
Consensus Algorithms for Blockchain

Hyunsoo Kim and Taekyoung Ted Kwon

Abstract A consensus algorithm is an essential component of a blockchain, respon-
sible for reaching an agreement among decentralized nodes. It also determines the
performance and characteristics of an application. With more than 2,000 different
cryptocurrencies currently in use, we face an ever-growing list of consensus algo-
rithms. Furthermore, the inherent complexity of consensus algorithms and their rapid
evolutions make it hard to assess their suitability for blockchain applications. Under-
standing the pros and cons of a consensus algorithm is crucial in designing new
blockchain services and developing more advanced algorithms.We propose a frame-
workwith comprehensive criteria to evaluate consensus algorithms in terms of perfor-
mance, security, and decentralization. In addition, we present the operational mech-
anisms and analyze the characteristics of mainstream consensus algorithms, namely,
proof-based algorithms such as Proof of Work (PoW) and Proof of Stake (PoS),
and vote-based algorithms with Byzantine Fault Tolerance (BFT). The algorithms
are evaluated based on our proposed framework to provide a better understanding.
We hope this article leads us to identify research challenges and opportunities of
consensus algorithms.

1 Introduction

Blockchain technologies have received widespread attention across the industry,
governments, and academia alike over the past decade. Today’s most predominant
blockchain applications are cryptocurrencies, for instance, Bitcoin has recently hit
$1 trillion in market value [1]. Cryptocurrencies have disrupted the long-established
centralized financial system on a global scale. Many developing countries are now

H. Kim · T. T. Kwon (B)
Department of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro,
Gwanak-gu, Seoul, South Korea
e-mail: tkkwon@snu.ac.kr

H. Kim
e-mail: wayles@snu.ac.kr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. A. Tran et al. (eds.), Handbook on Blockchain, Springer Optimization
and Its Applications 194, https://doi.org/10.1007/978-3-031-07535-3_3

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07535-3_3&domain=pdf
mailto:tkkwon@snu.ac.kr
mailto:wayles@snu.ac.kr
https://doi.org/10.1007/978-3-031-07535-3_3

86 H. Kim and T. T. Kwon

seeing higher rates of cryptocurrency adoption. Take Nigeria, for example; roughly
a third of the population owns cryptocurrencies and uses them in everyday lives [2].

Now, we are witnessing the blockchain expands across various industries such
as energy, health care, real estate, supply chain, and so on. According to a recently
conducted study [3], blockchain technologies have the potential to boost global Gross
Domestic Product (GDP) by $1.76 trillion across the industry over the next decade,
which is 1.4% of the predicted global GDP.

Blockchain is essentially a decentralized, asynchronous distributed system, often
with much more nodes than its traditional counterpart. Making reliable communica-
tions between the nodes and maintaining the correct state across the system even in
the presence of malicious nodes and network failures are the key issues [4]. This is
where a consensus algorithm takes place. At the heart of a blockchain (or its applica-
tion), the consensus algorithm is responsible for maintaining consistent copies of the
current state across all nodes, validating new transactions, and updating the current
state while achieving an agreement among the nodes.

The Proof-of-Work (PoW) consensus algorithm used in Bitcoin is the first
and most popular consensus algorithm in the blockchain. However, although this
consensus algorithm is well-fitted for the application of Bitcoin, it has its shortcom-
ings. Namely, its energy inefficiency of validating and constructing a new block,
known as mining, and low throughput have been a vexing issue [5]. As a result,
researchers and developers have sought to devise new consensus algorithms.

There are over 2,000 different cryptocurrencies, let alone blockchain applications
from other industries, which are currently employing diverse consensus algorithms.
The list of consensus algorithms is extensive, and even now, newer ones are under
way. Researchers and developers must understand the characteristics and limitations
of a consensus algorithm since the overlaying blockchain application’s performance
and usability will highly depend on it. Thus, we believe it is essential to lay out
a framework that can be used to analyze and evaluate a consensus algorithm and
determine its suitability to a particular application. The contributions of this article
are summarized as follows. First, a framework for evaluating consensus algorithms
is proposed. The framework consists of comprehensive criteria that can be applied to
most consensus algorithms. Second, an in-depth survey of representative consensus
algorithms and their characteristics are discussed.

The rest of this article is organized as follows. In Sect. 2, we first review the
literature on consensus algorithms with a focus on their evaluation criteria. And
then, we present our evaluation framework and discuss each criterion in detail.
Section 3 presents major consensus algorithms categorized in PoW, PoS, and vote-
based.A thorough evaluationwill follow in Sect. 4 based on our proposed framework.
Section 5 proposes future research opportunities regarding consensus algorithms and
concludes the article.

Consensus Algorithms for Blockchain 87

2 Evaluation Criteria

With the advancement of different blockchain technologies and their applications in
multiple domains, a variety of consensus algorithms have been developed. As most
of the consensus algorithms have their limitations, there are still ongoing debates on
addressing the drawbacks or issues of those consensus algorithms.

This paper aims to identify and provide key criteria for a consensus algorithm
from diverse perspectives. In this section, we first review the major characteristics
and functionalities of the consensus algorithms in the literature and then present a
framework for their evaluation.

2.1 Related Works

In order to define and present an evaluation criteria framework, we first go over a
comprehensive review of the prior consensus algorithms and their evaluations.

In [6], the authors focus on the Bitcoin cryptocurrency and list the following
criteria: maximum throughput, latency, bootstrap time, cost per confirmed transac-
tion, transaction validation, bandwidth, and storage. Their criteria are mostly related
to the performance of the consensus algorithm with a focus on the Proof-of-Work
(PoW) algorithm in Bitcoin.

Mingxiao et al. [7] compared the five consensus algorithms: PoW, Proof of
Stake (PoS), Delegated Proof of Stake (DPoS), Practical Byzantine Fault Tolerance
(PBFT), and Raft. The list of criteria consists of: Byzantine fault tolerance, crash
fault tolerance, verification speed, throughput, and scalability. Note that the criteria
can be classified into two categories: fault tolerance and performance.

Nguyen and Kim [8] performed a comprehensive survey of consensus algorithms
by categorizing them to proof-based consensus algorithms: PoW, PoS, hybrid form
of PoW and PoS, and voting-based consensus algorithms: Byzantine fault tolerance
and crash fault tolerance. Performance comparison was done between PoW, PoS,
and hybrid form of PoW and PoS based on energy efficiency, modern hardware,
forking, double-spending attack, block creating speed, and pool mining. Another
performance comparison was performed between proof-based consensus algorithms
andvote-based consensus algorithms in general. The criteriawere agreementmaking,
joining nodes, number of nodes, decentralization, trust, node identity management,
security threat, and reward. Although we take the similar categorization of consensus
algorithms in this study, the listed criteria are focused on qualitative properties and
only applied to each category and not individual algorithms.

Unlike the above studies, [9] did not categorize consensus algorithms for evalu-
ation but viewed the blockchains at multiple levels: consensus level, mining pool,
network level, and smart contracts. The authors specifically focused on attack vectors
at the consensus level: double spending, Finney attack, Vector76 attack, brute force
attack, 51% attack, and nothing-at-stake attack.

88 H. Kim and T. T. Kwon

Table 1 Comparison of consensus algorithm evaluation criteria of [11, 12]

Ferdous et al. [11] Bamakan et al. [12]

Category Criterion Category Criterion

Structural Node type Throughput TPS

Structure type Block creation

Underlying mechanism Verification time

Block and reward Genesis date Block size

Block reward Profitability Mining reward

Total supply Power consumption

Block time Transaction fees

Security Authentication Hardware dependency

Non-repudiation Decentralization Blockchain governance

Censorship resistance Permission model

Adversary tolerance Trust model

Sybil protection Security Double spending

DoS resistance 51% attack

Performance Fault tolerance Sybil attack

Throughput

Scalability

Latency

Energy consumption

Bano et al. [10] performed a survey based on individual applications such as
ByzCoin, Ouroboros, Bitcoin, and Spectre which is different from our approach.
However, the authors classify the criteria into three categories: committee configu-
ration, safety, and performance. Safety consists of censorship resistance, DoS resis-
tance, and adversary tolerance, while performance consists of throughput (TPS),
scalability, and latency.

Ferdous et al. [11] performed an extensive survey of consensus algorithms and
classified them into two categories: incentivized consensus and non-incentivized
consensus. This is analogous to our proof-based and vote-based categorization.
[11, 12] are both noticeable for their structuring evaluation criteria of consensus
algorithms, which is found in Table 1.

2.2 Evaluation Framework

Identifying universal criteria that apply to most, if not all, consensus algorithm is key
to defining a solid evaluation framework. We also focus on generalized consensus

Consensus Algorithms for Blockchain 89

Fig. 1 The criteria of our evaluation framework for consensus algorithms are classified into three
categories

algorithms such as PoW and PoS algorithms, not on individual cryptocurrency appli-
cations. As a result, structural criteria such as node characteristics and management,
or profitability criteria, such as mining reward, mining pools, and transaction fees,
are avoided unless necessary.

Based on the above standpoint and our review of the literature that define various
criteria for consensus algorithm’s performance evaluation, we present a framework
to evaluate consensus algorithms in terms of criteria in the three following categories:
performance, security, and decentralization, as depicted in Fig. 1. In the following,
we will briefly introduce three categories and detail the criteria therein.

Performance Criteria

The performance criteria consist of properties or metrics to measure the quantita-
tive performance of consensus algorithms. In this paper, we consider throughput,
scalability, and energy consumption for performance.

Throughput/TPS

The throughput of a consensus algorithm is the speed of processing transactions by
the participating nodes or members. In other words, the maximum throughput of a
blockchain is the maximum rate at which the blockchain can confirm transactions
[6]. It is also referred to as Transactions per Second (TPS), defined by the number of
transactions processed per second. For example, if a particular blockchain processes
an average of 600 transactions per minute, the TPS of that blockchain is 10 (10
transactions per second). The higher is the TPS, the faster the transactions will be
verified, executed, and confirmed by that blockchain.

Throughput is one of the most essential criteria when discussing the performance
of a blockchain. There are several elements that we should also consider when
discussing throughput: latency and block size.

90 H. Kim and T. T. Kwon

Latency: The latency refers to the time it takes from when a transaction is created to
when the consensus (for the transaction) has been reached. In between, the transaction
will be validated, added to the block, and appended to the chain.Latency is sometimes
replaced by similar terms such as block time or finality, in which they have a slightly
different meaning.

Block time is the time it takes to make a new block since the last block that was
added to the chain. An increase in block time will increase the latency, effectively
reducing the throughput.

There are two approaches in defining finality. One is deterministic (or absolute)
finality, which guarantees that the transaction is verified and immutable as soon
as it is added to the chain. The time to deterministic finality is identical to block
time and, in most cases, latency as well [13]. Another, probabilistic finality is used
when a transaction becomes probabilistically immutable as more blocks are added to
the chain. This will be explored further in Double-Spending Prevention in Security
Criteria (Section “Security Criteria”).

Block size: The block size refers to the maximum amount of transactions (or bytes)
in a block. Larger block size may lead to shorter latency since it can fill the block
with more transactions. However, on the contrary, increasing the block size could
improve the throughput of the consensus algorithm since more transactions can be
included in the block given the same block time.

All in all, the throughput of a consensus algorithm is not determined by a single
factor and must consider different variables and their implications. Table 2 presents
the TPS, maximum block size, and the minimum and maximum latency of selected
cryptocurrencies between March 2018 and February 2021 [14, 15].

Scalability

Scalability refers to the ability to support a growing number of users and nodes. It
is considered one of the critical factors in the design of decentralized distributed
systems. Throughput is also another aspect of scalability. As the network grows,
we can expect the number of transactions to increase proportionally. However, the
throughput limitation compared to centralized systems is one of the hindrances to

Table 2 TPS, latency, and max block size of selected cryptocurrencies [14, 15]

Cryptocurrency Bitcoin Ethereum Litecoin Ripple Dogecoin DASH Monero

TPS 7 15 28 1500 16 56 30

Latency
[min]

Min 7.35 0.22 2.12 0 1,03 2.56 1.57

Max 15.65 0.39 3.48 0 1.05 2.69 10.99

Max block size
[MB]

1 Dynamica 1 N/Ab 1 2 Dynamicc

a Variable block size based on gas limit.
b Does not have blocks.
c Variable block size based on last 100 blocks.

Consensus Algorithms for Blockchain 91

blockchain deployment. For example, Bitcoin can handle up to 7 TPS, far from
PayPal and VISA’s performance, which has approximately 200 TPS and 20 k TPS,
respectively [16].

Energy Consumption

Energy consumption is another important performance criterion of a consensus
algorithm. It is well known that the total energy consumption for mining in the
Bitcoin network can now power a whole country like Portugal, Singapore, and Czech
Republic, to name a few [17]. Furthermore, the primary source of electricity that runs
the Bitcoin network is from coal-fired power plants in China, which is infamous for
its extreme amount of carbon emission. A study conducted in 2018 suggests that the
carbon emission related to Bitcoin alone could increase global warming by 2 °C in
less than three decades [18].

The high energy consumption is mainly due to the computation of the crypto-
graphic hash functions such as SHA-256 (e.g., Bitcoin), Ethash (e.g., Ethereum),
and many other hash functions used by the PoW algorithms. As the difficulty of
the PoW algorithm continues to increase, so does the energy consumption, and it is
pivotal that future consensus algorithms focus on energy efficiency as a top objective.

Security Criteria

The blockchains have various cybersecurity attack vectors that can threaten any given
consensus algorithms. Naturally, one could think of diverse attacks and vulnera-
bilities when given a particular consensus algorithm. However, in this paper, we
present only well-known attacks that can be commonly applied to most of consensus
algorithms. Namely, adversary tolerance, double-spending prevention, and Sybil
protection resistance will be explored in detail.

Fault (or Adversary) Tolerance

To begin with, fault tolerance typically refers to crash fault tolerance in which nodes
or members of a network fail and become offline until they are brought back online.
This is different from becoming compromised and sending fraudulent transactions.
When f number of nodes or members has crashed, the network requires 2f + 1
participants or a quorum of f + 1 to be crash fault tolerant.

If the nodes are subverted and send fraudulent transactions to the network, this
is called Byzantine behavior [19], and their consensus algorithm must be Byzantine
fault tolerant. One of the well-known algorithms that can achieve consensus in this
attack is Practical Byzantine Fault Tolerant (PBFT) [20],which is capable of handling
up to f Byzantine nodes with 3f + 1 total nodes.

By contrast, when we take proof-based consensus algorithms into account, the
term “fault tolerance” refers to the percentage of total network resources that need to
assure consensus.When an adversary is able to control more than 50% of a network’s
computingpower, it couldmaliciously alter or control the consensus process to launch
an attack (e.g., double spending). Hence, the term 51% attack is widely used as it

92 H. Kim and T. T. Kwon

Fig. 2 A hash rate
distribution of Bitcoin
mining pools in February
2022 is shown

was also discussed in the original Bitcoin paper [21]. A selfishmining strategy shows
that an adversary with less than 50% power could withhold block and increase its
profitability without affecting the safety or liveness of a blockchain network [22]. It
is also worth mentioning that in theory 51% attack is unavoidable, and adversaries
with mining pools could always collude with each other. For example, Fig. 2 shows
that the top five mining pools of Bitcoin exceed 51% of the total hash rate of the
whole network as of early 2022 [23].

Double-Spending Prevention

In a double-spending attack, the adversary creates a typical transaction that reaches
consensus, and then the adversary creates a forkwith a conflicting transaction to revert
the prior transaction. A successful double-spending attack will allow the adversary
to spend the same coin more than once, hence double.

However, in order to push the fork with the malformed transaction to the main
chain, the adversary must have already broken the adversary tolerance. For example,
in the Bitcoin PoW algorithm, the adversary should have at least 51% computing
power of the entire network to ensure a successful fork through faster block creation.

Consensus algorithms try to mitigate this attack by introducing a confirmation
count, which is incremented when a block of the transaction of interest is followed
by another block. Subsequent blocks increase the number of confirmations, which
in turn increases the probability of the transaction validity. This is also referred to as
Probabilistic finality. In essence, the probability of an invalid fork that reverts a prior
transaction decreases exponentially as more blocks are appended to the chain [13].

Table 3 presents the number of confirmations required and the average valida-
tion time of well-known cryptocurrencies. Notice that the number of confirmations
multiplied by average latency or block generation time from Table 2 is the average
validation time.

Consensus Algorithms for Blockchain 93

Table 3 Number of
confirmations and average
validation time of selected
cryptocurrencies

Cryptocurrency Number of
confirmations

Average validation
time [Min]

Bitcoin 6 60

Ethereum 30 6

Litecoin 12 30

Ripple N/A N/A

Dogecoin 20 20

DASH 6 15

Monero 15 30

Sybil Protection

A Sybil attack [24] takes place when an adversary attempts to control the network
by duplicating fraudulent identities. Within the blockchain, a Sybil attack will be an
attempt to create and possess as many nodes or members of the network in order
to influence the consensus algorithm. A successful attack may grant the adversary
the higher voting power in consensus algorithms that utilize a voting process (e.g.,
DPoS, PBFT), or enable network layer attacks targeting peer discovery and block
broadcasts [25].

To prevent Sybil attacks, consensus algorithms could use combinations of
methods from increasing the cost of creating identities, requiring second-channel
authentication, or two-step verification for identities [26, 27].

Decentralization Criteria

We identified two factors that can qualitatively evaluate the consensus algorithms
decentralization: permission and censorship resistance.

Permission

Depending on blockchains, a nodemay need a permission to participate in reaching a
consensus byvalidating transactions and creatingblocks.Apermissionless consensus
algorithm will allow any anonymous node to participate in the consensus process.
While a permissioned consensus algorithm will only allow authenticated nodes to
participate in the consensus process. This is not to be confused with the concept of
public and private blockchain, where permission refers to the anonymity of miners
andvalidators,while public andprivate refers to the anonymity of all the nodes partici-
pating in the blockchain network. For example, theBitcoin and theEthereumnetwork
is a public permissionless network. A blockchain-based voting system should be a
public but permissioned network, so that the voters remain anonymous while the
validators are authenticated to be trustworthy.

The number of nodes in the permissionless network will be large compared to
that of a permissioned network, and to mitigate attack vectors such as 51% attacks

94 H. Kim and T. T. Kwon

and Sybil attacks, proof-based consensus algorithms are used. As a result, all valida-
tors must spend energy and resources to prove its contribution to the network by
participating in the consensus process. In general, permissioned networks are more
centralized compared to the permissionless network.

Censorship Resistance

Censorship resistance refers to the network’s property that assures any node to freely
make transactions as long as they follow the rules of the consensus algorithm and the
blockchain network.With traditional finance institutions, some intermediaries would
censor transactions that it deemed suspicious or undesirable, justified to prevent
financial crimes. Also, if probabilistic finality is achieved, a transaction recorded
on the blockchain is technically irreversible, also commonly known as immutable,
providing further censorship resistance [28].

3 Consensus Algorithms

Performing a consensus algorithm in a blockchain network is a non-trivial process.
A newly broadcasted transaction is first verified by a verifying node and added to
its candidate block. Similarly, the candidate block will be verified or voted by other
nodes in the network before being added to the chain. We would like to emphasize
that once a transaction is included in the chain, it is not feasible to modify or delete
them due to blockchains’ immutability.

The consensus algorithms that will be discussed in this article can be classi-
fied into two categories: proof-based and vote-based. A similar distinction between
the two categories can be made using the permission criterion. In permissionless
blockchains, any nodes are free to join and leave the network, and their behaviors are
unpredictable. Therefore, a permissionless blockchain typically relies on a proving
mechanism that appreciates verifying nodes’ contribution toward the network. This
usually involves rewards, which incentivizes the nodes to participate in the consensus
process. In contrast, a vote-based consensus algorithm does not require contribution
or proof from the node participating in the consensus process since the participants
are permissioned in advance, and their participation list ismanaged. Thus, vote-based
consensus algorithms can be adopted in non-incentivized blockchain networks and
are well-suited for private blockchains and non-cryptocurrency applications.

Note that the voting process does not always go along with vote-based consensus
algorithms since it can be used in proof-based consensus algorithms (e.g., DPoS, BFT
PoS). The difference between the above two categories lies in whether the verifying
node of the consensus algorithm is required to provide a proof (e.g., computation,
stake) to the network to participate in the consensus process.

Figure 3 shows the classification of consensus algorithms that will be discussed
in this section.

Consensus Algorithms for Blockchain 95

Fig. 3 A classification of consensus algorithms surveyed in this article is summarized

3.1 Proof-Based Consensus Algorithms

The original Proof of Work (PoW) of Bitcoin is the most popular proof-based
consensus algorithm to date. Asmentioned earlier, the basic concept of a proof-based
consensus algorithm is that a participating node of the consensus process performs or
provides a sufficient proof to append a new block and is rewarded. Depending on the
method of a proof, the proof-based consensus algorithms can be further divided into
proof of work (computation), proof of stake (currency locked in escrow), proof of
activity (transaction participation), proof of research (Berkeley Open Infrastructure
for Network Computing contribution), and so on.

In this article, we will focus on the two major proof-based consensus algorithms,
PoW and PoS.

3.2 Proof of Work (PoW)

The Proof-of-Work (PoW) algorithm usually requires a proving node and a verifying
node. The proving node performs a resource-intensive computational task to find a
solution to a problem of a certain difficulty level. The result is then presented to
the verifier who spends a significantly less resource for validation compared to the
prover. The asymmetry and the excessive amount of resources required for the prover
serves two notable purposes:

1. Itmitigates Sybil attacks at the consensus level. Launching a Sybil attack involves
the adversary creating multiple fraudulent identities. However, by design, the
amount of computational resources (e.g., hash rate) is important for the PoW
algorithm, not the number of nodes. Note that Sybil attacks in the network layer
are still a vulnerability, but this article focuses on the consensus layer.

96 H. Kim and T. T. Kwon

2. The workload itself becomes a safeguard against forks and double-spending
attacks. The length of the chain is almost proportional to the amount of resources
spent mining the blocks. If the adversary wants to modify a transaction from the
past, he will first have to acquire more than 51% of computing resource within
the network, fork a new chain starting from the target block, and exhaustively
mine the blocks until the new chain becomes the longest.

There are two major sub-categories of PoW algorithms: traditional PoW and
ASIC-resistant PoW, which are to be explored in the following.

Traditional PoW

Traditional PoW algorithm employs computational tasks that heavily exploit either
the CPU or the GPU with little dependency on the system memory size. Another
critical characteristic of computation-bound PoW is that the computation can easily
be implemented on an ASIC, which leads to mining farms and mining pools,
counteracting the notion of decentralized consensus.

The earliest idea of computation-bound PoW algorithm dates to 2002, an anti-
spam system called HashCash [29]. This system requires the sender of an email to
generate a SHA-1 hash value with at least 20 bits of leading zeros. The list of inputs
included the recipient’s address and date alongside the random number, called a
nonce, provided by the sender. The sender should try numerous proof attempts to
meet the leading zeros requirement,while the verification by the recipient is relatively
trivial.

Bitcoin’s PoW algorithm is based on the HashCash’s PoW algorithm, but is modi-
fied to use SHA-256d (SHA-256 performed twice) instead of SHA-1. Fundamentally,
provers of the Bitcoin network are trying to find a 256-bit nonce that, when hashed
with the block, will have outcomewhich is smaller than the difficulty value. Recently,
Bitcoin’s hash rate surpassed 150Exahash/s (Exa= 1018) [15], which means in order
to append a block, an average of 90 × 1021 nonces is tried. When an appropriate
nonce is found and approved by the verifiers, the prover receives a block reward of
6.25 BTC as of March 2021. The process of finding the nonce is known as mining,
and the proving nodes are called miners. Figure 4 shows the process of a miner
finding the nonce.

When a miner successfully finds a nonce that satisfies the difficulty, it broadcasts
the mined block to the entire network. Other verifying nodes, who might also have
been mining a block at the same height, verify the newly broadcasted block by
checking whether all the transactions included within the block are valid, whether
the previous hash value (Prev_Hash) matches with the hash value of the last block
from their current chain, and whether the nonce value satisfies the current difficulty.
If these conditions are met, the mining (or proving) nodes abandon their current task
and append the new block to their chain. And then, they reselect the transactions to
be included in the next block by referencing the latest block, form a new transactions
list and the next block header, and start over the nonce calculation.

Consensus Algorithms for Blockchain 97

Fig. 4 A process of finding the nonce in Bitcoin PoW is shown

Once in a while, due to the worldwide scale of the Bitcoin network and large pool
of miners, there may be more than one new valid blocks broadcasted throughout
the network at the same height. As a result, the network is divided based on which
one of the legitimate blocks the node received first as shown in Fig. 5. Here, the
two black-colored nodes each successfully mined two new blocks N and N‘ that
are appended to the most recent block N−1. Due to the size of the network and
broadcast latency, the nodes in Group 2 received the block N‘ faster than the block
N. Hence, the nodes in Group 2 appended the block N−1 with block N‘, and the
nodes in Group 1 with block N. Now there are two concurrently valid chains in the
network and the global consensus is now broken. This situation is called a fork.

Fig. 5 A fork in blockchain takes place at block height N

98 H. Kim and T. T. Kwon

Fig. 6 How a fork is resolved through the longest chain rule is illustrated

To overcome this issue and achieve consensus, first the nodes proceed to mine
new blocks based on their version (or branch) of the chain. For example, the next
block N + 1 is mined by a single miner (highlighted in star shape in Fig. 6). Block
N + 1 gets broadcasted to all the nodes of the network. The nodes of Group 1 share
the same block N as the current block and append it with the newly mined block
N + 1. However, the nodes of Group 2 do not recognize the previous hash of block
N + 1, which is N, and are unable to append block N + 1 to N’. Now, the two
branches of the fork have a length difference of a block.

The chain length indicates the amount of computational resource put into creating
the blocks and managing the chain. When given multiple branches of a chain, the
branch with the longest chain is allocated with the most computational power, i.e.,
hash rate. Thus, the nodes of Group 2 abandon the former consensus based on block
N‘ and select N → N + 1 as their new chain. This is known as the longest chain
rule, and this helps resolve forks and reachieve global consensus in the network.

As mentioned at the beginning of this subsection, traditional PoW algorithms
are subject to ASIC. Specifically, this means that the hash function used in tradi-
tional PoW algorithms such as SHA-256 in Bitcoin is easy to implement using an
ASIC. A study in 2018 showed that an ASIC-based system outperformed a general-
purpose computing system (e.g., PC with high-end GPU) of equal power by more
than 1500 times in terms of hash rate [30]. Heavy use of ASICs and the domi-
nation of mining pools centralized the consensus layer of traditional PoW algo-
rithms, violating the original intention of achieving decentralized consensus through
distributed computing resources. Also, the overheated competition of mining has
raised concerns about energy/resource wastes and environmental implications.

ASIC-Resistant PoW

To overcome issues regarding expediting traditional PoW algorithms in ASIC
machines, ASIC-resistant PoW algorithms are gaining more and more interests in

Consensus Algorithms for Blockchain 99

the community. In this article, we classify ASIC-resistant PoWs into two categories:
memory-hard PoWs and multi-hash PoWs.

Memory-hard PoW: While ASICs have an advantage in hash rate, they are also
limited by memory access latency, bandwidth, and memory size. Memory-hard
PoW algorithms restrict ASICs from having a performance advantage over general-
purpose computing systems by requiring the use of random pieces of data from a
large dataset. The dataset should be too large to be stored in the on-chipmemory of an
ASIC chip. Nonetheless, the Ethash of Ethereum [31], an ASIC-resistant memory-
hard PoW, was broken in 2018 by Bitmain’s Antminer E3 [32], and now there are
ASICs available formemory-hard PoWaswell. Still, unlike traditional PoWschemes
where mining can heavily leverage ASICs, GPU-based general-purpose computing
systems are still dominant in Ethereum [33].

The first memory-hard PoW algorithm appeared before cryptocurrencies in the
form of password-based Key Derivation Function (KDF) called Scrypt in 2009
[34, 35]. It was later reinstated as a PoW algorithm of Tenebrix (no longer active),
Litecoin [36], Dogecoin [37], and few other cryptocurrencies. Scrypt aims to resist
against custom hardware such as GPU, FPGA, and ASIC, and hence turns out to be
a CPU-friendly PoW. Both memory-hardness and CPU-friendliness are achieved by
read-many, write-few memory access patterns of PoW algorithms. However, ASIC
engineers reduced the memory size by 1/8 with a 3.5× additional logic calculation.
Thus, Scrypt’s memory-hardness broke, and ASIC efficiency gains were 300,000
times over a CPU [38].

Ethash, also known as the Dagger-Hashimoto algorithm, is a memory-hard
consensus algorithm of Ethereum [31], the second largest cryptocurrency in terms of
market capitalization. Noticeably, during the mining process, Ethash requires data
from a Directed Acyclic Graph (DAG) dataset that is over 4 GB in size, as shown on
the right side of Fig. 7. To construct a DAG, first, the seed hash must be hashed N
consecutive times using the keccak-256 [39] hashing algorithm, an early version of
SHA-3, whereN is the current epoch of the DAG. Next, the current seed hash is used
to calculate a pseudorandom cache that is again used to generate the actual DAG
dataset. After every 30,000 blocks (approximately 5 days), a new mining season
begins, and the epoch is increased by one, consequently updating the seed hash,
pseudorandom cache, and the DAG dataset. By design, the size of the pseudorandom
cache and the DAG dataset is configured to increase linearly by each epoch, starting
from 16 MB for the cache and 1 GB for the DAG dataset. In more than 20 years,
Ethash will reach epoch #2048, where the cache size reaches 285 MB and the DAG
dataset reaches 18.2 GB.

The left side of Fig. 7 depicts the mining process using the generated DAG. Like
Bitcoin’s PoW algorithm, a random nonce is selected, and after several hashes and
mixes with input data from various stages, the final output is compared with the
difficulty value to determine the result of the nonce. Everymixing operation requires
a value from a random address of the DAG, involving memory access and enough
storage for the DAG. Although the hashing and mixing logic can be built using an
ASIC, the memory bandwidth serves as a bottleneck balancing the end performance
between an ASIC-based system and a general-purpose computing system.

100 H. Kim and T. T. Kwon

Fig. 7 A process of finding the nonce in Ethash is shown

Multi-hash PoW: Another group of ASIC-resistant PoW algorithms is multi-hash
PoWs or chained PoWs. As their name suggests, these consensus algorithms do not
rely on a single hash function but multiple hash functions during the mining process.
There are a few ways to do this. First, we can define a sequence of hash functions
forming a fixed hash chain. An example of fixed multi-hash PoW algorithm, X11
[39], used in the DASH blockchain, is presented in Fig. 8. Here, the algorithm uses
11 hash functions: Blake, Blue Midnight With (BMW), Grøstl, JH, keccak, Skein,
Luffa, CubeHash, SHAVite, SIMD, and Echo. Keccak is the winner of the SHA-3
[40] open competition, and others in the list include those advanced to the second
round or the final round. There are also the variants of X11 such as X13, X14, X15,
and X17 which utilize more hash functions in their sequence of hashes.

Another way to implement multi-hash PoW algorithms is using a dynamic
sequence of hash functions through several methods. One is a fully variable sequence
of hash functions where the sequence is permuted by a random value based on
block hash or timestamp. Alternatively, a partially variable sequence with randomly
selected hash functions in between a fixed sequence is also possible. An example of a
fully variable sequence is X16R [41] which is shown in Fig. 9. The X16R algorithm
constructs the sequence of hash functions based on the last 8 bytes of the previous
block’s hash. Each hashing algorithm is mapped with a hexadecimal value, and the
last 8 bytes, i.e., 16 hexadecimal values, determine the permutation of hash functions
for the current block. Also, note that repeated use of a hash function is possible when
the two consecutive hexadecimal values are the same. Nonetheless, we can safely
assume that the use of hash functions would be balanced due to the randomness
property of cryptographic hash functions.

Consensus Algorithms for Blockchain 101

Fig. 8 How to find a nonce in fixed multi-hash PoW, X11, is depicted

Fig. 9 How to find a nonce in a variable multi-hash PoW, X16R, is shown

Multi-hash PoW algorithms were first thought to be ASIC-resistant since they
required implementing multiple hash functions in hardware. Whereas in a general-
purpose computing system, it was a simple matter of switching codes in software to
execute the different hash functions. This becomes more apparent when we consider
variable multi-hash PoW algorithms. It is not profitable to design an ASIC chip that
supports all possible sequences of hash functions, for example, 1616 in the case of
X16R (since it allows repeated usage). However, this is true only if we assume that
hash modules in an ASIC must be connected in a fixed pipeline. It is reported that

102 H. Kim and T. T. Kwon

supporting dynamic combinations of hash functions in hardware are possible with
some overhead [30]. As to the fixed multi-hash PoWs, it took 2 years for an ASIC
targeted for X11 in DASH to be commercially available. We believe developing an
ASIC for a variable sequence of hash functions is a matter of time.

Programmatic PoW: Another ASIC-resistant PoW algorithm known as program-
matic PoWachievesASIC-resistance by using a large pool ofmathematical functions
or randomly generated programs [42, 43]. However, there is no PoW algorithm of
this category used in an existing blockchain application as of today.

3.3 Proof of Stake (PoS)

To overcome the downside of PoW algorithms, such as mining centralization, energy
waste, and lowTPS, a new consensus algorithm called Proof of Stake (PoS) is gaining
amomentum [44, 45]. A PoS algorithm attempts to validate transactions and achieves
consensus in the networkwithout the heavy computational tasks likePoWalgorithms.
Instead of working, a verifying node has to lock its stake, a proportion of its wealth
on the network.

In the PoS algorithm, stakeholders lock their stakes in escrow and become eligible
to participate in transaction validation and block creation. Unlike the PoW algorithm,
the stakeholders in PoS do notmine new coins by validating transactions and creating
new blocks. Instead, they collect the transaction fees or interests proportional to their
stakes as rewards. Here, the term minting or forging is commonly used instead of
mining, and the stakeholder who creates a new block is referred to as a validator,
forger, or minter, not a miner. If the validator is found to behave maliciously, the
escrowed stake and possible reward will be confiscated, which serves as an economic
disincentive for adversarial stakeholders in PoS algorithms.

The advantages of PoS algorithms over PoW algorithms are as follows: decen-
tralization, energy efficiency, and high throughput.

1. The high performance of ASICs has centralized the mining of PoW-based appli-
cations. Due to the economy of scale, miners can expect an exponential incre-
ment of computational resources (e.g., hash power) and the ensuing rewardswhen
investing in PoW-targetedmining equipments. On the contrary, the expected gain
in network control in PoS is directly proportional to the amount of additional stake
that the validator put in escrow. Although we cannot claim that PoS algorithms
are immune to centralization, it will likely be more decentralized compared to
PoW-based networks.

2. As discussed in section “Performance Criteria”, Bitcoin miners consume more
energy than countries like Portugal, Singapore, and the Czech Republic. PoW
algorithms are spending natural resources toomuch to secure the immutability of
Bitcoin transactions. PoS algorithms do not require validators to solve resource-
intensive computational tasks when forging blocks, thus they can be made highly

Consensus Algorithms for Blockchain 103

energy efficient. Any blockchain applications that are based on PoS will be more
sustainable in the long run.

3. PoW algorithms suffer from low TPS and high block generation times. For
instance, a payment made by a PoW-based cryptocurrency normally requires
at least one block confirmation to be approved. What is worse, if a burst of
transactions suddenly floods the network, PoW-based cryptocurrencies may not
handle them timely due to the limited TPS. On the other hand, PoS algorithms
offer relatively higher TPS and shorter block generation time by using faster
agreement mechanisms for accepting a new block to the chain, ensuring higher
throughput compared to PoW algorithms.

PoS algorithms can be classified into three major categories: chain-based PoS,
Delegated PoS (DPoS), and Byzantine Fault-Tolerant PoS (BFT PoS). These are
classified based on their difference in terms of validator selection, block creation,
and agreement.

Chain-Based PoS

A chain-based PoS algorithm mimics PoW mechanics by featuring validators
competing one another to mint (not mine) a new block. Instead of going through
the resource-intensive process of finding a valid nonce, the validators are pseudo-
randomly selected to mint a block based on their stakes. Like PoW algorithms, the
chain-based PoS algorithm’s finality is not achieved at the time of block creation.
Forks could happen when multiple validators mint the new block simultaneously
across the network. Thus, it should have a mechanism to converge the branches of
the chain.

This article classifies chain-based PoW algorithms into two sub-categories
depending on how to select the validator: Pure PoS with randomized probabilistic
selection and PoW/PoS Hybrid with coin-age-based selection.

Pure PoS: A chain with a pure PoS algorithm consists of blocks only minted by
validators. Recall that in PoW algorithms, the chain’s length is almost proportional
to the amount of work put into the chain, and thus the network converges to the
longest chain if a fork happens. Similarly, in PoS, the chain’s length indicates the
sumof stakes escrowed by validators, and the nodes are expected to follow the longest
chain.

Nxt [46] is a pure PoS-based cryptocurrency that utilizes a randomized proba-
bilistic function in selecting a validator. When a new block is added to the chain, an
active Nxt account (or node) i performs a sequence of hashes using its public key and
the latest block’s signature to generate an account hit value Hi. The use of an indi-
vidual account’s public key and the signature value of an independent block provide
a pseudo-randomness to Hi. Next, the accounts calculate their target values Ti.

Ti = Tb × t × Bi

104 H. Kim and T. T. Kwon

Ti: target value of account i,

Tb: base target value,

t: seconds passed since the last block was generated, and

Bi: effective balance (stake) of account i.
As time goes by, the target values of active accounts increase, and the first account

with a target value larger than its account hit value, Hi < Ti, gains the right to mint
the next block. Notice that Tb and t are shared within the network, and Bi determines
how fast the target value reaches Hi. The randomness of Hi allows other accounts to
be selected as the validator, although the probability diminishes as one’s stake gets
smaller.

The new block gets broadcasted to the network, and every account updates its
account hit and target values to repeat the process from t = 0.

PoW/PoS Hybrid: As its name suggests, PoW/PoS hybrid algorithms are a mixture
of both PoW and PoS. PeerCoin (PPCoin) [45] is the first variant of this category,
but interestingly, it is also the first PoS algorithm to be used in cryptocurrencies.

PeerCoin recognizes two kinds of blocks: PoW blocks and PoS blocks. PoW
blocks are similar to the blocks of Bitcoin, mined by miners competing with each
other to find a valid block with a nonce satisfying the target difficulty. Their purpose
is to increase the net supply of the coins within the network. PoS blocks, on the
other hand, are minted by minters (or validators), who are competing against one
another based on their stakes for a target difficulty with far less computation. Thus,
the minters are in charge of performing the consensus by adding PoS blocks [47].
From a broader view, miners and minters are competing against each other as two
groups since the new block could be either a PoW block or a PoS block.

In selecting the minter of the next PoS block, PeerCoin employs the concept of
coin-age. Coin-age is the product of the amount of token/coin in an account and its
holding period. For example, if Alice has held 100 coins in her wallet for 100 days
and Bob has just received 500 coins. In terms of coin-age, Alice has accumulated
10,000 coin-age (days) andBob 500 coin-age (days), makingAlice amore prominent
stakeholder of the network at the time.

The target difficulty of a valid PoS block gets easier as more coin-age is accu-
mulated, and if a minter successfully mints a block, she burns all the coin-age by
including a transaction of paying the stake to herself. This ensures that the stakes
used in minting the block are not used until she accumulates a certain amount of
coin-age, enabling every participant to mint blocks with fairness long term.

A significant issue of chain-based PoS is its vulnerability to Nothing-at-Stake
(NAS) attacks. Whenever there is a fork in the chain, the nodes working on the next
block should decide which branch of the fork it will work on. For PoW algorithms,
this means that a miner should invest its computational resource (and energy) in
finding the nonce. Thus, it is rational for the miner to select only one branch. The
PoW algorithm would give a penalty for working on multiple branches. However,

Consensus Algorithms for Blockchain 105

for PoS algorithms, it costs little for a minter to work on multiple branches and, in
fact, it increases the possibility of minting the next block, which motivates the minter
to do so.

One solution to solve NAS, proposed by another chain-based PoW/PoS hybrid
algorithm known as Casper the Friendly Finality Gadget (Casper FFG), is penalizing
(or slashing) the stake of a validator who works on two conflicting blocks.

Delegated PoS (DPoS)

Despite the similarity of terminology, DPoS, is substantially different from the orig-
inal PoS in the sense that the network allows stakeholders to delegate their voting
power to a particular participant who can then stake on behalf of her voters [48].
The rewards (i.e., transaction fees and interests) earned by delegates (also called
witnesses) can trickle down to voters with a small amount of stakes, allowing them
to participate in the consensus process for incentives.

Unfortunately, by design, DPoS centralizes the consensus layer since a small
number of selected delegates manage the chain. However, this allows higher
throughput and better scalability since not all the nodes have to participate in block
creation and chain management.

Figure 10 shows a simplified version of DPoS. First, the stakeholders who possess
any amount of stakes give their votes to delegate candidates. The more stake a
stakeholder has, the more voting power it can exert. In the end, delegate candidates
are ranked based on their stakes, and a predefined number (e.g., EOS: 21, Ark: 51,
Lisk: 101) of candidates are elected as the group of delegates. The election is done
periodically, and the stakeholders can freely reallocate their voting power to different
candidates, and new delegates will be chosen. Also, the system can define a backup
pool of delegates so that when a delegate in the main group is unable to participate
in the block creation, it will be replaced by a backup delegate.

Within the group of delegates, the witnesses equally take turns (e.g., round-robin)
creating and proposing new blocks. Thus, it is essential for the witness to always be
online while she is working in the group. When a witness forges a new block, it can
be added to the chain directly or go through a voting phase, as shown in Fig. 10. If
the proposed block gets more than 2/3 of the votes, it is then appended to the current
chain, and the next witness starts creating the next block. The rewards earned from
participating as a delegate will be redistributed to the stakeholders who voted for
the delegate. (Note that a portion of the rewards can be spent on other causes such
as the platform development or charity.) This redistribution plan can also affect the
stakeholders in placing their votes on candidates.

Other cryptocurrencies that utilize DPoS include EOS, BitShares, Ark, Lisk, and
Tezos.

106 H. Kim and T. T. Kwon

Fig. 10 How to reach consensus in DPoS is illustrated

Byzantine Fault-Tolerant PoS (BFT PoS)

BFT PoS is based on a round-based voting process. Unlike PoW or chain-based
PoS algorithms where a consensus is reached through the chain’s length, BFT PoS
achieves consensus for every voting round whenever a block is forged.

Tendermint [49, 50] is the first BFT PoS that showed BFT consensus could be
achieved with PoS. We focus on the Tendermint Core consensus engine that works
as a round-based voting mechanism.

Similar to DPoS, the network requires a set of validators who maintain the chain
and take turns proposing and committing new blocks for every block height. The
validator responsible for the block proposal in a round is called a proposer, and other
validators validate the proposed block and place votes. The application can define
the voting power of the votes cast by the validators. In other words, Tendermint Core
allows both even distribution of voting power per validator and weighted voting
power based on stakes. In BFT PoS, we assume that the validators are selected by
stakes or through delegation like in DPoS, and that their voting power and frequency
of being a proposer are also proportional to the stakes involved.

Each round of creating a new block consists of three steps with equal timeouts:
propose, pre-vote, pre-commit, and two special steps: commit and new height, as
shown in Fig. 11.

In the propose step, a new block is forged by the current round’s proposer (chosen
in round-robin fashion with a weighted probability based on the stake) and broad-
casted throughout the network. If the block is valid, every validator goes to the
pre-vote step and broadcasts a pre-vote. Else, if the block is not valid, or a validator
did not receive any block proposal within the defined timeout, it sends pre-vote nil.

During the pre-vote step, every validator waits and listens for pre-vote broadcasts
and checks whether more than two-third of the voting power has been achieved on

Consensus Algorithms for Blockchain 107

Fig. 11 A simplified state machine of Tendermint [50] is shown

pre-vote. If so, every validator moves on to the pre-commit step, broadcasts a pre-
commit for that block, and locks itself to that block. On the contrary, if the validator
did not receive two-third of the voting power on pre-vote until timeout, or received
more than two-third of the voting power placed on pre-vote nil, it sends pre-commit
nil. Here, we mentioned the concept of locking onto a block. Once a validator is
locked on a block, it always sends a pre-vote for that block in future rounds of the
same chain height. Also, it can only unlock that block if it receives a newer block
of the same chain height with more than two-third of the voting power placed on
pre-vote.

If the validator receives more than two-third of the voting power placed on pre-
commit during the pre-commit step, it enters the commit step, where the block is
finalized and added to the chain. The chain height is increased by one, and the next
proposer starts preparing the next block. However, if two-third of the voting power
is not reached during the pre-commit step, the next step is the new round. A new
proposer is selected to propose a block of the same chain height. If the new proposer
has locked herself to the block from the previous round, it would propose the same
block, and other validators who have also locked themselves to this block would
pre-vote this block.

As seen from the above sequence of steps, Tendermint relies heavily on achieving
more than two-third of the voting power to achieve consensus. If more than one-third
of voting power is somehow offline or showing Byzantine behaviors, the network
will fall into an endless loop.

108 H. Kim and T. T. Kwon

3.4 Vote-Based Consensus Algorithms

A vote-based consensus algorithm is different from a proof-based consensus algo-
rithm in the sense that nodes responsible for creating and maintaining the chain are
managed and often controlled. As mentioned in the beginning of Sect. 3, vote-based
consensus algorithms mainly target permissioned and non-incentivized blockchain
applications. As a result, we can approach vote-based consensus algorithms as we
propose traditional methods for fault tolerance in distributed systems.

Nodes of a distributed system can suffer from crash faults (i.e., non-Byzantine
faults), where they halt or disconnect from the network caused by hardware failures,
broken network, or software issues. Alternatively, the nodes can maliciously forge
or tamper with the information, which we refer to as Byzantine faults. Thus, the
algorithms of this category can be further classified as being Crash Fault Tolerant
(CFT) or Byzantine Fault Tolerant (BFT).

Current mainstreamCFT algorithms include Paxos [51] and Raft [52], the latter of
which is a simplified and implementation-friendly derivative of the former. CFT algo-
rithms could not guarantee system reliability and resiliency in the presence of Byzan-
tine faults and are thus used in a closed environment like IPFS [53] and IBM Hyper-
ledger Fabric [54]. In this article, we focus on BFT algorithms that can tolerate both
crash and Byzantine faults, providing better security and implementation flexibility.

First, we will present PBFT [20], representing a family of protocols for tolerating
Byzantine faults. Various adaptations of PBFT include Redundant BFT (RBFT)
[55], delegated BFT (dBFT) [56], and BFT-SMaRt [57]. Then, we will present
HotStuff [58], a recent variation of PBFT that will be the base consensus algo-
rithm for Facebook’s upcoming blockchain payment system Diem (formerly known
as Libra) [59].

Practical Byzantine Fault Tolerance

The original PBFT algorithm is written in the context of the Network File System
(NFS), where nodes are addressed as primary and replicas, and a client’s request trig-
gers the execution of the state machine. Here, based on IBM’s Hyperledger Sawtooth
PBFT [60] implementation, we describe the functionality of PBFT as follows.

Normal case operation: The PBFT algorithm reaches a consensus through four
phases: pre-prepare, prepare, commit, and finish, as shown in Fig. 12. In this example,
Node 1 is the primary and Node 0 is a crash fault node. Because there are four nodes
in this example, the network is both crash fault tolerant (f = 1, 4 ≥ 2f + 1) and
Byzantine fault tolerant (4 ≥ 3f + 1).

1. Pre-prepare: The primary node creates a new block and publishes it to the
network. This is followed by the pre-prepare broadcast, which contains the block
ID, the block number, view number, and the ID of the primary. Each node will
verify the received block and the pre-prepare message; if it is valid, it will add
those to its log and move on to the prepare phase.

Consensus Algorithms for Blockchain 109

Fig. 12 A normal case operation of sawtooth PBFT [60] is illustrated

2. Prepare: In the prepare phase, the nodes will broadcast a prepare message that
matches the received pre-prepare message to the rest of the network. Like the
pre-prepare message, it contains the block ID and the block number, the node
ID, and the view number. After sending the preparemessage, the node will wait
for prepare messages from other nodes. If a node has reached 2f + 1 prepare
messages (including the pre-preparemessage sent by the primary) with the same
block ID and number, the messages are logged, and it moves on to the commit
phase.

3. Commit: This phase is similar to the prepare phase; the nodes broadcast a
commit message to the network, indicating that it received and accepted prepare
messages from two-third of the nodes or more. And again, the nodes wait until
they receive 2f + 1 matching commit messages from other nodes. When they
reach the required number of confirmations, they move on to the finish phase.
One difference between prepare phase and commit phase for the primary is that
the primary is not allowed to broadcast the prepare message, whereas it can
broadcast the commit message to the network after receiving 2f + 1 prepare
messages.

4. Finish: In the finish phase, the nodes will append the proposed block to their
chain, increase the sequence number by one, and get ready to validate the next
proposed block.

If the primary nodehappens to be the faulty node, theremust be away to replace the
primary node to guarantee the algorithm’s liveness. The primary node is concluded
to be faulty in the following cases: no new block or pre-prepare message is sent by
the primary within the timeout, a commit timeout occurs during the prepare phase,
a view-change timeout occurs during the view-change operation (presented below
shortly), multiple pre-prepare messages are received, or a prepare message is sent
by the primary.

In any of the above cases, every node broadcasts a view-changemessage. If f + 1
view-changemessages are received from other nodes (this is based on the assumption

110 H. Kim and T. T. Kwon

Fig. 13 A view-change operation of sawtooth PBFT is illustrated

that at most f nodes can be faulty, and receiving f + 1messages indicates that regular
nodes are joining the view-change), the faulty primary should be replaced by starting
a view-change operation.

The view-change operation consists of two phases: view-change and new view,
as shown in Fig. 13. Given the current view, N−1, if a node decides to start a view-
change, it will broadcast a view-changemessage to the networkwith an updated view,
N. If the primary node is indeed faulty, other non-faulty nodes will also broadcast the
view-changemessages. When the primary candidate for the new view, N, receives 2f
+ 1 view-change messages from other nodes, it will broadcast a new view message
for N and become the new primary, who can now start publishing blocks and send
out pre-prepare messages.

The PBFT algorithm tolerates Byzantine faults through the broadcasts of prepare
and commit messages within the network. This ensures that PBFT maintains consis-
tency, availability, and immutability and achieves consensus. However, with the
increase in the number of participating nodes, the number of broadcast messages
increases quadratically, O(n2) for normal cases and O(n3) including view-change.
This results in high communication overhead and degradation in performance, which
makes PBFT difficult to deploy on a large scale. Many variants of PBFT try to solve
this issue and achieve better scalability, one of which is HotStuff we will discuss in
the following section.

HotStuff (DiemPBT)

HotStuff is a PBFT algorithm that provides linearity in the communication
complexity of O(n) for both normal cases and view-change cases, and view-change
responsiveness. This is made possible through a few crucial design choices of
HotStuff.

Consensus Algorithms for Blockchain 111

First, HotStuff changes the network topology from a mesh to a star, as shown in
Fig. 14. As a result, the nodes no longer broadcast messages to each node; instead,
it sends the message directly to the leader (primary in PBFT) node, significantly
reducing the network’s communication complexity.

Second, HotStuff is a leader-based protocol, where the view-change process is
not separate but merged into the normal case process since a leader is rotated every
round. Now, we will present the normal case process of basic HotStuff, as shown
in Fig. 15. Note that the word basic is used to differentiate two types of HotStuff,
which are basic HotStuff and chained HotStuff.

The basic HotStuff progresses through a series of views, which is incremented by
one for every round. A round consists of the following phases: prepare, pre-commit,
commit, and decide. A different leader exists for each view number, who sends out
broadcasts for each phase and receives votes from other nodes. Nodes vote to a
proposed branch (or block) by signing the branch with their private keys, and then

Fig. 14 While PBFT has a mesh network topology, HotStuff has a star topology. Here, p indicates
primary node

Fig. 15 The phases of basic HotStuff are shown

112 H. Kim and T. T. Kwon

they send the votes to the leader. The leader collects 2f + 1 valid votes and combines
them into a QuorumCertificate (QC). The QC is required for each of the prepare,
pre-commit, and commit phases where votes are sent by the nodes.

1. Prepare: The leader encapsulates the proposal into the prepare message and
broadcasts it to the network. Every node verifies the proposal, and if accepted,
returns a votewith a partial signature to the leader andmoves on to the pre-commit
phase.

2. Pre-commit: When the leader receives prepare votes from 2f + 1 nodes for
the current proposal, it combines them into a prepareQC and then broadcasts the
pre-commitmessage to the network. The node receiving the pre-commitmessage
returns a vote with a partial signature to the leader and moves on to the commit
phase.

3. Commit: When the leader receives pre-commit votes from 2f + 1 nodes for
the pre-commit, it assembles them into a precommitQC and then broadcasts the
commit message to the network. The nodes receiving the commit message lock
their lockedQC to precommitQC and return votes with partial signatures to the
leader and move on to the decide phase. The lock ensures that a consensus can
be reached even if this round fails and goes through a view-change (i.e., new
round).

4. Decide: When the leader receives commit votes from 2f + 1 nodes for the
commit, it merges them into a commitQC and broadcasts the decide message to
the network. After receiving this message, the nodes execute the state transition
of the proposal and move on to the next view number.

Note that a similar mechanism is repeated across the four phases; nodes vote
(and sign) on a message, and the leader combines them and sends it in the following
broadcasted message.

The idea of chained HotStuff is pipelining the basic HotStuff to achieve the high
throughput. Specifically, the votes over the prepare phase are collected by the leader
of the current view vi into a genericQC (which is a generic version of the QCs from
basic HotStuff). Then the genericQC is relayed to the leader of the next view vi+1,
delegating responsibility of starting the pre-commit phase. However, the leader of
vi+1, instead of making a pre-commit message, initiates a new prepare message and
adds its proposal. This new prepare phase of vi+1 simultaneously serves as the pre-
commit phase of the sequence started in vi. After two additional relays, the proposal
from vi is decided as the leader of view vi+3 sends the prepare message.

TheHotStuff algorithm,when compared to the PBFT, ensures higher performance
due to linearity in communication complexity and the merging of normal case and
view-change process into one. However, the HotStuff algorithm itself is still in its
early stage, with limited evaluations done in the testnet for about 100 days as of
March 2021. Early test results showed an average TPS of 10, with the highest value
of 44 TPS [61], which is considerably less when compared to the anticipated 1000
TPS at the time of initial launch [62].

Consensus Algorithms for Blockchain 113

4 Evaluation

This section presents a summary of the various consensus algorithms presented in
this article based on our evaluation framework.

Table 4presents the evaluationof each criterionof thePoWalgorithms (traditional,
memory-hard, and multi-hash), PoS algorithms (pure PoS, PoW/PoS hybrid, DPoS,
and BFT PoS), and vote-based algorithms (PBFT and HotStuff).

Throughput is not a fixed parameter that is unique to a specific category of
algorithms. Even if two cryptocurrencies use the same consensus algorithm, the
throughput will vary based on their latency, block size configuration, and even
network size. For example, DASH started in 2014 with a block size of 1 MB, like
Bitcoin. At first, DASH was able to make 28 transactions per second, max. In 2016,
DASH decided (by a decentralized vote) to increase the block size to 2 MB. As a
result, the current TPS of DASH tops at 56.

Overall, PoW algorithms have a relatively low throughput of one or two digit
TPS. This is because they employ resource-intensive computations in reaching a
consensus, which also results in their high energy consumptions. In contrast, PoS
algorithms and vote-based algorithms have higher throughput of over three-digit
TPS and low energy consumption due to their less computations and a fixed set of
validators (reducing the accumulated energy consumption of the network).

Scalability can be evaluated in three aspects: the number of regular clients, the
number of block validators, and the maximum throughput. First, a regular client
who does not participate in the consensus process has minimal to no impact on the
communication volume and the throughput. All consensus algorithms scale well to
clients [63]. However, the situation changes a little as the number of block validators
increases. Non-BFT algorithms offer great scalability due to simple communication
protocols with linear communication complexity. However, BFT algorithms have
several rounds/phases with a broadcast message from every participating node. This
results in high communication overhead and degradation of the performance of BFT
algorithms, which limits their scalability significantly. In our survey of BFT-related
algorithms, PBFT, which has no predefined group of validators (i.e., primaries),
offers low scalability. However, BFT PoS, DPoS, and HotStuff, each of which has
a group of delegated validators, offer much better scalability. The last aspect is the
throughput. If we take Bitcoin as an example, the block size limit is 1 MB, and each
transaction’s size is around 256 bytes on average. Thus, approximately 4,000 trans-
actions can be contained on a block which is mined every 10 min. This leads to the
maximum throughput of approximately 7 TPS. As noted earlier (Section “Perfor-
mance Criteria”), reducing the latency or enlarging the block size could increase the
throughput. Nevertheless, chain-based algorithms tend to achieve a TPS of under
100. On the other hand, vote-based algorithms have much higher TPS that promises
better scalability, provided that their communication complexity is resolved.

In terms of fault (adversary) tolerance, chain-based algorithms all have 2f + 1
tolerance since an adversary requires 51% of hash rate or stake in the network to

114 H. Kim and T. T. Kwon

Ta
bl
e
4

R
ep
re
se
nt
at
iv
e
co
ns
en
su
s
al
go

ri
th
m
s
ar
e
ev
al
ua
te
d
in

te
rm

s
of

co
m
pr
eh
en
si
ve

cr
ite

ri
a

Pe
rf
or
m
an
ce

Se
cu
ri
ty

D
ec
en
tr
al
iz
at
io
n

T
hr
ou

gh
pu

t
Fa
ul
t

D
ou

bl
e

C
on

se
ns
us

al
go

ri
th
m

T
PS

L
at
en
cy

B
lo
ck

si
ze

Sc
al
ab
ili
ty

E
ne
rg
y

co
ns
um

pt
io
n

(A
dv
er
sa
ry
)

to
le
ra
nc
e

Sy
bi
l

pr
ot
ec
tio

n
Sp

en
di
ng

pr
ev
en
tio

n
Pe

rm
is
si
on

le
ss

C
en
so
rs
hi
p

R
es
is
ta
nc
e

Pr
oo

f
of

W
or
k

T
ra
di
tio

na
la
(N

ak
am

ot
o)

5–
7

1
O
m

1
M
B

H
ig
h

H
ig
h

2f
+

1
O

X
O

H
ig
h

A
SI
C
-r
es
is
ta
nt
/M

em
or
y-
ha
rd

b
(E
th
as
h)

13
–1

5
(M

ax
30

)

15
s

D
yn

am
ic

H
ig
h

H
ig
h

2f
+

1
O

X
O

H
ig
h

A
SI
C
-r
es
is
ta
nt
/M

ul
ti-
ha
sh

c
(X

-s
er
ie
s)

−5
6

(M
ax
)

2
m

30
s

2
M
B

H
ig
h

H
ig
h

2f
+

1
O

X
O

H
ig
h

Pr
oo

f
of

St
ak
e

C
ha
in
-b
as
ed
/P
ur
e
Po

Sd
10

0
lm

32
K
B

H
ig
h

L
ow

2/
+

1
O

X
O

H
ig
h

C
ha
in
-b
as
ed
/P
oW

/P
oS

H
yb

ri
de

8
8
m

30
s

1
M
B

H
ig
h

M
id

2f
+

1
O

X
O

H
ig
h

D
Po

Sf
10

00
+

0.
5
s

D
yn

am
ic

H
ig
h

L
ow

3/
+

1
2f

+
1
s
>

O
O

O
/x

H
ig
h

B
FT

Po
Sg

−1
4,
00

0
(6

+
0.
57

?)
s

R
:
ro
un

ds

N
/A

M
id

L
ow

3/
+

1
2f

+
1»

O
O

O
/x

H
ig
h

V
ot
e-
ba
se
d

PB
FT

h
M
id

L
ow

N
/A

L
ow

L
ow

3/
+

1
O

O
X

L
ow

H
ot
St
uf
fi

H
ig
h

L
ow

N
/A

H
ig
h

L
ow

3/
+

1
O

O
X

L
ow

a
B
itc

oi
n

b
E
th
er
eu
m

c
D
A
SH

d
N
xt

e
Pe

er
co
in

f
E
O
S

g
Te
nd

er
m
in
t

h
3f

+
lf
or

va
lid

at
or
s
of

th
e
vo
tin

g
pr
oc
es
s,
2f

+
lf
or

de
le
ga
te
se
le
ct
io
n

iT
PS

,L
at
en
cy

w
as

qu
al
ita

tiv
el
y
co
m
pa
re
d
to

pr
oo

f-
ba
se
d
al
go

ri
th
m
s,
(e
.g
.,
D
ie
m
:−

10
00

T
PS

,1
0
s
la
te
nc
y)

Consensus Algorithms for Blockchain 115

have malicious influence in the mining/minting process. Meanwhile, vote-based
algorithms have 3f + 1 tolerance due to their Byzantine fault-tolerant property.

Interestingly, fault (adversary) tolerance ofDPoS andBFTPoS can be approached
in two ways. First, if we focus on the election process, the algorithms have 2f + 1
tolerance since an adversary with more than 51% of stake in the network could take
advantage of the election. On the other hand, if we focus on the delegates’ voting
process, we need 3f + 1 Byzantine fault tolerance.

As mentioned earlier (Sect. 3.2), proof-based algorithms come with an anti-Sybil
attack at their core. Launching Sybil attacks involves multiple fraudulent identities,
but proof-based algorithms do not depend on the number of identities; instead, it is the
amount of resource/cost that influences the network operations.On the contrary, vote-
based algorithms are vulnerable to Sybil attacks if there is no additional PoS or PoW
admissionmechanisms such asDPoS andBFTPoS [64]. This can be related to decen-
tralization properties, where algorithms that have Sybil protection can be deployed
in a permissionless environment with high resistance to censorship. In contrast, those
with no Sybil protection should be permissioned, but a closed permissioned system
(most likely private or consortium blockchains) may be prone to censorship.

Double-spending prevention can be related to the finality mechanism of the algo-
rithm. Chain-based algorithms have probabilistic finality, where the immutability of
the transaction increases with the number of block confirmations and can be targeted
for a double-spending attack. In contrast, the algorithms that utilize the voting process
have deterministic finality, and a transaction is finalized at the point of block creation,
mitigating such attacks.

5 Conclusion

Aconsensus algorithm lies at the core of a blockchain andoffersmany researchoppor-
tunities. The design of a consensus algorithm directly impacts the performance and
characteristics of the developed blockchain applications. Thus, it can be argued that
a thorough evaluation of a consensus algorithm is mandatory. After reviewing the
literature on consensus algorithms and their evaluation criteria, we proposed an eval-
uation framework with comprehensive criteria for consensus algorithms in terms
of performance, security, and decentralization. An in-depth evaluation framework
targeted for each group of consensus algorithms (e.g., BFT variants, ASIC-resistant
PoWs) is proposed as future work. We also presented the operations and character-
istics of representative consensus algorithms and evaluated them with our proposed
framework. We infer from our results that no consensus algorithm deems ideal for
all situations. Thus, finding a well-balanced consensus algorithm that satisfies given
requirements will be crucial for wide-scale adoption of blockchains across various
industries and businesses.

116 H. Kim and T. T. Kwon

References

1. Lam, E.: Bitcoin Hits $1 trillion value as crypto leads other assets. https://www.bloomb
erg.com/news/articles/2021-02-19/bitcoin-nears-1-trillion-value-as-crypto-jump-tops-other-
assets (2021). Last accessed15 Mar 2021

2. Buchholz, K.: How common is crypto? https://www.statista.com/chart/18345/crypto-currency-
adoption/ (2021). Last accessed 15 Mar 2021

3. PwC: Time for trust: how blockchain will transform business and the economy. https://www.
pwc.com/hu/en/kiadvanyok/assets/pdf/Time_for_Trust_The%20trillion-dollar_reasons_to_r
ethink_blockchain.pdf (2020). Last accessed 15 Mar 2021

4. Zheng, Z., et al.: An overview of blockchain technology: architecture, consensus, and future
trends. In: 2017 IEEE international congress on big data, IEEE, pp. 557–564 (2017)

5. Alsunaidi, S.J., Alhaidari, F.A.: A survey of consensus algorithms for blockchain technology.
In: 2019 International Conference on Computer and Information Sciences (ICCIS), IEEE,
pp. 1–6 (2019)

6. Croman, K., et al.: On scaling decentralized blockchains. In: International conference on
financial cryptography and data security, pp. 106–125. Springer, Berlin, Heidelberg (2016)

7. Mingxiao, D., et al.: A review on consensus algorithm of blockchain. In: 2017 IEEE
international conference on systems,man, and cybernetics (SMC), IEEE, pp. 2567–2572 (2017)

8. Nguyen, G.-T., Kim, K.: A survey about consensus algorithms used in blockchain. J. Inform.
Proc. Syst. 14(1), 101–128 (2018)

9. Hasanova, H., et al.: A survey on blockchain cybersecurity vulnerabilities and possible
countermeasures. Int. J. Network Manage. 29(2), e2060 (2019)

10. Bano, S., et al.: SoK: Consensus in the age of blockchains. In: Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, pp. 183–198 (2019)

11. Ferdous, M.S., et al.: Blockchain consensuses algorithms: a survey (2020). arXiv preprint
arXiv:2001.07091

12. Bamakan, S.M.H., Motavali, A., Bondarti, A.B.: A survey of blockchain consensus algorithms
performance evaluation criteria. Expert Syst. Appl. 113385 (2020)

13. Chaudhry, N., Yousaf, M.M.: Consensus algorithms in blockchain: Comparative analysis, chal-
lenges and opportunities. In: 2018 12th International Conference on Open Source Systems and
Technologies (ICOSST), IEEE, pp. 54–63 (2018)

14. Coincheckup. https://coincheckup.com/. Accessed 15 March 2021
15. Bitinfocharts. https://bitinfocharts.com/comparison/confirmationtime-btc-ppc.html. Accessed

15 March 2021
16. Wan, S., et al.: Recent advances in consensus protocols for blockchain: a survey. Wireless

Netw. 26(8), 5579–5593 (2020)
17. Digiconomist: Bitcoin energy consumption index. https://digiconomist.net/bitcoin-energy-con

sumption (2021). Last Accessed 15 Mar 2021
18. Mora, C., et al.: Bitcoin emissions alone could push global warming above 2 C. Nat. Clim.

Chang. 8(11), 931–933 (2018)
19. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. In: Concurrency: the

Works of Leslie Lamport, pp. 203–226 (2019)
20. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186.

(1999)
21. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. (2008) https://bitcoin.org/bit

coin.pdf Last accessed 15 Mar 2021
22. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Interna-

tional conference on financial cryptography and data security, pp. 436–454. Springer, Berlin,
Heidelberg (2014)

23. Blockchaininfo: https://www.blockchain.com/charts/pools (2022). Last accessed 14 Feb 2022
24. Douceur, J.R.: The sybil attack. In: International workshop on peer-to-peer systems, pp. 251–

260. Springer, Berlin, Heidelberg (2002)

https://www.bloomberg.com/news/articles/2021-02-19/bitcoin-nears-1-trillion-value-as-crypto-jump-tops-other-assets
https://www.statista.com/chart/18345/crypto-currency-adoption/
https://www.pwc.com/hu/en/kiadvanyok/assets/pdf/Time_for_Trust_The%20trillion-dollar_reasons_to_rethink_blockchain.pdf
http://arxiv.org/abs/2001.07091
https://coincheckup.com/
https://bitinfocharts.com/comparison/confirmationtime-btc-ppc.html
https://digiconomist.net/bitcoin-energy-consumption
https://bitcoin.org/bitcoin.pdf
https://www.blockchain.com/charts/pools

Consensus Algorithms for Blockchain 117

25. Neudecker, T., Hartenstein, H.: Network layer aspects of permissionless blockchains. IEEE
Communications Surveys & Tutorials 21(1), 838–857 (2018)

26. Mohaisen, A., Kim, J.: The sybil attacks and defenses: a survey (2013). arXiv preprint arXiv:
1312.6349

27. Zhang, S., Lee, J.-H.: Double-spending with a sybil attack in the bitcoin decentralized network.
IEEE Trans. Industr. Inf. 15(10), 5715–5722 (2019)

28. Coinmarketcap: What is censorship resistance? https://coinmarketcap.com/alexandria/article/
what-is-censorship-resistance (2020). Last accessed 15 Mar 2021

29. Back, A.: Hashcash-a denial of service counter-measure. ftp://sunsite.icm.edu.pl/site/replay.
old/programs/hashcash/hashcash.pdf (2002). Last accessed 15 Mar 2021

30. Cho, H.: SIC-resistance of multi-hash proof-of-work mechanisms for blockchain consensus
protocols. IEEE Access 6, 66210–66222 (2018)

31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum project
yellow paper. https://ethereum.github.io/yellowpaper/paper.pdf (2021). Last accessed 15 Mar
2021

32. Higgins, S.: Bitmain confirms release of first ethereum ASIC miners. https://www.coindesk.
com/bitmain-confirms-release-first-ever-ethereum-asic-miners. (2018) Last accessed 15 Mar
2021

33. O’Neal, S.: ETH miners will have little choice once ethereum 2.0 launches
with PoS. https://cointelegraph.com/news/eth-miners-will-have-little-choice-once-ethereum-
20-launches-with-pos (2020). Last accessed 15 Mar 2021

34. Percival, C.: Stronger key derivation via sequential memory-hard functions. https://www.tar
snap.com/scrypt/scrypt.pdf (2009). Last accessed 15 Mar 2021

35. Percival, C., Josefsson, S.: The scrypt password-based key derivation function, RFC 7914.
https://tools.ietf.org/html/rfc7914 (2016). Last accessed 15 Mar 2021

36. Litecoin: https://litecoin.org/ (2021). Last accessed 15 Mar 2021
37. Dogecoin: https://dogecoin.com/ (2021). Last accessed 15 Mar 2021
38. Medium: What is memory-hard? https://medium.com/Linzhi/what-is-memory-hard-45a363

b59dfe (2019). Last accessed 15 Mar 2021
39. DASH: X11 Hash algorithm. https://docs.dash.org/en/stable/introduction/features.html#x11-

hash-algorithm (2021). Last accessed 15 Mar 2021
40. Bertoni, G., et al.: Keccak specifications. Submission to NIST (round 2), pp. 320–337. (2009)
41. Black, T., Weight, J.: X16R ASIC resistant by design. https://ravencoin.org/assets/documents/

X16R-Whitepaper.pdf (2018). Last accessed 15 Mar 2021
42. Colvin, G., Lanfranchi, A., Carter, M.: EIP-1057: ProgPoW, a programmatic proof-of-work,

ethereum improvement proposals, no. 1057. https://eips.ethereum.org/EIPS/eip-1057 (2018).
Last accessed 15 Mar 2021

43. Medium: ‘Loaded’ PoW: a new direction in proof-of-work algorithms. https://jeffreyem
anuel.medium.com/loaded-pow-a-new-direction-in-proof-of-work-algorithms-ae15ae2ae66a
(2018). Last accessed 15 Mar 2021

44. Bitcointalk: Proof of stake instead of proof of work. https://bitcointalk.org/index.php?topic=
27787.0 (2011). Last accessed 15 Mar 2021

45. King, S., Nadal, S.: PPcoin: peer-to-peer crypto-currency with proof-of-stake. https://decred.
org/research/king2012.pdf (2012). Last accessed 15 Mar 2021

46. Nxt: Nxt whitepaper. https://nxtdocs.jelurida.com/Nxt_Whitepaper (2021). Last accessed 15
Mar 2021

47. PeerCoin: PeerCoin docs. https://docs.peercoin.net/ (2021). Last accessed 15 Mar 2021
48. Larimer, D.: Delegated proof-of-stake (dpos). Bitshare whitepaper 81, 85 (2014)
49. Kwon, J.: Tendermint: Consensus without mining. Draft v. 0.6, fall 1(11) (2014)
50. Tendermint: Tendermint core. https://docs.tendermint.com/master/ (2021). Last accessed 15

Mar 2021
51. Lamport, L.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
52. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: 2014

USENIX Annual Technical Conference, pp. 305–319 (2014)

https://coinmarketcap.com/alexandria/article/what-is-censorship-resistance
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.coindesk.com/bitmain-confirms-release-first-ever-ethereum-asic-miners
https://cointelegraph.com/news/eth-miners-will-have-little-choice-once-ethereum-20-launches-with-pos
https://www.tarsnap.com/scrypt/scrypt.pdf
https://tools.ietf.org/html/rfc7914
https://litecoin.org/
https://dogecoin.com/
https://medium.com/Linzhi/what-is-memory-hard-45a363b59dfe
https://docs.dash.org/en/stable/introduction/features.html#x11-hash-algorithm
https://ravencoin.org/assets/documents/X16R-Whitepaper.pdf
https://eips.ethereum.org/EIPS/eip-1057
https://jeffreyemanuel.medium.com/loaded-pow-a-new-direction-in-proof-of-work-algorithms-ae15ae2ae66a
https://bitcointalk.org/index.php?topic=27787.0
https://decred.org/research/king2012.pdf
https://nxtdocs.jelurida.com/Nxt_Whitepaper
https://docs.peercoin.net/
https://docs.tendermint.com/master/

118 H. Kim and T. T. Kwon

53. Benet, J.: Ipfs-content addressed, versioned, p2p file system (2014). arXiv preprint arXiv:
1407.3561

54. Hyperledger Fabric: release-2.2. https://hyperledger-fabric.readthedocs.io/en/release-2.2/
(2020). Last accessed 21 Mar 2021

55. Aublin, P-L., Mokhtar, S.B., Quéma, V.: Rbft: Redundant byzantine fault tolerance. In: 2013
IEEE 33rd International Conference on Distributed Computing Systems, IEEE, pp. 297–306
(2013)

56. NeoReserach: Delegated byzantine fault tolerance: technical details, challenges and
perspectives. https://github.com/NeoResearch/yellowpaper/blob/master/sections/08_dBFT.
md (2019). Last accessed 21 Mar 2021

57. Bessani, A., Sousa, J., Alchieri, E.E.: State machine replication for the masses with BFT-
SMART. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, IEEE, pp. 355–362 (2014)

58. Yin, M., et al.: Hotstuff: Bft consensus with linearity and responsiveness. In: Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pp. 347–356 (2019)

59. DiemAssociation: DiemWhite Paper v2.0. https://www.diem.com/en-us/white-paper/ (2021).
Last accessed 21 Mar 2021

60. Hyperledger Sawtooth: Sawtooth PBFT. https://sawtooth.hyperledger.org/docs/pbft/releases/
latest/index.html (2018). Accessed 15 Mar 2021

61. InDiem Blockchain Explorer: https://indiem.info/ (2021). Accessed 21 Mar 2021
62. Amsden, Z., et al.: The libra blockchain. https://mitsloan.mit.edu/shared/ods/documents/?Pub

licationDocumentID=5859 (2019). Last accessed 21 Mar 2021
63. Vukolić, M.: The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In:

International workshop on open problems in network security, Springer, pp. 112–125 (2015)
64. Natoli, C., et al.: Deconstructing blockchains: A comprehensive survey on consensus,

membership and structure (2019). arXiv preprint arXiv:1908.08316

https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://github.com/NeoResearch/yellowpaper/blob/master/sections/08_dBFT.md
https://www.diem.com/en-us/white-paper/
https://sawtooth.hyperledger.org/docs/pbft/releases/latest/index.html
https://indiem.info/
https://mitsloan.mit.edu/shared/ods/documents/?PublicationDocumentID=5859
http://arxiv.org/abs/1908.08316

	 Consensus Algorithms for Blockchain
	1 Introduction
	2 Evaluation Criteria
	2.1 Related Works
	2.2 Evaluation Framework

	3 Consensus Algorithms
	3.1 Proof-Based Consensus Algorithms
	3.2 Proof of Work (PoW)
	3.3 Proof of Stake (PoS)
	3.4 Vote-Based Consensus Algorithms

	4 Evaluation
	5 Conclusion
	References

