
Enterprise Modeling in Support
Of Transparency in the Design and Use

of Software Systems

Mario Nolte(B) and Monika Kaczmarek-Heß

University of Duisburg-Essen, Essen, Germany
{mario.nolte,monika.kaczmarek-hess}@uni-due.de

Abstract. Transparency is increasingly perceived as a relevant require-
ment for the design and use of software in general, and for systems using
machine learning (ML) algorithms in particular. The existing approaches
to ensuring software transparency however, among others, often follow
only a one-sided perspective on transparency and, at the same time,
neglect the organizational context of software design and use. Since enter-
prise modeling (EM) allows to analyse enterprise information systems
(EIS) and organizational aspects in tandem, in this paper we focus on
how EM can support transparency while designing and using software.
To this aim, we propose an interactive understanding of transparency,
which has the collaboration of different stakeholders at its core. Based
on this understanding, we derive a set of requirements, and use them
to extend a selected EM approach. We evaluate the extended approach
two-fold: against requirements and using an exemplary scenario.

Keywords: Transparency · Enterprise modeling · Machine learning

1 Introduction

In recent years, the demand for transparency has become central part of many
debates. On the one hand, it seems to be caused by striving for democracy and
equality, which may be put at risk by information asymmetries [38,58]. On the
other hand, it seems to be raised by the increasing usage of software systems
in private and professional contexts. For instance, as software systems support
business processes, those systems determine the processes execution paths and
the decisions being made, however, at the same time, they often remain black
boxes to involved stakeholders [58,75]. Considering it, many (legal) institutions
and organizations have become aware of the importance of transparency with
respect to software systems [1,37,55], leading to transparency of some systems,
e.g., those relying on machine learning (ML), being required by law [19,20]. Here
the transparency of algorithms [1,31], models [23], and data [19], is called for.

Subsequently, various initiatives emerged that focus on transparency of soft-
ware systems. Examples include the provision of source code or pseudo code [40],
using transparency audits [11,33,52], or, with respect to ML, explainable artifi-
cial intelligence (XAI) [32]. While existing approaches relate to domain-specific
c© Springer Nature Switzerland AG 2022
A. Augusto et al. (Eds.): BPMDS 2022/EMMSAD 2022, LNBIP 450, pp. 157–172, 2022.
https://doi.org/10.1007/978-3-031-07475-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07475-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-07475-2_11

158 M. Nolte and M. Kaczmarek-Heß

views and come with specific strengths, the practical implementation of trans-
parency of software systems causes several challenges. Aside from harmonizing
partly juxtaposing notions of transparency, different, rather simplistic concep-
tions, e.g., considering transparency only as a provision of (one-sided) informa-
tion that relates to specific views, can be dysfunctional to each other, and result
in unintended effects like information overload or resignation [3,44,75].

Therefore, based on our analysis of different understandings of transparency,
cf. Sect. 2, we argue for an interactive understanding, which allows to align
transparency-demands and corresponding activities. Specifically, we argue that
an instrument to support transparency of software should not only be understood
as a mere form of information disclosure in one-way communication to interested
parties, but should also account for: (1) different perspectives of involved stake-
holders, (2) their views on individual and shared objects, (3) organizational
context, and (4) enabling critical analysis and interactions among stakeholders.
Consider, e.g., usage of ML: not only there is a diverse understanding of artifacts
that are subject of related discourses [6,67], but also, a broad knowledge of the
application domain and usage context seems to be of relevance to evaluate and
challenge the results of ML to avoid domain-specific pitfalls [17,63].

Considering different facets of transparency of software systems, an instru-
ment is needed that would reduce complexity, increase understanding, and enable
multi-perspective analyses. A promising instrument seems to be the application
of conceptual modeling (CM), which can be roughly defined as “the activity of
formally describing some aspects of the physical and social world around us for
purposes of understanding and communication” [53]. We deem it as a promis-
ing since (1) different modeling languages applied together may offer a multi-
perspective view of a software system, and the way it is used by an organization,
(2) application of a modeling language forces one to be concrete, which seems
to be beneficial with a contested term such as transparency, and (3) applica-
tion of CM fosters communication among stakeholders, thus promoting a shared
understanding of features of software systems used. From the vast field of CM,
especially enterprise modeling (EM) seems to be a promising instrument to sup-
port our interactive understanding of transparency, by accounting for EIS and
an organizational action system in tandem, cf. [25]. Such a multi-perspective
model may not only enable a cross-disciplinary exchange and collaboration (e.g.,
by outlining differences and similarities between conceptual notions of different
software artifacts), but also models of usage context of software systems (e.g.,
process or goal models) support the corresponding evaluation and reflection.

Although EM has been already explicitly [66,72] or implicitly related to
transparency, e.g., by referring to related terms like clarity [76, p. 277], or com-
prehensibility and understandability of models [53, p. 52]; elaborated or more
explicit conceptions of transparency are not considered. Particularly, while some
works focus on transparency of EM and related activities [10,22], others are
focusing on conceptual models only, ignoring the demand for cross-disciplinary
analysis and collaboration, resulting in more one-sided representations [36,45].

EM in Support of Transparency 159

Further contributions like, e.g., [16], acknowledge the need for different kinds of
models to foster transparency, but focus on specific stakeholders only.

Against this background, we follow two interrelated aims: (1) to propose
a broader conception of transparency while designing and using software sys-
tems that (i) comprises different conceptions of transparency, and (ii) supports
different activities and collaboration; and based on it, (2) to investigate how
enterprise modeling can be used in order to support it. This contribution follows
the design-oriented research paradigm [56]. Furthermore, we adopt the paradigm
of constructivism. Thus, in line with, among others [65], we essentially under-
stand models as means of representation of socially constructed knowledge. The
modeling process is understood as the process of constructing, representing and
sharing this knowledge between the involved participants.

To reach our aims, first, based on the review of the current use of the term,
we derive an interactive understanding of transparency (Sect. 2). Then, by ana-
lyzing its main features and contemplating a use scenario, we derive a set of
requirements that an EM approach should fulfill (Sect. 3). As none of the existing
approaches addresses the identified requirements to the full extent, we select an
enterprise modeling approach Multi-Perspective Enterprise Modeling (MEMO)
[25], and extend an already existing domain-specific modeling language (DSML)
focusing on modeling IT infrastructures, called ITML [27,34], with additional
concepts and properties (Sect. 4). To perform the desired extensions, we follow
the language development method proposed by [24]. We evaluate the proposed
artifact twofold: (1) against the identified requirements to check consistency and
comprehensibility, and (2) using an exemplary case scenario (Sect. 5).

2 Towards an Interactive Understanding of Transparency

As already indicated, transparency is a contested term, especially when it comes
to the use of software and ML [41,49,71]. In this section, we first discuss the
term transparency in general, and then in the context of software design and
use. Finally, we propose the interactive understanding of transparency.

Transparency in Organizations. Originally coined in a physical context [54,
62], the term was adopted in a figurative manner to social contexts to, e.g., hold
members of governments and other organizations legitimate, accountable, or to
derive an inter-subjective truth and knowledge about their behavior and actions
[35]. Considering it, the term today is widely recognized for its ameliorating
potential [7]. Although the early conceptions of transparency were based on the
direct observability of actors, inline with the physical sense, the intended motives
mentioned above presumed a critical public, e.g., in form of a public-opinion
tribunal, to challenge deceptive self-representations [8, p. 158].

While this classical form of transparency still can be found in grass-
roots democratic initiatives, nowadays the term is widely brought down to
information-disclosure, e.g., on financial or social affairs of organisations [48,71].
Even if this understanding seems to be intuitive and widely accepted [2,74],
it causes several problems. E.g., as information does not equal facts and often

160 M. Nolte and M. Kaczmarek-Heß

results in self-interested representation, this might lead rather to obfuscation
than legitimate knowledge or accountability [15,40,70]. In a similar vein, it is
argued that transparency reduced to information disclosure might result in an
information overload, hindering a proper assessment [3,44], or that the skills and
legibility of a transparency-requester have to be considered, so that information
is understood in the intended way [21,49]. As a remedy some propose to view
transparency as a process, where stakeholders look actively into an organization
by evaluating, if the information provided meets their needs and seems relevant
[2,44,70].

In-/Transparency of Software. Even if software and related terms, such as
algorithms or models, seem to be easy to grasp, a closer look reveals that software
can be represented in several ways, e.g., code, documentation, or metrics, as used
especially by data scientists to evaluate ML software [14,47,75]. While these
views often correspond to transparency-demands in intra-disciplinary settings,
such narrow technical understanding of software is of little use, when it comes to
transparency-demands of other stakeholders [6,67]. As stated above, also in case
of software, provision of narrow and one-sided information might not be sufficient
to satisfy related goals of transparency, or even worse, might be dysfunctional
to the intended motives of transparency-demands [43,75].

For example, [28] argues that transparency as proposed by the General Data
Protection Regulation (GDPR) [19] will more likely result in self-interested repre-
sentations, than in what was intended by the regulation, namely gaining insights
and knowledge about the use of personal data for the data-subject. Similarly,
but related to Algorithmic-Decision Making (ADM) Systems, [4] argue that “[t]o
ask to ‘look inside the black box’ is perhaps too limited demand and ultimately
an ill-fitting metaphor” (p. 982) to gain knowledge. By referring to [50, p. 6],
[4] stress that the creation of knowledge as well as individual understanding,
both need many views, especially when it comes to such complex systems as
ADM. In particular, when transparency should improve accountability, narrow-
technical views might intentionally occlude [4, p. 980][18, p. 1830] therefore, to
foster accountability, it is demanded to consider responsible persons as well.

With respect to ML systems, apart from the problem that the access to soft-
ware might not be possible for good reasons (e.g., intellectual property rights,
security reasons), or require specialist knowledge [12], in some cases (e.g., artifi-
cial neural networks) parts of the software are rather complex and are difficult to
be interpreted and explained also by experts [12, p. 4][63, p. 206]. While for data
scientists several metrics are proposed to estimate the behavior of the model [32],
for (potential) users of such a software system they are of little help, since they
are hard to interpret and do not at all explain reasons for decisions [63]. There-
fore, to give potential users at least a chance to gain knowledge about a system,
other notions of transparency have been proposed. For instance, under the label
of practical transparency, it is demanded to inform users about assumptions and
potential risks, and to enable their interactions with a system to learn how it
behaves [59,61]. Furthermore, several questionnaires have been proposed to help
users evaluate, if a system is appropriate for the intended context [29,51].

EM in Support of Transparency 161

Fig. 1. Interactive understanding of transparency in the design&use of software

Interactive Understanding. Based on the conducted analysis, we propose to
consider transparency in the design and use of software in organizations not as
a state, but as an interactive process, that comprises various activities between
stakeholders, and that depends on the motives of transparency-demand, which
often will go beyond the ordinary provision of information, cf. Fig. 1. While
in intra-disciplinary settings the provision of a view demanded might satisfy
the transparency-demand (e.g., source code for programmers or algorithms and
hyperparameters for data scientists), especially in those settings where different
stakeholders with different professions strive for transparency, other activities
might be of relevance too. In particular, if the demand for transparency is related
to social ambiguous concepts like accountability or legitimacy, other activities
get relevant to capture the ameliorating potential of transparency. We term these
activities mitigating activities and present them in Fig. 1, where they are related
to potential motives of transparency by colored squares. In addition, we also list
dysfunctions that are discussed in literature when transparency is understood
as a pure disclosure. Please note that due to space limitations, neither is the
list of motives comprehensive, nor is the list of mitigating activities complete.
Nevertheless, this selection allows us to show in following sections, how EM can
be used to support this conception, while avoiding dysfunctional effects.

3 Goals, Requirements and Existing Approaches

We argue that CM can foster the introduced interactive understanding of trans-
parency in various ways, e.g., by capturing domain-specific knowledge [46], or
by documenting information exchanges [36]. In line with the proposed under-
standing of transparency on the one hand, and the specifics of software design
and use on the other hand, we focus here on those scenarios and requirements
(denoted ‘Rx’) that facilitate the interaction between stakeholders of software
systems, e.g., user, programmer, data scientists, while providing support for
specific views, and related analysis. The requirements have been systematically
derived in line with [24]. Due to space restrictions we introduce the identified
requirements on a high-level only.

162 M. Nolte and M. Kaczmarek-Heß

Goals and Requirements. The main goal of the targeted approach is to pro-
vide support for the interaction of different stakeholders that are related to
design and/or use of software, so that they can satisfactorily fulfill their trans-
parency needs. To this aim, the modeling approach should provide systematic
support for different domain-specific perspectives (R1), while at the same time
capture relations between those perspectives to support interactions (R2). The
targeted approach is to be used in an inter-disciplinary setting, where different
stakeholders assign and assess transparency-demands related to a software and
its usage. Since software (i) can be quite complex, and (ii) is amorphous and
may be represented in various views (e.g., source code for programmers or user
interface for users), the approach should provide means to relate these various
representations to abstract notions that matter in relevant discourses, i.e., on a
language level. With respect to complexity, it should also provide (i) means for
decomposition, and (ii) differentiated information on its parts (R3). At the same
time, the approach should relate different views to a view-independent, rather
abstract software concept, that is subject of the overarching discussion (R4).

To align views on a software with corresponding competencies, e.g., code-
literacy, of stakeholders, the following questions should be considered: (Q1) What
stakeholders are related to a software and its usage? (Q2) What are the com-
petences of a stakeholder and what domain-specific views are related to them?
(Q3) Which views on a software artifact are available? (Q4) Does a stakeholder
have access to the available views? (Q5) Who can grant access, if a view is already
available? (Q6) Who is responsible for a software artifact and might support the
construction of a view? In line with these questions, the approach should sup-
port the representation of stakeholders and their competencies, as well as views
onto a software that fits those competencies (R5). Additionally, stakeholders
with transparency-demands can be manifold, and range from specific individ-
uals to specific types, e.g., programmers. Similarly, also transparency-demands
can be assigned to individuals, or types of stakeholder. Therefore, the approach
should provide dedicated abstractions differentiating among stakeholder groups
and accounting for individual stakeholders (R6).

In line with the proposed interactive understanding, it is important to not
only provide information, e.g., in the form of certain views, but also to con-
sider the purpose(s) of transparency demands, e.g., to avoid unintended or dys-
functional effects. While these purposes can be manifold and need specific con-
siderations that cannot be discussed here in detail, e.g., for transparency and
accountability, cf. [4,43], we point here to the purpose of legitimacy due to its
specific relevance. Namely, acknowledging that stakeholders may reject to work
with an organization due to a perceived lack of legitimacy [30], it is of central
relevance to strive for legitimacy that can be understood as “a generalized per-
ception or assumption that the actions of an entity are desirable, proper, or
appropriate within some socially constructed system of norms, values, beliefs
and definitions” [68, p. 574]. For the software itself and its use, this means that
even if access to information is granted and well-understood by a stakeholder,
they might consider the circumstances that information expresses as illegitimate,

EM in Support of Transparency 163

risking frustration [18] and turning away. To support the discussion of a legit-
imate use of a software, the approach should provide concepts that document
reasons, e.g., for decisions made, or for rejecting transparency-demands (R7), as
well as the state of legitimacy perceived by stakeholders (R8). In addition, it is
necessary to document the purpose of a transparency-demand to provide a basis
for discussions of unintended or dysfunctional effects (R9).

With respect to the development and use of, e.g., ML, the modeling approach
can support what was introduced as practical transparency (cf. Sect. 2). Apart
from providing diagrams that allow to answer different questions, by capturing
assumptions and (not-)intended use cases of (ML) software, the approach might
help potential users evaluate, if the software is appropriate for their use (R10).
In addition, questionnaires already included in diagrams and directly associated
with specific software artifacts might be of help (R11). Even if the different
questionnaires are already in use and provide a good orientation for users [60],
we propose that CM might foster reuse, if questions and assumptions can be
collected during implementation (R12), while being evaluated in diagrams of
their context of use (R13). Finally, considering the risk of inappropriate and
deflective diagrams or models [13, p. 164][42, p. 2], the information on software
provided should be linked to its actual implementation (or its model). It should
be indicated whenever the information might be outdated (R14).

Existing Approaches. Various (standalone) modeling approaches exist that
support understanding of selected business-related and IT aspects. However, as
these standalone modeling approaches focus on selected aspects of an enter-
prise only, they do not allow for a comprehensive, integrated analysis account-
ing for multiple perspectives (cf. R1&R2). Such an integrated perspective is
offered, as already mentioned, by enterprise modeling approaches. Several EM
approaches exist that support modeling of IT infrastructure (cf. R3) in the
context of an enterprise action system, e.g., ArchiMate [69], Architecture of
Integrated Information Systems (ARIS) [64], and Multi-Perspective Enterprise
Modeling (MEMO) [25] with the IT Modeling Language (ITML) [27,34]. Each
of these approaches has been designed with a set of intended scenarios in mind
[9], supporting transparency analyses, as discussed in this paper, not being one
of them. Therefore, to support our vision some extensions to those approaches
would be required. Although these approaches exhibit similarities, cf. [9], they
also differ substantially in terms of the domain coverage and semantic richness
of offered concepts, which is necessary to address the identified requirements (cf.
e.g., R3). While ArchiMate and ARIS favor a concise language design by focusing
on a small set of essential enterprise (architecture) concepts, MEMO provides
domain stakeholders with elaborate reconstructions of the (technical) concepts.
Particularly, while ArchiMate, ARIS and MEMO offer means to describe IT
infrastructure, they do so at different levels of granularity. And so, ArchiMate
provides a set of generic concepts where attributes can only be specified per
instance, but not on a language level, which would be however required to dif-
ferentiate various software artifacts (cf. R3). Similarly, although ARIS offers
an extensive set of diagram types, its individual diagram types offer generic

164 M. Nolte and M. Kaczmarek-Heß

concepts with few attributes and relations only. In contrast, MEMO ITML offers
a set of more fine-grained concepts with a rich set of attributes (cf. R3&R4). Con-
sidering the above, MEMO seems to be a promising approach to support our
aims. However, it lacks the ability to, among others, express different views on
software and relate them to different competencies of stakeholders, support stat-
ing transparency demands or documenting results of analysis, cf. R7 and R8. It
also falls short, when it comes to supporting analysis of suitability of a system
to certain scenarios (R10), transparency questionnaires (R11–R13), or linking
the information to software implementation (R14). Therefore, we take MEMO
as point of departure and propose corresponding extensions.

4 Extensions to MEMO in Support of Transparency

Several means of defining a modeling language exist. However, the one frequently
used, also in case of MEMO, is by specifying a meta model. As we extend already
existing DSMLs, we use the MEMO method’s common Meta Modeling Lan-
guage (MML) [25], and thus, integrate the extensions made into the MEMO
method’s language architecture. Compared to ‘traditional’ meta modeling lan-
guages, MML provides additional language constructs for expressing: (a) intrin-
sic attributes and relations, and (b) language-level types. Intrinsic attributes
and relations are instantiated only on the instance level, but not on the type
level. They are visualized with a white letter ‘i’ on a black background. In turn,
language-level types are instantiated on the type level only, but not further.
They are visualized with a grey-background of the concept’s name [25].

In terms of the employed language design method, cf. [24], it is notable that:
(1) we consider the use scenarios as the first class citizens that drive the design of
the language, cf. previous section; and (2) we employ the guidelines for concept
inclusion from [24]. Extensions as well as new concepts are shown in Fig. 2. Please
note that due to space restriction only selected concepts, attributes, relations and
Object Constraint Language (OCL) constraints are shown.

The core concept of interest is Software, cf. Fig. 2, originally defined in the
ITML, characterized through a rich set of attributes (e.g., version, documenta-
tion, source code) and associated with other concepts as, e.g., programming lan-
guage implementing it, libraries used, functions provided and used, or UseCases
it is supposed to support (R10). A software may be represented and stored as
a File. A software can be used in various usage contexts (UseContext), e.g.,
in processes (AnyProcess, defined in OrgML [25]), or to satisfy certain goals
(AbstractGoal, part of MEMO GoalML [57]). In a given usage context, a soft-
ware provides a SpecificSupport with such attributes as IT artifact relevance
or support quality. This allows for instance to express, whether a given process
type can be also realized without the support of a given type of software artifact.

A Software can be decomposed (R3) via a part-of relation. Thus, it is pos-
sible to model, e.g., an ERP System (as ApplicationAndSystemSoftware), and
to decompose it into its different modules (e.g., HR management, financial man-
agement) down to the level of sub-routines, if of relevance for transparency

EM in Support of Transparency 165

Fig. 2. Meta model excerpt: extended ITML & integration with other DSMLs.

discussions. The software and corresponding modules can be represented by
different Views (R4) encompassing a property of interest and a way it should
be derived/calculated. Those views can belong to a ViewSet, which considers
the TransparencyDemand of different stakeholders. In addition, each ViewSet
requires some Competency to be understood.

The meta class TransparencyDemand is central, as it allows to capture the
current view of a stakeholder on a software, which helps derive the specific state
of transparency in an interactive setting where various users participate (cf.
also R7). For example, if a particular user demands on a certain date access to
the source code (view) (R4) of a software, e.g., (R9, via justification) to learn
about its behavior, e.g., in form of if-else statements, then this demand can
be expressed with the attributes on the instance level and the auxiliary type
TransparencyState in this case is ‘demanded’. If all users, e.g., in the position
of HR recruiters, demand this access, this can be expressed on the type level.

To account for different stakeholders and their groups, we use the abstract
meta class UnitOfWork from MEMO OrgML [25], specialized into other organi-
zational concepts (e.g., Organizational Unit), to express information on the type
level, and through intrinsic attributes and relations, on the instance level (R6).
The UnitOfWork can be related to Competences, which allows to analyze, if the
access onto views, if granted, can be of use for the stakeholders (R5).

166 M. Nolte and M. Kaczmarek-Heß

In order to capture whether the state of social affairs realized by a software
(e.g., a hetero-normative view in a registration software) is considered legitimate
by the stakeholders, TransparencyState provides a corresponding attribute to
capture it (R8). However, when it comes to the use of a software, we propose
that (il)legitimacy can be also the result of a UseOfContextEvaluation that
can be conducted several times (captured by intrinsic attributes), but where
most relevant seems to be the result of the last evaluation (derived from the
intrinsic attributes). These evaluations can be based on QA-Sets (R11), i.e., to
guide the evaluation per UseContext as specific as possible, and also support
practical transparency in the case of ML systems. Even if those QA-Sets can be
independently defined, they can also stem from a DevelopmentEvaluation that
is performed during the design phase of a software, independent from its context
of use. Here also assumptions and potential risks can be collected (R12), via
dedicated concepts, that developers have in mind when publishing a software.

When it comes to the development of ML systems, we consider induc-
tion from a DataInput as a central characteristic of class of software using
ML (InductiveSystem). The induction can be based on various ML Models
(e.g. CART/C 4.5, Artificial Neural Networks) that come with specific con-
figurations and hyper-parameters an InductiveSystem is based on. Impor-
tant is however, that the process of building such a model depends on var-
ious activities, among others, e.g., data cleansing or preparation. We cap-
ture such activities with the meta class DataManipulation that can be part
of CompositeDataManipulation. Since these activities can be used to mit-
igate Issues that stem from evaluation of InductionInput, a relation to
DevelopmentEvaluation has been defined.

5 Exemplary Application

As we have pointed to the fulfillment of identified requirements already while
describing the extended meta model, here we illustrate how the extended app-
roach may be used in support of transparency analysis.

Figure 3 shows three integrated diagrams supporting interactive trans-
parency. At the very bottom, we present a ML Development diagram that is
used to document activities, assumptions and rationale during the development
of a specific (inductive) software system. The content of the diagram is inspired
by a dataset provided in Kaggle [39], a platform for data scientists. It shows
the development of a software called leaveCompPrediction (LCP), which should
support the UseCase of predicting the probability of a job change. Develop-
ers can use this diagram for an intra-disciplinary form of transparency, i.e.,
to document what data is taken as InductionInput, and how it is processed
(DataManipulation steps). In addition, inline with the discussion about the kag-
gle dataset [39,46], several issues, activities and rationales are documented,
which allows developers of the software not only to provide information about
narrow technical software artifacts, but also, e.g., to behave responsibly (in the
sense of the capacity to respond [73]) towards users of the software. Next, this

EM in Support of Transparency 167

Fig. 3. Diagrams in support of an interactive transparency

diagram captures also assumptions, potential risks and questions, which should
be considered during the use of the LCP. For instance, the LCP is based on the
assumption that the risk of a job leave can be predicted only via the variables
such as gender, university, duration of last job and hours of training within the
current company. All assumptions, risks and potential questions can be bundled
by the developers as a UseOfContextEvaluation with a state proposed, and
provide a basis for a critical reflection of the software in support of a practical
transparency. This critical reflection can be supported via the Diagram for the
Context of use evaluation, where a Software and its related Risks, Assumptions
are presented. Answers to the UseOfContextEvaluation can be captured per
use case, and engage a discussion on the appropriateness of the specific software
in this UseContext. In this case the LCP is used as part of an HR contract
management Software for a business process in a specific company. Answers to
the UseOfContextEvaluation are provided by various stakeholders (not shown
here), and the Head of HR as responsible UnitOfWork that seems at least to
be satisfied. However, during the use of the LCP the Work Council of our case
company has a TransparencyDemand to clarify complaints about discrimination
during contract renewals. Via a business process model (not shown here) the

168 M. Nolte and M. Kaczmarek-Heß

Work Council identifies that the LCP is associated with this process, and that
an evaluation was conducted by the Head of HR. To get a first impression they
ask the Data Scientist who is technically responsible for specifications of the soft-
ware. The Data Scientist rejects this decision however, due to the risk of gaming
the system. The Work Council considers this reason as legitimate and asks the
Recruiting Agents that use the LCP. To behave responsible to the Work Council,
the Recruiting Agents ask for an access to the metrics, which is granted. How-
ever, by discussing the assumptions, i.e., the factors used for the prediction, the
Recruiting Agents come to the conclusion that the software is not legitimate. By
considering that the transparency demand relates to discrimination, the Head
of HR starts a discussion about fairness. The Transparency Interaction diagram
captures this situation, and allows to answer questions about responsibilities or
available views and their accessibility, and whether stakeholders might make.

6 Conclusions

In this paper, based upon the conducted analysis, we propose an interactive
understanding of transparency and identify requirements that an EM approach
should fulfill to support this understanding. As none of existing approaches
fulfills all requirements, we extend MEMO, in particular the ITML, to sup-
port transparency analysis of software design and use. Then, we show how the
extended ITML can be applied to an exemplary scenario.

The extensions introduced into ITML enhance the set of available analysis
scenarios, among others, assessing legitimacy of software design and use. Please
note however, that while most of the requirements are being fulfilled through
dedicated concepts and relations, some of the aspects have been only superfi-
cially addressed, e.g., the concept of competencies and cognitive skills of involved
stakeholders related to ideas of views and perspectivity, or not at all, e.g., link-
ing the information on a software artifact to its actual implementation (R14).
In addition, due to space limitations, we have focused here on a selected class
of software systems only, namely induction-based systems by taking more prag-
matic considerations into account. We acknowledge also that a process model
guiding the use and adoption of the extended MEMO might be needed. Cur-
rently, its usage requires specific skills, and the judgment of transparency mea-
sures is dependent on those involved. Finally, while the application of MML
allowed us to take advantage of the intrinsic features and relations, and thus, to
refer to the instance level, we have faced numerous challenges pertaining to the
restrictions given by the type/instance dichotomy or the semantic differences
between instantiation and specialization, cf. [26]. As in conventional meta mod-
eling, there is no ‘perfect’ solution to the mentioned challenges, cf. [5,26], for
our future research the application of multi-level modeling [5,26], seems promis-
ing. In addition, as some multi-level modeling approaches support integrated
modeling and programming [26], also R14 could be in this way fulfilled.

EM in Support of Transparency 169

References

1. ACM Public Policy Council: Statement on algorithmic transparency and account-
ability (2017. https://www.acm.org/. Accessed 1 July 2021

2. Albu, O.B., Flyverbom, M.: Organizational transparency: conceptualizations, con-
ditions, and consequences. Bus. Soc. 58(2), 268–297 (2019)

3. Alloa, E.: Transparency: a magic concept of modernity. In: Alloa, E., Thomä, D.
(eds.) Transparency, Society and Subjectivity, pp. 21–55. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-77161-8 3

4. Ananny, M., Crawford, K.: Seeing without knowing: limitations of the transparency
ideal. New Med. Soc. 20(3), 973–989 (2016)

5. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models.
SOSYM 7(3), 345–359 (2008). https://doi.org/10.1007/s10270-007-0061-0

6. Barocas, S., Hood, S., Ziewitz, M.: Governing algorithms: provocation piece, SRRN
(2013). http://dx.doi.org/10.2139/ssrn.2245322

7. Baume, S.: Publicity and transparency: the itinerary of a subtle distinction. In:
Alloa, E., Thomä, D. (eds.) Transparency, Society and Subjectivity, pp. 203–224.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77161-8 10

8. Bentham, J.: Constitutive authority. In: Bowring, J. (ed.) The Works of Jeremy
Bentham, pp. 155–160. Russell and Russell, New York (1962)

9. Bock, A., Kaczmarek, M., Overbeek, S., Heß, M.: A comparative analysis of selected
enterprise modeling approaches. In: Frank, U., Loucopoulos, P., Pastor, Ó., Petrou-
nias, I. (eds.) PoEM 2014. LNBIP, vol. 197, pp. 148–163. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45501-2 11

10. Bork, D., Roelens, B.: A technique for evaluating and improving the semantic
transparency of modeling language notations. Softw. Syst. Model. 20(4), 939–963
(2021). https://doi.org/10.1007/s10270-021-00895-w

11. Brown, S., Davidovic, J., Hasan, A.: The algorithm audit: scoring the algo-
rithms that score us. Big Data Soc. 8(1) (2021). https://doi.org/10.1177/
2053951720983865

12. Burrell, J.: How the machine ‘thinks’: understanding opacity in machine
learning algorithms. Big Data Soc. 3(1) (2016). https://doi.org/10.1177
%2F2053951715622512

13. Christensen, L.T.: Corporate communication: the challenge of transparency. Corp.
Commun. Int. J. 7(3), 162–168 (2002)

14. Chun, W.H.K.: Programmed Visions: Software and Memory. MIT Press, Cam-
bridge (2011)

15. Deetz, S., Mumby, D.: Metaphors, information, and power. In: Ruben, B.D. (ed.)
Information and Behavior, pp. 369–385. Transaction Inc., New Brunswick (1985)

16. do Prado Leite, J., Cappelli, C.: Software transparency. BISE 2(3), 127–139 (2010)
17. Dobbe, R., Dean, S., Gilbert, T., Kohli, N.: A broader view on bias in auto-

mated decision-making. FATML, Stockholm (2018). https://doi.org/10.48550/
arXiv.1807.00553

18. Draper, N.A., Turow, J.: The corporate cultivation of digital resignation. New Med.
Soc. 21(8), 1824–1839 (2019)

19. European Parliament and the Council of European Union: Regulation (EU) no
679/2016 (GDPR) (2016). https://eur-lex.europa.eu. Accessed 1 July 2021

20. European Parliament and the Council of European Union: Regulation (EU) no
1150/2019 (2019). https://ec.europa.eu. Accessed 1 July 2021

21. Fenster, M.: The opacity of transparency. Iowa L. Rev. 91, 885 (2005)

https://www.acm.org/
https://doi.org/10.1007/978-3-319-77161-8_3
https://doi.org/10.1007/s10270-007-0061-0
http://dx.doi.org/10.2139/ssrn.2245322
https://doi.org/10.1007/978-3-319-77161-8_10
https://doi.org/10.1007/978-3-662-45501-2_11
https://doi.org/10.1007/s10270-021-00895-w
https://doi.org/10.1177/2053951720983865
https://doi.org/10.1177/2053951720983865
https://doi.org/10.1177%2F2053951715622512
https://doi.org/10.1177%2F2053951715622512
https://doi.org/10.48550/arXiv.1807.00553
https://doi.org/10.48550/arXiv.1807.00553
https://eur-lex.europa.eu
https://ec.europa.eu

170 M. Nolte and M. Kaczmarek-Heß

22. Fill, H.G.: Abstraction and transparency in meta modeling. In: Schweighofer, E.,
Kummer, F., Hötzendorfer, W., (ed.) Transparency, pp. 435–442. Österreichische
Computer Gesellschaft, Salzburg (2014)

23. Fleischmann, K.R., Wallace, W.A.: Ensuring transparency in computational mod-
eling. Commun. ACM 52(3), 131–134 (2009)

24. Frank, U.: Outline of a Method for Designing Domain-Specific Modelling Lan-
guages. ICB Research Report 42, University of Duisburg-Essen, Essen (2010)

25. Frank, U.: Multi-perspective enterprise modeling: foundational concepts, prospects
and future research challenges. Softw. Syst. Model. 13(3), 941–962 (2012). https://
doi.org/10.1007/s10270-012-0273-9

26. Frank, U.: Multilevel modeling - toward a new paradigm of conceptual modeling
and information systems design. BISE 6(6), 319–337 (2014)

27. Frank, U., Kaczmarek-Heß, M., de Kinderen, S.: IT infrastructure modeling lan-
guage. ICB Research Report 72, Essen (2021)

28. Fuster, G.G.: Transparency as translation in data protection. In: BEING PRO-
FILED, pp. 52–55. Amsterdam University Press (2018)

29. Gebru, T., et al.: Datasheets for datasets. CACM 64(12), 86–92 (2021)
30. Goad, D., Gal, U.: Understanding the impact of transparency on algorithmic deci-

sion making legitimacy. In: Schultze, U., Aanestad, M., Mähring, M., Østerlund,
C., Riemer, K. (eds.) IS&O 2018. IAICT, vol. 543, pp. 64–79. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04091-8 6

31. Goldenfein, J.: Algorithmic transparency and decision-making accountability. In:
Closer to The Machine: Technical, Social and Legal Aspects of AI, pp. 41–61 (2019)

32. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. CSUR 51(5), 1–42 (2018)

33. Guszcza, J., Rahwan, I., Bible, W., Cebrian, M., Katyal, V.: Why we need to audit
algorithms. HBR (2018)

34. Heise, D.: Unternehmensmodell-basiertes IT-Kostenmanagement als Bestandteil
eines integrativen IT-Controllings. Logos, Berlin (2013)

35. Hood, C., Heald, D.: Transparency in historical perspective. In: Hood, C., Heald,
D. (ed.) Transparency: the Key to Better Governance? Oxford University Press
(2006)

36. Hosseini, M., Shahri, A., Phalp, K., Ali, R.: Engineering transparency require-
ments: a modelling and analysis framework. Inf. Syst. 74, 3–22 (2018)

37. IEEE - Institute of Electrical and Electronics Engineers Inc: IEEEP7001 -
Transparency of autonomous systems (draft) (2020)

38. Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nat.
Mach. Intell. 1(9), 389–399 (2019)

39. Kaggle: HR analytics: Job change of data scientists (2020). https://www.kaggle.
com/arashnic/hr-analytics-job-change-of-data-scientists

40. Kitchin, R.: Thinking critically about algorithms. Inf. Comm. Soc. 20(1), 14–29
(2017). https://doi.org/10.1080/1369118X.2016.1154087

41. Kohli, N., Barreto, R., Kroll, J.A.: Translation tutorial: a shared lexicon for
research and practice in human-centered software systems. In: 1st Conference on
Fairness, Accountability, and Transparency, New York, NY, USA, vol. 7 (2018)

42. Krogstie, J.: Model-Based Development and Evolution of Information Systems: A
Quality Approach. Springer Science & Business Media, London (2012). https://
doi.org/10.1007/978-1-4471-2936-3

43. de Laat, P.B.: Algorithmic decision making based on ML from big data. Philos.
Technol. 31(4), 525–541 (2018)

https://doi.org/10.1007/s10270-012-0273-9
https://doi.org/10.1007/s10270-012-0273-9
https://doi.org/10.1007/978-3-030-04091-8_6
https://www.kaggle.com/arashnic/hr-analytics-job-change-of-data-scientists
https://www.kaggle.com/arashnic/hr-analytics-job-change-of-data-scientists
https://doi.org/10.1080/1369118X.2016.1154087
https://doi.org/10.1007/978-1-4471-2936-3
https://doi.org/10.1007/978-1-4471-2936-3

EM in Support of Transparency 171

44. Lee, T.H., Boynton, L.A.: Conceptualizing transparency: propositions for the inte-
gration of situational factors and stakeholders’ perspectives. Public Relat. In. 6(3),
233–251 (2017)

45. Lukyanenko, R., Castellanos, A., Parsons, J., Tremblay, M.C., Storey, V.C.: Using
conceptual modeling to support machine learning. In: Cappiello, C., Ruiz, M. (eds)
Information Systems Engineering in Responsible Information Systems. CAiSE
2019. Lecture Notes in Business Information Processing, vol. 350, pp. 170–181.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1 15

46. Maass, W., Storey, V.C., Lukyanenko, R.: From mental models to machine learning
models via conceptual models. In: Augusto, A., Gill, A., Nurcan, S., Reinhartz-
Berger, I., Schmidt, R., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2021. LNBIP,
vol. 421, pp. 293–300. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79186-5 19

47. Margetts, H.: The internet and transparency. Political Art. 82(4), 518–521 (2011)
48. Meijer, A.: Understanding modern transparency. Int. Rev. Admin. Sci. 75(2), 255–

269 (2009)
49. Michener, G., Bersch, K.: Conceptualizing the quality of transparency. Polit. Con-

cepts 49, 1–27 (2011)
50. Minsky, M.: The Emotion Machine: Commonsense Thinking, Artificial Intelligence,

and the Future of the Human Mind. Simon and Schuster, New York (2007)
51. Mitchell, M., et al.: Model cards for model reporting. In: Proceedings of the Con-

ference on Fairness, Accountability, and Transparency, pp. 220–229 (2019)
52. Mittelstadt, B.: Automation, algorithms, and politics— auditing for transparency

in content personalization systems. Intl. J. Commun. 10, 12 (2016)
53. Mylopoulos, J.: Conceptual Modelling and TELOS. Conceptual Modelling,

Databases, and CASE: An Integrated View of is Development, pp. 49–68 (1992)
54. Newton, I.: Opticks, or, A Treatise Of The Reflections, Refractions, Inflections &

Colours of Light. Courier Corporation (1952)
55. Organisation for Economic Co-operation and Development: Recommendation of

the council on artificial intelligence (2021)
56. Österle, H., et al.: Memorandum zur gestaltungsorientierten Wirtschaftsinfor-

matik. ZfBF 62(6), 664–672 (2010)
57. Overbeek, S., Frank, U., Köhling, C.: A language for multi-perspective goal mod-

elling: challenges, requirements and solutions. CSI 38, 1–16 (2015)
58. Pasquale, F.: The Black Box Society. Harvard University Press, Cambridge (2015)
59. Paßmann, J., Boersma, A.: Unknowing algorithms: on transparency of unopenable

black boxes. In: Schäfer, M., van Es, K. (eds.) The Datafied Society, pp. 139–146
(2017)

60. Raji, I.D., et al.: Closing the AI accountability gap: defining an end-to-end frame-
work for internal algorithmic auditing. In: Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, pp. 33–44 (2020)

61. Resnick, M., Berg, R., Eisenberg, M.: Beyond black boxes: bringing transparency
and aesthetics back to scientific investigation. J. Learn. Sci. 9(1), 7–30 (2000)

62. Rey, A. (ed.): Dictionnaire historique de la langue française. Le Robert, Diction-
naires Le Robert, Paris, nouv. éd edn. (1995)

63. Rudin, C.: Stop explaining black box ML models for high stakes decisions and use
interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

64. Scheer, A.W.: ARIS - Modellierungsmethoden, Metamodelle, Anwendungen, 4th
edn. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-97731-2

https://doi.org/10.1007/978-3-030-21297-1_15
https://doi.org/10.1007/978-3-030-79186-5_19
https://doi.org/10.1007/978-3-030-79186-5_19
https://doi.org/10.1007/978-3-642-97731-2

172 M. Nolte and M. Kaczmarek-Heß

65. Schuette, R., Rotthowe, T.: The guidelines of modeling – an approach to enhance
the quality in information models. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER
1998. LNCS, vol. 1507, pp. 240–254. Springer, Heidelberg (1998). https://doi.org/
10.1007/978-3-540-49524-6 20

66. Schwarzer, B., Krcmar, H.: Wirtschaftsinformatik?: Grundlagen betrieblicher
Informationssysteme, 4th edn. Schäffer-Poeschel, Stuttgart (2010)

67. Seaver, N., Vertesi, J., Ribes, D.: Knowing algorithms. In: digitalSTS, pp. 412–422.
Princeton University Press (2019)

68. Suchman, M.C.: Managing legitimacy: strategic and institutional approaches.
Acad. MGM Rev. 20(3), 571–610 (1995)

69. The Open Group: ArchiMate 2.1 Specification: Open Group Standard. The Open
Group Series, Van Haren, Zaltbommel (2013)

70. Timothy Coombs, W., Holladay, S.J.: The pseudo-panopticon. Corp. Commun.
Int. J. 18(2), 212–227 (2013)

71. Turilli, M., Floridi, L.: The ethics of information transparency. Ethics Inf. Technol.
11(2), 105–112 (2009)

72. Voß, S.: Informationsmanagement : mit 25 Tabellen. Springer, London (2001)
73. Waldenfels, B.: The Question of the Other. Chinese University Press, Hong Kong

(2007)
74. Wehmeier, S., Raaz, O.: Transparency matters: the concept of organizational trans-

parency in the academic discourse. PR In. 1(3), 337–366 (2012)
75. Weller, A.: Transparency: motivations and challenges. In: Samek, W., Montavon,

G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 23–40.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6 2

76. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J.
26(3), 276–292 (1987)

https://doi.org/10.1007/978-3-540-49524-6_20
https://doi.org/10.1007/978-3-540-49524-6_20
https://doi.org/10.1007/978-3-030-28954-6_2

	Enterprise Modeling in Support Of Transparency in the Design and Use of Software Systems
	1 Introduction
	2 Towards an Interactive Understanding of Transparency
	3 Goals, Requirements and Existing Approaches
	4 Extensions to MEMO in Support of Transparency
	5 Exemplary Application
	6 Conclusions
	References

