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Abstract One of the strategies to reduce mortality from breast cancer is based
on screening using digital mammography as an initial evaluation. The detection
and diagnosis of breast carcinomas are achieved by interpreting images of dif-
ferent modalities including digital mammograms, magnetic resonance imaging,
ultrasound, and thermography; however, the literature shows that multimodal image
fusion is highly accurate in representing breast carcinomas. Due to the human
complexity in the diagnosis and detection of breast cancer and the implication of
using historical patient imaging records, it is important to use processing tools that
allow the analysis of breast images for possible improvements of the diagnosis. This
chapter proposes the use of diversified data sets composed from different modalities
to support the breast cancer diagnosis process and demonstrates that by applying
various processing techniques it is possible to support the interpretation of the
findings and that they can improve the precision in detecting breast cancer.

Keywords Breast imaging · Medical image fusion · Breast cancer imaging
modalities · Diseases-based image fusion · Breast PET positron emission
tomography · Fusion mammography with breast PET

L. R. Sánchez (�)
Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León, Ciudad
Universitaria, San Nicolás de los Garza, Nuevo León, Mexico
e-mail: liliana.resendizsnch@uanl.edu.mx

L. M. T. Treviño
Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología de la Universidad
Autónoma de Nuevo León, Ciudad Apodaca, Mexico
e-mail: luis.torrestrv@uanl.edu.mx

G. E. Sánchez
CT Scanner del Sur, San Ángel, Álvaro Obregón, México
e-mail: dragiselaus@yahoo.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Torres-Guerrero et al. (eds.), 2nd EAI International Conference on Smart
Technology, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-031-07670-1_8

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07670-1_8&domain=pdf
http://orcid.org/0000-0001-5532-4924
http://orcid.org/0000-0002-8072-6033
http://orcid.org/0000-0002-8386-3439

 885 46882 a 885 46882 a
 
mailto:liliana.resendizsnch@uanl.edu.mx

 885 51863 a 885 51863 a
 
mailto:luis.torrestrv@uanl.edu.mx

 885 55738 a 885 55738 a
 
mailto:dragiselaus@yahoo.com

 -2016 61494 a -2016 61494
a
 
https://doi.org/10.1007/978-3-031-07670-1_8


112 L. R. Sánchez et al.

1 Introduction

Breast carcinoma could be effectively treated if caught early [3]. Therefore, it
is important to have the right tools to notice the presence of signs of breast
cancer. There are numerous tests and procedures for the prevention, diagnosis, and
treatment, and one of the most important is digital mammography [11]. Clinically,
digital mammography (MG) has been used as a standard test to diagnose breast
cancer; this corresponds to a general examination and is useful for the detection
of breast cancer and the reduction of mortality [6]. However, false positives on
digital mammograms lead the second reviews, resulting in increased costs for their
health care, as well as unnecessary medical procedures for patients [44]. Diagnostic
ultrasound technique is recommended when breast density is reflected [45]. Given
that small masses can pass through radiography radiation, the need to resort to other
imaging modalities such as high-resolution breast PET could be more effective [16].

During the last two decades, molecular imaging has shown important advance-
ment to integrate their techniques in the evaluation of malignant tumors. Equipment
is specifically designed for breast examination and is characterized as a technique
that offers greater spatial resolution that allows to detect smaller lesions. It is
shown that the fusion of breast PET with mammography (PET/MG) imaging
allows for more accurate evaluation by fusing anatomical location with functional
imaging. The use of radiotracers in molecular imaging studies allows to detect breast
carcinomas before vascularization since the metabolism of cancer cells generally
increases before stimulation of the growth of new vessels [42]. The molecular
image is obtained from the images from breast positron emission tomography, and
it captures enough information to recognize possible oncological lesions at an early
stage or not seen in the mammography that can be subject to quantitative evaluations
for their detection, characterization, and monitoring.

In interest of improving lesion detection, the goal of this research is the
use of diversified data sets of high-resolution breast PET with mammography
images in a fused image to support the breast cancer imaging diagnostic process
and demonstrate that by applying various processing techniques it is possible to
correlate metabolic information to recognize important breast findings. The use of
heterogeneous data sets is intended to provide support for a correct clinical diagnosis
and can even perform the classification of features that allow the identification of the
oncological lesion in malignant and benign groups through the selection, extraction,
and classification of characteristics in the fused image.

Several recent studies are summarized in this chapter and indicate that high-
resolution breast PET images combined with mammography images give enough
evidence to be a useful diagnostic tool, although further evaluation and improvement
may be required. So, we present the feasibility to analyze two types of heteroge-
neous data sets for clinical diagnostic purposes.

The remainder of this chapter is structured as follows: Sect. 2 gives some
background of breast cancer screening; breast imaging technologies, mammogra-
phy, and breast positron emission tomography are examined in Sect. 3. Fusion of
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mammography and high-resolution breast PET principles are inspected in Sect. 4.
Material and methods are described in Sect. 5. Section 6 describes applications of
deep learning in cancer detection, and finally, the conclusions are exposed in Sect. 7.

2 Breast Cancer Screening

Despite continued progress in detection and diagnosis, breast cancer is still an
alarming global public health problem. Conventional mammography continues to
be the cornerstone in the detection of breast carcinoma; however, new technologies
provide valuable information on the molecular aspect of the tumor, with the
consequent detection of small lesions, at earlier stages, with proper identification
and better surgical planning, as well as decreased morbidity and mortality.

The premise of an early detection of breast cancer has a positive effect on
the disease through medical intervention [33]. Through an early treatment, the
reductions of the morbidity and mortality are still the main goals during significant
finding detection.

3 Breast Imaging Technologies

3.1 Mammography

Through the analysis of mammograms, the presence of masses, calcifications, den-
sities, among others, could be evaluated [13]. Several studies show lower sensitivity
during the physical examination compared with the analysis of a mammogram [20].
When the goal is to detect calcifications, mammography is more accurate than
ultrasound [13]. The diagnosis based on mammography has the ability to identify
cancers due their absorption capability of x-rays with respect to the surrounding
tissue [7], but there are high false negative and positive rates in patients with a
dense breast tissue [46]. Also, mammography presents many drawbacks such as
the use of ionizing radiation.

3.2 High-Resolution Breast PET

Historically, in the practice of nuclear medicine, medical specialists visually evalu-
ate images for the detection and monitoring of breast carcinomas [10]. Although the
expertise of a physician is considered as the most important factor during diagnosis,
there are other aspects that definitely affect the final result, among them, image



114 L. R. Sánchez et al.

noise, the ability of visual perception from the physician, deficient image clarity,
and inadequate contrast [23].

In 1994, Thompson et al. [50] developed a highly specific technique to detect
the increased metabolic rate of breast tumors. The developed technique provides a
low-cost, high-spatial-resolution positron imaging system known as high-resolution
breast PET.

High-resolution breast PET uses a compression device that allows to detect
1.5mm lesion [56]. Their technique compression device is solely for minimizing
patient motion, is getting a more accurate result, and is also considered as an
important tool for monitoring the cancer treatment response. Because cancerous
cells present an increased glucose metabolism, the radiotracer molecules are taken
up by the cells making suitable the localization of the cancer with high-resolution
breast PET. Also in a PET/CT study, the metabolic activity in the tumor can be
quantified to assist in assessing the effectiveness of therapy both during and after
treatment, allowing for changes in treatment when needed [7].

It was demonstrated the potential to detect breast lesions with a series of special
phantom experiments by measuring basic scanner parameters as scatter fraction, as
well as sensitivity and major resolution [39]. Also, it was presented clinical results
by analyzing images achieving a specificity over 90%, a sensitivity over 86%, and
an accuracy of 89% in the diagnostic task that can be categorized as a feasible and
accuracy rate [26]. High-resolution breast PET was considered as technique that
can assist during the procedure of partial mastectomy to improve negative margins
[48]. High-resolution breast PET showed higher accuracy results during the lesion
characterization [56]. This imaging procedure is still considered as an emerging
imaging technology that produces high-resolution tomographic 12-slice images of
18F-FDG uptake in the breasts [3].

Due to the advances in nuclear breast imaging devices, the interest in high-
resolution breast PET has been increasing. Also because of the use of lower doses of
radiopharmaceutical and their increased sensitivity, the high-resolution breast PET
has been suggested for breast cancer detection and treatment planning [29].

Although, it is still considered a recently introduced nuclear medicine study,
which after injecting a radiopharmaceutical called F-18 fluorodeoxyglucose (18-
FDG) intravenously to subsequently acquire images of the mammary glands where
it is possible to observe the behavior of lesions identified by other diagnostic
modalities and their metabolism. Those suspicious breast lesions will have increased
metabolism in this study. Silverstain et al. [45] reported that molecular imaging
tools such as breast PET have equivalent sensitivity and improved specificity when
it is compared with breast MRI so they recommended that breast PET is used
when a contraindication is found for MRI in some patients. Specht et al. [47]
characterized molecular imaging procedures that offer a better spatial resolution and
greater accuracy when it comes to image quantification. Berg et al. [4] found greater
specificity at the breast and lesion levels and show the performance when compared
to MR imaging. A group of scientists identified the high-resolution breast PET as
a useful tool due to the adequate results in early diagnosis of breast carcinoma
[23], although further evaluation on improvement may be required. The evolution of
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positron emission tomography instruments and their requirements to obtain good-
quality images are shown in the paper by Eo et al. [14].

High-resolution breast PET provides functional imaging information and is
considered as a useful tool as a result of their high sensitivity because it can identify
the stage of the breast cancer especially in those patients scheduled for conservative
surgery as well as assess recurrence versus postsurgical changes and monitor the
neoadjuvant chemotherapeutic response; the aforementioned contributes to improve
the treatment planning of the disease [34].

It was concluded that the imaging sensitivity of high-resolution breast PET was
higher than whole-body PET [57]. Also, there was found stronger correlations with
immunohistochemical information of breast cancer using high-resolution breast
PET up against to whole-body PET [32].

The values of specificity and sensitivity for breast PET images were established
in different clinical situations by Martins MV et al. [30]. Molecular imaging is still
considered as a worthy technique when it is combined with mammography [3, 42].

The effectiveness and characterization of breast images were studied, found a
moderate positive predicted value, and considered the information of mammography
should be used together to make diagnostic decision to improve the efficacy of
studies [8].

The sensitivity and specificity as diagnostic values were evaluated by Farajati J
et al. [18]; using the maximum high-resolution breast PET uptake value> 1.9, they
concluded a specificity greater than 95% and with a sensitivity of 100%.

4 Fusion of High-Resolution Breast PET with
Mammography

Efforts to demonstrate the benefits of using high-resolution breast PET with
mammography have been different. Weinberg et al. [55] concluded in a device
with biopsy capability combining with a conventional mammography; this allowed
to exploit the potential of correlation of high-resolution breast PET with mam-
mography. Thompson et al. [50] provide a low-cost imaging system in which
high-resolution breast pet images can be correlated with mammography images.

Thompson [49] considered a group of designs as compatible when combining the
high-resolution breast PET image with the mammography image. High diagnostic
accuracy for breast lesions was found; when mammography and breast PET images
were analyzed, it was found a sensitivity of 91%, a specificity of 93%, and an
accuracy of 92%.

Fusion makes it possible to recognize breast cancer since the mammography
image provides morphological information and the functional image provides
metabolic information [17].

High-resolution breast PET contributed with extra information in patients with
implants as well the hormonal status or even density does not affect the diagnose
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value. Also, breast PET imaging was very helpful to show breast cancer with
more characterization, such as multifocal or multicenter disease and, in some cases,
intraductal involvement [17].

The images provided by high resolution breast PET are suitable as a complemen-
tary study for detecting breast cancer [1].

Breast cancer cells show an increased absorption of the radiopharmaceutical than
normal cells [17]. The fusion of breast PET with mammography was considered
as an optimum choice due to their capability to provide additional morphological
information in findings.

High-resolution breast PET and mammography are studies acquired in different
conditions. Bergman et al. [5] proposed a process that makes simple the correlation
of both modalities, and this allowed to obtain more accurate results during the
registration of mammography image with functional image [5].

5 Material and Methods

The database was retrospectively reviewed for one hundred female patients with
a suspicious breast lesion on mammography or clinical background. All breast
PET images were reported by a nuclear medicine physician. The characterization
of the images included breast density, right, left, or bilateral lesion, multifocal-
ity, multicentricity, and extension or intraductal component. Digital imaging and
communications in medicine (DICOM) is used as the standard representation,
communication, and storage of medical images and related information. A DICOM
file format has been used, so we have implemented a tool for medical image
registration that allows establishing correspondence between features in two sets
of images, by using a rigid transformation model. The utilization of Grassroots
DICOM library was chosen as a framework library.

5.1 Image Processing and Analysis

Image fusion combines information of two data sets of a related scenario, and this
makes suitable to get additional information in a single scene. Image registration
is a processing technique where two images are aligned by overlapping them; this
allows to get a third integrated image. Both data sets were acquired with different
conditions and devices. This task in which the input images are aligned before
getting the fused image is called image registration.
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Fig. 1 Standard craniocaudal (CC) view of MG image. BIRADS 3 (left), high-resolution breast
PET image (middle), and fused image previously registered (right). Patient with antecedent of
ductal infiltrating carcinoma, treated with tumorectomy. Fusion PET/MG shows 18-FDG uptake
near to the surgical staples and a multifocal lesion

Fig. 2 Standard craniocaudal (CC) view of MG image (left), breast PET image (middle), and
fused image previously registered (right), in a patient with breast implants

5.1.1 Image Registration

By finding the optimum geometrical transformation to correlate anatomical region
between both images, valuable information is extracted and used to interpret and
diagnose clinical findings that are considered as very complex tasks. One of the
challenges of image registration is the aligning a series of two-dimensional images
(Breast PET image) on a two dimensional image (MG image), due to different
imaging condition in which different sensors are used to acquired to make a
multimodal analysis as well low-quality and noise were present. The main goal
is to integrate the information obtained from Breast PET device with a digital
mammography image to get detailed scene representation. See Figs. 1, 2, 3, 4, and
5.
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Fig. 3 The medio lateral oblique (MLO) view of MG image with density category: d (left), breast
PET image (middle), and fused image previously registered (right). Patient with antecedent of a
growing lymph node in the axilla, with two negative biopsies (surgical staples). Fusion PET/MG
shows 18-FDG uptake in the upper quadrants, not suspected in the mammography

Fig. 4 The medio lateral oblique (MLO) view of MG image with one lesion in the inferior
quadrant (left). High-resolution PET (middle) and fused PET/MG image (right) that show 18-
FDG uptake in the same lesion shown in the mammography plus two other lesions in the upper
quadrants (multicentric lesions)

In the last decade, several registration methods have considerably grown. One of
the main contributions to image registration was described by Pluim et al. [36].
There are several applications of fusion between modalities such as computed
tomography (CT) with positron emission tomography (PET), as well as magnetic
resonance (MR) among others [24, 40, 41, 43, 54]. The image registration task is
still facing new challenges and developments that will surely continue to position it
as a very active area within image analysis and processing. Currently, there is a big
initiative in the development of automatic and efficient registration techniques.

The images captured by breast PET are three-dimensional, and mammography
images are considered a 2D imaging modality. The complexity is visible because
there is no positional information between both modalities, which represents a
challenge during the registration process. For the purpose of depicting fused image,
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Fig. 5 The mediolateral oblique (MLO) view of MG image (left), high-resolution breast PET
image (middle), and fused image previously registered (right). Left breast (upper images). Right
breast (inferior images). Patient with mother and sister with breast cancer, BIRADS 3. Fusion
PET/MG shows focal 18-FDG uptake in both breast. Bilaterality

we studied the registration methodologies based on intensity and their features. The
methodologies included the common geometrical transformations and professional
assessment techniques realized by physicians.

6 Applications of Deep Learning in Breast Cancer Detection

In the last two decades, there have been substantial advances in methods to
detect breast cancer with artificial intelligence techniques. The complexity of each
particular task makes the workflow meaningful. But with the development of new
machine learning methods and their application in the clinical area, the need for
precision is crucial to a major contribution to classification, diagnosis, and planning
treatment [15]. Litjens et al. [28] evidence the existence of demand in the
application of machine learning models for the purposes of prediction and prognosis
of cancer due to a prominent need for personalized treatments.
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Currently, there are applications assisted by Artificial Intelligence techniques that
are already in use, and their constant evaluation of their performance is tracked to
refine the ways of communicating to the patient that risk information, as well as to
the doctor who provides the primary care [15].

The consideration of hundreds and sometimes thousands of clinical cases allows
artificial intelligence techniques to recognize the subtle patterns of breast tissue that
are considered precursors of breast carcinomas. The techniques allow learning by
taking advantage of all information directly from the data by creating models that
are significantly more accurate in various populations. The use of applications based
on artificial intelligence techniques allows additional assistance, thus achieving a
double diagnosis that discards errors on a larger scale [35].

Deep learning applications in healthcare have grown in importance in recent
years [52], and the performance of the different techniques in object detection and
classification tasks has been key for its use and application with medical images.
Automatic feature extraction still presents a constant and ongoing challenge to find
the features that accurately describe the output versus input data. The reproducible
capacity of deep learning techniques and their non-discriminatory approach to
characteristics makes the implementation feasible [38].

Dreyer and Allen [12] show the importance of using platforms to handle large
amounts of information derived from image-based medical records, as well as
emphasize effective analysis of results [12].

Deep learning techniques are useful when applied to various fields of research
using diversified data sets collected from different sources [53], enhancing the
diagnostic process in the medical area, which helps to spread the hypothesis through
the application of various techniques that they allow to predict the acceleration of
the multiple repetitive tasks of doctors [31].

An analysis of different studies that exploit deep architectures was carried out
and is presented in the paper by Hamidinekoo et al. [19]. In this analysis, it has
been identified the convolutional neural network as the most common architecture.

Arevalo et al. [2] tested several conventional neural network architectures and
compared them with two descriptors during the manual diagnosis of injuries. Their
experimentation was carried out with the BCDR-FM data set, and it was not tested
with pre-trained networks.

The use of mammography images with a combination of pre-trained convolu-
tional neural network is shown in the work realized by Carneiro et al. [9]; they found
these models useful in medical applications and showed that it is not necessary
a pre-registration of the input images in a multiview classification. Additionally,
the risk of breast cancer is established according to BIRADS. As a result, the pre-
trained models show better performance against the randomized ones. Huynh et
al. [21] used the pre-trained AlexNet to address mass diagnosis by analyzing the
performance of support vector machines (SVM) as a classifier. A scheme in which
a convolutional neural network that has been pre-trained was adjusted in a subset
of the DDSM database is presented by Jiao et al. [22]. The features that represent
the masses were extracted from the layers of the model using different scales that
correspond to high and medium levels, and then the use of support vector machine
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was used as a classifier merging their predictions in each case. Levy and Jain [27]
adopt AlexNet and GoogleNet architecture to classify findings in mammography
images. They explore transferred learning and compare against one made from
scratch.

Ting et al. [51] proposed a deep classification algorithm using mammography
images of MIAS database and built an architecture including 28 convolutional
layers. Rampun et al. [37] adapted AlexNet architecture by modifying to get a
new pre-trained version, then adjust with curated breast imaging subset of DDSM
(CBIS-DDSM), and made their predictions based on three models. Lehman et al.
[25] developed an algorithm and trained a deep convolutional neural network based
on ResNet-18 architecture, to measure the amount of fibrous and glandular tissue.
There is a major risk of breast cancer in women with dense breast as the tumors can
be masked.

In summary, the technology can improve user practice through the use of artificial
intelligence algorithms as an aid in the management of data science, tools, and
knowledge in medicine to incorporate them into patient care. The literature review
shows substantial efforts in the area of artificial intelligence applied to medicine and
has addressed the improvement of algorithms as well as their accuracy, execution,
and propagation in volumes of data as well as in the application in electronic records
of the health. It is important to emphasize the veracity of the information that is used
during the training phase as well as in the test phase to obtain greater accuracy in
any diagnostic result.

7 Conclusions

Although there are several imaging options capable of identifying and defining
breast cancer, the fusion of breast PET combined with mammography can provide
additional information for the detection of the primary lesion since breast PET
measures metabolism, mammography images offer anatomical reference through
different views of each breast that can be evaluated together by the interpreting
physicians, and merging both techniques allows the anatomical localization related
to the functional image. The fused image can be obtained through the application
of conventional image analysis and processing techniques as well as artificial
intelligence techniques. Breast PET and MG are synergistic and when combined in
a single image, allow to detect minor findings specially in patients with dense breast.
The literature review shows the fusion of breast PET findings with mammography
(PET/MG) allowing to identify the primary lesion in dense breast, multifocal
disease, multicentric disease, bilaterality or ductal involvement. Integrating infor-
mation between these images could increase the specificity, sensitivity, accuracy,
and the positive predictive value of MG in diagnostic work-up of breast cancer.
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