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Abstract. Thenotions ofCollaborativeVirtual Power Plant Ecosystem (CVPP-E)
and Cognitive Household Digital Twin (CHDT) have been proposed to contribute
to the efficient organization and management of households within Renewable
Energy Communities (RECs). Both ideas can be represented by digital twins,
which complement each other. CHDTs can be modelled as software agents,
designed to possess some cognitive capabilities which could enable them to make
autonomous decisions, based on the preferences or value system of their owner.
Due to their cognitive and decision-making capabilities, these agents could exhibit
some behavioural attributes such as engaging in collaborations, mutually influenc-
ing one another and the ability to adopt some form of social innovation. These
behavioural attributes are expected to promote collaboration which are envisioned
to increase the survivability and sustainability of the CVPP-E. This study there-
fore seeks to demonstrate the capability of CHDTs to mutually influence one
another towards a common goal - thus promote sustainable energy consumption.
We adopted a multi-method simulation technique that involves the integration of
multiple simulation paradigms such as System Dynamics, Agent-Based, and Dis-
crete Event simulation techniques on a single simulation platform. The outcome of
the study shows that mutual influence could enhance the sustainable consumption
in the ecosystem.

Keywords: Mutual influence · Collaborative networks · Sustainable
consumption · Digital twins · Renewable energy communities

1 Introduction

It was claimed in a recent study that buildings consume nearly 40%of global energy, 25%
of globalwater and 40%of global resources [1]. The study further advanced the argument
that one-third of global greenhouse gases are emitted by residential and commercial
buildings. Other similar studies such as [2] have also affirmed that energy consumption
in households (HHs) is in the rise and this could partially be attributed to the increasing
demands for comfort and its consequent requirement for larger HH equipment. This has
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also been attributed to higher purchasing power and improvement in the standard of
living of occupants [2].

Generally, it is known that the Earth´s resources are depleting rapidly. This depletion
can partly be ascribed to the global surge in energy demand, of which HHs play a key
role. The adverse effect of depleting the earth resources is currently resulting in the
problem of climate change. This phenomenon poses severe threats to the survivability
and sustainability of planet earth and its entire occupants. To help address this immense
concern, several studies have suggested diverse approaches that can help reduce energy
consumption at the HH levels. One of such approaches, as described in [3, 4] and [5],
involves the notions of Collaborative Virtual Power Plant Ecosystem (CVPP-E) and
Cognitive HH Digital Twin (CHDT). These are a pair of concepts that are proposed
to complement each other and can be conceptualized as digital twin representation of
(a) a Renewable Energy Community, which is hereby represented as the CVPP-E, and
(b) the constituent HHs of the community, also represented as CHDTs. According to
the authors of [5], CHDTs can be designed and modelled as software agents that can
possess some cognitive capabilities which could enable them to make autonomous and
rational decisions based on the preferences of their owners. Furthermore, it is claimed
that CHDTs could exhibit some behavioural attributes such as engaging in collaborations
and mutually influencing one another towards collective decision-making. In this study
we attempt to demonstrate “Mutual Influence” capabilities of these CHDTs, and further
endeavour to show how such influence can be adopted to alter the decision making of
CHDTs. The study is therefore guided by the following research questions:

RQ-1. In the context that “influencer” CHDTs could convey either positive or negative
influence on “infuencee” CHDTs in a CVPP-E, how can the aggregation of these
influences over time be used to determine the overall behaviour of a CHDT?

RQ-2. How can the overall behaviour of a CHDT be used in decision-making?
RQ-3. Considering that CHDTs could be influenced to alter their decisions, how can

“mutual influence” be used to alter the decisions of CHDTs towards sustainable
energy consumption.

2 Relationship with Technological Innovation for Digitalization
and Virtualization

Advances in digitalization and virtualization are helping to gradually bridge the divide
between the physical and virtual worlds. The coupling of these two worlds unveils the
possibility of mirroring the real world in its equivalent form within the virtual space [6].
These concepts represent facets of a major transformation that is currently ongoing in
industry and services, often referred to as industry 4.0. They encompass the adoption
and integration of a variety of new information and communication technologies for the
development ofmore efficient, flexible, agile, and sustainable solutions [7]. In the domain
of energy, these concepts are helping to facilitate the integration of intelligence in the
formof software agents for optimumgridmanagement and operation. In this context, this
study proposes the virtualization of Renewable Energy Communities (RECs) and their
constituent HHs into a form of Digital Twins (DTs). Furthermore, the study suggests the
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digitalization of energy use preferences of the constituent HHs of these RECs, in a form
of delegated autonomy, which is assigned to their DT counterparts. It is perceived that
these DTs could possess some cognitive or intelligent attributes that could enable them
to make rational and autonomous decisions on behalf of their owners. This could help
to provide flexible and sustainable energy consumption within these virtualized RECs.
In view of the above, the scope of this work aligns well with the ongoing trend in the
digital transformation.

3 Theoretical Framework and Related Works

We derived the Collaborative Virtual Power Plant Ecosystem concept bymerging princi-
ples and concepts from the disciplines of Collaborative Networks (CNs) [8], and Virtual
Power Plants (VPP) [9]. The central theme for the concepts of CNs is the idea of col-
laboration, where multiple entities come together with the primary objective of achiev-
ing a common goal. In studies such as [10] and [11], CN concepts are well elaborated.
Conversely, VPPs are virtual entities that involve the interaction between multiple stake-
holders and are comprised of decentralized multi-site and heterogeneous technologies,
formed by aggregating deferrable and non-deferrable distributed energy sources [3].
The mix of these two concepts resulted in the proposed hybrid concept called Collabo-
rative Virtual Power Plant Ecosystem (CVPP-E). This idea was first introduced in [3]. A
CVPP-E can be perceived as a Digital Twin (DT) model of a REC, such as described in
[12]. Other relevant studies described a CVPP-E as a form of a business ecosystem or a
community of practice where members approach energy generation, consumption, and
conservation from a sustainability point of view using collaboration as a key technique.
The governing structure is claimed to be polycentric and decentralized with a manager
who plays a coordinating role and promotes collaborative behaviours. Our current work
extends previous developments by focusing on the effects of mutual influence among
CHDTs and how such influence can be channelled to promote more sustainable energy
consumption.

4 Modelling Framework

Modelling the CVPP-E and CHDTs: According to [13], a REC is a community that
is formed based on open and voluntary participation. It is usually owned, managed,
and controlled by shareholders or members who are autonomous and located within
the proximity of the projects. Essentially, members of a REC can generate renewable
energy for their own consumption, and may store, sell, or share excess with community
members. In this context, the study, attempt to replicate the REC concept by aggregating
several autonomous software agents into a population of CHDTs. EachCHDT represents
a unit of HH within the community. In the model, we categorized the constituent HHs
(CHDTs) into 5 different categories. The categorization and related data was sourced
from [14]. The considered categories are: (a) HHs with single pensioner (b) HHs with
single non-pensioner (c) HHs with multiple pensioners (d) HHs with children (e) HHs
with multiple persons with no dependent children.
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A key aspect of the CHDTs concept is their cognitive capabilities. In this study,
CHDTs are modelled at three abstraction levels. The upper-level is used to model the
community status and decision making processes, while the mid-level is used to model
the different behavioural attributes of the CHDT. At the low-level is where energy assets
such as HH appliances, energy storage devices, as well as the PV systems are mod-
elled. Although it is acknowledged that the physical layer involves the integration of
diverse energy assets, it is expected that several technical factors should be taken into
consideration as far as the organization and efficient management of these energy assets
are concerned. However, the emphasis of the study was focused primarily at the upper
and mid layers where decision-making and varied behavioural attributes occur. There-
fore, the lower level technical factors are not addressed in this work. This is because
this study hinges around two key principles: (a) collaborations which is based on some
common goals, and (b) the notion of community. Currently, the literature on energy
communities suggests that members usually form a cohesive union around the energy
infrastructure, due to the notion of “community membership”, “sense of belonging”,
“common identity”, etc. Furthermore, it is claimed that members of these communities
are usually expected to conform to community norms, practices, and rules. Therefore,
the behavioural traits as well as the decision-making attributes of members is what we
deem paramount in this work.

Inmodelling aCHDT,wefirst consider its community status,which defines aCHDTs
long-term characteristics which enables it to play some specific roles in the community.
For instance, being a prosumer, consumer, influencer, or influencee. Thus, the status of
a CHDT is modelled using a “composite state” as shown in Fig. 1, and is assumed at
the model initialization stage, and is remembered and maintained as an “active state” by
the agent throughout the model run. The behavioural attribute at the mid-level includes
behaviours such as the ability to convey influence (influencer) or being the recipient
of an influence (influencee). These behavioural attributes are also modelled as internal
states, using “simple states” which are embedded inside the “composite state” as shown
in Fig. 1.

State-1 State-2

Composite state
representing the 
status of a CHDT

Simple state
representing the 

the behavioral attributes
of a CHDT

Fig. 1. A composite and simple states of a CHDT

At the low-level, prosumer CHDT are modelled to possess a Photovoltaic (PV) unit
for energy generation, a local energy storage system, and nine (9) HH appliances. An
Anylogic [17] model of the nine considered appliances as shown in Fig. 2. TheAnylogic
enables the integration ofmultiple simulation paradigms such as system dynamics, agent
based, and discrete event techniques on a single platform. The considered appliances
are: (a) Washing machine, (b) Dishwasher, (c) Tumble/clothes dryer, (d) Audio-visuals,
(e) Microwave, (f) Cooker, (g) lighting, (h) Oven, and (i) Refrigerator. The consumption
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priority of a prosumer is firstly from the PV system, then the local storage, followed by
the community storage, and finally the grid. Prosumers can share excess energy with the
community through a common community storage systemas shown in Fig. 3. Consumers
are also modelled to possess nine HH appliances. Their primary energy source is the
grid, however, when community storage is found to be available, they switch sources to
utilize the storage until it runs out, then they revert to the grid.

In the model, the consumption of each HH appliance per CHDT is continuously
aggregated throughout the period of themodel run. The data from these aggregated values
form the load profile for each appliance per household. Furthermore, the consumption
for all appliances per household are also aggregated to form the load profile for that HH.
Finally, the consumption for all the households in the community is also aggregated to
form the global load profile of the entire community. The anylogic simulation platform
has a built-in graphical analysis tool that enables these data be plotted. In Sect. 6 of this
study, the data collected at the global level is used in the analysis of the global behaviour
of CHDTs in the community.

Fig. 2. Anylogic model of the nine HH appliances.

Fig. 3. Anylogic model of the community storage

An active state, as mentioned earlier, defines the aspects of the CHDT that are
functional. An inactive state, on the contrary, describes attributes that are dormant. As
shown in Figs. 4 and 5, active states are depicted using unshaded regions with continuous
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boundary lines. Inactive states on the other hand are shown as shaded regions with dotted
boundary lines. In Fig. 4 as an example, we elucidate an active CHDT (CHDT-1) whose
status as a prosumer is active and a state describing this CHDT as an influencer is
also active. Likewise, in Fig. 5, we show an active CHDT (CHDT-2) whose status as a
consumer is active and a state describing this CHDT as an “influencee” is also shown
active.

Initialization state

No installed PV

Status:Prosumer

State: Consumer 

CHDT-1

State: Influencer
Send

fin• uence

Receive 
in• uence

Fig. 4. A CHDT with active prosumer
status, active influencer state and active
“send influence” state

Initialization state

Status:Consumer

CHDT-1

State: Influencee
Send in•uence

Receive 
in•uence

State: Influencer

Fig. 5. A CHDT with active consumer status,
active “influence” state and active “receive
influence” state

Additionally, Influencer CHDTs also have an active internal state labelled “send
influence” which contains algorithms responsible for the conveyance of influence.

Similarly, influences CHDTs have an active “receive influence” states which also
contain algorithms responsible for the reception of influence. In this described scenario,
it is assumed that influencer CHDTs do not receive influence and influencee CHDTs
also do not convey influence. Generally, when the status or state of a CHDT is active it
executes algorithmic instructions that are associated with that particular status or state,
and this enables the CHDT to behave according to the embedded instructions. Having
knowledge of all active states (both composite and simple) as well as the accompanying
algorithmic instructions, and making basic rational decisions based on this knowledge
is what gives the CHDT its cognitive capabilities.

Modelling Influences and Decision-Making: In this study we consider two types of
endogenous influences. These are positive and negative influences. Endogenous influ-
ence refers to influences that are of external origin relative to a CHDT. These influences
could originate from the CVPP manager or other influential CHDTs that are within the
ecosystem. Each influence possesses the following attributes (a) Polarity (b) Intensity
(c) Impact and (d) Frequency of transmission. Polarity signifies whether an influence
is positive or negative. The intensity on the other hand describes the magnitude of the
influence. For instance, a positive influence may have a positive polarity and a minimum
intensity/magnitude of “X” and a maximum intensity/magnitude of “Y”. Likewise, the
impact describes the severity (how strong orweak) of the influence on theCHDT.Ahigh-
impact influence affects the CHDT for a longer duration while a low-impact influence
has a short duration. The frequency of transmission describes how often an influencer
CHDT convey influence to the community. CDHTsmake decision based on a predefined
threshold called the “decision constant” which is represented by “ ∝”. This parameter is
a positive value and can be reached when the aggregated impact of all influences acting
on the CHDT equals this constant. A negative constant could also be adopted and used to
determine when a CHDT makes a negative decision such as refusal to participate in col-
laborations. Additionally, influences are conveyed and received in the form of “pulses”
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that are transmitted sporadically from several sources (i.e., from the various influencer
CHDTs) to random destination (influencee CHDTs). The pulsating characteristics of the
influences are modelled using a probability distribution functions. These functions are
expressed as follows: (a) Positive influence:Uniform distribution (+a,+ b), (b) Negative
influence: Uniform distribution (-c, -d), (c) Frequency of transmission:

Uniform distribution (e, f) times per hours, days, weeks, months, or years. (d) Impact:
Uniform distribution (g, h) hours, days, weeks, months, or years, (g) Decision threshold
= ∝.Where + a, -c, e, and g are the possible lower limits, and + b, -d, f, and h are the
possible upper limits for each related elements of the influence.

5 Demonstration of the Modelling Technique Using Selected
Scenarios

Scenario forModellingCHDTPopulation: InTable 1,wedefine the population size for
each category ofHHwithin theCVPP-E. This population shall bemaintained throughout
the demonstration.

Table 1. CHDT population considered for each category of HHs

Item Category of CHDT Population size

1 CHDT with single pensioner 10

2 CHDT with single non-pensioner 10

3 CHDT with multiple pensioners 10

4 CHDT with children 10

5 CHDT with multiple persons with no dependent children 10

Total population size 50

Scenario for Modelling Installed PV Systems: For the prosumers population, four
different capacities of PV systems are considered. Each prosumer CHDT can inherit
any one of them. The PV systems and their respective capacities are: (a) BainSystem =
6.930 kW, (b) BrainSystem = 1.950 kW, (c) Helius = 3.99 kW, and (d) DaSS = 3.22
kW. All PVs are located in the Great Britain [15]. Data from these real-life systems are
used to model the PV generation aspects of the model. The aspects of the energy storage
is modelled as following: (a) State of charge = M, (b) the storage capacity = N, and (c)
depth of discharge = K. Condition for discharging storage is when M > = 70% of N.
Condition for charging is when M < = 30% of N.

Scenario for theModelling of Influences and Decision-Making: The defined param-
eters for this scenario are as follows: (a). Positive influence: Uniform distribution (0,
2), (b) Negative influence: Uniform distribution (-2, 0), (c) Frequency of transmission:
Uniform distribution (0, 3) times per week, (d) Impact: Uniform distribution (0, 5) hours
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from the moment of receiving the influence, (e) Decision threshold (∝)= 50. Community
Storage capacity (NC) = 300 Kwh. Local storage capacity (NL) = 20 kwh for Brain-
System, 15 kwh for helious, 12 kwh for DaSS, and 10 kwh for BainBridge. Finally, the
depth of discharge for all storage was 70% of N.

Scenario for Modelling Embedded HH Appliances: The parameters that were used
to model the use-behaviours of all the nine (9) HH appliances are shown in Table 2. The
parameters were obtained from [14] and [16]. The data from [14] was sourced from the
Household Electricity Survey: A Study of Domestic Electrical Product Usage (Intertek
Report R66141) [14]. The report is a comprehensive and extensive one that covers
several aspects of household’s energy use. The data was collected from 251 households
in England spanning the period May 2010 to July 2011. For each category of HH, the
survey captured the HH size i.e., the number of occupants per HH. For instance, Table
2, shows the number of HH per each category, that was used for that survey. For each
HH, the number of occupants or household size was different. Therefore, the data that
was used to model the appliance’s consumption, which was borrowed from this report
captures the different occupants per household.

Table 2. Parameters used to model the use-behaviour of the considered appliances

Type of inhabitant Number of HH

Single pensioner households 34

Single non-pensioner household 35

Multiple pensioner household 29

Household with children 78

Multiple person household with no dependent children 74

Table 3. Parameters used to model the use-behaviour of the considered appliances.

Type of Appliance DoU (hrs) APR (kW) FoU/ week

min max min max min ave max

Wash. Mach 0.50 3.00 0.500 1.000 0.00 4.00 8.00

Tumble dryer 0.50 3.00 1.000 3.000 4.38 6.00 5.38

Dishwasher 0.50 3.00 1.000 1.500 4.19 6.19 5.19

Audio-visuals 0.50 6.00 0.025 0.148 1.00 11 21.0

Microwave 0.16 1.00 0.600 1.150 1.00 7.00 14.0

Electric Cooker 0.50 3.00 2.000 4.000 1.00 7.00 14.0

Lighting 0.16 8.00 0.015 0.165 1.00 7.00 21.0

(continued)
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Table 3. (continued)

Type of Appliance DoU (hrs) APR (kW) FoU/ week

min max min max min ave max

Refrigeration 24.0 24.0 0.011 0.091 – – –

Oven 0.50 2.00 2.000 4.000 1.00 7.00 14.0

Table 3 shows the Duration of Use (DoU), Appliance Power Rating (APR), and
Frequency of Use (FoU).

Scenario for Testing Collective Decision Making: As shown in Table 4, two different
cases, constituting of different population sizes, were considered. In all cases, the influ-
encer CHDTs attempt to influence the “influencee” CHDTs towards the Delegation of
Deferrable Loads (DDL), i.e., suspend the use of loads whose utilization can be deferred
to a later time without causing much inconvenience to the user. The appliances that were
considered for DDL are (a) washing machines, (b) dish washers and (c) tumble dryers.
DDL appliances avoid consumption from the grid and wait until local storage or com-
munity storage is available. To help test these cases, the Anylogic simulation platform
[17] was adopted.

Table 4. Two cases with varying population sizes are used to test collective decision making.

Cases Population (%)

Influencer
population
“A”

Influencee
population

Positive
Influencer
Population

Negative
Influencer
population

Prosumer
population

Consumer
population

Case-1a 90% of 50 10% of 50 90% of A 10% of A 20% of 50 80% of 50

Case 1b 90% of 50 10% of 50 10% of A 90%of A 20% of 50 80% of 50

Case-2a 10% of 50 90% of 50 90% of A 10% of A 80% of 50 20% of 50

Case-2b 10% of 50 90% of 50 10% of A 90% of A 80% of 50 20% of 50

6 Results and Discussion

RQ-1 & RQ-2: In this section, we attempt to answer research questions 1 & 2. After
running the simulation model for a period of 728 h (30 days) the following sample
behaviours were extracted from some selected CHDTs. In Figs. 6a & 6b we show the
characteristics of the modelled influence that was received by two different CHDTs,
i.e., CHDT-1 and CHDT-2. The pulses that appear below the x-axis represent negative
influences whilst the ones above the x-axis are positive influences. Attributes such as
polarity, intensity, impact, and frequency of transmissions can be observed in both Figs.
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In Figs. 7a to 7d, we show how the aggregation of influences over time, can be
used to determine the overall behaviour of a CHDT. We also demonstrate how the
overall behaviour can be used in decision-making. For instance, Figs. 7a, 7b and 7c,
show CHDTs 3, 4 & 5 that initially behaved negatively. However, the duration of their
negative behaviour lasted differently. It lasted longer with CHDT-4 than CHDTs 3 &
5. Eventually, all three CHDTs changed behaviour from negative to positive. However,
CHDT 3 changed behaviour faster than CHDT 4 & 5. This was because CHDT 3 was
highly influenced positively than CHDTs 4&5. For this reason, CHDT-3 exceeded the
decision threshold “ ∝” and therefore was able to decide within the simulated period
(30 days) but CHDT 4 and CHDT 5 were unable. Finally in Fig. 7d, CHDT 6 behaved
positively right from the beginning of the model execution and it was also able to decide
much quicker than CHDTs 3, 4 and 5.

a b

Fig. 6. a. Influences received by CHDT-1. b. Influences received by CHDT-2

a b

c d

Fig. 7. a. CHDT-3. b. CHDT-4. c. CHDT-5. d. CHDT-6

RQ-3: Also in this section, we attempt to answer research question 3. By referring
to Table 4, we hereby consider cases 1a &1b. The outcome of the model for these
cases are shown in Fig. 8a & 8b. For this case, the population of prosumers, consumers,
influencers, and influencees were maintained the same. The difference between the two
scenarios is the number of positive and negative influencers. In case1b, 10% of the
influencer population were positive influencers and 90% were negative influencers. For
this reason, the majority of the CHDTs were influenced negatively and this resulted in
few decisions-making causing high proportion of energy to be consumed from the grid,
(about 69%). Furthermore, it is observed that consumption from the community storage
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was also low (about 13%). By comparing case 1b to case 1a, where the population of
positive influencers was high, thus, 90% and the population of negative influences was
low, thus, 10%, it can be seen that the majority of the CHDTs were influenced positively
resulting in more decision making, hence a reduction in the consumption from the grid,
thus, 51%, and an increase in the consumption from the community storage thus, 24%.

a b

Fig. 8. a. Case-1a. 90% positive influencers. b. Case-1b. 10% positive influencers.

Referring to Table 4 and Figs. 9a and 9b, we hereby consider cases 2a and 2b. In case
2a we consider 90% of the influencer population to be positive influencers and 10% to
be negative influencers. On the contrary, in case 2b, we consider 10% of the influencer
population to be positive influencers and 90% to be negative influencers. It can therefore
be observed that in case 2a where the number of positive influencers was high, the use
of the grid is relatively low, about 53%, as compared to case 2b where the use of the
grid is relatively high, about 60% due to the rather low population of positive influencers
(i.e., high population of negative influencers). The use of PV and local storage also
appreciated significantly in case 2a as compared to case 2b. The difference in both cases
resulted from the population difference between negative and positive influencers.

a  b

Fig. 9. a. Case-2a. 90% positive influencers. b. Case-2b. 10% positive influencer

There are several techniques that can be used to help spread influence in a social sys-
tem or network. In particular, the power of online information diffusion is one effective
method that has been utilized to positively influence citizens in many ways. For instance,
in the response to natural or man-made disasters [18] and the Hotmail phenomenon in
the early 1990s [19]. This effect, which is often referred to as the “viral phenomenon” or
“viral marketing” has been adopted by companies to encourage sharing between individ-
uals with social connections, because it is known that social recommendations can help
increase traffic to websites of businesses, resulting in higher engagement and revenue. In
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this study, positive influencers in the ecosystem could utilize the power of viral market-
ing and social recommendation. When combined with incentives (monetary incentives
or social recognition incentives) it is possible to increase the number of influencers and
thus help spreading their influence out to other members of the ecosystem.

7 Conclusion and Future Work

This study has enabled the furtherance of the notions of CHDTs by demonstrating the
decision-making and mutual influence capabilities of these software agents. Firstly, we
showed how influence is exchanged between influencer and influence CHDTs. Further-
more, we illustrated how the aggregation of influences over time can help to determine
the overall behaviour of a CHDT. Again, the study has shown how CHDTs are able to
make influence-induced decisions using the principle of thresholds. This work has fur-
ther helped to establish the fact that CHDTs could engage in collective actions that could
result in the global achievement of some common goals. It has further been shown that
a high population of positive influencers can help influence the community positively
and a high population of negative influencers could also influence the community neg-
atively, subsequently affecting the sustainability of the ecosystem. In future studies, we
shall consider the use of incentives to help increase the number of positive influencers
and thus leverage the positive effect. Finally, we draw the conclusion that the notion of
CVPP-E and CHDTs are feasible concepts. In terms of possible implementation, IoT,
sensors, and smart HH devices could be adopted as interfaces between the various HH
appliances and the respective CHDT. For the software aspect, a CHDT could have the
form of smart software agents or a HH energy management system which could be used
to initiate the exchange of information between energy assets, the community manager,
and other CHDTs. A local area network with network devices like routers, edge servers,
and IoT gateways on top of the physical layer could also surface for the communication
aspects.

Acknowledgment. We acknowledge project CESME (Collaborative & Evolvable Smart Manu-
facturing Ecosystem and the Portuguese FCT program UIDB/00066/2020 for providing partial
financial support for this work.
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