
Building Protocols for Scalable
Decentralized Applications

Kai Mast

Abstract Blockchain protocols are a promising technology in the abstract, but, in
reality, fall short of the promise of supporting arbitrary decentralized applications.
For example, Bitcoin supports<10 transactions per second and Ethereum’s gas limit
prevents computationally expensive applications to execute on its chain. This chapter
provides an overview ofmechanisms that have been proposed to overcome these lim-
itations. In particular, we describe novel consensus protocols, sharding mechanisms,
state and payment channels, subchains, and federated protocols. Additionally, we
give insight into the tradeoffs and benefits of the different approaches.

1 Introduction

Blockchains [45, 64], or more broadly decentralized ledgers, enable applications to
execute across a trustless peer-to-peer infrastructure.We consider a systemdecentral-
ized if individual nodes cannot influence its execution as long as they do not control a
threshold of the network. This means that decentralized architectures protect against
malicious adversaries in addition to simple crash failures. As a result, decentral-
ized ledgers allow for online services to operate without reliance on a trusted party.
Figure1 outlines this stark contrast to previous architectures, where each user’s data
is in full control of a single organization.

While blockchain protocols are a promising technology in the abstract, they fall
short in critical ways. For example, the Ethereum blockchain has roughly the pro-
cessing power of a portable calculator or about 35k floating-point operations per

K. Mast (B)
Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
e-mail: kaimast@cs.wisc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. A. Tran et al. (eds.), Handbook on Blockchain, Springer Optimization
and Its Applications 194, https://doi.org/10.1007/978-3-031-07535-3_7

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07535-3_7&domain=pdf
mailto:kaimast@cs.wisc.edu
https://doi.org/10.1007/978-3-031-07535-3_7

216 K. Mast

second.1 The culprit for these limitations is that decentralization requires massive
replication of computation and data. This massive replication results in high compu-
tation, communication, and storage overheads, which in turn, hurts throughput and
latency.

In this chapter, we first give an overview of the decentralized ledger model and
the protocols that implement it. Then, we discuss different avenues for improving
the performance of such protocols to support real-world workloads. Throughout the
chapter, we will also give insight into the limitations and open problems of existing
mechanisms.

We describe four different avenues for scaling blockchains. First, we discuss
how the consensus protocol itself can be made faster. Second, we discuss sharding,
which allows running multiple consensus protocols in parallel. Third, we provide
an overview of layer-2 solutions, such as payment channels. Finally, we discuss
federated blockchains, which can be viewed as a hybrid of layer-2 and sharding
solutions. Our discussion is mainly focused on safety, i.e., that the consistency and
integrity guarantees of the blockchain system are not broken, and availability, i.e.,
that the current and past states of a blockchain can always be retrieved and inspected.

2 Decentralized Ledger Abstraction

Each decentralized architecture, in essence, provides the abstraction of an append-
only ledger with semantics that goes beyond the mere storage of data and execution
of programs. These semantics are key to building applications with high integrity in a
decentralized setting and it is important to understand thembeforemodifying existing
or creating new protocols for decentralized ledgers. For the rest of this chapter, we
will refer to this abstraction as decentralized ledgers and the underlying protocols as
decentralized ledger technologies (DLTs).

We extend the formalism of Adya [1], which defines a database D consisting of
a history HD of transactions and a set of objects OD, each associated with a totally
ordered set of object versions. Each transaction is a set of operations applied to
a particular object, such as a read, write, or append. Each object’s version history
initially only consists of the ⊥ value, indicating that it has not been created yet.

Transactions affecting the same object(s) and their operations can be ordered with
respect to each other. We say a transaction T precedes another transaction T ′ if it
appears earlier in the database’s history, denoted as T ← T ′. This relationship is
transitive, i.e., if T1 ← T2 and T2 ← T3 hold, then T1 ← T3 holds as well. Similarly,
we say an operation op precedes another operation op′ if the object versions it
accesses precedes that of op′. Transactions affecting two disjoint sets of objects may

1 With the current gas limit, Ethereum can do about two million floating-point multiplications per
block, which are published about once a minute [21].

Building Protocols for Scalable Decentralized Applications 217

not be able to be ordered with respect to each other, denoted as T ↔ T ′. Similarly,
operations affecting two distinct objects cannot be ordered with respect to each other,
denoted as op ↔ op′.

2.1 Consistency

Like many conventional database management systems, decentralized ledgers allow
enforcing application-specific constraints on the data and provide strict serializability
for all operations. Serializability ensures that all transactions execute atomically, i.e.,
in a serial or equivalent to serial order. In other words, if two transactions T1 and T2
are applied to two distinct objects, they must be applied in the same order to both
objects. Strict serializability extends this notion of a real-time order: if T1 started
before T2, its operations should also be applied before those of T2 (see Eq.1). This,
in turn, not only ensures the integrity of a system’s state but also makes it much
easier for developers to build applications, because they do not have to reason about
concurrency.

∀T1, T2 ∈ H,∀op1 ∈ T1, op2 ∈ T2. T1 ← T2 ⇒ op1 ← op2 ∨ op1 ↔ op2. (1)

2.2 Immutability

Decentralized ledgers are eidetic: they maintain a record of all transactions ever
processed by the system. From this record, any past state of the system can be
regenerated and inspected. As a result, the ledger can serve as a notary or an impartial
witness, by providing a reliable record of past information.

Formally, successfully applying a transaction T to a database D yields a new
database D′ with T appended to its history. Similarly, the version history of each
object modified by T will be appended with its new version.

We then define immutability as a constraint on the allowed state transitions from
D toD′. Thus, if a database stateD predates another stateD′, i.e.,D ← D′, all of its
transactions and object versions are contained in D′. This means the successor state
can only add new transactions and object versions and not remove or reorder them,
denoted in Eq. (2).

∀D,D′. D ← D′ ⇒ HD′ ⊆ HD (2)

Immutable systems thus are, unlike the term immutability suggests, able to change
their state, but will only allow state transitions that extend the state without removing
existing information. Further, they might enforce other data policies to ensure the
integrity of a particular application. For example, a cryptocurrency usually wants to
ensure that no transaction is spent more than once.

218 K. Mast

2.3 Auditability

Auditability enables participants to join the network at any point in time and verify
all states relevant to them up to the current point without having to trust a par-
ticular remote party. Formally, we say there exists a publicly available function
veri f y(D,D′) that certifies a transition from D to D′ is valid. Auditors can then
recreate and verify the entire system execution by verifying all database state transi-
tions, starting with the initial state consisting of an empty transaction history.

3 Decentralized Ledger Technologies

At the core of DLTs lies consensus protocols, used for state machine replication
(SMR) to maintain a unified database. The definition of a state machine comprises a
set of potential states the machine can be in and a set of admissible state transitions
that allow moving from one state to another. SMR decides which state transitions
to perform and replicates this decision across all participants of the protocol. As a
result, all non-faulty participants maintain the same state at any point in time.

Most consensus protocols, while varying greatly in their implementation, are
leader-based. This class of protocols first appoints a particular node to be a leader
(sometimes called a primary), which then proposes state transitions to the system.
These state transitions are then subject to approval by the rest of the network. The
existence of a singular leader ensures that transactions are proposed in an order that
ensures serializability. Finally, leader-based protocols can react to failures or bad
performance at any point in time by appointing a different entity to be a leader.

3.1 Assumptions and Attack Model

Distributed ledgers are designed to be resilient against Byzantine failures, a model
that encompasses both benign failures and those caused bymalicious intent.AByzan-
tine actor may want to change the network’s behavior to their advantage or break
the network entirely. To achieve this, attackers may issue invalid or conflicting mes-
sages, and delay or hide communication. Correct nodes, on the other hand, follow
the protocol as prescribed.

To ensure that correct nodes faithfully follow the protocol, distributed ledger
protocols typically assume that the majority of network participants behave ratio-
nally and provide incentives for these rational actors to advance the protocol. These
incentives can take the form of direct payments, where parties that process transac-
tions receive compensation in the form of block rewards or transaction fees. Further,
incentives can be based on collateral, where parties that misbehave are penalized
financially.

Building Protocols for Scalable Decentralized Applications 219

DLTsmay rely ondifferent network assumptions. The threemost commonare syn-
chronous, partially synchronous, and asynchronous [18]. In the synchronous setting,
messages will be deliveredwithin a known and fixed time-bound. In the partially syn-
chronous setting, messages will be delivered in an unknown, but finite, time-bound.
Finally, in the asynchronous model messages may take an unbounded amount of
time to be delivered.

3.2 Data and Transaction Models

DLTs require a different datamodel than conventional databases because they execute
in a trustless environment. Here, each user is associated with a set of cryptographic
keys and must sign off transactions spending their cryptocurrencies with those keys.
Nodes participating in a decentralized protocol need to prove that a transaction has
been signed off by a particular set of users for it to be deemed valid. Additionally,
transactions issued by a client might be conflicting. For example, Alice might request
to spend $5 each on Bob and Claire, but only have $6 in her account.

Data models in decentralized ledgers are focused around the notion of payments
and cryptocurrencies, as this was their initial application and cryptocurrencies are
still the basis for incentive mechanisms in almost every DLT. We discuss the two
most common ones: UTXO and Accounts.

The UTXO Model

Bitcoin represents a user’s account balance as a set of Unspent Transaction Outputs
(UTXOs). Transactions in the UTXO model work similarly to a voucher system in
which some input vouchers are exchanged for new vouchers of the same or lesser
value. Figure 1 outlines how transactions consume UTXOs (the unspent outputs of
a previous transaction) and produce new UTXOs. Note, that in a real system some
transaction’s input would go towards a transaction fee.

Bitcoin, like many other DLTs, relies onMerkle hash trees [40] to provide authen-
tication of the blockchains state. Merkle trees can be generated for any arbitrary set
of objects. To do this, these objects are first arranged in some pre-defined order. The
tree is then constructed by recursively combining k hashes, where k is some branch-
ing factor of the tree, and generating a new hash value from the resulting value.
A Merkle proof then allows verifying an object’s state against the root of the tree
without having access to the entire tree. The proof is the particular branch from the
object to the tree root. An example for a Merkle proof and its associated tree is given
in Fig. 2. The verifier here just recomputes and checks the correctness of every hash
in the branch to ensure the proof’s integrity. These proofs are virtually impossible
to forge as it is very hard to find collisions, i.e., to input values that map to the same
output value, for cryptographic hash functions [55].

220 K. Mast

Fig. 1 Sketch of the UTXOmodel. Each transaction consumes one or multiple unspent transaction
outputs and generates at least one new transaction output. Outputs are owned by a particular public
key

Fig. 2 Sketch of aMerkle tree and an associated proof. To prove the authenticity of Object 3 against
the root A, we only need to provide a branch leading from A to the object

The key advantage of the UTXO model is that one can succinctly prove the
existence of an unspent transaction output. Each block in Bitcoin contains theMerkle
root of the current UTXO set, which allows verifying the current state without each
block having to contain the entire set. Protocol participants just locally compute the
current state by executing all previous blocks, generate the hash tree, and then verify
the root against the public chain. Additionally, third parties that do not maintain the
entire state of the blockchain, so-called “light clients”, can verify the existence of a
particular UTXO by verifying a Merkle proof.

The UTXO model significantly reduces the complexity of the data model that
transactions execute on, but limits storing custom data. Participants in this protocol
merely have to maintain the UTXO set to track the state of the blockchain and
processing a transaction only involves adding and removing UTXOs to the set. As a
result, platforms that are focused mostly on monetary transactions, such as Bitcoin
or ZCash, often still rely on the UTXO model due to its simplicity.

Building Protocols for Scalable Decentralized Applications 221

The Accounts Model

Ethereum, in contrast to Bitcoin, relies on a data model focused on the notion of
accounts. Intuitively, an account has a non-negative balance and can be owned by
a particular user. Additionally, accounts can hold other data as well, which enable
more complex applications.

Decentralized ledgers implementing the accounts model must provide additional
measures for preventing double-spending and other conflicting transactions. First,
instead of merely verifying the existence of a particular UTXO, the transaction must
be verified against the account’s state and ensure applying it to the account will
not violate consistency constraints. Second, as long as there are sufficient funds in
the spending account, a malicious node might use the same request to issue multiple
transactions. To address this, Ethereum transaction requests contain a unique number,
or nonce, and the protocol only admits one transaction for each combination of
account identifier and nonce.

One drawback of the accounts model is that the authentication of state is more
complex. Here, DLT nodes usually maintain three Merkle trees per block instead of
just one as in the UTXO model. The first hash tree provides information about the
resulting state of the system, the second hash tree represents the set of all transactions
contained in this block, and the third hash tree represents the set of all changes.

In Ethereum and most other Account-based systems, state is represented in the
form of Patricia Merkle trees [43]. Patricia trees have two key advantages over
conventionalMerkle trees: there exists amaximumbound on their height and updates
are relatively inexpensive. This is achieved by storing data in a compact trie structure.
Unlike when updating a conventional Merkle tree, where a new entry might reorder
the set and rebuild the entire tree, inserting new values in Patricia trees only needs
to update the affected subtree. An upper bound of the tree height is ensured by using
hash values as object keys, which are guaranteed to be a certain length.

3.3 Smart Contracts

The client-server model, where applications perform computation locally and then
write the resulting state to the database, does not apply to the decentralized setting. In
the client-server model, Byzantine actors could attempt storing invalid application
results in the globally replicated ledger and, thus, violate consistency. To prevent
such attacks, DLTs provide the means to execute arbitrary applications directly on
the ledger itself, similar to stored procedures in conventional database systems.

Ethereum introduced the notion of Smart Contracts, stateful programs that are
stored and executed entirely on the decentralized ledger. While the previous system
already provided some notion of programmability, such as Bitcoin Script, Ethereum
smart contracts were the first to provide full Turing completeness and, as a result,
the possibility to support arbitrary programs. Smart contracts are usually written in a

222 K. Mast

high-level language, such as Solidity, and then compiled to byte code, such as EVM
byte code or WebAssembly, before being stored and executed on the ledger.

Smart contracts reside on a particular address on the blockchain, analogous to how
each user’s account is assigned an address. Contracts may hold currency and contain
a key-value store to store arbitrary data. Users call functions of a smart contract by
issuing a transaction that contains a function call and some amount of currency to
pay for the computation.

Ethereum replaced fixed transaction fees with a notion of “gas cost”, which covers
the cost of processing and executing the transaction.Each transaction request contains
a gas limit, representing the maximum number of computational steps the issuer is
willing to pay for. Like with transaction fees, the cost of a single unit of gas is
determined by the market. If the transaction runs out of gas during execution, it
aborts. Any unused gas is refunded to the party that issued the transaction.

Contracts can modify their local state directly while executing or invoking func-
tions of other contracts. The latter allows reusing existing code and interaction
between different applications. For example, one can implement a custom token
on top of Ethereum that can be used as a form of payment by other contracts.

3.4 Committee-Based Consensus

Classical consensus protocols achieve state machine replication among a fixed set,
or committee, of nodes. They were first introduced by Leslie Lamport [35], among
others [47, 56]. These protocols now form the foundation for most fault-tolerant
applications. For example, a web service might be implemented across three data
centers. If one of the data centers fails, the consensus protocol ensures that operation
can continue by shifting computation to the other two data centers.

While consensus protocols were initially intended to tolerate only benign failures,
the introduction of Byzantine fault-tolerant consensus protocols allowed for more
complex use cases. For example, a node in the committee might not simply become
unavailable but encounter a software bug that makes it behave in ways not origi-
nally intended by the software developers. While such failures might be much more
unlikely than a crash, it is still important to be resilient against them for safety-critical
applications.

Recently, committee-based Byzantine fault-tolerant consensus protocols, such as
Practical Byzantine Fault Tolerance (PBFT) [8], have received new attention in the
context of decentralized ledgers. Because these protocols cannot only protect against
software bugs or hardware failures but also against a malicious human adversary
controlling a subset of the committee, they are suitable for implementing applications
where mutually distrusting parties are trying to agree on a consistent state.

While committee-based, or permissioned, protocols allow for greater tolerance
against Byzantine failures, they are not sufficient to provide full decentralization. In
particular, such protocols often only work well with a small number of participants.
As a result, small committees of nodes can quickly devolve into an oligopoly. Here,

Building Protocols for Scalable Decentralized Applications 223

while not a single entity controls the system, a small number of participants can
collude to take over control of the system. Similarly, committeemembers can collude
to artificially increase transaction fees or impose censorship.

3.5 Sybil Detection

In the permissionless, or public, setting, such as that ofBitcoin orEthereum, protocols
must be resilient to Sybil attacks, where a single entity is creating multiple identities
to gain more control over the system. These attacks are feasible because without a
trusted third party there is no straightforward way to authenticate user identities.

Consensus protocols rely on either computational barriers or stakes to prevent
such Sybil attacks. Stake-based systems manage membership information as part
of their protocol. In committee-based consensus protocols stake usually is binary,
whichmeans onlymembers of the committee are allowed to vote and each committee
member has the same voting power. Here, each change to the committee must be
approved by all participants. Recent protocols have introduced the notion of variable
stake, often bound to how much cryptocurrency a certain party holds. In this setting,
cryptocurrency canbe passed on to other participants to dynamically reallocate voting
power.

Systems that rely on computational barriers for Sybil detection do not manage
any form of global membership information. Instead, participants have to perform
a certain task to become, or have the chance to become, a leader. Most commonly,
this task involves solving a cryptographic puzzle, where an input to a hash function
has to be found such that the functions’ output is below a specified threshold.

These particular cryptographic puzzles are better known as Proof of Work
(PoW) [17]. The underlying intuition is simple: every attempt to solve the puzzle
requires a constant amount of computation and the chance to solve the puzzle is
independent of earlier attempts. PoW, thus, provides a very reliable means of Sybil
detection, albeit being a very wasteful mechanism.

3.6 Nakamoto Consensus

The Bitcoin paper introduced the Nakamoto consensus, a consensus protocol that
builds on top of Proof of Work (PoW). There are two core differences between proto-
cols described so far and the Nakamoto consensus. First, the use of PoW allows it to
be a public protocol that allows participants to join and leave at any point in time. To
take part in the protocol one does not have to register with some global mechanism,
but merely starts attempting to solve the crypto-puzzle. Second, the Nakamoto con-
sensus operates non-deterministically, where the current state is known to be agreed
upon by the global network with some high, but not absolute, probability.

224 K. Mast

Systems based onNakamoto consensus rely onGossip protocols [15] to broadcast
messages, such as transactions or blocks, because they execute across a peer-to-peer
network with no pre-defined topology or membership. Instead of being connected
to the full network, participants of a Gossip protocol only talk to a few peers. When
receiving a new message, they forward it to all their peers. To make gossip efficient,
participants usually keep track of which messages they already sent to or received
from a particular peer. As a result, messages eventually spread to the entire network,
without the network being fully connected.

Nakamoto consensus performs leader election using PoW through a process called
mining. Once a party has solved the cryptographic puzzle, they forward their solution
in formof a block to the network to become a leader. Instead of proposing transactions
after becoming leader, they directly include a set of serialized transactions in the
published block. Once participants start mining, their chance of becoming miner is
directly proportional to the processing power available to them, because each attempt
to solve the crypto-puzzle is independent of past attempts.

Nakamoto consensus achieves consensus by picking the longest chain of pro-
posed chains. There can always be multiple competing blocks or chains because
mining is a random process. Honest participants pick the longest chain of valid
blocks they received and, as result, will all eventually converge on the same prefix
of the blockchain. However, this means that one has to wait a significant amount of
time for the block to be “buried” deep enough in the chain for it to be considered
finalized and immutable. For example, in Bitcoin, one usually waits for depth for 10
blocks (about 60 min).

Figure 3 outlines how, at a particular point in time, there might be multiple com-
peting chains. Here, while the prefix of the chain is considered stable and abandoned
forks have been removed, at the head of the chain, multiple forks are competing
for the longest chain. At any point in time, the protocol might switch to a different
branch, potentially reverting multiple blocks. These switches are sometimes also
called reorganizations.

Protocols based on Nakamoto consensus with open membership, usually assume
a strong bound on the network latency. This ensures that a block will be visible to
all network participants after some fixed time. More concretely, systems like Bitcoin
assume that this bound is about 5min. If this assumption was not made, there could
potentially be an undetectable longer chain due to a network partition.

Fig. 3 Sketched structure of a Bitcoin-like blockchain. The currently winning chain is highlighted

Building Protocols for Scalable Decentralized Applications 225

3.7 Bottlenecks

We now discuss the major bottlenecks of blockchains: execution, verification, and
communication. Essentially, electing protocol leaders and ordering transactions in a
globally replicatedmanner require massive replication of both data and computation.
Thus, what the network can process as a whole is limited by the fact that every
participant needs to process, forward, and execute all transactions.

Execution

Transactions in decentralized ledger systems differ significantly from those in con-
ventional database systems. Every participant of the protocol maintains its local state
in an authenticated data structure to be able to verify and process future blocks. In
particular, DLT nodes usually calculate and store some form of hash tree of the state,
and every block contains the root hash of the current state. These hash trees can
be used both to verify blocks and to provide succinct proofs of some substate of
the system. Executing transactions in such an authenticated manner requires more
computation and storage. This is one of the reasons why systems such as Ethereum
employ a limit on how many computational steps a block can contain (“gas limit”).
Previous work has demonstrated that an improved storage engine can mitigate this
bottleneck to some amount [50].

Verification

Blockchains rely on digital signatures to ensure the correctness and authenticity of
messages. Intuitively, checking every transaction request and block generates a high
computational workload as digital signatures are rather complex to verify. Increasing
the frequency of transactions included by the system, thus, significantly increases
the burden for every node in the network to participate in the protocol.

Privacy-preserving decentralized ledger may also rely on more advanced cryp-
tography, such as zero-knowledge proofs, which increases the verification burden
significantly.

Communication

Finally, for every node to be able to process every block and transaction, all transac-
tions and blocks must be propagated to the entire network. Intuitively, this creates a
high network communication overhead.Decentralized ledgers usually execute across
a geo-distributed peer-to-peer network. Here, a larger state that needs to be synchro-
nized will further increase the considerably high propagation latencies.

226 K. Mast

Even worse, scalability mechanisms may harm decentralization, a key promise of
decentralized ledgers. For example, a naive attempt for increasing the throughput of
a ledger is a higher block frequency or block size. Either, will cause a higher propa-
gation delay of messages and, in turn, increase the likelihood of forks. Additionally,
bigger block sizes raise the CPU and storage requirements for nodes participating
in the network. This problem is especially salient for new nodes joining the network
the need to verify all blocks in the chain before processing new transactions. As a
result, only participants with strong hardware that is well connected may participate
in the protocol, causing a more centralized network layout.

4 Improved and Novel Consensus Mechanisms

4.1 Improved Committee-Based Consensus Protocols

Figure 4 sketches the message exchange in the Paxos protocol [36], excluding its
leader election, one of the most prominent mechanisms for SMR. Once a leader is
elected (not shown in the figure), clients can submit transaction requests to it. The
leader then proposes the transaction to its followers (accept?), which then each
forwards their response (accept!) to the network. If a majority of the nodes accept
the transaction, it is considered accepted by the system as a whole and the result is
forwarded to the client. So-called Multi-Paxos pipelines this mechanism, by only
electing a leader every so often and having that leader propose many transactions in
sequence.

Practical Byzantine Fault Tolerance (PBFT) [8] was one of the first Byzantine
fault-tolerant consensus protocols and is still widely used today. Figure 5 outlines
how the protocol accepts a transaction. PBFT adds another round of messages to the

Fig. 4 The voting phase of the Paxos protocol: The leader proposes new transactions to the system,
which then need to be approved by the majority of the network

Building Protocols for Scalable Decentralized Applications 227

Fig. 5 Protocol diagram of PBFT: compared to Paxos an additional phase is added to account for
Byzantine behavior. Note that also additional replicas are needed to tolerate Byzantine failures

protocol that confirms the receipt of the preparemessage—which is equivalent to
the accept! message in Paxos—by a majority of the network. This is necessary
because nodes might send conflicting messages to different participants in the net-
work. For example, follower 1 might send a prepare message for one transaction
to the leader while also sending a prepare for a conflicting transaction to follower 2.

Similar to Multi-Paxos, PBFT can let a single leader propose many transactions
to speed up the protocol. Leaders are usually only switches during failure. In the
context of PBFT, this mechanism is usually called a view change.

Several minor improvements to PBFT have been proposed over the last few years.
For example, Zyzzyva [32] avoids the third round of messages in the absence of fail-
ures using speculative execution. Aardvark [9] adds additional robustness by making
clients digitally sign their requests and frequently rotating leadership. Tendermint [6]
reduces communication complexity using Gossip protocols. We describe more com-
plex modifications and entirely new permissioned protocols below.

Another key factor in making PBFT (and similar protocols) scale is batching.
Similar to blocks in permissionless systems, a large set of transactions is bundled
together. This allows to reduce the amount of communication required per transac-
tion, but, in turn, increases the latency of the protocol.

Stellar

The Stellar Consensus Protocol (SCP) [37] is a variationByzantineAgreementwhere
each participant may have different levels of trust in other participants. Here, each
participant picks a weight for peers they trust. The weight indicates their level of
trust. Classical BFT consensus can be seen as a special case where each participant
picks the same weight for all peers.

228 K. Mast

For SCP to reach consensus, a quorummust contain a quorum slice for each of its
non-faulty members. Each node can define one or more quorum slices, of which at
least one must be met for a valid quorum. A quorum slice consists of a set of nodes S
and a certain threshold, for example, 3

4 , of how many members of S’s members have
to agree. Finally, for a quorum to be valid, each of its quorum slices must overlap
with one another.

Similar to PBFT, SCP executes in three phases: NOMINATE, PREPARE, and
COMMIT. The NOMINATE phase acts as a filter by identifying valid candidates for
a consensus value. Each node can nominate multiple values, but must not nominate
new values once it has confirmed the NOMINATE statements of a peer.

The NOMINATE phase is then followed by one or multiple rounds of ballots.
Multiple rounds of ballots may be needed as it is not possible to determine whether
a ballot got “stuck” due to a failure or if there is just a large network delay. Here, for
the n-th ballot, the PREPARE(n,x)-message ensure that no value other than x is
chosen for any ballot ≤ n. A COMMIT(n,x)-message then states that the value x
was chose at ballot n.

HotStuff

HotStuff [66] is a novel consensus protocol that improves upon PBFT by reducing
message complexity by employing a star topology. HotStuff is of particular interest,
as it is intended to be used by Facebook’s Diem (formerly “Libra”) cryptocurrency.

Figure 6 outlines the message exchange in HotStuff. HotStuff allows for a start
communication pattern with linear complexity, not quadratic like PBFT, by passing
all messages through the leader. To account for malicious leaders, another round of
messages is needed compared to PBFT. In the so-called Decide-phase, the leader
notifies all participants that a particular commit message has been received and
accepted by a quorum.

Fig. 6 Protocol diagram of HotStuff: the leader includes Quorum Certificates (signatures from all
members of the quorum) from the previous phase to reduce message complexity

Building Protocols for Scalable Decentralized Applications 229

HotStuff reduces communication complexity through a primitive called Quorum
Certificates (QCs). Instead of having every participant exchange messages with each
other, the committee communicates in a start topology with the leader at its center.
The leader then includes QCs in its messages, which are certificates that prove the
receipt and acceptance of a proposal by a quorum. This is achieved by having OCs
contain a threshold signature, which, in essence, is a signature signed by multiple
private keys that can be verified against a single public key. A key advantage of
threshold signatures is that they do not grow in size with the size of the quorum.

To achieve even higher performance, the protocol can be pipelined,wheremultiple
phases of the protocol (for different batches of transactions) execute in parallel. This
is possible by including leader election in every prepare phase so that view changes
do not interrupt pipelining.

Byzantine Ordered Consensus

For the committee-based setting, Zhang et al. [69] propose a mechanism that estab-
lishes transaction order outside of leader election. Their protocol, pompe, prevents
the so-called “front-running”, which allows malicious leaders to reorder transactions
to their advantage. However, their results also indicate that pre-ordering transactions
can enhance the performance of a permissioned system significantly. Here, instead
of letting the leader decide the order of transactions directly, transactions are ordered
before they are serialized.

To order transactions, a node n proposes a command c and asks a quorum of the
participants to assign a timestamp for that command. Nodes first order all pending
commands (or transactions) locally and then reply with a timestamp that honers this
ordering. Node n then picks the median timestamp from the replies. Because there
are at most f malicious nodes and a quorum consists of 2 f + 1 nodes, this median
value is guaranteed to be within the valid range of time stamps.

HoneyBadger BFT

HoneyBadger [42] is a leaderless and asynchronous consensus protocol. At a high
level, this protocol operates in three steps.

First, each node proposes a set of transactions, which are then broadcast to all
other nodes. To do this, they maintain a local pool of transaction requests from client
and sample some subset of this pool. The exact mechanism of how this subset is
chosen is important for performance and safety but goes beyond the scope of this
book. A Reliable Broadcast Protocol (RBC) ensures that each non-faulty node’s
proposal is propagated through the network.

Second, nodes send and acknowledgement for each valid set of transactions being
proposed. They do this using threshold encryption, the same primitive as is used in

230 K. Mast

the Stellar protocol. Encryption serves two purposes: it allows participants to sign
on to a set without increasing the size of the message significantly and it prevents
adversary to censor transactions they do not like.

Third, nodes agree on which sets to accept. This last step is important, because
faulty nodes might not propose a transaction set and, as a result, could cause the
protocol to wait forever or become inconsistent. To address this, nodes vote to accept
a set of transactions once it has been signed by enough participants until at least
N − f , where N is the number of nodes and f is the maximum allowed number of
failures. Afterward, they will vote to reject all other transaction sets.

To retrieve the final batch of transaction to be accepted, nodes form a “common
subset” of all accepted transaction sets. Nodes add all transactions for each accepted
transaction set to the batch. Then, they sort the transactions lexicographically, e.g.,
by their transaction identifier, and remove duplicates.

This protocol is teared towards the UTXO model where the probability of two
transactions conflicting is low. Thus, one potential drawback of this design can be in
a setting where there might be multiple conflicting transactions.

4.2 Minor Changes to Nakamoto Consensus

Concurrency Inside Blocks

Bitcoin and Ethereum enforce a serial order of operations in a single block. This
limits the execution of a block to a single logical core. TTOR (Topological Trans-
action Ordering Rule), which was used for some time in Bitcoin Cash, loosens this
requirement and only enforces a partial order among transactions, and, thus, enables
validating transactions of a single block concurrently.

However, in our experiments, we observed that the bulk of work performed by
blockchain nodes is involved in validating and generating digital signatures, which
can already be performed concurrently as transaction requests are usually received
and generated out of band. Bitcoin Cash eventually switched from TTOR to another
ordering mechanism as its benefits to block propagation were limited [53].

Block Size and Frequency

As mentioned in Sect. 3.7, one attempt to scale blockchains is to increase block size
allowing for more transactions to be processed with the same number of blocks. The
propagation delay depends on its size and performance of the underlying peer-to-peer
network. In particular, a larger block takes longer to propagate between two peers as
outlined in the equation below.

Latencyblock = Latencynetwork + BlockSi ze

T hroughputnetwork
.

Building Protocols for Scalable Decentralized Applications 231

Block sizes that are too large might take longer to propagate than it takes to mine
the next block [14, 24]. As a result, larger block sizes result in a higher likelihood of
blockchain forks, which hurt performance. Once a fork is resolved, only one of the
branches is considered part of the chain, and the rest is discarded.

Another intuitive attempt of increasing the throughput of a blockchain system is
to increase the frequency of blocks. Similar to block sizes, a higher block frequency
results in an increased chance of forks as blocks are created faster than they are being
propagated through the network. This in turn also leads to more centralization of
mining, as large-scale mining pools have a higher chance of receiving and processing
blocks in time.

Ethereum relies on a mechanism called Greedy Heaviest Observed Subtree
(GHOST) [58] to disincentivize centralization. Here, if a miner is aware of a fork
will reference not only a block’s direct predecessor but also the heads of competing
chains (known as “uncle blocks”). As a result, miners receive a partial reward if they
ended up mining on a fork.

Increasing Efficiency of Block Propagation

The nature of peer-to-peer protocols results in significant communication overheads
when propagating data. Gossip communication inherently requires additional com-
munication, because data does not flow in a straight path but spreads in multiple
directions through a peer-to-peer network. As a result, peers might receive the same
messages from multiple parties. This problem is exacerbated in Bitcoin as transac-
tions are propagated through the network twice: as a transaction request and as part
of a block.

One line of work is to improve the efficiency of Gossip protocols. Compact
blocks [10] do not contain a full list of transactions as their payload but merely short-
ened transaction identifiers. Upon receiving a compact block, peers only request the
transaction they have not seen yet.

Bloom filters can be used to efficiently keep track of which data a peer has already
received [49]. Essentially, bloom filters are a lightweight data structure (usually only
a few bytes) that provides a heuristic about whether a set contains some data item
or not. When forwarding compact blocks, peers rely on Bloom filters to estimate
which transactions the remote party already holds and forward only the ones that it
probably does not have yet. This, in turn, avoids an additional round-trip time, where
the remote party has to request transactions.

Another line ofwork is to augment peer-to-peer networkswith a fast relay network.
Relay networks are usually not a good fit for the decentralized ledger setting, as they
have sparse topologies, and, thus, contain multiple points of failure. However, they
can be used in addition to a fault-tolerant peer-to-peer network, to allow for faster
propagation of blocks in the common case [11, 29].

232 K. Mast

4.3 Decoupling Mining from Transaction Serialization

Consensus protocols generally perform two distinct tasks. LEADER picks the next
participant to be the leader of the protocol, i.e., the entity that propose the next
block(s), and ORDER decides on the order of transaction inside those block(s).

In most permissionless protocols, these tasks are bundled together, which harms
performance. In particular, blocks in Bitcoin or Ethereum can only hold a certain
amount of transactions and are published at a low frequency. Additionally, as outlined
in Sect. 4.2, increasing block size or frequency does not always result in higher
throughput of the blockchain.

Bitcoin-NG

Bitcoin-NG [26] breaks down the process of mining in traditional Nakamoto consen-
sus into its constituent processes to increase throughput. The Bitcoin-NG LEADER
process proceeds as follows: Miners solve a PoW puzzle and broadcast a special
block called a keyblock with the solution to the rest of the network, signaling their
status as the protocol leader. At that point, the winning miner performs an ORDER
process by grouping transactions into microblocks and broadcasting them into the
network. This separation of key and microblocks is outlined in Fig. 7. The entity
that mined the most recent keyblock creates and broadcasts microblocks so long as
they are the leader. Solely the network speed and how quickly the leading miner can
sequence them limit the flow of transactions.

While Bitcoin-NG improves throughput over the conventional Bitcoin protocol,
it is still limited to the bandwidth of a single entity executing the ORDER process.
Also, a single high-throughput chain harms decentralization as every participant
of the protocol needs to possess the processing power and network bandwidth to
process the chain in its entirety. Further, these long-lived leaders can be subject to
Denial-of-Service (DoS) attacks.

ByzCoin

ByzCoin [30] follows the same observation as Bitcoin-NG, but, instead, establishes
a committee of leaders. ByzCoin relies on some underlying identity blockchain. The
committee is then chosen by picking the entities that mined the last n blocks on the

Fig. 7 Structure of the Bitcoin-NG blockchain: Keyblocks (square) hold leadership information,
while microblocks (circle) hold serialized transactions

Building Protocols for Scalable Decentralized Applications 233

identity chain, where n is the size of the committee. The entity that mined the most
recent block, is the designated leader. Each set of transactions proposed by the leader
needs to be approved by a majority of the committee.

A key advantage of ByzCoin over Bitcoin-NG is that it has almost instant finality.
Bitcoin-NG, on the other hand, has a similar latency as the unmodified Bitcoin
protocol. The instant finality of ByzCoin is possible because, for a sufficiently large
n, the majority of the committee is guaranteed to consist of honest miners.

4.4 Novel Proof-of-Stake Protocols

Proof of Stake (PoS) is a mechanism intended to be an energy-efficient replacement
for PoW. At a high level, voting power here is not dependent on a party’s processing
capabilities but on the amount of funds they hold in the cryptocurrency,which, in turn,
allows avoiding unnecessary computation. The key challenge in PoS is the “nothing
at stake” problem: if block generation does not require mining, an adversary can
easily generate many, potentially conflicting, blocks.

Ouroboros

Ouroboros [28] is a provably correct PoS protocol that powers the Cardano
blockchain.2 The protocol’s execution is divided into constant-size epochs, each
consisting of some number of time slots. At the beginning of an epoch, a seed
is generated from the values of the previous epoch, to generate a pseudo-random
assignment of participants to slots, where the likelihood of being assigned to a slot
is directly proportional to the amount of currency a participant is holding.

In every slot, the selected participant is allowed to propose a block containing a
set of transactions. Although an adversary here can still generate conflicting blocks,
assuming themajority of the participants are honest, a sequence of correct blockswill
eventually constitute the longest chain. However, in this scheme, it is still possible
to anticipate who the next leader will be and launch a DoS attack on them. Like
Bitcoin, Ouroboros requires blocks to propagate within a bounded amount of time
and loosely synchronized clocks.

Algorand

Algorand [23] addresses some challenges in PoS using a verifiable random function
(VRF). Here, each participant locally runs the VRF which takes some global data
and their private key as an input. Depending on the input, the function may return

2 Note that this section describes the initial version of Ouroboros outlined in the CRYPTO 2017
paper.

234 K. Mast

a certificate that the particular user is allowed to propose a block. Like in Bitcoin,
multiple usersmay be allowed to propose blocks andAlgorand provides amechanism
to sort certificates of concurrent blocks. Protocol participants then discard all blocks
except the one with the highest priority to prevent forks.

Algorand prevents DoS attacks bymaking this random function unpredictable and
switching participants after every round of voting. This unpredictability is achieved
by taking the user’s private key as an input. Later users can prove they executed
the VRF correctly using their public key. Additionally, the protocol assumes the
absence of network partitions to prevent malicious users from successfully proposing
conflicting blocks.

Avalanche

Avalanche [54] is a probabilistic leaderless consensus mechanism with low com-
munication overhead. Here, nodes periodically query a constant-size random set of
peers about which transaction they accepted. Depending on their peers’ responses,
they adjust their confidence in the transaction being accepted by the network as a
whole. Acceptance of a particular transaction will then eventually propagate through
the network. Avalanche works well with the UTXO model as transactions do not
need to be totally ordered and conflicting transactions are rare. The protocol needs
to be combined with another mechanism, such as PoS, to ensure Sybil resistance.

def on_query(v, new_col) :
i f col == None:

col = new_col

respond(v, col)

def slush_loop(u, col0 in [R, B, None]) :
Ini t ia l ize with red blue or nothing
col = col0

for _ in range(m):
i f None, skip until on_query sets the color
i f col == None: continue

K = sample_nodes(k)
P = [query(v, col) for v in K]

for ncol in [R, B] :
i f P. count(ncol) >= alpha∗k:

col = ncol

accept(col)

Listing 1 Slush: a simplified version of the avalanche protocol

Building Protocols for Scalable Decentralized Applications 235

Listing 1 displays a simplified version of the Avalanche protocol without fault
tolerance, dubbed “slush”. Here, the network aims to decide on a single color col.
To do this, each node queries, a random sample of k other nodes m times. In the
outlined code, on_query is called whenever a node is queried by some other node
and slush_loop is executed repeatedly by each node. After each set of queries,
nodes participating in the slush protocol either decide to stick with the color it has
currently accepted, or, if more than α ∗ k (where α > 0.5) other nodes have accepted
a different color, switch over to that color.

A key advantage of this protocol is that it requires almost no state to bemaintained
at each node (only the currently accepted state) and that it involves communication
with a small subset of, instead of a majority of, the network. More concretely, com-
munication complexity per node is constant independent of the size of the network,
because the sample size k does not grow with the size of the network.

Gasper and Ethereum 2.0

Casper is a “finality gadget”: it allows ensuring that a block in Nakamoto consensus
is finalized and cannot be undone due to a reorganization. Here, stakers endorse
blocks they consider part of the longest chain using their stake. Because the total
amount of stake is known, at some point, if a block is sufficiently endorsed, it can
safely be considered final.

Ethereum2.0 relies onGasper, a protocol that combinesmechanisms fromCasper
with GHOST. Gasper performs leader election similar to Ouroboros: time is seg-
mented into slots, each having a leader that is defined by some randomized mecha-
nism. For every k slots, the protocol uses the Casper mechanism to achieve finality.
Like in Ouroboros and Bitcoin, this requires loosely synchronized blocks. Unlike
those mechanisms, the protocol will not be unsafe in a partially synchronous setting,
but may not make progress. Competing blocks can still exist, due to network delays
ormalicious leaders, but GHOST’s notion of referencing “uncle blocks” allows quick
convergence to a singular chain in this case.

Gasper relies employs a chain selection rule based on the amount of stake attached
to a particular chain. Here, the “heaviest chain” is the chain with the most stake
attached to it. This ensures that the protocol will converge on the chain that is consid-
ered finalized by the majority of the network, not adversarial chain that is potentially
longer.

4.5 Summary

The Bitcoin protocol and derivatives are not sufficient to support any demanding
workload and waste massive amounts of energy. We do need new protocols, or
radically improve existing ones to overcome these limitations.

236 K. Mast

Fig. 8 Sketch of how a table of all Ivy League schools could be sharded alphabetically

Multiple potential contenders exist to replace outdated ledger technologies, each
with different properties and tradeoffs. Further evaluation and benchmarking is nec-
essary to determine the “winner” among these protocols.

5 Sharding Blockchains

At a high level, sharding breaks the keyspace of a database into multiple “shards”.3

Sharding is usually done using a hash function or breaking the keyspace into evenly
sized pieces. Figure 8 sketches how a table can be broken apart by assigning different
ranges of starting letters to different shards. Hash functions are usually the preferred
mechanism of sharding as they assign objects to shards pseudo-randomly and thus
spread the workload of a system more evenly across shards. Updates and queries for
a particular shard can then be processed without involving other shards.

Sharding for blockchains is usually implemented in the following way [62]. Some
mechanism keeps track of a set of identities, e.g., by examining the last k miners of
a PoW chain [30]. The protocol then assigns shard some subset of these nodes. Each
shard then locally runs a consensus mechanism, such as PBFT [8], and a distributed
transaction protocol, such as a two-phase commit, handles cross-shard transactions.
Finally, some scheme is in place to periodically “merge” the state of all shards.

3 Note that someprotocols shard transactions, not state. Thesemechanisms are significantly different
and not covered by this section.

Building Protocols for Scalable Decentralized Applications 237

5.1 Challenges in Sharding Blockchains

Blockchain enthusiasts have long hoped that sharding will solve the scalability prob-
lem. In essence, sharding allows every participant to only process a subset of all
transactions of the network. Ideally, this allows to linearly scale the throughput of
the system without increasing the burden on any particular participant. However, so
far, no sharding protocol has been deployed in a real-world setting. The reason for
this is complex but, at a high level, sharding decentralized ledgers faces four major
challenges: reduced safety, reduced availability, loss of network decentralization,
reduced consistency, and lack of economic incentives.

Maintaining Safety

The essence of decentralized ledgers is that they protect some application, e.g.,
a cryptocurrency, against a strong Byzantine adversary. A basic requirement for
protection against such an adversary is to have a Sybil detection mechanism, which
is usually based on how much stake an entity has or how much computational work
is done.

For example, a core assumption inBitcoin is, that<50% (or 25% in some cases) of
the entire network is controlled by adversaries. A shard intuitively hasmuch less total
stake (or computational work) than the system as a whole. Thus, some mechanisms
must be in place to ensure that a single shard is safe as the network as a whole.

Ensuring Availability

When splitting upstate among subsets of the network, less participants hold a copy of
a particular transaction. For example, if a transaction executes locally on a particular
shard, there is no need for other shards to know about that transaction, let alone
storing it on their machines. As a result, shard state could get lost during failure.
This problem is exacerbated by the fact that an adversary might be incentivized to
hide (parts of) a shard’s state. For example, they might have misbehaved and want
to hide the evidence, or they might want to revert the shard to a state that is more
advantageous to them.

Ensuring Consistency

In systems such as Ethereum, a serial order of transactions is enforced to ensure
consistent updates to contract states. Unfortunately, enforcing a total order for all
transactions is very difficult if shards execute mostly independently.

To ensure consistency, a sharding protocol needs somemechanism to consistently
apply transactions to multiple shards. Protocols for distributed transactions, which

238 K. Mast

ensure consistent and atomic updates across shards, have been explored extensively
in the systems community. However, adopting such protocols to a permissionless
setting with Byzantine failures is a challenge.

Maintaining Decentralization

So far, we have discussed decentralization as an abstract system property. More con-
cretely, ensuring decentralization means keeping the burden of joining the network
and participating in the consensus protocol low. Ideally, anybody with a computing
device should be able to join the system.

Even current non-sharded systems that promise decentralization are not very
decentralized in practice. For example, Bitcoin and Ethereum are controlled by only
a handful of entities [22]. The underlying reason for this is that decentralization
often conflicts with the goal of scalability. If a network supports many participants
of varying locations and processing power, data takes longer to be propagated across
the network. As a result, control of many decentralized ledger protocols tends to
centralize around nodes with access to large amounts of processing power and fast
network connections.

Providing Sound Incentive Mechanisms

Miners (or stakers) participate in a consensus protocol because they receive some
monetary reward or want to secure the value of their assets stored on the ledger.
Bitcoin and Ethereum have fairly straightforward incentive mechanisms, where the
miner of a new block gets some new currency and transaction fees as a reward.

Incentive mechanisms tend to get more complicated when introducing sharding,
as there may exist distinct shard chains and transactions can execute across multiple
shards. For example, OmniLedger [31], while providing a safe sharding protocol,
does not provide sound incentives for the large set of validators required to power
the protocol.

5.2 Foundations

Several sharding solutions have been proposed for permissionless and permissioned
blockchain systems that are built on previous work on sharding databases and dis-
tributed transactions. In fact, the concepts of sharding and distributed transactions
have been widely studied concerning conventional database systems. While the fail-
ure assumptions are vastly different in conventional systems, the underlying motiva-
tion of reducing coordination and increasing parallelism to achieve higher throughput
is the same.

Building Protocols for Scalable Decentralized Applications 239

Sharding Databases

Sharding was first popularized by systems like Chord [59] and Mercury [5]. In such
systems, usually, a hash function is applied to an object key to map it to a specific
shard. Some systems also have the notion of virtual shards. Here, a large number of
virtual shards is mapped to a considerably smaller number of nodes. Virtual shards
can then be remapped to different nodes if the workload changes.

Later work introduced systems, such as Chubby [7], which provide serializable
transactions on top of sharded systems. More recent work aims to improve perfor-
mance by reducing coordination even further [13, 44] or relying on loosely synchro-
nized clocks [12].

Distributed Transaction Protocols

The most prominent mechanism to apply transactions in a consistent and atomic
fashion to multiple shards is a two-phase commit [4]. Here, in the first phase, a
transaction first locks all relevant data objects, ensuring that no concurrent updates
are made. In the second phase, the transaction applies all changes and releases the
locks.

Two-phase commit can be separated into two variants. First, a conventional (or
pessimistic) two-phase commit acquires locks gradually while executing a transac-
tion. If a lock is already held by another transaction, somemechanism such aswound-
wait must be in place to avoid deadlocks. Optimistic concurrency control [33], on the
other hand, first executes transactions without holding locks, then submits the trans-
actions as a set of operations to the involved servers in the first phase of the protocol.
The main advantage of OCC is that it keeps the time a lock is held short allowing for
higher concurrency. Pessimistic concurrency control usually works better in update
heavy workloads and in settings where latencies are high.

5.3 Public Blockchain Sharding Protocols

To our knowledge, virtually all blockchain sharding protocols apply to public (or
permissionless) blockchains. While private blockchains can leverage sharding as
well to increase performance, the problem of low performance is less severe there
as they operate committee-based protocols with a small number of participants. For
example, HotStuff can process thousands of transactions per second, while Ethereum
can only process tens.

240 K. Mast

Monoxide

Monoxide [63] breaks up the workload across independent consensus zones, each
having its own set of miners. Monoxide does not support generalized transactions,
but onlymoney transfers between exactly two accounts. For a cross-zone transaction,
the transactions are first processed in the source account’s zone and then forwarded to
the target account’s zone together with a Merkle proof of the transaction’s inclusion.
At some point, the transaction will be included in the source and the target zone,
however, the protocol does not provide an upper time-bound for this.

Furthermore, the transaction processing scheme proposed in monoxide is suscep-
tible to recursive invalidation of dependent transactions in the case of zone-forks.
Another challenge with Monoxide’s design is that its independent zones naturally
partition the mining power of the blockchain system, which dilutes the overall secu-
rity of the system. The authors address this by assuming the majority of miners will
work in all zones at the same time, which requires miners to possess large amounts
of processing power for verification to maintain the same security guarantees as Bit-
coin. This encourages mining centralization for high throughput, giving up the key
property of blockchains.

Elastico, RapidChain, and OmniLedger

Elastico [38] and OmniLedger [31] in a similar class of scalability solutions that
propose dividing the nodes in a system into small committees, each ofwhich performs
a Byzantine consensus protocol for intra-shard consensus. In these protocols, there
exists a single identity blockchain, similar to that in ByzCoin, as well as, a distinct
blockchain for each shard. The Elastico protocol, the first of such solutions, proceeds
in the following fashion: protection against Sibyls is achieved using an identity chain
based on PoW. It then pseudo-randomly assigns nodes to committees that perform
PBFT in rounds until all the nodes in the system agree on a final changeset to be
committed. The protocol then re-assigns committees and restarts the process for the
next set of transactions.

OmniLedger makes further improvements on top of Elastico, such as using
RandHound [60] to better seed for randomness in shard assignments and helps ame-
liorate some security compromises introduced by Elastico’s small committee sizes.
However, OmniLedger still adds several layers of complexity to public blockchains.
This complexity is especially salient when examining the need for OmniLedger to
have day-long epochs because of the amount of overhead required for bootstrap-
ping at the beginning of an epoch, which makes it susceptible to quick-responding
attackers.

Additionally, OmniLedger allows for atomic cross-shard transactions using
Atomix, a variant of a two-phase commit. Here, clients have to first lock funds
of the affected shards in phase one. They collect proofs of inclusion of the lock mes-
sage in the shard, or, respectively, proofs that the transaction could not be included
in the shard. In phase two, if all shards lock the transaction successfully, they issue a

Building Protocols for Scalable Decentralized Applications 241

unlock message that commits the transaction. Otherwise, they issue an unlock mes-
sage that will abort the transaction. Elastico, on the other hand, has no notion of
atomic cross-shard transaction.

Note that, in the Atomix protocol, if a client fails, the transaction is “stuck”. The
authors argue that the client has an incentive to finalize their transaction as, in the
UTXO model, their funds are locked while the transaction is in progress. This is
similar to how Avalanche incentivizes clients to not issue conflicting transactions,
as it would lock up their own funds. However, this makes it difficult to implement a
similar mechanism for smart contracts, where the incentive structure is not as clear.

RapidChain [67], among other changes, replaces the Atomix protocol with one
that does not rely on the behavior of particular clients. Instead, the transaction is
assigned to a particular shard by hashing its identifier. The output of the transaction,
i.e., the generated UTXOs, are then also stored on that particular shard. The shard
then contacts all shards that hold inputs for the particular transaction. To make this
scheme efficient, shards are not connected to every other shard, but instead, route
messages through a shard network.

Zilliqa

Zilliqa [70] shards transactions, but not state. This protocol relies on a similar mech-
anism as OmniLedger for assigning nodes to shards but uses a different cross-shard
commit protocol. Instead of splitting the state of the system across shards, they only
split the transaction workload and replicate state among all nodes.

Each shard then processes a subset of all transactions for a specific epoch and
merges their resulting state with other shards at certain checkpoints. At a high level,
the protocol allows a particular shard to lock parts of the state to prevent concurrent
modificationof the samedata entries. Zilliqa employs a dataflow-basedprogramming
model to implement this scheme efficiently.

Ethereum 2.0

Ethereum 2.0 [61] introduces a sharding scheme among other major changes to
the protocol. This mechanism borrows ideas from both off-chain mechanisms and
randomness-based protocols likeOmniLedger.Here, nodes participate in the protocol
by putting down a deposit. A verified random function then assigns each node to a
particular shard.

Additionally to the random assignment, the protocol ensures safety and availabil-
ity by punishing nodes that sign an invalid block or respond too slowly. At the time
of writing this chapter, the Ethereum developers have not yet decided on a proto-
col for cross-shard transactions and it is unclear whether the protocol will support
serializable cross-shard transactions.

242 K. Mast

5.4 Summary

Sharding is almost certainly necessary tomake decentralized ledgers scale. However,
it is a problem that is still in the process of being solved without losing any of the
core guarantees that blockchains provide.

6 Layer-2 Solutions

Instead of scaling the blockchain protocol itself, the so-called “Layer 2” protocols
can be layered on top of existing systems to improve performance. These protocols
are usually orthogonal to previously mentioned approaches, such as sharding, as they
build on top of an existing DLT.

Payment channels lock funds on the global ledger and facilitate fast transactions
between parties through an off-chain protocol. Only the amount locked on the base
chain is allowed to be exchanged in these systems, and a tally of balances is kept for
when it is time to settle. On settling, the amount apportioned to the settler as denoted
by her balance in the subchain is unlocked on the main chain and returned to the
settler. State channels extend this scheme from cryptocurrency funds to the arbitrary
state.

6.1 Building Blocks

Layer-2 solutions rely on a common set of cryptographic primitives to implement
their functionality securely. We outline the most important ones here.

Merkle Proofs

Merkle trees allow creating a succinct tree of cryptographic hashes that represent a
system’s state. Such trees are constructed by hashing all objects of the state and then
recursively merging hashes by applying the hash function to them again. Usually,
only the root of such trees are stored on the blockchain and the rest of the tree can
either be constructed on the fly by clients or is provided in the form ofMerkle proofs.

Merkle proofs then allow showing the validity of a system’s (sub-)state by pro-
viding the branch of the tree from the affect objects to the root. This proof can then
be verified against the root hash on the blockchain. Because these proofs rely on
cryptographic hashes, it is virtually impossible to forge a Merkle proof against the
same root for a different state.

Building Protocols for Scalable Decentralized Applications 243

Cryptographic Commitments and Fraud Proofs

Analogous to a promise in real life, participants can provide a commitment in the form
of a statement that is signed with their private key. For example, one can generate a
hash H = h(S) of the current state S of a system and sign it with a cryptographic
key. This enables any holder of the commitment to prove later that the state of the
system was indeed S.

If a party detects misbehavior, they can then raise a fraud proof that shows two
conflicting cryptographic commitments by a particular party. Layer-2 protocol often
rely on fraud proofs to punish misbehaving party, as well as, to recover from failure.

Time Locks

Time locks allow for a certain transaction or statement to become invalid
if not included on the blockchain in a specified timebound. In Bitcoin,
this mechanism is implemented using the CheckSequenceVerify and
CheckLockTimeVerify protocol extensions. Here, time can be expressed either
as real-world time or as the length of the blockchain.Again, in systems likeEthereum,
similar functionality can be implemented using a smart contract.

This mechanism enables layer-2 protocols to recover in case of participants
becoming unresponsive. For example, in a payment or state channel funds could
be lost if a party refuses to cooperate. Some protocols, thus, release funds after a
certain amount of time if no progress is made.

Hash-Locked Transactions

In Bitcoin, Hash-Locked Transactions allow locking funds, which can then be
retrieved using a custom key. More concretely, such hash locks define under which
conditions a particular transaction output can be spent. These locks are implemented
using Bitcoin Script and they can be implemented similarly in other programmable
blockchains, such as Ethereum.

In the context of layer-2 protocols, this primitive is especially useful, as it allows
to lock funds for a channel or subchain and later release it only if a certain condition
is met. For example, it allows extending time-locks with a fraud-proof mechanism
from Sect. 6.1, which we will outline later.

6.2 Payment Channels

At a high level, payment channels lock funds on some existing systems and facilitate
fast transactions between parties through an off-chain protocol. Only the amount
locked on the base chain is allowed to be exchanged in these systems, and a tally of

244 K. Mast

balances is kept for when it is time to settle. This flow is outline in Fig. 9. At the time
of writing, the most prominent payment channel protocols are Lightning [52] for
Bitcoin and Plasma [51] for Ethereum, respectively. Payment channels do not rely
on additional consensus mechanisms but, instead, on cryptographic commitments
and time locks.

We now outline the Lightning protocol at a high level.

Creating and Updating Channels
First, a funding-transaction is created, which records the initial funds deposited
into the payment channel. This initial funding transaction creates a single transaction
output that can only be unlocked using a transaction signed by both parties.

Then, whenever the balance of the payment channel is updated, a new
commitment-transaction is created that records the new state. commitments
are not immediately stored on the blockchain, but saved by the participating parties
for later use. Each new commitment contains an revocation for the previous
commitment.

The funding-transaction is signed and stored on the main chain once the first
commitment has been created. The latter ensures that channels can always be
terminated, as termination requires a commitment-transaction to exist.

Terminating Channels (One-Sided)
In Lightning, either party can close the channel at any time by storing the most recent
commitment-transaction on the main chain. While the other party has immediate
access to the released funds, the closing party needs to wait for a certain amount of
time before their funds can be used.

This waiting time is implemented using hashed time-locks. There are two poten-
tial outcomes of this hashed time-lock. First, if the closing party has attempted to
close the channel with an outdated commitment, the other party can reveal the
revocation for the outdated commitment, which serves as a fraud proof. If

Fig. 9 Flow of a payment channel: only the opening and closure of the channel are recorded on
the global chain

Building Protocols for Scalable Decentralized Applications 245

they do so, they will claim all funds stored in the channel and, thus, punish the
misbehaving party.

Terminating Channels (Cooperatively)
If both parties are available and well behaving, they can cooperatively close the
channel. Because the original funding transaction is a single UTXO that can be
unlocked by a transaction signed by both parties, this is much easier to do.

A cooperative channel termination is then just a regular transaction that consumes
the channel’s UTXO and distributes the funds among the participants. No contest
time or hash lock is required.

Increasing or Decreasing a Channel’s Funds
In Lightning, a channel must be closed and recreated in order to change the
number of funds it has access too. Some other solutions, such as that provided by
Miller at al. [41] allow restocking funds.

Payment Networks

In most implementations, payment channels allow an arbitrary number of payments,
with only two transactions stored on the blockchain. However, one-to-one channels,
like the ones described in the previous section, require a new channel to be established
whenever onewants to transactwith a newparticipant. Thismakes their use somewhat
limited as establishing a new payment channel is costly. Payment networks address
this limitation.

At a high level, payment networks allow transacting with another party through
many intermediates. For example, if Alice wants to send money to Bob, but they do
not have a channel established between each other, Alice can rely on a third party
that has a channel established with her and Bob. Payment networks then provide
a protocol to send money through that third party, or a series of third parties in the
general case. This protocol has to allow these third parties to be untrusted to maintain
decentralized properties of a blockchain system.

In Lightning, this mechanism is ensured as follows. Consider the topology from
Fig. 10. Here, Alice wants to pay Bob but does not have a direct channel established
with him. To do this, Alice first notifies Bob about her intention to pay him and Bob
responds with a value H , where H is the cryptographic hash of some other value
R. Bob keeps R secret. Alice then promises, through a cryptographic commitment,
that she will pay Carol once she reveals R to her. Carol similarly tells Dave she will
pay him once he reveals R to her. Dave tells the same to Bob, except Bob knows the

Alice Carol Dave Bob

Fig. 10 Example topology for a payment network: Alice wants to pay Bob through Carol and Dave

246 K. Mast

value of R. Bob can then reveal R to Dave to initiate the payment process. The other
participants do the same to pass the money through the chain.

This mechanism is safe as R will not be revealed before a chain of commitments
has been established. IfBob reveals R ahead of time, themoneywould be sent through
the network partially and not reach him. As a result, Bob is financially incentivized
to wait until Dave has created a cryptographic commitment to him.

Payment networks need to provide a routing mechanism, that allows discovering
the current topology and establishing a path between two parties. This problem is
exacerbated by the fact that not all paths are valid for a particular payment, as a
particular path may contain nodes that do not hold sufficient funds to process the
payment. One promising approach to this problem is that of Sivaraman et al. [57],
which, among other mechanisms, improves the flow of payments by breaking them
into smaller “packets”.

A challenge with payment networks is to prevent them from becoming too cen-
tralized. For example, the network could devolve into a topology consisting of a
few large nodes that route most payments. Such large nodes would introduce single
points of failure that could harm the reliability of the network.

6.3 State Channels

Payment channels can generalize to state channels [41], that support arbitrary smart
contracts. For example, one can implement a chess game using a state channel,
where all moves are processed by the channel and only the final result is stored on
the blockchain itself. In most implementations, similarly as before, participants sign
off every state change using cryptographic commitment.

At the time of writing, Dziembowski et al. [19] provide the only soundmechanism
for state channel networks, which relies on the notion of virtual channels. While, in
regular state channels, one relies on the blockchain to resolve conflicts, in virtual
channels a third entity serves in this role. The key challenge here is that, unlike the
blockchain, this third party is untrusted. As a result, virtual channels can still fall
back to the underlying blockchain if the third party is faulty.

Figure 11 outlines how virtual channels can be constructed on top of other virtual
channels, as well, which allows building a more complex state channel networks.
Regular state channels, such as that between Alice and Carol or Dave and Bob, are
constructed using a State Channel Contract (SCC) on the blockchain itself. Here, for
example, if Alice becomes unresponsive, Carol will rely on the SCC to “forcefully”
close the channel. Virtual channels, such as y1, are then constructed using what the
authors call a Virtual State Channel Contract (VSCC). Similar to an SCC, Carol
only becomes involved, during the creation and closing of y1. In the case that Alice
becomes unresponsive, Dave can “forcefully” close the channel using Carol. If Carol
is unresponsive aswell, he can leverage theSCCbetweenhimandCarol to recursively
close both channels.

Building Protocols for Scalable Decentralized Applications 247

Alice Carol Dave Bob

y1

y2

Fig. 11 Sketch of how virtual channels are constructed recursively. Alice first constructs a virtual
channel y1 to Dave, via Carol. Then she uses y1 to construct a second virtual channel y2 to Bob via
Dave

Note, that this concept of virtual channels is tailored towards applications that
have exactly two participants. To our knowledge, no sound state channel (network)
construction exists yet that allows for a larger number of users to interact.

6.4 Watchtowers

A major drawback of layer-2 solutions is that they rely on a constant audit of the
blockchain to preventmalicious behavior. Inmany implementations, if a partymisbe-
haves, other participants must raise a fraud proof within a certain time-bound. How-
ever, not all participants might be online and actively participating in the blockchain
consensus at all times.

Watchtowers [2, 3, 16, 39] enable outsourcing this task to a third party. At a high
level, these mechanisms provide a reward to third parties, the watchtowers, if they
detect misbehavior.More advanced solutions link this reward to the payment channel
itself, to prevent malicious parties to bribe the watchtower(s).

6.5 Subchains

Systems such as BlockchainDB [20], Plasma [51] or Arbitrum [27] maintain authen-
ticated data structures outside the blockchain and solely rely on it in case of failures.
Such an authenticated data structure can be a Merkle tree, where the root is stored on
the parent blockchain, as outlined in Fig. 12. This design aims to combine the advan-
tages of a centralized system with that of a decentralized one. In the common case,
the state of the system can be updated at a small number of sites without involving
the blockchain. If the system fails, users issue fraud proofs to the main chain.

A core challenge with many subchain solutions is ensuring availability of blocks.
As usually, only the Merkle root of the subchains state is stored on the blockchain

248 K. Mast

Fig. 12 Simplified concept of a subchain. The side chain’s state is recorded by a Merkle tree and
the tree’s root stored on the parent blockchain

itself, the provider(s) of the subchain can hide the state to prevent audits. To address
this, Arbitrum assumes that at least one participant in a database replica set behaves
honestly and always remains available. Similarly, BlockchainDB assumes clients
trust the particular database instance they are connected to.

6.6 Optimistic Rollups

Optimistic rollups are a special kind of subchain, where transactions are recorded
and ordered on themain chain, but executed on a subchain. The key advantage here is
that no tradeoff in terms of availability is made: if needed the subchains state can be
recovered by re-executing all transactions. Examples of such systems are Optimistic
Ethereum [48] and Arbitrum One [46].4

Rollups are mainly useful for computationally expensive transactions, such
as complex smart contracts. While there exist mechanisms to batch transactions
together, they usually still require all transaction data to be on-chain. This means
that for simple payment transactions, the performance gain is negligible.

6.7 Summary

Layer-2 solutions are a great mechanism to augment other scaling solutions. For
example, payment and state channels allow for instant confirmation through the
exchange of cryptographic commitments. Subchains enable bundling many transac-
tions into one on-chain transaction for efficiency. Additionally, subchains can enable

4 ArbitrumOne is not to be confused with the version of Arbitrum described in the previous section.

Building Protocols for Scalable Decentralized Applications 249

even high performance by making availability tradeoffs. The latter might be accept-
able for applications of low financial value. Finally, optimistic rollups can overcome
the computational limitations of current blockchains.

7 Federated Chains

Federated chains attempt to scale blockchains by allowing multiple separate chains
to work together through a global relay chain or cross-chain swaps. While sharding
usually has a fixedmechanism that dictates how andwhen shards are created andwho
they are assigned to, blockchain federation allows creating new chains organically.

While very similar to sharding, at first sight, this mechanism is muchmore similar
to sidechains. In most designs, there exist a global chain that takes a similar role as
the blockchain in side-chain protocol, in that it processes cross-chain communication
and handles failures. However, one common point with sharding is that there usually
exists a mechanism to update the state on multiple chains atomically, similar to
cross-shard transactions (Fig. 13).

7.1 Cross-Chain Swaps

Cross-chain swaps [25, 68] allow exchanging cryptocurrencies between two separate
blockchains without the involvement of a third party. Here, funds are locked on both
chains for a certain amount of time. If a chain is provided with proof that the funds
on the other chain are locked as well, it considers the transaction as successful,

(a) Avalanche Subnetworks: All nodes
participate in the global network, while
some may also participate in other net-
works.

(b) Polkadot: A set of validators main-
tain a global relay chain. Each parachain
has its own “collators” that bundle and
forward parachain state to the valida-
tors.

Fig. 13 Comparision of Polkadot and Avalanche subnetworks

250 K. Mast

otherwise, it aborts and releases the funds on timeout. This, again, assumes a strong
bound on network latency.

A key advantage of cross-chain swaps is that it allows to federate existing
blockchains with minimal modifications. As a result, the primitive can be lever-
aged to build decentralized cryptocurrency exchanges. For example, one can trade
Ethereum for Avalanche tokens using cross-chain swaps.

7.2 Polkadot

Polkadot [65] is a self-described “scalable heterogeneous multi-chain”. It provides
a single relay chain that handles cross-chain transactions and multiple parachains
that rely on the relay chain for security. Polkadot additionally introduces the notion
of bridges, special subchains that connect to other blockchain systems, such as
Ethereum.

The Polkadot architecture relies on four different roles for nodes: nominators,
validators, collators, and fishermen. We outline these roles in Fig. 14. Nominators
are entities holding tokens on the relay chain, who appoint validators to process the
relay chain. The validators then form the committee for the underlying consensus
algorithm of the relay chain. Collators serve a similar role as validators, but for a
specific parachain. Finally, fishermen check validators for correctness.

Each parachain is then assigned a random subset of all validators. These validators
do not have to process the entire state of that parachain. In fact, they might not be
able to as they are frequently reassigned to a different parachain. Instead, they rely
on parachain collators to propose block candidates to them.

Collators do not need to run a consensus protocol for a parachain. Instead, collators
can compete for the validators’ “trust”, e.g., through a history of good behavior or by
providing the blocks containing the most transaction fee revenue. In addition to the

Collators
Fishermen
(Auditors) Nominators

validators (this parachain) validators (other parachains)

provides block
candidates for monitors

reports bad
behavior to

approves

becomes

Fig. 14 Roles in the Polkadot network. Collators propose blocks for a specific parachain, which
is then approved by a subset of the relay chain’s validator. This approval is then inspected by the
fishermen who report misbehavior to the validator set as a whole

Building Protocols for Scalable Decentralized Applications 251

block itself, collators provide a zero-knowledge proof that the contents of the block
are correct and do not violate the parachain state. Additionally, they can provide
funds that can be withheld if the block turned out to be faulty. The validators then
include the headers of the accepted parachain block in the relay chain.

Because only a subset of validators processes a particular relay chain, they need
to be checked by fishermen for correctness. Fishermen are somewhat similar to
watchtowers in layer-2 protocols, in that, they look for misbehavior in a particular
parachain or bridge, and generate a fraud proof if needed. As a result, parachains
operate mostly independently from the relay chain, except when recovering from
failure.

Validators additionally participate in the relay chain consensus. Here, they pro-
cess and approve relay chain block, which contains parachain block headers and
cross-chain transaction information, as a whole. Periodically, these validators are
(re-)appointed by the nominators.

To ensure consistency of cross-chain communication, the relay chain processes
all messages between parachain. Each parachain block contains an egress set of
messages sent by the particular chain, and an ingress set of those messages received
and process by the chain. This ensures that cross-chain transactions execute on all
involved shards, and are correctly ordered. However, depending on howmany cross-
chain transactions there are, this can constitute a bottleneck of the system.

7.3 Avalanche Subnetworks and Cosmos Zones

Avalanche also provides the notion of federated chains through its subnetworks
concept. Similar to Polkadot, there exists a global chain handling cross-chain and
global transactions. Additionally, any set of entities can create a new subchain that
operates independently from the global chain.

Cosmos [34] is a federated blockchain system leveraging the Tendermint consen-
sus protocol. Here, a global “hub” processes cross-chain transactions, while there
can be many “zones” that operate independently from each other. Each zone and the
hub run their own instance of the Tendermint protocol and can have a different set
of validators. Similar to Avalanche and Polkadot, there then exists a mechanism for
cross-shard messages and coin swaps.

Both, Avalanche and Cosmos, to our knowledge, have no mechanism to recover
from subnetwork (or zone) failure. This means that these systems’ subnetworks
(or zones) have weaker availability and safety guarantees than its global chain. On
the other hand, this design can potentially allow for higher performance, as the global
chain is less involved in the particular shard execution.

252 K. Mast

7.4 Summary

The key advantage of the federation is that it allows connecting blockchain sys-
tems that rely on different consensus protocols, currencies, and even different virtual
machines for smart contract execution.

On the other hand, federation usually trades for safety by splitting stake or mining
power into multiple independent systems. Thus, it might be safe to federate a handful
of large blockchains, but not hundreds or thousands.

8 Conclusion

This chapter gave an overview of different scaling approaches to distributed ledger
protocols, from the network level to off-chain solutions. Each of these mechanisms
has unique advantages, disadvantages, and challenges. Note that, aside from scalabil-
ity, availability, and safety, decentralized ledger technologies face many challenges
that were not discussed in this chapter at all, such as ensuring user privacy or pro-
viding mechanisms for governance.

As none of the describedmechanisms is a solution to all problems, we believe only
a combination of multiple mechanisms can address the scalability limitations of cur-
rent decentralized applications. The ledger’s underlying network needs to be fast to
allow for low latency transmission of blocks and transactions. The consensus mecha-
nism must have high throughput to enable managing the global state and processing
fraud proofs. Sharding allows processing even more global state for applications
that cannot be executed well on layer-2. Finally, layer-2 protocols are necessary to
achieve low-cost low-latency transactions with high throughput for end-users, and
blockchain federation to allow for interoperability between different architectures
and virtual machines.

References

1. Adya, A.: Weak consistency: a generalized theory and optimistic implementations for dis-
tributed transactions. Ph.D. thesis, Massachusetts Institute of Technology (1999)

2. Avarikioti, Z., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: incentivizing watchtowers
for Bitcoin. In: Financial Cryptography and Data Security, pp. 346–366. Kota Kinabalu, Sabah,
Malaysia, February 2020

3. Avarikiotia, Z., Kokoris-Kogias, E., Wattenhofer, R., Zindros, D.: Brick: asynchronous
incentive-compatible payment channels. In: International Conference on Financial Cryptogra-
phy and Data Security (2021)

4. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database systems. ACM
Comput. Surv. (CSUR) 13(2), 185–221 (1981)

5. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute range
queries. In: SIGCOMM Conference, pp. 353–366, Portland, Oregon, August 2004

Building Protocols for Scalable Decentralized Applications 253

6. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus (2018). arXiv
preprint arXiv:1807.04938

7. Burrows, M.: The Chubby lock service for loosely-coupled distributed systems. In: Sympo-
sium on Operating System Design and Implementation, pp. 335–350, Seattle, Washington,
November 2006

8. Castro,M., Liskov, B.: Practical byzantine fault tolerance. In: SymposiumonOperating System
Design and Implementation, pp. 173–186, New Orleans, Louisiana, February 1999

9. Clement, A., Wong, E.L., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzantine fault tol-
erant systems tolerate byzantine faults. In: Symposium on Networked System Design and
Implementation, pp. 153–168, Boston, Massachusetts, April 2009

10. Corallo, M.: Compact block relay. https://github.com/TheBlueMatt/bips/blob/master/bip-
0152.mediawiki. Accessed June 2020

11. Corallo, M.: The fast Internet Bitcoin Relay Engine (FIBRE). http://www.bitcoinfibre.org/.
Accessed June 2020

12. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., Ghemawat, S., Gubarev,
A., Heiser, C., Hochschild, P., Hsieh, W.C., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik,
S., Mwaura, D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szymaniak, M., Taylor,
C., Wang, R., Woodford, D.: Spanner: Google’s globally distributed database. ACM Trans.
Comput. Syst. 31(3), 8-1 (2013)

13. Cowling, J., Liskov, B.: Granola: low-overhead distributed transaction coordination. In:
USENIX Annual Technical Conference (2012)

14. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A.E., Miller A., Saxena,
P., Shi, E., Sirer, E.G., Song, D., Wattenhofer, R.: On scaling decentralized blockchains—(A
Position Paper). In: Financial Cryptography and Data Security, pp. 106–125, Christ Church,
Barbados, February 2016

15. Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.E., Swine-
hart, D.C., Terry, D.B.: Epidemic algorithms for replicated database maintenance. In: ACM
Symposium on Principles of Distributed Computing, pp. 1–12, Vancouver, Canada, August
1987

16. Drya, T. (2016) Unlinkable outsourced channel monitoring. In: Scaling Bitcoin Milan (2016)
17. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Annual International

Cryptology Conference, pp. 139–147, Santa Barbara, California, August 1992
18. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial synchrony. J.

ACM 35(2), 288–323 (1988)
19. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Computer and

Communications Security, pp. 949–966, Toronto, Canada, October 2018
20. El-Hindi,M., Binnig, C., Arasu, A., Kossmann, D., Ramamurthy, R.: BlockchainDB—a shared

database on blockchains. Proc. VLDB Endowm. 12(11), 1597–1609 (2019)
21. Etherscan: Ethereum average gas limit chart. https://etherscan.io/chart/gaslimit. Accessed June

2020
22. Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in Bitcoin and

Ethereum networks. In: Financial Cryptography and Data Security, pp. 439–457, Porta Blancu,
Curaçao, February 2018

23. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine
agreements for cryptocurrencies. In: Symposium on Operating Systems Principles, pp. 51–68,
Shanghai, China, October 2017

24. Göbel, J., Krzesinski, A.E.: Increased block size and Bitcoin blockchain dynamics. In: 27th
International Telecommunication Networks and Applications Conference, ITNAC 2017, Mel-
bourne, Australia, November 22–24, 2017, pp. 1–6 (2017)

25. Herlihy, M.: Atomic cross-chain swaps. In: ACM Symposium on Principles of Distributed
Computing, pp. 245–254, London, United Kingdom, July 2018

26. Ittay E., Gencer, A.E., Sirer, E.G., vanRenesse, R.: Bitcoin-NG: a scalable blockchain protocol.
In: Symposium on Networked System Design and Implementation, pp. 45–59, Santa Clara,
California, March 2016

http://arxiv.org/abs/1807.04938
https://github.com/TheBlueMatt/bips/blob/master/bip-0152.mediawiki
https://github.com/TheBlueMatt/bips/blob/master/bip-0152.mediawiki
http://www.bitcoinfibre.org/
https://etherscan.io/chart/gaslimit

254 K. Mast

27. Kalodner, H.A., Goldfeder, S., Chen, X., MatthewWeinberg, S., Felten. Arbitrum, E.W.: Scal-
able, private smart contracts. In: USENIX Security Symposium, pp. 1353–1370, Baltimore,
Maryland, August 2018

28. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake
blockchain protocol. In: Annual International Cryptology Conference, pp. 357–388, Santa
Barbara, California, August 2017

29. Klarman, U., Basu, S., Kuzmanovic, A., Sirer, E.G.: bloXroute: A scalable trustless blockchain
distribution network. Bloxroute White Paper (2018)

30. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin
security and performance with strong consistency via collective signing. In: USENIX Security
Symposium, pp. 279–296, Austin, Texas, August 2016

31. Kogias, E.K., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: OmniLedger: a secure,
scale-out, decentralized ledger via sharding. In: IEEE Symposium on Security and Privacy, pp.
583–598, San Francisco, California, May 2018

32. Kotla, R., Alvisi, L., Dahlin,M., Clement, A.,Wong, E.L.: Zyzzyva: speculative byzantine fault
tolerance. In: SymposiumonOperating Systems Principles, pp. 45–58, Stevenson,Washington,
October 2007

33. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. In: International
Conference on Very Large Data Bases, p. 351, Rio de Janeiro, Brazil, October 1979

34. Kwon, J., Buchman, E.: Cosmos whitepaper. https://cosmos.network/resources/whitepaper.
Accessed March 2021

35. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems. ACM Trans.
Program. Lang. Syst. 6(2), 254–280 (1984)

36. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)
37. Lokhava, M., Losa, G., Mazières, D., Hoare, G., Barry, N., Gafni, E., Jove, J., Malinowsky,

R., McCaleb, J.: Fast and secure global payments with Stellar. In: Symposium on Operating
Systems Principles, pp. 80–96, Huntsville, Ontario, Canada, October 2019

38. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding
protocol for open blockchains. In: Computer andCommunications Security, pp. 17–30, Vienna,
Austria, October 2016

39. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: arbitration outsourcing
for state channels. In: Advances in Financial Technologies, pp. 16–30, Zürich, Switzerland,
October 2019

40. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Annual
International Cryptology Conference, pp. 369–378, Santa Barbara, California, August 1987

41. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that go faster
than lightning (2017). arXiv:1702.05812

42. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In:
Computer and Communications Security, pp. 31–42, Vienna, Austria, October 2016

43. Morrison, D.R.: PATRICIA—practical algorithm to retrieve information coded in alphanu-
meric. J. ACM 15(4), 514–534 (1968)

44. Mu, S., Cui, Y., Zhang, Y., Lloyd, W., Li, J.: Extracting more concurrency from distributed
transactions. In: Symposium on Operating System Design and Implementation, pp. 479–494,
Broomfield, Colorado, October 2014

45. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
46. Offchain Labs: Arbitrum rollup basics. https://developer.offchainlabs.com/docs/rollup_basics.

Accessed January 2022
47. Oki, B.M., Liskov, B.: Viewstamped replication: a general primary copy. In: ACM Symposium

on Principles of Distributed Computing, pp. 8–17, Toronto, Canada, August 1988
48. Optimism PBC: Optimistic ethereum documentation. https://community.optimism.io/.

Accessed Jan 2022
49. Pinar Ozisik, A., Andresen, G., Levine, B.N., Tapp, D., Bissias, G., Katkuri, S.: Graphene:

efficient interactive set reconciliation applied to blockchain propagation. In: SIGCOMM Con-
ference, pp. 303–317, Beijing, China, August 2019

https://cosmos.network/resources/whitepaper
http://arxiv.org/abs/1702.05812
https://developer.offchainlabs.com/docs/rollup_basics
https://community.optimism.io/

Building Protocols for Scalable Decentralized Applications 255

50. Ponnapalli, S., Shah, A., Tai, A., Banerjee, S., Chidambaram, V., Malkhi, D., Wei, M.:
Scalable and efficient data authentication for decentralized systems (2019). arXiv preprint
arXiv:1909.11590

51. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White Paper (2017)
52. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016).

https://lightning.network/lightning-network-paper.pdf
53. Redman, J.: BCH upgrades: What’s new and What’s next (2018). https://news.bitcoin.com/

bch-upgrades-whats-new-and-whats-next/. Accessed June 2020
54. Rocket, T., Yin, M., Sekniqi, K., van Renesse, R., Sirer, E.G.: Scalable and probabilistic lead-

erless BFT consensus through metastability (2019). arXiv preprint arXiv:1906.08936
55. Rogaway, P.: Formalizing human ignorance: collision-resistant hashingwithout the keys. IACR

Cryptol. ePrint Arch. 2006, 281 (2006)
56. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: a tuto-

rial. ACM Comput. Surv. 22(4), 299–319 (1990)
57. Sivaraman, V., Venkatakrishnan, S.B., Ruan, K., Negi, P., Yang, L., Mittal, R., Fanti, G.C.,

Alizadeh, M.: High throughput cryptocurrency routing in payment channel networks. In: Sym-
posium on Networked System Design and Implementation, pp. 777–796, Santa Clara, Califor-
nia, February 2020

58. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In: Financial
Cryptography and Data Security, pp. 507–527, San Juan, Puerto Rico, January 2015

59. Stoica, I., Morris,R.T., Karger, D.R., Frans Kaashoek,M., Balakrishnan, H.: Chord: a scalable
peer-to-peer lookup service for internet applications. In:SIGCOMMConference, pp. 149–160,
San Diego, California, August 2001

60. Syta, E., Jovanovic, P., Kokoris-Kogias, E., Gailly, N., Gasser, L., Khoffi, I., Fischer, M.J.,
Ford, B.: Scalable bias-resistant distributed randomness. In:IEEE Symposium on Security and
Privacy, pp. 444–460, San Jose, California, May 2017

61. The Ethereum Foundation. Ethereum 2.0 Specifications. https://github.com/ethereum/eth2.0-
specs. Accessed August 2020

62. Wang,G., Shi, Z.J., Nixon,M., Han, S.: SoK: sharding on blockchain. In: Advances in Financial
Technologies, pp. 41–61, Zürich, Switzerland, October 2019

63. Wang, J., Wang, H.: Monoxide: scale out blockchains with asynchronous consensus zones.
In: Symposium on Networked System Design and Implementation, pp. 95–112, Boston, Mas-
sachusetts, February 2019

64. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum project
yellow paper 151, 1–32 (2014)

65. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework. White Paper (2016)
66. Yin,M.,Malkhi,D., Reiter,M.K.,Golan-Gueta,G.,Abraham, I.:HotStuff: BFT consensuswith

linearity and responsiveness. In: ACM Symposium on Principles of Distributed Computing,
pp. 347–356, Toronto, Canada, July 2019

67. Zamani, M., Movahedi, M., Raykova., M.:Rapidchain: scaling blockchain via full sharding.
In: Computer and Communications Security, pp. 931–948, Toronto, Canada, October 2018

68. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.J.: XCLAIM:
trustless, interoperable, cryptocurrency-backed assets. In: IEEE Symposium on Security and
Privacy, pp. 193–210, San Francisco, California, May 2019

69. Zhang, Y., Setty, S.T.V., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consensus without
byzantine oligarchy. In: Symposium on Operating System Design and Implementation, pp.
633–649 (2020)

70. Zilliqa Team: The Zilliq technical whitepaper. Technical Report (2017)

http://arxiv.org/abs/1909.11590
https://lightning.network/lightning-network-paper.pdf
https://news.bitcoin.com/bch-upgrades-whats-new-and-whats-next/
https://news.bitcoin.com/bch-upgrades-whats-new-and-whats-next/
http://arxiv.org/abs/1906.08936
https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs

	 Building Protocols for Scalable Decentralized Applications
	1 Introduction
	2 Decentralized Ledger Abstraction
	2.1 Consistency
	2.2 Immutability
	2.3 Auditability

	3 Decentralized Ledger Technologies
	3.1 Assumptions and Attack Model
	3.2 Data and Transaction Models
	3.3 Smart Contracts
	3.4 Committee-Based Consensus
	3.5 Sybil Detection
	3.6 Nakamoto Consensus
	3.7 Bottlenecks

	4 Improved and Novel Consensus Mechanisms
	4.1 Improved Committee-Based Consensus Protocols
	4.2 Minor Changes to Nakamoto Consensus
	4.3 Decoupling Mining from Transaction Serialization
	4.4 Novel Proof-of-Stake Protocols
	4.5 Summary

	5 Sharding Blockchains
	5.1 Challenges in Sharding Blockchains
	5.2 Foundations
	5.3 Public Blockchain Sharding Protocols
	5.4 Summary

	6 Layer-2 Solutions
	6.1 Building Blocks
	6.2 Payment Channels
	6.3 State Channels
	6.4 Watchtowers
	6.5 Subchains
	6.6 Optimistic Rollups
	6.7 Summary

	7 Federated Chains
	7.1 Cross-Chain Swaps
	7.2 Polkadot
	7.3 Avalanche Subnetworks and Cosmos Zones
	7.4 Summary

	8 Conclusion
	References

