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Chapter 16
Fungal Hydrolytic Enzymes Produced 
by Plant Growth-Promoting Rhizobacteria 
(PGPR)

Lucky Duhan, Deepika Kumari, Rohit Verma, and Ritu Pasrija

Abstract  Roots are the lifeline of plants and besides anchorage, they are a source 
of nutrients incorporation from soil. Although health-giving roots safeguard plants’ 
fitness, but adjacent soil is also a dwelling place for various microbial pathogens, 
which might attack the roots. To neutralize this, soil has plant growth-promoting 
rhizobacteria (PGPR), which are generally free-living and populate around plants’ 
roots. They defend plants from various biotic and abiotic stresses, as well as enhance 
soil texture for superior plant growth. The PGPR involves various species, like 
Pseudomonas, Bacillus, Azospirillum, Rhizobium, Enterobacter, Agrobacterium, 
Serratia, etc., but Bacillus and Pseudomonas are most predominant. They encour-
age robust plant growth, in both direct and indirect manner. The direct mechanism 
refers to nutrient uptake, release of siderophores, seed germination, etc. While indi-
rect mechanisms include release of enzymes like chitinase, protease/elastase, cel-
lulase, catalase, β-(1,3)-glucanase, etc., and hydrogen cyanide, and antibiotics. The 
hydrolytic enzymes synthesis/secretion is under stringent regulation and shields the 
roots from pathogens attack, including fungi. The enzymes targeting fungal 
microbes, either generate disturbance in the cell wall structure, interfere with mem-
brane composition, impede hyphal formation, cause myco-parasitism, etc., leading 
to fungal cell death. Indirect mechanisms also involve induced systemic resistance 
(ISR) and reinforce the roots by evolving physical and chemical barriers to with-
stand adverse conditions.

The PGPR-mediated fungal biocontrol suggests their imperative role in sustain-
able pathogen management and ultimately supporting plants’ well-being besides 
yield. This chapter summarizes the PGPR role in fungal control, especially through 
their hydrolytic enzymes.
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1 � Introduction

In the modern era, one of the biggest challenges before mankind is feeding the 
expanding population; this has placed a substantial liability on farmers and govern-
ments to increase the yield and crops’ quality. To achieve this goal, various modern 
agricultural tools and hybrid seed varieties are developed and employed to signifi-
cantly escalate the agricultural production. However, despite the deployment of 
these practices, different plant diseases cause significant reduction (~30%) in yields, 
which puts a huge economic burden on the producers and country (Sayyed et al. 
2012). To combat these plant diseases, cultivators often turn towards chemical pes-
ticides that are overpriced and have detrimental after-effects on the ecosystem as 
well. So, to circumvent these drawbacks of chemicals-based pesticides, renewed 
attempts involve inculcation of a safer and inexpensive practice involving the Plant 
Growth-Promoting Rhizobacteria (PGPR) that boost seed germination, root devel-
opment, water utilization, resistance development against plant pathogens, etc., 
which finally promote plant growth and yields.

In 1904, a German scientist named Hiltner, coined the term “rhizosphere” refer-
ring to the soil around the plants’ roots, which is rich in varied bacterial population 
density (100–1000 folds) than bulk soil. These bacteria form micro-colonies and 
constitute ~15% of the root surfaces (Gray and Smith 2005). “PGPR” refers to a 
heterogeneous group involving several bacterial species that populate the rhizo-
sphere and promotes plant growth through separate mechanisms. Thus, it is predict-
able that the rhizosphere is a region of immeasurable microbes’ interactions with 
plant roots, as root secretions act as a major nutrient source for these microbes and 
support efficient geo-cycling of nutrients. In general, PGPR can perform functions 
as biofertilizers, biostimulator, rhizo-mediator, and biopesticides (Table 16.1).

PGPR classification: Different criteria can be used for their classification and 
these are discussed here.

Based on Location  Depending upon the interrelation with plant roots, PGPR can 
be categorized into two types: the first is extracellular PGPR (ePGPR), which are 

Table 16.1  Classification of PGPR according to their use and mechanism of action (MOA)

Class Description Mechanism of Action (MOA)

Biopesticide PGPR improve plant growth and 
yield by inhibiting the 
phytopathogens.

By production and release of hydrolytic 
enzymes, antibiotics, siderophores, 
hydrogen cyanide (HCN), induced 
systemic resistance (ISR), etc.

Biofertilizer PGPR improve plant growth and 
yield by supplying growth nutrients.

By nitrogen fixation and utilization of 
insoluble nutrients from the soil

Phyto-
stimulator

PGPR improve plant growth and 
yield by supplying of different 
phytohormones for various functions 
in plants.

By production of phytohormones i.e., 
indole acetic acid (IAA), gibberellic acid 
(GA), cytokinesis, ethylene, jasmonic acid 
(JA), etc.

Source: Adapted from Shah et al. (2018)
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found predominantly inside the rhizosphere or in between root cortex cells. These 
include species of Agrobacterium, Arthobacter, Bacillus, Caulobacter, Erwinia, 
Micrococcus, Pseudomonas, Serratia, etc. The second group is intracellular PGPR 
(iPGPR), restricted to specific sections in root nodules (Gray and Smith 2005). In 
particular, Rhizobacteriaceae family bacteria reside in these zones, which contain 
Bradyrhizobium, Allorhizobium, Mesorhizobium, Frankia, etc. Experiments have 
validated the contribution of both these categories in improving the yields, by gen-
erating resistance in plants that too without any side effects (Vessey 2003; Gray and 
Smith 2005).

Based on Mechanisms  Apart from location, direct or indirect impact is also a valid 
criterion to categorize PGPR, as shown in Fig. 16.1. Direct impacts involve nitrogen 
fixation, phosphorous and potassium solubilization, release of siderophores, seed-
ling enhancement, etc., promoting nutrient uptake and growth of the plants. On the 
contrary, indirect influences comprise antagonistic compounds production like anti-
biotics, hydrolytic enzymes, etc., that provide resistance, especially against fungal 
phytopathogens, as compiled in Table 16.1. Additionally, fungal pathogens are ren-
dered ineffective due to the mycoparasitism (parasite to fungi) activity of PGPR, 
and ultimately protecting the plant roots (Woo and Lorito 2007). Besides, rhizobac-
teria also augments the plant defense called “Induced Systemic Response (ISR)” by 
activation of a latent resistance system containing physical and chemical barriers 
(Loon et al. 1998). Intriguingly, the enhancement is not restricted to the nodular 
area but also protects the distal parts of plants. This response involves signaling 
pathways and employs compounds such as jasmonic acid (JA), ethylene and other 
components like antibiotics, siderophores, and hydrolytic enzymes, which exhibit 
synergism in inducing ISR against the phytopathogens. The next section explains 

Fig. 16.1  Various mechanisms involving PGPR-mediated biocontrol of phytopathogens. 
Biocontrol may be done by one or more than one mechanism acting in synergism
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the various components of PGPR secretions, with major emphasis on hydrolytic 
enzymes.

2 � PGPR Secretions

PGPR emancipate various metabolites and hydrolytic enzymes, which doesn’t 
allow the fungal phytopathogens to carry out a successful attack.

2.1 � Hydrolytic Enzymes

The PGPR are efficient in production of several different hydrolytic enzymes i.e., 
chitinase, glucanase, protease/elastase, cellulase, catalase, etc. These enzymes have 
activities against several phytopathogens including fungi, thereby restricting several 
plant diseases. Although the hydrolytic enzymes perform their function via various 
mechanisms, but the major one remains degrading the glycosidic bonds in fungal 
wall chief component chitin. This inhibits hyphal formation in fungi, a crucial step 
in deeper fungal penetration in plant tissues.

Besides enzymes, various antibiotics, toxins, or volatile compounds are also syn-
thesized by PGPR, which are extremely target specific and thus prevent varied 
pathogens from attacking plant root nodules. It is reported that physical factors such 
as pH, temperature, and moisture content influence antibiotic production (Shanahan 
et al. 1992). Pseudomonas secretes lipopeptides, hydrogen cyanide (HCN), phen-
azines, pyoluteorins, etc. (Haas and Keel 2003). Alongside, different antibiotics, 
antibacterial, antivirals, and cytotoxic agents effective against insects like anti-
feedant and anti-helminthic molecules are also produced.

2.2 � Antibiotics

PGPR-mediated antifungal activity is also due to the release of antibiotics (Haas 
and Keel 2003). These antibiotics are a heterogeneous group of organic, low-
molecular-weight compounds (Duffy et al. 2003). The Bacillus strains are associ-
ated with production of more than 20 different antibiotics, most important being 
Kanosamine, Zwittermycin A, Iturin A (Cyclopeptide), Bacillomycin, Plipastatins, 
etc. (Volpon et al. 2000). Haas and Defago categorized the antibiotics into two sub-
classes: (1) diffusible antibiotics, which involve five classes – phenazines, phloro-
glucinols, pyoluteorin, pyrrolnitrin, and cyclic lipopeptides, and (2) volatile 
antibiotics, like hydrogen cyanide (HCN) (Haas and Defago 2005).

L. Duhan et al.
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2.3 � Siderophores

PGPR produce siderophores, which are low-molecular weight and high-affinity iron 
chelating compounds that help in ion uptake through channels across cell-membrane. 
Their importance can be estimated from the fact that iron in soil is actually present 
in bound state, which is inaccessible for plants’ usage and can lead to iron defi-
ciency and reduced yield. The siderophores facilitate iron solubilization and absorp-
tion by its chelation from various organic and inorganic sources (Wandersman and 
Delepelaire 2004). These compounds bind easily to insoluble ferric ions (Fe3+) and 
facilitate their absorption as soluble form. Siderophores are broadly divided into 
four classes – hydroxamates, carboxylate, catecholates, and mixed type.

3 � PGPR-Mediated Biocontrol

In general, biocontrol refers to the use of living organisms to suppress the growth of 
pathogen by either direct (parasitism, hyper-parasitism, commensalism), indirect 
(competition, systemic acquired or ISR), or hybrid antagonistic modes (like produc-
tion of antibiotics, lytic enzyme, siderophores, volatile organic substances, etc.) 
(Heimpel and Mills 2017). Free-living PGPR restrain bacterial, nematode, viral, 
and fungal pathogens by controlling microbial balance near plant roots (Kenawy 
et al. 2019).

Fungal pathogens cause a lot of diseases in plants and their effective control is 
required for improved harvest and quality. The common fungal pathogens attacking 
plants are summarized in Table  16.2. The biocontrol of fungal phytopathogens 
through the PGPR involves metabolites secretion including hydrolytic enzymes, 
which play the central role in suppressing the fungal infections (Gangwar et al. 2016).

The fungal pathogen exists in diverse morphological forms, such as spores, 
hyphae, or fruiting bodies. Thus, an effective response requires rhizobacteria to rec-
ognize all these structures. The fungal phytopathogen exists in close proximity to 
the rhizobacteria, enabling direct target recognition, penetration, and lysis of patho-
genic cells (Shaikh and Sayyed 2015). Although, the attachment can either be direct 
connection of bacteria and target cell, or entrapment of phytopathogen into the rhi-
zobacterial biofilms.

Here, although lysis seems the only method in biocontrol, but various other 
mechanisms exist in combating these plant fungal pathogens. Some of major mech-
anisms in effective biocontrol are following:

	(a)	 Niche Competition – The PGPR contest with fungal pathogens for the niche and 
outcompetes the fungal phytopathogens from plant tissue and soil (Loper and 
Henkels 1997).

	(b)	 Antibiotics, Siderophores Production – These compounds manipulate the 
metabolism of fungal phytopathogen and restrict pathogen growth (Beneduzi 
et al. 2012).
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Table 16.2  Various fungal pathogens causing plant diseases

Fungal pathogen Target plant species Disease References

Syncephalastrum 
racemosum

Potatoes, onions, carrots, 
fleshy organs, etc.

Soft rots Misra et al. (2016)

Phytophthora sp. Jarrah Root rots Rea et al. (2010)
Puccinia Wheat, oats, rye, barley Rusts Uchida et al. (2006)
Alternaria solani Potato Early blight Abuley and Nielsen 

(2019)
Phytophthora 
infestans

Potato Late blight Small et al. (2015)

Gibberella circinata Woody plants Cankers Wingfield et al. (2002)
Claviceps purpurea Wheat, rye, barley, and 

other grasses
Ergots Giesbert et al. (2008)

Rhizoctonia solani On the whole lawn 
irregularly

Brown and 
yellow patches

Giesler and Yuen (1998)

Fusarium sp. Potatoes, onions, carrots, 
fleshy organs

Dry rots Heltoft et al. (2016)

Fusarium sp. Mango Leaf spot Sultan et al. (2019)
Phragmidium 
satoanum

Rose Leaf rust Ono and Wahyuno (2019)

Puccinia arachidis Groundnut Leaf rust Sathiyabama and 
Balasubramanian (2018)

Uncinula necator Onions,cucumbers, Grains, 
alfalfa

Powdery 
mildew

Doster and Schnathorst 
(1985)

Erwinia amylovora Pea and apple Fire blight Braun-Kiewnick et al. 
(2011)

Fusarium 
graminearum

Wheat, rye, barley, potatoes Scab O’Donnell et al. (2000)

Uromycladium 
tepperianum

Sengon Gall rust Lestari et al. (2013)

Xanthomonas oryzae Rice Leaf blight Wongkhamchan et al. 
(2018)

Bipolaris maydis Maize Leaf blight Kumar et al. (2016)
Fusarium oxysporum Potatoes, alfalfa Wilts Pietro et al. (2003)
Erwinia amylovora Apple Fire blight Gaucher et al. (2013)
Phomopsis sp. Various plants Seed decay Li et al. (2015)
Pythium and 
Fusarium

Various plants Damping off Mao et al. (1997)

Glomerella cingulata Apple Leaf spot Liu et al. (2016)

	(c)	 Hydrolytic Enzymes Production – Hydrolytic enzymes refer to various prote-
ases and lipases, which together work and degrade the cell wall of fungal phy-
topathogens (Sayyed et al. 2013).

	(d)	 Mycoparasitism – Refers to parasitism on fungal pathogen (Woo and 
Lorito 2007).

	(e)	 Induction of ISR – ISR improve antifungal activity of plants by strengthening 
the physical and chemical barriers (Beneduzi et al. 2012).
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3.1 � The PGPR Released Hydrolytic Enzymes

PGPR secretes various extracellular hydrolytic enzymes i.e., chitinase, protease, 
cellulose, β-(1,3)-glucanase, etc., which play a key task in the inhibition of fungal 
phytopathogens growth (Wang et al. 2019). These hydrolytic enzymes cleave the 
cell wall units of fungi, including, chitin, proteins, cellulose, hemicelluloses, glu-
cans, etc., thus inhibit the hyphal formation and penetration deep into plant tissues.

3.1.1 � The Fungal Cell Wall: Weaker Link

The cell wall is a protective barrier in fungi and guards against external environmen-
tal stresses, but also controls morphogenesis, as well as helps in plant-fungal inter-
action (Latge and Beauvais 2014). The criticalness of cell wall in maintaining the 
integrity of the fungal cell and is regarded as an outstanding target for antifungal 
compounds (Geoghegan et al. 2017). The fungal cell wall is made up of approxi-
mately 80% of the fibrillar cross-linked polysaccharides. The major components are 
chitin, glucans, mannans, polyphosphate, and glycoproteins. These are cross-linked 
together and build the skeleton of the cell wall (Bowman and Free 2006), (Geoghegan 
et al. 2017). The fibrillar polymers are surrounded with the complex gel-like matrix 
including polyglucuronic acid, xylomannoprotiens, polyphosphate, etc. (Table 16.3).

About 20–30% of the proteins exist as glycoproteins and either form the struc-
tural framework of the cell wall (Srinorakutara 1998) or perform various functions 
like aiding in water movement, preventing desiccation, or signaling proteins (recep-
tors) involved in regulation, etc. (Cox and Hooley 2009). Therefore, disturbing the 
homeostasis or degrading the integrity is one of the most employed mechanisms of 
hydrolytic enzymes mediated fungal combating.

Hydrolytic enzymes have the capacity of destroying the fungal cell wall structure 
and integrity (Budi et al. 2001). They function by breaking or disturbing the glyco-
sidic bonds forming the chitin polymers and results in lysis of cell walls, inhibition 
of germ tubes, and hyphae formation (Shaikh and Sayyed 2015; Kim et al. 2003). 
Wu et al. studied the control of paper seedling wilt disease, caused by a thread-like 
fungus R. solani, which is confronted by various hydrolytic enzymes, namely, chi-
tinase, β-1,3-glucanase, peroxidase, catalase, superoxide dismutase (SOD), poly-
phenol oxidase, phenylalanine ammonia lyase, etc., from Bacillus subtilis SL-44 
(PGPR). These enzymes fracture the mycelia and thus result in leaking of cell mate-
rial, ultimately leading to fungal cell death in the pepper plant (Wu et al. 2019). 
Hydrolytic enzymes also act synergistically with other anti-fungal by-products of 
PGPR. Someya et al. demonstrated the synergistic effects of hydrolytic enzymes of 
Serratia marcescens B2, with efficacy of Pseudomonas fluorescens LRB3W1 anti-
fungal compounds, against cabbage Fusarium yellows, caused by F. oxysporum. 
Reportedly, the fungal cell wall and hyphae degradation were more effective than 
PGPR hydrolytic enzymes alone (Someya et al. 2007). In the next section, some 
major hydrolytic enzymes and their mode of action are discussed in detail.
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Table 16.3  List of major components of fungal cell walls

Fungal 
classification Fibrous polymers Gel-like polymers

Basidiomycota Chitin β-(1–3), β-(1–6) 
glucan

Xylomannoproteins α (1–3) glucan

Zygomycota Chitin chitosan Polyglucuronic acid, glucuronomannoproteins, 
polyphosphate

Ascomycota Chitin β-(1–3), β-(1–6) 
glucan

Galactomannoproteins α (1–3) glucan

Chytridiomycota Chitin glucan Glucan
Oomycetes β-(1–3), β-(1–6) glucan 

cellulose
Glucan

Adapted from Gow and Gadd (1995)

Chitinase

Chitinase [EC 3.2.1.14] is the chief hydrolytic enzyme released by PGPR. Its anti-
fungal activity is well-known and as the name suggests, it acts on polymer chitin, 
present in fungal cell wall. Chitin polymer is formed by β-1,4 linkages between 
N-acetyl-D-glucosamine (NAG or GlcNAc) subunits, as shown in Fig. 16.2 (Pillai 
et al. 2009). The purified enzyme works as efficiently as chitinase coding genes in 
bacteria (Kim et al. 2003). In general, chitinases are found in a number of chitin-
containing microbes like insects, crustaceans, yeasts, and fungi, and also in many 
non-chitin synthesizing cells of bacteria, higher plants, viruses, animals, etc. (Sharp 
2013). Table 16.4 is a compilation of chitinase released by various PGPR, which 
suppress fungal phytopathogens effectively.

Besides bacteria, the cloning and purification of CHIA (Chitinase Acidic) gene, 
encoding chitinase has also been tried for controlling fungal phytopathogens. 
Oppenheim and Chet effectively controlled the S. rolfsii and R. solani fungal patho-
gens, by cloning, expressing, and purifying CHIA gene (S. marcescens) product in 
E. coli (Oppenheim and Chet 1992). Similar results were obtained in producing 
chitinase, chitosanase (chitosan), and protease enzymes from B. cereus QQ308, 
which suppressed spore germination and tube formation in F. oxysporum, F. solani, 
and P. ultimum on Chinese cabbage plant (Chang et al. 2007). Jones et al. rather 
followed the forward genetics approach and inactivated the ChiA gene in S. marces-
cens to make chitinase mutants and studied its effect on growth of F. oxysporum in 
pea plants (Jones et  al. 1986). These various studies prove that indeed chitinase 
enzyme can be used as controlling means against fungal phytopathogen.

Types of Chitinase enzymes – The chitinase can be divided into two main groups.

	 1.	 Endo-chitinases – Cause random cleavage of chitin polymer at internal posi-
tions of linear chitin polymer which produce the diacetylchitobiose dimer, as 
well as GlcNAc soluble multimers like chitotriose and chitotetraose (Sahai 
and Manocha 1993).

	 2.	 Exo-chitinases – These are further sub-divided into two.

L. Duhan et al.
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Fig. 16.2  Sites of chitinase enzyme on chitin polymer in cell wall of fungal phytopathogens. 
Endochitinase catalyses random splitting of chitin polymer at internal positions. Chitobiosidase 
catalyses release of di-acetylchitobiose in chitin microfibril, starting from non-reducing end. 
1–4-β-glucosaminidases splits the endochitinases and chitobiosidases oligomeric products, gener-
ating monomers of GlcNAc

	 (a)	 Chitobiosidases (E.C.3.2.1.29) – Catalyse the release of diacetylchitobi-
ose of chitin microfibril from the non-reducing end.

	 (b)	 1–4-β-glucosaminidases (E.C.3.2.1.30) – Split endochitinases and chito-
biosidases, generating monomers of GlcNAc (Sahai and Manocha 1993).

Glucanase

Glucanases refer to a category of hydrolases that breaks the glucosidic bond in glu-
cans, a polysaccharide made of glucose monomers. Among these, β-1,3-glucanases 
[EC 3.1.1.6] are found in various microbes like bacteria, fungi, and higher plants 
(Simmons 1994). β-1,3(1,6)-glucans polysaccharides are a major structural frame-
work component, having β-1,3-linked backbone and β-1,6-linkages in the fungal 
cell wall. The β-1,3-glucanase hydrolytic enzymes are released from various PGPR 
and cause lysis of β-1,3(1,6)-glucans polysaccharides thus, inhibiting the hyphal 
cell growth, ultimately leading to their death (Goswami et al. 2016; Fridlender et al. 
1993) (Fig. 16.3). These are further sub-divided into two divisions.

	1.	 Exo-1,3-glucanases (EC 3.2.1.58) – Catalyse hydrolysis of the fungal cell wall 
via sequential breakdown of glucose residues from the non-reducing end of glu-
can polysaccharides (Mouyna et al. 2013).

	2.	 Endo-1,3-glucanases (EC3.2.1.39) – Catalyse hydrolysis via random breakdown 
of the glucan polysaccharide into oligosaccharides units (Mouyna et al. 2013).

Various groups took efforts to study glucanases in detail and made successful 
attempts at their purification. β-1,3 glucanase from Pseudomonas cepacian was 

16  Fungal Hydrolytic Enzymes Produced by Plant Growth-Promoting Rhizobacteria…



322

Table 16.4  Various microbes showing hydrolytic antifungal cell wall lysis activities in different 
host plants

Microbes releasing 
hydrolytic enzymes Hydrolytic enzyme Host plant

Target fungus 
species References

S. plymuthica C48 Chitinase Mustard 
crop

Botrytis cinerea Frankowski 
et al. (2001)

S. marcescens 
QMB1466

Chitinase Pea F. oxysporum Jones et al. 
(1986)

S. marcescens Chitinase Cotton Sclerotium. rolfsii 
and R. solani

Oppenheim and 
Chet (1992)

Bacillus cereus 
QQ308

Chitinase, 
chitosonase, 
protease

Chinese 
cabbage

F. oxysporum, F. 
solani, Pythium. 
Ultimum

Chang et al. 
(2007)

Bacillus strain 
EBS8

Chitinase Maize F. verticillioides Abiala et al. 
(2015)

S. marcescens Chitinase (into the 
Rhizobium meliloti)

Alfalfa R. solani Sitrit et al. 
(1993)

B. subtilis 30VD-1 Chitinase, Protease Pea Fusarium sp. Khan et al. 
(2018)

Streptomyces 
griseus

Chitinase Cotton F. oxysporum, A. 
alternata, R. solani, 
F. solani

Anitha and 
Rabeeth (2010)

Paenibacillus sp. 
strain 300 and 
Streptomyces sp. 
strain 385

β −1,3-glucanase, 
Chitinase

Cucumber F. oxysporum f. sp. 
cucumerinum

Singh et al. 
(1999)

P. cepacia β-1,3-glucanase Soil borne R. solani, S. rolfsii, 
P. ultimum

Fridlender et al. 
(1993)

B. subtilis NSRS 
89–24

β-1,3-glucanase Rice P. grisea and R. 
solani

Leelasuphakul 
et al. (2006)

P. aeruginosa 
PGPR2

Protease Mung-
bean

Macrophomina sp., 
Rhizoctonia sp. and 
Fusarium sp.

Illakkiam et al. 
(2013)

B. subtilis SL-44 Lytic enzymes 
include chitinase and 
β-1,3-glucanase

Pepper R. solani Wu et al. (2019)

P. fluorescens 
LRB3W1

Chitinase Cabbage F. oxysporum Someya et al. 
(2007)

Paenibacillus 
jamilae HS-26

Cellulase, Chitinas, 
protease, glucanase

Cucumber Fusarium sp., 
Alternaria sp., R. 
solani, etc.

Wang et al. 
(2019)

purified, by growing it on a laminarin (in brown algae) as a carbon source and found 
to be active (pH 5.0) (Fridlender et al. 1993). The β-1,3-glucanase of Bacillus sub-
tilis NSRS 89–24 was even cloned and purified, having a molecular weight of 
95.5 kDa. The optimal activity at pH 6.5–9.5 and 50 °C (Leelasuphakul et al. 2006). 
However, β-1,3-glucanase from Trichoderma harzianum is reported to be around 
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Fig. 16.3  The mechanism of action of different glucanases on β-1,3-glucans. Exo-1,3-glucanase 
cause sequential breakdown of glucose residues of glucan polymers. Endo-1,3-glucanase cause 
random breakdown of the glucan polymers

29 kDa and active at pH 4.4 and 50 °C. Its KM and Vmax are 1.72 mg/ml and 3.10 U/
ml, respectively, with laminarian as substrate (Noronha and Ulhoa 2000).

The inhibitory effects of β-1,3-glucanases from different PGPR are reviewed in 
Table  16.4. β-1,3-glucanase and chitinases from Paenibacillus sp. 300 and 
Streptomyces sp. 385, against F. oxysporum f. sp. cucumerinum, instigated cucum-
ber’ vascular wilt (Singh et al. 1999). β-1,3-glucanase from Pseudomonas cepacia 
cause fungal cell wall lysis in phytopathogens-: R. solani, S. rolfsii, and P. ultimum; 
and thus reduce diseases progression by 85%, 48%, and 71%, respectively 
(Fridlender et  al. 1993). The inhibitory effects of β-1,3 glucanase from Bacillus 
subtilis NSRS 89–24 contained Pyricularia grisea and R. solani with MIC values of 
12.5 mU/ml and 3.13 μg/ml, respectively. Further, β-1,3 glucanase act synergisti-
cally with antibiotics and show better results together than alone (Leelasuphakul 
et al. 2006).

Protease

Fungal cell wall possesses various proteins and peptide units to provide essential 
structural framework. The PGPR proteases are extracellular and its intervened 
hydrolysis is not a mere theoretical possibility to disturb the cell wall integrity, but 
indeed substantiated with experiment based studies (Jadhav et al. 2017). Proteases 
[E.C. 3.4.24] play an important role in the phytopathogenic fungi biocontrol, as 
either alone or in synergism with other PGPR secretions. Although several microbes 
produce proteases, but it is the PGPR secreted proteases only which are primary in 
biocontrol activities against Aspergillus flavus, A. niger, A. wentii, A. alternata, 
Byssochlamys fulva, etc. (Sayyed et al. 2019; Tewari et al. 2019). It is reported that 
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extracellular proteases are chiefly released by Bacillus sp. (Sookkheo et al. 2000). 
Scientists claim that protease also display slight specificity against specific protein 
structures in cell wall of fungi.

The function of the proteases is shown in Fig. 16.4. Different studies of proteo-
lytic enzymes active against fungal phytopathogens are compiled in Table 16.4.

The protease enzyme from P. aeruginosa mungbean rhizosphere was purified 
and molecular weight of purified protease is around 33 kDa, with activity of 235 U/
mL at pH 6.0 and 40–70 °C temp (Illakkiam et al. 2013). However, Sookkheo et al. 
(2000) could purify three extracellular proteases from B. stearothermophilus strain 
TLS33, naming them as S, N, and B, with weights of 36, 53, and 71 kDa respec-
tively. The optimal activities is rather reported at varied pH of 8.5 (72 °C), 7.5(78 °C), 
and 7.0 (90 °C) respectively (Sookkheo et al. 2000). It again reaffirms protease to 
be broad category.

The P. aeruginosa PGPR2 protease has antifungal activities against 
Macrophomina sp., Rhizoctonia sp., and Fusarium sp., and maximum activity is 
reported against M. phaseolina in agar disc diffusion assay with a distinct inhibition 
zone at pH 6.0 (Illakkiam et al. 2013). The protease, chitinase, and chitosanase from 
B. cereus QQ308 are active against F. oxysporum, F. solani, and P. ultimum infec-
tions in Chinese cabbage (Chang et  al. 2007). Proteases released by PGPR are 
mainly extracellular; the quantity of proteases is very high and shows hydrolytic 
activity under harsh environmental conditions as well.

Cellulase

Celluloses are microfibrils, rigid, insoluble, and crystalline structures. Cellulase 
enzyme system mainly involves the combination of the three major hydrolytic 
enzymes, involving endo-1,4-β-glucanase enzymes [EC 3.2.1.4], exo-1,4-β-
glucanase enzymes [EC 3.2.1.91], and β-glucosidases [EC 3.2.1.21], which can 
break the glycosidic linkages (Lynd et  al. 2002). They hydrolyse the 1,4-β-D-
glucosidic linkages in cellulose, and thus recycle this polysaccharide (Jayasekara 

Fig. 16.4  Actions of 
protease on peptide bond 
of protein molecule 
causing proteolysis
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and Ratnayake 2019). Although there are not enough conclusive evidences to prove 
fungal cell wall degradation by cellulase enzymes alone, but rather studies support 
the synergistic participation of glucanase other hydrolytic enzymes with cellulase. 
Many PGPR release cellulolytic enzymes and thus help in the breakdown of cellu-
lose in microbial cell wall (Tang et al. 2020). Some studies involving role of cellu-
lase enzyme in antifungal activities are discussed here as well (Table 16.4). Wang 
et  al. reported various lytic enzymes, break the fungal cell wall (Fusarium spp., 
Alternaria sp., R. solani, etc.), from the P. jamilae HS-26 (rhizobacteroid) strain, 
both qualitatively and quantitatively. The mixture of enzymes, after 3 days, show 
cellulase, glucanase, and protease enzymes level reaching up to 62.76 ± 1.35 U/mL, 
4.13 ± 0.53 U/mL, and 15.56 U/mL, respectively (Wang et al. 2019). This study 
endorses synergistic roles of cellulase in the degradation of fungal cell wall. Another 
mechanism of fungal inhibition with cellulolytic enzymes is its synergism with 
mycoparasitism in Phytophthora and Pythium spp. (Picard et  al. 2000). These 
reports conclude that either the exact mechanism is still unknown and needs to be 
explored or separate ways could be employed for effective biocontrol by cellulases.

Limited literature is available on cellulases and one study involves purification 
from B. licheniformis (Isolate 380) with 20 kDa size, and maximum activity of this 
carboxymethyl cellulase is 0.14 UEA mL-1 min-1 (Marco et al. 2017). Cellulase 
enzyme from B. subtilis YJ1 have a molecular mass of 32.5 kDa and appear to be an 
endo-1,4-glucanase enzyme at 6.0 pH and 50–60 °C temp, (Yin et al. 2010).

4 � Mycoparasitism in Antifungal Response

Mycoparasitism is an indirect mode of inhibition of fungal cells and refers to obtain-
ing nutrients from living fungal cells. It involves different phases, starting with: 
attachment, detection, contact, and penetration, followed by nutrient acquisition as 
shown in Fig. 16.5 (Woo and Lorito 2007). Mycoparasitism activity can be shown 
in two ways: necrotrophic and biotrophic. Necrotrophic mycoparasites destroy the 
host mycelium in the early stages of parasitism and use the nutrients that are released 
from dead host cells. Necrotrophic mycoparasites are more hostile and violent in 
comparison to biotrophic parasites. These mycoparasites show a broad range of host 
choices and infinite mode of parasitism. The parasitic activity of necrotrophic para-
sites is due to the secretion of hydrolytic enzymes, antibiotics, and other antagonis-
tic compounds (Sahai and Manocha 1993). On the other hand, in biotrophic 
parasitism, the biotrophs fulfil their need of nutrient from living host instead of dead 
cell (Scott 1976). Biotrophic mycoparasites show a narrow host range, and impli-
cate haustorial structures development for nutrients uptake from the host fungal 
cells (Sahai and Manocha 1993).

Mycoparasitism property of PGPR, especially by actinomycetes, could act as a 
game changer in the field of biocontrol of fungal phytopathogens (Barnett and 
Binder 1973). For direct physical attachment, PGPR can recognize various forms of 
fungi, involving spores, fruiting bodies, hyphae, etc. The mycoparasitism normally 
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Fig. 16.5  PGPR 
parasitism on fungal 
pathogen. PGPR hydrolytic 
enzymes show lytic 
activities against cell wall 
of fungal phytopathogens

involves help of various compounds involving hydrolytic enzymes such as chitin-
ases, proteases, glucanases, cellulose, etc., along with other PGPR products 
(Fig. 16.5) (Chet et al. 1990). Chet et al. reported the release of lytic enzymes from 
S. marcescens which caused inhibitory activity against S. rolfsii in beans and 
S. solani in cotton, for effective biocontrol. The cloned and purified chitinase 
enzyme extracted from S. marcescens caused effective outburst of hyphal tips of 
S. rolfsii (Chet et al. 1990). Bolwerk et al. reported that P. fluorescens WCS365 and 
P. chlororaphis PCL1391 showed parasitism on F. oxysporum hyphae with the help 
of phenazine-1-carboxamide (PCN) and other lytic secretions, thus helped in the 
biocontrol of foot and root rot in case of tomato plants (Bolwerk et al. 2003).

5 � Induced Systemic Resistance (ISR) in Combating Fungi

Induced Systemic Resistance (ISR) is an acquired process to expand plants’ defen-
sive competency manifolds against various biotic infections and other environmen-
tal challenges (Loon et al. 1998). This defensive ability is called systemic because 
it increases plants’ endurance at not infection site, but also at rest other sites, and 
protect from any future attack from fungi or other phytopathogens.

It’s warranted that various PGPR products should act synergistically and induce 
ISR in plants. These include siderophores, pyoverdin, antibiotics, and hydrolytic 
enzymes. The role of enzymes in the induction of ISR has not been studied in detail, 
and limited reports exist. The ISR associated enzymes are chitinase, β-1,3-glucanase, 
peroxidase (PO), polyphenol oxidase (PPO), superoxide dismutase (SOD), catalase 
(CAT), lipoxygenase (LOX), ascorbate peroxidase (APX), phenylalanine ammonia-
lyase (PAL), protease, etc. (Annapurna et  al. 2013). Lawrence et  al. report three 
moderately early blight resistant tomato varieties that have higher chitinase and 
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β-1,3-glucanase (antifungal isozymes) levels; compared to the non-resistant variet-
ies for A. solani (Lawrence et al. 2000). Dumas-Gaudot et al. recorded the short-
term increase of the chitinase and sometime β-1,3-glucanase activities as an induced 
defense response in plants towards fungal phytopathogens (Dumas-Gaudot et  al. 
1996). Bargabus et al. reported an increase in systemic resistance of sugar beet plant 
by chitinase and β-1,3-glucanase released from Bacillus pumilus (Bargabus et al. 
2004) Therefore, it is conclusive that there is some involvement of PGPR hydrolytic 
enzymes in promoting ISR, but yet, there is a lot more scope in exploring the well-
defined mechanism behind ISR induction activities of PGPR hydrolytic enzymes.

6 � Conclusions and Future Prospects

The possibility of PGPR in protecting plants from attack of fungal pathogens, and 
thereby enhancing yield and quality of crops is feasible. It is promising due to 
release of several antifungal components, like hydrolytic enzymes, antibiotics, sid-
erophores, defensive hormones, etc. All these factors play an important role in sus-
tainable plant disease control, including fungal phytopathogens. Different hydrolytic 
enzymes target the multiple cell wall components i.e., chitinase, pectinase, gluca-
nases, cellulases, and effectively guard from fungi attack. The PGPR maintain 
microbial balance in rhizosphere, enhance the seed, and ensure absorption of nutri-
ents. Thus, it improves harvest and strength of plants cultivated for economic rea-
sons. These hydrolytic enzymes effectively bring mycoparasitism of PGPR, along 
with increased ISR. The synergism between various PGPR released components 
further augments the affectivity. The natural biocontrol of fungal phytopathogens is 
promising as it can efficiently decrease the reliability on chemical fertilizers and 
promote organic farming, which is fast catching attention. Sikkim, in India, has 
already committed to 100% organic farming. The commercial production of PGPR 
secretions in combination with nanoparticles would be a splendid biofertilizer, as 
these would not result in acquired resistance in fungal species, like various chemical 
fertilizers.

However, like the two sides of the coin even PGPR have their own share of com-
plications as well. PGPR exhibit some shortcoming as well, like cyanide can inhibit 
the growth of some plants. The auxins accumulation in rhizosphere can impede 
roots development. Some compounds of PGPR secretion negatively affect nodula-
tion in plants or induces foliar chlorosis in soybeans. Therefore, we can conclude 
that responsible manipulation of PGPR has promising potential to act as an alterna-
tive to current agriculture practices, in controlling pathogens and ensuring plant 
health and productivity with sustainability. However, despite a lot of research on the 
production of hydrolytic enzymes in the last 40 years, the functioning of PGPR is 
still not fully understood and requires more efforts and support.
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