each of the chosen n boxes, select a candidate base of
dimension d in

(
k
1

)
ways, where k =

(
d′

d

)
.

Step 3 : Then, determine the respective measures for the selected
candidate bases as in Step 2.

Step 4 : Choose the set of bases with the best possible results.

This exhaustive search procedure is implemented for dimensions d = 6, 10
for four AMUBs and only for d = 6 in the case of five MUBs. Mathematically,

A Heuristic Framework to Search for Approximate Mutually Unbiased Bases 217

for n many AMUBs and a dimension d, that we obtain from a higher prime

power dimension d′, the exhaustive search complexity is
(
d′+1

n

) ·
[((d′

d)
1

)]n

. How-

ever, other than the cases mentioned above, we could not manage the exhaus-
tive search in reasonable time in a simple laptop. However, the formula clearly
provides the estimation of computational requirements in practice and can be
achieved in a high end computational facility for even larger dimensions.

2.3 Further Heuristics

The set of AMUBs that we obtain from the above dimension reduction technique
and search is again subjected to another gradient-ascent kind of heuristic for
improved results. The heuristic search algorithm as given in [14] is tweaked and
this is applied on the initial solutions (n AMUBs) obtained from Sect. 2.2. This is
broadly a steepest-ascent search procedure, where the gradients are computed in
each iteration and the set of n bases are altered accordingly keeping the property
of orthonormality intact, thereby resulting in the set of AMUBs with optimal
approximations. The algorithm is given as follows.

Algorithm 4: The Heuristic Search Algorithm

Step 1 : The gradient {Gk : k = 1, 2, . . . , n} of the kth base is computed
with respect to the remaining n − 1 bases, where Gk is given by,

Gk =
8

n(n − 1)(d − 1)
Im

[n∑

l=1

d∑

i,j=1

(|ki〉 〈ki|lj〉 〈lj |)2
]

Step 2 : For the step size (ε) of the algorithm, compute σk corresponding
to the kth base such that, σk = εGk with a common ε > 0.
Step 3 : Implement a finite unitary change of the basis k, i.e.,
|kj〉 → Vk|kj〉, where Vk = 1 + iσk upto first order of σk.
Step 4 : Finally, orthogonalize the set of n bases |kj〉, j = 1, 2, . . . , d;
k = 1, 2, . . . , n.

We run the algorithm until all the components of the gradient vanishes.

3 Results and Numerical Study

In this section, we present the results obtained from the implementation of the
dimension reduction algorithms (refer to Algorithms 1, 2 and 3). Further, we
provide the results, when the AMUBs obtained from the dimension reduction
algorithms are subjected to the heuristic search technique (refer to Algorithm 4).
The values of the dimensions (d and d′), measures, i.e., maximum ASD (D2

max)
over all the iterations (refer to Eq. 6) and the corresponding Drift Measure S
(refer to Eq. 7) and α (refer to Eq. 8). We also highlight the complexity of our
computations by reporting the number of iterations (denoted by #I). Note that,

218 S. Chaudhury et al.

the initial solutions, i.e., the reduced bases obtained from the dimension reduc-
tion algorithms (Merging as well as Non-Merging Techniques) are subjected to
the heuristic search procedure for a fixed number of iterations (#I = 20000) for
d = 6, 10 and (#I = 1000) for d = 46 and step size (ε = 0.500). We also present
the results corresponding to the heuristic search taking into account i) maximiza-
tion of ASD (D2) and ii) minimization of the Drift Measure (S). Thereafter, we
provide a comparative study of our results along with the results obtained from
a combinatorial point of view as in [12, Corollary 1] and [16]. Some relevant
observations are also noted in this section corresponding to the results obtained
under our proposed frameworks.

First, we perform dimension reduction using the Merged Technique (as in
Algorithm 1). The results are presented (Table 1) for n = 4 and 5 sets of AMUBs
in dimension 6, 10 and 46 respectively. Since the complexity for choosing bases
for dimensions 10, 46 is computationally expensive in certain cases, we randomly
choose certain sets of boxes and search for the best results in them. That is the
exhaustive search as in Algorithm 3 is not implemented in all the cases.

Table 1. Numerical results for merging technique: Algorithm 1

Number of bases d′ → d D2
max S α #I

n = 4 7 → 6 0.912 0.380 0.931
(
8
4

)
74

11 → 10 0.936 0.405 1.281
(
12
4

)
114

47 → 46 0.979 0.317 2.150 474

n = 5 7 → 6 0.904 0.389 0.953
(
8
5

)
75

11 → 10 0.928 0.388 1.227 115

47 → 46 0.979 0.350 2.374 475

Note 1. The computational results as presented in Table 1 suggests that, our
proposed algorithm related to the Merging Technique (Algorithm 1) successfully
generates increased sets (larger than the available bound) of AMUBs with closer
approximations to MUBs (with respect to D2).

The resultant reduced sets of bases/AMUBs obtained from the Merging Tech-
nique are further subjected to the Heuristic Search Algorithm, the results of
which are provided below, both with respect to D2 and S in Tables 2 and 3
respectively.

Note 2. Few of the notable observations when the Heuristic Search is aimed at
maximizing D2 under the Merging Technique, are as follows,

– For a fixed set of bases (n), as the dimension (d) increases, the average dis-
tance between the bases (D2) tends to increase.

– Now if the dimension (d) is kept fixed, the average distance between the bases
seems to vary inversely with n.

– The value of α which normalizes the Drift Measure (S) is higher for larger
dimensions (keeping n fixed) as well as for higher values of n (keeping d fixed).

A Heuristic Framework to Search for Approximate Mutually Unbiased Bases 219

Table 2. Numerical results for heuristic search (Algorithm 4) on the bases obtained
from the Merged technique with respect to ASD (D2)

Number of bases d′ → d D2
max S α # I Step size (ε)

n = 4 7 → 6 0.971 0.383 0.938 10000 0.500

11 → 10 0.973 0.447 1.414 10000 0.500

47 → 46 0.982 0.366 2.482 1000 0.500

n = 5 7 → 6 0.960 0.399 0.977 10000 0.500

11 → 10 0.930 0.369 1.167 10000 0.500

47 → 46 0.981 0.314 2.130 1000 0.500

Table 3. Numerical results for heuristic search (Algorithm 4) on the bases obtained
from the Merged technique with respect to Drift Measure (S)

Number of bases d′ → d D2
max S α # I Step size (ε)

n = 4 7 → 6 0.931 0.325 0.797 10000 0.500

11 → 10 0.964 0.305 0.965 10000 0.500

47 → 46 0.977 0.320 2.174 1000 0.500

n = 5 7 → 6 0.936 0.355 0.871 10000 0.500

11 → 10 0.917 0.332 1.050 10000 0.500

47 → 46 0.978 0.305 2.071 1000 0.500

Note 3. In case the Heuristic Search aimed at minimizing the Drift Measure (S)
under the Merging Technique, we note the following.

– In view of the values of S (both in the cases when n and d are considered to
be fixed) in Table 3, the pattern in which S varies is not definitive unlike D2.

– The behavior of α tends to be the same as mentioned in Note 2.

Consequently in Tables 4, 5 and 6, we report the results for the same sets of
operations, as in dimension reduction and subjecting the bases to the heuristic
search routine, when performed with the Non-Merged sets of bases both with
respect to the optimization routine followed in view of maximizing the average
distance (D2) and the Drift (S). As mentioned earlier, to avoid the high com-
plexity in choosing bases for sets of 4 and 5 AMUBs of dimension 46 and sets of 5
AMUBs of dimension 10, we have randomly chosen certain sets of boxes instead
of performing an exhaustive search and reported the best results obtained in
them.

Note 4. Observations as reported above in Table 4 shows that the proposed Non-
Merging Technique for generating AMUBs results into increased sets of bases
(with respect to D2) providing close approximations to MUBs.

Note 5. In reference to Tables 5 and 6, we note the following.

220 S. Chaudhury et al.

Table 4. Numerical results for the non-merging technique: Algorithm 2

Number of bases d′ → d D2
max S α # I

n = 4 7 → 6 0.909 0.423 1.036
(
8
4

)
74

11 → 10 0.933 0.448 1.417
(
12
4

)
114

47 → 46 0.974 0.558 3.785 474

n = 5 7 → 6 0.901 0.423 1.036
(
8
5

)
75

11 → 10 0.916 0.520 1.644 115

47 → 46 0.975 0.447 3.032 475

Table 5. Numerical results for Heuristic Search (Algorithm 4) on the bases obtained
from non-merged technique with respect to D2

Number of bases d′ → d D2
max S α # I Step size (ε)

n = 4 7 → 6 0.972 0.404 0.989 10000 0.500

11 → 10 0.973 0.440 1.391 10000 0.500

47 → 46 0.982 0.600 4.069 1000 0.500

n = 5 7 → 6 0.959 0.399 0.977 10000 0.500

11 → 10 0.967 0.391 1.236 10000 0.500

47 → 46 0.983 0.451 3.059 1000 0.500

– Heuristic Search aimed at maximization of D2 (Table 5) under the Non-
Merging Technique leads to an increasing trend in the average distance
between the bases both in the cases when i) d increases over a fixed value of
n and ii) n increases over a fixed value of the dimension (d).

– When the Heuristic Search minimizes S (Table 6) under the Non-Merging
Technique does not show any definitive pattern in the values of the Drift
Measure, whereas the values α increases with d.

Note 6. Some important observations related to the Merged and Non-Merged
Techniques of dimension reduction as well as the measures D2 and S are as
follows.

– In reference to the results for the Merging and Non-Merging Techniques pre-
sented above in Tables 1 and 4, we observe that, the initial solutions in case
of the Merging Technique provides more or less better results than the Non-
Merging Technique with respect to the value of D2 (more closer to 1) as well
as the value of S (comparatively lower).

– It is also to be noted that, we are considering the efficacy of our results, i.e.,
closeness of AMUBs to MUBs in terms of D2 as the heuristic search [14]
deals with the optimization of D2, also we have extended the optimization
(minimization) with respect to the Drift Measure S. And further we observe
that in the Merging and Non-Merging Techniques, achieving simultaneous
control over both D2 and S seems to be quite difficult at this stage, i.e., as

A Heuristic Framework to Search for Approximate Mutually Unbiased Bases 221

Table 6. Numerical results for Heuristic Search (Algorithm 4) on the bases obtained
from non-merged technique with respect to drift measure (S)

Number of bases d′ → d D2
max S α # I Step size (ε)

n = 4 7 → 6 0.963 0.337 0.826 10000 0.500

11 → 10 0.926 0.303 0.958 10000 0.500

47 → 46 0.974 0.558 3.787 1000 0.500

n = 5 7 → 6 0.908 0.364 0.892 10000 0.500

11 → 10 0.917 0.338 1.070 10000 0.500

47 → 46 0.983 0.446 3.026 1000 0.500

the value of D2 is being optimized (closer to 1) by the Heuristic Search, the
value of S does not decrease. On the other hand, when the Heuristic Search
aims at minimizing S, the value of D2 moves further away from 1, which is
naturally expected from the respective definitions of the measures used.

In the following Table 7, we present the results for dimensions d = 6, 10 and
46, where AMUBs have been constructed using a combinatorial technique. In
reference to [12, Corollary 1], combinatorial construction for AMUBs is available
for every even dimension with k = 2. For such construction, it can be shown that,

D2 =
d · (k2 − 1)
k2 · (d − 1)

, for k = 2 (11)

⇒ D2 =
3
4

· d

d − 1
(12)

It is to be noted that, the value of D2 is smaller in case of the combinato-
rial construction of AMUBs in comparison to the the construction algorithms
proposed in this paper for generating AMUBs. Observe that, D2 → 1 − 1

k2

asymptotically for large values of d. And in general for the dimensions under
consideration, i.e., d = 6, 10 and 46, we have D2 → 3

4 = 0.75 � all the values
of D2 achieved using the above techniques. We should also mention that the
theoretical result of [16] is not applicable for the small dimensions d = 6, 10.
The bound for d = 46 is also worse than what we obtain by our technique.

Table 7. Numerical results for AMUBs constructed using combinatorial techniques [12,
Corollary 1]

Number of bases d D2 S α

n = 4, 5 6 0.900 0.408 0.999

10 0.833 0.316 0.999

46 0.767 0.352 2.387

222 S. Chaudhury et al.

All the results above are computed in a laptop supported by Apple M1 chip
- 8 core CPU and 8 GB of RAM, using the open source Python programming
language. We have implemented a multiprocessing technique using the Python
function multiprocessing.ProcessPool, with 16 processes to speed up the pro-
cess of choosing AMUBs in dimension reduction technique. Significant improve-
ment over execution timings as well as number of iterations can be obtained if
the program is executed on a GPU integrated environment. The SVD routine
was performed using the numpy.linalg.svd function from the Python library
numpy. In Algorithms 1, 2 and 4, we utilize the QR Decomposition routine for
orthogonalizing the set of bases using the numpy.linalg.qr function from the
Python library numpy. The relevant codes of the numerical experimentation and
computations are present in the GitHub Repository [19].

4 Conclusion

In this paper we have presented a broad framework for the construction of
AMUBs. The initial approach is based on the widely used dimension reduction
technique, namely the Singular Value Decomposition (SVD). This technique has
been successfully exploited in different domains of the Machine Learning liter-
ature. The resulting approximate MUBs from this strategy are considered as
initial solutions. Consequently, those are further subjected to a steepest ascent
kind of heuristic search technique, as in [14], to obtain improved results. The nov-
elty of our approach lies in the fact that the broad framework does not require
any prior mathematical formulation and parametrization of the AMUBs to be
generated. Observe that, the heuristic search has been implemented aiming to
optimize the average distance between the bases (D2) [14] and further extended
to an optimization of the drift measure (S). Hence, it is to be kept in mind that,
this generic approach of computation and experimentation to generate AMUBs
presented in this paper can be efficiently used with the two available optimiza-
tions as and when required. As we note, these are only initial experimental
results that can be improved with different kinds of refinements and even with
this initial approach, we could obtain quite encouraging results.

Further, our prospective work will address another general experimentation
of generating AMUBs for any dimension d. One may first consider the available
MUBs for that dimension d, say k and then produce sets of k+1 AMUBs, where
the (k + 1)-th basis may be explored from the dimension reduction technique,
i.e., which involves the reduction of dimension d′ (next higher prime to d) to d.
For example, consider dimension d = 6 = 2 ·3, for which k = 3 MUBs are known
to exist. To generate sets of k + 1 = 4 AMUBs, we will take the 4-th AMUB
from the bases created by the dimension reduction routine (reducing dimension
from d′ = 7 to d = 6). We may go for some steepest ascent kind of heuristic
further. Similarly, for dimension d = 12 = 22 · 3, one can obtain sets of k +1 = 5
AMUBs from the k = 4 MUBs that are known to exist. The 5-th AMUB would
be generated through dimension reduction (from d′ = 13 to d = 12) and further
search. Likewise, this approach can be extended to higher dimension, providing
another generic framework in obtaining Approximate Mutually Unbiased Bases.

A Heuristic Framework to Search for Approximate Mutually Unbiased Bases 223

References

1. Aguilar, E.A., Borkala, J.J., Mironowicz, P., Pawlowski, M.: Connections between
mutually unbiased bases and quantum random access codes. Phys. Rev. Lett. 121,
050501 (2018)

2. Bengtsson, I., Bruzda, W., Ericsson, A., Larsson, J., Tadej, W., Źyczkowski, K.:
Mutually unbiased bases and Hadamard matrices of order six. J. Math. Phys. 48,
052106 (2007). https://arxiv.org/abs/quant-ph/0610161

3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, Bangalore, pp. 175–179 (1984)

4. Colomer, M.P., Mortimer, L., Frérot, I., Farkas, M., Aćın, A.: Three numerical
approaches to find mutually unbiased bases using bell inequalities. arXiv preprint
arXiv:2203.09429 (2022)

5. Dubner, H.: Large Sophie Germain primes. Math Comput. 65(213), 393–397.
https://doi.org/10.1090/S0025-5718-96-00670-9

6. Durt, T., Englert, B., Bengtsson, I., Źyczkowski, K.: On mutually unbiased
bases. Int. J. Quantum Inform. 8, 535–640 (2010). https://doi.org/10.1142/
S0219749910006502

7. Eckart, C., Young, G.: A principal axis transformation for non-Hermitian matrices.
Bull. Amer. Math. Soc. 45(2), 118–121 (1939)

8. Fodor, I.K.: A survey of dimension reduction techniques. Technical report,
Lawrence Livermore National Lab., CA, USA (2002)

9. Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on
finite fields. Phys. Rev. A 70, 1–23 (2004). https://link.aps.org/doi/10.1103/
PhysRevA.70.062101

10. Kalman, D.: A singularly valuable decomposition: the SVD of a matrix. Coll. Math.
J. 27(1), 2–23 (1996)

11. Kumar, A., Maitra, S., Mukherjee, C.S.: On approximate real mutually unbiased
bases in square dimension. Cryptogr. Commun. 13(2), 321–329 (2021). https://
doi.org/10.1007/s12095-020-00468-6

12. Kumar, A., Maitra, S.: Resolvable block designs in construction of approximate
real MUBs that are sparse. Cryptogr. Commun. (2021). https://doi.org/10.1007/
s12095-021-00537-4

13. Kumar A., Maitra, S., Roy, S.: Almost perfect real MUBs that are sparse, November
2021. Preprint

14. Raynal, P., Lu, X., Englert, B.: Mutually unbiased bases in six dimensions: the
four most distant bases. Phys. Rev. 83, 062303 (2011). https://link.aps.org/doi/
10.1103/PhysRevA.83.062303

15. Sadek, R.A.: SVD based image processing applications: state of the art, contribu-
tions and research challenges. IJACSA - Int. J. Adv. Comput. Sci. Appl. (2012).
https://arxiv.org/ftp/arxiv/papers/1211/1211.7102.pdf

16. Shparlinski, I.E., Winterhof, A.: Constructions of approximately mutually unbiased
bases. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 793–799. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462 72

17. Stewart, G.W.: On the early history of the singular value decomposition. SIAM
Rev. 35, 551–566 (1993). https://www.jstor.org/stable/2132388

18. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased
measurements. Ann. Phys. 191(2), 363–381 (1989). https://doi.org/10.1016/0003-
4916(89)90322-9

19. GitHub Repository for Codes - https://bit.ly/3KPS9jk

https://arxiv.org/abs/quant-ph/0610161
http://arxiv.org/abs/2203.09429
https://doi.org/10.1090/S0025-5718-96-00670-9
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://link.aps.org/doi/10.1103/PhysRevA.70.062101
https://link.aps.org/doi/10.1103/PhysRevA.70.062101
https://doi.org/10.1007/s12095-020-00468-6
https://doi.org/10.1007/s12095-020-00468-6
https://doi.org/10.1007/s12095-021-00537-4
https://doi.org/10.1007/s12095-021-00537-4
https://link.aps.org/doi/10.1103/PhysRevA.83.062303
https://link.aps.org/doi/10.1103/PhysRevA.83.062303
https://arxiv.org/ftp/arxiv/papers/1211/1211.7102.pdf
https://doi.org/10.1007/11682462_72
https://www.jstor.org/stable/2132388
https://doi.org/10.1016/0003-4916(89)90322-9
https://doi.org/10.1016/0003-4916(89)90322-9
https://bit.ly/3KPS9jk

Counter Mode for Long Messages
and a Long Nonce

Shay Gueron1,2(B)

1 University of Haifa, Haifa, Israel
shay.gueron@gmail.com
2 Amazon, Seattle, USA

Abstract. This paper proposes “Compound-CTR” mode—a simple
variation of Counter mode (CTR) with an n bits block cipher. Its goal is
to increase the allowed length of a single message and the total number
of messages that can be encrypted under a single key.

Compound-CTR encrypts a message and a (randomly chosen) nonce
with length greater or equal n bits. It uses a master key to derive a
nonce-based encryption key and subsequently uses it for encrypting the
message in CTR mode.

We show how Compound-CTR mode achieves its goal and explain
why it can be used as a valid variation of CTR mode that could be of
interest in some practical scenarios. Compared to CTR mode, the over-
head of Compound-CTR is only the per-message key derivation and one
extra key expansion (for the block cipher). We show here key derivation
options that require only a few extra block cipher calls.

Keywords: Block ciphers · Modes of operation · Counter mode

1 Introduction

Counter mode (CTR) is a block cipher mode of operation with multiple per-
formance and convenience benefits. It is frequently used as a standalone con-
fidentiality mode and as a component of a confidentiality-and-authentication
construction. For example, it is the underlying encryption in AEAD modes such
as AES-GCM [2] and CCM [6].

The standard CTR mode with an n bits block cipher E encrypts an input
message M and a v bits initialization vector IV by XOR-ing M with a pseu-
dorandom mask of the same length as M . The mask is generated by repeated
invocations of E (with a given key) over n bits blocks (called “counter blocks”)
that consist of the IV concatenated with a running counter with (n − v) bits.
The IV values that are used across all of the encrypted messages must be dis-
tinct. When the IV values are sampled uniformly at random from the set of v
bits strings, CTR construction introduces a tradeoff between: a) the maximal
allowed number of blocks in a single message; b) the value of v that is necessary
to keep the IV collision probability below a desired threshold. This affects the
required key rotation rate.
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 224–231, 2022.
https://doi.org/10.1007/978-3-031-07689-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_17&domain=pdf
http://orcid.org/0000-0002-9145-7609
https://doi.org/10.1007/978-3-031-07689-3_17

CTR Mode for Long Messages and a Long Nonce 225

We give the relevant example of the standard CTR mode with the 128 bits
block cipher AES and a v = 96 bits IV .

– The counter block (that is encrypted) holds IV and can therefore accommo-
date a counter of only 128 − 96 = 32 bits. Therefore, the maximal allowed
length of a message is 232 blocks (of 16 bytes, i.e., 236 bytes). It is conceiv-
able that modern use cases, especially for encryption at the cloud scale, could
benefit from a higher maximum.

– If the IV is chosen uniformly at random from {0, 1}96, and the IV collision
probability across all messages is required to remain below the safety mar-
gin of 2−32, the number of messages under the same key is limited to 232

(regardless of their lengths).

These limitations impose a (possibly too frequent) key rotation rate and a con-
straint on the possible message lengths.

In addition, note that the standard “birthday bound” limits the total number
of blocks that can be encrypted under a given key to 2n/2−ζ where ζ is determined
by the desired security margin.

This paper shows a simple method to alleviate these restrictions.

2 Notation and Definitions

We denote the set of strings of bits of length v by {0, 1}v and the length of a
string S by |S|. If |S| ≥ w > 0, we denote the truncation of S to w bits (i.e., the
string that consist of the w least significant bits of S) by Truncate(w,S).

If a > 0 is an integer and i ∈ [0, 2a − 1], we denote the a-bit string that
encodes i as a binary number by IntToStra(i). For example, IntToStr6(10) =
001010 and IntToStr8(100) = 01100100. Concatenation of strings is denoted by
‖. For example IntToStr6(10) ‖ IntToStr8(100) = 00101001100100. A string of
s repeating 0 (1) bits is denoted by 0s (1s). For example, 06 = IntToStr6(0) =
000000.

Hereafter, E denotes a block cipher for blocks of size n, and E(K,P) denotes
the encryption of the n bits block P under the key K. Here |K| can be either n or
2n, and this is implicit in the context of E. For convenience, we may assume that
n ≥ 64 and is divisible by 8. In a practical context E is AES (where n = 128)
with key of either 128 or 256 bits.

Parsing a Message. Let M be a nonempty string of p = |M | bits. Parse(M) is
the encoding of M as the concatenation of s = ceil(p/n) disjoint n bits blocks,
and is denoted by

Parse(M) = m1,m2, . . . , ms∗
where mj are complete blocks with |mj| = n for j = 1, 2, s − 1, and the last
block ms∗ is potentially an incomplete block with |ms ∗ | = p − n(s − 1) ≤ n.

For example (with n = 128), if M = 0256 then s = 2, Parse(M) =
m1,m2∗ where m1 = 0128, m2∗ = 0128 and both block are complete. If
M = 0128 ‖ 1128 ‖ 064 then s = ceil(320/128) = 3, Parse(M) = m1,m2,m3s∗
where m1 = 0128, m2 = 1128 are complete blocks and m3∗ = 064 is incomplete.

226 S. Gueron

3 CTR Mode and Its Limitations

The standard CTR mode with an n bits block cipher E encrypts an input mes-
sage M and a v bits initialization vector IV by XOR-ing M with a pseudorandom
mask of length |M |. Decryption is the same operation, and we therefore ignore
it hereafter. The mask is generated by repeated calls to E(K, ·) over distinct
counter blocks of n bits that have form IV ‖ IntToStru(j) for some counter j.
Here, j counts the blocks in the message to be encrypted.

To achieve confidentiality with this mode, it is crucial that the IV values that
are used with the same key, across all the messages, are distinct. This guarantees
the uniqueness of the counter blocks. CTR encryption is shown in Fig. 1.

Fig. 1. CTR mode.

We point out that CTR mode provides only for confidentiality, and is consid-
ered “malleable”: flipping a bit in the ciphertext would flip (upon decryption) the
corresponding bit of the recovered plaintext. Therefore, for most applications,
CTR encryption should be complemented with some means of authentication.

Our discussion focuses on the stateless encryption form of CTR mode where
IV is chosen uniformly at random from {0, 1}v for every encryption. For the
analysis, we model the block cipher E as a random permutation.

Suppose that a key K is used for encrypting q messages Mi of respective
lengths pi, and denote si = ceil(pi/n), i = 1, . . . , q. Then, the distinguishing
advantage of a chosen plaintext adversary that observes q resulting ciphertexts
is upper bounded by

Adv(q, p1, . . . , pq) ≤ q2

2v+1
+

(
∑q

i=1 si)
2

2n+1
(1)

Denote the first term in (1) by P1 and the second term by D1. To explain (1),
note that:

CTR Mode for Long Messages and a Long Nonce 227

– P1 is an upper bound for the probability of the bad event where (at least)
two IV values repeat across q random selections.

– The number of counter blocks encrypted for message Mi is si and hence the
number of (distinct) blocks encrypted for the q messages is (

∑q
i=1 si). Thus,

the term D1 represents the standard PRF-PRP distinguishing advantage.

These bounds are essentially tight. We assume that the encrypted messages are
not empty and therefore si ≥ 1 for i = 1, . . . , q. This implies that P1 ≥ D1. If
all the messages are short (e.g., |Mi| = 128) then D1 and P1 remain at the same
order of magnitude. For long messages (and relatively small q) P1 dominates
D1.

We can see that CTR mode imposes limits on the maximal number of encryp-
tions allowed under the same key (qmax) and on the maximal length of a single
messages (Lmax). For example, consider the standard choice of v = 96 and
the standard requirement that P1 ≤ 2−32. Since u = n − v = 32, we have
Lmax ≤ 232 − 1, and the requirement on P1 forces qmax ≤ 232.5. Independently,
D1 (or D1 + P1) also needs to be kept sufficiently small, and this translates to
a limit on the total number of blocks (Bmax =

∑q
i=1 si) that can be encrypted

under the same key.

4 Compound-CTR

Our goal is to find a way that allows for more flexibility for qmax, Lmax, and
Bmax, compared to CTR mode. To this end, we define the Compound-CTR
mode that encrypts a message M and a nonce N with |N | = ν, but supports
the nonce length of n ≤ ν < 2n − 16. With no loss of generality, assume that ν
is even. We choose ν < 2n − 16 here for convenience, so that all the definitions
apply to full bytes. We consider the stateless scenario where a new nonce is
sampled, uniformly at random, from {0, 1}ν for every message.

Splitting a Nonce. We use the notation SplitNonce(N) to describe the splitting
of a string N into two equal-length (disjoint) halves, namely

SplitNonce(N) = N1, N2 where N = N1 ‖ N2 and |N1| = |N2| = |N |/2.

For example, if N = 064 ‖ 164 ‖ 032 (|N | = 160), then SplitNonce(N) = N1, N2
where N1 = 064 ‖ 116, N2 = 148 ‖ 032 (and |N1| = |N2| = 160).

Figures 2, 3 and 4 below show three methods to derive a pseudorandom
encryption key (KE) of length n bits (Derive0 and Derive1) and of 2n bits
(Derive2) from a (long) nonce N with n ≤ |N | < 2n − 16. They commence
with SplitNonce(N) and operate on the resulting halves N1, N2. Figure 5 shows
the Compound-CTR mode that takes a message (M) and a (long) nonce, derives
a fresh encryption key (KE) using one of the derivation schemes, and encrypts
M with CTR (encryption) mode using KE and a zero IV . Explanations and
design rationale follow the figures in Sect. 4.1.

228 S. Gueron

Fig. 2. Derive0. Deriving an n bits encryption key.

Fig. 3. Derive1. Deriving an n bits encryption key.

Fig. 4. Derive2. Deriving a 2n bits encryption key.

CTR Mode for Long Messages and a Long Nonce 229

Fig. 5. Compound-CTR (encryption) mode. The definition refers to three options that
correspond to choosing one of the key derivation methods Derive0, Derive1, Derive2
in step #1. The notation Derive-j (j ∈ {0, 1, 2}) indicates the derivation choice and
Compound-CTR-ENC-j indicates the corresponding variant.

4.1 Explanation, Design Rationale and Properties

To explain the properties that Compound-CTR-ENC offers, suppose that it is
used with the key K for encrypting q messages Mi of respective lengths pi, and
denote si = ceil(pi/n), i = 1, . . . , q. Here, q nonces are sampled, uniformly at
random from {0, 1}ν . These nonces are input to Derive-j (j ∈ {0, 1, 2}) in order
to derive q encryption keys from {0, 1}n (or from {0, 1}2n). Let KEi be the i-th
derived key that is used for encrypting the message Mi i = 1, . . . , q.

Collisions. We start with this assumption on the quality of Derive- j as a pseu-
dorandom function: the result of the q key derivations is indistinguishable from
a uniform random sampling from the respective set ({0, 1}n or {0, 1}2n).

Now, consider two possible bad events: a) two nonces collide. The probability
for this event is at most q2/2ν+1; b) two derived keys collide although the nonces
do not collide. The probability for this event is at most q2/2n+1 (or q2/22n+1).

Thus, with probability at most q2/2ν+1 + q2/2n+1 (or q2/2ν+1 + q2/22n+1),
we can assume that all the derived encryption keys are distinct.

The Use of CTR Mode with the Derived Keys. Since KEi is used for only
one message we can invoke CTR encryption with an arbitrary IV (which is, by
definition, unique for this key). In particular, we can choose IV = 0n/2. Now,
the counter blocks are of the form 0n/2 ‖ IntToStrn/2(·) and can accommodate
a counter of n/2 bits for the corresponding blocks of Mi. This alleviates the
restriction on the maximum message length that is imposed by CTR mode.

The distinguishing advantage of a chosen plaintext adversary, observing
ciphertexts from Mi, encrypted under KEi, depends on an assumption on the
block cipher E in a multi-key setting. Modeling E as a random permutation in
this setting, the advantage is upper bounded by

q∑

i=1

si
2

2n+1
(2)

The Key Derivation Functionality Derive. The purpose of Derive-j (i.e., one
of Derive0, Derive1, Derive2) is to generate a fresh pseudorandom encryption key

230 S. Gueron

for every message, using a nonce of length ν ≥ n. First, note that if N and N ′

are distinct nonces, SplitNonce(N) = N1, N2 and SplitNonce(N ′) = N1′, N2′,
then we have at least N1 �= N1′ or N2 �= N2′. Note also the domain separations
across the constructions of the blocks X0, Y 0, U1, U2, V 1, V 2 (Figs. 2, 3 and 4).
We point out that the use of 4 zero bits (04) in these blocks is only a convenient
choice that completes the first four bits to a full byte. The Derive versions use
simple constructions to generate a pseudorandom function from a permutation.
Their PRF indistinguishability quality can be explained as follows.

– Derive0 evaluates the permutation E over 2 blocks per message, altogether
2q times (at least q are distinct blocks). Due to the PRP-PRF property, the
PRF distinguishing advantage is at most 4q2/2n+1.

– Derive1 uses 4 evaluations of E per message. It includes the XOR of at least
two evaluations over distinct blocks. Here, the PRF distinguishing advantage
is at most 16q/2n [1,5].

– Derive2 uses 6 evaluations of E per message, in order to generate a key of
2n bits. It applies the CENC construction [3,4] twice. Here, the PRF distin-
guishing advantage is at most 18q/2n.

The Full Construction: Adversary Advantage Against Compound-
CTR-ENC-j. Suppose that an adversary views Compound-CTR-ENC-j
ciphertexts of q chosen messages Mi of respective lengths pi (denote si =
ceil(pi/n)), and makes QE offline chosen-key queries (to guess one of KEi)
i = 1, . . . , q. Suppose that E is modeled as a random permutation in a multi-key
settings. Here, j ∈ {0, 1, 2} controls the length of the derived keys: n bits for
j = 0, 1 and 2n bits for j = 2.

Then, the adversary’s advantage in distinguishing the Compound-CTR-ENC
ciphertexts from q uniform random strings of lengths pi is upper bounded by
the sum of:

a) the PRF distinguishing advantage of Derive, when it is called q times;
b) the probability that there is no collision in the derived keys;
c) the distinguishing advantage of q CTR ciphertexts that encrypt every message

Mi under a (uniqe) uniform random key;
d) The key guessing probability, which is QE/2n for Derive0, Derive1, and

QE/22n for Derive2.

5 Discussion

The Compound-CTR-ENC mode is designed to increase the allowed length of a
single message and the total number of messages that can be encrypted under
a single key, compared to the standard CTR mode. The construction is very
simple, and uses only a block cipher as the cryptographic building block. The
per-message overhead involved with Compound-CTR-ENC, compared to CTR
mode, is at most 6 extra invocations of E plus one key expansion (as it is in

CTR Mode for Long Messages and a Long Nonce 231

the case where the block cipher is AES). We recommend the Compound-CTR-
ENC-2 variant that uses Derive2 for deriving a key of 2n bits, and a nonce length
ν = 5n/4. This provides very comfortable security bounds. For consistency, the
block cipher E should also use a 2n bits.

We conclude with the following example that illustrates the use of
Compound-CTR-ENC-2. Let the main key K have |K| = 256, and let E be AES
with a 256 bits key. With Derive2, every derived key KE has |KE| = 256. We
choose the nonce length ν = 160 bits. Suppose that an adversary can compute
QE evaluations of E with a chosen key (at a chosen value). Suppose that an
adversary uses the scheme for encrypting q (chosen) equal-length messages of
length 236 blocks (240 byes). Note that these messages are all longer than the
limit imposed by CTR mode. The adversary distinguishing advantage is upper
bounded by:

1
2

q2

2160
+

1
2

q2

2256
+

18q

2128
+

q

257
+

QE

2256

Here, K was used for processing a total of 240q bytes. This amount crosses the
birthday bound already at q = 228. Yet, for all conceivable values of QE , the
advantage is dominated by q/257 = 2−29.

Acknowledgments. This research was supported by: NSF-BSF Grant 2018640; The
Israel Science Foundation (grant No. 3380/19); The Center for Cyber Law and Policy
at the University of Haifa, in conjunction with the Israel National Cyber Bureau in
the Prime Minister’s Office.

References

1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS, pp. 394–403. IEEE Computer Society (1997)

2. Dworkin, M.: SP 800-38D: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. NIST, November 2007. https://csrc.nist.
gov/publications/detail/sp/800-38d/final

3. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006). https://doi.org/10.1007/11799313 20

4. Iwata, T., Mennink, B., Vizár, D.: CENC is optimally secure. Cryptology ePrint
Archive, Report 2016/1087 (2016). https://ia.cr/2016/1087

5. Lucks, S.: The sum of PRPs Is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45539-6 34

6. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC
3610, September 2003. https://doi.org/10.17487/RFC3610, https://www.rfc-editor.
org/info/rfc3610

https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://doi.org/10.1007/11799313_20
https://ia.cr/2016/1087
https://doi.org/10.1007/3-540-45539-6_34
https://doi.org/10.1007/3-540-45539-6_34
https://doi.org/10.17487/RFC3610
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3610

Transfer Learning for Time Series
Classification Using Synthetic

Data Generation

Yarden Rotem, Nathaniel Shimoni(B), Lior Rokach, and Bracha Shapira

Ben-Gurion University of the Negev, Be’er Sheva, Israel
{rotemyar,nathanie,liorrk,bshapira}@post.bgu.ac.il

Abstract. In this paper, we propose an innovative Transfer learning for
Time series classification method. Instead of using an existing dataset
from the UCR archive as the source dataset, we generated a 15,000,000
synthetic univariate time series dataset that was created using our unique
synthetic time series generator algorithm which can generate data with
diverse patterns and angles and different sequence lengths. Furthermore,
instead of using classification tasks provided by the UCR archive as the
source task as previous studies did, we used our own 55 regression tasks
as the source tasks, which produced better results than selecting classi-
fication tasks from the UCR archive.

Keywords: Transfer learning · Time series classification · Synthetic
data

1 Introduction

Transfer learning (TL) is a machine learning (ML) technique that tries to
utilize knowledge learned from a source domain in a relevant target domain.
The relevant knowledge is applied to the target domain in order to improve the
performance of the prediction function of the target domain [21]. The need for
sufficient training data exists in most ML tasks, but obtaining labeled data can
be expensive, time-consuming, or in some cases - infeasible. TL is a promising
technique which can address this problem by transferring the knowledge across
domains, preventing the need for labeled data in sparse domains [22].

TL has also shown to be effective at addressing some of the challenges with
training a deep learning model which typically is time-consuming and requires
high computational resources. Moreover, when lacking training data, ML models
encounter the overfitting problem [24].

Transfer learning has also been widely used in computer vision, with state-
of-the-art neural network (NN) models such as AlexNet [3] and ViT-G/14 [9],
which is the current leader in terms of top-1 accuracy on the ImageNet [4]
dataset. Evaluation of models pretrained on ImageNet show that accuracy is
improved when using TL on new target datasets as opposed to training with the
same architecture from scratch [8]. TL has also been used effectively for natural
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 232–246, 2022.
https://doi.org/10.1007/978-3-031-07689-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_18&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_18

Transfer Learning for Time Series Classification 233

language processing (NLP) tasks with pretrained models using word2vec and
BERT models, and BERT’s later versions were considered state of the art [5].
Many studies used pretrained NLP models (such as BERT) to serve as a good
starting point for new target datasets. However, for time series (TS) tasks, lim-
ited effort has been invested in developing a state-of-the-art, generic, and robust
pretrained model that provides a good starting point for a new task.

A time series is a series of data samples in a time-based domain, which are
typically sampled at a uniform time interval [20]. There are two main types of
TS: univariate time series (UTS) and multivariate time series (MTS) [19]. An
MTS is an M -dimensional TS where each data sample consists of M real values,
e.g., an MTS can be data acquired by measuring multiple climate sensors, such
as temperature, humidity, and wind speed, once an hour; this is an M = 3
MTS. A UTS is simply an MTS where M = 1; a UTS can be data acquired by
sampling the heartbeat of a patient every 10 s [10]. In this paper, we focus only
on UTS data. TS data is relevant for many domains, including the analysis of
financial transactions [18], monitoring network traffic [17], the analysis of time-
based medical events [16]. In fact, TS data mining was mentioned as one of the
top 10 data mining problems by Yang and Wu [15].

Time series data analysis is a highly focused research domain that has a
number of different applications. The three main applications are: time series
classification (TSC) - the task of training a classifier to map a given input to
a probability over the possible class values (labels) [13], time series forecasting -
the task of predicting future values of a given sequence using previous data [12],
and time series clustering - the task of dividing a set of TS data into groups,
where similar TS samples are put in the same cluster [11]. In this work, we focus
only on time series classification.

TL for TSC has not been extensively studied, and a generic, robust, and
scalable pretrained model that can serve as a good starting point for new datasets
is needed, especially when there is insufficient labeled data. Due to the time-
consuming process of collecting and labeling data, the availability of such a
pretrained model is essential and would reduce the training time and cost, and
in some cases, these models could lead to better overall results.

In this study, we propose an innovative, generic, scalable, and architecture-
agnostic TL for TSC method based on (1) our new algorithm for generating
synthetic data and (2) 55 corresponding regression tasks. Our method can be
applied to any deep learning CNN-based architecture. As opposed to previously
proposed TL for TSC methods, our model only needs to be pretrained once, and
there is no need to search for the optimal source dataset for every new target
dataset. Using our unique algorithm, 15,000,000 synthetic samples of UTS data
with various angles, sequence lengths, and patterns were used to pretrain our
CNN (convolutional neural network) model.

Using 85 datasets from the UCR archive as target datasets, we perform a
comprehensive evaluation of our method. For datasets with seasonal charac-
teristics, when the amount of training data was reduced to 10%, our method
outperforms all other TSC methods (both TL and non-TL methods) on 17 of

234 Y. Rotem et al.

the 34 seasonal datasets in the UCR archive, whereas the second-best methods
outperform on only seven of the 34 seasonal datasets.

Additionally, using our method improves the test set’s accuracy while reduc-
ing training time by 85%, without compromising performance. We thus believe
that our method can serve as a good starting point for any new target dataset.

The contributions of this paper are as follows:

1. Synthetic UTS data and regression task generator algorithm: In
this paper, we contribute a new architecture-agnostic TL for TSC method.
Unlike previously proposed TL for TSC methods which use an existing source
dataset and classification task from the UCR archive [29], we propose a new
algorithm which generates synthetic UTS data and creates 55 corresponding
regression tasks which can be used as a source dataset and task.
Using existing datasets from the UCR archive as the source dataset has some
limitations that our synthetic data overcomes. First, given a target dataset,
datasets from the UCR archive may not always be similar or generic enough to
serve as a good source dataset. Since our synthetic 15,000,000 sample dataset
has a wide variety of patterns, angles, and sequence lengths, it could be a more
generic source dataset and therefore be a better fit. A second limitation is that
using UCR datasets is not scalable: each update to the UCR archive requires
that TL for TSC methods perform a new pretraining procedure to incorporate
the new datasets. Since our method relies on the synthetic 15,000,000 sample
dataset as a source dataset, no additional pretraining is necessary. Finally,
searching for the optimal source dataset from the UCR archive can be time-
and resource- consuming. Since we do not use datasets from the UCR but
instead use our synthetic dataset, no such search is needed.
In this paper, we demonstrate the superiority of a dataset consisting of syn-
thetic data over existing datasets from the UCR archive, by addressing all of
the above mentioned issues.

2. Code contribution: Our code1 includes the following:
– UTS data and regression tasks generator: We created an algorithm

to generate synthetic UTS data with a wide range of UTS patterns, angles,
and sequence lengths that can serve as a source dataset.

– Complete framework: a comprehensive easy-to-use framework that
covers data and regression task generation through fine-tuning the pre-
trained model on a new target dataset and task.

3. We publish both the synthetic dataset with 15,000,000 UTS samples and the
pretrained CNN model with the CTN architecture that was pretrained on
that dataset, making them available for use by researchers and the entire ML
community.

The remainder of the paper is structured as follows: In Sect. 2, we provide the
necessary background and introduce related work on TSC and TL for TSC
methods. Following this, in Sect. 3, we describe our method, from data generation
through fine-tuning the pretrained model on a new target dataset and task. In

1 Code availble at: https://github.com/YR234/TL-for-TSC.

https://github.com/YR234/TL-for-TSC

Transfer Learning for Time Series Classification 235

Sect. 4, we describe the experimental setup, while Sect. 5 presents our results.
Finally, in Sect. 6, we present our conclusions and plans for future work.

2 Background and Related Work

In this section, we first discuss on related work regarding TSC and TL for TSC
methods, and we highlight the differences between those methods and ours.

2.1 TSC Related Work

In this subsection, we discuss previously proposed TSC methods.
MultiRocket [1] is a TSC method that achieved SOTA (state-of-the-art)

results on the entire UCR archive [29] at a rate orders of magnitude faster than
any other competing method.

MultiRocket is, in practice, a single-layer convolutional neural network, where
the transformed features from the convolutional kernels form the input for a
linear classifier.

MultiRocket uses as many as 10,000 convolutional kernels with a wide range
of length, padding, dilation, and random weights. After the kernels are generated,
each kernel is applied to each input time series, resulting in a feature map.
MultiRocket then computes a set of features from the feature map that includes
PPV (portion of positive values) plus a randomly selected features from a set of
five candidate features. These features serve as the input for a linear classifier,
such as a ridge regression classifier or logistic regression.

MultiRocket does not use a nonlinear function or have any hidden layers,
thus allowing it to be orders of magnitude faster than any other method.

OS-CNN [28] is a TSC method that uses omni-scale (OS) blocks, which
does not need to tune the feature extraction scales. Usually, a core challenge of
a CNN is to determine the proper scales of feature extraction. This method uses
OS blocks which are made up of OS layers that can be configured automatically
from the input size based on a list of kernel sizes; by stacking those layers, this
method can achieve full receptive field coverage of the total length of the input
(sequence length) [14].

InceptionTime [?] is a TSC method that uses an ensemble of five deep
CNN models, which was inspired by the Inception-V4 [27] architecture. This
architecture includes several techniques commonly used when constructing a
CNN model, such as residual block with shortcut connections [14] and inception
modules [27]. Each of the five models is given equal weight in the final prediction
decision.

Because of our TL-based approach, our method differs entirely from the
TSC methods mentioned above. In the absence of sufficient labeled data, TL
techniques are useful. In this paper, we leverage this by reducing the amount
of labeled training data to 10%. Our experimental results indicate that when
it comes to seasonal datasets, our method outperforms all other methods, and
with all datasets (both seasonal and non-seasonal) our method is only second

236 Y. Rotem et al.

to MultiRocket, however the difference in the performance of the two methods
was not shown to be significant when the Nemenyi statistical test was performed
(Fig. 1).

Fig. 1. The 12 UTS patterns generated in our work.

2.2 TL for TSC Related Work

The use of TL for TSC has been proposed in a number of studies. In this sub-
section, we discuss the existing TL for TSC methods and how our TL for TSC
method differs from these methods.

An overview of the general TL for TSC process is presented in Fig. 2. This
process consists of the following five steps: First, a source dataset is selected.
Second, a source task is selected. In step 3, the model’s architecture is chosen.
In step 4, the model chosen in step 3 is pretrained on the source dataset and

Transfer Learning for Time Series Classification 237

task selected respectively in steps 1 and 2. The final step consists of fine-tuning
the pretrained model from step 4 on a new target dataset and task.

While all previous TL for TSC studies used existing datasets and classifi-
cation tasks from the UCR archive as the source dataset and task for steps 1
and 2, in this paper, we generate synthetic data for the source dataset and use
regression tasks instead of classification as the source task, and demonstrate how
those two decisions can result in better generalization while eliminating the need
for an exhaustive search for the best source dataset.

Fawaz et al. [6] suggested using DTW (dynamic time warping), a technique
for finding the optimal alignment between two given time series sequences [7], as
a similarity measure for finding the most similar source dataset from the UCR
archive. The source task is chosen according to the source dataset (provided by
the UCR archive).

While our method may only differ from the method of Fawaz et al. in terms
of steps 1 and 2 of the TL for TSC process, our novel approach for creating
the source dataset and task from synthetic data and regression tasks instead of
using an existing dataset and classification task from the UCR archive addresses
other issues that we will discuss later in the paper.

Our experimental results on the UCR archive showed that the method pro-
posed by Fawaz et al. performed positive transfer learning on 71/85 datasets,
however this approach has some disadvantages.

Kashiparekh et al. [30] suggested using a convolutional neural network
(CNN) based architecture with a multi-head approach for training a given S
source dataset (DS) and corresponding S classification tasks (TS) from the UCR
archive.

The CNN core architecture consists of convolutional layers followed by skip
connections [14], which make this architecture a deep one. However, instead
of standard fully connected layers followed by a dense layer with the softmax
activation function, the authors used S fully connected layers and S dense layers
with the softmax activation function - one for each source dataset and task.

The authors randomly selected S = 24 datasets from the UCR archive for
training and validation, and the remaining 41 datasets were used as test sets
(the authors used sequence lengths up to 512, and therefore not all 85 datasets
of the UCR archive were evaluated).

As noted earlier, none of these methods provides a real solution when it comes
to real-world problems in the domain of TL for TSC. Since they are limited to
the available datasets in the UCR archive, they may not always be able to find
the optimal source dataset. Not only that, when using the method proposed by
Fawaz et al., one would have to perform an exhaustive search to find the most
similar source dataset for a new target dataset and task.

In contrast to prior work, our method does not require an exhaustive search,
and it is not restricted to datasets available in the UCR archives or any specific
sequence length. Since it is based on diverse synthetic data that was generated
by our new algorithm, it can be applied to a variety of new target datasets and
tasks.

238 Y. Rotem et al.

3 Method

In this section, We will discuss on our five-step TL for TSC method (see Fig. 2).
The first two steps describe the process of generating the source dataset and
regression source task. We then describe steps 3–5 where we select and pretrain
the CNN architecture and fine-tune the pretrained model on a new target dataset
and task.

Fig. 2. Method overview: In step 1, we generate a 15,000,000 sample UTS source
dataset using our Algorithm. After that, we calculate 55 regression tasks for each UTS
in the source dataset to be our source tasks. In step 3, we select the CNN architecture
(we chose to use CTN). Then in step 4, we train the CNN with the source dataset
and task. Finally, in step 5, we fine-tune the pretrained CNN model on a new target
dataset and task.

3.1 Data Generation - Source Dataset

We created a synthetic UTS data generator algorithm; using this algorithm, we
created a 15,000,000 sample dataset that contains a wide range of UTS with
different segment patterns, angles, sequence lengths. This dataset will serve as
our source dataset DS .

In our study, we generated only 12 UTS patterns. However, using our algo-
rithm, many more patterns can be generated.

3.2 Data Generation - Source Tasks

Upon generating the source dataset, we proceed to the source task. Because our
target task is TSC (classification), it would be natural to use classification as
our source task, however when comparing classification and regression as source
tasks, we found that regression achieves more accurate results, and therefore it
was chosen as our source task.

1. The 55 tasks are:
1. Maximum (Task 1): Given an input UTS, the purpose of the task is

to accurately predict the maximum value of the UTS.

Transfer Learning for Time Series Classification 239

2. Minimum (Task 2): Given an input UTS, the purpose of the task is to
accurately predict the minimum value of the UTS.

3. STD (Task 3): Given an input UTS, the purpose of the task is to
accurately predict the STD (standard deviation) value of the UTS.

4. Peaks (Task 4): Given an input UTS, the purpose of the task is to
accurately predict the number of high and low peaks.

5. Cross median (Task 5): Given an input UTS, the purpose of the task
is to accurately predict the number of times the UTS crosses the median
value from up to down and vice versa.

6. 10 splits (Tasks 6–55): Given an input UTS, we first divide the UTS
into 10 equal length segments. For each segment we calculate tasks 1–5
and concatenate them into a 50 value task (10 segments * 5 tasks).

3.3 CNN Model’s Architecture

Our method is architecture-agnostic, meaning that any deep learning network
with a convolutional layer based architecture (CNN) can be used. In our research
we used the same CNN architecture as Kashiparekh et al. [30] whose work showed
it to be an effective architecture for TL. Just one change was made to their
architecture; unlike the multi-head approach used by Kashiparekh et al., we used
only one dense layer with the sotfmax activation function. This architecture will
be denoted as CTN .

3.4 CNN Pretraining

The next step of our method is pretraining the CTN model on the source dataset
DS with the source task TS .

To create the training and validation sets, we randomly divided the source
dataset DS into an 80%–20% split. We pretrained the CTN model for 100 epochs
with a batch size of 128, while performing early stopping on the validation loss.
We used the Adam [25] optimizer and MSE (mean square error) as the loss
function.

The pretraining process was lengthy, taking almost 10 days on a single GPU
processor, however this process only needs to happen once. Once the CTN model
has been pretrained, we save the weights of the model’s core layers. These weights
are used later to fine-tune new target datasets and tasks.

3.5 Fine-Tuning a New Target Dataset

The final step of our method is to fine-tune the pretrained CTN model on a
new target dataset DT with a new target task TT .

We start by initializing the CTN model’s core layers with the pretrained
weights that were saved in the last step. Once initialization is complete, newly
added fully connected layers can be adjusted so that they better fit the new
target dataset and task.

240 Y. Rotem et al.

4 Experimental Setup

In this section, we describe our experimental setup, including the datasets, pre-
processing, and settings used, as well as the methods we compare our method
to.

4.1 Datasets

To evaluate our method, we used the UCR archive, which is the benchmark
archive for TSC. In 2002, the archive contained 45 datasets; this increased to 85
datasets in 2015, and as of 2019, 128 datasets are available. All of the datasets
contain UTS samples. The archive’s datasets vary in terms of the time series
domain covered; the domains include traffic, sound, sensors, motion, image, HAR
(human activity recognition), financial, medical, and more. Furthermore, they
are diverse in terms of the sequence length (ranging from 8–5,000), number of
classes (2–60), number of training samples (12–139,000), and number of test
samples (15–139,000). Due to running time considerations, we evaluated our
results on just the 85 dataset version of the UCR archive and not on the most
update version that includes 128 datasets.

4.2 Data Preprocessing (Reducing the Labeled Training Data
to 10%)

The original train-test split provided by the UCR archive was used. However,
instead of using all of the training data, we reduced each dataset’s training data
to only 10% of the original, while keeping the same class distribution, e.g., given a
dataset of 100 training samples with 70 samples of class 1 and 30 samples of class
2, we reduced the training data to 10 samples, with seven class 1 samples and
three class 2 samples. Therefore, the 70–30% class distribution was maintained.

The following are some key points regarding the reduction process:

1. The remaining 10% of the training samples were chosen at random.
2. The reduction process was only performed once.
3. All of the test data samples were evaluated (the test data was not reduced).

This reduction process was used to emphasize the importance of transfer learn-
ing, since when there is a lack of labeled data, the pretraining process (steps 1–4
of our method) is expected to provide a better start for learning a new target
dataset and task than learning from scratch.

4.3 Methods Used for Comparison

We compare our method, which will now be denoted as CTN our, to the meth-
ods covered in the related work section: Fawaz et al. [6] (denoted as Fawaz),
Kashiparekh et al. [30] (denoted as ConvT ime), MultiRocket [1], OS-CNN [28],
and InceptionTime [10]; we also examine the CTN architecture without the
pretraining phase (steps 1–4 in our method), which is denoted as CTN S (no
transfer learning was applied). We included CTN S, so we can examine our
results in terms of positive and negative transfer learning and more.

Transfer Learning for Time Series Classification 241

4.4 Hyperparameters and Other Settings

For all deep learning methods (Fawaz et al., Kashiparekh et al., OS-CNN,
Inception-Time), including ours, we trained each dataset with 2,000 epochs,
using cross-entropy [2] as the loss function and Adam [25] as the optimizer.

For MultiRocket (a linear classifier), we used the default parameters provided
by the authors.

4.5 The Evaluation Process

The evaluation process includes applying all of the methods on the datasets with
the necessary data preprocessing and with the hyperparameters - all this was
described at this section.

A summary of the results is provided in the next section.

5 Results

This section begins with a brief summary of the results. We then explore each
aspect mentioned in the brief summary in more detail.

5.1 Results Appendices

A summary of the results can be seen in Table 1 and a more visual representation
can be found in Fig. 3.

5.2 Brief Summary of the Results

1. Thirty-four of the 85 UCR archive datasets have seasonality characteristics.
Of these datasets, our method outperforms all other examined methods on
17 datasets; the second best method only outperforms all other methods on
seven datasets.

Fig. 3. Empirical results, from left to right: mean average rank, seasonal wins, wins,
losses. Each method is associated with a colored bar.

242 Y. Rotem et al.

Table 1. Summary of the results in terms of the number of wins, number of losses,
seasonal wins, and mean average rank

Method Wins Losses Seasonal wins Mean avg rank

ConvTime 6 10 3 4.4

CTN S 7 12 4 4.365

Fawaz 15 14 4 4.2

InceptionTime 9 7 6 3.906

OSCNN 14 16 7 3.753

CTN our 26 9 17 3.494

MultiRocket 28 12 7 3.271

2. Positive transfer learning occurs in all 2,000 epochs except the first seven
epochs, and using our method can save 85% of the training time while achiev-
ing the same results (see Fig. 4).

3. Our method obtains a mean average rank of 3.494, which is second only
to MultiRocket with a mean average rank of 3.271 (the difference between
the two values is not significant. In terms of the win/lose rate, our method
obtains a 26/9 rate, while MultiRocket’s rate is 28/12; MultiRocket has two
more wins, but it also has three more loses than our proposed method.

4. As can been Fig. 3, our method comes in at least second place in each case,
something no other method achieved.

5.3 Seasonality Evaluation

We first evaluate the results in terms of seasonality. The autocorrelation values
of a given UTS are in the range of [−1, 1]. Generally, as the autocorrelation
values approach zero there is no seasonality and vice versa. So, in this paper,
we took the absolute value of the autocorrelation function, and the values will
eventually be in the range of [0, 1]. Higher absolute values of the autocorrelation
function indicate strong seasonality and vice versa.

To empirically define datasets with seasonality we calculated a seasonality
metric for each dataset, which is denoted as SM (seasonality metric).

All datasets with SM => 0.5 will be considered as seasonal datasets. The
results show that 34 of the 85 UCR archive datasets are seasonal datasets.
Of these 34 datasets, CTN our outperforms all other methods on 17 datasets.
The second best methods are OSCNN and MultiRocket which outperform other
methods on only seven of the 34 seasonal datasets. These results are presented
in Table 1 and more visually in Fig. 3. These results indicate that our method is
superior when it comes to seasonal datasets.

5.4 Positive Transfer Learning

To demonstrate that transfer learning using our method can improve the per-
formance of a given CNN architecture, we compered the following two methods:

Transfer Learning for Time Series Classification 243

CTN our and CTN S. The comparison was made while considered the follow-
ing three aspects: positive transfer learning after each epoch, training time, and
final accuracy. The results can be seen in Fig. 4.

A more detailed evaluation for each of the aspects mentioned above is pro-
vided below:

1. Positive transfer learning: Except for the first seven epochs, CTN our
outperforms CTN S. Accordingly, we can conclude that our method’s perfor-
mance improves when training continues beyond the first few initial training
epochs.

2. 85% Less training time: It took CTN S 1,515 epochs to achieve its highest
level of accuracy on all 85 datasets (indicated by the grey ‘X’ in Fig. 4),
whereas CTN our attains the same level of accuracy after only 193 epochs.
In other words, using our method can save as much as 85% of the training
time and still achieve the same generalization.

3. Accuracy: When considering the average accuracy after 2,000 epochs across
the 85 datasets from the UCR archive, CTN our outperforms CTN S, as
can be see in Fig. 4.

Fig. 4. Performance of the CTN architecture on all of the test sets from the UCR
archive after each epoch, with and without our method.

5.5 Mean Average Rank and Win/Lose Rate

In terms of the mean average rank, CTN our achieved a score of 3.494, which
is only second to MultiRocket with a score of 3.271; the Nemenyi statistical

244 Y. Rotem et al.

test indicated that there was no significant difference in the results of the two
methods

(see Table 1 which presents the mean average rank of all of the examined
methods).

In terms of the win/lose rate, our method obtains a 26/9 win/lose rate.
While MultiRocket achieves a 28/12 win/lose rate, winning two more times but
losing three more times. InceptionTime has the fewest losses, with a win/lose
rate of 9/7.

Our method comes in at least second place on every empirical measure (mean
average rank, seasonal wins, win, lose), which no other method is capable of (the
results of all of the examined methods can be seen in Table 1).

6 Conclusion and Future Work

In this paper, we introduced:

1. A novel architecture-agnostic TL for TSC method. In contrast to previous
TL for TSC methods using existing UCR’s datasets and tasks as the source
dataset and task, in this paper, we introduce a new algorithm that generates
UTS data and creates 55 corresponding regression tasks to be used as a source
dataset and task.

2. Open-source code for generating custom synthetic data, producing regression
tasks, pretraining, and fine-tuning on a new target dataset and task.
Our 15,000,000 sample synthetic dataset, the 55 regression tasks, and the
pretrained model with the CTN architecture are published for further use by
the ML community.

Our study shows that the use of our method can not only improve the perfor-
mance of a given CNN architecture but also decreases training time by 85%.

When it comes to seasonal datasets, our method outperforms all other exist-
ing TSC methods.

For future work, we would like to do the following:

1. Explore other regression tasks beside the 55 tasks we used. The new tasks
could include Fourier transform, autocorrelation, etc.

2. Examine a new architecture for transfer learning based on both CNN and
LSTM layers which will be trained on our source dataset and task, as suggest
by Wang et al. [23].

3. Expand our source dataset to include more patterns than the 12 patterns we
generated.

4. Extend our method so that it will be suitable for MTS (multivariate time
series) datasets.

5. Explore the use of a generative adversarial network (GAN) to automatically
generate synthetic data that is more similar to a specific given dataset.

Transfer Learning for Time Series Classification 245

References

1. Tan, C.W., Dempster, A., Bergmeir, C., Webb, G.I.: MultiRocket: effective sum-
mary statistics for convolutional outputs in time series classification arXiv preprint
arXiv:2102.00457 (2021)

2. De Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the
cross-entropy method. Ann. Oper. Res. 134, 19–67 (2005)

3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

4. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255 (2009)

5. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding arXiv preprint arXiv:1810.04805
(2018)

6. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Transfer learn-
ing for time series classification. In: 2018 IEEE International Conference on Big
Data (Big Data), pp. 1367–1376. IEEE (2018)

7. Müller, M.: Dynamic time warping. In: Bundy, A., Wallen, L. (eds.) Information
Retrieval for Music and Motion, pp. 69–84. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-642-96868-6 63

8. Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F.V., Avila, S., Valle, E.:
Knowledge transfer for melanoma screening with deep learning. In: 2017 IEEE
14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 297–300.
IEEE (2017)

9. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. arXiv
preprint arXiv:2106.04560 (2021)

10. Ismail Fawaz, H., et al.: InceptionTime: finding alexnet for time series classification,
ArXix (2019)

11. Ferreira, L.N., Zhao, L.: Time series clustering via community detection in net-
works. Inf. Sci. 326, 227–242 (2016)

12. Sagheer, A., Kotb, M.: Time series forecasting of petroleum production using deep
LSTM recurrent networks. Neurocomputing 323, 203–213 (2019)

13. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep
learning for time series classification: a review. Data Min. Knowl. Disc. 33(4),
917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

15. Yang, Q., Wu, X.: 10 challenging problems in data mining research. Int. J. Inf.
Technol. Decis. Mak. 5(04), 597–604 (2006)

16. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting
time series. In: Proceedings 2001 IEEE International Conference on Data Mining,
pp. 289–296. IEEE (2001)

17. Papadimitriou, S., Yu, P.: Optimal multi-scale patterns in time series streams. In:
Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data, pp. 647–658 (2006)

18. Zhu, Y., Shasha, D.: Statstream: statistical monitoring of thousands of data
streams in real time. In: VLDB 2002: Proceedings of the 28th International Con-
ference on Very Large Databases, pp. 358–369. Elsevier (2002)

http://arxiv.org/abs/2102.00457
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-642-96868-6_63
https://doi.org/10.1007/978-3-642-96868-6_63
http://arxiv.org/abs/2106.04560
https://doi.org/10.1007/s10618-019-00619-1

246 Y. Rotem et al.

19. Wang, L., Wang, Z., Liu, S.: An effective multivariate time series classification
approach using echo state network and adaptive differential evolution algorithm.
Expert Syst. Appl. 43, 237–249 (2016)

20. Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNs for
time series classification. Neural Netw. 116, 237–245 (2019)

21. Zhao, W.: Research on the deep learning of the small sample data based on trans-
fer learning. In: AIP Conference Proceedings, vol. 1864, no. 1, p. 020018. AIP
Publishing LLC (2017)

22. Zhuang, F., et al.: A comprehensive survey on transfer learning arXiv preprint
arXiv:1911.02685 (2019)

23. Wang, J., Wang, W., Wei, S., Zeng, Y., Luo, F.: Time series sequences classification
with inception and LSTM module. In: 2019 IEEE International Conference on
Integrated Circuits, Technologies and Applications (ICTA). IEEE, pp. 51–55 (2019)

24. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12
(2004)

25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014)

26. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Thirty-First AAAI Confer-
ence on Artificial Intelligence (2017)

27. Ismail Fawaz, H., et al.: InceptionTime: finding AlexNet for time series classifica-
tion. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020). https://doi.org/10.1007/
s10618-020-00710-y

28. Tang, W., Long, G., Liu, L., Zhou, T., Jiang, J., Blumenstein, M.: Rethink-
ing 1d-CNN for time series classification: a stronger baseline arXiv preprint
arXiv:2002.10061 (2020)

29. Dau, H.A., et al.: The UCR time series archive. IEEE/CAA J. Automatica Sinica
6, 1293–1305 (2019)

30. Kashiparekh, K., Narwariya, J., Malhotra, P., Vig, L., Shroff, G.: ConvTimeNet:
a pre-trained deep convolutional neural network for time series classification. In:
2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE
(2019)

http://arxiv.org/abs/1911.02685
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1007/s10618-020-00710-y
http://arxiv.org/abs/2002.10061

Non-stopping Junctions via Traffic
Scheduling

Shlomi Dolev, Ehud Gudes, and Hannah Yair(B)

Ben-Gurion University of the Negev, Be’er Sheva, Israel
{dolev,ehud}@cs.bgu.ac.il, hannaya@post.bgu.ac.il

Abstract. Emergency situations involve massive movements of (logis-
tic and units) platoons to and from focal locations. Platoons may move
in different directions and can be blocking each other in junctions caus-
ing even deadlocks. The possibility to minimize the delay in junctions,
in particular, non-stopping and waiting for a (virtual) green light, may
avoid the chain phenomena of cascade stopping and cascade starting to
move again when all cars wait for the car in front of them to gain enough
velocity. The remote driving system is an opportunity to stream all pla-
toons driving in different directions without stopping, by spacing vehicles
to allow conflicting traffic to move in the space between vehicles. In this
work, we present briefly the algorithms to identify and control platoons
and focus on the real-time junction scheduling towards the non-stopping
junction(s). We demonstrate the results that imply road safety as actions
are remotely controlled, by using the SUMO simulator [7].

Keywords: Scheduling · Platoon · Junction · Virtual traffic light ·
Autonomous vehicles

1 Introduction

Managing and scheduling transportation at crossroads efficiently while minimiz-
ing the travel time is a challenging task and is a task that is re-investigated
in the scope of autonomous and computer (distant) controlled vehicles. One of
the bold challenges is to find novel policies and algorithms to schedule vehicles
through junctions, without waiting for a green light at the junction that causes
traffic jams and delays the overall flow of traffic on the road.

The assistance of a computer system can leverage the capabilities of sin-
gle procedures to be applied to a group of autonomous vehicle’s procedures
that when executed on the controlling computer initiate commands to many
autonomous vehicles in parallel. In particular, such procedures are based on the
concept of platoon and traffic policies. A platoon is defined as a group of cars
moving in the same direction as a selected car, called, the representative vehicle,
and at a distance of each other which is less than a given threshold.

This research was partially funded by the Andromeda MAGNET Consortium, by the
Lynne and William Frankel Center for Computer Science and by Rita Altura chair in
computer science.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 247–258, 2022.
https://doi.org/10.1007/978-3-031-07689-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_19&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_19

248 S. Dolev et al.

The advantages of creating a platoon are well-known [12] and include
increased safety and fuel saving. Traffic policies are liable for managing and
scheduling transportation. The contributions of our work are the new dynamic
and history agnostic definition of platoons and the control of the transportation
by virtual traffic policies that focus on virtual traffic lights policy. The meaning
behind virtual traffic policies is to give remote instructions to autonomous vehi-
cles on the road, these instructions fall into two categories (weak and strong),
where a weak instruction is an autonomous instruction in which the vehicle
from the moment of the instruction knows how to implement it by its internal
autonomous systems, compared to a strong instruction that is a complete remote
control of all vehicle systems (as can be seen later in Sect. 4) to ensure full safety
and cyber security. In the sequel, we present our on-the-fly dynamic definition
of platoons and the outline of the algorithm. We also demonstrate the flexible
and robust platoon definition using, SUMO, a well-known vehicles simulator [7].

The rest of this paper is structured as follows. Section 2 shortly discusses
platoon identification problem including the algorithm explanation and results.
Section 3 describes the traffic policies and motivation to solve them. Section 4
presents the virtual traffic light (VTL) policy, and related work. Section 5
presents the implementation of the VTL algorithm, and the analysis of the
algorithm. Section 5.1 presents an extension of the concept of the algorithm
for scheduling autonomous vehicles in all the parts of a road together. Lastly,
Sect. 6 concludes the paper.

2 Automatic Real-Time Platoon Problem and Algorithm

As previously mentioned, a platoon is defined as a group of vehicles moving in
the same direction around a selected representative vehicle. The platoon consists
of every vehicle that is at a distance less than a threshold distance from a vehicle
that belongs to the platoon.

Outline of the Algorithm: First, we build a scheme that represents the map
area as a directed graph whose nodes are junctions and the edges represent the
lanes connecting the junctions. This scheme is built by utilizing the transforma-
tion part of the SUMO simulator [7], which can be based on google maps to a
directed graph. When the representative vehicle R is received, the information of
R and the vehicles that are on the same edge of R is collected. This information
is then sorted into two groups pos, neg where pos is the group of vehicles in
front of R and neg includes the cars that are behind R. These groups were built
in an iterative fashion, adding all vehicles that are within the threshold distance
from the last added vehicles. Once all the vehicles on the current edge are con-
sidered, the platoon calculation propagates along the edges that are adjacent to
the edge R resides on. The full implementation and analysis of this algorithm
was presented in our previous work [4].

In Fig. 1, the illustration shows the algorithm operation by three arrows that
describe the calculation of the platoon members. One straight arrow with the
red vehicle direction describes the calculation operation of the members in front

Non-stopping Junctions via Traffic Scheduling 249

of the red vehicle, and the two other arrows describe the calculation operation
of the members that are behind of the red vehicle.

Fig. 1. Simulator snapshot (Color figure online)

3 Traffic Signs Policies

In this section, we present shortly several virtual traffic signs/policies and their
possible usage in practice. The policies can be used by a traffic controller at a
control center, which receives information on road conditions, accidents, traf-
fic jams, etc., throughout an entire region. The virtual signs can control the
platoon’s movements and enable a smoother traffic flow overall by solving the
unusual conditions. In the next section, we detail the algorithm used to imple-
ment the VTL policy. The full implementation of the other traffic policies algo-
rithm is presented in our previous work [4].

Policies List

– Follow the leader:

pltnSign(Follow, p) = the vehicles in platoon p follow the leader (1)

– Speed limit for a platoon:

pltnSign(maxSpeed, p) = speed limit vehicles in platoon p (2)

– Speed limit on a lane for a platoon:

pltnSign(maxSpeed, p, l) = speed limit vehicles in platoon p on lane l (3)

250 S. Dolev et al.

– Lane block for all kind of vehicles:

laneSign(block, l) = no entry to lane l (4)

– Distance keeping among vehicles in a platoon:

pltnSign(minGap, p) = safe distance limit vehicles in platoon p (5)

– Virtual Traffic Lights:

V TLSign(junction, type) = schedule the up coming vehicles (6)

The traffic policies will be controlled and changed according to the scenario
by several algorithms [4]. The next section will discuss the traffic lights policy
problem in detail.

4 Virtual Traffic Lights

The main idea of the Virtual Traffic Lights is to synchronize the vehicles coming
to the junction in such a way that vehicles do not stop at all. They will not
stop to let others to cross the junction or to wait for others to evacuate the
junction. Under the assumption that all the vehicles in the road are autonomous
vehicles and computer controlled, the solution for Virtual Traffic Lights is early
handling of junction management. That is, calculating the timing at a reasonable
distance D before the junction and maintaining a sufficient distance between the
vehicles before the junction, allowing flexibility of deceleration or acceleration
of the vehicles in order for them to cross the junction as safely and quickly as
possible.

The timing principle is “first come, first served”. That is, the vehicles that
are closer to the junction by a given distance D are the ones that are timed
before crossing the junction. Additionally, the vehicles arriving at the junction
will cross it at high speed to evacuate the junction as quickly as possible. Thus
there is no case of excessive deceleration that could cause an abnormal traffic
load in a particular lane entering the junction. In other words, the order of
priority between the lanes entering the junction is equal. That is why there is
no starvation; this principle produces a junction in which the vehicles cross in
analog to a zipper.

Note that for the platoons mentioned above that cross the junction in the
policy presented now, the only vehicles leaving the platoon are vehicles that
turned in a different direction than the direction of the representative vehicle.
Because giving priority to crossing the junction is equal between all lanes and
vehicles cannot stop on the road, the distance between the vehicles in the platoon
that turn in the same direction of the representative vehicle will increases slightly.
This will prevent the platoon to disintegrate.

Non-stopping Junctions via Traffic Scheduling 251

Fig. 2. Simulator snapshot (Color figure online)

In Fig. 2, a snapshot shown
from the algorithm for vehi-
cle synchronization running at a
non-stop junction that slightly
describes the zipper situation,
and it can be seen that the lights
in all directions at the junction
are green. This figure depicts the
equal order of priority between
all lanes entering the junction.
Note that in practice, there is no
need for a physical traffic light. A
demonstration video can be found
in [1].

Related Work. We reviewed several recent Virtual Traffic Lights (VTL) and
scheduling traffic projects. These are described and compared briefly in the fol-
lowing table. Table 1 summarizes the main differences among recent VTL and
scheduling traffic projects.

Table 1. Comparison of VTL projects, Projects (NA stands for Not-Applicable)

Reference Communication
type

Vehicle type Junction type Purpose Off/On line
problem

Scheduling algorithm

Juan
et al. [10]

NA Autonomous
vehicle

One-way, Y
merges,
Multiway
merges, and
Two-way
crossing

Providing
polynomial-time
algorithms for the cases
of a k-way merge (for
constant k) and for a
crossing involving
two-way traffic for
platoons

Offline Based on dynamic
programming and
parametric search
techniques

Olaverri-
Monreal
et al. [9]

vehicle-to-
vehicle

VTL support
equipped
vehicles

Signalized
intersections

Improve traffic flow and
reduce collisions

Online Standard rules

Dolev
et al. [5]

NA NA NA Schedule packets in
high-speed networks
avoids any possibility of
packet collision at a
switch or a link

NA Based on Euler tour
and tokens, when the
token moves without
collision according to
Euler tour

Kok
et al. [8]

Intervehicle NA Any type The authors proposed
platoon interaction
algorithms to the
LWR-IM model to
describe platoon
interactions in urban
arterial

Online Algorithm
(LinkModelMJ)

Ning
et al. [6]

Vehicle
infrastructure

Autonomous
Vehicle

Signalized
intersections

Improved platoon-based
adaptive control strategy
to provide multimodal
traffic management for
signalized intersections,
assuming that the
connected vehicle
information is available
online

Online A mixed-integer linear
programming (MILP)
model is proposed to
optimize signal timings
in a real-time manner

(continued)

252 S. Dolev et al.

Table 1. (continued)

Reference Communication
type

Vehicle type Junction type Purpose Off/On line
problem

Scheduling algorithm

Hugo
et al. [3]

Vehicle-to-
vehicle, VTL
protocol

VTL support
equipped
vehicles

Single
unsignalized
intersection
single
lane/approach
125m

Redesign of the VTL
protocol to include
exterior lights on
equipped vehicles can
solve the problem of the
co-existence with
non-equipped vehicles

Online Standard rules

Alessandro
et al. [2]

Vehicle-to-
vehicle

VTL support
equipped
vehicle

NA To design a mechanism
that allows vehicles to
autonomously solve
priorities at road
junctions in the absence
of fixed infrastructures
(i.e., conventional traffic
lights)

Online Standard rules

Wantanee
et al. [11]

Vehicle-to-
vehicle

VTL support
not/equipped
vehicles

Signalized
intersections

Outstanding issue by
proposing a transition
model in which
VTL-vehicles benefit
from the VTL
technology while
co-existing and sharing
the streets with current
non-VTL vehicles

Online Vehicles self-organize
to select a leader which
serves as a virtual
traffic lights to decide
the right of way at that
intersection

Our work Vehicle
infrastructure,
using GPS

Semi/fully
autonomous
vehicles

Any type To schedule vehicle to
intersection without
stopping

Off/Online Based on conflict graph
and timing indicator

According to the table, it can be seen that the contribution in our project
compared to the existing projects is the calculated manner of scheduling, differ-
ent from the standard transition rules at a traffic light junction, but in a zippered
manner. In addition, it can be noted that the algorithm does not require much
data and unique models to implement it, nor does it require physical systems at
the junction to communicate with vehicles.

The next section presents the new algorithm that we have developed for the
traffic lights policy problem.

5 Virtual Traffic Light Algorithm

The algorithm idea is to utilize the junction as much as possible i.e., as many
vehicles as possible cross the junction together and cross the junction fast as
possible, and the most important thing does not to cause vehicles to stop before
or at a junction but only slightly slow.

5.1 Outline of the Algorithm

First, a scheme was build that represents the map area as a directed graph whose
nodes are junctions and the edges represent the lanes connecting the junctions,
we can transform such map from Google Maps. At each given time unit, all of
the vehicles who are close to the junction at distance D are collected. A conflicts

Non-stopping Junctions via Traffic Scheduling 253

graph is built based on the given location of the vehicles in the directed graph
and by the junction type. Then, with this information a schedule is built with
the necessary crossing time for each vehicle. As long as the conflicts graph is not
empty, we list the maximum of nodes that do not conflict and calculate their
crossing time according to the parameter clearIndicator that indicates when
the junction is empty. Then we update the list’s vehicles velocity in accordance
with the distance and the parameter clearIndicator. Finally, the parameter
clearindicator will be updated as per the new time.

Fig. 3. Map transformation

Fig. 4. Conflicts graph transformation

In Fig. 3, the transformation
of part of the SUMO simula-
tion [7] map is presented (SUMO,
can be based on Google Maps).
This is mapped into a directed
graph in order to calculate the
scheduling time for the upcom-
ing vehicles. The lanes are repre-
sented by directed edges and the
nodes represent the location just
before and just after the junction
for each lane.

In Fig. 4, we present a com-
plete conflicts graph to the junc-
tion as was described in Fig. 3.
This graph describes all the optional crashing situations in the junction, while
the nodes named a, c, e, g describe all the entries options of the junction accord-
ing to the arrows. And, every node index x1, x2, x3 describes the options of
turning right, straight, or left respectively. Note that edges that do not exist
indicate no conflict, for example there is no edge (c1, g1) because there is no
conflict between them.

254 S. Dolev et al.

5.2 Implementation of the Algorithm

Algorithm 1 builds the conflict graph according to the type of the junction and
the list of the closest vehicles to the junction. In the first line of the algorithm
(line 1), we build a complete conflict graph according to the type of the junction.
In the second part of the algorithm (lines 2–8), we update the values of the
vertexes according to the list of the closest vehicles to the junction and return
this current conflicts graph.

Algorithm 1: buildConflictGraph(vehicleList, type):
Result: Build a conflict graph

1 G = db.getConflictGraph(type);
2 for v in vehicleList do
3 lane = v.getLane();
4 vertex = G.getVertex(lane);
5 vertex.addVehicle(v);

6 end
7 G.deleteAllTheEmptyVertexes();
8 return G;

Algorithm 2 schedules a junction according to the specific conflict graph.
Every time unit, the algorithm decides which vehicles cross the junction and
when. In the algorithm’s first part (lines 3–4), built a conflict graph as described
above according to the list of the closest vehicles to the junction that called
batch. In the second part of the algorithm (lines 5–10), the arrival time will be
scheduled according to the conflict graph, the parameter clearIndicator that
describes when the junction is empty, and the layer is the largest set of non-
conflict vehicles that can cross the junction safety. In the middle of the second
part of the algorithm (lines 7–8), updates the parameter clearIndicator when α
is the time of crossing the road and changeV elocity(layer) return the time that
takes all the vehicles to pass the distance D.

Algorithm 2: scheduleJunction(junction, type):
Result: schedule a junction according to the specific conflict graph

1 clearIndicator=currentTime; \\ when the junction is empty
2 for time in timeUnit do
3 batch =collect all the closest vehicles;
4 G=buildConflictGraph(batch, type);
5 while G �= ∅ do
6 layer=getNonConflictItems(G);
7 α = Junction.getMaxLenght()/junction.getMaxVelocity();
8 clearIndicator = clearIndicator+changeVelocity(layer)+α;
9 G = G\{layer};

10 end

11 end

Non-stopping Junctions via Traffic Scheduling 255

Algorithm 3 calculates the new velocity for all the vehicles that are coming
up to the junction and do not have conflicts. In the first line of the algorithm
(line 1) we calculate the latest arrival time among all vehicles in the layer. The
next lines (lines 2–4) update the parameter maxInd to keep the value of the safe
arrival time i.e., when the junction is empty from vehicles. In the last lines (lines
5–9) the algorithm updates the velocity of all the vehicles in the layer according
to the safe arrival time and return this value to update the next layer.

The algorithm above will work also in case that the vehicle currently in the
junction is part of a platoon. There are several ways to preserve the platoon.
One way is to increase the possible distance between two consecutive vehicles
in a platoon. Another way is to decrease the velocity of the vehicles when they
are in the proximity of a junction so that the next vehicle will still arrive at the
allowed distance (a combination of both options is also possible). The algorithm
details are omitted from this version.

Algorithm 3: changeVelocity(layer, indicator):
Result: Calculate the new velocity

1 maxInd=max{(item.getDistance()/item.maxVelocity())+time | item ∈ layer};
2 if indicator > maxInd then
3 maxInd = indicator;
4 end
5 for item in layer do
6 velocity = item.getDistance()/(maxInd − time);
7 item.changeVelocity(velocity);

8 end
9 return maxInd;

5.3 Analysis of Our Algorithm

Assuming that there are vehicles in every entrance lane to the junction.
Objects Definitions:

l is the maximum number of entering lanes from some direction.
G = (V,E) is the conflicts graph.
|V | = 3l from a lane there are 3 options of turning at most.
|E| = l2 all the options of conflicts.

The time complexity of scheduling the batch per time-unit:

– build the conflicts graph. O(l2)
• get all the non − conflict vehicles in the graph. O(l)
• update the conflict graph. Θ(l)
• update the velocity for the non − conflict vehicles. O(l)

Total time complexity is: O(l2)

256 S. Dolev et al.

5.4 Experimental Results

Figure 5 shows the execution result during a 1000 units time. The red graph
describes the maximum number of vehicles in the layers per unit time, and
the green graph describes the waiting time in seconds between two consecutive
batches per unit time. Note that the waiting time also includes the execution
time of the algorithm (the simulation was carried over an Intel R© CoreTM i5-8500
CPU @3.00 GHz PC, with 8.0 GB memory).

From the figure above, we see that the correlation between the number of
vehicles and the waiting time between two consecutive batches is tendentious;
when the maximum number of vehicles in the layers of a batch is going down,
the waiting time of the next batch is high and vice versa. However, the highest
waiting time is 30 ms. Note that when the map is bigger the calculation time
becomes also bigger. Therefore, running the algorithm on a world map requires
a computer with a stronger and faster computing power than the computer
mentioned above.

Fig. 5. Measurement of count of vehicles and waiting time (Color figure online)

Non-stopping Junctions via Traffic Scheduling 257

6 Conclusions

In conclusion, this research discusses a platoon identification algorithm that is
based on a road map, a representative vehicle, and a GPS location. Additionally
this algorithm can identify platoons in any kind of road, straight or curved.
This research presented real-time scheduling algorithms that are based on a
conflict graph and an indication parameter for emptying the junction to the
next vehicle for autonomous vehicles in different parts of a road that includes
different type of junctions, and an extension of the concept of the algorithm for
scheduling autonomous vehicles in all the parts of a road together. This work can
be extended to the problem of scheduling a starting time driving for a vehicle in
a path P (a path is defined as a series of junctions) from source to destination
without collisions or changing velocity that is unnecessary during the driving.

References

1. Demonstration video (2022). https://drive.google.com/file/d/1-R2n7-aqiLFBNtf
Je3FH4NDB4uMZuz31/view?usp=sharing

2. Bazzi, A., Zanella, A., Masini, B.M., Pasolini, G.: A distributed algorithm for
virtual traffic lights with IEEE 802.11p. In: European Conference on Networks
and Communications, EuCNC 2014, Bologna, Italy, 23–26 June 2014. pp. 1–5.
IEEE (2014)

3. Conceição, H., Ferreira, M., Steenkiste, P.: Virtual traffic lights in partial deploy-
ment scenarios. In: 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast
City, Australia, 23–26 June 2013, pp. 988–993. IEEE (2013)

4. Dolev, S., Gudes, E., Yair, H.: Automatic real time platoon formation using the
road graph. In: 2021 IEEE 20th International Symposium on Network Computing
and Applications (NCA), November 2021, pp. 1–4. IEEE Computer Society, Los
Alamitos, CA, USA (2021)

5. Dolev, S., Kranakis, E., Krizanc, D.: Baked-potato routing. J. Algorithms 30(2),
379–399 (1999)

6. Li, N., Chen, S., Zhu, J., Sun, D.J.: A platoon-based adaptive signal control method
with connected vehicle technology. Comput. Intell. Neurosci. 2020, 2764576:1–
2764576:10 (2020)

7. Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE (2018)

8. Ng, K.M., Reaz, M.B.I.: Platoon interactions and real-world traffic simulation and
validation based on the LWR-IM. PLoS ONE 11(1), 1–17 (2016)

9. Olaverri-Monreal, C., Gomes, P., Silvéria, M.K., Ferreira, M.: In-vehicle virtual
traffic lights: a graphical user interface. In: 7th Iberian Conference on Information
Systems and Technologies, CISTI 2012, pp. 1–6 (2012)

10. Vial, J.J.B., Devanny, W.E., Eppstein, D., Goodrich, M.T.: Scheduling autonomous
vehicle platoons through an unregulated intersection. In: Goerigk, M., Werneck,
R. (eds.) 16th Workshop on Algorithmic Approaches for Transportation Mod-
elling, Optimization, and Systems, ATMOS 2016. OpenAccess Series in Informatics
(OASIcs), vol. 54, pp. 5:1–5:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2016)

https://drive.google.com/file/d/1-R2n7-aqiLFBNtfJe3FH4NDB4uMZuz31/view?usp=sharing
https://drive.google.com/file/d/1-R2n7-aqiLFBNtfJe3FH4NDB4uMZuz31/view?usp=sharing

258 S. Dolev et al.

11. Viriyasitavat, W., Roldan, J.M., Tonguz, O.K.: Accelerating the adoption of virtual
traffic lights through policy decisions. In: International Conference on Connected
Vehicles and Expo, ICCVE 2012, Las Vegas, NV, USA, pp. 443–444, 2–6 December
2013. IEEE (2013)

12. Zhao, W., Ngoduy, D., Shepherd, S., Liu, R., Papageorgiou, M.: A platoon based
cooperative eco-driving model for mixed automated and human-driven vehicles at
a signalised intersection. Transp. Res. Part C Emerg. Technol. 95, 802–821 (2018)

Predicting Subscriber Usage: Analyzing
Multidimensional Time-Series Using

Convolutional Neural Networks

Benjamin Azaria1 and Lee-Ad Gottlieb2(B)

1 Cloudinary, Santa Clara, USA
benji@cloudinary.com

2 Ariel University, Ariel, Israel

leead@ariel.ac.il

Abstract. Companies operating under the subscription model typi-
cally invest significant resources attempting to predict customers’ future
usage. These predictions can be used to fuel growth: Companies can
use them to target individual customers – for example to convert non-
paying consumers to begin paying for enhanced services – or to identify
customers not maximizing their subscription product. This can allow the
company to avoid an increase in the churn rate, and to increase the usage
of some customers.

In this work, we develop a deep learning model to predict the product
usage of a given consumer, based on historical usage. We adapt a Con-
volutional Neural Network with auxiliary input to time-series data, and
demonstrate that this enhanced model effectively predicts future change
in usage.

Keywords: Multidimensional time-series · Convolutional neural
networks · Usage prediction

1 Introduction

Historically, companies interested in usage prediction have retained the services
of expert analysts. These experts may examine past behavior over multiple fea-
tures, estimate future usage in the short-term, and translate this knowledge into
actionable tasks. Yet for companies which boast thousands of customers and have
an increased need for accurate research forecasting, this non-scalable approach
quickly becomes infeasible. Hence, the development of an automated model is
an obvious necessity [7].

Future usage prediction is especially crucial for subscriber-based companies,
for which churn rate has especially significant impact on profitability. It is cru-
cial as well for companies valuated based on Annual Recurring Revenue (ARR)
which reflects income derived from customers. For these companies, future usage
prediction is a prerequisite for predicting the future valuation of the company.

Usage data sets are often represented as multi-dimensional time-series data,
and indeed we have at our disposal two large multi-dimensional time-series, which
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 259–269, 2022.
https://doi.org/10.1007/978-3-031-07689-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_20&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_20

260 B. Azaria and L.-A. Gottlieb

constitute high quality labeled data sets, each produced in a controlled envi-
ronment. However, successfully predicting multi-dimensional time-series values
is itself a non-trivial task [3]. Indeed, automated multi-dimensional time series
prediction is a relatively new field, and although different strategies have been
proposed in the literature, currently there seems to be no consensus approach to
the problem. Here, machine learning and deep learning algorithms are typically
used for time-series data classification, which produces a binary decision value (for
example, whether the customer usage will grow or not). The problem of regression,
which produces a continuous value describing customer growth the extent of cus-
tomer growth, is clearly much more challenging to accurately predict.

Our Contribution. For the regression problem of multi-dimensional time-series
prediction, we propose to utilize both common machine learning techniques and
novel methods. Specifically, we shall leverage one-dimensional convolutional neu-
ral network (CNN), in conjunction with auxiliary output, to predict future uti-
lization based on historical usage. In this model, an auxiliary layer produces a
prediction for the future in the short-term. This prediction is fed into the next
auxiliary layer, which produces a prediction for a future prediction for a slightly
later period, until the final auxiliary layer produces a prediction for the desired
longer-term period. We demonstrate experimentally that this enhanced model
effectively predicts future usage, and gives superior results when compared to
other commonly utilized models in the field.

We present the data sets in Sect. 3.1, describe our learning model in detail
in Sect. 4, and demonstrate promising empirical results in Sect. 5. In Sect. 6, we
give concluding remarks and discuss future work.

Related Work. See [4] for a comparison of different time series regression models,
such as gradient boosting and random forest. [10] showed that many cutting-edge
regression methods fail to distinguish between periods of high and low quality
data, and further are not able to generalise well to other data sets. In [12],
Support Vector Machine (SVM) were compared with Artificial Neural Networks
(ANN) on several distinct one-dimensional time-series for the task of regression,
and they indicated that SVM was more efficient than ANN on these.

In [15] it was shown that classification using CNN on multi-channel human
activity recognition time-series outperformed all other algorithms tested. [5]
suggested eliminating the feature extractor, and feeding the network with raw
inputs, while also relying on back-propagation. [9] combinated RNN and CNN
for classification problems such as activity recognition, and [13] considered classi-
fication for Human Action Recognition, and evaluated multiple machine learning
models including LSTM and CNN.

For using CNN to address multivariate time-series regression and comparison
with other approaches, see [1,8] and [6]. A newer approach for solving multi-
dimensional time-series is Temporal Convolutional Network (TCN): This was
used in [14] to predict Earth’s inter-annual climate variability, and [11] compared
TCN to seven different models, finding that it achieved more accurate results on
most data sets tested.

Predicting Subscriber Usage 261

2 Problem Statement

We are given a set of multi-dimensional time-series, each with a continuous label-
vector representing usage. Our goal is to predict the label of a query time-series,
that is its future increase or decrease in usage. There is an imbalance in this
model, in that the maximum possible decrease is bounded by 100%, while the
maximum possible increase is unbounded. To address this, let PA be the average
usage in the observed time-frame, and PB the average usage in the time-frame
to be predicted. Setting δ = PB

PA
− 1, we define our usage increase function as:

f(δ) =
{

1 − 1
1+δ , if δ > 0

δ, otherwise
(1)

The above function maps the increase or decrease onto a real value in the
range [−1, 1]. Values tending to −1 imply significant decrease in usage, values
close to 0 imply no change in usage, and values close to 1 imply extreme growth.
(See also its use in Sect. 3.1 below.)

3 Data and Processing

Before presenting the model, we describe our data sets and their selected features,
and detail our data processing. The data processing includes the creation of a
modified label-vector for the time-series, which will be necessary for running the
model.

3.1 Data Sets and Features

Our main data set is a proprietary set provided by Cloudinary, which is a
software-as-a-service (SAAS) company providing media end-to-end solutions in
the cloud. The data contains daily records of the media transformations under-
taken by each customer, as well as delivery over the network, recorded as deliv-
ery requests and utilized bandwidth. Another important feature is the total
data storage used by each customer through uploading media to Cloudinary’s
distributed shards; this includes original assets and assets derived via transfor-
mations. The data set also records each customer’s subscription plan – these can
be standard or custom, and monthly or annual. Note that a customer in this
data set is often a company consisting of many distinct users.

We also utilized the public Bike-Share Usage in London and Taipei Network
data set1, which is a spatio-temporal urban transport data set from a network
of bike stations. London and Taipei are both very large cities with large bike-
share systems. At each location where bikes are picked up, the individual bikes
are tracked, so that each rental generates a digital footprint: which bike, from
where, to where, for how long, at what date and time, and by whom. The data
collects events from 2016 until the first half of 2020.

1 https://www.kaggle.com/ajohrn/bikeshare-usage-in-london-and-taipei-network.

https://www.kaggle.com/ajohrn/bikeshare-usage-in-london-and-taipei-network

262 B. Azaria and L.-A. Gottlieb

For both data sets, care was taken to determine which features should be
extracted. We avoided sparse features, as well as pairs of correlated features,
or features unrelated to usage. A detailed list of features extracted from the
Cloudinary data set is deferred to the full version. From the Bike Sharing data set
we extracted the following fields: Start date, bike ID, duration, and startStation
ID. We have also filtered out customers who are outliers, meaning their usage of
the product is atypically small or large.

3.2 Data Processing

For each data set we computed the time-series associated with each individual
user, and further spawned new user time-series at every one-week interval. While
this could cause individual customers to appear as multiple time-series in the
data set, we ensured that the same customer can appear (possibly multiple times)
in only one of the train, validation or test groups.

Having segmented the data into individual time-series, we normalize each
one: We first log-scale the time-series features, and then normalize each feature
twice:

1. Self-comparison: Each customer feature xj is compared to its time-series,
mapped to zj = (xj−μ

σ), where μ is the mean and σ is the variance of this
feature over this time-series.

2. Global comparison: Each customer feature zj is compared to all other cus-
tomers, mapped to wj = (zj−μ

σ), where μ is the mean and σ is the variance
of this feature compare to all other customers.

Labels. It remains to calculate the usage label, as previously discussed in Sect. 2.
We preprocess the Cloudinary data set as follows: Recall that PA is the average
usage in the observation period, which we now define to be the first ten weeks
of the series, that is days 1–70. For the i-th time-series, we create a label vector
yi as follows: For entry yi,j , we define PB,j to be the average usage in the 30 day
period ending at day 70+ j. We then compute δj = PB,j

PA
−1 and set yi,j = f(δj)

(as defined in Sect. 2), and obtain the distribution of our label. See Figs. 1 and 2
for an illustration of the computation of the label for j = 60 and the distribution
of these labels in the Cloudinary data set.

The Bike-share data set is preprocessed in the same way, except that we
take PB,j to be the average usage in the 21 day period (instead of a 30 day
period) ending at day 70 + j. Our choice for this period length reflects the fact
that the behavior captured in the Bike-share data set is strongly influenced by
the weekly cycle, as typically usage is determined by the week day. While the
Cloudinary data set is also influenced by a weekly cycle, the standard approach
in the corporate world is to compute usage in monthly blocks, making this the
more appropriate measure for this data set.

Predicting Subscriber Usage 263

Fig. 1. Label of data

Fig. 2. Label frequency

4 CNN Construction

We model our data using Convolutional Neural Networks. These are known
to return superior results for time-series classification when compared to other
models [2,9,15], and when combined with auxiliary output are known to give
predictions with 50% improved accuracy compared to state of the art models
[16].

Our exact model depends on the period to be predicted. In what follows, we
initially describe the model for the Cloudinary data set and predicting future
usage of 60 days (which represents 2 months cycle of a customer), meaning
predicting the average usage in the 30-day period including days 31–60 after the
initial 70 days of the time-series. Hence we stipulated above (Sects. 2,3.2) that
the time-series in the training set are labelled with a scalar in [−1, 1] representing
the average of this period.

Considering a single feature in a sequence (as in Fig. 3), the 1-dimensional
convolution uses a kernel that weights adjacent observations, and by using pool-
ing and a second convolution, enables the model to learn the trend of this specific
feature. In our case we have multiple features, so we combine their output into
a fully connected layer.

The structure of our model is as follows: It is composed of two convolutions
(with 40 and 50 filters, respectively), followed by a fully connected (dense) layer
of 150 neurons, using RELU as the activation. (see Fig. 4). Following this unit
are an additional six fully connected layers of auxiliary output (see Fig. 5; the
first auxiliary layer is also illustrated in Fig. 4). The goal of each auxiliary layer

264 B. Azaria and L.-A. Gottlieb

Fig. 3. One dimensional convolution on a single feature

is to predict future usage in the short term, and to pass this prediction to the
next auxiliary layer. This next auxiliary layer will predict future usage for a
slightly later period, until the final auxiliary layer yields a long-term prediction.
In particular, we view each layer as predicting an additional ten days in advance,
leading to a final prediction of sixty days. For each of the six auxiliary layers we
utilize a dropout of 50% to avoid over-fitting.

We used grid search on the validation data set to determine the optimal
number of convolutions, number of filters in each convolution, size of the fully
connected layer, and the drop-out rate; the best results determined the param-
eters adopted in the above model. We also tried reducing the drop-out rate for
later auxiliary level, but found that this did not yield appreciably better results.
For computing the optimal number of auxiliary layers, we added layers until the
improvement was negligible.

Fig. 4. The first part of the model includes two layers of 1-dimensional CNN followed
by a fully connected layer. At the far right of the figure is the first auxiliary layer.

To each auxiliary layer k ∈ {1, 2, 3, 4, 5, 6} we associate a mean-squared error
(MSE) loss function (as in Fig. 5). Recall that the motivation behind auxiliary
layer k was to produce a future prediction for 10k days ahead. Then

lossk =
1
n

∑
i

(yi,10k − tanh(ȳi,10k))2 (2)

where yi,10k is the true label of future day 10k in time-series i (as defined in
Sect. 3.2) , and ȳi,10k denotes the k-th auxiliary layer’s prediction for this value.
The tanh function is used to restrict the range of ȳi,10k to [−1, 1], while having
only a minor effect on values already within this range.

Predicting Subscriber Usage 265

Fig. 5. The second part of the model includes 6 auxiliary layers.

The final model attempts to minimize a sum of the six individual loss func-
tions. However, because each coordinate in label-vector yi is determined by aver-
aging time-series entries over the previous 30-day period, a simple sum would
overvalue the time-series entries in the earlier part of the evaluation period, and
undervalue the later time-series entries in that period. For example, the time-
series value of day 31 after the observation period figures into all labels yi,j for
j ∈ [31, 60], while the time series value of day 60 only figures only into the value
of yi,60 in this range. To address this issue, we take a weighted sum instead, and
the goal becomes to minimize

joint-loss =
1
6

6∑
k=1

(
lossk

δk

)
(3)

for moderately decreasing values δk chosen via experimentation.
We stop the training after encountering 20 consecutive epochs without

improvement in validation loss, as presented in the following algorithm:
best validation loss score ← ∞;
remaining epochs ← 20;
while remaining epochs > 0 do

Train model one epoch and calculate current validation loss score ;
if best validation loss score ≥ current validation loss score
then

best validation loss score ← current validation loss score;
remaining epochs ← 20;

else
remaining epochs ← remaining epochs − 1;

end
end

Algorithm 1: Stopping the training process

266 B. Azaria and L.-A. Gottlieb

Extension to Other Prediction Periods. The above description gives our model
for a 60-day prediction. In this model, each auxiliary layer corresponded to a
forward prediction of 10 days. Hence, to adapt this model to different forward
value predictions – specifically, 30 day and 90 day predictions – we simply modify
the model to contain three or nine auxiliary layers, respectively, instead of the
original six.

For the Bike-share data set, the experiment below attempts a forward pre-
diction of nine weeks. Recall that for this data set we average periods of 21 days
(instead of 30), and therefore we will view each auxiliary layer as giving a for-
ward prediction of one week (instead of 10 days). It follows that for a forward
prediction of nine weeks we can use a model of nine auxiliary layers.

5 Experiments

We run the following common machine learning models on our data sets: Ran-
dom forest, Fully Connected Artificial Neural Network (ANN), Recurring Neu-
ral Network (RNN), and our augmented Conventional Neural Network (CNN)
model. For both data sets, we divided the data as follows: 70% of the customers
in the training set, 20% of the customers in the validation set, and 10% of the
customers in the test set.

Cloudinary Data Set. Here we attempted to predict future usage of 30 days, 60
days and 90 days (meaning the respective averages of the three 30-day periods
[1, 30], [31, 60], [61, 90]), and reported the success rates for each period in a des-
ignated table. The computed error values for each model is 1

n

∑n
i=0 1|yi,j−yi,j |>d

where yi,j is the true label (of Sect. 3.2), yi,j is the output prediction of the
model, 1 is the indicator function, and j takes values in {30, 60, 90}. The value
d is a threshold on the difference between these two models; if the difference
exceeds the threshold, the prediction is taken to be an error, and otherwise the
prediction is viewed as successful. This is a common regression measure, and is
especially appropriate for our setting due to commercial rationale behind the
model: Companies seek to maximize the customers correctly served. We tried
values d ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} Comparisons for 30, 60, and 90 days are
presented in Tables 1, 2 and 3.

The results show that our method almost always gives improved results when
compared to the others. This is especially true as the forward prediction period
is increased, making prediction more difficult.

Predicting Subscriber Usage 267

Table 1. Performance of predicting behavior at 30 days in Cloudinary data

Value of d Random Forest ANN RNN (LSTM) Our model (CNN)

5% 21.62% 21.52% 26.66% 28.33%

10% 39.78% 43.22% 47.51% 50.40%

15% 55.56% 59.25% 63.41% 66.40%

20% 67.20% 70.25% 74.80% 76.93%

25% 76.29% 78.21% 82.17% 84.09%

30% 82.16% 84.37% 87.04% 88.90%

Table 2. Performance of predicting behavior at 60 days in Cloudinary data

Value of d Random Forest ANN RNN (LSTM) Our model (CNN)

5% 16.42% 18.01% 18.27% 19.09%

10% 32.73% 34.66% 35.52% 36.17%

15% 47.10% 48.45% 50.96% 50.88%

20% 59.77% 59.92% 63.29% 63.73%

25% 69.44% 70.77% 73.34% 74.57%

30% 77.92% 80.13% 80.84% 81.71%

Bike Rental Data Set. For this data set, we attempted to predict the total
duration of usage in each station. As before the training period was 10 weeks
(weeks 1–10), but now we attempt to predict usage at 9 weeks (week 19). As
above, the computed error is taken to be 1

n

∑n
i=0 1|yi,j−yi,j |>d, but with d ∈

{0.01, 0.025, 0.05, 0.075, 0.1}. The lower values of d taken here in comparison to
those taken for the Cloudinary data set are due to this data set being easier to
predict – indeed, the practices of individuals as recorded in the bike-share data
set are simpler and more predictable than those of the clients in the Cloudinary
data set, which are usually large companies of many users. This is also the reason
we sufficed here with only a single experiment, utilizing the most advances (nine
layer) model. The results are reported in Table 4.

Table 3. Performance of predicting behavior at 90 days in Cloudinary data

Value of d Random Forest ANN RNN (LSTM) Our model (CNN)

5% 15.20% 15.68% 14.27% 17.09%

10% 28.37% 29.95% 28.27% 31.56%

15% 40.16% 42.31% 41.03% 45.42%

20% 50.42% 52.87% 51.40% 55.90%

25% 59.54% 61.52% 60.81% 63.65%

30% 67.16% 68.06% 68.40% 70.28%

268 B. Azaria and L.-A. Gottlieb

Table 4. Performance of predicting behavior at 9 weeks in Bike-share data

Value of d Random Forest ANN RNN (LSTM) Our model (CNN)

1% 35.14% 45.68% 53.87% 59.50%

2.5% 74.79% 82.31% 88.22% 92.20%

5% 82.14% 87.41% 95.81% 98.49%

7.5% 95.03% 96.52% 98.61% 99.18%

10% 97.87% 98.06% 99.47% 99.86%

While all methods performed well for high values of d. Our method returned
better results. For low values of d our method is appreciably better.

6 Conclusions

We attempted to predict future customer behavior using multi-dimensional time-
series as our input. We utilized two data sets: The first was the Cloudinary data
set, where customer are often large companies. Our second data set was a public
data set containing behavior of individuals using the Bike-share in London and
Taipei. We suggested a CNN-based model with auxiliary output, and compared
this model to other standard approaches. Our approach achieved the best results
in almost all of the comparisons undertaken. Our model performed better in the
Bike-share data, and we believe this was because individual behavior is easier to
predict than that of large companies.

We note that we also ran our model on less structured data, such as the
Exchange rate per country data set2. Our model returned poor results for this
set, and we believe this is because its behavior is erratic

References

1. Antsfeld, L., Chidlovskii, B., Borisov, D.: Magnetic sensor based indoor position-
ing by multi-channel deep regression. In: Proceedings of the 18th Conference on
Embedded Networked Sensor Systems, pp. 707–708 (2020)

2. Canizo, M., Triguero, I., Conde, A., Onieva, E.: Multi-head CNN-RNN for multi-
time series anomaly detection: an industrial case study. Neurocomputing 363, 246–
260 (2019)

3. Cerqueira, V., Torgo, L., Mozetic, I.: Evaluating time series forecasting models:
An empirical study on performance estimation methods. arXiv:1905.11744 (2019)

4. Goldsmith, J., Scheipl, F.: Estimator selection and combination in scalar-on-
function regression. Comput. Stat. Data Anal. 70, 362–372 (2014)

5. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10
(1995)

2 https://data.oecd.org/conversion/exchange-rates.htm.

http://arxiv.org/abs/1905.11744
https://data.oecd.org/conversion/exchange-rates.htm

Predicting Subscriber Usage 269

6. Mehtab, S., Sen, J., Dasgupta, S.: Analysis and forecasting of financial time series
using CNN and LSTM-based deep learning models. arXiv:2011.08011 (2020)

7. Miller, A., Vonwiller, B., Weed, P.: Grow fast or die slow: Focusing on customer
success to drive growth (2021). https://www.mckinsey.com/industries/technology-
media-and-telecommunications/our-insights/grow-fast-or-die-slow-focusing-on-
customer-success-to-drive-growth. Accessed 5 Oct 2021

8. Mode, G.R., Hoque, K.A.: Adversarial examples in deep learning for multivariate
time series regression. arXiv preprint arXiv:2009.11911 (2020)

9. Okita, T., Inoue, S.: Recognition of multiple overlapping activities using composi-
tional CNN-LSTM model. In: UbiComp 2017, pp. 165–168 (2017)

10. Pimentel, M.A.F., Charlton, P.H., Clifton, D.A.: Probabilistic estimation of respi-
ratory rate from wearable sensors. In: Mukhopadhyay, S.C. (ed.) Wearable Elec-
tronics Sensors. SSMI, vol. 15, pp. 241–262. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-18191-2 10

11. Rasul, K., Sheikh, A.S., Schuster, I., Bergmann, U., Vollgraf, R.: Multivariate prob-
abilistic time series forecasting via conditioned normalizing flows. arXiv:2002.06103
(2020)

12. Samsudin, R., Shabri, A., Saad, P.: A comparison of time series forecasting using
support vector machine and artificial neural network model. J. Appl. Sci. 10(11),
950–958 (2010)

13. Wang, J., Long, Q., Liu, K., Xie, Y., et al.: Human action recognition on cellphone
using compositional Bidir-LSTM-CNN networks. In: CNCI 2019 (2019)

14. Yan, J., Mu, L., Wang, L., Ranjan, R., Zomaya, A.Y.: Temporal convolutional
networks for the advance prediction of ENSO. Sci. Rep. 10(1), 1–15 (2020)

15. Yang, J., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional
neural networks on multichannel time series for human activity recognition. In:
24th International Joint Conference on Artificial Intelligence (2015)

16. Zhang, Y., Chang, F., Wang, M., Zhang, F., Han, C.: Auxiliary learning for crowd
counting via count-net. Neurocomputing 273, 190–198 (2018)

http://arxiv.org/abs/2011.08011
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/grow-fast-or-die-slow-focusing-on-customer-success-to-drive-growth
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/grow-fast-or-die-slow-focusing-on-customer-success-to-drive-growth
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/grow-fast-or-die-slow-focusing-on-customer-success-to-drive-growth
http://arxiv.org/abs/2009.11911
https://doi.org/10.1007/978-3-319-18191-2_10
https://doi.org/10.1007/978-3-319-18191-2_10
http://arxiv.org/abs/2002.06103

Smart Cybercrime Classification
for Digital Forensics with Small Datasets

Isfaque Al Kaderi Tuhin, Peter Loh(B), and Zhengkui Wang(B)

Information and Communications Technology, Singapore Institute of Technology,
Singapore, Singapore

16sic013j@sit.singaporetech.edu.sg,

{peter.loh,zhengkui.wang}@singaporetech.edu.sg

Abstract. In forensic investigations, automation support for cyber-
crime classification is crucial for efficient and effective resolution.
Although numerous technologies have been developed to assist digital
forensic investigators and incident responders in data analysis, inves-
tigation still requires a significant amount of manual effort, which is
time-consuming and costly. Machine learning has been proven to be a
promising strategy for automated data classification in recent studies.
However, in order to train the model, most, if not all, machine learning
algorithms rely substantially on a large number of annotated datasets.
In this paper, based on a few historical case records, we propose an effec-
tive and efficient approach to classifying cybercrime, starting with small
datasets. Our proposed method uses a Siamese Network Architecture
with two identical Convolutional Neural subnetworks, as well as a Deep
Learning Model. To classify novel graph data, a similarity metric fore-
casting method is applied, which permits the categorization of new data
from a limited number of cybercrime records. In addition, to improve
the accuracy of our Deep Learning Model, we apply forensic knowledge
graph technology. This technique assembles pieces of information gath-
ered from security logs into a vast, connected graph to expose a case’s
contextual background. Even with a small number of labeled samples
trained in the Deep Learning model, our proposed approach is capa-
ble of identifying cybercrime data reliably and automatically from our
experimental assessments. As a result, our approach demonstrates that
automated cybercrime investigations can be both successful and feasible.

Keywords: Digital forensics and cybercrime classification ·
Knowledge graph · Small data · Deep learning · Neural network

1 Introduction

Around the world, cybercrime is increasing more rapidly than it is being resolved
[1]. Cybercriminals are using more sophisticated techniques than ever to carry
out malicious activities in the era of big data [2], causing unprecedented dam-
age. Various digital forensics models [3] and technologies have been used, such

This project was supported in part by the NRF National Cybersecurity R&D Grant.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 270–280, 2022.
https://doi.org/10.1007/978-3-031-07689-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_21&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_21

Smart Cybercrime Classification for Digital Forensics with Small Datasets 271

as the use of knowledge graph analysis to represent attack scenarios using graph
database tools [4]. However, as S. Papastergiou et al. [5] expressed that most of
them lack the ability to provide a comprehensive picture of a complex attack;
they only view it from a high-level, abstract perspective. Furthermore, the inves-
tigation is manually carried out by the domain expert to come to a conclusion
which is time consuming, error prone, and costly [6]. This contributes to the pres-
ence of cybercrimes undetected and unhindered in continuous attacks, leading
to wasted time and revenue loss.

In order to automate the investigation process, several AI technologies have
been adopted. A survey by S. Iqbal and S. A. Alharbi [6], compared various
Machine Learning and Deep Learning approaches for data-driven digital forensic
investigation and its significance. Even with AI approaches, an issue that is
prevalent is the lack of forensics data as a reference to validate such approaches
[7] as AI automation requires heap loads of historical data to train [8]. A study
conducted by the Google Research Center and Carnegie Mellon University [9]
measured prediction errors as they gradually trained with an increasing number
of data in a deep neural network. They found that the accuracy increases as the
volume of training data is expended. In other words, the more data, the better
the AI performance.

Availability of the dataset, especially in the digital forensics community,
remains scarce. C. Grajeda et al. [10] outlined the difficulty faced by the digital
forensics community to find an openly available dataset in forensics research.
Only 36.7% of the real-world data are estimated to be openly available. A large
number of datasets are either private, outdated, or synthetic. In fact, an online
article by Andrew Ng [11] states that, often in industry, the available data sets
are much smaller than a large consumer Internet company such as Google.

Law enforcers in the field of digital forensics should be able to use AI tech-
nology and examine large amounts of data in a timely manner in search of
important evidence during the incidence of cyber attacks. However, due to the
lack of a readily available real-world data set of actual cyber attacks, it hinders
the opportunity to fully utilize AI technology to conclude and classify cybercrime
cases.

In this regard, we explore an approach that employs the Siamese Network
to train a Deep Learning model and generate accurate predictions using a small
number of contextual graph data, also known as a knowledge graph. Knowl-
edge graphs are widely used in digital forensics, which are a transformation of
logs, to derive various analyses using graph theory [12], making it the best data
structure for a contextual classification such as our proposed method. It has
also inspired us to use similarity learning, which examines the similarity metric
between two pairs of knowledge graphs. In order to create such an architec-
ture, the Siamese Network architecture was used to create our very own model,
the Siamese Convolutional Neural Network (SCNN), which is defined by two
identical Convolutional Neural Networks (CNN) that produce feature vectors
simultaneously to compare with each other. As a result, it develops a useful

272 I. A. K. Tuhin et al.

approach for classifying new data simply by comparing it with small samples of
existing data.

The major contributions of the paper are summarized as follows. First, we
present the concept of using a knowledge graph with a Deep Learning model
to create an effective classification model. Second, we propose a method that
combines the robustness of knowledge graph data and the deep learning approach
to classify a cybercrime case with a small number of trained datasets. Third, we
evaluated our proposed approach against existing classification methods and the
evaluation results indicate that our proposed method significantly outperformed
the existing baseline method.

The rest of the paper is organized as follows. We provide the related work
in Sect. 2, followed by a detailed description of the framework of the proposed
methodology in Sect. 3. Section 4 outlines the performance and precision of the
proposed method, and lastly, Sect. 5 provides the conclusion.

2 Related Work

In the field of digital forensics, numerous methods for analyzing and evaluating
cybercrime have been offered in the past. The approaches, on the other hand,
are constrained in a variety of ways, which will be discussed in this section.

In a cloud network context, A. A. Sharma and S. Sharma developed a hybrid
approach for attack detection [13]. This method can detect attacks such as ICMP
assaults, TCP Sync Attacks, and UDP Attacks in simulated network traffic. In
general, this method relies on large amounts of data and works only with digital
evidence from the cloud network environment.

Mohammad [14] presented a study that aims to improve the analysis of
incriminating digital evidence by inspecting historical actions that affect the
status of the file system with the objective of recognizing whether a malevolent
application program has accessed, updated, or deleted any file system using the
enhanced multiclass support vector machine model (EMSVM). This model uses
a training dataset of about 126,831 system event logs that was simulated. Again,
it shows that a large amount of data is required. Furthermore, mainly structured
data were used to normalize and embed the data in ML.

N. Kanimozhi et al. [15] proposed a crime pattern analysis to predict and
classify crime types based on various factors, such as the location, weather con-
dition, period, etc. This was modeled using the Nave Bayes classifier, which
provided great accuracy in predicting the type of crime and the occurrences of
physical crimes. Similarly, digital forensics can adopt such techniques to predict
any type of crime as and when it happens.

Silva et al. [16] used Support Vector machines (SVM) to automate the IT
incident management process. It is an approach to building data around incom-
ing incidents for automatic incident categorization. This enables fast incident
recognition without the involvement of a human specialist. This is the kind of
technology that digital forensics can adopt to automate the investigation process.

Smart Cybercrime Classification for Digital Forensics with Small Datasets 273

Rupa et al. [17] analyzed various classifiers, such as LinearSVC, logistic
regression, multinomial Nave Bayes and random forest, and developed a compu-
tational system that could classify cybercrime offenses. For this method, cyber-
crime analysis reports are used to classify it into different cybercrime. This does
not include the raw security log data that is crucial in detecting patterns of
interest in a cybercrime case.

There were common techniques that are commonly used when there are no
labeled data available are unsupervised clustering. K-means [18] and DBscan
[19]. K-means is widely used by security analysis to help in gaining important
insights about the known and unknown attack patterns as mentioned by A.
Shrestha Chitrakar and S. Petrović [20]. However, it is not helpful, as it still
requires human intervention to understand the pattern of interest and is prone
to less accurate results [21].

Based on previous studies, it is clear that there is no single solution that
allows flexibility in the type of data to be classified, the size of the training
dataset required, the requirement of structured data, the use of no known con-
textual graph data, and the majority of unsupervised classification still requires
a significant amount of manual human input.

As a result, we must design a strategy that takes advantage of AI models that
are not data-hungry in order to improve the efficiency and automation of cyber-
crime detection and classification. Our proposed solution attempted to address
the problem by allowing the categorization of different types of datasets, need-
ing a smaller training sample for accurate classification, leveraging unstructured
data, and, most crucially, automating the entire process.

3 Proposed Methodology

Our proposed framework consists of a three-step process as seen in Fig. 1 below.
The prerequisite of this framework is the preparation of the dataset by trans-
forming artifacts into a knowledge graph representation [22] which can be done
using SIEM tools like Linkurious [23]. Secondly, graph embedding features are
extracted [24] and then followed by training and validating a deep learning model
using Siamese Convolutional Neural Network(SCNN). The following section con-
tains the detailed description of each stage of the proposed framework.

3.1 Converting Case Records into a Knowledge Graph

Knowledge graphs have been widely used to represent the tracking and analyzing
of a particular case. One of such existing ideas is CyGraph [25], which uses a
unified graph-based cybersecurity model to capture the complex relationship
that allows greater views for decision support and situational awareness. Even
graphs are used in event analysis of cybercrimes [26].

There growing implementation of knowledge graph construction features in
commercially available SIEM such as IBM’s QRadar and Linkurious which are
able to ingest large amount of security logs to form a graph network of corelated

274 I. A. K. Tuhin et al.

Fig. 1. Overall process flow of the proposed framework.

activities. This helps the Digital Forensic Investigator (DFI) or Post-Incidence
Responder (PIR) gain an overview of the security event and take the necessary
steps to analyze it using graph theory [27]. Due to such existing technologies
being used commonly, it inspired us to utilize such knowledge graph technology
to represent an entire case.

Table 1. Statistics of the benchmark dataset.

Dataset No. of graphs No. of classes No. of vertices No. of edges

PROTEINS 1113 2 39.1 72.8

IMDB BINERY 2000 2 429.6 497.8

REDDIT BINARY 1000 2 19.8 96.5

For this research, we picked benchmark graph datasets, which are REDDIT,
IMDB, and PROTEIN from Morris TUDataset [28]. The reason of using the
unrelated graph dataset is due to the lack of readily available knowledge graph
datasets generated from real world cybercrime cases. Therefore, the benchmark
data are used to hypothetically demonstrate the core functionality and result of
the proposed approach, since different types of cybercrime would produce dif-
ferent knowledge graph structures [29]. In Table 1 the statistics for the reference
data set used. Essentially, each instance of the dataset is a network graph that
defines the topological properties for every instances (see Fig. 2).

Fig. 2. Benchmark dataset Graph struc-
tures.

Fig. 3. Visualization of the graph
embeddings.

Smart Cybercrime Classification for Digital Forensics with Small Datasets 275

3.2 Graph Embedding

To prepare the knowledge graph to be used in any AI model, it requires one to
undergo a transformation of its nodes, edges, and their features into a small-
dimensional vector space while preserving properties such as information and
graph structure (see Fig. 3). Graph embeddings are the main essence that tries
to capture the entire data representation within the graph so that it is in a
“computationally digestible” format [30].

There are several embedding algorithms that can provide embeddings at
the node, edge, and whole graph level. Since in our approach we want to clas-
sify multiple cybercriminal knowledge graphs, whole-graph embedding was used.
A whole graph level embedding algorithm used for this approach is graph2vec
[31] for its best performance in representing the whole graph quickly and accu-
rately, it follows Gensim’s Doc2Vec approach that uses the skip-gram network.
It receives an ID of the document on the input and is trained to maximize the
probability of predicting random words from the document.

3.3 Siamese Convolutional Neural Network Model

CNNs are a class of deep, feed-forward artificial neural networks where connec-
tions do not form a cycle. CNNs are generally used in computer vision, but
they have shown promising results applied to other fields as well. Because it
involves tasks where feature detection in text is more important, it is able to
detect patterns in the context of textual data. W. Yin et al. [32] stated that the
advantages in using CNN is also due to its fast performance and low memory
usage capability.

Siamese Network by G. Koch et al. [33] proposed unique neural network
structure that employs twin networks(hence Siamese) to make use of its powerful
discriminative features to generalize the prediction for new data and data of a
novel class.

Fig. 4. SCNN architecture. Fig. 5. Depiction of the similarity learn-
ing in SCNN.

In order to provide the best of both world, CNN for detecting better contex-
tual pattern and Siamese to handle deep learning for small data, both of these

276 I. A. K. Tuhin et al.

techniques were combined to formulate a Convolutional Simese Neural Network.
The model used here is a slight variation from the paper by F. López [34] and
G. Koch et al. [33]. Figure 4 shows the architecture of SCNN.

To begin, the permutation of pairs of graph samples is calculated using the
combination formula below, where n is the total number of graph samples, r is
the number of combinations and Y indicates whether the pairs of samples belong
to the same class as shown in (1).

nCr =
n!

r!(n − r)!
⇒ Y (1)

The SCNN model is then used to train the above. During the training phase,
the pairs of samples move through a sequence of convolutional networks simulta-
neously to generate an encoding for the graph. The encoding is then passed into a
similarity encoding function. The similarity encoding function is the Euclidean
pairwise distance (d (G, H)), which is calculated using the pairwise distance
between two points of the graph encoding of the first pair, G, and the second
pair, H, in a 2D vector space of the graph as shown in (2). After that, a round
of the sigmoid activation function is performed on the pairwise distance D to
output a binary classification where 0 is dissimilar and 1 is similar. This is then
iterated a certain number of times until the prediction improves to match the
similarity label of the permutated combination of the training pairs.

d (G,H) =

√
√
√
√

n∑

i=1

(Hi − Gi)
2 ⇒ D (2)

To derive the similarity score (see Fig. 5, a new sample from the benchmark
dataset P with class y is compared with the trained sample G with class Y using
as a similarity metric after the model has been trained. If SCNN (G, P) has a
high threshold T score, P is labeled as class G. If the score is less than T, it
will check with another trained sample G, and the process will repeat until the
results are acceptable.

4 Experiments and Results

In this section, we begin by experimenting with hyperparameters to determine
the best hyperparameters for similarity learning across a variety of graph data to
determine the optimum model configuration. As noted in the previous section,
the benchmark graph datasets, REDDIT, IMDB, and PROTEIN from Morris
TUDataset [28] were used. The model performance is then compared using an
accuracy metric to that of various baseline classification techniques, such as
Kmeans, Multinomial Naive Bayes, and K-Nearest Neighbors, which are all from
the Scikit Learn Library [35], while the GCN+CNN is from a paper by F.López
[34]. The baseline graphs were chosen because they closely resemble our model’s
goal, and since, according to W. A. Al-Khater et al. [36] In comparative research,
there is no standard approach to the classification of a few shot graphs.

Smart Cybercrime Classification for Digital Forensics with Small Datasets 277

Firstly, each dataset was initially randomized, and then a balance train set for
each class (total of 4 samples) and a test set of four samples for each class(total
of 8 samples) were chosen at random. The graph embeddings for each train and
test sample were then extracted using the graph2vec embedding technique with
dimension size d. We used the SCNN architecture to create a hidden dimension h
with an output size of 2 due to the hot encoding nature of the prediction. Adam
optimizer was used with its default hyperparameter and a common learning rate
of lr=1e-3. The training was iterated for 100 rounds. Subsequently, the model
is evaluated using the test sample using an F1 score, which is the distributed
accuracy of precision and recall. Three different sizes of d and h were carried out
to test which dimension size is capable of capturing the context of the knowledge
graph for better accuracy. In Table 2 shows the score based on the different
hyperparameters. Given the result in Fig. 6, it is apparent that the most optimal
hyperparameters are d and h are 16 and 8, respectively.

Table 2. Comparison results the proposed SCNN model and other common classifica-
tion algorithms.

Dataset d=8,h=4 d=16,h=8 d=32,h=16 d=64,h=32

PROTEINS 0.649 0.792 0.899 0.801

IMDB BINERY 0.753 1.0 0.899 0.899

REDDIT BINARY 0.584 0.898 0.792 0.697

Fig. 6. A comparison graph of the score for different hyperparameters selected

We then compared the effectiveness of our technique with six different meth-
ods, which included both supervised and unsupervised procedures, using the
equivalent hyperparameters. The evaluation metric used for this result is the F1
score metric, since we are concerned about the distributed accuracy. The results
are shown in Table 3. We can obtain these by utilizing the confusion matrix we
got from our model, and we can get the average F1 score for the results among
the three different datasets. The result indicates that our model correctly clas-
sifies the data with an average F1 score of 0.89, demonstrating that the SCNN
outperforms the other classification models. The PROTEIN and IMDB datasets

278 I. A. K. Tuhin et al.

Table 3. Comparison results the proposed SCNN model and other common classifica-
tion algorithms.

Method PROTEIN IMDB REDDIT Average

GRAPH+CNN+SIM(SCNN) 1.0 1.0 0.67 0.89

GRAPH+CNN 0.899 0.792 0.375 0.689

Multinomial NB 0.899 0.899 0.697 0.832

Logistic Regression 0.899 0.899 0.451 0.75

K-Means 0.293 0.293 0.375 0.32

K-Neighbours Classifier 0.697 0.697 0.333 0.576

receives similar F1 Score among the other classification models, except for the
largely linked graph data like the REDDIT Dataset. However, this is not the
case for SCNN, as it was able to accurately classify the REDDIT dataset with
an F1 score of 0.67.

Other models, such as Multinomial Nayev Bayes, Kmeans, and K-Nearest
Neighbors, do not perform well for a wide range of graph topologies, which
could be due to a lack of appropriate datasets. It indicates that, with only a few
training samples, our model is capable not only of performing well, but also of
tailoring to a wide diversity of graph data formats.

5 Conclusion

In this paper, we proposed a solution in this research for dealing with the short-
age of datasets in the digital forensic domain. The framework we established is
crucial for the development of a technique that can aid in the classification of
cybercrime in a Digital Forensics Investigation. This uses a similarity learning
approach to automatically understand attack patterns, which uses deep learning
technology to forecast accurately without the need for a significant amount of
data. Our proposed approach enables forensics professionals to predict the type
of cybercrime with which they are dealing quickly and efficiently to investigate
cybercrime offenses. The results show that the established approach can save
time and eliminate the need for manual reporting. It aids in early detection of a
crime, even with limited data. This is an important mechanism that investiga-
tors can use to forecast cases and begin taking action. This could also potentially
shorten the learning curve for new cybercrime detectives.

This paper has led to many interesting future works. For example, it is inter-
esting to extend the approach by including real-world cyber-forensic data that
can be converted into a knowledge graph. Expert investigators can also use the
human-in-the-loop approach to correct incorrectly predicted classifications. This
will be a fantastic contribution to the cyberforensic world as the number of data
coming in increases. Finally, to forecast unseen crimetypes, an approach such as
detection of novel categorisation can be used.

Smart Cybercrime Classification for Digital Forensics with Small Datasets 279

Acknowledgement. The research work described here is funded, in part, by Sin-
gapore’s National Research Foundation(NRF) National Cybersecurity R&D Grant
GC2018-NCR-0008.

References

1. Montasari, R.: CDFIPM. University of Derby, United Kingdom (2021)
2. Nouh, M., Nurse, J.R., Webb, H., Goldsmith, M.: Cybercrime investigators are

users too! (2019). arXiv preprint, arXiv:1902.06961
3. Nadeem Ali, M.: Crime detection using digital forensic technology. Int. J. Comput.

Sci. Inf. Secur. 14, 01 (2016)
4. Henseler, H., Hyde, J.: Technology assisted analysis of timeline and connections in

digital forensic investigations. In: LegalAIIA@ ICAIL, pp. 32–37 (2019)
5. Papastergiou, S., Mouratidis, H., Kalogeraki, E.-M.: Handling of advanced persis-

tent threats and complex incidents in healthcare, transportation and energy ICT
infrastructures. Evol. Syst. 12(1), 91–108 (2021)

6. Iqbal, S., Alharbi, S.A.: Advancing automation in digital forensic investigations
using machine learning forensics. Digit. Forensic Sci. 3 (2020)

7. Hughes, N., Karabiyik, U.: Towards reliable digital forensics investigations through
measurement science. Wiley Interdisc. Rev. Forensic Sci. 2(4), e1367 (2020)

8. Polachowska, K.: 12 challenges of AI adoption, January 2022
9. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness

of data in deep learning era. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 843–852 (2017)

10. Grajeda, C., Breitinger, F., Baggili, I.: Availability of datasets for digital forensics-
and what is missing. Digit. Investig. 22, S94–S105 (2017)

11. Andrew, N.: Ai doesn’t have to be too complicated or expensive for your business,
August 2021

12. Studiawan, H., Sohel, F., Payne, C.: A survey on forensic investigation of operating
system logs. Digit. Investig. 29, 1–20 (2019)

13. Sharma, A., Sharma, S.: An intelligent analysis of web crime data using data
mining. Int. J. Eng. Innovative Technol. (IJEIT) 2(3) (2012)

14. Mohammad, R.M.A.: An enhanced multiclass support vector machine model and
its application to classifying file systems affected by a digital crime. J. King Saud
Univ. Comput. Inf. Sci. 34(2), 179–190 (2019)

15. Kanimozhi, N., Keerthana, N., Pavithra, G., Ranjitha, G., Yuvarani, S.: Crime type
and occurrence prediction using machine learning algorithm. In: 2021 International
Conference on Artificial Intelligence and Smart Systems, ICAIS, pp. 266–273. IEEE
(2021)

16. Silva, S., Pereira, R., Ribeiro, R.: Machine learning in incident categorization
automation. In: 2018 13th Iberian Conference on Information Systems and Tech-
nologies, CISTI, pp. 1–6. IEEE (2018)

17. Ch, R., Gadekallu, T.R., Abidi, M.H., Al-Ahmari, A.: Computational system to
classify cyber crime offenses using machine learning. Sustainability 12(10), 4087
(2020)

18. Jin, X., Han, J.: K-Means Clustering, pp. 695–697. Springer, US (2017)
19. Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for

discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

http://arxiv.org/abs/1902.06961

280 I. A. K. Tuhin et al.

20. Shrestha Chitrakar, A., Petrović, S.: Efficient k-means using triangle inequality
on spark for cyber security analytics. In: Proceedings of the ACM International
Workshop on Security and Privacy Analytics, pp. 37–45 (2019)

21. Joy, A.: Pros and cons of unsupervised learning, August 2021
22. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. SEMANTiCS

(Posters, Demos, SuCCESS) 48(1–4), 2 (2016)
23. Linkurious, Graph visualization: why it matters (2022). https://linkurious.com/

blog/why-graph-visualization-matters/, (accessed 12 January 2022)
24. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of

approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

25. Noel, S., Harley, E., Tam, K.H., Limiero, M., Share, M.: Cygraph. In: Handbook
of Statistics, vol. 35, pp. 117–167. Elsevier (2016)

26. Adderley, N.A.: Graph-based temporal analysis in digital forensics. Theses and
Dissertations, 2241 (2019)

27. Pinheiro, M.: Graph theory for cybercrime: a note. Mod. Int. J. Pure Appli. Math.
1(2), 30–37 (2017)

28. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:
Tudataset (2020). arXiv preprint, arXiv:2007.08663

29. Eberle, W., Holder, L., Graves, J.: Using a graph-based approach for discovering
cybercrime. In: FLAIRS, January 2010

30. Tong, F.: Graph embedding for deep learning (2021). https://towardsdatascience.
com/overview-of-deep-learning-on-graph-embeddings-4305c10ad4a4, (accessed 12
January 2022)

31. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.:
Graph2vec (2017). arXiv preprint, arXiv:1707.05005

32. Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative study of CNN and RNN for
natural language processing (2017). arXiv preprint, arXiv:1702.01923

33. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-
shot image recognition. In: ICML Deep Learning Workshop, Lille, vol. 2 (2015)

34. López, F.: Text classification with CNNS in Pytorch, December 2021
35. Unknown, “scikit-learn” (2022)
36. Al-Khater, W.A., Al-Maadeed, S., Ahmed, A.A., Sadiq, A.S., Khan, M.K.: Com-

prehensive review of cybercrime detection techniques. IEEE Access 8, 137293–
137311 (2020)

https://linkurious.com/blog/why-graph-visualization-matters/
https://linkurious.com/blog/why-graph-visualization-matters/
http://arxiv.org/abs/2007.08663
https://towardsdatascience.com/overview-of-deep-learning-on-graph-embeddings-4305c10ad4a4
https://towardsdatascience.com/overview-of-deep-learning-on-graph-embeddings-4305c10ad4a4
http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1702.01923

Auditable, Available and Resilient Private
Computation on the Blockchain via MPC

Christopher Cordi1, Michael P. Frank1, Kasimir Gabert1, Carollan Helinski1,
Ryan C. Kao1, Vladimir Kolesnikov2(B), Abrahim Ladha2,

and Nicholas Pattengale1

1 Sandia National Laboratories, Albuquerque, NM, USA
2 Georgia Institute of Technology, Atlanta, GA, USA

kolesnikov@gatech.edu

Abstract. Simple but mission-critical internet-based applications that
require extremely high reliability, availability, and verifiability (e.g.,
auditability) could benefit from running on robust public programmable
blockchain platforms such as Ethereum. Unfortunately, program code
running on such blockchains is normally publicly viewable, rendering
these platforms unsuitable for applications requiring strict privacy of
application code, data, and results.

In this work, we investigate using MPC techniques to protect the pri-
vacy of a blockchain computation. While our main goal is to hide both
the data and the computed function itself, we also consider the standard
MPC setting where the function is public.

We describe GABLE (Garbled Autonomous Bots Leveraging Ether-
eum), a blockchain MPC architecture and system. The GABLE architec-
ture specifies the roles and capabilities of the players. GABLE includes
two approaches for implementing MPC over blockchain: Garbled Circuits
(GC), evaluating universal circuits, and Garbled Finite State Automata
(GFSA).

We formally model and prove the security of GABLE implemented
over garbling schemes, a popular abstraction of GC and GFSA from (Bel-
lare et al., CCS 2012).

We analyze in detail the performance (including Ethereum gas costs)
of both approaches and discuss the trade-offs. We implement a simple
prototype of GABLE and report on the implementation issues and expe-
rience.

This work was supported by the Laboratory Directed Research and Development pro-
gram at Sandia National Laboratories. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for NNSA
under contract DE-NA0003525. This report describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in this report do
not necessarily represent the views of the U.S. Department of Energy or the United
States Government. Approved for public release SAND2022-3532 C.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 281–299, 2022.
https://doi.org/10.1007/978-3-031-07689-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_22&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_22

282 C. Cordi et al.

1 Introduction

Current programmable blockchain platforms such as Ethereum provide a “global
computer,” an always-on public computing resource. They guarantee reliability,
availability and auditability for computations implemented as smart contracts,
which are posted to the blockchain and subsequently executed. Even in the event
of a widespread disaster, any still-functioning part of the Ethereum network
renders this computing resource available. Organizations can take advantage
of such a robustly available computing facility to execute particularly mission-
critical computational tasks, if this computation can be done privately.

We note that the performance of secure multiparty computation (MPC) has
been steadily improving and is practical today even for large functions/inputs.

In this work, we explore the motivation, use cases, architectures, and con-
structions for securing (i.e. ensuring privacy of) a sensitive computation done on
sensitive inputs on a public blockchain network using MPC techniques.

We present GABLE (Garbled Autonomous Bots Leveraging Ethereum), an
architecture and a system for running MPC on the Ethereum blockchain. We
consider two different base approaches, garbled finite state machines/automata
(GFSA), and garbled circuits (GC); we present both in a unified manner as
garbling schemes. We show how functions can be computed privately. At a high
level, in our architecture there are four types of players, or participant roles:

1. Garbler is a player who generates encrypted function and input encodings,
publishes the former on Ethereum, and distributes the latter to other players.
Garbler may be a single trusted entity or run distributedly, e.g., by an MPC
over a private chain.

2. Input Provider or Writer is a player who contributes (encrypted) inputs to
the computation.

3. Input Unlocker or just Unlocker is a designated player that manages encrypted
inputs, preventing input providers from learning unauthorized information
about the computation and adapting their input based on it.

4. Output Recipient or Reader is a player who may obtain a designated output
from the computation.

We emphasize that players may play several of these logical roles simultaneously
(with some exceptions; cf. trust model Sect. 2.3). For example, an input provider
may also be an output recipient.

1.1 Motivation

Existing public programmable smart-contract blockchains such as Ethereum pro-
vide a highly robust and accessible computing platform. An entity whose opera-
tions may require execution of business or strategic logic that needs to function
(using inputs from various sources) with a high degree of assurance of its reli-
ability and availability may implement that functionality as a smart contract
running on a blockchain. Another desirable blockchain property is auditability,
due to the generally immutable nature of data committed to a consensus chain.

Auditable, Available and Resilient Private Computation 283

However, the deploying entity may wish to keep private the following com-
putation data and metadata:

– Input values provided to the computation, including their semantics.
– The nature of the computation that is being performed on the inputs. Most

generally, we may wish for all information about the structure and function
of the computation to be obscured.

– Any internal data within the computation.
– Semantics of any intermediate or final outputs produced by the computation.

Most of these features are implied by standard MPC properties, while hiding
the computed function is the goal of Private Function Evaluation (PFE) [25].

Use Cases. We outline two use-case scenarios which illustrate the potential
usefulness and practicality of our system. Of course, many others are possible.

Sealed-Bid Auctions: Auditability and Security. Consider a simple sealed-bid
auction with simultaneous bidding, where the soundness of the computation
may be fully audited after the fact, if needed. This may be useful, e.g., in public-
interest auctions, such as auctioning airwaves to cellular providers, or electricity
delivery contracts to utilities. Other cases (e.g., auctioning of a privately-held
company to a select set of bidders) may demand strict privacy.

While such auctions may be easily run via an MPC, running them on a block-
chain offers a much higher level of transparency and trust (and user engagement)
than more traditional means of execution. We report some analysis of costs for
our methods on simple multi-bidder auctions in Sect. 5.

Transactive Energy. Refers to market-based mechanisms for managing the
exchange of energy in a wide-area electrical grid [32]. Participants in such a mar-
ket, e.g., utility companies, may wish to engage in automatic electronic nego-
tiation without revealing their strategies. A capability such as GABLE could
provide a solution. Each participant deploys their own garbled bot expressing
their private negotiation strategy; these bots then negotiate with each other on
the public blockchain, while hiding their internal negotiation strategies.

Private-Public Chain Integration. The encrypted function may be generated
(garbled) by an MPC executed over a private network. This assures trust in
the garbling, facilitates future opening of the secure computation (auditing) if
needed (cf. Sect. 2.3), and integrates public and private chains.

1.2 Contribution

Blockchain and MPC technologies provide essentially complementary features to
a computation. A blockchain assures availability (ability to provide input, com-
pute, and retrieve the output when needed) and reliability (including assurance
that only authorized players can submit input and that the output of the com-
putation is correct), even if direct communication channels among the parties

284 C. Cordi et al.

are cut. MPC ensures privacy and correctness, guaranteeing partial reliability
(output correctness) but nothing about availability.

Our system, GABLE (Garbled Autonomous Bots Leveraging Ethereum)
combines the best of the two technologies. In our security model, we require
not only the data, but, optionally, also the computed function to be private
(standard MPC evaluates publicly known functions). In this work, we:

– Design a general architecture for available and resilient MPC over the Ethe-
reum blockchain. It allows authorized players to submit inputs at any time,
and to retrieve outputs as soon as they are available. Our design specifies the
roles and capabilities of the players.

– Design two approaches for implementing MPC on the blockchain: Garbled
Circuits (GC), including GC evaluating universal circuits, and Garbled Finite
State Automata (GFSA).

– Formally state and prove the security of our system against malicious players.
Note, we do not formally define the properties of auditability, availability
and resilience of the computation. They are derived from the corresponding
intuitive properties of the underlying Ethereum blockchain. We specifically
discuss achieving auditability in Sect. 2.3.

– Analyze in detail the performance characteristics (including gas costs) of both
approaches and discuss the trade-offs.

– Implement a simple prototype and several demonstration applications, and
report on the implementation issues and experience.1

1.3 Results and Evaluation

We prototyped GABLE using GFSA and experimented on an Ethereum testnet.
See Sect. 5 for details of our experiments and results; here, we summarize our
findings. First, a simple provenance-tracking application scenario was modeled
using 5 cycles of reactive functionality in a simple 6-state FSA; the cost to run
this demo on the Ethereum mainnet would have been less than US$3.00 on the
day of the test. Next, we demonstrated a 5-state machine implementing MPC for
the classic 2-party “Millionaire’s Problem” for configurable input lengths based
on a bit-serial comparison algorithm; the cost of that demo would have been
about $0.50 per bit of input, and can be further reduced. Finally, we compared
costs for GFSA versus a garbled universal circuit (GUC) implementation on a
multi-bit auction problem, showing that the cost overhead of GUC grows only
modestly (polylogarithmically) with the number of bidders, as expected, and
becomes less expensive than GFSA for B > 7 bidders, at which point the cost
is about $20 per bit of price data. Note, GC without functional privacy would
cost far less.

1 A reference implementation of our initial prototype has already been publicly
released [21], and wider licensing/availability of a more complete code base is under
consideration.

Auditable, Available and Resilient Private Computation 285

1.4 Outline of the Paper

We presented the motivation and several use cases above in Sect. 1.1, and pre-
viewed our contribution and results in Sect. 1.2 and Sect. 1.3. We present prelim-
inaries in Sect. 1.5 and discuss related work in Sect. 1.6. We provide a high-level
overview of our approach in Sect. 2, including defining the logical players, the
trust model, and security intuition. A generic security statement and theorem are
outlined in Sect. 3, and specialized for our main GC-based protocol in Sect. 4.
We discuss our prototype and demo implementations and present results and
cost analysis in Sect. 5 and conclude in Sect. 6.

The full version of the paper [18] also includes several appendices that present
some technical details of the GFSA approach used in our early implementations,
the proof of the main security theorem, and additional details of our prototype
implementations and test results.

A much more detailed report on the system design, implementation and
demos, including reference source code for the initial prototype, is available as
a Sandia National Laboratories technical report [21].

1.5 Preliminaries

Blockchain Technology. Bitcoin [28] is a stunningly successful technology, which
generalizes public timestamping (ledger) and smart contracts work and uses
proof-of-work, concepts considered before [19,23,29]. Bitcoin has limited support
for programming digital smart contracts, i.e. it is not Turing-complete. This is in
part due to the possibility of intentional or accidental resource overuse or even
exhaustion as a result of programming issues. The need for a rich programming
language for contracts was nevertheless recognized, and in 2013, the Ethereum
blockchain was proposed [14]. Ethereum addressed the issues stemming from
language Turing-completeness by putting the onus on the programmer/contract
creator, and requiring payment per storage unit and execution step. We imple-
ment our system for Ethereum; our higher-level design is general and will fit
most natural blockchain architectures.

MPC (including Two-Party Computation, 2PC, and the general p-Party Com-
putation), is an area of cryptography that studies protocols which compute
functions over players’ private inputs while revealing nothing except the func-
tion output. MPC has improved dramatically over the past 15 years. The first
proof-of-concept 2PC implementation, Fairplay [27], evaluated only 200 Boolean
gates per second. Today, 2PC implementations can process up to 2–5 million
gates/s [36]. Improvements in the malicious model and in 3PC and MPC are
even more impressive. Recent work reports 3PC techniques that can evaluate
as many as seven billion Boolean gates/second [6]. Research on algorithms and
implementations has firmly transitioned MPC from a theoretical curiosity to a
subject of practical engineering.

We note that 2PC protocols, and specifically Yao’s garbed circuit (GC) tech-
niques [34], are most suitable for use in our setting, because the blockchain itself
can naturally serve as the GC evaluator.

286 C. Cordi et al.

FSA (finite-state automata) comprise a standard but simple model of computa-
tion that differs from Boolean circuits. The FSA model is weaker (some functions
require exponentially larger representation in FSA as compared to circuits). The
primary benefit of GFSA, in the case of sufficiently low-complexity applications,
is simply that obscuring the structure of the computation becomes relatively
trivial, since all computations reduce to a linear sequence of state transition
table lookups, and relatively simple techniques suffice to obscure the topology
of the state graph. As a result, the overhead to achieve functional privacy in
GFSA becomes less than that of garbled (universal) circuits for computations
operating on sufficiently small numbers of bits.

Garbling Schemes and Garbled Functions (GF). We build our approach around
GC and GFSA. They are special cases of garbling schemes, as defined by Bel-
lare et al. [10]. Informally, we will refer to garbling schemes as garbled functions
(GF), similarly to how “GC” refers to both the GC garbling scheme and the
GC approach. We will use the terms “garbled” and “encrypted” function inter-
changeably in this work. The BHR framework defines a garbling scheme as a
tuple of algorithms G = (ev,Gb,En,Ev,De)2 and requires that they satisfy the
following properties:

In addition to the correctness property, BHR define relevant notions of secu-
rity for garbled functions: privacy, obliviousness and authenticity. We refer the
reader to [10] for precise definitions of these standard notions. Here, we infor-
mally summarize these notions.

GF correctness guarantees correct evaluation if all players behave honestly.
GF privacy guarantees that an adversary Adv who sees the garbled function

(e.g. the GC), the encoded inputs and the output decoding information, does
not learn anything beyond the result of the computation.

GF obliviousness guarantees that an Adv who sees the garbled function and
the encoded inputs, does not learn anything. This notion is different from privacy,
which gives Adv the decoding information and allows it to obtain the output of
the computation (and nothing else).

GF authenticity captures Adv’s inability to create from a GF F and its garbled
input X a garbled output Y �= F (X) that will be deemed authentic.

Note, we only need correctness and privacy. The authenticity requirement can
be avoided if we choose to rely on the blockchain to honestly evaluate GF. Oblivi-
ousness becomes unnecessary if the output decoding information d is always pub-
lished (e.g., d is provided to output receivers, who may be corrupted by Adv), in
which case we are never in the setting without d available to Adv.

MPC from GF. Bellare et al. [10] do not systematize the ways one can obtain an
MPC protocol from GF. However, the following (informally presented) natural
2PC construction works, and is proven secure against semi-honest adversaries
in [10], assuming GF is private:
2 In the BHR notation, ev is a reference evaluator for plaintext functions, Gb is the

Garbler, En is the input encoder, Ev is the garbled function evaluator, and De is the
output decoder.

Auditable, Available and Resilient Private Computation 287

Construction 1 (2PC from GF, informal). Gen generates GF F , encoding infor-
mation e, and decoding information d by running Gb. Gen sends F, d to Eval. Gen
and Eval securely (e.g. via Oblivious Transfer (OT)), deliver to Eval the labels of
e corresponding to players’ inputs. Eval evaluates GF by running Ev, and obtains
the plaintext output from garbled output labels and d by running De.

We note that the above construction is secure against malicious Eval, as
long as label delivery remains secure against a malicious Eval. We will use this
property in our security argument.

1.6 Related Work

We briefly discussed relevant MPC and FSA preliminaries in Sect. 1.5. In this
section, we review several systems addressing privacy on the blockchain and
compare them to our approach.

MPC+Blockchain. As we discuss next, many works explore the interplay of
blockchain and MPC. To our knowledge, only YOSO (You Only Speak Once)
MPC [11,22] formally models a public blockchain executing MPC. YOSO devi-
ates from the typical blockchain architecture (e.g., of Ethereum) of all nodes
sharing the same view. Instead, YOSO nodes have private data and are selected
to perform MPC subtasks. If sufficiently large fraction of selected players are
honest, MPC is secure. To protect against adversarial corruption, these players
are hidden: they are unpredictably self-selected (e.g., via mining-like process),
and each MPC subtask consists of computing and sending a single message,
after which they erase their relevant private state. The main technical challenge
of YOSO MPC is sending encrypted messages (e.g. containing internal state and
subtask computation output) to unidentified players who are self-selected in the
future. While YOSO MPC has attractive asymptotic complexity, unfortunately,
it is concretely prohibitively expensive due to the cost of its building blocks. Our
solution, at the cost of much stronger corruption and trust model (e.g., we only
handle non-adaptive corruptions, while YOSO supports adaptive), is far more
efficient and aligns with Ethereum architecture.

On the other hand, permissioned networks, such as Hyperledger, may be run
by a small number of semi-trusted servers, and MPC can naturally be executed
among the servers to achieve full privacy of transactions and contracts. This
direction is explored in [12]. Their approach does not extend to public block-
chains, since an arbitrary number of adversarial nodes may participate in the
public network. Our work can be seen as general MPC on a public ledger for a
restricted use case, where the encrypted function is generated by an organization
trusted by the participants (and whose honesty can be later audited).

Hawk [26] is an architecture for a blockchain that can support private data. It
handles private data using a trusted manager, realized using trusted hardware,
such as Intel SGX. The trusted enclave may be implemented via MPC. It is not
clear who would be the MPC principals to achieve a reasonable trust model;
further (and [26] acknowledges this) this would cause an impractical overhead.

288 C. Cordi et al.

The Enigma system [37] uses MPC protocols to implement support for private
data on a blockchain. They use MPC off-chain to perform computation on shares
of data. We aim to run MPC on-chain for resilience, availability and auditability;
Enigma’s techniques will not achieve these properties.

A line of work explores the interplay of blockchain and (separately exe-
cuted) MPC to achieve fairness in MPC or connect MPC to financial mecha-
nisms directly [5,13,17]. Works such as [33] use blockchain to manage encrypted
inputs to MPC performed by a separate trusted network. Reference [16] con-
siders a blockchain-hybrid MPC model (plain model with available ledger), and
addresses foundational issues of MPC, such as concurrent composability, in this
model. In contrast, in our work, the blockchain itself executes MPC.

Zero-knowledge proofs (ZKP) are widely used both in MPC and in blockchain.
We note that public ledger nodes never prove anything (indeed, the underlying
secret would then be known to everyone). Instead, ZKPs are used by off-chain
entities, such as wallets, to prove correctness of their actions. Several ledgers,
such as ZCash, provide transaction privacy based on ZKPs. This line of work is
ortohogonal to the privacy protection work we consider.

Solidus [15] uses a publicly verifiable ORAM machine to generalize and scale
up the ZKPs for the use case where financial institutions representing many
accounts interact with a ledger.

Blockstream CA [31] use simple ZKPs in conjunction with additive homo-
morphic commitments to manipulate secret data on the ledger. Partial privacy
can be achieved for very simple functionalities (for efficiency, we are constrained
by additively-homomorphic encryption).

In contrast to the above approaches, our solution is general MPC.

Trusted Enclaves. As in the Hawk example above, privacy can be achieved if
one is willing to entrust hardware enclaves, such as SGX. Nodes of the block-
chain network may be equipped with enclaves, which would execute encrypted
contracts on encrypted data. Several other systems, such as Secret Network [4],
also implement this approach. We note that enclave security is a cat-and-mouse
game; in this work, we do not rely on secure enclaves.

2 Overview: Approach and Trust Model

As discussed in Sect. 1, we wish to add privacy of both computations and data to
the process of contract execution on the Ethereum network. Data and function
privacy is normally achieved using an appropriate secure computation proto-
col. However, in the public blockchain setting, the number of network nodes is
unspecified, and MPC privacy guarantees cannot be achieved. Instead, we take
the following approach:

Auditable, Available and Resilient Private Computation 289

2.1 Logical Players and Evaluation Pattern

We consider several logical players:

– The Contract creator or Garbler sets up encryptions of functions and inputs.
It initializes the contract and sends encrypted labels to corresponding input
providers. Garbler can be run by an MPC, e.g. over a private chain.

– Input provider or writer. This player is authorized to interact with a pub-
lished contract (which implements a GF) and provide (garbled) input into
the contract based on the plaintext input it has.

– (Input) unlocker. This player facilitates secure input provision by establish-
ing an extra decryption step (performed by the unlocker) of the submitted
garbled input. This prevents input providers, who posses both input labels on
each input wire, from decrypting the internals of the encrypted computation.
Effectively, use of the unlocker (who we assume does not collude with input
providers) implements a secure OT of the input label based on the input.

– Evaluator. This player (implemented by the blockchain itself) evaluates the
GF by executing the contract created by the contract creator on garbled
inputs provided by the input providers. (By its nature, the blockchain also
generates an indelible public archive of the contract’s execution, including
garbled inputs and outputs.)

– Output recipient or reader. This player is authorized to receive the output of
the computation. It is also possible to make the output available to all.

2.2 Approach

In our approach, the blockchain network itself plays the role of the Evaluator
Eval of the GF (either a garbled circuit or a garbled FSA, in this work).

GF Generation and Contract Publishing. The computed function is first repre-
sented as a Boolean circuit or FSA. Then it is garbled within the BHR frame-
work [10], resulting in a GF (e.g., GC or GFSA).

The GF is assumed to be honestly generated by an agent of a contract creator,
Gen. We note that Gen possesses all secrets of the encrypted function and there-
fore is able to infer the internal state of the (plaintext) computation, should
it ever gain access to the encrypted evaluation. Therefore we assume that all
the secrets of the (small and self-contained) computation performed by Gen are
securely deleted3. That is, we assume that Gen produces GF F , encoding infor-
mation e and decoding information d. Upon delivery (as we discuss next) of e
and d to the blockchain network players, and of F to the contract, Gen securely
erases all its state (perhaps except F and d). We note that secure deletion of
Gen’s state is not needed if audit may be desired or it is allowable for Gen to
inspect the details of the evaluation, such as inputs, intermediate states, etc.

3 If we require auditability of MPC, this information must be securely stored instead
of being deleted. Then, upon audit, the generated GC can be reconstructed, and its
correctness and correctness of MPC execution verified. See Sect. 2.3 for details.

290 C. Cordi et al.

Input Provision. As plaintext input becomes available to input providers, they
may enter the corresponding garbled input labels into the contract. To do this, in
the GC case, they must have access to both garbled labels for each Boolean input.
This would present a serious security problem if not addressed. A player who
knows more than one label of a wire may infer unallowed plaintext information.
In addition to passively learning private information, the attacker may adaptively
substitute its input, thereby affecting the correctness of the computation as well.

We address this issue by introducing and using unlockers, logical players
who help manage input labels. Thus, the process of input provision proceeds as
follows (we specify it for the case of GC; the GFSA case is analogous):

1. Gen generates GF and corresponding input labels, w0
i and w1

i , represent-
ing two labels for each Boolean input wire Wi. Gen encrypts these labels
with unlocker key ku. For each input wire Wi, Gen gives the two encryptions
Encku

(w0
i), Encku

(w1
i) to the input provider responsible for the wire Wi. Gen

gives the unlocker key ku to the unlocker associated with Wi.
2. When the input provider is ready to submit the (encrypted) input b ∈ {0, 1}

on wire Wi, it publishes to the contract Encku
(wb

i), the encrypted label cor-
responding to its input b, received from Gen.

3. When notified (e.g., off-chain or by the blockchain, or in response to moni-
toring the blockchain), the unlocker retrieves Encku

(wb
i) from the contract,

decrypts it with the key ku received from Gen, and publishes wb
i to the con-

tract.

Secure Evaluation and Output Delivery. Once all inputs are provided to the
contract, the contract is evaluated by the blockchain and the (encrypted) output
is produced. Anyone may inspect the encrypted output, and only authorized
players (those who received d, or corresponding portions of d from Gen) may
decrypt and obtain the plaintext output.

Reactive Functionalities. We stress that the computation need not be one-shot.
It is natural to consider multi-staged evaluation, where intermediate outputs
may be provided to output recipients, and function state propagated across the
stages. This is easy to achieve with obvious variations of GF evaluation. One
approach to this is illustrated in Fig. 1. We prove security only for one-shot
functionalities. Proofs can be naturally extended to the reactive case.

2.3 Trust Model

After having described the players and their actions, we are now ready to specify
the trust model. There are two main assumptions:

– We assume that the contract generator acts honestly and securely erases its
state after completion of its task. Note, this is immediately achieved if garbler
is implemented as MPC e.g., run on a private chain.

– Input providers do not collude with corresponding unlockers. That is, we allow
arbitrary collusions of players, but a set of colluding parties may not include
an input provider and an unlocker for the same wire/GFSA step.

Auditable, Available and Resilient Private Computation 291

Fig. 1. Reactive execution of garbled machines by blockchain contracts. The
gray region represents the full machine execution, which may require one or several
contracts. The green sub-region represents operation within one application cycle, each
of which may accept new inputs and produce new intermediate outputs. The blue
rectangle represents a garbled state-update function that maps (old state, input) to
(new state, output); this block can be implemented either using a (monolithic) gar-
bled FSA transition table, or as a traditional GC (the latter requiring a projective or
bit-vectorized state encoding). It must be garbled separately for each cycle. In this
conception, S denotes a set of players called Starters authorized to configure the ini-
tial state, and each cycle t may have its own sets of authorized input providers W(t),
unlockers U(t), and output recipients R(t). The Finishers F and Final Readers Rfin are
only required if there is a final output that is supposed to be visible to a broad audi-
ence including the other players, but where the other players may have a disincentive
to reveal the specific output value to that audience. (Color figure online)

Security Against Cheating Gen: Audits, Covert [8] and PVC [7,24] Security.
We assume that Gen behaves honestly and, further, erases its state. In some
scenarios, it may be desired to open the computation at a later stage, e.g.,
for audit purposes. This can increase trust in Gen and the transparency of the
process. Of course, the auditor (or the public, if the computation is opened to
the public) will learn the inputs of all players. Release of this information may
be acceptable, e.g., in situations where inputs are sensitive only for a certain
duration of time.

Auditing of Gen is easily achieved by requiring Gen to generate everything
from a PRG seed and to securely store the seed. During audit, the seed is revealed
and the auditor verifies that all actions of Gen are consistent with the seed
(this may require participation of unlockers and input providers). Because GC is
secure against a malicious evaluator, honest generation of GC implies correctness
and security against malicious players in the collusion model described above.

292 C. Cordi et al.

In the case when the function is public, we can also easily achieve covert [8] or
even publicly verifiable covert (PVC) [7,24] security. Following the ideas on [8],
covert security can be achieved by requiring Gen to produce two GFs and sets
of inputs; the blockchain network, e.g. via a randomness beacon, challenges to
open one of them, verifies its correctness, and evaluates the unopened GF. PVC,
a strengthening of the covert model introduced by [7], requires the ability to
prove cheating, in case a cheater was caught. Because the GF and all inputs are
published on the chain, it is easy to collect evidence of cheating. Firstly, we can
require Gen to publish a seed (failure to do so will automatically imply guilt).
Further, it is easy to verify that Gen’s actions are consistent with the seed and
punish it (e.g. via funds slashing) if a violation is detected.

3 Generic Security Statement and Proof

We state the general security theorem for functions implemented as garbled func-
tions and present the proof. The security of our specific construction presented
next in Sect. 4 is an immediate corollary of this general theorem.

Let G = (ev,Gb,En,Ev,De) be a garbling scheme, satisfying correctness and
privacy as defined by [10] (as noted in Sect. 1.5, obliviousness and authentic-
ity are not needed). We additionally require that the decoding information d
is projective4, and decoding each bit calls a hash function, modeled as a Ran-
dom Oracle (RO). Note, standard GC constructions in fact do implement d this
way: output wire’s plaintext value, for example, can be obtained by computing
low bit[H(wi)], where wi is the output label5. Similarly, other garbling schemes,
such as GFSA, can have a decoding function d incorporate a call to RO. We will
use the RO programmability [20] in our simulation.

Theorem 1. Let G = (ev,Gb,En,Ev,De) be a garbling scheme as above.
Let (y0, ..., yp) = f(x0, ..., xq) be the function desired to be computed, such that each
bit of the function output depends on all inputs6. Let Gen be the contract generator,
IP1, ..., IPn be the input providers, U1, ..., Um be the unlockers, and R1, ..., R� be
the output receivers. Assume Gen is honest and generates (F, e, d) = G.Gb and dis-
tributes (F, e, d) to players as described above. Let I ⊂ {IPi, Uj , Rk} be the set of

4 As defined in [10], in a projective garbling scheme, the encoding information is
represented as a list of tokens, one denoting 0, and one denoting 1, for each bit of
the input; an encoding of a player’s input is a collection of the tokens corresponding
to its plaintext input. Similarly, for the output decoding, we say it is projective if
the plaintext output is decoded bitwise in a similar manner.

5 To use low bit[H(wi)] as the decoding function, Gen needs to ensure that
low bit[H(wb

i)] = b. This is easy to do by choosing the output labels from corre-
sponding domains. We stress that this is but one way of implementing d with these
properties.

6 While some functions of interest do not meet this requirement, the functions we con-
sider in this work will: indeed, universal circuit and FSA function outputs depend on
all their inputs.

Auditable, Available and Resilient Private Computation 293

colluding malicious players, such that for no input wire Wi both its input provider
and unlocker are in I.

Then blockchain evaluation of f which computes G.ev as described above, is
secure against a malicous adversary corrupting I.

Proof. For lack of space, we present the proof in the full version of this paper [18].

Remark 1. If an unlocker Uj colludes with a reader Rk, together they can learn
the output of the computation and abort based on it. This is not considered
a vulnerability in the standard notion of simulation-based security. Note, if we
wish to avoid such adaptive abort, we can require that no unlocker colludes with
any reader.

4 Instantiations and Security Proofs

Construction 2 (UC GC-based). Our main construction is the instantiation
of the generic GF-based construction described above in Sect. 2 based on the
following choice of underlying primitives/schemes:

Let f be a function to be computed on the blockchain. Let C be a Univer-
sal Circuit computing f . Let G be the classic Yao GC garbling scheme with
point-and-permute [9] and projective decoding function as specified in assump-
tions of Theorem1.

Having proven a generic security theorem (Theorem 1) for computing func-
tions represented by arbitrary garbled functions, the proof of security of our
main protocol, which is GC-based, is an immediate corollary of Theorem1.

Theorem 2. Assume all assumptuions of Theorem1 hold, including the collu-
sion assumptions. Then Construction 2 is secure in the malicious model against
collusions specified in Theorem1.

Proof. Proof is an immediate corollary of Theorem 1 and the fact that the under-
lying GC scheme used in 2 satisfies the required assumptions of Theorem 1. ��

Other Instantiations and Proofs are Analogous. In particular, GC-based
instantiation is the same as UC GC with the exception of garbling the circuit
C, and not necessarily a UC. A garbled FSA offers a reasonable performance
for simple functions compared to UC GC. In an appendix of the full version [18]
we cast a one-shot evaluation of GFSA as a GF in the [10] notation. A GFSA-
based GF satisfying privacy and correctness can be used as a basis of our general
construction.

5 Prototype Implementations and Test Results

To illustrate our approach and assess its real-world cost, we implemented a simple
prototype and several demonstration applications. Specifically, an implementa-
tion of the GFSA approach (see full version [18]) was developed, for simplicity,
and applied to several demo applications represented as finite state automata.

294 C. Cordi et al.

Fig. 2.Base FSA used in Millionaire’s Problem demo. In this version, players AB
supply bits of their input values simultaneously, least-significant bit first, on successive
cycles. In the final cycle, after L time steps have passed, a Finisher (as in Fig. 1) supplies
a special “Finish” symbol � which makes the final result readable by both parties.

The prototype Garbler, implemented in Python, takes a simple JSON-format
description of an FSA transition function and translates it to a sequence of gar-
bled tables, one for each state update cycle (time step). After garbling, another
Python script translates the garbled machine data to source code in the Solid-
ity programming language for a smart contract for the Ethereum platform; this
contract includes the garbled tables as static data, together with a generic Execu-
tor which accepts garbled input values from input providers and evaluates the
garbled machine, producing garbled outputs which can then be interpreted by
authorized output recipients.

We used the popular Truffle tool suite, which provides a framework for Eth-
ereum development, to develop, test and deploy (on a private test network, and
later on the Ethereum mainnet) several prototypes and demonstrations, which
we now discuss.

We implemented a provenance tracking demo, presented in detail in the full
version [18]. Next we discuss our implementation of the millionaires problem.

5.1 Millionaires’ Problem Demo

This demo executed a 5-state machine (Fig. 2) implementing MPC for Yao’s
classic 2-party “Millionaires’ Problem” [35] with bit-serial inputs. Before we had
added Unlockers, to achieve MPC fairness (the last player to move possesses an
informational advantage due to his ability to look ahead at final outputs), we
invoked a special extra player “Finisher” (separate from the 2 normal parties)
that acts to reveal the result. (See also Fig. 1).

Auditable, Available and Resilient Private Computation 295

Extending this line of argument, we observe that every step (input provision
and corresponding GFSA state update) of the GFSA execution may exhibit the
following similar vulnerability: the input provider may see the immediate effect
of its input, such as such as whether the next FSA state depends on its input.
This issue can be resolved by state-graph transformations, which increase the
size of the state machine. In one version that we tested, each additional bit
of input length cost almost exactly 2 million gas units to store the additional
garbled machine data (since each time step has to be garbled separately), which
was about $0.50 worth of Ethereum on the day of that test. With some overhead,
the total cost to run an FSA for a 32-bit, two-party Millionaire’s Problem was
75 million gas, corresponding to roughly US$75 or so given typical prices at
that time. That demo required spreading out the GFSA data over multiple
smart contracts, due to Ethereum contract size limits.7 Reimplementing this
same demo using Unlockers for each input and an optimized 2-state FSA allowed
us to reduce the gas cost to ∼$12.

5.2 Configurable Garbled Universal Circuit (GUC) Method

To let us handle applications of a complexity beyond the reach of the GFSA
approach in future implementations of GABLE, a simple approach was designed
to implement a garbled circuit (GC) for (configurable) universal circuits (UCs).
Figure 3 illustrates our basic UC approach. Input values here are activated using
Unlockers (not shown), as we described earlier in the paper.

Although implementation of this method is still in progress, careful anal-
ysis of the approach allowed us to already compare its costs to those of the
existing GFSA technique for an example problem, a multi-party auction (gen-
eralized from the Millionaire’s Problem). Figure 4 shows comparison results. As
we expected, cost scales up exponentially with the number of bidders B for
GFSA, but only as Θ(B log2 B) for the GUC. (Circuit width scales as Θ(B),
circuit depth scales as Θ(log B), and the depth of the Thompson network for
each application circuit layer also scales as Θ(log B).) The break-even point with
our implementation falls at B = 7 bidders, where the cost of both approaches is
roughly $20 per input bit.

7 Per EIP-170 (https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md),
a contract’s deployed bytecode size cannot exceed 24,576 bytes.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md

296 C. Cordi et al.

Fig. 3. Concept for configurable universal circuits in multi-step computations.
In this approach, for each layer of application logic, a generalized connection network
such as a Thompson network [30] obscures the interconnect topology. The elements
of that network, together with generic application gates for computing new values of
internal state variables (i.s.v.’s), are configured via truth tables during the garbling
process. Thus, no separate programming input is required for this type of UC, yet the
function of the network remains obscured.

Fig. 4. Cost comparison for GFSA vs. configurable universal GCs for multi-
party auctions. The break-even point occurs for B = 7 bidders, where the cost of
both techniques is about 800 million gas per bit of input length. Prices here assumed
optimistically that we are paying only 1 mETH (or in the ballpark of $0.20) per million
gas; however, after our tests, the average gas price grew substantially higher.

Auditable, Available and Resilient Private Computation 297

6 Conclusion

In this paper, we described a novel approach to performing secure computa-
tion (including functional privacy) on a blockchain. The general approach has
two basic embodiments that we discuss, based on the garbling of finite-state
automata (FSA) and Boolean circuits, respectively. We gave an overview of the
basic structure of the approach, including its participant roles and high-level
procedures, outlined a proof of its basic security properties, and discussed early
implementations and test results.

We found that simple FSA-based applications can be executed privately at
moderate dollar costs on the Ethereum blockchain. For more complex applica-
tions, a simple approach based on a construction we call configurable Garbled
Universal Circuits (GUC) achieves complete functional privacy with costs that
scale as Θ(wd log w) in the width w and depth d of the application circuit, with
reasonable constant factors. We carried out a detailed cost comparison for a
multi-bidder auction application, for which GUC outperforms garbled FSA for
B > 7 bidders, and remains arguably feasible to perform on-chain with full
functional privacy for up to hundreds or even thousands of bidders.

We deployed and executed two GABLE demos on the Ethereum mainnet
in late July and mid-September of 2020.8 The purpose of these tests was to
1) ensure that there were no unforeseen difficulties with real-world deployment,
and 2) validate our cost estimation methodology. Both purposes were realized,
with no surprises. The first deployment [2,3] (July) was a very simple four-state
machine, similar to the supply-chain example discussed in the full version [18].
The second deployment ([1], Sep.) was for a GFSA implementation of a two-party
auction as in Fig. 4.

References

1. Auction contract. Ethereum address 0x98ccd7e190ac28a36d4f065a4f14dc5e0b6

7f5c7

2. Simple executor contract. Ethereum address 0xc8a54a72f187ec444ed08968901284
bbd6d2ec06

3. Simple storage contract. Ethereum address 0x57f1c190982d0a9ecdf7c4703e134d9
eaf347de0

4. The Secret Network. https://scrt.network/. Accessed 25 Jun 2020
5. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-

party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press (May 2014)

6. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp.
805–817. ACM Press (October 2016)

8 Source code for these contracts is at https://github.com/sandialabs/GABLE.

https://scrt.network/
https://github.com/sandialabs/GABLE

298 C. Cordi et al.

7. Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public veri-
fiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
681–698. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 41

8. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-
7 8

9. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press (May 1990)

10. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press
(October 2012)

11. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1 10

12. Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on hyperledger
fabric with secure multiparty computation. In: 2018 IEEE International Conference
on Cloud Engineering (IC2E), pp. 357–363 (2018)

13. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

14. Buterin, V.: Ethereum Whitepaper (2013). http://ethereum.org/en/whitepaper
15. Cecchetti, E., Zhang, F., Ji, Y., Kosba, A.E., Juels, A., Shi, E.: Solidus: confidential

distributed ledger transactions via PVORM. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 701–717. ACM Press (October 2017)

16. Choudhuri, A.R., Goyal, V., Jain, A.: Founding secure computation on blockchains.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 351–380.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 13

17. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: fair multiparty computation from public bulletin boards. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 719–728. ACM
Press (October 2017)

18. Cordi, C., et al.: Auditable, available and resilient private computation on the
blockchain via MPC. Cryptology ePrint Archive, Report 2022/398 (2022). https://
eprint.iacr.org/2022/398

19. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

20. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro,
S.: Random Oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-17373-8 18

21. Frank, M.P., et al.: The GABLE report: garbled autonomous bots leveraging Eth-
ereum. Technical report SAND2020-5413, Sandia National Laboratories (2020).
https://www.osti.gov/biblio/1763537

22. Gentry, C., et al.: YOSO: you only speak once. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84245-1 3

23. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991). https://doi.org/10.1007/BF00196791

https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-642-34961-4_41
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-662-44381-1_24
http://ethereum.org/en/whitepaper
https://doi.org/10.1007/978-3-030-17656-3_13
https://eprint.iacr.org/2022/398
https://eprint.iacr.org/2022/398
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/978-3-642-17373-8_18
https://www.osti.gov/biblio/1763537
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/BF00196791

Auditable, Available and Resilient Private Computation 299

24. Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model (almost)
for free. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
210–235. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 9

25. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8 7

26. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839–858. IEEE Computer Society Press
(May 2016)

27. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party compu-
tation system. In: Blaze, M. (ed.) USENIX Security 2004, pp. 287–302. USENIX
Association (August 2004)

28. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed 25 Jun 2020

29. Szabo, N.: Secure property titles with owner authority (1998). https://
nakamotoinstitute.org/secure-property-titles/. Accessed 25 Jun 2020

30. Thompson, C.: Generalized connection networks for parallel processor intercom-
munication. Technical report, Carnegie-Mellon University, Pittsburgh, PA (1977)

31. van Wirdum, A.: “Confidential assets” brings privacy to all blockchain assets:
Blockstream. Bitcoin Magazine (April 2017). Accessed 25 Jun 2020

32. Wikipedia. Transactive Energy. https://en.wikipedia.org/wiki/Transactive energy
33. Yang, A., Wei, L., Wu, J., Long, C.: Block-SMPC: a blockchain-based secure multi-

party computation for privacy-protected data sharing. In: Proceedings of the 2020
the 2nd International Conference on Blockchain Technology, ICBCT 2020, pp. 46–
51. Association for Computing Machinery, New York (2020)

34. Yao, A.: How to generate and exchange secrets. In: Proceedings of the 27th Annual
Symposium on Foundations of Computer Science, pp. 162–167. IEEE (1986)

35. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science, SFCS 1982, Chicago, IL, USA, pp. 160–164
(1982). https://doi.org/10.1109/SFCS.1982.38

36. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

37. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to
protect personal data. In: IEEE Symposium on Security and Privacy Workshops,
pp. 180–184 (2015)

https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-662-48800-3_9
https://doi.org/10.1007/978-3-540-85230-8_7
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://nakamotoinstitute.org/secure-property-titles/
https://nakamotoinstitute.org/secure-property-titles/
https://en.wikipedia.org/wiki/Transactive_energy
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1007/978-3-662-46803-6_8

Union Buster: A Cross-Container
Covert-Channel Exploiting Union

Mounting

Novak Boskov1(B), Naor Radami2(B), Trishita Tiwari3(B),
and Ari Trachtenberg1,4(B)

1 Boston University, Boston, MA, USA
{boskov,trachten}@bu.edu

2 Ben-Gurion University, Beersheba, Israel
radami@post.bgu.ac.il

3 Cornell University, Ithaca, NY, USA
tt544@cornell.edu

4 Red Hat, Inc., Raleigh, USA

Abstract. Software containers provide a light-weight counterpart to vir-
tual machines, utilizing the native host operating system to efficiently
manage virtualization. Though efficient, this sharing of resources opens
a potentially exploitable communication channel between collocated con-
tainers. To this end, we present a novel class of container isolation attacks
that exploit union mounting, a key infrastructural component that allows
for file system resource sharing among containers. We show that these
vulnerabilities enable an unprivileged attacker, running a container on a
shared commercial platform, to attack vulnerable victim containers on
the same platform. More precisely, we showcase two attacks: one, which
gleans information from the vulnerable containers, and another which
establishes a covert side channel for exfiltrating data from the victim.
Our attack implementations leverage a page-cache attack (CVE-2019-
5489), but the attack surface is intrinsic to the efficiency needs of con-
tainer management, and they apply even to the most recently patched
Linux kernels. Our results highlight the need to rethink the page cache
design in the context of multi-tenant clouds, and we propose some partial
mitigations in this direction.

Keywords: Container security · Cloud security · Covert-channels

1 Introduction

Software containers are widely used for light-weight virtualization in modern
cloud, edge, fog, and Internet of Things (IoT) platforms [11,14,27,31]. The light-
weight properties of these containers enable fast boot times, easy migration, and
storage savings [22], making them a popular resource for a wide variety of com-
puting contexts. For example, Linux container systems typically achieve storage
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 300–317, 2022.
https://doi.org/10.1007/978-3-031-07689-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_23&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_23

Union Buster 301

savings by utilizing union mount file systems [39] to provide an abstraction of
separate file systems despite significant sharing of common files.

As the number of container instances and shared files increase, the storage
cost per container instance goes down [22]. This same storage saving properties
can also result in faster boot times, faster file system mounts, and faster migra-
tion. However, these performance-enhancing properties often come at a price to
the execution isolation, when compared to traditional virtualization techniques
such as virtual machines.

In this work, we show that current container isolation approaches are insuf-
ficient in protecting collocated containers from one another. In particular, we
introduce a novel attack that exploits an interplay between union mount file sys-
tems and the Linux page cache, and allows an unprivileged attacker to exploit
infected containers to extract sensitive information from a victim. An attacker
can then use this side channel to leak sensitive information about the victim
containers or to function as a data mule. We note that this new attack surface
is fundamental to the current design of efficient container architectures, and it
identifies a core trade-off between the container isolation and efficiency. A fix
would thus likely require a significant re-architecture or efficiency loss for mod-
ern container infrastructures.

Contributions

Our main contributions in this work are:

1. Identification and exploitation of a novel covert channel that is fundamental
to the efficiency of popular software container engines.

2. Identification of a related, novel cross-container side-channel.
3. Demonstration of our exploitations in proof-of-concept attacks on the (i)

Docker Engine and (ii) Azure Kubernetes Service within a commercial multi-
tenant cloud.

The attacks described in this work have been responsibly disclosed to
Microsoft Azure and Docker.

Roadmap

The rest of this work is organized as follows. In Sect. 2, we discuss the main
components of the software container technology that we exploit in our attacks,
and relevant related work. In Sect. 3, we introduce the basic elements of our
attack, including our threat model. We then explicate a variety of end-to-end
attacks in Sect. 4, together with experimental evidence of their feasibility. Finally,
we discuss potential mitigations of our attacks in Sect. 5 and conclude with
Sect. 6.

302 N. Boskov et al.

2 Background

We first present a relevant overview of how containers are implemented in Linux
and describe the various isolation and security mechanisms used to prevent collo-
cated containers from influencing one another. We then describe the functioning
of the Linux page cache and detail how the kernel accounts for and evicts pages
in the cache. We end this section with a discussion of CVE-2019-5489 [1], which
we leverage in our proof-of-concept attack implementations.

2.1 Linux Containers

Containers allow a user to create a layer of isolation from a host machine, some-
what like Virtual Machines. Indeed, this isolation, and the resultant security, is
one of the main selling points of container technologies [10]. However, unlike Vir-
tual Machines, containers do not come with their own operating system kernel,
and instead share the kernel of their host operating system.

Linux containers are built using core features provided by the kernel: Linux
Security Modules, Namespaces, and Control Groups. Linux Security Modules
(LSMs) provide additional security checks on top of standard access control, and
include implementations like AppArmor [24] (Ubuntu and Debian distributions),
and SELinux [34] (Red Hat Enterprise Linux). Namespaces are typically used to
isolate process views from one another [7].

Control Groups (or cgroups [35], for short) help limit resource usage of pro-
cesses (memory, CPU, I/O, etc.), and they can therefore help ensure fair utiliza-
tion of container resources running on a common host [35]. Corbet [16] describes
how Linux manages host memory across different cgroups, noting that pages can
be shared across processes in separate cgroups. Indeed, this is an optimization
that the container platform Docker uses to reduce a container’s memory foot-
print. Seeing as similar containers may run from a common base image, Docker
avoids copying all image files for each newly created container, and instead uti-
lizes a union mount file system to share common files, with Copy on Write
(CoW) semantics [19] to handle changes and versioning, as they occur.

Within the union mount file system, each container image consists of one
or more layers, and each layer stores file system state changes with respect to
lower layers. Containers only modify their topmost layers, and modification logic
is typically implemented through the overlay2 container engine driver. This
overlay2 driver (OverlayFS) implements layering in such a way that files in the
inner file system layers are presented as the same inode (i.e., containers observe
the same internal data structure for common files). The design is particularly
significant when considered in conjunction with the Linux page cache design
that repurposes these inodes as indices [12]. This results in page cache sharing
between collocated containers, and allows for cross-container attacks even in the
presence of kernel isolation measures imposed by LSMs and namespaces.

Union Buster 303

2.2 Linux Page Cache

Because disk input/output (I/O) is relatively slow, most operating systems
employ some sort of “page cache” to exploit temporal and spatial locality of
page reads (from disk) and optimize page-fault handling. The operating system
typically stores such frequently used pages by “caching” them in unused areas
of main memory.

On Linux, page cache management is done by maintaining a doubly-linked
list of pointers to those pages cached in memory. This list is divided into two
parts 1) the active list, which contains recently accessed pages, and 2) the
inactive list, which contains pages that are candidates for reclamation. It
is important to note that these lists are global, in the sense that they are
shared among all processes on the system. Initially, the kernel uses the func-
tion lru cache add() to place pages on the inactive list, and then uses
mark page accessed() to move a page to the active list upon access. The
kernel tries to maintain the active list at about two thirds the size of the
inactive list, and uses the refill inactive() to shuttle pages from the
bottom of the active list to the inactive list, as needed, to maintain the
two-thirds ratio [8].

Page reclamation is done from the inactive list. The pages that are evicted
from the page cache are written back to disk, and their corresponding entries
are deleted from the inactive list. Indeed, by maintaining such separate
active list and inactive list, the Linux kernel implements a variant of a
Least Recently Used (LRU) page reclamation policy, wherein the least recently
used pages are generally cleared out first.

2.3 Related Work

Although the idea of light-weight operating system-based virtualization can be
traced back to the roots of chroot in BSD [13] and Solaris Containers introduced
in 2004 [38], it was probably not before the cloud computing boom around
2010s s and the introduction of Docker in 2013 [20] that the concept reached
wide-scale industrial adoption. Nowadays, containers are the de facto standard
for light-weight virtualization in the cloud [14]. It is thus not surprising that
they have also attracted the attention of cybersecurity researchers’ and many
vulnerabilities have been discovered in the process [14,23,32].

Gao et al. [23] considered various information leakages in multi-tenant
clouds originating from operating-system-based resource sharing (as opposed
to hypervisor-gaited sharing among traditional VM-based approaches [41]). Lin
et al. [32] compiled an extensive set of privilege escalation attacks that are pos-
sible in modern cloud deployments. Despite an increasing body of literature on
their security weaknesses [42], software containers remain the popular tool in
the industry, suggesting that perhaps their performance benefits (e.g., reliabil-
ity and efficiency) outweigh their security risks in many use cases. For instance,
software containers were recently proposed as a solution to module isolation in

304 N. Boskov et al.

enterprise applications [28], energy-balancing fog computing architectures [33],
and efficient Internet of Things (IoT) gateways [21].

On the other hand, several researchers [25,43] have recently demonstrated
side-channel vulnerabilities in the Linux page cache. In this work, we continue the
preliminary work in [40] and focus on attacks at the intersection of (i) the exploits
rooted in the design of software containers, (ii) traditional operating-system
optimization techniques, and (iii) modern multi-tenant cloud deployments.

3 Attack Elements

Our attacks utilize the Linux system call mincore to determine cache-based
metadata about files and libraries within the same container, or between separate
collocated containers on a major cloud container platform. This can be used
for information leakage across these entities or for covert communication, as
illustrated in Fig. 1. Despite a superficial resemblance to Yarom and Falkner’s
Flush+Reload [45], our attack relies solely on operating system-level abstractions
(and not the structure of the underlying hardware caches). We next detail the
main elements of our attack, starting with the threat model, continuing through
the page cache attack surface, and ending with a deployment to which our attacks
apply.

(a) Leaking sensitive data from Process A to B.
(b) A covert channel between con-
tainers.

Fig. 1. Two attack scenarios.

3.1 Threat Model

We assume that all relevant containers are created from the same base image
and run a Linux kernel patched against CVE-2019-5489. As a result, we expect
that the unmodified files in the file-system of both these images are shared and
thus accessible through the common page cache.

Union Buster 305

For our covert-channel attacks, we further assume that both attacker and
victim include a payload that allows a) the victim container to leak information,
and b) the attacker to read the information sent (from a covert channel) and
decode it. We note that neither of the payloads on the victim or attacker entities
require special privileges – they can run with simple user-level privileges on the
container. For our side-channel attacks, only the container that spies on the
victim needs to have a payload that allows it to monitor the state of the page
cache.

Though the mechanism for infecting a vulnerable container is explicitly out of
scope for this paper, Table 1 describes various techniques by which this could be
done in the wild, including tampering with public container repositories, using
content injection vulnerabilities, and leveraging vulnerable applications or OS
libraries [2,15,37].

Table 1. Mechanisms to infect the containers.

Threat Vulnerability/Use Case Asset Control Recommendation

Malicious code (source) Injecting malicious code in build environment
Build

environment

Static tool analysis and checking

with DB for open source libs.

Sandbox for checking in runtime.

Malicious code (binaries) Injecting malicious code in build environment
Build

environment

Integrity checking tools.

Comparison and signatures.

Vulnerable code in application
Vulnerable code in build environment from

imported packages, and in dev code
Code

Static tool analysis and checking

with DB for open source libs.

Sandbox for checking in runtime.

Vulnerable libraries in the OS
Vulnerable code in build environment from

imported packages, and in dev code
Code

Static tool analysis and checking

with DB for open source libs.

Sandbox for checking in runtime.

Content Injection
Injecting or replacing existing image in

container repository

Container

repository

Signing every image before storing

in repository and write protection

on existing data.

Repository compromise

Modification and tampering with the whole

repository (e.g. modifying the image, signature

or location)

Container

repository

Protection and access control on

the repository.

Content tampering
Tampering with Docker image content that is

stored in the container repository

Container

repository

Save the images content in an

encrypted and signed fashion.

Deploy malicious container
Deploying malicious container to the same

runtime environment

Production

environment

Allow only signed images to be

deployed.

Allow deployment only from specific

container repo (e.g. ip based).

3.2 Page Cache Attack Surface

The page cache plays a prominent role in the specific implementation of our
attacks, and we next describe some of the ways it can be abused.

Monitoring. There are two typical mechanisms for an attacker to monitor the
state of the page cache. One approach utilizes functions that Linux provides
especially for this purpose, such as mincore [25,43], preadv2, and others [3].

306 N. Boskov et al.

For instance, an attacker could invoke mincore on every page within a shared
victim file to see which pages of the victim are “in core” (i.e., in RAM). The
system call preadv2 can also be used in a similar way with a RWF NOWAIT flag
to check the page cache [29]. The advantage of using dedicated functions is that
their measurements are non destructive, meaning that the act of reading the
cache state does not modify it (unlike previous attacks on other caches [45]).

Eviction. One of the easiest ways to remove a victim page from the page
cache is by using functionality that Linux provides for this very purpose. The
Linux Kernel proc-filesystem contains a file /proc/sys/vm/drop caches, and
writing 1 to this file clears out the entire page cache [4], although containers,
as a security default, cannot write to the /proc directory. To enable a writable
/proc directory, the container needs to be explicitly passed a flag on startup,
which is not a realistic attack scenario. Aside from this, the kernel also provides
posix fadvise [9], which, when invoked on a file with the parameter DONT NEED,
requests a flush of the pages belonging to said file from the page cache. Another
function, madvise, provides similar functionality [6]. However, these functions do
not seem to work reliably within containers. As such, though the usage of these
functions has indeed been possible for some categories of page cache attacks
outside of containers [25,43], it does not seem feasible within our context.

Another method of evicting victim pages involves triggering the kernel’s page
frame reclaimer and coercing it to remove the victim’s pages from the cache. This
can be accomplished in a few different ways. One approach is to increase mem-
ory pressure on the system (e.g., by spawning new processes or by making an
existing process map more and more pages into memory); since the page cache
fills up all unused memory on the system, memory pressure would cause page
evictions. Indeed, this approach is possible because the page cache is globally
shared with no per-process or per-user quotas enforced; instead, the page cache
is “indexed” by inodes, which are unique per file system and deduplicated across
containers. In the extreme case, it is possible for one process to take up almost
all of the page cache by mapping many different pages into memory and contin-
uously accessing them, thereby kicking out pages belonging to other processes.
Variations of these techniques have been attempted in [5], but they suffer from
two limitations: a) they require significant time to evict victim pages (around
8 s according to [25]), and b) they cause the system to become unstable because
they require the attacker to utilize nearly 100% of the system memory [25].

In [26], Gruss et al. demonstrate an improved method of page eviction called
memory waylaying, which takes around 2.86 s to evict a target page on Linux.
Memory waylaying exploits the idea that the attacker does not need to explicitly
map pages into memory in order to monopolize the page cache. Instead, the
attacker can execute the following for every page in a large file:

Union Buster 307

1. Map the page using mmap with read and execute permissions (such pages
have a higher priority in the page cache, and thus are more likely to stay
there);

2. Touch this page in order to bring it into the page cache, since mmap is lazy
and does not actually bring a page into memory until it’s explicitly used; and,

3. Unmap the page.

The attacker does not need to use an existing file that is shared with the victim
to accomplish this attack–any large file will work for this purpose. In this way,
one can evict most pages from the page cache without utilizing too much system
memory. This technique was further improved in [25] to achieve an eviction
time of 0.149 s. In the improved approach, instead of mapping+unmapping pages
from a large attacker-generated file, the attacker can re-use pages that are already
present in the page cache by simply touching them. This has the effect of making
the pages appear to be more frequently used, and, consequently, they are more
likely to stay in the page cache.

CVE-2019-5489. The page-cache side-channel [25,43] is a hardware-agnostic
side-channel that allows an unprivileged process (or service) to spy on other
collocated processes. The main idea behind this attack involves the unprivileged
process regularly polling select pages in the common page-cache, and translating
page-cache residency (or non-residency) into information about the execution
path of the victim process. This attack can allow the attacker to implement
UI redressing, break ASLR, and even guess generated passwords for vulnerable
implementations [25].

Registered as CVE-2019-5489 [1], this attack led to a patch to the mincore
syscall in the Linux kernel, which allows for efficient polling of page-cache pages.
The patch changed the semantics of the mincore system call to reveal only
actively “mapped” pages rather than “cached” pages [17], thus thwarting an
attacker from seeing if particular page is in the page cache.

However, the patch to CVE-2019-5489 ended up causing serious efficiency
issues, and was thus reverted [18] with the following comment:

For Netflix, losing accurate information from the mincore syscall would
lengthen database cluster maintenance operations from days to months.
We rely on cross-process mincore to migrate the contents of a page cache
from machine to machine, and across reboots.

This then led the kernel developmental team to introduce a new patch,
which added an additional permission-checking routine, can do mincore, that
is invoked before mincore to check user permissions. If the user passes the per-
mission checks, they may obtain the output for mincore as before. However, if
the permission checks fail, the user cannot obtain the information that mincore
would otherwise disclose. This permission check is illustrated in the following
code.

308 N. Boskov et al.

1 s t a t i c i n l i n e bool can do mincore (s t r u c t vm area s t ruc t ∗vma)
2 {
3 i f (vma is anonymous (vma))
4 re turn true ;
5 i f (! vma−>vm f i l e)
6 re turn f a l s e ;
7 /∗
8 ∗ Reveal pagecache in fo rmat ion only f o r non−anonymous mappings that
9 ∗ correspond to the f i l e s the c a l l i n g proce s s could (i f t r i e d) open

10 ∗ f o r wr i t i ng ; o therwi se we ’d be inc lud ing shared non−e x c l u s i v e
11 ∗ mappings , which opens a s i d e channel .
12 ∗/
13 re turn inode owner or capab l e (f i l e i n o d e (vma−>vm f i l e)) | |
14 i node pe rmi s s i on (f i l e i n o d e (vma−>vm f i l e) , MAYWRITE) == 0 ;
15 }

The relevant portion of this routine is Line 13, which returns true if the
caller of mincore is the owner of the file that backs the memory region on
which mincore was called, or else if the caller has write permissions to the file.
This basically prevents any user from calling mincore on a file that they do
not exclusively own, or that to which the do not have write permissions (e.g.,
shared-executable files that were exploited in [25]).

However, in the context of containers, this new patch is insufficient. The
container management engine shares common files across different containers
through the Copy on Write mechanism, meaning that each container gets the
illusion of exclusive access even though the underlying file is shared. In other
words, in a container environment, the condition that checks for ownership of
the file will pass and return true even when the actual file is shared across
multiple containers. For files that are rarely modified (e.g., shared-execute only
binaries - ironically the very type of files this patch was meant to protect), this
opens the door for vulnerabilities.

3.3 Target Deployments

The attacks at the core of our work rely upon collocation of two containers
(attacker and victim) on the same virtual machine. One way of achieving such
a collocation is by seeding vulnerabilities within a library that is common to a
variety of containers (e.g., npm [15]), thereby making it likely that at least one
of the infected containers be collocated with an attacker. Another mechanism
for doing this is to repeatedly respawn an attacker container until it is collocated
with a vulnerable container (as ascertained through the page-cache side-channel
described in Sect. 3.2).

For purposes of exposition, we restrict our further deployment discussion to
the Kubernetes framework [30], an extremely popular mechanism for running
workloads on one or more hosts. Note that all containers that share a common
host also share the same cache, thus making them potentially vulnerable to our
attacks. Following container infection, an attacker can identify sensitive data
within the process and then encode it into the page cache, thereby leaking it
out of isolation. The attacker can use the covert channel from Sect. 4.2 as a data
mule to transfer the sensitive data between containers until the data reaches
a container with a web-server (or other outward-facing service, cf. [25]), which

Union Buster 309

Fig. 2. Chained exploitation within Kubernetes

allows exfiltration of the sensitive data out of the deployment context as depicted
in Fig. 2.

4 Attack Implementations

We next describe concrete end-to-end attacks based on the attack elements
introduced in Sect. 3, starting with the simpler side-channel attacks and moving
toward covert-channel attacks. For each attack, we describe the general attack
followed by our own experimental proof of concept.

Our experiments are performed within two environments.

a) Ubuntu and Docker: An environment based on Ubuntu 20.04 and Docker
20.10.7.

b) Azure Kubernetes Service: An environment within the Azure Kubernetes
service, based on Kubernetes version 1.22.6 and whose workload is defined in
the file azure deployment.yaml on out GitHub repository [36].

4.1 Side-Channel Attacks

In our side-channel attack, an attacker container infers the high-level actions of a
victim container using the cache monitoring technique described in Sect. 3. Our
victim and attacker containers are spawned from the same base image and thus
share the same files in their inner layers (see Sect. 2.1).

MySQL Side-Channel. For the first experiment, we choose to monitor the
pages of the MySQL server executable (i.e., the file /usr/sbin/mysqld). The

310 N. Boskov et al.

main goal of our attacker in this experiment is to distinguish between the MySQL
server actions performed by the victim, and, to that end, the attacker seeks
actions whose paths through the executable will result in different page cache
traces. For the purpose of this experiment, the victim chooses between the follow-
ing actions 1) login action using the correct root password, and 2) login attempt
using an incorrect password. We consider the attack successful if the attacker
container has a non-negligible advantage in discerning which of the two possible
victim actions were taken.

4000 6000 8000 10000 12000 14000
Relative Page Number

0.0

0.5

1.0

P
r[
x
pr
es
en

t]

MySQL login traces through /usr/sbin/mysqld
successful
unsuccessful

4000 6000 8000 10000 12000 14000
Relative Page Number

0.0

0.5

1.0

P
r[
x
pr
es
en

t]

MySQL login traces through /usr/sbin/mysqld
successful
unsuccessful

Fig. 3. Probability of page cache residency calculated over 10 experiment runs. The
attacker can distinguish between the successful login into MySQL and an unsuccessful
login attempt in the victim container.

In our experiments, the victim performs one of these two actions, and the
attacker utilizes the page cache residency of its own view of /usr/sbin/mysqld
to discern the action. The results of our experiments are depicted in Fig. 3, where
we note that there exist pages that will certainly be loaded for one action and not
in the other – for instance, the pages 11962–11984 are exclusively associated with
a successful login. On the basis of our experimental evidence, we conclude that
the attacker can reliably infer which of the two actions has been performed by
the victim container, thus compromising container isolation. We further discuss
the limitations of this attack in Sect. 5.1.

Bash Login Side-Channel. Another high-level event of possible interest to
the attacker is the identification of when the victim’s initiates of an interactive
shell within its own container. An attacker can monitor when this happens by
looking for the existence of files specific to a shell session in the page cache. We
demonstrated this capability experimentally on two collocated Ubuntu 20.04
Docker containers. The attacker container identifies the start of the victim’s
interactive shell by applying mincore to monitor the cache activity of /bin/bash
and /etc/bash.bashrc, which are pulled into the page cache by the victim
process.

Union Buster 311

4.2 Covert-Channel Attacks

Encoding and decoding covert messages through the page cache registry is essen-
tial to a successful cover-channel attack. The standard approach for encoding
involves mapping message bits to file pages. For example, a file with 8 pages
with all its pages uncached, could encode the vector “00010100” by reading
(and thereby loading into cache) pages 4 and 6 of the file. A second container
would use mincore to read the file’s page cache status and decode the vector.

Our proof-of-concept exploits are based on some simple example applications
that we have designed (their source code is available at [36]):

1. spy on – An application that outputs the current status of a file’s cache
registry.

2. read page – An application that reads pages of a given file.
3. secret text infected – A malicious code example that encodes the victim’s

password into the page cache.
4. eviction – An application that clears the page cache.
5. reproduce AKS.sh –A script that recreates the scenario using the application

spy on and read page in Azure Kubernetes service.
6. reproduce VM.sh – A script that recreates the scenario using the application

spy on and read page in the environment a) described earlier in this section.

Sensitive Data Leakage from a Process Context. Our first exploit identi-
fies sensitive information within a process context and leaks it out of the process
context. The malicious code inspects the data flowing through the process (e.g.,
user input), and if the data is be identified to be sensitive (e.g., passwords), our
malicious code encodes it bit-wise into the page cache by reading corresponding
pages of a file.

Experiment. In order to experiment with exploiting the vulnerability, we have
written a proof-of-concept application named secret text infected, which
takes as input some text and the name of a shared file or library with which
to encode the secret using the page cache. The code scans the input text for a
potential password, and encodes any such password via the cache registry of the
file. For this experiment we used an nginx container from docker-hub, within
which we included our compiled code. Starting from the attacker-controlled con-
tainer, we executed spy on on the file /usr/sbin/nginx-debug in order to make
sure that the pages of the file are not in the cache. The output of the execution
should be [00..00], or else the pages of this file are already somehow in the
cache. In the latter case, we ran a program eviction in order to cause the cache
to clear out the pages of the file /usr/sbin/nginx-debug.

We verified that the file’s pages are not in the cache by re-executing spy on
on the file. From the victim’s container, we ran secret text infected with the
input text “d!” and the file /usr/sbin/nginx-debug. The program identified
the text as a potential password and encoded the text into the cache registry
of the file by reading specific file pages. Finally, the attacker re-ran spy on on

312 N. Boskov et al.

the file /usr/sbin/nginx-debug and observed [00..11110000110000] as the
result, revealing the encoded secret. This demonstrated our ability to leak a
secret from a process context.

Covert Channel Between Containers. The second exploit we were able
to demonstrate is a covert channel used to mule and transfer data between
containers. The malicious code will use a file shared between the containers to
transfer data through the page cache.

Experiment. The setup included two containers running an nginx container
image from docker-hub, to which we copied our compiled binaries. We first exe-
cuted spy on in Container A on the file /usr/sbin/nginx-debug in order to
make sure that the pages of the file were not in the cache. The output of the
execution should be [00..00], or else the pages of this file are already in the
cache and can be evicted with the program eviction. We verified that the file’s
pages were not in the cache by re-executing spy on on the file. Next we executed
spy on in Container B on the file /usr/sbin/nginx-debug to make sure that
the pages of the file are not in the cache. The output of the execution was again
[00..00].

Once we made sure that the file /usr/sbin/nginx-debug has no pages in
the cache, we executed read page on Container A with the filename /usr/
sbin/nginx-debug and the page number 0 as parameters. This triggered the
last page in the file to be loaded into the cache. We then ran spy on in both
Container A and B one more time. The result on both containers was [00..01],
demonstrating that we can use the page cache registry to create a covert channel
between collocated containers.

5 Discussion

We next discuss some limitations, mitigations, and future directions of our work.

5.1 Limitations

Side-Channel. The side-channel attack we described in Sect. 4.1 requires two
attacker capabilities 1) being able to collocate a malicious container with the
victim, and 2) being able to spawn the container from the same base image as
the victim. If the former is not fulfilled, then the attacker will not share the
page cache and the union mount file system with its victim, which precludes
attacker’s ability to run the attack. On the other hand, if the attacker cannot
spawn the container from the same base image, then there may be no shared files
that the attacker can weaponize. The silver lining is that spawning containers
from different base images may not be in the best interest of a deployment that
aims at maximizing its performance (as we discuss in Sect. 2.1).

Union Buster 313

Covert-Channel. The covert-channel attack we described in Sect. 4.2 relies on
(i) being able to infect collocated containers with malicious code, (ii) being able
to flush the pages of a file from the cache, and (iii) being able to remotely exploit
a container.

Infecting a collocated container may seem challenging, but it is possible if an
attacker performs a broad attack such as infecting a library or a container base
image, as happened recently with the npm attack as described in [15]. Flushing
the page cache is necessary to create an effective covert channel as described
in [25] and Sect. 3.2. However, eviction is not stealthy and might be identified
by monitoring the containers [44,46]. In order to leak data out of a victim’s
infrastructure, its deployment will need to include a container with outbound
network access, such as a web server (see [25]).

5.2 Mitigations

The attack surfaces described in this work are in many ways fundamental to the
vision of the light-weight container environment.

For one, containers are meant to run or layer off common base images, making
the sharing of common files essential to their light-weight nature and reasonable
performance. Without such file sharing, all files across all container layers would
have to be duplicated for each container, significantly diminishing the bene-
fits of such an infrastructure over the relatively heavier-weight virtual machine
approach. The page-cache querying functionality upon which our attack imple-
mentation is based is also not amenable to a simple and efficient correction, as
described in Sect. 3.2. Indeed, unless the efficiencies of a global page-cache are
obviated, one may also use a timing side-channel to infer page cache residence
of different pages (i.e., pages that are cached should be accessible more quickly
than non-cached pages). However, such an attack will be much harder to mount,
since the timing measurement is destructive, i.e., the act of measuring the load
time of a specific page brings the page into the page-cache, thus necessitating
eviction after every measurement. Eviction already presents as a bottleneck of
this attack, thereby rendering a timing based attack much less feasible than the
attack we present.

At its core, our attack shares the style of a Flush+Reload [45] attack, for
which there typically exist two broad mitigation approaches: defense against 1)
the Reload aspect, or 2) the Flushing aspect of the attack. Defending against
reloading would involve eliminating shared pages across processes (and therefore
containers). However, this would also obviate the performance benefits of sharing
pages, making it an impractical solution.

An alternate mitigation would involve complicating the client’s ability to
flush pages across different processes. This would prevent an attacker from flush-
ing the victim’s pages out of the page cache, a step that is critical to executing
multiple iterations of our attacks. This approach would likely require modifi-
cation of the global page replacement policy that Linux employs (described in
Sect. 2). One way to effect this change would be to employ per-process page cache

314 N. Boskov et al.

working sets, and prevent any process from flushing out pages of any other pro-
cess’s working set. By doing so, each process would be constrained to its own
working set such that it cannot affect the others.

Indeed, this is what was done for the Windows operating system in response
to CVE-2019-5489 [1] that arose out of [25]. Since Windows already employs a
similar mechanism, we posit that the performance overhead of such a mitigation
would not be significant, and would be outweighed by the security benefits.
However, we leave a concrete analysis of this to future work.

5.3 Future Directions

During the implementation of our covert channel described in Sect. 4.2 on
Microsoft Azure, it appeared that memory exhaustion in the attacker’s con-
tainer may crash the container, causing the container within the pod to repeat-
edly reboot, meaning that the Kubernetes pod never recovers. Assuming that
the attacker has collocation capabilities similar to those in our covert-channel
threat model, this pattern could allow the attacker to mount a Denial of Service
(DoS) attack on the victim, on demand, by simply performing a memory exhaus-
tion from its own container’s context. As a future direction, we will investigate
the root causes and circumstances for such behavior on Microsoft Azure, and
possibly other platforms that offer Kubernetes services.

6 Conclusion

This work has considered the ability of software containers to isolate their work
from other containers running on the same host. We have demonstrated that
some resource sharing responsible for efficient container implementation may
also be inherently vulnerable to cross-container communication.

Specifically, we have identified a class of side-channel attacks against the
union file system (UFS) that manages file access for containers on a host, and
demonstrated its use in two scenarios between a vulnerable container and an
unprivileged foreign container. In the first scenario, the foreign container can
learn private information about the execution of the vulnerable container, and
in the second scenario, the foreign container colludes through a covert channel
with code injected into the vulnerable container, thereby potentially bypassing
firewalls or intrusion detection systems. In both cases, channel information flows
through metadata about the page channel undergirding the UFS.

Mitigation of this class of attacks may be extremely difficult, as the attacks
flows from an efficiency that is core to container execution. Nevertheless, we have
posed some potential avenues for hardening systems going forward.

Acknowledgments. The authors would like to thank David Starobinski and Aryeh
Kontorovich for early involvement and support of this work. The authors would also
like to thank Red Hat and the Boston University Red Hat Collaboratory for their
support.

Union Buster 315

References

1. CVE-2019-5489. https://access.redhat.com/security/cve/cve-2019-5489. Accessed
21 Oct 2019

2. CVE-2021-44228. https://access.redhat.com/security/cve/cve-2021-44228.
Accessed 28 Mar 2022

3. Defending against page-cache attacks. https://lwn.net/Articles/776801/. Accessed
21 Oct 2019

4. Drop caches. https://linux-mm.org/Drop Caches. Accessed 21 Oct 2019
5. Experiments and fun with the linux disk cache. https://www.linuxatemyram.com/

play.html. Accessed 21 Oct 2019
6. Madvise. http://man7.org/linux/man-pages/man2/madvise.2.html. Accessed 21

Oct 2019
7. Namespaces(7). http://man7.org/linux/man-pages/man7/namespaces.7.html.

Accessed 21 Oct 2019
8. Page frame reclamation. https://www.kernel.org/doc/gorman/html/understand/

understand013.html. Accessed 21 Oct 2019
9. posix fadvise. https://linux.die.net/man/2/posix fadvise. Accessed 21 Oct 2019

10. What is a container? - docker. https://www.docker.com/resources/what-
container/. Accessed 28 Mar 2022

11. Bernstein, D.: Containers and cloud: from LXC to Docker to Kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

12. Bovet, D., Cesati, M.: Understanding the Linux Kernel. Oreilly Associates Inc.
(2005)

13. BSD Developers. Chroot (1982). https://docs.freebsd.org/44doc/papers/jail/jail-
9.html. Accessed 16 Feb 2022

14. Casalicchio, E., Iannucci, S.: The state-of-the-art in container technologies: applica-
tion, orchestration and security. Concurrency Comput. Pract. Expe. 32(17), e5668
(2020)

15. Cimpanu, C.: Malware found in npm package with millions of weekly downloads,
23 October 2021

16. Corbet. Documentation/cgroups/memory.txt (2011). https://www.lwn.net/
Articles/432224/

17. Linux Kernel Developers: “Change mincore() to count “mapped” pages rather
than “cached” pages” (2019). https://gitlab.raptorengineering.com/meklort/talos-
obmc-linux/-/commit/574823bfab82d9d8fa47f422778043fbb4b4f50e

18. Linux Kernel Developers: Revert “Change mincore() to count “mapped” pages
rather than “cached” pages” (2019). https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=30bac164aca750892b93eef350439a0562a68647

19. Docker. About storage drivers (2022). https://docs.docker.com/storage/
storagedriver. Accessed 16 Feb 2022

20. Docker Developers. Docker project (2013). https://www.docker.com/. Accessed 16
Feb 2022

21. Dolui, K., Kiraly, C.: Towards multi-container deployment on IoT gateways. In:
2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE
(2018)

22. Funari, L., Petrucci, L., Detti, A.: Storage-saving scheduling policies for clusters
running containers. IEEE Trans. Cloud Comput., 1 (2021). https://doi.org/10.
1109/TCC.2021.3104662

https://access.redhat.com/security/cve/cve-2019-5489
https://access.redhat.com/security/cve/cve-2021-44228
https://lwn.net/Articles/776801/
https://linux-mm.org/Drop_Caches
https://www.linuxatemyram.com/play.html
https://www.linuxatemyram.com/play.html
http://man7.org/linux/man-pages/man2/madvise.2.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://linux.die.net/man/2/posix_fadvise
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://docs.freebsd.org/44doc/papers/jail/jail-9.html
https://docs.freebsd.org/44doc/papers/jail/jail-9.html
https://www.lwn.net/Articles/432224/
https://www.lwn.net/Articles/432224/
https://gitlab.raptorengineering.com/meklort/talos-obmc-linux/-/commit/574823bfab82d9d8fa47f422778043fbb4b4f50e
https://gitlab.raptorengineering.com/meklort/talos-obmc-linux/-/commit/574823bfab82d9d8fa47f422778043fbb4b4f50e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=30bac164aca750892b93eef350439a0562a68647
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=30bac164aca750892b93eef350439a0562a68647
https://docs.docker.com/storage/storagedriver
https://docs.docker.com/storage/storagedriver
https://www.docker.com/
https://doi.org/10.1109/TCC.2021.3104662
https://doi.org/10.1109/TCC.2021.3104662

316 N. Boskov et al.

23. Gao, X., Gu, Z., Kayaalp, M., Pendarakis, D., Wang, H.: ContainerLeaks: emerg-
ing security threats of information leakages in container clouds. In: 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 237–248. IEEE (2017)

24. Gruenbacher, A., Arnold, S.: AppArmor technical documentation (2007)
25. Gruss, D., et al.: Page cache attacks. In: Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2019, pp. 167–180.
Association for Computing Machinery, New York (2019)

26. Gruss, D.: Another flip in the wall of rowhammer defenses. In: 2018 IEEE Sympo-
sium on Security and Privacy (SP), pp. 245–261. IEEE (2018)

27. Hoque, S., De Brito, M.S., Willner, A., Keil, O., Magedanz, T.: Towards container
orchestration in fog computing infrastructures. In: 2017 IEEE 41st Annual Com-
puter Software and Applications Conference (COMPSAC), vol. 2, pp. 294–299
(2017)

28. Kehrer, S., Riebandt, F., Blochinger, W.: Container-based module isolation for
cloud services. In: 2019 IEEE International Conference on Service-Oriented System
Engineering (SOSE), pp. 177–17709. IEEE (2019)

29. Kerrisk, M.: readv(2) - Linux manual page. https://man7.org/linux/man-pages/
man2/preadv2.2.html. Accessed 29 Mar 2022

30. Kubernetes Develoeprs. Kubernetes. https://kubernetes.io/. Accessed 17 Feb 2022
31. Lin, L., Liao, X., Jin, H., Li, P.: Computation offloading toward edge computing.

Proc. IEEE 107(8), 1584–1607 (2019)
32. Lin, X., Lei, L., Wang, Y., Jing, J., Sun, K., Zhou, Q.: A measurement study on

Linux container security: attacks and countermeasures. In: Proceedings of the 34th
Annual Computer Security Applications Conference, pp. 418–429 (2018)

33. Luo, J., et al.: Container-based fog computing architecture and energy-balancing
scheduling algorithm for energy IoT. Futur. Gener. Comput. Syst. 97, 50–60 (2019)

34. Mayer, F., Caplan, D., MacMillan, K.: SELinux by example: using security
enhanced Linux. Pearson Education (2006)

35. Menage, P.: Cgroups. https://www.kernel.org/doc/Documentation/cgroup-v1/
cgroups.txt. Accessed 21 Oct 2019

36. Novak Boskov Naor Radami. Union buster (2022). https://gitlab.com/
radaminaor/union-buster

37. U.S. Department of Homeland Security. Apache Log4J vulnerability guid-
ance (December 2021). https://www.cisa.gov/uscert/apache-log4j-vulnerability-
guidance. Accessed 28 Mar 2022

38. Oracle. Solaris containers (2005). https://docs.oracle.com/cd/E36784 01/html/
E36848/zones.intro-1.html. Accessed 16 Feb 2022

39. Quigley, D., Sipek, J., Wright, C.P., Zadok, E.: UnionFS: user-and community-
oriented development of a unification filesystem. In: Proceedings of the 2006 Linux
Symposium, vol. 2, pp. 349–362 (2006)

40. Radami, N., Boskov, N., Tiwari, T., Trachtenberg, A.: Stash your cache - cross-
container Linux page cache covert channel (2021). Poster

41. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, CCS 2009,
pp. 199–212. Association for Computing Machinery, New York (2009)

42. Souppaya, M., Morello, J., Scarfone, K.: Application container security guide. Tech-
nical report, National Institute of Standards and Technology (2017)

https://man7.org/linux/man-pages/man2/preadv2.2.html
https://man7.org/linux/man-pages/man2/preadv2.2.html
https://kubernetes.io/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://gitlab.com/radaminaor/union-buster
https://gitlab.com/radaminaor/union-buster
https://www.cisa.gov/uscert/apache-log4j-vulnerability-guidance
https://www.cisa.gov/uscert/apache-log4j-vulnerability-guidance
https://docs.oracle.com/cd/E36784_01/html/E36848/zones.intro-1.html
https://docs.oracle.com/cd/E36784_01/html/E36848/zones.intro-1.html

Union Buster 317

43. Tiwari, T., Trachtenberg, A.: Cashing in on the file-system cache. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, pp. 2303–2305. ACM, New York (2018)

44. Wang, Y., et al.: ContainerGuard: a real-time attack detection system in container-
based big data platform. IEEE Trans. Industr. Inf. 18(5), 3327–3336 (2022)

45. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: 23rd USENIX Security Symposium (USENIX Security 14),
San Diego, CA, August 2014, pp. 719–732. USENIX Association (2014)

46. Zou, Z., Xie, Y., Huang, K., Xu, G., Feng, D., Long, D.: A docker container anomaly
monitoring system based on optimized isolation forest. IEEE Trans. Cloud Com-
put. 10, 134–145 (2019)

Mutual Accountability Layer:
Accountable Anonymity Within

Accountable Trust

Vanesa Daza1,2, Abida Haque3(B), Alessandra Scafuro3,
Alexandros Zacharakis1, and Arantxa Zapico1

1 Pompeu Fabra University, Barcelona, Spain
{vanesa.daza,alexandros.zacharakis,arantxa.zapico}@upf.edu

2 Cybercat, Quebec, USA
3 North Carolina State University, Raleigh, USA

{ahaque3,ascafur}@ncsu.edu

Abstract. Anonymous cryptographic primitives reduce the traces left by
users when they interact over a digital platform. But they also prevent a
platform owner from holding users accountable for malicious behaviour.
Revocable anonymity offers a compromise by allowing only the manager
of the digital platform to de-anonymize a user’s activities when necessary.
However, a misbehaving manager can abuse their de-anonymization power
by de-anonymizing activities without the user’s awareness.

Although previous works mitigate this issue by distributing the de-
anonymization power across several entities, there is no comprehensive
and formal treatment where both accountability and non-frameability
(i.e., the inability to falsely accuse a party of misbehavior) for both the
user and the manager are explicitly defined and provably achieved.

In this paper we formally define mutual accountability: a user can be
held accountable for her otherwise anonymous digital actions and a man-
ager is held accountable for every de-anonymization attempt. Also, no
honest party can be framed regardless of what malicious parties do.

In contrast with previous work, we do not distribute the de-
anonymization power across entities, instead, we decouple the power of de-
anonymization from the power of monitoring de-anonymization attempts.
This allows for greater flexibility, particularly in the choice of the moni-
toring entities.

We show that our framework can be instantiated generically from
threshold encryption schemes and succinct non-interactive zero-
knowledge. We also show that the highly-efficient threshold group signa-
ture scheme by Camenisch et al. (SCN’20) can be modified and extended
to instantiate our framework.

1 Introduction

We target accountable anonymity: an authorized user of a digital platform can
generate a value anonymously1, but when deemed necessary, a value can be
1 This work focuses on the application layer and not on the network layer. We assume

that all users communicate over anonymous channels.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 318–336, 2022.
https://doi.org/10.1007/978-3-031-07689-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_24&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_24

Mutual Accountability Layer 319

de-anonymized and linked to the identity of its creator. The right balance
between the two desirable properties is an important and difficult task to achieve.
Recently, there are regulatory attempts on the matter. The Council of the Euro-
pean Union recently published a document on the matter [1] that states: “Pro-
tecting the privacy and security of communications through encryption and at
the same time upholding the possibility for competent authorities in the area
of security and criminal justice to lawfully access relevant data for legitimate,
clearly defined purposes [...] are extremely important.”

However, accountability is naturally in tension with perfect anonymity
because it is achieved via a master trapdoor that enables a designated party
to de-anonymize any message exchanged through the platform. Anonymity then
holds conditionally on how the designated party uses the trapdoor.

Shouldn’t the designated party be accountable for their de-anonymization
activities? Shouldn’t users at least be aware when de-anonymization activities
take place?

Accountability: What is Missing from Previous Work. Earlier works recognized
that the manager can abuse a master trapdoor [2–7]. The countermeasures pro-
posed in the literature rely on distributing the role of the manager across n
parties. That way, any de-anonymization can be performed only if a minimum
number of parties agree (e.g., [8,9]). Other solutions [6,7] instead introduce a new
party whose task is to allow the manager to de-anonymize the message. However,
all existing definitions either lack generality or formality of the security goals for
manager accountability. Consequently, the definitions and constructions can be
applied only to specific scenarios. In particular,

– Weak Manager-Accountability Guarantees. Most work (e.g., [2,9]) splits the
manager into n parties. This approach lessens the manager’s ability to abuse
de-anonymization since multiple parties must agree to conduct the process.
However, these works do not introduce any formal accountability guarantee
against the managers, and often omit discussion on how the n parties are
selected so that the underlying trust assumption can be satisfied.

– Lack of Comprehensive Definitions. Works such as [6,7] introduce a third
entity (called “admitters” in [6]) that enables the manager to de-anonymize.
This introduces an added layer of protection for the users, but the formal
security definition provided leaves out any protection for the manager. Specif-
ically, it does not consider the non-frameability of the manager, making an
implicit assumption on the good behavior of the admitters and users.

– Lack of Generality. Even in the more general framework where two separate
entities control the de-anonymization power [6], the de-anonymization activ-
ity has a pre-defined granularity and is, therefore, suitable only in specific
applications. For instance, in [6] the admitters give the manager a message-
dependent trapdoor to de-anonymize all messages that have the same value
(e.g., all messages that have the same date). This is useful for the application
proposed in [6], where one wishes to de-anonymize all messages signed at a
specific time with a single trapdoor, but not in general.

320 V. Daza et al.

– Lack of Flexibility. In earlier work, the manager accountability property is
achieved by using parties who are also involved in the functioning of the
platform (e.g., [8]), hence they might not be independent of the platform.
Furthermore, there is an underlying assumption that these parties are fixed
for the entire lifetime of the system. There is little discussion on how such
parties are chosen and why they would be trustworthy and active throughout
the lifetime of the system.

1.1 Our Contribution

In this work, we provide a general framework, the mutual accountability layer,
to capture accountability guarantees for both the users and the managers. We
believe that our definitions can enable the designing of mutually accountable sys-
tems for a wider set of applications than the ones considered so far in literature.
We summarize our contributions and then elaborate on each in the following
sections.

1. A Formal Definition for Mutual Accountability. We introduce the
Mutual Accountability Layer (MUTAL), a cryptographic primitive that cap-
tures the properties of anonymity for the users, accountability, and non-
frameability, for both the users and the manager. Our new definitions
sharpen the ones provided in previous works, providing flexibility and ver-
ifiability properties. To guarantee accountability to all parties, we introduce
guardians, a set of (potentially malicious) monitoring parties that oversees
every de-anonymization process, but it does not learn anything about the de-
anonymized users. Security is guaranteed if the number of malicious guardians
is below a threshold.

2. Instantiations. We provide a general template to construct a Mutual
Accountability Layer that is based on a two-layer encryption: one for the
guardians and one for the manager. Only if both collaborate, the identity of
a user can be reconstructed. Besides our general construction, we show how
to change the group signature scheme of [9] so that it can be used to instan-
tiate a MUTAL scheme. The second approach is less general and uses bilinear
maps.

3. Evolving Monitoring Parties. We use results on proactive secret shar-
ing [10] and its more recent implementations [11] to allow the guardians (the
monitoring parties) to change over time.

1.2 Formal Definition for Mutual Accountability (MUTAL)

The Mutual Accountability Layer (MUTAL) holds both the users and the manager
accountable. This layer can be added to any content that members of a digital
platform generate and thus is not tied to any specific application. Unlike previous
work, we do not distribute the manager’s role among n parties. We model two

Mutual Accountability Layer 321

entities with separate roles2. The platform manager is the entity exclusively
entitled to de-anonymize users, while the set of guardians are solely entitled
to give permission to de-anonymize. The manager cannot de-anonymize unless
he generates a publicly verifiable request of de-anonymization for the guardians,
declaring what value he wants to de-anonymize. This prevents the manager(s)
from surreptitiously de-anonymizing. The guardians must agree to collaborate,
but they do not learn the identity of the misbehaving user.

Threat Model and Security Guarantees. In our model, every party could act mali-
ciously and collude. Specifically, the users, the manager, and up to t guardians
can be fully malicious and can collude (for certain properties such as non-
frameability, we even assume that all guardians are malicious). Within this
threat model, we target the following security properties. User anonymity:
Even if a malicious manager colludes with up to t malicious guardians, a mes-
sage cannot be de-anonymized without a publicly verifiable request made by
the manager. Moreover, even if all guardians are corrupted and collude, they
still cannot de-anonymize any message when the manager is honest. User non-
frameability: an honest user cannot be falsely accused of being the creator of
a value v that she did not generate. This should be true even if all the parties
are malicious and collude (except the party who enrolls the users, though this
can be avoided whenever the real identity can be proven cryptographically, we
discuss this below). User accountability: a manager can de-anonymize any
value if enough guardians cooperate. Manager accountability: it should be
infeasible for a manager to de-anonymize a value v without leaving a publicly
verifiable trace in the system. This property is guaranteed if at most t guardians
are malicious. Manager non-frameability: even if users and guardians are
malicious and collude, they should not be able to fabricate a de-anonymization
request for which the manager will be held accountable.

Flexibility. Decoupling the manager role from the monitoring role is crucial for
allowing great flexibility in the implementation of the system. First, in our def-
inition, guardians are only involved in handling de-anonymization requests and
take no role in the functioning of the system. They are “platform independent”
and hence one could even use the same set of guardians for multiple platforms
managed by distinct managers. This is in contrast with previous proposals [12]
where the parties performing the guardians’ activity were also responsible for the
functioning of the platform. Second, our definition identifies the set of guardians
with a single public key and makes no assumption on the actual identity of the
guardians. Specifically, the set of guardians can change over time – so long the
same public key is maintained.

2 We note also that we separate the role of a key issuer who lets users join the group.
Such a key issuer is assumed to be honest in the scope of our work, as we focus on
anonymity of users and the accountability of the manager. Further research could
be done for malicious key issuers and the security issues they present.

322 V. Daza et al.

1.3 MUTAL: Instantiations

A General Instantiation of MUTAL We provide a general instantiation of MUTAL
based on a threshold public-key encryption scheme (TES)3 and a simulation-
extractable non-interactive zero-knowledge proof system. Assume that a set of
n guardians has been chosen (we describe selection mechanisms in Sect. 1.4)
and assume that a threshold of them is honest (up to t could be arbitrarily
malicious). First, the guardians will engage in a (non-interactive) protocol to
compute a public key for the threshold encryption scheme pkGU

TE . Next, assume
that the manager of the digital platform has published her public key pkGM

for a CPA-secure encryption scheme. At high-level, a MUTAL is instantiated as
follows. A user Ui becomes a member of the platform by enrolling with the key
issuer using her “real identity”, along with a new, freshly picked key vki that the
user will use to be identified as a member of the platform. Here the meaning of
“real identity” depends on the application. For generality, we assume that there
exists a procedure Valid(ID) that is applied to the real identity provided by the
user. Once the ID is validated, the key issuer provides a signature σi on the pair
(ID, vki). The tuple cert = (ID, vki, σi) is then communicated to the manager
of the platform. When the user generates a value v for the platform, she will
send v along with an encryption of the identity c1 = EncpkGM(certi) using the
public key of the manager pkGM and a zero-knowledge proof of knowledge of
the secret associated to vki and valid signatures σi computed by the key issuer.
The size of the proof is independent of the number of authorized users enrolled in
the digital service. To ensure mutual accountability, the ciphertext c1 is wrapped
inside another layer of encryption c2, where c2 was computed using the threshold
encryption scheme under the public key of the guardians.

Thus, the final message posted by the user is (m, c2, proof) where proof is
a zero-knowledge proof that everything was computed correctly. We instantiate
the TES with ElGamal Threshold Encryption Scheme [13,14], where the size of
the public key is independent of the number of shares, n. Hence, the extra layer
c2 is succinct and independent of the number of guardians. If more than one set
of guardians is available, the user can select the set of guardians that she trusts
the most4 and can add this to the tuple. By looking at the tuple (m, c2, proof),
the manager alone cannot learn c1 (and thus decrypt the identity vki), without
having the guardians remove the layer of threshold decryption. This is true even
if the manager colludes with up to t guardians. To de-anonymize a message, the
manager must provide a publicly verifiable request for de-anonymization that
at least t + 1 guardians accept. We note that even if all guardians are fully
malicious and decrypt every single instance, they still cannot de-anonymize any
user without the secret key of the manager. While this approach is natural
and is outlined in previous work, they did not provide formal definitions or

3 A threshold public-key encryption scheme is an encryption scheme where the secret
key is split among n parties, and a cipher text can be decrypted only if at least t
shares of the secret keys are used.

4 For simplicity in this paper, we consider only one set of guardians.

Mutual Accountability Layer 323

proofs for accountability and non-frameability. We are the first to provide formal
guarantees. The scheme is described in Sect. 5.1.

An Efficient Instantiation from Threshold Group Signature. Camenisch et al. [9]
provide a practical t-out-of-n group signature scheme based on bilinear maps.
Recall, in a group signature, a member of the group can sign anonymously within
the group, but a group manager can de-anonymize any signature. In the scheme
of Camenisch et al. [9], the manager is split into n parties, hence a signature
can be de-anonymized if any subset of t managers agrees. This scheme does not
directly fit our setting, where we want only the manager to de-anonymize and
the guardians should only allow this action. To fit our setting, we change their
t-out-of-n scheme so that any subset of t guardians will only be able to remove
one layer from the group signature. The other layer can be removed solely by
the manager, and no other party will learn the decryption. More discussion is
provided in Sect. 5.2.

1.4 Monitoring Committee: Selection and Evolution

The suitability of a selection procedure for guardians depends on the application.
We outline some possibilities below.

(a) Selection among the users (only trust in your peers). When no exter-
nal party is trusted, the guardians can be elected among the users enrolled in
the platform using cryptographic sortition techniques. This can be implemented
using a Verifiable Random Function (VRF) [15]. When a user registers in the
system, she will choose a public key for a VRF. Then in each “epoch” e, each
user checks if she is elected as a guardian for the next epoch, by evaluating the
VRF on input e, and check if the output is below a threshold ρ. This technique
is used in Algorand [16] to select the committees that run the underlying con-
sensus protocol. In our setting, we do not need a blockchain; we only need that
the users of the digital platform have access to the public VRF keys of all users.

(b) Selection of external parties through voting mechanisms or by platform
designers. When external parties that can be trusted exist, guardians could be
selected through some voting mechanism among the platform designers. For
instance, guardians can be chosen among nonprofit organizations that monitor
citizen’s rights in the US (such as the ACLU), etc. We stress that in our proof,
we do not need all the guardians to be honest. We tolerate up to t completely
malicious guardians.

(c) Selection through a public permissionless blockchain. Any blockchain that
satisfies chain quality5 can be used to select a committee of n guardians with
the guarantee that at most t parties are malicious (with high probability), where
the parameters n, t are tied to the chain quality parameter [11,17,18]. The idea
is the following: people who wish to be part of the guardians try to add a block
to the blockchain containing a transaction with a public key that they want to

5 Chain quality αl means that in any sequence of l consecutive block at least α fraction
of them are added by honest parties.

324 V. Daza et al.

use if they are selected. When enough blocks containing such transactions are
stored on the blockchain, the public keys that appear in the first N blocks are
automatically selected to be part of the guardians.

On Guardians’ Incentives. The incentive for external parties to participate in
MUTAL comes from the application. For example, if guardians are chosen among
nonprofit organizations, their incentive for following the protocol follows from
their social responsibility and reputation.

Evolving Committee. For more robustness of the system, the set of guardians
changes periodically at epochs. To change the guardians, we propose to use a
proactive secret-sharing mechanism for re-sharing the secret key sk among the
new set of guardians using fresh shares which are independent than those of the
old guardians. Proactive secret sharing techniques allow a secret to be handed-off
between two sets of parties [10,19]. The procedure where we specifically use the
dynamic proactive secret sharing (DPSS) scheme of Goyal et al. [11], is described
in Sect. 5.3.

In [11] the hand off works as follows: To hand off the shares of the secret, the
old and new guardians first perform an initial computation that allows them to
hold two independent sharings of the same random value r. The old committee
can use the sharing of s and the sharing of r to reconstruct the value s − r
and publish it. Since r is random, the value s − r leaks no information. Next,
each member of the new committee adds s − r to their own share of r. As a
result, each member holds shares of s − r + r = s, the original secret. The new
set of shares is independent of the old set of shares. This completes the hand-
off of the secret from the old committee to the new committee. It is assumed
that the old committee erases the old sharing after this phase is complete. Else,
an adversary could slowly eventually corrupt the old committee afterwards and
learn the secret. To end up with different sharings of r, each member Ci of the
new committee picks a random value ri and creates two different sharings of it.
Then Ci shares one of the shares with the old committee and the other with the
new committee. Each party will then obtain a share for each ri, it will sum their
local shares and hold a sharing of r = r1 + . . . + rn, which is guaranteed to be
random if one party provided a random ri. To ensure that no party misbehaves,
a polynomial commitment scheme is used to guarantee that all shares are well-
formed. For details see Sect. 5.3.

2 Related Work

Several works [4,8,12] have explored the concept of accountable anonymity, but
lack formal definitions of accountability and thus provable guarantees and are
suitable only to the communication layer. In such works, trusted mixers main-
tain the communication channel and are responsible for anonymization and de-
anonymization.

More recently, Corrigan-Gibbs and Ford [20] targeted a closed group of people
that self-manages the communications of its members and guarantees anonymity

Mutual Accountability Layer 325

and some form of accountability. This work is specific for settings where the
digital platform itself is decentralized, and it is not clear how one might extend
it to other settings (e.g., where there is a platform manager).

Von Ahn et al. [2] note the threat of abuse of the de-anonymization power
and proposes an anonymous and accountable system where the master secret
key is not known by a single manager but is distributed (using some thresh-
old schemes [21,22]) to a set of parties. This idea reduces the threat of abuse
since the de-anonymization power is not concentrated in one entity. However,
in [2], they provide only informal guarantees and do not discuss traceability or
transparency of the de-anonymization process. Indeed, a later work by Danezis
and Sassaman [23] highlights that it could be arbitrary which messages get to
remain anonymous and which ones will be censured. More importantly, it is
unclear under what circumstances the parties are provably accountable for their
de-anonymization activities.

More recently, Camenisch et al. [9] proposed dynamic group signatures. These
are anonymous signatures that can be de-anonymized by a set of designated par-
ties non-interactively (providing some form of public traceability). This approach
also lacks the generality provided by our framework. Also, this line of work sim-
ply distributes the platform manager among several parties. We want manager
accountability to be independent of the platform manager and to be enforced by
a crowd.

Frankle et al. [3] discuss accountability within the context of electronic
surveillance of platforms such as Facebook. Here the goal is to track secret law
enforcement requests to digital platforms. This work is tailored to this specific
setting where all parties (i.e., Facebook, FBI, judges) are assumed to act in good
faith. In particular in this setting users have no anonymity to begin with, with
respect to group manager (i.e., Facebook). Another context in which account-
ability is needed is in anonymous decentralized transactions. Here, users wish to
remain anonymous when making payments, but may need to be de-anonymized if
they do something illegal (e.g., money laundering or illegal transactions). Spread-
ing the trust and adding accountability for transactions has been explored over
various works [24–27] but misses the more general setting of group signatures.

Libert and Joye [6], building on Sakai et al. [7], presented a group signa-
ture scheme with message-dependent opening. A dedicated committee, called the
admitters, jointly decides if a message should be de-anonymized. If so, they jointly
generate a per-message trapdoor that allows the manager to de-anonymize all
instances that contain message m. As we mentioned earlier, there are significant
differences with our approach. First, in [6] there is no focus on the traceabil-
ity guarantees of the de-anonymization procedure. Thus, users can still be de-
anonymized unknowingly. Second, the de-anonymization is message-dependent
instead of instance-dependent. Third, manager non-frameability is not considered,
suggesting that admitters and manager are the same authority, working towards
the same goal, thus, admitters would not frame the manager. Like MUTAL, the
signature has two layers of encryption, which must be removed by different enti-
ties.Message-dependent opening relies on identity-based encryption (IBE) scheme,
specifically a fully collusion-resistant partially structure-preserving IBE, which is

326 V. Daza et al.

a variant of Waters’ IBE scheme [28]. In IBE systems, a trusted party owns a mas-
ter public and private key and private keys are signatures on the corresponding
message [29]. A user asks for a private key from the key issuer, who can derive it
from the master private key. Usually, the signature is on the user’s identity [29],
but here, the messages are the public key.

To sign, a user generates a two-level signature on their ID and the message
they wish to sign m. Later, for de-anonymization, the guardians first remove
the message layer and the authority removes the identity layer. The guardians
generate a token tm that depends on the message m. The fact that the admitters
can generate a message dependent token inherently relies on using IBE. Upon
receiving tm, the authority can remove the other layer of encryption and then
use tm to decrypt the identity. The authority can then reuse the token tm to
de-anonymize any signatures on the message m. Deviating from our work, the
presence of a trusted key issuer is crucial to their system. [6] only achieve full
traceability, while we have non-frameability. In full traceability, the adversary
is passive, meaning she only receives keys. Meanwhile, non-frameability allows
the adversary to make her own keys. This means it is important that the key
issuer not be able to learn the private group keys of each user. Libert and Joye
just assume that the key issuance is done honestly and that the private key is
erased after all the members join. The adversary only gets secret keys off the
admitter/guardians and opener/authority.

3 Preliminaries

Notation. Let [n] denote the set {1, 2, . . . , n}. We use y ← F(x) to say y is
the output of a randomized algorithm F on input x and write y ← F(x; r) to
explicitly refer to the randomness r used. We use y := F(x) if F is a deterministic
algorithm. PPT stands for probabilistic polynomial time. A function negl(n) is
negligible if for every positive polynomial p there is an N such that for all integers
n > N it holds that negl(n) ≤ 1

p(n) . We denote the security parameter by λ.
We use (z, (yi)Ui∈S) ← F〈Ui(xi)〉Ui∈S(w) to denote a protocol between par-

ties in a set S. Here, each party holds a secret input xi and receives secret output
yi, z is the public output and w is the public input.

Cryptographic Primitives. To instantiate our generic construction, we use stan-
dard cryptographic primitives such as a one-way function f , a secure signature
scheme S, and a public key encryption scheme E. Their syntax and definitions can
be found in any reference textbook (e.g., [30–32]). We also use non-interactive
zero knowledge arguments of knowledge (NIZK) that satisfy the stronger notions
of simulation extractability and succinctness (SNARK) [33, Def. 2.10]. Finally,
we use a threshold encryption scheme TE which satisfies the property of simu-
latable decryption.

For the threshold dynamic group signature (DGS) based construction in 5.2,
following [9], we use Pointcheval-Sanders signature scheme [34], various sigma
protocols made non-interactive via the Fiat-Shamir transform [35], and a signa-
ture of knowledge [36].

Mutual Accountability Layer 327

4 Formal Definition of Mutual Accountability Layer

In this section, we present MUTAL. We identify the parties in the protocol below.
In Definition 1 we describe the syntax of MUTAL. Finally, we introduce the
security properties.

– Users: The parties that generate values on the platform. A user U can (1) join
the platform using a valid identity (JoinUserValid) and (2) generate authorized
value m anonymously (MemberAuth).

– Key issuer: This party, denoted by KI, checks the identity of users and
registers them (i.e., helps to execute JoinUserValid).

– Manager: This party, denoted by GM, can request de-anonymization for a
message (ReqDeanon). If the request is granted, it learns the identity of the
message creator (Deanon). The manager’s requests are publicly verifiable.

– Guardians: The set of parties that grants access to a de-anonymization.
These parties, denoted by {C1, . . . ,Cn}, collectively protect the users against
a potentially misbehaving group manager. They perform a one-time joint
computation to compute a public key (KeyGenGu). They then monitor the
de-anonymization requests generated by GM. Once a request associated with
m is validated, the guardians perform a joint computation to generate a value
that will allow the group manager to trace the identity of the user who cre-
ated m (GrantDeanon). The outputs provided by the guardians are publicly
verifiable.

Definition 1 (Mutual Accountability Layer Syntax). A Mutually
Accountable Layer MUTAL consists of the following PPT procedures:

1. pp ← SetupParams(1λ). On input the security parameter λ, outputs param-
eters pp for the scheme. We assume pp implicitly contains the information
about the message space M, key space, etc.

2. (pkKI , skKI , stKI) ← KeyGenIssuer(pp). On input the parameters pp, out-
puts a key pair (pkKI , skKI) for KI. It also initializes a state stKI used to
maintain information of the members that join a group.

3. (pkGM, skGM, stGM) ← KeyGenManager(pp). On input pp, outputs a key
pair for the group manager (skGM, pkGM) and an initial state stGM used to
manage the group.

4.
(
pkGU , (skGU

l)Cl∈GU
)

← KeyGenGu 〈Cl(·)〉Cl∈GU (pp). On common input pp,
the set of GU := C1, . . . ,Cn perform an interactive protocol. As output, each
guardian gets their own secret key skGU

l and all guardians get a public key
pkGU . We denote with PK the set public keys of the authorities, i.e., PK ={
pkKI , pkGU , pkGM

}
.

5. (certi,(ski,stKI ,stGM)) ← JoinUserValid
〈
Ui (IDi), KI(skKI , stKI),

GM(skGM, stGM)
〉

(pp,PK). An interactive protocol run between a user, KI,
and GM. User participates with a public identity IDi that can be validated
according to a predicate Valid. KI and GM participate with their secret keys
and their states. At the end of the protocol, the user gets a secret member

328 V. Daza et al.

key ski for a member identity IDi, the public output is a certificate certi that
is added to key issuer and group manager’s states.

6. π ← MemberAuth(pp,PK,m, certi, ski). Ui executes MemberAuth to create
an authorization for a message m ∈ M. On input pp, PK, m, secret key ski,
and the associated certificate certi, it outputs a proof of membership π that
proves his eligibility to produce m.

7. b ← AuthVrfy(pp,PK,m, π). On input pp, PK, m, and π outputs a bit b
indicating whether the message is authorized.

8. req ← ReqDeanon(pp,PK,m, π, skGM). On input pp, PK, m, π, and the secret
key of the group manager skGM produces a request req to de-anonymize the
member who posted m.

9. b ← JudgeReq(pp,PK,m, π, req). On input pp, PK, m, π, and a request req,
it outputs a bit b indicating whether GM produced the request.

10. ⊥/access ← GrantDeanon〈C�(skGU
�)〉Cl∈GU (pp,PK,req,m,π). This is an inter-

active protocol between the guardians GU . Guardian Cl has as secret input
its secret key skGU

l , and all parties have common input pp, PK, m, π, and
req. The result is a common output of either access or ⊥.

11. ⊥/(certID, proofID) ← Deanon(pp,PK,m, π, access, skGM). On input pp, PK,
m, π, access, and the secret key of the group manager skGM, outputs certID
and a publicly verifiable proof proofID that certID is the one accountable for
m. Otherwise, it outputs ⊥.

12. b ← Judge(pp,PK,m, π, access, certID, proofID) On input pp, PK, (m, π),
access, and a pair (certID, proofID); outputs a bit denoting whether the user
assigned with certID is accountable for the pair (m, π).

Security Properties. Below, we discuss the security properties of MUTAL. We
refer the reader to the full version for formal definitions [37, Section 4.1].

Unforgeability captures the property that anyone (even group manager
and guardians) who is not enrolled in the system (i.e., has not executed protocol
JoinUser) cannot produce valid membership authorizations. We capture this in a
game where an adversary A controls the group manager and guardians and can
access oracles to create new users (but not to control them) and to see honestly
generated membership authorizations of her choice. The adversary wins the game
if she can produce a pair (m, π) that verifies without controlling any user and
without querying for an honestly generated authorization m.

User accountability guarantees that a pair (m, π) must trace back to
some user when de-anonymized. A’s goal is to create a pair (m, π) that
does not correctly de-anonymize. A has control over malicious users and the
guardians and can also ask for honest users’ membership proofs, requests, and
de-anonymizations.

Manager Non-Frameability guarantees that no one can accuse GM of
creating a de-anonymization request, even if all guardians and users are mali-
cious. The adversary can ask for requests/de-anonymizations and aims to craft
a valid de-anonymization request.

Anonymity guarantees that no one can learn who the creator of a pair
(m, π) is unless both the GM and the guardians collaborate. We consider two

Mutual Accountability Layer 329

cases for anonymity: (1) GM and a minority of the guardians are corrupted, (2)
all guardians are corrupted. In both cases, the adversary needs to distinguish
membership authorizations from two honest signers of her choice.

Remark 1. Anonymity also implicitly covers a property of manager accountabil-
ity : the manager cannot open messages on its own. It must ask for permission
and must present a proof if it wants to blame a user for a message.

5 Instantiations

5.1 General Instantiation

The high-level description of the scheme was provided in Sect. 1. We present the
protocol of our instantiation Π-MUTAL of MUTAL in Figs. 1, 2 and 3.

Zero-Knowledge Relation. The relation R for a statement (m, c2,PK) is:

R =

⎧
⎨
⎩

((m, c2,PK), (r2, c1, r1, certi, ski)) s.t. PK = ((vkKI
S), (pkGM

E , vkGM
S), (pkGU

TE))
∧certi = (vki, IDi, σi) ∧ S.VrfyvkKI

S
(IDi‖vki, σi) = 1

∧c1 = E.EncpkGM
E

(certi; r1) ∧ vki = f(ski) ∧ c2 = TE.EncpkGU
TE

(m‖c1; r2)

⎫
⎬
⎭

We also use a nizk proof for the relation VD = {(pk,m, c), (sk) s.t. m =
E.Decsk(c)} for correct decryption.

Efficiency. When using ElGamal and Feldman secret sharing scheme for the
threshold scheme, the guardians key generation takes Oλ(n) operations and com-
munication per party -where n is the number of guardians- and granting deanon-
imization takes Oλ(1) per party. De-anonymizing and judging takes Oλ(t) time,
where t is the threshold of the encryption scheme. Using [33] for the snark, a
membership authorization takes (Oλ(|C| log |C|) time, where C is the circuit
realizing R; its size is Oλ(1). All other operations take Oλ(1) time.

Security. We sketch the security proofs below. For formal proofs, we refer the
reader to the full version [37, Section 4.1 and Appendix B].

Unforgeability holds because the adversary (1) cannot construct a pair (m, π)
that verifies without a valid witness (due to simulation extractability of the
snark), (2) cannot invert one of the vk in the pool of all honest certificates
to find a witness (due to f being one-way) and (3) cannot forge a signature
σ on a public key vk to join without the key issuer (due unforgeability of the
signature scheme). User non-frameability holds as the adversary (1) cannot win
unforgeability, (2) cannot produce a valid proof proofID for the relation VD
without a witness and (3) cannot provide two different cert, certID that are part
of a valid witness for R and VD, respectively (due to soundness of the threshold
scheme, namely the fact that decryptions are unique).

User accountability holds for the same reasons as unforgeability. The adver-
sary cannot forge a signature on the key of KI or create a proof of membership

330 V. Daza et al.

Fig. 1. Protocol Π-MUTAL: Parameter setup and Key Generation Protocols and Algo-
rithms.

Fig. 2. Protocol Π-MUTAL: Anonymous Membership Proof Generation and Verifica-
tion Algorithms

Mutual Accountability Layer 331

Fig. 3. Protocol Π-MUTAL: De-anonymization Algorithms.

without holding any valid certificate. Manager non-frameability holds directly for
the unforgeability of the Signature Scheme. Finally, in both cases of anonymity
an adversary must distinguish between membership permissions generated by
different users. For both proofs, we replace real memberships by simulated ones.
Then, we can extract a witness and do a reduction to indistinguishability of
encryption either in the plain, or the threshold setting.

5.2 Instantiation Based on t-out-of-n Group Signatures (Camenisch
et al. [9])

We show how the construction of Camenisch et al. [9] can be used in the MUTAL
framework. We present a high level overview but due to lack of space we refer
the reader to the full version [37, Section 6] for a more detailed exposition. The
protocol appears in Appendix A of the full version. Algorithms ReqDeanon and
JudgeReq remain the same as in the general instantiation (Fig. 3).

Camenisch et al. build a t-out-of-n group signature scheme based on the
Pointcheval Sanders (PS) signature scheme [34] and zero-knowledge signatures
of knowledge (SoK) [36]. A SoK allows a party to prove that they know a witness
to an NP-statement to sign a message, and PS signatures’ reliance on bilinear
pairings make it easy to create said SoK.

To conveniently describe the steps of the group signature scheme we introduce
some notation. In a nutshell, PS signatures rely on bilinear pairings, described by

332 V. Daza et al.

G1,G2,GT and a bilinear map e : G1×G2 → GT . The secret key is x, y0, y1 ← Zq

and h ← G2. The public key is X := hx, Y0 := hy0 , Y1 := hy1 . A PS signature is a
tuple (a, σ1, σ2) where a ∈ Zp, σ1 is a group element, and σ2 is the exponentiation
of the group element to a linear combination of a and the message m.

To join the group, a user U generates its secret key sk and asks the key issuer
to blindly sign sk. The key issuer generates a PS signature on sk. When U wants
to sign a message and prove that it belongs to the group, it will generate a SoK
of a valid message/PS signature pair under the key issuer’s verification key. This
signature is (a, σ′

1, σ
′
2). A function of the user’s secret key is secret shared with

the committee and later allows for de-anonymization in the following way: when
this value is reconstructed, it allows to check whether the SoK corresponds to
the secret value associated with a user. Thus, the managers can check against
all user and identify the signer.

Specifically, the user secret-shares the value Y sk
0 with the committee where

Y0 = hy0 is part of the PS signature public key as described earlier. The
de-anonymization procedure requires the committee to compute the values
e(σ′

1, Y
ski
0) and perform the test of the verification equation against a PS signa-

ture (a, σ′
1, σ

′
2). The crucial property that is satisfied is that this equation holds if

and only if ski was used to produce the SoK (except with negligible probability).
Verifiable secret sharing techniques and sigma protocols are used to perform the
above actions verifiably, both from the side of the users as well as the openers.

To modify this system for MUTAL, we need to show how to separate the
guardians from a manager. Basically, in the joining procedure, U will sample sk
as before and then create sk1, sk2 such that sk = sk1 + sk2. As before, it will
share Y sk1

0 to the guardians, who naturally take the role of the openers. sk2 will
be shared only with the manager. Because of this, any t + 1 of the guardians
can recover sk1 but the manager must collaborate to recover Y sk

0 and to de-
anonymize. Analogously, the manager and fewer than t of the guardians cannot
de-anonymize users.

As for efficiency, the most attractive feature is signature size and computation
time. Because very efficient sigma protocols are used, these costs are minimal:
[9] reports 232 bytes per signature on a Cocks-Pinch curve and 8 (resp. 12)
group operations to sign (resp. verify). To achieve that though, de-anonymization
becomes much slower. Since a signature is checked against each user it is linear
in the number of users. However, this can be acceptable in most application
scenarios since normally, producing membership proofs happens often while de-
anonymization is scenario that should happen rarely.

5.3 Evolving Committees

The security properties introduced in this work require the participation of the
guardians. However, in real life such a committee of guardians may only be
available short-term and may also become corrupted over time. For this reason,
we allow the committee to change via the dynamic proactive secret sharing
scheme (DPSS) by Goyal et al. [11]. DPSS allows a set of n parties, who hold n
shares of a secret, to hand-off the secret to another set of n parties. The n shares

Mutual Accountability Layer 333

of the secret in our setting are those corresponding to the secret key associated
to pkGU

TE . The public and secret key of the guardians remain the same, but the
shares of the secret key are updated. Therefore, users always sign their messages
with the same public key and the changing of committee does not affect them.

The DPSS protocol in [11] consists of setup, hand-off, and reconstruction
phases. In our instantiations (Sects. 5.1, 5.2) the three phases for DPSS are as
follows: (1) In the setup, an initial committee produces ElGamal distributed
keys. We denote the shared secret s and the public encryption key gs; (2) in the
hand-off the old committee transfers the secret to the new committee, and we
present this phase in Fig. 4; (3) rather than reconstruction, in our setting, the
new committee work together to grant de-anonymizations. The current set of
guardians removes the outer layer of decryption using the shared secret key s in
a standard execution of verifiable decryption of ElGamal.

When instantiating our framework with the signature scheme by Camenisch
et al. we have that each user generates a secret key and distributes its shares
with the guardians (and manager). Namely, the guardians store one secret share
for each user. Still, the protocol of Goyal et al. can easily be adapted. Parties in
GU (i+1) create two independent secrets (ri, r̃i) for each user and batch them and
the shares ([ri]t, [r̃i]t) through a random linear combination that is also used by
the parties of GU (i) with {[si]t} to reconstruct {[si − ri]t}.

Security Overview. The system tolerates adaptive corruptions as soon as the
adversary is not able to corrupt t + 1 parties in one committee, due to the
fact that the secret is continuously updated. Note that after the hand-off phase,
guardians from the old committee have the instruction to delete their shares
and thus having the adversary corrupting t + 1 guardians from any previous
committee can happen with only a small probability. An adversary capable of
corrupting at most t parties from any committee, learns nothing about the secret
(secrecy), nor can prevent parties from reconstructing the secret (robustness).

Fig. 4. Hand-off phase.

334 V. Daza et al.

To achieve security in [11], the polynomial commitment scheme of Kate
et al. [38] can be used to ensure that the values shared by each party are con-
sistent, namely, that party � receives the share p(�) for a committed polynomial
p of degree t. We refer the reader to [11, Sect. 4, 5] for the details.

6 Conclusion

Our paper has the first formal definitions balancing accountability and
anonymity in digital platforms. Our main contribution was to show these defi-
nitions and we then used prior work to show how such a scheme that satisfies
these definitions can be implemented.

References

1. Security through encryption and security despite encryption - council resolution
on encryption (2020). https://data.consilium.europa.eu/doc/document/ST-13084-
2020-REV-1/en/pdf. Accessed 20 Sept 2021

2. von Ahn, L., Bortz, A., Hopper, N.J., O’Neill, K.: Selectively traceable anonymity.
In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 208–222. Springer,
Heidelberg (2006). https://doi.org/10.1007/11957454 12

3. Frankle, J., Park, S., Shaar, D., Goldwasser, S., Weitzner, D.: Practical accountabil-
ity of secret processes. In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018, pp.
657–674, Baltimore, MD, USA, 15–17 August 2018. USENIX Association (2018)

4. Köpsell, S., Wendolsky, R., Federrath, H.: Revocable anonymity. In: Müller, G.
(ed.) ETRICS 2006. LNCS, vol. 3995, pp. 206–220. Springer, Heidelberg (2006).
https://doi.org/10.1007/11766155 15

5. Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme
with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 8

6. Libert, B., Joye, M.: Group signatures with message-dependent opening in the
standard model. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 286–
306. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 15

7. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing
2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36334-4 18

8. Claessens, J., Diaz, C., Goemans, C., Dumortier, J., Preneel, B., Vandewalle, J.:
Revocable anonymous access to the internet? Internet Research (2003)

9. Camenisch, J., Drijvers, M., Lehmann, A., Neven, G., Towa, P.: Short threshold
dynamic group signatures. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS,
vol. 12238, pp. 401–423. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-57990-6 20

10. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

https://data.consilium.europa.eu/doc/document/ST-13084-2020-REV-1/en/pdf
https://data.consilium.europa.eu/doc/document/ST-13084-2020-REV-1/en/pdf
https://doi.org/10.1007/11957454_12
https://doi.org/10.1007/11766155_15
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-319-04852-9_15
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-030-57990-6_20
https://doi.org/10.1007/978-3-030-57990-6_20
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27

Mutual Accountability Layer 335

11. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retriev-
ing secrets on a blockchain. Cryptology ePrint Archive, Report 2020/504 (2020).
https://eprint.iacr.org/2020/504

12. Diaz, C., Preneel, B.: Accountable anonymous communication. In: Petkovic, M.,
Jonker, W. (eds.) Security, Privacy, and Trust in Modern Data Management, pp.
239–253. Springer, Cham (2007). https://doi.org/10.1007/978-3-540-69861-6 16

13. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

14. Boneh, D., Gennaro, R., Goldfeder, S., Kim, S.: A lattice-based universal thresh-
oldizer for cryptographic systems. Cryptology ePrint Archive, Report 2017/251
(2017). http://eprint.iacr.org/2017/251

15. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th FOCS,
pp. 120–130, New York, NY, USA, 17–19 October 1999. IEEE Computer Society
Press (1999)

16. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report
2017/454 (2017). http://eprint.iacr.org/2017/454

17. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
In: 31st International Symposium on Distributed Computing (DISC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

18. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1 10

19. Schultz, D.A., Liskov, B., Liskov, M.: Mobile proactive secret sharing. In: Bazzi,
R.A., Patt-Shamir, B. (eds.) 27th ACM PODC, p. 458, Toronto, Ontario, Canada,
18–21 August 2008. ACM (2008)

20. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V., (eds.) ACM CCS 2010, pp. 340–
350, Chicago, Illinois, USA, 4–8 October 2010. ACM Press (2010)

21. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2 8

22. Shamir, A.: How to share a secret. Commun. Associat. Comput. Mach. 22(11),
612–613 (1979)

23. Danezis, G., Sassaman, L.: How to bypass two anonymity revocation schemes.
In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 187–201.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70630-4 12

24. Gupta, S., Lauppe, P., Ravishankar, S.: A blockchain-backed central bank cryp-
tocurrency. Dept. of Computer ScienceYale University (2017)

25. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–
98. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 5

26. Wüst, K., Kostiainen, K., Čapkun, V., Čapkun, S.: PRCash: fast, private and reg-
ulated transactions for digital currencies. In: Goldberg, I., Moore, T. (eds.) FC
2019. LNCS, vol. 11598, pp. 158–178. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32101-7 11

https://eprint.iacr.org/2020/504
https://doi.org/10.1007/978-3-540-69861-6_16
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
http://eprint.iacr.org/2017/251
http://eprint.iacr.org/2017/454
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/978-3-540-70630-4_12
https://doi.org/10.1007/978-3-662-54970-4_5
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1007/978-3-030-32101-7_11

336 V. Daza et al.

27. Puzis, R., Barshap, G., Zilberman, P., Leiba, O.: Controllable privacy preserving
blockchain. In: Dolev, S., Hendler, D., Lodha, S., Yung, M. (eds.) CSCML 2019.
LNCS, vol. 11527, pp. 178–197. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-20951-3 16

28. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

29. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

30. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

31. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

32. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. 2nd edn., CRC Press,
Boca Raton (2014)

33. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 20

34. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

35. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

36. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

37. Daza, V., Haque, A., Scafuro, A., Zacharakis, A., Zapico, A.: Mutual accountability
layer: accountable anonymity within accountable trust. Cryptology ePrint Archive,
Report 2021/596. https://eprint.iacr.org/2021/596

38. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

https://doi.org/10.1007/978-3-030-20951-3_16
https://doi.org/10.1007/978-3-030-20951-3_16
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://eprint.iacr.org/2021/596
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11

Faster Post-Quantum TLS Handshakes
Without Intermediate CA Certificates

Panos Kampanakis1(B) and Michael Kallitsis2

1 AWS Cryptography, Seattle, USA
kpanos@amazon.com

2 Merit Network Inc., Ann Arbor, USA

mgkallit@merit.edu

Abstract. Traditionally, the most data-heavy part of a (D)TLS hand-
shake has been authentication which includes a handshake signature
and digital certificates. Although most common (D)TLS usecases are
not significantly affected, some constrained ones such as low bandwidth
environments or delay sensitive applications can see drastic performance
degradation due to big certificates or certificate chains. That has led the
security community to seek options to alleviate the issue. Post-quantum
signatures and keys, on the other hand, have been proven to notice-
ably slow down handshakes even for common Internet (D)TLS or QUIC
applications due to the significantly higher amounts of post-quantum
authentication data they include. In this work, we quantify the size issue
of post-quantum certificates in (D)TLS and QUIC and make the case for
speeding up (D)TLS and QUIC handshakes by omitting the intermedi-
ate certificate authority certificates in the handshake. We present how
that can be achieved along with the usecases that will mostly benefit
from such a mechanism. We offer quantitative analyses to show that this
approach is relatively straightforward, backwards compatible and with
little overhead introduced for caching the certificates. We also discuss
caching mechanisms based on different optimization goals.

Keywords: Post-quantum TLS · PQ authentication · Post-quantum
certificate chains · ICA suppression

1 Introduction

Digital communications have completely penetrated everyday life as enablers
of numerous critical services including telemedicine, online banking, massive e-
commerce, machine-to-machine automation, mobile and cloud computing. To
ensure that it is secure, information is exchanged over secure tunnels which
guarantee confidentiality and authenticity. Secure tunnel protocols (e.g. (D)TLS,
QUIC, SSH) use cryptography to encrypt the data and Public Key Infrastructure
(PKI) certificates to authenticate the communicating peers.

A PKI infrastructure consists of various parts. A Certificate Authority (CA)
issues an entity’s X.509 certificate [13] which assures the entity’s identity and the
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 337–355, 2022.
https://doi.org/10.1007/978-3-031-07689-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_25&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_25

338 P. Kampanakis and M. Kallitsis

public key (PK) tied to that identity. The identity is included in the Subject field
of the certificate, while the entity’s public key is stored in the Subject Public Key
Information along with the algorithm used by the issuer to create the signature.
A certificate contains a specific validity period and extensions included by CAs
to enable additional functionality. The certificate is signed by the CA’s private
key using the specified signature algorithm and the signature is added to the
certificate’s Signature field. The two most popular digital signature algorithms
used in certificates today are the Elliptic Curve Digital Signature (ECDSA) and
Rivest-Shamir-Adleman (RSA).

Root CA

ICA

ICA

Server cert

Fig. 1. Certificate chain

At the top of the PKI, there are
trusted CAs that self-sign their own
certificates known as Root CA certifi-
cates. Normally a Root CA issues cer-
tificates for Intermediate CAs (ICAs).
An ICA can further issue certificates
for other ICAs that in turn sign
leaf/entity certificates in the PKI.
This process results in the creation of
certificate chains of trust (Fig. 1) that

usually consist of two to four certificates but can be arbitrarily long.
Widely used protocols like (D)TLS [7,30,32,34], IKEv2/IPsec and QUIC [14,

48] leverage X.509 certificates and certificate chains rooted to a pre-trusted Root
CA to authenticate a peer’s identity and public key (PK). After exchanging
ephemeral keys, the server (and optionally the client) sends its certificate chain
to its peer along with a signature of the connection transcript which proves that
it owns the identity private key corresponding to its identity certificate. The
server’s certificate is authenticated by verifying the certificate chain to a pre-
trusted Root CA certificate. Given that certificate chains can be of arbitrary size,
sometimes they could affect connection performance which we aim to alleviate
in this work.

The key contributions of our work are summarized as follows:

(i) We quantify the heavy post-quantum authentication data issue in (D)TLS.
(ii) We quantify the amplification protection issue post-quantum algorithms

introduce in QUIC.
(iii) We analyze public server datasets in order to quantify the number of ICAs

used in (D)TLS connections today. We identify the ICAs and the types of
certificates sent in the most popular servers’ certificate chains. We analyze
the numbers of distinct ICAs as the Top number of servers increases. We
quantify the size of the ICA cache that someone would need to store ICAs
in. Using these analyses we show that caching ICAs would speed up the
connection handshakes without overloading most software applications used
today.

(iv) We qualitative evaluate options of trimming down the authentication data
in a handshake and propose ICA suppression, the most straightforward,
backwards-compatible one.

Faster Post-Quantum TLS Handshakes 339

(v) We propose ICA caching mechanisms which would allow entities to request
ICA suppression.

(vi) We discuss considerations and security implications of ICA suppression and
how they could be overcome.

The rest of the paper is organized as follows: Sect. 2 describes the issue with
heavy authentication data in secure connection handshakes and presents use-
cases where it is more prevalent. Section 3 summarizes related work. Section 4
presents statistics of commonly used server datasets in order to quantify the
number of ICAs an entity would need to store in order to implement ICA sup-
pression. Section 5 describes options to alleviate the heavy authentication-data
issue. Section 6 discusses the ICA caching mechanisms which could be used to
alleviate (D)TLS handshakes. Section 7 goes over considerations and concerns
with ICA suppression and potential protection mechanisms. Section 8 concludes
this work and discusses future research topics.

2 The Heavy Authentication Data Issue

Although not the case for common Internet uses today, some important wire-
less sensor network protocols in the Internet-of-Things (IoT) ecosystem such as
constrained mesh networks like Wi-SUN and IEEE 802.14.5 [23] usually oper-
ate in low-speed mediums. They often depend on EAP-TLS [43] for authen-
tication. Using big certificate chains in such usecases could further exacerbate
the low-speed issue and lead to authentications that fail or take minutes or
hours [15,21,39].

What is more, recent developments in post-quantum cryptography are
expected to lead to increases in the size of certificates which could slow down
secure connection establishment even in typical Internet connections or applica-
tions. The cryptographic community has been researching quantum-secure algo-
rithms for some time in order to address the quantum computer threat, and the
US National Institute of Standards and Technology (NIST) has an ongoing, pub-
lic project to standardize quantum-resistant public key algorithms. At the time
of this writing, NIST’s evaluation process is in Round 3 with 15 post-quantum
(PQ) algorithm candidates remaining. Additionally, a few Internet Engineering
Task Force (IETF) RFC drafts are already introducing these algorithms in IETF
standards [8–11,22,28,45,49]. When it comes to PQ signatures, the public key
and signature sizes of NIST PQ signature candidates start from a few and can
go up to tens of Kilobytes (KB) for the heavier schemes. The integration of
such PQ signatures in X.509 certificates will naturally increase the size of these
certificates significantly [17]. Certificate chains of higher sizes could exceed any
certificate chain that our applications see today. That could mean many more
packets which increases the loss probability in constrained conditions [29]. It
also could lead to more round-trips due to TCP Congestion Control [41,42] and,
thus, connection establishment slowdowns.

Specifically (D)TLS includes multiple signatures in its handshake which
could fluctuate based on usecase. All connections include a signature in the

340 P. Kampanakis and M. Kallitsis

Certifica-teVerify message and public keys with signatures in each certifi-
cate in the chain. According to Shodan [40], ∼77% of TLS connections include
certificate chains with one or two ICA certificates, which usually do not exceed
4KB. X.509 leaf certificates used in the Web (HTTPS), on the other hand, usu-
ally include two or more additional Signed Certificate Timestamps (SCTs) [20]
which incorporate one signature each. Recently, browsers have increased their
minimum SCT requirement. For example, as of April 2021, Apple’s Certificate
Transparency policy [2] requires three SCTs if the certificate lifetime is longer
than 180 days. Similarly, Chrome has been requiring at least two SCTs or more
depending on certificate lifetime. If SCTs are not included in the certificate, they
can optionally be included in the handshake in a TLS Extension. Furthermore,
when Online Certificate Status Protocol (OCSP) [35] stapling is used in TLS,
one more OCSP signature may be included in the handshake to verify certifi-
cates are not revoked. Thus, it is clear that (D)TLS can include (x + 2) + s + o
signatures and x+1 public keys, where x is the number of ICAs in the certificate
chain, s is the number of SCTs and o = 1 only if OCSP stapling is used.

To quantify the minimum authentication data size of PQ certificate authen-
tication in (D)TLS, we calculated them for the leanest PQ signature candidates
in NIST’s Round 3. Lattice-based Dilithium and Falcon offer the smallest public
key and signature sizes. Rainbow is the third PQ signature finalist and SPHINCS+

is the most well-analyzed and trusted algorithm in terms of cryptographic prim-
itives. We analyzed authentication data sizes for all the parameters of Dilithium
and Falcon, and the leanest ones for Rainbow and SPHINCS+. We assumed 500KB
of X.509 attributes in each certificate. In terms of certificate formats, we assumed
binary DER encoding [12] which is used to transfer certificates on the wire.

Table 1 includes our results. We can observe that only Falcon is consistently
in the 4-8 KB range for 1–4 ICAs which is in the range of the sizes we see today.
Dilithium offers less flexibility and remains below ∼14.5 KB, the most commonly
used TCP initcwnd used today (10MSS), only for its Dilithium-2 parameter
set for two or more ICAs in the chain. When SCTs and/or OCSP staples are
present Dilithium starts from ∼15 KB. Note that even below ∼14 KB, the more
data included in a handshake the higher the loss probability and the connection
slowdown in lossy environments [29]. Based on [51], we would like to minimize
this data to 9-10 KB (in green), not just below ∼14.5 KB. All other post-quantum
signature algorithms are shown to exceed 15-20 KB which admittedly is a higher
price to pay in order to establish a connection that otherwise exchanges much
less data.

QUIC [14,48], on the other hand, is a protocol which was built with speed and
performance in mind. It runs over UDP and uses TLS 1.3 for its secure tunnel
negotiation. QUIC includes an amplification protection mechanism according to
which initial QUIC client data has to be padded to at least 1200B and the server
response should not exceed three times the initial client request size. If it does,
the server has to wait for a response from the client (one round-trip) before
sending more data. Amplification protection is used only for addresses which
have not yet been validated.

Faster Post-Quantum TLS Handshakes 341

Table 1. Approximate size of auth data (CertificateVerify + Certificates) in TLS
handshake (KB)

1 ICA 2 ICAs 3 ICAs 4 ICAs PQ Signature

TLS (no SCTs,
no OCSP
staples)

8.77 11.94 15.12 18.29 Dilithium-2

11.91 16.22 20.53 24.84 Dilithium-3

3.76 5.31 6.86 8.40 Falcon-512

6.64 9.32 12.00 14.68 Falcon-1024

89.12 133.64 178.16 222.69 Rainbow-I(cz)

20.44 26.73 33.02 39.31 SPHINCS+-128s

Web TLS
(SCTs, no
OCSP staples)

12.40 15.57 18.75 21.92 Dilithium-2

16.85 21.16 25.47 29.78 Dilithium-3

4.76 6.31 7.85 9.40 Falcon-512

8.56 11.24 13.92 16.60 Falcon-1024

89.21 133.74 178.26 222.79 Rainbow-I(cz)

32.22 38.51 44.80 51.10 SPHINCS+-128s

Web TLS (Web
(SCTs, OCSP
staples)

14.82 17.99 21.17 24.34 Dilithium-2

20.14 24.45 28.76 33.07 Dilithium-3

5.43 6.97 8.52 10.07 Falcon-512

9.84 12.52 15.20 17.88 Falcon-1024

89.28 133.80 178.33 222.85 Rainbow-I(cz)

40.08 46.37 52.66 58.95 SPHINCS+-128s

In order to quantify the impact of PQ algorithms on QUIC’s amplification
protection, we analyzed the size of QUIC messages using PQ algorithm candi-
dates in NIST’s Round 3. For key exchange, we analyzed hybrid key exchange
that uses X25519 [19] with a PQ KEM candidate NIST Round 3 finalist like
Kyber, Saber or NTRU. We evaluated various parameters for these PQ KEMs.
Regarding signatures, we chose the leanest lattice-based signature parameters
(i.e., Dilithium-2, Falcon-512). We assumed no SCTs or OCSP stapling were
used, 500B of X.509 attributes and the certificates were DER encoded.

Table 2 summarizes the QUIC message sizes. We observe that all of the PQ
signature options will exceed (in red) 3× the initial request packet and will
trigger QUIC’s amplification protection which would lead to a slowdown due to
the extra round-trip.

342 P. Kampanakis and M. Kallitsis

Table 2. Approximate Initial Client and Server Data in QUIC using Hybrid Key
Exchange and PQ signatures

Initial Client
Data (B)

Server Data (KB) PQ Algorithms

1 ICA 2 ICAs 3 ICAs

1050 13.32 16.49 19.66 (X25519 + Kyber-512)+ Dilithium-2

1050 5.68 7.22 8.77 (X25519 + Kyber-512) + Falcon-512

949 5.61 7.16 8.70 (X25519 + ntruhps2048509) + Falcon-512

922 5.65 7.19 8.74 (X25519 + LightSaber) + Falcon-512

1434 6.00 7.54 9.09 (X25519 + Kyber-768) + Falcon-512

1181 5.84 7.39 8.94 (X25519 + ntruhps2048677) + Falcon-512

1242 6.00 7.54 9.09 (X25519 + Saber) + Falcon-512

1818 6.48 8.02 9.57 (X25519 + Kyber-1024) + Falcon-512

1480 6.14 7.69 9.23 (X25519 + ntruhps4096821) + Falcon-512

1562 6.38 7.93 9.48 (X25519 + FireSaber) + Falcon-512

From the data in Tables 1 and 2 it is clear that big certificate chains could pose
challenges to secure tunnel establishment. EAP, constrained condition appli-
cations, and post-quantum (D)TLS and QUIC connections will be negatively
affected. Our goal is to alleviate these challenges in order to speed up the secure
tunnel handshakes.

3 Related Work

Various works have focused on the issues certificate chains introduce to cer-
tain usecases. IETF RFC drafts draft-ietf-emu-eaptlscert [39] and ietf-emu-eap-
tls13 [21] discuss the problem of big TLS certificate chains for EAP authentica-
tion. [15] presents the heavy authentication data issue with (D)TLS connections
in Wi-SUN and IEEE 802.14.5 mesh networks. Compact TLS (cTLS) IETF draft
draft-ietf-tls-ctls [31] is a compact version of TLS 1.3 designed for constrained
conditions. cTLS proposes using pre-determined certificate dictionaries which
peers can use to convey their certificate chains without actually sending the
certificates. In the same context, Mozilla introduced an ICA Pre-load list from
the multi-browser Common CA Database (CCADB) [25] in its Desktop Firefox
browser in 2020.

On the size of post-quantum authentication data, early work by Bindel et
al. emulated large hybrid PQ certificates and studied their impact on TLS
libraries and browsers [3]. [16] showed that post-quantum Stateful Hash-Based
Signatures in certificates will not break (D)TLS, QUIC and IKEv2. Sikeridis et
al. [42] also studied the impact of PQ signatures on TLS 1.3 and proved that
lattice-based PQ candidates offer the most efficient options whereas all other
NIST Round 2 schemes could introduce round-trips due to the TCP initcwnd.

Faster Post-Quantum TLS Handshakes 343

Additionally, [41] tested hybrid (i.e. classical ECDH and PQ KEMs) key
exchange and signatures in TLS 1.3 and SSH. It showed that some lattice-based
PQ algorithms schemes do not detrimentally slow down TLS handshakes. [51],
on the other hand, showed that 9–10 KB certificate chains will lead to double
digit TLS handshake slowdowns and some clients or middleboxes cannot handle
chains larger than 10KB.

In [6], Crockett et al. presented the challenges of implementing NIST’s PQ
key exchange and authentication algorithms in TLS and SSH, with a focus on
hybrid schemes. What’s more, Paquin et al. showed in [29] that the more data
included in a PQ handshake, the higher the loss probability (1− (1− p)n, where
n is the number of authentication packets and p is the individual packet loss
probability) and the connection slowdown in unstable network environments.
Finally, Schwabe et al. proposed KEMTLS [38] which uses PQ KEMs in the leaf
certificate. One of the advantages it offers is that the certificate chain ends up
being a few KB smaller than it would have been when using lattice-based PQ
signatures.

4 ICA Statistics

From our analysis so far, it is clear that certificate chains could pose challenges to
secure tunnel establishment for some of today’s usecases and most future post-
quantum ones. A straightforward, potential solution which we will investigate
in Sect. 5 is caching ICA certificates and omitting them from the handshake.
Before looking into solutions, we wanted to study how many ICA certificates
exist today and how many someone would need to cache in order to speed up
secure tunnel establishment.

Initially, we used CCADB’s ICA list to get the number of non-revoked active
ICA certificates used in the Web. We also used the Alexa and Cisco Umbrella
Top1M datasets [1,47] for the top visited sites. Alexa is a well-known ordered
list of the most popular sites on the Internet. Since Alexa Top1M stopped being
free, Cisco published their own dataset, Cisco Umbrella Top1M. The Umbrella
dataset is different than Alexa’s as it is built with a different methodology. In
order to retrieve the certificates of the top visited sites in our two datasets, we
used data from Censys.io [4]. Censys.io is a popular analytics engine which scans
the Internet daily and inventories information about connections to public open
servers.

We wanted to investigate the status of the certificate chains returned from
servers over time. Thus, we analyzed the certificates returned from the Alexa
and Umbrella sites at the beginning of each month for a period of 12 months
(June 2020-May 2021). The results are shown in Table 3. We can see that the
total non-revoked Web ICA certificates (based on CCADB [26]) were 1306 which
roughly matches with ICA count for the Web in [50]. For the domains within
the Top1M Alexa sites supporting HTTPS, the distinct ICAs were 500–560. For
the domains that support HTTPS within the Top1M Umbrella sites, the ICAs
were 335–375. Caching these ICA certificates is manageable for most usecases.

344 P. Kampanakis and M. Kallitsis

0

100

200

300

400

500

600

Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21

1K
10K
100K
500K

(a) Alexa

0

50

100

150

200

250

300

350

400

Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21

1K
10K
75K

(b) Umbrella

Fig. 2. # of ICAs for TopX servers (12 month)

Our results also show that a few of the top sites on the Internet do not
include ICAs in their certificate chain; they either send only a server certificate
or a server certificate and Root CA certificates. We also see that ∼99% of the
sites include up to 3 ICA certificates and ∼96% (∼92% for Umbrella) include
1–2 ICA certificates. We also see a small amount of self-siged (SS) certificates.
Self-signed certificates could be server or Root CA certificates. For the purpose
of alleviating as much handshake data as possible for the (D)TLS handshake,
Root CA certificates should not be sent1. We also observed a limited number of
certificates which were not server certificates but also had the BasicConstraints
X.509 extension set to cA:False. These were misconfigurations. Readers should
note that Alexa’s Top1M sites ended up being ∼500K and Umbrella’s ∼75K
servers. The reason is that we investigated servers that were listening on well-
known TLS port 443.

Subsequently, we wanted to quantify the ICA certificates in our datasets
for each month and how the count increased based on the top servers visited.
Figure 2 shows the ICA certificate count per month using data from Censys.io for
the Top 1K, 10K, 100K, 500K servers for Alexa and 1K, 10K, 75K for Umbrella.
Note that Umbrella’s dataset included much less TCP port 443 active servers
which is why the count is lower. We can see how the ICA count increases with
the number of top servers. Intuitively that makes sense as the more servers one
examines (using scanning or by directly querying databases such as Censys.io)
the more ICAs are discovered and thus the less ICAs remain unseen. As we can
see in the two figures, the ICA size growth slows down as the servers increase;
the ICA counter increases faster between 1K and 10K servers. Most Internet
peers tend to get certs from a limited set of CAs (e.g., Let’s Encrypt CA) and
not evenly use all ICAs available. Thus, the rate of increase of the ICA count is
slower than the server count.

1 Because certificate validation requires that root keys be distributed independently,
the self-signed certificate that specifies the root certificate authority MAY be omitted
from the chain, under the assumption that the remote end must already possess it
in order to validate it in any case [7,30].

Faster Post-Quantum TLS Handshakes 345

Table 3. CA data from Alexa, Umbrella Top 1M (12month) and Mozilla’s CCADB
(June 2021).

Data Set 0 ICAs 1 ICA 2 ICAs 3 ICAs >3 ICAs # distinct
servers

SS certs non-CA certs Distinct ICAs

Alexa 06-2020 632 388071 82325 12418 579 484025 45738 3545 559

Alexa 07-2020 1339 350178 74475 11661 685 438338 39543 6104 529

Alexa 08-2020 629 318805 66524 11369 442 397769 38741 3252 508

Alexa 09-2020 582 323014 67606 11680 380 403262 37071 3057 538

Alexa 10-2020 816 480133 104064 16734 537 602284 58195 4258 574

Alexa 11-2020 498 339441 62940 12496 442 415817 41138 3177 512

Alexa 12-2020 1136 353411 73531 12878 580 441536 40064 6764 536

Alexa 01-2021 1350 414144 90538 15209 719 521960 46379 7177 571

Alexa 02-2021 1090 362439 75886 12994 693 453102 39501 6314 500

Alexa 03-2021 1006 364351 77777 12973 627 456734 41062 6024 510

Alexa 04-2021 809 469614 98482 17240 556 586701 50654 3714 538

Alexa 05-2021 607 440865 92548 13469 502 547991 45668 3166 517

Umbrella 06-2020 52 56981 13216 5171 47 75467 11795 465 372

Umbrella 07-2020 43 54480 11887 4860 54 71324 11040 425 341

Umbrella 08-2020 52 52741 11353 4877 44 69067 10780 424 335

Umbrella 09-2020 42 53744 11603 5042 44 70475 11070 411 349

Umbrella 10-2020 63 64214 14228 6113 71 84689 13261 570 359

Umbrella 11-2020 44 57246 11475 5554 53 74372 11316 458 347

Umbrella 12-2020 54 57844 11905 5482 63 75348 11117 478 353

Umbrella 01-2021 53 62994 13129 5829 47 82052 12395 538 357

Umbrella 02-2021 48 59890 11432 5560 49 76979 10624 504 341

Umbrella 03-2021 58 56084 10878 5263 34 72317 99994 31 335

Umbrella 04-2021 62 67689 14042 7044 65 88902 12748 569 349

Umbrella 05-2021 49 66686 13554 7020 61 87370 12122 542 336

Mozilla CCADB [26] 1306

Table 4. Intersection of domains and ordinal dissimilarity (using the Kendall rank
correlation coefficient) between the Alexa and Umbrella lists over time.

Date 2020-06-02 2020-07-07 2020-08-04 2020-09-01 2020-10-06 2020-11-03

Intersection 53909 49755 49414 49430 60569 51491

Kendall τ 0.258 0.226 0.221 0.247 0.241 0.256

Date 2020-12-01 2021-01-01 2021-02-01 2021-03-01 2021-04-01 2021-05-01

Intersection 53367 58347 54202 51822 62446 61465

Kendall τ 0.256 0.238 0.234 0.228 0.249 0.247

We also wanted to compare our datasets. Table 4 shows the intersection of
domains between the Alexa and Umbrella lists. Specifically, the table tabulates
the number of common domains supporting HTTPS/TLS found in Censys.io
for the twelve days we examined. We observe that the two top lists are differ-
ent; this is expected since they are compiled using different methodologies (see
also [37,46]). The table also illustrates the ordinal similarity between the two
lists using the Kendall rank correlation coefficient (also employed in [37] for sim-
ilar comparisons). Although the two top lists are dissimilar, the number of ICAs
required to be cached does not differ much.

346 P. Kampanakis and M. Kallitsis

5 Speed Up Mechanisms

So far we have seen that data-heavy authentication could negatively affect secure
tunnel establishment. Thus, limiting the authentication data in these connections
could alleviate the issue. There are multiple ways to achieve that. The most
straightforward one is to suppress the ICA certificates in the handshake after
the peer has cached them and signalled that it does not need them. [18] proposes
using a TLS 1.3 flag extension to request the peer to suppress its ICA ceritificates.
A flag in the ClientHello and the CertificateRequest would suffice for the
client or server to request ICA suppression. Suppressing ICAs would drop the
authentication data in Table 1 to acceptable levels (9–11 KB) even for Web TLS
connections. It would also drop the server response sizes in Table 2 to ∼5.5 and
3.2KB for Dilithium-2 and Falcon-512 respectively. Extrapolating from [41,42,
51], that would speed up the handshake by ∼60ms when TCP initcwnd=10MSS
or ∼10% when initcwnd=30MSS.

Another option for TLS is to increase the TCP initcwnd. [41] showed that
by generously increasing it, handshakes can be sped up by eliminating extra
round-trips. Readers should note that this option does not prevent handshake
slowdowns in environments with increased loss probability [29]. But even in non-
lossy environments, [51] showed that 9–10 KB certificate chains could lead to
double digit TLS handshake slowdowns even with 30MSS TCP initcwnd. Addi-
tionally, although some Content Deliver Network (CDN) providers optimize their
infrastructures and increase the TCP initcwnd, generally increasing initcwnd
without thorough experimentation could negatively affect constrained usecases,
slow links, cellular networks, bursty traffic patterns, and highly multiplexed links
in developing regions [5, § Appendix A].

Alternatively, we could omit all certificates and use a fingerprint in the TLS
handshake to indicate which peer certificate we have cached as proposed in [36].
Although standardized a few years already, this mechanism has not seen wide
industry adoption. It also introduces security caveats and operational concerns
like allowing TLS session correlation [36, § 7] and actively and frequently man-
aging and updating a large certificate cache of certificates with relatively short
lifetimes.

Section 2 discussed how QUIC amplification protection will introduce extra
round-trips when using post-quantum signature algorithms. One option to pre-
vent these round-trips is to include QUIC PADDING frames in the request in
order for the response to fit within the 3× size of the request. We could pad
with enough data to be safe in all cases, but then the client wastes resources
unnecessarily without even knowing if a round-trip would be warranted based
on the server’s supported algorithms and certificates. Additionally, even if we
prevented the round-trips, excessive authentication data will still be sent (in
one round-trip) which still introduces increased loss probability in unstable or
congested networks [29,51].

[42, §VII-B] suggests using different signature mechanisms at the Root CA,
the OCSP staple and the SCTs (for the Web) as a way to alleviate the data
issue. The Root CA and the OCSP staple and SCT public keys are not sent

Faster Post-Quantum TLS Handshakes 347

in the handshake, thus using a signature algorithm that has a small signature
would slim down the data sent. Example algorithms would be Stateful HBS
signatures [11,22] or multivariate candidates in NIST’s PQ Project like Rainbow.
Although this method would trim down the data, big signatures or public keys
would still be included in the handshake, so the issue is not eliminated. And
we should not underestimate that this option would require peers to support
multiple signature algorithms. Introducing new algorithms has traditionally not
been a smooth process for the industry.

cTLS [31] proposes using pre-established dictionaries to omit sending cer-
tificates in the handshakes. This method would work nicely for peers that can
be provisioned with the right certificate dictionaries. Different usecases like the
Web would pose challenges with establishing these dictionaries, keeping them
up-to-date and making sure the peers have the same version.

From our analysis, it is obvious that the most straightforward option to
convey to the (D)TLS peer to omit its ICA certificates is using a TLS 1.3 flag [18,
27]. This mechanism is backwards compatible; if the peer does not support the
flag the connection still completes. It also would work well when we communicate
with finite peers whose ICA certificates is trivial to cache. In usecases where there
are multiple or infinite peers, we need an all-inclusive ICA list or an ICA caching
mechanism which we discuss in Sect. 6.

Fig. 3. 12month average ICA cache size (KB) for TopX servers

6 ICA Caching

After discussing the best options to alleviate the authentication-data issue, we
wanted to quantify the size of the ICA cache that would suffice for clients visiting
the Top1M servers in our datasets. We analyzed the ICA certificate cache size
as the top server count in our datasets increases. Again, we assumed 500B of
X.509 attributes in each binary DER encoded [12] certificate. We also assumed
that the same algorithm is used for all signatures in the TLS handshake and
that ICAs certificates do not contain SCTs.

Figure 3 shows the ICA certificate sizes for RSA-2048, Dilithium-2 and Falcon-
512 based on the average 12-month ICA certificate count from our Alexa and

348 P. Kampanakis and M. Kallitsis

Umbrella datasets. We can see how the cache size for caching all ICAs increases
as we include more servers from 1K to 500K for Alexa and from 1K to 75K for
Umbrella. Intuitively that makes sense as more servers mean more CA vendors
issuing their certificates. Figures 3a shows that the ICA cache size for Alexa servers
will not exceed 550KB on average for RSA-2048 ICAs, 1.7MB for Dilithium-2 and
850KB for Falcon-512 ICAs. Figure 3b shows the equivalent sizes for Umbrella are
400KB, 1.1MB and 600KB. Although someone could use more efficient caching
mechanisms than caching all ICAs, we believe this analysis shows that caching
does not introduce detrimentally high resource requirements (<1-2MB) even for
big post-quantum ICA certificates. For comparison, the Web cache size including
all RSA and ECDSA ICAs chaining to Root CAs trusted in the Mozilla Root Pro-
gram is ∼1MB [50] which is manageable for most applications.

Although we could probably cache all ICAs for some usecases, it would make
more sense to limit our cache size especially for cases where an entity can com-
municate with infinite peers or where an up-to-date full ICA list is not available.
A crude option could be to use a static partial list of common ICAs and only
request suppression from peers we have seen before that use a chain with ICAs in
that list. More efficient options are, of course, possible. Caching is a well-studied
topic used in various Internet and memory usecases. Most mechanisms cache
data and usually have a way to update the cache when there is a cache miss
(missing entry in the cache).

For the purposes of ICA caching we can follow a similar approach. We ini-
tially have our ICA List which consists of the ICA certificates cached while
connecting with peers. These certificates can be omitted from subsequent con-
nections. The ICA List entries are referenced by a secondary list (Peer List)
which binds peers with the ICAs cached. The Peer List is an ordered list for
faster lookups. It includes the ICAs in the peer’s certificate chain, a counter of
the times communicated with that peer, a timestamp for the last communication
and a timeout value. These attributes will be used by the caching mechanism in
order to update the cache. Figure 4 shows the ICA cache architecture.

Fig. 4. ICA Cache

The Peer List timeout is used to clean up
the cache at regular maintenance intervals.
It can be set according to a default timeout
value, or it can be updated based on the fre-
quency of a cache miss. Busy caches dealing
with multiple peers are normally more fre-
quently updated. Deciding on the best time-
out value is a trade-off decision; the lower the
timeout the more operational burden on the
cache, the higher the timeout the more peer
entry evictions will need to take place with a
cache miss. Additionally, timeouts can be set
based in certificate expiration. When adding
a peer entry, we could set the timeout to the peer certificate expiration. When
the peer certificate expires, it is expected that we would need a new connection
to get its new certificate and ICAs. An ICA revocation would not affect security,

Faster Post-Quantum TLS Handshakes 349

as the ICA cache does not preclude normal certificate revocation checks when
validating the peer identity.

Algorithm 1 shows a simple cleanup mechanism based on one criterion. That
could be the timeout in a peer entry in the Peer List which removes the peer from
the list. Generally, if there are ICAs in the ICA List which are not referenced by
any peer entries, these are deleted as proper cache hygiene.

for PeerEntry in Peer List do
if (PeerEntry eviction criteria met) then

Remove PeerEntry from Peer List
end if

end for
for ICAEntry in ICA List do

if (ICAEntry is not referenced by any peer in the Peer List) then
Remove ICAEntry from ICA List

end if
end for

Algorithm 1: ICA Cache Cleanup

Algorithm 2 shows the process of updating the ICA and Peer Lists when
connecting to a peer. Before connecting to a new peer, we look up the Peer
List and if the peer already exists we update the counter and timestamp of the
entry and connect by asking for ICA suppression. If the connection fails due to
a certificate chain authentication error we remove that peer from the Peer List
so that subsequent connections will not depend on the cached ICAs.

In case the peer does not exist in the Peer List, we connect without ICA
suppression, we update the ICA cache with the peer’s ICAs and add the peer in
the Peer List. When updating the cache with new ICAs we can use Algorithm 1
if the cache is full. We could also remove peer entries and their corresponding
ICAs from the two lists in order to make room by using different criteria like
peer age (timestamps), counter, or randomly.

if (NewPeer in Peer List) then
Update NewPeer entry counter, timestamp in Peer List
Connect to NewPeer asking for ICA suppression
if (Connection failed) then

Remove NewPeer from Peer List
end if

else
Connect to NewPeer without ICA suppression and get NewPeer ICAs.
while (not enough room in cache for NewPeer and its ICAs) do

Make room for ICAs (Algorithm 1)
end while
Add NewPeer in Peer List
Add NewPeer ICAs in ICA List

end if
Algorithm 2: New Connection ICA cache Update

350 P. Kampanakis and M. Kallitsis

Note that the caching mechanisms discussed do not require fault-tolerance,
persistence or replication. They are built on straightforward concepts. In the
event of a failure or application crash the cache can be rebuilt without having
detrimental results other than potentially slower (due to heavy authentication-
data) initial handshakes. Additionally, readers should note that the proposed
ICA cache does not act as a CA store. These ICA certificates are cached, but
not trusted by default in any way. Certificate chain validation does not change.

7 Considerations

Signalling to the peer that it ought to not send its ICA certificates is a straight-
forward option to trim data from the handshakes, but it comes with security
considerations. When the client includes the TLS flag in its ClientHello, the
flag is cleartext and passive observers could tell that the client is requesting
ICA suppression. As the feature would not be immediately ubiquitous in all
clients, passive observers could use the signal to fingerprint clients and know
which ones the traffic is coming from. If the TLS flag is included in the server
CertificateRequest which is an encrypted message in TLS 1.3 the concern
does not apply.

Client fingerprinting is a security concern especially in a world where user
privacy has become top of mind for users and vendors. We should note that the
information leaked by the TLS flag is about the client having communicated with
certain peers and about having added support for ICA suppression. Although
these can be considered some loss of privacy, there is no additional leakage about
the identity of the client or the server. To alleviate fingerprinting concerns, the
client can encrypt its ClientHello using draft-ietf-tls-esni [33]. Although harder,
a passive observer could still infer that the client asked for suppression if the
server supports it by observing the amount of encrypted data sent from the
server in the response. Wide-adoption of the suppression mechanism in TLS
clients and servers would minimize the effect of any fingerprinting. Even then,
an ICA system cache could create side-channels which could leak information
(e.g., communicating destinations) even to off-path adversaries. Thus, the cache
should be protected.

Based on the usecase, ICA suppression would be trivial when the amount of
peers we are communicating with is finite or when the peers belong to a small set
of PKI domains. For example, a device that only communicates with a controller
and a few direct peers could trivially cache all ICAs. Usecases where the peers
are infinite or the PKI domains numerous will need ICA caching mechanisms
like the ones described in Sect. 6 when an up-to-date full ICA list is not avail-
able. Desktop Firefox preloading all Web ICAs [24] is another example where
resourceful entities can store all ICAs that their peers could be using. Depend-
ing on how elaborate the caching mechanism is and how frequently cache misses
take place, caching can be an operational concern. Designing proper caching is
important for these cases especially since failures could have adverse effects on
performance they are trying to improve.

Faster Post-Quantum TLS Handshakes 351

Including one TLS flag for the client and one for the server to signal ICA
suppression means that they can only ask for all or none of the ICA certificates
from their peer. Sometimes ICA cache size is limited. In these cases we may
want to control the ICA size. We may not want to cache ICAs that sign server
certificates; we may want to start from second-level ICAs and above. We could
achieve that by introducing one more TLS flags. Note that sometimes first or
second-level ICAs are not clear-cut as an ICA may have signed leaf certificate and
subordinate ICA certificates. To address that ambiguity in the caching algorithm,
we would only depend on the peer certificate chain to decide the level of the ICA.
We need detailed testing to decide if the complexity of another TLS flags is worth
the cache size savings and the TLS handshake speedup.

The proposed caching mechanisms in Sect. 6 are based on straightforward
practical approaches. Other options may exist. For example, a new ICA Chain
List could include lists of pointers to ICA entries and a timeout or timestamp.
The Peer List entries would then point to ICA Chain List entries. ICA List entries
would be removed only when they are not referenced by any ICA Chain entry.
Whole ICA Chain List entries would be removed when they are not referenced
by Peer List entries or when their timeout expires. In the event of full cache
and a cache miss, ICA Chain entries, the corresponding peers and orphan ICAs
would be removed to make room for new entries. Eviction mechanisms could
include timeouts, age (timestamps) or counters in the ICA Chain entries.

As discussed in Sect. 6, the ICA cache does not operate like a CA Trust Store.
Cached certificate authorities are not pre-trusted; they are only cached to avoid
being sent on the wire. Someone may argue that the handshakes could be sped
up by altering the chain validation to use the ICA cache entries as trusted cer-
tificates. There is a precedent with Trust Stores sometimes including ICAs and
Root CAs. Ryan Sleevi explained in [44] the complication of overlapping certifi-
cate chains and how implementations suffer in correctly dealing with them. We
consider pre-trusting any of the ICA cache certificates as more involved. We pre-
fer solutions that align well with operations today and do not introduce new risks.

8 Conclusion and Future Work

In conclusion, in this work we saw that authentication data-heavy (D)TLS hand-
shakes are slower. We quantified the issue and discussed usecases that are mostly
affected by it. We evaluated potential alleviation mechanisms and argued that
ICA suppression is the best option. We quantified the ICAs in use on the Inter-
net today and we proved that ICA suppression can be made possible by caching
ICAs. We also qualitatively evaluated ICA suppression signaling and caching
mechanisms to make this possible. As future work, we are planning to investi-
gate the expected ICA cache sizes for different usecases, applications and traffic
profiles different that the Web. Finally, reviving [18] in IETF would be the next
step to make authentication data-heavy (D)TLS connections lighter.

352 P. Kampanakis and M. Kallitsis

References

1. Amazon: Alexa top 1 Million, August 2021. https://www.alexa.com/topsites/
2. Apple: Apple’s Certificate Transparency policy, March 2021. https://support.

apple.com/en-us/HT205280
3. Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-

resistant public key infrastructure. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017.
LNCS, vol. 10346, pp. 384–405. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59879-6 22

4. Censys: censys.io data, August 2021. https://censys.io/data
5. Chu, J., Dukkipati, N., Cheng, Y., Mathis, M.: Increasing TCP’s initial window.

RFC 6928, April 2013. https://doi.org/10.17487/RFC6928. https://rfc-editor.org/
rfc/rfc6928.txt

6. Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH. In: NIST 2nd Post-Quantum Cryp-
tography Standardization Conference 2019, August 2019

7. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, August 2008. https://doi.org/10.17487/rfc5246. https://rfc-editor.org/
rfc/rfc5246.txt

8. Fluhrer, S., Dang, Q.: Additional parameter sets for LMS hash-based signa-
tures. Internet-Draft draft-fluhrer-lms-more-parm-sets-05, Internet Engineering
Task Force, June 2021. https://datatracker.ietf.org/doc/html/draft-fluhrer-lms-
more-parm-sets-05. work in Progress

9. Hoffman, P.E.: The transition from classical to post-quantum cryptography.
Internet-Draft draft-hoffman-c2pq-07, Internet Engineering Task Force, May 2020.
https://datatracker.ietf.org/doc/html/draft-hoffman-c2pq-07. work in Progress

10. Housley, R.: Use of the HSS/LMS Hash-based signature algorithm in the cryp-
tographic message syntax (CMS). RFC 8708, February 2020. https://doi.org/10.
17487/RFC8708. https://rfc-editor.org/rfc/rfc8708.txt

11. Huelsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS:
eXtended merkle signature scheme. RFC 8391, May 2018. https://doi.org/10.
17487/RFC8391. https://rfc-editor.org/rfc/rfc8391.txt

12. International Telecommunications Union (ITU-T): ASN.1 encoding rules: specifica-
tion of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distin-
guished Encoding Rules (DER). https://www.itu.int/rec/T-REC-X.690-202102-I/
en

13. International Telecommunications Union (ITU-T): X.509: Information technology -
Open Systems Interconnection - The Directory: Public-key and attribute certificate
frameworks. https://www.itu.int/rec/T-REC-X.509/en

14. Iyengar, J., Thomson, M.: QUIC: A UDP-based multiplexed and secure transport.
RFC 9000, May 2021. https://doi.org/10.17487/RFC9000. https://rfc-editor.org/
rfc/rfc9000.txt

15. Kampanakis, P., Chandra, R.: Mechanism to speed up secure communication hand-
shakes in constrained conditions. Technical Disclosure Commons, December 2020.
https://www.tdcommons.org/dpubs series/3916/

16. Kampanakis, P., Panburana, P., Daw, E., Van Geest, D.: The viability of post-
quantum X.509 Certificates. IACR Cryptology ePrint Archive 2018, 63 (2018)

17. Kampanakis, P., Sikeridis, D.: Two PQ signature use-cases: non-issues, challenges
and potential solutions. Cryptology ePrint Archive, Report 2019/1276 (2019).
https://ia.cr/2019/1276

https://www.alexa.com/topsites/
https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280
https://doi.org/10.1007/978-3-319-59879-6_22
https://doi.org/10.1007/978-3-319-59879-6_22
https://censys.io/data
https://doi.org/10.17487/RFC6928
https://rfc-editor.org/rfc/rfc6928.txt
https://rfc-editor.org/rfc/rfc6928.txt
https://doi.org/10.17487/rfc5246
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc5246.txt
https://datatracker.ietf.org/doc/html/draft-fluhrer-lms-more-parm-sets-05
https://datatracker.ietf.org/doc/html/draft-fluhrer-lms-more-parm-sets-05
https://datatracker.ietf.org/doc/html/draft-hoffman-c2pq-07
https://doi.org/10.17487/RFC8708
https://doi.org/10.17487/RFC8708
https://rfc-editor.org/rfc/rfc8708.txt
https://doi.org/10.17487/RFC8391
https://doi.org/10.17487/RFC8391
https://rfc-editor.org/rfc/rfc8391.txt
https://www.itu.int/rec/T-REC-X.690-202102-I/en
https://www.itu.int/rec/T-REC-X.690-202102-I/en
https://www.itu.int/rec/T-REC-X.509/en
https://doi.org/10.17487/RFC9000
https://rfc-editor.org/rfc/rfc9000.txt
https://rfc-editor.org/rfc/rfc9000.txt
https://www.tdcommons.org/dpubs_series/3916/
https://ia.cr/2019/1276

Faster Post-Quantum TLS Handshakes 353

18. Kampanakis, P., Stebila, D., Friedl, M., Hansen, T., Sikeridis, D.: Post-
quantum public key algorithms for the Secure Shell (SSH) protocol. Internet-
Draft draft-kampanakis-curdle-pq-ssh-00, Internet Engineering Task Force, Octo-
ber 2020. https://datatracker.ietf.org/doc/html/draft-kampanakis-curdle-pq-ssh-
00. work in Progress

19. Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security. RFC 7748, Jan-
uary 2016. https://doi.org/10.17487/RFC7748. https://rfc-editor.org/rfc/rfc7748.
txt

20. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962, June
2013. https://doi.org/10.17487/RFC6962. https://rfc-editor.org/rfc/rfc6962.txt

21. Mattsson, J.P., Sethi, M.: Using EAP-TLS with TLS 1.3 (EAP-TLS 1.3).
Internet-Draft draft-ietf-emu-eap-tls13-18, Internet Engineering Task Force, July
2021. https://datatracker.ietf.org/doc/html/draft-ietf-emu-eap-tls13-18. work in
Progress

22. McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali hash-based signatures. RFC
8554, April 2019. https://doi.org/10.17487/RFC8554. https://rfc-editor.org/rfc/
rfc8554.txt

23. Montenegro, G., Schumacher, C., Kushalnagar, N.: IPv6 over low-power wireless
personal area networks (6LoWPANs): overview, assumptions, problem statement,
and goals. RFC 4919, August 2007. https://doi.org/10.17487/rfc4919. https://rfc-
editor.org/rfc/rfc4919.txt

24. Mozilla: Preloading intermediate CA certificates into Firefox, November
2020. https://blog.mozilla.org/security/2020/11/13/preloading-intermediate-ca-
certificates-into-firefox/s

25. Mozilla: Common CA Database (CCADB), July 2021. https://www.ccadb.org/
resources

26. Mozilla: Common CA Database (CCADB), February 2022. https://ccadb-public.
secure.force.com/mozilla/MozillaIntermediateCertsCSVReport

27. Nir, Y.: A flags extension for TLS 1.3. Internet-Draft draft-ietf-tls-tlsflags-06, Inter-
net Engineering Task Force, July 2021. https://datatracker.ietf.org/doc/html/
draft-ietf-tls-tlsflags-06. work in Progress

28. Ounsworth, M., Pala, M.: Composite signatures for use in internet PKI. Internet-
Draft draft-ounsworth-pq-composite-sigs-05, Internet Engineering Task Force,
July 2021. https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-
sigs-05. work in Progress

29. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography
in TLS. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp.
72–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 5

30. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018. https://doi.org/10.17487/RFC8446. https://rfc-editor.org/rfc/
rfc8446.txt

31. Rescorla, E., Barnes, R., Tschofenig, H.: Compact TLS 1.3. Internet-Draft draft-
ietf-tls-ctls-03, Internet Engineering Task Force, July 2021. https://datatracker.
ietf.org/doc/html/draft-ietf-tls-ctls-03. work in Progress

32. Rescorla, E., Modadugu, N.: Datagram transport layer security version 1.2. RFC
6347, January 2012. https://doi.org/10.17487/rfc6347. https://rfc-editor.org/rfc/
rfc6347.txt

33. Rescorla, E., Oku, K., Sullivan, N., Wood, C.A.: TLS Encrypted Client Hello.
Internet-Draft draft-ietf-tls-esni-12, Internet Engineering Task Force, July 2021.
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-12. work in Progress

https://datatracker.ietf.org/doc/html/draft-kampanakis-curdle-pq-ssh-00
https://datatracker.ietf.org/doc/html/draft-kampanakis-curdle-pq-ssh-00
https://doi.org/10.17487/RFC7748
https://rfc-editor.org/rfc/rfc7748.txt
https://rfc-editor.org/rfc/rfc7748.txt
https://doi.org/10.17487/RFC6962
https://rfc-editor.org/rfc/rfc6962.txt
https://datatracker.ietf.org/doc/html/draft-ietf-emu-eap-tls13-18
https://doi.org/10.17487/RFC8554
https://rfc-editor.org/rfc/rfc8554.txt
https://rfc-editor.org/rfc/rfc8554.txt
https://doi.org/10.17487/rfc4919
https://rfc-editor.org/rfc/rfc4919.txt
https://rfc-editor.org/rfc/rfc4919.txt
https://blog.mozilla.org/security/2020/11/13/preloading-intermediate-ca-certificates-into-firefox/s
https://blog.mozilla.org/security/2020/11/13/preloading-intermediate-ca-certificates-into-firefox/s
https://www.ccadb.org/resources
https://www.ccadb.org/resources
https://ccadb-public.secure.force.com/mozilla/MozillaIntermediateCertsCSVReport
https://ccadb-public.secure.force.com/mozilla/MozillaIntermediateCertsCSVReport
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tlsflags-06
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tlsflags-06
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-05
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-05
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-ctls-03
https://datatracker.ietf.org/doc/html/draft-ietf-tls-ctls-03
https://doi.org/10.17487/rfc6347
https://rfc-editor.org/rfc/rfc6347.txt
https://rfc-editor.org/rfc/rfc6347.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-12

354 P. Kampanakis and M. Kallitsis

34. Rescorla, E., Tschofenig, H., Modadugu, N.: The datagram transport layer secu-
rity (DTLS) Protocol Version 1.3. Internet-Draft draft-ietf-tls-dtls13-43, Internet
Engineering Task Force, April 2021. https://datatracker.ietf.org/doc/html/draft-
ietf-tls-dtls13-43. work in Progress

35. Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, D.C.:
X.509 internet public key infrastructure online certificate status protocol - OCSP.
RFC 6960, June 2013. https://doi.org/10.17487/RFC6960. https://rfc-editor.org/
rfc/rfc6960.txt

36. Santesson, S., Tschofenig, H.: Transport layer security (TLS) cached information
extension. RFC 7924, July 2016. https://doi.org/10.17487/RFC7924. https://rfc-
editor.org/rfc/rfc7924.txt

37. Scheitle, Q., et al.: A long way to the top: significance, structure, and stability of
internet top lists. In: Proceedings of the Internet Measurement Conference 2018,
pp. 478–493. IMC 2018, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3278532.3278574. https://doi.org/10.1145/
3278532.3278574

38. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1461–1480. CCS 2020, Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3372297.3423350.
https://doi.org/10.1145/3372297.3423350

39. Sethi, M., Mattsson, J.P., Turner, S.: Handling large certificates and long certifi-
cate chains in TLS-based EAP methods. Internet-Draft draft-ietf-emu-eaptlscert-
08, Internet Engineering Task Force, November 2020. https://datatracker.ietf.org/
doc/html/draft-ietf-emu-eaptlscert-08. work in Progress

40. SHODAN: HTTPS (443) Overview (2019). https://www.shodan.io/report/
mNs9fa3I

41. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Assessing the overhead of post-
quantum cryptography in TLS 1.3 and SSH. In: Proceedings of the 16th Inter-
national Conference on Emerging Networking EXperiments and Technologies, pp.
149–156. CoNEXT 2020, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3386367.3431305. https://doi.org/10.1145/
3386367.3431305

42. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: a performance study. In: 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA, 23–26 February
2020. The Internet Society (2020). https://www.ndss-symposium.org/ndss-paper/
post-quantum-authentication-in-tls-1-3-a-performance-study/

43. Simon, D., Hurst, R., Aboba, D.B.D.: The EAP-TLS authentication protocol. RFC
5216, March 2008. https://doi.org/10.17487/RFC5216. https://rfc-editor.org/rfc/
rfc5216.txt

44. Sleevi, R.: Path building vs path verifying: the chain of pain, June 2020.
https://medium.com/@sleevi /path-building-vs-path-verifying-the-chain-of-
pain-9fbab861d7d6

45. Stebila, D., Fluhrer, S., Gueron, S.: Hybrid key exchange in TLS 1.3. internet-
Draft draft-ietf-tls-hybrid-design-03, Internet Engineering Task Force, July
2021. https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03. work
in Progress

46. Lists Study, T.: Scheitle, quirin and jelten, jonas, July 2021. https://toplists.github.
io/index.html

https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://doi.org/10.17487/RFC6960
https://rfc-editor.org/rfc/rfc6960.txt
https://rfc-editor.org/rfc/rfc6960.txt
https://doi.org/10.17487/RFC7924
https://rfc-editor.org/rfc/rfc7924.txt
https://rfc-editor.org/rfc/rfc7924.txt
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350
https://datatracker.ietf.org/doc/html/draft-ietf-emu-eaptlscert-08
https://datatracker.ietf.org/doc/html/draft-ietf-emu-eaptlscert-08
https://www.shodan.io/report/mNs9fa3I
https://www.shodan.io/report/mNs9fa3I
https://doi.org/10.1145/3386367.3431305
https://doi.org/10.1145/3386367.3431305
https://doi.org/10.1145/3386367.3431305
https://www.ndss-symposium.org/ndss-paper/post-quantum-authentication-in-tls-1-3-a-performance-study/
https://www.ndss-symposium.org/ndss-paper/post-quantum-authentication-in-tls-1-3-a-performance-study/
https://doi.org/10.17487/RFC5216
https://rfc-editor.org/rfc/rfc5216.txt
https://rfc-editor.org/rfc/rfc5216.txt
https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-03
https://toplists.github.io/index.html
https://toplists.github.io/index.html

Faster Post-Quantum TLS Handshakes 355

47. Systems, C.: Cisco Umbrella 1 Million, August 2021. https://umbrella.cisco.com/
blog/cisco-umbrella-1-million

48. Thomson, M., Turner, S.: Using TLS to Secure QUIC. RFC 9001, May 2021.
https://doi.org/10.17487/RFC9001. https://rfc-editor.org/rfc/rfc9001.txt

49. Tjhai, C., et al.: Multiple Key Exchanges in IKEv2. Internet-Draft draft-ietf-
ipsecme-ikev2-multiple-ke-03, Internet Engineering Task Force, July 2021. https://
datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-multiple-ke-03. work in
Progress

50. Valsorda, F.: filippo.io/intermediates, February 2022. https://github.com/
FiloSottile/intermediates

51. Westerbaan, B.: Sizing up post-quantum signatures, November 2021. https://blog.
cloudflare.com/sizing-up-post-quantum-signatures/

https://umbrella.cisco.com/blog/cisco-umbrella-1-million
https://umbrella.cisco.com/blog/cisco-umbrella-1-million
https://doi.org/10.17487/RFC9001
https://rfc-editor.org/rfc/rfc9001.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-multiple-ke-03
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-multiple-ke-03
https://github.com/FiloSottile/intermediates
https://github.com/FiloSottile/intermediates
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

Enhancing Cybersecurity of Satellites
at Sub-THz Bands

Rajnish Kumar(B) and Shlomi Arnon

Ben-Gurion University of the Negev, Beersheba, Israel

rajnish@post.bgu.ac.il, shlomi@bgu.ac.il

Abstract. In this work, we present a novel idea to enhance the cyber-
security of a low earth orbit (LEO) satellite link assuming that the com-
munication between the satellite (Alice) to the ground station receiver
(Bob) is done at sub-THz frequency bands. Such short wavelength cre-
ates highly directional antenna beam with very small spot on the ground
and thus making it difficult for eavesdropping. However, the satellite
transmitter power can be further tuned close to the noise floor so as to
make the eavesdropping even more practically difficult. In order to aug-
ment the security of the link further, we communicate only within a very
specific and designated angle of arrivals of the satellite signal with trans-
mitter power tuned close to the noise floor. The lowering of transmitter
power will lead to a lower signal-to-noise ratio (SNR) at the ground sta-
tion receiver and will thus cause a very high probability of eavesdropper
(Eve) outages. In order to improve the SNR of Bob’s receiver, we derive
an optimization algorithm considering the impact of thermal noises from
the sky, the ground and the receiver circuit. The algorithm adapts the
inter-element spacing between the phased array elements to shape the
gain pattern so as to minimize the required transmitter power for a given
SNR at the receiver of Bob.

Keywords: Satellite communication · THz frequency ·
Cybersecurity · Phased array

1 Introduction

The evolution of technology to 6G will make LEO satellites an integral part of the
communication network. To meet the increasing consumer demands with mas-
sive traffic volume, these LEO satellites will be designed at sub-THz frequencies
above 100 GHz to exploit the high bandwidth available [1]. With the launch of
mega-constellations, the satellites are expected to play a larger role in the com-
munication infrastructure so the bad actors from international level to low-level
criminals are trying to take advantage from the growing satellite network [2,3].
With the advancement in technology, the easy and low cost availability of com-
munication equipment like signal sources, low-noise amplifiers, mixers, filters,
modulators and demodulators integrated circuits, phased array beamformers,

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 356–365, 2022.
https://doi.org/10.1007/978-3-031-07689-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_26&domain=pdf
http://orcid.org/0000-0002-1593-0871
http://orcid.org/0000-0001-8048-3089
https://doi.org/10.1007/978-3-031-07689-3_26

Enhancing Cybersecurity of Satellites at Sub-THz Bands 357

and other commercial off-the-shelf electronics and open source software makes
the satellite links more vulnerable to the cyberattacks [4]. There are growing
concerns regarding the cybersecurity of satellites as the hackers may be able
to disrupt many essential services like GPS, vehicles, drones, offshore oil and
gas operations and electricity grid [5,6]. Hackers could deorbit and destabilize
the satellite and make them collide with each other causing havoc to the infras-
tructure. With the recent progress in the applications of machine learning in
communication systems, the security may be more compromised [7,8]. So, the
6G satellite networks will have a high priority for privacy and security [9,10].
Some of the risks in the 6G network will include the denial-of-service attacks,
data pollution attacks, and control-flow hijacking besides kinetic and electronic
attacks [11]. Such cyberattacks can lead to the corruption and interception of
data, and breach of security secrets and other sensitive and valuable information.

The communication at sub-THz frequencies will make the link less vulnerable
to eavesdropping due to very narrow beam divergence at such high frequency
thus creating a smaller spot at ground compared to mm-wave links [12,13]. Thus,
THz bands can support secure link with high capacity and ultra-broad band-
width communication [14]. The communication links can be made secure with
the use of various techniques including quantum cryptography [15,16], encryp-
tion algorithms [17], and spread spectrum modulations [18]. However, the next
generation of communication system relying on quantum computing will make
the use of traditional encryption key not difficult to hack [19]. Under such sce-
nario, a more preferred way to deal with cybersecurity in post-quantum era
would be by taking advantage of the fundamental physical aspect of the atmo-
spheric channel. The satellite (Alice) communicating with low transmitter power
could be one of the possible ways as it will enable covert communication link
with the ground station receiver (Bob). The higher attenuation associated with
the atmospheric absorption at THz will make sure that the signal with slant path
will be severely attenuated in the atmosphere so that the link between Alice and
Bob will be highly directional. At such high absorption loss over atmospheric
channel, the transmitted power can be tuned very close to the noise floor such
that Eve will not able to notice any transmission between Alice and Bob. The
one time encryption key between Alice and Bob will then be shared with mini-
mum transmitter power required while maintaining a low bit-error rate (BER)
at the receiver of Bob.

In this work, we derive an algorithm to optimally shape the radiation pat-
tern of the phased array receiver at the ground station so as to minimize the
required transmitted satellite power for a given number of array elements. The
LEO satellite moves in its orbit with a high velocity and so the link dynam-
ics changes rapidly. This could be potentially used to design adaptive receivers
that will optimize the performance of the link. The gain pattern of antenna can
be optimally shaped by adapting the inter-element spacing between the array
emitters. The choice of inter-element spacing will affect the sidelobes, grating
lobes and the beamwidth of array antenna [20]. The derived mathematical algo-
rithm will take into consideration the effects of thermal noise from the sky, the

358 R. Kumar and S. Arnon

Fig. 1. Scenario under consideration

ground and the receiver circuit connected to the array terminal. Thus, by opti-
mally shaping the radiation pattern of receiver array, the encryption key can be
shared with minimum transmitter power covertly between Alice and Bob with-
out being detected by Eve. As compared to a phased array design with uniform
spacing of λ/2 between the array emitters, we show a significant improvement
of about 3 dB in the transmitted power at which the Alice can send the encryp-
tion key to the receiver of Bob. In Fig. 1, we show the transmitted signal from
Alice arriving at the receiver of Bob with an angle of arrival (AoA) θ0 while
Eve is placed nearby. Bob receives the signal with non-uniformly placed phased
array with optimized spacing between the elements and Eve receives the signal
with uniformly placed array of antenna elements while both use same number
of antenna elements. The optimization of transmitter power as the satellite AoA
changes at the ground station provides a window of opportunity for transmit-
ting the encryption key safely to Bob thus making the link less vulnerable to
eavesdropping.

2 Losses and Noise over Channel

The propagation of satellite signal through the earth’s atmosphere will cause
signal energy to be absorbed by the gaseous molecules and leading to molecular
absorption loss. The absorption loss can be found by slicing the atmosphere
into several homogeneous layers of a certain thickness hi and finding the specific
attenuation for each of them defined with a pressure, temperature and water
vapor density. Thus, we can express the molecular absorption loss at the AoA
θ0 as [21]

LA(θ0) =
M∏

i=1

eki(f)di(θ0) (1)

Enhancing Cybersecurity of Satellites at Sub-THz Bands 359

where, f is the frequency, ki(f) is the absorption coefficient through each layer,
θ0 is the angle measured from zenith, and di(θ0) is the slant path length through
each gaseous layer expressed as [22]

di(θ0) = −ri cos θ0 +
√

(r2i cos2 θ0 + 2rihi + h2
i) (2)

where, ri is the radius taken from the bottom of ith layer to the center of earth,
the earth’s radius r1 is taken as 6371 km km.

The free space path loss for the link as a function of AoA is given by

LFS(θ0) =
[4π

λ
(−R0 cos θ0 +

√
(R0 + hs)2 − R2

0 sin2 θ0)
]2 (3)

where, λ is the wavelength, hs is the satellite altitude and R0 is the radius of
the earth.

Noise is the unwanted random signal that interfere with the desired signal in
the frequency band. There are various external and internal sources of noise at
THz that will degrade the system performance by increasing antenna noise tem-
perature. These noise sources can be natural or man-made. Given the antenna
gain pattern G(θ, φ) and the brightness temperature Tb(θ, φ) of noise source, the
antenna noise temperature can be found as given in [23]. The atmospheric media
with gaseous constituents will radiate thermal noise into the antenna due to its
temperature. The downwelling brightness temperature of gaseous atmosphere of
the earth at the ground station antenna is expressed as [24]

Tdown(θ0) = TB(f, 2.73) × 10− ∑1
j=k γidi(θ0)/10 +

1∑

n=k

TB(f, Tj)(1 − 10−γndn(θ0)/10)10− ∑1
j=k−1 γidi(θ0)/10 (4)

where, 2.73 K is the cosmic background temperature, Tj is the physical temper-
ature of each layer, and TB is the brightness temperature of each layer.

The earth at a certain physical temperature will also act as noise source and
the upwelling brightness temperature at the antenna will be given by [24]

Tup(θ0) = εTB(f, Tearth) + ρTdown(1800 − θ0) (5)

where, Tearth = 290 K is the physical temperature of earth’s surface (K), ε is
emissivity, and ρ is effective reflection coefficient.

The antenna will also receive noise from the connected receiver system to
its terminal that includes the feeder, low-noise amplifier (LNA), mixer, and
Intermediate-frequency (IF) amplifier. The noise temperature at the antenna
terminals due to the receiver circuit is [25]

TRX = TF (LF − 1) +
TLNA

GF
+

TMX

GF GLNA
+

TIF

GF GLNAGMX
(6)

where, TF , and GF are the noise temperature and gain of antenna feeder respec-
tively and TIF , TMX , and TLNA are the noise temperature of IF amplifier, mixer

360 R. Kumar and S. Arnon

and LNA respectively. GMX , and GLNA are the respective gains of mixer and
LNA.

Thus, at any given angle θ0 the total noise temperature of the phased array
receiver antenna will be given by

TA(θ0) = TAS(θ0) + TAG(θ0) + TRX (7)

where, TAS(θ0), and TAG(θ0) are the noise temperature of antenna due to the
downwelling and the upwelling brightness temperature respectively.

3 Minimizing Transmitter Power

The higher losses associated with the THz channel requires higher gain antennas
at the transmitter as well at the receiver. The movement of LEO satellite in their
orbit requires fast tracking at the ground station which can be achieved by the
phased array antennas. The phased array can be electronically steered to direct
its main beam to the desired angle of arrival for receiving the satellite signal.
In this section, we will minimize the transmitted signal power by optimizing the
gain pattern of the antenna for a given number of elements of the phased array.
The inter-element spacing between the antenna elements can be adapted so as to
shape the antenna gain pattern optimally. By varying the inter-element spacing,
we can control the sidelobes, grating lobes, and beam width. We consider that
the elements of the phased array are non-uniformly placed such that the array
factor will be given by [26]

AF (θ) = a1 + a2 exp[jk′d1(cos θ − cos θ0)] + a3 exp[jk′(d1 + d2)(cos θ − cos θ0)]
+... + aN exp[jk′(d1 + d2 + ... + dN−1)(cos θ − cos θ0)] (8)

where, d1, d2, ..., dN−1 are the spacing between the array elements,
a1, a2, ..., aN−1 are the amplitude excitation of the elements, θ0 is beam steering
angle, θ is the angle taken from zenith, and k′ = 2π

λ is the wavenumber.
Assuming that the phased array antenna is lossless, the gain pattern and the

maximum gain of the phased array can be calculated as shown in [26]. In order
to find the total realized gain of phased array, the maximum gain of the array
antenna GR will multiplied by g, where g is the gain of the array elements.

Now, we can write the expression of transmitter power for a signal arriving
with AoA, θ0 at the output terminals of the phased array receiver as [27]

PT (θ0) =
kBLFS(θ0)LA(θ0)TA(θ0)SNR(θ0)

gGT GR(θ0)
(9)

As the LEO satellite moves, the atmospheric loss and the free space path loss
changes with θ0 along with the noise temperature of the antenna. This provides
an opportunity to shape the gain pattern of phased array optimally at the ground
station so as to minimize the requirement on transmitted power PT . For a given
SNR at the receiver, we would minimize the transmitter power PT (θ0) as the

Enhancing Cybersecurity of Satellites at Sub-THz Bands 361

AoA at the receiver is changing due to satellite movement by varying dn, which
will require that

[
∂PT (θ0)

∂d1

∂PT (θ0)
∂d2

. . .
∂PT (θ0)
∂dN−1

]T

= 0 (10)

Uisng 9 and 10, we manipulate the equations to write
⎡

⎢⎢⎣

TA(θ0)
∂GR(θ0)

∂d1
− GR(θ0)

∂TA(θ0)
∂d1

...
TA(θ0)

∂GR(θ0)
∂dN−1

− GR(θ0)
∂TA(θ0)
∂dN−1

⎤

⎥⎥⎦ = 0 (11)

The solution of above equations would yield the optimum spacing of the array
elements that will minimize the transmitter power required to receive the signal
while maintaining a constant SNR at the receiver.

4 Numerical Results

We now perform numerical simulation for the parameters of satellite link as
mentioned in Table 1 [27]. The model of atmosphere considered is taken as a
uniform layer of 922 homogeneous layers as shown in [24] and the mean annual
global atmosphere is considered for calculating the losses over the earth-space
link as given in [28]. We assume that both the Eve and Bob are close to each
other so that main beam of their antennas make the same elevation angle with
the satellite. The close placement of Even and Bob receiver is the worst case
scenario from the link security point of view because as Eve moves farther away
from Bob, the signal attenuation will be larger due to the slant path and highly
directional beam of antenna and so Eve will have even lower SNR. Bob uses
the optimized phased array with non-uniformly placed elements while Eve use a
uniform phased array with spacing of λ/2 which is the usual practice. In order
to provide them with similar scenario, both use the same number of elements of
phased array. For maintaining a bit-error rate (BER) at the receiver of Bob, we
employ binary PSK with soft decision convolution coding with a code rate of 2/3.
For an SNR of 5 dB at the receiver of Bob, the BER would be 1.63 × 10−9. We
maintain this SNRBob at 5 dB as the signal AoA changes by tuning the satellite
transmitter power PT . We minimize the transmitter power by employing the
non-uniform phased array for the receiver of Bob. As Eve uses a uniform phased
array with uniform spacing of λ/2, the SNREve at Eve will be lower for the
same transmitter power PT and hence the higher BER. We plot the minimized
transmitted power PT as the AoA changes in Fig. 2. The plot of BER of Eve is
shown in the Fig. 3 while the BER of Bob remains at 1.63 × 10−9.

In order to increase the cybersecurity of the satellite link, we designate only
a specific narrow range of AoA to communicate with Bob at the ground station.
Assuming a BER threshold of 10−6, we can observe from Fig. 3 that Alice can
transmit the encryption key to Bob when the AoA is between 00 − 100 and

362 R. Kumar and S. Arnon

Fig. 2. Minimized transmitter power using non-uniform phased array at the receiver
of Bob to maintain a constant BER with SNRBob = 5 dB

Fig. 3. BER at the receiver of Eve as the transmitter power of satellite is minimized
as the AoA changes, the BER at the receiver of Bob is 1.63 × 10−9

700 − 850. For these range of AoA, the BER of Eve will be very high and SNR
will be be very low so that Bob will hardly be able to notice the transmission
between Alice and Bob, that is a very much desirable scenario for the secure
link. We employ these range of AoA i.e. 00 − 100 and 700 − 850 to communicate
the encryption key to the Bob while making it practically difficult for Eve to
receive with significant fidelity as the probability of error would be very high.

Enhancing Cybersecurity of Satellites at Sub-THz Bands 363

Table 1. Simulation parameters

Definition Symbol Value

Satellite antenna gain GT 70 dBi

Satellite altitude hs 1000 km

Atmospheric height H 100 km

Ground surface temperature TG 290 K

Emissivity ε 0.95

Effective reflection coefficient ρg 0.05

Feeder loss LF 0.1 dB

Feeder temperature TF 300 K

LNA noise figure 3 dB

LNA gain GLNA 15 dB

Mixer temperature TIF 150 K

Mixer gain GMX −10 dB

IF amplifier noise figure 5 dB

IF amplifier gain GIF 25 dB

Number of array elements N 50

Array weights a1, . . . , aN 1

System bandwidth B 1 GHz

5 Conclusion

In this work, we have proposed a novel method to enhance the cybersecurity of
the satellite link with the ground station for the next generation of communica-
tion system. The method is based on shaping the gain pattern of phased array
receiver of Bob at the ground station so that transmitted signal power will be
minimized while the SNR of Eve worsens to degrade its BER performance. With
this minimum transmitter power, we can send the encryption key to Bob only
when there is a window of opportunity in terms of AoA such that BER of Eve is
very high while the BER of Bob remains low in order to maintain the fidelity of
the link with Alice. The AoA for which the sharing of encryption key between
Alice and Bob would be done covertly is in the range from 00−100 and 700−850.

References

1. Tataria, H., Shafi, M., Molisch, A.F., Dohler, M., Sjöland, H., Tufvesson, F.: 6G
wireless systems: vision, requirements, challenges, insights, and opportunities. In:
Proceedings of the IEEE, pp. 1–34 (2021)

2. Akyildiz, I.F., Kak, A., Nie, S.: 6G and beyond: the future of wireless communica-
tions systems. IEEE Access 8, 133995–134030 (2020)

3. Shlomi, A., Kupferman, J.: Effects of weather on drone to IoT QKD. In: Cyber
Security Cryptography and Machine Learning, CSCML (2019)

364 R. Kumar and S. Arnon

4. Manulis, M., Bridges, C.P., Harrison, R., Sekar, V., Davis, A.: Cyber security in
New Space. Int. J. Inf. Secur. 20(3), 287–311 (2020). https://doi.org/10.1007/
s10207-020-00503-w

5. Saha, S.S., Rahman, S., Ahmed, M.U., Aditya, S.K.: Ensuring cybersecure teleme-
try and telecommand in small satellites: recent trends and empirical propositions.
IEEE Aerosp. Electron. Syst. Mag. 34(8), 34–49 (2019)

6. Libicki, M.C.: Correlations between cyberspace attacks and kinetic attacks. In:
2020 12th International Conference on Cyber Conflict (CyCon), vol. 1300, pp.
199–213 (2020)

7. Liu, Y., Yu, F.R., Li, X., Ji, H., Leung, V.C.: Blockchain and machine learning
for communications and networking systems. IEEE Commun. Surv. Tutor. 22(2),
1392–1431 (2020)

8. Xue, M., Yuan, C., Heyi, W., Zhang, Y., Liu, W.: Machine learning security:
threats, countermeasures, and evaluations. IEEE Access 8, 74720–74742 (2020)

9. Dang, S., Amin, O., Shihada, B., Alouini, M.-S.: What should 6G be? Nat. Elec-
tron. 3, 20–29 (2020)

10. Chen, H., Tu, K., Li, J., Tang, S., Li, T., Qing, Z.: 6G wireless communications:
security technologies and research challenges. In: 2020 International Conference on
Urban Engineering and Management Science (ICUEMS), pp. 592–595 (2020)

11. Hao, J., Mithun, M., Jie, Z., Jaime, L.: Channel modeling and characteristics for
6G wireless communications. IEEE Netw. 35(1), 296–303 (2021)

12. Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communi-
cations. J. Appl. Phys. 107(111101), 1–23 (2010)

13. Ma, J.: Security and eavesdropping in terahertz wireless links. Nature 563, 89–93
(2018)

14. Tekbıyık, T., Ekti, A.R., Kurt, G.K., Gorcinad, A.: Terahertz band communi-
cation systems: challenges, novelties and standardization efforts. Phys. Commun.
35(100700), 1–18 (2019)

15. Arnon, S.: Quantum technology for optical wireless communication in data-center
security and hacking. In: Dingel, B.B., Tsukamoto, K., Mikroulis, S. (eds.) Broad-
band Access Communication Technologies XIII, vol. 10945, pp. 97–101. Interna-
tional Society for Optics and Photonics, SPIE (2019)

16. Gabay, M., Arnon, S.: Quantum key distribution by a free-space MIMO system.
J. Lightwave Technol. 24(8), 3114–3120 (2006)

17. Caparra, G., Curran, J.T.: On the achievable equivalent security of GNSs ranging
code encryption. In: 2018 IEEE/ION Position, Location and Navigation Sympo-
sium (PLANS), Monterey, CA (2018)

18. Burg, A., Chattopadhyay, A., Lam, K.Y.: Wireless communication and security
issues for cyber-physical systems and the internet-of-things. In: Proceedings of the
IEEE (2018)

19. Porambage, P., Gür, G., Osorio, D.P.M., Liyanage, M., Gurtov, A., Ylianttila,
M.: The roadmap to 6G security and privacy. IEEE Open J. Commun. Soc. 2,
1094–1122 (2021)

20. ASlimani, A., Bennani, S.D., El Alami, A.: Effect of inter-elements distance and
phase shift excitation on radiation performance of linear, planar and circular arrays
antennas. In: 2017 International Conference on Wireless Technologies, Embedded
and Intelligent Systems (WITS), pp. 1–7 (2017)

21. Petrov, V., Komarov, M., Moltchanov, D., Jornet, J.M., Koucheryavy, Y.: Inter-
ference and SINR in millimeter wave and terahertz communication systems with
blocking and directional antennas. IEEE Trans. Wireless Commun. 16(3), 1791–
1808 (2017)

https://doi.org/10.1007/s10207-020-00503-w
https://doi.org/10.1007/s10207-020-00503-w

Enhancing Cybersecurity of Satellites at Sub-THz Bands 365

22. Kokkoniemi, J., Jornet, J.M., Petrov, V., Koucheryavy, Y., Juntti, M.: Channel
modeling and performance analysis of airplane-satellite terahertz band communi-
cations. IEEE Trans. Veh. Technol. 70(3), 2047–2061 (2021)

23. Balanis, C.A.: Antenna Theory: Analysis and Design, 4th edn. Wiley (2016)
24. ITU. ITU Recommendation: Attenuation by atmospheric gases and related effects.

P. 676–12, August 2019
25. Sturdivant, R.L., Chong, E.K.P.: Systems engineering of a terabit elliptic orbit

satellite and phased array ground station for IoT connectivity and consumer inter-
net access. IEEE Access 4, 9941–9957 (2016)

26. Mailloux, R.J.: Phased Array Antenna Handbook, 3rd edn. Artech House (2017)
27. Kumar, R., Arnon, S.: SNR optimization for LEO satellite at sub-THz frequencies.

IEEE Trans. Antennas Propag. 1 (2022)
28. ITU. ITU Recommendation: Reference standard atmospheres, pp. 835–6, July 2017

Polynomial Approximation of Inverse
sqrt Function for FHE

Samanvaya Panda(B)

International Institute of Information Technology, Hyderabad, Hyderabad, India

samanvaya.panda@research.iiit.ac.in

Abstract. Inverse sqrt and sqrt function have numerous applications in
linear algebra and machine learning such as vector normalisation, eigen-
value computation, dimensionality reduction, clustering, etc. This paper
presents a method to approximate and securely perform the inverse sqrt
function using CKKS homomorphic encryption scheme. Since the CKKS
homomorphic scheme allows only computation of polynomial functions,
we propose a method to approximate the inverse sqrt function polyno-
mially. In the end, we provide an implementation of our method for the
inverse sqrt function.

Keywords: Polynomial approximation · Inverse sqrt · Homomorphic
encryption · CKKS

1 Introduction

Privacy-preserving computation has been used to mitigate personal and sensi-
tive information leakage problems. There are many ways to compute functions
on data securely, keeping the data private. One such technique is homomor-
phic encryption. Homomorphic encryption allows us to evaluate any function on
encrypted data without knowing the actual data. In recent times, there have
been numerous advancements in homomorphic encryption schemes. The CKKS
homomorphic encryption scheme proposed recently by Cheon et al. in [3] is one
such example. It supports arithmetic on floating-point numbers which is why it
has been extensively used for different machine learning tasks [1,5,6].

The problem with CKKS homomorphic scheme is that it only supports poly-
nomial operations. So, we can’t implement many non-polynomial functions such
as logarithm, sqrt, sine, etc. directly. These functions need to be polynomially
approximated. There have been several methods proposed to approximate non-
polynomial functions, such as using Chebyshev’s polynomial basis [13], minimax
polynomials [12], Fourier series, etc. in [2–4,14]. But in most FHE-based algo-
rithms using schemes similar to CKKS, the approximation of inverse functions is
skipped and such computations are performed on plaintext. Few attempts have
been made in this direction in [14] and [9]. In [14], authors suggested approxi-
mating division operation using Newton’s method and Goldschmidt’s algorithm.
They used an initial guess y0 = 21−k for all values. In [9] too, the author used
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 366–376, 2022.
https://doi.org/10.1007/978-3-031-07689-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_27&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_27

Polynomial Approximation of Inverse sqrt Function for FHE 367

Newton’s method and Goldschmidt’s algorithm to approximate the inverse sqrt
and sqrt function simultaneously. They took inspiration from the fast inverse sqrt
algorithm [7] and tried a similar approach in a homomorphic setting. Instead of
fixing the initial guess, they used constrained linear regression to approximate
the inverse sqrt function. The line served as a good initial guess for larger values
of x. But for smaller values, it requires more iterations for convergence.

1.1 Contributions

We also draw inspiration from the fast inverse sqrt algorithm [7]. We can have
some curve approximating the 1√

x
as a good initial guess and then use Newton’s

iteration to improve upon that guess. This paper proposes a new method to find
a better initial guess for the inverse sqrt function and apply Newton’s iterations.
The advantage of using Newton’s iterations for inverse functions is that they are
polynomial and can be evaluated homomorphically. Upon observing the shape of
the inverse sqrt function, we notice that the value of the function keeps decreasing
slowly to the right of x = 1 and increases drastically to the left of x = 1. Over
a considerable interval, we can see that the shape of the function looks like the
‘L’ alphabet.

This gave us the intuition to approximate the curve 1√
x

using two lines.
One of the lines approximates the curve over a large interval capturing the slow
decreasing trend of the values. The other line captures the rapid increasing trend
in the values of the curve. The intersection of the two lines is called the pivot
point. Approximation of the curve 1√

x
can be written as a convex combination

of the two lines about the pivot point using a sign function as described in [4].
In sections ahead, we will define how to find those two lines and what properties
they must satisfy. Our method provides sufficient accuracy with multiplicative
depth1 comparable to the approximation in [9] and also reduces the number
of iterations almost by half. Finally, we provide experimental results on the
homomorphic implementation of our method.

2 Preliminaries

2.1 CKKS Homomorphic Scheme

The CKKS(Cheon-Kim-Kim-Song) scheme [3] is a leveled homomorphic encryp-
tion scheme. Unlike other HE schemes, CKKS supports approximate arithmetic
on real and complex numbers with predefined precision. The main idea behind
the CKKS scheme is that it treats noise generated upon decryption as an error in
computation for real numbers. This makes it ideal for performing machine learn-
ing tasks where most of the calculations are approximate. The CKKS scheme
becomes an FHE(fully homomorphic encryption) scheme with the bootstrapping
technique.

1 We consider non-scalar multiplicative depth i.e. ciphertext-ciphertext multiplication.

368 S. Panda

Let N = φ(M) be the degree of the M -th cyclotomic polynomial ΦM (X). If
N is chosen as a power of 2 then M = 2N and the M -th cyclotomic polynomial
ΦM (X) = XN + 1. Let R = Z[X]/ΦM (X) = Z[X]/(XN + 1) be the ring of
polynomials defined for the plaintext space. Let Rq = R/qR = Zq[X]/(XN +1)
be the residue ring defined for the ciphertext space. Let H be a subspace of CN

which is isomorphic to C
N/2. Let σ : R → σ(R) ⊆ H be a canonical embedding.

Let π : H → C
N/2 be a map that projects a vector from a subspace of CN to

C
N/2.

The CKKS scheme provides the following operations:-

– KeyGen(N) :- Generates secret polynomial s(X), public polynomial p(X).
– Encode(z) :- Encodes a message vector z ∈ C

N/2 to a message polynomial
m(X) ∈ R where m(X) = σ−1(�Δ · π−1(z)�) ∈ R.

– Decode(m(X)) :- Decodes a message polynomial m(X) ∈ R back to a mes-
sage vector z ∈ C

N/2.
– Encrypt(m(X), p(X)) :- Encrypts the message polynomial m(X) ∈ R to

get ciphertext polynomial c(X) = (c0(X), c1(X)) = (m(X), 0) + p(X) =
(m(X) − a(X) · s(X) + e(X), a(X)) ∈ (Zq[X]/(XN + 1))2.

– Decrypt(c(X), s(X)) :- Decrypts the ciphertext polynomial c(X) to the cor-
responding message polynomial m(X).

Apart from the above operations, it provides an evaluator function that can
perform specialised ciphertext operations. This include:-

– Add(c(X), c′(X)) :- to add 2 ciphertext polynomials.
– Multiply(c(X), c′(X)) :- to multiply 2 ciphertext polynomials.
– Rotate(c(X), i) :- to rotate the ciphertext polynomial by i positions left.

2.2 Polynomial Approximation of Sign Function

The sign function is non-polynomial and can’t be used directly in the CKKS
scheme. So, we use a polynomial approximation of the sign function instead. In
general, we approximate the sign function in the domain x ∈ [−1, 1] and the sign
of any other value can be found by scaling it inside the domain. In this paper,
we will use the approximation proposed by Cheon et al. in [4]. We approximate
the sign function as a composite polynomial f (d) where f is a polynomial with
similar shape to the sign function in the interval [−1, 1]. The properties satisfied
by f are:-

– f(−x) = −f(x) (Origin symmetry)
– f(1) = 1, f(−1) = −1 (Range of sign function)
– f ′(x) = c(1 − x)n(1 + x)n for some c > 0 (Faster convergence)

Evaluating the polynomial f for different values of n we obtain :-

fn(x) =
n∑

i=0

1
4i

·
(

2i

i

)
· x(1 − x2)i

Polynomial Approximation of Inverse sqrt Function for FHE 369

Theorem 1. If d ≥ 1
log(cn)

·log(1/ε)+ 1
log(n+1) ·log(α−1)+O(1), then f

(d)
n (x) is

an (α, ε)-close polynomial to sgn(x) over [−1, 1] implies |f (d)
n (x)−sgn(x)| ≤ 2−α

where x ∈ [−1,−ε] ∪ [ε, 1].

Proof of Theorem 1 can be found in [4]. To speedup up the convergence fur-
ther, we use a polynomial g instead of f that has a larger derivative at 0(cn). The
polynomial g would be a minimax polynomial satisfying the following properties
:-

– g(−x) = −g(x) (Origin Symmetry)
– ∃ 0 < δ < 1 s.t. x < g(x) < 1 ∀x ∈ (0, δ] and g([δ, 1]) ⊆ [1 − τ, 1]

Its hard to represent g in closed form and is evaluated using Algorithm 2 in [4].
In this paper, we use n = 3 to approximate the sign function. The approximate
sign function is computed as a composition f

df

3 (x) ◦ g
dg

3 (x) where dg = 1
2log(cn)

·
log(1/ε) = 0.445 · log(1/ε) and df = 1

log(n+1) · log(α − 1) = 0.5 · log(α − 1). The
polynomial f3(x) and g3(x) are:-

f3(x) =
1
24

(35x − 35x3 + 21x5 − 5x7)

g3(x) =
1

210
(4589x − 16577x3 + 25614x5 − 12860x7)

2.3 Inverse sqrt Approximation

In [9], the author mentioned a method to polynomially approximate 1√
x

that
could be used in FHE schemes. It first uses a line as an initial guess and then
uses Newton’s and Goldschmidt’s algorithms to improve upon their guess. Gold-
schmidt’s algorithm is used to compute

√
x alongside with 1√

x
which is required

for their application. For the initial guess, they perform a linear approximation
of 1√

x
by formulating a constrained linear regression. It is formulated as the

following minimization problem :-

min
w

1
n

n∑

i=1

(yi − wT xi)2

subject to wT xi ≥ 0 ∀ i = {1, 2, · · · n}
(1)

3 Approximation of 1√
x

As mentioned before, we use Newton’s method to approximate the value of
y = 1√

x
. It is because in each iteration of Newton’s method, the update equation

is polynomial in nature. Let f(x) = y−2 − x. Then the update equation for f(x)
is :- yi+1 = yi

2 (−xy2
i + 3). The only thing now to consider is the initial guess for

each value.

370 S. Panda

3.1 A Good Initial Guess

A good initial guess for Newton’s update equation would mean faster conver-
gence2. So, a good initial guess would be a good approximation of the 1√

x
func-

tion. Another thing to remember is that the initial guess must guarantee con-
vergence. The range of values for which yi guarantees convergence would be
yi

2 (−xy2
i + 3) > 0 =⇒ 0 < yi <

√
3
x .

Any value of yi between 0 and
√

3
x will eventually converge because the term

−xy2
i +3 is always greater than 0 pushing it towards the value 1√

x
. But, we wish

that our algorithm would converge in a fixed number of iterations rather than
converging eventually. So, we observe that for any x, the number of iterations

needed for the initial guess y0 ∈ [1√
x
,
√

3
x] to converge increases as we move away

from 1√
x

to
√

3
x . Same is the case for the interval [0, 1√

x
]. For a given number of

iterations, we could use binary search on both of the intervals to find the new
reduced range for the initial guess that guarantees convergence. To keep things
simple and uniform, we assume that the reduced range of initial guess for each
x would also be a function of 1√

x
and the new range would be [k1√

x
, k2√

x
] where

0 < k1 < 1 and 1 < k2 <
√

3. Using Lemma 1, we show that for constants k1
and k2, we can guarantee convergence for all values of x with a certain error.

Lemma 1. Let d be the given number of Newton’s iterations. Let the absolute
error at the point x = 1 for the initial guess y0 = k1 or y0 = k2 after d iterations
be ≤ E where 0 < k1 < 1 and 1 < k2 <

√
3. Then the absolute error at any point

x after d iterations for any initial guess in the range [k1√
x
, k2√

x
] would be Ex ≤ E√

x
.

Proof. Let us first consider the lower bound k1. At point x = 1, we have y0 = k1.
Then, y1 = k1

2 · (−k2
1 + 3) . Let’s say K0 = k1 and Ki = Ki−1

2 · (−K2
i−1 + 3).

After d iterations we would have |1 − Kd| ≤ E . Now for any x, y0 = k1√
x
,

y1 = y0
2 · (−xy2

0 + 3) = k1
2
√

x
· (−k2

1 + 3) = K1√
x
. So, after d iterations we get

Ex = | 1√
x

− Kd√
x
| ≤ E√

x
. Since values of k1 and k2 are evaluated for fixed E , we

can similarly argue for the upper bound k2 that it will guarantee convergence
for any x with an absolute error E√

x
.

Corollary 1. The mean absolute error over all x in the interval [a, b] after d
iterations would be Ē = 2E√

a+
√

b

Corollary 2. If we consider the two intervals x ∈ [a, 1] ∪ [1, b], where a, b are
constants and a < 1 < b then the mean absolute error over all x after d iterations
would be Ē ′ = Ē1 + Ē2 = E

1+
√

a
+ E

1+
√

b
.

The Corollaries 1 and 2 can be easily verified using Mean value theorem i.e.∫ b

a
f(x)dx = f(c)(b − a). The value of k1 and k2 is found using the Algorithm 1

at x = 1 for a fixed number of Newton’s iterations d and absolute error E .
2 By convergence we mean that the difference between the actual and predicted value

is bounded by some predefined error.

Polynomial Approximation of Inverse sqrt Function for FHE 371

Algorithm 1. Finding constants for initial guess range of 1√
x

Input: d, E : No.of iterations and error.
Output: k1, k2: Upper and lower bound

of initial guess.
1: l ← 2δ − 1, r ← 1
2: while r − l ≥ δ do
3: mid ← (r + l)/2
4: val ← mid
5: for i = 1 to d do
6: val ← val

2
(−val2 + 3)

7: end for
8: diff ← |val − 1|
9: if diff ≤ E then

10: r ← mid
11: else
12: l ← mid + δ
13: end if
14: end while

15: k1 ← l
16: l ← 0, r ← 2

√
3 − 1

17: while r − l ≥ δ do
18: mid ← (r + l)/2
19: val ← mid
20: for i = 1 to d do
21: val ← val

2
(−val2 + 3)

22: end for
23: diff ← |val − 1|
24: if diff ≤ E then
25: l ← mid
26: else
27: r ← mid − δ
28: end if
29: end while
30: k2 ← l
31: return k1, k2

3.2 2-Line Approximation

Now that we have the range for initial guess, we need to find an approximation
of 1√

x
that lies within this initial guess for all values of x. As mentioned earlier,

we approximate the function 1√
x

using two intersecting lines(L1, L2) by limiting
the domain of x to [a, b]. The intersection point of the lines is called the pivot
point(denoted as P). Let L2 approximate 1√

x
on larger values of x i.e. x ∈ [P, b]

and L1 approximate 1√
x

on the smaller values of x i.e. x ∈ [a, P]. The overall
approximation of 1√

x
can be written as convex combination in terms of L1 and

L2 as:-
h(x) = (1 − β(x)) · L1(x) + β(x) · L2(x) (2)

where β(x) = comp(P
b−a , x

b−a) and comp(x, y) = 1+sgn(x−y)
2 . We can evaluate

the sign function polynomially as mentioned in [4]. So far, we have mentioned
how to compute the approximate value of 1√

x
using L1 and L2. Now we are going

to discuss how to find these lines. Remember that approximate value of 1√
x

for

all x must be in the range [k1√
x
, k2√

x
] to guarantee convergence. To ensure this,

the maximum value for any point x on the line cannot exceed k2√
x
. That means

both the lines are tangent to the curve k2√
x
. Similarly, the minimum value at any

point x on the line cannot go below k1√
x
. This implies that the extreme points of

both the lines must either lie on the curve k1√
x

or above it.

372 S. Panda

Let x1, x2 be the points were lines L1, L2 are tangent to the curve k2√
x

respec-

tively. The slope of any tangent to the curve k2√
x

at point γ is − 1
2k2 · γ−3/2. So,

the equation of L1 and L2 will be:-

L1 : y = −1
2
k2x

−3/2
1 x +

3
2

k2√
x1

(3)

L2 : y = −1
2
k2x

−3/2
2 x +

3
2

k2√
x2

(4)

The last step in figuring out the lines L1, L2 are the points x1, x2 respectively.
They are the points where the lines L1 and L2 touch the curve k2√

x
. We consider

that these lines must pass through the extreme points of the domain of x i.e.
L2 must pass through the point x = b and L1 must pass through x = a on the
curve k1√

x
. Each of the lines L1, L2 also intersect the curve k1√

x
at points different

than x = a and x = b respectively. Let the line L2 pass through a point x on
the curve k1√

x
. Then the equation of L2 becomes:-

k1√
x

= −1
2
k2x

−3/2
2 x +

3
2

k2√
x2

=⇒ k2
2x

3 − 6k2
2x

2x2 + 9k2
2xx2

2 − 4k2
1x

3
2 = 0 (5)

Solving the Eq. 5 with x = b, we would obtain the point x2 and ultimately L2.
Similarly, we can evaluate x1 at x = a and get L1.

3.3 Finding Pivot Point

In the previous section, we presented a method to obtain the lines L1, L2 so
that they lie in the range [k1√

x
, k2√

x
]. But we aim to approximate the original

function 1√
x

using two intersecting lines in the given range. The above approach
for finding the lines doesn’t guarantee the intersection of lines L1 and L2 inside
the desired range i.e. P may or may not lie above or on the curve k1√

x
. One way

to ensure that the pivot point lies within the range of convergence is to increase
the number of newton’s iterations. Increasing the iterations would adjust the
values of k1 and k2 accordingly, allowing L1 and L2 to intersect in the inside
region. Another way to ensure that is by tweaking the process of finding the
lines L1, L2 a little bit. Instead of increasing the number of iterations to adjust
the values of k1 and k2, we fix the pivot point. We follow the following steps:-

– Step 1: Find x2 using Eq. 5 at x = b to evaluate L2.
– Step 2: Find the other point of intersection of line L2 with the curve k1√

x
by

solving for x in Eq. 5. Now this point becomes the pivot point P .
– Step 3: Find x1 using the pivot point. Substitute x2 = x1 and x = P in Eq. 5

and solve for x1.

Note that if we follow the above steps to find lines L1 and L2, then they
will always intersect at point P . But, the line L1 no longer intersects the curve

Polynomial Approximation of Inverse sqrt Function for FHE 373

k1√
x

at x = a but rather at x = a′ where a < a′. This is a trade-off between
accuracy and the number of iterations. With practical results, we can argue that
a sufficient level of accuracy can be achieved with a few iterations using the
above method. Another fact to consider is that we choose to fix the pivot point
as the point of intersection of the line L2 to the curve k1√

x
instead of L1. This

is because the curve k1√
x

is closer to 0 on larger values of x. If we take the pivot
point as the other point of intersection of line L1 then line L2 would intersect
the curve k1√

x
at x = b′ where b′ < b. So, for some values of x > b′, the value

of L2 would be negative. When we apply Newton’s iterations on these points,
there values would converge to − 1√

x
instead of 1√

x
.

4 Implementation Details

We implemented the secure inverse sqrt approximation using the SEAL library
[11] for CKKS homomorphic scheme. The implementation can be found at [10].
For the approximate sign function, we fix the value of df = 2 which would give
us the value of α = 17. We know that the value of dg = 0.445 · log(1/ε) where
the value of ε determines the precision of values for the comp() function. For
any z1, z2 ∈ [0, 1], |z1 − z2| ≥ ε. The lower the value of ε, larger the precision,
better accuracy of the approximation and larger the multiplicative depth. For
our experiments mentioned in Table 1, we fixed dg = 7 making ε ≈ 2 × 10−5.
The multiplicative depth for both f3 and g3 is 3. So, the multiplicative depth
required to compute the initial guess would be 3(dg + df) + 1. The maximum
multiplicative depth required in a single Newton’s iteration is 2. Hence, the
maximum multiplicative depth required to compute the inverse operation would
be 3(dg + df) + 2d + 1. While evaluating the function on encrypted data, we
observed that the output of comp() was slightly > 1 due to additive noise. So,
the points near the tangent exceeded the upper bound. To mitigate this, we
introduced a constant error i.e. err = 8.5 × 10−7 that was subtracted from the
value of the comp() so that the final value remained < 1. So on encrypted data,
the convex combination of lines becomes - h(x) = (1 + err − β(x)) · L1(x) +
(β(x) − err) · L2(x).

To obtain the parameters of pivot-tangent method, we first fix the interval
[a, b] and then fix the values of number of iterations d and absolute error E . The
smaller the value of E the smaller the interval for initial guess [k1√

x
, k2√

x
] would be.

To increase the initial guess interval, we have to increase the number of iterations
d. So, smaller E requires larger number of iterations d. We should keep this in
mind while fixing d and E . Also, notice that Eq. 5 is a cubic equation. So, while
solving for x2, we consider the largest root as x2. Similarly while computing x1,
we consider the smallest root as x1. For the pivot point P , we consider the root
closest to 1 as P . The combined method for the polynomial approximation of
1√
x

using pivot-tangent method is given in the Algorithm 2.

374 S. Panda

Algorithm 2. Finding approximate value of 1√
x

Input: [a, b], E , d, dg, df , x, err.
Output: yd: Approximate value of 1√

x
.

1: Find k1, k2 using Algorithm 1.
2: Find x2, P, x1 using pivot-tangent

method.

3: Compute β(P, x) and y0 = h(x).
4: Compute d Newton’s iterations to

obtain yd.
5: return yd

5 Results and Comparison

Table 1 summarizes the value of various parameters computed using the pivot-
tangent method with [a, b] = [10−4, 103] and E = 0.007. The points are equally
divided in two intervals i.e. [10−4, 1] and [1, 103]. Using Corollary 2, we get the
theoretical upper bound on error = 0.007

1+10−2 + 0.007
1+

√
1000

= 0.00714. We observe
that the mean absolute error obtained after the experiments for fixed parameters
is lower than theoretical upper bound. Figure 1 shows different components of
the pivot tangent method.

Table 1. Values of different parameters for given no.of Newton’s iterations

d k1 k2 x1 x2 P Mean Abs.
Error (without
encryption)

Mean Abs.
Error (with
encryption)

Depth

7 0.128 1.6645 0.3111 343.6645 0.9053 0.00265 0.0055 42

8 0.0855 1.6876 0.1322 340.035 0.3887 0.00083 0.00112 44

9 0.0702 1.6958 0.0876 338.781 0.2587 0.000091 0.0001 46

Now, to compare our method with the technique of finding 1√
x

mentioned
in [9], we conducted some experiments by fixing the interval for x ∈ [a, b]. For
the method in [9], we take d1, d2 as the number of Newton’s and Goldschmidt’s

Table 2. Comparison of our method with that of in [9].

[a, b] Iteration Depth E err Error

(d1, d2) (d, dg) 2d1 + 3d2 2d+ 3dg + 6 [9] Ours

[10−3, 750] (12, 3) (7, 5) 33 35 7e-3 1.2e-6 8.587e-5 2.23e-4

(10, 5) (7, 5) 35 35 1e-3 1.2e-6 8.695e-5 1.01e-4

(12, 4) (8, 6) 36 40 1e-4 1.2e-6 8.571e-6 2.23e-5

[10−4, 103] (12, 5) (7, 6) 39 38 7e-3 1.2e-6 1.421e-3 5.65e-3

(14, 4) (8, 6) 41 40 7e-3 1.2e-6 2.323e-4 2.98e-3

(15, 5) (9, 7) 45 45 1e-4 8.5e-7 5.824e-6 1.87e-5

Polynomial Approximation of Inverse sqrt Function for FHE 375

iterations respectively. For the method in [9], the values of (slope, intercept)
used for the initial guess line in the intervals [10−3, 750] and [10−4, 103] are
(−0.00019703, 0.14777278) and (−1.29054537e − 04, 1.29054537e − 01) respec-
tively. From Table 2, we can see that for similar multiplicative depth, method
mentioned in [9] has comparatively lower mean absolute error. Note that our
method significantly reduces(almost half) the number of iterations required for
convergence(by comparing d1 + d2 and d in Table 2). The biggest bottleneck for
our method is the sign function approximation. It takes up more depth than the
Newton’s iterations i.e. 2d < 3(dg +df). While the overall pivot-tangent method
reduces the number of iterations required for convergence, it wastes most of its
multiplicative depth in initially computing the sign approximation. Thus, when
we try to compare it with method in [9] in terms of similar multiplicative depth,
the method in [9] would get double the number of iterations compared to our
method and hence has slightly better results. It is also important to remem-
ber that while method in [9] has no convergence guarantees(it may diverge for
some values or converge to - 1√

x
for larger x), our method provides guaranteed

convergence with a certain error.

Fig. 1. Inverse sqrt approximation using pivot-tangent method

6 Conclusion and Future Work

In this paper, we presented the pivot-tangent method and approximated 1√
x

function. Our approximation provides guaranteed convergence with sufficient
accuracy compared to the previous method for the same multiplicative depth.
Our method reduces the number of iterations required for convergence almost by
half. However, the biggest bottleneck for our method is the computation of the
approximate sign function. So, a new way to polynomially represent piece-wise
lines without relying on sign function would significantly reduce our method’s
multiplicative depth. It is worth mentioning that in recent times there have been
approaches such as Chimera[2] and Pegasus[8] that provide a bridge between
different FHEs. This enables us to evaluate non-polynomial functions on CKKS
ciphertexts. But these transformations are very costly in terms of memory. It

376 S. Panda

would be better to have an inverse sqrt approximation in the CKKS scheme that
provides sufficient accuracy and precision over a large interval. We also plan to
extend our pivot-tangent method to approximate other inverse functions as a
generalized approach. Now that we have a good approximation method of an
inverse sqrt function, we also plan to apply this algorithm to different linear
algebraic and machine learning algorithms in the future.

References

1. Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: Ngraph-he2: a high-
throughput framework for neural network inference on encrypted data. In: Proceed-
ings of the 7th ACM Workshop on Encrypted Computing and Applied Homomor-
phic Cryptography, pp. 45–56. WAHC 2019, Association for Computing Machinery,
New York, NY, USA (2019). https://doi.org/10.1145/3338469.3358944

2. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: combining ring-LWE-
based fully homomorphic encryption schemes. Cryptology ePrint Archive, Report
2018/758 (2018). https://eprint.iacr.org/2018/758

3. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. Cryptology ePrint Archive, Report 2016/421 (2016).
https://eprint.iacr.org/2016/421

4. Cheon, J.H., Kim, D., Kim, D.: Efficient homomorphic comparison methods with
optimal complexity. Cryptology ePrint Archive, Report 2019/1234 (2019). https://
ia.cr/2019/1234

5. Han, K., Hong, S., Cheon, J.H., Park, D.: Efficient logistic regression on large
encrypted data. Cryptology ePrint Archive, Report 2018/662 (2018). https://
eprint.iacr.org/2018/662

6. Lee, J.W., et al.: Privacy-preserving machine learning with fully homomorphic
encryption for deep neural network. Cryptology ePrint Archive, Report 2021/783
(2021). https://ia.cr/2021/783

7. Lomont, C.: Fast inverse square root. Technical report Purdue University (2003).
http://www.matrix67.com/data/InvSqrt.pdf

8. Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: Pegasus: bridging polynomial and
non-polynomial evaluations in homomorphic encryption. In: 2021 IEEE Sympo-
sium on Security and Privacy (S&P), pp. 1057–1073. IEEE Computer Society, Los
Alamitos, CA, USA, May 2021. https://doi.org/10.1109/SP40001.2021.00043

9. Panda, S.: Principal component analysis using CKKS homomorphic encryption
scheme. Cyber Security Cryptography and Machine Learning, 5th International
Symposium, CSCML 2021 (2021). https://eprint.iacr.org/2021/914

10. Panda, S.: Pivot-tangent method. https://github.com/pandasamanvaya/Pivot-
tangent (2022)

11. Microsoft SEAL (release 3.7), Microsoft Research, Redmond, WA, September 2021.
https://github.com/Microsoft/SEAL

12. Tasissa, A.: Function approximation and the Remez algorithm (2019)
13. Trefethen, L.N.: Approximation Theory and Approximation Practice. Extended

Edition. SIAM (2019)
14. Çetin, G.S., Doröz, Y., Sunar, B., Martin, W.J.: Arithmetic using word-wise homo-

morphic encryption (2016)

https://doi.org/10.1145/3338469.3358944
https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2016/421
https://ia.cr/2019/1234
https://ia.cr/2019/1234
https://eprint.iacr.org/2018/662
https://eprint.iacr.org/2018/662
https://ia.cr/2021/783
http://www.matrix67.com/data/InvSqrt.pdf
https://doi.org/10.1109/SP40001.2021.00043
https://eprint.iacr.org/2021/914
https://github.com/pandasamanvaya/Pivot-tangent
https://github.com/pandasamanvaya/Pivot-tangent
https://github.com/Microsoft/SEAL

Detecting Clickbait in Online Social
Media: You Won’t Believe How We Did It

Aviad Elyashar1,2(B), Jorge Bendahan1,3, and Rami Puzis1,3

1 Telekom Innovation Laboratories at Ben-Gurion University of the Negev,
Beer-Sheva, Israel

2 Department of Computer Science, Sami Shamoon College of Engineering,
Beer Sheva, Israel

aviadel2@sce.ac.il
3 Department of Software and Information Systems Engineering,

Ben-Gurion University of the Negev, Beer-Sheva, Israel
jorgeaug@post.bgu.ac.il, puzis@bgu.ac.il

Abstract. This paper proposes a machine learning approach to detect
clickbait posts published in social media. Clickbait posts are short, catchy
phrases pointing into a longer online article. Users are encouraged to
click on these posts to read the full article in many cases. The suggested
approach differentiates between clickbait and legitimate posts based on
training mainstream machine learning (ML) classifiers. The suggested
classifiers are trained in various features extracted from images, linguis-
tic, and behavioral analysis. For evaluation, we used two datasets pro-
vided by Clickbait Challenge 2017. The XGBoost classifier obtained the
best performance with an AUC of 0.8, an accuracy of 0.812, a precision
of 0.819, and a recall of 0.966. Finally, we found that counting the num-
ber of formal English words in the given content is helpful for clickbait
detection.

Keywords: Clickbait detection · Social media · Machine learning

1 Introduction

In the past, offline media outlets, such as newspapers, were the primary informa-
tion sources used to inform people. However, these traditional news outlets have
been replaced with online resources in recent decades. We can attribute this change
to the great diversity of options ranging from local, national, and international
online media outlets to several niche blogs focusing on a specific area of interest
offered [3]. This change is also attributed to the large numbers of readers using
smart devices, which consume news online or using content generators, which pro-
vide users personalized news derived from a wide variety of news sources [11]. One
of the reasons for this change is the nature of the online media website, which does
not charge a fee for their services, as opposed to traditional media outlets [3]. As
a result, online news rapidly replaces traditional media outlets [11].

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 377–387, 2022.
https://doi.org/10.1007/978-3-031-07689-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_28&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_28

378 A. Elyashar et al.

Although online news provides numerous benefits, this domain suffers from
a few problems. In most cases, the business model of online media websites is
based on advertisements rather than subscribers’ charges [3]. As a result, there
is significant competition among the online media outlets for users’ attention to
increase their income. The techniques used include a high use of catchy headlines
and attractive images.

In the last decade, one of the popular techniques online news websites use
to increase user traffic includes massive publication of posts on online social
networks (e.g., Facebook and Twitter). In most cases, each of these posts contains
an attractive preview and a link pointing to the full article published on the given
website [16]. These previews consist of a short headline, description, and image
associated with the article’s main topic. By clicking on the link attached, users
are directed to the full article.

Alongside high accessibility, these short teasers cause problems for many
users. In many cases, to increase traffic, such posts lure users into clicking and
redirecting them to the online news website for reading an online news article
using attractive headlines and images. However, many times users find these
posts, also known as clickbait, as misleading, containing a gap between the
clicked post and the full article [5]. An anticipated emotional reaction often
characterizes it, as well as lack of knowledge (e.g., “15 surprising facts about
Tesla cars you probably didn’t know”, and “Here’s what people really thought
about that Trump press conference”). In recent years, the use of clickbait even
exacerbated and contributed to the rapid spread of rumors and misinformation
online [5].

The reason associated with the success of clickbait is related to human behav-
ior. In many cases, clickbait takes advantage of the cognitive phenomenon known
as the Curiosity Gap [13]. Clickbait headlines provide referencing cues, which cre-
ate curiosity among users. This curiosity encourages the readers to click on the
link attached to address their knowledge gap [3].

The state-of-the-art solutions for automatic clickbait detection are currently
based on machine learning (ML) techniques, yet many of these studies suffer low
accuracy. This study proposes a method for detecting clickbait posts in social
media based on an ML classifier capable of distinguishing between clickbait and
legitimate posts published. The classifier is trained on various features extracted
from images, linguistic analysis, and abuser detection. We used two datasets
provided by Clickbait Challenge 2017 [31] to evaluate the proposed method.
The contributions of this paper are as follows:

– We identified novel features that combine the information extracted from both
posts and their associated news articles. These features were found significant
in both datasets for detecting clickbait. To the best of our knowledge, we are
the first to suggest features that use both components together;

– We found that the number of formal English words in a given content is useful
for clickbait detection. To the best of our knowledge, this feature is also novel;

The rest of this paper is organized as follows: In Sect. 2, we review well-known
methods for the detection of clickbait. We explain our approach for detecting

Detecting Clickbait in Online Social Media 379

clickbait in social media in Sect. 3. In Sect. 4, we present the data used for this
study. Section 5 describes the experiment setup, and Sect. 6 presents the results
obtained, and discusses them. Finally, we conclude the paper in Sect. 7.

2 Related Work

This section presents studies focused on clickbait and abuser detection on social
media.

2.1 Clickbait Detection

In 2014, Vijgen [19] studied listicles, a portmanteau of ‘list’ and ‘article.’ In many
cases, these listicles are suspected to be clickbait due to their titles, typically
shared as teaser messages. Vijgen collected 720 listicles published by BuzzFeed1

in January 2014. He found that all titles contain a cardinal number, which is
the same as the number of items listed. In addition, the titles contained strong
nouns and adjectives that convey authority and sensationalism. Gianotto [8]
implemented a browser plugin that detects clickbait based on a rule set in the
same year.

In 2015, Blom and Hansen [2] mapped the use of headlines pointing to full
articles in online news by analyzing 100,000 headlines published on ten different
Danish news websites. They found that commercialization and tabloidization
seem to lead to the recurrent use of forward-referencing in Danish online news
headlines.

Also, in 2015, Chen et al. [5] examined optional methods for the automatic
detection of clickbait. They divided the methods into methods that rely on the
content and non-text cues. The former includes lexical and semantic analysis
and syntactic analysis, whereas the latter focuses on image and user behavior
analysis. Chen et al. suggested that a hybrid approach that merges both methods
may yield better results.

In 2016, Potthast et al. [16] proposed a machine learning classifier for auto-
matic clickbait detection. They collected and annotated a corpus of 2,992 tweets
and later trained an ML classifier, differentiating between legitimate and click-
bait. Their classifier included 215 features, including image, sentiment, and lin-
guistic analysis, as well as extracting Twitter-specific features and bag-of-words
features. Their best classifier was Random Forest, which obtained an AUC score
of 0.79, a precision score of 0.76, and a recall score of 0.76. Potthast et al. also
analyzed the web pages linked from a given tweet. Their analysis included mea-
surement of the main content word length.

In the same year, Chakraborty et al. [3] trained an ML classifier for detecting
clickbait automatically and implemented a browser extension called ‘Stop Click-
bait’ to prevent readers from reading clickbait. For training the classifier, they
extracted the headlines from a corpus of 18,513 Wikinews articles as legitimate

1 https://www.buzzfeed.com/.

https://www.buzzfeed.com/

380 A. Elyashar et al.

posts. As clickbait, they crawled 8,069 Web articles from several Web domains,
such as BuzzFeed, ViralNova2, ScoopWhoop3, and ViralStories4. They used a
set of 14 features spanning linguistic analysis, word patterns, and N-gram for
training their classifier. Their best classifier was Support Vector Machine (SVM),
achieved 0.93 accuracy score in detecting and 0.89 accuracy score in blocking
clickbaits.

In 2017, Chakraborty et al. [4] analyzed the social sharing patterns of click-
bait and legitimate posts on Twitter by collecting a dataset from Twitter. They
found that clickbait tweets include more entities, such as images, hashtags, and
user mentions than non-clickbait tweets, assisting in capturing the consumers’
attention. Also, they witnessed a higher percentage of clickbait tweets conveying
positive sentiments than non-clickbait tweets. Other conclusions include that
clickbait tweets are consumed more by women than men and more younger
people than the consumers of non-clickbait. Additionally, these clickbaits have
higher mutual engagement among each other. On the other hand, non-clickbait
consumers are more reputed in the community and have a relatively higher fol-
lower base than clickbait consumers.

In recent years, with the development of deep learning many deep learn-
ing models were suggested. Traditional machine learning-based-methods suffered
from heavy feature engineering. AS a result in the recent years, many researchers
used deep learning model for clickbait detection [10,17,18,20].

3 Proposed Method

We propose an approach to differentiating between clickbait and legitimate posts.
It is based on training a mainstream machine learning classifier to extract image-
to-text, linguistic, and behavioral features.

3.1 Content-Based Features

For describing the features extracted follow the next definitions: Let P denotes
the collection of tweets published; p is defined as a post in post collection P .
For every post p ∈ P , article(p) denotes the article, which post p points to. c is
defined as the content, any text existing in p or article(p). Additional functions
are described below:

1. img(p) returns a image attached in the given p.
2. OCR(img(p)) extracts the text exists in a given image p.
3. title(p) and title(article(p)) returns the title of p and the article’s title,

respectively.
4. description(article(p)) extracts the article’s description.
5. keywords(article(p)) returns the keywords of a given article.
2 https://viralnova.com/.
3 https://www.scoopwhoop.com/.
4 https://viralstories.co.uk/.

https://viralnova.com/
https://www.scoopwhoop.com/
https://viralstories.co.uk/

Detecting Clickbait in Online Social Media 381

6. paragraphs(article(p)) returns the text exist in the paragraphs of a given
article.

7. captions(article(p)) extracts the caption of an image associated with a given
post p.

8. lencharacters(c) returns the number of characters in a given content.
9. words(c) returns a set of words, containing in a given content c.

10. lenwords(c) returns the number of words in a given content.
11. lang − dictformal(words(c)) returns a set of the formal English words from

the given content c.

3.2 Image-Based Features

In many cases, when facing a post, people usually watch the image before reading
the headline [6]. As a result, we suggest extracting features that emphasize the
gap between the image and the headline of the given post p. For this, we extract
the text that exists in the post’s image by the pytesseract5 (Python-tesseract)
package, an optical character recognition (OCR) tool available in Python aimed
at recognizing the text embedded in images.

Presence of an Image in a Post. Clickbait tweets contained a significantly more
significant proportion of images than legitimate posts [4]. Therefore, we suggest
monitoring the existence of an image in a given post.

Presence of Text in a Post’s Image. Here, we extract the text in the post’s image
using OCR. In this case, this is boolean feature indicates whether a text exists
in a given post’s image.

3.3 Linguistic-Based Features

Linguistic analysis is another well-known method for detecting clickbaits. This
analysis includes semantic and syntactic analysis to find nuances that occur more
frequently in clickbait posts than legitimate posts [3].

The features are the number of characters in the post’s title, the number
of characters in text extracted from the post’s image, the number of characters
in the article’s title, the number of characters in the article’s description, the
number of characters in article’s keywords, the number of characters in article’s
captions, and the number of characters in article’s paragraphs.

Difference Between Number of Characters. This function measures the difference
between characters in two content elements. As opposed to previous studies,
which measured the length of the suspected post’s title, here, we examine the
relationship between each pair of content elements (see Eq. 1).

diff − num − of − characters(contx, conty) = |lencharacters(contx) − lencharacters(conty)|
(1)

5 https://pypi.org/project/pytesseract/.

https://pypi.org/project/pytesseract/

382 A. Elyashar et al.

Using this function, we extracted 21 features. For example, the diff number
of characters between post’s title and article’s title.

Number of Characters Ratio. We extract the ratio between the number of char-
acters of two content elements (see Eq. 2).

num − of − characters − ratio(contx, conty) = | lencharacters(contx)
lencharacters(conty)

| (2)

The same as previous function, 21 features were extracted (e.g., number of
characters ratio between post’s title and article’s title).

Number of Words. Chakraborty et al. [3] found that there are more words in
clickbait titles than non-clickbait titles. Therefore, we used words(c), which
returns a set of words, containing in a given content c. Based on this function,
we counted the words for each element in the post and the article.

Difference Between Number of Words. We also measure the word difference
between two contents (see Eq. 3).

diff−num−of−words(contx, conty) = |num−of−words(contx)−num−of−words(conty)|
(3)

Number of Words Ratio. Another function which can be extracted is the ratio
between the number of words in two content elements (see Eq. 3).

num − of − words − ratio(contx, conty) = |num − of − words(contx)
num − of − words(conty)

| (4)

Mutual Words Between Article Keywords and Post’s Words. In many cases,
clickbait posts contain misleading titles, exaggerating the content of the targeted
article [1]. These exaggerating words exist in the posts and are necessarily not
expressed in the article. The idea is to monitor the shared words between the
article’s keywords, which convey the main topic expressed in the article to the
post’s title (see Eq. 5).

num−of−common−article−words(contx, conty) = len(words(contx)∩words(conty)) (5)

Based on this function, we extracted features focusing on the common words
from every element in the article, such as keywords, captions, paragraphs, etc.

Number of Formal and Informal English Words. In the advertisement environ-
ment, slang or profane words are commonly used to get users’ attention [21]. As a
result, we count the number of formal English words in each content item. We use
the PyDictionary,6 a dictionary module for Python, which provides meanings,
6 https://pypi.org/project/PyDictionary/.

https://pypi.org/project/PyDictionary/

Detecting Clickbait in Online Social Media 383

translations, synonyms, and antonyms of words. It uses WordNet7 for definitions,
Google8 for translations, and thesaurus.com9 for synonyms and antonyms. The
following function counts the number of formal English words using the extrac-
tion of the words in each content element and searching each word in the English
dictionary (see Eq. 6). Using this function, we also count the number of informal
English words.

number − of − formal − words(c) = lang − dictformal(words(c)) (6)

Percent of Formal and Informal Words. We also measure how many of the words
presented in the posts are informal. It also can lead us to understanding whether
it is a clickbait or legitimate post (see Eq. 7).

percent − of − formal − words(c) =
lang − dictformal(words(c)

words(c)
(7)

3.4 Behavioral-Based Features

Clickbait is responsible for the rapid spread of rumors and misinformation online
[5]. This malicious activity is also common among abusers in social media [7].
Therefore, we can extract features that are helpful for abuser detection also for
the clickbait detection. For example, the average number of links per tweet, the
average number of user mentions per tweet, etc. [12] In this study, we extracted
the following features:

1. Number of mentioning users - User mention is used to call out user names in
posts on Twitter.

2. Number of Hashtags - a hashtag is any word or phrase with a prefix consisting
of the # symbol. This mechanism connects different posts to a specific topic.

3. Number of Retweets - a retweet is defined as a tweet that a user forwards to
their followers. Retweets are often used to pass along news or other valuable
information on Twitter

4. Number of Question Marks, Commas, Colons, and Ellipses one of the methods
used to attract readers’ attention to a specific article is the use of question
marks, commas, colons, and ellipses in titles.

We extracted these features from all the content fields available in the given
posts and articles.

Additional features that were reported to perform well in the past are those
features that are related to the account properties (e.g., number of friends, num-
ber of followers) [12]. Thus, the related features were extracted, such as the
number of article keywords, the number of paragraphs, and the number of arti-
cle captions.

7 https://wordnet.princeton.edu/.
8 https://www.google.com/.
9 https://www.thesaurus.com/.

https://wordnet.princeton.edu/
https://www.google.com/
https://www.thesaurus.com/

384 A. Elyashar et al.

4 Data Description

To evaluate the proposed approach, we used two datasets published as part
of Clickbait Challenge 2017 [14]. The first dataset was perceived as a small
initial training set [16]. It includes 2,495 posts consisting of 762 clickbait and
1,697 legitimate posts. The second dataset was more significant than the first
dataset consisting of training and validation datasets [15]. It includes 19,538
posts, consisting of 4,761 clickbait, and 14,777 legitimate posts. Each post can
include an attached image and point to a targeted article. The targeted article
consists of a title, description, paragraphs, and captions attached to the photos.
Figure 1 presents the structure of the posts and articles in the datasets.

Fig. 1. Name suggestion steps.

5 Experiment Setup

In this study, we aimed at answering 2 research questions using the experiments
described below: 1) Are these novel features proposed contribute to clickbait detec-
tion? 2) Are there other differences between the article and post pointing to that
can help in the detection of clickbaits?

The evaluation process was carried out in TIRA (Testbed for Information
Retrieval Algorithms) framework [9] as provided by the challenge organizers. In
order to evaluate the predictive power of the extracted features, we measured
the feature importance using information gain.

Next, we trained several mainstream machine learning classifiers based on
the features extracted for differentiating between clickbait and legitimate posts.
The evaluated machine learning classifiers were decision tree, random forest, and
XGBoost. Each classifier was trained with the best 20 features and all features.
The performance of each classifier was measured using AUC (area under ROC
curve), accuracy, precision, and recall scores.

Detecting Clickbait in Online Social Media 385

6 Results and Discussion

6.1 Feature Analysis

The most significant features according to their information gain score are pre-
sented in Table 1.

Table 1. Top features according to information gain score

Dataset Rank Feature Info Gain

Training 1 Diff num of characters post title & article keywords 0.036

2 Num of characters ratio post image text & post title 0.032

3 Num of characters in post title 0.03

4 Num of question marks in post title 0.021

5 Diff num of characters post title & post image text 0.02

6 Num of characters ratio article description & post title 0.019

7 Num of characters ratio article paragraphs & post title 0.018

8 Diff num of words post title & article keywords 0.018

9 Num of words ratio article description & post title 0.017

10 Num of characters ratio article paragraphs & article desc 0.017

Based on the top features obtained, we can notice that features that measure
a gap between a post and its associated article are found as the most important.
For example, the difference between the number of characters in a post title
and article’s keywords, obtained an information gain score of 0.036. Also, the
length of the post title (number of characters in the post’s title) and the ratio of
number of characters between the image’s text and the post’s title were found
as important features.

6.2 Performance

Based on these results, we can see that the best classifier in both datasets was
XGBoost, which trained on all of the features with an information gain score
higher than zero. This classifier obtained on the training set an AUC score of
0.715, accuracy of 0.732, precision and recall of 0.75 and 0.92, respectively. On
the validation set, the classifier obtained an AUC of 0.8, an accuracy of 0.812,
and precision and recall scores of 0.819 and 0.966, respectively (see Table 2).

386 A. Elyashar et al.

Table 2. Trained classifiers’ performance

Dataset Algorithm #Features AUC Accuracy Precision Recall

Training XGBoost All 0.715 0.732 0.75 0.92

XGBoost 20 0.707 0.728 0.744 0.925

Random Forest All 0.707 0.732 0.752 0.913

AdaBoost 20 0.702 0.721 0.74 0.917

Random Forest 20 0.698 0.725 0.753 0.895

Decision Tree All 0.583 0.636 0.743 0.721

Validation XGBoost All 0.8 0.812 0.819 0.966

Random Forest All 0.789 0.811 0.823 0.955

AdaBoost All 0.777 0.802 0.818 0.951

XGBoost 20 0.776 0.807 0.814 0.966

Random Forest 20 0.771 0.804 0.823 0.944

Decision Tree All 0.635 0.725 0.824 0.811

7 Conclusions

This paper addressed the clickbait detection problem by training a mainstream
ML classifier based on novel linguistic, image-based, and behavioral features.
Using these novel features, the classifier differentiated between clickbait and
legitimate posts. Based on the evaluation, we conclude the following: First, the
linguistic features were found the most significant and useful for clickbait detec-
tion. The different number of characters between post’s title and article key-
words, the number of characters ratio between text extracted from post’s image
and post’s title, and the number of characters in post’s title were obtained the
highest information gain score (see Table 1). We conclude that linguistic differ-
ences between the post and article can assist in clickbait detection.

Finally, we found that the post’s title is the most important component for
detecting clickbait. It sounds trivial, but we succeeded at showing this empiri-
cally. We created the same features for each competent equally. Of the twenty-
four most influential features (based on the information gain score), only one
feature is not related to the post’s title (see Table 1).

References

1. Biyani, P., Tsioutsiouliklis, K., Blackmer, J.: “8 amazing secrets for getting more
clicks”: detecting clickbaits in news streams using article informality. In: Thirtieth
AAAI Conference on Artificial Intelligence (2016)

2. Blom, J.N., Hansen, K.R.: Click bait: forward-reference as lure in online news
headlines. J. Pragmat. 76, 87–100 (2015)

3. Chakraborty, A., Paranjape, B., Kakarla, S., Ganguly, N.: Stop clickbait: detecting
and preventing clickbaits in online news media. In: 2016 IEEE/ACM international
conference on advances in social networks analysis and mining (ASONAM), pp.
9–16. IEEE (2016)

Detecting Clickbait in Online Social Media 387

4. Chakraborty, A., Sarkar, R., Mrigen, A., Ganguly, N.: Tabloids in the era of social
media? understanding the production and consumption of clickbaits in twitter.
In: Proceedings of the ACM on Human-Computer Interaction 1(CSCW), pp. 1–21
(2017)

5. Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing click-
bait as “false news”. In: Proceedings of the 2015 ACM on Workshop on Multimodal
Deception Detection, pp. 15–19 (2015)

6. Ecker, U.K., Lewandowsky, S., Chang, E.P., Pillai, R.: The effects of subtle misin-
formation in news headlines. J. Experiment. Psychol. Appl. 20(4), 323 (2014)

7. Elyashar, A., Bendahan, J., Puzis, R., Sanmateu, M.A.: Measurement of online dis-
cussion authenticity within online social media. In: 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp.
627–629. IEEE (2017)

8. Gianotto, A.: Downworthy: a browser plugin to turn hyperbolic viral headlines into
what they really mean. downworthy. snipe. net (2014)

9. Gollub, T., Stein, B., Burrows, S., Hoppe, D.: Tira: configuring, executing, and
disseminating information retrieval experiments. In: 2012 23rd International Work-
shop on Database and Expert Systems Applications, pp. 151–155. IEEE (2012)

10. Gothankar, R., Di Troia, F., Stamp, M.: Clickbait detection in Youtube videos.
arXiv preprint arXiv:2107.12791 (2021)

11. Lavie, T., Sela, M., Oppenheim, I., Inbar, O., Meyer, J.: User attitudes towards
news content personalization. Int. J. Hum Comput Stud. 68(8), 483–495 (2010)

12. Lee, K., Tamilarasan, P., Caverlee, J.: Crowdturfers, campaigns, and social media:
tracking and revealing crowdsourced manipulation of social media. In: Proceedings
of the International AAAI Conference on Web and Social Media, vol. 7 (2013)

13. Loewenstein, G.: The psychology of curiosity: a review and reinterpretation. Psy-
chol. Bull. 116(1), 75 (1994)

14. Potthast, M., Gollub, T., Hagen, M., Stein, B.: The clickbait challenge 2017:
towards a regression model for clickbait strength. arXiv preprint arXiv:1812.10847
(2018)

15. Potthast, M., et al.: Crowdsourcing a large corpus of clickbait on Twitter. In:
Proceedings of the 27th International Conference on Computational Linguistics,
pp. 1498–1507 (2018)

16. Potthast, M., Köpsel, S., Stein, B., Hagen, M.: Clickbait detection. In: Ferro, N.,
et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 810–817. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30671-1 72

17. Razaque, A., et al.: Blockchain-enabled deep recurrent neural network model for
clickbait detection. IEEE Access 10, 3144–3163 (2021)

18. Razaque, A., Alotaibi, B., Alotaibi, M., Hussain, S., Alotaibi, A., Jotsov, V.: Click-
bait detection using deep recurrent neural network. Appl. Sci. 12(1), 504 (2022)

19. Vijgen, B., et al.: The listicle: an exploring research on an interesting shareable
new media phenomenon. Studia Universitatis Babes-Bolyai-Ephemerides 59(1),
103–122 (2014)

20. Zheng, J., Yu, K., Wu, X.: A deep model based on lure and similarity for adaptive
clickbait detection. Knowl.-Based Syst. 214, 106714 (2021)

21. Zhou, K., Redi, M., Lalmas, M., Sangal, P.M.: Filtering machine for sponsored
content, US Patent 11,113,714, 7 September 2021

http://arxiv.org/abs/2107.12791
http://arxiv.org/abs/1812.10847
https://doi.org/10.1007/978-3-319-30671-1_72

Etherless Ethereum Tokens: Simulating
Native Tokens in Ethereum

John Andrews1, Michele Ciampi2(B), and Vassilis Zikas3

1 Sunday Group, Las Vegas, USA
jandrews@sundaygroupinc.com

2 The University of Edinburgh, Edinburgh, UK
michele.ciampi@ed.ac.uk

3 Purdue University, West Lafayette, USA

vzikas@cs.purdue.edu

Abstract. Standardized Ethereum tokens, e.g., ERC-20 tokens, have
become the norm in fundraising (through ICOs) and kicking off
blockchain-based DeFi applications. However, they require the user’s wal-
let to hold both tokens and ether to pay the gas fee for making a trans-
action. This makes for a cumbersome user experience, and complicates,
from the user perspective, the process of transitioning to a different smart-
contract enabled blockchain, or to a newly launched blockchain. We for-
malize, instantiate, and analyze in a composable manner a system that
we call Etherless Ethereum Tokens (in short, EETs), which allows the
token users to transact in a closed-economy manner, i.e., having only
tokens on their wallet and paying any transaction fees in tokens rather
than Ether/Gas. In the process, we devise a methodology for capturing
Ethereum token-contracts in the Universal Composability (UC) frame-
work, which can be of independent interest. Our system can be seen as a
targeted instance of the more general paradigm put forth—without a for-
mal study—by the Ethereum Gas Station Network (GSN). We have imple-
mented and benchmarked our system and compared it to GSN. In addition
to being the first system with a rigorous security analysis, we demonstrate
that EETs are far easier to deploy and less gas intensive than the GSN.

1 Introduction

As applications of smart contracts, e.g., Decentralized Finance (DeFi) and Non-
Fungible Tokens (NFTs), become mainstream, there is a need to make them as
independent from the Ethereum chain as possible. This is particularly relevant
for Ethereum tokens (e.g., ERC-20 tokens [20]). Indeed, for a token-holder to
exchange or transfer such tokens, they need to also hold Ether for fuelling the
Ethereum transaction. This is counter-intuitive and counter-productive: on the
one hand, token creators need to provide a wallet which supports both their token
and Ethereum, making it more challenging to transition to their own blockchain
or switch token platforms while offering a smooth user experience. On the other
hand, users need to make sure that they hold not only the token but also Ether,
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 388–407, 2022.
https://doi.org/10.1007/978-3-031-07689-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_29&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_29

Etherless Ethereum Tokens 389

which makes it more challenging to expand this technology to less tech-savvy
audiences, thereby hindering wider societal adoption.

The easiest way to conceptualize the relevant bottleneck is through consid-
ering the life cycle of an ETH-based initial coin offering (ICO): in a first stage,
the token creator solicits investment (typically in different cryptocurrencies),
under the promise of a certain (prearranged) amount of tokens once the token
launches.1 In a second phase, the token creator initializes the promised new token
by launching a token smart contract (e.g. an ERC 20 token) on the Ethereum
chain. The token creator then would then have the investors create and provide
an Ethereum address where the promised tokens can be transferred. This can
be done by means of a wallet that offers generic support for Ethereum tokens.

Often, however, ICO-funded applications launch tokens which have the ulti-
mate goal of eventually being disconnected from the main Ethereum blockchain,
and/or which aim to create an ecosystem independent of Ethereum. In such
cases, the token creator would typically also offer its users a token-specific wal-
let application. However, in order for anyone to use this application to transfer
his tokens, the token-specific wallet needs to also support Ether as a currency.
This leads to confusion for less tech-savvy investors, and makes the user experi-
ence of migrating the token to a different smart contract platform—e.g. a differ-
ent smart-contract-enabled blockchain or a blockchain developed by the token
creator—less intuitive. We note that such migration is becoming more relevant
as more smart-contract-enabled blockchains are released, and as the gas price for
Ethereum smart contracts rises to a point where its use makes the corresponding
tokens less attractive.

In this work, we start by proposing a design methodology and formal treat-
ment of Ethereum tokens which allow their creator to provide the option to
its users of making transfers without the need to hold Ether in their wallet, a
mechanism which we term Etherless Ethereum Tokens (in short, EETs). The
high-level idea is simple: allow the token creator to take on the cost (i.e., gas)
for the token transaction, and have the token contract perform an on-the-fly
exchange of token-to-ether at a pre-agreed rate, giving the user the experience
of a native token. As one might expect, properly specifying, implementing, and
proving such a protocol secure is a challenging task; in particular, it requires a
model for token-enabled ledgers, which we provide and believe it will be helpful
for all the future systems that might rely on token contracts in a composable
manner. We remark that, as a concept, etherless transactions have been fre-
quently discussed within the Ethereum community for several years, often under
the term meta transactions [1,2,12,18]. However, to our knowledge, our work is
the first to provide a formal treatment and security analysis of the concept.

The need for arguing the security of blockchain systems formally and in a
composable manner is motivated by the fact that a blockchain does not live

1 There are a number of legal issues regarding ICO’s—in particular, how to hold the
token creator to his promise and how to avoid scamming attacks—and there are
technological advances that allow us to circumvent them; these topics are outside
the scope of this paper.

390 J. Andrews et al.

in isolation, and that many applications might run on top of it. Hence, it
is fundamental to argue the security of new blockchain applications in a set-
ting where multiple protocols are running in concurrency. Indeed, many recent
works have focused specifically on this task, proposing formal security models
and proving that existing protocols (like Bitcoin [5,10]) satisfy some important
and well-formalized security properties. On the same spirit, many other works
have used the same rigorous approach to argue and define the security of other
blockchain systems and applications. Just a few other examples are proof-of-
stake blockchains, private blockchains, private smart contracts and the lighting
network. [4,13–15].

At a less technical level, we believe that in addition to offering a more intu-
itive, closed-economy user experience, EET also provides assurance to the orig-
inal ICO investors that the token creator indeed expects value on the token,
as he is willing to make marginal exchanges. Indeed, in the system we design
anyone (in particular the token creator) could pay the fee (in Ether) on the
behalf on another party. Throughout we will generically refer to such an entity
as intermediary. We note in passing that despite being explicitly implemented
on the Ethereum blockchain, our design is generic and can be ported to any
smart-contract-enabled blockchain platform, and thus can enable transferring
the tokens from one blockchain to another.

We have implemented our EET design, and we demonstrate how it outper-
forms existing generic systems that enable etherless transactions, such as the
Gas Station Network (GSN) [1], both in terms of simplicity of deployment and
in terms of gas usage. We also compare such a deployment with how a native
token could perform on Ethereum and demonstrate that the overhead makes
the flexibility offered by black-box usage of smart-contract-based tokens a rea-
sonable compromise for the moderate increase in the required gas it incurs over
what a native token would require.

2 Our Contributions and Related Work

Our contribution is threefold: (1) A universally composable (UC) [6] treatment
of ledgers supporting a broad class of smart contracts, which includes token
contracts (e.g. ERC 20). (2) A design and UC security analysis of EETs. (3)
An implementation of our EET, benchmarks, and comparison with alternative
approaches. In the following, we expand on the key components of the above
contributions, and put our results in perspective with existing literature and
systems.

2.1 Smart-Contract-Enabled Transaction Ledgers

The first analyses of blockchain protocols showed that they satisfy certain desir-
able properties, such as common-prefix (also referred to as safety or consistency),
chain-growth (also referred to as liveness), chain quality, etc. [4,5,9–11,16,17].
Badertscher et al. [5] put forth the first universally composable treatment of the

Etherless Ethereum Tokens 391

Bitcoin backbone (i.e. consensus layer) by introducing a UC functionality, called
Fledger, which captures the interface that Bitcoin offers to external applications,
rather than the way in which this interface is implemented. At a very high level,
Fledger takes as input transactions which are validated by means of a validation
predicate Validate. All valid transactions are then stored into a data structure
denoted as state. The adversary has full control over the order in which transac-
tions appear in state, and can define (in a limited way) the portion of the state
that each party can access. However, once something is added to the state, it
cannot be removed (not even by the adversary). We note that the advantage of
proving security in UC is that it enables use of the ledger as an ideal primitive,
and ensures that replacing this ideal ledger primitive by its implementation—
the corresponding blockchain—does not compromise the security of primitives
that make ideal calls to the ledger; nor does it affect the security of systems
and protocols that run alongside the ledger. This property is often referred to
as universal composability, and it allows for a constructive approach to crypto-
graphic/security protocols, analogous to how programming uses libraries with
fixed APIs without worrying about their implementation. Following that work,
a number of papers on the design and analysis of blockchains have adopted UC
as the model to prove their security and have devised systems implementing
variants of the above ledger [4,14]. UC [5] has also been leveraged to describe
how Fledger may be used together with a digital signature scheme to derive a
transaction ledger, abstracting the cryptocurrency aspects of Bitcoin in addition
to its backbone guarantees.2

This was done by relying on digital signatures where, to ensure composability,
the ideal adversary is allowed to choose the signing and verification keys.

The Transaction Ledger. In this paper we consider a simpler, more UC-
friendly approach that abstracts away the public-key infrastructure (PKI), anal-
ogous to how the UC signatures functionality [7] would. In a nutshell, instead
of having Validate rely on a specific signature scheme, we define a new transac-
tion ledger FT-Ledger that internally runs Fledger and also emulates existentially
unforgeable signatures, similar to [7]. FT-Ledger accepts transactions with the for-
mat tx := (v, addri, addrj , fee) where v represents the number of coins involved in
the transaction, fee is the fee that the issuer of the transaction is willing to pay,
and addri and addrj represent the wallet addresses of the sender and the receiver
respectively. Upon receiving a transaction, FT-Ledger checks the state of Fledger

to ensure that the wallet address addri has at least v + fee coins and that the fee
is sufficient, i.e. that fee ≥ f(tx), where f is function specified in the description
of FT-Ledger that determines the fee that needs to be payed for the input trans-
action. We note that it is straightforward to adapt the analysis of the transaction
ledger [5]—using a specific existentially-unforgeable signatures scheme—to prove
security of our ledger for a standard Bitcoin-style blockchain protocol, such as

2 Unlike transaction ledgers, the bare Fledger captures the consensus layer, and does
not interpret its contents as transactions which need to be verified with respect to
whether or not they are spending some already spent coin.

392 J. Andrews et al.

Bitcoin or the proof-of-work-based version of Ethereum. Nonetheless, as we shall
see, this makes it more intuitive to add cryptocurrency-relevant features to the
ledger–such as etherless tokens.

Adding Smart Contracts. The functionality FT-Ledger is sufficient to capture
the base functionality of cryptocurrencies, but it does not support smart con-
tracts. To achieve that, in this work we define an augmented functionality, which
we denote FTSC-Ledger. This represents our first contribution. FTSC-Ledger inter-
nally manages FT-Ledger and a functionality FSC that abstracts a smart contract:
FSC maintains its own state cstate—corresponding to the state of a (virtual)
machine VM3—and is parametrized by a function fCFee, that takes as input the
query to the contract (which contains also the fee that the caller is willing to
pay to run the contract), and checks whether or not the fee is enough for the
VM to process the input and update its state.

FLedger

SigT

FT-Ledger FSC

VMSC

FTSC-Ledger

Fig. 1. The smart-contract-enabled trans-
action ledger functionality FTSC-Ledger

The construction of FTSC-Ledger

from its components is illustrated
in Fig. 1. FTSC-Ledger accepts either
standard transactions in the native
currency E (that are forwarded
to FT-Ledger) or inputs/transactions
that are intended as queries to the
contract FSC. Upon receiving such
a query for the smart contract,
FTSC-Ledger forwards the query to
FSC, which checks if the fee specified
in the query is sufficient to update its state, and if so it updates cstate by run-
ning the VM on input the given transaction and the state of FT-Ledger (which
is handed to FSC by FTSC-Ledger)4, and returns the updated state (including
the received input) to FTSC-Ledger. FTSC-Ledger then pushes the query and the
updated state cstate to the state of FT-Ledger (by submitting it as a transac-
tion). Consistently with the Ethereum smart contract mechanism, FSC charges
the contract caller only for the fee that is required to update its state, even if
the contract’s caller specified a higher fee. Moreover, if a contract caller did not
specify a fee high enough to conclude an update on the contract’s state, the fee
will be deducted from the caller account, and the input used to query the con-
tract will appear in the state of FT-Ledger, though no change to the contract’s
state will be committed.

Tokens as Smart Contracts. Given the above smart-contract-enabled ledger,
it is straightforward to capture a smart contract for creating a standard (e.g.
ERC 20 [20]) Ethereum token by instantiating FTSC-Ledger with contract func-
tionality that stores and updates the state (balances for different addresses)
3 We do not specify a model of computation for describing the VM; one can use any

such model, e.g. Turing machines, RAMs, etc.
4 Note that FTSC-Ledger also keeps track of the history of the state of FT-Ledger.

Etherless Ethereum Tokens 393

of such a token. Note that this results in a token-enabled transaction ledger
FToken

ledger which allows parties both to issue transactions in the native coin E, and
to exchange tokens T.

In more detail, FToken
ledger instantiates FTSC-Ledger with a token-contract FT

SC

which works as follows: FT
SC collects all token transactions, and upon receiving

a read-request returns only the valid token transactions. Similarly to the way
the ledger FT-Ledger deals with native transactions, a token transaction consists
of the components (v, addrTi , addr

T
j), where v is the number of tokens involved

in the transaction, and addri and addrj represent the token wallet addresses
of the sender and the receiver respectively. Furthermore, FT

SC internally emu-
lates an existentially-unforgeable signature scheme related to the token which is
independent of the one that is used in FT-Ledger.5

We observe that there is no fee appearing in the description of the token trans-
action. The reason is that the fee will be part of the query to the contract, and it
is expressed in the native currency E. Indeed, the issuer of the token transaction,
in order to query the contract FT

SC, needs to possess coins of type E.

The EET Functionality. As discussed in the introduction, the above contract
implementation of tokens—which has become a standard for Ethereum—has
the undesireable property that a party who wants to send tokens requires coins
of type E to do so, coins which they might not have. In this work, we intro-
duce EETs to allow the token creator to offer, as a service, to take on the cost
of the token transaction, in exchange for tokens at a pre-agreed E-to-T rate.
This is captured by tweaking the token-enabled ledger FToken

ledger toward an EET-
enabled ledger, denoted as FEET

Ledger, which supports an additional input called
submit-delegation. Upon receiveing submit-delegation, FEET

Ledger allows the
user to issue a token transaction which pays a fee, in T, to a special party, called
intermediary (that we denote with M), in exchange for the intermediary sub-
mitting the token transaction to FT

SC and paying the E needed for the token
contract to process the transaction. In our system anyone can be an intermedi-
ary. More precisely, there might be multiple intermediaries that are willing to
pay the Ether fee for a transaction, but each of them will do that at a potentially
different exchange rate. This means that any user that wants to delegate the pay-
ment of the fee can look at what rates are available and decide accordingly with
what intermediary to interact with. The agreement on the rate is made com-
pletely off-chain, and for sake of simplicity in the paper we assume that there
is only one intermediary and that the rate has been already pre-agreed between
the parties.

2.2 EET Construction and Analysis

To realize FEET
Ledger we rely only on FT-Ledger and signatures. In particular, any

party that wants to issue a token transaction and has enough coins of type E to
5 Note that we cannot generically use the same signature emulator procedure of
FT-Ledger, as a token address is typically overloaded to also be an Ethereum address.

394 J. Andrews et al.

cover for the fee can issue a transaction tx = (0, addri, 0λ, (aux, σ), fee), where
aux = (v, addrTi , addr

T
j) and σ is a signature of aux that verifies under addrTi .

6

In a nutshell, tx is a standard transaction for FT-Ledger that contains in
its payload the information related to the token transaction properly signed
by the sender. By definition, if the fee fee is high enough, then tx will
become part of FT-Ledger’s state. Let addrTM be the token wallet address of
M. To delegate a transaction, the sender Pi creates a special token transaction
aux = ([v, del-fee], addrTi , [addr

T
j , addr

T
M]) (where del-fee is a fee expressed in T that

parametrizes FEET
Ledger) and signs it to obtain σ. aux is the atomic representation

of two token transactions: the first moves v tokens from addrTi to addrTj , and the
second moves del-fee from addrTi to addrTM. M, upon receiving (aux, σ) submits a
transaction to FT-Ledger that contains (aux, σ) in its payload. If a party wants to
obtain only the valid token transaction, they need to filter out the payload of the
transactions stored in FT-Ledger’s state, and output only the valid transactions.
Similarly to what we have described above, a token transaction (v, addrTi , addr

T
j)

is valid if the sum of tokens with receiver address addrTi minus the sum of tokens
in the state with sender address addri (including the fees) is greater than or
equal to v.

2.3 Implementation, Benchmarks, and Comparisons

The Gas Station Network (GSN) is a relatively recent development in the
Ethereum community that shares some of our goals, but a broader scope. In
particular, the GSN aims to create a decentralized, trustless network of relay
servers which can pick up the transaction fees for any GSN-enabled contract.
The GSN is built around a RelayHub smart contract that:

1. Records available relay servers and their service fees,
2. Keeps ether deposits from GSN-enabled contracts for repayment of relay

servers,
3. Facilitates the interaction between relays and GSN-enabled contracts, and

punishes any detected bad actors.

This is in contrast to our mechanism, in which there is no separate smart con-
tract to manage the delegation of transactions. Additionally, each GSN-enabled
contract must interact with a separate paymaster contract, which is responsi-
ble for performing any action needed to extract or verify payment from users.
Paymaster contracts may be written generically and shared between multiple
contracts, or purpose-written for particular contracts.

The outward functionality of the GSN is similar to our mechanism: a gasless
user submits a transaction to an intermediary relay server instead of directly
to the blockchain, and the relay submits the transaction on the user’s behalf,
receiving an ether repayment from the target contract. The target contract,
in turn, is allowed to extract any payment it wishes from the user, e.g. tokens.

6 In the protocol, the addresses become verification keys for a signature scheme.

Etherless Ethereum Tokens 395

The primary difference is in the complexity of implementation and development;
where the GSN aims to be fully generic and decentralized, and admits a great
deal of complexity in service of that aim, we have endeavored to keep our efforts
very self-contained in order to ease implementation, simplify formal analysis,
and keep operational costs manageable.

As is common in designs that aim for maximally generic functionality, the
GSN pays for its genericity with increased complexity. This complexity man-
ifests both in development effort—anecdotally, we found setting up a testing
environment for a GSN-enabled contract to be significantly more cumbersome
than for other contracts—and in gas consumption. Our experiments indicate
a 4-5x overhead in gas consumption when using the GSN as opposed to using
our EET contract. (Note that gas is pretty much the only relevant measurable
unit of comparison. Other metrics—e.g. running time, settlement time, etc.—are
either very difficult to test in a controlled way, are irrelevant for a contract which
aims only to facilitate token exchange, or are negligible compared to other con-
founding factors.) We note in passing that, to our knowledge, there is no formal
security analysis of the GSN, making our work the first rigorous treatment of
the etherless token paradigm.

Contract-Based vs Native Tokens. Recently, the blockchain/cryptocurrency
community has been entertaining the idea of making tokens native to the cryp-
tocurrency chain. In parallel and independent work [8] the authors propose a
solution that allows users posting a token transaction along with a token-to-
native exchange rate he is willing to pay; at the same time anyone could issue
transactions aimed at covering the fee of such token transactions in exchange of
tokens coins. Then any miner/minter that can match such transactions (if any
valid match exists) can create a block that contains both transactions, in which
the fee for the token transaction has been payed by a third party. A similar solu-
tion has been proposed in [19]. Such approach yields an advantage in terms of
fees needed for the transaction, but it does come at a cost: (1) The block miner
are in an advantageous position and can always front-run other users propos-
ing their own transactions to cover for the fees of token transaction; (2) The
token functionality is limited to what is hardwired on the token chain, and is
therefore far less flexible than a smart-contract-based solution. For example, it is
unclear if or how such a solution would allow the use of amortization/batching to
save on bulk transactions. (3) If one adopts the natural “pay-per-use” principle
for fees—i.e. you pay more for a more complex transaction—as Ethereum does,
then adding this functionality would increase the cost of all transactions, includ-
ing those that only involve the native cryptocurrency. Although this increase is
expected to be minimal, it is unclear how the implicit auction for the submitted
token transaction created by such a mechanism would affect fees.

In the full version [3], we have included an attempt to estimate the overhead
this might incur in a hypothetical implementation on Ethereum, and compare
it with using a smart contract. We note that in the absence of a (platform or
blockchain supporting an) actual implementation of native tokens, the relevant

396 J. Andrews et al.

experiments are somewhat artificial and speculative. Thus, we do not consider
these experiments an important part of our contributions (and we defer them to
the appendix). Nonetheless, we do believe they give an interesting perspective
to the discussion on native tokens, and a pointer for experiments once such
a functionality is implemented on a mainstream blockchain. Finally, we stress
that our solution works on all blockchains that support token contracts (i.e.,
no need for turing completeness) like Cardano, Dfinity and Ethereum, whereas
the solution proposed in [8] would require to fork an existing blockchain to
accommodate for a new validation rule.

3 Preliminaries and Model

We denote a randomized assignment is denoted with a
$←− A, where A is a ran-

domized algorithm. We use existentially unforgeable and non-repudiable signa-
tures [7]. A signature scheme is a triple of ppt algorithms Σ = (Gen, Sign, Ver)

where (s, v) $←− Kgen(1λ) generates a secret-key/public key pair, σ
$←− Sign(s,m)

generates a signature and Ver(v,m, σ) verifies that σ is a valid signature. We refer
to the full version for the formal definition. We provide our protocols and security
proofs in Canetti’s universal composition (UC) framework [6]. We assume that
the reader is familiar with simulation-based security and has basic knowledge
of the UC framework. For more detail, we refer to the full version [3]. We now
elaborate on the main hybrid functionality used in our paper.

The functionality F ledger. The main functionality (in fact, a global setup) we
rely on is a cryptographic distributed transaction ledger. We use the (backbone)
ledgers proposed in the recent literature [4,5] in order to describe a transac-
tion ledger and its properties. As proved in [4,5], such a ledger is implemented
by known permissionless blockchains based on either proof-of-work (PoW), e.g.
Bitcoin, or poof-of-stake (PoS), e.g. Ouroboros Genesis. The ledger stores an
immutable sequence of blocks called state—each block containing several mes-
sages typically referred to as transactions and denoted by tx—which is accessible
from the parties under some restrictions discussed below. It enforces the follow-
ing basic properties that are inspired by [10,16]:

– Ledger growth. The size of the ledger’s state should grow—new blocks should
be added—as the rounds advance.

– Chain quality. It is guaranteed that a percentage of honest blocks are created
in a sufficiently long sequence of blocks.

– Transaction liveness. Old enough (valid) transactions are included in the next
block added to the ledger state.

We next give a brief overview of the ledger functionality Fledger proposed
in [4,5], focusing on the properties of Fledger that are relevant for the under-
standing our results. Along the way we also introduce some useful notation and
terminology. We refer the reader interested in the low-level details of the ledger

Etherless Ethereum Tokens 397

functionality and its UC implementation to the full version [3] and [4,5]. We
note that with minor differences related to the nature of the resource used to
implement the ledger, PoW vs PoS, the ledgers proposed in these works are
identical.

The functionality Fledger is parametrized by three main functions Validate,
ExtendPolicy and Blockify. At a high level, anyone (honest miner or the adver-
sary) may submit a transaction to Fledger. The transaction is validated by means
of a filtering predicate Validate, and if it is found to be valid it is added to a
buffer that we denote buffer. Taking a peak at the actual implementation of
the ledger, this buffer contains transactions that, although validated, are either
not yet inserted into a valid block, or are in a block which is not yet deep enough
in the blockchain to be considered immutable for an adversary. The adversary
A is informed that the transaction was received and is given its contents. Peri-
odically, Fledger does the following: (1) fetches some of the transactions in the
buffer under the influence of the adversary (more on this will follow), (2) mod-
ifies them by means of a procedure Blockify, (3) creates a block including the
output of Blockify, and (4) adds this block to its permanent state, denoted as
state. state is a data structure that includes the sequences of blocks that the
adversary can no longer change. (In [10,16] this corresponds to the common pre-
fix.) Any miner or the adversary is allowed to request a read of the contents of
the state and, every honest miner will eventually receive state as its output.7

To enforce transaction liveness and chain-quality, Fledger relies on the function
ExtendPolicy. At a high level, ExtendPolicy makes sure that the adversary cannot
create too many blocks with arbitrary (but valid) contents (chain quality) and
that if a transaction is old enough, and still valid with respect to the actual state,
then it is included into the state. In more detail, ExtendPolicy takes the current
contents of the buffer, along with the adversary’s recommendation NxtBC, and
the block-insertion times vector τstate. The latter is a vector listing the times
when each block was inserted into the state. The output of ExtendPolicy is a
vector including the blocks to be appended to the state during the next state-
extend time-slot. Each of these blocks is then given as input to Blockify. We
conclude the discussion by providing a high-level description of the main input
command of Fledger used in our protocols/definitions, and refer to Sect. 3 for a
formal description of the functionality.

– The input (read, sid) is used to request the content of the ledger’s state.
Concretely, upon receiving (read, sid) from some party (or the adversary on
behalf of a corrupted party), the ledger returns (a prefix of) state to the
caller.

7 As observed in [5], it is not possible to guarantee with existing constructions that
at any given point in time all honest parties see exactly the same state (blockchain)
length, so each party may have a different view of the state which is defined by the
adversary. However, the adversary can restrict the view of the honest parties only
by a bounded number of blocks. The parameter that defines such a bound is called
windowSize.

398 J. Andrews et al.

– The input (submit, sid, tx) is used to request that a transaction tx be added
to the buffer. That is, upon receiving a (submit, sid, tx) message from any
party (or the adversary), the ledger adds the transaction tx to the buffer
buffer. If the validation predicate Validate, on input state, buffer, tx out-
puts 1, then tx will be included in state.8 The time required for the trans-
action to be part of state and visible to all honest parties who query Fledger

depends on the transaction liveness parameter defined in ExtendPolicy.

4 The Cryptocurrency-Ledger Functionality FT-LEDGER

The ledger Fledger does not itself realize a cryptocurrency (unless if couple with
a signature scheme as described in [5]). To this direction we define and instantiate
a cryptocurrency (transaction) ledger FT-Ledger hosting a coin denoted by E. As
discussed in the introduction, in contrast to the transaction ledger from [5] our
construction does not assume an external signature functionality. This makes it
more useful for defining smart contracts (see Sect. 5).

The validation predicate of Fledger, in this case, is defined to always output 1,
and it is FT-Ledger’s responsibility to make sure that only valid transactions are
submitted to Fledger. FT-Ledger also generates and manages the wallets of the
parties. A transaction supported by FT-Ledger consists of five main components
(v, addri, addrj , aux, fee), where v represents the amount of coins of type E, addri
is the sender’s wallet address, addrj is the receiver’s wallet address, aux is a
payload, and fee represents the fee. At a high level, a transaction is valid if the
fee fee is high enough and if the amount of coins stored in the wallet with address
addri is at least v + fee. How high the fee should be in order for the transaction
to be considered is specified by a function f that is part of the description
of FT-Ledger. f takes as input the transaction tx and computes the required
fee. In the case where the output of f is greater than fee, the transaction is
immediately discarded. Otherwise, FT-Ledger replaces fee with the output of the
function and submits it. This captures the fact that FT-Ledger charges the issuer
of the transaction only for the cost of processing the transaction, even if the
transaction specifies a higher fee. In more detail, each party has an associated
wallet address, and different parties have different wallet addresses. FT-Ledger

manages a table T that, for each party Pi, stores Pi’s wallet address addri. We
initialize FT-Ledger with a party P0 which initially holds all the coins (e.g., V
coins) of type E9. To do so, FT-Ledger generates an address addr0 and sends
(submit, sid, tx) to the wrapped Fledger with tx := (V, 0λ, addr0,⊥, 0), where
V is the initial amount of coins held by Pi and 0λ is a special address used
only for the initialization. Upon receiving a registration request from a party Pi,
FT-Ledger creates a new wallet address addri and adds (addri, Pi) to the table

8 We have the guarantee that any transaction (either generated by a malicious or
honest party) that manages to go in buffer will eventually be included in state.

9 It is easy to intialize the functionality with an arbitrary number of parties that hold
an initial amount of coin. To simplify the description on the functionality, we decided
to use only one party in this phase.

Etherless Ethereum Tokens 399

T . FT-Ledger, upon receiving (submit, sid, tx) from a party Pi, performs the
following steps.

– Parse tx as (v, addri, addrj , aux, fee) and continue if and only if (Pi, addri) ∈ T
and fee ≥ f(tx).

– Get state and buffer of Fledger and check that the balance of transactions
to/from the wallet address addri is at least v′ ≥ v + f(tx) coins. That is,
the sum of coins with receiver address addri minus the sum of coins in the
state with sender address addri (including the fees) is greater than or equal
to v + f(tx). If this is not the case, deem the transaction invalid; otherwise,
submit tx to Fledger with the fee f(tx).

FT-Ledger is also parametrized with the identifier of an ideal functionality Ftrap.
Whenever FT-Ledger receives the command (submit-trapdoor, sid, tx, Pi) from
Ftrap, it forwards the transaction tx on behalf of Pi to Fledger without checking
anything about tx in terms of balances and fees. This simple mechanism allows
FT-Ledger to interact with other ideal functionalities when required. This becomes
particularly helpful when we want to enhance the behavior of FT-Ledger with smart
contracts, and in the next section we show how to do that. For all the other input
commands, FT-Ledger just acts as a proxy between Fledger and its external inter-
face. To conclude the description of FT-Ledger, we need to specify how Blockify
works. Blockify is a simple procedure that takes as input the next block to be
added to the state, and outputs a concatenation of the transactions contained in
the block. This means that the state of Fledger (which will correspond also to the
state of FT-Ledger) is represented by just list of transactions. We do not specify how
ExtendPolicy works, as any realization of ExtendPolicy can be used in our formal-
ization. We provide a more detailed description of FT-Ledger in the full version [3].
We note that FT-Ledger does not specify who gets the fee, but this would not be
difficult to do since Fledger keeps track of the party that generated each block.
Hence, it would be easy to modify FT-Ledger to keep track of which party gets the
fees of the transactions that constitute a block. Another simplification we make is
to consider fixed relation between the cost required to execute a transaction (or
call a contract as we will see) and the complexity of the transaction (or the con-
tract call). In system like Ethereum this is not the case, as the fee that a party
pays depends on the complexity of the transaction (which determines the amount
of gas) and on the gas price. This means that how fast and if a transaction will
be executed depends on the product of gas price and amount of required gas. We
could modify FT-Ledger (and the other functionalities we will consider) to accom-
modate for an additional mechanism that allows the adversary communicating to
the functionality the average gas price, in such a say that we can use this gas cost to
decide whether to accept or reject a transaction. However, since these aspects are
not relevant for our results, to simplify the description of our already involved ideal
functionalities, we have decided to not include such mechanisms in our model.

400 J. Andrews et al.

5 The Smart-Contract-Enabled Transaction Ledger

In this section we define the functionality FTSC-Ledger that, in addition to
FT-Ledger, captures a ledger that enables a large class of smart contracts.
FTSC-Ledger internally runs FT-Ledger and a smart contract (formally defined
by means of an additional ideal functionality). The contract has a state that can
be updated by any party that can afford to pay a fee (that depends on the con-
tract and on the input). After any valid update, the new contract state is pushed
onto the FT-Ledger’s state. As we have alluded, in order for the contract to freely
interact with FT-Ledger, the parameter Ftrap of FT-Ledger is set to be equal to
the identity of FTSC-Ledger, which will act as a bridge between the contract
functionality and FT-Ledger. To simplify the description of the functionality, we
describe the case where only one smart contract is running; however, it is easy to
extend the functionality to the case where multiple smart contracts are running
at the same time. A smart contract FSC is a small functionality managed by
FTSC-Ledger that maintains its own state cstate. The behavior of FSC is fully
determined by three procedures: fCFee, ffilter and ftrans.

– fCFee (the contract fee function) takes as input the contract state cstate, the
ledger state of FT-Ledger, a transaction, (which represents the input received
by the contract’s caller) and the fee specified in the input transaction. If
the fee indicated is sufficient to update the contract state, then fCFee returns
the actual fee required to run the contract (which could be less than the fee
indicated by the contract’s caller). If the submitted fee is not sufficient, then
the function returns ⊥.

– ftrans (the state transition function) takes as input the payload of the input
transaction, FT-Ledger’s state, and the contract state cstate, and returns a
new contract state updated according to its inputs.

– ffilter (the filtering function) takes as input (1) the view that the contract’s
caller has of FT-Ledger’s state statei and (2) the contract state, and returns
an arbitrary sub-set of the information contained in statei.

The functionality FTSC-Ledger is also parametrized by Fee, which represents
the minimum fee that a party should pay in order to query a contract (to update
the contract the fee might be higher). In more detail, FTSC-Ledger accepts trans-
actions with the following format: tx := (v, addrEi , addr

E
j , aux, fee, type), where

type ∈ {E,SC} denotes whether the transaction should be treated as a normal
transaction or as a call to the contract. In particular, FTSC-Ledger checks whether
type = E or type = SC. In the former case, FTSC-Ledger removes the field type from
the transaction and forwards it to FT-Ledger. In the latter, FTSC-Ledger checks
that fee ≥ Fee and that the issuer of the transaction has at least fee coins of type
E in its wallet10. If this check is successful, then FTSC-Ledger forwards the trans-
action and the current ledger state to FSC, which does the following: It uses fCFee
to check whether the fee specified in tx minus the fee required to query the con-
tract (denoted with Fee) would be sufficient to update the contract state using
10 FTSC-Ledger can do this check since it has full access to FT-Ledger’s state and buffer.

Etherless Ethereum Tokens 401

the input aux. If fCFee returns ⊥, then the contract returns (ko, cstate, fee).
Else, if fCFee returns feeSC, FSC computes the updated contract state cstate by
running ftrans on input the payload of tx (denoted with aux), the ledger state,
and the contract state, and returns (ok, cstate, feeSC + Fee). FTSC-Ledger upon
receiving (FlagC, cstate, actualfee) from FSC, constructs and sends to FT-Ledger

the transaction txE := (0, addrEi , 0
λ, (FlagC, aux, cstate,FSC.id), actualfee) using

the command submit-trapdoor, where we recall that aux is the payload of tx,
FlagC ∈ {ok, ko}, and FSC.id is the identifier of SC. We note that the transaction
txE is a standard FT-Ledger transaction that contains in its payload the updated
state of the contract (or the old state if the fee was not sufficient), the input
used to eventually update the contract’s state, and the fee actualfee such that:

– if FlagC = ko (i.e. the fee specified by the contract’s caller was not sufficient
to update the contract state) then actualfee = fee

– if FlagC = ok (i.e. fee was sufficient to update the contract’s state) then
actualfee ≤ fee.

Note that it might be that actualfee < fee in the case where the fee required
to update the contract state is less that fee. That is, FTSC-Ledger only charges
the contract caller exactly for the fee required to run the contract. When fee is
insufficient to complete execution of the contract, the issuer of the transaction
pays the full amount of fee even though no change to the contract state is com-
mitted. (This is consistent with Ethereum and other blockchains that support
Turing-complete smart contracts.) We refer to the full version [3] for a more
detailed description of FTSC-Ledger and for the abstraction of FSC.

6 The EET Ledger

We can now define the functionality FEET
Ledger. FEET

Ledger internally runs
FTSC-Ledger, parametrized by a contract FT

SC. FT
SC maintains a token T, and

allows parties to issue transactions with respect to such a token. Any party
that has some tokens can sent it to another party by querying the contract
FT

SC. However, invoking the contract requires payment of a fee in the native
currency E, even if the transaction involves only tokens. To mitigate this prob-
lem, our functionality allows a sender Pi to send tokens to another party Pj ,
even if Pi does not have native coins. In particular, the sender will pay a fee of
at least del-fee tokens T to a special party M, called the intermediary, and M
will pay the fee in E on the behalf of the sender (del-fee is a fixed amount of
tokens that parametrizes our functionality). The functionality guarantees that
either the transaction by Pi becomes part of the ledger state and M gets a
fixed amount of tokens del-fee, or nothing happens. We propose a more detailed
description of FEET

Ledger and FT
SC to the full version [3], and provide a more high

level (but still formal) description of those functionalities below. The functional-
ity FEET

Ledger, interacts with a set of parties, with the adversary, and with a special
party that we denote with M (the intermediary), and manages the token wallet
addresses of the registered parties. We assume that a party P0 initially holds

402 J. Andrews et al.

all of the available tokens11. We denote the token wallet addresses of P0 and M
with addrT0 and addrTM respectively. Any time FEET

Ledger receives a registration com-
mand from a party Pi, it registers Pi to the ledger FTSC-Ledger, thus obtaining
addrEi . It then generates a token wallet address addrTi and returns (addrEi , addr

T
i)

to Pi. (addrEi , addr
T
i) represents respectively the wallet addresses for the native

currency E and for the token T. FEET
Ledger tolerates two types of transactions: stan-

dard and delegated transactions. Any registered party Pi can issue a standard
transaction txT := (v, addrEi , addr

T
i , addr

T
j , fee), where v denotes the amount of

tokens, (addrEi , addr
T
i) are the addresses of the sender, addrTj is the token wallet

address of the receiver, and fee is the fee expressed in coins of type E. FEET
Ledger

takes txT and creates a transaction txE for the ledger FTSC-Ledger that (1) has
as a sender address addrEi , (2) has a fee fee, and (3) calls the contract FT

SC and
includes in its payload what we call a token transaction tx′ := (v, addrTi , addr

T
j).

12

FEET
Ledger then forwards txE to the ledger FTSC-Ledger on behalf of Pi. The con-

tract FT
SC maintains a set token-set as part of its state, and if the fee specified

in txE is sufficient, it updates its state by adding tx′ to token-set and returns
(ok, cstate, actualfee). Note that this means that the tx′ is part of the contract
state and appears in the FTSC-Ledger’s state by definition. To complete this first
part of the description of FEET

Ledger, it remains to specify the function ffilter (and
fCFee, which we describe later in this section) of FT

SC. ffilter receives as input the
contract state and the state of FTSC-Ledger (which we denote state) and, for
each transaction tx in state such that txE := (0λ, addrEi , 0

λ, auxE, feeE) (where
auxE = (ok, tx′, cstate�,FT

SC.id)), adds tx′ to stateT if and only if:

1. tx′ appears in token-set (which is part of the token state).
2. tx′ := (v, addrTi , addr

T
j) and the sum of tokens in the token transactions stored

so far in stateT with receiver address addrTi , minus the sum of coins in the
state with sender address addrTi , is greater than or equal to v.

FEET
Ledger captures the main characteristics of a token, relying on the smart

contract to filter out invalid transactions. Unfortunately, the mechanism that we
have discussed so far has a major drawback: if a party wants to issue a token
transaction, they must have the required amount of coins of type E to query the
contract. To get rid of this requirement, FEET

Ledger admits what we call delegated
transactions. A party that wants to issue a delegated transaction submits txT :=
(v, addrTi , addr

T
j , fee

T) to FEET
Ledger, which in turns asks the special party denoted

M to pay the fee in E in exchange of (at least) del-fee tokens T, which will be
taken from Pi’s account. If M is honest and feeT ≥ del-fee, (where we recall
that del-fee is the minimum fee required for the delegation to be considered,)
then FEET

Ledger submits a call to the contract FT
SC on behalf of M with the input

(the payload of the transaction) aux := (([v, feeT], addrTi , [addr
T
j , addr

T
M])). If M

11 As before, we could have multiple addresses having different amounts of tokens, but
for simplicity, we assume that only one party initially holds tokens.

12 The payload also includes an identifier chosen by the adversary, which we omit in
this informal description.

Etherless Ethereum Tokens 403

has enough coins of type E to afford the call to FT
SC, then aux will become part

of the contract state. To accommodate for this special input, we modify the
filtering function ffilter of FT

SC in such a way that the value aux can also be
understood as two atomic token transactions: the first moves v tokens from the
wallet address addrTi to the wallet address addrTj , and the second moves feeT from
the wallet address addrTi to the wallet address addrTM. It remains to specify how
the contract computes the fee. The function fCFee charges Fee coins of type E
for each token transaction encoded in aux (the input that is used to update the
contract state). Hence, for a non-delegated token transaction, fCFee would return
Fee, and for a delegated token transaction, it would return 2Fee. In addition to
this fee, we need to consider the fee required simply to query the contract. Hence,
the total cost of a non-delegated transaction would be of 2FeeE, and the total
cost of a delegated transaction would be 3FeeE. We stress that this is a simplified
method of computing the fee, and that a more fine-grained calculation could be
used to capture what actually happens in the real world.

Constructions and Experimental Evaluation. We have already highlighted
how our construction works in Sect. 2.2. We compared our system with GSN and
with users that make only self-funded transactions (i.e., user that do not want
to interact with the intermediary and have his own Ether to afford for the token
transaction). Our experiments indicate a 4-5x overhead in gas consumption when
using the GSN as opposed to using our EET contract. This is the cost of the
complexity of the GSN, a cost that is very unattractive for projects that do not
require the genericity of the GSN. We also show that our contract consumes less
than twice the gas of a standard self-funded token transaction, which we believe
is a reasonable compromise for the added user experience. We refer the reader
to the full version [3] for more detail on our experimental results.

A Our Protocol: How to Realize FEET
LEDGER

Our protocol is described in the FT-Ledger-hybrid world, where FT-Ledger is
parametrized by Ftrap = ⊥, and the fee function f which, upon receiving an input
transaction txE, does the following: 1) Parse tx as (v, addri, addrj , aux, fee); 2) if
aux = ⊥, then return Fee; 3) Otherwise, return Fee + |aux|/κFee. In a nutshell,
the fee required for a transaction to settle in the FT-Ledger’s state is Fee, plus
and additional Fee for each κ bits contained in the payload, where Fee and κ are
part of the description of f . We provide the formal description of our protocol in
Fig. 2. At a very high level, the protocol works as follows: Each party registers
with FT-Ledger and runs Kgen(1λ) to obtain (skTi , addr

T
i), where addrTi represents

the token wallet address. A party Pi that wants to send vT to Pj and has at least
2Fee coins of type E can do so by issuing a transaction for FT-Ledger that contains

404 J. Andrews et al.

in its payload aux := (v, addrTi , addr
T
j , id, σ

T
i), where id is a random value, and σT

i

is a signature of (v, addrTi , addr
T
j , id) that verifies under the verification key addrTi .

We require Pi to pay a fee of at least 2Fee because we assume that, in this case,
|aux| = κ. When an honest party Pi receives the command (read, sid, T), they
shall retrieve FT-Ledger’s state, filter out the payload of each transaction (thus
obtaining only the information related to token transactions), and output only
the valid token transactions. A token transaction (v, addrTi , addr

T
j , id, σ

T
i) is valid

if addrTi has received at least v tokens, σT
i is a signature of (v, addrTi , addr

T
j , id)

that verifies under the verification key addrTi , and there does not exist any other
token transaction with the same sender address and identifier id. Our protocol
allows any party Pi that does not have coins of type E to delegate the payment
of the fee to M, paying M with at least del-fee tokens T. To do so, Pi creates
m := ([v, del-fee], addrTi , [addr

T
j , addr

T
M], id) and signs it, thus obtaining σT

i . Pi then
sends (m,σT

i) to M. The honest M then creates a transaction for FT-Ledger that
includes (m,σT

i) in its payload and has a fee of at least 3Fee, and submits it. We
require M to pay a fee of at least 3FeeE because we assume that, in this case,
the payload of the transaction is 2κ bits (as, indeed, the payload of this type of
transaction contains more information). The honest M would immediately cre-
ate and submit such a transaction, whereas the corrupted M might decide when
(and if) to create the transaction. We require each token transaction to contain
a random identifier in order to avoid replay attacks; without such an identi-
fier, the adversary could take the payload of any transaction from FT-Ledger’s
state, (for instance, the payload of a transaction that moves v tokens from the
address addrTi of an honest party to some potentially adversarial address,) copy
this payload, and use it to generate a new transaction for FT-Ledger. In this way,
the adversary could empty the token wallet of the honest party without their
knowledge. The other advantage of using identifiers is that an honest party that
has delegated a transaction to a malicious intermediary can at any point decide
to withdraw the delegation. Indeed, if M is not responding to a party that has
delegated the transaction m := ([v, del-fee], addrTi , [addr

T
j , addr

T
M], id) for a long

time, and m does not appear in the payload of any transaction that appears in
the ledger’s state, then Pi can withdraw the delegation by submitting (or dele-
gating) a token transaction with the same identifier; then, at most one of these
transactions will be valid and accepted by the functionality. We refer to Fig. 2
for the formal description of ΠToken.

Etherless Ethereum Tokens 405

Fig. 2. Our protocol.

406 J. Andrews et al.

References

1. Ethereum gas station network (GSN) documentation. https://docs.opengsn.org/
2. Al-Balaghi, A.: The state of meta transactions - 2020 (2020). https://medium.

com/biconomy/the-state-of-meta-transactions-2020-506840e37e75
3. Andrews, J., Ciampi, M., Zikas, V.: Etherless ethereum tokens: Simulating native

tokens in ethereum. Cryptology ePrint Archive, Report 2021/766 (2021). https://
ia.cr/2021/766

4. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 913–930. ACM Press
(2018). https://doi.org/10.1145/3243734.3243848

5. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 324–356. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-319-63688-7 11

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001).
https://doi.org/10.1109/SFCS.2001.959888

7. Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003). https://eprint.iacr.org/2003/
239

8. Chakravarty, M.M., Karayannidis, N., Kiayias, A., Jones, M.P., Vinogradova, P.:
Babel fees via limited liabilities. arXiv preprint arXiv:2106.01161 (2021)

9. Daian, P., Pass, R., Shi, E.: Snow white: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-030-32101-7 2

10. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

11. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 291–323. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/
978-3-319-63688-7 10

12. Griffith, A.: Ethereum meta transactions (2018). https://medium.com/@austin
48503/ethereum-meta-transactions-90ccf0859e84

13. Kerber, T., Kiayias, A., Kohlweiss, M.: KACHINA - foundations of private smart
contracts. In: 34th IEEE Computer Security Foundations Symposium, CSF 2021,
Dubrovnik, Croatia, 21–25 June 2021, pp. 1–16. IEEE (2021). https://doi.org/10.
1109/CSF51468.2021.00002

14. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: Privacy-
preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, 19–23 May 2019, pp. 157–174. IEEE (2019).
https://doi.org/10.1109/SP.2019.00063

15. Kiayias, A., Litos, O.S.T.: A composable security treatment of the lightning net-
work. In: 33rd IEEE Computer Security Foundations Symposium, CSF 2020,
Boston, MA, USA, 22–26 June 2020, pp. 334–349. IEEE (2020). https://doi.org/
10.1109/CSF49147.2020.00031, https://doi.org/10.1109/CSF49147.2020.00031

https://docs.opengsn.org/
https://medium.com/biconomy/the-state-of-meta-transactions-2020-506840e37e75
https://medium.com/biconomy/the-state-of-meta-transactions-2020-506840e37e75
https://ia.cr/2021/766
https://ia.cr/2021/766
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
http://arxiv.org/abs/2106.01161
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://medium.com/@austin_48503/ethereum-meta-transactions-90ccf0859e84
https://medium.com/@austin_48503/ethereum-meta-transactions-90ccf0859e84
https://doi.org/10.1109/CSF51468.2021.00002
https://doi.org/10.1109/CSF51468.2021.00002
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1109/CSF49147.2020.00031
https://doi.org/10.1109/CSF49147.2020.00031
https://doi.org/10.1109/CSF49147.2020.00031

Etherless Ethereum Tokens 407

16. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
II. LNCS, vol. 10211, pp. 643–673. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-319-56614-6 22

17. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 380–409. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-319-70697-9 14

18. Seres, I.A.: On blockchain metatransactions. In: 2020 IEEE International Confer-
ence on Blockchain (Blockchain), pp. 178–187. IEEE (2020)

19. Team, A.: Algorand developer documentation (2021). https://developer.algorand.
org/docs/

20. Vogelsteller, F., Buterin, V.: Eip 20: Erc-20 token standard (2015). https://eips.
ethereum.org/EIPS/eip-20

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14
https://developer.algorand.org/docs/
https://developer.algorand.org/docs/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

A Linear-Time 2-Party Secure Merge
Protocol

Brett Hemenway Falk1, Rohit Nema2(B), and Rafail Ostrovsky2

1 University of Pennsylvania, Philadelphia, USA
fbrett@cis.upenn.edu

2 UCLA, Los Angeles, USA

rnema@ucla.edu, rafail@cs.ucla.edu

Abstract. We present a linear-time, space and communication data-
oblivious algorithm for securely merging two private, sorted lists into a
single sorted, secret-shared list in the two party setting. Although merg-
ing two sorted lists can be done insecurely in linear time, previous secure
merge algorithms all require super-linear time and communication. A key
feature of our construction is a novel method to obliviously traverse per-
muted lists in sorted order. Our algorithm only requires black-box use
of the underlying Additively Homomorphic cryptosystem and generic
secure computation schemes for comparison and equality testing.

Keywords: Secure computation · Homomorphic encryption ·
Oblivious protocols

1 Introduction

Securely merging two sorted lists into a single, globally sorted list with the
same asymptotic complexity as in the insecure setting has been a long-standing
open problem. It is a fundamental tool in many machine learning and data-
processing applications [6,42,57], Oblivious RAM [31,45], and Private Set Inter-
section (PSI) [36]. A series of works [1,13,32,33] have shown that securely sorting
a list can be done with the same asymptotic complexity as insecure sorting. On
the other hand, for merging, a gap remains. In the past, it has been solved with
complicated techniques that either run in super-linear time or communication,
or make unnatural assumptions.

In the insecure setting, and in the three-party ORAM setting, where there
are three servers and a trusted client, merging two sorted lists of length n can be
done in O(n) time, [10], whereas in the secure setting, the best existing 2-party
secure merge algorithm requires O(n log log n) communication [26].

Our main result is to close this gap. More explicitly, we show

Theorem 1 (Main Theorem). There exists a 2-party protocol for merging
two locally sorted lists in linear-time, space and communication that provides

B. H. Falk, R. Nema and R. Ostrovsky—Work done while consulting for Stealth Soft-
ware Technologies, Inc.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 408–427, 2022.
https://doi.org/10.1007/978-3-031-07689-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_30&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_30

A Linear-Time 2-Party Secure Merge Protocol 409

security against semi-honest adversaries. The protocol only requires black-box use
of an Additively-Homomorphic cryptosystem and a generic secure computation
protocol for comparison and equality-testing on secret shares.

Secure 2-party merge protocols arise naturally, since the two participants can
each sort their list locally before the protocol begins. Three-party protocols for
secure merge are less natural, since there are still only two lists being merged,
but these lists are secret-shared amongst the three computation parties. If the
two lists being merged were initially held in the clear by two parties, then it’s
unnatural to require a third party to aid in the secure merge procedure. On the
other hand, if the two lists were initially secret-shared among two parties (e.g. as
the output of a previous 3-party computation) it becomes less natural to assume
that they are pre-sorted (since they cannot have been sorted locally).

One application of two-party merge protocols is in Private Set Intersection
(PSI). There are many PSI protocols, but most output the intersection in the
clear (e.g. [11,12,16,20–22,24,28,35,37–41,47,48,51–53]). In many applications,
however, PSI is only a first step in a larger computation, and in these settings the
PSI must return secret shares of the intersection, rather than the list itself – but
these secret-shared PSI protocols (e.g. [17,49,50]) tend to be less efficient than
protocols that reveal the intersection in the clear. One of the earliest methods
for secret-shared PSI is the sort-compare paradigm [36], where the participants
sort their joint list, then compare adjacent elements in a linear pass, deleting
singletons. The problem with this approach is that the initial sorting step takes
O(n log n) communication. Using our novel linear-time secure merge protocol,
the sort-compare paradigm gives a simple, efficient linear-communication secret-
shared PSI protocol.

Our protocol is inspired by the 3-server ORAM merge protocol of [10], where
the two sorted lists are treated as linked lists, then each linked list is shuffled
with a collection of “dummy” elements using a linear-time three-party secure
shuffle [43]. Thereafter, the trusted client can traverse the shuffled linked lists,
comparing one element at a time, as in the standard insecure merge protocol.

There are several obstacles that need to be overcome in order to eliminate
the trusted client and one of the servers from the [10] merge protocol. We can
use a linear-time 2-party secure shuffle [26] to replace the 3-party shuffle, but
updating the pointers in the shuffled lists is challenging without a trusted client.

To overcome this obstacle, we develop a technique for converting values
encrypted under the key of one participant into additive secret shares of the
same underlying plaintext (See Sect. 5.2). This conversion process is extremely
efficient, and only relies on the cryptosystem being additively homomorphic.
Moreover, the trusted client in [10] can easily switch from the real to dummy
list obliviously once the real list is exhausted; however, this is non-trivial in our
2-party setup since obviously neither party should learn when a real list has been
exhausted. We combat this issue by creating a unique, partially circular linked
list (Sect. 5.1 and Fig. 1) such that the protocol can seamlessly switch from the
real to dummy list.

Using this novel linked list construction and ciphertext-to-secret-sharing tool,
we give a two party secure merge protocol, where each participant treats their

410 B. H. Falk et al.

input as a linked list, then allows the other participant to shuffle this linked list
(while updating the pointers). The parties then re-share these permuted linked
lists, and compare elements one at a time (using a secure comparison protocol),
while the exact sequence of data accesses from each list is independent of the
underlying data. See Sect. 5 for the full construction.

The detailed security proofs and analysis are presented in the full version of
the paper [25].

2 Previous Work

2.1 Secure Sorting

Merging two sorted lists can be seen as a special case of sorting, and thus any
sorting protocol is also a merge protocol. When security is not required, a simple
counting argument shows that any comparison-based sorting algorithm requires
O(n log n) comparisons, whereas two sorted lists can be merged using only O(n)
comparisons. Although secure merge protocols are a building block for many
secure multiparty computations, most applications focus on the more general
(and more difficult) problem of secure sorting.

One route for building a secure sorting protocol is to securely implement a
data-oblivious sorting network using a generic circuit-based secure multiparty
computation (MPC) protocol (e.g. GMW [30], BGW [7] or Garbled Circuits
[59,60]). Asymptotically, the best sorting network is the AKS network [1], which
requires O(n log n) comparisons. Although the AKS network is asymptotically
optimal, the hidden constants are extremely large [2], and so the AKS network
has little practical value. In practice, Batcher’s bitonic sort [5] which requires
O(n log2 n) comparisons is much faster and is widely implemented in practice,
including in the ABY [23], Obliv-C [61] and EMP [58] compilers. Batcher’s
sorting network is defined recursively, and thus when using Batcher’s network
to merge two pre-sorted input lists, all but the final level of the recursion can be
omitted. Unfortunately, this does not improve the asymptotic complexity, but it
does increase the concrete performance by about a factor of 2.

One problem with implementing traditional sorting algorithms (e.g. quick-
sort, mergesort, radix sort) using generic secure computation, is that the they are
not data-oblivious – even if the comparisons are implemented securely, the data
movement depends on the underlying values being sorted. The shuffle-then-sort
paradigm [13,32,33], solves this problem by first obliviously shuffling the input
lists, then securely executing a traditional sorting algorithm. The initial shuffle
ensures that the data movement (which is not hidden by the secure computation)
is independent of the underlying data. These techniques yield an asymptotically
optimal (O(n log n)) sorting algorithms, that are also efficient in practice.

The efficiency of the shuffle-then-sort paradigm rests on the efficiency of the
secure shuffle protocol. In the 3-party setting there are linear-time secure shuffles
(based on one-way functions) [43], and in the 2-party there are linear-time secure
shuffles (based on additively homomorphic encryption) [29].

Applying the shuffle-then-sort paradigm to the problem of merging immedi-
ately yields O(n log n)-communication oblivious merge protocols, but does not

A Linear-Time 2-Party Secure Merge Protocol 411

achieve the O(n)-time merging that is possible in the insecure setting. In fact,
the Ω(n log n) lower bound on comparison-based sorting means that this app-
roach will never yield a linear-time secure merge algorithm – unless we can take
advantage of the fact that the initial lists being merged are pre-sorted.

Alternative sorting schemes (e.g. Radix sort) avoid the Ω(n log n) lower
bounds on comparison-based sorting. Another example is [34] in the random-
ized setting which sorts integers in O(n

√
log log n) expected running time. These

sorting algorithms are efficient, but rely on the RAM model of computation, and
their data-dependent access patterns cannot be efficiently implemented in the
circuit model. One exception is [4], which uses non-comparison based techniques
to beat the Ω(n log n) lower bound, but still remains in the circuit model.

2.2 Secure Merging

Secure, multiparty merge protocols have been studied separately from secure
sorting protocols, and just as in the insecure case, focusing on the problem of
merging allows us to circumvent the Ω(n log n) lower bound for sorting.

The first secure merge protocol with (asymptotically) less communication
than a corresponding secure sort was given in the 3-server ORAM setting (which
requires 3-servers and a trusted client), where there is an information-theoretic
secure merge protocol with only O(n) communication [10]. In general, any k-
server ORAM protocol, the client can be emulated using secure multiparty com-
putation (MPC), thus the protocol of [10] also yields a 3-server secure merge pro-
tocol. Unfortunately, using MPC to securely emulate an ORAM client can dra-
matically hurt performance since the ORAM client may not be “MPC friendly”,
e.g. the client may have a very large circuit complexity, which leads inefficiencies
when emulating the ORAM client under MPC.

The key idea of [10] is to apply “shuffle-then-sort” [13,32,33] to the idea
of merging. Essentially, the participants shuffle the two (sorted) linked-lists –
updating the pointers to each element’s new, shuffled location. Then the partici-
pants apply a standard (non-oblivious) merge protocol to traverse these shuffled
linked lists (without needing to hide the data movement). These techniques yield
a linear-communication secure merge protocol, but the construction of [10] only
works in the 3-party ORAM setting, i.e., when there are four parties, three
servers and a trusted client.

The “shuffle-then-merge” paradigm is a bit more delicate than the “shuffle-
then-sort” paradigm, since the input lists in a merge are pre-sorted, and the
merge protocol must process them in this sorted order (even after the oblivious
shuffle). To overcome this difficulty, the pre-sorted input lists can be turned into
linked lists, and the oblivious shuffle can update each item’s pointer to point to
the permuted position of its successor [10].

In the two-party setting, [26] gives a protocol based on additively homomor-
phic encryption that securely merges two lists using O(n log log n) communication.
The key idea of [26] is that since the input lists are pre-sorted, we can divide the
entire list into poly-logarithmic sized blocks, and focus on moving these blocks into
(nearly) the correct positions. Once the large blocks are in place, the small number
of remaining “strays” that are out of place, can be identified and moved efficiently.

412 B. H. Falk et al.

Although our solution is fundamentally different, like [26], we also rely on a linear-
time 2-party shuffle.

Our protocol follows a shuffle-then-merge paradigm that is similar to [10],
but in order to adapt this to the two-party setting, we create a new protocol for
shuffling linked lists in the two-party setting (which can be seen as an extension
of the two-party oblivious shuffle of [26,29]).

3 Overview

3.1 Challenges

In the insecure setting, two parties can merge their locally sorted lists by sim-
ply comparing their smallest elements and advancing the list with the smaller
element. This operation is linear in the length of the two lists. The core issue in
translating this linear-time merge algorithm to a secure version is that advancing
a list is not data-oblivious – it reveals which list contained the smaller element.

Protocol 1. A basic, data-dependent merge.
Input: Two sorted input lists A, B of lengths nA and nB

Output: A sorted output list C of length nA + nB

1: Initialize iA = iB = iC = 0
2: while iC < nA + nB do
3: if A[iA] <B[iB] or iB ≥ nB then
4: C[ic] =A[iA]
5: iA = iA + 1
6: else
7: C[ic] =B[iB]
8: iB = iB + 1
9: end if

10: iC = iC + 1
11: end while

There are two key challenges when trying to adapt the non-oblivious näıve
merge protocol (Protocol 1), into an oblivious variant.

1. Which list is being accessed: Whether the algorithm reaches Line 4 or
Line 7 reveals which list is being accessed.

2. Which location is being accessed: When the algorithm reaches Line 4
(resp. Line 7), it reveals which element of A’s (resp. B’s) list is being accessed
at iteration iC .

We also face an additional challenge: we have only two participants in the
protocol unlike these prior works which had three, either two servers and a
trusted client [44] or three servers and trusted client [10].

3.2 Intuition and Construction Overview

Oblivious Shuffle with Linked List: To address challenge 2, we rely on an
oblivious permutation. In the multiparty setting, it is possible to perform efficient

A Linear-Time 2-Party Secure Merge Protocol 413

(linear-time), oblivious shuffles of secret-shared lists [43]. Similarly, in the two-
party scenario, the participants can use additively homomorphic encryption to
obliviously shuffle ciphertexts in linear time [26,29]. These linear-time multiparty
shuffles are a key building block of many secure multiparty sorting protocols
[13,32,33], and secure merge algorithms [10,26].

By viewing each participant’s sorted input as a linked list, then shuffling that
list, the parties can decouple the locations being accessed from the iteration of
the loop – for example, at Line 4 the protocol would read location ΠA(iA) for
some random permutation ΠA, instead of directly reading iA.

There are some subtleties here, as the parties need to obliviously permute
their linked lists, and then obliviously traverse them.

In order to allow the parties to traverse the permuted linked lists in the
original (sorted) order, the parties must also update the pointers. Thus if π is
a permutation of [n], and the original list is (v[0], . . . , v[n − 1]), the parties will
create two new arrays

w =
(
v

[
π−1(0)

]
, . . . , v

[
π−1(n − 1)

])
Permuted data

t =
(
π

(
π−1 (0) + 1

)
, . . . , π

(
π−1 (n − 1) + 1

))
Permuted tags

With t[π(n − 1)]= ⊥. Thus if w [i] = v [j], then w [t [i]] = v [j + 1].
This structure allows the parties to traverse the permuted list, w, by first

revealing π (0) and then, selectively revealing elements of t, starting with t[π(0)],
t[π(1)], . . .

Our goal is for each party to achieve a secret-shared, permutation of their
own list permuted (as well as the updated pointers) by the other party. In our
construction, the second party acts as a permuting party for the first and gen-
erates both the permuted list and the corresponding linked list to traverse it.
To maintain privacy of the data and obliviousness of the memory accesses, the
second party’s permutation, and the first party’s data must remain private.

Now, if the permuting party holds on to its share of the owner party’s list,
it is not clear how to obliviously traverse the permutation since the permuting
party knows the position of each accessed share, and thus each element.

When there are three participants this can be done information-theoretically,
by having each participant generate a permutation and secret-share to the other
two participants [10]. In the two party setting, we can use additively homomor-
phic encryption to (obliviously) permute a private list [26,29], but we cannot use
those constructions in a black-box manner, since they do not allow us to create
the shared tags needed to traverse the permuted list.

Instead, we recombine the shares at the owner party but to maintain oblivi-
ousness, i.e. to hide the data itself so as to not leak the permutation, both parties
somehow convert their shares into shares encrypted using the permuting party’s
public key. The owner party can then use the additive homomorphism of the
encryption scheme to add the encrypted shares and obtain an encryption of the
element under the other (permuting) party’s public key. Therefore, it cannot
decrypt to learn the underlying value (and thus, permutation).

414 B. H. Falk et al.

Adding Dummies and Oblivious Pointer Advancement: To address chal-
lenge 1, we add “dummy” elements to each party’s list so that we are able to
advance both lists every iteration of the loop. For simplicity, suppose both parties’
lists are of size n. Then, both parties can generate n dummy elements and main-
tain two separate pointers to keep track of the real and dummy elements respec-
tively. These dummies are interspersed with the real elements to create a list of 2n
elements. At every iteration, the party with the smaller element advances its real
pointer, while the other party advances its dummy pointer. This ensures that an
element is consumed from both lists every iteration of the merge.

Finally, we are left with two more operations: (1) comparing encrypted real
values efficiently and (2) advancing lists obliviously. We achieve (1) using a
trick to convert ciphertexts into secret shares which can be passed to any state-
of-the-art 2-party comparison protocol [18,55] to avoid executing an expensive
decryption circuit jointly; and we accomplish (2) by a clever construction of the
linked list. The detailed shuffle and merge protocol is shown in Sect. 5.

4 Preliminaries

4.1 Secret Sharing

Our protocol makes use of an additive secret sharing scheme, where a secret x∈G
is shared as (x − r, r), for some random r ← G where G is the finite group that
parameterizes the Group Homomorphic Encryption scheme. In the two-party
setting all linear secret-sharing schemes are essentially equivalent [19], so we can
focus on this scheme without loss of generality.

As is standard, we use the notation �x� to denote a secret sharing of the
plaintext x. Using the linearity of the secret sharing scheme, the participants
can compute �x + y� from �x� and �y� with no communication.

For more complex calculations on shares, we rely on secure multiparty com-
putation (MPC), described below.

4.2 Secure Computation

Our protocol makes use of a few simple primitives for processing on secret shares,
comparisons, multiplexing and equality tests. These basic primitives are imple-
mented in essentially every secure computation framework, including ABY [23],
EMP [58], SCALE-MAMBA [3] and MPyC [54].

We assume that there is an underlying ordering on the elements of G – this
is a necessary assumption since the parties want to sort their elements.

Our construction is compatible with both arithmetic and boolean secure
computation protocols, although comparisons and equality tests are likely to be
more efficient in boolean-circuit-based secure computation protocols.

4.3 Additively Homomorphic Encryption

Our construction makes use of a semantically secure, additively homomorphic
cryptosystem, (KeyGen,Enc,Dec,Add). Our system is compatible with classical

A Linear-Time 2-Party Secure Merge Protocol 415

Comparisons

�x < y� =

{
�0� if x ≥ y
�1� if x < y

Multiplexing

mux (�b�, �x�, �y�) =

{
�x� if b = 0
�y� if b = 1

Multiplexes are often implemented as a simple multiplication

mux (�b�, �x�, �y�) = �x� + �b� · (�y� − �x�)

Equality tests

�x = y� =

{
�0� if x ≠ y
�1� if x = y

additively homomorphic schemes like Paillier [46], or lattice-based schemes that
natively work over Z/2Z, e.g. BFV [9,27] or CGGI [14,15], both of which are
widely supported by current FHE implementations [56]. Note that the security
we require for the Add(·, ·, ·) is much weaker than full circuit privacy [8], since
in our application the summations being computed are known to both parties,
and only the summands are private.

In order for our final merge protocol to achieve linear communication, the
underlying additively homomorphic cryptosystem must have constant ciphertext
expansion.

4.4 Notation

As there are only two parties, and each party has a unique public key (for the
additively homomorphic cryptosystem), when we say “key i” we mean the public
key of party i, pki.

We denote each party as Pi where i∈{0, 1}. As all our protocols are two-party
protocols (and most are completely symmetric), we take all subscripts modulo
2, thus if Pi is one party, Pi+1 is the other party.

Several protocols below must be run twice, one time for each party, so we
give such protocols an index with respect to which we write the steps within the
protocol. For example, Protocoli will be called twice, for i ∈ {0, 1} and we use
index i within the protocol to identify the parties. Similarly, we use the same
index to define the ideal functionality.

We introduce some more notation in Table 1.

416 B. H. Falk et al.

Additively Homomorphic Encryption
Semantic security: for all x, y ∈ G

{
(pk, cx) :

pk, sk ← KeyGen
(
1λ

)
cx ← Enc(pk, x)

}
≈c

{
(pk, cy) :

pk, sk ← KeyGen
(
1λ

)
cy ← Enc(pk, y)

}
.

Security of Add: for all x, y ∈ G
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c,
cx, cy,
pk, sk

:

pk, sk ← KeyGen
(
1λ

)
cx ← Enc(pk, x)
cy ← Enc(pk, y)
r ← G
cr ← Enc(pk, r)
c ← Add(pk, cx, cr)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

≈c

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c,
cx, cy,
pk, sk

:

pk, sk ← KeyGen
(
1λ

)
cx ← Enc(pk, x)
cy ← Enc(pk, y)
r ← G
cr ← Enc(pk, r)
c ← Add(pk, cy, cr)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Decrypting the sum of two ciphertexts yields nothing about the individual sum-
mands.
Correctness: for any x, y ∈ G, and c > 0

Pr

⎡
⎢⎢⎣

⎧⎪⎪⎨
⎪⎪⎩

Dec(sk, cx+y) :

pk, sk ← KeyGen
(
1λ

)
cx ← Enc(pk, x)
cy ← Enc(pk, y)
cx+y ← Add(pk, cx, cy)

⎫⎪⎪⎬
⎪⎪⎭
= x + y

⎤
⎥⎥⎦ > 1 −O

(
λ−c)

Table 1. More notation

�x� A secret sharing of the value x

�x�i Party i’s secret share of the value x

⟪m⟫i An encryption of the message m under public key of party i

5 Construction and Protocol Definitions

In this section we describe our construction. First, we present a two-party algo-
rithm for creating and shuffling linked lists. Second, we present a technique for
converting encryptions (encrypted by one party) into secret shares. Third, we
show how to combine these tools into our main construction which is a linear-
communication secure merge protocol.

We assume that party i has a key pair (pki, ski) for an additively homomor-
phic cryptosystem (KeyGen,Enc,Dec,Add).

5.1 Obliviously Shuffling Input Lists

In this section, we describe our novel two-party protocol for padding and shuffling
private linked lists. ShuffleLLi (Protocol 2). The goal of the ShuffleLLi protocol
is for party i to achieve a random permutation of its input list with dummies

A Linear-Time 2-Party Secure Merge Protocol 417

encrypted under party (i + 1)’s public key. The protocol takes a parameter, m,
defining how many “dummy” elements are created. Although ShuffleLLi takes m
as a parameter, in our final merge protocol, P1 should set m equal to the length
of its input list. The ShuffleLLi protocol realizes the ideal functionality, F i

shuffle

below.

Ideal Functionality F i
shuffle

1. Input: Pi with sorted list v of size n, and Pi+1 with permutation
π : [m + n] → [m + n] for some m > 0.

2. Create v′ by concatenating m dummy elements to the end of v and shuffle
v′ using π, w [j] ← v′ [π−1 (j)

]
for j ∈ {0, . . . , n +m − 1}.

3. Create linked list t to traverse w, such that if w [j] = v [k], then w [t [i]] =
v [k + 1].

4. For j ∈ {0, . . . , n +m − 1}, output ⟪w [j] ⟫i+1, and ⟪t [j] ⟫i+1 to Pi, and ⊥
to Pi+1.

5. Output (�π (n + 1)�i, �π (0)�i) to Pi, and (�π (n + 1)�i+1, �π (0)�i+1) to
Pi+1.

6. Output �π (n)�i to Pi and �π (n)�i+1 to Pi+1.

In the second last step, we output a 2-tuple which are secret shares of the
head pointers (positions) of the dummy and real list respectively. In the last
step, we output the secret share of the position of a special end-of-list dummy
element. This special element is used to obliviously switch between the real and
dummy list. It is explained in detail in Sect. 5.1 and 5.3.

Below, we describe the shuffle for party P0 but in the final protocol they also
swap positions and rerun. Assume that P0 holds a sorted list v of length n, and
P1 generates a random permutation π over [m + n]. Then, the protocol proceeds
as follows,

1. Encrypt sorted list: To hide its real elements (input list), P0 encrypts each
element using its public key pk0 and sends the list of ciphertexts (in sorted
order of the underlying value) to P1.

2. Generate shares: Given a value v′, party 1 can create an additive sharing of
v′ as (v′

− r, r) for some random value r ∈ G. In our setting, however, P1 does
not have the plaintext value, v′, but instead has an encryption ⟪v′

⟫0.
Using the additively homomorphism, given a ciphertext ⟪v′

⟫0, party 1 creates
the encrypted pair (⟪v′

− r⟫0, ⟪r⟫1). See Line 2.
3. Concatenate encrypted dummies: Party P1 creates a special dummy known

as the end-of-list element, and m − 1 random dummy elements. The end-of-
list element marks the end of both the real and dummy list but also points
to the first element of the dummy list. Therefore, the end-of-list element
along with the dummy elements form a cycle. The end-of-list element stores
the largest real value in sorted order instead of a random number as its
value. P1 easily constructs the end-of-list element encrypted under pk0 by

418 B. H. Falk et al.

just duplicating ⟪v [n − 1]⟫0. Instead of a linked list terminating by pointing
to ⊥, we will have it point to the this end-of-list element. The purpose of the
special element becomes apparent when either party’s real list is exhausted
and we must obliviously switch to traversing the dummy list while we access
the remaining real elements from the other party (See Sect. 5.3).

4. Permute ciphertexts and create linked list: Party P1 permutes the pair of
shares using π by assigning the kth element of the permuted list to the
π−1 (k)th element of the concatenated list as shown in Line 5. To traverse
the permuted list in sorted order, P1 also generates a linked list such that the
ith element is the position of the next element in sorted order (see Line 6).
We also point the last dummy element to the end-of-list element. Therefore,
the real (resp. dummy) list reaches the end-of-list element after n (resp. m)
steps. See Fig. 1 below which illustrates this construction.
To hide the linked list from party P0 (and thus, the underlying permutation),
P1 encrypts each element of the linked list using its public key, pk1. Finally,
it secret shares the position of the first dummy and the first real element as
a 2-tuple head pointer, and the end-of-list element.

5. Recombine shares: P1 sends both the shuffled ciphertext pairs and the
encrypted linked list to P0. Party P0 first decrypts the ciphertexts which were
encrypted under its own public key, pk0 and then re-encrypts them using pk1,
P1’s public key. Using the additive property of the encryption scheme, P0 adds
the newly obtained ciphertexts to their corresponding ciphertexts in the pair.
Due to the homomorphic property, P0 obtains an encryption of the sum of
the underlying value which is in fact, the original set of real/dummy elements
as the pairs were constructed precisely from those values.

Fig. 1. Construction of the linked list. d[1] and v[0] (as pair of encrypted shares) are
the at the head of the dummy and real pointer respectively. Both the last real element,
v[n − 1] and last dummy element, d[m − 1] point to the end-of-list element.

Therefore, at the end of Protocol 2, P0 obtains a permutation (oblivious to
itself) of its original list with dummies encrypted under P1’s public key, along
with an encrypted linked list to traverse it. Note that the end-of-list element is

A Linear-Time 2-Party Secure Merge Protocol 419

treated as a dummy element but stores a real value which is crucial in proceeding
obliviously when either party exhausts its real list. We further elaborate on this
in Sect. 5.3.

We prove ShuffleLLi securely computes the ideal functionality F i
shuffle in [25].

Protocol 2. ShuffleLLi: Pad and Permute Linked Lists
Input: Party Pi holds sorted list v of size n; Pi+1 holds random permutation π : [m +

n] → [m + n] for some m > 0.
Output: Pi obtains a permutation (under π) of its elements (with m dummies) and

linked list, both encrypted using Pi+1’s public key.

(index j ∈ {0, . . . , n +m − 1})
1: For k ∈ {0, . . . , n − 1}, Pi encrypts c [k] ← ⟪v [k] ⟫i, and sends c to Pi+1

2: For k ∈ {0, . . . , n − 1}, Pi+1 generates random value rk ← G, and creates
ci [k] ← (c [k] − ⟪rk⟫i, ⟪rk⟫i+1) � 2-tuples of the form (ci [k] [0], ci [k] [1])

3: Pi+1 generates random r ← G and sets c′
i [0] ← (c [n − 1] − ⟪r⟫i, ⟪r⟫i+1)

� end-of-list element. c [n − 1] − ⟪r ⟫i = ⟪ v [n − 1] − r⟫i

4: For k ∈ {1, . . . , m − 1}, Pi+1 generates dummies, d [k] = d0 [k] + d1 [k] where
d0 [k] , d1 [k] ← G are random, and creates, c′

i [k] ← (⟪di [k] ⟫i, ⟪di+1 [k] ⟫i+1)
5: Pi+1 permutes, cπ

i [j] ← (ci‖c′
i)

[
π−1 (j)

]
6: Pi+1 creates linked list, t′ [π (j)] ← π (j + 1) with t′ [π(n +m − 1)] = π (n) � point

the last dummy to the end-of-list element
7: Pi+1 encrypts ti[j] ← ⟪t′[j]⟫i+1

8: Pi+1 secret shares pi = (π (n + 1) , π (0)) � head pointers tuple
9: Pi+1 secret shares ei = π (n) � end-of-list element

10: Pi+1 sends cπ
i , and ti to Pi

11: Pi recombines cπ[j] ← cπ
i [j][1] + ⟪Dec(sk0, c

π
i [j][0])⟫i+1

5.2 Converting Ciphertexts to Secret Shares

In this section, we give an efficient 2-party protocol for converting ciphertexts
from an additively homomorphic cryptosystem into secret shares of the same
underlying value. A similar idea was used implicitly for creating “blinded per-
mutations” [29].

In principle, a general-purpose MPC protocol can always be used to con-
vert ciphertexts to secret shares by evaluating the decryption circuit for the
encryption scheme within the MPC, but, in general, this is extremely ineffi-
cient. EncToSSi (Protocol 3) gives an extremely efficient two-party protocol for
achieving the same result when the underlying cryptosystem is additively homo-
morphic. EncToSSi realizes the ideal functionality, F i

decrypt defined below.

420 B. H. Falk et al.

Ideal Functionality F i
decrypt

1. Input: Pi with ciphertext, ⟪v⟫i+1.
2. Output secret shares of value v: �v�i to Pi, and �v�i+1 to Pi+1.

In our setting, party i holds a ciphertext c = ⟪v⟫i+1 of a private value, v,
encrypted under party (i + 1)’s key. At the end of the protocol, the parties hold
additive secret shares of the underlying value v, and neither party learns anything
about v.

We prove that EncToSSi securely computes F i
decrypt in [25].

Protocol 3. EncToSSi: Convert Ciphertext to Secret Share
Input: Party Pi inputs ciphertext, c = ⟪v⟫i+1 (encrypted using pki+1).
Output: Returns secret sharing of the underlying plaintext, v.
1: Pi generates random value, ri ← G
2: Pi encrypts ⟪ri⟫i+1

3: Pi uses the additive homomorphism to compute ⟪v + ri⟫i+1

4: Pi sends c′
= ⟪v + ri⟫i+1 to Pi+1

5: Pi+1 decrypts v′ ← Dec(ski+1, c
′)

6: Pi+1 shares v′

7: Pi sets �v′′�i = �v′�i − ri

8: return �v′′�

5.3 Securely Merging Obliviously Shuffled Lists

We are finally ready to securely merge the two parties’ lists. Our Merge protocol
realizes the ideal functionality, Fmerge defined below.

Ideal Functionality Fmerge

1. Input: For i ∈ {0, 1}, Pi with list vi of size ni.
2. Fmerge merges the two lists v1 and v2 such that the resultant list, v is

sorted.
3. Output secret shares of each element of v, �v [j]�0 to P0, and �v [j]�1 to

P1, for j ∈ {0, . . . , n0 + n1}.

Suppose party Pi holds list vi of size ni. The protocol proceeds as described
below.

1. Obliviously shuffle padded list with linked list: First, both parties call
ShuffleLLi (for i ∈ {0, 1} (as described in Protocol 2) to obtain an encrypted,
permuted version of their input list padded with dummies (including the end-
of-list element). ShuffleLLi also outputs an encrypted linked list that party i

A Linear-Time 2-Party Secure Merge Protocol 421

later uses to traverse their list without leaking the accessed positions to party
i + 1 (who knows the permutation).

2. Access elements from shuffled list: The parties maintain a secret-shared bit
for each party, �bi�, and bi = 1 at iterations where Pi needs to access a real
element, and bi = 0 at iterations where Pi needs to access a dummy element.
In the first step, both parties access their first real element, in all subsequent
steps b0 ≠ b1 since only one party advances its real list.1 The bit, bi, allows
the parties to select and update the appropriate values obliviously using the
mux operation (e.g. Protocol 5 line 9).
At every step in the protocol, the parties also maintain a secret sharing of
the last observed real value in Pi’s list, curi. In any iteration where a dummy
element must be consumed from party i’s list, we use bi to obliviously select
curi over the dummy value, effectively discarding it in place of the actual real
value to be compared. See Line 14 of Protocol 5.

3. Compare real values: Using bi, we obtain the real values at the head of each
real list. To find the smaller element, we use a generic comparison protocol
(Sect. 4.2) which returns a (secret-shared) bit equal to 1 if party 0’s real value
was smaller than party 1’s. Therefore, we set b0 to the result of the comparison
protocol (line 15) and b1 ← 1−b0 (line 16) allowing us to appropriately update
the head pointer for the next step.

4. Update head pointer: Now, we advance one party’s real list and the other
party’s dummy list as follows. First, we find the next position from the
encrypted linked list using EncToSSi. Then, we update the appropriate entry
of the head pointer using bit, bi (line 1). If bi = 1, then this means that Pi’s
real value was smaller and we must advance the real (resp. dummy) pointer
to obtain the next real (resp. dummy) value from Pi’s (resp. Pi+1’s) list. Pro-
tocol 4 details how the head pointer is advanced. We prove in [25] that that
every memory location in the shuffled list is accessed exactly once, which
makes the overall access pattern independent of the underlying data.

5. Switching from an exhausted list: When either party exhausts their real list,
we must somehow notify the protocol and secret-share the remaining values
of the other real list.
We keep track of when a real list is exhausted by checking when the real
pointer reaches the end-of-list element. We do so securely using a generic
equality testing MPC protocol as described in Sect. 4.2. We maintain another
secret-shared bit, fin initialized to 0, which acts like a boolean flag and is
inverted as soon as either real pointer reaches its corresponding end-of-list
element. See line 10 of Protocol 5.
Without loss of generality, suppose that party 0 exhausted its real list first.
This implies that b0 = 1 (and b1 = 0) from the previous iteration, and the real
pointer has been advanced to store the position of the end-of-list element.
Recall that the underlying value of the end-of-list element is exactly the same
as the largest real value, i.e., the most recent element that party 0 accessed in

1 Since b0 =¬b1 at every iteration after the first, we could increase efficiency by storing
only a single bit, but the exposition is simpler if we forego this minor optimization.

422 B. H. Falk et al.

the previous iteration. So on Line 14, val0 will equal the end-of-list element
i.e., the largest real value of party 0, and val1 will equal cur1, the most recent
real value from party 1 that has not been advanced and secret-shared yet.
Therefore, essentially, we will perform the same comparison as the previous
iteration and conclude that val0 is smaller. However, val0 is a duplicate of
the most recent real value that was secret-shared in the previous iteration.
This is where we use the fin bit to “reverse” the bits so that we instead
select val1 as the next real value, and advance the real pointer of party 1
(and dummy pointer of party 0) as required since we’re only left with real
values from party 1’s list. As val0 is smaller than every remaining real value
in party 1’s list, every comparison hereafter will always return b0 =1 which we
always invert hereafter using fin. We prove fin remains 1 once set in [25],
thus proving the correctness of the algorithm. In summary, performing these
dummy comparisons allows the protocol to remain oblivious by still accessing
elements from the permuted list, and using the fin bit allows the protocol to
correctly compute the merge.
Lastly, notice that if party 1 exhausts it real list first, then by construction,
party 0’s dummy pointer will reach the end-of-list element as we consume
one dummy for each real element after the first one and thus, cycle back from
the last dummy element to the end-of-list element. And since party 1 just
exhausted its real list, we know b0 = 0 and b1 = 1. So, pos0 is equal to the
position of the dummy pointer, i.e., the position of the end-of-list element.
Therefore, in either case (whether party 0 or 1 exhausts a real list), pos0 will
always equal the position of the end-of-list element and it is sufficient to only
test pos0 for setting fin (line 10).

Protocol 4. UpdateHeadi: Update Head Pointer to Linked Lists
Input: Bit, �b�; Head pointer tuple, �p�; linked list, t held by party Pi.
Output: Head pointer tuple updated with the next real or dummy position from t

according to bit, b.
1: �pos� ← mux (�b�, �p[0]�, �p[1]�)
2: Reveali (pos) � The revealed pos is an index in the shuffled list
3: �next� ← EncToSSi (t[pos])
4: �pnew[1]� ← mux (�b�, �p[1]�, �next�)
5: �pnew[0]� ← mux (�b�, �next�, �p[0]�)
6: return �pnew�

In the end, both parties obtain element-wise secret shares of the merge of
their two sorted lists such that the resulting list is also in sorted order. We prove
Merge securely computes Fmerge in [25].

Our algorithm runs in time linear in the length of the two lists requires
only linear communication between the two parties assuming the underlying
encryption scheme produces ciphertexts with constant factor expansion. The
concrete costs are outlined in [25].

A Linear-Time 2-Party Secure Merge Protocol 423

Protocol 5. Merge: Securely Merge Sorted Lists
Input: Party Pi holds input list vi of size ni.
Output: Parties obtain a secret sharing of the merge of the lists in sorted order.
1: For i ∈ {0, 1}, Pi locally generates random permutation, πi : [n0 + n1] → [n0 + n1].
2: For i ∈ {0, 1}, run ShuffleLLi (vi, πi+1) so that Pi obtains ciphertext list, ci, linked

list, ti and secret shares, �pj�i and �ej�i for j ∈ (0, 1).
3: For i ∈ {0, 1}, �bi� ← �1� � bi indicates real or dummy list
4: For i ∈ {0, 1}, �curi� ← �⊥� � curi is the current value in the real list
5: �end� ← �e0� � position of the end-of-list element
6: �fin� ← �0� � fin = 1 if either real list is exhausted
7: k ← 0
8: while k < n0 + n1 do
9: For i ∈ {0, 1}, �posi� ← mux (�bi�, �pi[0]�, �pi[1]�) � Choose posi based on bi

10: �fin� ← �fin� ⊕ �pos0 = end� � If fin = 1 it will remain 1
11: For i ∈ {0, 1}, Reveali (�posi�)
12: For i ∈ {0, 1}, �pi� ← UpdateHeadi(�bi�, �pi�, ti) � Move to new head
13: For i ∈ {0, 1}, �tempi� ← EncToSSi (ci [posi]) � Access next position
14: For i ∈ {0, 1}, �vali� ← mux (�bi�, �curi�, �tempi�) � Choose real values
15: �b0� ← �val0 < val1� ⊕ �fin� � Compare real values
16: �b1� ← �1 − b0�
17: �l[k]� ← mux (�b0�, �val1�, �val0�) � l[k] is the smaller value
18: For i ∈ {0, 1}, �curi� ← �vali� � Store most recent real value
19: k ← k + 1
20: end while
21: return (�l [0]�, . . . , �l [n0 + n1 − 1]�) � secret-sharing of sorted merged list

6 Conclusion

In this paper, we presented the first linear-communication 2-party secure merge
protocol. The protocol is asymptotically optimal, and efficient enough for prac-
tical applications. To achieve this protocol, we introduced a 2-party method to
obliviously traverse a permuted list using a novel linked list construction and an
extremely efficient technique to convert ciphertexts to secret shares.

Our secure merge protocol makes only black-box use of an additively homo-
morphic cryptosystem, and a secure computation protocol supporting compar-
isons, equality tests, and multiplexing on secret shared values.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log(n) steps. Combinatorica 3,
1–19 (1983)

2. Al-Haj Baddar, S., Batcher, K.: The AKS sorting network. In: Designing Sorting
Networks: A New Paradigm, pp. 73–80. Springer, New York (2011). https://doi.
org/10.1007/978-1-4614-1851-1 11

3. Aly, A., Keller, M., Rotaru, D., Scholl, P., Smart, N.P., Wood, T.: SCALE-
MAMBA (2019). https://homes.esat.kuleuven.be/∼nsmart/SCALE/

https://doi.org/10.1007/978-1-4614-1851-1_11
https://doi.org/10.1007/978-1-4614-1851-1_11
https://homes.esat.kuleuven.be/~nsmart/SCALE/

424 B. H. Falk et al.

4. Asharov, G., Lin, W., Shi, E.: Sorting short keys in circuits of size o(n log n). In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, 10–13 January 2021. pp. 2249–2268. SIAM (2021)

5. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, pp. 307–314. ACM (1968)

6. Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., Rogers, J.: SMCQL: secure
querying for federated databases. Proc. VLDB Endow. 10(6), 673–684 (2017)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10. ACM,
New York (1988)

8. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for
free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

10. Chan, T.-H.H., Katz, J., Nayak, K., Polychroniadou, A., Shi, E.: More is less:
perfectly secure oblivious algorithms in the multi-server setting. In: Peyrin, T.,
Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 158–188. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03332-3 7

11. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: CCS, pp. 1223–1237. ACM (2018)

12. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: CCS, pp. 1243–1255 (2017)

13. Chida, K., Hamada, K., Ikarashi, D., Kikuchi, R., Kiribuchi, N., Pinkas, B.: An
efficient secure three-party sorting protocol with an honest majority. IACR ePrint
2019/695 (2019)

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

16. Chongchitmate, W., Ishai, Y., Lu, S., Ostrovsky, R.: PSI from ring-OLE. In: CCS
2022. ACM (2022)

17. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035,
pp. 464–482. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-
0 25

18. Couteau, G.: New protocols for secure equality test and comparison. In: Preneel,
B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 303–320. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 16

19. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-030-03332-3_7
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-93387-0_16
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19

A Linear-Time 2-Party Secure Merge Protocol 425

20. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9 8

21. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

22. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection.
In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang,
X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30921-2 4

23. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

24. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: CCS, pp. 789–800 (2013)

25. Falk, B.H., Nema, R., Ostrovsky, R.: A linear-time 2-party secure merge protocol.
Cryptology ePrint Archive, Report 2022/380 (2022)

26. Falk, B.H., Ostrovsky, R.: Secure merge with o(nloglogn) secure operations. In: 2nd
Conference on Information-Theoretic Cryptography (ITC 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2021)

27. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
ePrint 2012/144 (2012)

28. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

29. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychron-
akis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28166-7 9

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC,
pp. 218–229 (1987)

31. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM (JACM) 43(3), 431–473 (1996)

32. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an effi-
cient sorting algorithm for practical secure multi-party computation. IACR ePrint
2014/121 (2014)

33. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5 15

34. Han, Y., Thorup, M.: Integer sorting in 0(n sqrt (log log n)) expected time and
linear space. In: Proceedings of the 43rd Symposium on Foundations of Computer
Science, FOCS 2002, pp. 135–144. IEEE Computer Society (2002)

35. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. J. Cryptol. 23(3), 422–456
(2010)

36. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-30921-2_4
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-319-28166-7_9
https://doi.org/10.1007/978-3-642-37682-5_15

426 B. H. Falk et al.

37. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 34

38. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

39. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for
unequal set sizes with mobile applications. PoPETs 4, 97–117 (2017)

40. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

41. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: CCS, pp. 818–829 (2016)

42. Laud, P., Pankova, A.: Privacy-preserving record linkage in large databases using
secure multiparty computation. BMC Med. Genom. 11(4), 84 (2018)

43. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 18

44. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 22

45. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC, pp. 514–523
(1990)

46. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

47. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 13

48. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: USENIX Security Symposium, pp. 515–530
(2015)

49. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 5

50. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7 5

51. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX, pp. 797–812 (2014)

52. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. IACR Cryptology ePrint Archive (2016)

53. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 9

54. Schoenmakers, B.: MPyC: secure multiparty computation in Python. Github,
February 2019

https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1007/978-3-642-36594-2_22
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-56620-7_9

A Linear-Time 2-Party Secure Merge Protocol 427

55. Veugen, T., Blom, F., de Hoogh, S.J., Erkin, Z.: Secure comparison protocols in
the semi-honest model. IEEE J. Sel. Top. Signal Process. 9(7), 1217–1228 (2015)

56. Viand, A., Jattke, P., Hithnawi, A.: SoK: fully homomorphic encryption compilers.
arXiv preprint arXiv:2101.07078 (2021)

57. Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M., Lapets, A., Bestavros,
A.: Conclave: secure multi-party computation on big data. In: EuroSys, p. 3. ACM
(2019)

58. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient multiparty computa-
tion toolkit (2016). https://github.com/emp-toolkit/emp-sh2pc

59. Yao, A.: Protocols for secure computations (extended abstract). In: FOCS 1982,
pp. 160–164 (1982)

60. Yao, A.: How to generate and exchange secrets. In: FOCS 1986, pp. 162–167 (1986)
61. Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious computa-

tion. IACR Cryptology ePrint Archive 2015/1153 (2015)

http://arxiv.org/abs/2101.07078
https://github.com/emp-toolkit/emp-sh2pc

FairMM: A Fast
and Frontrunning-Resistant Crypto

Market-Maker

Michele Ciampi1, Muhammad Ishaq2(B), Malik Magdon-Ismail3,
Rafail Ostrovsky4, and Vassilis Zikas2

1 The University of Edinburgh, Edinburgh, UK
michele.ciampi@ed.ac.uk

2 Purdue University, West Lafayette, USA
{ishaqm,vzikas}@cs.purdue.edu

3 Rensselaer Polytechnic Institute (RPI), Troy, USA
4 University of California, Los Angeles (UCLA), Los Angeles, USA

rafail@cs.ucla.edu

Abstract. Frontrunning is a major problem in DeFi applications, such
as blockchain-based exchanges. Albeit, existing solutions are not practi-
cal and/or they make external trust assumptions. In this work we propose
a market-maker-based crypto-token exchange, which is both more effi-
cient than existing solutions and offers provable resistance to frontrun-
ning attack. Our approach combines in a clever way a game theoretic
analysis of market-makers with new cryptography and blockchain tools
to defend against all three ways by which an exchange might front-run,
i.e., (1) reorder trade requests, (2) adaptively drop trade requests, and (3)
adaptively insert (its own) trade requests. Concretely, we propose novel
light-weight cryptographic tools and smart-contract-enforced incentives
to eliminate reordering attacks and ensure that dropping requests have
to be oblivious (uninformed) of the actual trade. We then prove that with
these attacks eliminated, a so-called monopolistic market-maker has no
longer incentives to add or drop trades. We have implemented and bench-
marked our exchange and provide concrete evidence of its advantages
over existing solutions.

Keywords: Front-running · Market maker · Blockchain · Fairness

1 Introduction

Since Bitcoin’s introduction in 2008, crypto-currencies have become a signifi-
cant market in global finance1. Several tools and platforms have been built to
facilitate crypto-currency trading. The early exchanges e.g. Binance, Coinbase,
Bittrex, etc. have two undesirable properties. First, they were custodial, meaning
that traders transfer their assets to the exchange, and trading activity translates

1 Market capitalization of approx. $2 trillion during all of 2021.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 428–446, 2022.
https://doi.org/10.1007/978-3-031-07689-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_31&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_31

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 429

to updating the exchange’s internal mapping of traders and their assets. Second,
they were order-book based i.e. they only match buyers with sellers (collectively,
traders), so trading halts when there are no sellers whose ask-prices match the
buyer bid-prices. The prices are fully controlled by traders and therefore can be
volatile. The later exchanges e.g. Uniswap, Balancer, Curve, etc.—collectively
called Decentralized Exchanges or DEXes—are non-custodial, have their own
inventory of assets, and use a market making (MM) algorithm to adjust prices.
The latter type of exchanges, colloquially also known as market makers, lever-
age machine learning (ML) to increase liquidity along with additional desirable
properties for the market maker (e.g., maximizing profit) or the market itself
(e.g., stability by incentivizing traders to report true valuations).

A perennial problem with both types of exchanges (and traditional markets,
too) is frontrunning, where an adversary reorders trades to gain a price advan-
tage. For example, say a market maker (MM) is selling an asset t at $100 each,
and the pricing function is such that for each unit sold, the price increases by
$100. Say a trader P submits a trade TP to buy one unit, a (possibly adversarial)
MM A sees this pending trade and executes, before processing TP , a different
trade TA to buy one unit, i.e. the adversary A “front-runs” the trader P . Exe-
cuting TA before TP raises the price to $200 for P , $100 more than he would
otherwise pay. Trades should be executed in the order they were submitted.

Frontrunning penalizes honest players, and also has a detrimental effect on
the health of the underlying crypto-currency blockchain. As an example, adver-
sarial bots might flood the blockchain with frontrunning orders when an opportu-
nity for profit arises, with only few of these orders being executed. This flooding
creates a denial of service (DoS) attack. The above effects of frontrunning are
worsened in decentralized exchanges. E.g., when the exchange is implemented
by a smart contract on a chain like Ethereum, e.g., Uniswap, frontrunning raises
transaction fees (gas price on Ethereum) as traders compete to get their trades in
first. And, in theory, it can also affect the security of the underlying blockchain.
Indeed, in DEXes, where the trade ordering is affected by miners through trans-
action reordering, frontrunning might create incentives for forking as the miners
are more likely to pursue a chain on which they make more profit.

Traditional markets mitigate frontrunning through legislation. However, such
legislation is tricky to enforce as most frontrunning attacks do not leave an
indisputable evidence, which would be necessary to apply fines. As such, several
mature markets have embedded certain controlled forms of frontrunning in their
allowed operations. The classical example of this principle is embodied in tra-
ditional stock exchange markets, where high-profile clients might get so called
privileged access, allowing them to react faster to market changes. The above
solution is unsatisfactory for crypto-currency markets. For starters, legislation
lags behind and is typically not tailored to crypto-currencies, making deterrence
by regulation much harder. But more importantly, the egalitarian nature of these
assets makes preferential frontrunning an undesirable feature for the majority of
its users. The main question addressed (to the affirmative) by our work is

430 M. Ciampi et al.

Can we leverage the public-observability of blockchain ledgers together
with cryptographic and machine learning tools to devise a practical fron-
trunning resistant market maker?

Informally, solving the above problem requires: (i) ensuring a strict ordering
on the trades, and (ii) making sure the system is fast enough for high-frequency
trading. The first requirement gets rid of frontrunning attack and the second
ensures the solution’s practicality. The first requirement can be further broken
down into a) preventing traders from frontrunning each other and b) preventing
MM from frontrunning. For private-state blockchains (e.g. ZCash, Dash, Monero,
etc.), preventing traders from frontrunning is easy because the traders cannot
see each other’s trades (due to transaction privacy). However, the mainstream
blockchains (e.g. Bitcoin, Ethereum, Cardano, etc.) are not private and prevent-
ing traders from frontrunning each other requires additional mechanisms.

Several such mechanisms have been proposed, e.g. commit-reveal, encryption,
zk-rollups, speed-bumps/retro-active pricing, and commit secret sharing. How-
ever they all cause a slowdown of the system and are, therefore, in conflict with
the second requirement (the system needs to be fast). Alternative approaches
have proposed to simulate MM as a trusted third party (TTP) through secure
multi-party computation (MPC), trusted execution environments (TEEs) and
zero-knowledge proofs (ZKPs). These do solve the frontrunning problem, but
once more, conflict with the second requirement and/or make additional trust
assumptions (see also the related research section for a detailed comparison).
Indeed, MPC and ZKPs are expensive cryptographic primitives that negatively
affect speed of the system and, TEEs place additional demands on application
hardware (and assumptions thereof). A viable solution needs to satisfy both of
the above requirements, ideally without additional trust assumptions.

This work, FairMM, proposes a market maker (MM) that resolves the fron-
trunning problem using off-chain communication and inexpensive hash functions.
This is done through a combination of techniques from cryptography, game the-
ory, blockchain, and machine leaning for financial economics.

At a high level, FairMM operates as follows: Traders and MM communicate
off-chain via secure communication channels (e.g. through TLS), traders form a
queue, and a trade is processed as follows: 1) MM issues a ticket to the trader
Ti at the front of the queue, this ticket is identified by a cryptographic hash and
signed by the MM (think of the hash as a serial number), then, 2) trader Ti may
decide to respond with trade (trade) or not trade (no trade), 3) MM processes
Ti’s response and moves to the next trader Ti+1. The nature of this ticket hash
(or serial number) is such that it incorporates the complete trading history up to
that point. If the MM tries to talk to more than one trader at a time, all but one
of the traders will get their trade incorporated into the trading history (trading
history is linear, there is no way to keep all serial numbers valid without creating
branches). MM posts the trading activity to a public bulletin board at regular
intervals. The traders can read this bulletin board at any time and if they find
any invalid tickets or that their ticket is missing, they can complain to a smart
contract. This smart contract, established by the MM before its operation starts,

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 431

locks a large collateral on behalf of MM. On a valid complaint, the complainant is
rewarded (with a sufficiently large but less than the collateral amount) and MM
loses all collateral. This ticketing mechanism is extremely efficient to compute.

The above ticketing mechanism already takes care of the worst-case sce-
nario, i.e., reordering attacks. One could plug in any market making algorithm
(to adjust asset prices) and obtain a reordering-resilient system. However, the
MM can still drop trades, although it will be doing so without the knowledge
of subsequent trades. We resolve this problem by carefully choosing a market
maker—a monopolistic profit seeking market maker—that has economic incen-
tive to not manipulate trading activity in this manner (e.g. by dropping trades
obliviously of future trade requests). A monopolistic profit seeking MM uses
trade requests as signals to determine where the true value of an asset lies (more
buy trades =⇒ true value of the asset is higher, more sell trades =⇒ true
value is lower). Its core principle is that, because a monopolistic profit seeking
MM makes most profit when trading activity happens around the true value of
an asset, it has no incentive to manipulate trading requests that would make the
signals from trading activity less reliable. See Sect. 5 for formal discussion.

In addition to proving the security of FairMM, we have implemented and
evaluated our design. We show that this design is extremely competitive. Con-
cretely, we achieve a throughput of over 200 trades/minute. This is despite strict
serialization of trade requests and the fact that we are running off-the-chain
part on a relatively weak, consumer laptop (which communicates with an actual
Ethereum node in test environment). These figures are about 50% higher than
the maximum daily volume of Uniswap [23], arguably the most popular DEX
and an order of magnitude higher than P2DEX [33], an order-book exchange
implemented using MPC. We are also better than TEX [27], also an order-book
exchange, which either does not support high frequency trading or is not fron-
trunning resilient. While Tesseract [25], another orderbook exchange, reports
much higher throughput, it requires both trusted hardware and a consensus
group assumption for its security guarantees. We, on the other had, require no
such assumption.

In summary, our work makes the following contributions:

– We provide design of a non-custodial frontrunning resilient market-making
crypto-currency exchange that does not require sophisticated crypto-
graphic machinery (MPC, ZKPs, etc.), special hardware (TEEs) or addi-
tional assumptions (e.g. an additional consensus group in addition to the
blockchain).

– We extract a useful abstraction—Σ-trade protocols—for asset exchanges that
facilitates modular design of blockchain trading systems.

– We provide an instantiation of the system on Ethereum blockchain and
demonstrate that it is very fast, and practical for real world applications.

1.1 Related Works

Market Makers for Crypto-token Markets. New emerging markets, e.g. predic-
tion markets [8] or crypto-token markets, are typically thin and illiquid and often

432 M. Ciampi et al.

have to be bootstrapped through intelligent market makers to provide liquidity
and price discovery [10]. A market maker algorithm aims at maximizing liquid-
ity in the market and/or maximizing its own profit. The zero-profit competitive
market maker model [1,4,9] considers multiple MMs that compete with each
other by lowering their marginal profit to eliminate competition—such a system
converges to a zero-profit. The monopolist market-maker, has been shown to
provide greater liquidity than zero-profit competitive market makers [1,4,9,11].
We adopt the extension by Das [9] (cf. Sect. 5).

Fair Exchange and Blockchains. There is a large amount of literature on fair
exchange including early MPC works [2,3,5,6,12], which has been re-ignited
with the adoption of blockchains and cryptocurrencies [13,15–17,24,26]. Due
to the relevance of these works to ours, we include a detailed review in the
full version [35]. However, these works are not suitable for reuse in our design.
Informally, the reason is that in our setting, fair exchange is a subroutine of the
Market Maker (MM) protocol, and MM needs to know immediately whether
a trade will settle or not on the blockchain. Therefore, we designed our own
fair exchange protocol, a Σ-trade protocol, that we proved amenable to such
composition.

Decentralized Exchanges. Popular decentralized exchanges e.g. Uniswap, Curve,
Kyber, etc. [18–23,28,41] do not defend against frontrunning. To our knowl-
edge, Tesseract by Bentov et al. [25] is the first work that addresses frontrunning
in the crypto-currency space. It is orderbook based, custodial, and simulates a
trusted third party (TTP) through trusted execution environments (TEEs). The
assumption here is that since the exchange is a TTP, frontrunning does not hap-
pen. Since it relies on players to provide it with blockchain data, there is a check-
pointing mechanism on trusted blocks, and if the exchange becomes unavailable,
there is a consensus group of TEE backed nodes that can enforce/cancel trans-
actions so that traders do not lose funds. In a similar vein, orderbook based
P2DEX [33] by Baum et al. simulates TTP through outsourced MPC, their
technique is similar to the work by Charanjit et al. [14] for traditional markets.
TEX (Trustless Exchange) by Khalil et al. [27] is another orderbook exchange.
It uses Zero Knowledge Proofs (ZKPs) for its guarantees. ZKPs are an expensive
primitive and, in TEX, there is a trade-off as it either does not fully support high
frequency trading or does not provide frontrunning resilience. In contrast to the
above works, our construction is a market maker, it is non-custodial, does away
with expensive primitives (MPC, ZKPs), additional requirements on hardware
and/or additional check-pointing/consensus mechanisms, and provides frontrun-
ning defense in a high frequency trading environment (as demonstrated by our
detailed comparison with Uniswap in Sect. 6.3). Note however, that Tesseract
supports cross-chain trading, our work does not.

Fairy by Stathakopoulou et al. [38] solve frontrunning for Byzantine Fault
Tolerant (BFT) systems by augmenting Total Order Broadcast (TOB) protocols
with input causality and sender obfuscation. They also require TEEs. Moreover,
adapting this work to address frontrunning in crypto-currencies is non-trivial.

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 433

GageMPC [31] by Almashaqbeh et al. tackles privacy preserving auctions using
non-interactive MPC (NIMPC). This work could be adapted into an exchange,
but it is unclear whether it could handle high frequency trading. A2MM by
Zhou et al. [39] optimizes onchain swaps to mitigate frontrunning attacks. They
study two point arbitrages for two assets. Their analysis holds assuming that all
exchanges on a blockchain will be handled by A2MM . This assumption is too
strict for practical applications. Flashbots [36] and Gnosis Protocol V2 [37] both
claim to resolve frontrunning. Flashbots requires strong trust (in the players to
follow protocol) and is therefore not comparable to our work. Gnosis Protocol
V2 claims that it will have a defense against frontrunning when it is built but
currently there is no description of how it will be achieved. We refer to Chainlink
2.0 [34] whitepaper for details on existing techniques to achieve strict ordering
of transactions. It also proposes a Fair Sequence Service (FSS) for Distributed
Oracle Networks (DONs) that should solve this problem in general. However,
exactly how such FSS will be implemented is not specified in the whitepaper.

There are some complementary works to ours which studies frontrunning.
Flash Boys 2.0 [29] by Daian et al. give evidence that frontrunning is a serious
problem on Ethereum. Bartoletti et al. [32] provide a theoretical framework to
maximize miner extractable value (MEV), Sobol et al. [30] discuss frontrunning
on proof of stake blockchains, and Zhou et al. [40] study sandwich attacks.

Next we dive into technical details of the paper, due to space constraints, we
have provided relevant background in the full version [35].

2 Σ-Trade Protocols

A Σ-trade protocol Π is an interactive protocol run by a seller S and potentially
many buyers B1, . . . , Bm (seller S need not know m) where the exchange of
tokens happens on blockchain E (We can think of E as the Ethereum blockchain).

Assume two tokens t1 and t2, each buyer wants to buy tokens of type t2 in
exchange of tokens of type t1. Assume also that, each buyer Bi has an upper
bound, denoted with zi, of type t1 tokens that he can spend. The amount of
t2 tokens the buyer wants to buy is decided adaptively in the last round of
interaction. A Σ-trade protocol Π consists of the following steps:

1. Each buyer Bi creates a smart contract SCi on E that locks zi tokens of type
t1 (more details on SCi are provided later).

2. Bi and S exchange three off-chain messages. First, Bi sends his identities to
the seller S. Note that Bi does not yet disclose his desired quantity t2 tokens.
In response, S proposes the exchange rate, askedPrice, for the tokens.

3. Let y be the quantity of tokens of type t2 that the buyer wants to buy s.t.
y ·askedPrice ≤ zi. If Bi agrees with askedPrice, then Bi sends a certificate
c. This c can be used by S to invoke SCi and withdraw x = y · askedPrice
tokens of type t1 from Bi’s account. However, SCi will move the x tokens from
Bi’s account if S has moved to Bi’s account y tokens of type t2. SCi ensures
atomic transactions but can only be triggered by the seller.

Any instantiation of Σ-trade protocol can be used in our Πtrade protocol.
We now show an insantiation of Σ-trade protocol to trade Ť for Ξ.

434 M. Ciampi et al.

2.1 Selling Tokens for Ethers

For a buyer Bi, denote with (skC
i , pkC

i) the signing-verification keys associated
with account C ∈ {E, Ť}, where E represents Ethereum and Ť , a token on
Ethereum. Ξ denotes Ethereum currency. Similarly for seller, (skC

S , pkC
S) denote

the signing-verification keys associated with account C ∈ {E, Ť}.
A formal description of the smart-contract and our protocol Π is in [35].

Here, we give the intuition. The smart contract SCi locks for Ti rounds ziΞ
and manages a list of transaction identifiers. Upon receiving an input (x, y, ID)
that has been authenticated by both the buyer and the seller, SCi moves xΞ to
seller’s account if 1) a transaction trx that moves yŤ from the seller’s account
to the buyer’s account has been made and 2) trx contains the identifier ID in
its payload. In addition, to prevent replay attacks, SCi does not allow reusing
ID. The same contract SCi can be used for multiple trades if zi is big enough.

We now describe the protocol. The buyer sends his Ethereum public key to
the seller, who replies with the exchange rate, askedPrice between Ξ and Ť . If
the buyer agrees with askedPrice and wants to buy yŤ tokens, he generates an
identifier ID, computes x = y · askedPrice in Ξ, and signs x||y||ID. He sends
the signed values (and signature) to the seller. The seller, 1) posts a transaction
trx that pays yŤ into the buyer’s account, trx contains ID in its payload, and
2) signs x||y||ID, and uses the resulting signature, along with signature from the
buyer, to invoke SCi. Note that the seller could post trx and also sends it to the
buyer to indicate that the trade will occur.

3 (Fair) Ordering of Transactions

Our main contribution is the Universally Composable (UC) [7] formalization
and realization of the trade functionality Ftrade. Ftrade formally specifies the
only ways in which the market maker can reorder the trades. For simplicity,
assume that there are only two assets: Ξ and Ť . Denote with priceŤ→Ξ (and
priceΞ→Ť) the price at which MM sells Ť (or Ξ) for Ξ (for Ť). Assume that
trader Pi’s trade information is encoded in tradei. That is, tradei describes the
type and the amount of assets, the prices, trade direction (sell or buy) and etc.
Moreover, assume that all the parties share the procedure MMalgorithm (the MM
algorithm), which on input of a trade outputs the updated prices (priceŤ→Ξ and
priceΞ→Ť). At a high level, Ftrade works as follows. Upon receiving a request
from a trader Pi, Ftrade sends the prices to Pi, and signals to MM that Pi wants to
trade. If Pi agrees with the prices, he sends trade information, tradei, to Ftrade.
Upon receiving tradei, Ftrade forwards tradei to MM who has two choices: 1)
decide not to trade with Pi by sending a command NO-TRADE to Ftrade, or 2)
accept trade with Pi. If MM does any other action before doing one of these two
(e.g., MM starts trading with a party other than Pi), Ftrade allows that but also
sets a special flag abort to 1. This means that if the traders query Ftrade with
the command getTrades (to get the list of trades accepted by MM), Ftrade would
return ⊥ to denote that MM has misbehaved. A corrupt MM can also decide to set

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 435

Fig. 1. Πtrade, the protocol that realizes Ftrade.

436 M. Ciampi et al.

the output of Ftrade to always be ⊥. This captures the fact that MM can decide
to stop working at his will. Moreover, MM can add any trade of a corrupted party
to the list of trades using the command setAdvTrade, but this can be done only
after MM has concluded any in-progress trades, as specified above.

Ftrade is parametrized by Δ, which denotes the maximum number of rounds
per epoch. In each epoch MM should allow traders to see the entire list of trades.
MM can make the list of trades accessible via a special command setOutput. If
MM does not send this command at least every Δ rounds, Ftrade will return ⊥ to
any honest party who requests trades list.

Note that Ftrade allows the adversarial MM to misbehave (e.g., by completely
reordering the trades) but this misbehavior will be notified to the honest parties.
Moreover, the MM cannot modify the trades (e.g., change the quantity that a
party Pi is willing to sell/buy). Therefore, even if the adversary reorders the
trades (at the cost of being detected), all the trades will be consistent with the
prices that Ftrade sent to the traders. The market maker still has the power
to choose the parties he wants to trade with first, however, this choice has to
be made obliviously of the trade information of the honest party. Luckily, we
can also argue that for a relevant class of market-making algorithms, this does
not constitute an additional useful power. We finally note that Ftrade does not
allow any real exchange of assets. However, if the output of Ftrade is posted on
a blockchain and if the trades are defined properly according to the language of
the blockchain, then the MM can use the trades to trigger events on the blockchain
that move the assets according to what is described by Ftrade. We can also disin-
centivize any malicious behavior of the adversary by means of the compensation
paradigm over the blockchain. Indeed, given that in our protocol all the honest
parties can detect a malicious behavior without using any private state, the same
can be done by a smart contract.

To simplify the description of our protocol, we make use of the procedures
checkTrade and checkPrices. checkTrade takes as input trade, priceŤ→Ξ

and priceΞ→Ť , and outputs 1 if the description of a trade trade is consistent
with the prices defined by (priceŤ→Ξ , priceΞ→Ť). checkPrices takes as input
a list of trades and verifies that trade prices are consistent with MMalgorithm.
These procedures, and Ftrade are formally specified in [35].

3.1 Our Protocol: How to Realize Ftrade

Assume all parties have access to a bulletin board BB, all parties know the MM’s
public key, and the procedure MMalgorithm is public. Our protocol realizes Ftrade

as follows. MM maintains a hash chain (that starts with a value hstart), all parties
know hstart. Whenever MM receives a request from a trader Pi, he adds to the
hash chain the public identity of Pi, signs the new head (say hi), the public key
of Pi and the current prices. We call this set of information a ticket. The MM
then hands over the ticket to the trader. The trader checks that the signature
is valid under the MM’s public key, and if so, Pi defines the trade tradei, signs
it thus obtaining σi, and sends (tradei, σi) to MM (σi guarantees that MM cannot

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 437

change tradei). MM, upon receiving tradei and its signature, checks if tradei is
well formed (i.e., the prices used to describe tradei are consistent with what MM
sent in the previous round). If so, MM adds to the hash chain tradei, adds tradei

with σi to a list requests, run MMalgorithm on tradei and the current prices
to get the new prices, and waits to receive next trade request.

In every epoch (at most Δ rounds) MM publishes to the bulletin board2 the
head h of the hash chain and the list requests, all authenticated with his signing
key. If MM that does not post such authenticated information within Δ rounds
then all the traders will understand this as an abort and output ⊥. Each honest
party that has access to the BB now: 1) checks that each trade in requests
is either NO-TRADE or a correctly signed trade; 2) checks that all the prices are
consistent with MMalgorithm and that the hash chain that starts at hstart and
finishes at h can be constructed using the trades in requests; and, 3) checks if
the hash value hi (received as part of the ticket) is part of the hash chain.

We observe that anyone (even traders who did not trade e.g. third parties)
can check if the first and the second conditions hold. If either the first or the
second condition does not hold, then all the honest traders output ⊥. The third
condition can be checked only by a trader who received a ticket. If a trader
detects that the third condition does not hold, he can post his ticket on the
bulletin board. At this point all the other parties who see BB can also deter-
mine that MM misbehaved and output ⊥. Intuitively, our protocol realizes Ftrade

because once MM sends a ticket to a trader, he also commits to a set of trades. As
long as MM cannot generate collisions for the hash function, he cannot include new
trades in the hash chain. This protocol, Πtrade, is formally specified in Fig. 1.
In the protocol, MM maintains h ← 0λ, an initially empty list requests and the
integers R, τ and Δ. Δ represents the maximum number of rounds after which
MM has to post the trades on the BB, τ represents the timeout (e.g. number of
seconds, or rounds) before which a party has to reply to MM (to avoid DoS attack)
and R is initialized to Δ. Let also SPŤ→Ξ and SPΞ→Ť be the starting prices.
MM also maintains an integer called epoch index denoted with e, MM initializes
priceΞ→Ť ← SPΞ→Ť and priceŤ→Ξ ← SPŤ→Ξ and e = 0. Each party main-
tains and initially empty list Trades, h0 ← 0λ and a view of the current epoch
index which we denote by ei.

The protocol uses utility procedures to check misbehavior. A formal descrip-
tion of these procedures is presented in the full version [35], a summary follows:

– verifyPrices takes as input a list of trades and checks each trade price is
computed according to MMalgorithm.

– verification takes as input the ticket received by a trader, the head of
the hash chain and the list of trades posted at the end of an epoch to the
BB by MM, and checks whether the ticket appears in the hash chain and its
consistency of trades list with hash chain.

2 Publishing can be done cheaply e.g. by only posting the hash on the blockchain and
providing hash-preimages on demand.

438 M. Ciampi et al.

– checkBB checks BB for valid tickets and runs verification for each of them.
If verification outputs 0, the procedure outputs 0 as well.

In the full version [35] we formally prove the following theorem:

Theorem 1. Assuming that unforgeable signatures, and collision resistent hash
functions exist, Πtrade realizes Ftrade in the (FRO, BB)-hybrid world.

4 Combining Ftrade with Σ-Exchange Protocols

We observe that if, in the realization of Ftrade, we replace the BB with a
blockchain that supports smart contracts, then a smart contract can act as a
party registered to Ftrade that can query Ftrade with the command getTrades.
We can program this smart contract in such a way that if the output of Ftrade

is ⊥ then the MM is penalized. In our final protocol the traders and MM run a
Σ-trade protocol Π, and in parallel, invoke Ftrade with the same information as
input i.e. the prices, quantity and the type of the trades used in the execution of
Π. Once that the output of Ftrade is generated, we can rely on a smart contract
to check that the trades are consistent with the transactions generated by Π.
If this is not the case then MM can be penalized. More precisely, to punish a
misbehaving MM we require MM to create a smart contract SCpenalize which locks a
collateral z. SCpenalize, if queried by any party, inspects the output of Ftrade and
if it is ⊥ then SCpenalize burns the collateral of MM. Otherwise SCpenalize checks
whether the trades from Ftrade are consistent with the transactions generated by
MM on the Ethereum blockchain with respect to the wallet addresses (pkΞ

MM, pk
Ť
MM).

If they are not, SCpenalize burns the collateral. We note that this contract is
expensive to execute (in terms of gas cost). However, if MM and the traders follow
the protocol nobody will ever invoke it. On the other hand, if MM misbehaves then
a trader will detect it (from the output of Ftrade) and will invoke SCpenalize. We
incentivize the honest invocations of SCpenalize by transferring a small portion
of the locked collateral to the calling party before burning the rest of it.

To finish exposition, we need to introduce yet another smart contract,
SCaccount. This contract, too, is created by MM. It checks if the transactions that
pay the MM’s account exceed a certain value Y . If this is the case, then the con-
tract blocks additional payment towards MM. Hence it bounds the amount of
commodities that MM can trade, We do it to prevent a situation where profit
of the MM exceeds the collateral and thus makes it rational to misbehave (and
get penalized). Observe that no malicious (even irrational) MM can steal money
from the traders. The worst that MM can do is to frontrun the traders (by let-
ting Ftrade output ⊥) or avoid posting transactions that allow the settling of
the trades. Both these types of misbehavior is caught by SCpenalize and MM loses
collateral. Thus, if we set Y to be smaller than the collateral of SCpenalize, then it
is not a viable strategy for a rational MM to be penalized by means of SCpenalize.

The formal description of our final protocol Πfull is in the full version [35].
We describe the case when traders only want to buy Ť for Ξ. Πfull com-
bines the functionality Ftrade and the Σ-trade protocol. We specify SCpenalize

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 439

in [35]. SCpenalize acts like a party registered to Ftrade who, when queried sends
getTrades to Ftrade and decides whether the MM misbehaved. Let T be the
number of rounds for which SCpenalize has locked the collateral, we can claim the
following:

Theorem 2. If there is at least one honest party Pi then, within the first T
rounds one of the following occurs with overwhelming probability:

1. the Ftrade outputs ⊥ and the collateral locked in SCpenalize by MM is burned;
2. the Ftrade is not ⊥ but there is not a perfect correspondence between the

trades contained in the output of Ftrade and the transactions that appear on
the blockchain E with respect to MM’s public keys. Moreover, the collateral
locked in SCpenalize is burned;

3. the Ftrade is not ⊥, there is a perfect correspondence between the trades
contained in the output of Ftrade and the transactions that appear on the
blockchain E with respect to MM’s public keys and all the collateral remains
locked in SCpenalize for T rounds.

For appropriate parameters in the smart contracts, and assuming the market-
maker maximizes his amount of Ξ, we can argue that the first two cases in
Theorem 2 happen with negligible probability. Indeed, let α be the gas cost to
run SCpenalize with the input detected, let reward be reward that could be given
to a party calling SCpenalize, let z be the locked collateral in SCpenalize and let Y
be the maximum amount of Ξ that MM can earn at pkΞ

MM. If there is at least one
honest party Pi, reward > α, and z > Y then for every rational market-maker
the probability of occurrence of the first two cases of Theorem 2 is negligible.

5 Incentive Compatibility of Market Maker (MM)

We use myopic-greedy market maker from [11] in our construction. Here we pro-
vide an overview, see [35] for details and proofs. Let market maker’s distribution
pt(v) quantify market maker’s information on the true value V after t trades,
our market maker has the following properties:

– The market discovers the originally unknown true value of the commodity
based on trades with traders who arrive with imperfect information. Empiri-
cally, the speed of this convergence is illustrated in [11] and follows the stan-
dard 1/t convergence for Bayesian updates.

– The market maker uncertainty converges to 0. The market maker recovers
the true value in expectation, and also becomes more certain of it. Again,
this convergence is standard for Bayesian updates.

– In equilibrium, the market maker spread that produces maximum single step
profit monotonically increases with the variance of its distribution, which
converges to zero. Hence the bid-ask spread converges to a minimum possible
for a profit maximizing market maker. A market maker who knows V can
always make more expected profit than a market maker who does not.

440 M. Ciampi et al.

The last bullet above is essentially the intuition behind why an optimal market
maker has no incentive to manipulate prices. The maximum profit is made when
the market maker knows the true value V . Hence the market maker is incen-
tivized to discover the true value V as quickly as possible. The only information
available on the V is through the un-manipulated trader signals xt.

We now present the main theorem (proved in [35]):

Theorem 3 (Incentive compatibility). A rational profit-seeking market
maker has no incentive to manipulate the price given knowledge that some trader
wishes to place a trade and the direction (buy/sell) of the trade being known.

The following lemma states that it is suboptimal for the market maker in
our setting to ignore trades without knowledge of other trades.

Lemma 1. A rational profit-seeking market maker which receives sequential
trades, has no incentive to disregard completed trades, even when the direction
of the following trade is known.

6 Evaluation

We implemented Πtrade to trade Ether and ERC20 tokens on Ethereum (see [35]
for implementation details). Table 1 lists the gas costs. Note that the cost of exe-
cuting one trade is the sum of the costs of execute methods of the SellerContract
and the BuyerContract.

6.1 Experiment Setup

To measure throughput, we ran several experiments on a consumer laptop
equipped with Core i7-10510U 1.80 GHz CPU and 8 GB of RAM running Ubuntu
20.04. Recall that in our fair trade protocol Πtrade (see Fig. 1), the buyer Pi first
sends its public keys to the seller MM. Then the seller responds by sending a ticket
and the current prices. Both of these messages can be computed very cheaply.
Concretely creating the first message takes less than 50 ms (for each party) in
our setup. Then the buyer either responds with NO-TRADE or trade. This is
still cheap and can be done in less than 50 ms. Now the seller must respond to
the trade offer. If this offer is NO-TRADE, the buyer needs to perform very little
work (concretely less than 50 ms). However, if the offer is trade, the seller must
verify and create signatures, perform balance checks on appropriate assets and
create/broadcast a transaction for the trade. These operations are slow (espe-
cially the ones that involve communicating with an Ethereum node). Concretely,
it takes ≈350 ms to prepare this message. Lastly, we observed that the typical
round trip time from buyer → seller → buyer is less than 100 ms.

Our goal was to observe the system’s throughput in the following adversarial
scenarios. The first is the Standard DoS attack. Here, a malicious buyer floods
the system with ticket requests and then stops responding, slowing the system
down. To this end, we performed the following experiment: n buyers connect to

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 441

Table 1. Gas costs of seller and buyer contracts.

Methods Gas USDb

Contract Method 47gwei/gasa 3,284.20 usd/etha

BuyerContract claimExpiry 31,619 4.88

execute 67,984 10.50

SellerContract execute 33,456 5.16

Deployments

BuyerContract 1,082,529 167.09

SellerContract 836,341 129.09
aPrices taken from https://coinmarketcap.com/ on 2021-09-10.
bUSD cost is a bad measure of contract complexity. We list it
to be consistent with other work.

the seller. The seller responds (with ticket and prices) to them in the order they
connect. Upon receiving the ticket (and prices) from the seller, an honest buyer
will execute a trade (i.e., the trade scenario). On the other hand, a corrupt
buyer will stop responding. After a timeout τ , the seller will assume a NO-TRADE
response, execute the NO-TRADE scenario, and move to the next buyer. We ran
experiments with n = 300 buyers, repeating 5 times and reporting the average
measurement. Note that relatively few repetitions of the experiments are not a
concern because of low variance of the measured values.

The other attack scenario is aWorst-case Throughput attack. The setting
remains the same as above with one difference: the malicious buyer now waits
until just before the timeout and then responds with a trade response. This
strategy is more effective at slowing down the system than the standard DoS
attack. The reason why it is the case is discussed in the next section.

6.2 Analysis of Results

The results of the experiments for Standard DoS attack are summarized in Fig. 2,
and for Worst-case Throughput attack, in Fig. 3. We observe that in Standard
DoS attack (cf. Fig. 2) with no corruptions, throughput is over 200 trades/min.
Recall that the gas cost of a trade is 101K, Assuming block gas limit is 12M (i.e.
the current limit) and block generation delay of 15 s, Upper bound on throughput
is 475 trades/min. This upper bound assumes no other application (except ours)
competes for block space. Keeping this in mind, achieving over 200 trades/min
is an excellent throughput. This number is higher than Uniswap’s [23] average
throughput/min on its highest daily volume (cf. Sect. 6.3). Recall also that this
throughput is achieved on a consumer laptop. A high-end server (typical machine
for such use-cases) will yield higher throughput.

Interestingly, at low values of τ , the throughput of the system goes up with
the number of corruptions. This is not an anomaly. If a malicious trader does
not respond within the timeout τ , the seller assumes a NO-TRADE response which

https://coinmarketcap.com/

442 M. Ciampi et al.

takes about one-seventh of the time it takes to execute trade response. This
means at low values of τ (τ < execution-timet of trade) and some corruptions,
some (i.e. the corrupt) trades are cheaper to execute compared to when there
are no corruptions (because all honest players trigger the trade scenario). This
effect disappears as soon as the value of the timeout τ goes near and above the
execution-time of the trade scenario. While setting a low timeout τ may seem
a good idea to defend against malicious parties, it should not be less than the
typical round-trip time (100 ms in our trials), otherwise it will cause timeouts
for honest players. Note also that a trader needs to setup a smart contract and
register with the market maker before commencing trading. Therefore, Sybil
attack is not trivial and repeat offenders may be blacklisted.

A better attack strategy would be for a malicious buyer to wait until just
before the timeout (for maximum slowdown) and then respond with trade
response; to trigger the more expensive (in running time) scenario for seller.
This strategy removes the above mentioned advantage. Concretely, a malicious
seller would wait until he has just enough time left for one round-trip (100 ms in
our setup). Thus the amount of time he should wait, delayBudget, can be com-
puted as delayBudget = τ −RoundTripTime. The negative effect of such attack
is seen in Fig. 3. The throughput has gone down for all values of τ . Importantly
though, observe that the x-axis in Fig. 3 starts at τ = 200. This is because at
τ = 100, the delayBudget of the adversary is 0 i.e., he has to respond immedi-
ately and there is no longer a difference between an honest buyer and a malicious
buyer.

In conclusion, the choice for value of τ should be the typical round-trip time
(with some noise). This prevents throughput-loss even against a determined
adversary who wants to pay (via trade responses) to slow down the system.
Finally, consider that in real life some honest sellers may also respond with
NO-TRADE e.g., if the prices are not favorable. Hence, the value of 205 trades per
minute at τ = 100 should be considered the lower bound.

6.3 Comparison with Uniswap

A summary of FairMM and Uniswap is presented in Table 2. See [35] for our
analysis of Uniswap gas costs. At the time of this writing, the throughput values
in v2 are higher than v3 e.g. the highest daily volume 3 times more for v2 (251K
txns) than v3 (71K txns). So, we compare against v2.

Second, our trade execution time is bounded by the round trip time of the
network, about 350 ms. In contrast, Uniswap trades are executed by the miners
as part of mining a block. At the time of this writing, etherscan shows high fees
transactions (ones that get picked up the soonest) take about 30 s. One can safely
say that a trade in Uniswap takes at least 15 s (half of the value on etherscan).
This is much larger than the approx. 0.3 s in our system.

First, Uniswap (or any existing market maker, centralized or decentralized)
has no defense against front-running attacks without additional trust/hardware
assumptions. Our construction resolves this long-standing problem by ensuring
that the market maker cannot reorder trades without getting caught.

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 443

Fig. 2. Standard DoS Attack Through-
put (at 0% to 90% corruption). Values
average of 5 runs. Note that x-axis starts
at ms, this is the typical RTT, and any
τ < 100 may cause timeouts for honest
players.

Fig. 3. Worst-case Throughput (at 0%
to 90% corruptions). Note: x-axis starts
at 200ms because malicious player needs
a budget of at least RTT (100 ms here)
to respond without risking timeout.

Third, in Uniswap and similar systems, miners are free to reorder trades.
This gives them a profit opportunity e.g. including favorable trades first. On the
contrary, in our system the trade order is fixed before the corresponding trans-
actions are broadcast to the blockchain, nullifying miners’ influence. Moreover—

Table 2. Comparison Summary

Feature FairMM Uniswap

Front running resilience Yes No

Gas price auctions No Yes

Miner influence No Yes

Trade execution (seconds) ≈0.30 ≥15

Average trade cost l(K) ≈101 ≈141a

Max trade cost (K) ≈101 ≈1, 316b

Max throughputc ≈475 ≈340
aBased on average cost of 1M trade transactions
(block 12,162,664 to 12,231,464). Trades are calls
to swap methods of V2Router02.
bTxn: https://etherscan.io/tx/0xa87b492f2945d2a99ca1f
8e2d9530599c040f00c3257f989f9c2822e20b2ed5e). There
may be more expensive transactions outside our
dataset.
cin trades/minute. Theoretical upper bound on
throughput based on average trade cost, assum-
ing 12M block gas limit on Ethereum network.

https://etherscan.io/tx/0xa87b492f2945d2a99ca1f8e2d9530599c040f00c3257f989f9c2822e20b2ed5e
https://etherscan.io/tx/0xa87b492f2945d2a99ca1f8e2d9530599c040f00c3257f989f9c2822e20b2ed5e

444 M. Ciampi et al.

because of the above mentioned miners’ influence—traders on Uniswap have an
incentive to pay high gas price to get their trade included sooner. In fact, since
the traders can see other traders’ activity, they can actively compete with one
another. Such trading behavior induces the, so called, gas price auctions attack.
Gas price auctions needlessly raise transaction cost for everyone (not just the
traders). Transactions in our system are merely moving the funds and may be
mined in any order. There is no incentive to pay higher than usual gas price.

Fourth, gas cost in Uniswap is variable. We observed an average gas cost of
141K. It can be much higher depending on the trade e.g. over 1, 316K for txn
0xa87b492f2945d2a99ca1f8e2d9530599c040f00c3257f989f9c2822e20b2ed5e. Recall that Uniswap
is specifically designed and optimized for Ethereum. On the other hand, our
system design is general and lacks aggressive optimizations. Yet, the gas cost of
our system is constant at 101K. Notwithstanding, even if the gas cost of Uniswap
transactions were much lower than ours, Uniswap’s transactions would still be
more costly in Ethers because of the gas price auctions mentioned above.

Finally, based on the average trade gas cost and assuming a block gas limit
of 12M , the maximum throughput of Uniswap is ≈ 340 trades per minute.
This is less than our upper bound of 475. Concretely, highest daily volume3

on Uniswap has been ≈ 251K transactions. On average, this means about 174
trades per minute. Importantly, this throughput is achieved in a scenario where
all trade data is locally available. Our construction on the other hand, commu-
nicates with the traders in real time. The fact that this communication happens
sequentially—on first come first served basis—negatively affects our throughput.
Despite this, we achieve at least 200 trades per minute (higher than the highest
volume Uniswap). We stress that this throughput was achieved on a mid-range
consumer machine. A computationally powerful server will increase throughput
further. Therefore, we do not see it as a major problem in practice.

References

1. Glosten, L.R., Milgrom, P.R.: Bid, ask and transaction prices in a specialist market
with heterogeneously informed traders. J. Financ. Econ. 14(1), 71–100 (1985)

2. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. IEEE Computer Society Press, pp. 162–167, October 1986

3. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

4. Glosten, L.R.: Insider trading, liquidity, and the role of the monopolist specialist.
J. Bus. 62(2), 211–235 (1989)

5. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054156

6. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 6

3
https://etherscan.io/address/0x7a250d5630b4cf539739df2c5dacb4c659f2488d#analytics.

https://doi.org/10.1007/BFb0054156
https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/3-540-44598-6_6
https://etherscan.io/address/0x7a250d5630b4cf539739df2c5dacb4c659f2488d#analytics

FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker 445

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

8. Wolfers, J., Zitzewitz, E.: Prediction markets. J. Econ. Perspect. 18(2), 107–126
(2004)

9. Das, S.: A learning market-maker in the Glosten-Milgrom model. Quant. Fin. 5(2),
169–180 (2005)

10. Pennock, D., Sami, R.: Computational aspects of prediction markets. In: Algorith-
mic Game Theory. Cambridge University Press (2007)

11. Das, S., Magdon-Ismail, M.: Adapting to a market shock: optimal sequential
market-making. In: Proceedings of the Advances in Neural Information Processing
Systems (NIPS), pp. 361–368 (2008)

12. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 252–267. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5 18

13. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

14. Jutla, C.S.: Upending stock market structure using secure multi-party computa-
tion. Cryptology ePrint Archive, Report 2015/550 (2015). https://eprint.iacr.org/
2015/550

15. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016, Part II. LNCS, vol. 9879, pp.
261–280. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 14

16. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 25

17. Campanelli, M., et al.: Zero-knowledge contingent payments revisited: attacks and
payments for services. In: Thuraisingham, B.M., et al. (eds.) ACM CCS 2017. ACM
Press, pp. 229–243 (2017)

18. Warren, W., Bandeali, A.: Ox: an open protocol for decentralized exchange on the
Ethereum blockchain (2017)

19. AirSwap: AirSwap (2018)
20. Ether Delta: EtherDelta (2018)
21. IDEX: IDEX (2018)
22. Kyber: Kyber (2018)
23. Uniswap: Uniswap Exchange Protocol (2018)
24. Bitcoin Wiki: Zero Knowledge Contingent Payment (2018)
25. Bentov, I., et al.: Tesseract: real-time cryptocurrency exchange using trusted hard-

ware. In: Cavallaro, L., et al. (eds.) ACM CCS 2019, pp. 1521–1538. ACM Press,
November 2019

26. Fuchsbauer, G.: WI is not enough: zero-knowledge contingent (service) payments
revisited. Cryptology ePrint Archive, Report 2019/964 (2019). https://eprint.iacr.
org/2019/964

27. Khalil, R., Gervais, A., Felley, G.: TEX - a securely scalable trustless exchange.
Cryptology ePrint Archive, Report 2019/265 (2019). https://eprint.iacr.org/2019/
265

28. Curve: Curve (2020)

https://doi.org/10.1007/978-3-642-11925-5_18
https://doi.org/10.1007/978-3-642-11925-5_18
https://doi.org/10.1007/978-3-662-44381-1_24
https://eprint.iacr.org/2015/550
https://eprint.iacr.org/2015/550
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://eprint.iacr.org/2019/964
https://eprint.iacr.org/2019/964
https://eprint.iacr.org/2019/265
https://eprint.iacr.org/2019/265

446 M. Ciampi et al.

29. Daian, P., et al.: Flash Boys 2.0: frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy, pp. 910–927. IEEE Computer Society Press, May 2020

30. Sobol, A.: Frontrunning on automated decentralized exchange in proof of stake
environment. Cryptology ePrint Archive, Report 2020/1206 (2020). https://eprint.
iacr.org/2020/1206

31. Almashaqbeh, G., et al.: Gage MPC: bypassing residual function leakage for non-
interactive MPC. Cryptology ePrint Archive, Report 2021/256 (2021). https://
eprint.iacr.org/2021/256

32. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: Maximizing extractable value
from automated market makers. In: CoRR abs/2106.01870 (2021)

33. Baum, C., David, B., Frederiksen, T.: P2DEX: privacy-preserving decentralized
cryptocurrency exchange. Cryptology ePrint Archive, Report 2021/283 (2021).
https://eprint.iacr.org/2021/283

34. Breidenbach, L., et al.: Chainlink 2.0: next steps in the evolution of decentralized
oracle networks (2021)

35. Ciampi, M., et al.: FairMM: a fast and frontrunning-resistant crypto market-maker.
Cryptology ePrint Archive, Report 2021/609 (2021). https://ia.cr/2021/609

36. Flashbots: Flashbots (2021)
37. Gnosis: Introducing Gnosis Protocol V2 and Balancer-Gnosis-Protocol (2021)
38. Stathakopoulou, C., et al.: Adding fairness to order: preventing front-running

attacks in BFT protocols using TEEs. In: 40th International Symposium on Reli-
able Distributed Systems, SRDS 2021, Chicago, IL, USA, 20–23 September 2021,
pp. 34–45. IEEE (2021)

39. Zhou, L., Qin, K., Gervais, A.: A2MM: mitigating frontrunning, transaction
reordering and consensus instability in decentralized exchanges. In: CoRR
abs/2106.07371 (2021)

40. Zhou, L., et al.: High-frequency trading on decentralized on-chain exchanges. In:
2021 IEEE Symposium on Security and Privacy (SP), pp. 428–445 (2021)

41. Bancor: Bancor Network

https://eprint.iacr.org/2020/1206
https://eprint.iacr.org/2020/1206
https://eprint.iacr.org/2021/256
https://eprint.iacr.org/2021/256
https://eprint.iacr.org/2021/283
https://ia.cr/2021/609

In-App Cryptographically-Enforced Selective
Access Control for Microsoft Office and Similar

Platforms

Karim Eldefrawy1(B), Tancrede Lepoint2, and Laura Tam1

1 SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
{karim.eldefrawy,laura.tam}@sri.com

2 New York, USA
crypto@tancre.de

Abstract. The interplay between cryptography and access control has been
widely investigated in the literature. For example, attribute-based encryption
(ABE) is a leading candidate of a cryptographic tool going beyond the all-or-
nothing approach of public-key encryption by supporting fine-grained access con-
trol for encrypted data. Unfortunately, the deployment and adoption of ABE have
been slow, and (to the best of our knowledge) few commercial widely-used prod-
ucts use it to date. In particular, selective and fine-grained control over what is
shared, and with whom, is absent from common data products and formats, such
as those generated by commercial authoring products, e.g., Microsoft Word doc-
uments, Excel spreadsheets, PowerPoint slides. This lack of selective and fine-
grained control results in users simply not sharing. This major usability short-
coming impacts defense and military coalition operations, as well as commercial
settings, such as life sciences, healthcare, and the financial sectors.

This paper addresses the above usability problem head-on by proposing a
crypto- graphically enforced selective access control in Microsoft Office prod-
ucts and similar platforms. We focus on Excel as an illustrative use-case, but note
that our work is applicable to (and is already implemented for) other Microsoft
products such as Word, PowerPoint, and Outlook. Using the JavaScript API for
Microsoft Office, we designed and developed simple add-ins that enable cell
encryption according to a policy, and requires a key that embeds attributes satis-
fying the policy in order to decrypt. Our performance evaluation not only shows
that cryptographic-based selective sharing of information in widely-deployed and
widely-used commercial authoring and collaboration platforms is possible, but
also practical.

1 Introduction

Private data sharing remains as of today a critical challenge for individuals, enter-
prises, and (inter)national organizations, and governments. While sharing data is
essential, sharing sensitive data with the wrong entity can have devastating conse-
quences or even be prohibited [2, Sect. 1201]. Fortunately, the literature is rich with

K. Eldefrawy and T. Lepoint—Contact authors.
T. Lepoint—Work performed while at SRI International.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 447–467, 2022.
https://doi.org/10.1007/978-3-031-07689-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_32&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_32

448 K. Eldefrawy et al.

cryptographically-enforced access control solutions. A cryptographic tool that natu-
rally lands itself to fine-grained access control is that of attribute-based encryption
(ABE) [25]. Here, ciphertexts and keys are associated with attributes which determine
when decryption is possible. In a ciphertext-policy ABE (CP-ABE) [13], keys are asso-
ciated with attributes like ‘(continent = Europe) (trust = 2) (org =
NATO)’, while ciphertexts are associated with access policies such as ‘((continent
== Europe) AND (org == NATO)) OR (trust > 3)’. Decryption is only
possible when the key attributes satisfy the policy.

Using the previous example, note that the encryptor does not need to know the exact
identities of all other entities who should be able to access the data, but rather determine
them in term of descriptive attributes. Would they be issued keys, countries like France,
Italy, or Belgium would be able to decrypt, while Sweden or Finland would not (as they
are not members of NATO) unless their key embeds an attribute trust larger or equal
to 4.

Over the past decade, ABE has led to a bounty of applications, from network privacy
to health record access-control and secure messaging. While companies like Zeutro [8]
started investigating the use of ABE in Cloud applications, to date the deployment of
ABE has been slow. This can be explained by a variety of reasons. Amongst them, (1)
it became clear that ABE schemes need to readily accommodate new roles, attributes,
and access policies to be used; and (2) real-world applications of ABE require strong
security guarantees under realistic and natural attack models. Thankfully, these initial
concerns are no more. The first requirement has been achieved in 2011 by Lewko and
Waters [21] in what is called unbounded ABE (that is, an ABE that is not bounded in
the number of attributes it can handle). Since then, unbounded ABE constructions have
been widely improved and made efficient [9,11,12,15,18–20,23,24]. As for the secu-
rity concern, recent ABE schemes are based on well-understood security assumptions
against active adversaries [9,14,15], and rely on asymmetric prime-order (Type-III)
pairings, the recommended choice by cryptography experts [17].

In most commercially deployed settings today, fine-grained access control is not
achieved by cryptographic means. When selective access control is available (e.g., the
privacy controls proposed by Facebook, or even in online Excel workbooks [7]), it typ-
ically relies on a (replicated) trusted centralized system that shares with a recipient the
data she is authorized to see. To selectively share information that is contained in the
most used document formats without a centralized system (e.g., docx for text, jpeg
for images, xlsx for spreadsheets, or pptx for presentations), the commonly used
process is to manually remove sensitive information and produce multiple versions of
the same file while selecting content in each version that depends on the recipient of that
version. In our extensive discussion with government and defense agencies, we learned
that Microsoft Office has become a de facto means of sharing information between
countries or agencies, and that the lack of selective access control within results in
people simply not sharing. This major usability shortcoming impacts DoD coalition
operations in the U.S. This problem is not restricted to the defense setting: analogous
problems can easily be identified in commercial settings in other sectors such as the
finance, healthcare, and pharmaceuticals. Additionally, both military computers and

In-App Cryptographically-Enforced Selective Access Control 449

company-owned computers are often subject to strict conditions or restrictions regard-
ing the softwares that can be installed and run.

Motivated by this state of affairs, this paper addresses the usability problem
described above head-on, by showing that fine-grained access control solutions can be
made available and naturally used in widely-deployed products. This paper introduces
a Microsoft Excel add-in that enables cell1 encryption according to policies. The add-in
is a single-page web application written in JavaScript that interacts with the object mod-
els in Excel using the JavaScript API for Office [1]. A minimal locally hosted service
(dockerized and running on a user’s device), accessible through a REST API, enables
to encrypt and decrypt using a CP-ABE scheme. We note that such a dockerized ser-
vice is just to simplify our development, deployment, and experimentation. We stress
that in a production deployment, the entire encryption and decryption could/should be
performed on the client-side in the add-in webpage itself via JavaScript. We verified
that this is possible and already implemented this in later versions of the add-ins after
submitting this paper. After encryption, the document remains a valid Excel document
and can be opened and read (without the encrypted cells) as any other xlsx document
by any software. More precisely, the encrypted cells are stored in an XML custom part
of the xlsx document through the JavaScript API. When our add-in is loaded from the
Microsoft Excel software (or, e.g., from the Online Excel of Office 365) by a user in
possession of a CP-ABE key, all the cells with a policy satisfiable by the key attributes
will be decrypted and displayed. Henceforth, the same xlsx document can be shared
with a wide audience while enabling selective access control at a cell level.

Organization: The outline of the paper is as follows. Section 2 introduces some nec-
essary background on Microsoft Office add-ins and CP-ABE. Section 3 presents our
Excel add-in, and a performance evaluation is presented in Sect. 4. Section 5 discusses
potential alternative options for short-term adoption of similar selective sharing func-
tionality based on standardized encryptions schemes but with some limitations. Finally,
we conclude the paper and discuss future work in Sect. 6.

2 Preliminaries

This section provides some common background and notation on Office add-ins,
ciphertext-policy attribute-based encryption (CP-ABE), and the Charm framework.

2.1 Microsoft Office Add-In

An Office add-in is a web application that is loaded from a browser inside of an Office
application (desktop and online). An add-in is not installed on the host, but has its
implementation hosted on a web server. Add-ins can be added in an Office application
either by providing a XML manifest file (with the URL of the web application), or
through the Office store.

1 We extended the work while under review to enable row, and/or column, or full document
encryption.

450 K. Eldefrawy et al.

As with any web services, add-ins can access any web-based resources. Accessing
and modifying information in the Office document is made possible by referencing
the office.js file containing the JavaScript API for Office [1]. The add-in logic is
developed in JavaScript:

Office.initialize = function () {
// Office is ready
$(document).ready(function () {

// Implementation of add-in logic
});

};

Once initialized, an add-in can access data in the underlying application. For example,
the code in Fig. 1 recovers the content (the formulas) of the current selected cells in
Excel.

Fig. 1. Snippet of code to recover the content of a range of cells.

We refer to the official documentation for further detail on the Office add-in plat-
form [3].

2.2 Access Structures

An access structure specifies the set of attributes required to gain access to some secrets.

Definition 21 (Access structure). Let U be a universe of attributes. An access structure
A is a collection of non-empty subsets of U . An access structure A is called monotone
if, for every B ⊆ C ⊆ U , B ∈ A ⇒ C ∈ A.

In this paper, we will define access control in terms of policies over attributes with
AND and OR gates (cf. Sect. 3.6), that are then converted into access structures to be
used by the CP-ABE scheme.

2.3 Ciphertext-Policy ABE

Let λ denote the target bit-security of the cryptographic scheme (a.k.a, the security
parameter). A ciphertext-policy ABE scheme CP-ABE = (Setup, Enc, KeyGen, Dec)
is a tuple of probabilistic algorithms together with a message space M that behave at
follows:

In-App Cryptographically-Enforced Selective Access Control 451

– Setup takes as input the security parameter λ and outputs a public key pk and a
master secret key msk.

– Enc takes as input the public key pk, a message m and an access structure A, and
outputs a ciphertext c.

– KeyGen takes as input the master secret keymsk and a set of attributes S, and outputs
a secret key sk.

– Dec takes as input the public key pk, a ciphertext c and a secret key sk, and outputs
m∗ or ⊥.

A CP-ABE scheme must satisfy the following correctness condition: for all m ∈
M, access structure A, and set of attributes S ∈ A, it holds that

Pr

⎡
⎣Dec(pk, c, sk) �= m

∣∣∣∣∣∣
(pk,msk) ← Setup(1λ)
c ← Enc(pk,A,m)
sk ← KeyGen(msk, S)

⎤
⎦ ≤ negl(λ),

where a ← A(b) denotes the output of the algorithm A when run on input b and negl(λ)
denotes a negligible function, i.e., a function which is smaller than the inverse of any
polynomial for large enough values of λ.

In this paper, we only consider fully-secure CP-ABE schemes. We recall here the
intuition, and refer to [9, Sect. 2.3] for a formal definition. A CP-ABE scheme is fully-
secure against chosen plaintext attacks if, at any time after the deployment of the ABE
scheme, no group of colluding users can distinguish between encryption of two mes-
sages of their choice, under an access structure (a.k.a., a policy) of their choice, as long
as no member of the group can decrypt on their own.

2.4 Charm

Charm [10] is (mostly) a Python-based framework for prototyping advanced cryptosys-
tems. It uses a hybrid design: performance intensive mathematical operations are imple-
mented in native C modules, while cryptosystems themselves are written in Python. In
particular, Charm uses the Pairing-Based Cryptography Library [4] for elliptic-curve
generation, operations, and cryptographic pairing implementations.

The scheme we use in our system is FAME, a CP-ABE scheme proposed at the
2017 ACM CCS by Agrawal and Chase [9]. We use without modification the authors’
implementation of FAME (as incorporated into Charm).

3 The Excel Add-In

This section presents our Excel add-in and its workflows.

3.1 Setting

Our add-in assumes the existence of the following entities/services:

452 K. Eldefrawy et al.

– An entity O, who will create CP-ABE parameters

(pk,msk) ← Setup(1λ).

O is the only entity knowing the master secret key msk, hence the only party that
will be able to create secret keys sk’s associated to sets of attributes.

– A web service W , which will be hosting the add-in web application (cf. Sect. 2.1).
This service may or may not be controlled by O.

– A service E (e.g., a web service accessible through a REST API), which will enable
to encrypt with the CP-ABE scheme. This service may be completely independent
of O and W ; it only implements the Enc operation of the CP-ABE scheme.

– A service D (e.g., a web service accessible through a REST API), which will enable
to decrypt with the CP-ABE scheme. This service may be completely independent
of O, W and E; it only implements the Dec operation of the CP-ABE scheme.

– n entities Pi’s that will be issued secret keys by O over time; these will receive a
protected spreadsheet and use the add-in to recover the information they are entitled
to see.

Our add-in enables everyone (i.e., the above entities or anybody else) to create selec-
tively protected spreadsheets. In particular, it will enable to select cells and encrypt
them according to policies. Therefore, our add-in only requires to know which universe
of attributes it should use to allow policy creation.

Additionally, in order to run the Enc andDec algorithms, the services E and D need
to know the public key pk. In our evaluation (Sect. 4), we assume the public key to be
embedded in the services E and D. An alternative option could be for the add-in to be
configured at load time with the public key and to send this public key along with the
message and policy (resp., with the ciphertext and the secret key) every time it asks for
encryption (resp., decryption).

3.2 (Offline) Key Distribution

This key distribution is decoupled from the Excel add-in, and may be performed offline
and out-of-band.

The entity O is the only entity that can issue secret keys sk’s. In the following,
we assume that O issued and shared one or more secret keys skij’s to each party Pi.
Note that a key sk will be used to decrypt several spreadsheets over time (as long as its
attributes can decrypt cell policies).

In the following, we assume the skij’s are stored in (say) JSON files.

3.3 Spreadsheet Creation

As recalled above, anyone using the add-in may activate the privacy protection in an
Excel spreadsheet.

The activation of the add-in follows the following workflow:

1. Display a page to enable the activation of the privacy protection. This page asks to
create an administrative password (Fig. 2).

In-App Cryptographically-Enforced Selective Access Control 453

2. Upon submission of a password pa, apply the scrypt password-based key derivation
function thereon to obtain a key ka (our add-in uses the scrypt-async library [5]).
(This administrative key will encrypt any administrative-related data.)

3. Store a salted hash H(ka;na) of the key ka in the

Office.context.document.settings

object. The hash is computed using the TweetNaCl.js library [6]. This object is saved
in the Excel document, and will be accessible via any Excel application.

4. In order to enable cell encryption, a configuration file containing the list of all
attributes needs to be loaded in the add-in. An example of such file is provided
in Fig. 3.

5. Store the list of attributes encrypted under ka in the settings.

Fig. 2. Workflow to create a privacy-protected Excel spreadsheet. (The screenshots are
anonymized for submission.)

Fig. 3. An example of configuration file containing the list of all attributes.

At the end of the spreadsheet creation, the settings contain a hash (na,H(ka;na))
of the administrative key ka, and the list of attributes encrypted under ka.

454 K. Eldefrawy et al.

3.4 Encryption

In this subsection, assume a user U wants to add cell encryption in a xlsx document
created as in Sect. 3.3. Figure 4 shows a screenshot of the add-in after encryption of
three ranges of cells with two policies.

Fig. 4. Screenshot of add-in after encrypting three ranges of cells: A4:C10 and A100:C128 are
encrypted with a policy (continent == Asia) (named “Asian countries” by the user), and
E4:I10 is encrypted with a policy (trust > 5) OR (population >= 60000000)
(named “Trusted countries” by the user). Column J computes the sum of the values in the columns
E to I for each row; note that it outputs #N/A when the cells are encrypted. The chart display the
cells in the range A4:C12; note that only unencrypted values are visible in the chart.

Authentication. In the current version of the add-in, we only enable cell encryption
when U knows the administrative password. This is not necessary and one may choose
to remove this authentication step. Note that from Sect. 3.3, only the attributes are stored
in the settings; future work may include additional (encrypted) content in the settings,
which explains why we implemented this more general approach.

The workflow at load time is as follows:

1. Check the presence of a hash (na,H(ka;na)) in the settings. If defined, display a
login screen.

2. Upon submission of a password pu by U , apply the scrypt password-based key
derivation function thereon to obtain a key ku (our add-in uses the scrypt-async
library). If H(ku;na) = H(ka;na), decrypt the attributes from the settings (if any)
and populate the UI accordingly; if not, go back to Step 1.

Upon success of Step 2, U will be considered “authenticated”.

In-App Cryptographically-Enforced Selective Access Control 455

Fig. 5. Pop-up that enables creation of conjunctive normal forms policies, that is policies
of the form (expr11 OR ... OR expr1i) AND (expr21 OR ... OR expr2j)
AND (expr31 OR ... OR expr3k).

Encryption. Assume U wants to encrypt a range of cells (say A1:B4) under a policy
of her choice. U will select the cells in the range (A1:B4) in Excel, will use the policy
UI to create a policy (cf. Fig. 5), and will click on the “Encrypt” button.

Upon click, the encryption workflow is as follows:

1. Get the content of the selected range (see Fig. 1 for an excerpt of our JavaScript
code); without loss of generality, we assume the content is a n×m matrix of strings
C;2

2. Generate a random key kc (using TweetNaCl.js);
3. Encrypt every string C[i][j] with the secret key kc and obtain E[i][j] (using

the TweetNaCl.js symmetric encryption scheme);
4. Recover the policy as a string P from the UI;
5. Use the service E to encrypt kc under P and obtain a ciphertext c;
6. Store (c, {E[i][j]}i,j) in a custom XML part object in the document using the

JavaScript API for Office.
7. Clear the content of the cells; e.g., our add-in replaces each of the C[i][j] by

#N/A. We made this choice because each formula including an encrypted cell will
then automatically display #N/A (cf. Fig. 4).

Note that our add-in uses hybrid encryption (i.e., data encapsulation using symmet-
ric encryption and a public key encryption of the symmetric key), that is instead of
encrypting each C[i][j] using the CP-ABE encryption scheme, it generates a sym-
metric key kc, encrypt all the cells under kc using a symmetric encryption scheme,

2 Note that in our add-in, we load the formulas of the cells, and not the displayed text values
(Fig. 1). This enables to recover cell inputs, such as "=SUM(A1:A10)", that compute over
cell ranges, and hence to keep the dynamicity of the spreadsheet.

456 K. Eldefrawy et al.

and encrypts kc under the CP-ABE scheme (with the public parameters). The reason
is threefold: (1) encrypting/decrypting under a symmetric encryption scheme is much
faster than encrypting/decrypting with the ABE scheme; (2) this enables to perform cell
encryption locally rather than sending the cell content to the external service E; and (3)
when encrypting with the ABE scheme, the ciphertext is significantly larger than the
message (by several order of magnitudes), whereas it remains of roughly the same size
when using the symmetric encryption scheme. As such, as soon as we encrypt two cells
with the hybrid method, we are more efficient in time and space than encrypting both
cells with the ABE scheme. We provide concrete numbers in Table 2.

As a side remark, note that most implementations using public-key cryptography
today use a hybrid system. Examples include the TLS protocol, which uses a public-key
mechanism for key exchange (such as Diffie-Hellman) and a symmetric-key mechanism
for data encapsulation (such as AES), OpenPGP and PKCS #7 (see discussion about
alternative approaches for achieving a subset of the functionality but would be viable in
the short-term in Sect. 5).

3.5 Decryption

In this subsection, assume a user Pu, who has been issued one or more secret keys
skuv’s for attribute sets Suv’s by O, gets access to a spreadsheet with several encrypted
cells as in Sect. 3.4. At load time, the add-in checks the presence of encrypted cells; if
present, it displays a screen to drag and drop secret keys.

Upon drag of a key file corresponding to a CP-ABE secret key sk ∈ {skuv}v , the
decryption workflow is as follows:

1. For every group of encrypted cells as generated by Sect. 3.4, recover
(c�, {E�[i][j]}i,j) from the custom XML part object.

2. For every c�, use the service D to decrypt c� with sk, and obtain m� or ⊥.
3. When it decrypts correctly, define kc = m� and decrypt the cells E�[i][j] to

recover C�[i][j].
4. Replace the content of the cell range by C�[i][j].

The CP-ABE scheme ensures that, if the attributes embedded in sk do not satisfy the
policy associated to the ciphertext c�, Pi cannot recover the corresponding symmetric
key. The symmetric encryption scheme ensures that the content of the cells remains
secret to anyone that would not know the symmetric key. An important benefit of the
hybrid approach is that the service D never gets to know the content of the cells either;
instead decryption is done locally within the application itself.

Finally, note that the ABE scheme is secure against collusions. For example, assume
a cell is encrypted under the policy

(continent == Asia) AND (continent == Europe).

Even if participant P1 (resp. P2) has the attribute continent == Asia (resp.
continent == Europe), P1 and P2 together cannot combine their key to decrypt
the ciphertext associated to the cell encryption, and therefore do not learn the cleartext
content the cell.3

3 Note that this policy makes sense; e.g., Russia or Turkey could be potential intended recipients
of such a policy.

In-App Cryptographically-Enforced Selective Access Control 457

3.6 Expressiveness of Policies

To increase usability of our add-in, we developed a policy creation UI (Fig. 5) that
allows a user to easily create policies, eventually expressible as Boolean expressions4

with operators AND and OR of predicates of the form

name == value

for string values, and
name == value
name >= value
name > value
name <= value
name < value

(1)

for numerical values.
For example, this allows the creation of policies of the form:

((continent == Europe) OR (trust >= 3)) AND (org == NATO)
AND (key valid until > 1518523199)

,

to share data with a trusted country or a European country, part of the NATO organi-
zation, with a valid key. Indeed, the last predicate of the above policy allows for key
revocation by including a numerical attribute key value until in the keys, as pro-
posed in [13, Sect. 4.3].

Attributes in the Keys. Recall that at key generation time, CP-ABE schemes take as
input a set of attributes S. In our add-in, attributes in the keys are specified by name/-
value:

name = value.

When value is a string, we add to the set S the string "name:value". When value
is a k-bit number, we use a simple trick (already mentioned in [13, Sect. 4.3]) that
decomposes the number into its bits, adding the k (string) attributes to the set S:

"name:vk−1** · · ·***"
...

"name:*** · · ·*v1*"
"name:*** · · ·**v0"

where value =
∑k

i=0 vi · 2i, vi ∈ {0, 1}.

4 More precisely, it allows the creation of conjunctive normal forms (CNF).

458 K. Eldefrawy et al.

Policies in Ciphertexts. Recall that at encryption time, CP-ABE schemes take as
input access structures rather than a policy string; we therefore use the Charm pol-
icy parser [10] to convert our policies. Unfortunately, while the current policy parser of
Charm explicitly parses5 the predicates for numerical values of Eq. (1), any such pred-
icate is replaced by the string name and disregards the value altogether (see the culprit
function6 on Fig. 6).

Fig. 6. Extract from the charm/charm/toolbox/policytree.py file in Charm that does
not handle correctly numerical predicates. toks is a list containing three strings: the name, the
operator, and the value.

In our add-in, we modified the Charm policy parser to handle the predicates of Eq.
(1). Using again the bit decomposition of value =

∑k
i=0 vi · 2i, vi ∈ {0, 1}, we use a

simple tree implementing the operator (see Fig. 7 or [13, Fig. 1]) using the AND and OR
operators.

Fig. 7. Tree implementing the attribute name >= 11. The Boolean expression derived from the
tree evaluates to true when the key contains either (a) "name:1***" and "name:*1**"; or
(b) "name:1***", "name:**1*" and "name:***1"; case (a) captures name ≥ 12 and
case (b) captures name ∈ {11, 15}.

Number of Bits. An important shortcoming of the approach described in Sect. 3.6 is
that one has to be careful with the expected length of the numerical values. Indeed,
assume that name = 16; the transformation of Sect. 3.6 yields that the key attributes
set contains

5 https://github.com/JHUISI/charm/blob/dev/charm/toolbox/policytree.py#L52.
6 https://github.com/JHUISI/charm/blob/dev/charm/toolbox/policytree.py#L20.

https://github.com/JHUISI/charm/blob/dev/charm/toolbox/policytree.py#L52
https://github.com/JHUISI/charm/blob/dev/charm/toolbox/policytree.py#L20

In-App Cryptographically-Enforced Selective Access Control 459

name:1****
name:*0***
name:**0**
name:***0*
name:****0

The key would therefore not decrypt a ciphertext encrypted under the policy of Fig. 7
(while it should).

In our implementation, we enable specifying the number of bits of numerical
attributes, defaulting to 32-bit numbers for usability. An important caveat of default-
ing to 32 bits is each tree policies may contain up to 32 attributes, which impacts the
performance of the online encryption with the CP-ABE scheme (see Table 1).

Table 1. Average performances of the KeyGen, Enc, and Dec operations where the ciphertext
is associated to a policy a == k (resp., a <=n, resp. a <m) and the key is associated to an
attribute a = k, for N -bit integers k, n,m and k ≤ n and k < m. The CP-ABE scheme is
FAME instantiated in the Charm framework on a Intel Pentium CPU G4400 at 3.30GHz.

Number of bits of the numerical values of the attributes 4 8 12 16 20 24 28 32

KeyGen (attributes: a = k) 31ms 54ms 77ms 100ms 123ms 146ms 168ms 191ms

Enc (policy: a == k) 27ms 50ms 74ms 97ms 121ms 144ms 168ms 191ms

Dec 26ms 26ms 26ms 27ms 27ms 27ms 27ms 27ms

Enc (policy: a <=n) 28ms 51ms 75ms 98ms 119ms 142ms 165ms 186ms

Dec 26ms 26ms 26ms 26ms 26ms 26ms 26ms 26ms

Enc (policy: a <m) 23ms 45ms 70ms 82ms 99ms 134ms 160ms 184ms

Dec 26ms 26ms 26ms 26ms 26ms 26ms 26ms 26ms

4 Evaluation and Performances

Choice of CP-ABE. As mentioned in the introduction, efficient and unbounded CP-
ABE schemes based on well-established security assumptions have been proposed
recently. In our add-in, we use the FAME CP-ABE scheme over the MNT224 curve
introduced at CCS’2017 by Agrawal and Chase [9]. As far as we know, FAME is the
most efficient CP-ABE scheme today (at the time of developing the add-ins and writing
of this paper) for the encryption and decryption operations [9, Sect. 5].

Docker-Compose. Our test environment runs three Docker containers:
a nginx:latest container that serves the add-in web page (the web service W),
a python:latest container accessible through a REST API to access the services
E and D, and finally a nginx:latest proxy container that listens on port 443 and
redirects either to the add-in or to the backend. The Python container uses the FAME
implementation of the Charm framework [10] for CP-ABE encryption and decryption.

Environment. The host is a MacBook Air (Late 2014) running macOS High Sierra
10.13.3 with a 1.7GHz Intel Core i7. The version of the Docker engine is 17.12.0-ce
and the version of Excel is 16.9 (180116).

460 K. Eldefrawy et al.

Easy-to-Use. Our add-in is very easy to use; it only requires a user to install the add-in
(e.g., via the integrated add-in store) and to specify the attributes that will be used to
construct the encryption policies (e.g., using a configuration file). In particular, it does
not modify Excel in any way and does not require additional software to be installed on
the machine.

4.1 Encryption

Setting. We start from 5 xlsx documents, containing respectively 1, 10, 100, 1 000,
and 10 000 cells with value #N/A. We report the time to encrypt those cells against four
policies (see below), and the size of the resulting documents. Note that our baseline
documents contains #N/A as text because, in Step 7 of our encryption workflow, we
clear the cells by replacing their content by #N/A: keeping the same content displayed
in the cells enables us to measure as accurately as possible the size overhead due to the
encryption.7

Policies. We measure the performances of our encryption workflow with four policies.

P-I: (name == value);
The first policy is a simple policy that checks the presence of one attribute name =
value, where value is a string, in the secret key. This is the simplest policy that
can be defined.

P-II: (name == n) where n is a 32-bit number;
The second policy is a policy that checks that the key has been created for (name
= n). Recall from Sect. 3.6 that the key will contain 32 attributes of the form
name:***b*** where b ∈ {0, 1} and a varying number of *. The policy checks
equality, i.e., checks that the key contains all the aforementioned attributes.

P-III: ((name1 == value1) OR (name2 == value2)) AND
(name3 >n) where n is a 32-bit number;
The third policy has the form of a policy created by our UI (Fig. 5). To enable
decryption, a key needs to contain at least 33 attributes (the 32 attributes for the
numeral values, and at least one attribute of name1 == value1 or name2 ==
value2). Recall from Sect. 3.6 that the policy is a tree with up to 33 leafs.

P-IV:((name1 == n1) OR (name2 == n2) OR (name3 == n3) OR
(name4 == n4))
AND (name5 > n5), where ni, i ∈ {1, . . . , 5} are 32-bit numbers;
The fourth policy is a “bad” policy, in the sense that it yields a Boolean formula
with up to 5 × 32 = 160 predicates. As we will see, this yields a large ciphertext
and impacts the encryption time.

7 Obviously, the longer the text in the cells, the larger the documents will be. We use the default
secret-key authenticated encryption of TweetNaCl.js (XSalsa20-Poly1305); hence the size of
each ciphertext is 16 bytes longer than the original message.

In-App Cryptographically-Enforced Selective Access Control 461

Table 2. Benchmark of the encryption workflow (Sect. 3.4) according to different policies, on 1
to 10, 000 cells.

of cells 1 10 100 1, 000 10, 000

Encryption with policy P-I 150ms 150ms 163ms 181ms 580ms

Encryption with policy P-II 397ms 407ms 416ms 421ms 837ms

Encryption with policy P-III 386ms 394ms 410ms 418ms 848ms

Encryption with policy P-IV 1, 410ms 1, 417ms 1, 423ms 1, 434ms 1, 614ms

Timings. Table 2 reports benchmarks for the encryption workflow (Sect. 3.4), that is the
time it takes from the moment a user clicks ‘Encrypt’ and the moment the content of
the cells is cleared (Step 7).

These timings illustrate the interest of hybrid encryption (Sect. 3.4): encrypting 1 or
1 000 cells takes approximately the same time. These timings also show that such an
add-in is usable: encrypting 10, 000 cells with a complex policy (i.e., that involves a lot
of attributes) takes about 1.5s when using Python in a Docker container on a standard
laptop. Significant gains are to be expected by running an efficient implementation of
the CP-ABE scheme natively on a server.

Size. Figure 8 reports the sizes of the xlsx documents after encrypting 1 to 10 000
cells according to the above policies. (Note that the x axis is logarithmic.)

This figure shows that, as expected from the workflow of Sect. 3.4, there is a one-
time size increase corresponding to the encryption of the key under the CP-ABE scheme
(difference at the leftmost of the plot between the baseline size and the sizes after
encrypting one cell), and then a small overhead corresponding to the encryption of
the cells. This overhead grows linearly with the number of cells encrypted. It follows
that encrypting 10, 000 cells according to the complex policy P-IV only increases the
document size by about 60 kB.

4.2 Decryption

As shown on Table 1, regardless of the policy, the decryption time is very efficient.
Indeed, decrypting requires to compute 6 cryptographic pairings (bilinear maps) over
elliptic curves, 6 multiplications in the target group, and 6I + 3 multiplications in the
input group, where I is the number of attributes used in decryption. Since multiply-
ing in the input group is three order of magnitude faster than computing a pairing
(cf. [9, Table 5.1]), the decryption time is nearly independent of the number of attributes
involved. Therefore, the execution time of the decryption workflow (Sect. 3.5) amounts
to the asynchronous execution of the JavaScript in the browser within the Excel soft-
ware (plus network communication). In Table 3 we report average time (over 10 runs) to
decrypt 100 to 1, 000 cells, encrypted as 10 sets of 100 cells according to random poli-
cies of the form P-I, P-II, P-III, and P-IV. These timings show that our (unoptimized)
implementation already achieves good performance.

462 K. Eldefrawy et al.

Fig. 8. Plot of the size of the xlsx documents after encrypting 1 to 10, 000 cells according to
policies P-I to P-IV.

Table 3. Benchmark of the decryption workflow (Sect. 3.5) on 10 sets of 100 encrypted cells
according to a random policy of the form P-I, P-II, P-III, and P-IV.

Number of cells that can be decrypted Average time

1 · 100 1, 082ms

3 · 100 1, 295ms

6 · 100 1, 668ms

10 · 100 1, 851ms

5 Short-Term Adoption: Policy-Based Encryption Without
Collusion-Resistance via Multi-key Hybrid Encryption (Using
Standardized Schemes)

The deployment of ABE in production systems, e.g., in government and commer-
cial applications, remains limited. Currently, to the best of our knowledge, no widely
deployed commercial authoring software platforms and products use ABE. The root
cause of this (in the USA) may be because ABE has not been standardized yet by
well known standardization bodies that develop, endorse, and maintain such national
and international standards, e.g., the National Institute for Standards and Technology
(NIST) in the USA. While ABE has not (yet) been standardized in the USA, there are

In-App Cryptographically-Enforced Selective Access Control 463

recent efforts in that direction by the European Telecommunications Standards Institute
(ETSI)8.

Developing new cryptographic standards is a process that takes several years (as
it should) due to its complexity and importance as illustrated by the ongoing9 NIST
effort to standardize post-quantum cryptography (PQC). While we acknowledge that
standardizing PQC is a much larger and challenging effort compared to standardizing
ABE, nevertheless, we do not expect any long-term standard to be initiated, completed,
and then ratified in the next two to three years, especially if one considers a timelines
similar to standardizing PQC.

A natural question then becomes “is there a way to only utilize standard public-
key/asymmetric and symmetric schemes and emulate most of the functionality and guar-
antees provided by ABE in some settings?”. We sketch here a potential approach that
we argue works in many enterprise settings. We stress that this is an informal treat-
ment to argue that short-term secure selective sharing solutions may be designed and
deployed, building upon the in-app cryptographically-enforced framework developed
in this paper, until ABE is standardized and ready for commercial wide-scale adoption.
Specifically, we focus on settings where one is not concerned about a built-in technical
solution for collusion-resistance from users and insiders in the enterprise. For exam-
ple, if the policy is encrypting to multiple parties, where each party by itself should be
able to decrypt (i.e., an OR clause), then there is no potential (nor reason) for collusion
between parties. There are a lot of settings and application where an encrypted object
should be restricted to a group of employees in the enterprise, and each of them alone
can, and should be able to, decrypt.

Representing Encryption Policies in Disjunctive Normal Form (DNF). While in
the ABE case, policies were expressed in Conjunctive Normal Form (CNF) form (see
Sect. 3.6), one can easily convert a policy into a DNF form. Whether CNF of DNF
representations is preferable will depend on the application. Some functions can be
succinctly represented in DNF whereas others are represented more succinctly in CNF;
switching between these representations can involve an exponential increase in size
[22]. We outline below techniques to use (standardized) public-key/asymmetric encryp-
tion schemes in a blackbox manner to realize AND and OR clauses. It will be up to the
application to decide how to combine these into encryptions that represent DNF or
CNF. It is important to stress that this encryption is only used to wrap a random short
symmetric key (e.g., an AES key) as commonly used in hybrid encryption.

Encrypting to OR Clauses. The approach to encrypt an OR clause is to encrypt the
symmetric key k used to encrypt the data object (m) with different public-keys, where
each public-key corresponds to an attribute in the clause. For example, if the clause
is a1 OR a2 OR a3, where ai corresponds to pki, then an encryption of data m and
symmetric key k for such a clause would be {Ea1

pk1
(k)||Ea2

pk2
(k)||Ea3

pk3
(k)||Es

k(m)},
where || denotes concatenation and Eai

pki
(.) denotes public-key/asymmetric encryption

with key pki for attribute ai, and Es
k(.) denotes symmetric key encryption with key s.

8 https://www.etsi.org/newsroom/press-releases/1328-2018-08-press-etsi-releases-
cryptographic-standards-for-secure-access-control.

9 https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline.

https://www.etsi.org/newsroom/press-releases/1328-2018-08-press-etsi-releases-cryptographic-standards-for-secure-access-control
https://www.etsi.org/newsroom/press-releases/1328-2018-08-press-etsi-releases-cryptographic-standards-for-secure-access-control
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline

464 K. Eldefrawy et al.

Encrypting to AND Clauses. There are two approaches to encrypt an AND clause.
The first approach uses nested re-encryption, it performs sequential re-encryption

of the symmetric key k and ciphertexts resulting from encrypting it under the differ-
ent public-keys corresponding attributes in the AND clause. For example, if the AND
clause is a1 AND a2 AND a3, where ai corresponds to pki, then encryption of data m
with symmetric key k for such a clause would be {Ea3

pk3
(Ea2

pk2
(Ea1

pk1
(k)))||Es

k(m)}.
The second approach is to use additive (or another forms if t-out-of-n decryption

is required) secret sharing of the symmetric key k to be encrypted, and then encrypt
each share under different public keys. For example, if the AND clause is a1 AND a2

AND a3, where ai corresponds to pki, then encryption of data m with symmetric key
k for such a clause would be {Ea

pk1
([k]1)||Ea

pk2
([k]2)||Ea

pk3
([k]3)||Es

k(m)}, where [k]i
is (additive) share i of the key k.

The time vs space trade-off offered by the two approaches above is as follows: the
first approach requires less space to store the encryption but both encryption and decryp-
tion cannot be parallelized, while in the second approach encryption and decryption can
be parallelized, but would require more space.

Security. Given that the actual data is encrypted using a standard authenticated sym-
metric encryption scheme with a random key k (e.g., the AES-GCM authenticated
encryption mode), the confidentiality of the data is ensured when k remains confi-
dential. We argue below security of the multi-receiver key encapsulation mechanism
(KEM) described above and which can be used to encrypt k for both an AND and an
OR clauses.

Security of an AND Clause: The key k can be secret shared into l shares depending on
the number of l literals/attributes in the AND clause. Due to the properties of secret
sharing, each share of k ([k]i) by itself will be a random string. Each [k]i will then be
encrypted independently via the (asymmetric) public-key encryption scheme (Eai

pki
(.))

and a different public-key pki. It is easy to argue by contradiction that, if such a con-
struction is insecure, then a single application of the underlying Eai

pki
(.) is insecure

because one could always concatenate a single such encryption with other encryptions
of random messages for random public-keys and pass them to an adversary that breaks
such a concatenation produced from an AND clause, thus resulting in a break of the
underlying encryption scheme.

Security of an OR Clause: We note that the encryption of an OR clause is essentially
a multi-receiver KEM encrypting a random symmetric key used in a data encapsula-
tion mechanism (DEM) approach. This is the approach utilized in encrypting email in
well used protocols such as S/MIME10. A formal security treatment of this approach
is outside the scope of this paper, but we report here informally the essence of why
this approach is secure. If one can break the multi-receiver use of an appropriately
chosen CCA-secure public-key encryption used as a KEM mechanism (with different
public-keys), then one can devise a reduction from the multi-receiver KEM used above
to a single receiver KEM and thus break the security of the underlying. The reduc-
tion would generate several ciphertexts of 0 and 1 and pair them with the two given

10 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-49.pdf.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-49.pdf

In-App Cryptographically-Enforced Selective Access Control 465

challenge encryptions, and pass them to the multi-receiver KEM adversary to break the
ones it could and then use this break to distinguish the two challenge encryptions.

Performance Overhead. We give below a high-level estimate of the encryption/de-
cryption delay and computational overhead involved therein. We also assess the space
overhead in the proposed approach.

Computational Overhead and Delay from Decryption: Assuming policies in DNF form
with less than 10 OR clauses, each containing less than 10 attributes combined via an
AND clause, one would have to do at most 100 public-key encryptions. As a rule of
thumb, a typical public-key encryption is on the order of (or less than) several msec
so such encryptions and decryptions will require less than a second. We note that while
opening a largeMSOffice document is fast, it still is a bit perceptible to the user, i.e., not
instant and may take a fraction of a second or even a full second. We argue that extend-
ing this by several hundred msec will be almost imperceptible to users. Finally, note
that the encryptions and decryptions corresponding to the OR clauses are independent
and can be easily performed in parallel. Encryptions and decryptions corresponding to
AND clauses can also be parallelized if the secret sharing based technique described
above is utilized.

Increase in File Size: The space overhead due to the encryption of the actual data object
is minimal as it is encrypted only once using a symmetric encryption scheme (e.g.,
AES) and a randomly generated key. The random symmetric key is then encrypted via
a public-key/asymmetric encryption several times to satisfy a policy that will contain at
least two OR clauses, one for the originator of the encryption and one for the recipient
of that encrypted data field. We note though that it is likely that in enterprise settings,
an additional OR clause may be added to the policy so that central IT (or similar organi-
zations) can recover encrypted content belonging to the enterprise if employees thereof
leave. This clause may be such that the symmetric key is secret shared and each share
is encrypted with a different key belonging to different entities in the enterprise’ IT or
security departments.

Limitations: One obvious limitation of the approach outlined above is that it only
works for small policies, e.g., with a small number of clauses each with a few attributes.
This approach also provides no collision resistance for AND clauses. We argue that if
each policy only has one AND clause corresponding to the recovery term described
above, then it may be acceptable because if individuals high up, and with significant
privilege, are acting malicious, they could override policies and/or recover sensitive
data through other means. The approach exhibits a linear overhead in the encryption
size in the number of OR clauses and will require multiple public-key operations for
encryption and decryption; such computationally expensive operations can be easily
parallelized when both encrypting and decrypting.

6 Conclusion and Future Work

This paper investigates and addresses a major usability hurdle: the lack of selective
fine-grained access control in widely deployed enterprise products, and in particular in

466 K. Eldefrawy et al.

Microsoft Office products which are the de facto authoring and collaboration tools and
often used to share information in government, commercial, and private settings.

This paper is the first step to bring ABE to widely used enterprise software products.
An immediate next step will be to extend the current functionality to other products of
the Office suite, such as PowerPoint. While we have developed similar add-ins and
extensions to Word and Outlook, the current API for PowerPoint seems more limited.
This paper motivates extensions to the JavaScript API to enable fine-grained modifi-
cations in all Office applications. Furthermore, it is likely that a similar approach is
possible to implement for Google Workplace/Suite applications (e.g., Google Docs,
Google Spreadsheet, Gmail), for which we have preliminary implementations proving
the viability of developing similar add-ins. Contrary to the JavaScript API for Office,
the Google add-ins framework only allows execution of server-side JavaScript code,
which is a significant technical hurdle if data being encrypted (and keys) cannot (and
should not) be exposed to cloud providers. We also envision developing add-ins for
different web-browsers (e.g., to perform selective sharing/revealing of the content of a
webpage and/or web-based applications). Future work could also investigate develop-
ing extension of the add-in(s) to support differential privacy [16].

Acknowledgments. The authors thank Tim Ellis, Ron Moore, and Karen Myers for helpful dis-
cussions and suggestions. This material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC
Pacific) under Contract No. N66001-15-C-4071. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of DARPA or SSC Pacific. This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed
are those of the author and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

References

1. Javascript API for Office. https://dev.office.com/reference/add-ins/javascript-api-for-office
2. National Defense Authorization Act for the fiscal year 2000. https://www.congress.gov/106/

plaws/publ65/PLAW-106publ65.pdf
3. Office add-ins platform overview. https://docs.microsoft.com/en-us/office/dev/add-ins/

overview/office-add-ins
4. PBC library. https://crypto.stanford.edu/pbc/
5. scrypt-async. https://github.com/dchest/scrypt-async-js
6. TweetNaCl.js. https://tweetnacl.js.org/
7. Using Excel services to share pieces and parts of Excel workbooks. https://support.office.

com/en-us/article/using-excel-services-to-share-pieces-and-parts-of-excel-workbooks-
c9630a25-4c0a-43aa-8a93-510adb17b550

8. Zeutro LLC. http://www.zeutro.com
9. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: Thuraisingham,

B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 665–682. ACM Press, Octo-
ber 2017

10. Akinyele, J.A.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptographic
Eng. 3(2), 111–128 (2013). https://github.com/JHUISI/charm

https://dev.office.com/reference/add-ins/javascript-api-for-office
https://www.congress.gov/106/plaws/publ65/PLAW-106publ65.pdf
https://www.congress.gov/106/plaws/publ65/PLAW-106publ65.pdf
https://docs.microsoft.com/en-us/office/dev/add-ins/overview/office-add-ins
https://docs.microsoft.com/en-us/office/dev/add-ins/overview/office-add-ins
https://crypto.stanford.edu/pbc/
https://github.com/dchest/scrypt-async-js
https://tweetnacl.js.org/
https://support.office.com/en-us/article/using-excel-services-to-share-pieces-and-parts-of-excel-workbooks-c9630a25-4c0a-43aa-8a93-510adb17b550
https://support.office.com/en-us/article/using-excel-services-to-share-pieces-and-parts-of-excel-workbooks-c9630a25-4c0a-43aa-8a93-510adb17b550
https://support.office.com/en-us/article/using-excel-services-to-share-pieces-and-parts-of-excel-workbooks-c9630a25-4c0a-43aa-8a93-510adb17b550
http://www.zeutro.com
https://github.com/JHUISI/charm

In-App Cryptographically-Enforced Selective Access Control 467

11. Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully
secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 31

12. Attrapadung, N.: Dual system encryption framework in prime-order groups via compu-
tational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53890-6 20

13. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007
IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society Press, May
2007

14. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate
encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 20

15. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion,
revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 19

16. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.
1007/11787006 1

17. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl.
Math. 156(16), 3113–3121 (2008)

18. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made
generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 361–388.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 14

19. Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional linear assump-
tion. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 524–541.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 26

20. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime
order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 20

21. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G.
(ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 30

22. Miltersen, P.B., Radhakrishnan, J., Wegener, I.: On converting CNF to DNF. Theor. Comput.
Sci. 347(1), 325–335 (2005)

23. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based
encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–
366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 22

24. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large uni-
verse attribute-based encryption. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM
CCS 2013, pp. 463–474. ACM Press, November 2013

25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 27

https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-48000-7_26
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27

Differentially-Private “Draw and Discard”
Machine Learning: Training Distributed Model

from Enormous Crowds

Vasyl Pihur1, Aleksandra Korolova2, Frederick Liu1, Subhash Sankuratripati1,

Moti Yung3(B), Dachuan Huang1, and Ruogu Zeng1

1 Snap Inc., Santa Monica, CA 90405, USA
2 USC, Los Angeles, CA 90089, USA

3 Columbia University, New York, NY 10027, USA
motiyung@gmail.com

Abstract. The setting of our problem is a distributed architecture facing an enor-
mous user set, where events are repeating and evolving over time, and we want
to absorb the stream of events into the model: first local model, then absorb it
in the global one, and also care about user privacy. Naturally, we learn a phe-
nomenon which happens distributedly in many places (like malware spread over
smartphones, user behavior to operation and UX of an app, or other such events).
To this end, we considered a configuration where the learning server is built to
deal with the possibly high frequency high-volume environment in a natural dis-
tributed fashion, while taking care of statistical convergence and privacy proper-
ties of the setting as well. We propose a novel framework for privacy-preserving
client-distributed machine learning. It is based on the desire to allow differential
privacy guarantees in the local model of privacy in a way that satisfies systems
constraints using high number of asynchronous client-server communication (i.e.,
not much coordination among separate clients, which is a simple communication
model to implement, which in some settings already exist, i.e., in apps facing
users), and provides attractive model learning properties.

We develop a generic randomized learning algorithm “Draw and Discard”
because it relies on random sampling and discarding of models for load distribu-
tion and scalability, which also provides additional server-side privacy protections
and improvedmodel quality through averaging. Themodel is general andwe show
its applicability to Generalized Linear models. We analyze the statistical stability
and privacy guarantees provided by our approach against faults and against several
types of adversaries.We then showcase experimental results. Our framework (first
reported in [28]) has been experimentally deployed in a real industrial setting. We
view the result as an initial combination of ML and of distributed systems, and
we believe it poses numerous directions for further developments.

Keywords: Distributed machine learning · Differential privacy · Local privacy
model · High-volume distributed computing

1 Introduction

We were facing a high-frequency high-volume distributed user environment, contribut-
ing events to a learning algorithm at a server. The challenge was to absorb the volume,
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 468–486, 2022.
https://doi.org/10.1007/978-3-031-07689-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_33&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_33

DDML 469

and assure that a distributed system is statistically stable and provides adequate level of
user privacy, while tolerating faults and adversaries trying to violate user privacy.

To the above end, we propose a Machine Learning (ML) framework that is unique
in that it touches on several different aspects of practical distributed deployment of
high-frequency high-volume locally differentially private ML, all of which are equally
important. These aspects include feasibility, scalability, efficiency, fault tolerance and
spam protection (non manipulatability), ease of implementation in a natural distributed
setting, and privacy. Ideally, they all must interplay together in a manner that enhances
each other, and will not require added computational resources. From that perspective,
this work is a comprehensive (already deployed!) systems-oriented one, as it is privacy,
performance, and machine learning focused.

Sharing personal data that contributes to a global ML model and benefits everyone
on the network—in many cases, the data collector the most– can be viewed as unde-
sirable by many privacy sensitive users, due to distrust in the data collector or risks
of subpoenas, data breaches and internal threats [20,21]. Following the deployment of
RAPPOR [12], there has been an increased interest in finding ways for users to con-
tribute data to improve services they receive, but to do so in a provably private manner,
even with respect to the data collector itself [29]. This desire is often expressed by
companies [17,32], presumably in part to minimize liability associated with risks and
exposures associated with retention of private data of many users.

To address the privacy-utility trade-off in improving products while preserving pri-
vacy of user data even from the data collector itself (the collector itself is trusted but may
be eavesdropped on by a non trusted agent at time of collection), we propose a novel
client-centric distributed “Draw and Discard” machine learning framework (DDML).
It provides differential privacy guarantees in the local model of privacy in a way that
satisfies the systems constraints using asynchronous client-server communication (min-
imizing scheduling and coordination of transfer events among clients and servers). We
call the framework “Draw and Discard” because it relies on randomly sampling and
discarding of models.

Specifically, at the center of DDML is maintenance of k versions (or instances) of
the machine learning model on a server, from which an instance is randomly selected
to be sent to and updated by a client, and, subsequently, the updated instance randomly
replaces one of the k instances on a server (and the replaced instance is discarded). The
update is made in a differentially private manner with users’ private data stored locally
on their mobile devices.

We focus our analyses and experiments with DDML on the Generalized Linear
Models (GLM) [25], which include regular linear and logistic regressions. GLMs pro-
vide widely-deployed and very effective solutions for many applications of non-media
rich data, such as event prediction and ranking. The convex nature of GLMs makes
them perfect candidates to explore client-side machine learning without having to worry
about convergence issues of the more complex ML models (and, pragmatically, when it
is good enough for the task, it also eases deployment). Extension of DDML to Neural
Networks and other models optimized through iterative gradient updates seems doable,
but are left and suggested as open issues by this initial work on the subject.

470 V. Pihur et al.

We have demonstrated through modeling, analyses, experiments, and ultimately by
a practical experimental deployment that DDML provides an attractive combination
of privacy, performance, model learning, and distributed systems properties (deploy-
ment feasibility, scalability, efficiency, communication overhead, and spam protection).
Specifically, it offers

1. Asynchronous and distributed training: DDML offers continuous, lock-free, dis-
tributed and scalable training without pausing the process for averaging and updat-
ing on a server side (i.e., a type of streaming events learning as events update the
learning process in an online fashion). Further, it is easy to build and maintain.

2. Local differential privacy: Through carefully calibrated noise in the model update
step, the DDML design ensures local differential privacy [10].

3. Privacy amplification: Furthermore, in DDML the full model update is performed on
a client and only the updated model rather than raw gradients are sent to the server.
This forces an attacker to perform inference on the pre- and post-model images,
while also limits the number of models on a server at any time to k.

4. Efficient model training: Due to the variance stabilizing property of DDML, its final
model averaging and frequent model updating, DDML has superior finite sample
performance relative to batching update strategies with practical batch sizes.

5. Spam protection: having k different instances of the same model allows, once mod-
els stabilize somewhat, to assess whether any incoming update is fraudulent or not
without knowledge of the users’ private data.

These properties will become clearer as we define them more precisely in the fol-
lowing sections. We note that our work is related to but different from what is known
as “Federated Learning.” We are not aware of any other, currently deployed distributed
ML approaches which effectively operate in the local privacy model and use an asyn-
chronous and distributed communication protocol in such an ongoing event stream-
ing fashion. The novel Federated Learning [22,23] (mentioned above), another modern
privacy oriented methodology invented and adopted by Google, is perhaps the closest
methodology to ours which relies on server-side collecting data from clients, essentially
gradient batching and averaging with relatively more infrequent model updates (on the
order of a few minutes). In any event, it is good to have numerous variants with differ-
ent server and client operations, and different system requirement (communication and
server operation) to support a wide range of learning needs with privacy constraints in
various system environments.

DDML can be viewed as offering two major contributions. First, it performs direct,
noisy updates of model weights on clients, as opposed to sending raw and exact gra-
dients back to the server. This change offers direct embedding of local differential pri-
vacy guarantees, and more importantly, requires an attacker to know the pre-image of
the model (a model sent for an update to the client) that was updated to make any infer-
ence about private user data. Separation of the two critical pieces of knowledge, pre-
and post-update models necessary to make any inference, in time, especially in a high-
throughput environment with k instances being continuously updated, poses significant
practical challenges for an adversary observing a stream of updates on the server side.
We discuss this (preventing attackers from getting the needed data) in detail in Sect. 4.

DDML 471

Second, its radically different server-side architecture with the “Draw and Dis-
card” update strategy, provides a natural way of deploying such a service in a high-
performance cloud. Replication of models and treating them as equal and independent
is significantly more natural for cloud deployment than a (more sequential) batch update
with a locking mechanism. It is analogous to the way, for example, one would compute
the total number of requests. Instead of putting each incoming request in memcache and
then having a batching job, say every second, to add to the single total counter, the rec-
ommended way is to have K counters and increment each one at random with the final
result being the total sum of the K counters. Asynchronous updates are almost always
preferred to synchronous ones when scalability is paramount. This crucial property is
exactly what DDML achieves with its server-side architecture.

Beyond these two major considerations, DDML offers a completely lock-free
asynchronous, and thus, more efficient (relatively coordination-free), communication
between the server and clients, which is an absolute must if one is developing in a
massively distributed environment [7], as well as a straightforward distributed way to
prevent model spamming by malicious actors, without sacrificing user privacy. (Note:
an asynchronous communication may also allow future extension of anonymous routing
hiding clients from server, effectively shuffling responses to the server).

Deployment: We have implemented DDML and deployed it experimentally (with bil-
lions of daily users accumulated over one month), and successfully trained numerous
ML models. Our applications focus on ranking items, from a few dozen to several thou-
sands, as well as security oriented services, such as predicting how likely it is that a
received URL is “phishy.” Our largest models contain ≈ 50, 000 weights in size, and
we find k = 20 models to be the right trade-off between efficiency and scale, to avoid
the “hotspotting” issue. Currently, at peak times for several different applications, we
receive 200 model updates per second.

Organization: The paper is organized as follows: Sect. 2 reviews differential privacy
and related work. Section 3 presents a detailed overview of our framework and its fea-
tures, including the variance stabilizing property in Sect. 3.4. Section 4 introduces our
modeling of possible adversaries and discusses DDML’s privacy properties with respect
to them. We conclude with a discussion of limitations, alternatives and avenues for
future work in Sect. 6.

2 Preliminaries and Related Work

Differential privacy (DP) [10] has become the de-facto standard for privacy-preserving
data analysis [9,11,13].

A randomized algorithm A is (ε, δ) differentially private if for all databases D and
D′ differing in one user’s data, the following inequality is satisfied for all possible sets
of outputs Y ⊆ Range(A):

Pr[A(D) ∈ Y] ≤ exp(ε)Pr[A(D′) ∈ Y] + δ

The parameter ε is called the privacy loss or privacy budget of the algorithm [26],
and measures the increase in risk due to choosing to participate in the DP data collec-
tion. The variant of DP when δ = 0 is the strongest possible differential privacy variant

472 V. Pihur et al.

called pure differential privacy; whereas δ > 0 allows differential privacy to fail with
small probability and is called approximate differential privacy.

ML in the Trusted-Curator Model: Most prior work for differentially private machine
learning assumes a trusted-curator model, where the data is first collected by the com-
pany and only then a privacy-preserving computation is run on it [1,6,27,31]. The
trusted-curator model is less than ideal from the user privacy perspective, as it does
not provide privacy from the company collecting the data, and, in particular, leaves
user data fully vulnerable to security breaches, subpoenas and malicious employees.
Furthermore, even in the case of the trusted curator model, differentially private deep
learning that achieves good utility with reasonable privacy parameters has been an elu-
sive goal [1,24,30]. For example, the work of [1] performs well on the MNIST data but
struggles utility-wise on CIFAR for reasonable privacy parameters.

ML in the Local Model: The pioneering work of RAPPOR [12] for industry deploy-
ment, has been followed by several recent efforts to deploy DP in the local model, i.e.,
guarantee DP to the user before the data reaches the collector. Privacy in the local model
is more desirable from the user’s perspective [17,20,29,32], as in that case the user does
not have to trust the data collector or the data being subject to internal or external threats
to the data collector.

Since the focus on differentially private computations in the local model is recent,
most, if not all, efforts to date have been limited to learning aggregate statistics, rather
than training more complex machine learning models [2–5,14]. There are also numer-
ous results on the so-called sample complexity for the local model, showing that the
number of data points needed to achieve comparable accuracy is significantly higher in
the local model than in the trusted curator model [18].

DDML can be considered an extension of the existing literature on locally private
learning. In particular, it supplements private histogram collection of RAPPOR [12]
and learning simple associations [14] by allowing estimation of arbitrary conditional
expectations. While RAPPOR allows estimating marginal and joint distributions of cat-
egorical variables, DDML provides a principled framework for estimating conditional
distributions in a privacy-preserving manner. For example, one can estimate the average
value of Y given p features X1, . . . , Xp by fitting a regular linear model described by

E(Y) = b0 + b1 ∗ X1 + . . . + bp ∗ Xp.

3 Draw and Discard Machine Learning

In this section, we present our “Draw and Discard” machine learning framework charac-
terized by its two major components: client-side noise addition and “Draw and Discard”
server architecture. Together, these contribute to strong differential privacy guarantees
for client data while supporting efficient, in terms of model training, client-server data
consumption. At the heart of DDML is the server-side idea of maintaining and ran-
domly updating one of the k model instances. This architecture presents a number of
interesting properties and contributes to many aspects of the framework’s scalability,
privacy, and spam and abuse protections. We give a brief overview of GLMs and fully
describe DDML client and server architectures next.

DDML 473

3.1 GLMs

In GLMs [25], the outcome or response variable Y is assumed to be generated from
a particular distribution in the exponential family that includes normal (regular linear
model), binomial (logistic regression) and Poisson (Poisson regression) distributions,
among many others. Mathematically, GLMs model the relationship between response
Y and features X1, . . . , Xp through a link function g, whose exact form depends on the
assumed distribution:

E(Y) = g−1(b0 + b1 ∗ X1 + . . . + bp ∗ Xp) (1)

To train GLM models on clients, we use Gradient Descent (GD) for maximum like-
lihood estimation, as discussed below.

3.2 DDML Client-Side Update

GD is a widely used iterative procedure for minimizing an objective function

Q(B) =
1
N

N∑

s=1

Qs(B), (2)

where B = {b1, . . . , bp} is the vector of weights to be estimated and Qs is a func-
tional component associated with the sth observation. Traditional optimization tech-
niques require differentiating Q(B), which, in turn, requires access to all N data points
at once. GD approximates the gradient ΔQ(B) with ΔQs(B), computed on a small
batch of Nc observations available on a single client

ΔQNc
(B) =

1
Nc

Nc∑

s=1

ΔQs(B). (3)

To provide local privacy by adding random Laplace noise, a differentially-private
GD (DP-GD) update step is performed on a client using the Nc observations stored
locally

Bt+1 = Bt − γΔQNc
(Bt) + L

(
0,

Δf

ε

)
, (4)

where γ is a learning rate and L
(
0, Δf

ε

)
denotes the Laplace distribution with mean 0

and scale Δf
ε . Δf is called sensitivity in the differential privacy literature and ε is the

privacy budget [11].
For GLMs, assuming all features Xi are normalized to the [0, 1] interval and the

average gradients 1
Nc

∑Nc

i (Ŷi − Yi)Xi are clipped to [−1, 1] (indicated by ‖A‖[−1,1]),
the differentially-private update step becomes

Bt+1 = Bt − γ
∥∥∥

1
N c

Nc∑

i=1

(Ŷi − Yi)Xi

∥∥∥
[−1,1]

+ L

(
0,

2γ
ε

)
.

474 V. Pihur et al.

Algorithm 1. DDML Algorithm for GLMs (client side). Parameters:
Y - response value, Ŷ - predicted value.
X - feature vector, B - a set of model weights.
γ - learning rate, ε - privacy budget.
L(μ, s) - Laplace distribution with mean μ and scale s.
Normalize response Y and features X to [0, 1]
If Nc > 0, request model Bt from the server
Compute clipped average gradient: ‖G‖[−1,1] = ‖ 1

Nc

∑Nc
i=1(Ŷi − Yi)Xi‖[−1,1]

Update model: Bt+1 = Bt − γ‖G‖[−1,1] + L
(
0, 2γ

ε

)

Return model Bt+1 to the server

Algorithm 2. DDML Algorithm (server side). Parameters:
k - the number of models, B - a set of model weights.
Initialize k models
for each requested model update t do
Pick a random model instance Bt

Send Bt to a client
Receive updated Bt+1 from a client
Replace a random instance of the k models with Bt+1

end for
Prediction: average k model instances

Here, Ŷ is the predicted value of Y given a feature vector X and the model Bt. Clip-
ping gradients to [−1, 1] ensures that the sensitivity of the update step is at most 2γ.
For logistic regression, if all features are normalized to [0, 1], no gradient clipping is
necessary.

DDML client-side architecture is shown in Algorithm 1.

3.3 DDML Server-Side Draw and Discard

While maintaining the k model instances on a server (k versions of the same model with
slightly different weights), we randomly “draw” one of the k instances, update it on a
client and put it back into the queue by “discarding” an instance uniformly at random.
With probability 1

k , we will replace the same instance, while with probability k−1
k , we

will replace a different one.1

This seemingly simple scheme has significant practical implications for perfor-
mance, quality, privacy, and anti-spam, which we discuss in Sect. 3.4.

DDML server-side architecture is shown in Algorithm 2.

Model Initialization. We initialize our k models randomly from a normal distribution
with means b00, . . . , b

0
p, which are usually taken to be 0 in the absence of better starting

values and variance σ2
k = k

2σ2, where σ2 is the variance of the Laplace noise added on
a client side.
1 This is only approximately correct, since in a high-throughput environment, another client
request could have updated the same model in the meantime.

DDML 475

Because of the variance-stabilizing property (to be discussed in detail in Sect. 3.4),
σ2

k will remain the same in expectation even after a large number of updates. It is crucial
for our spam detection solution that this initialization happens correctly and the right
amount of initial noise is added to calibrate the update step on a client with the variance
of the k instances on the server side.

Model Averaging. We average weights from all k instances for final predictions. Of
course, depending on application, another way for using k versions of the same model
could be preferred, such as averaging predicted values from each instance, for example.

3.4 Properties and Features of DDML

We now describe properties of DDML that distinguish it from existing solutions and
make it feasible and scalable for practical deployments.

Variance-Stabilizing Property of DDML. Having introduced an additional source of
variation due to having k model instances, an intra-model variance, it is important to
understand its nature and magnitude, especially relative to the variance of the noise
added on the client through the Laplace mechanism. It is also of interest to understand
how it changes over time. One of the remarkable properties of the “Draw and Dis-
card” algorithm with k > 1 is its variance-stabilizing property. We prove in Theorem 1
that the expected intra-model variance of the k instances is equal to k

2σ2 and remains
unchanged after an infinite number of updates when adding noise with mean 0 and
variance σ2.

Theorem 1. Let B = (B1, . . . , Bk) be a vector of k random variables (weights) with
mean μ and variance k

2σ2. Selecting one of the weights at random, adding noise with
mean 0 and variance σ2 and putting it back with replacement does not change the
expected intra-model variance of B (i.e., weights remain distributed with variance
k
2σ2).

The intuition behind this theorem is that with probability 1
k , we replace the same

model, which increases the variance of the k instances. This increase, however, is
exactly offset by the decrease in variance due to the cases when we replace a differ-
ent model with probability of k−1

k because original and updated models are highly
correlated. The full proof can be found in the Appendix.

DDML, due to its “Draw and Discard” update strategy, dissipates the additional
intra-model variability through random model discarding which is particularly impor-
tant when the model has converged and the contractive pull of the GD is either small
or non-existent, at a time when we continue training the model and adding the Laplace
noise on the client.

Asynchronous Learning. Maintaining k model instances allows for a scalable, simple
and asynchronous model, updating with hundreds or thousands of update requests per
second. It is trivial to implement, relies on its inherent randomness for load distribution,
and requires no locking mechanism that would pause the learning process to aggregate
or summarize results at any given time.

476 V. Pihur et al.

Privacy. Due to random sampling of model instances, the DDML server architecture
uniquely contributes to privacy guarantees as will be discussed in Sect. 4. Specifically,
by keeping only the last k models from clients, discarding models at random, and avoid-
ing server-side data batching, the DDML fulfills the goal of keeping as little data as
possible on the server. Through a nuanced modeling of possible adversaries (Sect. 4.1)
and corresponding privacy analyses, DDML is able not only to provide privacy guaran-
tees in the local model, but also improve these privacy guarantees against weaker but
realistic adversaries.

Ability to Prevent Spam Without Sacrificing Privacy. The k instances are instrumen-
tal in spam and abuse prevention, which is a real and ubiquitous pain point in all major
client-server deployments. Nothing prevents a client from sending an arbitrary model
back to the server. We could keep track of which original instance was sent to each
client; however, this would negate the server-side privacy benefits and pose implemen-
tation challenges due to asynchronicity. In DDML, having k replicates of each weight
bi allows us to compute their means μi and standard deviations σi and assess whether
the updated model is consistent with these weight distributions (testing whether the
updated value is within [μ− tσ, μ+ tσ]), removing the need to make trade-offs between
privacy and anti-abuse.

3.5 Parameter Tuning and Clipping

Choosing the right learning rate γ is critical for model convergence. If chosen too small,
the learning process proceeds too slowly, while selecting a rate too large can lead to
oscillating jumps around the true minimum. We recommend trying several values in
parallel and evaluating model performance to select the best one. In the future, we plan
to explore adaptive learning rate methods in which we systematically decrease γ (and,
therefore, add noise) as the model converges.

By clipping gradients to a [−1, 1] range, we ensure that the sensitivity of our update
is 2γ. In practice, the vast majority of gradients, especially as the model becomes suf-
ficiently accurate, are much smaller in absolute terms and, thus, could be clipped more
aggressively. Clipping to a [−0.1, 0.1] range would reduce sensitivity by a factor of 10
to γ/5.

4 Privacy of DDML

We now discuss differential privacy guarantees provided by DDML. Our analyses are
with respect to feature-level differential privacy, as discussed in Sect. 6, but they can be
easily extended to model-level privacy by scaling up the noise by the number of features
or by adjusting the norm of the gradient in Algorithm 1.

4.1 Adversary Modeling

The main innovation of our work with respect to privacy analyses comes from more
nuanced modeling of heterogeneous adversaries, and the demonstration that the privacy

DDML 477

guarantees a client obtains against the strongest possible adversary operating in the local
model of privacy are strengthened by DDML against weaker but realistic adversaries.

Our work introduces and considers three kinds of adversaries, differing in the power
of their capabilities:

I (Channel Listener): is able to observe the communication channel between the client
and the server in real time and, therefore, sees both the model instance sent to the client
and the updated model instance sent from the client to the server.

II (Internal Threat): is able to observe the models on the server at a given point in
time; i.e., this adversary can see model instances 1 through k but lacks the knowledge
of which of the k instances was the pre-image for the latest model update due to lack of
visibility into the communication channel.

III (Opportunistic Threat): can observe a model instance at a random time, but has
no knowledge of what was the state of the model weights over the last Tk updates, i.e.,
this adversary can, for example, see models at regular time intervals Tk which is much
larger than 1. Clients themselves are such threats as they periodically receive a model
to update.

The first adversary is the most powerful, and the privacy guarantees we provide
against this adversary (Sect. 4.2) correspond to the local model of privacy commonly
considered by the differential privacy community (Sect. 2).

The second adversary is modeling ability to access the k model instances from
within the entity running DDML. It is reasonable to assume that such an adversary
may be able to obtain several snapshots of the models, though it will be technically
unfeasible and/or prohibitively costly to obtain snapshots at the granularity that allows
observation of k models before and after every single update.

The third type of adversary is the weakest and also the most common. Occasional
access to models allows attackers to obtain a snapshot of k model instances (in a case
of an internal threat) or just a single model instance (in a case of a client who receives
a model for an update) after a reasonably large number of updates Tk. Because Tk
independent noise additions have occurred in the meantime, each model instance has
received an expected T updates and therefore, T independent noise additions after a
particular user’s update. Every user benefits from this additional noise to a different
degree, depending on the order in which their data was ingested, and, in expectation
and with high probability, enjoys significantly stronger differential privacy guarantees
against this adversary than those of the local model, as will be shown in Sect. 4.4.

4.2 Privacy Against Channel Listener (Adversary I)

DDML guarantees ε-differential privacy against adversary I. The claim follows
directly [11] from our choice of the scale of Laplace noise in the client-side Algo-
rithm 1 and the observation that clipping the gradient in Algorithm 1 ensures sensitivity
of at most 2γ. (It is possible to replace the Laplace noise used in the client-side Algo-
rithm 1 with Gaussian. In that case, the variance of the Gaussian noise would need to
be calibrated according to Lemma 1 from [19] or Theorem A.1 of [11].)

In practice, the channel is going to be encrypted (under TLS, say) so one can view
the local differential privacy as a hedging against breaks of TLS or temporary leak at

478 V. Pihur et al.

the server. The above is assurance against one-time viewer of the channel; if we expect
more channel breaks, say t, then each contribution should have ε/t-differential privacy
(handling the privacy budget). When learning from a huge crowd, we anyway expect
only one contribution from each client (on the average) to be reflected in the state (where
each client’s input affects at most one of the k existing models at any given time. (Note
that more refined analysis of other cases is certainly left open for future work).

4.3 Privacy Against Internal Threat (Adversary II)

DDML offers the same ε-differential privacy guarantees as against adversary I. How-
ever, there are several practical considerations that amplify client privacy in a more
informal manner. As k gets larger, there are more and more plausible pre-images for
any updated model. This uncertainty introduced by updating the model fully on the
client, forces an adversary II to perform inference on what the potential update was.
Given the variance stabilization Theorem 1 and the contractive property of the GD,
the k models will be relatively similar and, therefore, potential candidates for the pre-
image. The benefits of this additional privacy protection do diminish with the size of
the model where the curse of dimensionality takes over. Nevertheless, even having to
do actual work can be a strong barrier for a casually curious attacker.

4.4 Privacy Against Opportunistic Threat (Adversary III)

Finally, we analyze the privacy guarantees DDML provides against adversary III – the
one that is able to inspect a random model instance out of the k models after a user of
interest to the adversary has submitted their model instance and an expected T updates
to that model instance have occurred since. Note that in practice, the adversary may
have an estimate of T , but not know it precisely, as it is difficult to measure how many
updates have occurred to a model instance in a distributed system serving millions of
clients such as DDML.

The privacy amplification against this adversary will come from two sources – from
the “discard” step, in that it contributes to the possibility that the model the user con-
tributed to is discarded in the long-term and from the accumulation of the noise, in that
with each model update, additional random noise is added to it, which contributes to fur-
ther privacy protection for the user whose update has occurred in preceding steps. The
analysis of the privacy amplification due to the “discard” step is presented in Lemma 1
and it can be shown that only 1

k updates will survive (be still contributing) to any of the
models as T becomes large.

Lemma 1. DDML discards 1 − 1
k of updates in the long-term.

Proof can be found in the Appendix.
Analysis on the amount of noise accumulation over time is presented in Theorem 2,

which results in the overall k
√

T expected privacy amplification against adversary III
compared to adversary I. The full proof can be found in the Appendix.

DDML 479

Theorem 2. With high probability, DDML guarantees a user (εT , δT)-differential pri-
vacy against adversary III, where

εT =
ε√
2T

√

ln
(

1
2δT

)

and δT is an arbitrary small constant (typically chosen as O(1/ number of users)). T is
the number of updates made to the model instance between when a user submitted his
instance update and when the adversary observes the instances. The statement holds if
T is sufficiently large.

5 Real World Applications

We instrumented DDML on all Android devices at SNAP, a company with hundreds of
millions of monthly active users. Since we do not store or associate user IDs with model
updates, it is impossible to know exactly how many unique users have contributed to
each model, but it is definitely in hundreds of millions. We rely on a pull model where a
device collects relevant data and, if any collected, pulls the model from a server at most
every 6 h, updates it and sends it back, after which the data on the device is deleted (so
learning locally is always from fresh data). We also limit the amount of records that can
be stored on a given device at any point in time.

One of the most common abuse vectors is phishing user credentials. When mali-
cious accounts manage to befriend legitimate ones or some accounts get hacked, they
begin to send phishing url’s to users within their social circle. Even if only a small
fraction of users takes the bait, the cycle of abuse is perpetuated indefinitely. We rely
on Google Safe Browsing [16] and internally maintained lists of known phishy URLs
to prevent these kinds of attacks. However, the process of discovering novel malicious
URLs depends on customer ops reports which is slow, manual and opportunistic.

We implemented a DDML logistic regression model for predicting the likelihood
of a URL being phishy. Our features come from both the URL itself (different parts
of the URL, such as domain, subdomain, host, path, query parameters), as well as the
page content. We consider features related to character distribution, special characters
(?,&, . . .), lengths, language, particular keywords, etc. For content page features, we
include features related to major page component, such as iframes, input boxes, pass-
word boxes, images, scripts, page size, readability and many others.

For the model used, we received 1,730,624,961 model updates. The number of
weights is 387. We use k = 20, ε = log(32) and learning rate γ = 0.001. We achieved
89.2% recall and 15.7% precision for this application. Overall, our recall is very good,
while precision remains relatively low because of the inherent complexity of the adver-
sarial setting in which attackers constantly change their approaches making it hard to
detect new types of URLs that have not been previously seen. Our online model allowed
us to increase discovery of new phishing URLs by an order of magnitude once it was
launched.

480 V. Pihur et al.

6 Discussion

Having deployed DDML at scale with hundreds of million daily active clients, we real-
ized how critical a well-designed server-side architecture was to the client-side learning
process. Due to the symmetric nature of draws and discards, with the number of reads
equaling the number of writes, there must be sufficient redundancy in place to scale our
serving infrastructure. k model instances offer, besides increased privacy, an incredibly
scalable and asynchronous solution to client-server communication.

One can easily make an argument that replacing model instances at random is
“wasteful” from the model training perspective (though, we have an abundance of
events in our applications). The claim, nevertheless, is partially true (and further anal-
ysis of tradeoffs is another issue for further investigations). However, so is setting the
wrong learning rate, mismanaging the server-side batch size, etc. We are never perfect
in utilizing our data in the absolute sense even before moving to a distributed ML set-
ting (complicated dynamic distributed system has these properties). There, things only
become more complicated from a learning perspective and it is not unreasonable to see
additional performance sacrifices. If your architecture can support only 10 writes per
second, for example, and your overall traffic is 100 write requests per second, you will
not be able to perfectly utilize all your available data in a sequential updating scheme.
Trade-offs must be made. The focus, methodologically speaking, should be not on what
we are losing because we must lose something, but what we are gaining in exchange. By
making a small sacrifice in performance by introducing k instances, we gain scalability,
ease of implementation, spam detection, and additional privacy. The only question (yet
another open issue) is whether we are trading off these properties efficiently.

We offer feature-level local differential privacy and, therefore, in a situation when
features are correlated, the privacy loss scales with the number of features. In principle,
if one would like to achieve model-level privacy, one needs to scale the noise up accord-
ing to the number of features included in the model or alternatively perturb the whole
feature vector as in [8]. Applications of differential privacy to very high-dimensional
data, particularly, in the local model, have not yet been adopted in practice. In theoreti-
cal work, the distinction is often mentioned, but the choice is left to industry practition-
ers. We believe that in practice, feature-level privacy combined with limited server-side
model retention is sufficient to protect the privacy of our clients against most realistic
adversaries. Note, also, that we have shown that due to the discard operation, the con-
stantly evolving model loses with some probability dependency on user’s contribution
which certainly adds to privacy.

We certainly hope the above discussion will generate further investigations in the
model, which has demonstrated to be very useful in the large scale distributed events
case. Improved more refined analysis of cases is also open, and various architectural-
algorithmic tradeoff-s are worth investigation as well.

DDML 481

Appendix

A Variance Stabilization Proof and Other Proofs

Theorem 1 Let B = (B1, . . . , Bk) be a vector of k random variables (weights) with
mean μ and variance k

2σ2. Selecting one of the weights at random, adding noise with
mean 0 and variance σ2 and putting it back with replacement does not change the
expected intra-model variance ofB (i.e., weights remain distributed with variance k

2σ2).

Proof. We use the Law of Total Variance

V (B) = E(V (B|X)) + V (E(B|X))

three times as we think of B as a mixture of mixtures. In the first mixture, the expecta-
tion is taken over the distribution of whether the same or different model was updated
(X ∈ {j → j, j → j′}). In the inner mixture, the expectation is taken over the parti-
tioning of the k weights themselves (Z).

Total variance, therefore, is equal to

V (B) =
1
k

V (B|j → j) +
k − 1

k
V (B|j → j′)

+V (E(B|X)).

Because we add noise with mean 0, in either case, the mean of B does not change, so
V (E(B|X)) = 0.

Replacing the same weight partitions the k weights into two sets, a single weight
updated and the rest of the weights. Partition means do not change, and the variance
increases due to added noise in the first partition (mixture component). Thus, V (B|j →
j) is given as

V (B|j → j) =
1
k

(
k

2
+ 1

)
σ2 +

k − 1
k

k

2
σ2

=
(
1
2
+

1
k
+

k − 1
2

)
σ2

=
(

k

2
+

1
k

)
σ2.

Replacing a different weight partitions the weights space into 2 and (k − 2) sub-
sets. Unlike in the first case, V (E(B|Z)) is non-zero due to a single weight essentially
replicated twice in the first partition (B1 has a mean of 0, but B2 has a mean of B1).
After the update, the overall mean of B under Z becomes

μZ =
2μ1 + (k − 2)μ

k
,

where μ1 is the mean of the model selected and model replaced and has a distribution
with mean μ and variance k

2σ2. Note that the mean of B over sampling in X is still 0
as E(B1) = 0 over X .

482 V. Pihur et al.

Then V (B|j → j′)

=
2
k

1
2
σ2 +

k − 2
k

k

2
σ2

+
2E[(μ1 − μBi

)2] + (k − 2)E[(μ − μBi
)2]

k − 1

=
1
k

σ2 +
k − 2
2

σ2

+
2

k − 1

(k − 2
k

)2

E[(μ1 − μ)2]

+
k − 2
k − 1

(2
k

)2

E[(μ1 − μ)2]

=
1
k

σ2 +
k − 2
2

σ2 +
2

k − 1

(
k − 2

k

)2
k

2
σ2

+
k − 2
k − 1

(
2
k

)2
k

2
σ2

=
(
1
k
+

k − 2
2

+
(k − 2)2

k(k − 1)
+

2(k − 2)
k(k − 1)

)
σ2

=
2k − 2 + k(k − 2)(k − 1) + 2(k − 2)2 + 4k − 8

2k(k − 1)
σ2

=
k3 − k2 − 2
2k(k − 1)

σ2.

Note that the variance component must be computed with k − 1 and not k because of
the finite nature of k in this case.

Putting it all together,

V (B) =
1
k

V (B|j → j) +
k − 1

k
V (B|j → j′)

=
1
k

(
k

2
+

1
k

)
σ2 +

k − 1
k

k3 − k2 − 2
2k(k − 1)

σ2

=
(
1
2
+

1
k2

+
k3 − k2 − 2

2k2

)
σ2

=
k

2
σ2.

Lemma 1 DDML discards 1 − 1
k updates long-term.

Proof. Consider a Markov process on the states 0, 1, . . . , k, where each state represents
the number of models in which a particular update can be found. Denote by pi - the
probability to go from i to i − 1 or i + 1. In DDML, pi =

(k−i)i
k2 , for 1 ≤ i ≤ k − 1,

and p0 = 0, pk = 1.
Let qi be the probability of eventually ending up at state 0 if you start in state i. By

the set-up of DDML, for 1 < i < k − 1 we have:
qi = piqi−1 + piqi+1 + (1 − 2pi)qi, or 2qi = qi−1 + qi+1.

DDML 483

We also know that

q0 = 1, p0 = 0, qk = 0, pk = 1,
q1 = p1q0 + p1q2 + (1 − 2p1)q1,
qk−1 = pk−1qk−2 + pk−1qk + (1 − 2pk−1)qk−1

Summing equations for 1 ≤ i ≤ k − 1 we have
2q1+ · · ·+2qk−1 = q0+q1+2(q2+ · · ·+qk−2)+qk−1+qk Simplifying: q1+qk−1 =
q0 + qk or

q1 + qk−1 = 1 (5)

On the other hand,

qk−2 = 2qk−1,
qk−3 = 2qk−2 − qk−1 = 3qk−1

qk−4 = 2qk−3 − qk−2 = 4qk−1

· · ·
q1 = 2q2 − q3 = (k − 1)qk−1 (6)

Combining (5) and (6), we have (k − 1)qk−1 + qk−1 = 1 or qk−1 = 1
k and q1 =

1− 1
k . Since DDML is set-up that each particular contribution is initially in state 1, this

completes the proof.

Theorem 2 With high probability, DDML guarantees a user (εT , δT)-differential

privacy against adversary III, where εT = ε√
2T

√
ln

(
1

2δT

)
and δT is an arbitrary small

constant (typically chosen as O(1/ number of users)). T is the number of updates made
to the model instance between when a user submitted his instance update and when the
adversary observes the instances. The statement holds if T is sufficiently large.

Proof. We rely on the result from concurrent and independent work of [15] obtained in
a different context to analyze the privacy amplification in this case. Specifically, their
result states that for any contractive noisy process, privacy amplification is no worse
than that for the identity contraction, which we analyze below.

The sum of T random variables drawn independently from the Laplace distribution
with mean 0 will tend toward a normal distribution for sufficiently large T , by the Cen-
tral Limit Theorem. In DDML’s case with Laplace noise, the variance of each random
variable is 8γ2

ε2 , therefore, if we assume that the adversary observes the model instance

after T updates to it, the variance of the noise added will be T · 8γ2

ε2 . This corresponds

to Gaussian with scale σ = 2
√
2Tγ
ε .

Lemma 1 from [19] states that for points in p-dimensional space that differ by at

mostw in �2, addition of noise drawn fromNp(0, σ2
T), where σT ≥ w

√
2
(
ln

(
1

2δT

)
+εT

)
εT

and δT < 1
2 ensures (εT , δT) differential privacy. We use the result of Lemma 1

from [19], rather than the more commonly referenced result from Theorem A.1 of [11],
because the latter result holds only for εT ≤ 1, which is not the privacy loss used in
most practical applications.

484 V. Pihur et al.

We now ask the question: what approximate differential privacy guarantee is
achieved by DDML against adversary III? To answer this, fix a desired level of δT

and use the approximation obtained from the Central Limit theorem to solve for the εT .

2
√
2Tγ

ε
≥ w

√
2
(
ln

(
1

2δT

)
+ εT

)

εT

T · 8γ
2

ε2
≥ w2

2
(
ln

(
1

2δT

)
+ εT

)

ε2T

T · 4γ
2

ε2
· ε2T − w2εT − w2 ln

(
1

2δT

)
≥ 0

Solving the quadratic inequality, we have:

D = w4 + 4T · 4γ
2

ε2
w2 ln

(
1

2δT

)

εT ≥ w2 +
√

D

2T · 4γ2

ε2

=
ε2w2

8γ2T

[
1 +

√

1 + 16T
γ2

ε2w2
ln

(
1

2δT

)]

For large T , the additive term of 1 under the square root is negligible, so we have:

εT ≈ ε2w2

8γ2T
4
√

T
γ

εw

√

ln
(

1
2δT

)
=

εw

2γ
√

T

√

ln
(

1
2δT

)

In DDML, w =
√
2γ, therefore,

εT ≈ ε√
2T

√

ln
(

1
2δT

)

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (CCS 2016), pp. 308–318
(2016). http://doi.acm.org/10.1145/2976749.2978318

2. Apple Differential Privacy Team: Learning with Privacy at Scale, vol. 1. Apple Mach. Learn.
J. (8) (2017). https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.
html

3. Bassily, R., Nissim, K., Stemmer, U., Thakurta, A.G.: Practical locally private heavy hitters.
In: Advances in Neural Information Processing Systems, pp. 2285–2293 (2017)

4. Bassily, R., Smith, A.: Local, private, efficient protocols for succinct histograms. In: Proceed-
ings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 127–135.
ACM (2015)

5. Bun, M., Nelson, J., Stemmer, U.: Heavy hitters and the structure of local privacy. arXiv
preprint arXiv:1711.04740 (2017)

http://doi.acm.org/10.1145/2976749.2978318
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
http://arxiv.org/abs/1711.04740

DDML 485

6. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: Advances in Neu-
ral Information Processing Systems, pp. 289–296 (2009)

7. Delange, J.: Why using asynchronous communications? (2017). http://julien.gunnm.org/
programming/linux/2017/04/15/comparison-sync-vs-async

8. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates.
In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp.
429–438, 0272-5428 (2014). https://doi.org/10.1109/FOCS.2013.53

9. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)
10. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private

data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

11. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends R©
Theor. Comput. Sci. 9(3–4), 211–407 (2014)

12. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-
preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2014), pp. 1054–1067 (2014)

13. European Association for Theoretical Computer Science. Gödel Prize (2017). https://eatcs.
org/index.php/component/content/article/1-news/2450-2017-godel-prize

14. Fanti, G., Pihur, V., Erlingsson, Ú.: Building a RAPPOR with the unknown: privacy-
preserving learning of associations and data dictionaries. Proc. Privacy Enhancing Technol.
3, 41–61 (2016)

15. Feldman, V., Mironov, I., Talwar, K., Thakurta, A.: Privacy amplification by iteration. ArXiv
e-prints abs/1808.06651, August 2018

16. Google. Google Safe Browsing (2018). https://safebrowsing.google.com/
17. Greenberg, A.: Apple’s Differential Privacy is About Collecting Your Data - But Not Your

Data. In Wired, 13 June 2016
18. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential privacy. In:

Advances in Neural Information Processing Systems, pp. 2879–2887 (2014)
19. Kenthapadi, K., Korolova, A., Mironov, I., Mishra, N.: Privacy via the Johnson-Lindenstrauss

transform. J. Privacy Confidentiality 5(1), 39–71 (2013)
20. Madden, M., Rainie, L.: Americans’ Attitudes About Privacy, Security and Surveillance.

Pew Research Center (2015). http://www.pewinternet.org/2015/05/20/americans-attitudes-
about-privacy-security-and-surveillance/

21. Madden, M., Rainie, L.: Privacy and Information Sharing. Pew Research Center (2016).
http://www.pewinternet.org/2016/01/14/privacy-and-information-sharing/

22. Brendan McMahan, H., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In: AISTATS
(2017)

23. Brendan McMahan, H., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private
language models without losing accuracy. CoRR abs/1710.06963 (2017). arxiv:1710.06963

24. McSherry, F.: Deep learning and differential privacy (2017). https://github.com/
frankmcsherry/blog/blob/master/posts/2017-10-27.md

25. Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. J. R. Stat. Soc. Ser. A General
135(1972), 370–384 (1972)

26. Nissim, K., et al.: Differential privacy: a primer for a non-technical audience (Preliminary
Version). Vanderbilt J. Entertainment Technol. Law (2018)

27. Papernot, N., Abadi, M., Erlingsson, Ú., Goodfellow, I., Talwar, K.: Semi-supervised knowl-
edge transfer for deep learning from private training data. In: 5th International Conference
on Learning Representations (2016)

28. Pihur, V.: Differentially-Private “Draw and Discard” Machine Learning (2018). https://doi.
org/10.48550/ARXIV.1807.04369

http://julien.gunnm.org/programming/linux/2017/04/15/comparison-sync-vs-async
http://julien.gunnm.org/programming/linux/2017/04/15/comparison-sync-vs-async
https://doi.org/10.1109/FOCS.2013.53
https://doi.org/10.1007/11681878_14
https://eatcs.org/index.php/component/content/article/1-news/2450-2017-godel-prize
https://eatcs.org/index.php/component/content/article/1-news/2450-2017-godel-prize
http://arxiv.org/abs/1808.06651
https://safebrowsing.google.com/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
http://www.pewinternet.org/2016/01/14/privacy-and-information-sharing/
http://arxiv.org/abs/1710.06963
https://github.com/frankmcsherry/blog/blob/master/posts/2017-10-27.md
https://github.com/frankmcsherry/blog/blob/master/posts/2017-10-27.md
https://doi.org/10.48550/ARXIV.1807.04369
https://doi.org/10.48550/ARXIV.1807.04369

486 V. Pihur et al.

29. Portnoy, E., Gebhart, G., Grant, S.: In EFF DeepLinks Blog (2016). www.eff.org/deeplinks/
2016/09/facial-recognition-differential-privacy-and-trade-offs-apples-latest-os-releases

30. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. ACM, pp. 1310–
1321 (2015)

31. Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differentially pri-
vate updates. In: Global Conference on Signal and Information Processing (GlobalSIP), pp.
245–248. IEEE (2013)

32. WWDC 2016. WWDC 2016 Keynote, June 2016. https://www.apple.com/apple-events/
june-2016/

www.eff.org/deeplinks/2016/09/facial-recognition-differential-privacy-and-trade-offs-apples-latest-os-releases
www.eff.org/deeplinks/2016/09/facial-recognition-differential-privacy-and-trade-offs-apples-latest-os-releases
https://www.apple.com/apple-events/june-2016/
https://www.apple.com/apple-events/june-2016/

Privacy Preserving DCOP Solving
by Mediation

Pablo Kogan1,3, Tamir Tassa1(B) , and Tal Grinshpoun2,3

1 Department of Mathematics and Computer Science,
The Open University of Israel, Ra’anana, Israel
pablokogan@pm.me, tamirta@openu.ac.il

2 Department of Industrial Engineering and Management,
Ariel University, Ariel, Israel

talgr@ariel.ac.il
3 Ariel Cyber Innovation Center, Ariel University, Ariel, Israel

Abstract. In this study we propose a new paradigm for solving DCOPs,
whereby the agents delegate the computational task to a set of exter-
nal mediators who perform the computations for them in an oblivious
manner, without getting access neither to the problem inputs nor to
its outputs. Specifically, we propose MD-Max-Sum, a mediated imple-
mentation of the Max-Sum algorithm. MD-Max-Sum offers topology,
constraint, and decision privacy, as well as partial agent privacy. More-
over, MD-Max-Sum is collusion-secure, as long as the set of mediators
has an honest majority. We evaluate the performance of MD-Max-Sum
on different benchmarks. In particular, we compare its performance to
PC-SyncBB, the only privacy-preserving DCOP algorithm to date that
is collusion-secure, and show the significant advantages of MD-Max-Sum
in terms of runtime.

Keywords: DCOP · Max-Sum · Privacy · Multiparty computation ·
Mediated computing

1 Introduction

A Distributed Constraint Optimization Problem (DCOP) [2,5] is a commonly
accepted and practical mathematical framework for solving coordination chal-
lenges in multi-agent systems. A DCOP consists of a set of variables that are
controlled by several independent agents. Some subsets of variables may be
dependent in the sense that when they are assigned values from their respec-
tive domains, different combinations of those values may incur costs. The goal
is to assign values to all variables so that the sum of all incurred costs would
be minimal. One of the main motivations for solving constraint optimization
problems in a distributed manner is to preserve the privacy of the interacting
agents. Hence, many privacy-preserving DCOP algorithms were proposed over
the past two decades (see the review of related work in Sect. 2).

All existing DCOP algorithms (privacy-preserving or not) are carried out by
the agents themselves. However, some of those algorithms, and in particular the
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 487–498, 2022.
https://doi.org/10.1007/978-3-031-07689-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_34&domain=pdf
http://orcid.org/0000-0001-9681-8824
http://orcid.org/0000-0002-4106-3169
https://doi.org/10.1007/978-3-031-07689-3_34

488 P. Kogan et al.

privacy-preserving ones, require significant computing resources. In addition, all
DCOP algorithms assume that the agents are connected through a communica-
tion network. We propose here a new paradigm in DCOPs: solving them in the
so-called mediated model; i.e., there are external servers to whom the agents send
the problem inputs in some protected manner. The external servers, whom we
call mediators, simulate a DCOP algorithm on those inputs. At its completion,
they send to the agents messages from which the agents extract the outputs,
i.e., the variable assignments. Throughout this process, the mediators remain
oblivious to the problem inputs, to the content of the protected messages that
they exchange, and to the outputs.

Performing the DCOP algorithm in such a mediated manner offers several
significant advantages: (a) it protects the privacy of the agents and their sensitive
private data; (b) the agents do not need to establish a communication network
amongst them; and (c) it delegates the computational workload from the agents,
who may have limited computational resources, to dedicated servers.

In this work we demonstrate the power of mediated computing by presenting
MD-Max-Sum, a mediated execution of the Max-Sum algorithm [1]. In MD-
Max-Sum, the agents send to the mediators secret shares [13] in their private
inputs. The mediators proceed to execute the Max-Sum computations on the
shares of the problem inputs, while remaining oblivious to the value of the under-
lying inputs. At the end, the mediators send to the agents messages from which
the agents may infer the assignments to their variables. If the mediators have
an honest majority (namely, the number of colluding mediators is smaller than
the number of mediators outside the coalition), then MD-Max-Sum provides
topology, constraint, and decision privacy, as well as partial agent privacy (see
[9] for the definition of those notions). Those security guarantees hold against
any collusion among the set of agents.

2 Related Work

Léauté and Faltings [9] devised three secure versions of the complete DCOP-
solving algorithm DPOP [12], each with different runtimes and privacy guaran-
tees. In their study they suggested four notions of privacy for the DCOP frame-
work, to which we adhere in this study: agent, topology, constraint, and deci-
sion privacy. Grinshpoun and Tassa [3] presented a privacy-preserving version of
another complete algorithm – SyncBB [5]. The resulting method, P-SyncBB,
preserves topology, constraint, and decision privacy.

Since complete algorithms are not scalable, research efforts were invested also
in designing privacy-preserving implementations of incomplete algorithms. Tassa
et al. [15] developed the P-Max-Sum algorithm, which runs Max-Sum with
cryptographic enhancements in order to preserve privacy. P-Max-Sum provides
topology, constraint, and decision privacy, and it may be extended to provide
also agent privacy. Grinshpoun et al. [4] devised another incomplete privacy-
preserving algorithm, P-RODA, which is based on region optimality [6,7]. P-
RODA provides constraint privacy and partial decision privacy.

Privacy Preserving DCOP Solving by Mediation 489

All of the above mentioned privacy-preserving DCOP algorithms assume soli-
tary conduct of the agents. However, if two or more agents collude and combine
the information that they have, they may extract valuable information about
other agents. To address the risk of collusion, Tassa et al. [14] introduced PC-
SyncBB, the first privacy-preserving DCOP algorithm that is collusion-secure.
It is secure under the assumption that the agents have an honest majority. PC-
SyncBB does extensive usage of Secure Multiparty Computation (MPC) [16]
in order to obliviously compare between costs of partial assignments.

In this work we propose MD-Max-Sum, the first incomplete privacy-
preserving DCOP algorithm that is collusion-secure.

3 DCOP Definitions and the Max-Sum Algorithm

A Distributed Constraint Optimization Problem (DCOP) [5] is a tuple
〈A,X ,D,R〉 where A is a set of agents A1, A2, . . . , AN , X is a set of variables
X1,X2, . . . , XN , D is a set of finite domains D1,D2, . . . , DN , and R is a set of
relations (constraints). Each variable Xn, n ∈ [N] := {1, 2, . . . , N}, takes values
in the domain Dn, and it is held by the agent An.1 Each constraint C ∈ R
defines a non-negative cost for every possible value combination of some sub-
set of variables, and is of the form C : Dn1 × · · · × Dnk

→ [0, q], for some
1 ≤ n1 < · · · < nk ≤ N , and a publicly known maximal constraint cost q.

An assignment is a pair including a variable and a value from that variable’s
domain. The goal of the agents is to find assignments to their variables so that
the sum of all costs that those assignments incur would be minimal.

We consider here a binary version of DCOPs, in which every C ∈ R con-
straints exactly two variables and takes the form Cn,m : Dn×Dm → [0, q], where
1 ≤ n < m ≤ N . Such an assumption is customary in DCOP literature, see e.g.
[11,12]. As the domains are finite, they me be ordered. Hence, the binary con-
straint Cn,m between Xn and Xm may be described by a matrix, which we also
denote by Cn,m, of dimensions |Dn|× |Dm|; in that matrix, Cn,m(i, j) equals the
cost that corresponds to the assignment of the ith value in Dn to Xn and the
jth value in Dm to Xm, where 1 ≤ i ≤ |Dn| and 1 ≤ j ≤ |Dm|.

The constraint graph G = (V,E) is an undirected graph over the set of
variables V = X , where an edge in E connects two variables if and only if
they are constrained. If we define for every pair of variables (Xn,Xm) /∈ E a
constraint matrix Cn,m which is the zero matrix of dimensions |Dn|×|Dm|, then
the set of all such matrices,

C := {Cn,m : 1 ≤ n < m ≤ N} , (1)

encompasses all topology and constraint information.
Every DCOP is also associated with a so-called factor graph. It is a bipartite

graph G′ = (V ′, E′) that is defined as follows. The set V ′ has two types of nodes:

1 We make the standard assumption that the number of variables equals the number
of agents, and that each variable is held by a distinct single agent, see e.g. [11,12].

490 P. Kogan et al.

variable nodes, X1, . . . , XN , and function nodes, Xe, for each e = (Xn,Xm) ∈ E.
The edge set E′ has an edge connecting Xn with Xe if and only if e is an edge
in G that is adjacent to Xn.

The Max-Sum algorithm [1] is an iterative message-passing algorithm that
operates on the factor graph G′. In every iteration a message is sent from each
node in V ′ to each one of its adjacent nodes. In the kth iteration, each variable
node Xn sends to each adjacent function node Xe a message denoted Qk

n→e,
while the message in the opposite direction is denoted Rk

e→n; both messages are
vectors of dimension |Dn|. In the k = 0 iteration all messages are zero. After
completing the kth iteration, the messages in the next iteration will be as follows.
Fixing a variable node Xn and letting Vn be the set of function nodes adjacent
to Xn in G′, then for each Xe ∈ Vn, Xn will send to Xe the vector

Qk+1
n→e :=

∑

Xf∈Vn\{Xe}
Rk

f→n . (2)

As for messages sent from function nodes, if Xe is a function node that connects
the two variable nodes Xn and Xm then the message sent from Xe to Xn is

Rk+1
e→n(x) := min

y∈Dm

[
Cn,m(x, y) + Qk

m→e(y)
]

, ∀x ∈ Dn ; (3)

the message that Xe sends to Xm is constructed similarly. Finally, after com-
pleting a preset number K of iterations, each variable node Xn computes
Rn :=

∑
Xe∈Vn

RK
e→n and then selects a value x ∈ Dn for which Rn(x) is mini-

mal.

4 Mediated Max-Sum

In order to implement Max-Sum in a manner that preserves the privacy of the
agents even when some of them collude, we propose herein MD-Max-Sum – an
implementation of Max-Sum in the mediated model.

Let M = {M1, . . . ,ML} be an external committee of so-called mediators.
The agents in A will share their DCOP private inputs, namely, the topology and
constraint information, with the mediators using a t-out-of-L threshold secret
sharing scheme [13], where t := �(L+1)/2	. Specifically, the agents distribute to
the mediators t-out-of-L shares in each of the entries in each of the matrices in C,
see Eq. (1); the underlying secret sharing field will be denoted henceforth by Zp.
The agents trust the mediators to have an honest majority, in the sense that if
some of the mediators decide to collude in order to reconstruct the shared private
data, the number of colluding mediators would be smaller than the number of
mediators outside the coalition. Under that assumption, the mediators cannot
recover the private inputs that were shared with them, since at least t mediators
have to collude in order to be able to reconstruct the shared secrets, and t =
�(L + 1)/2	 ≥ L − t.

Privacy Preserving DCOP Solving by Mediation 491

After the agents had completed sharing all their private inputs with the
mediators, they go to rest and the mediators start emulating the performance of
the entire Max-Sum algorithm by implementing secure multiparty computation
(MPC) on the shared data. The main challenge in this regard is to design an
implementation of Max-Sum that operates on shared data, namely, in a manner
that is oblivious to the underlying topology and constraint values.

When the mediators complete their emulation of Max-Sum, say by running
an agreed preset number of iterations, K, they send to each of the agents a
message from which that agent can infer the assignment of its variable in the
solution that the algorithm had found.

In order to hide the constraint graph topology from the mediators, MD-
Max-Sum operates on an augmented version G+ = (V,E+) of the constraint
graph G = (V,E). G+ is a complete graph in the sense that E+ includes all

(
N
2

)

pairs of nodes/variables from V = X , where all edges (Xn,Xm) ∈ E+ \ E are
associated with a zero constraint matrix, Cn,m, as described earlier in Sect. 3.
In the full version of this paper [8] we show that the addition of such so-called
phantom edges does not change the algorithm’s outputs. However, with such
added phantom edges, the mediators, who only get shares in the constraint
matrices, cannot distinguish between a zero matrix and a non-zero matrix and,
consequently, they cannot tell which of the edges in the augmented graph are
phantom ones, so the graph topology is preserved.

4.1 The MD-Max-Sum Algorithm

We assume that all agents know the total number of agents N , and the identifying
index n ∈ [N] of each agent. In addition, the sizes of all domains, |Dn|, n ∈ [N],
are also publicly known.

4.1.1 Distributing to the Mediators Shares in the Problem Inputs
In this preliminary stage, the agents share with the mediators the problem
inputs, which, as explained in Sect. 3, are encoded through the set of matri-
ces C, see Eq. (1). To do so, each agent An, 1 ≤ n ≤ N − 1, shares with the
mediators M the constraint matrices Cn,m ∈ C for all n < m ≤ N , where, as
explained in Sect. 3, the matrix Cn,m is of dimensions |Dn| × |Dm| and it either
spells out the constraint values between those two agents, or, if they are not
constrained, it is the zero matrix. The matrices are shared by performing an
independent t-out-of-L secret sharing for each entry in each of those matrices,
where t = �(L+1)/2	. Letting n < m ∈ [N] be indices of two agents, and � ∈ [L]
be an index of a mediator, we denote the share of the cost Cn,m(i, j) that the
mediator M� receives by C�

n,m(i, j). The entire matrix of shares that M� receives
is denoted

C�
n,m =

(
C�

n,m(i, j) : 1 ≤ i ≤ |Dn|, 1 ≤ j ≤ |Dm|) .

After each mediator M�, � ∈ [L], got its share matrix C�
n,m for all 1 ≤ n < m ≤

N , they have all problem inputs and they may now begin an MPC emulation of
Max-Sum over those inputs.

492 P. Kogan et al.

We assume that the mediators have an honest majority. Hence, as we use
t-out-of-L secret sharing with t = �(L + 1)/2	, the mediators cannot learn any
information on the content of the constraint matrices. Therefore, not only the
constraints themselves are kept secret, also the topology is kept secret, since the
mediators cannot tell from their shares whether Cn,m is the zero matrix or not.

While Max-Sum, as well as P-Max-Sum, operate on the exact factor graph
G′, the mediated algorithm MD-Max-Sum operates on an augmented factor
graph, denoted G′

+ = (V ′
+, E′

+), in which every two variable nodes are con-
nected through a function node, even if some of those function nodes stand for a
zero/phantom constraint (which was introduced only for the purpose of hiding
the real topology of G from the mediators).

After the agents finish distributing to the mediators shares in the problem
inputs, they go to rest and let the mediators do the work. The mediators start
an emulation of each of the iterations in Max-Sum. They do so by producing
proper shares in the true messages that would have been sent along each edge of
the factor graph, if the agents had run the Max-Sum algorithm by themselves.

We proceed to explain in the next sections the details of the MD-Max-Sum
implementation. Specifically, we need to explain how in each iteration of the
algorithm, the mediators create shares in the messages that the corresponding
Max-Sum algorithm would have generated. In doing so, we focus on an arbitrary
pair of neighboring nodes in the augmented factor graph: a variable node Xn,
n ∈ [N], and a function node, Xe, where e = (Xn,Xm) and m ∈ [N]\{n}.

4.1.2 Producing Shares in the Messages of the Initial Iteration
In iteration 0, all of the L mediators have to emulate zero messages between Xn

and Xe,

Q0
n→e = (0, . . . , 0) ∈ Z

|Dn|
p , R0

e→n = (0, . . . , 0) ∈ Z
|Dn|
p . (4)

To do so, each mediator M�, � ∈ [L], creates for himself corresponding zero share
vectors as follows:

Q0,�
n→e = (0, . . . , 0) ∈ Z

|Dn|
p , R0,�

e→n = (0, . . . , 0) ∈ Z
|Dn|
p . (5)

Note that no interaction between the mediators is needed at this stage, and that
the L vector shares of the Q-messages in Eq. (5) are t-out-of-L vector shares in
the zero Q-messages in Eq. (4), and likewise for the R-messages.

4.1.3 Producing Shares in Q-messages
In iteration k + 1, the mediators have to emulate the message Qk+1

n→e from the
variable node Xn to the adjacent function node, Xe, where e = (Xn,Xm). In view
of Eq. (2), and as the mediators already have t-out-of-L shares in R-messages of
the kth iteration, such a computation can be done, without interaction between
the mediators, by computing Qk+1,�

n→e :=
∑

Xf
Rk,�

f→n, where the sum is over all
N − 2 function nodes, Xf , between Xn and Xi for any i ∈ [N]\{n,m}.

Privacy Preserving DCOP Solving by Mediation 493

4.1.4 Producing Shares in R-messages
Here, we concentrate on the more involved task of computing t-out-of-L shares
in the R-messages, Rk+1

e→n, from the function node, Xe, where e = (Xn,Xm), to
the variable node Xn. We rewrite Eq. (3) in the following manner,

Rk+1
e→n(x) := min

y∈Dm

Bk
n,m(x, y) , x ∈ Dn , (6)

where Bk
n,m(x, y) denotes the sum

Bk
n,m(x, y) := Cn,m(x, y) + Qk

m→e(y) . (7)

The L mediators hold t-out-of-L shares in Cn,m(x, y) for all (x, y) ∈ Dn × Dm

(denoted C�
n,m(x, y), � ∈ [L]), since such shares were generated and distributed

to them by the agents in the preliminary stage. Moreover, the mediators had
computed in the kth iteration t-out-of-L shares in Qk

m→e(y) for all y ∈ Dm,
where M�’s shares are denoted Qk,�

m→e(y). Hence, C�
n,m(x, y) + Qk,�

m→e(y), which
we denote by Bk,�

n,m(x, y), are t-out-of-L shares in Bk
n,m(x, y), as implied by Eq. (7)

and the linearity of secret sharing. Hence, the main computational challenge is
to compute t-out-of-L shares in the left-hand side of Eq. (6) from the shares that
the mediators hold in each of the terms on the right-hand side of Eq. (6). This
task is non-trivial because the minimum function is non-linear.

Protocol 1, which we describe below, is simultaneously executed by each of
the L mediators. It is executed for each pair of a function node in the augmented
factor graph, Xe, where e = (Xn,Xm), and one of its two adjacent variable nodes,
Xn. At the completion of that protocol, each mediator M� holds a share Rk+1,�

e→n

in Rk+1
e→n. That protocol will be executed in every iteration N(N − 1) times, as

there are
(
N
2

)
= N(N − 1)/2 function nodes in the augmented factor graph G′

+,
and each one of them has two adjacent variable nodes.

Protocol 1: Computing shares in an R-message from the function node
Xe, where e = (Xn,Xm), to the variable node Xn.

Input: Mediator M�, � ∈ [L], holds a t-out-of-L share, Bk,�
n,m(x, y), in

Bk
n,m(x, y), for every x ∈ Dn and y ∈ Dm = {y1, . . . , y|Dm|}.

1 forall x ∈ Dn do

2 M� sets β�
n,m(x) ← Bk,�

n,m(x, y1)
3 forall j = 2, . . . , |Dm| do
4 if COMPARE({Bk,�

n,m(x, yj)}�∈[L], {β�
n,m(x)}�∈[L]) = true then

5 M� sets β�
n,m(x) ← Bk,�

n,m(x, yj)

6 M� sets Rk+1,�
e→n (x) ← β�

n,m(x)

Output: Mediator M�, � ∈ [L], gets a t-out-of-L share Rk+1,�
e→n (x) in Rk+1

e→n(x).

The external loop in the protocol (lines 1–6) is over all values x in the domain
Dn, i.e., over all entries in the vector message Rk+1

e→n. For each such x ∈ Dn, the
mediators have to find the minimum among {Bk

n,m(x, y) : y ∈ Dm}, where each
of the values in that set is shared by a t-out-of-L scheme among them. The t-
out-of-L shares of the minimum will be stored in β�

n,m(x), � ∈ [L]. First (line 2),

494 P. Kogan et al.

each mediator initiates its β-shares with the shares corresponding to Bk
n,m(x, y1).

Then (lines 3–5), for each yj , j = 2, . . . , |Dm|, the mediators compare Bk
n,m(x, yj)

to the current minimum, in which they have t-out-of-L shares in β�
n,m(x), � ∈ [L].

The comparisons are performed in a secure manner by invoking a distributed
sub-protocol that all mediators jointly execute, as will be explained below. If
Bk

n,m(x, yj) is smaller than the current minimum, then each mediator updates
its share of the minimum (line 5).

In order to perform comparisons between values that are known to the media-
tors only through t-out-of-L shares, without recovering those values and perform
the comparison over those recovered values, Protocol 1 calls upon an MPC sub-
protocol called COMPARE (line 4), which all the mediators run together in a
distributed manner. That sub-protocol assumes that the mediators have t-out-
of-L shares in two values x, y ∈ Zp; it returns true if x < y (when x and y are
interpreted as integers) and false otherwise. This sub-protocol is perfectly secure
in the sense that it reveals to the mediators nothing about the two compared
values beyond the final output bit which indicates which of the two is smaller.
(A full description of COMPARE is provided in [8].)

Finally (line 6), each mediator stores in Rk+1,�
e→n (x) its share in the minimum

that was found above, β�
n,m(x).

4.1.5 Termination
After completing a preset number of K iterations, the final assignment to Xn,
n ∈ [N], is determined by the minimal entry in Rn =

∑
Xe∈Vn

RK
e→n. To find

that assignment, each agent An, n ∈ [N], selects a subset of t mediators and
asks them for their shares in the vector Rn. Using those vector shares, An can
recover each of the |Dn| entries in Rn. Afterwards, An finds the minimal entry
in Rn and then assigns the corresponding value to Xn.

4.2 Correctness and Privacy

The MD-Max-Sum algorithm is correct and privacy-preserving, as stated in
Theorems 1 and 2. (The proofs are given in the full version of this paper [8]).

Theorem 1. When MD-Max-Sum and Max-Sum are executed the same num-
ber of iterations K on the same input problem, they will issue the same assign-
ments to all variables.

Theorem 2. MD-Max-Sum provides topology, constraint, and decision pri-
vacy, as long as the mediators have an honest majority.

5 Experimental Evaluation

We implemented and executed the MD-Max-Sum algorithm on the AgentZero
simulator [10], running on AWS C5a instances comprised of a 2nd generation
AMD EPYCTM7R32 processor and 64 GB memory, except for the call to the

Privacy Preserving DCOP Solving by Mediation 495

Fig. 1. Unstructured random graphs (p1 = 0.3, |Dn| = 5), varying N

COMPARE sub-protocol that was executed over LAN with EC2 machines of
type c5.large in Amazon’s North Virginia data center. We compared MD-Max-
Sum with the baseline algorithm Max-Sum (no privacy) and P-Max-Sum [15]
(provides privacy, but not against coalitions). As shown in [15], and stated above
in Theorem 1, both of those privacy-preserving implementations of Max-Sum
simulate perfectly the basic Max-Sum. We used in all experiments K = 10 iter-
ations in each of these algorithms, similarly to [15]. MD-Max-Sum was executed
with L = 5 mediators. In addition, we included in our experiments the PC-
SyncBB algorithm [14], which is the only other DCOP-solving algorithm that
is privacy-preserving and collusion-secure. Recall that unlike MD-Max-Sum,
PC-SyncBB is a complete algorithm; hence, it outputs the optimal solution
but it is expected to be more time consuming.

The first experiment, shown in Fig. 1, was conducted on unstructured random
graphs with constraint density p1 = 0.3 and domains of size |Dn| = 5, n ∈ [N].
We varied the number of agents N to observe the scalability of the algorithms.
The cut-off time for a single execution was set to 30 min.

The performance gap between Max-Sum and P-Max-Sum demonstrates
the price of privacy. The gap between P-Max-Sum and MD-Max-Sum demon-
strates the price of collusion security. Those two gaps remain constant. Con-
versely, the gap between MD-Max-Sum and PC-SyncBB, which demonstrates
the price of completeness, is constantly growing. For small problems with N ≤ 7,
PC-SyncBB is competitive with MD-Max-Sum and even with P-Max-Sum.
However, as the number of agents increases, we can see that the performance
of PC-SyncBB becomes much more time-consuming than MD-Max-Sum’s.
This advantage of MD-Max-Sum over PC-SyncBB is explained as follows: a
significant portion of the runtime of both algorithms is in performing secure
comparisons between secret values. In PC-SyncBB, that MPC sub-protocol is
carried out by all agents; in MD-Max-Sum, on the other hand, it is carried out
by the mediators. The runtime of this computation depends on the number of
interacting parties, see [14, Table 1]. Hence, while the time spent in PC-SyncBB
on secure comparisons increases with N , in MD-Max-Sum it is independent of
N . This mitigation of the dependency of the runtime on N demonstrates the

496 P. Kogan et al.

strength of the mediated model. (Of course, the runtime of MD-Max-Sum does
depend on N through other computations, outside the secure comparisons in
COMPARE, since N affects the size of the graph.)

We also evaluated the algorithms on 3-color graph coloring problems, similar
to the setting described by Zivan et al. [17]. In this setting, for every 1 ≤ n <
m ≤ N , Cn,m(x, y) = q if x = y and Cn,m(x, y) = 0 if x �= y, for some positive
constant q. Figure 2 presents the runtime of the algorithms on 3-color graph
problems with p1 = 0.4 and shows similar scalability properties to the previous
experiments. The small domain size, |Dn| = 3, enables us to experiment with
problems of larger sizes. For this experiment, we started with N = 5 and moved
up to N = 75 agents in steps of 10. While all other algorithms remain within
the cut-off limit of 30 min per single execution, the runtime of PC-SyncBB
exceeded the cut-off limit already for N = 20. Hence, we include in Fig. 2 the
runtime of PC-SyncBB for N = 19, which was the highest number of agents
that could be processed within 30 min. The trends are similar to those in the
former experiment.

Fig. 2. 3-color graph coloring problems (p1 = 0.4), varying N

6 Conclusion

In this work we introduced MD-Max-Sum, the first incomplete privacy-
preserving DCOP algorithm that is also collusion-secure. It is an implementa-
tion of Max-Sum in the mediated model of computation. It preserves topology,
constraint, decision, and partial agent privacy. We analyzed the security and
correctness of the algorithm and, using experimentation, demonstrated its char-
acteristics, its advantages over the only other collusion-secure DCOP algorithm,
PC-SyncBB, and its viability.

Aside from the performance gains achieved by utilizing an incomplete algo-
rithm (as opposed to PC-SyncBB that is based on a complete algorithm), the
transition to the mediated model offers other significant benefits: MD-Max-Sum
is privacy-preserving and is immune to any coalition among the agents, under
the assumption of an honest majority within the mediators; the agents do not

Privacy Preserving DCOP Solving by Mediation 497

need to communicate with each other, a significant advantage in settings where
the agents do not have an efficient way to communicate among themselves; the
agents, that may run on computationally-bounded devices, can outsource costly
and cryptographically-complex computations to dedicated servers; and, finally,
MD-Max-Sum is more robust than all previous DCOP algorithms since if an
agent goes offline (e.g., due to a technical failure) after secret sharing its private
data to the mediators, the algorithm can still be executed and issue the correct
outputs to all agents.

We believe that the mediated model of computation could be successfully
implemented for other DCOP algorithms as well as for various problems of fed-
erated learning, in order to achieve enhanced privacy guarantees, and to reap the
advantages of the mediated model of computation as we have identified herein.

Acknowledgments. This work was partially supported by the Ariel Cyber Innova-
tion Center in conjunction with the Israel National Cyber Directorate in the Prime
Minister’s Office.

References

1. Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In: AAMAS, pp. 639–646 (2008)

2. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems
and applications: a survey. J. Artif. Intell. Res. 61, 623–698 (2018)

3. Grinshpoun, T., Tassa, T.: P-SyncBB: a privacy preserving branch and bound
DCOP algorithm. J. Artif. Intell. Res. 57, 621–660 (2016)

4. Grinshpoun, T., Tassa, T., Levit, V., Zivan, R.: Privacy preserving region optimal
algorithms for symmetric and asymmetric DCOPs. Artif. Intell. 266, 27–50 (2019)

5. Hirayama, K., Yokoo, M.: Distributed partial constraint satisfaction problem. In:
CP, pp. 222–236 (1997)

6. Katagishi, H., Pearce, J.P.: Kopt: Distributed DCOP algorithm for arbitrary k-
optima with monotonically increasing utility. In: DCR (2007)

7. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In: AAMAS,
pp. 133–140 (2010)

8. Kogan, P.: Privacy Preserving Solution of DCOPs by Mediation. Master’s
thesis, supervised by Tassa, T. and Grinshpoun, T., The Open Univer-
sity of Israel (2022). https://www.openu.ac.il/Lists/MediaServer Documents/
PersonalSites/TamirTassa/MD Max Sum.pdf

9. Léauté, T., Faltings, B.: Protecting privacy through distributed computation in
multi-agent decision making. J. Artif. Intell. Res. 47, 649–695 (2013)

10. Lutati, B., Gontmakher, I., Lando, M., Netzer, A., Meisels, A., Grubshtein, A.:
AgentZero: a framework for simulating and evaluating multi-agent algorithms. In:
Agent-Oriented Software Engineering, pp. 309–327 (2014)

11. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161, 149–180 (2005)

12. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization.
In: IJCAI, pp. 266–271 (2005)

13. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

https://www.openu.ac.il/Lists/MediaServer_Documents/PersonalSites/TamirTassa/MD_Max_Sum.pdf
https://www.openu.ac.il/Lists/MediaServer_Documents/PersonalSites/TamirTassa/MD_Max_Sum.pdf

498 P. Kogan et al.

14. Tassa, T., Grinshpoun, T., Yanai, A.: PC-SyncBB: a privacy preserving collusion
secure DCOP algorithm. Artif. Intell. 297, 103501 (2021)

15. Tassa, T., Grinshpoun, T., Zivan, R.: Privacy preserving implementation of the
Max-Sum algorithm and its variants. J. Artif. Intell. Res. 59, 311–349, Article no.
103501 (2017)

16. Yao, A.C.: Protocols for secure computation. In: FOCS, pp. 160–164 (1982)
17. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed

constraint optimization. Artif. Intell. 212, 1–26 (2014)

BFLUT
Bloom Filter for Private Look Up Tables

Shlomi Dolev1(B), Ehud Gudes1, Erez Segev1, Jeffrey Ullman2,
and Grisha Weintraub1

1 Ben-Gurion University of the Negev, Beersheba, Israel
dolev@cs.bgu.ac.il

2 Stanford University, Stanford, USA

Abstract. Open addressing hash tables, possibly under double hashing
policy, are regarded more memory efficient than linked list hashing; as the
memory used for pointers can be used for a longer table, and allow better-
expected performance as the load factor is smaller and there are fewer
expected collisions. We suggest further eliminating the single pointer to
the memory location used in each entry of the open addressing, and using
a single bit per entry, namely use a Bloom Filter to encode the memory
address. Thus, obtain even a better load factor, with the same memory,
and less number of wrongly mapped addresses when the load is low.

Moreover, we can prove that the content in the lookup table that is
based on the bloom filter is pseudo-random (in the level of randomization
implied by the hash function), thus, keeping the items and the addresses
that the LookUp Table (LUT) encodes private.

1 Introduction

Hashing into hash tables and into Bloom filters (BF) share similar concepts
[4,6,10,12], still Bloom Filters are not used to function as look up tables (LUT)
that always return values inserted, as hash tables do. We propose a secure imple-
mentation and privacy preserving of LUT using BF, which we call BFLUT.

We suggest to encode an item name, say, “John Smith” with item address,
say “0110”, by making sure that the bit of the bloom filter, in the address
H(John Smith0) is turned on, then the bits of the bloom filter in the addresses
H(John Smith01), H(John Smith011), H(John Smith0110) are also turned
on. Searching for the “John Smith” address will start in finding out whether the
bloom filter bits in the addresses H(John Smith0) and H(John Smith1) are set
(Fig. 1). If none of them is set then we can return that “John Smith” is not in the
LUT. If only one of them are set, say, H(John Smith0) then, addresses that start

This research was (partially) funded by a grant from the Ministry of Science and
Technology, Israel & the Japan Science and Technology Agency (JST), the German
Research Funding (DFG, Grant #8767581199), Genesis Consortium, the Rita Altura
trust chair in computer science, and by the Lynne and William Frankel Center for
Computer Science.

c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 499–505, 2022.
https://doi.org/10.1007/978-3-031-07689-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_35&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_35

500 S. Dolev et al.

with 0 are plausible, and we continue checking the possibility that the address
starts with 00 or 01, by hashing H(john Smith00) and H(John Smith01). If
both the bits in addresses H(John Smith0) and H(John Smith1) are set in the
bloom filter, then we continue to investigate extensions for both of them. Note
that the load factor (say, kept to be less than 1/2) and the (pseudo) randomness
of the hash function imply a small set of plausible (non relevant) addresses.

Fig. 1. Get value from BFLUT example

Beyond provable privacy of the LUT items and address(es) our design of
the Bloom Filter LUT (BFLUT) can fit the cases in which one has a limited
RAM memory, memory that implies fast inquires on table of bits, and fast hash
function executions, but expensive access to the actual item record(s), possibly
stored in disk or in Data Lakes [13].

Since the addresses (or pointers) are encoded by a series of hashes, the number
of bits that are founded with value 1 in the bloom filter (when the load factor
is approaching 1/2) is approximately half of the address, hence allowing further
saving in the size of the bloom filter.

Assume an address requires k bits, in this case the array used for an open
addressing hash table, say under the policy of double hashing, and load factor
of approximately 1/2, requires mk bits to handle m/2 keys.

Consider a BFLUT for the same k and m and the same load factor (measured
in terms of the ratio of bits with value 1 over the total number of bits in the
BFLUT). When inserting a new member, when the BFLUT load factor is close
to 1/2, only approximately half of the m hash mapping find the value 0 that
should be flipped to 1, and hence uses only approximately m/2 bits to encode
the address.

Privacy is obvious. Given a BFLUT where every bit value is defined by a
pseudo-random hash function, the entire content of the BFLUT reveals nothing

BFLUT 501

on the keys nor on the addresses prior to guessing the key and using the hash
function to reveal the address(es). As mentioned, the addresses maybe addresses
to a disk or lake locations, phone numbers of spies hidden as part of a totally
different scope BFLUT.

A particular use case can be a public publication of a secret directory (look up
table), where the information publicized is not useful unless one knows a secret
salt string (or private key) that is concatenated, say as a prefix of the inputs
to the hash function (both in insertion and in search). The resulting scheme is
post-quantum (as apposed to public key encryption systems such as RSA) when
the hash function used is SHA256 or SHA512.

2 Problem Statement and Motivation

Given a set of keys K and a set of integers V = [0, 2m − 1] for some m > 0, we
want to map keys from K to values from V . The mapping is a relation R ⊆ K×V

Our goal is to store R in a data structure D that satisfies the following
properties:

– Supported operations on D are:
• D.put(key, value) - inserts a pair (key, value) into D
• D.get(key) - returns values mapped to a given key

– The memory footprint of D should be as small as possible
– D should be privacy-preserving, meaning that by having access to D an adver-

sary cannot learn anything about actual values in R (both keys and values)
– False positives are acceptable, while false negatives are not, meaning that

∀k ∈ K,D.get(k) ⊇ {v|(k, v) ∈ R}
One motivation scenario is an implementation of an inverted index. Say we

have a set of text documents D = {D1,D2, ...,Dn} and we want to create an
index that maps keywords from the documents in D to the documents containing
them (Table 1).

Table 1. Inverted index example

Keyword Documents

word1 Doc1, Doc23

word2 Doc7

word3 Doc6, Doc27

....

Both index and documents can be uploaded to the untrusted public cloud
and multiple clients can query the index by a specific keyword to get ids of
documents containing the keyword, and further download the documents from
the cloud by using their ids. If documents contain sensitive information, they
can be encrypted before uploading them to the cloud.

502 S. Dolev et al.

3 Memory Comparison with Hash Tables

The most relevant data-structure competitor is Hash Table. Assume the imple-
mentation uses a hash table to implement a look up table, where each entry
of the table consists of k bits to describe an address (pointer) in a significantly
slower and cheaper memory. Note that we do not store the key in the hash table,
as then the memory comparison will be biased in favor of the BFLUT, but at
the same time we allow the Hash Table to return several addresses as candidates
for the address of a given key. Assume further that the number of entries in the
Hash Table is m, so the total number of bits used to implement the hash table
is m · k bits.

The case in which the load factor of the Hash Table is α = 1/2 HT
is better than BFLUT with one hash. Assume further that m/2 entries
are occupied in the open addressing based Hash Table, implying a load factor,
αht = 1/2. A search in the hash table for an address of a given key must stop in
an empty slot, as there is no clear indication that the address(es) found by the
hash function in the first probed location(s) does (do, respectively) not belong
to another key.

The expected number of items found until the first empty location is
found, given that the address of the key has been inserted into the table, is
Σm−1

i=1 1/(2i−1) = 2 − 1/2m−1. Which is close to 2 elements per search.
Using the same amount of memory m · k bits the BFLUT, and m/2 keys,

αbf , the number of bits that are set to 1 divided by m · k will be smaller than
1/2. If we consider each of the m/2 keys hashed k times, then by a reduction to
the number of empty bins when throwing (m · k)/2 balls into m · k bins, we get
that the expected fraction of empty bins is: ((k · m − 1)/(k · m))k·m/2 ≈ 0.6, and
therefore αbf ≈ 0.4 < 0.5.

Thus, the expected number of returning items when using the binary search
strategy in the BFLUT. The expected number of wrong addresses prefix of length
1 is αbf . The expected number of wrong prefixes of length 2 is 2α2

bf+αbf , as either
an extension of a wrong prefix or an extension of the right prefix, similarly the
expected number of wrong prefixes of length 3 is 4α3

bf +2α2
bf +αbf . Therefore, the

expected number of wrong addresses to be returned is r(k) = 2r(k −1)αbf +αbf

where r(1) = 2/5, converges to approximately 2 and the total with the right
address is 3.

The case in which the load factor of the Hash Table is αht = 1/4 BFLUT
is better with two hashes. In this case, the expected number of items found
until the first empty location is found, given that the address of key has been
inserted to the table, is Σm−1

i=1 1/(4i−1) ≈ 4/3.
((k · m − 1)/(k · m))k·m/4 ≈ 0.76, and therefore αbf ≈ 0.24 < 0.25.
Thus, the expected number of returning items when using the binary search

strategy in the BFLUT. The expected number of wrong addresses prefix of length
1 is αbf . The expected number of wrong prefixes is 0.28, and the total is 1.46 >
1.33.

BFLUT 503

If we take the optimal number of hash function, h, calculated for a given mk
and given load factor of the BF h = 1/αht ln 2 where αht is the load factor of the
equivalent hash table, in our case αht = 0.25, we get in this case approximately
2.77 hash functions. When we use two hash functions instead of one we return
less addresses than hash table with the same memory.

The obtained αbf for the case of two hash functions is 0.4 as in αht = 0.5
above. Then the expected number of returned items is replacing αbf to (αbf)2

which is 0.16, plugin in into the expected number of returning items we BUFLT
performs better 1.24 < 1.33.

The above results are in favor for the Hash Table alternative as the memory
used when a single address is mapped to a key is better than the size of memory
required by the BFLUT. However, when the number of hash functions approach
its optimal number the BFLUT performs better.

Experiment Results. An implementation of the BFLUT1 has been used to
verify the above BFLUT performance calculations, using SHA256 as the (cryp-
tographic post quantum) hash function. Following the analysis in [11] we show
that the false positive can be tuned by (slightly) enlarging the size of the Bloom
filter and using fitting (greater) number of hash functions.

4 Related Work

When a standard hash table with separate chaining is used to store key-value
pairs, additional memory should be used for pointers. In the case of open address-
ing, there is no simple way to encode multiple values per key and the values are
exposed to anyone who has access to the table. In our approach, we do not use
pointers, can map multiple values per key, and the data structure does not leak
information about the stored values.

Invertible Bloom lookup table [10] and the Bloomier filter [3] have a similar
motivation to ours but do not support multiple values per key and can return
false negatives to the lookup queries which are not acceptable in our system
model.

Encrypted Bloom filters are used in [9] and [2] to implement a secure inverted
index, but the Bloom filter is used in a standard way to check if a particular
keyword belongs to a particular document (hence the number of Bloom filters
is equal to the number of documents). In our approach, we use a single data
structure to get all the values assigned to a particular key.

“Searchable encryption” [1,5,7,8] is a related (yet orthogonal) topic to our
research, as it is mainly focused on developing secure protocols and databases
rather than basic data structures. Our data structure can be used as a building
block for these schemes.

To the best of our knowledge, our approach is the first to use Bloom fil-
ters for privacy-preserving lookup table implementation without false-negative
responses.
1 Can be found in https://github.com/segevere/BFLUT.

https://github.com/segevere/BFLUT

504 S. Dolev et al.

5 Concluding Remarks

We have presented a basic data structure that implements a dynamic (supporting
addition of elements) look-up table that is based on Bloom Filter. The scheme
preserves (in post-quantum fashion) privacy, with no need to use (and store)
encryption keys. Thus, multiple users can update the data structure even if they
do not share a key.

Still, a user that would like to avoid guessing the participating keys may
concatenate a fixed string (salt) to the keys prior to hashing.

Moreover, it can be used for deniability where, after the data structure is
presented to the public, there is no definite proof (especially when the load factor
is relatively high) that a certain element has been inserted into the BFLUT, as
it returns with other possible addresses. In the case of encrypted Hash Table,
the owner of the data will be requested to reveal the private key, and then
the contents of the Hash Table revealed in clear the addressees of the inserted
elements.

Note that the BFLUT can support mapping of several addresses to a (term
or) key rather than one address for key, in such a scenario, a single search returns
a set that includes all valid addresses that were inserted to the BFLUNT for the
searched key.

References

1. Avni, H., Dolev, S., Gilboa, N., Li, X.: SSSDB: database with private information
search. In: Karydis, I., Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds.) ALGO-
CLOUD 2015. LNCS, vol. 9511, pp. 49–61. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29919-8 4

2. Bellovin, S.M., Cheswick, W.R.: Privacy-enhanced searches using encrypted bloom
filters. IACR Cryptol. ePrint Arch., p. 22 (2004)

3. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: an efficient
data structure for static support lookup tables. In: Ian Munro, J. (ed.) Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2004, New Orleans, Louisiana, USA, 11–14 January 2004, pp. 30–39. SIAM (2004)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2022)

5. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

6. Dharmapurikar, S., Song, H., Turner, J.S., Lockwood, J.W.: Fast packet classi-
fication using bloom filters. In: Bhuyan, L.N., Dubois, M., Eatherton, W. (eds.)
Proceedings of the 2006 ACM/IEEE Symposium on Architecture for Network-
ing and Communications Systems, ANCS 2006, San Jose, California, USA, 3–5
December 2006, pp. 61–70. ACM (2006)

7. Fisch, B.A., et al.: Malicious-client security in blind seer: a scalable private DBMS.
In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
17–21 May 2015, pp. 395–410. IEEE Computer Society (2015)

https://doi.org/10.1007/978-3-319-29919-8_4
https://doi.org/10.1007/978-3-319-29919-8_4

BFLUT 505

8. Benjamin Fuller, et al.: SoK: cryptographically protected database search. In: 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26
May 2017, pp. 172–191. IEEE Computer Society (2017)

9. Goh, E.: Secure indexes. IACR Cryptol. ePrint Arch., p. 216 (2003)
10. Goodrich, M.T., Mitzenmacher, M.: Invertible bloom lookup tables. In: 49th

Annual Allerton Conference on Communication, Control, and Computing, Aller-
ton 2011, Allerton Park & Retreat Center, Monticello, IL, USA, 28–30 September
2011, pp. 792–799. IEEE (2011)

11. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

12. Pontarelli, S., Reviriego, P., Mitzenmacher, M.: Improving the performance of
invertible bloom lookup tables. Inf. Process. Lett. 114(4), 185–191 (2014)

13. Weintraub, G., Gudes, E., Dolev, S.: Needle in a haystack queries in cloud data
lakes. In: Costa, C., Pitoura, E. (eds.) Proceedings of the Workshops of the
EDBT/ICDT 2021 Joint Conference, Nicosia, Cyprus, Volume 2841 of CEUR
Workshop Proceedings, 23 March 2021. CEUR-WS.org (2021)

Author Index

Andrews, John 388
Arnon, Shlomi 356
Azaria, Benjamin 259

Barak-Pelleg, Dina 66
Barazani, Oshri 19
Bendahan, Jorge 377
Berend, Daniel 66, 153
Biton, Erez 189
Bornstein, Asa 135
Boskov, Novak 300

Chaudhury, Sreejit 208
Chauhan, Sneha 47
Ciampi, Michele 388, 428
Cohen, Asaf 189
Cordi, Christopher 281

Daza, Vanesa 318
Dimiter, Avresky 162
Dobrev, Dobrin 162
Dolev, Shlomi 153, 247, 499
Drucker, Nir 99

Eldefrawy, Karim 447
Elyashar, Aviad 377

Falk, Brett Hemenway 408
Frank, Michael P. 281
Frenkel, Sergey 118

Gabert, Kasimir 281
Gal-Oz, Nurit 180
Gangopadhyay, Sugata 47
Gottlieb, Lee-Ad 259
Gradus, Nimrod 189
Grinshpoun, Tal 487
Gudes, Ehud 180, 247, 499
Gueron, Shay 224
Gurwitz, Omer 189

Hadar, Ofer 170
Haque, Abida 318
Hayoon, Hen 29

Helinski, Carollan 281
Hendler, Danny 135
Huang, Dachuan 468

Ishaq, Muhammad 428

Joye, Marc 1

Kallitsis, Michael 337
Kampanakis, Panos 337
Kamphorst, Bart 88
Kao, Ryan C. 281
Kogan, Pablo 487
Kolesnikov, Vladimir 281
Korolova, Aleksandra 468
Kumar, Ajeet 208
Kumar, Manish 153
Kumar, Rajnish 356

Ladha, Abrahim 281
Lepoint, Tancrede 447
Liagkou, Vasiliki 78
Liu, Frederick 468
Loh, Peter 270

Magdon-Ismail, Malik 428
Maitra, Subhamoy 208
Marcus, Michiel 88
Mitrany, Rotem 180

Nastou, Panagiotis E. 78
Nema, Rohit 408

Oren, Yossi 29
Ostrovsky, Rafail 408, 428

Paillier, Pascal 1
Panda, Samanvaya 366
Pattengale, Nicholas 281
Pelleg, Tomer 99
Pihur, Vasyl 468
Puzis, Rami 377

Radami, Naor 300
Rokach, Lior 232

508 Author Index

Rotem, Yarden 232
Roy, Somjit 208
Rubin, Amir 135

Sankuratripati, Subhash 468
Scafuro, Alessandra 318
Segal, Yoram 170
Segev, Erez 499
Sen Gupta, Sourav 208
Shani, Ofri 180
Shapira, Bracha 232
Shimoni, Nathaniel 232
Shoel, Maayan 180
Spirakis, Paul 78
Stamatiou, Yannis C. 78

Tam, Laura 447
Tassa, Tamir 487
Tiwari, Trishita 300

Tolpin, David 19
Trachtenberg, Ari 300
Tuhin, Isfaque Al Kaderi 270

Ullman, Jeffrey 499

Veugen, Thijs 88
Voloch, Nadav 180

Wang, Zhengkui 270
Weintraub, Grisha 499

Yair, Hannah 247
Yung, Moti 468

Zacharakis, Alexandros 318
Zapico, Arantxa 318
Zeng, Ruogu 468
Zikas, Vassilis 388, 428

	 Preface
	 Organization
	 Contents
	Blind Rotation in Fully Homomorphic Encryption with Extended Keys
	1 Introduction
	2 Programmable Bootstrapping
	3 Using Ternary Keys
	3.1 Micciancio–Polyakov's Approach
	3.2 Proposed Approach

	4 Extensions and Generalizations
	4.1 Higher Radices
	4.2 Multi-digit Approach

	5 Performance Analysis and Experiments
	5.1 LWE Estimator for Security Estimates
	5.2 Nominal Setting
	5.3 Extended Setting
	5.4 Finding Optimal Settings

	6 Conclusion
	A Tables
	References

	Monitoring Time Series with Missing Values: A Deep Probabilistic Approach
	1 Introduction
	2 Problem: Multivariate Time Series Forecasting
	3 Architecture: Recurrent Neural Network with Uncertainty Propagation
	3.1 Conventional Forecasting
	3.2 Forecasting with Uncertainty Propagation

	4 Case Study: Monitoring a Computer Cloud
	5 Related Work
	6 Discussion and Future Research
	References

	Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Background
	2.1 Template Attacks
	2.2 Dataset
	2.3 The Hamming Weight Leakage Model

	3 Compression Methods
	3.1 Principal Component Analysis
	3.2 Difference of Means
	3.3 Integration SNR
	3.4 Top Score
	3.5 Optimal Selection

	4 Evaluation of Methods
	4.1 Evaluation System
	4.2 Definition of the Training and Test Methods
	4.3 Experimental Setup

	5 Results
	5.1 Observations

	6 Conclusion
	References

	Design of Intrusion Detection System Based on Logical Analysis of Data (LAD) Using Information Gain Ratio
	1 Introduction
	2 Related Work
	3 Proposed Work
	3.1 Binarization
	3.2 Support Set Minimization
	3.3 Pattern Generation
	3.4 Classifier Design

	4 Results and Discussion
	5 Conclusion
	References

	Simulating a Coupon Collector
	1 Introduction
	1.1 The Coupon Collector's Problem
	1.2 Various Extensions of the CCP
	1.3 Simulating CCP

	2 A Fast Simulation for the Collector's Brotherhood Problem
	3 Simulation Results
	4 Conclusions and Future Work
	References

	On the Undecidability of the Panopticon Detection Problem
	1 Introduction
	2 Definitions and Notation
	3 The Panopticon Detection Problem and Our Approach
	4 Deductive Panopticons
	5 Conclusions
	References

	Privacy-Preserving Contrastive Explanations with Local Foil Trees
	1 Introduction
	1.1 Related Work
	1.2 Notation

	2 Explainable AI with Local Foil Trees
	3 Secure Solution
	3.1 Classify User Data
	3.2 Generating Synthetic Data
	3.3 Classify Synthetic Data
	3.4 Training a Decision Tree
	3.5 Locate the Fact Leaf
	3.6 Locate the Foil Leaf
	3.7 Construct the Explanation
	3.8 Retrieving a Foil Data Point

	4 Security
	5 Experiments
	6 Conclusion
	References

	Timing Leakage Analysis of Non-constant-time NTT Implementations with Harvey Butterflies
	1 Introduction
	2 Background and Notation
	2.1 Distribution of an HE Secret Key
	2.2 NTT

	3 Compiler Optimizations
	4 Exploiting NTT over Secret Keys
	4.1 Extracted Leakage After the Second Iteration
	4.2 Hardness of RLWE Instances After the Leakage

	5 Responsible Disclosure
	6 Conclusions
	A NTT Algorithms
	B Generating the Primes
	References

	Predicting the Direction of Changes in the Values of Time Series for Relatively Small Training Samples
	1 Introduction
	2 On the Predictability of the Increments Sign of Random Sequences and Processes
	3 On the Use of the Random Processes Conceptions to Predict the Sign
	3.1 Change of Sign and Local Extremes
	3.2 Impact of Time Series Autocorrelation on the Sign Prediction

	4 Ways to Use SC as a Predictor of the Increments Sign
	5 Discussion and Conclusion
	References

	Machine-Learning Based Objective Function Selection for Community Detection
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 The NECTAR-ML Algorithm
	3.1 Learning a Model for Objective Function Selection

	4 Experimental Evaluation
	4.1 Competitive Analysis to NECTAR
	4.2 Competitive Analysis to MOEA Algorithms

	5 Conclusion
	References

	Randomness for Randomness Testing
	1 Introduction
	2 Related Work
	3 NIST Randomness Tests Suite
	4 Using (True) Randomness for Randomness Testing
	5 Types and Parameters of Tested Sequences
	6 Results
	7 Concluding Remarks
	References

	Botnet Attack Identification Based on SDN
	1 Motivation
	2 Selected Features of SDN for Solving Security Problems
	3 Experimental Results
	4 Future Work
	5 Conclusion
	References

	Setting Up an Anonymous Gesture Database as Well as Enhancing It with a Verbal Script Simulator for Rehabilitation Applications
	1 Introduction
	2 Related Work
	2.1 OpenPose (OP) as a Tool to Extract Human Body Skeleton
	2.2 Human Body Simulation

	3 Proposed Method
	4 Patients Database
	4.1 General Description
	4.2 Database Exercises Content
	4.3 Database as Human Skeletons

	5 Gesture Generator via Text Script
	6 Synthetic Motion Simulator
	6.1 The Simulator Algorithm

	7 Experimental Results
	8 Discussion
	9 Conclusions
	10 Further Work
	References

	Fake News Detection in Social Networks Using Machine Learning and Trust
	1 Background and Related Work
	2 Prevention of Fake News Propagation
	2.1 Our System - The Fake News Trust Based Analyzer

	3 Experimental Evaluation
	4 Conclusion and Future Work
	References

	Reinforcement Based User Scheduling for Cellular Communications
	1 Introduction
	2 Proportional Fairness (PF) Background
	3 Model Description
	4 Reinforcement Learning Proportional Fairness Based Scheduler
	5 Simulations
	5.1 Simulation Setup
	5.2 Unsuccessful Transmissions

	6 Implementation
	6.1 Testbed
	6.2 Adaptation of RL-PF Model for Implementation
	6.3 Implemented RL-PF Learning Methodology
	6.4 Implementation Results

	7 Conclusions
	8 Appendix
	8.1 LTE Basic Terms
	8.2 Downlink Link Adaptation (DLLA)

	References

	A Heuristic Framework to Search for Approximate Mutually Unbiased Bases
	1 Introduction
	1.1 Motivation, Contribution and Organization
	1.2 Closeness Measures for AMUBs
	1.3 Dimension Reduction Using SVD

	2 Construction of AMUBs
	2.1 Creation of Bases
	2.2 Choice of Bases
	2.3 Further Heuristics

	3 Results and Numerical Study
	4 Conclusion
	References

	Counter Mode for Long Messages and a Long Nonce
	1 Introduction
	2 Notation and Definitions
	3 CTR Mode and Its Limitations
	4 Compound-CTR
	4.1 Explanation, Design Rationale and Properties

	5 Discussion
	References

	Transfer Learning for Time Series Classification Using Synthetic Data Generation
	1 Introduction
	2 Background and Related Work
	2.1 TSC Related Work
	2.2 TL for TSC Related Work

	3 Method
	3.1 Data Generation - Source Dataset
	3.2 Data Generation - Source Tasks
	3.3 CNN Model's Architecture
	3.4 CNN Pretraining
	3.5 Fine-Tuning a New Target Dataset

	4 Experimental Setup
	4.1 Datasets
	4.2 Data Preprocessing (Reducing the Labeled Training Data to 10%)
	4.3 Methods Used for Comparison
	4.4 Hyperparameters and Other Settings
	4.5 The Evaluation Process

	5 Results
	5.1 Results Appendices
	5.2 Brief Summary of the Results
	5.3 Seasonality Evaluation
	5.4 Positive Transfer Learning
	5.5 Mean Average Rank and Win/Lose Rate

	6 Conclusion and Future Work
	References

	Non-stopping Junctions via Traffic Scheduling
	1 Introduction
	2 Automatic Real-Time Platoon Problem and Algorithm
	3 Traffic Signs Policies
	4 Virtual Traffic Lights
	5 Virtual Traffic Light Algorithm
	5.1 Outline of the Algorithm
	5.2 Implementation of the Algorithm
	5.3 Analysis of Our Algorithm
	5.4 Experimental Results

	6 Conclusions
	References

	Predicting Subscriber Usage: Analyzing Multidimensional Time-Series Using Convolutional Neural Networks
	1 Introduction
	2 Problem Statement
	3 Data and Processing
	3.1 Data Sets and Features
	3.2 Data Processing

	4 CNN Construction
	5 Experiments
	6 Conclusions
	References

	Smart Cybercrime Classification for Digital Forensics with Small Datasets
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Converting Case Records into a Knowledge Graph
	3.2 Graph Embedding
	3.3 Siamese Convolutional Neural Network Model

	4 Experiments and Results
	5 Conclusion
	References

	Auditable, Available and Resilient Private Computation on the Blockchain via MPC
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Results and Evaluation
	1.4 Outline of the Paper
	1.5 Preliminaries
	1.6 Related Work

	2 Overview: Approach and Trust Model
	2.1 Logical Players and Evaluation Pattern
	2.2 Approach
	2.3 Trust Model

	3 Generic Security Statement and Proof
	4 Instantiations and Security Proofs
	5 Prototype Implementations and Test Results
	5.1 Millionaires' Problem Demo
	5.2 Configurable Garbled Universal Circuit (GUC) Method

	6 Conclusion
	References

	Union Buster: A Cross-Container Covert-Channel Exploiting Union Mounting
	1 Introduction
	2 Background
	2.1 Linux Containers
	2.2 Linux Page Cache
	2.3 Related Work

	3 Attack Elements
	3.1 Threat Model
	3.2 Page Cache Attack Surface
	3.3 Target Deployments

	4 Attack Implementations
	4.1 Side-Channel Attacks
	4.2 Covert-Channel Attacks

	5 Discussion
	5.1 Limitations
	5.2 Mitigations
	5.3 Future Directions

	6 Conclusion
	References

	Mutual Accountability Layer: Accountable Anonymity Within Accountable Trust
	1 Introduction
	1.1 Our Contribution
	1.2 Formal Definition for Mutual Accountability (MUTAL)
	1.3 MUTAL: Instantiations
	1.4 Monitoring Committee: Selection and Evolution

	2 Related Work
	3 Preliminaries
	4 Formal Definition of Mutual Accountability Layer
	5 Instantiations
	5.1 General Instantiation
	5.2 Instantiation Based on t-out-of-n Group Signatures (Camenisch et al. ch24SCN:CDLNT20)
	5.3 Evolving Committees

	6 Conclusion
	References

	Faster Post-Quantum TLS Handshakes Without Intermediate CA Certificates
	1 Introduction
	2 The Heavy Authentication Data Issue
	3 Related Work
	4 ICA Statistics
	5 Speed Up Mechanisms
	6 ICA Caching
	7 Considerations
	8 Conclusion and Future Work
	References

	Enhancing Cybersecurity of Satellites at Sub-THz Bands
	1 Introduction
	2 Losses and Noise over Channel
	3 Minimizing Transmitter Power
	4 Numerical Results
	5 Conclusion
	References

	Polynomial Approximation of Inverse sqrt Function for FHE
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 CKKS Homomorphic Scheme
	2.2 Polynomial Approximation of Sign Function
	2.3 Inverse sqrt Approximation

	3 Approximation of 1x
	3.1 A Good Initial Guess
	3.2 2-Line Approximation
	3.3 Finding Pivot Point

	4 Implementation Details
	5 Results and Comparison
	6 Conclusion and Future Work
	References

	Detecting Clickbait in Online Social Media: You Won't Believe How We Did It
	1 Introduction
	2 Related Work
	2.1 Clickbait Detection

	3 Proposed Method
	3.1 Content-Based Features
	3.2 Image-Based Features
	3.3 Linguistic-Based Features
	3.4 Behavioral-Based Features

	4 Data Description
	5 Experiment Setup
	6 Results and Discussion
	6.1 Feature Analysis
	6.2 Performance

	7 Conclusions
	References

	Etherless Ethereum Tokens: Simulating Native Tokens in Ethereum
	1 Introduction
	2 Our Contributions and Related Work
	2.1 Smart-Contract-Enabled Transaction Ledgers
	2.2 EET Construction and Analysis
	2.3 Implementation, Benchmarks, and Comparisons

	3 Preliminaries and Model
	4 The Cryptocurrency-Ledger Functionality FT-Ledger
	5 The Smart-Contract-Enabled Transaction Ledger
	6 The EET Ledger
	A Our Protocol: How to Realize FLedgerEET
	References

	A Linear-Time 2-Party Secure Merge Protocol
	1 Introduction
	2 Previous Work
	2.1 Secure Sorting
	2.2 Secure Merging

	3 Overview
	3.1 Challenges
	3.2 Intuition and Construction Overview

	4 Preliminaries
	4.1 Secret Sharing
	4.2 Secure Computation
	4.3 Additively Homomorphic Encryption
	4.4 Notation

	5 Construction and Protocol Definitions
	5.1 Obliviously Shuffling Input Lists
	5.2 Converting Ciphertexts to Secret Shares
	5.3 Securely Merging Obliviously Shuffled Lists

	6 Conclusion
	References

	FairMM: A Fast and Frontrunning-Resistant Crypto Market-Maker
	1 Introduction
	1.1 Related Works

	2 -Trade Protocols
	2.1 Selling Tokens for Ethers

	3 (Fair) Ordering of Transactions
	3.1 Our Protocol: How to Realize Ftrade

	4 Combining Ftrade with -Exchange Protocols
	5 Incentive Compatibility of Market Maker (MM)
	6 Evaluation
	6.1 Experiment Setup
	6.2 Analysis of Results
	6.3 Comparison with Uniswap

	References

	In-App Cryptographically-Enforced Selective Access Control for Microsoft Office and Similar Platforms
	1 Introduction
	2 Preliminaries
	2.1 Microsoft Office Add-In
	2.2 Access Structures
	2.3 Ciphertext-Policy ABE
	2.4 Charm

	3 The Excel Add-In
	3.1 Setting
	3.2 (Offline) Key Distribution
	3.3 Spreadsheet Creation
	3.4 Encryption
	3.5 Decryption
	3.6 Expressiveness of Policies

	4 Evaluation and Performances
	4.1 Encryption
	4.2 Decryption

	5 Short-Term Adoption: Policy-Based Encryption Without Collusion-Resistance via Multi-key Hybrid Encryption (Using Standardized Schemes)
	6 Conclusion and Future Work
	References

	Differentially-Private ``Draw and Discard'' Machine Learning: Training Distributed Model from Enormous Crowds
	1 Introduction
	2 Preliminaries and Related Work
	3 Draw and Discard Machine Learning
	3.1 GLMs
	3.2 DDML Client-Side Update
	3.3 DDML Server-Side Draw and Discard
	3.4 Properties and Features of DDML
	3.5 Parameter Tuning and Clipping

	4 Privacy of DDML
	4.1 Adversary Modeling
	4.2 Privacy Against Channel Listener (Adversary I)
	4.3 Privacy Against Internal Threat (Adversary II)
	4.4 Privacy Against Opportunistic Threat (Adversary III)

	5 Real World Applications
	6 Discussion
	A Variance Stabilization Proof and Other Proofs
	References

	Privacy Preserving DCOP Solving by Mediation
	1 Introduction
	2 Related Work
	3 DCOP Definitions and the Max-Sum Algorithm
	4 Mediated Max-Sum
	4.1 The MD-Max-Sum Algorithm
	4.2 Correctness and Privacy

	5 Experimental Evaluation
	6 Conclusion
	References

	BFLUT Bloom Filter for Private Look Up Tables
	1 Introduction
	2 Problem Statement and Motivation
	3 Memory Comparison with Hash Tables
	4 Related Work
	5 Concluding Remarks
	References

	Author Index

