
Mining Fork-Including Software Development
Traces

Iris Reinhartz-Berger1(B) and Amir Tomer2

1 Information Systems Department, University of Haifa, Haifa, Israel
iris@is.haifa.ac.il

2 Software Engineering Department, Kinneret College on the Sea of Galilee, Tzemach, Israel
tomera@mx.kinneret.ac.il

Abstract. Open-source software development is a common practice that encour-
ages collaborative development and reuse across projects. Forking is a way to
make a copy of an existing project and explore it for different purposes. Two
types of forks are commonly mentioned in the literature: contributing forkswhich
continue the development lines of the forked projects and aim at merging the con-
tribution back to the forked projects; and independently developed forks which
open new lines of development deviating from the forked projects. In this study,
we aim to explore characteristics of fork-involving traces for better understanding
collaboration and reuse considerations in software development. Analyzing 880
Java projects and their related action and observation events, with process min-
ing and statistical techniques, we found that the occurrence of certain event types
may predict the fork type, while the creation of certain fork types increase the
involvement of users in the forked projects.

Keywords: Forks · Software development · Process mining · Development
traces

1 Introduction

Nowadays information systems engineering and software development rely much on
collaborative development which enables developers to learn from previously developed
artifacts and reuse them. Forking is a well-known mechanism in open source software
repositories for collaborative development; it supports the creation of new projects,
named forkees, from an existing project, named forked project. The authors in [1] found
high value in forking, especially in contribution to exposing and fixing software bugs and
adding new features. In cases that the forked project is further developed andmaintained,
the literature distinguishes between two types of active forks [2, 6]: contributing forks
which continue by developing new artifacts that are eventuallymerged back to the forked
project via pull requests; and independently developed forkswhich lead towards a course
of independent projects through commits that are unique to the forkees.

Forking is extensively studied. The work in [10], for example, explores the impact
of fork type on project sustainability; the work in [8] studies the efficiency of forking

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. De Weerdt and A. Polyvyanyy (Eds.): CAiSE Forum 2022, LNBIP 452, pp. 100–109, 2022.
https://doi.org/10.1007/978-3-031-07481-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07481-3_12&domain=pdf
http://orcid.org/0000-0002-1419-4905
http://orcid.org/0000-0002-8387-2458
https://doi.org/10.1007/978-3-031-07481-3_12


Mining Fork-Including Software Development Traces 101

practices. Several works (e.g., [4, 5, 7]) acknowledge the strong correlation between
forking and project popularity, shedding light on the practice of forking. However, all
these works neglect the behavioral, event-related aspects of forking and collaborative
software development. Perceiving open source software repositories as event-driven
management systems, we suggest focusing on the operations recorded by their API in
order to mine the underlying processes and the features that characterize forking of
different types.

In this study,we explored fork-inlcuding traces for better understanding collaboration
and reuse considerations in software development. To this end, we analyzed the types of
events in such traces, the partial traces before the forking operations and the continuation
of the traces in the forked projects after the forking operations. By doing so, we try to
reveal patterns of behavior leading towards (and maybe encouraging) forking, as well
as to reveal post-operation patterns of behavior. Accordingly, we address the following
research questions:

RQ1.What are the main types of events in open software development environments
that support collaborative work?

RQ2. Which types of events lead to the creation of different types of forks in given
projects?

RQ3.How does forking of different types influence the involvement of the users in
the forked projects after the forking occurred?

The rest of the paper is structured as follows: Sect. 2 introduces a categorization
framework for addressing RQ1; Sect. 3 presents the empirical study conducted for
addressing RQ2 and RQ3; Finally, Sect. 4 discusses the implications and the threats
to validity, while Sect. 5 summarizes the above and highlights some future research
directions.

2 Categorizing Software Development Events

To address RQ1, we suggest the conceptual framework depicted in Fig. 1. This frame-
work includes the main types of development events in open software development
environments, in particular in GitHub. It further categorizes the events according to
two dimensions: the involved elements and the event nature. The involved element may
refer to the project itself – REPO1; its commits – COMMIT; its issues for suggest-
ing improvements, tasks or questions – ISSUE; and its base pull requests for handling
proposed changes – PR. The event nature distinguishes between action and observation:
action events modify the information on the involved elements, while observation events
add complimentary information and may indicate some user interest in the projects in
general and in the specific elements in particular. An additional type of events that gets
a special attention in our study is forking, i.e., fork creation – FORK. We concentrate
here on contributing and independently developed forks, ignoring inactive forks, namely
forks that are not further developed and maintained. Next we present the core definitions
of event, trace (a sequence of events made by a certain user to a certain project) and
contributing/independently developed forks.

1 We used REPO for referring to project-related events, to avoid confusion with the general term
‘project’ which refers to the entire metadata of the software project.



102 I. Reinhartz-Berger and A. Tomer

Definition 1: An event is a tuple (p, u, ev, t, el, n), where p is the project to which the
event belongs, u is the user who performed it, ev is the event (e.g., creating, watching,
merging, etc.), t is its timestamp, el ∈ {REPO,COMMIT,PR,ISSUE, FORK} is the
element to which the event relates and n ∈ {ACT,OBS} is the nature of the event (action
or observation, respectively).

Definition 2: A trace is a sequence ‘of events <e1 … en> satisfying for each i, j, ei.p
= ej.p (same project), ei.u = ej.u (same user) and i< j → ei.t< ej.t (sequence in time).

Definition 3: Let p, p’ be projects satisfying fork(p, p’)2 and having sets of development
events E, E’, respectively.

• p’ is a contributing fork if contribute(p’, p)3 holds.
• p’ is an independently developed fork if it is not contributing and there is e ‘∈ E’ such
that e’.el = COMMIT and e’.n = ACT.

Fig. 1. The suggested framework

In summary, to address RQ1, we categorize the development events along two di-
mensions: the involved elements (REPO, COMMIT, ISSUE, PR) and the event nature 
(ACT, OBS), leading to 8 categories of events.

2 fork(p, p’) denotes the dependency between the forkee p’ and its forked project p.
3 contribute(p’, p) is a predicate indicating whether (or not) the forkee p’ contributes to the forked
project p via a merging pull request event.



Mining Fork-Including Software Development Traces 103

3 Characterizing Fork-Including Software Development Traces

To address the two other research question (RQ2, RQ3), we conducted an empirical
study, whose dataset, procedures and results are described below.

3.1 The Dataset

Our dataset is based onGHTorrent,whichmonitors theGithub public event time line [3]4.
For each event, GHTorrent retrieves its contents and their dependencies, exhaustively.

Following observations from related works, and in order to concentrate on projects
with significant characteristics relevant to our study, we used all projects satisfying the
following conditions: (1) created during the year 2014 and were not deleted (i.e., have
4.5–5.5 years of existence by June 2019) (2) classified as written in Java, and (3) are
highly forked (i.e., each yielded at least 100 forkees). Overall, we retrieved 880 projects
and 366,631 forkees. After filtering out deleted forkees, we were left with 355,403
forkees to the 880 projects. The forked projects were related to 5,112,603 events of
different types, 3,624,658 of which were involved in traces of length longer than 1. We
refer to this set as our dataset (see Fig. 2(a) for details).

Characteristic Value

Overall events 3,624,658

Events related 

to forked 

projects

3,507,735

Actions in 

forked projects

1,756,001

(50.06%)

Observations 

in forked 

projects

1,751,734

(49.94%)

Fork creation 116,923

Inactive forks 84,318

(72.11%)

Contributing 

forks

26,018

(22.25%)

Independently 

developed 

forks

6,587

(5.63%)

(a) (b)

Fig. 2. (a) The dataset characteristics; (b) The generated process map

Most events in the dataset (more than 3.5 million) related to the forked projects and
almost 117,000 – to fork creation. About half of the events were actions and half had

4 We particularly used the latest MySQL version of GHTorrent, dumped on June 1st, 2019; see
https://ghtorrent.org/downloads.html.

https://ghtorrent.org/downloads.html


104 I. Reinhartz-Berger and A. Tomer

an observation nature. Almost half of the events relate to issues, more than a quarter to
commits and less than a quarter to pull requests. Finally, most forks were inactive, less
than a quarter were contributing, and only 5.63% were used for opening an independent
line of development5.

3.2 Execution and Analysis Procedures

In order to analyze (“directly follows”) edges in the relevant traces, we used process
mining and particularly Disco software6. Figure 2(b) depicts the process map generated
for our dataset. As can be seen, independent fork creation follows in many (about third)
of the cases repository observation and in some cases involvement of the users in the
forked projects can be observed (e.g., though issue observation events). Contributing
fork creation may follow different events, but in many cases (two thirds of the cases),
they were associated with active involvement of the users in the pull requests of the
forked projects7. The process maps also shows inactive fork creation, which is quite
common. Such creations are frequently associated with repository observation of the
forked projects (watching events), either immediately before or immediately after the
fork creation.

Grouping the traces according to the involved events and their order, 26,382 variants
have been found.We filtered out those having only one occurrence, remainingwith 3,392
variants. The maximal length of a trace in those variants was 675, but most of them were
of length 2 to 10. Only 1,582 variants included at least one forking operation (37 variants
included even 2 to 4 such operations).

For each of the 1,582 relevant variants, we recorded the following information:
(1) Identity & occurrence information (variant number, number of cases); (2) Variant
characteristics (variant length, number of forking operations, the step when the first
forking operation appeared and its type)8; (3) Prefix traces (immediate event, numbers
of events of each type before the first forking operation); (4) Suffix traces (immediate
event, numbers of events of each type after the first forking operation).

We used a multinomial model for analyzing the data, where the fork type was the
dependent variable and all other aforementioned features were independent variables in
the same model. The factors were tested for α = 0.05.

3.3 Results

In the context of the traces that lead to forks (RQ2), we found three significantly influ-
encing factors: the immediate event (χ2(14) = 488.68, p< 0.0001), pull request actions
(χ2(2) = 560.70, p < 0.0001) and commit actions (χ2(2) = 12.69, p = 0.0018). These

5 The dataset, as well as its analyses, can be found at https://doi.org/10.5281/zenodo.6351644.
6 https://fluxicon.com/disco/
7 Note that these pull request actions refer to the forked projects and are not the merge operations
of the forkees into the forked projects, as expected in contributing forks.

8 Note that although some traces included more than one fork, this was very rare (happened in
37 out of 3,392 variants, and overall in 716 out of 175,414 cases). Hence, we considered in our
analyses only the first forking operation in each trace/variant.

https://doi.org/10.5281/zenodo.6351644
https://fluxicon.com/disco/


Mining Fork-Including Software Development Traces 105

results led to the following outcomes. Due to page limitation constraints, Fig. 3(a)
visually presents the results only for the immediate event.

Outcome 1. Contributing forks are characterized by either:

• Being created as the first communication of the user with the project, without any
prior action or observation of the user in the forked project;

• Being created (eventually) after a pull request action in the forked project. In other
words, the results show that the probability to have a pull request action in the forked
project prior to the creation of a contributing fork is high.

(a)

(b)

0

10

20

30

40

50

60

70

80

COMMIT_ACT COMMIT_OBS ISSUE_ACT ISSUE_OBS NULL PR_ACT PR_OBS REPO_OBS

CONT INDEP

0
10
20
30
40
50
60
70
80
90

CONT INDEP

Fig. 3. (a) The dependencies between prefix traces and fork types – immediate (preceding) event;
(b) The dependencies between suffix traces and fork types – immediate (following) event

Outcome 2. Independently developed forks are characterized by:

• Being created just after repository observation operations (namely, watching events)9;
• Being created (eventually) after (several) commit actions in the forked project. Actu-
ally, the results show that the probability to create an independently developed fork

9 However, this also characterizes inactive forks.



106 I. Reinhartz-Berger and A. Tomer

increases as the user performs more commits in the forked project prior to the fork
creation.

These outcomes (RQ2) suggest that contributing fork creation commonly starts user 
traces or occurs after pull request actions, whereas independently developed forks are 
commonly created immediately after repository observation operations or subsequently 
after commit actions. 

With respect to the continuation of traces after the first forking operation (RQ3),
we found four significantly influencing factors: the immediate event (χ2(14) = 658.87,
p < 0.0001), pull request actions (χ2(2) = 1887.05, p < 0.0001), issue observations
(χ2(2) = 15.38, p = 0.0005) and repository observations (χ2(2) = 7.82, p < 0.02).
These resulted in the following outcomes. Due to page limitation constraints, Fig. 3(b)
visually presents the results only for the immediate event.

Outcome 3. Contributing forks are characterized by:

• Being followed (immediately or eventually) by pull request actions in the forked
project. In other words, the results suggest that the probability to have a pull request
action in the forked project after the creation of a contributing fork is high;

• Not being followed by an issue observation or a repository observation in the forked
project (in other words, the probability to have either an issue observation or a repos-
itory observation in the forked project after the creation of a contributing fork is
low).

Outcome 4. Independently developed forks are characterized by:

• Being the last event in the traces, and in some cases, being directly followed by
repository observations;

• Not being followed by a pull request action, an issue observation or a repository
observation in the forked project (in other words, the probability to have a pull request
action, an issue observation or a repository observation in the forked project prior to
the creation of an independently developed fork is low).

Our findings (RQ3) suggest that contributing fork creation commonly occurs (im-
mediately or eventually) after pull request actions, whereas independently developed 
forks are commonly created at the end of traces (i.e., the users stop observing or acting 
on the forked projects).



Mining Fork-Including Software Development Traces 107

4 Discussion and Threats to Validity

Analysis and interpretation of the results in the previous section show that creation of
forks may involve the creators (the owners of the forkees) not only in the forkees, but
also in the forked projects; this involvement can take place at early stages, before the
fork is created, or afterwards. However, there appear to be specific types of events that
are more significantly performed than others. Perceiving open source coding as a social
activity, users may aim to increase their popularity and encourage the reuse of their code
through active forking. Our findings may lead to “best practices” relevant to project
owners to disseminate their projects and changes.

Project Dissemination: The reported results suggest that for disseminating projects their
owners cannot rely only on the project community (e.g., committers). Watchers indeed
tend to create independently developed forks, but the fork creators tend to get involved
only after creating (contributing) forks, if at all. In somecases, involvement exists through
pull request actions prior to contributing fork creation and through commit actions prior
to independently developed fork creation. In these cases, project dissemination can be
done also to pull request actors and committers.

Change Dissemination: After forkees have been created, it is important to be aware
of the forked project evolution (changes). The owners of the forked projects may be
interested in some involvement of the owners of their forkees. Our results suggest that
while it is difficult to define the relevant community for independently developed forks,
pull request actors may be targeted for this purpose.

Several threats of validity were identified during the study and deserve further con-
sideration. First, we referred only to formal forks created in a single environment GitHub
using its interface. Thework in [9], for example, extends the definition of fork beyond the
one obtained directly from GitHub metadata to forked projects generated on other plat-
forms. Second, we currently investigated the traces individually, as information about
actions and consequences are not implicitly available. Future research should explore
dependencies among traces belonging to the same users, the same groups, or the same
projects. Third, the categorization we suggested consolidates data relevant to the indi-
vidual events. Further investigation and evaluation of the strengths or weaknesses of our
conceptual framework is needed. Finally, the results are limited by the dataset we used
and the statistical methods we applied. Although we have not used the specific char-
acteristics of the dataset in the analysis procedure, replication of the study to different
datasets is needed to verify generalizability.

5 Summary and Future Research

In this work, we discovered event-related dependencies in fork-including software devel-
opment traces. To this end, a trace was defined as a sequence of events made by a
certain user to a certain project. We introduced a conceptual framework, in which
those events are categorized along two dimensions: the involved elements, namely
projects/repositories, commits, base pull requests and issues, and the event nature which



108 I. Reinhartz-Berger and A. Tomer

distinguishes between action and observation operations. Using this framework, we ana-
lyzed potential dependencies between development events and forking, concentrating
on contributing and independently developed forks, which support collaborative devel-
opment and reusing. The analysis used process mining to identify interesting variants
and statistical techniques to reveal patterns of behavior. The results were interpreted as
“best practices”, aiming to assist project owners who aim to utilize the social coding
platform to disseminate their projects and changes through forkees.

This workmay continue in various further directions. Particularly, we plan to explore
interdependencies across traces, especially traces made by users related to each other,
either by working in the same organization or collaborating on a number of projects.
We also intend to apply additional techniques to the analysis. Machine learning, as one
example, may be applied to the process mining results, in addition or alternatively to
the statistical analysis, in order to reveal further mutual relations between development
and forking events. Another example is text mining which may be applied to certain
data items (e.g., issues, comments) in order to find both justifications and considerations
whichmay support user decisions to perform certain operations, on top of the quantitative
results.

Acknowledgement. This research is partially supported by the Israel Science Foundation under
grant agreements 1065/19.

References

1. Biazzini, M.: “May the fork be with you”: novel metrics to analyze collaboration on GitHub.
In: Proceedings of the 5th International Workshop on Emerging Trends in Software Metrics,
pp. 37–43, June 2014

2. Cosentino, V., Izquierdo, J.L.C., Cabot, J.: A systematic mapping study of software
development with GitHub. IEEE Access 5, 7173–7192 (2017)

3. Gousios, G., Vasilescu, B., Serebrenik, A., Zaidman, A.: Lean GHTorrent: GitHub data on
demand. In: Proceedings of the 11th Working Conference on Mining Software Repositories,
pp. 384–387, May 2014

4. Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P.S., Zhang, L.: Why and how developers fork what
from whom in GitHub. Empir. Softw. Eng. 22(1), 547–578 (2016). https://doi.org/10.1007/
s10664-016-9436-6

5. Nyman, L., Mikkonen, T.: To fork or not to fork: fork motivations in SourceForge projects.
Int. J. Open Source Softw. Process. (IJOSSP) 3(3), 1–9 (2011)

6. Rastogi, A., Nagappan, N.: Forking and the sustainability of the developer community par-
ticipation – an empirical investigation on outcomes and reasons. In: 2016 IEEE 23rd Inter-
national Conference On Software Analysis, Evolution, and Reengineering (SANER), vol. 1,
pp. 102–111. IEEE, March 2016

7. Robels, G., González-Barahona, J.M.: A comprehensive study of software forks: dates, rea-
sons and outcomes. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.) IFIP
International Conference on Open Source Systems, pp. 1–14. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33442-9_1

8. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process
monitoring: review and benchmark. ACMTrans. Knowl. Discovery fromData (TKDD) 13(2),
1–57 (2019)

https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1007/978-3-642-33442-9_1


Mining Fork-Including Software Development Traces 109

9. Zhou, S., Vasilescu, B., Kästner, C.: What the fork: a study of inefficient and efficient fork-
ing practices in social coding. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 350–361, August 2019

10. Zhou, S., Vasilescu, B., Kästner, C.: How has forking changed in the last 20 years? A study
of hard forks on GitHub. In: 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pp. 445–456. IEEE, October 2020


	Mining Fork-Including Software Development Traces
	1 Introduction
	2 Categorizing Software Development Events
	3 Characterizing Fork-Including Software Development Traces
	3.1 The Dataset
	3.2 Execution and Analysis Procedures
	3.3 Results

	4 Discussion and Threats to Validity
	5 Summary and Future Research
	References




