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1 Introduction 

Since the photovoltaic effect was observed for the first time, in particular, many multi-
functional materials have widely been developed to facilitate the direct conversion 
of solar radiation into electricity; thus, enabling the emergence of a promising tech-
nology to circumvent the problem of the energy crisis [1–8]. This nearly 70-year-old
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technology has quickly developed, branching out into different approaches, almost 
all of which are based on the operating principle of solar cells. In sum, the basic prin-
ciples related to the working mechanism of solar cells have been a long study and, 
in turn, are well established in the literature [1]. Wafer-based silicon solar cells have 
widely been dominant in this field. Yet, it is well-known that such photovoltaic panels, 
based on single-crystal silicon, are extremely difficult to manufacture and, in addition, 
have a relatively high cost [2–4]. Also, as we know, the presence of complex defects 
on silicon-based solar cells significantly reduction in their photovoltaic performance 
[5, 7–9]. 

Hence, especially as a result of high energy demand and consumption, it is funda-
mentally important to develop alternatives for wafer-based single-crystal silicon that 
can be cheaper and more efficient. In the middle of the challenges for the use of solar 
energy on a large scale, metal-halide perovskite materials are emerging as promising 
alternatives to single-crystal silicon [10–15]. Particularly, such emerging materials 
have a versatile, easily obtainable structure that is, in turn, tolerant to “defects”, 
but even so, unlike what happens in silicon, electrons manage to permeate these 
imperfections [16–21]. Consequently, a wide variety of strategies have widely been 
developed to design single-junction metal-halide perovskite solar cells architectures 
at a low-cost. Thus, within a decade, the single-junction metal-halide perovskite 
solar cells had a spectacular increase of their power conversion efficiency (PCE) 
from 3.8 to 25.7%, that is, making this promising technology to large-scale commer-
cialization [22, 23] as shown in Fig. 1a. Despite this remarkable and impressive 
progress towards marketing of metal-halide perovskite-based technologies in the 
future, it should be noted that these PEC results usually are obtained more precisely 
for the small perovskite-based solar modules (i.e., with area up to 0.1 cm2) [23– 
31]. However, it is essential to highlight that perovskite-based solar module area 
scaling-up has a significant PEC decrease (see inset in Fig. 1a). Thus, the quality 
of the metal-halide perovskite layer is widely recognized as the key to obtaining 
high PEC values. Therefore, from this perspective, it should note that the fabrication 
of metal-halide perovskite films quality in large-area is still a challenge to future 
commercializing of this technology [23–31]. 

In terms of devices, many directions were systematically investigated, and from 
this perspective, four well-established architectures stand out [32–34] Fig.  1b illus-
trated the architecture standard planar and mesoporous (n–i–p) devices as well as 
inverted planar and mesoporous (p–i–n) devices. In addition to these architectures, 
in particular, there is also the mesoscopic structure that is based on the stacking of 
a mesoporous TiO2 layer, ZrO2 spacer layer, and a carbon electrode and does not 
require an additional hole transporting layer (HTL) [32, 33, 35, 36]. However, it is 
important to emphasize that this mesoscopic architecture will not be discussed in 
this chapter. 

Also, it is well-known that the best PEC results related to photovoltaic perfor-
mance are for perovskite-based solar cells containing lead. In general, there is great 
concern about the toxicity of compounds based on lead, due to their high levels of 
bioaccumulation as well as a high reactivity [37–42]. These metal, for example, do 
not exist naturally in any living organism; do not perform nutritional or biochemical
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Fig. 1 a Comparative representation of the progress in recent years on the PEC efficiency for 
silicon- and perovskite-based solar cell technologies (adapted from Refs. [28, 29]). The digital 
picture inset in (a) shows a perovskite-based solar cell device manufactured in our laboratory. b 
Measures compared without distinction between eligible cell areas: total area, opening area and 
designated lighting area (adapted from Refs. [28, 29]). c Schematic representation of the four main 
types of metal-halide perovskite solar cells architectures (adapted from Ref. [31]) 

functions, so the presence of these metals is highly harmful in any concentration 
[43]. Therefore, from this perspective, mainly due to the high toxicity of lead, there 
are currently several studies aimed at replacing this element with other metallic ions, 
such as Sn2+, Ge2+, Cu+, Ag+, Bi3+, Sb3+, In3+ and so on [44–50]. Until now, these 
emerging metal-halide perovskite-based devices are still suffering from film insta-
bility, which usually leads to reduced lifetime of these devices. Further, mainly owing 
to their myriad outstanding properties, it is notable that these emerging metal-halide 
perovskite materials to be promising candidates for next-generation of light emitters. 

Hence, this chapter compiled the current progress in understanding the structure-
composition-property relationship of light emitters and solar cells devices based on 
emerging metal-halide perovskite materials. Here, a particular emphasis has been put 
on the structure design and advanced characterization of these emerging metal-halide 
perovskites prepared by spin coating as a strategy.
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2 Emerging Metal-Halide Perovskite Structures 

From a geochemical point of view, it is well known that the name perovskite is 
due to the mineral CaTiO3 (calcium titanate), which was the first example of this 
family of discovered materials in 1839 by the mineralogist Gustavus Rose [51]. Thus, 
this fascinating class of perovskite materials (all-inorganic or hybrid) has the general 
formula ABX3, where A and B are cations and X are anions (most often O2− or halide 
ions F−, Cl−, Br− and I−), although perovskites with nitrides (N3−) and hydrides 
(H−) can also be synthesized [51–66]. 

Among these advanced multi-functional materials, in particular, the inorganic or 
hybrid metal-halide perovskites, based on the general stoichiometry ABX3 (e.g., 
CsPbX3 with X being Cl, Br, I or a mixture thereof), have myriad properties that 
are key to use in diverse optoelectronic technologies [22, 42, 67–73]. As is well-
known, the charge balance of a perovskite-like structure usually is obtained through 
the sum of the formal oxidation states of the two metals, which occupy the A and 
B sites, and of the anion, which must total zero (neutral charge). For instance, in 
oxide perovskites, it is well-known that the sum of the oxidation states for the two 
cations must be six, so AIBVO3, AIIBIVO3 and AIIIBIIIO3. On the other hand, more 
specifically in the case of the metal-halide perovskites, the sum of the oxidation 
states for these two cations must be three, so the only possible ternary combination 
is AIBIIX3 [74]. Also, it is well-known that these multi-functional materials can 
easily be obtained in high complexity structures (such as 3D, 2D, 1D, and 0D) by a 
wide variety of synthetic strategies [53]. 

As we know, the ideal metal-halide perovskite has a cubic structure belonging to 
Pm3m space group [75, 76]. Until now, most studies have focused on this specific 
structure; however, it is well-known that depending on the tilting/rotation of the 
[BX6] polyhedral clusters in the ABX3 lattice, particularly this material can also 
adopt other phases: such as β-tetragonal and two γ- and δ-orthorhombic, respec-
tively, in addition to the desired α-cubic structure [53, 62, 74, 77–85]. Hence, in this 
perspective, Goldschmidt [86] has introduced an empirical factor, usually known 
as the Goldschmidt tolerance factor (τ), which is a well-established dimensionless 
indicator for predicting stability of the cubic perovskite-like structure, which can be 
defined by the ratios of the ionic radii constituting A, B, and X (Eq. 1). That is: 

τ = 
Ra + Rx √
2(Ra + Rb) 

(1) 

Hence, based on this empirical factor the cubic structure is most stable in the 
range of 0.8 < τ < 1.0  [86]. When the ratio of the ionic radii deviates from the ideal 
value range, particularly geometric deformations and distortions of the crystal arise, 
leading to the stabilization of other phases described above [87]. For instance, Li 
et al. [88] studied 186 complex ABX3 systems based on metal-halide perovskites by 
the Goldschmidt tolerance factor, where they obtained an accuracy of about 96% in 
predicting the stability of the cubic phase. In the last 95 years, the stability of cubic
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metal-halide perovskites has been usually evaluated by using this empirical factor; 
however, it is well-known that its accuracy is often insufficient [89]. In this regard, 
several modifications were developed to improve the accuracy of these predictions to 
accelerate the development process of these materials. Zhang et al. [87] investigated a 
series of 376 ABO3-like compounds in order to establish a new criterion to determine 
the structural stability of perovskite-like compounds. For this, these authors relied on 
the bond lengths of crystal lattice former (A—O) and crystal lattice modifier (B—O) 
derived from the bond valence model for the calculations of the tolerance factors, 
which are found in the range of 0.822–1.139. Therefore, the overall instability for the 
compounds was identified as being less than 1.2 vu (valence units) as well as increases 
with decreasing oxidation state of B cations (i.e., A+B5+O3-type > A2+B4+O3-type 
> A3+B3+O3) [87]. In addition, Bartel et al. [89] have also proposed a new tolerance 
factor, which is more accurate that the Goldschmidt tolerance factor, defined in the 
following equation (Eq. 2). That is: 

τ = 
r X 
r B 

− nA 

⎧	 
nA − 

r A/r B  
ln(r A/r B) 

⎫ 
(2) 

where nA is the valence of cation A, and rA and rB are specifically the values of ionic 
radii of the cations A and B (being rA > rB by definition). According to this new 
tolerance factor, both oxidic and halide perovskite assume a stable cubic structure 
when τ <4.18 [89]. Also, as mentioned before, mainly due to the high toxicity of lead-
based compounds, however, there are currently several studies aimed at replacing 
this element with other metallic ions, as well as, including the present mixed species 
in the B site [47–50, 90]. These strategies involving different combinations have been 
extensively investigated in this field to identify new lead-free halide perovskites (see 
Fig. 2b) that are potentially promising for applications in solar cells and as light 
emitters. 

In addition to the formal ABX3 stoichiometry, it is possible to obtain perovskite-
like materials ordered by vacancy (e.g., A2BX6 and A3BX9) where the sites of 
cations A and B are partially or totally vacant, or replaced by a combination of 
other cations [91–94]. As we know, double perovskite-like structures, converted into 
a quaternary formula AI 

2BIBIIIX6 are usually formed by a mixture of monovalent 
(BI) and trivalent (BIII) cations coexisting together in the crystal lattice [92–94]. The 
main strategies used to replace Pb in perovskite-type materials: (i) using homovalent 
elements (e.g., Sn, Ge, and the other) (ii) based on the use of heterovalent elements 
(e.g., Bi and Sb) that are usually divided into two subcategories: ion splitting and 
vacancy-ordered formation [94]. Hence, from this perspective, we believe that a 
more fundamental understanding of these structural alterations is, of course, the key 
to the future commercialization of optoelectronic technologies based on inorganic 
or hybrid halide perovskites.
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Fig. 2 Diagram showing the most used techniques for the formation of emerging metal-halide 
perovskite layers (adapted from Ref. [144]) 

2.1 Homovalent Elements 

To replace lead in the all-inorganic and hybrid halide perovskite structure, the easiest 
is to replace with cations of similarly ionic radii and in the (+2) oxidation state. 
Thus, in this direction, the most obvious choice would be to replace Pb2+ with 
another atom from Group IV in AB(II)X3 lattice. In particular, an interesting alter-
native is the replacement of this element by tin, since Sn2+ has a very similar ionic 
radius to Pb2+, 1.35 Å and 1.49 Å, respectively. All-inorganic and hybrid Sn-halide 
perovskites showed promising optoelectronic properties, as well as, have an attrac-
tive bandgap value in the range of 1.2–1.6 eV [95, 96]. In addition, the researchers
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have observed for these Sn-based perovskite materials a long diffusion length and 
electronic mobility than superior to traditional semiconductor materials, such as 
CdTe and Si, which have been often used in solar panels [44, 72, 97–102]. However, 
despite the remarkable properties of this ASnX3 system, where A can be most often 
methylammonium (MA), formamidinium (FA), and cesium (Cs), these perovskites 
are highly sensitive to moisture and the presence of oxygen, which cause a rapid 
process of oxidation from Sn2+ to Sn4+ and, as a result, the perovskite geometry 
distorts and the optical and electronic properties change significantly during this 
process [67, 102–104]. 

Another candidate for replacing Pb in perovskites is germanium itself, Ge2+, 
previously mentioned [105–107]. In the Cs-Ge-X ternary system, there is a bandgap 
value at room temperature of 1.6 eV for CsGeI3, 2.3 eV for CsGeBr3, and about 
3.2 eV for CsGeCl3, respectively. Thus, it is observed that the bandgap increases 
with the decrease of the ionic radius of the halogens (2.20 Å, 1.96 Å, 1.81 Å) 
[72]. All-inorganic halide perovskites based on germanium exhibit a crystal structure 
formed by octahedral clusters of [GeX6]4− similar to that observed in lead halogenate 
perovskites. Under ambient conditions, in particular, the CsGeCl3 phase has a cubic 
crystal structure, while the bromine (CsGeBr3) and iodine (CsGeI3) halides have a 
distorted rhombohedral structure, which is caused by the second-order Jahn-Teller 
effect [105]. Sun et al. [106] have investigated the MAGeX3 (X = Cl, Br, I) properties 
through theoretical calculations and observed similarity to the MAPbI3 compound 
in terms of the conductivity, stability and optical properties. 

Nagane et al. [108] synthesized perovskites varying the composition of Sn-Ge and 
studied their application in solar cells. For Ge-doping MASnI3, a phase-transition 
of tetragonal-to-trigonal was observed from the CH3NH3Sn0.25Ge0.75I3, which 
increases the tolerance factor from 0.84 (pure MASnI3) to 0.93 (MASn0.25Ge0.75I3), 
as well as, the stability of such-doped samples [108]. Also, the bandgap of this Sn-Ge 
based halide perovskites have a bandgap value in the range of 1.3 eV (MASnI3) to  
1.9 eV (MASn0.25Ge0.75I3), respectively. In addition, the MASn0.5Ge0.5I3 composi-
tion showed a bandgap of 1.5 eV with low structural disorder [72]. However, it is 
known that Pb2+ has a better applicability due to its superior stability when compared 
to Sn2+ and Ge2+. 

On the other hand, Filip and Giustino have performed a computational screening 
of all homovalent metal ions (B-site+2 cations) that could replace lead in a perovskite 
halide configuration [98]. For this computational study, were adopted two criteria that 
are important for solar cell applications. Firstly, the stability of the cubic perovskite-
like structure. Secondly, a direct bandgap value smaller than 2 eV. In this way, a 
series investigated of perovskite compounds have a reduction from 248 to 25, based 
on these two criteria, of which 15 have not yet been proposed for used in solar cells. 
Finally, these authors concluded that the partial replacement of Pb by Mg can help 
to reduce the toxicity of hybrid halide perovskite, at the same time maintaining its 
remarkable optoelectronics features [98]. In addition, Korbel et al. [109] performed 
an extensive study on perovskite-like materials, from over 32,000 possible ABX3 

combinations, with only 199 hypothetical perovskites being stable (within 25 meV) 
in nice agreement with study of Filip and Giustino [98].
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2.2 Heterovalent Elements 

2.2.1 Ion Splitting Subcategory 

Firstly, in this subcategory, we will initially address the mixed anionic compounds, 
with general formula AB(Ch,X)3, where Ch = chalcogen and X = halogen [94, 110, 
111]. Such compounds has been recently examined by Sun et al. [112]. These authors 
found that the CsSnS2Cl exhibits optical properties most relevant to applications in 
solar cells than for CsSnI3. In this way, it is well-known that most of the work on 
AB(Ch,X)3 is based on the Bi (non-toxic heterovalent elements) replacing the Pb 
element; causing it to maintain the 3D perovskite structure and charge neutrality, 
and the anion was replaced by dual (halogen and chalcogen) anions. Among these 
materials, especially MABiSI2 and MABiSeI2 being highlighted, due to their optimal 
bandgap value (1.3–1.4 eV) for applications as solar cells [100]. Also, it is known 
that the substitution of Pb by Sb or Bi in AB(Ch,X)3 compounds reduces its dimen-
sionality structural, that is, leading to new and tunable physical properties [113]. As 
we know, the mixed chalcogenide–halide-based perovskite formation leads to higher 
stability structural. In turn, it is an exciting feature for lead-free halide perovskites, 
which still face major stability problems. This fact has been usually assigned to 
the more covalent bond character found for these compounds [110]. Although none 
novel absorber materials has been identified from this new class of perovskite-like 
compounds [97]; however, it is important to emphasize that the research with these 
chalcogenide-halide-based systems is still in its infancy. Finally, from this perspec-
tive, it has been widely recognized that chalcogenide-halide-based systems has latent 
potential for many optoelectronics applications, and for this reason they promise to 
shake up this important field of research in the future. 

2.2.2 Mixed Cationic Compounds 

To make up for the problems related to the replacement of Pb by Sb or Bi elements, 
the strategy of obtaining double halide perovskites, A2B(I)B(III)X6 type, with substi-
tution of the B site by mixed cations (B = B+, B’  = B3+) was explored [114, 115]. 
Zhao et al. [116] proposed a classification, in terms of electronic structure and chem-
ical stability for the elements that can occupy the BI-site (A2B(I)B(III)X6). Based on 
these results, elements of group IA (Na+, K+, and Rb+) contribute to the increase BI-s 
orbital energy, raising the conduction band position. While that elements of group IB 
(Cu+, Ag+ and Au+) may provide a significant variation in bandgap value as well as 
is responsible for changing the valence band of these materials. On the other hand, 
these authors also identified that use of elements of group IIIA (In+ and Tl+) induces 
an expansion of the octahedron [B(I)X(VII)6] clusters as well as contribute to a 
reduction of the octahedron [B(III)X(VII)6] clusters. Such structural alterations may 
contribute to raising the top of valence band in A2B(I)B(III)X6 compounds [116]. 
Also, in such compounds, it has been observed that increasing the ionic radius of
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the halogen contributes to a reduction in the bandgap, while the B(III) site change, 
e.g., from Sb3+ to Bi3+, leads to a significant increase in the bandgap [114]. Finally, 
the alkali metal cations selected to occupy the B(I)-site not contribute ionicity to the 
band edges. 

A2B(I)B(III)X6 perovskites are also known as “elpasolites”, named after the 
mineral K2NaAlF6. Giustino et al. [39] verified the chemical elements of the peri-
odic table that belong to the elpasolite halides. In their research the authors report 7 
elements for the A-site (cations), 8 elements for the B(I)-site (including NH3+ and 
CH3NH3+), 34 elements for the B(III)-site (cations) and 5 elements for the X-site 
(including cyanide CN−) [39]. 

Double halide perovskites with alkali metal B(I) cations have 0D dimensionality 
and have a wide-bandgap feature [94, 117–119]. However, for these complex struc-
tures, transition metal cations with multiple oxidation states and/or partially occupied 
d or f orbitals are not desirable for the B(III)-site [94]. Because they can introduce 
deep defect states and very low band edges located [94]. Finally, the anions of halides 
to the X-site, as mentioned before, as the halides change from F−, Cl−, Br− to I−, 
the bandgap generally decreases [116, 120–124]. 

Furthermore, the vacancy-ordered double perovskite structures, with formula 
A3☐B(III)X9 or A2☐B(IV)X6, has been the focus of several studies and usually 
are structurally characterized by an antifluorite array of isolated octahedral units 
linked by A-site cations [125]. These phase transitions in these systems are driven 
by a mismatch in the ionic radii of the constituent atoms [126]. 

In the case of the A3☐B(III)X9 compounds, the replacing Pb(II) with a group 15 
element will result in materials that can assume a 2D or 0D crystal structure [127]. 
Chang et al. studied the crystal structure of the following synthesized compounds 
Rb3Sb2Br9, Rb3Sb2I9, Rb3Bi2Br9, Rb3Bi2I9 and Tl3Bi2Br9. The crystals obtained 
showed two types of double-layered crystal structures, which are characteristic of 
the sharing of corners of the BX6 octahedron. The differences between the A3B2X9 

types can be attributed to specific structural distortions in the close packaging of 
the underlying AX3. In this way we have two polymorphisms for the compound 
A3B2X9 [128]. For instance, the A3Bi2X9 vacancy-ordered perovskite-like mate-
rials can crystallize most commonly in a trigonal structure (P3m1 space group) of 
low dimensionality. Likewise, in particular, Cs3Sb2I9 can crystallize into 0D shape 
(P63/mmc space group) and the 2D <111> stacked layer shape (P3m1), respec-
tively [114, 129–131]. Pal et al. [132] suggest that colloidal nanocrystals Cs3Sb2I9 
(nanoplatelets and nanorods) and Rb3Sb2I9 have the potential for optoelectronic 
applications. In addition, Chonamada et al. [133] has been reported the degradation 
ratio for both polymorphs of Cs3Sb2I9 in form of thin film by the effect of light, water, 
and heat under an ambient atmosphere. Despite the simplicity of being prepared with 
controlled particle size and morphology, in general, such materials are highly chem-
ically unstable and this represents a major challenge for their use and commercial 
exploitation. 

For A2☐B(IV)X6 vacancy-ordered perovskite-like materials, containing non-
toxic transition metals that have a stable +4 oxidation state are promising materials 
for photovoltaic application [134]. In this sense, Sakai et al. [135] have reported a
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series of A2☐B(IV)X6 compounds, with A = Cs+, B  = Pd4+ and X = Br−, with 
cubic crystal structure (Fm3m space group) obtained from direct oxidation of Pd2+ 

to Pd4+ in solution. Among these systems, the authors identified that Cs2PdBr6 has 
a bandgap of about 1.6 eV and hence is a promising candidate for applications in 
solar cells and as light emitters [135]. 

Theoretical and experimental investigations on the Cs2TiI6, Rb2TiI6, K2TiI6 and 
In2TiI6, have revealed excellent physical properties for used of such compounds 
in optoelectronic technologies [136]. The band structures of these A2TiI6 vacancy-
ordered perovskite-like materials show a very dispersive conduction. 

López-Fraguas et al. [137] analyzed the fast structural evolution due to degradation 
of the CsSnI3 films leading to the formation of the Cs2SnI6. These authors reported 
that PLQY for these film deceases significantly. In general, it is well-known that the 
oxidized Sn4+ ion in perovskite-like structures can act as a p-type dopant, inducing 
a process of self-doping, that in turn limits its efficiency in energy conversion [72, 
138]. To avoid the Sn2+ oxidation process, Lee et al. [107] used the SnF2 compound 
as a reducing agent in the formation of FASnI3. While that the Umedov et al. [139] 
have demonstrated the effect of adaptation of the A site (by the addition of Rb and 
Ag) on the stability of the Cs2SnI6 films in ambient air. 

3 Synthesis Protocol for Emerging Metal-Halide 
Perovskites 

One of the greatest advantages of metal-halide perovskite-based solar cell tech-
nology, compared to other technologies, is precisely the manufacturing simplicity 
with tunable properties [140]. Thus, the long path for the evolution and development 
of metal-halide perovskite-based devices was marked by a constant improvement of 
deposition techniques, an evolution achieved from an increase in the understanding of 
crystallization processes [141]. Particularly, it is well-known that the kinetics of the 
perovskite formation reaction is relatively fast, and there are several film formation 
methods that confirm this kinetics. Hence, the quality of the metal-halide perovskite 
films depends on optimizing parameters related to the concentration of precursors, 
solvent, temperature, rotation speed, time, and even the post-deposition processes 
[142–144]. 

In particular, spin-coating is a solution-based strategy for the simple fabrication 
of thin films at a low cost, which has received a lot of attention amid the metal-halide 
perovskite preparation methods [144]. For this reason, in this work we will high-
light the recent advances made based on the use of this simple strategy. Figure 2 
shows the most used perovskite growth strategies based on spin-coated technique 
[144]. Of course, spin-coating can produce thin films of high quality with controlled 
and uniform thickness (i.e., if the viscosity is homogeneous over the entire area 
of the substrate, regardless of the slip force) [145, 146], even in dry-box condi-
tions and substrate up to 100 cm2 [147, 148]. During the spin of the substrate, the
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centripetal force overcomes the gravitational force and the solute is spread throughout 
the substrate, forming a film. The substrate in constant speed rotation causes uniform 
evaporation of the solvent, therefore it is expected that the film thickness will also 
become uniform [149]. Furthermore, it is well known that the volatility of solvents 
affects the crystallization process of thin films significantly [150]. Finally, as is well 
known, the film thickness resulting is, in turn, dependent on the solution concentra-
tion of the target material used as well as is usually proportional to the inverse of the 
spin speed squared (in the case of the same concentration) [145, 146, 150]. 

3.1 One-Step Deposition 

In this approach, all precursors of the final material are added in a single solution, 
which is subsequently deposited under the substrate, followed by a heat treatment 
step. The main aspect of this deposition strategy consists of mixing organic and 
inorganic precursors in common solvent(s), generally gamma-butyrolactone (GBL), 
and/or dimethylsulfoxide (DMSO), and/or, dimethylformamide (DMF) as well as 
the combination of more than one solvent [151–153]. The physical-chemical differ-
ences between the organic and inorganic species imply, among other issues, diffi-
culty in obtaining an adequate dissolution of both precursors in a common solvent, 
resulting, therefore, in films with flaws and moderate coverage rate [151]. Although 
this approach is extensively used and simple, the precursors used can undergo 
several chemical reactions in the mixture, influencing both the resulting film and 
the performance of photovoltaic devices [154]. 

3.2 Two-Step Deposition 

In this approach, the inorganic and organic compounds are dissolved separately and 
deposited in sequence (inorganic compound is dissolved in DMSO or DMF and the 
organic one in Propanol) [143, 155, 156]. The inorganic compound is deposited first, 
after heat treatment, the organic compound dissolved in propanol is deposited, since 
inorganic compounds, such as PbI2 and others, used do not dissolve in propanol. 
Additional control over the thin film morphology can then be obtained with this 
deposition strategy, as it is possible to obtain uniform cuboid perovskite crystals, 
while the one-step method usually presents an irregular morphology as well as have 
a high density of pinholes [155]. In addition to the possibility of creating layers of 
different materials, based on deposition in more than one step makes it possible to 
create surfaces with different characteristics that can bring greater light absorption 
and consequently induce higher PCEs values for metal-halide perovskite solar cells 
[157]. Zheng et al. [158] studied a one-step spin-coating process and compared it with 
two-step spin-coated, in which the best photovoltaic performances of the perovskite 
devices with a rough interface of perovskite, which was synthesized with two-step
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spin coated as strategy. Despite that, the deposition in two steps or even more steps 
present an equally challenging and expensive, since there is a production step at each 
new synthesis step, that is, an additional expense from a commercial point of view. 
Nevertheless, using this approach, it is possible to obtain perovskite in nanoscale size 
that can be used as a sensitizer in dye-sensitized solar cells [159, 160] expanding the 
perovskite applicability to other photovoltaic technologies or light-emitting devices 
[161–166]. 

3.3 Solvent-Engineering 

Among the strategies of film deposition that have brought good results in metal-halide 
perovskite solar cells is, of course, the solvent engineering protocol [167–170]. Jeon 
et al. [171] have in addition to using two solvents simultaneously, GBL and DMSO, 
was the first to report the use of an anti-solvent method, obtaining perovskite films 
of high crystalline quality, and indeed, high PEC values of about 16.2%. In general, 
this approach consists of preparing a perovskite solution usually based on a solvent 
mixture (DMSO/GBL or DMSO/DMF) capable of producing denser layers than the 
conventional one-step method, taking advantage of the control of the crystallization 
process [172]. During the last seconds of spin coating rotation, a perovskite non-
solvent (e.g., toluene, chlorobenzene, dichlorobenzene or diethyl ether) is placed on 
the perovskite film, leading to the formation of the MA2Pb3I8.2DMSO intermediate 
[168–170]. The DMSO molecules do not allow the direct formation of perovskite 
to occur, thus forming an intermediate, which with heat treatment loses the DMSO 
molecules, forming perovskite [167]. This deposition strategy, in particular, have 
achieved PEC values above 20% [173, 174]. Xiao et al. [175] studied the conven-
tional one-step method followed by a subsequent addition of chlorobenzene (CBZ) 
leading to an acceleration of the formation of the perovskite layer with greater homo-
geneity, and consequently higher quality. Jeon et al. [173] observed that with the use 
of the solvent engineering technique (addition of toluene) there is the formation of 
a dense film and totally covered in TiO2. In addition to the change for the better 
in the density and quality of the formed film, there was also an acceleration of 
the drying process of the perovskite film. Furthermore, it has been observed that 
solvent engineering strategy lead to a redissolution of the grains and later recrys-
tallization faster, that is, causing the grain size to be close to the film thickness 
[176]. Although solvent engineering technology is a promising methodology, two 
important issues remain to be resolved. First, the effect of non-polar solvent on the 
mechanism of perovskite adduct formation, and second the ratio that leads MAI-
PbI2-DMSO adduct plays a more important role in the crystallization process than 
MAI-PbI2-dimethylformamide (DMF) is also unclear [172].
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4 Opportunities in Optoelectronic Technologies 

4.1 Applications as Light Emitters 

With the ever-increasing demand and consumption of various lighting and electronic 
display devices consuming more than 20% of worldwide electrical energy per year, 
it is imperative to develop more energy-efficient devices [177–180]. In terms of elec-
troluminescence types, it has been demonstrated that both the narrowband emission 
derived from free excitons as well as broadband white light emission arising from 
self-trapped excitons could prove to be quite beneficial in light-emitting applications 
[179, 181, 182]. 

As is well-known, the nature of the optoelectronic behavior on semiconducting 
materials relies on the efficiency of carrier separation between the photogener-
ated charge carriers and the subsequent carrier recombination for mutual conver-
sion between light and electricity [138, 183–185]. Due to their unique optoelec-
tronic properties such as superior light absorption, excellent carrier transport perfor-
mance arising from long diffusion lengths, high photoluminescence quantum yields 
(PLQY), low exciton binding energies, along with their strong defect tolerant 
behavior make this class of emerging multi-functional materials such potential candi-
dates for developing next generation optoelectronic devices [15, 53, 127, 185–191]. 
Despite having such fascinating optoelectronic properties, the widescale commer-
cialization process of emerging metal-halide perovskite materials hasn’t been kicked 
off due to intrinsic material toxicity and inferior stability to silicon-based technolo-
gies [15, 33, 192]. Therefore, it is imperative to address the existing challenges 
alongside a continuous search of emerging metal-halide perovskite-based semicon-
ductors, especially lead-free compounds, with improved optoelectronic performance 
that will hold the key to the future development these field [185, 193–195]. 

In principle, usually, an excellent light-harvesting material should also be good 
light-emitting material, but the materials used and the design principles require 
different approaches whether the materials are applicable in photovoltaic or light-
emitting devices [52, 196, 197]. For light-emitting devices, it is well-known that the 
efficient and fast radiative recombination of excitons is quintessential, whereas, for 
photovoltaic devices like solar cells, effective charge separation of excitons is critical 
to extract the charges and convert the charges light to electrical power generation 
[198–203]. As such, the family of metal-halide perovskites offers a rich variety of 
convenient frameworks to systematically study the effects of dimensionality, compo-
sition, and structural disorder on its electronic configuration and how it affects the 
optoelectronic properties of the materials [15]. 

In metal-halide perovskites, within a given dimensionality, the optical response 
is readily modified through substitution of the halide component leading to alter-
ation in the valence band positions [73, 204, 205]. Generally, in mixed-halide-
based perovskites, such as CsPb(Br1-xClx)3 or CsPb(I1-xBrx)3, it provides emission 
tunability in the range from 400 to 700 nm with PLQY varying anywhere from 50 to 
90%. Whereas, in a mixed cations-based systems, such as (FA1-xCsx)PbI3, it offers
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less optical tunability with bandgaps residing in the range of 1.48– 1.73 eV [73, 204, 
205]. This bandgap variation in mixed cations-based halide perovskites is primarily 
due to modified spin-orbit coupling at the edge of the conduction band. Significant 
changes in the optical properties have been observed upon dimensionality reduc-
tion, particularly in the quantum confined two-dimensional layered Ruddlesden-
Popper like perovskite analogs (quantum wells). Such complex structures possess 
enhanced exciton binding energies (reduced PL lifetime) leading to giant oscillator 
strengths and optical non-linearities [206–210]. Stokes-shifted PL bands also arise 
from bound exciton states depending on the organic component resulting in modi-
fication of dielectric environment [206–208, 211, 212]. Besides being temperature-
independent, the strong exciton-phonon coupling has also been reported for some 2D 
perovskites (C6H5C2H4NH3)2PbI4, which directly attributes to polaron formation. 
On the other hand, self-trapped excitons (and biexcitons) in atomically thin, layered 
2D perovskites sheet-like structures display a significant role in the non-linear optical 
response, mainly due to the enhanced binding energy. Hence, it is well-known that the 
optical response of 2D perovskite-based LEDs can, in principle, be easily modulated 
by rational varying the organic cations, organic chain, layer number, and so on. The 
performed initial reports on physical properties of pure phase 2D perovskite-based 
LEDs has been realized for (CH3(CH2)3NH3)2(CH3NH3)n−1PbnI3n+1 Ruddlesden-
Popper like systems [206–208]. These vertically oriented films were conducive to 
efficient charge injection and transport, leading to high electroluminescence effi-
ciency. Due to the phase purity of 2D perovskites, it is expected that LEDs will 
demonstrate high stability, being operational at low turn-on voltages and could be 
driven at a high current density of a few A/cm2. Later in 2017, Chen et al. [213] intro-
duced aromatic alkyl amines into 2D perovskites, which changed the crystal structure 
from cubic to rod-like and finally a thin film. Interestingly, the electroluminescence 
of the resultant LEDs was tunable from green to blue just by modifying the struc-
ture. Besides modification of materials, altering the device processing and fabrication 
could also play an important role. For example, in 2018, Yang et al. [214] used a  
quasi-2D perovskite through composition and phase engineering, thereby obtaining 
thin films with efficient external PLQY reaching up to 14.36%. In addition, the 
crystallization process could play a key role affecting the optoelectronic properties 
of the material. Based on this, Quan et al. [215] explored how different bandgap 
domains affect the PLQY and LED performance by preparing 2D perovskite-based 
on PEA2(MA)n−1PbnBr3n+1 and engineered solvent composition during the crystal-
lization process, thereby achieving a EQE of 7.4% with an average brightness of the 
fabricated LEDs close to 8400 cd/m2. 

Lead-free double perovskite variant based on Cs2AgInCl6 with low dimension-
ality has been recently proposed as warm white-light emitters exhibiting a broadband 
spectrum in the range of 400–800 nm [216, 217]. From stability point of view, all-
inorganic perovskite variants exhibit higher stability than organic-inorganic counter-
parts. In contrast, the 2D or layered organic-inorganic perovskite variants show higher 
stability against moisture than their 3D all-inorganic counterparts. Some studies 
also noted that A3B(III)2X9 QDs exhibit wider PL spectra and larger Stokes shift 
compared to 3D MAPbX3 QDs which could be attributed to strong electron-phonon
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coupling [218–220]. On the other hand, Cs3Cu2I5 represented an all-inorganic 0D 
lead-free perovskite variant exhibiting an efficient broadband blue emission with 
PLQY reaching up to 90% [221]. 

Ma et al. [222] investigated Cs3Sb2X9 0D particles for application in LED devices, 
specifically in the 385–640 nm spectral tuning region. Such materials have a high 
PLQY of about 51.2% and chemical stability. However, it is well-known that the 
Sb-based halide perovskites are more prone to deep defects when compared to Pb-
based halide perovskites. Recently, Hang et al. [223] have reported the relationship 
between the PLQY and the particle size of Cs2AgBi1−xInxCl6 (0  < x < 1).  Among  
these materials obtained, the Cs2AgBi0.125In0.875Cl6 stands out because it can break 
the transition prohibited by parity and retain a direct bandgap, emitting warm white 
light, with a PLQY of about 70.3%. An interesting feature of these results is the light 
stability exceeding three months (ca. 2160 h) higher than the study conducted by 
Luo et al. [217] where the value obtained was 1000 h. 

For Sn(II)-based variants, Zhou et al. [224] first reported (C4N2H14Br)4SnBr6 with 
a near unity PLQY, when embedded within an organic matrix in a host-guest fashion, 
it exhibited a white-light emission with a blue phosphor matrix with a CIE coordinates 
of (0.35,0.39) and a CCT of 4946 K. Following this work, other two-dimensional 
Sn-based perovskite variants has been also recently developed with a PLQY of 88% 
with emission wavelength at 625 nm [225]. Some recent results on the performance 
of light-emitting devices based on lead-free perovskites are summarized in Table 
1. Although these initial few studies are promising, there is still effort required to 
address a few challenges: 

1. The Pb-free perovskite variant LEDs are still far from being commercialized. 
2. The PLQY is still a major hindrance as majority of these Pb-free perovskite 

variants can hardly exceed 80%. 
3. The charge generation and recombination, electroluminescence mechanisms are 

still widely lacking, thus rational design principles (especially with the charge 
transport layers) has not been well established yet wherein can freely control 
emission spectra. 

Table 1 Representative results related to electroluminescence peak emission (EL), maximum 
external quantum efficiency (EQE) and maximum current efficiency (CEMAX) for lead-free 
perovskite-based light-emitting devices 

Device architecture EL λ 
(nm) 

EQE 
(%) 

CEmax (cd/A) References 

ITO/PEDOT/CsSnI3/PBD/LiF/Al 950 3.8 n/a [226] 

ITO/PEDOT:PSS/MASn(Br0.2I0.8)3/F8/Ca/Ag 868 0.058 n/a [227] 

ITO/PEDOT:PSS/PEA2SnI4/TPBi/LiF/Al 633 0.3 n/a [228] 

ITO/PVK/(PEAI)3.5(CsI)5(SnI2)4.5/TmPyPB/LiF/Al 920 3.0 n/a [229] 

ITO/PEDOT:PSS/Poly-TPD/CsCu2I3/TPBi/LiF/Al 550 0.17 0.46 [230] 

ITO/NiO/ Cs3Cu2I5/TPBi/LiF/Al 445 1.12 n/a [231] 

ITO/ZnO:PEI/ Cs3Sb2Br9/TCTA/MoO3/Al 408 0.206 n/a [232]
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Research efforts on exploiting the nanocrystalline nature of inorganic and hybrid 
halide perovskite-based materials for potential light-emitting applications have only 
been a few years, with lead-free perovskite, even at very early stages. Although there 
has been a huge boost in the synthesis and solution processing stages utilizing these 
materials over the last few years, however, must achieve a further understanding 
of their optical properties by introducing synergistic experimental and theoretical 
efforts in the development process. These will give more guidance in establishing the 
structure-property relationships in terms of the material’s electronic property and its 
stability against heat, light, oxygen, humidity, and so on. These joint efforts may open 
new doors for next-generation advanced lead-free perovskite-based optoelectronics. 

4.2 Applications as Solar Cells 

For perovskite-based solar cells, effective charge separation of excitons is critical 
to extract the charges and convert the charges light to electrical power generation. 
Therefore, the efficiency of these devices is conventionally defined as the ratio of 
the output power to the incident power from the light source, per unit area [1]. 
This efficiency is traditionally measured at Standard Test Conditions (1 sun of light 
and device temperature of about 25 °C) and reported by manufacturers in order 
to compare the performance of one device to another regardless of the solar cells 
technology [49, 99, 127, 233–258]. 

In the case of perovskite technology, a broad range of efficiencies have been 
reported because different elements such as architectures (see Fig. 1c), structures, 
compositions, and layers to extract the charges have been used to fabricate perovskite 
solar cells. Therefore, the combination of these elements is reflected not only on the 
efficiency, but also on the stability of devices, opening a lot of roadmaps to improve, 
for instance, the efficiency or another parameter according to the application [34, 49, 
99, 127, 145, 233–258]. In this regard, it is noted that the protocols to fabricate effi-
cient and reproducible devices display a critical role in the development of this tech-
nology [34]. Besides, despite that the precursor-solution chemistry can be considered 
as the key obtaining high-quality films, the coating procedure and perovskite compo-
sition must be optimized simultaneously for achieving higher efficiencies considering 
the particularities of each architecture (n-i-p, p-i-n or mesoporous) [145]. Figure 3 
illustrated the energy-band-alignment diagram of some materials available for fabri-
cation of the single-junction metal-halide perovskite solar cells. In general, it is 
well-known that the nuanced structural differences among interfaces of the target 
perovskite-based devices are critical to its high-performance applications. 

On the other hand, it is worth noted that large-scale manufacturing convention-
ally involved environmental conditions, thus, the protocols and coating procedures 
to fabricate perovskite devices must be optimized considering the environmental
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Fig. 3 Schematic energy-band-alignment diagram of emerging metal-halide perovskite-based solar 
cells based on different materials usually used as electron-transporting layers (ETL) and as hole-
transporting layers (HTL) 

factors. Moreover, the environmental impact of perovskite processing is predomi-
nantly addressed to use the most environmentally friendly solvent for the fabrica-
tion process, and the most environmentally friendly elements to mitigate the main 
drawback related to the toxicity of conventional perovskites [259–273]. 

Accordingly, Chen et al. [107] have reported the application of Cs2SnGeI6-based 
solar cells. The performance of these devices showed high stability, with less than 
10% deterioration in efficiency after 500 h of continuous operation in N2 atmosphere 
under sunlight. Park et al. [235] manufactured a solar cell with Cs3Bi2I9 perovskite 
which showed a PEC above 1%. While that the Correa-Baena et al. [260] studied the 
potential use of A3Sb2I9 (A = Cs, Rb and K) compounds, as photoabsorbent in solar 
cell applications. Cs3Sb2I9 has a 0D structure, the highest exciton binding energy (175 
± 9 meV), an indirect bandgap, and low photocurrent in a solar cell (0.13 mA cm−2).



62 F. M. Pinto et al.

Rb3Sb2I9 has a 2D structure, a direct bandgap, and among the materials investigated, 
the lowest exciton binding energy (101 ± 6 MeV) and the highest photocurrent 
(1.67 mA cm−2). K3Sb2I9 has a 2D structure, intermediate exciton binding energies 
(129 ± 9 MeV) and intermediate photocurrents (0.41 mA cm−2). Despite remarkably 
long lifetimes in all compounds (54.9 and 30 ns for Cs, Rb, and K-based materials, 
respectively), the combination of high exciton binding energy and large effective 
masses for electrons and holes, results in photocurrents well below 1 mA cm−2 which 
limit device performance [260]. Nie et al. [261] have reported MASbSI2-based solar 
cell devices, which showed PEC of about 3.08%, under standard lighting conditions 
of 100 mW/cm2. Cortecchia et al. [263] have reported 2D MA2CuClxBr4−x based 
solar cell devices exibiht a low JSC of 216 μA cm−2 and Voc of 0.256 V, with a PCE 
of 0.017%. Abulikemu et al. [264] have reported millimeter-scale (CH3NH3)3Bi2I9 
based solar cell devices with a PCE of about 0.11%, JSC of 491.89 μAcm−2 and aVoc 

of 0.7216 V. Ran et al. [256] synthesized a compact thin film of (CH3NH3)3Bi2I9 with 
a PCE of 0.39% and Voc of 0.83 V. These synthesized devices showed low potential 
loss, but still, a small hysteresis J-V. However, despite these results, the Bi-based 
perovskite devices have a more stability when compared to Pb-based perovskite 
devices [256, 264]. Bein et al. [265] manufactured a solar cell with Cs2AgBiBr6 
perovskite which showed a PEC of 2.43%, a Voc greater than 1 V and good stability at 
ambient conditions, but with a of relevant hysteresis. In subsequent works, performed 
by Wu et al. [266] and later Li et al. [267], based on using of solvent engineering 
strategy, has been reported a relevant decrease in hysteresis of the Cs2AgBiBr6-based 
devices. Representative results on lead-free perovskite-based solar cell devices are 
summarized in Table 2. 

Although the growing number of studies related to lead-free perovskite have been 
published, the most efficient and stable perovskite solar cells are based on lead [268]. 
These facts highlight that there is still much work to do in this topic to avoid the use 
of lead on the fabrication of perovskite devices. Moreover, it is worth noted that every 
innovative technology tries to advance in terms of stability, efficiency, lower costs, 
stability and sustainability when compared to established/predominant technology 
[269–273]. Currently, there are some challenges for the economic advancement and 
use of emerging metal-halide perovskite-based technologies such as the stability (a), 
toxicity (b), upscaling (c) reproducibility (d). 

(a) Stability: 

In addition to high energy absorption and conversion rates, stability and conse-
quent lifetime are essential factors for a viable commercialization of metal-
halide perovskite-based solar cell technologies [271, 272, 274]. Currently, the 
long-term stability or lifetime (T80) of perovskite-based technology on average 
is only a few months, even for encapsulated devices [275]. This short lifetime 
is the result of intrinsic and external aspects [276]. Particularly, the intrinsic 
degradation is mainly related to thermal and light soaking effects. The external 
degradation is mainly related to moisture ingress into the device. Therefore, 
various testing protocols have been used to evaluate and report the stability 
assessment focused mainly on laboratory-scale cells [277–280]. Besides, in
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contrast to photovoltaic technologies such as silicon, the performance estima-
tion during the tests could be affected by the performance loss reversibility 
under day-night cycles [281] and hysteresis effects in the I-V curve [282]. 

Accordingly, it is possible to find different strategies to improve the life-
time, including alteration of their compositions and dimensionality, interfaces 
passivation [283], selective charge contacts [284], barrier designs [285], among 
other strategies. Thus, due that the electrodes and active areas of photovoltaic 
cells must be protected from ambient exposure conditions, it is mandatory 
that the strategies used to improve the lifetime are complemented by a proper 
device encapsulation or external barrier layer to mitigate corrosion processes, 
increase the electrical insulation, and provide mechanical support [286]. 

In this regard, it is worth noting that different encapsulating materials and 
techniques have been used in Perovskite solar devices [287]. For instance, 
ethylene–vinyl acetate (EVA) as encapsulant was successfully tested following 
the temperature cycles test suggested by IEC 61,215 [288]. Polyisobutylene 
(PIB) as a barrier layer shown promising results when the devices were tested 
in thermal cycles and Damp heat tests [289]. A similar approach using carbon 
layer as a barrier was probed in solar cells and minimodules, encapsulating the 
devices with additional glass and epoxy glue, increasing the long stability of 
devices up to 12,000 h of exposure under continuous illumination of one sun 
[290]. Besides, several epoxy resins have been tested as encapsulant material 
to evaluate the outdoor performance of minimodules of perovskite [148, 291]. 

Although a lot of work has been done on this topic [271, 272, 274], it is 
important to highlight that there is still a long way to go, particularly regarding 
incorporation or adaptation of international standards such as IEC 61,215 to 
evaluate the encapsulation process and improve the lifetime. On the other 
hand, due that this technology is in its infancy, and there are few statistical data 
available for large devices operated outdoors [148, 292, 293] it is necessary the 
outdoor evaluation in order to gain insights related to the stability or degradation 
processes of this emerging technology [293]. 

(b) Toxicity 

As is well-known, the most perovskite-based devices were developed using a 
lead-based matrix. However, there is very strict legislation regarding the use of 
lead, especially due to their high toxicity [53], but these rules make an exception 
for lead that is used in the solders of conventional photovoltaic modules as well 
as in other electronic components. This toxicity makes it difficult to accept 
the technology and may conflict with the ESG Environmental, Social and 
Governance) policy that has been sought after worldwide [45]. In this regard, 
more recently, has been developed lead-free halide perovskites [37, 44, 97, 
138]. The most viable substitutes for Pb are Sn and Ge, however, the biggest 
problem with these metals is that they already have chemical instability in the 
required oxidation state (2+), resulting in a perovskite with lower stability [166, 
269, 294–297]. Sn is the metal that has received the most attention [97, 138, 
298] to replace Pb, however, studies [138] have revealed an easy oxidation of
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Sn2+, with an n-type semiconductor behavior, to Sn4+, whose behavior becomes 
that of a p-type semiconductor, which acts as a dopant inside the material, in 
a process called self-doping. Meanwhile, despite its toxicity, Pb has greater 
protection against oxidation. The first work using Sn replacing Pb in perovskite 
was reported by Hao et al. [238], in early 2014. The authors achieved an 
efficiency of 5.73% with MASnI3 perovskite. In the same year, Hao et al. 
[299], using a methylammonium perovskite with a mixture of lead and tin 
(CH3NH3Sn(1-x)Pb(x)I3), and Noel et al. [299], with a study of different solvents 
in the crystallization of perovskite, they achieved similar efficiencies—5.44 and 
6.4%, respectively. Thus, other studies have been carried out in order to improve 
the stability of perovskite solar cells. However, these are recent studies and 
not fully understood, requiring intensification of studies for possible practical 
commercial applications of the devices [300]. 

(c) Upscaling 

There are a number of problems that are caused in perovskite cells with 
increasing size, since larger areas can bring uniformity and morphology prob-
lems [301]. It is necessary to manufacture devices on an industrial scale, making 
the transition from a laboratory scale to a manufacturing scale [302]. Currently, 
most studies in the literature are limited to small areas (<1 cm2), but devices 
to photovoltaic commercial sizes (>1 m2) must be achieved [154]. 

Although different techniques have widely been used to fabricate metal-
halide perovskite-based devices on larger areas (e.g., such as Doctor blade, 
Slot-die, Screen printing, and so on) [145], it is to highlight that spin-coting 
technique has been used successfully in areas up to 100 cm2, obtaining the 
higher efficiencies [303]. This is an important aspect to remark, because 100 
cm2 of size is comparable with the size of silicon solar cells used in modules. 

Accordingly, in order to improve the performance of perovskite technology 
beyond cells, the efforts are mainly focus on the cells interconnection passing 
from cells to, minimodules and modules [292, 304]. In this context, most of the 
perovskite devices are fabricated using three scribe lines or patterns (P1, P2, and 
P3) to interconnect the cells in series and mitigate electrical losses [292, 303, 
305, 306]. This technique is widely employed in other thin-film photovoltaic 
technologies as silicon, CIGS, and polymer [307, 308]. In perovskite devices, 
P1 scribe line is performed on the transparent conductive oxide layer (ITO 
or FTO) to limit the sub-cells area. P2 scribe line is performed on the charge 
transport layers (electron and hole layers) and perovskite layer, intended to clear 
the ITO or FTO layer and allow interconnection between the back electrode 
and the charge transport layers. Finally, P3 scribe is performed to remove the 
back-contact layer and separate the cells. Therefore, the active area is limited 
by P1 and P3 lines. In contrast, the death-area is limited by P3 and P1 lines. 

Consequently, the first certificated minimodule of this technology was 
reported in 2016 by SJTU team, which corresponded to 12.1% of efficiency, 
10 serial cells, and an illuminated area of 36.13 cm2 [309]. Nowadays, it is 
possible to find certified PSC module with an efficiency of 17.9% and 55 serial
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cells [310]. This considerable progress in the up-scaling shows the effort of the 
community. Moreover, the multi-junctions with other photovoltaic technolo-
gies such as silicon and CIGS, opening new opportunities and challenges to be 
explored. 

(d) Reproducibility 

The more robust the synthesis, the more reproducible and less prone to 
small, subtle changes in the manufacturing process will the perovskite cells 
be. A robust process is important for reproducibility and scalability for 
large-scale manufacturing. These small variations in yield and conversion 
between synthesis batches when they are transferred to larger scales can 
generate huge losses, creating a certain risk associated with the imple-
mentation of large industrial plants. Undoubtedly, the reproducibility and 
the search for certification of measurements has been and will continue 
to be one of the biggest challenges for the establishment of perovskite 
solar cells [311, 312]. Here, it is important to mention that mesoporous 
structures in both architecture (p-i-n and n-i-p) helps to mitigate pin-holes 
improving the devices reproducibility. Besides the inverted mesoporous struc-
ture (ITO/NiOx/Al2O3/MAPI/PCMB/Rhodamine/Au) has been demonstrated 
to be feasible for fabricating large-area devices up to 100 cm2 in dry-box condi-
tions by spin coating, improving the reproducibility and reducing hysteresis 
[147, 148]. Finally, the standardization of protocols for the fabrication of 
perovskite devices and ensuring reproducibility is highlighted.

5 Conclusions and Outlook 

Overall, throughout this chapter, we have highlighted the enormous potential of 
the emerging metal-halide perovskites for photovoltaic applications. Certainly, the 
development of this technology will contribute to its popularization and sustain-
able use in the future. New manufacturing methods, device structure and materials 
continue to emerge. However, these emerging metal-halide perovskite devices still 
have several key aspects that need to be improved before their commercial applica-
tion [313], allowing the introduction of a new and high-tech product on the market 
[314]. Finally, in this direction, more studies are needed to improve the stability of 
the devices and other problems still faced, so that it can reach commercialization in 
the coming years, including the use of new strategies such as Machine Learning [311, 
315, 316] for database construction and prediction of the most promising synthesis 
routes to obtain the highest values of PCEs and ECEs. 
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