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Abstract. Predictive monitoring is a key activity in some Process-
Aware Information Systems (PAIS) such as information systems for
operational management support. Unforeseen circumstances like COVID
can introduce changes in human behaviour, processes, or computing
resources, which lead the owner of the process or information system to
consider whether the quality of the predictions made by the system (e.g.,
mean time to solution) is still good enough, and if not, which amount of
data and how often the system should be trained to maintain the qual-
ity of the predictions. To answer these questions, we propose, compare,
and evaluate different strategies for selecting the amount of information
required to update the predictive model in a context of offline learning.
We performed an empirical evaluation using three real-world datasets
that span between 2 and 13 years to validate the different strategies
which show a significant enhancement in the prediction accuracy with
respect to a non-update strategy.

Keywords: Predictive process monitoring · Process mining ·
Process-aware information systems · Prediction models · Model
updating

1 Introduction

Predictive process monitoring (PPM) provides proactive and corrective actions
to improve the process performance and mitigate potential risks in real time.
PPM retrieves information from Process-Aware Information Systems (PAIS)
stored in event logs to make predictions of evaluation metrics, also known as
process performance indicators (PPIs) [1]. A path extensively followed in the
literature for predictive monitoring is adapting existing machine learning tech-
niques [2] such as decision trees, clustering methods or neural networks to obtain
predictive models with higher accuracy. When these approaches are used, the
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typical procedure for predictive monitoring comprises two steps. First, a training
stage in which the predictive models are trained using data collected in the event
logs. Second, once the model is built, it is deployed and it is used to predict PPIs
for current and/or future process executions.

In the absence of significant changes, ceteris paribus (all else being equal),
this approach works fine, but processes are subject to continuous changes. For
instance, the response to COVID may introduce new ways of performing activ-
ities, users can behave in a different way, or human or computing resources can
change over time. These changes may negatively affect the performance of the
predictive model since the data used to train them does not reflect reality any
more. Therefore, the only way to keep this performance over a desired threshold
is by adapting the model to the changes.

In the machine learning community, there are two main adaptation
approaches for that, namely, online and offline learning. In online learning, the
predictive model is being updated continuously from the data it receives. Con-
versely, in offline learning, the predictive model is rebuilt again from the ground.
In this paper, we decide to focus on offline learning mainly for two reasons.
Firstly, the pace of change and the pace of new events in the processes we are
interested in, gives enough time to completely rebuild new models. Secondly,
its use allows one to reuse a huge amount of machine learning techniques that
are available for offline learning, which is much more comprehensive than that of
online learning. Furthermore, these techniques do not need to make compromises
to keep a reasonable learning time.

In this context, the goal of this paper is to provide details on how to face
two of the questions that arise in the update of predictive models: “Which data
should be considered in the new model that is being built?” and “How the
selection of data does impact on the performance of the predictive models?”.

By answering these questions, we contribute to the state of the art on PPM by
proposing six different strategies for updating predictive models (baseline, cumu-
lative, non- cumulative, ensemble, sampling, and concept drift) and comparing
their performance. Our experimentation was validated using three real-life event
logs that span between 2 and 13 years. We have also performed a comparison of
different well-known classifiers used in related literature.

The reminder of this paper is organized as follows. Section 2 summarises basic
concepts in predictive monitoring. Section 3 presents the strategies for updating
predictive models. The experiment and the discussion of the obtained results
are presented in Sect. 4. Section 5 summarises the related work. Finally, Sect. 6
concludes the work and presents possible future directions.

2 Predictive Process Monitoring

In the following, we introduce some basic concepts of predictive process moni-
toring. As defined in [3], an event log (L) is composed of a set of traces (T ). Each
trace (Ti) reflects an execution of a process instance. Formally, we can express
a trace as an ordered list of events Ti = [Ei1 , . . . , Eim ] where Ei1 represents the
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first event and Eim the final event of trace Ti. Similarly, a log can be expressed
as the set of traces for the instances that have finished in an interval of time
L = [T1, . . . , Tn] where T1 is the first and Tn is the last executed trace in the time
interval. Finally, an event represents the execution of an activity of the process.
Each event contains a set of attributes (a), which represents information related
to such event, e.g. timestamp, the resource that executes the activity, or the
value of some data used throughout the instance, Ej = [aj1 , . . . , ajo ] where o
determines the total number of attributes of the event.

A process indicator (I) is a quantifiable metric focused on measuring the
progress toward a goal or strategic objective. Indicators can be classified into
two types: single-instance indicators or aggregated indicators. The former is
computed for each trace in the log using the values of the attributes of the
events that compose this trace. Therefore, it can be defined as a function of a
trace Ti, i.e. I(Ti). This function can return a binary value, e.g a determined
condition fulfilled by the trace, or a real value, e.g the duration of an activity.
Instead, an aggregated indicator is computed for a set traces by aggregating a
single-instance indicator using some aggregation function, e.g. sum or average.
An example of this type of indicator could be the percentage of incidents solved
in a certain period of time.

A predictive model for an indicator I is a function PI([Eik , . . . , Eil ]), with
k ≤ l, that computes a prediction for I from the partial trace [Eik , . . . , Eil ],
where Eil is the last event that have occurred in trace Ti at a given moment.
If k = 1, then all events that have occurred in the process instance at hand are
considered. Instead, if k = l, then only the last event of the process instance is
considered.

In order to train a predictive model Î for a key performance indicator (KPI) I,
an encoded fixed-size representation C of all the cases C, where C ⊆ C, included
in the training set is required. This encoding, generally represented as a feature
matrix (X), should store enough information of the process, and will be used as
input for the machine learning technique employed to build the model together
with the value of the KPI I for each case in C, which represents the target
variable (y). The feature matrix X is obtained after applying a sequence encoding
function F , which receives a set of cases C and returns a matrix X. Each row of
the matrix represents an event E, i.e. the execution of an activity of the process,
of a case c ∈ C and each column represents the different (encoded) attributes
a of the event. Various sequence encoding techniques have been proposed in
the literature for this task such as last state encoding [4], aggregation encoding
[5], or index-based encoding [6]. The other decision is if only one classifier is
trained for the whole dataset or, on the contrary, if cases are grouped into several
buckets and a different classifier is trained for each one. Several case bucketing
techniques have been proposed in the literature [7]: Zero bucketing [5], prefix
length bucketing [6], or cluster bucketing [8]. After these two decisions are made,
a predictive model is built using some machine learning algorithm using the pair
(X, y) as the input.
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Fig. 1. Updating models system in a predictive monitoring process.

Fig. 2. Training stage.

Fig. 3. Run-time monitoring stage.

An indicator I can represent different issues, such as a certain outcome, the
next activity of the process or remaining cycle time of a given process case. In
this work we have focused on the outcome-based prediction. Therefore, we are
predicting an outcome value per case instead of a value per each event.

3 Updating Predictive Models

Once the predictive models are generated following the mechanisms described in
the previous section are deployed into production, they start making predictions
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that can be used to timely react to operational issues. However, after a while,
the way the process was performed might have changes; resources participating
in the process may come and go; even the structure of the process may suffer
changes. All these changes are ignored by the predictive model that was deployed
some time ago, so these changes may negatively affect the performance of the
predictive model. Therefore, it is necessary to provide mechanisms to update the
predictive model. Figure 1 shows a system for the updating of predictive models
described below. It consists of a training stage depicted in Fig. 2 (which involves
the filtering of the event log, the generation of the predictive model and the
evaluation of this model), the deployment of this model, the prediction using this
model, and finally, a mechanism for the update of the deprecated models, named
Run-time monitoring process as shown in Fig. 3. This mechanism can evaluate
the model in terms of the performance of the predictions and decide when the
predictive model should be updated according to three possible parameters: the
time elapsed from the last deployed model, the accuracy of predictions and the
possible occurrence of a concept drift [9].

As mentioned in the introduction, there are two approaches for updating
predictive models, namely online and offline learning. In this paper, we focus
on offline learning because it allows one to use the huge amount of machine
learning techniques for offline learning, which is much more comprehensive than
that of online learning and, furthermore, these techniques do not need to make
compromises in order to keep a reasonable learning time. To the best of our
knowledge, any other work related to offline strategies for updating predictive
models appears in the literature, so that comparison with other papers is not pos-
sible. In the context of offline learning, two basic questions need to be answered
to update the predictive model:

1. When should the predictive model be updated?
2. Which data should be considered in the new model that is being built?

For the first question, several strategies can be considered (Run-time mon-
itoring stage in Fig. 3). The most straightforward is a periodical update of the
model [10]. A reasonable deadline for the change of the model can be fixed, e.g.
six-monthly periodicity, and then, a new generation of the model will be carried
out. A different strategy might involve monitoring the accuracy of our predic-
tions. When it begins to decrease over an uninterrupted period of time, it may
be recommended to change the predictive model. A threshold of error can be
set, and if the prediction exceeds this threshold, the prediction model will be
updated. Finally, a third strategy could involve using the detection of drifts in
processes [11] to trigger updates in the predictive model [10]. Several strategies
could be also combined to design a more robust system.

Our focus in this paper is, however, on the second question. This question is
relevant because of two reasons that involve the quality and cost of predictive
models. Concerning the former, if the reason for updating the predictive model
is because the process has changed, it is reasonable to think that learning past
behaviours of the process may not be beneficial for the performance of the pre-
dictive model, so it might make sense not to include the whole data set, but only
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the most recent behaviour. As for the latter, the computational cost of building
a predictive model increases with the size of the input data set. Therefore, a
goal should be to achieve the best predictive performance by using the smallest
possible input data set. In [10], authors propose two possible solutions to the
second question: retraining and incremental update of a predictive model, how-
ever, all predictive algorithms cannot learn incrementally (e.g. random forests).
Therefore, we have collected a set of strategies for choosing the data set used for
building a new predictive model regardless of the predictive algorithm used.

A strategy for choosing the data set used for building a new predictive model
can be seen as a function S that receives a training and test set pair (X, y) and
returns another training and test set pair (X ′, y′), such that X ′ ⊆ X and y′ ⊆ y.
Next we detail several possible data selection strategies. We use the notation
X[i,j] to select the subset of X that is between i and j, where i and j could be
either an instant in time such as the 7th of March of 2019, or an instance number
since the first one received. Furthermore, if they take the value 0, it refers to the
first event in the data set and if they take the value c, it refers to the last event
received in the data set. Therefore, X[0,c] = X.

In the following, we present the different strategies for the selection of data.
Figure 5 shows a graphical representation of the different strategies described
in this section. Figure 4 depicts an event log that will be used to explain the
different strategies in Fig. 5. This event log is split into several intervals from t1
to tn. Each interval represents all the process instances executed during a certain
period of time, e.g. six months.

1. Baseline strategy (SB): In this strategy the model is not updated through-
out the life of process:

SB(X, y) = (X[0,c], y[0,c])

Figure 5a shows a graphical representation of the baseline strategy. With this
strategy, a first interval is selected as the training set, and it is not updated
throughout the life of the process. We use the rest of the intervals as test sets.

2. Cumulative strategy (SC): This strategy involves including all the cases
that are available for training since the beginning:

SC(X, y) = (X[0,c], y[0,c])

Cumulative strategy is represented in Fig. 5b. This strategy involves adding
all instances of a process as training set. We split the event log into training
and test sets, and we incrementally add each interval from t1 to tn in the
training set and use the rest for the test set.

3. Non-cumulative strategy (SN): This strategy involves choosing only the
most recent cases for training. It includes a parameter tn that determines
how many recent cases should be included in the training:

SN (X, y) = (X[c−tn,c], y[c−tn,c])
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The advantage of this strategy in comparison to the cumulative strategy is
that it is more efficient computationally and it might solve problems derived
from using cases that do not follow the current behaviour of the process. The
drawback is that having less training instances might hurt the performance
of the predictive model.
For the non-cumulative strategy (Fig. 5c), we select an unique interval in the
training phase. In this manner, we only include the most recent cases for
training.

4. Ensemble strategy (SE): This strategy is similar to the non-cumulative
strategy because it only includes the most recent ts cases in training a new
model. The difference is that, unlike the non-cumulative strategy, this strategy
do not throw away older models, but keep them and combine them using some
ensemble technique [12]. For instance, one can use a weighted voting technique
in which the prediction of each model is considered a vote and combined using
different weights for each model to make the final prediction. These weights
can be updated each time a new model is added to the ensemble so that older
models have a lower weight. To this end, weights can be modeled using an
exponential decay function like e−λt. Furthermore, besides these weights, if
the last model had very bad performance, we might be interested in removing
it from the ensemble so that it does not hurt the overall performance. To this
end, we set a threshold parameter so that if the quality metric of choice, e.g.
f-score, of the previous model did not meet the threshold in the last interval,
it is removed from the ensemble.
The advantage of this strategy is that it has almost the same computational
cost as the non-cumulative strategy, but it helps to avoid discarding all of
the old cases. However, the combination of the different models might not be
as powerful as a model built using the cumulative strategy that includes all
previous cases.
In this strategy, depicted in Fig. 5d, we choose the same training and test sets
and keep older models to combine them using some ensemble technique to
achieve better predictions.

5. Sampling strategy (SS): This strategy involves a weighted sampling of all
the cases that are available for training since the beginning. It includes a
parameter ts that determines the number of samples that must be obtained
from the data:

SS(X, y) = (sampling(X[0,c], ts), sampling(y[0,c], ts))

Where sampling is a function that takes ts samples from X or y, respec-
tively. Sampling can also be weighted so that it is more likely to obtain more
recent samples than older samples. A similar approach as the one used in the
ensemble strategy can be used here to define these weights. The advantage
of this approach in comparison to the cumulative strategy is that it limits
the computational cost of the new model. Furthermore, unlike the ensemble
strategy it relies on the machine learning algorithm instead of in the voting
mechanism to combine both information from old and recent cases.
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Fig. 4. Representation of a split event log.

Figure 5e shows the Sampling strategy. We build the training set in a incre-
mental way using a weighted strategy where recent samples are more likely
to be selected than older samples.

6. Drift strategy (SD): This strategy is similar to the non-cumulative one.
It includes the most recent cases for training and, when a concept drift is
detected, we include as training set, all the cases after a certain time has
passed since the drift has occurred.
Figure 5f shows the drift strategy. When the concept drift is detected, training
set is built only with those cases executed after the drift detection.

4 Experimental Evaluation

As we stated in Sect. 1, the goal of this paper is to define the different strate-
gies for the selection of data (described in Sect. 3) and compare the predictive
performance of the different strategies proposed. Based on this goal, we define
a research question for our experimentation: What is the impact of the different
updating strategies on the accuracy of predictions?

The rest of the section is organized as follows: the experiment setup is detailed
in Sect. 4.1. The different datasets used in the experimentation are described in
Sect. 4.2. Finally, a discussion of the obtained results is provided in Sect. 4.3.

4.1 Experiment Setup

As predictive algorithm we have used random forest [13] as seen in previous
works in the literature [14]. This technique combines predictor trees such that
each tree depends on the values of a random vector tested independently and
with the same distribution for each of them. In [14], authors highlight extreme
gradient boosting (XGBoost) and random forest as two of the best techniques in
predictive monitoring. Thus, we have selected random forest because the quality
of results with respect to XGBoost is similar and it consumes less computational
time.

We have selected a typical aggregation encoding described in [14] as one of the
most used in the literature to encode the process cases and also one of the best
performers [14]. Thus, all events since the beginning of the case are considered.
An aggregation function is applied to the values taken by a specific attribute
throughout the case lifetime. In our case, this function is the number of times
that each specific attribute appears in the case (frequency encoding). We have
not divided the cases in the event log into different buckets. This technique is
named Zero bucketing as defined in [14]. We have also incorporated the order of
the events as a new attribute in all the logs, as well as the elapsed time between
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Fig. 5. Graphical representation of different proposed strategies for choosing the data
set used for building a new predictive model.

the event and the beginning of the case and the time between the previous
event and the current one. The details and the code of the experimentation are
available online1.

4.2 Event Logs

Three different real-life event logs were considered in our experiments: IT Depart-
ment of an Andalusian organisation (ITA), BPI 2015 (BPI15) [15] and Traffic
fines (TRAFFIC) [16]. These logs were chosen because they span several years:
2, 5 and 12, respectively, so they are useful to evaluate the effect of possible
changes on the process over time.

1 https://github.com/isa-group/predictive-monitoring-evolution.

https://github.com/isa-group/predictive-monitoring-evolution
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ITA was extracted from the IT Department of an organisation in Andalusia.
This dataset represents the incident management log of the IT Department in
two years. In this scenario, a service level agreement (SLA) is established con-
sidering certain key performance indicators (KPIs). This SLA determines the
penalties derived from the under-fulfilment of a threshold for each of the KPIs.
Thus, predictive monitoring is necessary to warn the possibility of violation of
the SLA. For the experiment, we used as target for the prediction if the incident
is going to be put in a waiting state by the employee.

BPI15 is provided by five Dutch municipalities. The data contains all building
permit applications over a period of approximately five years. There are many
different activities present, denoted by both codes (attribute concept:name) and
labels. The cases in the log contain information on the main application as well
as objection procedures in various stages. Furthermore, information is available
about the resource that carried out the task and on the cost of the application.
This log covers the period October 2010 - March 2015. This log consists of
five different datasets, one for municipality, where Log 1 includes 1,199 cases,
Log 2 832 cases, Log 3 1,409 cases, Log 4 1,053 cases and Log 5 1,156 cases.
All the logs contain between 40,000 and 60,000 events. The LTL rule used in
the labelling function is described as ϕ = G(“send confirmation receipt′′) →
F (“retrieve missing data′′)).

TRAFFIC represent a road traffic fine management process from Italian
police. The log contains information about notifications sent about the fines and
information about repayments. The targeted label to be predicted is based on
whether the fine is repaid in full or is sent for credit collection. The resulting
event log contains 129,615 cases, which were recorded between January 2000 and
June 2012. Most of the cases consist of four events only.

4.3 Results

To perform the experimentation, we encode each dataset and split X into a
set of intervals X[I1], ...,X[In]. We also compute the target value y and split
it into a set of possibly different intervals y[I1], ..., y[Im]. Like before, the size of
intervals depends on the size of the dataset. With this setup, we train a predictive

Table 1. Average results of F-score for the different updating strategies.

Strategy

Dataset Baseline Non-Cum. Cumulat. Ensemble Sampling Drift

ITA 0.206883 0.265163 0.216884 0.250157 0.218832 NA

BPI city 1 0.858889 0.907668 0.900652 0.921329 0.908680 0.895364

BPI city 2 0.804032 0.849116 0.907067 0.881576 0.849492 0.790812

BPI city 3 0.710348 0.790268 0.815853 0.840622 0.756128 0.725569

BPI city 4 0.883692 0.925582 0.905460 0.925150 0.890478 0.832110

BPI city 5 0.896918 0.915899 0.913034 0.921801 0.915416 0.904564

TRAFFIC 0.652358 0.694372 0.703657 0.714230 0.705357 NA
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model for each interval X[Ii] and evaluate it against all test intervals y[Ik] such
that Ik is after Ii. We have used F-score as accuracy measure [17] as seen in
other works of the literature [14]. The F-score is the harmonic average of the
precision and recall. F-score reaches its best value at 1. We have also detected
the concept drifts for the different datasets using the algortihm included in the
process mining framework PM4PY described in [18]. Specifically, we have found
one concept drift for BPI city 1, two for BPI city 2, one for BPI city 3 and BPI
city 4 and two for BPI city 5. We have not detected any drift for TRAFFIC and
ITA datasets. These concept drifts have been used for the Drift strategy.

Table 1 summarises the results of the executions for the three datasets. The
table is built assuming that the new model generated for each training interval
is the one that is used to predict the values until a new model is created. In
other words, we do not throw away models that are not performing better than
a previous one. Furthermore, to ensure a fair comparison between approaches,
we define training and test intervals using the number of instances instead of
time. This avoids those cases in time intervals with fewer cases weight more
than cases in others.

The values that we used for the intervals depend again on the dataset. For
ITA, the training size was 39,000 cases, the interval between new models was
52,000 cases and the test interval was 13,000 cases. For all BPI datasets, the
train size was 300 instances, and both the interval between new models and the
test interval were 150 cases. Finally, for the TRAFFIC dataset, the train size was
8,641 cases, and the interval between new models and the test interval were 4,320
cases. In addition, for the Ensemble and Sampling strategies we assign weights
to each interval using a decaying parameter of e−x/3 and we set a threshold for
the Ensemble of 0.5 except for ITA for which we set a threshold of 0.25.

From the table, we can conclude that there are no big differences between
strategies in terms of F-Score. Nonetheless, as it was expected, the worst results
are obtained with the Baseline strategy for all datasets (5–6% points on aver-
age less than the other strategies). On the other hand, the Ensemble strategy
seems to perform better than the others in most datasets (4 out of 7), the sec-
ond one is the Non-cumulative strategy (2 out of 7), and the third one is the
Cumulative strategy (1 out of 7). The Sampling strategy is the one that seems
to perform a bit worse. However, for the datasets in which we use large training

Table 2. Average results of F-score for the executions of different classifiers using
BPI15 dataset.

Dataset RF BOOST BN

BPI city 1 0.895364 0.7646200 0.533489

BPI city 2 0.790812 0.8395537 0.468736

BPI city 3 0.725569 0.7122018 0.440710

BPI city 4 0.832110 0.8472612 0.493650

BPI city 5 0.915416 0.9155702 0.450492

Average 0.831854 0.8158410 0.477415
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sets like ITA and TRAFFIC, its performance is almost the same as the Cumu-
lative strategy even when it uses much less instances as in input and hence,
its computational cost is much more reduced. We can also conclude that Drift
strategy does not perform as well as could be expected. This may be due to
the fact that a low representative number of instances has been collected as
training set after the concept drift has happened. On average, the three winner
strategies (Non-cumulative, Cumulative and Ensemble) overcome the Baseline
strategy in 4.71, 5 and 6.5% points. Considering the computational cost, it is
quite evident that Cumulative strategy consumes more resources than the other
two. Ensemble strategy has almost the same computational cost as the Non-
cumulative strategy, however the use of older models, which are discarded in the
Non-cumulative strategy, provides extra information that help to increase the
accuracy prediction in almost 2 points more.

An extra experiment was performed to justify the use of random forest as
machine learning algorithm in our experimentation. To this aim, we have com-
pared the results obtained by random forest (RF) with those obtained by other
three well-known classifiers also used in related literature [14]: Gradient Boost-
ing (BOOST), and Bayesian Network (BN). For this experimentation we have
used BPI15 dataset and drift strategy. We have used the Scikit-learn implemen-
tation of all the cited algorithms and we set the parameters of the algorithms
by default. Regarding the F-score results in Table 2, we can appreciate a slight
improvement of the results using random forest with respect to boosting algo-
rithm. BN presents worse accuracy than RF and BOOST.

In summary, the main conclusion that can be drawn is that using all of the
available data to rebuild the models is not a good choice because there is no
win in performance and the computational cost is much higher. Furthermore, a
significant improvement of accuracy prediction can be obtained using updated
models versus non-updated models (Baseline strategy). This percentage can be
increased from 5 to 15 points at best (Ensemble strategy). The Ensemble strategy
provides good results and it reuses all models created previously, so it is more
efficient computationally.

5 Related Work

Model updating has received increasing interest in the data mining commu-
nity using diverse terminology such as, e.g., concept drift, incremental learning,
stream data mining, or dynamic data mining [19]. However, a few works con-
siders the updating of prediction models in the context of predictive process
monitoring. Some of them [20,21] describe the notion of concept drift which is
a term applied in machine learning and data mining refers to situations when
the relation between the input data and the target variable, which the model
is trying to predict, changes over time in unforeseen ways [20]. In [21] authors
introduce a paradigm to handle concept drift in predictive process monitoring
and also present a systematic experimental study to define different incremen-
tal learning strategies and encodings of process traces suited for the predictive
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monitoring of continuously evolving processes. Apart from that, a framework
and specific techniques to detect when a process changes and to localize the
parts of the process that have changed, are proposed in [20].

In [22], a remaining time prediction method along with a concept drift adap-
tation method is presented. As a predictor, they used an annotated transition
system with probabilities obtained from Fuzzy Support Vector Machines based
on process instance data. The predicted remaining time is obtained by summing
up the durations of future activities estimated using Support Vector Machines.
The concept drift adaptation method is based on a multimodel which is trained
over different intervals of previous data, and assigns weights to the predictions
of each model based on the difference in time between the model and the test
data, factoring in an exponential decay and a periodic function.

Authors in [9] analyze which data should be selected for the retraining of the
machine learning model after the detection of a concept drift. Therefore, they
use different data selection strategies and consider the effects of the different
retraining options in a real-life use case in process mining.

CONDA-PM is presented in [23], a four-phased framework that may guide
process mining practitioners in assessing the maturity level of a concept drift
analysis method. It covers a complete lifecycle of a concept drift analysis method
with four phases. This method describes the phases and requirements of a con-
cept drift analysis.

In [10], authors present a switching algorithm which combines the advantages
of retraining and incremental updates. They test several drift detectors regarding
performance on a real-world data set with incremental drift. They also provide
a comparison among drift handling strategies and static models, showing that
static models wear out over time and their performance decreases. Furthermore,
a comparison among different drift handling strategies is provided.

Authors develop an incremental predictive process monitoring technique
(Incremental Clustering-based and Incremental Index-based) applied to logs con-
taining concept drifts in [24]. The updating of models is carried out at runtime;
once a new case ends, it is added as a training example to generate a new
model, through two algorithms (Hoeffding tree (HT) and Adaptive Hoeffding
tree (AT)) and compare them with a standard classification algorithm (random
forests). They also examine the impact of incremental learning techniques on
real event logs with respect to traditional offline learning in terms of prediction
accuracy and conclude that the incremental techniques allow for getting predic-
tions are as accurate as the ones obtained with the periodic rediscovery of the
predictive models.

The main highlights of our work are summarized in the following. Our pro-
posal follows an offline strategy for prediction (some of the cited papers follow
an online strategy and conclude that the results do not improve [24]), and pro-
pose six different strategies to decide how much data should be included in the
model rebuild are presented and experimentations with three real-life datasets
are performed to validate them. Although some works in the literature propose
several strategies to retrain or update a predictive model, they are only focused
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on the occurrence of concept drifts [9,10]. Strategies defined in this work are not
necessarily applied after the occurrence of a concept drift, they can be applied
since the beginning of the running process instance. Furthermore, they are not
limited by the ability to accurately detect concept drifts in the event log.

6 Conclusions

The goal of this paper is to propose and compare several strategies to choose
the amount of data that should be used while rebuilding a predictive monitoring
model in an offline learning setting. Based on this goal, we performed an empir-
ical evaluation using three real-world datasets that span between 2 and 13 years
and obtained the following conclusions.

We analysed the performance of the six data selection strategies described in
Sect. 3 (Baseline, Cumulative, Non-cumulative, Ensemble, Sampling and Drift).
To this aim, we summarised the results (F-score) of the executions for each of the
datasets and we concluded that the Ensemble strategy provides better results
and it reuses all models created previously, so it is more efficient computationally.
A prediction improvement of up to 15% is achieved with this strategy.

Further research will include the development of techniques that help to
decide when the predictive model should be updated. To this end, we plan to
include some of the ideas included in the introduction to detect changes in the
process. The generalizability of our results are subject to certain limitations.
Despite these first promising results, our findings are based on three data sets
only. In future work, we want to broaden the field of application by analyzing
additional real-word data sets. Furthermore, only one predictive technique has
been used to evaluate the strategies. Novel deep learning approaches can be
considered for further works.
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