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Abstract Some decision problems are represented in sequential stages within
which an action is executed without knowing its effect until the action of the last
stage is completed. A dynamic case management modeling and notation problem
has been remodeled with these features to improve its automation. This chapter
describes a bandit-based application with a probabilistic learning policy tested with
simulated data and a stage graph and proposes its application in case automation.
The results of the simulations and an initial model of the application as a graph of
stages are presented.
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1 Introduction

Dynamic processes automation in organizations is a problem in the Business
Process Management Suits—BPMS industry; for this purpose, Case Management
Modeling and Notation—CMMN tools have emerged that allow the modeling
and automation of cases. Business Process Management Notation—BPMN and
CMMN—environments pursue the modeling and automation of all types of human
activity (business) that can be executed as a process, whether determined or not.
However, automation with CMMN can be improved (decrease its uncertainty) by
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learning certain patterns after repeated execution of the case model implementation
[8].

Decision-making has reached a large volume of work and research due to its
application to private and corporate problems. Some researchers and scholars have
made use of graphs to model decision-making situations [1] and have proposed
algorithms to solve them, several of which have been studied in different undergrad-
uate programs such as engineering [3]. On the other hand, Artificial Intelligence
has been the basis for the development of programs that allow approximating
recommendations that previously would only be made by a human expert [9],
which, clearly, may also have applications in decision-making problems.

In Artificial Intelligence, three types of machine learning are used: supervised,
unsupervised, and reinforcement learning. For the last one, the system does not learn
from the information provided by an external subject; instead, it has to discover what
it must learn according to the consequences of its actions. A simple technique within
reinforcement learning is the one that allows solving the problem of the multi-arm
bandit (MAB), where an agent must decide the action that generates the best reward
from among a set of them, for which its associated value is only known until a large
number of attempts have been made and the value can be deduced. This technique is
approached in this chapter to solve stationary processes related to the management
of probabilities associated with each action since it uses the bandit gradient model
[11].

The set of actions available to the user to find the one that gives the highest reward
can be modeled using a graph. Actually, in this chapter, the multi-armed bandit
technique is used with some restrictions, suitable for problems that can be modeled
in stages, where the individual value of the reward in each action is only known
when the final objective has been achieved; that is, there is uncertainty throughout
the process.

Uncertainty is one of the characteristics of dynamic business cases [5]. The issue
shown above inspired this work; since a decision-maker does not have a standard
procedure that ensures the sequence of actions for a case to be resolved but knows
the actions eventually involved, the restrictions present between those actions and
the final result when selecting a sequence of them; that is, the achievement or not
of the expected objective. Some samples of decision problems appear in everyday
life; they are made up of a set of activities that are executed, and where the reward
is only observed after they have been executed many times, such as medical health
care processes, in which only after performing a certain set of activities on a patient,
can the effect of the process be established.

On the other hand, the multi-armed bandit technique has already been studied
as an alternative solution to complex problems with little information, thanks to
its characteristic balance between exploitation and exploration, which means good
results with a lower computational cost compared to other techniques [14].

As an alternative that allows the recommendation of a tasks’ sequence, each task
belonging to a well-defined stage, with a low computational cost, we implemented
the multi-armed bandit model of Reinforcement Learning in this research and
describe it in this chapter.
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2 Multi-Armed Bandit Problem

“Multi-armed bandits is a simple but very powerful framework for algorithms that
make decisions over time under uncertainty” [10]. There are several types of multi-
armed bandits related to the degree of complexity of the algorithms, the way they
interact with the environment, and the mathematical supports that characterize them,
among other aspects.

In [6], the bandit process is described as a single-armed bandit process, as a
machine that has associated a sequence of states, each of them with a reward, and a
state transition function that operates according to the states already visited and an
independent real-valued random variable, and with a known statistical description.
And, the multi-armed bandit process is described as a set of single-armed bandit
processes with a controller that operates one of these machines for each time, based
on a policy that it adopts to maximize the rewards received.

Thus, the accumulated benefit that is received when selecting an action “a” at
different times i is a simple average of the rewards that have been accumulated when
selecting action “a,” since the reward will not necessarily be the same at different
times, as it can be seen in formula 1 [11].

Qt(a) = R1 + R2 + . . . + RNt(a)

Nt (a)
. (1)

The same author [11] considers a gradient bandit when he learns a number
preference Ht(a) for each action a, but it “has no interpretation in terms of reward.”
This preference directly influences the probability that the action will be taken in
the next time, according to the Boltzmann distribution (Eq. 2), and this is updated
in each step, according to the reward and the average of all the rewards up through
and including that time.

πt (a) = eHt (a)

∑n
b=1 eHt (b)

. (2)

Initially, all Ht(a) preference values are equal, regardless of their value, so all
actions have the same probability of being selected.

3 The Problem of Dynamic Cases

Business Process Management—BPM, according to [4], refers to the design,
representation, analysis, and control of business processes and brings together a
set of process management best practices with tools and information technologies.
For [2], it is the integration of information technologies to improve, innovate, and
manage business processes to facilitate the achievement of business objectives.
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The management of processes has been a constant concern for researchers who
have been searching for their optimization, specifically the Workflow, such as some
of the models presented in [13]. It has gone from managing purely static processes
to increasingly dynamic processes, which has given rise to new challenges for
companies that generate Business Process Management Suites (BPMS) where all
the technological developments that support business processes are concentrated
[12], a challenge that this research aims to support.

As stated above, the term “case” arose, which in [13] is defined as a situation
that may occur in the business for which the resolution procedure is not necessarily
predefined. One of the emerging standards for modeling cases is Case Management
Model and Notation (CMMN) that uses a set of graphic symbols, composition rules,
and artifacts for this purpose; a comprehensive description of this notation is found
in [7], but it is emphasized that the dotted lines around the activities make them
optional, and this reveals the uncertainty that characterizes the cases.

An example of a case modeled with CMMN is shown in Fig. 1. This is the model
that is discussed and analyzed later.

4 Model

In this way, decision problems are modeled where it may be necessary and sufficient
to select one and only one of the nodes in each stage or level (see Fig. 2), to form
a set that, in the end, will allow a planned objective to be reached or not. Each of
the nodes in the graph has an associated bandit. At the end of many iterations, it is
expected that the path found—the convergent path by this algorithm—will be made
up of the actions that have achieved the highest preference, and therefore, it must
match a route that will reach the goal with a high reward.

The probability of taking a path made up of the L nodes will be equivalent to the
multiplication of the transition probabilities between its nodes, as expressed in Eq. 3
where i denotes the decision node selected at a given stage and L is the number of
stages.

P(i0 → i1, i1 → i2, . . . , iL−1 → iL) = P(i0 → i1)P (i1 → i2) . . . P (iL−1 → iL). (3)

Since the model must be adapted to problems where the reward associated with
each node is not known, but rather a global reward for each complete path, the
concept of preference for node selection of the Gradient bandit mentioned above
is used. Here, the preference associated with node i is called vi , and the transition
probabilities between adjacent nodes are estimated from those preference values, as
observed in Eq. 4, where A is the adjacency matrix of the network of bandits.

P(i → j) = evj

∑
k Ai,kevk

. (4)
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Fig. 1 CMMN diagram. Adapted from [7]

The initial values of v are zero, so the formula 4 calculates the same probability to
go from one node to each of its next or neighboring nodes, that is, with a uniform
probability; in this way, the decision to move from node i to another node k is totally
random.

After each stage τ , the total reward is observed, and according to its sign, a
positive or negative reward will be given to the preferences associated with all the
nodes of the path, as Eq. 5 where δ ≥ 0 is a parameter that controls the learning rate.

vj (τ + 1) = vj (τ ) ± δ. (5)

Although values close to zero are expected for δ, after the implementation of the
model, it became necessary to handle values with magnitudes related to the rewards
of the problem being tested, as will be explained later.
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Fig. 2 A network of hidden
bandits with L = 3 levels
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These new preference values vi of the nodes are taken into account to calculate a
new route, with a selection priority for the nodes that have a higher value, according
to the formula 4; this guarantees that, finally, the nodes with the highest preference
value will correspond to the solution path.

5 Exploitation and Exploration

Exploration and exploitation are very important characteristics in reinforcement
learning models.

Exploitation refers to the tendency of the agent to continue selecting the activity
that has given the best result so far, in search of improvements. Exploration refers to
the agent’s ability to evaluate other activities that are not necessarily working well,
looking for a better selection in the future [11].

The algorithm that is presented gives greater importance to exploration when it is
beginning to learn or to know the effects of its decisions, which gradually decreases,
while the importance of exploitation increases toward the end of learning. Although
one of them prevails at a certain moment, there is always a percentage of probability
for the other. This happens because the selection criterion is given by the transition
probabilities between nodes according to Eq. 4, which with the initial values of vi

at zero guarantees uniform probabilities to pass from a node to its adjacent ones for
the next stage, giving all the space to the exploration, since there is no preferred
node. In each time or execution, these probabilities are updated according to the
modifications made to the preference values vi with increases or decreases δ whose
magnitude has been adjusted to guarantee that a sufficient percentage of selection
of alternatives that have not yet been chosen, during the first iterations.
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In intermediate cases in which the values of the probabilities begin to mark
their superiority over those of other transitions, there is a lower percentage of
probability that other actions will be selected, increasing exploitation and decreasing
exploration; but the moment will come when the nodes that make up the answer to
which the search converges have almost 100% of the probability of being chosen,
and it is at that moment that the answer of the recommended path is obtained.

6 Algorithmic Implementation of the Model

The generation of a graph for the tests of the learning algorithm has been
implemented, whose adjacency matrix is stepped so that no node is adjacent to
another of the same stage. When generating the matrix, it is also taken into account
that each node must have at least one adjacent node from the next stage. The nodes
of the graph correspond to the actions that are taken, and each of them is assigned
a reward to calculate the gain of the path at the end. Each node is associated with a
bandit that a normal distribution has a mean in its reward and standard deviation of
a magnitude according to those of the rewards.

Once the gain or loss is known at the end of the iteration, the preference values of
each node of that route are updated, according to the formula 5; this value is used to
calculate the new transition probabilities with the formula 4, for the next iteration.
It should be noted that, at the end of each stage, only the transition probabilities of
the nodes involved in the selected route are affected, but that at the beginning of
each iteration, all the modifications that these probabilities have undergone in the
previous stages of the simulation are taken into account.

The selection for the next neighbor of each node is strongly influenced by the
probabilities of transition between nodes, which give rise to the exploitation of the
preferred routes, and to the exploration as explained in Sect. 5. So, at the end of the
defined iterations, the simulator converges to the best route it has studied, which
may be the optimal one.

Algorithm 1 shows the pseudocode of the proposed model. It knows the values
of L (the number of stages), M (vector with the number of nodes of each stage), and
the vector w (preference values of each node) that is initialized to zeros. Calculate
n that is the total number of nodes in the graph, randomly to generate the adjacency
matrix and the bandits for each node. For each iteration, the simulator calculates
the transition probabilities between nodes, with which, in each stage (up to the
penultimate), it selects a node and finds its neighbors and does the same in the next
stage.

With the approximate bandits’ values of the selected nodes, the gain at the end
of the L stages is calculated. According to the value and the sign of the gain, the
preference values of each node (w) are updated with which the probabilities of
transition to its neighbors are calculated again for the next iteration.
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Algorithm 1 L-n-bandit(L, M[L])
1: Calculate: n
2: Initialize: v[n] = 0
3: Generate: Ad[nxn] = Adjacent Matrix
4: Generate: B[n] = Real Bandits
5: for t = 1 to T do
6: Initialize: orig = 0
7: Add: orig in path
8: P(i → j) = e

vj
∑

k Ai,ke
vk

,

9: for l = 1 to L-1 do
10: Generate: nvzorig = neighbours
11: Select: dest ∈ nvzorig by P(i → j)

12: orig = dest

13: Add: orig in path
14: end for
15: Calculate: Gainpath

16: if Gainpath > 0 then
17: v[n+1] = v[n] + δ by i ∈ path
18: else
19: v[n+1] = v[n] - δ by i ∈ path
20: end if
21: end for

7 Numerical Experiments

The code is executed 10 consecutive times to obtain an initial estimate of its
effectiveness; each time with 999 iterations, a percentage of seven out of ten
executions is obtained that lead to the correct answer following the approximate
generation procedure of the probability transition matrix, as can be seen in the
composite Fig. 3.

Then, to estimate the performance of the algorithm and the most suitable value
for the parameter δ, we take a fixed graph arranged as shown in Fig. 4, that is, with
five stages and thirteen nodes, connected as shown the edges and their adjacency
matrix.

This graph complies with the defined restrictions has a high density of allowed
connections and in each stage has one of the values of its bandits higher than that of
the other ones, to ensure that it finds the route that has the highest gain associated
with it. The adjacency matrix and the bandit vector values (B) were generated as
follows.
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Fig. 3 Results with random graphs
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Fig. 4 Model graph

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0
0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B = [−0.833e−01, 6.12e+02, 9.49e−02, 3.18e+00, 3.75e−01, 6.33e−01,
7.73e−01, 5.47e−01, 5.77e+02, −6.95e−01, 8.23e+02, −1.83e+00, −3.13e−01].

The result obtained with 99 iterations for the proposed model is the 5-stage
nodes vector [0,2,4,11,12] that is the optimal vector. In Fig. 5, it can be seen how
the average gain is approaching to the real gain and how the gain converges to the
maximum real gain curve.

In the same figure, the upper curve corresponds to the best-tested route gain
calculated with the assigned bandit value; the most unstable curve shows the gain
obtained for the selected route, to the extent that the automaton is learning the value
of the bandits; and the lower greenish curve shows the accumulated average of these
gains, which converges to the first line.

We proceed to establish how the value of δ influences, to give an informed
recommendation on the value that should be used.

The value of δ in Eq. 5 was initially selected with values between 0.1 and 0.9,
which are positive in case of gain and negative in case of loss, to motivate or
demotivate the automaton, so that in the next step select the nodes that receive
the reinforcement. The normalized differences that were found between the real
gain and each of the gains that were obtained on average in 100 iterations for each
parameter’s combination are shown in Table 1.
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Fig. 5 Probability-weighted result

Table 1 Results with δ Iterations

Deltha 100 300 600 900

1e−1 0.7146873 0.6781488 0.7089705 0.7325367

1e−2 0.6965094 0.6706974 0.6768052 0.6542384

1e−3 0.2909915 0.2335418 0.2185707 0.1505568

1e−4 0.6362933 0.3897829 0.2263654 0.1647789

1e−5 0.7059966 0.6926970 0.6712759 0.6435113

Table 2 Results with gamma Iterations

Gamma 100 300 500 700 900 1000

0.00001 0.368 0.360 0.344 0.328 0.322 0.272

0.00025 0.102 0.044 0.034 0.066 0.052 0.042

0.00050 0.050 0.078 0.082 0.072 0.082 0.074

0.00075 0.080 0.092 0.086 0.090 0.078 0.090

0.00099 0.092 0.102 0.084 0.084 0.100 0.106

The difference ranges are over 15%, with some little differences for the number
of iterations that are executed. Best δ values are in magnitudes of thousands as are
viewed in Table 1.

To improve it, we proceed to create a self-adjusting δ, which depends on the
value of the gain received by the tested route. A new variable γ is involved, which,
when multiplied by the profit or reward received at the end of the path, will give the
value δ for Eq. 5.

In fact, it was necessary to take values for γ of the order of ten thousandths, so
that when multiplying it by the gain, which for this example reaches values close to
500 units, values of δ less than one can be obtained as viewed in Table 2.



50 C. C. Uribe Sandoval and L. O. Chaparro Lemus

Due to it, the results improved considerably, obtaining an average in the error for
this table of 13% and of 8% eliminating the first row where the highest values are
found. Also, it can be seen in this table that the errors are influenced both by the
value of Gamma and by the number of iterations that are executed.

8 Adaptation of the CMMNModel

Taking into account Fig. 1, it is established that it is possible to express the
information recorded there in the form of the graph proposed in this chapter. As
the dotted lines that surround some activities make them optional, they must be
replicated in several stages to offer the possible alternative ways to achieve the final
goal: the complete document of the article.

The two well-defined sectors of actions in Fig. 1 are analyzed separately, and the
graphs in stages of Figs. 6 and 7 are proposed. The idea is that once the graph of
the “Prepare draft” stage is concluded, the paths are continued with the graph of the
“Review draft” stage.

Fig. 6 Prepare draft in stages

Fig. 7 Review draft in stages
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In addition to the fact that it was necessary to repeat activities in each step of
the graph, a null activity was also added in some stages of Fig. 6, so that in this
part, a sequence with less than seven activities can be formed, even with only the
mandatory activity “write text.”

This is the beginning of a new experimental research work that establishes the
validity of this proposal and its implementation in Case Management in some
BPMS.

9 Conclusions

Various topologies of graphs are found in the literature, but the step graph proposed
in this paper is novel and allows the particular modeling of some problems in which
activities have to be selected in sequential times, where the result of the decisions
that are taken in each stage, it will only be known at the end of an amount L of given
stages.

Reinforcement learning and, in particular, the multi-armed bandit (MBA) model
offer good results, with low computational cost, thanks to the importance it gives to
both exploration and exploitation when searching for solutions.

The calculation of the transition probabilities between nodes, implemented in
this proposal, makes it possible to recommend the best possible solution vector.
The proposed model was tested with a 5-stage graph with 13 nodes and reaches its
convergence in less than 100 iterations.

The BPMS industry can benefit from the proposal that was released, so it is
necessary to recommend the continuity of this work in specific cases.

On the other hand, it is necessary to finish the implementation of the model in
CMMN cases, making tests in several topics until generalize for any case of any
topic.

The proposed algorithm for the stage problems could be improved, compared
with other algorithms, and tested for more scenarios.
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