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Abstract. Weighted context-free grammar (WCFG) is a quantitative
extension of context-free grammar (CFG). It is known that unambigu-
ous weighted automata (WA), finitely-ambiguous WA, polynomially-
ambiguous WA and general WA over the tropical semiring have different
expressive powers. We prove that there exists a similar ambiguity hier-
archy of WCFG over the tropical semiring, using an extended Ogden’s
lemma. Furthermore, we show that the hierarchy we proved is different
from the known ambiguity hierarchy of unweighted CFG.
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1 Introduction

Weighted context-free grammar (WCFG) is a quantitative extension of context-
free grammar (CFG). WCFG originates from the study of algebraic formal series
by Chomsky and Schützenberger [2]. Since then, mathematical properties of
WCFG and the formal series (or functions) defined by WCFG have been exten-
sively studied. There are various applications of WCFG to real-world problems
such as parsing natural language sentences and biological sequence analysis [4].
In some applications, weights correspond to probabilities, which are useful for
selecting better estimations of the hidden structure from experimental or observ-
able data. However, it is not yet very clear whether and how a hierarchy in terms
of the expressive power is induced in the class of context-free languages by intro-
ducing weights to CFG.

In general, a weighted model (automaton, grammar, etc.) is defined with a
semiring, and each model defines a function that maps a word to an element of
the semiring, instead of a language. When the semiring is positive, the support of
the function defined by a weighted model naturally corresponds to the language
generated by the unweighted counterpart of the model, where the support is a
homomorphism from the semiring to Boolean semiring {0, 1}.

The expressive power of weighted automata (WA) has been studied in the
literature. In particular, it is known that unambiguous WA, finitely-ambiguous
WA, polynomially-ambiguous WA and general WA over the tropical semir-
ing have different expressive powers [1,7]. Unambiguous WA (resp. finitely-
ambiguous WA, polynomially-ambiguous WA) are WA such that the number
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of accepting runs is bounded by one (resp. by a constant, by a polynomial in
the size of an input) for any input. Similar results are known for weighted tree
automata over the tropical semiring [6] although the tree languages proved to be
in the gaps between the adjacent two layers are essentially the same as those in
[1,7]. For an (unweighted) finite automaton (FA), the ambiguity does not affect
the expressive power since the determinization is possible for nondeterministic
FA and a deterministic FA is apparently unambiguous. Therefore, the above
mentioned results on WA indicate that the strict ambiguity hierarchy is caused
by introducing weights. On the other hand, the ambiguity already increases the
expressive power for unweighted CFG because there exist inherently ambiguous
CFG [8]. In fact, it is shown that unambiguous CFG, finitely-ambiguous CFG,
polynomially-ambiguous CFG and general CFG have different expressive powers
[9].

In this paper, we study an ambiguity hierarchy of WCFG over the tropical
semiring where the ambiguity of a word w in a WCFG G means the number of
distinct parse trees of w in G. We show that there is a strict ambiguity hierarchy
of WCFG over the tropical semiring caused by introducing weights. Specifically,
we prove that there exist functions fEX2, fEX3, fEX4 ∈ U-CF such that fEX2 ∈
FA-WCF \ U-WCF, fEX3 ∈ PA-WCF \ FA-WCF and fEX4 ∈ WCF \ PA-WCF.
U-CF is the class of functions defined by WCFG over the tropical semiring whose
supports coincide with the languages defined by unambiguous CFG, i.e., U-CF
corresponds to the class of unambiguous context-free languages. U-WCF, FA-
WCF, PA-WCF and WCF are the classes of functions defined by unambiguous
WCFG, finitely-ambiguous WCFG, polynomially-ambiguous WCFG and general
WCFG over the tropical semiring, respectively. That is, functions fEX2, fEX3 and
fEX4 exist in the gaps caused by introducing weights (see Fig. 1).

Fig. 1. The ambiguity hierarchy caused by introducing weights

Deciding the expressive power of weighted models is more difficult than that
of unweighted ones. For unweighted automata (resp. grammars), we only need
to check the existence of an accepting run (resp. a parse tree). For weighted
automata (resp. grammars), we have to consider all accepting runs (resp. parse
trees) to compute the weight of a given word because the weight of a word is
defined by the semiring sum of the weights of all accepting runs (resp. parse
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trees) of the word. For example, we have to find the minimum weight among
all accepting runs when we compute the function value defined by WA over
the tropical semiring. (Note that the sum in the tropical semiring means the
minimum.) This difficulty is more remarkable for WCFG than for WA. This is
because, the ambiguity for WA is caused by only the choice of a state, while the
ambiguity for WCFG is also caused by the shape of a parse tree. Therefore, the
expressive power of WCFG cannot be determined by a simple iteration property.
For these reasons, we cannot show a strict ambiguity hierarchy of WCFG by
a straightforward extension of the discussion on the ambiguity hierarchy for
WA. To overcome this problem, we focus on the functions defined by WCFG
that assign non-zero weights only to the words having specific form such as
palindromes and well-nested parentheses (Dyck words).

In Sect. 2, we introduce semiring, weighted context-free grammar and weight
function. Furthermore, we show some examples of functions defined by WCFG
(Examples 1 to 5). These functions will be used to prove the strict hierarchy
in Sect. 4. In Sect. 3, we show a pumping lemma for CFG, which is helpful for
proving the hierarchy (Lemma 3). The lemma is an extension of the theorem for
CFG known as Ogden’s lemma. In Sect. 4, we prove that functions fEX2, fEX3 and
fEX4 defined in Sect. 2 lie in the gaps caused by introducing weights (Theorems
1, 2 and 3), and as a corollary of them, we show the strict ambiguity hierarchy
of WCFG (Corollary 1).

2 Preliminaries

Let N be the set of all non-negative integers. The cardinality of a set X is denoted
by |X|. Let Σ be a (finite) alphabet. For a word w ∈ Σ∗ and a letter a ∈ Σ,
the length of w and the number of occurrences of a in w are denoted by |w| and
|w|a, respectively. The empty word is denoted by ε, i.e., |ε| = 0. Let wR be the
reversal of w. For example, (aab)R = baa. We say that w′ ∈ Σ∗ is an (even)
palindrome if there exists a word w ∈ Σ∗ such that w′ = wwR.

2.1 Semirings

A semiring (S,⊕,�,0,1) is an algebraic structure where

– (S,⊕,0) is a commutative monoid,
– (S,�,1) is a monoid,
– � distributes over ⊕,
– 0 is the zero element of �.

A semiring (S,⊕,�,0,1) is called a commutative semiring if (S,�,1) is also a
commutative monoid. We abbreviate (S,⊕,�,0,1) as S.

In this paper, we mainly consider the following two semirings : the trop-
ical semiring Nmin,+ = (N ∪ {∞},min,+,∞, 0) and Boolean semiring B =
({0, 1},∨,∧, 0, 1).
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For a commutative semiring S, we define the mapping hS : S → B as follows:
hS(x) = 0 if x = 0, and hS(x) = 1 otherwise. A semiring S is said to be
positive if hS : S → B is a semiring homomorphism, i.e., hS(0) = 0, hS(1) = 1,
hS(a ⊕ b) = hS(a) ∨ hS(b) and hS(a � b) = hS(a) ∧ hS(b) for all a, b ∈ S [3]. Note
that Nmin,+ is a positive semiring.

2.2 Weighted Context-Free Grammars

Let S be a commutative semiring. A weighted context-free grammar (WCFG)
over S is a tuple G = (V,Σ, P, I,wt), where

– V is a finite set of nonterminals, and I ∈ V is the initial symbol,
– Σ is a finite set of terminals, disjoint from V ,
– P is a set of productions of the form: A → γ where A ∈ V and γ ∈ (V ∪ Σ)∗,
– wt : P → S \ {0} is a weight function.

We say that (αAβ, αγβ) ∈ ((V ∪ Σ)∗)2 is a direct derivation if there exists
a production p = A → γ ∈ P , and we write αAβ ⇒ αγβ or αAβ

c⇒ αγβ where
c = wt(p). For a sequence of direct derivations ρ : α0

c1⇒ α1
c2⇒ · · · cn⇒ αn (n ≥ 0),

the weight of ρ is defined by wt(ρ) = c1 � c2 � · · · � cn. We say that ρ is a

derivation, and we write α0A0β0 ⇒∗ αnAnβn or α0A0β0

c

⇒∗ αnAnβn where
c = wt(ρ). If a derivation ρ1 can be written as α ⇒∗ α1γβ1 ⇒∗ α1δβ1 ⇒∗ η

where ρ2 : γ ⇒∗ δ is also a derivation, we say that ρ2 is a subderivation of ρ1.
A derivation ρ : α0A0β0

c1⇒ · · · cn⇒ αnAnβn (n ≥ 0) is said to be a leftmost

derivation if α0, · · · , αn ∈ Σ∗. A leftmost derivation ρ : I
c

⇒∗ w is said to be a
complete leftmost derivation of w if c �= 0 and w ∈ Σ∗. Note that for each word
w ∈ Σ∗, complete leftmost derivations of w have a one-to-one correspondence
with parse trees of w in the usual sense [5]. Therefore, we will call a complete
leftmost derivation ρ : I ⇒∗ w a parse tree of w. For a word w ∈ Σ∗, the weight
of w is defined by [[G]](w) =

⊕
T∈parse(w) wt(T ) where parse(w) is the set of

parse trees of w. We say that [[G]] : Σ∗ → S is the function defined by WCFG G
over S.

For a WCFG G = (V,Σ, P, I,wt), we say that CFG G′′ = (V,Σ, P, I) is
the underlying CFG of G. If [[G]](w) �= 0, then w ∈ L(G′′) where L(G′′) is
the language generated by G′′ in the standard definition. However, the converse
direction does not always hold. For example, if there are two derivations T1

and T2 of w in G where wt(T1) = 1 and wt(T2) = −1, then [[G]](w) = 0 over
(Z,+,×, 0, 1) while w ∈ L(G′′).

Assume that S is positive (see Sect. 2.1). For the function f = [[G]] defined
by a WCFG G = (V,Σ, P, I,wt) over S, the support of f is defined by
supp(f) = hS ◦ f . Then, supp(f) coincides with the function defined by WCFG
G′ = (V,Σ, P, I,wt′) over B where wt′(p) = hS(wt(p)). Let G′′ = (V,Σ, P, I) be
the underlying CFG of G. Since S is positive,

[[G]](w) �= 0 ⇐⇒ supp([[G]])(w) = 1 ⇐⇒ w ∈ L(G′′).
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A WCFG G over S is unambiguous (U-WCFG) if |parse(w)| ≤ 1 for all
w ∈ Σ∗. G is finitely-ambiguous (FA-WCFG) if there exists m ∈ N such that
|parse(w)| ≤ m for all w ∈ Σ∗. G is polynomially-ambiguous (PA-WCFG) if
there exists a polynomial p(·) such that |parse(w)| ≤ p(|w|) for all w ∈ Σ∗.

Fix a semiring S and assume that S is positive. We define U-WCF, FA-
WCF, PA-WCF and WCF as the classes of functions defined by U-WCFG,
FA-WCFG, PA-WCFG and WCFG over S, respectively. Clearly, U-WCF
⊆ FA-WCF ⊆ PA-WCF ⊆ WCF. Furthermore, we define U-CF = {f |
∃ U-WCFG G over B. supp(f) = [[G]]}. That is, U-CF is the class of functions
whose supports are defined by some U-WCFG over B. In this paper, we fix the
semiring S to Nmin,+ when we refer to these classes of functions.

Example 1. Let G1 = ({I}, {a, b}, P, I,wt) where P = {
I → aIa | bIb (weight : 1),
I → ε (weight : 0) }.

G1 is a WCFG over Nmin,+ and the function fEX1 defined by G1 is

fEX1(w′) =

{
|w| w′ = wwR ,

∞ otherwise .

Clearly G1 is unambiguous, and hence fEX1 ∈ U-WCF.

Example 2. Let G2 = ({I,A,B}, {a, b}, P, I,wt) where P = {
I → A | B (weight : 0),
A → aAa (weight : 1), A → bAb | ε (weight : 0),
B → bBb (weight : 1), B → aBa | ε (weight : 0) }.

G2 is a WCFG over Nmin,+, and the function fEX2 defined by G2 is

fEX2(w′) =

{
min{|w|a, |w|b} w′ = wwR ,

∞ otherwise .

G2 is finitely-ambiguous because there are two parse trees of w′ if w′ is a palin-
drome. One of them counts the number of letter a using nonterminal A, and
the other counts the number of letter b using nonterminal B. Hence, fEX2 ∈
FA-WCF.

Example 3. Let G3 = ({A,B}, {a, b, $}, P,B,wt) where P = {
B → aBa | A | $$ (weight : 0), B → bBb (weight : 1),
A → bAb | $$ (weight : 0), A → aAa (weight : 1) }.

G3 is a WCFG over Nmin,+, and the function fEX3 defined by G3 is

fEX3(w
′) =

{
min0≤i≤n{|a1 · · · ai|b + |ai+1 · · · an|a} w′ = wwR, w = a1a2 · · · an$ ,

∞ otherwise .

For a palindrome w′ = wwR, G3 counts the number of letter b using nonterminal
B, and counts the number of letter a using nonterminal A. G3 has a choice when
to start counting a. Hence, G3 is polynomially-ambiguous and fEX3 ∈ PA-WCF.
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Example 4. Let G4 = ({I,A,B}, {a, b,#, $}, P, I,wt) where P = {
I → A | B | $$ (weight : 0),
A → aAa (weight : 1), A → bAb | #I# (weight : 0),
B → bBb (weight : 1), B → aBa | #I# (weight : 0) }.

G4 is a WCFG over Nmin,+ and the function fEX4 defined by G4 is

fEX4(w′) =

{∑
1≤i≤n min{|wi|a, |wi|b} w′ = wwR, w = w1#w2# · · · wn#$ ,

∞ otherwise .

For a palindrome w′ = wwR, G4 counts the number of letter a or letter b in wi.
For each i (1 ≤ i ≤ n), G4 has a choice whether to count the number of a in
wi using nonterminal A or to count the number of b in wi using nonterminal B.
Hence, G4 is not polynomially-ambiguous.

Example 5. Let G5 = ({I}, {a, b}, P, I,wt) where P = {I → aIa | bIb | ε} and
wt(p) = 1 for all p ∈ P . G5 is a WCFG over B and the underlying CFG of G5 is
G′

5 = ({I}, {a, b}, P, I). The function fEX5 defined by G5 satisfies fEX5(w′) = 1
iff w′ = wwR. Furthermore, supp(fEX1) = supp(fEX2) = fEX5. Clearly G5

is unambiguous, and hence fEX1, fEX2, fEX5 ∈ U-CF. We can also show that
fEX3, fEX4 ∈ U-CF by considering variants of G5.

3 An Extended Ogden’s Lemma

In this section, we give an extension of Ogden’s lemma, which is useful for proving
the main results of this paper. We first review Ogden’s lemma. The original
Ogden’s lemma in [8] is a statement for a word w, but we slightly extend it to
a statement for a word w and a parse tree T of w. It is clear from the proof of
Ogden’s lemma in [8] that this extension also holds.

Lemma 1 (Ogden’s Lemma [8]). For each CFG G = (V,Σ, P, I), there exists
a constant N ∈ N that satisfies the following condition :

Let w be any word in L(G) and T be any parse tree of w in G. For any
way to mark at least N positions in w as distinguished, there exist A ∈ V
and u, v, x, y, z ∈ Σ∗ such that
– T can be represented as I ⇒∗ uAz ⇒∗ uvAyz ⇒∗ uvxyz = w,
– x has at least one of the distinguished positions,
– Either u and v both have distinguished positions, or y and z both have

distinguished positions, and
– vxy has at most N distinguished positions.

��
We define the relation �w⊆ (Σ∗)3 × (Σ∗)3 as follows: for a word w = uvx =

λμν ∈ Σ∗, (u, v, x) �w (λ, μ, ν) if there exist words λ′, ν′ ∈ Σ∗ such that
μ = λ′vν′, λλ′ = u, ν′ν = x. If (u, v, x) �w (λ, μ, ν) where the word w and the
partitions w = uvx = λμν are clear or not relevant, we say that μ contains v.
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Lemma 2. Let G = (V,Σ, P, I) be a CFG and L be the language defined by G.
There exists a constant N ∈ N that satisfies the following condition :

Let w = λμν ∈ Σ∗ be any word such that w ∈ L and |μ| ≥ N . For every
parse tree T of w, there exist A ∈ V and u, v, x, y, z ∈ Σ∗ such that T can
be represented as

I ⇒∗ uAz ⇒∗ uvAyz ⇒∗ uvxyz = w ,

and the following (i) or (ii) holds.
(i) 1 ≤ |v| < N and μ contains v, i.e., (u, v, xyz) �w (λ, μ, ν).
(ii) 1 ≤ |y| < N and μ contains y, i.e., (uvx, y, z) �w (λ, μ, ν).

Proof. The above property can be obtained by applying Lemma 1, by letting all
letters in μ be distinguished positions. ��

Lemma 2 states that every word w ∈ L having a sufficiently long subword μ
can be divided as w = uvxyz such that μ contains one of v and y. We call such
a pair (v, y) a pump in w.

As stated in the next theorem, Lemma 2 can be generalized in such a way
that if a word w ∈ L has 2n long subwords μ1, . . . , μ2n, then w has n pumps
(vi, yi) (1 ≤ i ≤ n) such that some n subwords out of μ1, . . . , μ2n either contains
the left subwords vi (1 ≤ i ≤ n) or the right subwords yi (1 ≤ i ≤ n). This
generalization is essential for proving the existence of a function not in FA-WCF
(Theorem 2) and a function not in PA-WCF (Theorem 3).

Lemma 3. Let G = (V,Σ, P, I) be a CFG and L be the language generated by
G. There exists a constant N ∈ N that satisfies the following condition :

Let w = λ1 · μ1 · λ2 · μ2 · · · · · λ2n · μ2n · λ2n+1 ∈ Σ∗ be any word such
that w ∈ L and |μ1|, . . . , |μ2n| ≥ N . For every parse tree T of w, there
are subderivations Ai ⇒∗ viAiyi of T where Ai ∈ V, vi, yi ∈ Σ∗ for each
i (1 ≤ i ≤ n) such that there exists a monotone injection g : {1, . . . , n} →
{1, . . . , 2n} and the following (i) or (ii) holds.
(i) For each i (1 ≤ i ≤ n), 1 ≤ |vi| < N and μg(i) contains vi.
(ii) For each i (1 ≤ i ≤ n), 1 ≤ |yi| < N and μg(i) contains yi.

Proof. Let N be a constant in Lemma 2 and λ′
j , ν′

j be λ′
j = λ1μ1 · · · λj , ν′

j =
λj+1μj+1 · · · λ2n+1 for each j (1 ≤ j ≤ 2n) (see Fig. 2). By applying Lemma 2 to
w = λ′

jμjν
′
j (note that |μj | ≥ N) and a parse tree of w, we obtain that there is a

subderivation Aj ⇒∗ vjAjyj of T , and (i’) μj contains vj such that 1 ≤ |vj | < N
or (ii’) μj contains yj such that 1 ≤ |yj | < N . Since we have 2n subwords
μ1, . . . , μ2n that do not pairwise overlap in w, there exist j1, j2, · · · , jn (1 ≤ j1 <
j2 < · · · < jn ≤ 2n) such that the following (i) or (ii) holds.

(i) For each ji (1 ≤ i ≤ n), μji contains vji .
(ii) For each ji (1 ≤ i ≤ n), μji contains yji .

Let Ai = Aji , vi = vji , yi = yji and define the injection g as g(i) = ji, then the
claim of the theorem holds. ��
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Fig. 2. Illustration for the proof of Lemma 3

4 An Ambiguity Hierarchy of WCFG over Nmin,+

The purpose of this paper is to prove a strict ambiguity hierarchy caused by
introducing weights. Namely, we would like to prove that there exists a function
in (U-CF∩FA-WCF)\U-WCF (resp. a function in (U-CF∩PA-WCF)\FA-WCF,
a function in (U-CF∩WCF)\PA-WCF). We use fEX2 (resp. fEX3, fEX4) as such a
function that exists in the gap. We already know that fEX2 ∈ U-CF ∩ FA-WCF
(resp. fEX3 ∈ U-CF ∩ PA-WCF, fEX4 ∈ U-CF ∩ WCF) by Example 2 (resp.
Example 3, Example 4) and Example 5. Therefore, we just need to prove fEX2 /∈
U-WCF (resp. fEX3 /∈ FA-WCF, fEX4 /∈ PA-WCF).

To prove them, we use Lemma 3. Note that Nmin,+ is a positive semiring
(see Sect. 2.1), and hence [[G]](w) �= ∞ iff w ∈ L(G′′) where G is a WCFG over
Nmin,+ and G′′ is the underlying CFG of G. Therefore, Lemma 3 can be applied
to WCFG over Nmin,+, by regarding “Let G = (V,Σ, P, I) be a CFG and L be
the language generated by G” as “Let G = (V,Σ, P, I,wt) be a WCFG over
Nmin,+ and f be the function defined by G” and “w ∈ L” as “f(w) �= ∞”.

Theorem 1. fEX2 /∈ U-WCF.

Proof. We suppose that fEX2 can be defined by an unambiguous WCFG G =
(V,Σ, P, I,wt) and let N be a constant in Lemma 3. Consider the word w =
bNaN+1aN+1bN . Clearly, w is a palindrome and fEX2(w) = N . Let T be a parse
tree of w such that wt(T ) = N .

Let us apply Lemma 3 to w and T by letting n = 1 and w = λ1μ1λ2μ2λ3

where λ1 = λ3 = ε, μ1 = μ2 = bN and λ2 = aN+1aN+1. Then, T can be written

as I ⇒∗ uAz
c

⇒∗ uvAyz ⇒∗ uvxyz = w for some A ∈ V and u, v, x, y, z ∈ Σ∗,
and one of the following four conditions holds: (i-1) μ1 contains v, or (i-2) μ2

contains v, or (ii-1) μ1 contains y, or (ii-2) μ2 contains y (see Fig. 3). We examine
these four cases.

The case (i-2) contradicts the definition of fEX2. This is because w2 =
uvvxyyz = bNaN+1aN+1bN ′

(N ′ > N) has a parse tree whose weight is N + c
but fEX2(uvvxyyz) = ∞ since w2 is not a palindrome. The case (ii-1) is not
possible by a similar reason to (i-2).
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Fig. 3. Case analysis for the proof of Theorem 1

If (i-1) holds, it follows that v = y = bk (1 ≤ k < N) and μ2 contains y
because, by the definition of fEX2, fEX2(w) �= ∞ iff w is a palindrome. If (ii-2)
holds, v = y = bk (1 ≤ k < N) and μ1 contains v by the same reason as in
the case (i-1). For these subcases (i-1) and (ii-2), consider the parse tree T ′ of
w′ = uv3xy3z = bN+2kaN+1aN+1bN+2k, which is constructed by pumping the

subderivation A
c

⇒∗ vAy in T twice. Apparently, wt(T ′) = N + 2c. Because
k ≥ 1, N + 1 = fEX2(w′) �= wt(T ′) for any c ∈ N. Hence, there exists a parse
tree of w′ whose weight is N + 1. Therefore, |parse(w′)| ≥ 2, but it contradicts
the assumption that G is unambiguous. ��
Remark 1. We used a WCFG that generates palindromes to prove Theorem 1,
but the technique can be applied to other WCFG. For example, we consider the
following function f ′

EX2 defined by FA-WCFG :

f ′
EX2(w) =

{
min{|w| [, |w| 〈} w ∈ Dyck([ ], 〈 〉)
∞ otherwise

where Dyck([ ], 〈 〉) is Dyck language consisting of two types of brackets [ ] and
〈 〉. We can prove that f ′

EX2 is not in U-WCF using the word 〈N [N+1]N+1〉N as
well. For Theorems 2 and 3 below, we also use palindromes for simplicity.

Every non-empty (even) palindrome can be written as wwR where w =
an1
1 an2

2 · · · ank

k , nj ≥ 1 for each j (1 ≤ j ≤ k) and aj �= aj+1 for each j
(1 ≤ j < k). We call each a

nj

j a block in w. We say that a
nj

j in w and a
nj

j

in wR forms a symmetrical block pair of wwR.
To prove Theorems 2 and 3 below, we show a pumping lemma for CFL that

contain only palindromes. Lemma 4 states that if a parse tree T of a palindrome
with distinct central positions such as w$$wR where w ∈ (Σ − {$})∗ has pumps
(vi, yi), T must consist of only linear recursions of nonterminals and vi, yi are
contained in a symmetrical block pair, respectively. This is a generalization of
the case analysis in the proof of Theorem 1.
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Lemma 4. Let G = (V,Σ, P, I) be a CFG that generates only palindromes, and
Σ is divided as Σ = Γ ∪ Δ ∪ Ω with Γ , Δ, Ω pairwise disjoint. There exists a
constant N ∈ N that satisfies the following condition :

Let wwR = λ1 · μ1 · λ2 · μ2 · · · · · λ2n · μ2n · λ2n+1 ∈ L(G) where |μi| ≥ N ,
μi = μ2n+1−i ∈ a∗ with some a ∈ Γ , λ2n−i+2 = (λi)R ∈ Δ∗ for every i
(1 ≤ i ≤ n) and λn+1 ∈ Ω+ is a palindrome. For every parse tree T of
wwR, there are subderivations Ai ⇒∗ viAiyi of T where Ai ∈ V, vi, yi ∈
Σ∗ for each i (1 ≤ i ≤ n) such that
(1) 1 ≤ |vi| < N and μi contains vi.
(2) vi = yi, and
(3) vi and yi are contained in a symmetrical block pair of wwR.

Proof. Let N be a constant in Lemma 2. By applying Lemma 2 to the assumed
CFG G in the same way as the proof in Lemma 3, there are subderivations
Ai ⇒∗ viAiyi of T where (i’) μi contains vi such that 1 ≤ |vi| < N or (ii’) μi

contains yi such that 1 ≤ |yi| < N , for each i (1 ≤ i ≤ 2n).
If (ii’) holds for some i ≤ n, then T can be represented as I ⇒∗

uAizλn+1z
′ ⇒∗ uviAiyizλn+1z

′ ⇒∗ uvixyizλn+1z
′ = wwR for some u, x, z, z′ ∈

Σ∗. Note that λn+1 ∈ Ω∗, uvixyiz, z′ ∈ (Γ ∪ Δ)∗ and yi �= ε, contradicting the
assumption that G generates only palindromes. Therefore, (i’) holds for every i
(1 ≤ i ≤ n). That is, (1) 1 ≤ |vi| < N and μi contains vi for every i (1 ≤ i ≤ n).
Furthermore, we can show the following in the same way as the proof of Theo-
rem 1. Subderivations Ai ⇒∗ viAiyi satisfy the conditions (2) and (3) for each i
(1 ≤ i ≤ n), otherwise, G can generate non palindromes by pumping (vi, yi).

Theorem 2. fEX3 /∈ FA-WCF.

Proof. We suppose that fEX3 can be defined by a WCFG G = (V,Σ, P, I,wt)
such that there exists m ∈ N and |parse(w)| ≤ m − 1 for all w ∈ Σ∗. Let N be
a constant in Lemma 4. For each � (1 ≤ � ≤ m), consider the word

w� = α1β1α2β2 · · · αmβm$$βm+1αm+1 · · · β2m−1α2m−1β2mα2m

where

(αj , βj) =

{
(aN(m·N !+1), bN(m·N !+1)) j = �, 2m − � + 1 ,

(aN , bN ) otherwise ,

for each j (1 ≤ j ≤ 2m). Note that w� is a palindrome. We include long subwords
aN(m·N !+1) in w� by the following reason. Below we will show that there are
pumps (aki , aki) and (bki , bki) where ki < N (1 ≤ i ≤ 2m(1 + N !)). We would
like to obtain an identical word of the form (*3) below from multiple w� for
different � by repeating some of the above pumps depending on �.

By the definition of fEX3, the value fEX3(w�) is obtained when we divide
w� into α1β1α2β2 · · · β�−1α� and β�α�+1β�+1α�+2 · · · αmβm$. Hence, fEX3(w�) =
|α1β1α2β2 · · · β�−1α�|b + |β�α�+1β�+1α�+2 · · · αmβm|a = (� − 1)N + (m − �)N =
(m − 1)N . Let T� be a parse tree of w� such that wt(T�) = (m − 1)N .
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Let us apply Lemma 4 to w� and T� by letting n = 2m(1 + N !), Γ =
{a, b},Δ = ∅, Ω = {$} and μ1, · · · , μ2n ∈ {aN , bN}, λ1 = · · · = λn = ε, λn+2 =
· · · = λ2n+1 = ε, λn+1 = $$ (*1). Then, there are subderivations Ai ⇒∗ viAiyi of
T� where Ai ∈ V , vi, yi ∈ Σ∗ for each i (1 ≤ i ≤ n) (*2) such that 1 ≤ |vi| ≤ N ,
μi contains vi, vi = yi = aki (or = bki), and α2m−j+1 (or β2m−j+1) contains yi

if αj (or βj) contains vi.

Consider Ai

ci⇒∗ viAiyi such that vi is contained in α� among the subderiva-
tions mentioned in (*2). There are exactly m · N ! + 1 of such subderivations by
the following reason. We have α� = aN(m·N !+1) and by the assumption (*1), α�

is the concatenation of some μi of length N and hence the number of such μi is
exactly m ·N ! + 1. Since wt(T�) = (m− 1)N < m ·N ! + 1 and ci ∈ N, there is at
least one i such that ci = 0. (Otherwise, wt(T�) would be greater than or equal
to m · N ! + 1.) For any i such that ci = 0, vi = yi = aki in α� can be pumped
with weight 0. The same property holds for vi = bki contained in β�.

Next, we consider vi = yi = aki (resp. vi = yi = bki) that is not contained in
α�, α2n−�+1 (resp. β�, β2n−�+1). Note that ki (< N) must be a devisor of m · N !
and all pumps (vi, yi) are nested each other on T�. Hence we can construct a
parse tree T ′

� of w′ =

aN(m·N !+1)bN(m·N !+1) · · · bN(m·N !+1)
︸ ︷︷ ︸

m

$$ bN(m·N !+1) · · · bN(m·N !+1)aN(m·N !+1)
︸ ︷︷ ︸

m

(*3)
by pumping subderivations in Tl.

We now consider two parse trees T ′
�1

, T ′
�2

of w′ (1 ≤ �1 < �2 ≤ m). Note that
T ′

�1
can pump subwords ak1 contained in �1-th aN(m·N !+1) and bk′

1 contained in
�1-th bN(m·N !+1) with weight 0, while T ′

�2
can pump subwords ak2 contained in

�2-th aN(m·N !+1) and bk′
2 contained in �2-th bN(m·N !+1) with weight 0. By the

definition of fEX3, the value of fEX3 increases if subwords ak1 , bk′
1 , ak2 , bk′

2 can be
all pumped simultaneously. If T ′

�1
= T ′

�2
, then this simultaneous pump does not

increase the weight, which is a contradiction. Hence, T ′
�1

and T ′
�2

are different
trees. Thus, T1, T2, · · · , Tm are pairwise different and |parse(w′)| ≥ m. However,
this contradicts the assumption that the ambiguity of G is at most m − 1. ��
Remark 2. In the proof of Theorem 2, we said that some vi = aki contained in
α� can be pumped with weight 0, but we can also say that every vi contained in
α� can be pumped with weight 0. That is because, if a subword of α� is generated

by a derivation Ai

ci⇒∗ akiAia
ki ⇒∗ akiakAja

kaki

cj

⇒∗ akiakakjAja
kjakaki (with

pairwise different subderivations Ai

ci⇒∗ akiAia
ki and Aj

cj

⇒∗ akjAja
kj ), there

are 2n ways to derive a(ki+kj)n+k. This contradicts the assumption that G is
finitely-ambiguous. Therefore, all vi = aki contained in α� are generated by the
same subderivation. This remark also holds for the proof in Theorem 3.

We can prove that fEX4 /∈ PA-WCF in a similar way to the proof of Theorem
2.



An Ambiguity Hierarchy of Weighted Context-Free Grammars 249

Theorem 3. fEX4 /∈ PA-WCF.

Corollary 1. U-WCF � FA-WCF � PA-WCF � WCF. Furthermore, (U-
WCF ∩ U-CF) � (FA-WCF ∩ U-CF) � (PA-WCF ∩ U-CF) � (WCF ∩ U-CF).

5 Conclusion

We proved a pumping lemma for CFG, which is helpful for demonstrating an
iteration without increasing weights, and showed the strict ambiguity hierarchy
of WCFG. Since the functions proved to exist in the gaps are all in U-CF, this
hierarchy is different from the ambiguity hierarchy of CFG known as inherent
ambiguity. In other words, the hierarchy shown to exist in this paper is caused
by introducing weights.

We defined U-CF as the class of functions whose supports are defined by some
U-WCFG over B. Similarly, we can define FA-CF and PA-CF as the classes of
functions whose supports are defined by some FA-WCFG over B and some PA-
WCFG over B, respectively. For these classes, we expect to prove the inclusion
(FA-WCF∩FA-CF) � (PA-WCF∩FA-CF) � (WCF∩FA-CF) and (PA-WCF∩
PA-CF) � (WCF ∩ PA-CF) in the same way.

The discussion on the ambiguity hierarchy of WA in [1,7] is generalized by
using pumping lemmas that correspond to each hierarchy level. Showing similar
pumping lemmas for U-WCFG, FA-WCFG and PA-WCFG is left as future work.
However, showing them seems difficult because the expressive power of WCFG
cannot be determined by a simple iteration property, as explained in Sect. 1.

The techniques in Theorems 1, 2 and 3 could be applied to other weighted
models and other semirings. In particular, Remark 2 is useful. For example, if

there are n of the same subderivations A
c

⇒∗ vAy and f(w) = W , then c must be
smaller than or equal to W 1/n for WCFG over the semiring (N∪{∞},+,×, 0, 1)
of natural numbers.
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