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Abstract To implement a blockchain, the trend is now to integrate a non-trivial
Byzantine fault-tolerant consensus algorithm instead of the seminal idea of waiting
to receive blocks to decide upon the longest branch. After a dozen years of existence,
blockchains trade now large amounts of valuable assets and a simple disagreement
could lead to disastrous losses. Unfortunately, Byzantine consensus solutions used
in blockchains are at best proved correct “by hand” as we are not aware of any
of them having been automatically verified. We propose two contributions: (i) we
illustrate the severity of the problem by listing six vulnerabilities of blockchain
consensus including two new counter-examples; (ii) we then formally verify two
Byzantine fault-tolerant components of Red Belly Blockchain (Crain et al. in Red
belly: a secure, fair and scalable open blockchain, 2021, [32]) using the ByMC model
checker. First, we specify its simple broadcast primitive in 116 lines of code that is
verified in 40 s on a 2-core Intel machine. Then, we specify its blockchain consensus
algorithm in 276 lines of code and assume a round-rigid adversary to verify in 17
minutes on a 64-core AMD machine using MPI. To conclude, we argue that it has now
become both possible and crucial to formally verify the correctness of blockchain
consensus protocols.

1 Introduction

As blockchain is a popular abstraction to handle valuable assets, it has become one
of the cornerstones of promising solutions for building critical applications with-
out requiring trust. Unfortunately, after a dozen years of research in the space, the
blockchain still appears in its infancy, unable to offer the guarantees that are needed by
the industry to automate critical applications in production. The crux of the problem
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is the difficulty of having remote computers agree on a unique block at a given index
of the chain when some of them are malicious. The first blockchains [61] allow
disagreements on the block at an index of the chain but try to recover from these
disagreements before assets get stolen through double spending: with disagreement,
an asset owner could be fooled when they observe that they received the asset. Instead
the existence of a conflicting block within a different branch of the chain may indicate
that the asset belongs to a different user who can re-spend it. This is probably why
most blockchains now build upon some form of Byzantine fault-tolerant consensus
solutions [17, 18, 31] that guarantee agreement despite malicious, also known as
Byzantine, participants.

Solving the Byzantine consensus problem, defined four decades ago [65], is
needed to guarantee that machines agree on a common block at each index of the
chain. The consensus was recently shown to be necessary in the general scenario
where conflicting transactions might be requested from distributed machines [41].
Various solutions to the consensus problem were proposed in the last four decades
[8, 22, 30, 48, 49, 52, 69]. Most of these algorithms were proved correct “by hand”,
often listing a series of lemmas and theorems in prose leading the reader to the con-
clusion that the algorithm solves agreement, validity, and termination in all possible
distributed executions. In the worst case, these algorithms are simply described with
text on blog post [43, 52]. In the best case, a mathematical specification is offered,
like in TLA+, but without machine-checked proofs [74]. Unfortunately, such a formal
specification that is not machine-checked remains error prone [73].

Formal verification techniques are often limited while blockchain consensus pro-
tocols are complex and expected to run on hundreds or thousands of nodes. Theorem
provers [3, 23, 53] check proofs but not algorithms. Proofs by refinement exist [50]
but do not show liveness. Symbolic model checkers checked consensus algorithms
but for up to 10 processes [75, 76]. Parameterized model checking [33] already
proved Bosco [51], the Ben-Or consensus algorithm [12] and the condition-based
consensus algorithm [9] for any number of processes. Unfortunately, Bosco [71] is a
wrapper on top of another consensus that needs to be proven, Ben-Or’s does not tol-
erate Byzantine failures and the condition-based consensus algorithm [59, 60] solves
consensus only with specific sets of input values. As a result, none of these solutions
fit blockchains. Only recently was a variant of the DBFT consensus algorithm proved
live with any number of processes [11] using a decomposition.

In this paper, we first survey important problems that recently affected blockchain
consensus. In particular, we propose two new counter-examples explaining why
the Casper FFG algorithm, which should be integrated in phase 0 of Ethereum 2.0
and the HoneyBadgerBFT, which is being integrated into one of the most popular
blockchain software, called parity, may not terminate. We also list four additional
counter-examples from the literature to illustrate the amplitude of the problem for
blockchains. While there exist alternative solutions to some of these problems that
could be implemented it does not prevent other problems from existing. Moreover,
proving “by hand” that the fixes solve the bugs may be found unconvincing, knowing
that these bugs went unnoticed when the algorithms were proven correct, also “by
hand”, in the first place.
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We then build upon modern tools and equipments at our disposal to formally verify
components of the Red Belly Blockchain [32] consensus that do not assume syn-
chrony under the assumption that ¢ < n/3 processes are Byzantine (or faulty) among
n processes. Red Belly Blockchain [32] is a fast blockchain that solves consensus
deterministically and performs reasonably well on one thousand geodistributed repli-
cas. Its scalability stems from the superblock optimization that combines multiple
proposed blocks into one decision. Using Red Belly Blockchain as an example, we
explain how the Byzantine model checker ByMC [47] can be used by distributed
computing scientists to verify blockchain consensus components. The idea is to con-
vert the distributed algorithm into a threshold automaton [51] that represents a state
as a group of all the states in which a correct (or non-faulty) process resides until
this process receives sufficiently many messages to transition. We offer the threshold
automaton specification of a Byzantine fault-tolerant broadcast primitive that is key
to few blockchains [28, 30, 56]. Finally, we also offer the threshold automaton spec-
ification of a slight variant of the Byzantine consensus algorithm [30] of Red Belly
Blockchain that we prove safe and live under the round-rigidity assumption [13] that
helps modeling a fair scheduler [15], hence allowing other distributed computing
scientists to reproduce the verification with this publicly available model checker.

Various specification languages (e.g., [54, 79]) were proposed for distributed
algorithms before threshold automata, but they did not allow the simplification needed
to model check algorithms as complex as the Byzantine consensus algorithms needed
in blockchain. As an example, in Input/Output Automata [54], the number of specified
states accessible by an asynchronous algorithm before the threshold is reached could
be proportional to the number of permutations of message receptions. Executing the
automated verification of an invariant could require a computation proportional to the
number of these permutations. More dramatically, the Byzantine fault model typically
allows some processes to send arbitrarily formed and arbitrarily many messages—
making the number of states to explore potentially infinite. As a result, this is only
with the recent progress in parameterized model checking that we were able to verify
our blockchain consensus components.

The remainder of the paper is organized as follows. Section 2 presents new and
existing problems affecting known blockchain Byzantine consensus. In Sect. 3, we
explain how we verified a Byzantine fault-tolerant broadcast abstraction common to
multiple blockchains. In Sect. 4, we list the pseudocode, specification, and verifica-
tion experiments of the Byzantine consensus used in Red Belly Blockchain. Section 5
presents the related work and Sect. 6 discusses our verifications and concludes the

paper.

2 The Problem of Proving Blockchain Consensus
Algorithms by Hand

In this section, we illustrate the risk of trying to prove blockchain consensus algo-
rithms by hand by describing a list of safety and liveness limitations affecting the
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Table 1 Some consensus algorithms that experienced liveness or safety limitations

Algorithms Ref. | Limitation | Counter-example | Alternative | Blockchain
Randomized consensus | [57] | Liveness [new] [58] HoneyBadger [56]
Casper [18] | Liveness [new] [80] Ethereum v2.0 [38]
Ripple consensus [69] | Safety [7] [24] xRapid [16]
Tendermint consensus | [17] | Safety [6] [5] Tendermint [49]
Zyzzyva [48] | Safety [1] [8] SBFT [39]

IBFT [52] | Liveness [68] [68] Quorum [25]

Byzantine fault-tolerant algorithms implemented in actual blockchain systems. These
limitations, depicted in Table 1, are not necessarily errors in the proofs but stem from
the ambiguous descriptions in prose rather than formal statements and the lack of
machine-checked proofs. As far as we know, until now no Byzantine fault-tolerant
consensus algorithms used in a blockchain had been formally verified automatically.

2.1 The HoneyBadger and Its Randomized Binary Consensus

HoneyBadger [56] builds upon the combination of three algorithms from the liter-
ature to solve the Byzantine consensus with high probability in an asynchronous
model. This protocol is being integrated in one of the most popular blockchain soft-
ware, called Ethereum parity.! First, it uses a classic reduction from the problem
of multi-value Byzantine consensus to the problem of binary Byzantine consen-
sus working in the asynchronous model. Second, it reuses a randomized Byzantine
binary consensus algorithm [57] that aims at terminating in expected constant time
by using a common coin that returns the same unpredictable value at every process.
Third, it uses a common coin implemented with a threshold signature scheme [19]
that requires the participation of correct processes to return a value.

Randomized binary consensus. In each asynchronous round of this randomized
consensus [57], the processes “binary value broadcast”—or ‘“BV-broadcast” for
short—their input binary value. The binary value broadcast (detailed later in Sect. 3.1)
simply consists of broadcasting (including to oneself) a value, then rebroadcasting (or
echoing) any value received from ¢ + 1 distinct processes and finally bv-delivering
any value received from 2¢ + 1 distinct processes. These delivered values are then
broadcast to the other processes and all correct processes record, into the set values,
the values received from n — ¢ distinct processes that are among the ones previously
delivered. For any correct process p, if values happen to contain only the value ¢
returned by the common coin then p decides this value, if values contains only the
other binary value —c, then p sets its estimate to this value and if values contains two
values, then p sets its estimate to c. Then p moves to the next round until it decides.

! https://forum.poa.network/t/posdao-white-paper/2208.
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Liveness issue. The problem is that in practice, as the communication is asyn-
chronous, the common coin cannot return at the exact same time at all processes.
In particular, if some correct processes are still at the beginning of their round r
while the adversary observes the outcome of the common coin for round r then the
adversary can prevent progress among the correct processes by controlling messages
between correct processes and by sending specific values to them. Even if a correct
process invokes the common coin before the Byzantine process, then the Byzantine
can prevent correct processes from progressing.

Counter-example. To illustrate the issue, we consider a simple counter-example
with n = 4 processes and ¢t = 1 Byzantine process. Let p;, p,, and p3 be correct
processes with input values 0, 1, 1, respectively, and let p4 be a Byzantine process.
The goal is for process p4 to force some correct processes to deliver {0, 1} and another
correct process to deliver {—c} where c is the value returned by the common coin in
the current round. As the Byzantine process has control over the network, it prevents
P> from receiving anything before guaranteeing that p; and p; deliver {0, 1}. It is
easy to see that p4 can force p; and p3 to bv-deliver 1 so let us see how p,4 forces
p1 and ps to deliver 0. Process p4 sends 0 to ps so that p3 receives value 0 from
both p; and p4, and thus echoes 0. Then p4 sends O to p;. Process p; then receives
value O from p3, p4 and itself, hence p; echoes and delivers 0. Similarly, p; receives
value 0 from p;, p4 and itself, hence p; delivers 0. To conclude p; and p; deliver
{0, 1}. Processes pi, p3, and p4 invoke the coin and there are two cases to consider
depending on the value returned by the coin c.

e Case ¢ = 0: Process p; receives now 1 from ps3, p4 and itself, so it delivers 1.

e Case ¢ = 1: This is the most interesting case, as p4 should prevent some correct
process, say p», from delivering 1 even though 1 is the most represented input
value among correct processes. Process p4 sends 0 to p, and pj3 so that both p,
and pj receive value O from p; and p4 and thus both echo 0. Due to p3’s echo, p»
receives 2t 4 1 Os and p, delivers 0.

At least two correct processes obtain values = {0, 1} and another correct process
can obtain values = {—c}. It follows that the correct processes with values = {0, 1}
adopt ¢ as their new estimate while the correct process with values = {—c} takes —c
as its new estimate and no progress can be made within this round. Finally, if the
adversary (controlling p4 in this example) keeps this strategy, then it will produce
an infinite execution without termination.

Alternative and counter-measure. The problem would be fixed if we could ensure
that the common coin always returns at the correct processes before returning at a
Byzantine process; however, we cannot distinguish a correct process from a Byzan-
tine process that acted correctly. We are thankful to the authors of the randomized
algorithm for confirming our counter-example, they also wrote a remark in [58] indi-
cating that both a fair scheduler and a perfect common coin were actually needed
for the consensus of [57] to converge with high probability; however, no counter-
example motivating the need for a fair scheduler was proposed. The intuition behind
the fair scheduler is that it requires to have the same probability of receiving messages
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in any order [15] and thus limits the power of the adversary on the network. A new
algorithm [58] does not suffer from the same problem and offers the same asymp-
totic complexity in message and time as [57] but requires more communication
steps, it could be used as an alternative randomized consensus in HoneyBadger to
cope with this issue. Cachin and Zanolini [21] detailed recently the aforementioned
counter-example and proposed a fix to [57] that retains its simplicity. Finally, a sim-
ilar bug report to the aforementioned counter-example was also reported by Ethan
MacBrough? who proposes a patch but we are unaware of any proof.

2.2 The Ethereum Blockchain and Its Upcoming Casper
Consensus

Casper [18, 80] is an alternative to the existing longest branch technique to agree on
a common block within Ethereum. It is well known that Ethereum can experience
disagreement when different processes receive distinct blocks for the same index.
These disagreements are typically resolved by waiting until the longest branch is
unanimously identified. Casper aims at solving this issue by offering consensus.

The Casper FFG consensus algorithm. The FFG variant of Casper is intended to be
integrated to Ethereum v2.0 during phase 0 [38]. It is claimed to ensure finality [18],
a property that may seem, at first glance, to result from the termination of consensus.
The model of Casper assumes authentication, synchrony and that strictly less than 1 /3
stake is owned by Byzantine processes. Casper builds a “blockchain tree” consisting
of a partially ordered set of blocks. The genesis block as well as blocks at indices
multiple of 100 are called checkpoints. Validator processes vote for a link between
checkpoints of a common branch and a checkpoint is justified if it is the initial,
so-called genesis, block, or there is a link from a justified checkpoint pointing to it
voted by a supermajority of L%"J + 1 validators.

Liveness issue. Note first that Casper executes speculatively and that there is not
a single consensus instance per level of the Casper blockchain tree. Each time an
agreement attempt at some level of the tree fails due to the lack of votes for the
same checkpoint, the height of the tree grows. Unfortunately, it has been observed
that nothing guarantees the termination of Casper FFG [28] and we present below
an example of infinite execution.

Counter-example. To illustrate why the consensus does not terminate in this model,
let & be the level of the highest block that is justified.

1. Validators try to agree on a block at level 4 + k (k > 0) by trying to gather
L%"J + 1 votes for the same block at level & 4 k (or more precisely the same link
from level A to h + k). This may fail if, for example, % validators vote for one of
three distinct blocks at this level 4 + k.

2 https://github.com/amiller/HoneyBadgerBF T/issues/59.
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2. Upon failure to reach consensus at level & + k, the correct validators, who have
voted for some link from height % to i + k and are incentivized to abstain from
voting on another link from % to & + k, can now try to agree on a block at level
h + k' (k' > k), but again no termination is guaranteed.

The same steps (1) and (2) may repeat infinitely often. Note that plausible liveness
[18, Theorem 2] is still fulfilled in that the supermajority “can” always be produced
as long as you have infinite memory, but no such supermajority link is ever produced
in this infinite execution.

Alternative and counter-measure. Another version of Casper, called CBC, has also
been proposed [80]. It is claimed to be “correct by construction”, hence the name
CBC. This could potentially be used as a replacement to FFG Casper for Ethereum
v2.0 even in phase 0 for applications that require consensus, and thus termination.

2.3 Known Problems in Blockchain Byzantine Consensus
Algorithms

To show that our two counter-examples presented above are not isolated cases in the
context of blockchains, we also list below four counter-examples from the literature
that were reported by colleagues and affect the Ripple consensus algorithm, Tender-
mint and Zyzzyva. This adds to the severity of the problem of proving algorithm by
hand before using them in critical applications like blockchains.

The XRP ledger and the quorums of the Ripple consensus. The Ripple consen-
sus [69] is a consensus algorithm originally intended to be used in the blockchain sys-
tem developed by the company Ripple. The algorithm is presented at a high level as an
algorithm that uses unique node lists as a set of quorums or mutually intersecting sets
that each individual process must contact to guarantee that its request will be stored
by the system or that it can retrieve consistent information about asset ownership. The
original but deprecated white paper [69] assumed that quorums overlap by about 20%.

Later, some researchers published an article [7] indicating that the algorithm was
inconsistent and listing the environmental conditions under which consensus would
not be solved and its safety would be violated. They offered a fix in order to remedy
this inconsistency through the use of different assumptions, requiring that quorums
overlap by strictly more than 40%. Finally, the Ripple consensus algorithm has
been replaced by the XRP ledger consensus protocol [24] called ABC-Censorship-
Resilience under synchrony in part to fix this problem.

The Tendermint blockchain and its locking variant to PBFT. Tendermint [49]
has similar phases as PBFT [22] and works with asynchronous rounds [35]. In each
round, processes propose values in turn (phase 1), the proposed value is prevoted
(phase 2), precommitted when prevoted by sufficiently many? processes (phase 3)

3 “Sufficiently many” processes stand for at least L%J + 1 among n processes.
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and decided when precommitted by sufficiently many processes. To progress despite
failures, processes stay in a phase only for up to a timeout period. A difference
with PBFT is that a correct process produces a proof-of-lock of v at round r if it
precommits v at round r. A correct process can only prevote v’ if it did not precommit
a conflicting value v # v'.

As we restate here, there exists a counter-example [5] that illustrates the safety
issue with four processes pi, ps, p3, and ps among which p, is Byzantine that
propose in the round of their index number. In the first round, correct processes
prevote v, pi, and p; lock v in this round and precommit it, p; decides v while
p> and p3 do not decide, before p; becomes slow. In the second round, process p4
informs ps that it prevotes v so that p3 prevotes, precommits, and locks v in round 2.
In the third round, p3; proposes v locked in round 2, forcing p, to unlock v and in the
fourth round, p4 forces ps to unlock v in a similar way. Finally, p; does not propose
anything and p, proposes another value v" # v that gets decided by all. It follows
that correct processes p; and p, decide differently, which violates agreement. Since
this discovery, Tendermint kept evolving and the authors of the counter-example
acknowledged that some of the issues they reported were fixed [6], the authors also
informed us that they notified the developers but ignore whether this particular safety
issue has been fixed.

Zyzzyva and the SBFT concurrent fast and regular paths. Zyzzyva [48] is a
Byzantine consensus that requires view-change and combines a fast path where a
client can learn the outcome of the consensus in three message delays and a regular
path where the client needs to collect a commit-certificate with 2 f + 1 responses
where f is the actual number of Byzantine faults. The same optimization is currently
implemented in the SBFT permissioned blockchain [39] to speed up termination
when all participants are correct and the communication is synchronous.

There exist counter-examples [ 1] that illustrate how the safety property of Zyzzyva
can be violated. The idea of one counter-example consists of creating a commit-
certificate for a value v, then experiencing a first view-change (due to delayed mes-
sages) and deciding another value v’ for a given index before finally experiencing a
second view-change that leads to undoing the former decision v’ but instead deciding
v at the same index. SBFT is likely to be immune to this issue as the counter-example
was identified by some of the authors of SBFT. But a simple way to cope with this
issue is to prevent the two paths from running concurrently as in the simpler variant
of Zyzzyva called Azyzzva [8].

The Quorum blockchain and its IBFT consensus. IBFT [52] is a Byzantine fault-
tolerant consensus algorithm at the heart of the Quorum blockchain designed by
JP Morgan. It is similar to PBFT [22] except that it offers a simplified version of
the PBFT view-change by getting rid of new-view messages. It aims at solving
consensus under partial synchrony. The protocol assumes that no more than t < n/3
processes—usually referred by IBFT as “validators”—are Byzantine.

As reported in [68], IBFT does not terminate in a partially synchronous network
even when failures are crashes. More precisely, IBFT cannot guarantee that if at least
one honest validator is eventually able to produce a valid finalized block then the
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transaction it contains will eventually be added to the local transaction ledger of any
other correct process. IBFT v2.x [68] fixes this problem but requires a transaction to
be submitted to all correct validators for this transaction to be eventually included
in the distributed permissioned transaction ledger. The proof was made by hand and
we are not aware of any automated proof of this protocol as of today.

3 A Methodology for Verifying Blockchain Components

In this section, we explain how we verified the binary value broadcast blockchain
component using the Byzantine model checker. Then we explain how this helped
us verify the consistency of a slight variant of the binary consensus of DBFT used
in Red Belly Blockchain under the round-rigid adversary assumption. Note that the
DBFT binary consensus algorithm was since then proven safe and live without this
assumption [11].

3.1 Preliminaries on ByMC and BV-Broadcast

Byzantine model checker. Fault-tolerant distributed algorithms, like the Byzantine
fault-tolerant broadcast primitive presented below, are often based on parameters, like
the number 7 of processes, the maximum number of Byzantine faults ¢, or the number
of Byzantine faults f. Threshold-guarded algorithms [45, 46] use these parameters
to define threshold-based guard conditions that enable transitions to different states.
Once a correct process receives a number of messages that reaches the threshold, it
progresses by taking some transition to a new state. To circumvent the undecidability
of model checking on infinite systems, Konnov, Schmid, Veith, and Widder introduce
two parametric interval abstractions [44] that model (i) each process with a finite-
state machine independent of the parameters and (ii) the whole system with abstract
counters that quantify the number of processes in each state in order to obtain a finite-
state system. Finally, they group a potentially infinite number of runs into an execution
schema in order to allow bounded model checking, based on an SMT solver, over all
the possible execution schemas [46]. ByMC [47] verifies threshold automata with
this model checking and has been used to prove various distributed algorithms, like
atomic commit or reliable broadcast. Given a set of safety and liveness properties,
it outputs traces showing that the properties are satisfied in all the reachable states
of the threshold automaton. Until 2018, correctness properties were only verified
on one round but more recently the threshold automata framework was extended
to randomized algorithms, making possible to verify algorithms such as Ben-Or’s
randomized consensus under round-rigid adversaries [13].

Binary value broadcast. The binary value broadcast [57], also denoted BV-
broadcast, is a Byzantine fault-tolerant communication abstraction used in
blockchains [31, 56] that works in an asynchronous network with reliable channels
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where the maximum number of Byzantine failures is t < n/3. The BV-broadcast
guarantees that no values broadcasted exclusively by Byzantine processes can be
delivered by correct processes. This helps limiting the power of the adversary to
make sure that a Byzantine consensus algorithm converges toward a value. In par-
ticular, by requiring that all correct processes BV-broadcast their proposals, one can
guarantee that all correct processes will eventually observe their proposals, regard-
less of the values proposed by Byzantine processes. The binary value broadcast finds
applications in blockchains: first, it is implemented in HoneyBadger [56] to detect
that correct processes have proposed diverging values in order to toss a common
coin that returns the same result across distributed correct processes, to make them
converge to acommon decision. Second, Red Belly Blockchain [31] and the account-
able blockchain that is derived from it [26, 27] implement the B V-broadcast to detect
whether the protocol can converge toward the parity of the round number by simply
checking that it corresponds to one of the values that were “bv-delivered”.
The BV-broadcast abstraction satisfies the four following properties:

1. BV-Obligation. If at least (¢ + 1) correct processes BV-broadcast the same value
v, v is eventually added to the set conts; of each correct process p;.

2. BV-Justification. If p; is correct and v € conts;, v has been B V-broadcast by some
correct process. (Identification following from receiving more than ¢ Os or 1s.)

3. BV-Uniformity. If a value v is added to the set conts; of a correct process p;,
eventually v € conts; at every correct process p;.

4. BV-Termination. Eventually the set conts; of each correct process p; is not empty.

3.2 Automated Verification of a Blockchain Byzantine
Broadcast

In this section, we describe how we used threshold automaton to specify the binary
value broadcast algorithm and ByMC in order to verify the protocol automatically.
We recall the BV-broadcast algorithm as depicted in Algorithm 1. The algorithm
consists of having at least n — ¢ correct processes broadcasting a binary value. Once
a correct process receives a value from ¢ 4 1 distinct processes, it broadcasts it if it
did not do it already. Once a correct process receives a value from 2z + 1 distinct
processes, it delivers it. Here the delivery is modeled by adding the value to the set

Algorithm 1 The binary value broadcast algorithm
1: bv-broadcast(MSG, val, conts, i): // bv-broadcast filters out values proposed only by Byzantine
2: broadcast(BV, (val, i)) // broadcast binary value val
repeat: // re-broadcast a received value only if it is sufficiently represented
if (BV, (v, *)) received from (z + 1) distinct processes but not yet broadcast then
broadcast(BV, (v, i)) #echov
if (BV, (v, %)) received from (2¢ 4 1) distinct processes then // from correct majority
conts < conts U {v} // deliver v

A A
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when (true)
do {};

when (true)

do {};

when (true)
o { b0'==b0 + 1;};

when (true)
o { bl'==bl + 1;};

when b0+ F>=2*T+ 1)
do {};

when (bl + F>=T + 1)
do { bl'==bl + 1;};

when (b0 + F>=T + 1)
do { b0'==b0 + 1;};

when (true) when (true)

do {};

when (bl + F>=T + 1)
do { bl'==bl + 1};

when (b0 + F
o {}

when (b0 + F>=T + 1)

>=2%T+1)
B do { b0'==b0 + 1;};

when (true)

when (true)
do {};

Fig. 1 The threshold automaton of the binary value broadcast algorithm

conts, which will simplify the description of our slight variant of the DBFT binary
consensus algorithm in Sect. 4.

Specifying the distributed algorithm in a threshold automaton. Let us describe
how we specify Algorithm 1 as a threshold automaton depicted in Fig. 1. Each state of
the automaton or node in the corresponding graph represents a local state of a process.
A process can move from one state to another thanks to an edge, called a rule. A
rule has the form ¢ — u, where ¢ is a guard and « an action on the shared variables.
When the guard evaluates to true (e.g., more than ¢ + 1 messages of a certain type
have been sent), the action is executed (e.g., the shared variable s is incremented).

In Algorithm 1, we can see that only two types of messages are exchanged:
process i can only send either (BV, (0, i)) or (BV, (1, i)). Each time a value is sent
by a correct process, it is actually broadcasted to all processes. Thus, we only need
two shared variables b0 and b1 corresponding to the value 0 and 1 in the automaton
(cf. Fig. 1). Incrementing b0 is equivalent to broadcasting (BV, (0, i)). Initially, each
correct process immediately broadcasts its value. This is why the guard for the first
rule is true: a process in locV 0 can immediately move to loc BO and send 0 during
the transition.

We then enter the repeat loop of the pseudocode. The two if statements are
easily understandable as threshold guards. If more than # + 1 messages with value
1 are received, then the process should broadcast 1 (i.e., increment b1) since it has
not already been done. Interestingly, the corresponding guard is b1 + f > ¢ + 1.
Indeed, the shared variable b1 only counts the messages sent by correct processes.
However, the f faulty processes might send messages with arbitrary values. We want
to consider all the possible executions, so the earliest moment a correct process can
move from loc B0 to loc BO1 is when the f faulty processes and t + 1 — f correct
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processes have sent 1. The other edge leaving loc BO corresponds to the second if
statement, that is, satisfied when 27 4+ 1 messages with value 0 have been received.
In state locCO0, the value O has been delivered. A process might stay in this state
forever, so we add a self-loop with guard condition set to frue.

After the state locCO0, a process is still able to broadcast 1 and eventually deliver
1 after that. After the state loc BO1, a process is able to deliver 0 and then deliver
1, or deliver 1 first and then deliver 0, depending on the order in which the guards
are satisfied. Apart from the self-loops, we remark that the automaton is a directed
acyclic graph. On every path of the graph, we can verify that a shared variable is
incremented only once. This is because in the pseudocode, a value can be broadcasted
only if it has not been broadcasted before.

Finally, the states of the automaton correspond to the following (unique) situations
for a correct process:

locV0. Initial state with value 0, nothing has been broadcasted nor delivered.
locV1. Initial state with value 1, nothing has been broadcasted nor delivered.
locB0. Only 0 has been broadcasted, nothing has been delivered.

locB1. Only 1 has been broadcasted, nothing has been delivered.

locB01. Both 0 and 1 have been broadcasted, nothing has been delivered.
locC0. Only 0 has been broadcasted, only 0 has been delivered.

locCBO0. Both 0 and 1 have been broadcast, only 0 has been delivered.

locC1. Only 1 has been broadcasted, only 1 has been delivered.

locCB1. Both 0 and 1 have been broadcasted, only 1 has been delivered.
locCO01. Both 0 and 1 have been broadcasted, both 0 and 1 have been delivered.

Once the pseudocode is converted into a threshold automaton depicted in Fig. 1,
one can simply write the corresponding specification in the threshold automata lan-
guage to obtain the specification listed below (Listing 1) for completeness.

Defining the correctness properties and fairness assumptions. The above automa-
ton is only the first half of the verification work. The second half consists in specifying
the correctness properties that we would like to verify on the algorithm. We use tem-
poral logic on the algorithm variables (number of processes in each location, number
of messages sent, and parameters) to formalize the properties. In the case of the
BV-broadcast, the BV-Justification property of the BV-broadcast is “If p; is correct
and v € conts;, v has been BV-broadcast by some correct process”. Given {, —
and || with the LTL semantics of “eventually”, “implies”, and “or”, respectively, we
translate this property in the following conjunction:

Justification0 : ($(locCO # 0 || locCOI # 0)) —
(locV0 £ 0),

Jjustificationl : (O(locCl # 0| locCOI # 0)) —
(locVI1 # 0).

Liveness properties are longer to specify, because we need to take into account
some fairness constraints. Indeed, a threshold automaton describes processes evolv-
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ing in an asynchronous setting without additional assumptions. An execution in
which a process stays in a state forever is a valid execution, but it does not make
any progress. If we want to verify some liveness properties, we have to add some
assumptions in the specification. For instance, we require that processes eventually
leave the states of the automaton as long as they have received enough messages to
enable the condition guarding the outgoing rule. In other words, a liveness property
will be specified as follows: liveness_property : fairness_condition — property.

Note that this assumption is natural and differs from the round-rigidity assumption
that requires the adversary to eventually take any applicable transition of an infinite
execution. Finally, we wrote a threshold automaton specification whose . ta file is
presented in Listing 1 in only 116 lines.

Experimental results. On a simple laptop with an Intel Core i5-7200U CPU running
at 2.50GHz, verifying all the correctness properties for BV-broadcast takes less than
40 s. For simple properties on well-specified algorithms, such as the ones of the
benchmarks included with ByMC, the verification time can be less than one second.
This result encouraged us to verify a complete Byzantine consensus algorithm in
Sect. 4 that builds upon the binary value broadcast.

Debugging the manual conversion of the algorithm to the automaton. It is com-
mon that the specification does not hold at first try, because of some mistakes in
the threshold automaton model or in the translation of the correctness property
into a formal specification. In such cases, ByMC provides a detailed output and
a counter-example showing where the property has been violated. We reproduced
such a counter-example in Fig. 2 with an older preliminary version of our specifica-
tion. This specification was wrong because a liveness property did not hold. ByMC
gave parameters and provided an execution ending with a loop, such that the con-
dition of the liveness was never met. This trace helped us understand the problem
in our specification and allowed us to fix it to obtain the correct specification we

N:=34; T:=11; F:=1;
0 (F0O) x 0: b0:=0; bl:=0; K[pc:0]:=21; K[pc:1]:=12; K[*]:=0;
1 (F1) x 1: b0:=1; K[pc:0]:=20; K[pc:2]:=1;

24 (F 52) x 1: bl:=21; K[pc:5]:=12; K[pc:7]1:=21;

Kook ok ok ok ok ok ok ok ok ok ok ok ok ok ok

b0:=33; bl:=21; K[pc:0]:=0; K[pc:1]:=0; K[pc:2]:=0;
10 K[pc:3]:=0; K[pc:4]:=0; K[pc:5]:=12; K[pc:6]:=0; K[pc:7]:=21;
11 K[pc:8]:=0; K[pc:9]:=0;

1
2
3
4
5 (ead)
6
7
8
9

13 sokokkkok LOOP  sokskokokkok

14 N:=34; T:=11; F:=1;

15 25 (F 83) x 1: <self-loop>

16 3k ok >k >k >k >k >k >k >k 5k >k %k %k >k >k %

17 K[pc:2]:=0; K[pc:4]:=0; K[pc:5]1:=12; K[pc:7]:=21; K[pc:8]:=0;
18 K[pc:9]:=0;

Fig. 2 Truncated counter-example produced by ByMC for a faulty specification of BV-broadcast
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illustrated before in Fig. 1. Building upon this successful result, we specified a more
complex Byzantine consensus algorithm that uses the same broadcast abstraction
but we did not encounter any bug during this process and our first specification was
proved correct by ByMC. The pseudocode, threshold automaton specification, and
experimental results are presented in Sect. 4.

22 LLYPALLRBLLEHEEEGEES B EEIZYRAR

25

Listing 1 Threshold automaton specifi-
cation for the binary value broadcast
communication primitive

thresholdAutomaton Proc {
local pc; shared b@, bl;
parameters N, T, F;

assumptions (0) { N>3xT; T>=F; T>=1; }

locations (0) {

locVe:[0]; locVl:[1]; locBO:[2];
locB1:[3]; locBO1:[4]; locCO:[5];

locCl:[6]; locCBO:[7];
locCB1:[8]; locCO1:[9];
}

inits (0) {
(locVe+locVl)==N-F;
1ocBO==0; locBl

==0; locB01==0;
==0; locCBO==0;

locCB1==0; locC01==0; b0==0; bl==0;

}

rules (@) {
% for v in [0, 1]:
1: locV${v} -> locB${v}
when (true)
do { b${v}‘==b${v}+1;
unchanged (b${1-v}); };

2: locB${v} -> locBOl
when (b${1-v}+F>=T+1)
do { b${l-v}‘==b${1-v}+1;
unchanged (b${v}); };

w

: locB${v} -> locC${v}
when (b${v}+F>=2%T+1)

do { unchanged(bO, bl); };

N

: locC${v} -> locCB${v}

when (b${1-v}+F>=T+1)

do { b${1-v}‘'==b${1-v}+1;
unchanged (b${v}); };

w

locBO1 -> locCB${v}
when (b${v}+F>=2xT+1)

do { unchanged(b0, bl); };

w

locCB${v} -> locCOl
when (b${1l-v}+F>=2xT+1)

do { unchanged(b@®, bl); };

/* self loops */
10: locV${v} -> locVs${v}

when (true) do {unchanged(bo,

10: locC${v} -> locCs${v}

when (true) do {unchanged(bo,

10: locCB${v} -> locCB${v}

when (true) do {unchanged(bo,

% endfor

10: locCO1l -> locCO1

when (true) do {unchanged(bo,

}

bl);};

b1);};

b1l);};

bl);};

specifications (0) {

% for v in [0,1]:

obligation${v}:
<>[1((locVe==0) & (locVl==0) &&
(locBO==0 || bl<T+1) & (locBl==0 || bO<T+1) &&
(1ocBO==0 || bO<2xT+1) && (locBl==0 || bl<2#T+1) &&
(locB01==0 || bO<2#T+1) && (locBO1==0 || bl<2*T+1l) &&
(1locCO==0 || bl<T+1) & (locCl==0 || bO<T+1) &&
(10cCBO==0 || bl<2%T+1) && (locCB1==0 || bO<2%T+1)
->

((locVs{v}>=T+1)
->
<>(locVe==0 && locV1==0 &
1ocBO==0 && locBl==0 &&
1ocBO1==0 && locC${1l-v}==0 &&
locCB${1-v}==0));

justification${v}: (<>(locC${v}'=0
|| locCB${v}'!=0 || locCO1!=0)
-> (locV${v}'!=0);

uniformity${v}:
<>[1((locVe==0) && (locVl==0) &&

(locBO==0 || bl<T+1) && (locBl==0 || bO<T+1) &&
(1ocBO==0 || bO<2%T+1) && (locBl==0 || bl<2#T+1) &&
(locB01==0 || b0O<2xT+1) && (locBO1==0 || bl<2*T+1l) &&
(locCO==0 || bl<T+1l) && (locCl==0 || bO<T+1) &&
(10cCBO==0 || bl<2%T+1) && (locCB1==0 || bO<2%T+1)

->
(<>(locC${v}'=0 || locCB${v}!=0 || locC01!=0)
->

<>[1(locC${1-v}==0 && locCB${1-v}==0));
% endfor

termination:

<>[1((locV0==0) && (locVl==0) &&
(locBO==0 || bl<T+1) &&
(locB1==0 || bO<T+1) &&
(1ocBO==0 || bO<2xT+1) &&
(locB1==0 || bl<2xT+l) &&
(locBO1==0 || bO<2#T+1) &&
(locBO1==0 || bl<2#T+1) &&
(locCO==0 || bl<T+1) &&
(locCl==0 || bO<T+1) &&
(1ocCBO==0 || b1l<2*T+1) &&
(locCB1==0 || bB<2%T+1))

->

<>(locVo ==0 & locVl ==0 &&
1ocBO ==0 && locB01==0);

}
} /* Proc #/
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4 Verifying a Blockchain Byzantine Consensus Algorithm

The Democratic Byzantine Fault-Tolerant consensus algorithm [30] is a Byzantine
consensus algorithm that does not require a leader. It was implemented in the recent
Red Belly Blockchain [32] to offer high performance through multiple proposers
and was used in Polygraph [26, 27] to detect malicious participants responsible of
disagreements when ¢ > n/3 and in the Long-Lasting Blockchain [67] to recover
from forks by excluding misbehaving participants. As depicted in Algorithm 2, a
slight variant of its binary consensus, made simpler than the original algorithm by
omitting timeouts, proceeds in asynchronous rounds that correspond to the iterations
of a loop where correct processes refine their estimate value.

Algorithm 2 A variant of the DBFT binary Byzantine consensus algorithm

Notation: "Received k messages" is a shortcut for "Received k messages from different processes
in the same round r as the current round."”

1: propose(v):

2:  est < v //initial estimate is the proposed value

3:  r <« 0/ initialize the round number

4:  repeat: // repeat in asynchronous rounds

5: r < r + 1; // increment the round number

6 broadcast(tag = BV, round = r, value = est) // initial broadcast

7 while true do / start of binary value broadcast phase

8 if received (1 4+ 1) BV messages with value w and w not broadcast yet then

9: broadcast(tag = BV, round = r, value = w) // rebroadcast legitimate estimates
10: if received (2¢ + 1) BV messages with value w then // recvd from correct majority
11: broadcast(tag = ECHO, round = r, value = w) // broadcast ECHO message
12: break / exit the while loop to proceed to next phase

13: while true do // wait to have received enough messages

14: echoes < {w € {0, 1} : received (2t + 1) BV messages with value w}

15: if received (n — r) ECHO messages with value w € echoes then

16: est <— w // refine estimate

17: if w =r mod 2 and not decided yet then // depending on the singleton value w...
18: decide(w) //...decide the parity of the round

19: break / exit the while loop to proceed to next round

20: if received (n — r) ECHO messages and echoes = {0, 1} then / all bv-delivered
21: est <— r mod 2 //set estimate to round parity

22: break / exit the while loop to proceed to next round

23: if decided in round r; — 2 then exit / exit the consensus only after having helped others

Initially, each correct process sets its estimate to its input value. Correct processes
broadcast these estimates and rebroadcast only values received by ¢ + 1 distinct
processes because they are proposed by correct processes. Each value received from
2t + 1 distinct processes (and from a majority of correct processes) is stored in
the echoes set and is broadcasted as part of an ECHO message. The ECHO value
received from n — ¢ distinct processes that also belongs to echoes becomes the new
estimate (line 16) for the next round. If this value corresponds to the parity of the
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round, then the correct process decides this value. If echoes contain both values,
then the estimate for the next round becomes the parity of the round. As opposed
to the original and partially synchronous deterministic version [30], this variant
uses one less broadcast phase and offers termination in an asynchronous network
under round-rigidity that requires the adversary to eventually perform any applicable
transition within an infinite execution. This assumption was previously used to show
termination of another algorithm with high probability [13]. The specification of our
consensus algorithm in threshold automata is depicted in Listing 2.

Listing 2 Variant of the DBFT binary rules (0) {
Byzantine consensus % for v in [0, 1]:
1: locV -> locB:
1 thresholdAutomaton Proc { 84(h:e§{\(lirug) ocBs{v}
2
. do { b${v}‘ == b${v} + 1;

3 local pc; unchanged (b${1-v}, 0, el);
4 unchanged (bdx, blx, edx, elx);
5 /* Messages sent by correct proc. */ 1
6 /+ First round */ % endf '
7 shared b0, bl; e endror
8 shared e0, el; o .
9 /* Second round x/ s for v in [0, 1]

2: locB${v} -> locBOl

10 shared bOx, blx; when (b${l-v} + F >= T + 1)

1
2
3
4
5
6
7
8
9
10
11
12
13
1
15
11 shared e0x, elx; 16 do { b${l-v}‘ == b${l-v} + 1;
2 17 unchanged (b${v}, €0, el);
:Z parameters N, T, F; 18 unchanged (b0x, blx, e0x, elx);
15 assumptions (0) { ; % endfor b
16 N>3=x%T; 21
17 T >=F; 2 % for v in [0, 1]:
18 T>=1 » 3: locB${v} -> locC
z } u when (b${v} + F >= 2 x T + 1)
_ 2 do { e${v}’ == e${v} + 1;
21 locations (0) { % unchanged (b0, bl, e${1-v});
2 locve: [ol; 2 unchanged (b0x, blx, e0x, elx);
3 locVl: [11; 28 }
2 1locBO: [21; 29 % endfor '
% locB1: [31; 30
2% locBOl: [41; 31 % for v in [0, 1]:
27 locC: [51; 2 4: locBO1l -> locC
28 1ocEOQ: [61; B when (b${v} + F >= 2 * T + 1)
29 locEl: [71; 3 do { e${v}’ == e${v} + 1;
0 locD1: [81; 3 unchanged(b®, bl, e${l-v});
31 locBOx: [91; 36 unchanged (b®x, blx, edx, elx);
» locBlx:  [10]; 37 +
5 locBOlx: [11]; '
% locCx: [12]; 33: » endrer
E3 locE0x: [13]; 1 5: locC -> locDl
3% locElx: [14]; 1 when (el + F >= N - T
k4 locDO: [15]; £ &bl +F>=2xxT+1)
3 } 3 do {
22 it (0) ¢ m unchanged(b®, bl, €0, el);
“ eve o) n - s i . unchanged (b0x, blx, e0x, elx);
2 47
3 locBO == 0; 48 6: locC -> locE®
m locBl == 0; 29 when (e@ + F >=N - T
5 locBO1 ; 50 & bO + F >=2 %« T + 1)
16 locC = ; 51 do {
17 TocEO == 0; 5 unchanged (b®, bl, e0, el);
48 locEl == 0; 53 unchanged (b0Ox, blx, e®x, elx);
49 locDl == 0; 51 };

50 locBOX == 0;

o
g



Formal Verification of Blockchain Byzantine Fault Tolerance 405

o LocBlx -0 % 7: locC -> locEl
2 locBOlx == 6; 7 when (e0 + el + F >= N - T
53 loch==0,. 58 & bO + F>=2 T+ 1
54 locEOX == 0; 5 & bl + F>=2xT+ 1)
55 locElx == 0; © do {
% locDo == 0; 61 unchanged (b0, bl, €0, el);
5 62 unchanged (b0x, blx, e0x, elx);
58 bo @ b
59 bl o !
60 e? 6 % for v in [0, 1]:
ol : 66 8: locE${v} -> locB${v}x
6 b?x 67 when (true)
@ x 6 do { b${vix’ == b${vix + 1;
& eox o 69 unchanged (b0, bl, €0, el);
6 elx == 0; 70 unchanged (b${1-v}x, e0x, elx);
3 } 7 iy
7 % endfor

! 1
2 % for v in [0, 1]: .

2 % for v in [0, 1]:
3 9: locB${v}x -> locB01lx . :
4 when (b${1l-v}x + F >= T + 1) j 10: \,lvﬁ:?f;}’ze; LlocEs{vix
5 do { b${1l-vIx' == b${l-v}x + 1; N do {
6 unchanged (b0, bl, €0, el); °

h d(b@, bl, €0, el);

/ nchansedbsivys, ek, “e1n); ! e P e,
s ; ) , , , ;
o % endfor - endfz'r
10
1 % for v in [0, 1]: 10 ¥ (i .
12 10: locB${v}x -> locCx E specifications (8) {
13 when (b${v}x + F >= 2 * T + 1) . .
14 do { e${vix‘ == e${vix + 1; B % for voin to, 1!'

in validity${v}:
15 unchanged(b®, bl, e®, el); LocVefl e

hanged (b0x, blx, e${l-v}x); > (locV${l-v} == 0) ->

. }_“”C Bt 16 [1(locD${1-v} == 0 && locE${1-v}x == 0);
L ! 17 % endfor

18 % endfor
19 % for v in [0, 1]:

20 % for v in [0, 1]: .
21 11: locBO1lx -> locCx » agreement${v}._
2 when (b${v}x + F >= 2 x T + 1) 2z [1((locDs{v} 1=0) ->
| . locD${1-v} == 0 && locE${l-v}x == 0));
3 do { e${vix' == e${vix + 1; sz 5% éiéfof ${1-v} ${1-v )
2% unchanged (b0, bl, e0, el); "
21: }.unchanged(bﬂx, blx, e${1-v}x);25 round. termination:
' % <>[1(
Z % endfor 27 (locVe == 0) &&
» 12 locCx -> locDO 3 (locVl == @) &
when (e@x + F >= N - T 29 (locBO
* en edx - =0 || (bl <T+18b0<2x*T+1)) &&
31 & bOX + F >=2 % T+ 1) P (locBl
32 do { N o
3 unchanged(b®, bl, e0, el); . =01l :ll)gcge-{ *L&DL<2xT+ 1) &
o " unchanged (b0x, b1x, e0x, e1x)i ™ __ g || (bp <2+ T+ 166 bl <2+ T + 1)) &&
i i 2 (locC == 0 ||
. 3 ((el <N - T || bl <2 *T+1) &
37 13: locCx -> locElx I (€0 <N -T || bO<2*T+1) ck
38 when (elx + F >= N - T » (0 +el <N-T||
9 & blx + F >=2 % T+ 1) % b0 <2+ T+ 1 ||
40 do {
1 unchanged(b@, bl, e0, el); z; (LocE0 == g} 2&2 *T+1) ))&
2 unchanged (b@x, blx, e0x, elx);39 (locEl == 0) &&
: ¥ 40 (locBOx
5 14: locCx -> LocEOx =0 || (bIx < T+ 1 & box <2 *x T + 1)) &&
h (e0x + elx + F >= N - T 41 (locB1x
b wnen {edx + eix - =0 || (bOx <T + 1685 blx <2 % T+ 1)) &&
47 & bOX + F >=2 T+ 1 o
86 blx + F >= 2 » T+ 1) 2 (locBolx == 0 ||
. Xdo{’ 8 (bOx <2 * T+ 165 blx <2 * T + 1)) &&
- hanged(bo, bl, o, el);  * (locCx =0 ||
% unchangecip®, b, €4, el); 5 ((elx <N - T || blx <2 * T + 1) &
51 unchanged (b0x, blx, e0x, elx);% (€8x < N - T || bOX <2 * T + 1) &&
2 b 47 (eOx + elx <N - T ||
» " box <2 « T+ 1 ||
; 9 blx < 2xT+1)))
56 /* self loops */ ;) . )
:; % for v in [0, 1]: 2 <
»  10: locvs{v} -> locV${v} > e o
0 when (true) 55 locBO == 0 &&
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Fig. 3 Time to verify the Byzantine consensus of Algorithm 2

61 do { _
6 unchanged (b@, bl, €0, el); * LocBl == @ &
I unchanged (b0x, blx, eOx, elx); & locB01 == 0 &
- . ’ ! ! -] locC == 0 &
! 59 TocE® == 0 &&
@ % endfor @ TocEl == 0 &&
: 61 locBOx == 0 &&
& % for v in [0, 1]:
6 locBlx == 0 &&
8 10: locD${v} -> locD${v} & 10cBO1X == 0 &&
] when (true)
64 locCx == 0
70 do { & )
7 unchanged (b@, bl, e®, el); & !
7 unchanged (b0x, blx, e0x, elx); p ¥
7 }
7 % endfor ® } /% Proc «/

4.1 Experimental Results

The Byzantine consensus algorithm has far more states and variables than the BV-
broadcast primitive and it is too complex to be verified on a personal computer. We
ran the parallelized version of ByMC with MPI on a 4 AMD Opteron 6276 16-core
CPU with 64 cores at 2300 MHz with 64 GB of memory. The verification times for
the five properties are listed in Fig. 3 and sum up to 17 min and 26 s.

5 Related Work

The observation that some of the blockchain consensus proposals have issues is not
new [20, 40]. It is now well known that the termination of existing blockchains like
Ethereum requires an additional assumption like synchrony [40]. Our Ethereum
counter-example differs as it considers the upcoming consensus algorithm of
Ethereum v2.0. In [20], the conclusions are different from ours as they generalize
on other Byzantine consensus proposals, like Tangaroa, not necessarily in use in
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blockchain systems. Our focus is on consensus used in blockchains that are critical
due to trading valuable assets. Note that other consistency violations related to
the consensus offered in Ethereum v1.x and v2.0 have been concurrently reported
[36, 37, 62].

Threshold automata already proved helpful to automate the proof of existing
consensus algorithms [47]. They have even been useful in illustrating why a
specification of the King-Phase algorithm [10] was incorrect [72] (due to the
strictness of a lower symbol), later fixed in [14]. We did not list this as one of
the inconsistency problems that affects blockchains as we are not aware of any
blockchain implementation that builds upon the King-Phase algorithm. In [51], the
authors use threshold guarded automata to prove two broadcast primitives and the
Bosco Byzantine consensus correct; however, Bosco offers a fast path but requires
another consensus algorithm for its fallback path so its correctness depends on the
assumption that it relies on a correct consensus algorithm.

In general, it is hard to formally prove algorithms that work in a partially syn-
chronous model while there exist tools to reduce the state space of synchronous con-
sensus to finite-state model checking [4]. Part of the reason is that common partially
synchronous solutions attempt to give sufficient time to processes in different asyn-
chronous rounds by incrementing a timeout until the timeout is sufficiently large to
match the unknown message delay bound. PSync [34] and ConsL [55] are languages
that help reasoning formally about partially synchronous algorithms. In particular,
ConsL was shown effective at verifying consensus algorithms but only for the crash
fault-tolerant model. Here we used the ByMC model checker [45] for asynchronous
Byzantine fault-tolerant systems and require the round-rigidity assumption to show
a variant of the binary consensus of DBFT [30].

Interactive theorem provers [66, 70, 77] were used to prove consensus algorithms.
In particular, the Coq proof assistant helped prove distributed algorithms [2] like
two-phase commit [70], Raft [78] and the Algorand consensus algorithm [3] while
Dafny [42] proved MultiPaxos. Isabelle/HOL [64] was used to prove byzantine fault-
tolerant algorithms [23] and was combined with Ivy to prove the Stellar consensus
protocol [53]. Theorem provers check proofs, not the algorithms. Hence, one has to
invest efforts into writing detailed mechanical proofs.

In [79], the authors present TLC, a model checker for debugging a finite-state
model of a TLA+ specification. TLA+ is a specification language for concurrent
and reactive systems that build upon the temporal logic TLA. One limitation is that
the TLA+ specification might comprise an infinite set of states for which the model
checker can only give a partial proof. In order to run the TLC model checker on a
TLA+ specification, it is necessary to fix the parameters such as the number of pro-
cesses n or the bounds on integer values. In practice, the complexity of model check-
ing explodes rapidly and makes it difficult to check anything beyond toy examples
with a handful of processes. TLC remains useful—in particular in industry—to prove
that some specifications are wrong [63]. TLA+ also comes with a proof system called
TLAPS. TLAPS supports manually written hierarchically structured proofs, which
are then checked by backend engines such as Isabelle, Zenon, or SMT solvers [29].
TLAPS is still being actively developed but it is already possible—albeit technical
and lengthy—to prove algorithms such as Paxos (Fig. 4).
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when (true)
do {};

when (true)
o { blI'==bl + 13};

when (true)
do { b0' == b0 + 1:};

when (b0 + F>=T+ 1)
do { b0'==b0 + 1;};

when (bl + F>=T+ 1)
do { bl'==bl + 1;};

when (bl + F>=2*T+ 1)

when (b0 + F>=2*T+ 1)
do{el'==el +1;};

do{e0==e0+1;};

when (bl + F>=2*T+ 1)
do{el'==el+1;};

when (b0 + F>=2*T+ 1)
do {e0'==¢e0+ 1;};

when (e0 +el + F>=N-T

&&BO+F>=2*T+1

&&bBI+F>=2*T+ 1)
do {};

when (e0+ F>=N-T
&&bO+F>=2%T+1)
do {}:

when (el + F>=N-T
&& bl +F>=2*T+1)
do {};

when (true)

when (true)
do { blx'==blx + 1:};

when (true)
do { bOx' == bOx + 1:};

when (bOx + F>=T+ 1)
do { bOX' ==bOx + 1;};

when (blx + F>=T+ 1)
do { bIx'==Dblx + I;};

when (blx + F>=2*T+ 1)
do {elx'==elx + 1;};

when (b0x + F>=2*T+ 1)
do { eOx'==e0x + 1;};

when (bIx + F>=2*T+ 1)
do {elx'==elx + 1;};

when (bOx + F>=2*T+ 1)
do { eOx'==eOx + 1;};

when (e0x + elx + F>=N-T

&& bOx + F>=2*T+ 1

&& bIx+F>=2*T+ 1)
do {};

when (elx + F>=N-T
&&bIx+F>=2*T+1)
do {};

when (e0x + F>=N-T
&&bBOX +F>=2*T+1)
do {};

when (true)
do {}

when (true) when (true)

Fig. 4 The threshold automaton of the DBFT binary consensus variant

Recently, the binary consensus of DBFT [30] was formally proved safe and live
using parameterized model checking [11] but without any round-rigid adversary
assumption. To this end, the specification of the Byzantine consensus algorithm was
split into multiple threshold automata.

6 Discussion and Conclusion

In this paper, we argued for the formal verification of blockchain Byzantine fault-
tolerant algorithms as a way to reduce the numerous issues resulting from non-formal
proofs for such critical applications as blockchains. In particular, we illustrated the
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problem with new counter-examples of algorithms at the core of widely deployed
blockchain software.

We show that it is now feasible to verify blockchain Byzantine components on
modern machines thanks to the recent advances in formal verification. We illustrate
it with relatively simple specifications of a broadcast abstraction common to multiple
blockchains as well as a variant of the Byzantine consensus algorithm of the Red
Belly Blockchain.

To verify the Byzantine consensus, we assumed a round-rigid adversary that
schedules transitions in a fair way. This is not new as in [13] the model checking of the
randomized algorithm from Ben-Or required a round-rigid adversary. Interestingly,
we do not need this assumption to verify the binary value broadcast abstraction that
works in an asynchronous model. A concomitant result replaces the round-rigidity
assumption by a deterministic fairness assumption to formally verify the liveness
and safety properties of the consensus algorithm of DBFT [11].

As future work, we would like to prove other Byzantine fault-tolerant algorithmic
components of blockchain systems.
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