
Advances in Blockchain Security

Truc Nguyen, Tre’ R. Jeter, and My T. Thai

Abstract Blockchain, the technology that underpins the great success of Bitcoin
and various other cryptocurrencies, has incredibly emerged as a trending research
topic in both academic institutes and industry associations in recent years.With great
potential and benefits, the blockchain technology can stimulate a new decentralized
platform for various applications such that the possibility of censorship, monopoly,
and single point of failures can be eliminated. However, the blockchain is still in its
early stages and not yet ready to realize that vision, since there are many security vul-
nerabilities that can be exploited to obstruct blockchain systems. In this chapter, we
present fundamental challenges and recent advancements in the blockchain technol-
ogy, especially in terms of security. In particular, we investigate the security threats
of blockchain, effectively capturing the recent attacks, and review some security
enhancement solutions for blockchain.

1 Introduction

Since the original paper in 2009 [1], Bitcoin has gained much attention from both
academic institutes and industry associations. With a market capitalization of more
than one hundred million dollars [2], Bitcoin is undoubtedly one of the most success-
ful cryptocurrencies, averaging thousands of transactions per day. Blockchain is the
technology that underpins the success of Bitcoin. At its core, blockchain is essentially
a distributed ledger of transactions maintained by a set of nodes that do not trust one
another. By using a consensus mechanism, nodes in a blockchain network agree on
an ordered set of linked data blocks that each contains multiple valid and digitally
signed transactions. The main selling point of blockchain is a decentralized nature

T. Nguyen (B) · T. R. Jeter · M. T. Thai
University of Florida, Gainesville, USA
e-mail: truc.nguyen@ufl.edu

T. R. Jeter
e-mail: t.jeter@ufl.edu

M. T. Thai
e-mail: mythai@cise.ulf.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. A. Tran et al. (eds.), Handbook on Blockchain, Springer Optimization
and Its Applications 194, https://doi.org/10.1007/978-3-031-07535-3_11

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07535-3_11&domain=pdf
mailto:truc.nguyen@ufl.edu
mailto:t.jeter@ufl.edu
mailto:mythai@cise.ulf.edu
https://doi.org/10.1007/978-3-031-07535-3_11


364 T. Nguyen et al.

in which applications can operate efficiently without the need of a central authority.
From the perspective of database systems, blockchain can also be viewed as a dis-
tributed database for transaction management. While traditional databases assume a
trusted environment, nodes in a blockchain network can behave in arbitrary manner.

One of the core components of blockchain systems is a consensus mechanism that
is used to achieve verifiable decentralized consensus in the presence of malicious
nodes. This is also referred to as making blockchain Byzantine Fault Tolerant, or
BFT. A consensus mechanism can take the form of a probabilistic (e.g., Proof of
Work/Proof of Stake) or deterministic (e.g., Practical BFT [3]) algorithm. Finality
achieved via probabilistic consensus algorithms is temporary, nonetheless, as more
blocks are added to the chain over time, the probability of overturning the previous
blocks become smaller, approaching zero. By design, blockchain can tolerate Byzan-
tine failure, thus it offers stronger security than conventional database systems.

Bitcoin, in its original design, is a blockchain that stores coins and is limited
to facilitating financial transactions that move coins from one address to another.
Since then, blockchain has evolved beyond cryptocurrencies to support any arbi-
trary, programmable transaction logic [4]. For example, Ethereum is a blockchain
that enables any decentralized applications in the form of smart contracts. In the con-
text of blockchain, smart contracts are defined as self-executing and self-enforcing
programs that are stored on chain. They are intended to facilitate and verify the
execution of terms and conditions of a contract within the blockchain system. By
employing this technology, applications that previously require a trusted interme-
diary can now operate in a decentralized manner while achieving the same func-
tionality and certainty. For that reason, blockchain and smart contracts together have
inspiredmany decentralized applications and stimulated scientific research in diverse
domains [5–9].

Unfortunately, due to its popularity and the value of cryptocurrencies, efforts have
been made to exploit the weaknesses and vulnerabilities of blockchain. As a result,
it is known to be susceptible to various security issues [2, 10] and was attacked
multiple times in the last 10 years. For this reason, the blockchain technology is still
in its early stage and not yet ready to realize its full potential.

In this chapter, we conduct a comprehensive survey on recent advances in
blockchain that aims to make the technology more practical and deployable. In spe-
cific, we present some security threats of blockchain, especially the vulnerabilities in
the blockchain network and smart contracts, which effectively capture past attacks to
the blockchain. Then, we review the security enhancement solutions for blockchain
and how they would affect the scalability and decentralization. Finally, we survey
some other significant advances in blockchain including blockchain anonymity, con-
sensus protocols, and the use of secure hardwares in blockchain.

Organization. The rest of the chapter is structured as follows. Section 2 establishes
some background knowledge on cryptology and blockchain technology. Section 3
describes some recent security threats of blockchain, especially on the blockchain



Advances in Blockchain Security 365

network and smart contracts and also shows some security enhancement solutions.
In Sect. 4, we present other notable advances in blockchain in terms of privacy and
consensus protocols. Finally, Sect. 5 concludes the chapter.

2 Background

This section covers necessary backgroundknowledge for discussing security issues in
blockchain. Specifically,wepresent somecryptographic primitives, includingpublic-
key cryptography and cryptographic hash functions, and a general explanation of
blockchain technology and transitions from known cryptographic practices to more
advanced and practical security methods used in blockchain.

2.1 Cryptographic Primitives

Cryptographic Hash Functions. A cryptographic hash function is generated by a
mathematical function that compresses information in a string of letters and numbers
of a fixed size. Cryptographic hashes are one-way functions. A one-way function is
a function that can be computed easily and quickly for any input, but is very difficult
to revert back to the original input [11]. A cryptographic hash function follows this
samemethod. Any input can be “hashed”, but the computational complexity to revert
it back to the original input proves to be exceedingly difficult.

Cryptographic hash functions should be (1) pre-image resistant, (2) collision resis-
tant, and (3) second pre-image resistant. Pre-image resistance directly corresponds
to the one-way functionality of hashing functions. For any hash value, it should be
very difficult and nearly impossible to read the corresponding message related to
that hash. Denoting H : {0, 1}∗ → {0, 1}l as a public cryptographic hash function
that maps a bitstring of arbitrary length to a bitstring of fixed-length l, the pre-image
resistance property states that, given a hash value h, it is infeasible to find any mes-
sage m such that h = H(m). Formally speaking, for any probabilistic polynomial
algorithm A1, we have

Pr[m ← A1(1
λ, h)|h = H(m)] < negl(λ) (1)

where negl(·) denote some negligible function, and λ is a security parameter.
Ahash function that attains secondpre-image resistantmust be so complex that it is

computationally difficult to find a second inputmessage that will result in an identical
hash output. Specifically, given a message m1, second pre-image resistance makes it
computationally infeasible to find a message m2 �= m1 such that H(m1) = H(m2).
This property can be defined formally as follows

Pr[m2 ← A2(1
λ,m1)|m1 �= m2 ∧ H(m1) = H(m2)] < negl(λ) (2)



366 T. Nguyen et al.

for any probabilistic polynomial algorithm A2.
Collisions in hash functions refer to the chance that two inputs’ hash values are

equivalent to one another. A cryptographic hash function should be collision resistant
in that it is difficult to find two distinct messages m1 �= m2 such that H(m1) =
H(m2). In other words, it ensures that, for any probabilistic polynomial algorithm
A3, the following holds:

Pr[(m1,m2) ← A3(1
λ)|m1 �= m2 ∧ H(m1) = H(m2)] < negl(λ) (3)

Moreover, it can be shown that collision resistance implies second pre-image resis-
tance. Suppose there exists a polynomial algorithm A2 that can violate equation (2),
an adversary can devise a polynomial algorithm A3 as follows: pick a random mes-
sage m1 and obtain m2 ← A2(1λ,m1) in polynomial time. This results in m2 �= m1

and H(m1) = H(m2), thus violating equation (3).
The “birthday paradox” places an upper bound on the computational difficulty of

a collision-finding algorithm: if the output length of a hash function is l bits, then
an attacker who computes hashes of 2l/2 random inputs can find a collision with
probability greater than 0.5. A hash function is considered flawed if a collision can
be found by a method easier than this brute-force attack.

Public Key Cryptography. Public key cryptography was the solution to two prob-
lems: key distribution and signatures [12]. Sometimes called asymmetric cryptog-
raphy, this cryptographic system involves a pair of keys: a public key and a private
key. The public key can be distributed to all users sending encrypted messages to
one another and the private key is always kept private. When a message is sent over
an insecure network, it is encrypted using the public key. The recipient will then use
their private key to decrypt the message.

Public key cryptography is also used to authenticate users. A message can be
combined with a user’s private key to generate a digital signature on top of the
message.Another userwith the related public key can also combine the samemessage
with a known signature. If the generated signature matches the message that was sent
from the first user, then that user is said to be authenticated and trusted.1 Themessage
itself is also verified.

Asymmetric cryptographic algorithms are slower than symmetric cryptographic
algorithms, but still useful. Some algorithms are built for key distribution and privacy
such as the Diffie-Hellman key exchange. There are algorithms such as the Digital
Signature Algorithm that only create digital signatures. However, when algorithms
like the two above-mentioned are combined, the Rivest-Shamir-Adleman (RSA)
algorithm is the result. This algorithm allows for users to openly share encrypted files,
data, or other information through the internet or email for example. The public key
encrypts the message and only the recipient’s private key can decrypt the message
[13]. RSA is widely used today for secure data transmission and an easy way to
implement multi-factor authentication into secure systems.

1 https://www.ibm.com/docs/en/ztpf/1.1.0.14?topic=concepts-digital-signatures.

https://www.ibm.com/docs/en/ztpf/1.1.0.14?topic=concepts-digital-signatures


Advances in Blockchain Security 367

Taking these algorithms further in application, implementing a Public Key Infras-
tructure (PKI) would further verify and authenticate users. A PKI is a system of a
third-party user called a Certificate Authority (CA) that certifies the ownership of a
set of keys. This system is good for avoiding attacks because it is a set of protocols
that manage overall public-key encryption and the creation, distribution, use, storing,
and disabling of digital certificates.

2.2 Blockchain Primer

Peer-To-Peer Network. A peer-to-peer network is a decentralized network that is
maintained by a distributed group of users that can act as servers and clients. Unlike
the traditional Client-Server network, a peer-to-peer network does not have a central
server. By definition, a peer-to-peer network consists of each node/peer within that
network providing and making their personal resources accessible to others on the
network without the need for an intermediary entity like a central server [14]. The
peer-to-peer network plays a huge role in blockchain technology because it allows
for transactions of any kind without the need for a middle-man or central server. In
this distributed network, any user can verify or validate transactions and be a part of
the process of creating new blocks by simply setting up a node on the blockchain.

The decentralized nature of blockchain technology makes it easily accessible
and available. The peer-to-peer make-up also ensures resiliency. If one peer goes
down, the other peers within the network are not affected and can maintain work.
Blockchain technology has consensus constraints as does a stand-alone peer-to-peer
network which mitigates a blockchain from many malicious activities. This network
is also nearly impossible to execute a Denial-of-Service attack because there is no
central server to attack.

Blockchain Architecture. A blockchain is essentially a database of records (trans-
actions) shared across a peer-to-peer network [15]. Because of its immutable nature,
changing a block on the blockchain is very difficult to do without being noticed. A
record on a blockchain can be any piece of information such as bank transactions,
health information, purchases, voting results, cryptocurrency, etc. A block on the
blockchain is made up of a group of records. The actual blockchain itself is all of the
blocks linked to one another.

Each record lists the details of each transaction and appends a digital signature
from all who were involved with the transaction. The record is then verified by
the network by every participant (node) to check the validity of the transaction.
This process is called consensus. A decentralized network of nodes must come to
a consensus before a block is added to the blockchain by any of the consensus
algorithms (i.e., PoW,PoS,PoA, PoAh, etc).2 Once a record is verified by the network,
it is added to a block.

2 https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp.

https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp


368 T. Nguyen et al.

Every block in a blockchain has a cryptographic hash as its unique identifier. Each
block contains the hash of the previous block and its own unique hash. Because these
hash values match with each subsequent block, it is very difficult (nearly impossible)
to change information on the blockchain without being noticed. Altering a block will
change the hash of that block and break the chain. If the hashes of the previous block
and current block do not match, then the blockchain has been altered. To restore the
altered block, one would have to recalculate the original hash and each hash of the
following blocks.

Double-Spending and Reaching Consensus. The Bitcoin and blockchain technol-
ogy in general were motivated by the double-spending attack. In digital currency
systems, double spending is the act of successfully spending some coins more than
once.

In conventional systems, all the transactions are validated and recorded in a cen-
tralizedmanner.However, in blockchain, every nodeprocesses transactions andkeeps
a copy of the ledger. Due to the fact that multiple copies of blockchain are stored
at different nodes in the network, it is challenging to maintain a consistent global
view of the blockchain in the whole system. In particular, a node can simultaneously
issue two different transactions on the same set of coins as input, to two different
receivers. If both the receivers successfully validate the transaction independently
based on their local view of the blockchain, then their copies of the blockchain
become different and the blockchain ends up with forks. Specifically, the nodes will
have different views of the global state and the network will no longer be consistent
unless we resolve this fork. This type of malicious behavior makes decentralized
currency particularly vulnerable to double spending.

Therefore, a distributed consensus mechanism is needed in a blockchain network
to tackle this issue [6]. Intuitively, all nodes in the blockchain could vote on the order
of transactions for each block, and the result is decided by themajority.Unfortunately,
in an open network where anyone can participate, this mechanism would not be
secure due to the Sybil attack: a single entity can generate various identities, vote
several times, and thereby becoming the majority of the network. In other words,
any adversary can easily take over the blockchain.

Bitcoin tackles this issue by proposing the proof-of-work mechanism [1], where
each node has to solve a computationally expensive puzzle to vote for a block. This
is also referred to as mining. As a result, generating several sybil identities on the
blockchain is futile, as the computing resources of any single node are limited. In
the event of a fork, the proof-of-work mechanism ensures that the nodes choose the
fork that contains the most amount of work, that is, choosing the longest fork. Hence,
this enables the network of untrusted nodes to reach consensus on the proper order
of transactions.

Bitcoin Mining. Mining is where cryptographic hashes come into play with Bitcoin
and blockchain technology. Miners maintain the consistency and immutability of
the blockchain by placing each new transaction into a new block to be placed on
the blockchain. Miners send this new block to the entire network for validation and



Advances in Blockchain Security 369

consensus before the block is added to the blockchain. Every block has a tag in
the form of a SHA-256 cryptographic hash [16] of the previous block and its own
cryptographic hash.

Blocks are only accepted if they contain a valid proof-of-work (PoW). The PoW
is generated by double hashing a block header, which contains a nonce, using the
SHA-256 function. To make a valid PoW of a block, the miners need to find a nonce
so that the resulting hash output is smaller than the difficulty target determined by
the network. The higher the target value, the easier it is to find the correct PoW com-
bination.3 A nonce is a number that is only used once and is usually a sequence of
natural numbers. This process gives the blockchain its immutable nature. Depending
on the difficulty target, it usually takes an immense amount of computing power to
generate a valid PoW for a new block. Furthermore, because the block will have the
cryptographic hash of the previous block and its own attached, the block is very dif-
ficult to alter without invalidating the chain. Altering the transaction information of
the blockwill change the hash of the blockwhichwill render the block compromised.

Ethereum and Smart Contracts.Ethereum is another decentralized network similar
to Bitcoin that was created in 2013 by Vitalik Buterin. Its cryptocurrency is called
Ether and is only second in value to Bitcoin. Ethereum allows for the creation of
non-fungible tokens (NFTs). These tokens can represent anything that has an actual
value as a unique item like art, photos, or any digital files. The distributed ledger
within blockchain is then used to verify ownership of these items creating a safe
and efficient marketplace. The main difference between Ethereum and Bitcoin is
Ethereum’s use of smart contracts.

Smart contracts are programs that are stored and executed by all nodes in the
Ethereum blockchain using the EthereumVirtualMachine (EVM). The EVM is basi-
cally a stack-based virtual machine that supports a Turing-complete programming
language. Smart contracts can be deployed and triggered by the blockchain trans-
actions. Each operation on the EVM costs some amount of gas that determines the
fee needed to execute the smart contract. The transaction is assigned with a bounded
amount of gas, and when that amount is exceeded, the entire execution is terminated
and the operations are reversed. In contrast to conventional programs, smart contracts
are immutable by design. Therefore, programming mistakes or vulnerabilities on the
smart contract cannot be reversed or fixed.

In Ethereum, a smart contract can utilize three memory regions to perform data
operations during execution: stack, memory, and storage. A (data) stack is a virtual
stack that can be used to store data. Note that EVM also has a call stack, which is
different from the data stack. The memory is a byte-addressable region allocated at
run-time. Storage is implemented using a key-value store. The stack and memory are
both volatile, meaning that the data stored are cleared after each execution. However,
the storage is persistent, which can be used to store data across transactions.

3 https://medium.com/geekculture/the-implication-of-bitcoins-proof-of-work-algorithm-
40921bb13530.

https://medium.com/geekculture/the-implication-of-bitcoins-proof-of-work-algorithm-40921bb13530
https://medium.com/geekculture/the-implication-of-bitcoins-proof-of-work-algorithm-40921bb13530


370 T. Nguyen et al.

3 Blockchain Security: Attacks and Counter-measures

This section presents a comprehensive survey on some security issues of blockchain,
especially focusing on attacks and threats on the blockchain network and smart
contract.

3.1 Blockchain Network

Attacks on Peer-to-Peer Network. By design, the blockchain peer-to-peer network
is open, decentralized, and independent of a public-key infrastructure. Hence, it
does not employ cryptographic authentication between nodes, and they are identified
purely by IP addresses. In the Bitcoin network, each node is implemented to use
a randomized protocol to select eight peers to create outgoing connections. Nodes
with public IPs accept up to 117 incoming connections from any IP addresses. Nodes
exchange their local views of the state of the blockchain with their connected peers.

However, this open nature of blockchain makes it feasible for adversaries to join
and attack the peer-to-peer network. Heilman et al. [17] investigate an eclipse attack
on the bitcoin network where the attacker takes control over all of the victim’s
incoming and outgoing connections, thereby isolating the victim from the rest of its
peers in the network. After that, the attacker is free to manipulate the victims’ view of
the blockchain, force the victim to waste computing power on obsolete views of the
blockchain, or exploit the victims’ mining power for its ownmalicious purposes. The
authors present an off-path attack in which the attacker only controls endhosts but not
key network infrastructure between the victim and the rest of the Bitcoin network.
The attack mainly forms incoming connections to the victim from a set of controlled
endhosts, sends fake network information, and waits until the victim restarts. With
high probability, the victim then creates all eight of its outgoing connections to
attacker-controlled endhosts.Additionally, the attacker alsomonopolizes the victims’
117 incoming connections.

Some security implications of this attack include: (1) An attacker can hoard
blocks discovered by eclipsed miners, and release blocks to both the eclipsed and
non-eclipsed miners once a competing block has been found, thereby making the
eclipsed miners waste computing resources on orphan blocks; (2) selfish mining
[18]; (3) eclipsing miners eliminates their mining power from the rest of the network,
making it easier to for the attacker to becomes the majority in the network; (4) double
spending [19].

On the other hand, Apostolaki et al. [20] exploit the Bitcoin hosting centralization
issue to conduct a routing attack. Although one can run a Bitcoin node, the nodes
that form the Bitcoin network today are far from being distributed uniformly around
the globe. Specifically, their experimental results illustrate that few Internet Service
providers (ISPs) host most of the Bitcoin nodes. Specifically, 13 ISPs, which is about
0.026% of all ISPs, host roughly 30% of the entire Bitcoin network. Furthermore,



Advances in Blockchain Security 371

a majority of the network traffic between Bitcoin nodes propagate over only a few
ISPs. Indeed, their experiment shows that 60% of all possible Bitcoin connections
cross three ISPs. Simply speaking, three ISPs observe, drop, or modify 60% of all
Bitcoin traffic.

The authors [20] present how an adversary can utilize the network infrastructure
to perform (1) an eclipse attack and (2) a delay attack. The eclipse attack works by
intercepting network traffic between blockchain nodes. To do so, an attacker can
leverage the fact that Border Gateway Protocol (BGP), an Internet routing protocol,
does not verify the source of routing announcements. This attack involves getting a
router to spread false announcements that it has a shorter path to certain IP prefixes,
therebymaliciously rerouting Internet traffic. From that, the attacker can proceedwith
hijacking all the IP prefixes associated with the nodes in one component, effectively
intercepting all the network traffic exchanged between that component and the rest of
the network. This is commonly referred to as a BGP hijacking attack. Once the path
is hijacked, the attacker can drop all these connections to disconnect that component
from the rest of the network, thus eclipsing the miners. The network centralization
of Bitcoin nodes as above-mentioned further exacerbates the issue as few IP prefixes
need to be hijacked, making eclipse attacks particularly feasible. In fact, their study
shows that 39 prefixes, accounting for 0.007% of all Internet prefixes, host 50% of
Bitcoin mining power. This implies that, by hijacking only those 39 prefixes, an
attacker is able to isolate roughly 50% of the mining power. BGP hijacking attacks
that involve orders of magnitude more IP prefixes are routinely seen in the Internet
today.

Besides eclipse attack, a delay attack can be conducted based on the fact that
Bitcoin nodes are implemented to send a request for blocks to only one peer to
prevent the network from being overwhelmed with the transmissions of blocks. If
the peer is not responsive for 20 minutes, an alternative peer will be selected to send
the request to. This implementation, together with the fact that Bitcoin messages are
exchanged in plaintexts, allows for an effective attack where attackers try to prolong
block transmissions by delaying or dropping those requests for blocks. Specifically,
the attacker can simply modify to the content of the Bitcoin messages that they
intercept. Since the Bitcoin protocol does not offer protection for those messages,
both the receiver and the sender become oblivious of the fact that the message has
been tampered with, thus enabling a very stealthy attack. The implication is that the
attacker can then conduct other attacks like double spending or try towaste computing
power of honest miners. What makes such delay attacks feasible and practical is the
centralization of Bitcoin nodes in a small number of networks and prefixes, as well
as the centralization of mining power in some certain mining pools. The authors
discover that three ISPs control a majority of all Bitcoin traffic. This implies that
these ISPs can stealthily interfere with Bitcoin traffic. In contrast to eclipse attacks,
delay attacks could not disrupt the whole blockchain system, but rather reduce the
performance of the network. Thus, even if many nodes are slowed down under attack,
the Bitcoin system would still be able to function, but at a lower performance and
less secure.



372 T. Nguyen et al.

Saad et al. [21] propose some potential attacks based on spatial and temporal char-
acteristics of the Bitcoin network. They investigate three different levels of attacks,
emphasizing the network centralization. At the network level, due to the increasing
centralization of the Bitcoin network, the authors are able to empirically demonstrate
that an attacker can easily partition the network spatially through BGP hijacking by
controlling only a few ASes, thus causing a hard fork. At the AS level, they dis-
cover that in certain cases, by hijacking roughly 20 prefixes, the adversary can gain
control over more than 80% of the Bitcoin nodes that are placed inside the same
AS. At the organization level, they show that multiple ISPs control more than one
AS, which results in even more centralization, and facilitating new attack avenues.
Furthermore, they leverage the non-uniform consensus among connected nodes to
propose temporal attacks. They observe that there is a significant delay in consensus
and block propagation because of the latency and adversarial peer behavior. Their
study suggests that even after a few minutes from the publication of a block, about
62.7% of nodes in the network are not up-to-date and still remain behind the lat-
est block by one or two blocks. As a result, it is suggested that such a behavior
can be leveraged to optimize an attack where false blocks are fed to nodes, thereby
temporally partitioning the network.

Since those above-mentioned attacks are based onBGP hijacking, however, due to
the openness of BGP operations, such a hijacking attempt can be observed globally,
thereby enabling instant attack detection and attacker identification. Specifically,
the real identity of the attacker (i.e., the malicious AS) is instantly revealed to the
public. As such, this can be a deal-breaker for large ASes since attempting the attack
can potentially damage their reputation. Tran et al. [22] present a more stealthy
Bitcoin attack, which is referred to as EREBUS, that enables a network attacker
to control the peer connections of a victim Bitcoin node without manipulating the
network routing protocol, thereby eliminating control-plane evidence of attacks. This
is possible because the attack strategy only exploits data-plane attack messages, so
it remains invisible to any control-plane monitoring systems. Furthermore, even if
data-plane traces of the attack are detected, the attack still offers plausible deniability.
The authors demonstrate that Tier-1 or large Tier-2 ISPs can conduct this attack to
target a majority of thousands of Bitcoin nodes in the system that accept incoming
connections from other nodes. Consequently, attackers who control large ISPs (such
as nation-state adversary), are capable of launching the EREBUS attack stealthily.

At a high level, EREBUS works as follows. Without interfering with the under-
lying routing protocols, the adversary AS alters the existing outgoing peering con-
nections of a victim node to the new connections with the Bitcoin nodes whose
victim-to-node inter-domain paths include the adversary AS. Eventually, the mali-
cious AS will be placed on the paths of all the peer-to-peer connections of the victim
node. The attack is feasible not because of the implementation of Bitcoin nodes but
the inherent topological advantage of being a network adversary. In specific, as a
man-in-the-middle adversary, the EREBUS malicious AS can exploit an enormous
amount of network addresses reliably over a long period of time.



Advances in Blockchain Security 373

Counter-measures. Two counter-measures are typically recommended for this type
of network attack: (1) disable incoming connections and (2) onlymake outgoing con-
nections to well-connected or known/whitelisted miners. However, there are several
problems with scaling this to the full Bitcoin network. First, if incoming connections
are disabled on all current nodes, how do new nodes join the network? Second, how
does one decide which peers to connect to? Who determines the whitelist of miners?
In [17], the authors propose a set of counter-measures that partially preserve open-
ness by allowing unsolicited incoming connections, while raising the threshold for
eclipse attacks. The counter-measures ensure that, with high probability, if a victim
stores enough legitimate miners that accept incoming connections, then the victim
cannot be eclipsed regardless of how many IP addresses the attacker controls.

In [23], the authors propose the SABREnetwork to secureBitcoin against theBGP
hijacking attacks. SABRE is a Bitcoin relay network that relays blocks worldwide
through a set of connections that are resilient to routing attacks. SABRE is designed to
be secure and scalable and is able to run alongside the existing peer-to-peer network
and can be deployed easily. SABRE is specifically designed to protect both relay-
to-relay and relay-to-client connections. At a high level, to secure relay-to-relay
connections, SABRE places nodes in ISPs that connect directly to one another,
creating a fully connected graph of direct links and also in /24 prefixes. To secure
relay-to-client connections, relay nodes are placed in a way that most nodes have
for each potential attacker at least one route to SABRE that is more preferable than
any route that this attacker can advertise, thereby tackling the BGP hijacking attacks.
The main technical insight is that SABRE leverages fundamental properties of BGP
policies to host relay nodes in networks that are essentially protected against routing
attacks, and on network routes that are preferable by the majority of Bitcoin nodes.
These properties are generic and can be used to protect other blockchain networks.
However, this approach introduces a trusted entity to the system to control the network
connections between nodes, which violates the trust model of blockchain.

The authors in [22] propose a set of counter-measures to defend against stealth
BGP hijacking attacks. First, some third-party proxies can be used to verify the
reachability of IP addresses. However, this approach has limited scalability because
creating multiple proxies at different locations for thousands of potentially vulnera-
ble nodes in the Bitcoin network would be difficult in practice. Furthermore, because
of the limited scalability, any proxy-based approaches could eventually result in few
centralized proxies. Another solution is increasing the amount of outgoing connec-
tions that a Bitcoin node is able to make. According to the authors, the increase
can in fact potentially sabotage the network if it is not deployed properly. This is
because it may instantly boost the amount of network connections and the volume
of network traffic in the system. This sudden increase can potentially exacerbate the
delay of transactions and blocks in the system. Therefore, the practicality of these
counter-measures remains questionable.



374 T. Nguyen et al.

3.2 Smart Contracts

Ensuring the correctness of smart contracts is a critical and urgent security concern.
Nowadays, billions of dollars are handled by smart contracts, and only in the past
couple of years, millions of these have been lost by adversaries who exploited subtle
flaws in the logic of the contracts [24, 25]. In fact, Ethereum already encountered a
lot of disastrous attacks on vulnerable smart contracts. The most notable ones are the
DAO hack in 20164 and the Parity Wallet hack in 2017,5 together resulting in a loss
of over 300 million US dollars. The problem is exacerbated as the smart contracts
become immutable once placed on the blockchain, hence bugs and flaws found after
deployment cannot be fixed.

Real-World Vulnerabilities of Smart Contracts. Below is a list of vulnerabilities
in Ethereum smart contracts according to [7].

• Airdrop hunting.Airdrop is amethod to reward new users a small amount of tokens
as a way of promoting attention and appealing to more users. Airdrop hunting is an
attack strategy that leverages the weaknesses of airdrop and bypasses the identity
verification of new users to keep generating new sybil users to obtain a large
amount of free tokens.

• Call injection. Call injection is a method that allows any contract to call any
function in a vulnerable contract. It is often used to modify ownership and trigger
money transfers.

• Reentrancy.A reentrancy attack happens a function is created that makes an exter-
nal call to another untrusted contract before it updates its own state. A reentrancy
attack may lead to a repeated transfer of money from the victim to the adversary,
thereby exhausting the balance of the victim contract.

• Honeypot. A honeypot is a bait that lures a victim into losing tokens.
• Call-after-destruct.Call-after-destruct is the act of calling a function in a destructed
contract with tokens, resulting in the loss of these tokens.

Common Attacks on Smart Contracts. In [7], the authors conduct an analysis of
real-world attacks based on the log of transactions generated by “uninstrumented”
Ethereum Virtual Machine (EVM). In specific, they capture two essential behaviors
of a malicious transaction: (1) it attempts to exploit a vulnerable contract and (2) it
often results in ether or token transfers. The results unveil a large volume of attacks
that is greater than what have been discovered in the literature. In particular, airdrop
hunting and zero-day variants of known vulnerabilities are often the targets of those
attacks.

One of the most common attacks is luring victims into traps. This type is also
commonly referred to as honeypot, as it often involves setting up a bait to attract
victims. Honeypots are smart contracts that seem to have some apparent flaws and

4 https://www.coindesk.com/understanding-dao-hack-journalists.
5 https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c.

https://www.coindesk.com/understanding-dao-hack-journalists
https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c


Advances in Blockchain Security 375

bugs in their design and implementation. For instance, several Ethereum smart con-
tracts enable any malicious user to retrieve ether (Ethereum’s cryptocurrency) from
the contract’s balance, given that the user previously transfers a certain amount of
ether to the contracts in the first place. However, once the user tries to take advantage
of this obvious vulnerability, a second trapdoor (unknown to the user) opens and
prevents the draining of ether from succeeding. The key observation here is that the
user only pays attention to the obvious flaw and does not think of the possibility
that some other vulnerabilities might be concealed within the smart contract. In the
same manner as other types of fraud, honeypots exploit the fact that human beings
are usually greedy and easily manipulated.

In [25], the authors investigate the incidents of such honeypot smart contracts
in Ethereum and introduce HONEYBADGER, a toolbox that uses a combination
of symbolic execution and precise heuristics to automatically detect various types
of honeypots. By using HONEYBADGER, users have the capability of providing
interesting insights on some properties of honeypots that are being hidden in smart
contracts on the Ethereum blockchain.

Another attack on Ethereum smart contracts is to exploit several flaws in the
meteringmechanismof Ethereum to conduct aDoS attack. Thismeteringmechanism
is used to assign a gas cost to smart-contract execution in order to incentivize miners
to operate the blockchain system and protect it against DoS attacks. In the past,
several problems in the implementation of Ethereum metering mechanism allowed
several DoS attacks.

In [26], the authors unveil a number of issues in the Ethereum metering model,
especially some substantial discrepancies in the pricing of the Ethereum instructions.
Additionally, they found that the correlation between the gas cost and the utilized
computing resources, such as CPU and memory consumption, is very small. To
conduct this study, they use a large amount of Ethereum smart contracts to determine
some critical edge cases that point out several problems in EVM metering. First,
there are several EVM instructions that cost significantly less gas than their actual
resource consumption. Second, there are cases where the cache substantially impacts
the execution time.

From thesefindings, the authors present a newDoSattack calledResourceExhaus-
tion Attack targeting Ethereum smart contracts, which uses these flaws to generate
low-performance contracts in terms of throughput. The challenging part is how to
produce well-formed EVM contracts that minimize the throughput. The proposed
attack combines empirical data and a genetic algorithm so as to create low-throughput
contracts on Ethereum. As a result, the authors are able to generate contracts that are
about a hundred times slower in average than typical contracts. They also show that
most current Ethereum client implementations are vulnerable to this attack and those
clients would not be able to stay in sync with the rest of the network when under
attack. The authors have disclosed this vulnerability to the Ethereum Foundation and
were awarded 5,000 USD [26].

Formal Verification of Smart Contracts. Researchers believe that smart contracts,
similarly to any safety-critical system, must be formally verified before deployment



376 T. Nguyen et al.

[8, 24, 27]. ZEUS [8] is a practical framework for automatic formal verification
of smart contracts using abstract interpretation and symbolic model checking. At a
high-level view, ZEUS works as follows. With smart contracts that are programmed
in high-level languages, ZEUS leverages user assistance to formulate the criteria
relating to correctness and fairness. These contracts and the policy specification
are then translated into a low-level intermediate representation (IR) that encodes the
execution semantics to properly inspect the behavior of the contract. After that, static
analysis is performed based on the IR to identify the points at which the verification
predicates (as defined in the policy) must be asserted. Finally, the modified IR is fed
to a verification engine that ensures the safety of the smart contract.

In [24], the authors list out two crucial challenges of building an automated verifier
for smart contracts. First, via function calls, smart contracts that we want to verify
usually communicate with some external contracts. Consequently, as we do not know
the code of the external contracts, these external contracts may eventually trigger the
original contract in some arbitrary ways. It is very challenging to devise automated
verification when there are potentially a large number of arbitrary callbacks from
unknown external contracts. Second, the number of transactions that smart contracts
process is unbounded. Considering processing a single transaction as an iteration in
a loop, the functions in smart contracts are indeed implicitly executed in an infinite
loop. Thus, even though smart contracts often do not have loops, the verifier still
needs to soundly handle loops.

To address those challenges, the authors in [24] propose VERX, an automated
verifier of functional requirements for Ethereum smart contracts. VERX is mainly
motivated by the practical challenges that emerge when assessing real-world smart
contracts. One of the main insights is that most practical contracts use a defensive
strategy against external callbacks by making sure that these do not create any new
behaviors. Specifically, any behavior with external callbacks is considered as another
behavior without external callbacks; these are referred to as external callback free
(EECF) contracts. VERX focuses on verifying EECF contracts as they offer two
essential benefits. First, formalization of requirements is simplified, as auditors can
write the specification without explicitly considering all possible external callbacks.
Second, exploring all possible external callbacks is not necessary, thereby enabling
precise and scalable analysis.

Ensuring Privacy of Smart Contracts. When implementing applications in smart
contracts, one of themajor concerns is data privacy. Since smart-contract transactions
are processed by the blockchain’s nodes, transaction data have to be made available
to all nodes. Hence, it is not trivial to preserve data privacy on smart contracts without
violating the security model of blockchain. This is a major problem for applications
that deal with sensitive data such as voting or healthcare applications.

Most approaches to enforcing privacy use cryptographic protocols to both secure
secret data and validate the integrity of computations on blockchains like Ethereum
without altering their trust model. In particular, Non-Interactive Zero-Knowledge
(NIZK) proofs allow a prover to prove statements involving private data without
revealing any information other than the correctness of the statements. NIZK basi-



Advances in Blockchain Security 377

cally satisfies four properties: (1) completeness (if the statement is correct, the prob-
ability that an honest verifier accepting the proof from an honest prover is 1); (2)
soundness (if the statement is incorrect, with a probability less than some small
soundness error, an honest verifier can accept the proof from a dishonest prover
showing that the statement is correct); (3) zero-knowledge (during the execution of
the ZKP protocol, the verifier cannot learn anything other than the fact that the state-
ment is correct); and (4) non-interactive. Practical NIZK proof constructions have
been proposed and made available in Ethereum.

The paper [9] presents Hawk, a decentralized smart-contract system that does
not store blockchain transactions in the clear on the blockchain, thereby preserving
data privacy for the transactions, effectively concealing them from the public view.
The main advantage of Hawk is that a smart-contract developer can program a pri-
vate smart contract in a simple manner without having to develop any cryptographic
schemes. Then, the Hawk compiler will generate an efficient cryptographic proto-
col in which contractual parties interact with the blockchain, using cryptographic
primitives such as NIZK proofs.

Another approach to a decentralized smart-contract system is the zkay language
proposed in [27]. The authors introduce privacy types that define owners of private
values. Zkay contracts are statically type checked to ensure they are realizable using
NIZK proofs and to prevent unexpected information leakage. To enforce zkay con-
tracts, the compiler automatically converts them into contracts that have the same
functionalities, retain the same privacy properties, and are executable on Ethereum.

3.3 Other Security Issues

Denial-of-Service.Bydesign, blockchainplatforms are appealingvictims forDenial-
of-Service (DoS) attacks: the rivalry among cryptocurrencies is very intense, and
there are potential gains from short selling [28]. However, in practice, DoS attacks
receive less attention comparing to other types of attack. This is due to the fact that tra-
ditional, network-based DoS attacks cannot scale to large decentralized systems, and
that known DoS attacks on the mining process [29] are enormously costly. Specifi-
cally, mining-based DoS attacks require that the attacker’s computing resources need
to be greater than those of other miners combined, which is not practical.

Mirkin et al. [28] propose a Blockchain Denial of Service (BDoS) sabotage attack
that is based on incentives: the underlying mechanism of the blockchain platform is
targeted and the attacker tries to violate its incentive compatibility. In specific, the
adversary uses its computing resources in order to convince honest miners to stop
mining. In other words, the attacker can cause a blockchain system to stop its normal
operation with only a fraction of other miners’ resources. The key main insight in
conducting this attack is that an attacker can manipulate the miners into thinking
that the system is in a state that diminishes their revenue. The attack leverages the
fact that the adversary can generate a block and broadcast only the block header as a
proof to show that they mined it. The purpose is to show that they have an advantage



378 T. Nguyen et al.

over other miners, but do not have to reveal the block’s content. The profit of a honest
miner may decrease if they are oblivious of the block header, and thus they would
be willing to receive the block headers. Therefore, miners are motivated to accept
block headers. Simply ignoring the block header is not an effective defense strategy,
since a miner is encouraged to receive block headers to maximize their payoff, such
a defense strategy will not be employed by the miners.

In detail, the attack works in the following manner. The adversary generates a
block B and broadcasts only the header of B. A miner may disregard the header of
B and create a block following its previous block in the current chain, resulting in
an additional branch of blockchain. Next, the adversary publishes the contents of
B, resulting in two forks. Depending on the parameters and the state of the system,
the miner’s block may or may not be added to the main chain. The main idea is
that when the expected profitability of the honest miners decreases, suppose that
it is lower than some threshold, it is better for them to stop the mining process. If
the decrease in profitability is substantial enough so that all miners decide to pause
the mining process, the adversary can also stop mining. As a result, the blockchain
mining comes to a complete halt, and new transactions will not be processed.

Mining Pool. Mining pools are formed by miners with the purpose of increasing the
computing resource which may shorten the mining time of a block. Thus, it boosts
the probability of obtaining the mining reward. Motivated by this benefit, a large
number of mining pools have been formed in recent years, andmany different mining
strategies have been devised. In general, mining pools aremanaged by poolmanagers
that forward unsolvedwork units to itsmembers. Themembers are essentiallyminers
of the Bitcoin network who decide to join a pool. Once a member mines a new block,
theminer submits the block and the full proofs-of-work (FPoWs) to themanager. The
manager sends the block to theBitcoin network so as to obtain themining reward. The
reward is then distributed by the manager to participating miners based on howmuch
they contribute to solving the mining puzzle. In specific, participants are rewarded
based on the partial proofs-of-work (PPoWs) submitted to the manager. There are
some open pools that allow participation from any miners, and private pools that
only allow some authorized miners [2].

Due to the financial benefits of mining pool, the attack vector that targets the vul-
nerabilities inmining pool has been explored. Etay et al. [18] propose a selfishmining
strategy to abuse Bitcoin’s forks mechanism to obtain an unfair reward. Recall that
only one branch of a fork can be accepted and others will be invalidated. In selfish
mining, an attacker as a pool does not broadcast a block immediately, but instead
builds a private chain internally. When the length of the public chain approaches its
private chain, the attacker broadcasts the private chain, forcing other miners to accept
this longer chain. Since the mining pool has large computing power, the attacker can
earn a greater reward by invalidating blocks of honest miners, this also makes honest
miners waste their computing resources.

Block Withholding (BWH) Attack. Different from the selfish mining, this attack is
considered as an internal attack inside amining pool. In this BWH attack, amalicious



Advances in Blockchain Security 379

miner shares with the pool manager only PPoWs and keeps all the computed FPoWs
to herself [30]. The pool manager is unaware of the blocks that were withheld and
thinks that the attacker is still trying to use her computing resources to mine the
block like other miners. The pool, being oblivious of this malicious behavior of the
attacker, distributes its mining reward to her. Therefore, the malicious miner earns
rewards without contributing anything useful to the pool. This is at the expense of
the honest miners of the pool. On June 13, 2014, it was reported that a large-scale
Block Withholding Attack attack was launched against Eligius, a popular mining
pool, resulting in a loss of 5 million US dollar at the expense of honest miners.6

The authors in [30] propose a “sponsored block withholding attack”. It can be
observed that by conducting a BWH attack on a victim pool, the attacker indirectly
increases the probability of wining the mining process for another pool. Thus, she
can collude with some other pools to use a portion of her computing resources for
attacking one pool and diminish the victim pool’s chance ofwinning. In that scenario,
she can be rewarded by the malicious pool for targeting the victim pool. The amount
of reward can be determined according to the increase of profit to the malicious pool
resulted from attacking the victim pool.

Kwon et al. [31] describe another attack called a fork after withholding (FAW)
attack, which combines a BWH attack with intentional forks. In the same manner as
the BWH attack, the FAW attack is always profitable regardless of an attacker’s com-
puting resources. In addition, the FAWattack providesmuchmore rewards compared
to the BWH attack. Particularly, the BWH attacker’s reward is only the lower bound
of the FAW attacker’s. The authors propose two scenarios for this attack: single-pool
and multi-pool.

In a single-pool FAW attack, in the same manner as a BWH attacker, an FAW
attacker participates in the target pool and conducts an FAW attack against it. FPoWs
are submitted to the pool manager by the attacker only when there is another miner
who is not in the same pool submits a block. If the poolmanager accepts the submitted
FPoW and broadcasts the block, then a fork will be created. Because of the forks, all
Bitcoin network participants will agree on only one branch. If the attacker’s block
is selected, the target pool will receive the mining reward, and thus, the pool will
also reward her as well. In any case, the attacker is entitled to the extra rewards. The
lower bound of the extra reward is the same for a BWH attacker.

On the other hand, to increase the reward, the attacker can conduct a multi-pool
attack by simultaneously attacking n pools. The analysis shows that, as in the single-
pool case, the FAW attack is always profitable, and the reward for an FAW attacker is
greater than that for a BWH attacker. If the attacker executes the FAW attack against
four currently popular pools, she will earn roughly 56% more reward than a BWH
attacker does.

6 https://bitcointalk.org/?topic=441465.msg7282674.

https://bitcointalk.org/?topic=441465.msg7282674


380 T. Nguyen et al.

4 Other Significant Advances in Blockchain

Besides research efforts in preventing certain types of attacks on the blockchain
network and smart contracts, this section shows some other notable advances in
blockchain. Particularly, we focus on the privacy of blockchain transactions, consen-
sus protocols, and the use of secure hardware in blockchain.

4.1 Anonymous Transactions

Most of anonymity vulnerabilities in blockchain arise because of the fact that Bitcoin,
and many other blockchain platforms, associate each user with a pseudonym, and
these pseudonyms are linked to financial transactions issued to the public blockchain.
If an attacker can identify the user behind a pseudonym, the attacker may learn the
user’s transaction history. In practice, there are several ways to associate a user with
her Bitcoin pseudonym. The most common method is to analyze transaction patterns
in the public blockchain, and link those patterns using external information [32, 33].

Fanti et al. [34] investigate a lower-layer vulnerability: the networking stack.
Whenever a user issues a transaction sending coins to another user, she first creates
a transaction that contains the sender’s pseudonym, receiver’s pseudonym, and the
transaction amount. This transaction is then broadcasted over the peer-to-peer net-
work, which allows other users to validate her transaction and include it in the global
chain. The authors demonstrate that, by using simple estimators to infer the source
IP of each transaction broadcast, an eavesdropper adversary can link IP addresses to
Bitcoin pseudonyms with an accuracy of up to 30%.

To address the anonymity issue in blockchain, Ben-Sasson et al. [35] propose
Zerocash, a decentralized anonymous payments scheme for Bitcoin, that leverages
recent advances in zero-knowledge Succinct Non-interactive ARguments of Knowl-
edge (zk-SNARKs) [36]. The proposed payment scheme enables users to directly
pay each other in a private manner: the transaction does not reveal the payment’s ori-
gin, destination, and transferred amount. Zerocash extends and upgrades the Bitcoin
protocol and software with anonymous transactions supporting privacy-preserving
payments. As a result, despite using some of the same technology and software as
Bitcoin, Zerocash becomes a new system that is distinct from Bitcoin. This new
protocol introduces two types of coins: zerocoins (anonymous coins), and basecoins
(non-anonymous coins). Comparing to Bitcoin’s transactions, payment transactions
created by the Zerocash protocol conceal any information that can be used to infer
payment’s origin, destination, or amount. Furthermore, the validity of the transaction
can be verified on constant time via the use of a zk-SNARK. Users can convert from
basecoins to zerocoins, send zerocoins to other users, and split or merge zerocoins
they own in any way that preserves the total value, just as it is with Bitcoin.

However, it is worth noting that anonymous transactions take away the traceability
of blockchain transactions. Basically, without knowing a transaction’s origin and



Advances in Blockchain Security 381

destination, it is impossible to trace back the transaction history. Some applications
like supply-chain require a high degree of traceability, which means the transactions
cannot be anonymous. The anonymity is also criticized for limiting accountability,
regulation, and oversight. However, by using zk-SNARK, Zerocash is not limited to
enforcing only the basic monetary invariants of a currency system. A wide range of
policies canbe supportedby the underlying zk-SNARKcryptographic proof protocol.
For instance, a user can prove in zero-knowledge that he paid his due taxes on all
transactions without revealing those transactions, their amounts, or even the amount
of taxes paid. In principle, if the policy can be specified by NP statements, it can be
implemented using zk-SNARKs, and included in Zerocash.7

4.2 Consensus Protocols

Gilad et al. [37] present Algorand, a new consensus protocol that is designed to
confirm transactions as fast as one minute. The core of Algorand uses a Byzantine
agreement protocol, called BA, that scales to a large number of users, thereby allow-
ing nodes in Algorand to agree on a new block in a short amount of time and without
the possibility of forks. Algorand decides to employ BA due to the fact that it uses of
verifiable random functions (VRFs) to randomly select users in a private, verifiable,
and non-interactive way. Algorand mainly tackles three challenges: (1) it must avoid
Sybil attacks, (2) it should scale to millions of users, and (3) it must be resilient to
DoS attacks, and robust to users dropping out.

Algorand addresses these challenges in the following manner. First, Algorand
assigns a weight to each user to prevent Sybil attacks. BA is designed to ensure
consensus as long as aweighted fraction of the users are honest. Second,BA improves
scalability by choosing a small committee that is formed by randomly selecting from
the total set of users, to run each step in the protocol. All other users observe the
protocol messages that allow them to learn the block that was agreed upon. Third,
to hinder an adversary from manipulating committee selection, they are selected
in a private, verifiable, and non-interactive way by the BA. In specific, each user
in the system can independently and reliably determine whether they are chosen
as a committee member, by computing a VRF that takes as input their private key
and some information from the blockchain. Finally, to hinder an adversary from
targeting a committee member after that member sends a message, BA requires
committee members to speak only once. Therefore, once a committee member sends
hismessage, hence revealing his identity to the adversary, the BAdiscards any further
messages coming from that committee member.

In [38], the authors present Bitcoin-NG, a scalable blockchain protocol, that uses
the same trustmodel asBitcoin.Bitcoin-NG’s latency and throughput are limited only
by the propagation delay of the network and the processing capacity of the individ-
ual Bitcoin nodes, respectively. The key idea in designing Bitcoin-NG is decoupling

7 http://zerocash-project.org/q_and_a.

http://zerocash-project.org/q_and_a


382 T. Nguyen et al.

Bitcoin’s blockchain operation into two planes: leader election and transaction seri-
alization. In particular, time is divided into epochs, where each epoch has a single
leader. In the same manner as Bitcoin, a leader is elected randomly and infrequently.
Once a leader is chosen, the leader is able to to serialize transactions at his or her dis-
cretion until the election of a new leader, which marks the end of the former’s epoch.
While this approach is substantially different from that of Bitcoin, the authors claim
that Bitcoin-NG still maintains Bitcoin’s security properties. In fact, leader election
is already taking place in Bitcoin, though it is implicit. However, in Bitcoin, the
task of the leader is serializing history, thereby freezing the system during the time
between leader elections. On the contrary, leader election in Bitcoin-NG is forward-
looking and ensures that the system is still able to process incoming transactions
continuously.

Miller et al. [39] present an alternative to the Practical BFT [3] protocol, called
HoneyBadgerBFT, the first practical asynchronous BFT protocol, which ensures
liveness without making any timing assumptions. The authors make major effi-
ciency improvements on the best state-of-the-art asynchronous atomic broadcast
protocol that requires each node to transmit O(N 2) bits for each committed transac-
tion, thereby significantly limiting its throughput for all but the smallest networks.
The cause of this efficiency is twofold. First, there is redundant work among the par-
ties. However, naively eliminating the redundancy negatively impacts the fairness
property, and paves the way for targeted censorship attacks. A solution is invented to
overcome this problem by using a threshold public-key encryption scheme to tolerate
these attacks. The second cause of the efficiency is the use of a suboptimal instantia-
tion of the Asynchronous Common Subset (ACS) subcomponent. The authors show
how to efficiently instantiate ACS by combining existing but overlooked techniques:
(1) employ erasure codes for an efficient and reliable broadcast and (2) reduce ACS
to reliable broadcast in the context of multi-party computation.

4.3 Trusted Execution Environments (TEE) in Blockchain

TEE in a computer system is realized as a module that performs some verifiable
executions in such a way that no other applications, even the OS, can interfere
[40]. Simply speaking, a TEE module is a trusted component within an untrusted
system. Memory regions in TEE are transparently encrypted and integrity-protected
with keys that are only available to the processor. TEE’s memory is also isolated
by the CPU hardware from the rest of the host’s system, including high-privilege
system software. Thus, this isolation protects the integrity and confidentiality of
the enclave’s execution from any malicious software running on the same system
and ensures that the operating system, hypervisor, and other users cannot access the
TEE’s memory. Among available implementations of TEE, Intel SGX [41] supports
generating remote attestations that are used to prove the correct execution of programs
running inside TEE.



Advances in Blockchain Security 383

The authors in [42] offer a key observation that TEEs and blockchains have com-
plementary properties. On the one hand, a blockchain can guarantee strong availabil-
ity and persistence of its state, whereas a TEE cannot guarantee availability, since the
host can arbitrarily terminate TEEs. Additionally, it cannot reliably access the net-
work or persistent storage. On the other hand, a blockchain requires a huge amount
of computing power, and exposes its entire state for public verification, while com-
putation in TEE only incurs negligible overhead compared with native computation.
TEE also offers verifiable computation with confidential state via remote attestation
(e.g., SGX). Thus it is intuitive to build hybrid protocols that combine the advantages
of both, in a way that we can exploit the immutability of blockchain to overcome
the shortcomings of TEEs, and offload on-chain computation to TEE. However, note
that using TEE also introduces a trusted entity to the blockchain system, which alters
the trust model.

Cheng et al. [42] propose Ekiden, a system for highly performant and privacy-
preserving smart contracts. The key idea behind the design of Ekiden is a secure and
principled combination of blockchains and trusted hardware. Ekiden combines any
desired underlying blockchain systemwith TEE-based execution. The design uses an
architecture in which computation and consensus are separated. There are two main
entities in the Ekiden architecture: compute nodes and consensus nodes. Compute
nodes in Ekiden are tasked with performing smart-contract computation over private
data off-chain in TEEs, then attesting the integrity of their execution on chain. In
addition, the consensus nodes in Ekiden maintain the underlying blockchain, which
do not need to use trusted hardware. Ekiden can be applied on top of any consensus
mechanisms, in fact, it only requires a blockchain that can validate remote attestations
from compute nodes. Therefore, the main advantage of Ekiden is that it can scale
consensus and compute nodes independently according to performance and security
needs.

In [43], the authors use TEE to improve the privacy of Bitcoin lightweight clients,
in terms of concealing clients’ addresses and transactions, without compromising the
performance of the assisting full nodes. Specifically, they propose BITE, a solution in
which anSGXenclave is runwithin an untrusted full node. TheSGXenclave is tasked
with validating transactions sent by clients. Since SGX provides code integrity and
data confidentiality for enclaves, such a solution can preserve privacy and integrity
of client requests. However, the authors also show that, although SGX can prevent
a malicious software from directly accessing the enclave’s memory, certain secret-
dependent access patterns to external storage can still reveal the client’s address. An
example of such external storage is the transaction database. SGX is also suscepti-
ble to side-channel attacks, in which secret-dependent enclave data access patterns
or control flow can be inferred by malicious software running in the same host. In
specific, the adversary can monitor shared resources, such as caches, to gain insight
into the execution of an SGX enclave. Taking into consideration such limitations of
SGX, the authors devise a solution based on primitives such as oblivious transfer
mechanisms, that enables client requests to be processed privately, even in the pres-
ence of the enclave’s privacy leakage, without compromising the system’s overall
performance.



384 T. Nguyen et al.

Lind et al. [44] leverage TEE to address the availability problem of state channels.
Themain insight is that, rather than having the parties to rely on the blockchain system
to detect dishonest behaviors during off-chain transactions, they propose a design
for a payment network in which parties use TEEs as a trusted entity to ensure correct
protocol execution. In particular, they propose Teechain, a new payment network
that supports highly secure and instant payments on existing blockchains. The main
advantage of Teechain is that it only requires asynchronous blockchain access, that
is, it makes no assumption on the timing of reading and writing transactions on
the blockchain. Teechain maintains fund deposits for off-chain payment channels by
using secure and trusted treasuries, which are protected by implementing them inside
TEEs. By trusting the TEEs, treasuries can adopt a new efficient off-chain payment
protocol that simplifies both payment and finalizing payment. To make Teechain
robust against TEE failures or compromises, the state of each treasury is replicated
among a small committee. In each committee of treasuries, a treasury must obtain
approvals from a subset of other committee treasuries to be able to issue an off-chain
transaction or finalize a payment channel. Hence, the efficiency of payment channels
as a whole is improved by the TEEs, but the security guarantees of Teechain do not
depend on each individual TEE.

5 Conclusions

In this chapter, we have surveyed existing literature on recent advances in the security
of blockchain. In particular, we have shown several recent attacks, especially on
network and smart contacts, and reviewed some security enhancement solutions
for blockchain. It is suggested that the blockchain technology is still susceptible to
various attacks that could obstruct an entire system and potentially cost hundreds
of millions of dollars. Therefore, despite the great potential of blockchain, it is still
in its early stage and a lot of research effort is needed to realize the vision of a
decentralized platform for various applications.

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009). http://www.bitcoin.org/
bitcoin.pdf

2. Conti, M., Kumar, E.S., Lal, C., Ruj, S.: A survey on security and privacy issues of bitcoin.
IEEE Commun. Surv. Tutor. 20(4), 3416–3452 (2018)

3. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. OSDI 99(1999), 173–186
(1999)

4. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart,
D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a distributed operating
system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference,
pp. 1–15 (2018)

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf


Advances in Blockchain Security 385

5. Nguyen, T.D., Thai, M.T.: A blockchain-based iterative double auction protocol using multi-
party state channels. ACM Trans. Internet Technol. (TOIT) 21(2), 1–22 (2021)

6. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things.
IEEE Access 4, 2292–2303 (2016)

7. Zhou, S., Möser, M., Yang, Z., Adida, B., Holz, T., Xiang, J., Goldfeder, S., Cao, Y., Plattner,
M., Qin, X., et al.: An ever-evolving game: evaluation of real-world attacks and defenses in
ethereum ecosystem. In: 29th {USENIX} Security Symposium ({USENIX} Security 20), pp.
2793–2810 (2020)

8. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: Zeus: analyzing safety of smart contracts. In:
NDSS (2018)

9. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of
cryptography and privacy-preserving smart contracts. In: IEEE Symposium on Security and
Privacy (SP), vol. 2016. IEEE, 839–858 (2016)

10. Zhang, M., Zhang, X., Zhang, Y., Lin, Z.: {TXSPECTOR}: uncovering attacks in ethereum
from transactions. In: 29th {USENIX} Security Symposium ({USENIX} Security 20), pp.
2775–2792 (2020)

11. Merkle, R.: One way hash functions and des. In: Conference on the Theory and Application
of Cryptology, pp. 428–446. Springer (1989)

12. Diffie, W.: The first ten years of public-key cryptography. In: Proceedings of the IEEE, pp.
560–577 (1988)

13. Garfinkel, S.: Public key cryptography. Computer 29(6), 101–104 (1996)
14. Schollmeier, R.: A definition of peer-to-peer networking for the classification of peer-to-peer

architectures and applications. In: Proceedings First International Conference on Peer-to-Peer
Computing, pp. 101–102. IEEE (2001)

15. Badreddin, O., Gomez Rivera, A., Malik, A.: Blockchain fundamentals and development plat-
forms. In: Proceedings of the 28th Annual International Conference on Computer Science and
Software Engineering, pp. 377–379. ACM (2018)

16. Penard, W., van Werkhoven, T.: On the secure hash algorithm family. In: Cryptography in
Context, pp. 1–18 (2008)

17. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer
network. In: 24th {USENIX} Security Symposium ({USENIX} Security 15), pp. 129–144
(2015)

18. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: International
Conference on Financial Cryptography and Data Security, pp. 436–454. Springer (2014)

19. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in bitcoin. In:
Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp.
906–917 (2012)

20. Apostolaki,M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on cryptocurrencies.
In: IEEE Symposium on Security and Privacy (SP), vol. 2017, pp. 375–392. IEEE (2017)

21. Saad, M., Cook, V., Nguyen, L., Thai, M.T., Mohaisen, A.: Partitioning attacks on bitcoin:
colliding space, time, and logic. In: 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp. 1175–1187. IEEE (2019)

22. Tran, M., Choi, I., Moon, G.J., Vu, A.V., Kang, M.S.: A stealthier partitioning attack against
bitcoin peer-to-peer network. In: IEEE Symposium on Security and Privacy (S&P) (2020)

23. Apostolaki, M., Marti, G., Müller, J., Vanbever, L.: Sabre: protecting bitcoin against routing
attacks. In: NDSS Symposium (2019)

24. Permenev, A.,Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.: Verx: safety verifi-
cation of smart contracts. In: 2020 IEEE Symposium on Security and Privacy, SP, pp. 18–20
(2020)

25. Torres, C.F., Steichen,M., et al.: The art of the scam:Demystifying honeypots in ethereum smart
contracts. In: 28th {USENIX} Security Symposium ({USENIX} Security 19), pp. 1591–1607
(2019)

26. Perez, D., Livshits, B.: Broken metre: attacking resource metering in evm. In: NDSS Sympo-
sium (2019)



386 T. Nguyen et al.

27. Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., Vechev, M.: zkay: specifying
and enforcing data privacy in smart contracts. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1759–1776 (2019)

28. Mirkin, M., Ji, Y., Pang, J., Klages-Mundt, A., Eyal, I., Jules, A.: Bdos: blockchain denial of
service. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security (2020)

29. Bonneau, J.: Hostile blockchain takeovers (short paper). In: International Conference on Finan-
cial Cryptography and Data Security, pp. 92–100. Springer (2018)

30. Bag, S., Ruj, S., Sakurai, K.: Bitcoin block withholding attack: analysis and mitigation. IEEE
Trans. Inf. Forens. Secur. 12(8), 1967–1978 (2016)

31. Kwon, Y., Kim, D., Son, Y., Vasserman, E., Kim, Y.: Be selfish and avoid dilemmas: fork after
withholding (faw) attacks on bitcoin. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 195–209 (2017)

32. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: International
Conference on Financial Cryptography and Data Security, pp. 6–24. Springer (2013)

33. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy
in bitcoin. In: International Conference on Financial Cryptography and Data Security, pp.
34–51. Springer (2013)

34. Fanti, G., Viswanath, P.: Deanonymization in the bitcoin p2p network. In: Advances in Neural
Information Processing Systems, pp. 1364–1373 (2017)

35. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash:
decentralized anonymous payments frombitcoin. In: IEEESymposiumonSecurity andPrivacy,
vol. 2014, pp. 459–474. IEEE (2014)

36. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive argu-
ments via linear interactive proofs. In: Theory of Cryptography Conference, pp. 315–333.
Springer (2013)

37. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine
agreements for cryptocurrencies. In: Proceedings of the 26th SymposiumonOperating Systems
Principles, pp. 51–68 (2017)

38. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-ng: a scalable blockchain protocol.
In: 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
16), pp. 45–59 (2016)

39. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft protocols. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 31–42 (2016)

40. Nguyen, T., Thai, M.T.: Denial-of-service vulnerability of hash-based transaction sharding:
attack and countermeasure. In: (2020). arXiv preprint arXiv:2007.08600

41. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU based attestation
and sealing 13, 7 (2013)

42. Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., Juels, A., Miller, A., Song, D.:
Ekiden: a platform for confidentiality-preserving, trustworthy, and performant smart contracts.
In: IEEE European Symposium on Security and Privacy (EuroS&P), vol. 2019, pp. 185–200.
IEEE (2019)

43. Matetic, S., Wüst, K., Schneider, M., Kostiainen, K., Karame, G., Capkun, S.: {BITE}: Bitcoin
lightweight client privacy using trusted execution. In: 28th {USENIX} Security Symposium
({USENIX} Security 19), pp. 783–800 (2019)

44. Lind, J., Naor, O., Eyal, I., F. Kelbert, Sirer, E.G., Pietzuch, P.: Teechain: a secure payment
network with asynchronous blockchain access. In: Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pp. 63–79 (2019)

45. Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B.C., Wang, J.: Untangling blockchain: a
data processing view of blockchain systems. IEEE Trans. Knowl. Data Eng. 30(7), 1366–1385
(2018)

46. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, implications, and
separations for preimage resistance, second-preimage resistance, and collision resistance. In:
International Workshop on Fast Software Encryption, pp. 371–388. Springer (2004)

http://arxiv.org/abs/2007.08600


Advances in Blockchain Security 387

47. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain Technology Overview. Cornell Univer-
sity (2019). arXiv preprint arXiv:1906.11078

48. Hafid, A., Hafid, A.S., Samih, M.: Scaling blockchains: a comprehensive survey. In: IEEE
Access, vol. 8, pp. 125 244–125 262 (2020)

49. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decentralized digital
currencies. IEEE Commun. Surv. Tutorials 18(3), 2084–2123 (2016)

50. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin
security and performance with strong consistency via collective signing. In: 25th {usenix}
Security Symposium ({usenix} Security 16), pp. 279–296 (2016)

51. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding
protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 17–30 (2016)

52. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Omniledger: A
secure, scale-out, decentralized ledger via sharding. In: IEEE Symposium on Security and
Privacy (SP), vol. 2018. IEEE, 583–598 (2018)

53. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full sharding.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 931–948 (2018)

54. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 949–966
(2018)

55. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state channels:
payment networks that go faster than lightning. In: International Conference on Financial
Cryptography and Data Security, pp. 508–526. Springer (2019)

56. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and privacy
with payment-channel networks. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 455–471 (2017)

57. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs over
cryptocurrencies. In: IEEE Symposium on Security and Privacy (SP), pp. 106–123. IEEE
(2019)

58. Malavolta,G.,Moreno-Sanchez, P., Schneidewind, C., Kate,A.,Maffei,M.:Anonymousmulti-
hop locks for blockchain scalability and interoperability. In: NDSS (2019)

59. Mavroudis, V.,Wüst, K., Dhar, A., Kostiainen, K., Capkun, S.: Snappy: fast on-chain payments
with practical collaterals. In: NDSS (2020)

60. Li, P., Miyazaki, T., Zhou, W.: Secure balance planning of off-blockchain payment channel
networks. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp.
1728–1737. IEEE (2020)

61. Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 439–
453 (2017)

62. Yu, H., Nikolić, I., Hou, R., Saxena, P.: Ohie: blockchain scaling made simple. In: IEEE
Symposium on Security and Privacy (SP), pp. 90–105. IEEE (2020)

http://arxiv.org/abs/1906.11078

	 Advances in Blockchain Security
	1 Introduction
	2 Background
	2.1 Cryptographic Primitives
	2.2 Blockchain Primer

	3 Blockchain Security: Attacks and Counter-measures
	3.1 Blockchain Network
	3.2 Smart Contracts
	3.3 Other Security Issues

	4 Other Significant Advances in Blockchain
	4.1 Anonymous Transactions
	4.2 Consensus Protocols
	4.3 Trusted Execution Environments (TEE) in Blockchain

	5 Conclusions
	References


