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Chapter 6
Inhibition of Bacterial and Fungal 
Phytopathogens Through Volatile Organic 
Compounds Produced by Pseudomonas sp.

Rabia Naz, Sehar Khushhal, Tayyaba Asif, Sara Mubeen, P. Saranraj, 
and R. Z. Sayyed

Abstract Plant growth-promoting rhizobacteria (PGPR) are being used as an alter-
native approach to combat plant diseases. About 80–90% of plant diseases are 
caused by bacterial and fungal pathogens, which remain an inevitable cause for the 
loss of several crops. Phytopathogenic bacteria and fungi are the major constraints 
to sustainable agriculture by adversely affecting crop growth and productivity. 
Owing to the increased pollution and harmful impacts of chemicals to control these 
pathogens, scientists are now centering on safer biological organisms and their 
byproducts. Secondary metabolites and volatile organic compounds (VOCs) emit-
ted by various beneficial bacterial strains have a lot of potential for enhancing plant 
growth and preventing plant diseases. The VOCs produced by the most researched 
bacterial strains, such as Pseudomonas genera, are well recognized for protecting 
economically imperative plants and inducing resistance against bacterial and fungal 
phytopathogens. This chapter concentrates on throwing up a better grasp of biologi-
cal activities of secondary metabolites such as hydrogen cyanide, siderophores, 
antibiotics, and VOCs produced by Pseudomonas spp. Hundreds of various bacte-
rial VOCs, including alcohols, terpenoids, esters, and sulfur compounds, have been 
discovered. The VOCs emitted by Pseudomonas sp., for instance, acetophenone, 
1,3-butadiene, 2-undecanone, benzaldehyde, 1,2-benzisothiazol-3(2H)-one, 
dimethyl trisulfide, dimethyl disulfide, benzothiazole, nonanal, N,N- 
dimethyldodecylamin, 3,5,5-trimethyl-1-hexanol, isovaleric acid, cyclohexanol, 
2-ethyl 1-hexanol, n-decanal, decyl alcohol, etc., are reported for their antagonistic 
potential, inducing resistance in host plants against several bacterial and fungal 
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pathogens. Crop growth enhancement and protection via VOCs is a promising and 
an ecofriendly method, substituting the harmful impacts of chemicals and ensuring 
the long-term sustainability in agriculture.

Keywords PGPR · VOCs · Induced systemic resistance · Antibiotics · HCN · 
Siderophore

1  Introduction

In the twenty-first century, according to United Nations the global population is 
increasing continuously which is projected to reach 9.7 billion in 2050,, which may 
lead to increase in global agricultural production, to fulfill the requirements of rap-
idly growing population (UNDESAP 2017; Rohr et al. 2019). Our agricultural sec-
tor largely depends upon the use of synthetic chemicals in order to revamp the crop 
production, i.e., synthetic fertilizers, which are used to increase the crop biomass, 
while synthetic pesticides are used to control pest and diseases in crops to reduce 
crop loss by 17–30%, particularly for the major staple crops (Naz and Bano 2014; 
Savary et al. 2019). However, these synthetic pesticides are unendurable due to their 
harmful residual effects and heavy manufacturing costs (Naz et  al. 2014, 2018, 
2021a). According to an estimation, around $250 million are required to take single 
active ingredients in market, having very low success rate about only 1 out of 
140,000 synthetic compounds are successful, which is a very unsustainable way to 
develop synthetic pesticides (Lamberth et al. 2013).

Besides these, the continued use of pesticides makes them less effective because 
of the production of pesticide-resistant genes in plants (Butt et al. 2019; Ullah et al. 
2020; Naz et al. 2021b). Furthermore, the continuous increase in global population 
has increased the demands for crops and agricultural growth, which has further 
caused increase in the applications of synthetic compounds. As projected increase 
in the demand for crops, agricultural growth might result in increased pesticide use 
of 10-fold and increased fertilizer application of 2.7-fold (Rohr et  al. 2019; 
Jabborova et al. 2020).

Agronomic practices should be taken in consideration to lessen this dependency 
on synthetic compounds as well as to evolve the viable control measures, and differ-
ent collaborative efforts should be made, i.e., improving agricultural practices by 
agronomic practices (Naz and Bano 2015; Ahluwalia et  al. 2021). However, the 
introduction of soil beneficial microorganisms is another effective method to reduce 
the use of synthetic compounds in agricultural practices, as they have potential to 
antagonizing soil pathogenic microbes and are capable of increasing plant biomass 
(Yasmin et  al. 2019; Luh Suriani et  al. 2020). An extensive range of secondary 
metabolites is produced by these soil microorganisms which strengthen them to 
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fight with other pathogenic soil microbes, as they compete with each other for same 
resources in soil (Naz et al. 2017; Garbeva and Weisskopf 2020; Hamid et al. 2021).

The production of antibiotics, volatile organic compounds (VOCs), and second-
ary metabolites during microbial lifecycles are some other microbial inhibition 
tools to cope with pathogenic microbes within soil (Naz et al. 2020; Ye et al. 2020; 
Khan et al. 2021). The scientific world requires more attention on the production of 
VOCs due to multiple benefits of their utilization. VOCs are a mixture of volatile 
metabolites that may be emitted by all living microorganisms and have been shown 
to be very potent to control the growth of phytopathogenic bacteria and fungus 
through cross-talk interactions and antibacterial activities. Their antimicrobial 
effects, along with the reduced hazard for both the environment and human beings 
and their possible application without the need of a supplemental spray or drench, 
make the use of VOCs a promising and sustainable approach to replace fungicides 
of synthetic origin in the control of plant pathogens (Parafati et al. 2017; Tilocca and 
Migheli 2020; Zhang et al. 2020).

Although numerous modes of action are involved in phytopathogen obliteration, 
this chapter will dig into novel visions and ideas in biological control of phyto-
pathogens via PGPR by dint of antibiotics and VOCs. Some Pseudomonas spp. 
have been associated with plant growth, suppression of fungal pathogens affecting 
plants, and detrimental rhizobacteria presenting considerable upsurge in root colo-
nization. These aspects suggest that Pseudomonas spp. can serve as excellent bio-
control agents (Gomez-Lama et al. 2018; Reshma et al. 2018).

In this chapter, we focus to explore the role of secondary metabolites, antibiotics, 
and VOCs produced by the Pseudomonas species to sustain plant health by directly 
suppressing pathogens, inducing plant resistance against phytopathogens, and pro-
moting plant growth, emphasizing their potential as alternatives to synthetic fertil-
izers and pesticides.

2  Microorganisms Emitting Volatile Organic Compounds

The volatile metabolites emitted from both plant and microbial sources are receiv-
ing a steady increase in interest. The word “volatilome” has been relatively recently 
used to describe this diverse and heterogeneous collection of metabolites (Farbo 
et al. 2018; Tilocca and Migheli 2020). The volatile metabolites of plant and micro-
bial origin are mainly differentiated into organic and inorganic volatile molecules. 
Among inorganic volatile molecules, most relevant are CO2, H2S, CO, HCN, SO3, 
H2, NH3, NO2

−, and SO2. The inorganic volatile molecules play an important role in 
different biological functions, i.e., acting as defense compounds by donating/
accepting electrons (Rad et  al. 2016; Zhang et  al. 2020). These metabolites also 
have a role in various ecological and biological features along with their antibiotic 
resistance potential (Avalos et al. 2019; Kenawy et al. 2019).

In agriculture, the application of VOCs with microbial source in the biological 
control of plants pathogens has been given an unintentional decrease over the last 
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few years. However, the progress recently made and the general trend to an integra-
tive approach have highlighted the potential advantages of microbiological VOCs in 
this area. The VOCs are known to be very effective at very low levels (Reshma et al. 
2018; Tilocca and Migheli 2020).

In addition to pathogen inhibition and negative impact on fungal spore germina-
tion and function of morphogenesis enzymes, VOCs from microbial species have 
been found to play a role in a variety of biological processes (Deveau et al. 2018; 
Zhang et al. 2020). VOCs have the capability to kill nematodes which are known to 
be parasitic for plants (de Freitas Silva et al. 2020; Khoja et al. 2021) to increase 
plant growth (Hernández-León et al. 2015; Fincheira and Quiroz 2018) and to acti-
vate the mechanisms associated with resistance within plants, thus averting the plant 
from being infected by pathogens (Sharifi and Ryu 2016; Tahir et al. 2017; Zhang 
et al. 2020).

2.1  Production of VOCs by Consortium of Different Microbes

A single organism can produce a diverse mixture of VOCs when applied, which 
leads to different outcomes proved by many experiments (Tilocca et  al. 2019), 
whereas in a single ecological niche, there reside many microbial entities through 
which unexpected achievements can be obtained by consortium application as com-
pared to the application of single microbial strain (Khan et  al. 2019). Microbial 
strains interact with each other irrespective of their genera, phyla, and kingdom 
(Shaikh et al. 2016; Schulz-Bohm et al. 2017). These interactions lead to the essen-
tial biological and ecological outcomes in ensembled role of all the microbiota as a 
single unique entity. The effectiveness of the interactions occurring between micro-
biota members Pseudomonas helmanticensis Sc-B94 and Bacillus cereus Rs-MS53 
has been reported to control the pathogenic fungus R. solani (Mülner et al. 2019), 
which was proved to be a strong strain compatibility and cooperative interaction 
(Asari et al. 2016; Che and Men 2019; Kramer et al. 2020). The production of vola-
tile and nonvolatile compounds by different strains of Pseudomonas and Bacillus 
spp. can directly inhibit the growth of pathogen or can help in the acclimatization of 
the microbial community already residing in the same ecological niche which can 
also inhibit growth and infection caused by pathogen (Schulz-Bohm et al. 2017; 
Tilocca et al. 2020; Dimkić et al. 2022).

3  Bacterial Volatiles: Tool to Biocontrol of Phytopathogens

Bacterial VOCs play a role in the complex network of interactions that are estab-
lished between bacteria, bacterial species, and bacteria with other microorganisms 
as well as with plants. Similarly, these interactions play a variable ecological role 
including beneficial interaction as well as antagonistic interaction. However, 
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beneficial cooperation encompasses symbiosis, mutualism, and host resistance 
interaction, while in antagonistic relationship, one of the interacting species exerts 
microbicidal activity on other species (Kanchiswamy et  al. 2015; Tilocca et  al. 
2020). The useful bacterial-plant interaction has recently been recognized, which 
has extend new approaches for the use of bacterial volatilome in promoting plant 
growth. Furthermore, due to high flexibility of bacterial origin VOCs as well as their 
efficacy in controlling other pathogens, investigation is made on the utilization of 
VOCs produced by natural bacteria in defense against plant pathogenic microbes 
(Reshma et al. 2018; Mulero-Aparicio et al. 2019).

A wide variety of VOCs have been produced by rhizobacteria (Serratia odorif-
era, S. plymuthica, Stenotrophomonas maltophilia, P. fluorescens, Stenotrophomonas 
rhizophila, and Pseudomonas trivialis) which are active against an extensive variety 
of pathogenic microorganisms including bacteria and fungi (Kanchiswamy et  al. 
2015; Gotor-Vila et al. 2017; Mulero-Aparicio et al. 2019). Bacteria-fungi interac-
tion usually produces some common volatile molecules including 1-octen3-ol, 
2-nonanone, 2-undecanone, γ-patchoulene, 3-methylbutanoate, 3-methylbutanal, 
2-methylbutan-1-ol, ethanethioic acid, dimethyl trisulfide 2,3,6-trimethylphenol, 
and 4-methyl-2-heptanone. Among these antifungal activities of some VOCs have 
already been tested (Tilocca et al. 2020).

4  Pseudomonas Volatilome

Various studies revealed that VOCs can inhibit a wide range of plant pathogens, also 
emphasizing VOCs as possible viable alternatives to pesticides and chemical fertil-
izers. One of the first examples of VOCs, produced by Pseudomonas species from 
canola and soyabean, exhibits plant growth stimulatory and inhibitory effect in case 
of plant pathogenic microbes (Agisha et al. 2019). About 23 VOCs are identified, 
which are produced by Pseudomonas species; among these six VOCs inhibited the 
mycelium growth of S. sclerotiorum, a pathogen of more than 400 plant species 
(Effmert et  al. 2012; Thomas et  al. 2020). A growth of widespread soil-borne 
R. solani pathogen was inhibited by VOCs from Pseudomonas spp. (Elkahoui et al. 
2015) and by a variety of other rhizobacterial isolates (Velivelli et  al. 2015). 
However, inhibitory activity against various bacterial pathogens exhibited by many 
VOCs is reported; for instance, nonanal, benzaldehyde, acetophenone, and benzo-
thiazole are reported to inhibit the proliferation of Clavibacter michiganensis, a 
causative agent of bacterial ring rot disease of potato (Rajer et al. 2017). Similarly, 
Xanthomonas oryzae causing bacterial leaf blight of rice has been reported to be 
inhibited by 3,5,5-trimethyl-1-hexanol and decyl alcohol (Xie et al. 2018).

Moreover, the bacterial VOCs are also known to inhibit fungal mycelial growth; 
e.g., isovaleraldehyde, 3-methyl-1-butanol, isovaleric acid, 2-heptanone, and 
2- ethylhexanol decrease the mycelium growth of Phytophthora capsica (Syed-Ab- 
Rahman et al. 2019; Freitas et al. 2022). Anti-oomycete activity is displayed by the 
VOCs of Nodulisporium against different Pythium species, while VOCs which are 
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causing inhibition of pathogens were not assayed individually (Sánchez-Fernández 
et al. 2016). However, these studies spotlight inhibitory activity of VOCs against a 
wide range of bacterial and pathogens, which could be good alternatives to 
pesticides.

4.1  Role of Pseudomonas Volatilome in Biocontrol 
of Phytopathogens

Pseudomonas is widely recognized for having a diverse storage of plant growth- 
enhancing and antifungal metabolites, and many of these molecules are volatile 
compounds (Hernández-León et al. 2015; Yan et al. 2017; Dahiya et al. 2020). For 
instance, recently, it is reported by Hunziker et al. (2015) that P. infestans (a well- 
known oomycete phytopathogen of potato) can be inhibited by high potential vola-
tiles emitted by Pseudomonas. The VOCs produced by P. fluorescens and P. trivialis 
are also reported to drastically inhibit the mycelial growth of R. solani (Kai et al. 
2007). In recent studies, it was revealed that P. donghuensis P482 in the rhizosphere 
of tomato plants emits volatiles that play a significant role in inhibiting the growth 
of different plant pathogens for instance Pythium ultimum, R. solani, Verticillium 
dahlia, and F. culmorum (Ossowicki et al. 2017).

Evidences related to bacteriostatic were also found in the volatilomes of several 
strains of Pseudomonas spp. particularly in P. chlororaphis, which was tested 
against Agrobacterium tumefaciens and fungal, nematode, and insect pathogens for 
its antagonistic potential (Popova et al. 2014). The VOCs emitted from P. putida 
BP25 including 2-ethyl-5-methyl pyrazine, 2,5-dimethyl pyrazine, 2-ethyl-3,6- 
dimethyl pyrazine, 2-methyl pyrazine, and dimethyl trisulfide exhibited significant 
in vitro antimicrobial potential against several pathogens, for instance, C. gloeospo-
rioides, P. capsici, G. moniliformis, P. myriotylum, R. solani, R. pseudosola-
nacearum, A. rolfsii, R. similis, and M. oryzae (Agisha et al. 2019).

From rhizosphere of soybean, common bean, and canola plants, the Pseudomonas 
strains were isolated and further reported for antagonistic potential against S. sclero-
tiorum owing to their VOCs including dimethyl trisulfide, n-decanal, benzothiazole, 
nonanal, cyclohexanol, and 2-ethyl 1-hexanol (Fernando et al. 2005; Giorgio et al. 
2015). The antagonistic ability of VOCs produced by P. fluorescens B-4117 and 
P. fluorescens Q8r1-96 has been reported against plant pathogenic bacterial strains 
including A. vitis and A. tumefaciens. Here, it is suggested that Pseudomonas spe-
cies are known to produce VOCs which can be used as a potential tool to control 
many diseases particularly the crown gall tumors which can be effectively prevented 
in tomato plants (Dandurishvili et al. 2011). The VOCs produced by P. fluorescens 
WR-1 are also reported to significantly affect and decrease the virulence character-
istics of R. solanacearum in tomato (Raza et al. 2016). The active VOCs produced 
by Pseudomonas spp. and their biocontrol potential against target phytopathogens 
have been described in Table 6.1.
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4.2  Role of Secondary Metabolites Produced by Pseudomonas 
spp. in Plant Disease Control

Fluorescent pseudomonads are predominant antagonistic bacteria that live in soil. 
Nowadays, the significance of these bacteria has been acknowledged all over the 
world, owing to the fact that they are capable of synthesizing a variety of antifungal 
compounds such as siderophores; fluorescent pigments along with volatile ele-
ments, namely, hydrocyanic acid (HCN); lytic enzymes; as well as antibiotics 
(Ciancio et al. 2016; Jadhav et al. 2017; Yasmin et al. 2020). Some of the notewor-
thy lytic enzymes produced by Pseudomonas spp. are chitinase, protease, and β-1,3- 
glucanase. These enzymes instigate lysis and hyperparasitism of antagonistic 
bacteria toward lethal fungal pathogens (Jadhav et al. 2017; Zia et al. 2021).

Various fluorescent pseudomonads are impervious to cyanide due to the exis-
tence of a thiosulfate (RhdA): cyanide sulfur transferase that modifies the cyanide 
to thiocyanate which is less toxic. In many Pseudomonas spp., approximately 300 
μM cyanide is produced by the oxidative decarboxylation of glycine (Blumer and 
Haas 2000). Gupta et al. (2002) investigated the Pseudomonas to biologically con-
trol the charcoal rot instigated by Macrophomina phaseolina in peanut.

Sindhu et al. (1997) reported the role of secondary metabolites in the inhibition 
of phytopathogens and also the inhibiting role of siderophore-producing rhizo-
bacteria and several fluorescent Pseudomonas spp. against many bacterial and 
 fungal phytopathogens. Siderophore- producing pseudomonads have been  
reported in chickpea to markedly reduce the root rot disease (Akhtar and 
Siddiqui 2009).

Pseudomonas fluorescens are known to produce siderophore and control  
Pythium ultimum, and Pseudomonas stutzeri produces chitinase which lyse the cell 
wall of Fusarium solani. Antifungal metabolites produced by these Rhizobacteria 
were identified as antibiotics (iturin, surfactins, fengycin, DAPG, phenazine, etc.), 
cell wall degrading enzymes (proteses, chitinases, cellulases), plant growth- 
promoting enzymes and hormones (indole-3-acetic acid, ACC-deaminase, phospha-
tase, nitrogen fixation), N-acyl homoderine lactones, and siderophore (Dahiya 
et al. 2020).

Another siderophore as pseudobactin produced by P. putida was able to suppress 
the growth of Fusarium oxysporum in iron-deficient soil; this suppression/inhibition 
was abandoned when iron was provided in that soil (de Boer et al. 2003). Several 
studies have explained the inhibition of fungal pathogens by fluorescent pseudomo-
nads from the excretion of siderophores (iron-chelating), making it inaccessible to 
other several microorganisms (Shaikh et al. 2014).

The biocontrol potential of siderophore as an antifungal metabolite produced by 
Pseudomonas spp. is shown in Table 6.2.
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Table 6.2 Role of antifungal metabolites of Pseudomonas spp. in biocontrol of phytopathogens

Antifungal 
metabolites Producing PGPR Host Target pathogen References

Siderophore P. fluorescence Wheat G. graminis Sayyed et al. (2013)
Wheat F. glycinia

Soybean S. oryzae

P. aeruginosa Potato F. udum
A. niger

Sulochana et al. 
(2014)

P. fluorescens Soybean P. ultimum León et al. (2009)
P. putida Radish 

Cucumber
Fusarium spp. wilt Sayyed et al. (2013)

Beans F. solani

Potato F. oxysporum

P. cepacia Onion F. oxysporum Sayyed et al. (2013)
P. aureofaciens Wheat G. graminis var. 

tritici

P. fluorescence beet root P. debaryanum Dodd and Stewart 
(1992)

Cotton R. solani Hagedorn (1990)
Tomato S. rolfsii Thiribhuvanamala 

et al. (1999)
P. fluorescence In vitro P. debaryanum, R. 

solani, and S. rolfsii
Prasad et al. (2017)

HCN P. fluorescence Tobacco, 
wheat

T. basicola
G. graminis

Voisard et al. (1989)
Shaikh and Sayyed 
(2015)

Pseudomonas spp. 
P76 and P124

Many crops S. rolfsii Priyanka et al. (2017)

Pseudomonas spp. 
LBUM300

Tomato C. michiganensis 
subspp.
michiganensis

Lanteigne et al. 
(2012)

Pseudomonas CF1 
and CF5

In vitro M. phaseolina Reetha et al. (2014)

P. corrugata and 
P.
mediterranea

In vitro B. cinerea Strano et al. (2017)

P. donghuensis 
P482

In vitro R. solani AG2,
F. culmorum PV and
P. ultimum P17

Ossowicki et al. 
(2017)

P. fluorescence In vitro P. debaryanum, R. 
solani, and S. rolfsii

Prasad et al. (2017)

4.3  Antibiotics Produced by Pseudomonas spp.

According to Haas and Défago (2005), six antibiotic classes are best to perform 
their biocontrol potential particularly to control root fungal diseases: pyoluteorin, 
phenazines, pyrrolnitrin, phloroglucinols, hydrogen cyanide (which is volatile), and 
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cyclic lipopeptides. Most recently, lipopeptide biosurfactants produced by 
Pseudomonas spp. have been implied in biocontrol due to their potential positive 
impact on the competitive contacts with organisms involving fungi, bacteria, oomy-
cetes, nematodes, protozoa, and plants (Raaijmakers et al. 2010; Shafi et al. 2017; 
Fira et al. 2018).

Many bacterial species are reported for the isolation of several antibiotics that are 
known to inhibit cell wall composition of the pathogen, interrupt the cell membrane 
structures, and impede the synthesis of ribosomal subunits (Maksimov et al. 2011). 
Fluorescent pseudomonads primarily achieve biocontrol of pathogens by synthesiz-
ing specific antibiotics like pyoluteorin, 2,4-diacetylphloroglucinol, pyrrolnitrin, 
2-hydroxy phenazines, and phenazine-1-carboxamide and phenazine-1-carboxyclic 
acid (Mustafa et al. 2019). Antibiotics are not just solely involved in antipathogenic 
activity; they are also major contributors in instigating ISR in plants as they vigor-
ously suppress disease by offering competitive leverage to biocontrol agents. Host 
resistance toward plant pathogens is enhanced significantly when ISR and antibiot-
ics act synergistically (Hashem et al. 2019; Ullah et al. 2020).

More than 6000 compounds have been characterized and identified for strong 
antifungal potential, including phenazine (PHZ) as a key molecule and over 100 
more derivatives of PHZ (Mavrodi et al. 2006). Moreover, the products containing 
PHZ (even more than 180) are known for their strong antifungal, antibiotic, antican-
cer, insecticidal, anti-protozoan, and antitumor potential (Briard et  al. 2015; 
Guttenberger et al. 2017). Several studies attributed the antimicrobial potential of 
PHZ produced by Pseudomonas strain PCL1391 to the production of ROS (reactive 
oxygen species) (Laursen and Nielsen 2004) and found very effective against 
Botrytis cinerea, Gaeumannomyces graminis, and F. oxysporum (Schoonbeek et al. 
2002; Chin-A-Woeng et al. 2003). Several PHZ and its derivatives are efficient in 
controlling numerous fungal diseases (Chincholkar et al. 2013). The P. chlororaphis 
PCL1391 strain has been reported to produce phenazine-1-carboxamide, which can 
nourish plants with soluble iron at neutral pH (Hernandez et  al. 2004; Haas and 
Défago 2005).

The fluorescent pseudomonads producing DAPG are reported for their strong 
biocontrol potential (Weller et al. 2007; Troppens et al. 2013); several other research 
studies have confirmed DAPG as a key antimicrobial metabolite engaged in the 
biocontrol of fungal phytopathogens (Sonnleitner and Haas 2011; Khare et  al. 
2018). The DAPG  is an efficient and extensively researched antibiotic which is 
released by pseudomonads to control  oomycete and Pythium spp. (de Souza 
et al. 2003).

Pyoluteorin (PLT) is a phenolic polyketide, which has initially been isolated and 
identified from P. aeruginosa and then from fluorescent pseudomonads (Nowak- 
Thompson et al. 1997). PLT has herbicidal, bactericidal, and fungicidal properties 
(Takeda 1959). PLT has also been stated to function as an intercellular signal and 
auto-inducer among distinctive rhizospheric populations of bacterial strains 
(Brodhagen et  al. 2004). It has recently been observed that phloroglucinol in P. 
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protegens has a significant impact on PLT gene expression and production (Clifford 
et al. 2016).

Different metabolites are produced at different concentration of phloroglucinol 
with distinct phytopathogenic target (Khare et al. 2018). Limited range of gram- 
negative bacteria are involved in the production of pyrrolnitrin from Pseudomonas 
species (Mujumdar et al. 2014; Weller et al. 2016). Fluorescent pseudomonads pro-
duce pyrrolnitrin which has antagonistic nature against fungi, yeast, and Gram- 
positive bacteria (Jani et al. 2015). P. fluorescens BL915 strain secretes pyrrolnitrin 
which has a property to protect Rhizoctonia solani during damping off of cotton 
(Hill et al. 1994).

Currently, cyclic lipopeptides (CLPs) have been identified as biosurfactant and 
antimicrobials which is found effective against broad spectrum of phytopathogen 
involving enveloped viruses, Gram-positive bacteria, and mycoplasmas (Raaijmakers 
et al. 2006; Tran et al. 2007; Raju et al. 2016). Research has reported that CLPs 
released by pseudomonads are involved in colonization of seeds and roots. In addi-
tion, it also contributes to the formation of biofilm and virulence (Li et al. 2013; 
Raaijmakers et  al. 2010). Fluorescent pseudomonads release different types of 
CLPs; many of them have not characterized completely. The well-documented and 
studied groups of CLPs are amphisin, viscosin syringomycin, and tolaasin (Nybroe 
and Sørensen 2004).

CLPs secreted by Pseudomonas are categorized into eight different groups on 
the basis of variation in length and composition of the oligopeptide and fatty acid 
tails (Olorunleke et  al. 2017). The ability to agitate biological membranes are 
associated with the antimicrobial properties (Raaijmakers et  al. 2006; Dumée 
et al. 2015). P. protegens produce orfamide which is a type of potential CLPs hav-
ing insecticidal property (Nandi et al. 2015). Fluorescent pseudomonads releasing 
several metabolites having broad-spectrum phytopathogenic activities are pre-
ferred in the field of agriculture. Currently, Izzah-Shahid et al. (2017) reported 
that application of PCA, CLP, and lahorenoic acid A substantially enhanced 
growth of wheat by producing P. chlororaphis and P. aurantiaca during develop-
ment. Sharifazizi et  al. (2017) also found that fluorescent pseudomonad strain 
Ps170 has the capability to control blight-causing pathogen in pear by releasing 
DAPG, PLT, PRN, and PCA. Metabolites of fluorescent pseudomonads are cur-
rently being used as biological controls to secure the plant from causative agents 
such as causing protozoa and nematodes (Meyer et al. 2009; Jousset et al. 2010; 
Clifford et al. 2016). Antibiotics produced by Pseudomonas spp. and their bio-
control potential against phytopathogens have been described in Table 6.3 and 
Fig. 6.1.
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Table 6.3 Antibiotics produced by Pseudomonas spp. and their biocontrol potential against 
fungal pathogens

Antibiotics
Pseudomonas 
spp. Host/disease

Targeted fungal 
phytopathogen References

2,4-DAPG P. fluorescens Wheat G. graminis 
tritici

Weller et al. (2007)

Tobacco T. basicola Keel et al. (1992)
Sugar beet P. ultimum Nielsen et al. (1998)

Pseudomonas 
spp.

Sugar beet P. ultimum Shanahan et al. 
(1992)

P. fluorescens
(CHAO)

Tobacco T. basicola Keel et al. (1992)

P. fluorescens 
CHAO

All diseases G. graminis 
tritici

Fenton et al. (1992)

P. fluorescens 
Q2-87 P. 
ßuorescens F

Sugar beet P. ultimum Rosales et al. (1995)

P. fluorescens Pf Sheath blight R. solani Rosales et al. (1995)
P. aurantiaca Wheat F. oxysporum Garagulia et al. 

(1974)
P. fluorescens 
VUPf5

Wheat G. graminis var. 
tritici

Lagzian et al. (2013)

P. fluorescens Rice X. oryzae pv. 
oryzae (Xoo)

Velusamy and 
Gnanamanickam 
(2003)

P. aeruginosa Banana F. oxysporum f. 
spp. cubense 
FOC

Ayyadurai et al. 
(2006)

P. fluorescens Groundnut A. niger, A. 
flavus, S. rolfsii

Sherathia et al. 
(2016)

P. brassicacearum In vitro R. solanacearum Zhou et al. (2012)
Pseudomonas 
spp.

Tomato C. michiganensis 
subspp. 
michiganensis

Lanteigne et al. 
(2012)

Aerugine P. fluorescens Pepper
Cucumber

Phytophthora
C. orbiculare

Lee et al. (2003)

Pyrrolnitrin P. fluorescens Grass
Cucumber
Soybean

S. homoeocarpa
Pythium spp.
P. ultimum

León et al. (2009)

P. cepacian Maize
Sugar beet
In vitro only

B. maydis
A. cochliodes
C. truncatum and 
F. sambucinum

Homma (1994)
Burkhead et al. 
(1994)

P. chlororaphis 
O6

Tomato F. graminearum 
and R. solani

Park et al. (2011)

P. fluorescens Cotton and 
cucumber

R. solani Hammer et al. (1997)

P. fluorescens Cotton
Cotton

V. dahliae
T. basicola

Howell and 
Stipanovic (1979)

(continued)
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Table 6.3 (continued)

Antibiotics
Pseudomonas 
spp. Host/disease

Targeted fungal 
phytopathogen References

P. fluorescens 
Pf-5

Spring and 
fall disease of 
Kentucky 
bluegrass

D. poae Rodriguez and 
Pfender (1997)

P. cepacia Potato F. sambucinum Burkhead et al. 
(1994)

P. cepacia Sunflower Sclerotinia
sclerotiorum

McLoughlin et al. 
(1992)

Viscosinam ide P. fluorescens Sugar beet R. solani
P. ultimum

Nielsen et al. (1998)

Pyoluteorin P. fluorescens Cotton
Sugar beet

Pythium spp.
Pythium spp.

Howell and 
Stipanovic (1980)

P. fluorescens 
Pf-5

Damping off Members of 
oomycetes spp. 
Pythium

Kraus and Loper 
(1995)

Phenazines P. fluorescens Wheat G. graminis var. 
tritici.

Thomashow and 
Weller (1988) and 
Thomashow et al. 
(1990)

P. aeruginosa Pigeon pea 
and chickpea

F. oxysporum f. 
spp. ciceris and 
F. udum

Anjaiah et al. (2003)

Pseudomonas 
spp. MCC 3145

In vitro C. circinans, C. 
dematium, F. 
oxysporum

Patil et al. (2017)

Pseudomonas 
spp.

Wheat R. solani Jaaffar et al. (2017)

Pseudomonas 
spp.

Tomato F. oxysporum Chin-A-Woeng et al. 
(1998)

P. fluorescens Wheat G. g. Var. tritici Thomashow and 
Weller (1988)

Oomycin A Pseudomonas 
spp.

Damping-off 
(cotton)

Pythium spp. Gutterson et al. 
(1988)

3-de-epoxy-2,3- 
didehydro- 
rhizoxin

Pseudomonas 
spp.

Net blotch
Wheat bunt

Pyrenophora 
teres Drechs
Tilletia caries 
Tull

Wright et al. (1999)

Agrocin 84 Pseudomonas 
spp.

Crown gall 
(fruit trees)

A. tumefaciens Kerr et al. (1984)

Pseudobactin 
B10

Pseudomonas 
spp.

Flax wilt F. oxysporum Kloepper et al. 
(1980)

Cyclic 
lipopeptides

P. fluorescens Sugar beet R. solani and P. 
ultimum

Nielsen et al. (2000, 
2002)

P. fluorescens Tomato P. infestans Tran et al. (2007)
Pseudomonas 
SH-C52

Groundnut S. rolfsii Le et al. (2012)

R. Naz et al.



109

Fig. 6.1 Role of VOCs and antibiotics in plant growth promotion and induced systemic resistance

5  Conclusion

Pseudomonas spp. are plant growth-stimulating bacteria that are often observed 
with diverse phyto-beneficial characteristics. The biological activities of hydrogen 
cyanide, siderophore, antibiotics, and VOCs produced by these species highlight 
their potential to act as alternatives to unsustainable agricultural chemical inputs 
and to feed a continuously growing population. In this chapter, we have investigated 
the biocontrol potential of secondary metabolites and VOCs produced by 
Pseudomonas species (Tables 6.1, 6.2, and 6.3), which have more and diverse abili-
ties to fight phytopathogens. Therefore, future research should focus on the growth- 
stimulating effects of antibiotics and VOCs on various crop and vegetable species. 
This chapter represented here focuses on the antibiotics and particularly VOCs 
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emitted by Pseudomonas spp. in axenic culture conditions, whereas growing evi-
dence suggests that interaction between different microorganisms could boost the 
production of VOCs which have been shown to have inhibition against pathogens. 
This will allow to identify the biologically relevant VOCs that are effectively 
involved in the inhibition of microbial pathogens. While a number of studies have 
also investigated the impact of VOCs in one biological function, there are likely to 
be similarities in the functions of these VOCs. For instance, nonadecane and hep-
tadecane exhibited their role in pathogen suppression, plant growth promotion, and 
induced resistance, which suggests that the biological activities are not the isolated 
entity. Studies have shown the pathogenic suppression in the presence of the VOCs, 
but it is also important to know the involvement of these inhibitory VOCs on plant 
growth. Further investigation on the efficacy of VOC under field conditions can be 
a promising approach. There is a dire need for further exploration for the testing of 
a wider range of VOCs for field applications.

In conclusion, studies reviewed here demonstrate antibiotics, siderophore, 
hydrogen cyanide, and VOCs can be manipulated to serve as sustainable alterna-
tives to agricultural chemical inputs, which can potentially reduce our overreliance 
on the current unsustainable methods at a time when population growth, and food 
demand, is likely to substantially increase.
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