
Blockchain in a Nutshell

Duc A. Tran and Bhaskar Krishnamachari

Abstract Blockchain enables a digital society where people can contribute, collab-
orate, and transact without having to second-guess trust and transparency. It is the
technology behind the success of Bitcoin, Ethereum, and many disruptive applica-
tions and platforms that have positive impact in numerous sectors, including finance,
education, health care, environment, transportation, and philanthropy, to name a few.
This chapter provides a friendly description of essential concepts, mathematics, and
algorithms that lay the foundation for blockchain technology.

1 Introduction

Let us consider the following favorite game of our childhood: Alice and Bob each
bet $100 on the outcome of a coin toss, whether it is “head” or “tail”. Alice calls the
outcome and Bob is the tosser. Alice will win the bet if her guess is correct and Bob
will otherwise. It is so easy and a simple game, isn’t it? Not really. What if Alice and
Bob play this game remotely or separated by a brick wall such that Alice does not
see the toss? How can Alice trust that Bob is honest? Bob can easily cheat; knowing
Alice’s prediction he can say the opposite outcome. Even in the case he is honest,
Alice may not be. She can run away not giving Bob the $100 she bet, assuming she
sprints so fast that he cannot catch her.

The above game is an example of a big real-world problem we see almost every-
where. That is, how to quickly process transactions for everybody, possibly involving
multiple people, in an environment not always honest, where people may not trust
one another?

Our society has hundreds, thousands, of years been relying on the intermediaries
to solve that problem. If we do not trust each other, let us do the transaction through

D. A. Tran (B)
University of Massachusetts, 100 Morrissey Blvd, Boston, MA 02125, USA
e-mail: duc.tran@umb.edu

B. Krishnamachari
University of Southern California, 3740 McClintock Avenue, Los Angeles, CA 90089, USA
e-mail: bkrishna@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. A. Tran et al. (eds.), Handbook on Blockchain, Springer Optimization
and Its Applications 194, https://doi.org/10.1007/978-3-031-07535-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07535-3_1&domain=pdf
mailto:duc.tran@umb.edu
mailto:bkrishna@usc.edu
https://doi.org/10.1007/978-3-031-07535-3_1

4 D. A. Tran and B. Krishnamachari

a trusted middleman, hence the existence of banks for financial activities, central
servers for storage and computation, or, at a larger scale, central governments for
maintaining the society. The trust put on the intermediaries is an assumed trust: we
assume that they will do what they are supposed to do. That is the perfect scenario,
which is not the case in practice. Mistakes are made by humans. Machines fail.
Hackers are always looking for ways to penetrate into systems. Even in an ideal
world where such errors or attacks do not happen, the conventional way of relying
on a central authority to store information, process transactions, or manage activities
for many people and institutions cannot scale. The authority is the bottleneck. It is
increasingly expensive in both money and time when there are more workloads.

This is where blockchain comes in. It is completely decentralized with no inter-
mediary involved. Blockchain overcomes the weaknesses of the centralized inter-
mediary approach in four crucial aspects: trust, security, privacy, and transparency.
Blockchain is trustless; there is no need to raise the trust question. Bob and Alice
in the aforementioned betting game do not have to worry about the other cheating.
Blockchain is secure,while a central server as a single point of contact can be attacked
or the data therein stored may maliciously be altered, blockchain as a system always
functions correctly 24/7. As identity privacy is of utmost importance today, it can be
leaked in a middleman-based system. Blockchain does not allow this to happen as
it is designed to hide personal identities. Lastly, about transparency, while today’s
banks may not disclose to us what they do behind closed doors with our deposited
money, blockchain makes all the transactions visible and verifiable. Since there is
no concept of personal identity on the blockchain, making transactions visible does
not cause loss of privacy.

Blockchain is capable to provide the above desirable properties thanks to its
architecture as a decentralized network utilizing many computers owned by people.
These computers collectively store and process transactions in a way that although
working autonomously they can still achieve consensus in decision-making and be
robust againstmalfunctions, attacks, dishonesty, and self-interests.On the surface,we
can think of blockchain as an Internet-like infrastructure for processing transactions.
Using the Internet, one can send data from one computer to another without having
to worry about how the data finds its way to get delivered or whether the data can
be lost; the Internet takes care of all those things so that we can focus on the main
business job. Similarly, if people transact on the blockchain, they do not have to
worry about many what-ifs, including trust about whether the other side may act as
agreed upon or whether money may be lost or data maliciously changed. Blockchain
has its name because, as a digital ledger, the transactions are stored in blocks, each
new block appended to the previous to form a chain; hence the name blockchain.
Two consecutive blocks are mathematically linked in such a way that any change
in an existing block would violate the mathematics of the link with the next block.
The mathematical methods used for this linking are from the field of mathematical
cryptography, hence the name crypto in “cryptocurrencies” we see trending today.

Trust is the biggest bottleneck in realizing transactions. It is the biggest bottleneck
in advancing the society. As a trustless system, blockchain removes that bottleneck.
It makes sense that many consider blockchain the next big thing since the birth of

Blockchain in a Nutshell 5

Fig. 1 The five constituent components of blockchain: decentralized network, cryptography, con-
sensus, ledger, and contracts

the Internet. The Internet removes the geographical constraint, moving people closer
for communication despite geographical distances. Blockchain, by removing the
trust distance, moves people closer for doing actual transactions. Putting blockchain
together with AI, a field of great mention today, we can think of AI as the brain of a
system whereas Blockchain is the body. AI needs computing resources and training
data to realize its promise. Blockchain is no less important because it is the best way
to incentivize people to contribute computing power and good data, the only way if
we care about trust, security, privacy, and transparency.

Blockchain is still in an early application stage. The space for blockchain-based
developments is immense. To consider whether blockchain may apply to your busi-
ness, at least four out of six following conditions should hold: (1) data is shared by
multiple parties, (2) data is updated by multiple parties, (3) verification is required,
(4) it is expensive to rely on intermediaries, (5) valid transactions must be eventually
executed, and (6) transactions are inter-related. Most applications satisfy this, which
are found in almost every sector, including financial services, productmanufacturing,
energy and utilities, health care, e-government, retail and consumer, entertainment
and media, just to name a few.

According to Harvard Business Review [23], one can argue that Blockchain is not
only a disruptive technology, but also has the potential to create new foundations for
our economic and social systems; it is a foundational technology.A recent PwC report
[39] projected that Blockchain by 2030 will potentially add 1.76 trillion USD to the
global GDP, create 40 million new jobs, and be used to support 10–20% of global
business infrastructures. The 2020 annual global blockchain survey of Deloitte [13]
interviewing 1488 business leaders from 14 countries, who had certain knowledge
about Blockchain, found that 39% of the businesses applied Blockchain, a 23%
increase from 2019, 55% considered Blockchain a top-5 priority, and 82% would
hire blockchain staff within 12 months.

6 D. A. Tran and B. Krishnamachari

2 What is Blockchain

Having introduced the motivation for Blockchain and its potentials, we now focus
on what it actually is. To non-technical people, one can define Blockchain based
on what it offers: a computing technology for transaction recording and processing
that is safe (no loss or mutability of data possible), transparent (easy verification and
tracing), and trustless (confidence of transacting without any intermediary). Tech-
nically, the most complete definition of Blockchain should see it as a decentralized
computing system of five constituent components: decentralized networking, mathe-
matical cryptography, distributed consensus, transaction ledger, and smart contracts,
as illustrated in Fig. 1:

• Decentralized networking: For computing, blockchain relies on a decentral-
ized network of computers, called blockchain nodes, that contribute comput-
ing resources to help store and process transactions. These computers work
autonomously and communicate with each other in a peer-to-peer (P2P) manner.
Most blockchain networks including Bitcoin adopt an unstructured P2P topology,
i.e., a node chooses its neighbors arbitrarily. Some networks such as Ethereum use
a structured one like Kademlia Distributed Hash Table [32] to optimize the P2P
communication. Unstructured P2P may be less efficient than structured P2P, but
the latter is more difficult to maintain, especially in a permissionless blockchain.
Ethereum uses Kademlia but only as an add-on assistance [45]; in other words, it
still works with any unstructured P2P topology, albeit less efficient if only so.

• Mathematical cryptography: Cryptographic methods used in blockchain provide
mathematical proofs that the blockchain must function as supposed to. Crypto-
graphic hash is used to link data blocks in the chain so that no data alteration is
allowed post recording into the blockchain. Each transaction is encrypted with
public-key cryptography to ensure that the sender is verifiable using digital signa-
ture and only the intended recipient of the transaction can be the receiver. Trans-
action confidentiality is achieved thanks to the method of Zero Knowledge Proof
[4]. The choice of cryptography to use determines the performance and guaran-
tees of the blockchain. For example, Dogecoin blockchain clones Bitcoin but using
simpler cryptographic functions to increase transaction throughput; the mining in
Dogecoin is based on SCRYPT which is faster and easier to run than SHA256
used in Bitcoin. This, however, results in weaker security, less robust to attacks by
dishonest nodes.

• Transaction ledger: As a storage technology, blockchain is a digital ledger that
stores the transactions chronologically in blocks which are added in an append-
onlymanner. This is the default data structure of the ledger for almost all blockchain
networks. However, some blockchain networks, for example, Hedera [3] and
Fantom [36], design the ledger as a directed acyclic graph (DAG) of blocks
(or transactions) instead of a chain structure which can only append blocks.
A chain is a simple case of DAG because it shares the property of being directed
acyclic. The former offers simplicity but the latter is more efficient in transaction
processing (for example, searching for a transaction is faster). The ledger struc-

Blockchain in a Nutshell 7

ture, the block structure, and the number of transactions in a block are important
considerations when designing the ledger component of the blockchain.

• Distributed consensus: When a decision needs to be made, for example, whether
a transaction is valid, there is no central authority to decide. Instead, the decision
is made based on consensus reached among the participating nodes. Therefore,
a blockchain network must have a consensus protocol to make sure that every
transaction or block added to the blockchain is the one and only version of the
truth that is agreed upon by all the nodes. Proof-of-work consensus [35], giving
more decision power to nodes with more hardware-computing power, is adopted
in early blockchain networks (Bitcoin, Litecoin, Ethereum in its original version).
Proof-of-stake consensus [17], giving more decision power to nodes with more
financial stake, is popular among today’s blockchain networks; its first functioning
use for cryptocurrency was in Peercoin in 2012 [24]. The choice of consensus
protocol is the most critical consideration in designing a blockchain network.

• Smart contracts: A blockchain can be considered a non-conventional kind of com-
puters to perform certain tasks. Instead of being a computer integrating built-in
computing processing units (the CPUs), blockchain is a decentralized computer
utilizing hundreds or thousands of computers anywhere in the world. Applications
that run on the blockchain are implemented as “smart contracts”, a term coined
by Nick Szabo in the 1990s [43]. A smart contract is nothing but a computer pro-
gram; the term is used because an application deployed on the blockchain always
functions correctly as programmed, like executing the conditions in a legal con-
tract. This contract is smart because of its automated execution without human
intervention.

Next, we elaborate further on these components and their importance. We do not
attempt to cover every aspect and every detail. Instead, we select certain issues to
discuss hoping that the reader can have a quick understanding of what blockchain
is and requires. More details will follow later to dig deeper into the technicality of
blockchain.

2.1 The Blockchain Computer

We can view blockchain as a computer whose architecture consists of three layers,
illustrated in Fig. 2: the P2P networking layer, the consensus layer, and the logic
layer. For example, Bitcoin is a blockchain computer that implements all these lay-
ers, whereas Ethereum implements the first two layers, leaving the logic layer to
application developers. Bitcoin is a purpose-specific blockchain computer that per-
forms only one application: create a digital currency, the Bitcoin cryptocurrency as
we all know, and functions for moving this currency between accounts. This appli-
cation is a built-in logic of the Bitcoin blockchain, and as such smart contract is not
a concept of Bitcoin. On the other hand, Ethereum is a universal blockchain com-
puter; it was designed to enable deployment of arbitrarily purposed applications on

8 D. A. Tran and B. Krishnamachari

Fig. 2 Architecture of Blockchain as a new kind of computer

the blockchain. Therefore, Ethereum is called a smart-contract blockchain network.
In contrast, Bitcoin is an application-specific blockchain, precisely a cryptocurrency
blockchain.

Viewing blockchain as a computer is an intuitive observation. Essentially, a com-
puter is a machine that automates processing of applications, and it is thus reasonable
that blockchain can be seen as a computer, at least virtually. In early years, with desk-
top computing, we have applications running on a desktop computer near us, in our
home or office; we control this desktop computer. The past decade has seen many
businesses moving to cloud computing; the cloud provider controls the “cloud com-
puter” (AWS cloud of Amazon or Azure Cloud of Microsoft). The future, very soon,
we argue will be the era of blockchain computing; nobody controls the blockchain
computer.

This is a natural evolution in computing. Cloud computing has replaced desktop
computing to reduce the cost to maintain the IT system for businesses and at the
same time more efficiently utilize computing resources. It is a one-stop shop to
satisfy all computing needs so that companies can focus more time on their business
logic. Compared to cloud computing, blockchain computing offers the benefit of
decentralization and trust guarantees. The cloud provider has the power tomanipulate
the cloud computer; we have to trust this organization. Blockchain computing is
trustless and anyone can be a part owner of it.

2.2 The Blockchain State

To interact with the blockchain, one needs an address or, interchangeably, an account.
The blockchain state consists of the set of addresses and information about them. As
the state changes from time to time, blockchain can be modeled as a state machine.
It starts with a genesis state (when the blockchain is launched) and transitions from
one state to the next upon triggering events (when transactions are added to the
blockchain). We need to keep track of the blockchain state at any point of time.
Depending on how the blockchain is designed, the state’s data structure may differ.

Blockchain in a Nutshell 9

It can be transaction based (the state information consists of the list of transactions) or
account based (the state information consists of account balances). The data structure
to represent transactions can also vary. We compare these models below, assuming
for simplicity that each transaction is a transfer of value (asset) between addresses.

Transaction-Based Model

In the transaction-based model, known as Unspent Transaction Output (UTXO) [35]
conceived by Bitcoin, each transaction can send value to one or more recipients. It
consists of the following information:

• Output field: A list of receiving addresses and the amount of fund to be sent to
each, respectively. Each transfer output is called a UTXO transaction.

• Input field: A list of UTXO transactions that will provide the fund for the transac-
tion. These UTXO’s previously sent funds to the sender and currently are unspent.

Figure3 provides an example of Bitcoin transactions. The very first transaction
Tx1, called the genesis transaction, sends 25 BTC to Alice. The input field is empty
because this is the very first transaction of the blockchain operation, meaning Alice is
the first recipient of Bitcoin (somebody has to be the first recipient). This transaction
results in creation of a UTXO transaction, Tx1(#1). The second transaction Tx2 is
initiated by Alice, sending 17 BTC to Bob and the rest, 8 BTC, to herself. The total
fund to send, 17 + 8 = 25 BTC, comes from the fund that Alice previously received
in UTXO Tx1 (#1). Because Tx1 (#1) is unspent, she has enough money for Tx2.
After this execution, UTXO Tx1 (#1) is marked as “spent” and new UTXO Tx2
(#1, #2) is created and marked as “unspent”. Later, Bob initiates transaction Tx3 to
send 8 BTC to Charlie, with the remaining 9 BTC to himself. The total fund to send,
8 + 9 = 17 BTC, comes from the fund that he previously received in UTXO Tx2
(#2). Because Tx2 (#2) is unspent, he has enough money to execute Tx3. After this
execution, UTXO Tx2 (#2) is marked as “spent” and new UTXO Tx3 (#4, #5) is
created.

The blockchain state is the set of current UTXO transactions. Each time a UTXO
transaction is used as an input in a new transaction, the input UTXO will be marked
as “spent” thus no longer usable and each output sending fund out will be created as
a new UTXO transaction. The new UTXO transaction(s) may be used later as input
providing funds to future transactions. The marking of input UTXO transactions as
“spent” is to avoid double spending, which means spending the same UTXO for two
different transactions. The UTXO blockchain state does not directly provide account
balances. To know how much Alice has in her account, one needs to sum all the
funds she received in current UTXO transactions.

In the case that the total input fund has more than the output, the remaining
balance can be sent to the sender’s own address to avoid losing fund. For example, in
transaction Tx4, Alice sends 3 BTC to Dave out of the 8 BTC she has available from
UTXO Tx2 (#3), but because UTXO Tx2 (#3) will be marked as “spent”, in order

10 D. A. Tran and B. Krishnamachari

Fig. 3 The Unspent Transaction Output (UTXO) model: the blockchain state at the current time is
the list of all unspent transactions

not to lose the 8 − 3 = 5 BTC she has remaining, she creates a new UTXO Tx4 (#7)
to send this 5 BTC to herself. She does not lose any money. In some blockchains, for
example, Bitcoin and Ethereum, Alice may not send all of the remaining balance to
her address; in this case, the leftover will be sent as reward to the blockchain node
that adds this transaction to the blockchain.

Account-Based Model

The account-based model [6] is more intuitive. It is like the account model of a
bank. The state consists of the balance information for each address. When there is
a transaction, the balances of the sender’s and receiver’s accounts will be updated
immediately and saved in the state. Therefore, when queried the account balance of
an address is instantly available without any computation.

A transaction in the account-based model is much simpler than a UTXO trans-
action. The former consists of only one receiving address and the amount of fund
to send. It is much faster to verify if the sender has enough fund, which is done by
simply comparing two numbers: whether the sender’s balance exceeds the amount
to send. In contrast, UTXO requires searching the blockchain state to see if the
input UTXOs are indeed unspent. Consequently, the account-based model offers a
clear advantage when it comes to enabling “smart contracts” (computer programs to
deploy applications on the blockchain). For smart contracts, a transaction can be not
only a transfer of value, but also a call to a function of arbitrary logic; it contains code
data for executing this function. To process a transaction thus involves execution of
the code in the transaction. As smart contracts are computationally expensive, sim-
plicity of computation is important. UTXO creates computational overhead because
all spending transactions must be explicitly recorded.

Blockchain in a Nutshell 11

UTXO is suitable for a cryptocurrency blockchain like Bitcoin which serves only
one application: transfer of money. Computation is not that complex. Another reason
is due to transparency and traceability. Back to Fig. 3, if we want to know how Dave
received 3 BTC from Alice in transaction Tx4, we can trace all the way to the
beginning how the fund started and flowed. We can find that it started from Alice in
Tx1 (#1) to Alice in Tx2 (#3) to Dave in Tx4 (#6). In other words, every transfer has
a non-fungible path. With the account-based model, if Dave received 3 BTC from
Alice, this fund is fungible; we only know that this 3 BTC came from Alice, not
knowing any further where this particular 3 BTC arrived at Alice. In other words,
UTXO is more transparent. That said, one could argue that the account-based model
offers better privacy.

2.3 The Chain Structure

By default, and adopted in all but a few unpopular blockchain designs, the blockchain
ledger follows a chain structure. The data is organized into a chain of data blocks:
b1, b2, b3, ...When new transactions need to be saved, they are put in a new block
which will be appended to the last block of the existing chain. In an account-based
blockchain, e.g., Ethereum, a block also contains the blockchain state information
(the balances of all the accounts at the current time).

Besides storing the transaction data, blockchain state if applicable, and necessary
header information, the block has two important attributes:

• Block ID bi .id: This is set to the hash value of the block content using a crypto-
graphic hash function H , i.e., bi .id = H(bi). This hash function is predefined and
publicly known.

• Previous hash bi .prev: This is set to the ID of the previous block bi−1 to which bi
is appended, i.e., bi .prev = bi−1.id.

It is noted that the block ID may not necessarily be stored in the block because it can
be computed from the block’s content.

The previous hash information is critical in maintaining the data integrity of the
chain. If any part of any block is changed after it is recorded in the blockchain,
this will be detected. This is because for a new block to be added to the blockchain
it must pass a procedure called block validation. A new block bi+1 is valid if and
only if

1. Previous hash is consistent: bi+1.prev = H(bi).
2. All the transactions in bi+1 are valid.
3. Previous block bi is valid.

Let us put Step 2 aside (to be discussed later). The verification in Step 1 requires
computing the hash value of bi and comparing it with bi+1.prev. Step 3 requires
running the same block validation procedure to verify the validity of block bi . Con-
sequently, the validation procedure for block bi+1 requires checking whether the

12 D. A. Tran and B. Krishnamachari

previous hash value stored in block b j equals the hash value of its previous block
b j−1 for all j ≤ i + 1. If an earlier block, say b j−1, has been changed from its origi-
nal value, when we compute its hash value, H(b j−1), we will find it not identical to
the previous hash value b j .prev stored in block b j . This is a violation and as a result
the new block bi+1 is concluded to be invalid and not added to the blockchain.

A consequence of block b j being changed is that the blockchain will never grow
beyond the time of this change. Onemight say, “that means, the blockchain is useless
then, because just one block’s modification halts the whole blockchain”. This is true
if the blockchain network consists of only one computer. In practice, the blockchain
network runs many computers, where the blockchain data is replicated on every
computer node. For a node to ensure that its blockchain copy is correct (same as
the globally correct version), it needs to compare its copy with that of the neighbors
and choose to use the longest1 blockchain as the correct one. Before this comparison
takes place, the node needs to check the validity of each neighbor’s blockchain copy,
which requires validating all the blocks in this copy. Therefore, if a blockchain copy
from some node contains a violation, this copy will fail the validation step. As such,
the bad copy will not be used by the honest nodes in the network.

2.4 Use of Cryptography

It is now clear that the data immutability of the blockchain is achieved thanks to
the previous hash information linking between consecutive blocks in the blockchain.
However, in theory, a hash function may have different input values resulting in the
same hash output, meaning that block b j−1 can be changed from its original value
such that its hash value, H(bi−1), remains the same as before, which equals the
previous hash value b j .prev stored in block b j . In this case, the block validation
procedure cannot detect the change. The choice of the hash function is therefore
critical. We should choose one so that even though such a block alteration without
being detected is theoretically possible, realizing it is practically impossible. For
this reason, the hash function H used in blockchain must be a cryptographic hash
function, not any arbitrary hash function.

Recall that a hash function is a one-way function that takes an input of arbitrary
length to output a string of constant length, here assuming that values are represented
as binary strings. For example, SHA256 is a hash function that outputs a binary string
of 256 bits. A cryptographic hash function H is a hash function with three properties:

• Collision-resistant: It is infeasible to find different input messages x and y such
that H(x) = H(y).

• Hiding: Given the output c = H(x), it is infeasible to find an input x .

1 Comparing based on blockchain length (the number of blocks in the blockchain) is adopted inmost
blockchain networks, but other comparison criteria have also been explored, for example, choosing
the “heaviest” blockchain copy as the correct one, where “heaviness” is a weighted generalization
of the length.

Blockchain in a Nutshell 13

• Puzzle-friendly: If we know the hash value c = H(r‖x) of an input message made
by concatenation of r and x , and even if we know part of the input, x , we cannot
reconstruct the remaining input r in time complexity faster than 2n where n is the
binary length of output c.

Because of these properties, knowing b j .prev = H(b j−1), it is infeasible to find
b

′
j−1 �= b j−1 such that H(b

′
j−1) = H(b j−1). With H being a cryptographic hash

function, no one can alter an existing block not to be detected. The blockchain data
is tamper-proof.

Cryptographicmethods also havemanyother uses in the operation of a blockchain.
Recall the coin bet between Alice and Bob at the start of this chapter, in which a
situation is what if Bob cheats. A cryptographic hash function H can solve this
cheating problem as follows:

1. Alice: suppose that her prediction is x (“head” or “tail”).

• Generate a secret random number r (of some large binary length n).
• Compute c = H(r‖x) (called “prediction commitment”).
• Send c to Bob, instead of sending her prediction as raw data.

2. Bob: upon receipt of the prediction commitment c, he will send Alice the honest
outcome x∗ of the coin toss. Because the hash function H is cryptographic, he
does not know the ground-truth prediction x of Alice, and as such he has no
reason to cheat.

3. Alice: upon receipt of x∗, if her guess is correct, i.e., x = x∗ she will tell Bob
that she wins by sending him the secret number r .

4. Bob: upon receipt of number r , he will verify if the commitment c he received
earlier from Alice equals H(r‖x∗) and convincingly accept the loss.

This solution is called a commitment scheme in cryptography [12]. It is critical that
the secret r generated by Alice must come from a large number space. If the binary
length n was small, it would take short time for Bob to exhaustively try all possible
values of r and combinewith x=“head” or x=“tail” to seewhich combination satisfies
H(r‖x) = c. When that combination is found, he can cheat by telling Alice that the
outcome is the opposite value of x found in this combination. When n is large, even
though x can take only two possible values, “head” or “tail”, Bob cannot reconstruct
the secret r thanks to the “puzzle-friendly” property of H as a cryptographic hash
function.

The above is a glimpse into howmathematical cryptography helps make a system
trustless. Alice and Bob do not need to question each other’s honesty thanks to the
commitment scheme. However, in the case Alice loses the bet, what if she runs away?
Intuitively, a solution is to at least require that they both have to deposit the bet money
in a lockbox which when the outcome is announced will be unlocked to transfer all
the money to the winner. This is to say that there is a lot more to do and mathematical
cryptography is the main tool to realize all that.

14 D. A. Tran and B. Krishnamachari

2.5 Where is Blockchain Stored

As we explained earlier, the blockchain is a decentralized network of computers
contributing computing resources to help with transaction storage and processing.
Among these computers, where is the blockchain data stored? Should we distribute
the blocks in the blockchain ledger across these nodes so that some blocks are on node
1, someblocks onnode2, etc.?We should not because if node1 fails,we cannot access
the blocks stored there. Hence, some redundancy is needed to guarantee availability,
that is, a block should be replicated onmore than one node. The next question then is,
“howmuch replication is enough?”. In blockchain, the blockchain ledger is replicated
fully on every node: each node stores a full copy of the entire blockchain. This is
because of the blockchain’s vision to provide complete decentralization (no node
depending on other nodes to access certain blocks) and complete availability (it is
always accessible even in the worst case of failure).

When a new node joins the blockchain network, it must discover existing nodes
as neighbors and connect P2P to them. The new node obtains a blockchain copy
from these neighbors. The list of blockchain nodes is available publicly. In most
blockchain networks, the P2P networking topology can be arbitrary; any existing
nodes can be selected at random, not geographically dependent.

Over the time, since nodes work autonomously and independently, their local
blockchain copies may disagree. To ensure consistency, they need to frequently, or
upon some triggering event such as adding new transactions, send their blockchain
copy to the neighbors or pull blockchain copies from the neighbors. When presented
with multiple blockchain copies, a node must decide which copy is the globally
correct one and uses it. As aforementioned, the default criterion is to choose the
longest copy.

2.6 How to Process a Transaction

When someone initiates a transaction with the blockchain, this is usually done in
a user-friendly front-end application that can interact with the blockchain network
via API calls. This transaction needs to be sent to a blockchain node (in practice,
multiple nodes in case one node may fail or behave wrongly) and will be processed
as follows:

• Each node X on first receipt of transaction Tx:

– Transaction forwarding: forward transaction Tx to the neighbor nodes of X .
– Transaction verification: verify that the sender address of transaction Tx has
sufficient fund to send. If so Tx is put into a mempool which is a queue of valid
transactions waiting to be put in a new block.

– Blockchain creation: pull pending transactions from the mempool to include in
a new block b and append this block to the existing blockchain ledger at node

Blockchain in a Nutshell 15

X . Note that block bmust include the previous hash information (the hash value
of the last block).

– Block update: send the new block b to the neighbor nodes of X .

• Each node Y on first receipt of block b:

– Block forwarding: forward block b to the neighbor nodes of Y .
– Block validation: verify the validity of block b on the existing blockchain ledger
of node Y . This validation requires checking on the consistency of previous hash
information and the validity of every transaction in block b.

– Block insertion: append block b to the blockchain ledger if it is valid. Else,
ignore b.

To validate a transaction during the Block Validation step may vary from one
blockchain design to another. In Bitcoin, we only need to verify that the sender of
the transaction has available fund to spend. This verification is successful if the input
transactions exist in the blockchain state, meaning they are currently unspent, and
the sum of output amounts in these transactions is sufficient. However, in a smart-
contract blockchain network like Ethereum, transaction validation may involve more
work than just checking the balance sufficiency. If a transaction involves a function
call to interact with a smart contract, the verification will need to run this function
with the blockchain in the previous blockchain state (recorded in the previous block)
and if the resulted blockchain state does not match the blockchain state recorded in
the block under validation, the block is considered invalid.

The transaction processing procedure in blockchain is simple and allows for
autonomous processing at the blockchain nodes. This simplicity, however, leads
to several consistency problems. First, each transaction is broadcast to all the nodes
and so the same transaction may be added to different blocks created at different
nodes. We need to ensure that each transaction can only be added to the blockchain
once. Second, different nodes in parallel create different new blocks to attempt to
append to the (same) existing blockchain. We need to ensure that only one of them
will be added as the next block. Third, different nodes may have different copies of
the blockchain. We need to ensure that they have to agree on a copy as the globally
correct version. To resolve these inconsistencies, the nodes have to regularly agree on
the current state of the blockchain, and that is what we call consensus achievement.
We need a consensus protocol.

16 D. A. Tran and B. Krishnamachari

2.7 How to Achieve Consensus

Consensus is a research area of computing with more than 30 years of study before
blockchain became popular. It started in the 1970s with the NASA sponsored project,
“Software Implemented Fault Tolerance (SIFT)” [46], aimed to build a resilient air-
craft control system. The challenge was to replicate the system onmultiple machines
such that the whole system can sustain multi-machine failures. The nominal work
by Lamport et al. in 1982 [29] formulated this challenge as the now well-known
“Byzantine Generals’ Problem” (BGP). It coined the notion of “Byzantine Fault” to
model a condition in a distributed system where some nodes are unreliable and may
appear arbitrarily normal or malicious and collude with each other such that there is
no consistent information for the other nodes to declare their malfunction.

A Byzantine Fault Tolerance (BFT) system must avoid complete failure and for
that the nodes must agree on a concerted strategy and live by this consensus, knowing
that some nodes may fail or act maliciously. BGP laid the foundation for research in
distributed consensus. Companies like Google and Facebook started adopting scien-
tific results in BFT consensus for mission-critical services such as GoogleWallet and
Facebook Credit. The birth of Bitcoin in 2009 [35] was the first time that consensus is
realized in a large-scale practical environment in a permissionless and decentralized
manner. The distributed consensus implementation by NASA, Google, or Facebook
is not fully decentralized nor permissionless because the participating computers are
controlled by these organizations. The Bitcoin network is public, requiring no per-
mission for computers to participate and no centralized authority to make decisions.

To describe BFT formally, consider a broadcast system of nodes where a sender
node needs to broadcast a message (value) to all the nodes in a peer-to-peer manner.
At the beginning, the sender receives an input value m. The broadcast protocol
must result in that at the end each node i will output a value mi . The sender and
receivers may be honest or dishonest. This protocol achieves BFT if it satisfies two
requirements:

• Consistency: all honest nodes i and j must output the same value: mi = m j .
• Validity: if the sender is honest, all honest nodes i must output value mi = m.

A system can be consistent but not valid, when all honest nodes output the same
value but this value is not the same as the sender’s: mi = m j �= m. A system can be
valid but not consistent, when the sender is dishonest and some honest nodes output
different values: mi �= m j for some i , j . Thus, both requirements are needed.

Blockchain is a BFT system. To address inconsistencies due to the autonomous
and independent working of blockchain nodes, the standard solution is for every node
to agree on the consensus that the longest blockchain copy, the one with most blocks,
is the globally correct version. Because the blockchain copies shorter than the correct
blockchain are not used, nodeswant to keep their copies as current as possible because
otherwise they would waste efforts adding their blocks to a wrong blockchain. As
discussed in the previous subsection, nodes frequently update their blockchain copy
tomake sure its version is the latest (globally correct one). Consequently, even though

Blockchain in a Nutshell 17

at times some transaction may be recorded in different blockchain copies at different
nodes, different blocks may append to the same last block of the existing blockchain
at different nodes, or different nodesmayhave different blockchain copies, eventually
these nodes will have the same blockchain copy.

But that is just theory. If consensus eventuality happens too late, the afore-
mentioned inconsistencies will cause the system to perform incorrectly, for exam-
ple, double spending can happen. Therefore, we need to (1) minimize the likeli-
hood for inconsistencies to happen and (2) minimize the time it takes to reach
blockchain-consensus eventuality. Toward these, different consensus mechanisms
have been used for blockchain. Major among them are the methods of Practical
Byzantine Fault Tolerance (PBFT) [9], Proof ofWork (PoW) [35], and Proof of Stake
(PoS) [17].

3 The Bitcoin Network

We present next the actual working of a real-world blockchain network: Bitcoin. It
is a blockchain network to build a peer-to-peer digital cash system, where the name
of the digital currency is bitcoin (BTC). It has a total supply of 21 million BTC to be
minted over time according to a deterministic schedule such that all will have been
minted in the year of 2140. Technically, it follows the general blockchain framework
described in the previous section. Specifically, it adopts the UTXO model for the
blockchain state and the chain structure for the ledger. Newly arriving transactions
will be put in a block to be appended to this chain. Any node can create blocks,
and in that case it is called a “miner” and the process of creating a block is called
“mining”. The globally correct blockchain is chosen to be the longest one among all
the local copies. We focus below on the key ideas and methods that are characteristic
of Bitcoin implementation.

3.1 Addresses

To hold Bitcoin, one needs to create a wallet. Each wallet corresponds to an address
(the Bitcoin address).When wallet A is created, it is associated with a pair (K−

A , K+
A)

of 256-bit private key K−
A and 256-bit public key K+

A generated according to an
asymmetric cryptography method called Elliptic Curve Cryptography (ECC) [21,
25, 34]. Only the wallet owner knows the private key. The public key is publicly
available. The address of wallet A is a 160-bit hashed version of its public key K+

A :

A = RI PEMD160(SH A256(K+
A)).

This is one-way cryptographic hashing usingRIPEDMD160 and SHA256 hash func-
tions. Because only the owner has the private key to unlock the public key, no one else

18 D. A. Tran and B. Krishnamachari

can take ownership of a transaction that sends BTC to her. For ease of human read-
ability, Bitcoin addresses are encoded as “Base58Check”, which uses 58 characters
(a base-58 number system) and a checksum, to produce a string like this example,
“1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy”.

3.2 Elliptic Curve Cryptography

The Elliptic Curve Cryptography (ECC) mentioned above is an approach to public-
key cryptography based on the algebraic structure of elliptic curves over finite fields.
The use of elliptic curves in cryptography was proposed in 1985 by Miller [34] and
Koblitz [25] and became popular in 2004. For cryptographic purposes, an elliptic
curve is a plane curve over a finite field (rather than the real numbers) with the
following equation:

y2 ≡ x3 + ax + b (mod p)

. The shape of the curve depends on the values given to a and b. The size of the
finite field is given by p, which defines the length of the keys we want to generate.
The points on the curve are limited to integer coordinates within the square matrix
of size p × p only. For example, the curve in Fig. 4 is y2 = x3 + 7 which is used in
Bitcoin, and the points in Fig. 5 are integer points of y2 ≡ x3 + 7 (mod 17).

On the elliptic curve, we define an algebraic operator on the points called “point
addition”. This operator allows to “add” points to obtain a point on the curve, as
follows (illustrated in Fig. 4):

• Addition P + Q: Draw the line PQ and let R be the point where PQ cuts the
curve. Point P + Q is the mirrored point of R over the x-axis.

• Double 2P = P + P: Draw the line tangent with the curve at point P and let R
be the point where this line cuts the curve. Point 2P is the mirrored point of R
over the x-axis.

• Multiplication mP = P + P + ... + P: This is the result of adding P with itself
m times.

Despite its simplicity, a nice property of this operation on elliptic curves when
applied on a finite field (i.e., all the points must be integer points in a finite square) is
the hardness to compute the discrete “logarithm” m such that mP = Q given points
P and Q. To date, no algorithm can reconstruct m in time complexity faster than
exhaustive search (having to try all possible values form). On the other hand, if some
m is given, it is easy to verify its correctness, that is, to check whether mP = Q. For
example, if m = 16, we need only logm = 4 point additions for verification: 2P ,
4P = 2(2P), 8P = 2(4P), and 16P = 2(8P); in comparison, to find the unknown
m in mP = Q would need 16 point additions.

Thanks to this property, ECC uses elliptic curves over finite fields to create a
secret that only the private key holder is able to unlock. We can think of Q as the

Blockchain in a Nutshell 19

Fig. 4 Point addition on the elliptic curve (y2 = x3 + 7): (left) adding two different points; (right)
adding two identical points

Fig. 5 The integer points of the elliptic curve on a finite field: y2 ≡ x3 + 7 (mod 17)

public key and m as the private key. The larger the key size, the larger the curve
space, and the harder the problem is to solve. For example, Secp256k1 with equation
y2 = x3 + 7 and p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 is the ECC used by
Bitcoin to implement its public-key cryptography. All integer points on this curve
are valid Bitcoin public keys.

20 D. A. Tran and B. Krishnamachari

Fig. 6 Bitcoin joint payment: a transaction can use two or more input UTXOs that belong to
different payers to collectively provide the fund to send. These multiple payers need to co-sign the
transaction

3.3 Transactions

Bitcoin transactions are based on the UTXO model. A transaction by default is a
transfer of BTC from a sender to one or more receivers. Every transaction must have
a digital signature of the sender who “signs” with her private key. This way, anyone
who knows her public key can verify that the signature is valid and the transaction
indeed comes from that sender. Each outputUTXO is destined for a receiving address.
As we described earlier, each Bitcoin address is an encryption of its public key. Only
the owner of that address has the corresponding private key to match. Hence, nobody
but he can unlock the UTXO to use the fund.

A transaction can also be a joint payment which takes as input multiple UTXO
transactions that belong to different addresses. For example, illustrated in Fig. 6,
Alice and Bob jointly pay Charlie 25 BTC, where 17 BTC is funded by UTXO #20
of Alice and 8 BTC is funded by UTXO #29 of Bob. This joint transaction needs to
be signed by both Alice and Bob. Joint payments make it more difficult for outside
parties to determine who paid whom.

Transaction Fee

In a transaction, the input fund amount should be at least the output amount. The
leftover is called the “transaction fee” to be sent to theminer who puts this transaction
in a new block. Transaction fees are a way to incentivize miners to participate in
Bitcoin. Rational miners prefer transactions that offer high transaction fees and so
a transaction’s sender should choose a generous fee to increase its chance to be

Blockchain in a Nutshell 21

Fig. 7 Bitcoin transaction consolidation: an owner can create a transaction to consolidate the funds
from many UTXOs he or she owns

processed earlier. To determine the fee, the sender should consider the transaction
size and the network traffic. A block can contain a maximum of 4 MB of data, thus
limiting the number of transactions included. A larger transaction will take up more
block data. Thus, larger transactions typically pay fees on a per-byte basis.

Transaction Consolidation

A consequence of Bitcoin’s being a UTXO ledger is that one address may own
many small UTXO transactions. As such, when this address makes a large payment
out, it may need to include as input many UTXOs. Not only that the transaction
size increases, but also the transaction verification will be more expensive since it
involves verifying many input UTXOs. For this large transaction to be included in
a block, the sender should pay a high transaction fee. Therefore, it is a good idea
for her to consolidate UTXO transactions if she owns too many of them. This can
be done easily by creating a new UTXO transaction that consumes these existing
UTXO transactions. For example, as illustrated in Fig. 7, Alice has funds in UTXO
#20 and UTXO #29 and consolidates them by creating UTXO #40. The decision for
transaction consolidation is made at the application level by the wallet owner.

Coinbase Transaction

Transaction fees are not the only incentive for the miners. For each block that is
successfully added to the blockchain, the miner who created this block will receive

22 D. A. Tran and B. Krishnamachari

a “block reward”. As of March 2022, it is 6.25 BTC per block, which will be halved
automatically after every 210,000 new blocks are added. To get the block reward, the
corresponding miner, say Bob, inserts into the block a special transaction called the
“coinbase transaction” that sends this 6.25 BTC to himself. This coinbase transaction
has no input UTXO, meaning this amount will be minted by the network. If the block
is validated and added to the blockchain, all the transactions in this block, including
Bob’s coinbase transaction, are officially recorded, effectively sending the block
reward to Bob. Coinbase transactions are the only way to mint bitcoin. Except the
genesis bitcoin transfer, bitcoin is minted only by block mining, which is sent to the
miners.

3.4 Blocks

Block creation is the main job of the miners. A miner pulls pending transactions
from the mempool, typically selecting those with high transaction fees (because
these fees will be paid to the miner) and put them into a block. This is called “block
mining”. The very first block was added to Bitcoin network timestamped at 2009-
01-03 13:15, called the genesis block, or block 0. It contains only one transaction,
which is a coinbase transaction. This block is hardcoded in the Bitcoin client node
software, so that when nodes join Bitcoin, they will always have the information
about the genesis block.

Block Structure

A Bitcoin block has the following structure: (1) block size (4 bytes): the size of the
whole block in bytes; (2) transaction count (variable size, 1–9 bytes): the number
of transactions in the block; (3) transactions (variable size): the list of transactions
included in the block; and (4) block header (80 bytes): important information useful
for block creation and validation. The block header consists of the following fields:

• Version (4 bytes): the version of the Bitcoin node software.
• Previous hash (32 bytes): the hash (ID) of the previous block.
• Merkle root hash (32 bytes): the hash value of the included transactions according
to Merkle tree

• Timestamp (4 bytes): the block creation time in second (Unix epoch).
• Difficulty target (4 bytes): a threshold number that is used for Bitcoin’s proof-of-
work algorithm.

• Nonce (4 bytes): a counternumber that is used for Bitcoin’s proof-of-work algo-
rithm.

In Bitcoin, the ID of a block is a hash of its block header, not the whole block
content. It is the value which resulted from hashing the block header twice through

Blockchain in a Nutshell 23

Fig. 8 Merkle tree: a binary tree where each internal node stores the hash value of the children’s

the SHA256 algorithm. The block ID is not actually included inside the block’s data
structure. Anyone can obtain this ID by applying double-SHA256 hashing on the
block’s header.

Merkle Tree

The transactions are organized in the block as a Merkle Tree [33], a binary tree
where each internal node stores the hash value of the children’s values. Figure8
illustrates such a tree for Bitcoin, where there are eight transactions {D1, D2, ...,
D8}, each stored in a leaf node, internal node H1−4 = H(H1−2‖H3−4), internal node
H1−2 = H(H1‖H2), internal node H1 = H(D1), H2 = H(D2), etc. Bitcoin uses
SHA2 for the hash function H .

The value at the tree root, e.g., H1−8, is the Merkle root hash stored in Bitcoin
block header. There are two crucial properties. First, any change in the transaction
data causes a change in theMerkle root hash. As such, if a block is altered, whether it
is in the transaction data or the non-transaction part, the hash of the block will change
and be detected. Second, it is fast to verify the existence of a transaction in the block.
For example, to prove that transaction D7 is in the block, the prover only needs to
provide four values as evidence: H7, H1−4, H5−6, H8. The verifier will compute the
following

24 D. A. Tran and B. Krishnamachari

x = H(H7‖H8)

y = H

(
x‖H5−6

)
= H

(
H(H7‖H8)‖H5−6

)

z = H

(
y‖H1−4

)
= H

(
H

(
H(H7‖H8)‖H5−6

)
‖H1−4

)

and compare z with H1−8. Their equality means that transaction D7 is in the block.
For a Merkle tree of n transactions, it takes O(log n) time for this verification. It
would take O(n) time if we naively store the transactions in a list-like structure.

A node in Bitcoin can be a non-miner node. It is only there to transact with the
network, uninterested in creating blocks to receive block reward. Because the block
header provides sufficient information for verification and transacting purposes, the
node needs the block header only, not the full block content. Since no actual trans-
actions are stored, the storage requirement for such a node is modest (only 80 bytes,
which can easily be placed in the memory). So is the communication cost to pull the
blockchain copies from the neighbors (only pulling block headers).

Block ID Rule

After choosing transactions to put in a new block and organizing them into a Merkle
tree, the miner needs to do a final critical step on the block before submitting it to the
network (by block broadcasting aswe described in the general blockchain framework
in Sect. 2.6). This step is called “mining” or “timestamping”. The block needs an ID
and recall that the ID is the hash value of the block header. In Bitcoin, the ID is not
arbitrary, but follows a rule that it must be less than a target value determined by the
difficulty target value specified in the block header:

SH A256(SH A256(block_header))︸ ︷︷ ︸
I D

< (65535 << 208)/di f f iculty︸ ︷︷ ︸
T ARGET

. (1)

The block header is known, except for two values that need to be filled: the
header_nonce value and the coinbase_nonce value. header_nonce is the nonce
attribute of the block header. coinbase_nonce is the value of the coinbase field in the
coinbase transaction inserted by the miner to get the block reward. coinbase_nonce
is set by the miner for flexible purposes. We need to choose these two values such
that the resulted block ID satisfies the difficulty target according to Inequality (1).

Proof-of-Work Mining

To find a satisfactory block ID is not easy due to the double-SHA256 hashing.
No algorithm is better than brute force, which takes O(232): scanning all possi-
ble combinations of header_nonce value and the coinbase_nonce value. A pseu-

Blockchain in a Nutshell 25

Fig. 9 Proof-of-work mining algorithm in Bitcoin

docode of the mining algorithm is given in Fig. 9. The flexibility for the miner to set
coinbase_nonce is important here because if we fixed it, we might not be able to
find header_nonce among all the 232 possible values such that the difficulty target is
met. By allowing the miner to freely choose coinbase_nonce, eventually the miner
will find a satisfactory block ID.

In Inequality (1), ifwe increase di f f iculty, the value of T ARGET will decrease,
making it more difficult to meet the inequality I D < T ARGET . When Bitcoin
started with the genesis block, the difficulty was set to di f f iculty = 1, the easiest.
Over the time, this target is dynamically adjusted depending on the transaction traffic
in the network. The Bitcoin node software updates this difficulty target such that the
blockchain grows at a rate of one new block for every 10 min.

The idea of making miners solve the above computationally expensive inequality
is to serve several purposes. If blocks are created too easily, since each newly created
block is broadcast to the network, the communication cost would be very expensive.
Worse, as the miners add blocks autonomously, many blocks simultaneously created
by different nodes will be appended to the same last block of the existing blockchain
(their local copy). This causes not only severe inconsistency and double-spending
vulnerability, but also wasted efforts by most miners due to the fact that only one
block can append next to the existing global blockchain. Furthermore, malicious
nodes can spam the network by creating many fake blocks and broadcasting them.

Bitcoin resolves these problems by making the task of block creation difficult. A
miner must spend some provable effort in order to create a block. This is analogous
to real-world miners spending efforts to discover gold; hence the term “Bitcoin
miner/mining”. The found ID of the block is the proof, hence the term “Proof-of-
Work” (PoW) always associated with Bitcoin. The challenge of finding a good ID
satisfactory of Inequality (1) is called the PoW problem. The PoW protocol also
helps keep Bitcoin, as a currency, from inflation. Its slow minting and finite supply
create circulation scarcity, thus making its price valuable.

The concept of PoW is not new. It was proposed by Dwork and Naor [14] in 1992
to prevent email spamming. Every time you send an email, your computer must solve

26 D. A. Tran and B. Krishnamachari

a computational puzzle. The recipient’s email program ignores your email if you do
not attach the solution to the puzzle; if you do, the solution verification is quick.
A similar idea was proposed in HashCash by Adam Back in 1997 and formally
documented in 2002 [1] for anti-denial-of-service purposes. Bitcoin extended the
PoW idea of HashCash.

3.5 Mining Difficulty

Achieving consensus in a permissionless environment is difficult due to Sybil attacks.
As nodes communicate with one another in unauthenticated communication chan-
nels, a player can impersonate many others to outnumber the honest players and
disrupt the consensus. This does not apply to a permissioned environment where
the nodes are known to the authority. The choice of the difficulty target for PoW is
critical. The more difficult it is, the more robust Bitcoin is against Sybil attacks, as
a bad player must pay a higher cost to harm the network.

Difficulty Setting

In Bitcoin, the PoW difficulty is set such that (1) the network is BFT (Byzantine
fault tolerant) as long as more than half of the nodes are honest, say 51%, and (2) on
average only one block can be mined in each period of 10 min. To understand how
they are related, we present a theoretical method below to find a good value for PoW
difficulty (some derivations are similar to [42]).

Let n denote the number of blockchain nodes and p the probability that a given
node creates a block in a round (equal to 10 min in Bitcoin). We will set the difficulty
target in Inequality (1) to T ARGET = p2m wherem is the hash bit length (256 bits
for Bitcoin). Hence, p indirectly represents the PoW difficulty. For example, if we
set p = 1, any given node will 100% certainly create a block, because Inequality (1)
is always satisfactory regardless of any block ID. However, that would result in n
blocks created, violating the 10 min rule. Our goal is to find a good value for p.

The probability that no honest node creates a block in a round is (1 − p)0.51n .
The probability to have a block created by some good node, hence a good block, in
a round is 1 − (1 − p)0.51n . Consequently, the number of rounds it takes to mine a
good block is

� = 1

1 − (1 − p)0.51n
.

Let � be the worse-case network propagation time. It takes this much time for the
mined block to reach all the honest nodes to be added to the good blockchain. An
honest node would not produce the next block during this � period to make sure
that the previous block must have reached all the nodes; else, the next block may
be invalid (when validated at other network nodes before the previous block arrives

Blockchain in a Nutshell 27

there). Therefore, the block-mining efficiency is the ratio between the mining time
to the actual time it takes for this block to be added to the blockchain:

E = �

� + �
=

1
1−(1−p)0.51n

1
1−(1−p)0.51n + �

= 1

1 + �(1 − (1 − p)0.51n)
.

Let q be the fraction of dishonest mining power, which is the total hashrate of all
the dishonest nodes. We need the hashrate of the honest nodes to exceed that of the
dishonest, i.e., (1 − q) > q. However, due to the efficiency E , the effective hashrate
of the honest is (1 − q)E , not (1 − q). This block-mining efficiency E does not apply
to the dishonest nodes who can do whatever they want, for example, sending block
after block without considering the � delay. So, we should have (1 − q)E > q. To
make the blockchain even more secure, we introduce a parameter ε > 0 arbitrarily
small and make a more stringent requirement:

e f f ective hash rate of the honest

hash rate of the dishonest
> 1 + ε. (2)

The larger ε, the more secure the network. The left-hand side is

e f f ective hash rate o f the honest

hash rate of the dishonest
= (1 − q)E

q
= 1 − q

q(1 + �(1 − (1 − p)0.51n))
,

and so we require

1 − q

q(1 + �(1 − (1 − p)0.51n))
> 1 + ε

⇔ 1 − q

q(1 + ε)
> 1 + �(1 − (1 − p)0.51n)

⇔
1−q

q(1+ε)
− 1

�
> 1 − (1 − p)0.51n

⇔ (1 − p)0.51n > 1 −
1−q

q(1+ε)
− 1

�

⇔ 1 − p >

(
1 −

1−q
q(1+ε)

− 1

�

)1/(0.51n)

,

which leads to the following important inequality:

p < 1 −
(
1 −

1−q
q(1+ε)

− 1

�

)1/(0.51n)

. (3)

What this means is that we should choose p to satisfy this inequality and the larger
the gap between p and this upper bound, the more secure the blockchain is. We can

28 D. A. Tran and B. Krishnamachari

choose a very small p to make the mining difficult (because we set difficulty target
to T ARGET = p2m), but doing so will slow down the transaction processing. A
good p is a reasonably high value still satisfying Inequality (3).

Inequality (3) also implies that given the same mining difficulty p, the blockchain
becomes less secure if the value of the right-hand side upper bound is smaller, because
that creates a bigger risk for violating the inequality. The right-hand side will be
smaller if the network delay � is longer or if the dishonest hashrate q is faster. This
explains why the security of a Bitcoin-like blockchain network is weakened in a slow
network environment.

Difficulty Adjustment

Because each miner is solving the proof-of-work puzzle in parallel, on average the
time taken for the first miner to solve it reduces inversely proportionally with the
number of miners. At times when there are a lot of miners active on the network,
the time to produce blocks will therefore be lower than when there are fewer miners
active on the network. Since the number of miners on the Bitcoin network is going
to change over time, unless some measure is employed, the block production time
would also vary. In particular, over time if more and more miners joined the network,
it would just keep decreasing. This is problematic as it could result in blocks being
produced too fast, increasing the bandwidth requirements on the network, and also
potentially result in more “forks”.

To prevent this, the difficulty level of block production is periodically adjusted
in a decentralized manner in such a way so as to ensure that on average a block
is produced or mined once every 10 min. Based on this 10 min period, we can
calculate that once every 2 weeks, the total number of blocks produced should be
0.1 (block/min) × 60 (min/h) × 24 (h/day) × 7 (days/week) × 2 (weeks) = 2016
blocks. The protocol therefore adjusts the difficulty level after each epoch of 2016
blocks using the following equation: D(n + 1) = 2D(n)

T , where D(n) is the difficulty
at epoch n and T is the time taken in weeks to produce the previous 2016 blocks.
If this time is shorter than 2 weeks, then that implies that there must be too many
miners on the network, and therefore the difficulty level should be increased, and
on the contrary if this time is longer than 2 weeks, then that implies there are too
few miners on the network and therefore the difficulty level should be decreased.
Each miner independently computes the new difficulty and will only accept blocks
that meet the difficulty that they computed. Figure10 shows how the Bitcoin mining
difficulty has changed during the past year (April 2021–April 2022).

3.6 Mining (Un)Fairness

Bitcoin is generally fair in that if a node contributes more computing power, which is
referred to as “hashrate”, it can solve the PoW problem more quickly, thus having a

Blockchain in a Nutshell 29

Fig. 10 Bitcoin PoW mining difficulty adjustment over the time as of April 1, 2022. The y-axis is
measured in the number of “0” bits in the prefix of the difficulty target

better chance to earn block reward. If a fast nodeA and a slownodeBbothwant to add
a block to the existing blockchain at the same time, the block of A is more likely to be
born first (with satisfactory block ID) and will be added to the blockchain copies in
the network before the block of B. Naturally, the PoWmechanism encourages nodes
to upgrade computing power to receive more block reward. This healthy competition
leads to a better Bitcoin network.

However, not all nodes are good citizens. We have honest nodes who follow the
protocol precisely and responsibly. There are selfish nodes who follow the protocol
but do things to their benefit at the cost of other nodes. The remainder is the nodeswho
want to harm the network. To be equitably fair, a node contributing a fraction of the
network hashrate should have the same fraction of blocks accepted by the network
(thus being rewarded). For example, if a node contributes 20% of total network
hashrate, it should own 20% of the blocks in the blockchain. In this aspect, Bitcoin
can be very unfair. We show below that Bitcoin can encounter a situation where the
rate at which a good Bitcoin miner successfully adds a block to the blockchain is
much lower than its hashrate contribution.

Selfish Miner Attack

First, let us explain how a selfish miner A can abuse the network. Each time A has
created a block a, it does not broadcast the block to the network right away. Instead, A
waits on the event of receiving a new block from another miner, say block b of miner
B. When this happens, A will immediately broadcast its block a to the network, but
ignores block b of miner B (not forwarding it further). If we generalize this strategy
such that A represents the pool of selfish miners and B the pool of honest miners, the
blocks belonging to the selfish will be faster to reach the blockchain nodes than the
honest’s blocks. This is because while A honestly forwards every block, including
B’s, immediately upon its arrival, B ignores A’s blocks. As a result, not only B
receives more block reward, but also a lot of A’s efforts are wasted.

30 D. A. Tran and B. Krishnamachari

Bitcoin’s vulnerability to selfishmining attacks was investigated by Eyal and Sirer
in [16]. It is shown that selfishminers can collude to obtain a revenue larger than their
fair share. This attack is potentially serious in that rational miners may prefer joining
the selfish miners leading to a 51% majority, thus destroying the decentralization of
Bitcoin.

Unfairness Severity

Next, let us see how unfair Bitcoin can be from a theoretical view given dishonest
behaviors. Consider the formulation in Sect. 3.5. It is shown in [42] that, in an honest
node’s blockchain, the honest block fraction is approximatelyμ = 1 − 1

1+ε
. Assume

a blockchain network with zero propagation delay � = 0, which is ideal for honest
nodes because the block creation efficiency is E = 100%. The honest hashrate is
therefore (1 − q)E = 1 − q. Recall q as the total hashrate fraction of the dishonest
nodes. Inequality (2) becomes

1 − q

q
> 1 + ε.

As a result, we have

μ = 1 − 1

1 + ε
< 1 − q

1 − q
= 1 − 2q

1 − q
,

which is smaller than the honest hashrate fraction (1 − q).
What this means is that even in a network ideal for the honest nodes, the rate at

which they can add blocks to the blockchain, μ, is lower than the hashrate they con-
tribute to the network, (1 − q). For example, when 51% of the network is honest (i.e.,
q = 49%), they own a fraction μ <

1−2q
1−q = 3.9% of the blocks on the blockchain.

The dishonest coalition with only 49% hash power owns 96% of the block creation.
So, Bitcoin mining may be unfair when it comes to block reward. Despite this

risk in theory, one may argue that it is unlikely or of little impact in practice. Miners
have ideological considerations and incentives to keep the network decentralized. If
a coalition grows so big to be a concern to the rest of the network, people may leave
Bitcoin due to the lack of decentralization; the coalition would not benefit, of course.

3.7 Block Finality

A malicious miner makes a payment, then secretively creates a second conflicting
transaction using the same UTXO input in a new block, that allows him to recover
the fund. This is an example of the double-spending problem. This is feasible if this
miner controls more than 50% hashrate of the whole network, mining faster than

Blockchain in a Nutshell 31

the rest of the network combined. Therefore, his local chain is the longest among all
local copies and will be accepted by the network as the consensus for the globally
correct blockchain.

Even when the bad minor has less than 50% hashrate as in most cases, there is
still a non-zero chance that the bad miner can grow the longest blockchain. Although
this can only last for a short period of time, double spending is not impossible. To
minimize this risk, when somebody pays a merchant to buy something, the merchant
should wait some time to make sure the money is in before delivery. In Bitcoin,
the wait is for six block confirmations, i.e., six blocks to be added after the block
containing the payment transaction.

Why six block confirmations is enough? Consider a miner A with a fraction p
of the total hashrate and a miner B with a smaller fraction q = 1 − p < 1/2. We
are interested in computing the probability that B’s blockchain will be longer than
A’s after A adds k blocks if both nodes start at the same time. This is similar to a
race of two players in a Gambler Ruin problem. In this game, block creations form a
sequence of independent Bernoulli trials. Each trial is the creation of a block which
has two potential outcomes: “success” means that the block is created by A and
“failure” if the block is created by B.

We observe this sequence until A has created k blocks (i.e., k successes). The
number of blocks B created is a negative binomial random number, X ∼ N B(k, p),
which has the following probability mass function:

P(X = i) =
(
i + k − 1

i

)
(1 − p)i pk .

During the time that A has added k blocks, the probability that B has created more
than k blocks, hence winning the race outright, is

P(X > k) =
∑
i>k

P(X = i) =
∑
i>k

(
i + k − 1

i

)
qi pk . (4)

In the case that B has created less than or equal to k blocks, i.e., i ≤ k, B will be
behind by (k − i) blocks and still has a probability (q/p)k−i to catch up with A and
thus win. Summing up these probabilities will lead to the probability that B will win
the race:

32 D. A. Tran and B. Krishnamachari

P(k) = P(X > k) +
k∑

i=0

(q/p)k−i P(X = i) (5)

=
∑
i>k

(
i + k − 1

i

)
qi pk +

k∑
i=0

(q/p)k−i

(
i + k − 1

i

)
qi pk (6)

=
(
1 −

k∑
i=0

(
i + k − 1

i

)
qi pk

)
+

k∑
i=0

(
i + k − 1

i

)
qk pi (7)

= 1 −
k∑

i=0

(
i + k − 1

i

)
(qi pk − qk pi). (8)

This probability converges exponentially to zero as k increases. Grunspan and Perez-
Marco [19] provide a closed form for this probability

P(k) = I4pq(k,
1

2
),

where I (.) is the regularized incomplete beta function:

Ix (a, b) = �(a + b)

�(a)�(b)

∫ x

0
ta−1(1 − t)b−1dt.

For Bitcoin, it is recommended that we wait for k = 6 block confirmations before
assuming that the transaction is final, which is enough for P(k) to be extremely small.
For example, P(6) = 0.0005914 for q = 0.1. A block becomes “final”, hence the
blockchain up to this block is considered “finality”, if it is followed by this many
block confirmations. Thus, Bitcoin finality is not instant. Instead, it is guaranteed
asymptotically.

4 Smart-Contract Blockchains

Bitcoin is an example of an application-specific blockchain network where the only
application logic is to serve digital payments.Although it allows for some limited pro-
grammability, it does not provide arbitrary programmability. As many applications
in the real world, not necessarily financial, can benefit from blockchain technology,
having a dedicated blockchain network for each individual application is not realistic.

This is the motivation for Ethereum, the first blockchain network created by
Buterin et al. [6] to be a universal blockchain computer that can run applications
of arbitrary purposes. To develop such applications, developers write computer pro-
grams called “smart contracts”. Ethereum, therefore, is said to be a smart-contract
blockchain. Other public smart-contract blockchain networks include Algorand [10],
Tezos [18], and Solana [48].

Blockchain in a Nutshell 33

4.1 Smart Contract

Smart contracts are written using a high-level programming language (e.g., Solid-
ity, Viper, Flint, Bamboo). Solidity is the most popular language for smart-contract
networks. It is Turing-complete, meaning that it can simulate any computation. In
contrast, Script, the programming language of Bitcoin, is not Turing-complete. Script
is thus very light and suitable for Bitcoin. Bitcoin does not need a universal language
because digital currency is the only purpose of Bitcoin.

Compared to Bitcoin, a smart-contract blockchain has an additional layer of func-
tioning because of the smart-contract capability. When a smart contract is deployed,
it is submitted as a transaction to the blockchain network to run on every node.
Each node needs a run-time environment to execute the bytecode of the smart con-
tract. On Ethereum, this is called the Ethereum Virtual Machine (EVM), a powerful
sandboxed virtual stack embedded with each full Ethereum node. EVM is where
all Ethereum accounts and smart contracts live. It maintains the consensus for the
blockchain. While the smart-contract language used in Ethereum is Solidity which is
Turing-complete, EVM is a quasi-Turing-complete machine. Quasi, because EVM
can theoretically run every smart contract but its execution will stop and be reverted
if exceeding the resource allocation limit specified by the deployer.

As an analogy, let us compare running a computer program on a single computer
versus the Ethereum blockchain computer. In the former case, all the state of the pro-
gram is stored on the computer which is the only point of contact for the user and if
this computer fails, all the state will be lost. In the blockchain case, the computer pro-
gram is deployed and runs simultaneously on all computer nodes of the blockchain;
these nodes independently and autonomously keep track of the program’s state. A
user can interact with the program using any node. If a node fails, the program is still
running on the other nodes. The consensus mechanism of the blockchain ensures
that the states on all the nodes are identical.

The source codes of deployed smart contracts are visible to the public. Therefore,
there is nothing to hide in the working of a smart contract and people can be assured
that it will work as programmed. That said, in certain cases, a complex smart contract
may contain bugs and other security holes that are not easily seen; to fix them is a
headache after the application is already deployed with many users; note that the
blockchain is immutable. Therefore, a professional project should have its smart
contracts certified by reputable smart-contract auditors.

4.2 Token Creation

Bitcoin (BTC) is the only native token (digital currency) of the Bitcoin blockchain
network. Its users transact with each other (paying one another) using BTC. A smart-
contract network also has a native token (e.g., ETH for Ethereum), whose main use
is for the users to deploy smart contracts and interact with them. To deploy a smart

34 D. A. Tran and B. Krishnamachari

Fig. 11 The IERC20 interface for ERC-20 tokens. ERC-20 tokens must implement these functions

contract on Ethereum, one must pay a certain amount in ETH. This amount depends
on the computational complexity of the contract. Besides ETH, many secondary
tokens can be created to serve different applications. For example, one can build a
loyalty application on top of Ethereum and implement the loyalty point as a token,
or a country’s government can issue a Central Bank Digital Currency (CBDC) as a
token on top of Ethereum.

A token is implemented in the formof a simple smart contract. If the token ismeant
to be a kind of digital currency, this contract stores the token balance information
for each account (blockchain address) and includes essential functions to enable a
sender to transfer tokens to a receiver (needed for a real-world payment transaction),
a spender to transfer tokens on behalf of their owner to a receiver (useful for a trading
exchange or a bank to transfer money from someone’s account to a payee, of course,
with permission only) or, inmany cases,mint new and burn existing tokens (useful for
a government to cope with inflation crises). Figure11 shows the interface for token
smart contracts in Ethereum with six required functions. Events can be emitted from
a smart contract so that front-end applications can watch and be instantly notified of
their happening.

For ease of token creation, several token standards have been defined and tem-
plate smart contracts created. The first standards were defined for the Ethereum
network and their counterparts later followed for other smart-contract networks. For
Ethereum, ERC-20 is the standard for fungible tokens, ERC-721 for non-fungible
tokens (NFT), and ERC-1155 for generic multi-tokens (one that can represent a fun-
gible token or a non-fungible token or a multiple of them). For example, ERC-20
is used for implementing a cryptocurrency, ERC-721 for digitally representing a

Blockchain in a Nutshell 35

Fig. 12 A basic smart contract of an ERC-20 token implementing IERC20 interface

physical asset uniquely and non-duplicatable as an NFT, and ERC-1155 for digitally
representing equity shares of a company. A basic Solidity smart-contract implemen-
tation of ERC-20 is shown in Fig. 12.

4.3 Transaction Processing

Since a transaction may involve interacting with a smart contract by calling a func-
tion in the smart contract, the processing is not simply a verification such as check-
ing fund availability. Let us explain this for the case of Ethereum. The Ethereum
blockchain adopts the account-based statemodel; its state consists of a set of accounts
(blockchain addresses) and their corresponding information. There are two types of
accounts:

• Externally owned account: one that is owned by a normal user (like a bitcoin
account). The state for an external account is its ETH balance.

• Contract account: one that represents a deployed smart contract. The state for a
contract account consists of its ETH balance, contract code, and a storage area to
save the run-time state of the contract.

36 D. A. Tran and B. Krishnamachari

The Ethereum blockchain protocol is essentially the same as that in the blockchain
framework we presented in Sect. 2.6, the main difference being in transaction pro-
cessing and block validation steps.

A transaction is a transfer of asset/value and optional data from a sender to a
receiver. Specifically, it has a sender who initiates the transaction, a receiver who
receives the transaction, a value (amount of tokens) to be transferred from the sender
to the receiver, and a data part if the receiver is a contract account. If the transaction
is received by a contract account, the corresponding contract code will be executed,
taking as input the data included in the transaction. Ethereum introduces a concept
called “gas fee” to represent how much ETH the transaction will pay the miner. A
transaction contains two values, startgas and gasprice.

• The startgas value represents the maximum number of computational steps the
transaction execution is allowed to take. The sender should have an idea as to how
complex the transaction is and determines this value properly. If the miner takes
more steps than this threshold allows, the transaction will halt and be reverted.

• The gasprice value is the ETH fee the senderwill pay theminer per computational
step. To expedite the processing, the sender should increase gasprice so that the
miner would include the transaction in the next block.

Upon a transaction, the state transition happens as follows:

1. Check if the transaction is well formed and valid. Else, terminate.
2. Set transaction fee to startgas × gasprice. Subtract this fee from the sender’s

balance. If the balance is not sufficient, terminate.
3. Initialize GAS = startgas, minus a certain quantity of gas per byte to pay for

the byte count in the transaction.
4. Transfer the value specified in the transaction from the sender’s balance to the

receiver’s balance.

• If the receiver does not exist, create it.
• If the receiver exists and is a contract account, run the contract code either to
completion or until the execution runs out of GAS.

5. If this transfer fails: revert all state changes except the payment of the fees, and
add the fees to the miner’s account.

6. Else, refund the remaining GAS to the sender, and send the fees paid for gas
consumed to the miner.

4.4 Block Validation

In Ethereum, a block contains a list of transactions and the blockchain state obtained
by applying these transactions to the previous state (stored in the previous block). The
creation of a new block requires PoWmining similar to Bitcoin (although Ethereum
is transitioning to proof-of-stake consensus in version 2.0). The validation of a block

Blockchain in a Nutshell 37

Fig. 13 The Train smart contract: this contract will be called later by the Booking smart contract

requires checking the cryptographic link with the previous block as usual, but in
addition, it has to replay the running of all the transactions in the block. Specifically,
a miner validates a new block as follows:

1. Verify that the previous block referenced exists and is valid.
2. Verify that the timestamp of the new block is greater than that of the previous

block and less than 15 min into the future.
3. Verify that the new block’s ID, difficulty target, and transaction Merkle root are

valid.
4. Starting from the previous blockchain state (stored in the previous block):

• Run a sequence of state transitions as a result of applying all the transactions
in the new block, one by one.

• If any such transaction replay fails or if the total gas consumed exceeds the
limit, terminate.

5. If the Merkle tree root of the final state in the above step equals that stored in
the new block, then the new block is valid. Else, invalid.

4.5 Contract Interoperability

In a smart-contract blockchain network, one can call another contract inside a con-
tract. For example, consider a Travel Booking application: allow people to purchase
a train ticket and reserve a hotel such that each booking is atomic—either both reser-
vations succeed or neither do. This is referred to as the “train-and-hotel” problem
popular as a case study in Ethereum research community.2

We have three smart contracts:

2 This problem is described on this page: https://eth.wiki/sharding/Sharding-FAQs.

https://eth.wiki/sharding/Sharding-FAQs

38 D. A. Tran and B. Krishnamachari

Fig. 14 The Hotel smart contract: this contract will be called later by the Booking smart contract

Fig. 15 The Booking smart contract: this contract calls the Train contract and Hotel contract

• Train smart contract (Fig. 13): keep status of all train bookings. A user can book
a train ticket by calling the booking() function of this contract.

• Hotel smart contract (Fig. 14): keep status of all hotel bookings. A user can book
a hotel room by calling the booking() function of this contract.

• Booking smart contract (Fig. 15): A user can book a trip (a hotel and a train) by
calling the order() function of this contract.

The Booking smart contract calls the other two contracts. Intuitively, it is just
like calling another computer program inside a computer program. However, the
advantage of running this application on the blockchain is that in the case one of the
two bookings fails even though the other was order() function call will fail and,
as a result, reverting the successful booking. The user will not lose any money. In
the traditional deployment of this application on a non-blockchain environment, it
would be more complex to the revert the user’s successful booking.

The use of a Turing-complete language like solidity for smart-contract networks
and the capability for contracts to call one another open limitless creativity when

Blockchain in a Nutshell 39

it comes to application. For any computer application in the real world, in theory,
we can develop an equivalent version to run on the blockchain. This is why, with
the birth of Ethereum and recent smart-contract network alternatives, we have been
witnessing many businesses enter the blockchain space, most notably in the finance
field with Decentralized Finance (DeFi).

5 Blockchain Scalability

Every transaction is broadcast to the whole network. So is every block. Block vali-
dation takes time and efforts too. Due to the chain topology of the blockchain, the
fact that only one block can be the next node of the chain leads to many completing
blocks being wasted, effectively reducing transaction throughput. On the other hand,
we want blockchain to be the universal computer for everyone, for every application,
if at all possible. Unfortunately, scalability remains a top challenge of blockchain
technology [20].

5.1 The Blockchain Trilemma

Blockchain is aimed at three goals: decentralized, secure, and scalable. They cannot
be all perfectly realized, at least according to Ethereum’s Founder, Vitalik Buterin,
who originated the term “Scalability Trilemma” for blockchain [8]:

• Decentralized: Set to provide trustless computing, blockchain does not rely on a
central point of control. It needs to be decentralized such that nodes participate
autonomously and equally to each other.

• Secure: The blockchain must operate as expected, robust to malfunctions and
attacks. As we discussed in the previous section, blockchain is a Byzantine fault-
tolerant system. The more failures of a large threshold of nodes it can sustain, the
better security it provides.

• Scalable: Meant to be a “world” computer for all people to run all applications,
blockchain should scale with increasingly growing amounts of transactions. This
is in terms of both storage and computation demands.

The decentralization goal requires as many nodes as possible to participate in the
block validation. Having more validator nodes, however, leads to more difficulty in
maintaining consensus, thus security. Both decentralization and security goals are
achievable only with small-scale blockchain networks (network size or transaction
volume). As such, the scalability goal is not met.

Blockchains are often forced to make tradeoffs in this trilemma. Bitcoin offers
excellent decentralization and security, but unattractive scalability. Due to the 10min
block creation rule to guarantee security, the transaction processing is slow, on the

40 D. A. Tran and B. Krishnamachari

order of two to five transactions per second (tps). This is not practical for real-world
payment at merchants. Traditional credit card systems such as Visa and Mastercard
are three to four orders of magnitude faster.

On the other hand, Solana, a smart-contract network created in 2017 by Anatoly
Yakovenko et al. [48], sacrifices decentralization for scalability. It is very fast. Solana
does not use PoW consensus which is of course slow. It is based on a unique Proof-
of-History (PoH) consensus algorithm, a variation of Proof of Stake (PoS). In theory,
Solana’s claimed throughput can be as high as 710,000 tps; the practically observed
number is about 50,000 tps, still much faster than Bitcoin. However, as pointed out
by many, Solana is vulnerable to centralization. In Solana, like other PoS networks,
the decision to add a block to the blockchain is made among a small subset of “val-
idator” nodes. Since fewer nodes involve in the consensus decision, it is faster than
Bitcoin where all nodes can be miners. The problem with Solana is that the Solana
Foundation is the only entity developing core nodes (validators) on the blockchain.
This means Solana has a central point of control that reduces the network’s over-
all decentralization. In comparison, several core node developers are building on
Ethereum (e.g., Go Ethereum, OpenEthereum, Nevermind, and Besu). As of April 1,
2022, the number of Solana validator nodes is estimated to be around 1,100 nodes;
in comparison, the PoS Ethereum network already has more than 200,000 nodes.

Comparing Ethereum (the PoS version) and Bitcoin, both offer excellent decen-
tralization. Ethereum is faster, but the tradeoff is in security where Bitcoin is the
superior, mainly due to PoW which has a higher entry barrier for block generation
and higher cost to attack. An attacker would need to acquire 51%+ of the compu-
tational power in the network, whereas a PoS attacker would need to acquire 51%+
of the money within that system. To get the computational power in PoW, not only
the attacker needs money but also physical efforts to acquire hardware. This external
and physical factor makes PoW less vulnerable to attacks.

5.2 Layer-2 Scalability

Changing the core design, whether the consensus mechanism, block structure (chain
or DAG), or cryptographic methods, at layer-1 of a blockchain network has tradeoffs
due to the scalability trilemma. In 2016, at the peak then of high Ethereum gas fee,
Joseph Poon and Vitalik Buterin introduced the approach of layer-2 scalability that
applies to Ethereum, and, in theory, any layer-1 blockchain. The proposed solution,
called Plasma [37], builds a high-throughput blockchain network anchored atop
the layer-1 blockchain as follows: (1) layer-2 transaction processing: users transact
on the layer-2 blockchain, hence very fast and (2) layer-1 transaction finality: state
information records of completed transactions are saved in the layer-1 blockchain,
hence assuring security against dishonest transactions.

Blockchain in a Nutshell 41

For example, Polygon3 is a layer-2 smart-contract blockchain on top of Ethereum
network as layer-1. Polygon started with the Plasma approach in the early stage and
now is one of the most successful blockchain networks. It is noted that the idea of
layer-2 scalability was actually applied in the Lightning Network [38], created by
Joseph Poon and Thaddeus Dryja in 2015. The scaling method used is called State
Channels. This, however, is suitable only to a payment network like Bitcoin (as a fast
payment protocol on layer-2), but not to a general smart-contract network. Another
scaling method often referenced is Sidechain [2], which is a much simpler and less
secure version of Plasma.

The invention of Plasma opened a new direction in blockchain scalability, leading
to more advanced solutions such as Optimistic Rollups4 and ZK Rollups5, which are
trending today [41]. To explain the layer-2 scalability’s concept and feasibility, let
us describe how Plasma works below. We hope that this will be helpful to the reader
in understanding recently emerging scalability methods.

Plasma Scaling

There are several variants of Plasma. For example, Plasma Cash [26] is a Plasma
solution for non-fungible tokens (NFT). We present a basic version of Plasma—the
original proposal [37], which is for fungible assets below.

The Plasma Chain: First, we need to build a separate blockchain network to serve
as the layer-2.We refer to this as PlasmaChain and to the layer-1 chain as Root Chain.
Any blockchain design can work for Plasma Chain as long as it is fast and scalable,
for example, Proof of Stake or Proof of Authority is a better choice than Proof of
Work for the consensus mechanism. In the initial Plasma proposal, Plasma Chain
adopts the UTXO state model (Bitcoin-like). Although this model is not suitable for
enabling smart contracts at layer-2, for simplicity, we assume this model to explain
the core idea of layer-2 scalability.

Plasma Chain processes transactions and creates blocks as usual functionalities of
the chain. However, there is an additional step for the validator nodes (those that can
produce blocks on Plasma Chain) after they have added each block to Plasma Chain:
need to save a record of it on Root Chain. This is called an on-chain “block commit”
or “checkpoint”. By “on-chain” we mean layer-1 activity, whereas “off-chain” we
mean layer-2. Adding a block to Plasma Chain provides its finality on Plasma Chain.
Committing this block to Root Chain provides its finality on Root Chain, which is the
“finalized” finality. The latest checkpoint is the proof that all transactions (and the
funds) are permanent up to this point. Blocks are committed on-chain by interacting
with a smart contract on Root Chain. There is also an entity, called Plasma Operator,
which is watching events from this smart contract and will respond accordingly on
Plasma Chain.

3 https://polygon.technology.
4 https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/.
5 https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/.

https://polygon.technology
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/

42 D. A. Tran and B. Krishnamachari

The Root Contract: We need to create a smart contract on Root Chain; let us name
it Root Contract. It provides the following functionalities:

• Block Submission: Root Contract maintains a list of Plasma block headers,
each essentially consisting of the Merkle root of the corresponding original block
and the time it is added to the list; transactions are not included. The contract has
a public function for inserting such a block into this list. This function is called by
Plasma Chain’s validator nodes after they have validated a block; alternatively, this
can be called by Plasma Operator who watches block insertions on Plasma Chain.
It is noted that because Root Contract simply saves the headers of the Plasma
blocks, not the actual transactions, it cannot know by itself their validity (honest
or malicious purpose).

• Fund Deposit: Bob needs some fund in his account before doing any transfer
on Plasma Chain. The contract has a public function for anyone like him to deposit
this fund. Once this fund is deposited on Root Chain, an event will be emitted to
notify PlasmaOperatorwhowillmint a newUTXOwith the corresponding amount
of fund on Plasma Chain for Bob. The amount of fund in circulation on Plasma
Chain is the total amount of all deposits (minus withdrawn funds if any).

• Fund Withdrawal: Alice can withdraw fund from Root Chain. The contract
has a public function to allow so, which asks her to provide the proof for the
fund used to withdraw. A withdrawal must correspond to some unspent UTXO
on Plasma Chain. The fund proof includes the position of an unspent UTXO
belonging to Alice on Plasma Chain and the Merkle proof for this UTXO in its
corresponding Plasma block. Because the contract cannot tell instantly whether
this UTXO is indeed unspent on Plasma Chain, the withdrawal is not immediate.
It has to wait a dispute period, e.g., 7 days, during which anyone can challenge. If
the challenge is valid, the contract will revert the withdrawal.

• Fraud Proofs: The contract has a public function to allow anyone to challenge
the validity of a malicious block committed from Plasma Chain or a withdrawal
request within its dispute period. In the case of challenging Alice’s withdrawal
request above, if Bob observes that the UTXO used in the withdrawal is also spent
on the Plasma Chain, he will provide the position of this invalid UTXO on Plasma
Chain and the Merkle proof of its existence there as input to the withdrawal-
challenge function. The contract will see if this proof matches the corresponding
block record in the Plasma block list of the contract. If matching, Alice’s with-
drawal will be reverted.

Example: Consider a Plasma Chain on top of Ethereum for people to make ETH
payments.

1. Alice deposits 10 ETH to Root Contract on Root Chain. As a result, Plasma
Operator will mint 10 ETH for her on Plasma Chain (this ETH on Plasma Chain
is actually a wrapped version of the Ethereum ETH). At this time, the Plasma
blockchain consists of only 1 UTXO:

UT XO 1 : ∅ → Alice : 10

Blockchain in a Nutshell 43

2. On Plasma Chain, Alice transfers 5 ETH to Bob. The new blockchain state is

spent : UT XO 1 : ∅ → Alice : 10
UT XO 2 : Alice → Alice : 5
UT XO 3 : Alice → Bob : 5

3. Bob then transfers 3 ETH to Charlie. The new blockchain state is

spent : UT XO 1 : ∅ → Alice : 10
UT XO 2 : Alice → Alice : 5

spent : UT XO 3 : Alice → Bob : 5
UT XO 4 : Bob → Bob : 2

UT XO 5 : Bob → Charlie : 3

4. Charlie transfers 2 ETH to Alice. The new blockchain state is

spent : UT XO 1 : ∅ → Alice : 10
UT XO 2 : Alice → Alice : 5

spent : UT XO 3 : Alice → Bob : 5
UT XO 4 : Bob → Bob : 2

spent : UT XO 5 : Bob → Charlie : 3
UT XO 6 : Charlie → Charlie : 1

UT XO 7 : Charlie → Alice : 2

5. At this time, on Plasma Chain, Alice has 7 ETH (from UTXO 2 and UTXO 7),
Bob has 2 ETH (from UTXO 4), and Charlie has 1 ETH (from UTXO 6). Note
that the above transactions were included in Plasma blocks of Plasma Chain and
their headers have been saved in Root Contract.

6. Bob requests to withdraw 2 ETH (calling the withdrawal function of Root Con-
tract on Root Chain). He inputs to this function UTXO 4 as the source for the
fund. The withdrawal request is pending for 7 days. During these 7 days, no one
challenges this request because UTXO 4 is not spent on Plasma Chain during
the dispute period. Therefore, Root Contract sends 2 ETH (of Root Chain) to
Bob. It is noted that Bob did not have to deposit fund on Ethereum in order to
withdraw.

7. Alice requests to withdraw 5 ETH using UTXO 3. During the 7-day dispute
period, Charlie who watches Plasma Chain observes that UTXO 3 was spent on
Plasma Chain. He will challenge the withdrawal by submitting the Merkle proof
of this UTXO 3 to Root Contract. This proof is valid, thus canceling Alice’s
withdrawal.

44 D. A. Tran and B. Krishnamachari

It is important that those users who have fund on Plasma Chain should watch the
chain frequently to make sure their funds are safe. This requires downloading the
chain and verify its correctness. If a user detects or suspects something wrong, the
user’s wallet (software) will automatically request to withdraw funds.

To avoid spammers and those submitting irresponsible withdrawals while encour-
aging fraud reporting, one candesignRootContract such that eachwithdrawal request
must include a penalty bond that will be collected to reward the challenger in the
case of bad withdrawal. To enable fast withdrawals (7 days are too long), a Plasma
solution can involve Liquidity Providers who are incentivized to advance the fund
to the withdrawers while taking the risk of bad withdrawals. A solution, e.g., Poly-
gon, can also require that Alice burn the fund on Plasma Chain before requesting to
withdraw it on Root Chain; she needs to submit the proof of this burn.

The on-chain block commit in Plasma is the key difference between it and the
Sidechain scaling approach [2]; the latter is often mistakenly considered the same as
Plasma but it is very different. Sidechain also has a smart contract like Root Contract
with functions for deposits and withdrawals, but does not have block commits. It is
simpler but a major con is that the sidechain can stop producing blocks and locks
everyone’s funds up forever. Sidechain is thus much less secure. With Plasma, the
block list in the Root Contract is the proof that users have their funds and thus can
withdraw them.

Rollups Scaling

The Plasma approach is more suitable for token transfer transactions, but not for
smart contracts. The Rollups approach [7] was born to be general purpose. The
layer-2 blockchain in Rollups can run smart contracts. For example, one can run an
EVM inside the layer-2 chain, allowing existing Ethereum applications to migrate
to Rollups without re-writing the smart-contract code.

Rollups can be considered a hybrid Plasma approach. Plasma keeps all the trans-
action data off-chain and, as such, Root Chain cannot verify Plasma transactions,
leaving room for Plasma Chain to do things maliciously. In Rollups, part of trans-
action data is saved on the Root Chain in addition to block headers. As a result,
Root Chain can verify transactions too, thus providing an additional layer to enhance
security and decentralization. It is noted that Rollups does not save all transactions
on Root Chain because doing so makes the Rollups chain meaningless; it does not do
any scaling. If Rollups saved none of transaction data, it would become Plasma. To
reduce the amount of transaction data saved on Root Chain, it saves only the informa-
tion necessary to verify transactions. Transaction data involving state storage remains
on the Rollups chain.

There are two main Rollups approaches: optimistic Rollups and zero-knowledge
(ZK) rollups. The former resembles Plasma in that it also uses fraud proofs to chal-
lenge invalid fund withdrawals and invalid layer-2 transactions. ZK Rollups is more
disruptive in that it allows instant withdrawals.

Blockchain in a Nutshell 45

• Optimistic Rollups: The name “optimistic” comes from the assumption in this
approach that the transaction data submitted to Root Chain is correct. After the
Rollups chain commits a batch of transactions to Root Chain, they will be con-
sidered permanently finalized if no one submits a fraud proof to challenge any
transaction. Whenever a fraud proof is submitted, the suspicious transaction will
be re-validated: it will be replayed on Root Chain using the block state and transac-
tiondata information already saved inRootContract. The replayof such transaction
is similar to that in the transaction verification procedure of Ethereum. Noticeable
implementations of Optimistic Rollups include Optimism6 and Arbitrum7.

• ZK Rollups: ZK Rollups leverages a cryptographic method called zk-SNARK
(zero-knowledge succinct non-interactive argument of knowledge) [11]. A zk-
SNARK is a cryptographic proof that allows one party to prove that it possesses
certain information without revealing that information. The verification of the
proof is quick and cheap. When a batch of transactions are to be committed on
Root Chain, a zk-SNARK proof is computed for this data to prove its validity
and sent along to Root Chain. Root Contract verifies this proof on Root Chain
when receiving a withdrawal request; if valid, the fund is released immediately.
Noticeable implementations of ZKRollups include dYdX8, Loopring [44], zkSync
[15], and ZKSpace.9

To understand ZK Proofs, suppose that Alice wants to prove to Bob her knowing
of a value x such that f (x) = output for a given output . Can she do that without
disclosing value x? For example, can Alice provide a proof that she knows a secret
value having a given SHA256 hashwithout revealing this secret? This is called a zero-
knowledge proof. A related example is the well-known Yao’s Millionaires’ Problem
[31]: can twomillionaires, Alice and Bob, knowwho is richer without revealing their
actual wealth? Mathematically put, with two numbers a and b, can we determine
whether a ≤ b without revealing the actual values of a and b?

zk-SNARK is a method for computing ZK proofs. First, assume that we can write
a computer program to implement a Boolean function C(output, x) that returns true
if and only if f (x) = output . For example, if f is SHA256:

Boolean function C(output, x) {

return (SHA256(x) == output);

}

Azk-SNARKis a set of three functions,Generator(), Prover(), andVeri f ier(),
defined as follows:

6 https://www.optimism.io.
7 https://offchainlabs.com/.
8 https://dydx.exchange.
9 https://zks.org.

https://www.optimism.io
https://offchainlabs.com/
https://dydx.exchange
https://zks.org

46 D. A. Tran and B. Krishnamachari

Generator(λ,C) → (pk, vk) (9)

Prover(pk, output, x) → pr f (10)

Veri f ier(vk, output, pr f) → {true, f alse} (11)

• Generator(): This is called the key generator. It takes as input a secret parameter
λ and program C and outputs a pair of keys called a “proving key” pk, and a
“verification key” vk. These keys are publicly known. It is noted that the secret
parameter λ must be known to no one except the generator.

• Prover(): This is called the prover: Alice calls this function taking as input the
proving key pk, the public value output , and her secret value x that she wants to
prove that f (x) = output . This function will output a value called “proof” pr f .
Alice will send this proof to Bob.

• Veri f ier(): This is called the verifier: Bob uses this function to take as input the
verification key vk, the public value output , and the proof pr f he received from
Alice. This function returns true iff the proof is correct, i.e., the prover knows a
value x satisfying f (x) = output .

As another example, suppose that Alice wants to transfer tokens of some ERC-
20 cryptocurrency to somebody. Using the standard ERC-20 smart contract, the
public sees the account balance of Alice, balance, and the amount she sends,
value. In many cases, it is desirable to hide these numbers. For this purpose, we
can implement a smart contract that makes public only the following hashes of
these numbers, balanceOld = SH A256(balance), sentV alue = SH A256(value),
and balanceNew = SH A256(balance − value). Knowing these hashed values, the
miner (Bob) cannot know the raw values, balance and value, but can still verify
whether the transfer is valid. In this example, Alice is the prover and miner Bob is
the verifier. The corresponding program code to define the logic for this verification,
which is input into zk-SNARK, is as follows:

Boolean function C(output, x) {

return (x.balance >= x.value

&& SHA256(x.balance) == output.balanceOld

&& SHA256(x.value) == output.sentValue

&& SHA256(x.balance-x.value) == output.balanceNew);

}

Here, output is the object consisting of the three hashed values that Bob observes
and x is the secret information about the sender’s balance and value sent. With this
program code C , the key generator will take it as input, together with a random
parameter λ, to generate a proving key pk and a verification key vk. Alice and Bob
use these two keys to prove and verify as above.

There is tradeoff between optimistic versus ZK rollups. Due to mathematical
complexity, generic constructions for ZK protocols are too expensive to be used in

Blockchain in a Nutshell 47

practice. Thus far, it has been suitable for only a few specific applications such as
payments and token exchanges, like what is mainly served by Plasma. Optimistic
Rollups, on the other hand, thanks to its simplicity, supports layer-2 smart contracts
better. It, however, requires more storage in Root Contract (data needed to replay
transactions for verification purposes). In contrast, with ZK proofs that can readily
verify transactions, ZK Rollups requires less storage for Root Contract.

6 Blockchain Interoperability

Existing blockchain networks are each on their own island isolated from one another.
Bitcoin users can only transact with other Bitcoin owners, but not with Ethereum
users. Decentralized applications on Ethereum cannot make calls to those on other
blockchain networks. Data on one blockchain cannot be shared outside either. This
is analogous to the early days of Internet, where different “Internets” (networks)
were developed independently to serve their own purposes or groups of users. They
adopted different technologies and architectures that do not speak the same language.
However, the Internet today is universally interoperable in that even though it consists
of many Internet providers’ networks, any two computers or applications regardless
of where they belong can communicate with each other.

Interoperability between the chains must be a top priority for blockchain. This
should be seamless so that one should focus on the logic of the application with-
out having to worry about which underlying blockchain technology stacks to use.
Imagine the complexities that would arise for a supply-chain company if it runs the
product tracking application on a blockchain and the payment application on another
blockchain, and these two blockchains are not compatible.

At the least, we should enable interoperability for digital assets. We should be
able to transfer or exchange assets between different networkswithout intermediaries
such as a centralized cryptoexchange. This would allow a Bitcoin user to pay Bitcoin
to a merchant that runs its point-of-sale software built on Ethereum. This would
benefit immensely decentralized finance (DeFi) applications that would be able to
tap into all populations of users who own various types of assets. The next level of
interoperability is for cross-chain exchanges of arbitrary data. This would enable
smart contracts and applications on different blockchains to communicate and share
information. This kind of interoperability is of course muchmore difficult to achieve.

Efforts to realize blockchain interoperability remain fragmented. Protocols, how-
ever, have taken shape into three main approaches: Atomic Swap, Chain Bridge, and
Chain Hub.

48 D. A. Tran and B. Krishnamachari

6.1 Atomic Swap

Atomic Swap [22] is a simple solution for two users to swap assets without involving
any third party. They can be on the same chain or different chains. Suppose that Alice
wants to transfer some asset X to Bob who in return transfers some asset Y to her.
In a naive scenario, Alice will just send X to Bob and expects him to send Y to her.
The problem is, in the real world, Bob could just take her asset and run away.

Atomic Swap guarantees that the exchange succeeds or else, nothing happens
without either side losing asset. It works as follows. Alice and Bob each need to
create a Hash-Time Locked Contract (HTLC) [38] to deposit their respective asset.
Specifically, Alice will do:

1. Generate a secret key kAlice. Only she knows it at this time.
2. Compute a crypto-hash value of this key, m = H(kAlice). The hash function H

is known to Bob.
3. Create a Hash-Time Locked smart contract (HTLC) on her chain to deposit asset

X with a lock and an expiration time. This HTLC has a function to unlock X if
it is called before expiration and input with a key k such that H(k) = m.

• If asset X is unlocked, it will be transferred to the caller.
• If X remains locked at expiration time, it will be returned to Alice.

4. Send the hash value m to Bob.

On his side, Bob will do:

1. Create a Hash-Time Locked Smart Contract (HTLC) on his chain to deposit
asset Y with a lock and an expiration time. This HTLC has a function to unlock
Y if it is called before expiration and input with a key k such that H(k) = m.
This value m is the hash value sent from Alice.

2. Wait until the above unlock function is called and succeeds.

• If asset Y remains locked at expiration time, it will be returned to Bob.
• Else, the input key k must equal the secret key of Alice, kAlice. Therefore,
Bob knows this private key. He will call the HTLC of Alice inputting this key
k = kAlice to unlock asset X and have it transferred to him.

Atomic Swap will not do anything if Alice does not claim asset Y on Bob’s
contract, because if so Bob has no knowledge of her secret key to claim asset X on
Alice’s contract. If Alice does claim, Bob will know this key and claim his part too.
No third party is involved here. On the other hand, Atomic Swap is not instant. It
depends on the actions of Alice and Bob. Alice must send the hash valuem to Bob for
him to set up his smart contract. She must then by herself contact his smart contract
and vice versa.

Blockchain in a Nutshell 49

6.2 Chain Bridge

While Atomic Swap is for swapping assets, Chain Bridge enables transfers of assets
cross chains. To illustrate its idea and feasibility, suppose that we want to bridge
a smart-contract blockchain X (token USDX) with a smart-contract blockchain Y
(token USDY). A basic chain bridge solution needs to write two smart contracts, one
on X and one on Y. The bridge is owned by an entity called bridge operator, who
watches events emitted from these contracts. Bridge operator also has a liquidity
pool LPX of nX USDX on X and a liquidity pool LPY of nY UDXY on Y.

Suppose that Alice on chain X wants to transfer 10 USDX to Bob on chain Y.
For simplicity, 1 USDX = 1 USDY and so he will receive 10 UDXY. The transfer
happens as follows:

• On Chain X: Alice calls the contract on X to deposit 10 USDX to the liquidity
pool LPX on X. The new pool amount will become nX := nX + 10.

• Bridge Operator: detects this deposit and does the step below.
• On Chain Y: Bridge operator calls the contract Y to transfer to Bob 10 USDY
from the liquidity pool LPY . The new pool amount will be nY := nY − 10.

Since X and Y are existing chains in which bridge operator has no authority to
mint assets, the liquidity pools are needed to provide instant liquidity for the transfer.
The reserve amounts nX and nY set the maximum amount one can transfer to X and
Y, respectively. Thus, the more reserves, the more transfer volume is allowed. One
can be creative by encouraging liquidity providers to contribute to these pools.

In the case that bridge operator owns one of the two chains, say chain X, we do not
need liquidity pool LPX . In place of LPX , bridge operator simply mints new USDX
to the receiver anytime receiving a transfer from chain Y. Similarly, bridge operator
burns USDX of the sender when needing to transfer it to chain Y. This is the solution
often used when designing a new blockchain network that wants to bridge with an
existing blockchain (e.g., Ethereum, so that the new network can host a wrapped
version of ETH).

A challenge with chain bridge is how to ensure security given the role of bridge
operator [30]. For maximal security, bridge operator needs to be decentralized; ide-
ally, it can itself be a blockchain network. However, that would lead to implemen-
tation complexities. In fact, no bridging solution has adopted such a method fully.
One can resort to the cryptographic method of secure multi-party communication to
partially decentralize the role of bridge operator, as in the multichain framework,10

but to date weak security remains the biggest concern for chain bridge. Many hacks
targeted bridge solutions, most noticeable being the attack on Axie Infinity just this
year (March 2022) incurring a loss of 600+ million USD.

10 https://multichain.org/.

https://multichain.org/

50 D. A. Tran and B. Krishnamachari

Fig. 16 Polkadot network:Blockchains (parachains) communicatewith each other viaRelayChain.
Parachain consensus is ensured by the Collators who are the validators of the parachain. Inter-
parachain consensus is ensured by the validators who are nodes on Relay Chain

6.3 Chain Hub

Bridging is the interoperability solution to make two blockchains talk to each other.
If there are n blockchains, we would need n(n − 1)/2 bridges to enable any two
chains to communicate directly. Chain hub is an approach that builds the Internet of
blockchains by providing a “hub” connecting to all the blockchains and dedicated to
passing messages between them. More than that, this hub itself is a blockchain net-
work, thus providing maximal decentralization and security. Cosmos [28], Polkadot
[5], and Avalanche [40] are major solutions adopting this approach. They call the
“hub” by different names (relay in Polkadot and Avalanche, or hub in Cosmos).

For example, consider Polkadot [47], whose architecture is illustrated in Fig. 16.
Polkadot is a network of heterogeneous blockchain shards called “parachains”. These
chains connect to and are secured by a chain called relay chain; this is the hub of
Polkadot. Existing blockchains or those not of Polkadot network are called external
networks which can talk to any parachain via bridges. There are four main roles for
Polkadot keepers: validators, nominators, collators, and fishermen.

• Validators: Theymust be among the nodes that formRelayChain.Once newblocks
have been validated in their parachains, theymust be ratified on Relay Chain. First,
a subgroup of validators is chosen randomly to ratify each new parachain block.
This results in a new block to add to Relay Chain. This block will be validated on
Relay Chain as usual by all the validators.

Blockchain in a Nutshell 51

• Nominators: They are stake-holding parties who risk capital to nominate nodes to
become validators. Nominators get earnings if their nominees are chosen as val-
idators. The method to choose validators from nominations is based on Nominated
Proof-of-Stake (NPoS) consensus [5]. In some sense, the validators are similar to
the mining pools of current PoW blockchains and the nominators are similar to
the miners who join these pools.

• Collators: They must be among the parachain nodes. On their parachain, they
author new blocks and execute transactions as usual (like miners in PoW
blockchains or validators in PoS blockchains). In addition, as collators, they pro-
vide validators with valid parachain blocks (and zero-knowledge proofs) as candi-
date blocks to ratify on Relay Chain. We can think of collators as “local helpers”
of validators on each parachain.

• Fishermen: They are “bounty hunters” who monitor Relay Chain and parachains
to report irregularities committed by the nodes. They are rewarded by submitting
a timely proof showing that at least one bonded party misbehaved. The fishermen
are an additional layer for enhancing the network security.

Polkadot can connect a set of independent blockchains while providing pooled
security and trust-free cross-chain transactability,which is thanks toRelayChainwith
contributions from the above players. However, a Chain Hub solution like Polkadot
requires building blockchains from scratch, which must use the same development
framework (e.g., Substrate11 in Polkadot or Tendermint [27] in Cosmos) and abide a
shared communication protocol. As such, a blockchain network adopting Chain Hub
cannot interface with existing blockchains or those using non-compatible designs.
Chain Hub is therefore called a layer-0 blockchain interoperability solution. In the
future, one hopes that Chain Hub will be successful and widely adopted. When that
happens, we will realize the true vision of blockchain being a universal computer or
the next-generation Internet.

7 Conclusions

This chapter has presented howblockchainworks fundamentally, togetherwith selec-
tive case studies, methods, and challenges, that help the reader understand this tech-
nology quickly to be sufficiently ready for further adventures. The coverage includes
what blockchain is, its architecture and components, how it works for Bitcoin with
proof-of-work consensus, the view of smart-contract blockchains as universal com-
puters, and open challenges in scalability and interoperability, the top-2 priorities for
blockchain technology. It should become now clear that there is no limit in potential
applications of blockchain and emerging business models that otherwise are not fea-
sible with conventional non-blockchain computing. However, despite its promise,
blockchain technology is still in its infancy. Like the evolution of the Internet, it
takes time for a new technology to mature and be widely accepted by traditional

11 https://www.parity.io/technologies/substrate/.

https://www.parity.io/technologies/substrate/

52 D. A. Tran and B. Krishnamachari

businesses. Technically, besides the foremost importance of scalability and inter-
operability, many other challenges remain to address as we go more deeply into
each component of the blockchain architecture: how to optimize the peer-to-peer
networking layer; innovate consensus mechanisms to be eco-friendly, incentivize,
and evaluate contributions to the security and decentralization of the blockchain;
develop smart contracts that are bug-free; enable decentralized finance for every-
body; and apply effectively to other meaningful real-world problems. All that makes
the research and development of blockchain technology interesting.

Acknowledgements Duc A. Tran’s work for this chapter was partially funded by Vingroup Joint
Stock Company and supported by Vingroup Innovation Foundation (VINIF) under project code
VINIF.2021.DA00128. Bhaskar Krishnamachari’s work was supported in part by the USC Viterbi
Center for Cyberphysical Systems and the Internet of Things.

References

1. Back, A.: Hashcash-a denial of service counter-measure (2002). http://www.hashcash.org/
papers/hashcash.pdf

2. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poelstra, A.,
Timón, J., Wuille, P.: Enabling blockchain innovations with pegged sidechains (2014). https://
www.peercoin.net/whitepapers/peercoin-paper.pdf

3. Baird, L., Harmon,M.,Madsen, P.: Hedera: A public hashgraph network and governing council
(2020). https://hedera.com/hh_whitepaper_v2.1-20200815.pdf

4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications
(extended abstract). In: J. Simon (ed.) Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA, pp. 103–112. ACM (1988).
https://doi.org/10.1145/62212.62222

5. Burdges, J., Cevallos, A., Czaban, P., Habermeier, R., Hosseini, S., Lama, F., Alper, H.K.,
Luo, X., Shirazi, F., Stewart, A., Wood, G.: Overview of polkadot and its design considerations
(2020). CoRR arXiv:2005.13456

6. Buterin, V.: Ethereum: a next-generation smart contract and decentralized application platform
(2014). https://ethereum.org/en/whitepaper

7. Buterin, V.: An incomplete guide to rollups (2021). https://vitalik.ca/general/2021/01/05/
rollup.html

8. Buterin, V.:Why sharding is great: demystifying the technical properties (2021). https://vitalik.
ca/general/2021/04/07/sharding.html

9. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third Sym-
posium on Operating Systems Design and Implementation, OSDI’99, pp. 173–186. USENIX
Association, USA (1999)

10. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci.
777, 155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001

11. Chen, T., Lu, H., Kunpittaya, T., Luo, A.: A review of zk-snarks (2022)
12. Damgård, I.: Commitment schemes and zero-knowledge protocols. In: I. Damgård (ed.) Lec-

tures on Data Security, Modern Cryptology in Theory and Practice, Summer School, Aarhus,
Denmark, July 1998. Lecture Notes in Computer Science, vol. 1561, pp. 63–86. Springer
(1998). DOI https://doi.org/10.1007/3-540-48969-X_3

13. Deloitte: Deloitte’s 2020 global blockchain survey (2020). https://www2.deloitte.com/mt/en/
pages/technology/articles/2020-global-blockchain-survey.html

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://hedera.com/hh_whitepaper_v2.1-20200815.pdf
https://doi.org/10.1145/62212.62222
http://arxiv.org/abs/2005.13456
https://ethereum.org/en/whitepaper
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/04/07/sharding.html
https://vitalik.ca/general/2021/04/07/sharding.html
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1007/3-540-48969-X_3
https://www2.deloitte.com/mt/en/pages/technology/articles/2020-global-blockchain-survey.html
https://www2.deloitte.com/mt/en/pages/technology/articles/2020-global-blockchain-survey.html

Blockchain in a Nutshell 53

14. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Proceedings of the
12th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO’92,
pp. 139–147. Springer, Berlin, Heidelberg (1992)

15. Ethworks: Zero-knowledge blockchain scalability (2018). https://ethworks.io/assets/
download/zero-knowledge-blockchain-scaling-ethworks.pdf

16. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM
61(7), 95–102 (2018). https://doi.org/10.1145/3212998

17. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine
agreements for cryptocurrencies. In: Proceedings of the 26th SymposiumonOperating Systems
Principles, SOSP’17. Association for Computing Machinery, pp. 51–68. New York, NY, USA
(2017). https://doi.org/10.1145/3132747.3132757

18. Goodman, L.M.: Tezos: a self-amending crypto-ledger (white paper) (2014). https://tezos.com/
whitepaper.pdf

19. Grunspan, C., Pérez-Marco, R.: The mathematics of Bitcoin (2020). CoRR arXiv:2003.00001
20. Hafid, A., Hafid, A.S., Samih, M.: Scaling blockchains: a comprehensive survey. IEEE Access

8, 125244–125262 (2020). https://doi.org/10.1109/ACCESS.2020.3007251
21. Hankerson, D., Menezes, A.: Elliptic Curve Cryptography, pp. 397. Springer US, Boston, MA

(2011)
22. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Symposium on

Principles of Distributed Computing, PODC’18. Association for Computing Machinery, pp.
245–254. New York, NY, USA (2018). https://doi.org/10.1145/3212734.3212736

23. Iansiti, M., Lakhani, K.: The truth about blockchain. Harv. Bus. Rev. 95, 118–127 (2017)
24. King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake (2012). https://

www.peercoin.net/whitepapers/peercoin-paper.pdf
25. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
26. Konstantopoulos, G.: Plasma cash: towards more efficient plasma constructions (2019). https://

doi.org/10.48550/ARXIV.1911.12095. arXiv:1911.12095
27. Kwon, J.: Tendermint: consensus without mining (2014). https://tendermint.com/static/docs/

tendermint.pdf
28. Kwon, J., Buchman, E.: A network of distributed ledgers (2016). https://v1.cosmos.network/

resources/whitepaper
29. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program.

Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/357172.357176
30. Lan, R., Upadhyaya, G., Tse, S., Zamani,M.: Horizon: a gas-efficient, trustless bridge for cross-

chain transactions (2021). https://doi.org/10.48550/ARXIV.2101.06000. arXiv:2101.06000
31. Lin, H.Y., Tzeng, W.G.: An efficient solution to the millionaires’ problem based on homomor-

phic encryption. In: Proceedings of the Third International Conference on Applied Cryptogra-
phy and Network Security, ACNS’05, pp. 456–466. Springer, Berlin, Heidelberg (2005)

32. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on the xor
metric. Peer-to-Peer Systems, pp. 53–65 (2002)

33. Merkle, R.C.: A digital signature based on a conventional encryption function. CRYPTO’87,
pp. 369–378. Springer, Berlin, Heidelberg (1987)

34. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Advances in
Cryptology–CRYPTO’85 Proceedings, pp. 417–426. Springer, Berlin Heidelberg (1986)

35. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.
pdf

36. Nguyen, Q., Cronje, A., Kong, M., Lysenko, E., Guzev, A.: Lachesis: Scalable asynchronous
bft on dag streams (2021). https://doi.org/10.48550/ARXIV.2108.01900. arXiv:2108.01900

37. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017). https://plasma.io/
plasma.pdf

38. Poon, J., Dryja, T.: The Bitcoin lightning network: Scalable off-chain instant payments (2017).
https://lightning.network/lightning-network-paper.pdf

39. PwC: Time for trust: The trillion-dollar reason to rethink blockchain pwc projected (2020).
https://www.pwc.com/timefortrust

https://ethworks.io/assets/download/zero-knowledge-blockchain-scaling-ethworks.pdf
https://ethworks.io/assets/download/zero-knowledge-blockchain-scaling-ethworks.pdf
https://doi.org/10.1145/3212998
https://doi.org/10.1145/3132747.3132757
https://tezos.com/whitepaper.pdf
https://tezos.com/whitepaper.pdf
http://arxiv.org/abs/2003.00001
https://doi.org/10.1109/ACCESS.2020.3007251
https://doi.org/10.1145/3212734.3212736
https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://doi.org/10.48550/ARXIV.1911.12095
https://doi.org/10.48550/ARXIV.1911.12095
http://arxiv.org/abs/1911.12095
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper
https://doi.org/10.1145/357172.357176
https://doi.org/10.48550/ARXIV.2101.06000
http://arxiv.org/abs/2101.06000
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.48550/ARXIV.2108.01900
http://arxiv.org/abs/2108.01900
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf
https://lightning.network/lightning-network-paper.pdf
https://www.pwc.com/timefortrust

54 D. A. Tran and B. Krishnamachari

40. Rocket, T., Yin, M., Sekniqi, K., van Renesse, R., Sirer, E.G.: Scalable and probabilistic lead-
erless BFT consensus through metastability (2019). CoRR arXiv:1906.08936

41. Sguanci, C., Spatafora, R., Vergani, A.: Layer 2 blockchain scaling: a survey (2021).
arXiv:2107.10881

42. Shi, E.: Foundations of distributed consensus and blockchains (book manuscript) (2020).
https://www.distributedconsensus.net

43. Szabo,N.: The idea of smart contracts (1997). https://nakamotoinstitute.org/the-idea-of-smart-
contracts

44. Wang, D., Zhou, J., Wang, A.: Loopring: A decentralized token exchange protocol (2018).
https://loopring.org/resources/en_whitepaper.pdf

45. Wang, T., Zhao, C., Yang, Q., Zhang, S., Liew, S.C.: Ethna: Analyzing the underlying peer-to-
peer network of ethereum blockchain. IEEE Trans. Netw. Sci. Eng. 8(3), 2131–2146 (2021).
https://doi.org/10.1109/TNSE.2021.3078181

46. Wensley, J.H.: Sift: software implemented fault tolerance. In: Fall Joint Computer Conference,
Part I, AFIPS’72 (Fall, part I). Association for ComputingMachinery, pp. 243–253. NewYork,
NY, USA (1972). https://doi.org/10.1145/1479992.1480025

47. Wood, G.: Polkadot white paper (2016). https://polkadot.network/PolkaDotPaper.pdf
48. Yakovenko, A.: Solana: A new architecture for a high performance blockchain v0.8.13 (2017).

https://solana.com/solana-whitepaper.pdf

http://arxiv.org/abs/1906.08936
http://arxiv.org/abs/2107.10881
https://www.distributedconsensus.net
https://nakamotoinstitute.org/the-idea-of-smart-contracts
https://nakamotoinstitute.org/the-idea-of-smart-contracts
https://loopring.org/resources/en_whitepaper.pdf
https://doi.org/10.1109/TNSE.2021.3078181
https://doi.org/10.1145/1479992.1480025
https://polkadot.network/PolkaDotPaper.pdf
https://solana.com/solana-whitepaper.pdf

	 Blockchain in a Nutshell
	1 Introduction
	2 What is Blockchain
	2.1 The Blockchain Computer
	2.2 The Blockchain State
	2.3 The Chain Structure
	2.4 Use of Cryptography
	2.5 Where is Blockchain Stored
	2.6 How to Process a Transaction
	2.7 How to Achieve Consensus

	3 The Bitcoin Network
	3.1 Addresses
	3.2 Elliptic Curve Cryptography
	3.3 Transactions
	3.4 Blocks
	3.5 Mining Difficulty
	3.6 Mining (Un)Fairness
	3.7 Block Finality

	4 Smart-Contract Blockchains
	4.1 Smart Contract
	4.2 Token Creation
	4.3 Transaction Processing
	4.4 Block Validation
	4.5 Contract Interoperability

	5 Blockchain Scalability
	5.1 The Blockchain Trilemma
	5.2 Layer-2 Scalability

	6 Blockchain Interoperability
	6.1 Atomic Swap
	6.2 Chain Bridge
	6.3 Chain Hub

	7 Conclusions
	References

