
Pascal Caron
Ludovic Mignot (Eds.)

LN
CS

 1
32

66

Implementation and
Application of Automata
26th International Conference, CIAA 2022
Rouen, France, June 28 – July 1, 2022
Proceedings

Lecture Notes in Computer Science 13266

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Pascal Caron · Ludovic Mignot (Eds.)

Implementation and
Application of Automata
26th International Conference, CIAA 2022
Rouen, France, June 28 – July 1, 2022
Proceedings

Editors
Pascal Caron
UFR. des Sciences et Techniques
University of Rouen
Saint-Étienne du Rouvray Cedex, France

Ludovic Mignot
UFR. des Sciences et Techniques
University of Rouen
Saint-Étienne du Rouvray Cedex, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-07468-4 ISBN 978-3-031-07469-1 (eBook)
https://doi.org/10.1007/978-3-031-07469-1

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-07469-1

Preface

The 26th International Conference on Implementation and Application of Automata
(CIAA 2022) was organized by the Groupe de Recherche Rouennais en Informatique
Fondamentale (GR2IF) and the Laboratoire d’Informatique, de Traitement de
l’Information et des Systèmes (LITIS) of the Université de Rouen Normandie. The
conference took place during June 28 to July 1, 2022.

The CIAA conference series brings together researchers in the field of automata
theory and implementation and allows the dissemination of results in these research
areas.

This volume of Lecture Notes in Computer Science contains the scientific papers
presented at CIAA 2022. The volume also includes extended abstracts of the three
invited talks presented by Markus Holzer, Nelma Moreira and Yo-Sub Han, we wish to
warmly thank.

The 16 regular papers were selected from 26 submissions covering various fields in
the application, implementation, and theory of automata and related structures. Each
paper was reviewed by three Program Committee members with the assistance of
external referees and thoroughly discussed by the Program Committee.

Papers were submitted by authors from the following countries: Canada, France,
Germany, Israel, Japan, Poland, Russia, Slovakia, South Africa, South Korea, Sweden,
Taiwan, Turkey, United Kingdom, United States of America.

We wish to thank everybody who contributed to the success of this conference:
the authors for submitting their carefully prepared manuscripts, the Program Committee
members and external referees for their valuable judgment of the submitted manuscripts,
and the invited speakers for their excellent presentations of topics related to the theme
of the conference. Last but not least, we would like to express our sincere thanks to the
local organizers Solène Guérin, Jean-Gabriel Luque, Florent Nicart and Bruno Patrou.

April 2022 Pascal Caron
Ludovic Mignot

Organization

Organization Committee

Pascal Caron (Chair) Université de Rouen Normandie, France
Jean-Gabriel Luque Université de Rouen Normandie, France
Ludovic Mignot Université de Rouen Normandie, France
Florent Nicart Université de Rouen Normandie, France
Bruno Patrou Université de Rouen Normandie, France

Program Committee Chairs

Pascal Caron Université de Rouen Normandie, France
Ludovic Mignot Université de Rouen Normandie, France

Steering Committee

Markus Holzer (Chair) Justus Liebig University Giessen, Germany
Oscar Ibarra University of California, USA
Sylvain Lombardy Institut Polytechnique de Bordeaux, France
Nelma Moreira University of Porto, Portugal
Kai T. Salomaa (Vice-chair) Queen’s University, Canada
Hsu-Chun Yen National Taiwan University, Taiwan

Program Committee

Marie-Pierre Béal Université Paris-Est Marne-la-Vallée, France
Francine Blanchet-Sadri University of North Carolina, USA
Cezar Câmpeanu University of Prince Edward Island, Canada
Pascal Caron Université de Rouen Normandie, France
Jan Daciuk Gdańsk University of Technology, Poland
Mike Domaratzki University of Manitoba, Canada
Emmanuel Filiot Université Libre de Bruxelles, Belgium
Yo-Sub Han Yonsei University, South-Korea
Jan Holub Czech Technical University in Prague,

Czech Republic
Markus Holzer University of Giessen, Germany
Jarkko Kari University of Turku, Finland
Galina Jiraskova Slovak Academy of Sciences, Slovakia

viii Organization

Markus Lohrey University of Siegen, Germany
Sylvain Lombardy Institut Polytechnique de Bordeaux, France
Andreas Maletti University of Leipzig, Germany
Sebastian Maneth University of Bremen, Germany
Ludovic Mignot Université de Rouen Normandie, France
Dirk Nowotka University of Kiel, Germany
Alexander Okhotin St. Petersburg State University, Russia
Giovanni Pighizzini University of Milan, Italy
Daniel Reidenbach Loughborough University, UK
Rogério Reis University of Porto, Portugal
Michel Rigo University of Liege, Belgium
Kai Salomaa Queen’s University, Canada
Shinnosuke Seki University of Electro-Communications, Japan
Jeffrey Shallit University of Waterloo, Canada
Bruce Watson Stellenbosch University, South Africa
Hsu-Chun Yen National Taiwan University, Taiwan

Additional Reviewers

Fan Feng
Pamela Fleischmann
Hermann Gruber
Sang-Ki Ko
Florent Koechlin
Dominik Köppl
Martin Kutrib
Thierry Lecroq
Jean-Gabriel Luque
Nelma Moreira
Štěpán Plachý

Luca Prigioniero
Gabriele Puppis
Narad Rampersad
Andrew Ryzhikov
Lena Katharina Schiffer
Hiroyuki Seki
Kevin Stier
Marek Szykuła
Matthias Wendlandt
Sarah Winter

Contents

Invited Lectures

On 25 Years of CIAA Through the Lens of Data Science . 3
Hermann Gruber, Markus Holzer, and Christian Rauch

Manipulation of Regular Expressions Using Derivatives: An Overview 19
Nelma Moreira and Rogério Reis

How to Settle the ReDoS Problem: Back to the Classical Automata Theory 34
Sicheol Sung, Hyunjoon Cheon, and Yo-Sub Han

Conference Papers

Ordered Context-Free Grammars . 53
Brink van der Merwe and Martin Berglund

Symbolic Weighted Language Models, Quantitative Parsing
and Automated Music Transcription . 67

Florent Jacquemard and Lydia Rodriguez de la Nava

A Similarity Measure for Formal Languages Based on Convergent
Geometric Series . 80

Florian Bruse, Maurice Herwig, and Martin Lange

Hybrid Tree Automata and the Yield Theorem for Constituent Tree
Automata . 93

Frank Drewes, Richard Mörbitz, and Heiko Vogler

Some Results Concerning Careful Synchronization of Partial Automata
and Subset Synchronization of DFA’s . 106

Jakub Ruszil

A Toolkit for Parikh Matrices . 116
Laura K. Hutchinson, Robert Mercaş, and Daniel Reidenbach

Syntax Checking Either Way . 128
Martin Kutrib and Uwe Meyer

On the Power of Pushing or Stationary Moves for Input-Driven Pushdown
Automata . 140

Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

x Contents

The Cut Operation in Subclasses of Convex Languages (Extended Abstract) . . . 152
Michal Hospodár and Viktor Olejár

Variations of the Separating Words Problem . 165
Nicholas Tran

Homomorphisms on Graph-Walking Automata . 177
Olga Martynova and Alexander Okhotin

Nondeterministic State Complexity of Site-Directed Deletion 189
Oliver A. S. Lyon and Kai Salomaa

Energy Complexity of Regular Language Recognition . 200
Öykü Yılmaz, Fırat Kıyak, Meriç Üngör, and A. C. Cem Say

Real-Time, Constant-Space, Constant-Randomness Verifiers 212
Özdeniz Dolu, Nevzat Ersoy, M. Utkan Gezer, and A. C. Cem Say

Constrained Synchronization for Monotonic and Solvable Automata
and Automata with Simple Idempotents . 225

Stefan Hoffmann

An Ambiguity Hierarchy of Weighted Context-Free Grammars 238
Yusuke Inoue, Kenji Hashimoto, and Hiroyuki Seki

Author Index . 251

Invited Lectures

On 25 Years of CIAA Through the Lens
of Data Science

Hermann Gruber1, Markus Holzer2(B), and Christian Rauch2

1 Knowledgepark GmbH, Leonrodstr. 68, 80636 München, Germany
hermann.gruber@kpark.de

2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{holzer,christian.rauch}@informatik.uni-giessen.de

Abstract. We investigate the structure of the co-authorship graph for
the Conference on Implementation and Application of Automata (CIAA)
with techniques from network sciences. This allows us to answer a broad
variety of questions on collaboration patterns. Our findings are in line
with (statistical) properties of other co-authorship networks from biol-
ogy, physics and mathematics as conducted earlier by pioneers of network
sciences.

1 Introduction

Shortly after the invitation of the second author to give an invited talk at the
26th Conference on Implementation and Application of Automata (CIAA), the
idea grew to study collaboration patterns of the co-authorship network of this
conference. As said in [15] “the structure of such networks turns out to reveal
many interesting features of academic communities.” Co-authorship networks
and collaboration patterns thereof had been subject to scientific studies long
before data science became a prominent subfield of artificial intelligence research,
see, e.g., [4,16]. Thus, besides the above mentioned interesting features of aca-
demic communities with such a study we familiarize ourselves with the tech-
niques in data science and in particular in network sciences. Moreover, since
the 25th jubilee of the CIAA conference passed due to the COVID-19 pandemic
restrictions without further celebration, this paper may serve as a late birth-
day present to the whole community that is interested in implementation and
application of automata.

Our study is based on collection and analysis of data gathered from open
sources. The two main open sources we rely on are DBLP1 (database systems and
logic programming), which is the on-line reference for bibliographic information
on major computer science publications, LNCS2 (Lecture Notes in Computer Sci-
ence), the prestigious conference proceedings series published by Springer, and
the general website https://www.informatik.uni-giessen.de/ciaa/ of the confer-
ence. The raw data from these sources were obtained during January to April
1 https://dblp.org.
2 https://www.springer.com/gp/computer-science/lncs.

c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-07469-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_1&domain=pdf
https://www.informatik.uni-giessen.de/ciaa/
https://dblp.org
https://www.springer.com/gp/computer-science/lncs
https://doi.org/10.1007/978-3-031-07469-1_1

4 H. Gruber et al.

2022 and were pre- and post-processed with the help of the widely used Python3

distribution “Anaconda,”4 which includes a range of useful packages for scientific
coding, such as matplotlib, numpy, pandas, etc.

Before we turn to the analysis of the co-authorship network we briefly give
some history on the conference, which will obviously lack completeness. The
CIAA conference actually started in 1996 as the “Workshop on Implementation
of Automata” (WIA) in London, Ontario, Canada. The need for such a workshop
was explained in [17] as follows:

“Whence WIA? Why the need for a workshop of this type? As there are
already many (perhaps too many) computer science conferences and work-
shops, any new meeting faces a rather stiff need to justify its existence.
WIA came about primarily because there is no other good forum for sys-
tems that support symbolic computation with automata. [. . .] In addition
[. . .] there is a vast amount of applied work, most of it undocumented,
using automata for practic applications such as protocol analysis, IC design
and testing, telephony, and other situations where automata software is
useful.
This is good and interesting work, and it needs a place to be exhibited
and discussed. Existing journals and conferences, however, seem to have a
difficult time in finding a place for what we do. Theoretical arenas some-
times treat this work as “mere” implementation, a simple working-out of
the algorithms, theorems, and proofs that are the “real” contribution to
the field. Systems-oriented venues, on the other hand, sometimes find this
kind of work suspect because it appears to be aimed at theoreticians. It is
tricky navigating between the Scylla of the too-abstract and the Charybdis
of the too-practical.”

At that time the general organization and orientation of WIA was governed
by a Steering Committee (SC) composed of (in alphabetical order) Stuart Mar-
golis, Denis Maurel, Derick Wood, and Sheng Yu. Sadly, both Derick Wood
and Sheng Yu, our late lamented colleagues, passed away too early on Octo-
ber 4, 2010 and January 23, 2012, respectively. The first four workshops were
held at London, Ontario, Canada (1996 and 1997), Rouen, France (1998), and
Potsdam, Germany (1999). During the general WIA meeting in 1999 it was
decided to rename the meeting to “International Conference on Implementation
and Application of Automata” (CIAA) and to hold its first CIAA in London,
Ontario, Canada, in the summer of 2000. There it was part of a tri-event con-
ference together with the workshop on “Descriptional Complexity of Automata,
Grammars and Related Structures” (DCAGRS) and a special day devoted to
the 50th anniversary of automata theory, which was called “A Half Century of
Automata Theory.” It is worth mentioning that CIAA is rarely co-located with
other conferences. An exception was the Conference on “Finite-State Methods
and Natural Language Processing” (FSMNLP) in 2011 in Rouen, France.

3 https://www.python.org.
4 https://www.anaconda.com.

https://www.python.org
https://www.anaconda.com

On 25 Years of CIAA Through the Lens of Data Science 5

Already after around half a decade the conference became mature and started
its way all around the globe: Pretoria, South Africa (2001), Tours, France (2002),
Santa Barbara, California, USA (2003), Kingston, Ontario, Canada (2004), Nice,
France (2005), Taipei, Taiwan (2006), Prague, Czech Republic (2007), San Fran-
cisco, California, USA (2008), Sydney, Australia (2009), Winnipeg, Manitoba,
Canada (2010), Blois, France (2011), Porto, Portugal (2012), Halifax, Nova
Scotia (2013), Giessen, Germany (2014), Ume̊a, Sweden (2015), Seoul, South
Korea (2016), Marne-la-Vallée, France (2017), Charlottetown, Prince-Edward-
Island (2018), Košice, Slovakia (2019), and Bremen, Germany (2021), which was
held as a virtual event due to the COVID-19 pandemic. The 2020 conference,
planned at Loughborough, United Kingdom, was canceled and thus was also
a victim of the pandemic crisis. This year, CIAA takes place again in Rouen,
France, where it was last held 22 years ago. A distribution of the locations w.r.t.
the continents is depicted in Fig. 1. There is a slight overhang on the number of
locations for Europe (14) followed by North America (9). Then there is a large
drop for Asia (2), Africa (1), and Australia/Oceania (1). South America and
Antarctica have never been visited by CIAA, and for Antarctica, we personally
think that there is no chance to organize it there. The current SC is encouraged
to further globalize the conference and to fill the white or say gray spots on the
continents’ landscape.

Fig. 1. CIAA destinations in relation to their continent locations.

Since the first WIA event in 1996, the proceedings appeared in the Springer
LNCS series. This was not the case for the sister conferences “Developments in
Language Theory” (DLT) and “Descriptional Complexity of Formal Systems”
(DCFS), formerly known as “Descriptional Complexity of Automata, Grammars
and Related Structures” (DCAGRS), that started slightly earlier than WIA. The
authors of the best paper of the actual conference are awarded a monetary grant
since 2004 (except for 2021). Until 2008, this was sponsored by the University of
California at Santa Barbara and later by the conference itself. By acclamation
the best paper award was subtitled “Sheng Yu Award” at the general CIAA
meeting in 2012 and first awarded with this naming in 2014. So far, only five
authors had the privilege of receiving the “Best Paper Award” twice. These are

6 H. Gruber et al.

(in alphabetical order) Janusz Brzozowski (2017 and 2018), Markus Holzer (2009
and 2015), Lisa Kaati (2006 and 2008), Lila Kari (2004 and 2018), and Mikhail
V. Volkov (2007 and 2012). Since the renaming to CIAA in 2000, extended
versions of selected papers from the proceedings of the conference series are
usually retained for publication in special issues of either International Journal
of Foundations of Computer Science (IJFCS) or Theoretical Computer Science
(TCS), alternating each year.

The legacy of CIAA continues—the event is in its 26th edition and the expec-
tations raised in [17] have been widely fulfilled:

“Providing a forum for this work is a useful goal, and a sufficient one
for WIA [CIAA]. But I think WIA [CIAA] is part of something more
fundamental, and a process I want to encourage: the re-appraisal of the
value of programming in computer science.”

Nowadays the general organization and orientation of CIAA is directed by the
SC members (in alphabetical order) Markus Holzer, Oscar H. Ibarra, Sylvain
Lombardy, Nelma Moreira, Kai Salomaa, and Hsu-Chun Yen. Enough of the
historical overview. Now let us concentrate on what can be deduced from the
data that we extracted from the web.

The paper is organized as follows: In Sect. 2 we first briefly take a look on the
topics of CIAA as communicated by the call for papers and the published papers.
This will be a quick and shallow dive into natural language processing without
to much details. Then in Sect. 3 the search for collaboration patterns is done
in correspondence to previous systematic studies on co-authorship networks or
more general on social real-world networks as conducted in [13,14]. Finally, we
conclude our tour through the world of data-science with some ideas for further
investigations.

2 Conference Versus Paper Topics

The CIAA call for papers solicits research papers and demos on all aspects of
implementation and application of automata and related structures, including
theoretical aspects, as but not limited to:

– bioinformatics,
– complexity of automata operations,
– compilers,
– computer-aided verification,
– concurrency,
– data structure design for automata,
– data and image compression,
– design and architecture of automata

software,
– digital libraries,

– DNA/molecular/membrane com-
puting,

– document engineering,
– editors, environments,
– experimental studies and practical

experiences,
– industrial applications,
– natural language processing,
– networking,
– new algorithms for manipulating

automata,

On 25 Years of CIAA Through the Lens of Data Science 7

– object-oriented modeling,
– pattern-matching,
– quantum computing,
– speech and speaker recognition,
– structured and semi-structured doc-

uments,
– symbolic manipulation environ-

ments for automata,

– teaching,
– text processing,
– techniques for graphical display of

automata,
– very large-scale integration (VLSI)

research,
– viruses, related phenomena, and
– world-wide web (WWW).

How do the topics in the call for papers compare to the topics of the actual
papers? To answer this question, we take a look at word clouds.

Word clouds have become a staple of data-visualization for analyzing texts.
Usually words (unigrams) and bigrams, and the importance of each are shown
with fontsize and/or color. Since the list of CIAA topics is condensed and lim-
ited one may consider all CIAA publications as a natural resource for natural
language processing techniques. The decision to use only DBLP as data source
considerably limits the analysis of the CIAA texts, because DBLP does not offer
all relevant features of publications. For instance, the access to abstracts is not
possible via DBLP. For such, information the relevant Springer websites have
to be contacted. The only meaningful textual data DBLP provides is the title
of a publication. With these titles, one can easily prepare a word cloud with
the help of Python’s wordcloud library. To this end the frequency of uni- and
bigrams are determined. For a word the frequency is defined as the quotient
of how often the word appears in the text and the number of all words of the
text in question. Normalization is done by dividing with the maximal frequency.
Usually preprocessing of the text incorporates removing of stopwords, such as,
e.g., are, is, and, or, etc., stemming and lemmatization (word normalization).
The word cloud obtained from the titles of all CIAA publications is depicted on
the left of Fig. 2, where only the removing of stopwords was applied. Words and
bigrams related to automata and expressions attain high ranks. It is worth men-
tioning that the missing words “implementation” and “application” from the
conference name CIAA appear on rank 12 and 22, respectively, with normalized
frequencies 0.1215 and 0.0841, respectively.

3 Collaboration Patterns

In general the co-authorship network or co-authorship graph, for short, is an undi-
rected graph built from a set of publications P restricted to a set of authors A
from these publications with the following properties: (i) the set of nodes cor-
responds to the set of authors A and (ii) two authors are connected by an
undirected edge if there is at least one publication in P jointly co-authored by
them. We call such a network a P -A co-authorship network. There are several
ways to generalize co-authorship graphs, for instance, to introduce edge and node
weights reflecting measures for collaboration (e.g., Newman’s weighting scheme)
and impact/productivity (e.g., h-index/number of papers), respectively. Note

8 H. Gruber et al.

word/bigram frequency

automata 1.0000
finite automata 0.2850
language 0.2617
finite state 0.2196
algorithm 0.1963
weighted 0.1636
regular expression 0.1636
complexity 0.1402
transducer 0.1355
tree 0.1308

Fig. 2. (Left) Word cloud generated from all titles published at CIAA with standard
stopwords and (right) the words and bigrams with the highest normalized frequencies.

that co-authorship graphs are quite different from citation graphs. The latter
is yet another important type of graph related to network sciences, but is not
considered here.

We investigate (i) the publication venue co-authorship network of CIAA by
using all publications of CIAA and hence all authors that ever published a paper
at the conference (CIAA-CIAA co-authorship network) and (ii) the field co-
authorship network, where all publications, not limited to the conference in ques-
tion, of CIAA authors are used to construct the graph to be investigated (ALL-
CIAA co-authorship network). For better comparability, we only take papers
into account that appeared in 1996 or later when constructing the ALL-CIAA
network. We think that the differentiation of these two graphs is important,
because the conference only cannot describe the community behind CIAA com-
pletely. This may lead to different results of the analysis. As already mentioned
earlier, for the analysis we decided to use only one data source, namely DBLP.
This, in particular reduces the bias and simplifies identification problems such
as, e.g., author identification, since we are acting within a closed world, namely
DBLP. On the other hand, DBLP will not offer all relevant features of publica-
tions and authors as one would like to have. The raw data for the two networks
contains lists of papers, including authors names and possibly other information
such as title, pagination and so forth, but no information on abstract or affili-
ation of the authors, because these data are not communicated by DBLP. The
construction of the co-authorship networks is straightforward by using Python’s
networkx5 library and leads us to some basic results, which we report next.

The findings on the basic results for our two co-authorship networks are
summarized in Table 1. Let us comment on these numbers. The total number of
papers is 688 respectively 38, 250. As a curious fact, for the CIAA-CIAA data
set there are exactly two papers with the same title and authors, namely “Size
Reduction of Multitape Automata” by Hellis Tamm, Matti Nykänen, and Esko
5 https://networkx.org.

https://networkx.org

On 25 Years of CIAA Through the Lens of Data Science 9

Table 1. Summary of results of the analysis of the CIAA-CIAA and ALL-CIAA co-
authorship network.

Co-authorship network

CIAA-CIAA ALL-CIAA

total papers 688 38,250

total authors 839 839

mean papers per author 1.81 59.12

mean authors per paper 2.22 3.35

mean collaborators per author 2.57 43.80

size of giant component 192 696

as a percentage 22.76% 83.4%

2nd largest component 41 8

clustering coefficient 0.55 0.49

mean distancea 8.36 4.71

maximum distancea 22 12
aSince the CIAA-CIAA and ALL-CIAA co-authorship networks are
not connected, the values are only computed for the largest con-
nected component.

Ukkonen that appeared in 2004 and 2005. Concerning the number of authors, as
already said, the identification problem such as mentioned in [7] is not relevant
to our study, thanks to the use of DBLP as the single source of truth for authors.
DBLP does an excellent job in author name disambiguation, as reported in [9].
Author name disambiguation at DBLP is achieved by the combined effort of
algorithms and humans, as described in [12]. For instance, the DBLP database
identifies Kees Hemerik and C. Hemerik as the same person, while by relying
on names only, one would rather count them as separate individuals. We are
quite sure that the CIAA-CIAA data set is approximately correct w.r.t. the
identification problem of authors. Hence, a bias from an incorrect identification
is negligible for us. The average number of papers per author is 1.81 and the
distribution of papers per author follows a power law. This was first observed
by Lotka [10] and later confirmed by several studies, and is nowadays known as
“Lokta’s Law of Scientific Productivity”—see Fig. 3.

Simply speaking, if one plots two quantities against each other where both
axes are logarithmically scaled (log-log scaled) and they show a linear relation-
ship, this indicates that the two quantities have a power law distribution. Such
a line can be described by ln f(x) = −α ln x + c and by taking exponentials we
end up with

f(x) = C · x−α,

where C = ec. Distributions of this form are said to follow a power law and α is
called the exponent of the power law. Observe, that a positive exponent α induces
a negative slope on the straight line in the log-log plot. Mostly the constant C

10 H. Gruber et al.

Fig. 3. Plot of the number of papers written by authors in the CIAA-CIAA co-
authorship network. The plot is log-log scaled. The corresponding plot for the ALL-
CIAA co-authorship network is similar but not shown due to space constraints.

is not of particular interest. Power law distributions occur in an extraordinarily
wide range of phenomena, e.g., [1,3,8,10,11,18]. The distribution of papers per
author follows a power law with exponent α approximately 2 in general [10] and
we have α ≈ 2.28.

Now we turn to the ALL-CIAA co-authorship network. For many papers,
DBLP identifies that an author name is shared by different authors, yet is not
able to make an educated guess to which person the paper should be attributed.
In that case, the author link in the DBLP record of the paper points to a dis-
ambiguation page, which lists the papers of all authors with that name. In our
data set, we used the disambiguation page to serve as a list of papers by that
author if DBLP cannot determine the author. In total, we have to deal with 11
disambiguation pages. While this number is quite modest compared to the total
number of authors, these eleven pages list an amount of 2035 publications in
total. So the average number of publications per disambiguation page is 185.
Since those disambiguation pages list papers that are sometimes produced by
many different actual persons, the disambiguation pages may introduce a sizable
distortion in averages such as “papers per author” and “number of collabora-
tors per author.” For a moment, let us assume that each disambiguation page
stands for an actual author who published only 1 paper overall - this will cer-
tainly underestimate the actual state of affairs. Then we have 839 authors and
(38250 − 2035 + 11) papers, which yields a figure of 43.12 papers per author on
average, which is seizably lower but still in the same ballpark. So another expla-
nation for the unusually high scores is in order. We will propose a hypothesis
below, where we look at the top 10 in various different aspects.

In the first column of Table 2, we list the most frequent authors of both
the CIAA-CIAA and ALL-CIAA co-authorship network. For the ALL-CIAA
network, we observe that some CIAA authors are highly prolific writers, drawn

On 25 Years of CIAA Through the Lens of Data Science 11

Table 2. The authors with the highest numbers of papers, fractional number of papers,
and numbers of co-authors in the CIAA-CIAA and ALL-CIAA co-authorship network.
Italicized items are disambiguation pages, i.e., possibly several actual authors.

number of papers fractional no. of papers number of co-workers

CIAA-CIAA 20 Martin Kutrib 9.08 Andreas Maletti 22 Jean-Marc

Champarnaud

18 Jean-Marc

Champarnaud

9.00 Bruce W.

Watson

16 Nelma Moreira

16 Markus Holzer 8.20 Martin Kutrib 14 Kai Salomaa

14 Kai Salomaa 7.58 Oscar H. Ibarra 13 Martin Kutrib

13 Andreas Maletti 7.00 Markus Holzer 13 Borivoj Melichar

13 Borivoj Melichar 6.87 Mehryar Mohri 13 Sheng Yu

13 Mehryar Mohri 6.82 Jean-Marc

Champarnaud

12 Rogério Reis

13 Bruce W.

Watson

6.23 Borivoj Melichar 11 Johanna

Björklund

13 Sheng Yu 6.00 Kai Salomaa 11 Markus Holzer

12 Oscar H. Ibarra 5.75 Sheng Yu 11 Sylvain

Lombardy

ALL-CIAA 695 Alois C. Knoll 269.8 Moshe Y. Vardi 1082 Cheng Li

609 Václav Snásel 229.5 Gonzalo Navarro 875 Alois C. Knoll

577 Gonzalo Navarro 222.0 B. Sundar Rajan 532 Fei Xie

569 Moshe Y. Vardi 175.1 William

I. Gasarch

516 Bin Ma

501 B. Sundar Rajan 175.0 Alois C. Knoll 420 Václav Snásel

475 Thomas

A. Henzinger

167.6 Václav Snásel 374 Xiaoyu Song

466 Bin Ma 162.6 Thomas A.

Henzinger

365 Axel Legay

438 Kim G. Larsen 152.2 Henning Fernau 359 Yong Sun

438 Axel Legay 140.1 Jeffrey O. Shallit 341 Madhav V.

Marathe

384 Cheng Li 137.2 Andrzej Pelc 323 Kim G. Larsen

from diverse fields in computer science: Robotics (Alois C. Knoll), artificial intel-
ligence (Václav Snásel), string algorithms (Gonzalo Navarro), logic and verifi-
cation (Moshe Y. Vardi), network coding (B. Sundar Rajan), to list the fields
of the five most prolific authors. While only few of them regularly contribute to
CIAA, this shows that the conference helps bringing the various applied fields
of computer science together.

Admittedly, among the top ten CIAA authors with most collaborators, five
are actually DBLP disambiguation pages: Cheng Li, Fei Xie, Bin Ma, Xiaoyu
Song and Yong Sun.6 But as explained above, the amount of distortion due to
fuzziness in the data is not too high. Together with the facts explained in the

6 The interested readers who is able to help with disambiguation is invited to suggest
corrections to the DBLP team.

12 H. Gruber et al.

preceding paragraph, this may explain why the CIAA authors have, on average,
very high scores regarding both research output and collaboration.

We thus identified two factors that may serve as a partial explanation for the
very high scores in the ALL-CIAA network. Another factor is probably the way
we construct the ALL-CIAA data set: we include the 839 CIAA authors and all
their publications, but we exclude most of the co-authors that contributed to
those publications. For comparison, the analysis carried out for computer science
as a whole in [14] included all authors that were coauthors of at least one paper
in the data set. For the community of the ACM SIGMOD conference, an analysis
of the co-authorship graph was carried out in [13]. The network they construct
is analogous to our CIAA-CIAA network, and there again, the considered set of
authors is implied by the papers that were selected. In the ALL-CIAA network,
we deliberately zoomed in on the set of CIAA authors, and as a consequence, the
number of authors is much smaller than the number of publications we consider.
Yet, as a Gedankenexperiment, let us extend the set of authors to all authors
listed as co-author in papers of the ALL-CIAA network. Then we obtain a total
of 24717 authors—and the average number of papers per author drops to 1.55.
Then again, this figure appears too low—after all, we included only a fraction
of the papers by those authors that collaborated with a CIAA author.

The alternative to counting the total number of papers is fractional number
of papers. Each paper co-authored by a given author adds an amount of 1

n to the
fractional number of papers instead of 1 as for number of papers, where n is the
total number of authors on the paper. The rationale behind this choice is that
in an ideal world, an authors collective equally divides the writing between all n
authors who work on a paper. The fractional number of papers became famous
among theoretical computer scientists by the author ranking to the “Interna-
tional Colloquium on Automata, Languages, and Programming” (ICALP) pre-
pared by the late Manfred Kudlek and published in the EATCS Bulletin series.
As expected, there is substantial overlap between the authors with a large num-
ber of papers and those with a large fractional number of papers.

By empirical results from the literature it is awaited that a power law also
applies for the authors per paper and collaborators per author. Both distribu-
tions are shown in Fig. 4. The average number of authors per paper is 2.22, which
is in perfect fit with the average value 2.22 for computer science as a whole [14].
The largest number of authors on a single paper is 7 (“In Vitro Implementation
of Finite-State Machines” by Max H. Garzon, Y. Gao, John A. Rose, R. C. Mur-
phy, Russell J. Deaton, Donald R. Franceschetti, and Stanley Edward Stevens
Jr.). In the CIAA-CIAA network, the mean on number of collaborators is 2.55
and this somewhat less than 3.59 for computer science as report in [14]. The dis-
tributions of the number of collaborators are depicted in Fig. 4. The third column
of Table 2 shows the authors of the CIAA-CIAA and ALL-CIAA co-authorship
network with the largest numbers of collaborators.

In the CIAA-CIAA network, it is remarkable that although Jean-Marc Cham-
parnaud is already retired and has published his last CIAA paper in 2012, i.e.,
a decade ago, he still has the highest number of 22 co-workers. His co-workers

On 25 Years of CIAA Through the Lens of Data Science 13

Fig. 4. Plots of the (i) number of authors per paper and (ii) number of collaborators
per author in the CIAA-CIAA co-authorship network. Both plots are log-log scaled.
The corresponding plots for the ALL-CIAA co-authorship network are similar.

are (in alphabetical order) Philippe Andary, Pascal Caron, Fabien Coulon, Tibor
Csáki, Jean-Philippe Dubernard, Gérard Duchamp, Jason Eisner, Jacques Farré,
Marianne Flouret, Tamás Gaál, Franck Guingne, Hadrien Jeanne, André Kempe,
Éric Laugerotte, Jean-Francis Michon, Ludovic Mignot, Florent Nicart, Faissal
Ouardi, Thomas Paranthoën, Jean-Luc Ponty, Are Uppman, and Djelloul Ziadi.

Next let us come to more graph theoretical properties and measures that are
relevant in the network analysis community. The obvious measures of a graph are
the number of nodes n and the number of (undirected) edges m. Both measures
give rise to the density, which is defined as d = 2m/(n(n−1)). The CIAA-CIAA
co-authorship network with n = 839 nodes and m = 1077 edges has density
d = 0.0031. The values for the ALL-CIAA co-authorship network are n = 839,
m = 2150, and thus d = 0.0061. Hence both networks are sparsely connected.
Density is a measure in the theory of graphs with limited meaning for real-world
networks. Real-world networks are unlike random graph or regular lattices, and,
as empirical observation suggests, they are more like small-worlds [2]. Networks
of this kind are characterized by at least two main features:

1. The diameter of the network grows logarithmically in the size of the network
like in random graphs and

2. the network is highly clustered as it happens in lattices.

By the first property any two nodes can be reached from each other (if they are
in the same connected component) using only a few number of steps, even if
the network is large. The second trait induces that any two neighbors of a given
node have a large probability of being themselves neighbors. In other words the
network has the tendency to form tightly connected neighborhoods.

Both studied co-authorship networks are disconnected. The CIAA-CIAA co-
authorship network contains 219 connected components, and the giant compo-
nent is built by 192 nodes, which is approximately 22.76% of the whole graph.
The ALL-CIAA co-authorship network contains 73 connected components, and
the giant component has 696 nodes (83.35%).

14 H. Gruber et al.

Further basic concepts of graph theory are the diameter and the clustering
coefficient. The diameter and the clustering coefficient can be found in Table 1
and they are defined as follows: the diameter is the maximum eccentricity of
the nodes of a graph G. Here the eccentricity of a node v of G is the maximum
distance from a given node v to all other nodes in the graph G. The periphery is
the set of nodes whose eccentricity is equal to the diameter. For the CIAA-CIAA
co-authorship network the periphery is the set that contains Mohamed Faouzi
Atig and Antonio Restivo, while for the ALL-CIAA co-authorship network the
members of the periphery are Juan Otero Pombo, Leandro Rodŕıguez Liñares,
Gloria Andrade, Niels Bjørn Bugge Grathwohl, Ulrik Terp Rasmussen, Lasse
Nielsen, and Kenny Zhuo Ming Lu. The diameter of the giant component in
CIAA-CIAA network and the ALL-CIAA network is 22 and 12, respectively.
The clustering coefficient C for a graph G with vertex set V is the average

C =
1
n

∑

v∈V

cv,

where n is the number of nodes of G and cv is defined as the fraction of possible
triangles through that node that exist,

cv =
2T (v)

deg(v)(deg(v) − 1)
,

where T (v) is the number of triangles through node v and deg(v) is the degree
of the node v. The clustering coefficient of the CIAA-CIAA network and the
ALL-CIAA network is 0.55 and 0.49, respectively. The obtained values are in
correspondence to previous empirical results for diameters and clustering coeffi-
cients obtained from real-world co-authorship networks [14].

In order to identify the most influential individuals in (small-world) networks
one may take a closer look on the measure of betweenness. Loosely speaking
betweenness is an indicator who bridges the flow of information between most
others. In the literature one can find several competing definitions of between-
ness, see, e.g., [5], which cover different aspects of being important. In our analy-
sis we rely on the following definition: the betweenness, or betweenness centrality,
of a node v in the graph G with vertex set V is the sum of the fraction of all-pairs
shortest paths that pass through v, namely

cB(v) =
∑

s,t∈V

σ(s, t | v)
σ(s, t)

,

where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths, and
the value σ(s, t | v) is the number of those paths passing through some node v
other than s or t. If s = t, then σ(s, t) = 1, and if v ∈ {s, t}, then σ(s, t | v) = 0.
The first column of Table 3 summarize our findings on betweenness.

Now let us come to the strength of collaboration. Cooperation in co-au-
thorship networks is measured in several different ways in the literature [19,
Chapter 5]. We will only consider two measures that can be seen as counterparts

On 25 Years of CIAA Through the Lens of Data Science 15

Table 3. The authors with the highest betweenness, the strongest straight collabora-
tion weight, and the strongest Newman’s collaboration weight in the two co-authorship
networks. Non-CIAA-authors are italicized.

betweenness

(×10−2)

collaboration weight

(straight)

collaboration weight

(Newman)

CIAA-CIAA 2.98 Stavros

Konstantinidis

9 Nelma Moreira/

Rogério Reis

6.00 Markus Holzer/

Martin Kutrib

2.91 Lila Kari 8 Markus Holzer/

Martin Kutrib

4.25 Cyril Allauzen/

Mehryar Mohri

2.51 Galina

Jirásková

7 Martin Kutrib/

Andreas Malcher

4.25 Martin Kutrib/

Andreas Malcher

2.48 Juraj Sebej 7 Sylvain Lombardy/

Jacques Sakarovitch

4.17 Sylvain Lombardy/

Jacques Sakarovitch

2.45 Kai Salomaa 7 Kai Salomaa/

Sheng Yu

3.75 Martin Kutrib/

Matthias Wendlandt

2.40 Markus Holzer 6 Cyril Allauzen/

Mehryar Mohri

3.75 Nelma Moreira/

Rogério Reis

2.33 Yo-Sub Han 6 Martin Kutrib/

Matthias Wendlandt

3.67 Kai Salomaa/

Sheng Yu

2.30 Michal

Hospodár

5 Jean-Marc

Champarnaud/

Djelloul Ziadi

3.50 Yo-Sub Han/

Sang-Ki Ko

2.07 Derick Wood 4 Cyrill Allauzen/

Michael Riley

2.83 Jean-Marc

Champarnaud/

Djelloul Ziadi

1.81 Jean-Luc

Ponty

4 Jurek Czyzowicz/

Wojciech Fraczak

2.75 Cyril Allauzen/

Michael Riley

ALL-CIAA 6.49 Bruce W.

Watson

223 Luiza de Macedo

Mourelle/

Nadia Nedjah

151.87 Luiza de Macedo

Mourelle/

Nadia Nedjah

5.36 Andreas

Maletti

184 Shunsuke Inenaga/

Masayuki Takeda

69.33 Martin Kutrib/

Andreas Malcher

5.14 Moshe Y.

Vardi

181 Hideo Bannai/

Shunsuke Inenaga

63.12 Sanjay Jain/

Frank Stephan

4.79 Axel Legay 167 Bin Ma/

Haizhou Li

59.90 Luca Aceto/

Anna Ingólfsdóttir

4.61 Juhani

Karhumäki

166 Hideo Bannai/

Masayuki Takeda

59.76 Krishnendu

Chatterjee/

Thomas A. Henzinger

4.13 Markus Holzer 149 Luca Aceto/

Anna Ingólfsdóttir

55.98 Markus Holzer/

Martin Kutrib

4.07 Sheng Yu 141 Ajith Abraham/

Václav Snásel

51.50 Shmuel Tomi Klein/

Dana Shapira

4.02 Jean-Marc

Champarnaud

136 Pavel Krömer/

Václac Snásel

51.50 Shunsuke Inenaga/

Masayuki Takeda

3.93 Jeffrey O.

Shallit

132 Jan Platos/

Václav Snásel

50.43 Pavel Krömer/

Václav Snásel

3.82 Sebastian

Maneth

132 Sanjay Jain/

Frank Stephan

49.18 Bin Ma/

Haizhou Li

to the number of papers and the number of fractional papers that are assigned
to the authors (nodes of the graph). The easiest way is to assign a weight to
a pair of co-authors, which is an edge in the co-authorship graph, is to use the

16 H. Gruber et al.

Fig. 5. The giant component of the CIAA-CIAA co-authorship network, which con-
tains 192 authors; names are not shown in order to keep the drawing readable. There
are 647 more authors in smaller components. Application of the Clauset-Newman-
Moore community structure algorithm produces 12 communities, where the three size-
largest ones (top, middle, bottom) are shown by colors (blue, green, red). Node size
corresponds to the number of papers and edge width to collaboration weight. (Color
figure online)

number of commonly co-authored papers. This measure is called the straight
collaboration weight. A more complex measure also takes other co-authors into
account—we refer to this measure as Newman’s collaboration weight. For a pair
of co-authors it is defined as the sum over all co-authored papers of 1/(n − 1),
where n is the number of collaborators of the paper under consideration in the
summing. The idea behind the choice of the value 1/(n−1) is that the researchers
divide their time equally between the n−1 co-authors. Observe, that Newman’s
collaboration weight does not take into account the actual order in which the
names appear in a publication. This is a reasonable assumption for computer

On 25 Years of CIAA Through the Lens of Data Science 17

science publications, since there are only around 130 CIAA publications that
don’t list the authors lexicographically. This is approximately 18.90 percent.
The obtained results for both co-authorship networks are depicted in the second
and third column of Table 3.

An important issue for real-world networks is the identification and extrac-
tion of meaningful communities in order to better understand complex networks.
Common to all community definitions [19] is the idea that a community is a group
of densely interconnected nodes that are only sparsely connected with the rest of
the network. On the variety of algorithms, the community detection algorithm
from [6] based on a measure called modularity performed best, in the sense that
the identified communities fit very well with the given data. Figure 5 illustrates
the result of this algorithm running on the giant component of the CIAA-CIAA
co-authorship network. Overall 12 communities are detected, of sizes (in decreas-
ing order) 28 (blue), 22 (green), 22 (red), 19, 19, 16, 13, 12, 12, 11, 10, and 8. There
are 72 nodes contained in the three largest communities. This is 37.5%, and thus
more than a third, of the giant component of the CIAA-CIAA co-authorship
network. Take a closer look at the largest community. There is an eye-catching
node with high degree. An educated guess is that this node stands for Jean-
Marc Champarnaud. The analysis confirms this—the authors that from the
largest community are Jean-Marc Champarnaud, his 22 collaborators already
mentioned earlier, except Jacques Farreé, and (in alphabetical order) Houda
Abbad, Samira Attou, Christof Baeijs, Dominique Geniet, Gaëlle Largeteau,
and Clément Miklarz.

The presented results can be seen as a starting point for more complex anal-
yses, including, e.g., analysis of the growth of the co-authorship network over
time, analysis of the citation network, text analytics and natural language pro-
cessing (NLP) to cluster research texts, etc. Let us close with congratulations to
CIAA and all the best for the coming 25 years.

References

1. Adamic, L.A., Huberman, B.A.: The nature of markets in the world wide web. Q.
J. Electron. Commer. 1, 512 (2000)

2. Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world
networks. Proc. Natl. Acad. Sci. 97(21), 11149–11152 (2000)

3. Auerbach, F.: Das Gesetz der Bevölkerungskonzentration. Petermanns Geographis-
che Mitteilungen 59, 74–76 (1913)

4. Kao, R.R.: Networks and Models with Heterogeneous Population Structure in Epi-
demiology. In: Network Science, pp. 51–84. Springer, London (2010). https://doi.
org/10.1007/978-1-84996-396-1 4

5. Brandes, U.: On variants of shortest-path betweenness centrality and their generic
computation. Soc. Netw. 30(2), 136–145 (2008)

6. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Phys. Rev. E 70(6), 066111 (2004)

7. Grossman, J.W., Ion, P.D.F.: On a portion of the well-known collaboration graph.
Congr. Numer. 108, 129–132 (1995)

https://doi.org/10.1007/978-1-84996-396-1_4
https://doi.org/10.1007/978-1-84996-396-1_4

18 H. Gruber et al.

8. Gutenberg, B., Richter, R.F.: Frequency of earth-quakes in California. Bull. Seis-
mol. Soc. Am. 34, 185–188 (1944)

9. Kim, J.: Evaluating author name disambiguation for digital libraries: a case of
DBLP. Scientometrics 116(3), 1867–1886 (2018). https://doi.org/10.1007/s11192-
018-2824-5

10. Lotka, A.J.: The frequency distribution of scientific productivity. J. Wash. Acad.
Sci. 16(12), 317–324 (1926)

11. Lu, E.T., Hamilton, R.J.: Avalanches of the distribution of solar flares. Astrophys.
J. 380, 89–92 (1991)

12. Müller, M.-C., Reitz, F., Roy, N.: Data sets for author name disambiguation: an
empirical analysis and a new resource. Scientometrics 111(3), 1467–1500 (2017).
https://doi.org/10.1007/s11192-017-2363-5

13. Nascimento, M.A., Sander, J., Pound, J.: Analysis of SIGMOD’s co-authorship
graph. SIGMOD Rec. 32(3), 8–10 (2003)

14. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl.
Acad. Sci. 98, 404–409 (2001)

15. Newman, M.E.J.: Coauthorship networks and patterns of scientific collaboration.
Proc. Nat. Acad. Sci. 101(suppl 1), 5200–5205 (2004)

16. Newman, M.E.J.: Network: An Introduction. Cambridge University Press, Cam-
bridge (2010)

17. Raymond, D.: WIA and the practice of theory in computer science. In: Raymond,
D., Wood, D., Yu, S. (eds.) WIA 1996. LNCS, vol. 1260, pp. 1–5. Springer, Hei-
delberg (1997). https://doi.org/10.1007/3-540-63174-7 1

18. de Solla Price, D.J.: Networks of scientific papers. Science 149, 510–515 (1965)
19. Savić, M., Ivanović, M., Jain, L.C.: Analysis of enriched co-authorship networks:

methodology and a case study. In: Complex Networks in Software, Knowledge, and
Social Systems. ISRL, vol. 148, pp. 277–317. Springer, Cham (2019). https://doi.
org/10.1007/978-3-319-91196-0 8

https://doi.org/10.1007/s11192-018-2824-5
https://doi.org/10.1007/s11192-018-2824-5
https://doi.org/10.1007/s11192-017-2363-5
https://doi.org/10.1007/3-540-63174-7_1
https://doi.org/10.1007/978-3-319-91196-0_8
https://doi.org/10.1007/978-3-319-91196-0_8

Manipulation of Regular Expressions
Using Derivatives: An Overview

Nelma Moreira(B) and Rogério Reis

CMUP & DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{nelma.moreira,rogerio.reis}@fc.up.pt

Abstract. The notions of derivative and partial derivative of regular
expressions revealed themselves to be very powerful and have been suc-
cessfully extended to many other formal language classes and algebraic
structures. Although the undisputed elegance of this formalism, its effi-
cient practical use is still a challenging research topic. Here we give a
brief historical overview and summarise some of these aspects.

1 Preliminares

Regular expressions are the common choice to represent regular languages due
to their succinctness and clear syntax. Deterministic finite automata are an
excellent representation for testing equivalence, containment, or membership, as
these problems are easily solved for this model. However, minimal deterministic
finite automata (DFA) can be exponentially larger than the associated regu-
lar expression, while corresponding nondeterministic finite automata (NFA) are
only linearly larger. The computational and descriptional complexity of regular
expressions and of conversions to and from finite automata are well studied. Good
surveys on the subject are [39,40]. In recent years, the average size of different
NFA constructions from regular expressions were studied using the framework
of analytic combinatorics [14,17,63]. For the average case, the uniform distribu-
tion on the set of regular expressions is considered although that does not imply
a uniform representation of regular languages. In this survey, we focus on the
derivative and partial derivative based constructions. First, we recall some basic
notions and fix notation.

Given an alphabet Σ = {σ1, . . . , σk} of size k ≥ 1, a language L is a subset
of the free monoid Σ�. The left-quotient of a language L by a word w ∈ Σ�, is
the language w−1L = {x | wx ∈ L}.

The set Rk of (standard) regular expressions r over Σ is composed by ∅ plus
the expressions defined by the following context-free grammar:

r := ε | σ1 | · · · | σk | (r + r) | (r � r) | (r�), (1)

Research supported by CMUP through FCT project UIDB/00144/2021.

c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 19–33, 2022.
https://doi.org/10.1007/978-3-031-07469-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_2

20 N. Moreira and R. Reis

where the symbol � is normally omitted and represents concatenation. The
(regular) language represented by an expression r ∈ Rk is denoted by L(r) and
is inductively defined as follows for r, r′ ∈ Rk: L(∅) = ∅, L(ε) = {ε}, L(σ) = {σ},
L(r+ r′) = L(r) ∪ L(r′), L(r� r′) = L(r)L(r′) = {wv | w ∈ L(r) ∧ v ∈ L(r′) }, and
L(r�) = L(r)� =

⋃
n∈N

(L(r)n). For the size of a regular expression r, denoted by
‖r‖, we consider the size of its syntactic tree, i.e., the number of symbols in r, not
counting parentheses but including �. The alphabetic size of r, denoted by |r|Σ ,
is just the number of alphabetic symbols in r. We define ε(r) = ε if ε ∈ L(r), and
ε(r) = ∅, otherwise. The function ε() is easily defined inductively in the structure
of r. Two expressions r and s are equivalent if their languages are the same, and
we write r = s. With this interpretation, the algebraic structure (Rk,+, ·, ∅, ε) is
a idempotent semiring that with � forms a Kleene algebra.

A nondeterministic finite automaton (NFA) is a quintuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. The language accepted by A is L(A) = {w ∈ Σ� | δ(I, w) ∩ F �= ∅}.
When I = {q0}, we use I = q0. If |I| = 1 and |δ(q, σ)| ≤ 1, for all q ∈ Q,σ ∈ Σ,
A is deterministic (DFA). For a DFA A, w ∈ L(A) if δ(q0, w) ∈ F . Two NFAs
A and A′ are equivalent if their languages are the same. An automaton A is
equivalent to a regular expression r if L(A) = L(r). We can convert an NFA A
into an equivalent DFA D(A) by the determinisation operation D, using the well-
known subset construction. An equivalence relation ≡ on Q is right invariant
w.r.t. an NFA A if and only if ≡⊆ (Q − F)2 ∪ F 2 and ∀p, q ∈ Q,σ ∈ Σ, if p ≡ q
then ∀p′ ∈ δ(p, σ) ∃q′ ∈ δ(q, σ) such that p′ ≡ q′. The quotient automaton A/≡
is given by A/≡ = 〈Q/≡, Σ, δ/≡, I/≡, F/≡〉, where δ/≡([p], σ) = { [q] | q ∈
δ(p, σ) } = δ(p, σ)/≡. It is easy to see that L (A/≡) = L(A).

2 Derivatives

In 1962, Janusz Brzozowski introduced the notion of derivative of a regular
expression in his Ph.D. thesis Regular Expression Techniques for Sequential Cir-
cuits [22]. Based on nerve nets of McCulloch and Pitts [52], in 1956 Kleene [44]
showed the equivalence of finite automata and regular expressions. Brzozowski
proposed regular expressions as a simple formalism for describing the behaviour
of sequential circuits as opposed to use directly finite automata (state graphs), as
regular expressions are in general more readable. A theory of regular expressions
was developed for the conversion of expressions to finite automata and vice-versa.
Methods for converting finite automata into regular expression were already
known [53,61] but a simple method was presented, nowadays known as the
state elimination method [21]. For the conversion from regular expressions into
finite automata, there existed already methods such as the McNaugthon-Yamada
automaton (AMY) [53]. Brzozowski defined a deterministic finite automaton
equivalent to a regular expression using the notion of derivative [22,25]. The
derivative by σ ∈ Σ of a regular expression r is a regular expression dσ(r),

Manipulation of Regular Expressions Using Derivatives: An Overview 21

inductively defined by:

dσ(∅) = dσ(ε) = ∅,

dσ(σ′) =

{
{ε} if σ′ = σ,

∅ otherwise,

dσ(r + r′) = dσ(r) + dσ(r′),

dσ(rr′) =

{
dσ(r)r′ if ε(r) = ∅,

dσ(r)r′ + dσ(r′) otherwise,
dσ(r�) = dσ(r)r�.

(2)
This notion can be extended to words: dε(r) = r and dσw(r) = dw(dσ(r)). The
language of dw(r) is L(dw(r)) = {x | wx ∈ L(r) } = w−1L(r). The set of all
derivatives of r, {dw(r) | w ∈ Σ� }, may not be finite. For finiteness, Brzozowski
considered the quotient of that set modulo some regular expression equivalences,
namely the associativity, commutativity, and idempotence of + (ACI) and the
following rules: rε = εr = r, ∅r = r∅ = ∅, and ∅ + r = r + ∅ = r.1 Let D(r) be the
resulting set. The Brzozowski’s automaton for r is the DFA defined as follows

AB(r) = 〈D(r), Σ, δB, [r], FB〉, (3)

where FB = { [r′] ∈ D(r) | ε(r′) = ε }, and δB([r′], σ) = [dσ(r′)], for all [r] ∈ D(r)
and σ ∈ Σ. The proof that D(r) is finite constitute one of the first results on
state complexity bounds. A language L is recognised by a finite automaton if
and only if it has a finite number of left-quotients [62], and that number is the
state complexity of L. The language of a derivative is a left-quotient, but two
derivatives may represent the same language. Known upper bounds for the state
complexity of several operations can be obtained using derivatives by tightening
the bounds of |D(r)| [23]. Both the size |D(r)| and the size of the elements of
D(r) can grow exponentially with ‖r‖.

Derivatives can be used to decide problems such as the word membership,
universality, or equivalence of regular expressions, avoiding the automaton con-
struction.

Membership. A word w ∈ L(r) if and only in ε(dw(r)) = ε. This method can be
extended to nonregular languages.

Universality. A regular expression r represents Σ� if and only if for all [r′] ∈ D(r),
ε([r′]) = ε.

Equivalence. The correctness of the Brzozowski’s automaton relies in the follow-
ing equivalence

r = ε(r) +
∑

σ∈Σ

σdσ(r), (4)

If D(r) = {r = r1, . . . , rn}, then the following system of equations is satisfied

ri = ε(ri) +
k∑

j=1

σjri,j , (5)

1 The necessity of these equalities was pointed out by Salomaa [72].

22 N. Moreira and R. Reis

where ri,j is [dσj
(ri)]. One has that r = s if and only if ε(r) = ε(s) and [dσj

(r)] =
[dσj

(s)] for all σj ∈ Σ. Below we present a refutation method such that testing
the equivalence of the two expressions corresponds to an iterated process of
testing the equivalence of their derivatives [2,5].

equivP (r, s) :
S = {(r, s)}
H = ∅
while (r, s) = POP(S) :

i f ε(r) �= ε(s) : return False
PUSH(H, (r, s))
for σ ∈ Σ :

(r′, s′) = ([dσ(r)], [dσ(s)])
i f (r′, s′) /∈ H : PUSH(S , (r′, s′))

return True

This method is related to the Hopcroft and Karp’s algorithm for testing the
equivalence of two deterministic finite automata that avoids their minimisa-
tion [3,41]. Ginzburg [36] argues that the above method is cumbersome due to
the computation of derivatives and equivalence classes, and presents a similar
method but using NFAs.

Regular expressions can be extended to include any Boolean operation ⊕ on
regular languages. Brzozowski defined dσ(⊕(r1, . . . , rn)) = ⊕(dσ(r1), . . . ,dσ(rn)),
for σ ∈ Σ. In particular, dσ(r ∩ r′) = dσ(r) ∩ dσ(r′) and dσ(¬r) = ¬dσ(r).
Again, he proved that an extended regular expression has a finite number of
derivatives modulo some equivalences and thus a DFA could be constructed,
solving a problem stated in [53].

In the next decades, derivatives were useful in several algebraic character-
izations, for instance [24,33,48,72]; inspired conversions from expressions to
automata, such as the Thompson automaton (Aε−T) [77]; or were the based of
regular expression equivalence tests [36,58]. However, for practical applications,
manipulation methods based directly on regular expressions were thought much
more inefficients than the ones based on the conversion of regular expressions to
finite automata. Also the fact that regular expressions needed to be considered
modulo ACI was a disadvantage. One exception is Berry and Sethi’s method of
constructing the McNaughton-Yamada DFA (AMY) using derivatives [9].

3 Partial Derivatives

In 1966, Boris G. Mirkin [57] presented an algorithm for constructing an NFA that
is a nondeterministic counterpart of Brzozowski’s automaton. Mirkin considered
a system of equations as (5) but where the ri,j can be sums of expressions. The
solution of the system leads to a nondeterminitic automaton construction. Given
a regular expression r0, a set of expressions π(r0) = {r1, . . . , rn} is a support of r0
if for each ri ∈ {r0}∪π(r0) the Eq. (5) holds where each ri,j is a (possibly empty)

Manipulation of Regular Expressions Using Derivatives: An Overview 23

sum of elements in π(r0). The set {r0} ∪ π(r0) is a pre-base of r0. Mirkin proved
that a support of r ∈ Rk can be inductively defined as follows

π(∅) = ∅,
π(ε) = ∅,
π(σ) = {ε},

π(r + s) = π(r) ∪ π(s),
π(rs) = π(r)s ∪ π(s),
π(r�) = π(r)r�,

(6)

where, for any S ⊆ Rk, we define S∅ = ∅S = ∅, Sε = εS = S, and Sr′ = { rr′ |
r ∈ S ∧ r �= ε }∪{ r′ | ε ∈ S } if r′ �= ∅, ε (and analogously for r′S). It is easy to see
that |π(r)| ≤ |r|Σ and thus a relatively small NFA can be constructed. Moreover,
it follows also from Mirkin’s proof that set of transitions of this automaton can
be inductively defined [13,19].

Almost thirty years later, and independently, Valentin Antimirov [4] intro-
duced partial derivatives as a (non-deterministic) generalisation of derivatives
and obtained an NFA construction, called the partial derivative automaton, APD

Champarnaud and Ziadi [27] proved that the Mirkin and Antimirov automaton
constructions are equivalent. Essentially, Antimirov associates to a left-quotient
of L(r) a set of regular expressions instead of a unique expression. For a regular
expression r ∈ Rk and a symbol σ ∈ Σ, the set of partial derivatives by σ of r is
defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅,

∂σ(σ′) =

{
{ε} if σ′ = σ,

∅ otherwise,

∂σ(r + r′) = ∂σ(r) ∪ ∂σ(r′),
∂σ(rr′) = ∂σ(r)r′ ∪ ε(r)∂σ(r′),
∂σ(r�) = ∂σ(r)r�,

(7)

where for S ⊆ Rk and r ∈ Rk, we consider Sr or rS as above. The set of partial
derivatives by a word w ∈ Σ� of r ∈ Rk is inductively defined by ∂ε(r) = {r}
and ∂wσ(r) = ∂σ(∂w(r)). We have that L(dw(r)) = L(∂w(r)) =

⋃
r′∈∂w(r) L(r′),

for w ∈ Σ�. The set of all partial derivatives of r by nonempty words is ∂+(r) =⋃
w∈Σ�\{ε} ∂w(r) and coincides with π(r), i.e., ∂+(r) = π(r) [27]. Equation (2)

can be redefined as follows

r = ε(r) ∪
⋃

σ∈Σ

σ∂σ(r), (8)

where we denote the right-hand side by Lε(r). This means that membership,
universality, equivalence, and related decision problems can be solved, adapting
the procedures given above, to sets of partial derivatives.

The partial derivative automaton of r ∈ Rk is defined as

APD(r) = 〈PD(r), Σ, δPD, r, FPD〉,

where PD(r) = ∂+(r) ∪ {r}, FPD = { r′ ∈ PD(r) | ε(r′) = ε }, and δPD(r′, σ) =
∂σ(r′), for all r′ ∈ PD(r) and σ ∈ Σ. We have, |PD(r)| ≤ |r|Σ + 1.

Both Mirkin and Antimirov argued that the DFA obtained from APD(r)
by determinisation, D(APD(r)), has several advantages over AB(r): avoids the
computation of a equivalence relation; has at most 2|r|Σ states; each state of

24 N. Moreira and R. Reis

D(APD(r)) is a set of partial derivatives ∂w(r) ⊆ PD(r) and thus each of these
sets could be defined using references to some elements of PD(r).

We note that D(APD(r)) is not isomorphic to AB, i.e., D(APD(r)) �� AB. This
is mainly due to the distributivity of the concatenation over a set of expressions
in Eq. (7) (see [64]). In [6,11] it was shown that D(APD(r))/≡Lε

� AB(r)/≡Lε

where ≡Lε
is a right-invariant equivalence relation w.r.t. these automata such

that S ≡Lε
S′ if and only if Lε(S) = Lε(S′), for S, S′ ⊆ Rk. The resulting

quotient automaton can be directly obtained by the determinisation of yet
another automaton construction based on partial derivatives, that we denote
by A←−

Pre
. From Eq. (8), the elements of Lε(r) are either ε or expressions of

the form σr′. Consider the function ←−p w(r) on words w ∈ Σ� defined induc-
tively by ←−p ε(r) = Lε(r) and ←−p wσ(r) =

⋃
σr′∈←−p w(r) Lε(r′). It is immediate that

L(←−p w(r)) = w−1L(r). The automaton A←−
Pre

(r) is a NFA equivalent to r defined
by

A←−
Pre

(r) = 〈←−
Pre(r), Σ, δ←−

Pre
, Lε(r), ε〉,

where
←−
Pre(r) =

⋃
w∈Σ�

←−p w(r) and δ←−
Pre

(r′, σ) = Lε(r′′) if r′ = σr′′, and
δ←−
Pre

(r′, σ) = ∅, otherwise. Then, we have [11]

D(APD(r))/≡Lε
� AB(r)/≡Lε

� D(A←−
Pre

(r)).

This DFA is interesting because, it is the smallest among several deterministic
automata constructions obtained from regular expressions, although not always
the minimal [11].

For a language L ⊆ Σ� and a word w ∈ Σ� one can also define the right-
quotient of L by w, as Lw−1 = {x | xw ∈ L }. The notions of derivative and
partial-derivative can also be defined in this case, as well as the correspondent
automata. However, that is tantamount to consider the left constructions in the
double reverse, i.e., A(rR)R where R is the reversal operation. Of course, one has
L(A(r)) = L(A(rR)R) = L(r). In particular, A←−

Pre
(r) � APre(rR)R where APre

is the prefix automaton introduced by Yamamoto [78] and studied in [11,19].
Broda et al. [11] presented a taxonomy of conversions from regular expressions
to finite automaton that includes the above ones and that are related with the
position automaton, which we consider in the next section.

3.1 Position Automaton

The position automaton APOS, introduced by Victor Glushkov [37] in 1961,
permits us to convert a regular expression r into an equivalent NFA without
ε-transitions. McNaughton-Yamada 1960’s automaton [53], AMY, corresponds
to the determinisation of APOS and the construction is similar. Leiss inductive
automaton construction [49] leads to the same automaton [30]. This automaton is
also called standard as it has a unique initial state which is non-returning [70,71].
Below we will see its connection with the partial derivative automaton, APD.

The states in the position automaton correspond to the positions of alpha-
betic symbols in r plus an additional initial state. Formally, given r ∈ Rk,

Manipulation of Regular Expressions Using Derivatives: An Overview 25

one can mark each occurrence of a symbol σ ∈ Σ with its position in r,
considering reading it from left to right. The resulting regular expression is a
marked regular expression r with all alphabetic symbols distinct. Then, a posi-
tion i ∈ [1, |r|Σ] corresponds to the symbol σi in r, and consequently to exactly
one occurrence of σ in r. The same notation is used to remove the markings,
i.e., r = r. Let Pos(r) = {1, 2, . . . , |r|Σ}, and let Pos0(r) = Pos(r) ∪ {0}. To
define the APOS(r) we consider the following sets: First(r) = { i | σiw ∈ L(r) },
Last(r) = { i | wσi ∈ L(r) }, and Follow(r, i) = { j | uσiσjv ∈ L(r) }. Given a set
S ⊆ Pos(r) and σ ∈ Σ, let Select(S, σ) = { i | i ∈ S ∧σi = σ }. Then, the position
automaton for r is

APOS(r) = 〈Pos0(r), Σ, δPOS, 0, Last(r) ∪ ε(r){0}〉,
where δPOS(i, σ) = Select(Follow(r, i), σ).

Champarnaud and Ziadi [28] proved that APD is a quotient of the position
automaton APOS by the right-invariant equivalence relation ≡c, that we define
in the following. Given a position i, for all w ∈ Σ�

r , ∂wσi
(r) is either empty or

equal to the singleton {c(r, i)}, which element is called the i’s c-continuation of
r. For i ∈ Pos(r), c-continuations are inductively defined by: c(∅, i) = c(ε, i) = ∅,
and c(σi, i) = ε. Now consider r of the form r1 + r2, r1r2, or r�1. If i occurs in
r1, then c(r1 + r2, i) = c(r1, i), c(r1r2, i) = c(r1, i)r2, and c(r�1, i) = c(r1, i)r�1. If i
occurs in r2, then c(r1 + r2, i) = c(r1r2, i) = c(r2, i). Considering c(r, 0) = r, for
i, j ∈ Pos0(r) we define i ≡c j ⇔ c(r, i) = c(r, j).

Proposition 1 ([28]). APD(r) � APOS(r)/≡c.

The proof of this proposition relies in the following relations

– ∂+(r) = { c(r, i) | i ∈ Pos(r) };
– ∂σi

(r) = {c(r, i)} ⇐⇒ i ∈ First(r);
– ε(c(r, i)) = ε ⇐⇒ i ∈ Last(r);
– c(r, i) ∈ ∂σi

(c(r, j)) ⇐⇒ i ∈ Follow(r, j).

From that, one has that APD(r) � APOS(r)/≡′
c, where i ≡′

c j ⇔ c(r, i) = c(r, j).
And, thus APD(r) � APOS(r)/≡′

c, where A means an automaton equal to A
but with the transition labels unmarked. Now, noting that for σ ∈ Σ, ∂σ(r) =⋃

i∈Select(Pos(r),σ) ∂σi
(r), the result follows.

4 Complexity of Partial Derivatives

Here we will focus on the partial derivative based automata constructions and,
due to Proposition 1, on the position automaton. We will consider both the
size of the automata, as well as, the complexity of the associated constructions.
Moreover we restrict to standard regular expressions with union, concatenation,
and Kleene star. First, we consider the APOS.

Proposition 2 ([20,32,67]). The position automaton APOS(r) has |r|Σ+1 states
and the number of transitions is Θ(‖r‖2). It can be constructed in O(‖r‖2) time
and use just O(‖r‖) space.

26 N. Moreira and R. Reis

The star normal form of a regular expression r, introduced by Bruggemann-
Klein [20], corresponds to ensure that in any subexpression s� one has that
ε(s) = ∅. The conversion of an expression to star normal form can be done in
linear time; the APOS of both expressions coincide; and for star normal forms its
construction runs in quadratic time. Gruber and Gulan [38] extended this form
to strong star normal form (ssnf) that is the one we will consider here.

Nicaud [63] studied the average size of APOS for the uniform distribution.
Broda et al. [13], using a variant of the computation of the ssnf(r), improved the
result for the number of transitions.

Proposition 3 ([63]). Asymptotically, and as the alphabet size grows, the aver-
age number of states in APOS is ‖r‖

2 .

Proposition 4 ([13,63]). Asymptotically, and as the alphabet size grows, the
average number of transitions in APOS is ‖r‖.

Now, we turn to the complexity of partial derivatives and APD. The next
two propositions follow directly from Eq. (6).

Proposition 5 ([4,57] Th. 3.4). For any regular expression r ∈ Rk, the fol-
lowing inequality holds |∂+(r)| ≤ |r|Σ.

Proposition 6 ([4], Th. 3.8). Given r ∈ Rk, a partial derivative of r is either
ε or a concatenation r1r2 · · · rn such that each ri is a subexpression of r and n−1
is no greater than the number of occurrences of concatenations and stars in r.

Corollary 1. For r1 ∈ ∂+(r), the size ‖r1‖ is O(‖r‖2).
In general, the same bounds apply for partial derivatives by an alphabetic sym-
bol. To improve the computation of ∂σ(r), Antimirov defined the linear form ϕ
of a regular expression r that allows the computation of the partial derivatives
by all alphabetic symbols in a unique transversal of the expression:

ϕ(r) = { (σ, r′) | r′ ∈ ∂σ(r) }. (9)

Proposition 7 ([4,57]). For r ∈ Rk, we have |ϕ(r)| ≤ |r|Σ and for (σ, r′) ∈ ϕ(r),
the size ‖r′‖ is O(‖r‖2). If r contains no subexpression of the form r�1, then the
size ‖r′‖ is O(‖r‖).

From the above we have

Corollary 2. For r ∈ Rk, |δPD(r)| is O(|r|2Σ).

The following examples show that the above upper bounds are attained.

Example 1. Let rn = a�
1a

�
2 · · · a�

n, with |r|Σ = n, n ≥ 1. Then ∂+(rn) =
{ a�

i · · · a�
n | 2 ≤ i ≤ n }, and |ϕ(rn)| = |rn|Σ = n. The largest partial derivative

has size 3n − 1, and |δPD(rn)| =
∑n−1

i=1 i = n(n+1)
2 .

Manipulation of Regular Expressions Using Derivatives: An Overview 27

Example 2. Consider r0 = a and rn = (r�
n−1a), for n ≥ 1 over the unary alphabet

{a}. The size of rn is 3n + 1, for n ≥ 0. For n ≥ 1, the largest partial derivative
of ∂a(rn) = { ri · · · rn | 1 ≤ i ≤ n } ∪ {ε} is r1r2 · · · rn whose size is

n − 1 +
n∑

i=1

(3i + 1) =
3n2 + 7n − 2

2
= Θ(n2).

Although APD is no larger than APOS, the quadratic size of the partial deriva-
tives can burden the computation of APD. Before considering the complexity of
the construction algorithms, we recall some average-case estimates.

Proposition 8 ([12,13]). Asymptotically in the size of the expression r ∈ Rk,
and as the alphabet size grows, the average of upper bounds of: the size of ϕ(r)
is the constant 6; the size of ∂+(r) is ‖r‖

4 ; the size of δPD(r) is ‖r‖
2 .

In particular, we can conclude that, asymptotically, on average the size of APD

is half the size of APOS. The estimation of the average size of partial derivatives
is also important and was studied by Konstantinidis et al. [46]. Moreover, if the
regular expression is in ssnf, the size of partial derivatives are on average linear
in the size of the expression. Let Sk be the set of regular expressions in ssnf,
then, we have the following.

Proposition 9 ([46] Th.3 and Th.4). Asymptotically and as the alphabet size
grows, the average of an upper bound of the maximum size of partial derivatives
of r ∈ Rk is

√
π
4 (‖r‖)

3
2 . For s ∈ Sk, that value is ‖s‖

2 .

Proposition 6 shows that a partial derivative is a concatenation of subexpres-
sions of the original expression. Thus, one can estimate the average number of
new concatenations when computing ∂σ(r) and ∂+(r).

Proposition 10 ([45,46]). Asymptotically and as the alphabet size grows: the
average of an upper bound of the number of new concatenations in a partial
derivative by an alphabetic symbol of a regular expression s ∈ Sk is 14; the aver-
age of an upper bound of the number new concatenations in all partial derivatives
of a regular expression s ∈ Sk is 1

8

√
π
2 ‖s‖ 3

2 .

4.1 Complexity of Building APD

Antimirov [4] presented a construction of the APD with worst-case time com-
plexity O(|r|3Σ‖r‖2) and worst-case space complexity O(|r|Σ‖r‖2). Mirkin’s con-
struction of APD has a worst-case time complexity O(‖r‖3). Champarnaud and
Ziadi [31] presented a quadratic algorithm to construct APD that first builds
APOS and then, using Proposition 1, computes the equivalence relation ≡c

on the set of states of APOS. The set of c-continuations can be computed in
O(‖r‖2|r|Σ). To compute the relation ≡c one can lexicographically sort the set
of c-continuations using Paige and Tarjan linear algorithm [66] and then com-
pare consecutive identical expressions. Thus, the set ∂+(r) can be computed in

28 N. Moreira and R. Reis

O(‖r‖2|r|Σ) time and space. But several improvements can be done and Cham-
parnaud and Ziadi showed that APD(r) can be computed in time and space
O(‖r‖2).

An improved method was proposed by Khorsi and Ziadi [43], which has
worst-case time and space complexity O(‖r‖|r|Σ). The main difference is the
substitution of the lexicographic sorting of the c-continuations by the minimi-
sation of an acyclic DFA and which can be performed in time O(‖r‖) [68]. More
recently Ouardi et al. [65] presented a similar algorithm using the Thompson
automaton, Aε−T, instead of APOS.

For practical applications, the drawbacks of these methods rely on the need
to build a larger automaton and the computation of equivalence relations. Thus,
it is interesting to construct the APD in quadratic time and linear space avoiding
the computation of larger automata. Using the average estimates given above,
Konstantinis et al. [45] presented an algorithm for computing APD which for
ssnf expressions of size n uses, on average, time O

(
n3/2 4

√
log(n)

)
and space

O
(
n3/2/(log n)3/4

)
. The regular expression and the set of its partial derivatives

are represented by a directed acyclic graph (DAG) with shared common subex-
pressions. Flajolet et al. [35] showed that a tree of size n has, in this compact
form, an expected size of O

(
n /

√
log n

)
. The algorithm computes APD(r) by

constructing a DAG for r, and simultaneously builds the set of all partial deriva-
tives by adding new concatenation nodes to the DAG. Empirical tests suggest
that this algorithm can outperform Khorsi and Ziadi’s algorithm.

A possible advantage of a direct method is its easy adaptation to other regular
operations, such as intersection and shuffle [7,16,75], and its efficient extension to
decision problems such as membership and equivalence. Partial derivatives have
already been considered for solving these problems, but a fine-grain complexity
analysis is needed [3,26,59,64,74].

5 Beyond Regular Languages

The notions of derivative and partial derivative are easily extended to other
regularity preserving operations. We note that even for intersection and shuffle
extending the position automaton is more challenging [15,18]. However, in some
cases, e.g. intersection, the Mirkin’s construction may lead to automata that are
not initially connected [8].

As left-quotients are defined for any formal language, derivatives have
been defined for context-free languages both considering grammars and μ-
expressions [1,76]. Interestingly, parsing context-free grammars with deriva-
tives can be achieved in cubic time. Parsing expression grammars (PEG) are
a recognition-based formalism for which parsing can be achieved in linear time.
Deterministic context-free languages are recognisable by PEGs but it is not
known if all context-free grammars are recognisable, although some non-context-
free languages are. Derivatives for PEGs were proposed in [60].

Derivatives of weighted rational expressions, that represent formal power
series with coefficients in a semiring, have also been extensively studied

Manipulation of Regular Expressions Using Derivatives: An Overview 29

[29,50,70,71]. In this case, derivatives are also connected with the notion of
quotient of a series. In the same manner, if one consider trees instead of
words the above methods can be extended to tree regular expressions and tree
automata [54–56].

More recently, partial derivatives for regular expressions with labels over
finitely generated monoids (possible non-free) were studied by Konstantinidis
et al. [47] and also by Demaille [34]. In particular, those expressions allow to
represent (weighted) rational relations. In this case, using an appropriate version
of the linear form of an expression, the Eqs. (8) and (6) hold and a partial
derivative automaton can be defined. Lombardy and Sakarovitch [51] expanded
and generalised this approach, showing that the partial derivative automaton is
a quotient of position automaton, even considering weighted regular expressions
over non free monoids.

Finally we briefly point to the fast literature on category theory of automata
and algebraic and coalgeraic approaches to characterise general state-based sys-
tems where the notion of derivative plays also an important role [10,42,69,73].

References

1. Adams, M.D., Hollenbeck, C., Might, M.: On the complexity and performance of
parsing with derivatives. In: Krintz, C., Berger, E. (eds.) Proceedings 37th ACM
SIGPLAN PLDI, pp. 224–236. ACM (2016). https://doi.org/10.1145/2908080.
2908128

2. Almeida, M., Moreira, N., Reis, R.: Antimirov and Mosses’ rewrite system revis-
ited. Int. J. Found. Comput. Sci. 20(4), 669–684 (2009). https://doi.org/10.1142/
S0129054109006802

3. Almeida, M., Moreira, N., Reis, R.: Testing equivalence of regular languages. J.
Autom. Lang. Comb. 15(1/2), 7–25 (2010). https://doi.org/10.25596/jalc-2010-
007

4. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996). https://doi.org/10.
1016/0304-3975(95)00182-4

5. Antimirov, V.M., Mosses, P.: Rewriting extended regular expressions. In: Rozen-
berg, G., Salomaa, A. (eds.) Developments in Language Theory, pp. 195–209. World
Scientific (1994)

6. Asperti, A., Coen, C.S., Tassi, E.: Regular expressions, au point. CoRR
abs/1010.2604 (2010). http://arxiv.org/abs/1010.2604

7. Câmpeanu, C., Manea, F., Shallit, J. (eds.): DCFS 2016. LNCS, vol. 9777. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41114-9

8. Bastos, R., Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average com-
plexity of partial derivative automata for semi-extended expressions. J. Autom.
Lang. Comb. 22(1–3), 5–28 (2017). https://doi.org/10.25596/jalc-2017-005

9. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret.
Comput. Sci. 48, 117–126 (1986)

10. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to con-
gruence. In: Giacobazzi, R., Cousot, R. (eds.) Proceedings 40th POPL 2013, pp.
457–468. ACM (2013). https://doi.org/10.1145/2429069.2429124

https://doi.org/10.1145/2908080.2908128
https://doi.org/10.1145/2908080.2908128
https://doi.org/10.1142/S0129054109006802
https://doi.org/10.1142/S0129054109006802
https://doi.org/10.25596/jalc-2010-007
https://doi.org/10.25596/jalc-2010-007
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
http://arxiv.org/abs/1010.2604
https://doi.org/10.1007/978-3-319-41114-9
https://doi.org/10.25596/jalc-2017-005
https://doi.org/10.1145/2429069.2429124

30 N. Moreira and R. Reis

11. Broda, S., Holzer, M., Maia, E., Moreira, N., Reis, R.: A mesh of automata. Inf.
Comput. 265, 94–111 (2019). https://doi.org/10.1016/j.ic.2019.01.003

12. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity
of partial derivative automata: an analytic combinatorics approach. Int. J. Found.
Comput. Sci. 22(7), 1593–1606 (2011). https://doi.org/10.1142/S012905

13. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov
and partial derivative automata. Int. J. Found. Comput. Sci. 23(5), 969–984 (2012).
https://doi.org/10.1142/S0129054112400400

14. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Average size of automata con-
structions from regular expressions. Bull. Eur. Assoc. Theor. Comput. Sci. 116,
167–192 (2015). http://bulletin.eatcs.org/index.php/beatcs/article/view/352/334

15. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Position automaton construction
for regular expressions with intersection. In: Brlek, S., Reutenauer, C. (eds.) DLT
2016. LNCS, vol. 9840, pp. 51–63. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53132-7 5

16. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for regular expressions
with shuffle. Inf. Comput. 259(2), 162–173 (2018). https://doi.org/10.1016/j.ic.
2017.08.013

17. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Analytic combinatorics and
descriptional complexity of regular languages on average. ACM SIGACT News
51(1), 38–56 (2020)

18. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Location based automata for
expressions with shuffle. In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zandron,
C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 43–54. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-68195-1 4

19. Broda, S., Maia, E., Moreira, N., Reis, R.: The prefix automaton. J. Autom. Lang.
Comb. 26(1–2), 17–53 (2021). https://doi.org/10.25596/jalc-2021-017

20. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Com-
put. Sci. 48, 197–213 (1993)

21. Brzozowski, Jr. J.A., McCluskey, E.J.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. Electron. Comput. EC-12(2), 67–76 (1963)

22. Brzozowski, J.: Regular expression techniques for sequential circuits. Ph.D. thesis,
Department of Electrical Engineering, Princeton University (1962)

23. Brzozowski, J.A.: Quotient complexity of regular languages 15(1/2), 71–89 (2010).
https://doi.org/10.25596/jalc-2010-071

24. Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata,
and sequential networks. Theor. Comput. Sci. 10, 19–35 (1980). https://doi.org/
10.1016/0304-3975(80)90069-9

25. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964).
https://doi.org/10.1145/321239.321249

26. Cardoso, E.M., Amaro, M., da Silva Feitosa, S., dos Santos Reis, L.V., Bois, A.R.D.,
Ribeiro, R.G.: The design of a verified derivative-based parsing tool for regular
expressions. CLEI Electron. J. 24(3) (2021). https://doi.org/10.19153/cleiej.24.3.
2

27. Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial
derivatives. Fundam. Inform. 45(3), 195–205 (2001)

28. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoret. Comput. Sci. 289, 137–163 (2002). https://doi.
org/10.1016/S0304-3975(01)00267-5

https://doi.org/10.1016/j.ic.2019.01.003
https://doi.org/10.1142/S012905
https://doi.org/10.1142/S0129054112400400
http://bulletin.eatcs.org/index.php/beatcs/article/view/352/334
https://doi.org/10.1007/978-3-662-53132-7_5
https://doi.org/10.1007/978-3-662-53132-7_5
https://doi.org/10.1016/j.ic.2017.08.013
https://doi.org/10.1016/j.ic.2017.08.013
https://doi.org/10.1007/978-3-030-68195-1_4
https://doi.org/10.1007/978-3-030-68195-1_4
https://doi.org/10.25596/jalc-2021-017
https://doi.org/10.25596/jalc-2010-071
https://doi.org/10.1016/0304-3975(80)90069-9
https://doi.org/10.1016/0304-3975(80)90069-9
https://doi.org/10.1145/321239.321249
https://doi.org/10.19153/cleiej.24.3.2
https://doi.org/10.19153/cleiej.24.3.2
https://doi.org/10.1016/S0304-3975(01)00267-5
https://doi.org/10.1016/S0304-3975(01)00267-5

Manipulation of Regular Expressions Using Derivatives: An Overview 31

29. Champarnaud, J.-M., Ouardi, F., Ziadi, D.: An efficient computation of the equa-
tion K-automaton of a regular K-expression. In: Harju, T., Karhumäki, J., Lepistö,
A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 145–156. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73208-2 16

30. Champarnaud, J., Ponty, J., Ziadi, D.: From regular expressions to finite
automata. Int. J. Comput. Math. 72(4), 415–431 (1999). https://doi.org/10.1080/
00207169908804865

31. Champarnaud, J., Ziadi, D.: From C-continuations to new quadratic algorithms
for automaton synthesis. Int. J. Alg. Comput. 11(6), 707–736 (2001)

32. Chang, C., Paige, R.: From regular expressions to DFA’s using compressed
NFA’s. Theor. Comput. Sci. 178(1–2), 1–36 (1997). https://doi.org/10.1016/
S0304-3975(96)00140-5

33. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

34. Demaille, A.: Derived-term automata of multitape rational expressions. In: Han,
Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 51–63. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40946-7 5

35. Flajolet, P., Sipala, P., Steyaert, J.-M.: Analytic variations on the common subex-
pression problem. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 220–
234. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032034

36. Ginzburg, A.: A procedure for checking equality of regular expressions. J. ACM
14(2), 355–362 (1967). https://doi.org/10.1145/321386.321399

37. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53
(1961)

38. Gruber, H., Gulan, S.: Simplifying regular expressions. In: Dediu, A.-H., Fernau,
H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 285–296. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2 24

39. Gruber, H., Holzer, M.: From finite automata to regular expressions and back–a
summary on descriptional complexity. Int. J. Found. Comput. Sci. 26(8), 1009–
1040 (2015). https://doi.org/10.1142/S0129054115400110

40. Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. Int. J. Found.
Comput. Sci. 22(7), 1533–1548 (2011)

41. Hopcroft, J., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Technical report, TR 71–114, University of California, Berkeley, Cal-
ifornia (1971)

42. Kappé, T., Brunet, P., Luttik, B., Silva, A., Zanasi, F.: Brzozowski goes con-
current - a Kleene theorem for pomset languages. In: Meyer, R., Nestmann,
U. (eds.) Proceedings 28th CONCUR 2017. LIPIcs, vol. 85, pp. 25:1–25:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.
4230/LIPIcs.CONCUR.2017.25

43. Khorsi, A., Ouardi, F., Ziadi, D.: Fast equation automaton computation. J. Dis-
crete Algorithms 6(3), 433–448 (2008). https://doi.org/10.1016/j.jda.2007.10.003

44. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press, Princeton (1956)

45. Konstantinidis, S., Machiavelo, A., Moreira, N., Reis, R.: Partial derivative automa-
ton by compressing regular expressions. In: Yan, Y., Ko, S. (eds.) Proceedings 23rd
DCFS 2021. LNCS, vol. 13037, pp. 100–112. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-93489-7 9

https://doi.org/10.1007/978-3-540-73208-2_16
https://doi.org/10.1080/00207169908804865
https://doi.org/10.1080/00207169908804865
https://doi.org/10.1016/S0304-3975(96)00140-5
https://doi.org/10.1016/S0304-3975(96)00140-5
https://doi.org/10.1007/978-3-319-40946-7_5
https://doi.org/10.1007/BFb0032034
https://doi.org/10.1145/321386.321399
https://doi.org/10.1007/978-3-642-13089-2_24
https://doi.org/10.1142/S0129054115400110
https://doi.org/10.4230/LIPIcs.CONCUR.2017.25
https://doi.org/10.4230/LIPIcs.CONCUR.2017.25
https://doi.org/10.1016/j.jda.2007.10.003
https://doi.org/10.1007/978-3-030-93489-7_9
https://doi.org/10.1007/978-3-030-93489-7_9

32 N. Moreira and R. Reis

46. Konstantinidis, S., Machiavelo, A., Moreira, N., Reis, R.: On the size of partial
derivatives and the word membership problem. Acta Informatica 58(4), 357–375
(2021). https://doi.org/10.1007/s00236-021-00399-6

47. Konstantinidis, S., Moreira, N., Reis, R.: Partial derivatives of regular expressions
over alphabet-invariant and user-defined labels. Theor. Comput. Sci. 870, 103–120
(2021). https://doi.org/10.1016/j.tcs.2020.12.029

48. Krob, D.: Differentiation of K-rational expressions. Int. J. Algebra Comput. 2(1),
57–88 (1992). https://doi.org/10.1142/S0218196792000062

49. Leiss, E.L.: The complexity of restricted regular expressions and the synthesis
problem for finite automata. J. Comput. Syst. Sci. 23(3), 348–354 (1981). https://
doi.org/10.1016/0022-0000(81)90070-2

50. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
Theor. Comput. Sci. 332(1–3), 141–177 (2005). https://doi.org/10.1016/j.tcs.2004.
10.016

51. Lombardy, S., Sakarovitch, J.: Derived terms without derivation a shifted per-
spective on the derived-term automaton. J. Comput. Sci. Cybern. 37(3), 201–221
(2021). https://doi.org/10.15625/1813-9663/37/3/16263

52. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophisics 5, 115–133 (1943)

53. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IEEE Trans. Electron. Comput. 9, 39–47 (1960)

54. Mignot, L.: A unified implementation of automata and expression structures, and of
the associated algorithms using enriched categories. CoRR abs/2012.10641 (2020).
https://arxiv.org/abs/2012.10641

55. Mignot, L., Sebti, N.O., Ziadi, D.: Tree automata constructions from regular
expressions: a comparative study. Fundam. Informaticae 156(1), 69–94 (2017).
https://doi.org/10.3233/FI-2017-1598

56. Mignot, L., Sebti, N.O., Ziadi, D.: An efficient algorithm for the construction of
the equation tree automaton. Int. J. Found. Comput. Sci. 29(6), 951–978 (2018).
https://doi.org/10.1142/S0129054118500156

57. Mirkin, B.G.: An algorithm for constructing a base in a language of regular expres-
sions. Eng. Cybern. 5, 51–57 (1966)

58. Mizoguchi, Y., Ohtsuka, H., Kawahara, Y.: Symbolic calculus of regular expres-
sions. Bull. Inf. Cybern. 22(3–4), 165–170 (1987)

59. Moreira, N., Pereira, D., de Sousa, S.M.: Deciding Kleene algebra terms
(in)equivalence in Coq. J. Logical Algebraic Methods Program. 84(3), 377–401
(2015). https://doi.org/10.1016/j.jlamp.2014.12.004

60. Moss, A.: Simplified parsing expression derivatives. In: Leporati, A., Mart́ın-Vide,
C., Shapira, D., Zandron, C. (eds.) LATA 2020. LNCS, vol. 12038, pp. 425–436.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40608-0 30

61. Myhill, J.: Finite automata and representation of events. In: Fundamental Concepts
in the Theory of Systems, vol. 57. Wright Air Development Center (1957)

62. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9, 541–544
(1958)

63. Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 626–637. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00982-2 53

64. Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equiv-
alence. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 29

https://doi.org/10.1007/s00236-021-00399-6
https://doi.org/10.1016/j.tcs.2020.12.029
https://doi.org/10.1142/S0218196792000062
https://doi.org/10.1016/0022-0000(81)90070-2
https://doi.org/10.1016/0022-0000(81)90070-2
https://doi.org/10.1016/j.tcs.2004.10.016
https://doi.org/10.1016/j.tcs.2004.10.016
https://doi.org/10.15625/1813-9663/37/3/16263
https://arxiv.org/abs/2012.10641
https://doi.org/10.3233/FI-2017-1598
https://doi.org/10.1142/S0129054118500156
https://doi.org/10.1016/j.jlamp.2014.12.004
https://doi.org/10.1007/978-3-030-40608-0_30
https://doi.org/10.1007/978-3-642-00982-2_53
https://doi.org/10.1007/978-3-319-08970-6_29

Manipulation of Regular Expressions Using Derivatives: An Overview 33

65. Ouardi, F., Lotfi, Z., Elghadyry, B.: Efficient construction of the equation automa-
ton. Algorithms 14(8), 238 (2021). https://doi.org/10.3390/a14080238

66. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987). https://doi.org/10.1137/0216062

67. Ponty, J.-L., Ziadi, D., Champarnaud, J.-M.: A new quadratic algorithm to convert
a regular expression into an automaton. In: Raymond, D., Wood, D., Yu, S. (eds.)
WIA 1996. LNCS, vol. 1260, pp. 109–119. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63174-7 9

68. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theoret.
Comput. Sci. 92(1), 181–189 (1992)

69. Rutten, J.: Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theoret. Comput. Sci. 208(1–3), 1–53 (2003). https://
doi.org/10.1016/S0304-3975(02)00895-2

70. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009).
https://doi.org/10.1017/CBO9781139195218

71. Sakarovitch, J.: Automata and rational expressions. In: Pin, J. (ed.) Handbook of
Automata Theory, pp. 39–78. European Mathematical Society Publishing House,
Zürich (2021). https://doi.org/10.4171/Automata-1/2

72. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
Assoc. Comput. Mach. 13(1), 158–169 (1966)

73. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Quantitative Kleene
coalgebras. Inf. Comput. 209(5), 822–849 (2011). https://doi.org/10.1016/j.ic.
2010.09.007

74. Sulzmann, M., Lu, K.Z.M.: Regular expression sub-matching using partial deriva-
tives. In: Schreye, D.D., Janssens, G., King, A. (eds.) Proceedings PPDP 2012, pp.
79–90. ACM (2012). https://doi.org/10.1145/2370776.2370788

75. Sulzmann, M., Thiemann, P.: Derivatives and partial derivatives for regular shuffle
expressions. J. Comput. Syst. Sci. 104, 323–341 (2019). https://doi.org/10.1016/
j.jcss.2016.11.010

76. Thiemann, P.: Partial derivatives for context-free languages. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 248–264. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 15

77. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 410–
422 (1968)

78. Yamamoto, H.: A new finite automaton construction for regular expressions. In:
Bensch, S., Freund, R., Otto, F. (eds.) 6th NCMA. books@ocg.at, vol. 304, pp.
249–264. Österreichische Computer Gesellschaft (2014)

https://doi.org/10.3390/a14080238
https://doi.org/10.1137/0216062
https://doi.org/10.1007/3-540-63174-7_9
https://doi.org/10.1007/3-540-63174-7_9
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1017/CBO9781139195218
https://doi.org/10.4171/Automata-1/2
https://doi.org/10.1016/j.ic.2010.09.007
https://doi.org/10.1016/j.ic.2010.09.007
https://doi.org/10.1145/2370776.2370788
https://doi.org/10.1016/j.jcss.2016.11.010
https://doi.org/10.1016/j.jcss.2016.11.010
https://doi.org/10.1007/978-3-662-54458-7_15

How to Settle the ReDoS Problem: Back
to the Classical Automata Theory

Sicheol Sung, Hyunjoon Cheon, and Yo-Sub Han(B)

Yonsei University, Seoul, Republic of Korea
{sicheol.sung,hyunjooncheon,emmous}@yonsei.ac.kr

Abstract. Most regular-expression matching engines in practice are
based on the Thompson construction and the Spencer matching algo-
rithm. While these engines work fast and efficiently, a serious prob-
lem, the regular expression denial-of-service (ReDoS), has been reported
recently. ReDoS is an algorithm complexity attack, which exploits the
backtracking feature of the engine, and makes the service unrespon-
sive indefinitely. Researchers suggested a few remedies to cope with
the ReDoS problem, yet they are often ad-hoc or undesirable in prac-
tice. We instead propose a hybrid matching scheme that selects between
the Thompson and the Spencer matching algorithms depending on the
needed features. We also suggest to use the position construction for
its intrinsic characteristics for fast matching. We evaluate the pro-
posed approach using a benchmark dataset collected from various open-
source projects, and compare the performance with the current app-
roach. The experimental results show that a hybrid matcher reduces the
ReDoS-vulnerability by 96% and 99.98% in full and partial matching,
respectively. Moreover, 55% of the most problematic regular expressions
become invulnerable to ReDoS by the position construction.

Keywords: Regular expressions · Denial of service · ReDoS · Position
automata

1 Introduction

Regular expressions (regexes in short) are widely used in many applications
such as software engineering, bioinformatics and natural language processing to
describe string patterns [7,9,20]. A regex matching engine takes two inputs—a
regex E and an input text T—and checks if the whole (= full matching) T or a
substring (= partial matching) of T is matched by E. A typical regex engine in
practice has two components: a compiler and a matcher. The compiler translates
E into an internal representation of the engine. Then the matcher simulates the
compiled E against T . Most regex engines rely on the Thompson construction
for compilers and the Spencer algorithm for matchers [10,14].

Regexes were developed as a theoretical model for simple computations [19],
and later became a popular tool for efficient pattern matching [28,29]. Then, peo-
ple started to introduce additional features to serve different domain needs such
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 34–49, 2022.
https://doi.org/10.1007/978-3-031-07469-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_3

How to Settle the ReDoS Problem 35

as backreferences or lookarounds. Thus, the gap between the original regexes and
the new regexes is very large; regexes with the extended features are not reg-
ular anymore [4,5]. All regex engines with these extended features worked well
until a serious problem—regular-expression denial-of-service (ReDoS) attacks—
happened [31]. The ReDoS attack is an algorithmic complexity attack that pro-
duces denial-of-service by providing an input in which a regex engine takes a
very long time to evaluate and becomes unresponsive.

One simple solution is to verify whether a regex is vulnerable to ReDoS prior
to matching, and ask users to revise the regex if it is vulnerable. Another reso-
lution is to design a ReDoS-resistant regex engine. Cox [10] proposed RE2 that
employs a Thompson matcher and eliminates ReDoS. Since the extended fea-
tures in practical regexes make matching NP-hard [2], Cox suggested removing
the extended features and preserving regularity. Another line of research is to
mitigate the ReDoS problem without giving up extended features. For example,
Davis et al. [13] proposed to memoize the matching attempts of the Spencer
matcher and reduce the computation steps, and Schmid [26] suggested several
properties of regexes that guarantee poly-time matching.

We propose a hybrid matching scheme that suits both the efficient match-
ing time and the desired features in practical regexes. For fast matching, we
suggest using the position construction that has several intrinsic properties [6].
We demonstrate that these properties indeed lead to better performance and
mitigate the ReDoS problem well. Our research questions are summarized as
follows:

RQ1 How much do the position construction and the hybrid matching scheme
improve the performance for ReDoS-vulnerable regexes?

RQ2 How much does the position construction improve the performance for
ReDoS-invulnerable (= linear-matching-time) regexes?

RQ3 How often are regexes deterministic and how much is the performance
improved by the position construction?

RQ4 How does the position construction affect memory usage during matching?

In Sect. 2, we give a brief background for practical regex engines and the
ReDoS problem. Then, in Sect. 3, we present a hybrid matching scheme of the
Thompson matcher and the Spencer matcher based on the position construc-
tion. We evaluate the proposed engine using a benchmark dataset and show the
performance improvement in Sect. 4. We conclude the paper with possible future
work in Sect. 5.

2 Background

2.1 Theoretical Foundations

An alphabet Σ is a set of symbols. A string w over Σ is a sequence of symbols
in Σ. The length |w| of w is the number of symbols of w. An empty string is
denoted by λ such that |λ| = 0. We say that E is a regular expression (regex)

36 S. Sung et al.

over Σ if E is the empty set symbol ∅, an empty string λ, a single symbol σ ∈ Σ,
the catenation (E1E2), the union (E1|E2) of two regular expressions E1 and E2,
Kleene star (E∗

1) or Kleene plus (E+
1) of a regular expression E1.

Given a regex E, we obtain a marked regex E over an marked alphabet Σ =
{σi | σ ∈ Σ, i ∈ N}, which distinguishes the occurrences of the same symbol in
different positions. Then, sym(E) ⊆ Σ denotes the finite set of marked symbols
that occur in E. Let first(E) and last(E) be the sets of marked symbols that
appear as the first and the last symbols of strings in L(E), respectively. Similarly,
let follow(E, σi) be the set of marked symbols following σi in L(E). A regex E is
deterministic (one-unambiguous in Brüggemann-Klein and Wood [3]) if, for all
marked symbols σi, τj and strings u, v, w over Σ, uσiv, uτjw ∈ L(E) and σi �= τj
imply that the unmarked symbols σ and τ are different.

Automata Constructions: One of the most famous finite automaton (FA)
constructions is the Thompson construction [29]. The construction guarantees
an FA of linear size with respect to the regex size since it has one start state and
one accepting state, and each state has at most two out-transitions [15]. Most
regex compilers use the Thompson construction due to its easy and intuitive
implementation.

Fig. 1. (a) A Thompson FA and (b) a position FA of a regex E = (a+)+b. Some
λ-transitions are omitted for simplicity.

The position construction [16,22] is another FA construction based on the
symbol positions of a regex. Given a regex E over Σ, the position FA of E is an
FA A = (sym(E)∪{q0}, Σ, δ, q0, F), where δ(q, σ) = {τi ∈ first(E) | τ = σ} if q =
q0 and {τi ∈ follow(E, q) | τ = σ} otherwise, and F is last(E) ∪ {q0} if λ ∈ L(E)
and last(E) otherwise. Position FAs have a few interesting properties [6]: (1) FA
has no λ-transitions, (2) all incoming transitions of a state have the same symbol
label and (3) the number of states is exactly |E|+1. Another important property
is that, if a regex is deterministic, then its position FA is always deterministic [3].

Matching Algorithms: Once we compile an FA M from a regex E, a matcher
then starts to process an input string T . It checks if M has a path from the
start state to an accepting state that spells out T . Thus, the matching pro-
cess is closely related to how the engine processes M . The Thompson matching
algorithm explores M in a breadth-first manner and determines if there is an

How to Settle the ReDoS Problem 37

accepting path for T [29]. The algorithm reads each symbol in T from left to
right, 1) stores every next state when it reads a symbol, and 2) never reads that
symbol again. Spencer [28] proposes a depth-first matching algorithm, now called
the Spencer matching algorithm. This algorithm 1′) chooses one next state at a
time among multiple target states. If there is no path to explore further, then
the algorithm 2′) comes back and chooses another state in a DFS manner. This
is called backtracking.

Fig. 2. An example of the Spencer matcher; the algorithm matches a regex E = (a+)+b
with an input string aaa using its Thompson FA in Fig. 1(a). Arrows in a blue box and
a red box denote cycles π1 = q3q2q3 and π2 = q3q4q1q2q3, respectively.

Figure 2 shows an exponential runtime growth when matching a regex (a+)+b
with a string aak by using the Thompson FA in Fig. 1(a). Note that there are two
cycles around q3 that read a’s. The exponential runtime occurs by backtracking
all possible paths for reading successive a’s since the number of such paths is
the number of permutations with k repetitions of those cycles involving q3.

2.2 ReDoS Problem: Regular Expression Denial-of-Service

Fig. 3. Figure describing ReDoS behavior. A service is vulnerable when it uses (1)
a ReDoS-vulnerable regex E′, (2) a regex engine with a Spencer matcher and (3)
the engine is exposed to a malicious input string T ′. In practice, E′ is from service
developers and T ′ is from users.

38 S. Sung et al.

A ReDoS attack is an algorithmic complexity attack that causes denial-of-service
from a service provider by using a malicious input string that requires a super-
linear time to evaluate [31]. The attack exploits the fact that most regex engines
use the Spencer algorithm [28]. Figure 3 illustrates a ReDoS attack.

On July 20, 2016, an unintentional ReDoS attack caused by a post stopped
Stack Overflow for 34 min.1 The service used a pattern ^\s+|\s+$2 to delete
heading and trailing whitespaces on the problematic post containing 20,000 suc-
cessive whitespaces. After the outage, Stack Overflow replaced the regex pro-
cedure with a simple substring function. On July 2, 2019, the domain name
service of Cloudflare stopped for 27 min, and users could not visit any Cloud-
flare domain.3 The service used a pattern Σ∗Σ∗=Σ∗ to detect cross-site scripting
attacks. If a given text T does not contain a symbol =, then its Spencer matcher
tries to split T into two substrings that match Σ∗ as prefix. Since the matcher
does not read = from T , eventually it processes in quadratic runtime without
success. Cloudflare solved the problem by replacing the Spencer matcher with a
Thompson matcher.

We say that a regex E has a degree of vulnerability f(n) in a regex engine, if
the regex engine takes asymptotically O(f(n)) time to match a string of length
n with E [11]. The degree of vulnerability of E is closely related to the imple-
mentation of a regex engine and the most super-linear vulnerabilities happen
due to the Spencer algorithm. Despite of the ReDoS-vulnerability, the Spencer
algorithm is widely used because it supports handy features such as capturing
groups, backreferences or lookaheads.

1. An engine not only finds the substring w ∈ L(E) occurrence in T but also
identifies which part of w matches which piece of E surrounded by parenthe-
ses. We call such regex pieces capturing groups and the matched substrings
of w captured groups.

2. A backreference \n matches the nth captured group. For example, a regex
E = <(head|body)></\1> matches <head></head> but does not match
<head></body>.

3. A lookahead assertion (?=E) matches an empty string if the following string
contains a prefix that matches to E. For example, apple (?=tea) matches
apple in apple tea, but it does not match any strings in apple pie.

2.3 Related Work

In a series of posts, Cox proposed RE2 [10], the state-of-the-art regex engine
using a Thompson matcher. RE2 supports capturing groups and the leftmost-
eager rule—among possible matching results, the engine chooses the result of
highest precedence. RE2 does not support backreference and lookahead to avoid
ReDoS.
1 https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016.
2 Simplified. ^ and $ match the start and the end of lines, respectively. \s matches

the whitespace characters such as a space or a tab.
3 https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/.

https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

How to Settle the ReDoS Problem 39

Davis et al. [11,12] collected real-world regexes from code repositories, and
warned that the threat of ReDoS is widespread. They proposed using a selec-
tive memoization technique to remove redundant backtrackings of the Spencer
matcher [13]. Van der Merwe et al. [23] showed that it is NP-hard to compute the
smallest set of states that guarantees a linear-time matching using memoization.

Kirrage et al. [18] studied the abstract syntax tree of regexes, and pro-
posed heuristics that identify regexes with an exponential degree of vulnera-
bility. Their heuristics find strings (prefix, pump, suffix) such that the attack
string prefix · pumpk · suffix invokes an exponential matching time. Rathnayake
and Thielecke [25] later improved the heuristics that always find true positive
attack strings by considering an implicit priority of matching results.

Berglund et al. [1] also investigated the priority of matching results. They
proposed prioritized-NFAs (pNFAs) that annotate priorities on FA transitions,
which explain Spencer matchers’ behaviors. They revealed a relation between a
regex’s degree of vulnerability and the corresponding pNFA’s ambiguity. In fol-
lowing study, Weideman et al. [30] developed an analyzer that identifies ReDoS-
vulnerable regexes and their degree of vulnerability. Since static analysis iden-
tifies ReDoS-vulnerability without running regex engines, it might miss details
and extended features that are dependent on executing the engines.

Dynamic analysis methods complement such limitations by finding reliable
attack strings with engine-dependent features. Shen et al. [27] used a genetic
algorithm that finds attack strings for vulnerable regexes. Their dynamic ana-
lyzer ReScue starts with strings occurring in the regex pattern, and gradually
modifies the strings to maximize running time in the Java regex engine. Wüstholz
et al.’s Rexploiter [32] and Lin et al.’s Revealer [21] use a combined app-
roach. The former uses dynamic analysis for verification of attack strings that
are statically generated, and the latter generates attack strings both statically
and dynamically.

3 Proposed Approach

Fig. 4. An overview of our approach. We (1) normalize a regex E by reducing the
number of capturing groups, (2) compile using the position construction (3) use a
Spencer matcher only if it is essential.

40 S. Sung et al.

Our first approach to mitigate ReDoS is choosing a matcher dynamically accord-
ing to the regex features. Our hybrid matching scheme checks if E contains
extended features and requires a Spencer matcher. If not, we use a Thompson
matcher. For instance, if E contains a backreference, our only choice is to use a
Spencer matcher. This selection comes with a simple normalization for groups; a
pair of parentheses in E indicates a precedence and a capturing group. Thus, we
support the capturing group feature if a matcher needs to handle partial match-
ing or backreference. Otherwise, we ignore the feature and use it for representing
precedence only.

Our second approach is to implement a compiler by the position construc-
tion. Because the position construction has no λ-transitions, the resulting FA
might mitigate ReDoS-vulnerabilities. For example, the regex in Fig. 1 becomes
invulnerable in the position construction; the states q1, q2, q3 and q4 in Fig. 1(a)
merge into a1 in Fig. 1(b), which has only one available path no matter how many
consecutive a’s that the input contains. This reduces the number of choices com-
pared to the matching with the Thompson FA. Moreover, if E is deterministic,
then the resulting position FA is always deterministic [3]. Being deterministic has
an advantage in the Spencer matcher since we can quickly determine a matching
failure without backtracking. Figure 4 depicts the overview of our approach.

4 Experimental Results and Analysis

We use the Thompson compiler and the Spencer matcher implemented by Davis
et al. [13] as a baseline engine. We turn off their memoization feature in the
Spencer matcher to compare the matcher performance without any optimiza-
tions.

4.1 Dataset

We use the benchmark dataset by Davis et al. [12] that consists of 537,806
regexes from 193,524 projects in 8 different programming languages [13]. From
the dataset, we remove 175,078 regexes that cannot be processed by our engine,
because either it takes more than one second to generate an accepting string, or
it has different semantics from our regex engine design.

Table 1. The dataset summary

ReDoS-vulnerable ReDoS-invulnerable Total

Original dataset [12] 51,244 486,562 537,806

Experiment dataset 48,757 313,971 362,728

Each vulnerable regex E in the dataset has prefix, pump and suffix strings
that are used to produce a malicious string causing ReDoS. Thus, by fixing the
number k of pumps, we produce a sufficiently long string T = prefix·pumpk ·suffix
for a ReDoS attack for E.

How to Settle the ReDoS Problem 41

4.2 Experiment Settings

For RQ1, we measure the performance of a regex on an input by both checking
the matching time and counting the number of matching steps. Since experiments
for RQ2 and RQ3 have relatively short matching time and the result largely
fluctuates depending on the environment such as OS scheduling, we instead use
the number of matching steps only.

For ReDoS-vulnerable regexes Evuln., we first match Tk = prefix·pumpk ·suffix
for 1 < k ≤ 11 with Evuln., and approximate the matching steps in the baseline
engine as a function f of the pumping number k. For each ReDoS-invulnerable
regex Einvuln., we generate at most 10 accepting strings using Xeger4 with a
1-second time limit. We vary the number of repetitions in Einvuln. to generate
strings with variable lengths. We then randomly generate another set of rejecting
strings that have the same lengths as the accepting strings.

In addition, we calculate the memory usage for answering RQ4. To explore
both general and extreme situations, we select regexes with the following 5 cri-
teria (given a regex E, let |ET | and |EP | be the memory size of its Thompson
and position FA representations).

1. 100 regexes E with the largest |ET |
2. 100 regexes E with the largest |EP |
3. 100 regexes E with the largest difference of |ET | − |EP |
4. 100 regexes E with the largest difference of |EP | − |ET |
5. 100 randomly selected regexes

We measure the memory usage of these 500 regexes by calculating the max-
imum amount of memory allocated for the matcher via Valgrind5.

4.3 Results and Analysis

RQ1. Vulnerable Regexes: We first study the performance improvement
of substituting compilers in practical ReDoS settings. We generate input strings
that are long enough to invoke 106 and 107 matching steps in the baseline engine,
and measure the matching time using these strings. Note that Liu et al. [21] and
Shen et al. [27] choose 105 and 108 (with fixed input length) as the threshold steps
for the occurrence of ReDoS, respectively. However, we exclude experiments for
108 steps since matching for these inputs often exceed our 5-second time limit.

Figure 5 shows the differences of matching time in the Thompson FA and
the position FA in ReDoS-attack scenarios. We observe that, with the same sets
of inputs, the FAs of the position compiler show faster matching than those
of the Thompson compiler on average. This result confirms that the position
construction generates better FAs than the Thompson construction in terms of
matching time.

4 https://pypi.org/project/xeger/.
5 https://valgrind.org/.

https://pypi.org/project/xeger/
https://valgrind.org/

42 S. Sung et al.

Fig. 5. Difference in matching time distribution for ReDoS attack scenarios in full
matching by the Spencer matcher. Orange bars indicate that position FAs require
more matching time, and the blue bars are for Thompson FAs. The blue and orange
dashed lines show the average matching time in μsec.

Table 2. The number of regexes by the degree of vulnerability in full matching.

Matching Matcher Compiler Degree of vulnerability

Ω(2n) Θ(n≥4) Θ(n3) Θ(n2) O(n)

Full Spencer Thompson 139 2 119 7,935 40,562

Position 63 2 113 7,934 40,645

Hybrid Thompson 2 0 0 8 48,747

Position 2 0 0 8 48,747

Partial Spencer Thompson 122 18 801 43,243 4,573

Position 97 16 778 43,263 4,603

Hybrid Thompson 2 0 0 9 48,746

Position 2 0 0 9 48,746

Table 2 gives the number of regexes by the degree of vulnerability in terms of
matching steps. Compared to the baseline engine using the Thompson compiler
and the Spencer matcher, the hybrid matcher removes almost every vulnerability.
This agrees with Cox’s discovery—the Thompson matching algorithm is indeed
effective for eliminating ReDoS-vulnerability. Another interesting result is that
the position compiler effectively resolves vulnerability of exponential degrees.
We observe that 73 regexes (out of 139 exponential-degree regexes) become to
run in linear time in the position FA case. This supports our claim that the
position construction is an effective ReDoS solution when the Spencer matching
is inevitable.

Interestingly, few cases show increased vulnerability when using the posi-
tion compiler. There are seven such cases in which the position compiler shows
quadratic degree whereas the Thompson shows linear. This is due to an internal
priority of the matcher for processing FAs. The following example illustrates FA
matching steps for each compiler for an example regex a+b∗Σ∗b∗. For an input

How to Settle the ReDoS Problem 43

string T = abka, the Spencer matcher matches T with the Thompson FA in the
following order:

(1) matches the first a with a+ of the pattern,
(2) matches successive b’s with the first b∗,
(3) matches the last a with Σ∗ and
(4) matches an empty string with the second b∗.

On the other hand, in the case of the position FA, the Spencer matcher

(1) matches the first a with a+ of the pattern,
(2′) matches bk with the Σ∗ (Note that the matcher skips b∗ because of a

predefined priority of the matcher),
(3′) fails to match the last a in T to the second b∗ of the pattern and
(4′) cancels the last matching of b and Σ∗, and instead matches the b to the

second b∗.

The Spencer matcher repeats step (4′) while reducing the length of string
matched to Σ∗, until it matches the empty string and bk to Σ∗ and the sec-
ond b∗, respectively, and fails to match the last symbol a. Then, the matching
succeeds when the last a and Σ∗ match. This process requires quadratic match-
ing steps in the size of T , and the regex’s degree of vulnerability becomes Θ(n2)
by the position compiler. This example shows that the precedence of matching
is an important factor that causes ReDoS.

RQ2. Invulnerable Regexes: While the position construction and the hybrid
matching scheme may mitigate the ReDoS vulnerability, Table 3 shows that
the Spencer matcher runs faster than the Thompson matcher when a string
is accepted. This is because the number of states to explore is smaller when an
input is accepted, since the Spencer matcher stops matching right after finding
one accepting path. However, if an input is rejected (failure matching), then the
Spencer matcher becomes much slower because it often needs to repeat the same
computation due to backtracking until no more states are left to explore. These
differences are more notable in partial matching.

Given a regex E and a string T for partial matching, a matcher internally
checks whether T ∈ L(Σ∗(E)Σ∗). Let us assume that an accepting string T
in partial matching consists of three strings x, y and z such that T = xyz and
y ∈ L(E). Since the Spencer matching algorithm chooses only one state at
a time, the Spencer matcher completes the processing of the first Σ∗ when it
starts to read y. On the other hand, when the hybrid matcher processes y with E,
the hybrid matcher—especially, the embedded Thompson matcher—also keeps
matching y with Σ∗ at the same time. In this process, the hybrid matcher visits
the states for Σ∗ at least |y| more times than the Spencer matcher, which results
in unnecessary trial and error, until the matcher finds a matching in E.

If T is rejected, then the Spencer matcher probes every possible path until it
finally tries to match T in the first Σ∗ and fails. Since the Spencer matcher has
no memoization mechanisms, it should compute the visited states after back-
tracking. The Thompson matcher, on the other hand, records its previous state

44 S. Sung et al.

Table 3. The average number of steps for ReDoS-invulnerable regexes.

Matching Matcher Compiler Matching steps

Accepting case Rejecting case

Full Spencer Thompson 27.97 10.27

Position 26.27 8.18

Hybrid Thompson 59.65 6.69

Position 57.25 6.44

Partial Spencer Thompson 45.34 100.24

Position 39.71 82.85

Hybrid Thompson 159.81 89.73

Position 146.14 79.00

and never has to check the consumed input repeatedly. Thus, while the two
matchers probe the same number of states, the Spencer matcher requires more
computation steps.

Note that the replacement of the Thompson compiler with the position com-
piler always decreases the average matching step. We think this is because of the
λ-transitions in a Thompson FA.

RQ3. Deterministic Regexes: We examine the practicality of deterministic
regexes whose position FAs are deterministic [3,6]. There are 11,311 ReDoS-
vulnerable and 256,213 ReDoS-invulnerable regexes that are deterministic in
the dataset.6 Table 4 is a comparison for different implementations when a regex
is deterministic.

Table 4. The average number of steps for deterministic regexes.

Matching Matcher Compiler Matching steps

ReDoS-
vulnerable

Accepting case Rejecting case

Full Spencer Thompson 3.42 × 105 22.24 2.97

Position 76.77 21.54 2.94

Hybrid Thompson 166.7 42.85 4.30

Position 127.4 40.96 4.26

Partial Spencer Thompson 1.13 × 107 35.23 61.98

Position 1.04 × 107 32.49 51.01

Hybrid Thompson 4.00 × 104 145.80 86.09

Position 3.64 × 104 132.65 75.17

6 We have removed 359 ReDoS-vulnerable regexes in Table 1 that do not cause ReDoS
behavior in both full and partial matching.

How to Settle the ReDoS Problem 45

When using the Spencer matcher for ReDoS-vulnerable regexes in full match-
ing, the position compiler reduces a large number of matching steps compared
to the Thompson compiler since the main cause of the vulnerability is captur-
ing groups that merely record a matched text. In partial matching, however,
there is little improvement since we cannot replace capturing groups with non-
capturing ones to preserve the regex semantics and the Spencer matcher imple-
ments capturing groups by tagged λ-transitions. This forces the compiler to add
λ-transitions to the corresponding FA and removes the advantage of the position
construction for deterministic regexes.

Table 5. The reduced amount of matching steps by the position compiler when an
input is accepted. Each cell shows 1 − P/T, where T and P denote the number of
matching steps in the Thompson and the position compilers, respectively.

Matching Matcher Reduced amount of steps (%)

ReDoS-invuln. Invuln. and det.

Full Spencer 6.1 3.1

Hybrid 4.0 4.4

Partial Spencer 12.4 7.8

Hybrid 8.6 9.0

Table 5 shows the performance improvement by replacing an FA compiler
from the Thompson compiler to the position compiler when an input is accepted.
(When an input is rejected, the performance improvement is negligible, and we
omit the results.) For the hybrid matcher, we observe a performance improve-
ment when the regex is deterministic. However, for the Spencer matcher, we
notice that the improvement is smaller for deterministic regexes. This is because
the Spencer matcher runs in a DFS manner and tends to visit a smaller num-
ber of states when an input is accepted. In other words, it stops as soon as the
Spencer matcher finds an accepting path. Thus, if no backtracking occurs, then
this makes the Spencer matcher run deterministically even for nondeterminis-
tic FAs. We also note that the Thompson compiler in the baseline engine by
Davis et al. [13] uses a variant of the Thompson construction that produces less
λ-transitions than the original Thompson construction. This implies that the
resulting FA is more succinct and reduces matching steps.

Table 6 shows the distribution of the number of operations in our benchmark
regexes. Note that deterministic regexes have the smallest number of expected
λ-transitions per operation in the corresponding Thompson FAs followed by
invulnerable and vulnerable regexes. The smaller number of λ-transitions speeds
up the matching time and, thus, reduces the advantage of the position compiler
in the deterministic case.

RQ4. Memory Usage: In low-resource systems such as IoT devices, memory
usage is an important factor. Since the matcher runs on a given input text

46 S. Sung et al.

Table 6. No. of operation distribution in regexes. The numbers in parentheses indicate
the number of λ-transitions produced by the baseline Thompson compiler [13] for each
operation. #(λ) denotes the expected number of λ-transitions per operation.

Catenation (0) Union (2)† Star (3) Plus (2) #(λ)

ReDoS-vulnerable 80.1 0.9 9.7 9.2 0.49

ReDoS-invulnerable 89.5 2.9 3.0 4.6 0.24

Deterministic 90.8 1.8 2.5 4.9 0.21

† n successive unions (R0|R1| · · · |Rn) produce 2n+1 λ-transitions.

Fig. 6. Difference of memory usage distribution of the two compilers in partial match-
ing with the Spencer matcher. Orange bars indicate that position FAs require more
memory, and the blue bars are for Thompson FAs.

while the compiler does not need to run every time, we measure the maximum
amount of memory during the matching procedure. Figure 6 shows the maximum
memory usage of the Spencer matcher on Thompson FAs and position FAs. The
position compiler shows less memory usage than the Thompson compiler on
average and only marginally better when the Thompson FAs are much smaller
than the position FAs.

Note that the position FA for a regex E has a quadratic size in the worst-
case [3] and a linear size in the average case [24]. In our experiments, most
position FAs have a linear size as well. This supports our claim that using the
position construction indeed saves memory in matching as well as in represent-
ing FAs.

How to Settle the ReDoS Problem 47

5 Conclusions

Recently, ReDoS has been a serious problem in various applications. The ReDoS
problem exploits the fact that most regex engines are implemented based on the
Spencer algorithm [28], which allows backtrackings. While the backtracking fea-
ture is handy for practical regexes, which are not regular anymore [4], sometimes
the matching takes super-linear time with respect to the input size. A possible
solution would be not to use the Spencer algorithm; for example, Go drops the
Spencer algorithm and uses the classical Thompson algorithm [17]. However, due
to its functionality, many people still want to use the current features of regexes,
which require the Spencer algorithm. Therefore, the ReDoS problem can hap-
pen anytime when there are no proper precautions. We have studied the ReDoS
vulnerable regexes and suggested a possible remedy founded from the classical
automata theory. We have proposed using the position construction instead of
the Thompson construction, and a hybrid matcher to mitigate ReDoS-vulnerable
regexes.

Our experiments have showed that the proposed approach reduces about
99.88% (8,185/8,195) and 99.98% (44,173/44,184) ReDoS-vulnerabilities in full
matching and partial matching, respectively. Moreover, for the baseline engine,
we have demonstrated that substituting the Thompson compiler with the posi-
tion compiler resolves 55% (76/139) of ReDoS-vulnerable regexes with an expo-
nential degree without undermining the power of the Spencer matcher. More-
over, we have observed that, for ReDoS-vulnerable regexes, the position compiler
always reduces the number of matching steps. It is worth noting that 74% of
practical regexes are deterministic. Our position compiler removes the ReDoS-
vulnerability in full matching for the deterministic case. This implies that using
a position compiler and a hybrid matcher may reduce the matching time for
most practical regexes since the FA representation is often deterministic.

Nevertheless, it still remains open to develop an efficient algorithm that pre-
dicts a potential ReDoS behavior or optimizes a regex. Cheon et al. [8] examined
the case when a ReDoS-vulnerable regex is disguised as an infix of an ordinary
regex and studied the decision problem for such cases. For the regex engines,
Davis et al. [13] showed that caching the intermediate results in a selected set
of states can boost the matching time. However, the hardness of determining
the smallest set of states that guarantees ReDoS-invulnerability of the Spencer
matcher in Thompson FAs is not known yet; only the problem on general NFAs
is only known as NP-hard [23]. There are a few known heuristics for detecting
ReDoS-vulnerabilities based on the syntactic properties called anti-patterns [11].
It would be an interesting problem to design efficient algorithms that detect such
regexes based on anti-patterns.

Acknowledgment. This research was supported by the NRF grant (NRF-
2020R1A4A3079947) funded by MIST.

48 S. Sung et al.

References

1. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtracking
behavior in practical regular expression matching. In: Proceedings of the 14th
International Conference on Automata and Formal Languages, pp. 109–123 (2014)

2. Berglund, M., van der Merwe, B.: Regular expressions with backreferences re-
examined. In: Proceedings of the Prague Stringology Conference 2017, pp. 30–41
(2017)

3. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Com-
put. 140(2), 229–253 (1998)

4. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
Int. J. Found. Comput. Sci. 14(6), 1007–1018 (2003)

5. Câmpeanu, C., Salomaa, K., Yu, S.: Regex and extended regex. In: Proceedings of
the 7th International Conference on Implementation and Application of Automata,
pp. 77–84 (2003)

6. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoret. Comput.
Sci. 233(1–2), 75–90 (2000)

7. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in
Python. In: Proceedings of the 25th International Symposium on Software Testing
and Analysis, pp. 282–293 (2016)

8. Cheon, H., Hahn, J., Han, Y.S.: On the decidability of infix inclusion problem. In:
Proceedings of the 26th International Conference on Developments in Language
Theory (2022, in publishing)

9. Cortes, C., Mohri, M.: Learning with weighted transducers. In: Proceedings of
the 7th International Workshop on Finite State Methods and Natural Language
Processing, pp. 14–22 (2008)

10. Cox, R.: Regular expression matching in the wild (2010). http://swtch.com/∼rsc/
regexp/regexp3.html. Accessed 7 Apr 2022

11. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression
denial of service (ReDoS) in practice: an empirical study at the ecosystem scale.
In: Proceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 246–
256 (2018)

12. Davis, J.C., Michael IV, L.G., Coghlan, C.A., Servant, F., Lee, D.: Why aren’t
regular expressions a lingua franca? An empirical study on the re-use and porta-
bility of regular expressions. In: Proceedings of the 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 443–454 (2019)

13. Davis, J.C., Servant, F., Lee, D.: Using selective memoization to defeat regular
expression denial of service (ReDoS). In: Proceedings of the 2021 IEEE Symposium
on Security and Privacy, pp. 1–17 (2021)

14. Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly Media Inc. (2006)
15. Giammarresi, D., Ponty, J., Wood, D., Ziadi, D.: A characterization of Thompson

digraphs. Discret. Appl. Math. 134(1–3), 317–337 (2004)
16. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16(5), 1–53

(1961)
17. Google: regexp (Go documentation). https://pkg.go.dev/regexp@go1.18. Accessed

7 Apr 2022
18. Kirrage, J., Rathnayake, A., Thielecke, H.: Static analysis for regular expression

denial-of-service attacks. In: Proceedings of the 7th International Conference on
Network and System Security, pp. 135–148 (2013)

http://swtch.com/~rsc/regexp/regexp3.html
http://swtch.com/~rsc/regexp/regexp3.html
https://pkg.go.dev/regexp@go1.18

How to Settle the ReDoS Problem 49

19. Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata
Stud. 34, 3–41 (1956)

20. Liu, T., Sun, Y., Liu, A.X., Guo, L., Fang, B.: A prefiltering approach to regular
expression matching for network security systems. In: Bao, F., Samarati, P., Zhou,
J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 363–380. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31284-7 22

21. Liu, Y., Zhang, M., Meng, W.: Revealer: detecting and exploiting regular expres-
sion denial-of-service vulnerabilities. In: Proceedings of the 2021 IEEE Symposium
on Security and Privacy, pp. 1468–1484 (2021)

22. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Trans. Electron. Comput. EC-9(1), 39–47 (1960)

23. van der Merwe, B., Mouton, J., van Litsenborgh, S., Berglund, M.: Memoized
regular expressions. In: Maneth, S. (ed.) CIAA 2021. LNCS, vol. 12803, pp. 39–52.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79121-6 4

24. Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 626–637. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00982-2 53

25. Rathnayake, A., Thielecke, H.: Static analysis for regular expression exponential
runtime via substructural logics. arXiv preprint CoRR 1405.7058 (2014)

26. Schmid, M.L.: Regular expressions with backreferences: polynomial-time matching
techniques. arXiv preprint CoRR 1903.05896 (2019)

27. Shen, Y., Jiang, Y., Xu, C., Yu, P., Ma, X., Lu, J.: ReScue: crafting regular expres-
sion DoS attacks. In: Proceedings of the 33rd IEEE/ACM International Conference
on Automated Software Engineering, pp. 225–235 (2018)

28. Spencer, H.: A regular-expression matcher. In: Software Solutions in C, pp. 35–71.
AP Professional (1994)

29. Thompson, K.: Programming techniques: regular expression search algorithm.
Commun. ACM 11(6), 419–422 (1968)

30. Weideman, N., van der Merwe, B., Berglund, M., Watson, B.: Analyzing matching
time behavior of backtracking regular expression matchers by using ambiguity of
NFA. In: Proceedings of the 21st International Conference on Implementation and
Application of Automata, pp. 322–334 (2016)

31. Weidman, A., other contributers: Regular expression denial of service -
ReDoS. https://owasp.org/www-community/attacks/Regular expression Denial
of Service - ReDoS. Accessed 7 Apr 2022

32. Wüstholz, V., Olivo, O., Heule, M.J.H., Dillig, I.: Static detection of DoS vulnera-
bilities in programs that use regular expressions. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 3–20. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 1

https://doi.org/10.1007/978-3-642-31284-7_22
https://doi.org/10.1007/978-3-030-79121-6_4
https://doi.org/10.1007/978-3-642-00982-2_53
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://doi.org/10.1007/978-3-662-54580-5_1
https://doi.org/10.1007/978-3-662-54580-5_1

Conference Papers

Ordered Context-Free Grammars

Brink van der Merwe1,2 and Martin Berglund3,4(B)

1 Department of Computer Science, Stellenbosch University,
Stellenbosch, South Africa

2 National Institute for Theoretical and Computational Sciences,
Stellenbosch, South Africa

3 Department of Information Science, Stellenbosch University,
Stellenbosch, South Africa

4 Department of Computing Science, Ume̊a University, Ume̊a, Sweden

mbe@cs.umu.se

Abstract. We propose a new unambiguous grammar formalism,
referred to as ordered context-free grammars, which is identical to
context-free grammars, apart from the property that it also places an
order on parse trees. Since only a minor modification to ordered context-
free grammars is required to obtain parsing expression grammars,
the relationship between context-free grammars and parsing expression
grammars becomes more evident. By preserving how ordered context-free
grammars support left-recursion, parsing expression grammars is mod-
ified to support left recursion in ways much more natural than current
approaches.

Keywords: Ordered context-free grammars ⋅ Parsing expression
grammars ⋅ unambiguous grammar formalisms

1 Introduction

Ordered context-free grammars (oCFGs), a novel grammar formalism proposed
in this paper, is not only a vehicle towards understanding parsing expression
grammars (PEGs) better and to propose alternative semantics for PEGs with left
recursion, but also have various other useful properties. The oCFG formalism is a
natural way to generalize Perl-compatible regular expression (PCRE) matching
(Perl semantics is common in practice, see [1] for illustration how real-world
regex matching semantics are deeply intertwined with a depth-first backtracking
parsing technique), to context-free parsing. It also provides a good alternative
to PEGs when an unambiguous (i.e. at most one parse tree for a given input
string) grammar formalism is required. Ordered context-free grammars become
unambiguous if we always select the least parse tree for a given input string (if
possible) based on the order induced on parse trees by the oCFG formalism.
Also, depending on the properties of the switching function of the oCFG, which
provides an additional switching criterion for switching from forward search to
backtracking during derivations, derivations will also produce the least parse
tree as first parse tree in a derivation of the string under consideration.
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 53–66, 2022.
https://doi.org/10.1007/978-3-031-07469-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_4

54 B. van der Merwe and M. Berglund

The oCFG formalism provides an unambiguous grammar formalism with
more intuitive semantics than PEGs, given that an oCFG matches exactly the
same string language as the corresponding context-free grammar (CFG), again if
the switching function satisfies appropriate criteria. The intuition behind PEGs
is that they are obtained from context-free grammars by dictating a depth-first
backtracking parsing approach, made efficient by a combination of memoization
and ignoring some backtracking options. Specifically, each time a nonterminal
succeeds in matching a substring it never attempts matching this substring with
a different rule choice when using the given nonterminal. For example, if the first
attempt to match a nonterminal A to abab has it match aba, no attempt will be
made to proceed by having A match ab or abab, even if such an attempt would
lead to overall matching/parsing success. This results in somewhat unintuitive
matching semantics, which is evident when considering the PEG S ← aSa /a,
and verifying that is does not match a5 (while matching both a3 and a7). A
PEG parser will regard S ← aSa as the locally correct rule choice for matching
the third a if the first two as are consumed by applying S ← aSa twice, since by
doing this, the third to the fifth a will be consumed without failure, and then the
PEG parser will regard S ← aSa as the incorrect choice for consuming the second
a, and thus switch to using S ← a for matching the second a. This can be verified
using either PEG matching semantics as given in [2], or interpreting the grammar
as the specification of a recursive descent parser. For the latter, the nonterminal
S is regarded as a function with two blocks of statements, with the first block
matching a (in the input), then calling S recursively, and finally, matching a
again, and the second block only matching a. The second block is called once it
is determined that the first block fails, where failure is defined to be the inability
to match a when required. The accepted strings and corresponding parse trees
are not changed (compared to when using the CFG grammar interpretation)
when considering the corresponding (unambiguous) CFG for this grammar, i.e.
the CFG with productions S → aSa ∣ a, and rather interpreting it as an oCFG
(with an appropriately defined switching function) instead of a PEG.

Although we provide our own more general definition of PEGs in Definition 9
(by making backtracking in oCFG parsing non-exhaustive), PEGs will be men-
tioned frequently before then. For space considerations, we can unfortunately
not reproduce the definition from [2] in the next section, and thus the reader
who did not find our informal introduction to PEGs sufficient should consult [2].

As pointed out in [3], the influence of PEGs can be illustrated by the fact that
despite having been introduced only fifteen years ago, the number of PEG-based
parser generators exceeds the number of parser generators based on any other
parsing method. Despite the enthusiasm for PEGs, there are some objections,
for example, proving that a given PEG matches an intended language is often
more difficult than one would like. These observations provide ample motivation
for proposing and studying oCFGs.

In [4] it is noted that the parser generator ANTLR uses the order of the
productions in the grammar to resolve ambiguities, with conflicts resolved in
favor of the rule with the lowest production number. This statement provides

Ordered Context-Free Grammars 55

additional motivation for our work, and we thus consider how this way of dis-
ambiguation can be added to CFGs in order to turn CFGs into an unambiguous
grammar formalism.

The outline of this paper is as follows. The next section provides definitions
and elementary results. Then oCFG derivations are considered, after which we
touch briefly upon various oCFG extensions. Finally, we provide our conclusions
and future work.

2 Definitions and Elementary Properties of oCFG

In this section we define oCFGs and other related required basic concepts. We
then consider a subclass of oCFGs which always have least parse trees for any
string of the language defined by the oCFG. For oCFGs we end up with a modi-
fication to CFG parsing semantics where the strings accepted and corresponding
parse trees are identical, but we obtain an order on the parse trees. From this,
the choice of name for our grammar formalism becomes evident.

In order to discuss parsing, we first define trees in a way suitable for our
purposes.

Definition 1. The set of ordered, rooted and ranked trees, over a finite ranked
alphabet Γ = ∪∞i=0Γi, denoted by TΓ , where Γi is the alphabet symbols of rank i,
is defined inductively as follows: (i) if a ∈Γ0, then a ∈TΓ ; (ii) if a ∈Γk and ti ∈TΓ

for 1 ≤ i ≤ k, then a[t1, . . . , tk] ∈ TΓ .

Next, we define special kinds of trees, referred to as contexts. In a context we
replace a leaf node in a tree, by another tree, when this leaf node is the left-most
leaf node labelled by the special symbol ◻.

Definition 2. Assume ◻ is a symbol not in the ranked alphabet Γ , and denote
by CΓ the set of trees over the ranked alphabet Γ ∪ {◻}, where ◻ is a symbol of
rank 0. The following restrictions are placed on the trees t ∈ CΓ : (i) t contains at
least one instance of ◻; (ii) no symbols from Γ0 in t appears to the right of any
instance of ◻ (i.e. all ◻-labeled nodes appear as a suffix when listing the node
labels in depth-first preorder). A tree in CΓ is referred to as a context.

For t ∈ CΓ and t′ ∈ TΓ ∪ CΓ , we denote by t�t′� the tree obtained by replacing
the left-most instance of ◻ in t, by t′.

Next we define ordered context-free grammars. The distinction between
CFGs and oCFGs will become clear once we start discussing parse trees and
how to order these.

Definition 3. An ordered context-free grammar G is a tuple (N,Σ, P, S),
where: (i) N is a finite set of nonterminals; (ii) Σ the input alphabet; (iii) P
is the production function and for A ∈ N , we have P (A) = (rA

1 , . . . , rA
nA
), with

rA
i ∈ (N ∪Σ)∗; and (iv) S ∈N is the start nonterminal.

56 B. van der Merwe and M. Berglund

In the definition above when P (A)=(rA
1 , . . . , rA

nA
), we also write A → rA

1 ∣ ⋯ ∣

rA
nA

. We associate a ranked alphabet ΓG with an ordered context-free grammar
G (which we will use in parse trees) as follows. Denote by ∣v∣ the length of a
string v, with the length of the empty string ε taken to be 0. We let Σ ∪ {ε} be
the elements of rank 0 in ΓG, and if P (A)= (rA

1 , . . . , rA
nA
), then Ai, for 1≤ i≤nA,

is a symbol of rank max{1, ∣rA
i ∣} in ΓG. We use Ai in parse trees to encode the

production choice A → rA
i .

For a tree t, denote by y(t) the yield of t, i.e. the string obtained by reading
the non-ε leaf symbols in t left to right. Thus, y(t) is obtained by deleting ε and
all symbols of rank greater than zero in the string representation of t. If all leaf
symbols are equal to ε, then y(t) is defined to be equal to ε as well.

Definition 4. For an oCFG G and string w ∈ Σ∗, we define the set of parse
trees of w, denoted by PG(w), as all trees over the ranked alphabet ΓG, satisfying
the following criteria: (i) The root is labelled by some Si, 1 ≤ i ≤ nS, where S is
the start nonterminal of G; (ii) y(t) =w; (iii) the children of a node labelled by
Ai, ignoring subscripts of non-terminals, are labelled, in order, by the symbols
in rA

i . As a special case, when ∣rA
i ∣ = 0 a node labelled by Ai will have a single

child leaf labeled by ε. The string language defined by G, denoted by L(G), is
the set of strings w for which PG(w) ≠ ∅.

Note that we modified the usual definition of parse trees to make it possible
to directly read off the productions used to obtain a tree, from the nonterminal
labels used in the tree. More precisely, when doing a preorder traversal of the
non-leaf nodes of a parse tree, the nonterminals in combination with their integer
subscripts, describe uniquely (with the subscript of a nonterminal indicating
which production choice was made for a given nonterminal) the productions
used in a left-most derivation to produce the respective parse tree. In particular,
all leaf labels are uniquely determined by the label of their parent.

Remark 1. From an oCFG G we construct a context-free grammar G′, with
parse trees (as a CFG) almost identical to those of G. The grammar G′ has
nonterminals S′, and Ai, with 1≤ i≤nA, for each nonterminal A in G. In G′, we
have the productions S′ → S1 ∣ . . . ∣ SnS

, and Ai → rA
i,1 ∣ . . . ∣ r

A
i,j ∣ . . . (with finitely

many rA
i,j), where the rA

i,j is obtained by replacing in rA
i , each nonterminal B

by Bl, with 1 ≤ l ≤ nB . The parse trees for G are obtained from those for G′ by
leaving out the root node labelled by S′.

We denote the set of parse trees of G by L
T
(G) and refer to this set of trees

as the tree language of G. Formally, L
T
(G) = ∪w∈Σ∗PG(w).

For t ∈ L
T
(G), let n(t) denote the sequence of integers obtained by replac-

ing all symbols Ai in the string representation of t (as used in Definition 1 to
represent trees), by i, and deleting all other symbols (i.e. ‘[’, ‘]’, ‘,’ and terminal
leafs) in the string representation of t.

Definition 5. A total order ≺G is defined on L
T
(G) as follows. We let t1 ≺G t2

when n(t1) is smaller than n(t2) lexicographically.

Ordered Context-Free Grammars 57

The definitions so far do not guarantee that an oCFG has a well-ordered set
of parse trees for each given string, and as this is often important, we consider
the following restricted cases:

Definition 6. Let G be any oCFG. Then if for all strings w we have: (i) PG(w)
is either empty or has a least parse tree, we refer to G as having least parse trees,
or simply least trees, whereas (ii) if PG(w) is well-ordered (i.e. every subset of
PG(w) has a least parse tree) we say that G is well-ordered.

Note that G being well-ordered does not mean that all of L
T
(G) is well-ordered.

An oCFG having least trees is however sufficient to turn oCFGs into an unam-
biguous grammar formalism by for each w selecting the least tree in PG(w) as
the canonical parse tree. The well-ordered property is strictly stronger, but turns
out to be important as it is sufficient to guarantee least trees and is decidable.

Example 1. Next we provide an example of a grammar G not having least parse
trees. Consider the grammar G with production S → S ∣ a. Then L(G)={a}. We
show that for any t ∈ PG(a), we can construct a tree t′ ∈ PG(w) with t′ ≺G t. We
obtain t′ from t by replacing the subtree S2[a] in t, by the subtree S1[S2[a]]. In
G, the parse trees for the string a form an infinite sequence of decreasing parse
trees, namely:
S2[a]≻G S1[S2[a]]≻G S1[S1[S2[a]]]≻G⋯. Note that if we change the production
to S → a ∣ S, we obtain the infinitely increasing sequence of parse trees:
S1[a] ≺G S2[S1[a]] ≺G S2[S2[S1[a]]] ≺G ⋯.

Example 2. Consider G with production S → SS ∣ ε ∣a, for which L(G) =
{an
∣n ≥ 0}. This grammar does not have least parse trees, since

any t ∈ PG(a) (and similarly for t ∈ PG(a
n
) in general) will have

S1[S1[⋯S1[S1[S2[ε], S2[ε]], S2[ε]],⋯], S3[a]] ≺G t for sufficiently many nested
instances of S1.

Example 3. A grammar G′ with least trees which is nonetheless not well-ordered
can be obtained from either of the grammars from Example 1 or 2 by adding a
new start nonterminal S′ with the production S′ → a ∣ S′ ∣ S for Example 1 and
S′ → a ∣ ε ∣ S′S′ ∣ S for Example 2. Then PG(w) has a least tree for w = a or
in general, w ∈ L(G), never using the nonterminal S, but the subset of PG(w)
where the root is labeled S′3 in Example 1 and S′4 in Example 2 (i.e. the parse
trees that is obtained from the derivation step S′ → S) has no least tree, and G′

is therefore not well-ordered.

It turns out that Examples 1 and 2 exhibit the only ways a grammar might
not be well-ordered, that is, by ε-productions (where parse trees contain an
unbounded number of leaf nodes labelled by ε), or by cycles of unit productions
(where parse trees may contain monadic branches repeating nonterminals, e.g.
A[B[C[A[⋯]]]]). This is easy to demonstrate, since if we can bound the size of
parse trees (i.e. the number of nodes) for a string w in the length of w, the string
w can have only finitely many parse trees, and G must then be well-ordered.

58 B. van der Merwe and M. Berglund

Lemma 1. If a grammar G does not have any ε-productions or cycles of unit
productions, then G is well-ordered.

Proof. Observe that the only way a string of length ∣w∣ can have a parse tree of
unbounded size (and thus infinitely many parse trees for a given input string) is
if it either has parse trees with a number of leaves not bounded in ∣w∣ (some of
which must then be ε), or it is of height not bounded in ∣w∣ (thus it must contain
a monadic subtree with a repeating nonterminal). ∎

The condition in the previous lemma is however not necessary, for example
S → ε ∣ a ∣ S is well-ordered (and thus also has least trees). Note that the previous
lemma also implies that an oCFG in Chomsky normal form is well-ordered. Thus,
we conclude that the class of string languages recognized by well-ordered oCFGs,
or oCFGs with least parse trees, is precisely the context-free languages.

Example 4. In this example we give a well-ordered oCFG for arithmetic expres-
sions (without parenthesis) over subtraction (−), multiplication (∗) and expo-
nentiation (̂), taking precedence and associativity of these three operators in the
parse trees into account. Left associativity (for − and ∗) is encoded as S→S−S ∣ x
and S → S ∗ S ∣ x, and right associativity (for)̂ as S → x ∣ S Ŝ. To take prece-
dence into account, operators with lower precedence are specified first. Putting
these observations together, we obtain S → S − S ∣ S ∗ S ∣ x ∣ S Ŝ as oCFG.

Next we show the undecidability of determining whether a grammar has least
parse trees.

Theorem 1. It is undecidable whether an oCFG G has least parse trees.

Proof. As is well-known, it is undecidable whether a CFG G = (N,{a, b}, P, SG)

is universal, i.e. whether L(G) = {a, b}∗ (where {a, b}∗ denotes all strings over
{a, b}). Without loss of generality assume that G is in Chomsky normal form,
ensuring G itself has least parse trees. We construct G′ from G by adding a
new start nonterminal S and a new production S → SG ∣ SS ∣ ε ∣ a ∣ b. Then
G is universal if and only if G′ has least parse trees. To see this, first assume
G is universal. This implies that for all strings w, a parse tree can be derived
using S → SG and avoiding S → SS, S → ε, S → a or S → b. These parse trees,
making use of S → SG, are smaller that any parse tree making use of S → SS,
S → ε, S → a or S → b. Thus, G having least parse trees also implies G′ has
least parse trees. Conversely, assume G is not universal and let w ∉ L(G). Then
any parse tree t for w, will use S → SS ∣ ε ∣ a ∣ b and not S → SG, and as
shown in Example 2, a smaller parse tree (than t) can be derived making use of
S → SS ∣ ε ∣ a ∣ b (and not S → SG), but with the same yield as t. Thus, PG′(w)
will not contain a least parse tree. ∎

It is however decidable whether a oCFG is well-ordered, which implies that
it has least parse trees, but is again not necessary.

Theorem 2. It is decidable whether an oCFG G = (N,Σ, P, S) is well-ordered.

Ordered Context-Free Grammars 59

Proof (sketch). In this proof let a free context be a context, as in Definition 2,
except we permit symbols from Γ0 to occur to the right of any ◻, and with a free
context containing precisely one leaf node labelled by ◻ (e.g. (a[◻, b])�c[d]� =
a[c[d], b]).

By definition, G is not well-ordered if and only if there exists some string
w where PG(w) has an infinite subset {t1, t2, t3, . . .} ⊆PG(w) having ⋯≺G t3 ≺G

t2 ≺G t1. We next argue that such a subset exists if and only if there exist two
trees u1, u2 ∈ PG(w) having u2 ≺G u1, where u1 = c�t� and u2 = c�c′�t�� for some
tree t, a free context c, and a non-empty (i.e. containing at least one non-◻ node)
free context c′ with y(c′) = ◻.

The if direction is trivial: if c�c′�t��≺G c�t� then we can choose u3=c�c
′�c′�t��,

u4 = c�c′�c′�t�� etc., these trees all have the yield w and have ⋯≺G u3 ≺G u2 ≺G u1

by construction.
The only if direction can be established by a pumping argument: the set of

all parse trees is described by a regular tree automaton (see [5] for the basics on
tree languages) with O(∣N ∣) states, and the infinite set {t1, t2, . . .} all having the
same yield means that infinitely many of the trees will contain subpaths which
repeat a state/nonterminal but contribute no symbols to the yield. Pick such a
tree u2 and construct u2=c�c

′�t�� by letting c′ be (one of) the non-empty contexts
resulting by extracting the shortest subpath repeating a state/nonterminal (i.e.
the ◻ must be replaced with a rule for the same nonterminal as the root of
c′ to be a valid parse tree). Then u1 = c�t� is also a parse tree. We are not
guaranteed that every such u1 and u2 has u2 ≺G u1, but we are guaranteed that
some pair with this property exists, or the set {t1, t2, . . .} would be finite, causing
a contradiction.

Finally, if such a pair u1 and u2 exist then there will (for some possibly
different string) exist such a pair with height bounded by O(∣N ∣). Simply pick
any candidate u2 = c�c′�t�� and observe that we can always “unpump” c and t
(i.e. remove any subpaths repeating nonterminals) resulting in heights bounded
by O(∣N ∣). This may change the yielded string (shortening it), but as the same
change happens in both the resulting trees u1 and u2 we retain their relationship.
We can similarly unpump c′ to a height bounded by O(∣N ∣), noting that at most
one nonterminal repetition may be needed to retain the first rule application
which causes the ordering u2 ≺G u1 to hold.

Putting these pieces together the resulting trees u2 = c�c′�t�� and u1 = c�t�
to have a height bounded by O(∣N ∣). The property is then decidable by simply
enumerating all possible pairs of parse trees (for any string) of height below this
bound, checking if any pair disproves well-orderedness. ∎

Corollary 1. If an oCFG G = (N,Σ, P, S) is well-ordered then for every string
w the kth smallest t ∈ PG(w) has a height bounded by O(k∣N ∣∣w∣).

Proof. This follows from the proof of Theorem 2. When G is well-ordered the
least tree for any string will contain no subpath which repeats a nonterminal
without deriving any terminal (otherwise that subpath would, in the terms of
the proof of Theorem 2, form a free context c′ which demonstrates G not well-
ordered). The second least will, worst case, add O(∣N ∣) to the height (repeating

60 B. van der Merwe and M. Berglund

c′ once). The third least adds at most another O(∣N ∣), and so on. Iterating this
demonstrates this bound. ∎

It is quite natural to consider grammars which do not have least trees (or even
those that are not well-ordered) to be malformed. However, since we consider
the structure of parse trees important there is no generally applicable way of
stating a procedure for eliminating ε- or unit productions, as this changes the
parse trees produced. The fairly efficient decidability of well-orderedness does
in practice mean that it is not very difficult to set out to design a well-ordered
grammar, and in a suitably guided way remove any undesirable behaviors.

3 oCFG Derivations

We define in this section oCFG derivations and also show the close relationship
between PEG and oCFG derivations. They are related as follows: when searching
for oCFG (or equivalently, CFG) parse trees in a depth-first search (DFS) way,
we obtain PEG parse trees by switching less often between backtracking and the
forward search, compared to when searching for oCFG parse trees. As a result
the PEG DFS is not exhaustive, not visiting all trees, where the oCFG search
is exhaustive if allowed by the switching function. We obtain oCFG derivations
by reformulating left-most CFG derivations to be deterministic by trying out
production choices, for a given nonterminal, in the order they are specified in the
oCFG. To use the next production choice, all previous production choices must
first be attempted (a property shared by oCFG and PEG derivations). In our
setting, derivations will be left-most, but more importantly also deterministic, in
contrast to how CFG derivations are typically defined. Our derivations will also
keep track of the status of the partially constructed parse tree as the derivation
proceeds.

Before defining oCFG derivations for strings w over an oCFG G, we first
introduce some required notation.

We let ε′ be a symbol that will be associated with ε, but which is not given
the empty string interpretation. Also, for A → rA

1 ∣ ⋯ ∣ r
A
nA

, denote by rA
i the

string that is equal to rA
i if rA

i ≠ ε, and equal to ε′ otherwise. Note that the rank
of Ai is equal to ∣rA

i ∣.
We denote by Γ ′G the set of symbols ΓG∪N ∪{ε′}, and by C′ΓG

the set of trees
CΓG
∪TΓG

. Instead of having derivation steps between strings in (N∪Σ)∗ derivable
from S, i.e. between sentential forms, we have derivation steps between elements
in C′ΓG

× (Γ ′G)
∗

×Σ∗. Derivations will be done in one of two modes: prefix mode,
where parsing a prefix of the input string successfully is regarded as a success,
and full mode, where the complete input string must be parsed (successfully) for
the parse to be regarded as successful. The situation is similar to typical PCRE-
style regular expression matchers, where the matcher can either be forced to
determine if a full match is possible, or be asked to return the first prefix match
possible, or all prefix matches in order.

A derivation starts with (◻, S,w), and produces along the way the parse trees
of prefixes v of w, as the first component t ∈TΓG

of triples (t, ε, v′), where w=vv′

Ordered Context-Free Grammars 61

and y(t) = v. In full mode, we only consider trees t with y(t) =w as parse trees,
and essentially simply ignore all parse trees t produced along the way having
y(t) as a proper prefix of w. If only the first (full) parse tree is of interest,
the derivation is terminated after producing the first (full) parse tree, or after
failing by producing (◻, SnS

,w) before any parse trees. If we are interested in
all parse trees, the derivation is only terminated after producing (◻, SnS

,w), at
which stage all parse trees t would have been produced as the first component of
triples of the form (t, ε, v′) (if the switching function allows it). It is important
to note that the number of parse trees and/or the derivation might not be finite.

There are three types of derivation steps, namely terminal or ε-shifting, rule
application, and backtracking, defined next.

Definition 7. Let t ∈ C′ΓG
, a ∈Σ, α ∈ (Γ ′G)

∗, v ∈Σ∗, and P (A) = (rA
1 , . . . , rA

nA
).

1. A terminal shifting step has the form (t, aα, av)⇒t (t�a�, α, v) and ε-shifting
the form (t, ε′α, v)⇒t (t�ε�, α, v);

2. A rule application step has one of the following forms:
(a) (t,Aα, v)⇒r (t�A1[◻, . . . ,◻]�, r

A
1 α, v); or

(b) (t,Aiα, v)⇒r (t�Ai+1[◻, . . . ,◻]�, r
A
i+1α, v) if i<nA, where in A1[◻, . . . ,◻]

and Ai+1[◻, . . . ,◻], the number of leaf nodes labelled by the symbol ◻ is
equal to the rank of A1 and Ai+1, respectively.

3. A backtracking step has one of the following forms:
(a) (t�a�, α, v)⇒b (t, aα, av), i.e. terminal backtracking; or
(b) (t�ε�, α, v)⇒b (t, ε

′α, v), i.e. ε-backtracking; or
(c) (t�Ai[◻, . . . ,◻]�, riα, v)⇒b (t,Aiα, v), i.e. rule backtracking.

A derivation starts with (◻, S,w) and alternates between a forward and back-
tracking phase, defined next, until a triple of the form (◻, SnS

,w) is obtained.
We generalize oCFGs to include an additional computable function S,

referred to as the switching function, mapping triples from C′ΓG
× (Γ ′G)

∗

× Σ∗

and the grammar G, to the boolean values {True,False}. The function S is
used, in combination with other criteria (given in the next definition), in deter-
mining when to switch from the forward to the backtracking phase. We regard
the switching function S with constant value False as the default switching func-
tion. We only consider the default switching function, and switching functions
comparing ∣y(t)∣ to ∣w∣, for triples (t, α, v) (note that ∣w∣ can be computed from
(t, α, v)), but we still define S in this more general way for future exploration,
and also state our results and definitions using this more general set-up. In fact,
when not using the default switching function, we use the switching function S
that returns True on (t, α, v) when ∣y(t)∣ > ∣w∣ and False otherwise.

Definition 8.

– In the forward phase, we apply terminal or ε-shifting, or rule application steps
until a triple of one of the forms (1)–(3) are obtained, or until S((t, α, v),G)=
True (where (t, α, v) is the current triple).
1. (t, aα, bv), with a, b ∈Σ and a ≠ b;

62 B. van der Merwe and M. Berglund

2. (t, aα, ε);
3. (t, ε, v) which implies y(t) ∈Σ∗, i.e. t is a parse tree of a prefix of w.

After the forward phase, we proceed to backtracking.
– In the backtracking phase, we apply terminal and rule backtracking, but switch

back to the forward phase in the following cases.
1. Rule backtracking produced (t,Aiα, v) with i < nA.
2. A triple (◻, Siα, v), with i < nS, was produced.

If i = nA, replace AnA
by A and proceed with backtracking. If (◻, SnS

,w) is
produced, the derivation terminates.

In a derivation, if rule backtracking produced (t,A1α, v), the triple (t,Aα, v)
should have appeared earlier in the derivation, and similarly, if rule backtracking
produced (t,Ai+1α, v), then (t,Aiα, v) should have appeared earlier. The back-
tracking phase undoes the steps from the most recent forward phase, up to the
point where an alternative production choice can be made in the forward phase.
In the case where during backtracking AnA

is replaced by A, backtracking will
undo steps from an earlier forward phase until an earlier alternative choice. Also
note that for (t, α, v) we have ∣α∣ equal to the number of instances of ◻ in t.

Grammars with left recursion might lead to infinite derivations, even with-
out producing a single parse tree. Consider for example the grammar with the
following left recursive production S → Sa ∣ a. With the default switching func-
tion, an infinite derivation will be obtained, similar to PEGs not supporting left
recursion, as defined in [2]. Various ways of extending parsing expression gram-
mars (PEGs) to support left-recursion has been proposed, for example in [6],
which is used in the Pegen implementation [7], but these approaches often leads
to unexpected parsing results in corner cases, as is pointed out in the section
on related work in [8]. When defining the switching function S to return True
on (t, α, v), when ∣y(t)∣ > ∣w∣ (and False otherwise), we avoid infinite derivations
and still obtain the unique parse tree of each input string of the form an in the
given example.

Theorem 3. Derivations produce parse trees (not necessarily all of them) in
the order determined by ≺G. If derivations are finite and the switching function
S only returns True in cases where no parse tree can be derived by continuing
the current forward phase, then all parse trees are produced for the given input
string.

Proof (sketch). Induction over the height of parse trees can be used to show
that all parse trees are produced for finite derivations when S has the stated
property. The definition of derivations can be used to show that if (t′, α′, v′) is
produced after (t, α, v) in a forward phase of a derivation, then t ≺G t′. ∎

Remark 2. When an oCFG G contains no ε-productions and has no cyclic (non-
terminal) unit productions, and the switching function S returns True on (t, α, v)
when ∣y(t)∣>∣w∣ (and False otherwise), derivations are finite and produce all parse
trees. It is left as future work to determine if it is possible to produce least parse
trees (first) in derivations, by appropriately defined switching functions, when
G is well-ordered.

Ordered Context-Free Grammars 63

PEGs are defined exactly as oCFGs, but production choices for a given
nonterminal are given different semantics. Thus, where in oCFGs we write
A → rA

1 ∣ ⋯ ∣ rA
nA

, for PEGs we write A → rA
1 /⋯/r

A
nA

. Note that we do not
follow the convention of writing PEG productions as A ← rA

1 /⋯/r
A
nA

, i.e. we use
the right arrow, instead of the left arrow.

In PEG derivations, the switching between backtracking and the forward
phase happens less often than in corresponding oCFG derivations. PEGs often
recognize a proper subset of the strings recognized by corresponding oCFGs,
since the depth-first search performed by PEGs is not exhaustive, as it is in the
case of oCFGs (if allowed by the switching function). For PEGs, the derivation
is terminated after obtaining the first parse tree, since if we do not, backtracking
(in a single phase), as defined for PEGs, will produce (◻, S,w) (again).

Definition 9. Backtracking for PEGs are obtained by modifying oCFG back-
tracking as follows. During each backtracking phase, when encountering rule
backtracking on Ai, we consider the tree rooted at this instance of Ai when we
started the current backtracking phase. If the subtree rooted at Ai was not a con-
text, i.e. it was in TΓG

, we replace Ai by A, just as we would do for AnA
, and

then continue with the backtracking phase.

Remark 3. Assume we use the default switching function S, then our PEG
semantics is identical to that defined by Ford in [2], at least in terms of strings
being accepted. This excludes various extensions to PEGs as defined by Ford
and considered in the next section. We will not prove this due to space consid-
erations, especially since it is tedious but straightforward. On a high level, it
follows from the observation that both our PEG semantics and the semantics
defined by Ford, is such that a production choice is made for a given nontermi-
nal completely based on if the choice is locally successful, but earlier production
choices for the given nonterminal is not. Also, a local production choice is not
changed in order to guarantee overall matching/parsing success.

Example 5. In this example we use the switching function S that returns True on
(t, α, v) when ∣y(t)∣>∣w∣, where w is the string being parsed, and False otherwise.
Recall from Remark 2 that this switching function ensures that oCFG and PEG
derivations always terminate, in contrast to PEGs as defined in [2], which beyond
accepting or rejecting input strings, may also loop.

Consider the PEG with production S → aSa/a, and thus no left recursion.
Then a5 is accepted, where it is not in Ford’s semantics. This is due to the fact
that the complete sentential form is used to determine if the current partial parse
tree could still lead to a parse tree for a prefix of the input string, whereas Ford
(and thus the default switching function) only makes use of terminals preceding
the first nonterminal in the sentential form to determine if it is still possible to
derive a parse tree.

Example 6. In this example we show the consequence of having a more eager
switching (from backtracking to the forward phase) for oCFG derivations com-
pared to PEG derivations. Let S → A ∣ aa; A → Ba; B → aa ∣ a and w = aa

64 B. van der Merwe and M. Berglund

(and ‘∣’ replaced by ‘/’ in the corresponding PEG grammar). Assume we use the
default switching function. We only consider derivations until they produce the
first parse tree. The oCFG derivation produces the parse tree S1[A1[B2[a], a]],
whereas the PEG parse tree is S2[a, a]. Recall that we encode production choices
as integer indices in nonterminal labels of parse trees.

Next, we show the oCFG derivation, terminated after obtaining the first
parse tree. We use ⇒r, ⇒s, ⇒b to indicate a rule application, terminal shifting,
and backtracking steps respectively.

(◻, S, aa)⇒r (S1[◻],A, aa)⇒r (S1[A1[◻,◻]],Ba, aa)
⇒r(S1[A1[B1[◻,◻],◻]], aaa, aa)⇒s ⋯⇒s (S1[A1[B1[a, a],◻]], a, ε)⇒b ⋯

⇒b(S1[A1[◻,◻]],B1a, aa)⇒r (S1[A1[B2[◻],◻]], aa, aa)⇒s ⋯

⇒s(S1[A1[B2[a], a]], ε, ε)

If we compare the oCFG derivation with the PEG derivation (i.e. we now
change instances of ‘∣’ to ‘/’ in the grammar), we have the following differ-
ence. The PEG derivation is identical up to the point where the oCFG deriva-
tion applies the step (S1[A1[◻,◻]],B1a, aa)⇒r (S1[A1[B2[◻],◻]], aa, aa), but
when we started the backtracking phase proceeding this derivation step in the
oCFG derivation, the subtree B1[a, a] in (S1[A1[B1[a, a],◻]], a, ε) was in TΓG

,
i.e. not a context. Thus, the backtracking phase in the PEG derivation is con-
tinued up to (◻, S1, aa). From here on, the PEG derivation proceeds as follows:
(◻, S1, aa)⇒r (S2[◻,◻], aa, aa)⇒s ⋅ ⋅ ⋅ ⇒s (S2[a, a], ε, ε).

4 oCFG Extensions

We sketch in this short section the relative ease with which various useful exten-
sions can be added to oCFGs, similar to the lookahead predicates in PEGs [2].
We leave a precise description and a formal study of the properties of these
extensions as future work.

First we add positive and negative lookahead predicates to oCFGs/PEGs. To
accommodate lookahead predicates, our grammar productions A → rA

1 ∣ . . . ∣ r
A
nA

or A → rA
1 / . . . /r

A
nA

are extended by allowing the rA
i to not only be a concate-

nation of terminal or nonterminals, but also to have subexpressions of the form
&B (a positive lookahead on the nonterminal B) and !B (a negative lookahead)
in the concatenation, for any nonterminal B. We let lookaheads modify deriva-
tions in the case of predicates being encountered, as follows. When encountering
(t,&Aα, v), it is determined if it is possible to parse a prefix of v with starting
nonterminal A and the same productions as the original oCFG, but interpreting
this grammar with starting nonterminal A as a CFG, and not a oCFG. If it is pos-
sible, we continue the original derivation with (t, α, v), otherwise we terminate
the derivation. When nested lookaheads are allowed, i.e. while determining if a
lookahead match, another lookahead is encountered, or when considering PEGs,
lookaheads should be considered as spawning a new oCFG derivation starting
with (◻,A, v), and once this newly spawned derivation succeeds at parsing a

Ordered Context-Free Grammars 65

prefix of v, we continue the original derivation with (t, α, v). For negative looka-
heads, when (t, !Aα, v) is encountered, we require that it is not possible to parse
a prefix of w, before continuing with (t, α, v). Note that oCFGs with lookaheads
are closely related to Boolean grammars [9].

Once we have negative lookaheads, it is no longer necessary to make the
distinction between prefix and full parsing, i.e. prefix parsing combined with a
negative lookahead is enough to force full parsing.

Next we generalize the right-hand sides of grammar productions to be
oCFG/PEG expressions. The expressions are one of two types. Type 1, is the
concatenation of expressions of type 2, and type 2 expressions is either expres-
sions of type 1 combined with the operator ‘∣’ for oCFG expressions, or combined
with the operator ‘/’ for PEG expressions. We start the inductive definition by
regarding terminals, nonterminal, positive lookahead nonterminals (i.e. &A for
example), and negative lookahead nonterminals (i.e. !A for example) as type 2
expressions, and then alternate between constructing type 1 and type 2 expres-
sions.

We provide semantics to oCFGs/PEGs with these more general type of gram-
mar productions (i.e. expressions are allowed in the right-hand sides of produc-
tions), by giving a nonterminal name to each type 2 expression e, say A, adding
a rule A → e, and then using A when building up type 1 expressions instead of
e. We then continue this process, by giving a name to each type 1 expression
when using these to build up type 2 expressions. Consider the grammar with the
production S → (A ∣ B)(CD ∣ EF). Then we replace this production with the
productions S → XY , X → (A ∣ B) and Y → (CD ∣ EF). The parse trees will
contain labels indicating production choices in terms of these new non-terminals,
and they indicate the subexpressions used of the original oCFG in parse trees.

For oCFG expressions, one can show that concatenation is left and right dis-
tributive over the operator ‘∣’, but for PEG expressions, concatenation is only left
distributive over the operator ‘/’, in terms of strings being accepted. Compar-
ing the PEG G1 with production S → (a/aa)b, with G2, having the production
S′ → ab/aab, shows that we do not have the right distributive law for PEGs,
since aab ∉ L(G1) but aab ∈ L(G2)

5 Conclusions and Future Work

We have shown that oCFGs, a novel unambiguous grammar formalism, provides
a good way to understand the relationship between PEGs and CFGs. Ordered
context-free grammars is a natural way in which to extend PCRE regex matching
to an ordered context-free grammar formalism, in which it is possible to talk
about the first match or least parse tree, just as in the case of PCRE regex
matching. We also provided what is, in our opinion, a more natural and generic
way in which to support left recursion in PEGs, by making use of switching
functions to avoid infinite derivations.

Future work includes a thorough investigation into parsing complexity, and
a better understanding of interesting classes of switching functions and their

66 B. van der Merwe and M. Berglund

influence on the underlying oCFGs. Moreover, the decision algorithm provided
in Theorem 2 is most likely suboptimal, and it should be possible to provide
a better algorithm than simply enumerating all pairs of trees below a certain
height.

References

1. Berglund, M., van der Merwe, B.: On the semantics of regular expression parsing in
the wild. Theor. Comput. Sci. 679, 69–82 (2017)

2. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 111–122 (2004)

3. Loff, B., Moreira, N., Reis, R.: The computational power of parsing expression
grammars. J. Comput. Syst. Sci. 111, 1–21 (2020)

4. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. In: Hall,
M.W., Padua, D.A. (eds.) Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 425–436 (2011)

5. Nivat, M., Podelski, A. (eds.): Tree Automata and Languages. North-Holland, Ams-
terdam (1992)

6. Warth, A., Douglass, J.R., Millstein, T.D.: Packrat parsers can support left recur-
sion. In: Glück, R., de Moor, O. (eds.) Proceedings of the 2008 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Manipulation, pp.
103–110 (2008)

7. Pegen. https://github.com/we-like-parsers/pegen. Accessed 28 Feb 2022
8. Medeiros, S., Mascarenhas, F., Ierusalimschy, R.: Left recursion in parsing expres-

sion grammars. Sci. Comput. Program. 96, 177–190 (2014)
9. Okhotin, A.: Boolean grammars. Inf. Comput. 194(1), 19–48 (2004)

https://github.com/we-like-parsers/pegen

Symbolic Weighted Language Models,
Quantitative Parsing and Automated

Music Transcription

Florent Jacquemard(B) and Lydia Rodriguez de la Nava

INRIA and CNAM/Cedric Lab, Paris, France

florent.jacquemard@inria.fr, lydia.rodriguez-de-la-nava@inria.fr

Abstract. We study several classes of symbolic weighted formalisms:
automata (swA), transducers (swT) and visibly pushdown extensions
(swVPA, swVPT). They combine the respective extensions of their sym-
bolic and weighted counterparts, allowing a quantitative evaluation of
words over a large or infinite input alphabet.

We present properties of closure by composition, the computation
of transducer-defined distances between nested words and languages, as
well as a PTIME 1-best search algorithm for swVPA. These results are
applied to solve in PTIME a variant of parsing over infinite alphabets.
We illustrate this approach with a motivating use case in automated
music transcription.

1 Introduction

Symbolic Weighted (sw) language models [13] (automata and transducers) com-
bine two important extensions of standard models. On the one hand, symbolic
extensions, like in Symbolic Automata (sA [9]), can handle an infinite input alpha-
bet Σ, by guarding every transition with a predicate φ : Σ → B. The ability
of sA to compare input symbols is quite restricted, compared to other models
of automata extended e.g. with registers (see [21] for a survey), however, under
appropriate closure conditions on the set of predicates, all the good properties
enjoyed by automata over finite alphabets are still valid for sA.

On the other hand, Weighted Automata (wA [10]) extend qualitative evalua-
tion of input words to quantitative evaluation, by assigning to every transition a
weight value in a semiring S. The weights of the rules involved in a computation
are combined using the product operator ⊗ of S, whereas the sum operator ⊕
of S is used to resolve ambiguity (typically, ⊕ selects, amongst two computations,
the best weighted one). These extensions have also been applied to evaluate hier-
archical structures, like trees [10, ch. 9], or nested words, with symbolic [8], or
weighted [7] extensions of Visibly Pushdown Automata (VPA [3]). With their
ability to evaluate data sequences quantitatively, sw models have found various
applications such as data stream processing [4], runtime verification of timed
systems [24] or robustness optimization for machine learning models [16].

c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 67–79, 2022.
https://doi.org/10.1007/978-3-031-07469-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_5

68 F. Jacquemard and L. Rodriguez de la Nava

The sw models with data storage defined in [13], where their expressive-
ness is extensively studied, are very general, and cover all the models cited
above, as well as those considered in this paper. Here, we consider simple mod-
els of sw-automata and transducers whose transitions are assigned functions
φ : Σ → S from input symbols in an infinite alphabet Σ into a semiring S
(Sect. 3). Such functions generalize the boolean guards of symbolic models from
the Boolean codomain B to an arbitrary semiring S, and the constant values
of weighted models. We prove some properties of closure under composition
for those sw models, generalizing classical constructions for the composition of
transducers [20], and propose a polynomial time algorithm of search for a word of
minimal weight for swVPA (somehow a variant of accessibility problems in push-
down automata [6]). We apply these results to the problem of parsing words
over infinite alphabet (sw-parsing), whose goal is: given an (unstructured) input
word s, to find a (structured) nested word t at a minimal distance from s, where
the distance, following [18], is defined by T (s, t)⊗A(t), T being a sw-transducer
(swT) and A a swVPA (Sect. 4). The notion of transducer-based distances allows
to consider different infinite alphabets for the input s and output t. Moreover, the
use of swVPA allows to search for an output t in the form of a nested word, as a
linear representation of a parse tree; sw-parsing is solved with a Bar-Hillel, Perles
and Shamir construction [12, ch. 13], and the best-search algorithm for swVPA.
We illustrate our approach with an application that motivated this work: auto-
mated music transcription, i.e. the problem of converting a linear music recording
given in input into a score in Common Western Music Notation, a representation
structured hierarchically [25].

Example 1. Let us consider a short input sequence I of musical events repre-
sented by symbols of the form e: τ in an infinite alphabet Σ, where e is a MIDI
key number in 21..108 [22], or the mark ‘start’ or ‘end’, and τ ∈ Q is a duration in
seconds. Such inputs typically correspond to the recording of a live performance:
I = start: 0.07, 69: 0.65, 71: 0.19, 73: 0.14, 74: 0.31, 76: 0.35, 77: 0.29, end: 0.

The output of parsing I is a nested word O, where separated notes are
grouped into hierarchical patterns. It is made of symbols a: τ ′ in an alphabet Δ,
where a is either a note name, (e.g., A4, G5, etc.), a continuation symbol ‘−’, or a
markup symbol (opening or closing parenthesis). The time value τ ′ is a musical

duration. For instance, the music score is represented by the
nested word: O = �m: 2, �2: 1, A4:

1
2 , �2: 1

2 , −: 1
4 , �2: 1

4 , B4:
1
8 , C�5:

1
8 , �2: 1

4 , �2: 1
2 , �2: 1,

�m: 1, �3: 1, D5:
1
3 , E5:

1
3 , F5:

1
3 , �3: 1, �m: 1, �m: 2 (see Fig. 1). The symbol �m marks

the opening of a measure (a time interval of duration 1), while the subsequences
of O between markups �d: � and �d: �, for some natural number d, represent the
division of a duration � by d. The sequence O ∈ Δ∗ is a candidate solution for the
transcription of I ∈ Σ∗. Let us consider another candidate , repre-
sented by O′ = �m: 2, �2: 1, A4:

1
2 , �2: 1

2 , −: 1
4 , B4:

1
4 , �2: 1

2 , �2: 1, �m: 1, �3: 1, ‘C�′
5:0, D5:

1
3 ,

E5:
1
3 , F5:

1
3 , �3: 1, �m: 1, �m: 2. The quoted symbol ‘C�5’ represents an appogiatura,

i.e. an ornamental note of theoretical duration 0. Roughly, sw-parsing associates
a weight value to each candidate, depending of its temporal distance to I and
notational complexity. Our goal is to find a best candidate. �

Symbolic Weighted Language Models, Quantitative Parsing 69

Fig. 1. Tree representation of the scores of Example 1, linearized respectively into O
and O′.

2 Preliminary Notions

Semirings. We shall consider weight values in a semiring 〈S,⊕,0,⊗,1〉: a struc-
ture of domain S, equipped with two associative binary operators ⊕ and ⊗, with
respective neutral elements 0 and 1, such that ⊕ is commutative, ⊗ distributes
over ⊕: ∀x, y, z ∈ S, x⊗(y⊕z) = (x⊗y)⊕(x⊗z), and (x⊕y)⊗z = (x⊗z)⊕(y⊗z),
0 is absorbing for ⊗: ∀x ∈ S, 0 ⊗ x = x ⊗ 0 = 0.

A semiring S is commutative if ⊗ is commutative. It is idempotent if for every
x ∈ S, x ⊕ x = x. Every idempotent semiring S induces a partial ordering ≤⊕
called the natural ordering of S [17], defined by: for every x, y ∈ S, x ≤⊕ y iff x⊕
y = x. It is sometimes defined in the opposite direction [10, ch. 1]; we follow here
the direction that coincides with the usual ordering on the Tropical semiring min-
plus (Fig. 2). An idempotent semiring S is called total if ≤⊕ is total, i.e. when
for every x, y ∈ S, either x ⊕ y = x or x ⊕ y = y.

Lemma 1 (Monotony, [17]). If 〈S,⊕,0,⊗,1〉 is idempotent, for every
x, y, z ∈ S, x ≤⊕ y implies x ⊕ z ≤⊕ y ⊕ z, x ⊗ z ≤⊕ y ⊗ z and z ⊗ x ≤⊕ z ⊗ y.

We say that S is monotonic wrt ≤⊕. Another important semiring property in
the context of optimization is superiority ((i) of Lemma 2), which generalizes the
non-negative weights condition in Dijkstra’s shortest-path algorithm. Intuitively,
it means that combining elements with ⊗ always increases their weight.

Lemma 2 (Superiority, Boundedness). Let 〈S,⊕,0,⊗,1〉 be an idempotent
semiring. The two following statements are equivalent: (i) for all x, y ∈ S, x ≤⊕
x ⊗ y and y ≤⊕ x ⊗ y (ii) for all x ∈ S, 1 ⊕ x = 1.

The property (i) of superiority implies that 1 ≤⊕ z ≤⊕ 0 for all z ∈ S (by
setting x = 1 and y = 0 in Lemma 2). From an optimization point of view, it
means that 1 is the best value, and 0 the worst. A semiring S with property (ii)
of Lemma 2 is called bounded in [17] and in the rest of the paper.

Lemma 3 ([17], Lemma 3). Every bounded semiring is idempotent.

70 F. Jacquemard and L. Rodriguez de la Nava

Fig. 2. Some commutative, bounded, total and complete semirings.

We need to extend ⊕ to infinitely many operands. A semiring S is called com-
plete [10, ch. 1] if it has an operation

⊕
i∈I xi for every family (xi)i∈I of elements

in the domain of S, over an index set I ⊆ N, such that:

i. infinite sums extend finite sums: ∀j, k ∈ N, j = k,⊕

i∈∅
xi = 0,

⊕

i∈{j}
xi = xj ,

⊕

i∈{j,k}
xi = xj ⊕ xk,

ii. associativity and commutativity: for all partition (Ij)j∈J of I,⊕

j∈J

⊕

i∈Ij

xi =
⊕

i∈I

xi,

iii. distributivity of products over infinite sums: for all I ⊆ N, ∀x, y ∈ S,⊕

i∈I

(x ⊗ yi) = x ⊗
⊕

i∈I

yi, and
⊕

i∈I

(xi ⊗ y) = (
⊕

i∈I

xi) ⊗ y.

Label Theories. The functions labelling the transitions of sw-automata and
transducers generalize the Boolean algebras of [9]. We consider alphabets, which
are non-empty countable sets of symbols denoted by Σ, Δ... and write Σ∗ for
the set of finite sequences (words) over Σ, ε for the empty word, Σ+ = Σ∗ \{ε},
and uv for the concatenation of u, v ∈ Σ∗.

Given a semiring 〈S,⊕,0,⊗,1〉, a label theory Φ̄ over S is an indexed family of
sets ΦΣ , resp. ΦΣ,Δ, containing recursively enumerable functions of type Σ → S,
resp. Σ × Δ → S, and such that if ΦΣ,Δ ∈ Φ̄, then ΦΣ ∈ Φ̄ and ΦΔ ∈ Φ̄, every
ΦΣ , ΦΣ,Δ ∈ Φ̄ contains all the constant functions of Σ → S, resp. Σ × Δ → S,
for all ΦΣ,Δ ∈ Φ̄, η ∈ ΦΣ,Δ, a ∈ Σ, b ∈ Δ, the partial application x �→ η(x, b)
is in ΦΣ and the partial application y �→ η(a, y) is in ΦΔ, and Φ̄ is closed under
the following operators, derived from the operations of S:

– For all ΦΣ ∈ Φ̄, all φ ∈ ΦΣ , and α ∈ S, α ⊗ φ : x �→ α ⊗ φ(x), and φ ⊗ α :
x �→ φ(x) ⊗ α are in ΦΣ , and similarly for ⊕ and for ΦΣ,Δ.

– For all ΦΣ ∈ Φ̄, all φ, φ′ ∈ ΦΣ , φ ⊗ φ′ : x �→ φ(x) ⊗ φ′(x) is in ΦΣ .
– For all ΦΣ,Δ ∈ Φ̄, all η, η′ ∈ ΦΣ,Δ, η ⊗η′ : x, y �→ η(x, y)⊗η′(x, y) is in ΦΣ,Δ.
– For all ΦΣ , ΦΣ,Δ ∈ Φ̄, all φ ∈ ΦΣ and η ∈ ΦΣ,Δ, φ⊗1 η : x, y �→ φ(x)⊗η(x, y)

and η ⊗1 φ : x, y �→ η(x, y) ⊗ φ(x) are in ΦΣ,Δ.
– For all ΦΔ, ΦΣ,Δ ∈ Φ̄, all ψ ∈ ΦΔ and η ∈ ΦΣ,Δ, ψ⊗2 η : x, y �→ ψ(y)⊗η(x, y)

and η ⊗2 ψ : x, y �→ η(x, y) ⊗ ψ(y) are in ΦΣ,Δ.
– Analogous closures hold for ⊕.

Symbolic Weighted Language Models, Quantitative Parsing 71

Example 2. We go back to Example 1. In order to align an input in Σ∗ with
a music score in Δ∗, we must account for the expressive timing of human per-
formance that results in small time shifts between an input event of Σ and a
notational event in Δ. These shifts can be weighted as a distance in ΦΣ,Δ, defined
in the tropical min-plus semiring by δ(e: τ, a: τ ′) = |τ ′ − τ | if a corresponds to e
(e.g. e is the MIDI key 69 and a is the note A4), or 0 otherwise. �

3 SW Visibly Pushdown Automata and Transducers

Let 〈S,⊕,0,⊗,1〉 be a commutative and complete semiring and let Σ and Δ
be countable alphabets called input and output respectively, such that Δ is
partitioned into three disjoint subsets of symbols Δi, Δc and Δr, called respec-
tively internal, call and return [3]. Let Φ̄ be a label theory over S, consisting of
Φe = ΦΣ , Φi = ΦΔi , Φc = ΦΔc , Φr = ΦΔr , Φei = ΦΣ,Δi and Φcr = ΦΔc,Δr .

Definition 1 (swVPT). A Symbolic Weighted Visibly Pushdown Transducer
over Σ, Δ, S, and Φ̄ is a tuple T = 〈Q,P, in, w̄, out〉, where Q is a finite set of
states, P is a finite set of stack symbols, in : Q → S (respectively out : Q → S) are
functions defining the weight for entering (respectively leaving) a state, and w̄ is a
tuplet composed of the transition functions : w10 : Q×Q → Φe, w01 : Q×Q → Φi,
w11 : Q×Q → Φei, wc : Q×Q×P → Φc, wr : Q×P ×Q → Φcr, we

r : Q×Q → Φr.

For convenience, we extend the above transition functions as follows, for every
q, q′ ∈ Q, p ∈ P , e ∈ Σ, a ∈ Δi, c ∈ Δc, r ∈ Δr, overloading their names:

w10(q, e, ε, q′) = φ(e) where φ = w10(q, q′),
w01(q, ε, a, q′) = φ(a) where φ = w01(q, q′),
w11(q, e, a, q′) = η(e, a) where η = w11(q, q′),
wc(q, ε, c, q′, p) = φ(c) where φ = wc(q, q′, p),

wr(q, c, p, ε, r, q′) = η(c, r) where η = wr(q, p, q′),
we
r (q, ε, r, q

′) = φ(r) where φ = we
r (q, q

′).

The swVPT T computes asynchronously on pairs 〈s, t〉 ∈ Σ∗ × Δ∗. Intuitively,
a transition wij(q, e, a, q′), with i, j ∈ {0, 1} and e ∈ Σ ∪ {ε}, a ∈ Δi ∪ {ε}, is
interpreted as follows: when reading e and a in the input and output words, it
increments the current position in the input word if and only if i = 1, and in the
output word iff j = 1, and changes state from q to q′. When e = ε (resp. a = ε),
the current symbol in the input (resp. output) is not read. These transitions
ignore the stack.

A transition of wc(q, ε, c, q′, p) reads the call symbol c ∈ Δc in the output
word, pushes it to the stack along with p ∈ P , and changes state from q to q′.
As for wr(q, c, p, ε, r, q′) and we

r (q, ε, r, q
′) (used when the stack is empty), they

read the return symbol r in the output word and change state from q to q′.
Additionally, wr reads and pops from the stack a pair 〈c, p〉 and the symbol c is
compared to r by the function η = wr(q, p, q′) ∈ Φcr.

Formally, the computations of the transducer T are defined with an interme-
diate function weightT . A configuration q[γ] is composed of a state q ∈ Q and

72 F. Jacquemard and L. Rodriguez de la Nava

a stack content γ ∈ Γ ∗, where Γ = Δc × P , and weightT is a function from
[Q×Γ ∗]×Σ∗ ×Δ∗ × [Q×Γ ∗] into S, whose recursive definition enumerates each
of the possible cases for reading e ∈ Σ, a ∈ Δi, c ∈ Δc, or r ∈ Δr (the empty
stack is denoted by ⊥, and the topmost symbol is the last pushed pair):

weightT
(
q[γ], ε, ε, q′[γ′]) = 1 if q = q′, γ = γ′ and 0 otherwise (1)

weightT
(
q[γ], e u, ε, q′[γ′]

)
=

⊕

q′′∈Q

w10(q, e, ε, q′′) ⊗ weightT
(
q′′[γ], u, ε, q′[γ′]

)

weightT
(
q[γ], ε, a v, q′[γ′]

)
=

⊕

q′′∈Q

w01(q, ε, a, q′′) ⊗ weightT
(
q′′[γ], ε, v, q′[γ′]

)

weightT
(
q[γ], e u, a v, q′[γ′]

)
=

⊕

q′′∈Q

w10(q, e, ε, q′′) ⊗ weightT
(
q′′[γ], u, a v, q′[γ′]

)

⊕
⊕

q′′∈Q

w01(q, ε, a, q′′) ⊗ weightT
(
q′′[γ], e u, v, q′[γ′]

)

⊕
⊕

q′′∈Q

w11(q, e, a, q′′) ⊗ weightT
(
q′′[γ], u, v, q′[γ′]

)

weightT
(
q[γ], u, c v, q′[γ′]

)
=

⊕

q′′∈Q
p∈P

wc(q, ε, c, q′′, p) ⊗ weightT
(
q′′

[〈c, p〉
γ

]
, u, v, q′[γ′]

)

weightT
(
q

[〈c, p〉
γ

]
, u, r v, q′[γ′]

)
=

⊕

q′′∈Q

wr
(
q, c, p, ε, r, q′′) ⊗ weightT

(
q′′[γ], u, v, q′[γ′]

)

weightT
(
q[⊥], u, r v, q′[γ′]

)
=

⊕

q′′∈Q

we
r (q, ε, r, q′′) ⊗ weightT

(
q′′[⊥], u, v, q′[γ′]

)

The weight associated by T to an input/output pair 〈s, t〉 ∈ Σ∗ × Δ∗ is
defined according to empty stack semantics:

T (s, t) =
⊕

q,q′∈Q

in(q)⊗weightT
(
q[⊥], s, t, q′[⊥]

) ⊗ out(q′) (2)

Since 0 is absorbing for ⊗, and neutral for ⊕ in S, if a transition’s weight
is equal to 0, then the entire term is 0, meaning the transition is impossible.
This is analogous to the case of a transition’s guard not satisfied in symbolic
models [9].

Symbolic Weighted Visibly Pushdown Automata. swVPA are the particular case
of swVPT that do not read in the input word, i.e. where all w10 and w11 are
constant functions equal to 0, or Σ = ∅ (see [1, § C]). They are a weighted
extension of sVPA [8], from Boolean semirings to arbitrary semiring domains.
A relationship between swVPA and sw-Tree Automata is presented in [1, § F].

Example 3. We consider a swVPA A over Δ∗, with P = Q, computing a value of
notational complexity for a given score. In a sequence O ∈ Δ∗ like in Example 1,
Δi contains timed notes and continuations, and Δc and Δr contain respectively
opening and closing parentheses. To a call symbol �n: �, for some duration value �,

Symbolic Weighted Language Models, Quantitative Parsing 73

let us associate a transition for the division of � by n: wc

(
q�, ε, �n: �, q �

n
, q′) =

αn ∈ S. And to the matching return symbol �n: �, we associate a transition of
weight 1: wr

(
q �

n
, �n: �, q′, ε, �n: �, q′) = 1, which jumps to the state q′ stored in

the stack. The choice of weight values for the call transitions can express some
preferences in term of the expected output notation: if we want to prioritize pairs
over triplets, in the Tropical min-plus semiring, then we would let α2 < α3. It
is able to compute on several representations of a piece of music, estimating for
each one a weight value depending on the preferences that we set. The algorithm
of Theorem 4 then allows to select the best weighted representation. �

Symbolic Weighted Transducers. swT are the particular case of swVPT that
do not use the stack during their computations, because all wc, wr and we

r are
constant functions equal to 0, or because Δc = Δr = ∅ (see [1, § C]).

The four first lines in expression (1) can be seen as a stateful definition of an
edit-distance between a word s ∈ Σ∗ and a word t ∈ Δi

∗, see also [18]. Intuitively,
in this vision, w10(q, e, ε, q′) is the cost of the deletion of the symbol e ∈ Σ in s,
w01(q, ε, a, q′) is the cost of the insertion of a ∈ Δi in t, and w11(q, e, a, q′) is
the cost of the substitution of e ∈ Σ by a ∈ Δi. Following (2), the cost of a
sequence of such operations transforming s into t is the product in terms of ⊗ of
the individual costs of the operations involved, and the distance between s and
t is the sum in terms of ⊕ of all possible products.

Example 4. We propose a swT over Σ and Δi that computes the distance
between an input I ∈ Σ∗ and an output O ∈ Δi

∗ like in Example 1 (for δ,
see Example 2):

w11(q0, e: τ, a: τ ′, q0) and w11(q1, e: τ, a: τ ′, q0) = δ(e: τ, a: τ ′) if a = −
w01(q0, ε,−: τ ′, q0) = 1 w01(q1, ε,−: τ ′, q0) = 1 w10(q0, e: τ, ε, q1) = α

The continuation symbol ‘−’ (e.g. in ties , or dots) is skipped with no
cost (w01). We also want to consider performing errors, by switching to an error
state q1. Reading an extra event e is handled by w10 that switches to q1, with a
fixed α ∈ S, then w11 and w01 can switch back to q0. Finally, we let q0 be the
initial and final state, with in(q0) = out(q0) = 1, and in(q1) = out(q1) = 0. �

Symbolic Weighted Automata. swA are particular cases of swT omitting the
output symbols, or equivalently, swVPA without markups (Δc = Δr = ∅).

4 Symbolic Weighted Parsing

Parsing is the problem of structuring a linear representation (a finite word)
according to a language model [12]. We shall consider in this section the problem
of parsing over an infinite alphabet. Let S Σ, Δ, and Φ̄ be like in Sect. 3. We
assume to be given the following input:

– a swT T over Σ, Δi, S, and Φ̄, defining a measure T : Σ∗ × Δi
∗ → S,

74 F. Jacquemard and L. Rodriguez de la Nava

– a swVPA A over Δ, S, and Φ̄, defining a measure A : Δ∗ → S,
– an (unstructured) input word s ∈ Σ∗.

For every u ∈ Σ∗ and t ∈ Δ∗, let dT (u, t) = T
(
u, t|Δi

)
, where t|Δi ∈ Δi

∗ is the
projection of t onto Δi, obtained from t by removing all symbols in Δ\Δi. Given
the above input, symbolic weighted parsing aims at of finding a (structured)
nested word t ∈ Δ∗ that minimizes d(s, t) ⊗ A(t) wrt ≤⊕, i.e. such that:

dT (s, t) ⊗ A(t) =
⊕

v∈Δ∗
dT (s, v) ⊗ A(u) (3)

In the terminology of [18], sw-parsing is the problem of computing the dis-
tance (3) between the input word s and the weighted language over the output
alphabet defined by A, and returning a witness t.

Example 5. In the running example, the input is as follows: the swT T evaluates a
“fitness measure”, i.e. a temporal distance between a performance and a nested-
word representation of a music score (Example 4). The swVPA A expresses a
weight related to the complexity of music notation (Example 3). The input

word is I of Example 1. The notation , will be favored over

when the weight assigned to the call �2 is less than the difference of
weight between the appogiatura ‘C�5’ and the standard note C�5. The sw-parsing
framework, applied to music transcription, finds an optimal solution considering
both the fitness of the output to the input, and its notational complexity. �

Nested words in Δ∗ can represent linearizations of labeled trees, and to any
Weighted Regular Tree Grammar (wRTG), we can associate in polynomial time
a swVPA computing the same weight (see [1, § F]). Therefore, instead of a swVPA
in input, we may be given a wRTG, or a weighted CFG (wCFG), for a definition
closer to conventional parsing. The sw-parsing problem hence generalizes the
problem of searching for the best derivation tree of a wCFG G that yields a
given input word w, with an infinite input alphabet instead of a finite one and
transducer-defined distances instead of equality. It is however uncomparable to
the related problems of semiring parsing [11], and weighted parsing [19].

In Sect. 5, we present results on swVPT and subclasses (automata construc-
tion and best-search algorithm) that can be applied for solving sw-parsing.

Theorem 1. The problem of Symbolic Weighted Parsing can be solved in PTI-
ME in the size of the input swT T , swVPA A and input word s, and the compu-
tation time of the functions and operators of the label theory.

Proof. We follow an approach of parsing as intersection [12, ch. 13]. First, we
associate to T and A a swVPT called (T ⊗ A), computing the product of the
respective weights for the two models (Theorem 2): i.e. (T ⊗A)(u, t) = dT (u, t)⊗
A(t). Then, we construct a swVPA computing, for t ∈ Δ∗, (T ⊗ A)(s, t) =
dT (s, t) ⊗ A(t) (Theorem 3). Finally, with the algorithm of Theorem 4, we find
a best t ∈ Δ∗ minimizing the latter value wrt ≤⊕, i.e. a solution of sw-parsing.��

Symbolic Weighted Language Models, Quantitative Parsing 75

5 Properties and Best-Search Algorithm

In the following results, we assume that the functions of a label theory Φ̄ are
given in a finite representation (e.g. Turing machine) in the definitions of swVPT,
and provide complexity bounds parameterized by the semiring operators and
the operators of Sect. 2 over the functions of Φ̄ (the latter might be represented
symbolically by structures like Algebraic Decision Diagrams [5]).

Similarly to VPA [3] and sVPA [8], the class of swVPT is closed under the
binary operators of the underlying semiring.

Proposition 1. Let T1, T2 be two swVPT over the same Σ, Δ, commutative S
and Φ̄. There exist two effectively constructible swVPT T1 ⊕ T2 and T1 ⊗ T2,
such that for every s ∈ Σ∗ and t ∈ Δ∗, (T1 ⊕ T2)(s, t) = T1(s, t) ⊕ T2(s, t) and
(T1 ⊗ T2)(s, t) = T1(s, t) ⊗ T2(s, t).

Proof. Classical Cartesian product construction, similar to the case of the
Boolean semiring [8], see [1, § B] for details. ��
The following result shows how to compose, in a single swVPT, the two measures
as input of sw-parsing: the swT computing input-output distance and the swVPA
expressing the weight of parse trees’ linearization.

Theorem 2. Given a swT T over Σ, Δi, commutative S, and Φ̄, and a swVPA A
over Δ, S, Φ̄, one can construct in PTIME a swVPT T ⊗ A, over Σ, Δ, S, Φ̄,
such that ∀s ∈ Σ∗, t ∈ Δ∗, (T ⊗ A)(s, t) = T (s, t|Δi) ⊗ A(t).

Proof. (sketch, see [1, § C]). The state set of T ⊗ A is the Cartesian product of
the state sets of T and A, and every transition of T ⊗ A is either a transition
of T or a transition of A of the same kind (in these cases the state of the other
machine remains the same), or a product of two transitions w11 of T and A. ��
The next result is the construction, as a swVPA, for the partial application of a
swVPT, setting an input word s as its first argument.

Theorem 3. Given a swVPT T over Σ, Δ, commutative, complete and idempo-
tent S, and Φ̄, and given s ∈ Σ∗, there exists an effectively constructible swVPA
T (s) over Δ, S, and Φ̄, such that for every t ∈ Δ∗, T (s)(t) = T (s, t).

Proof. (sketch, see [1, § D]). We construct an automaton that simulates, while
reading an output word t ∈ Δ∗, the synchronized computation of T on s and t.
The main difficulty comes from the transitions of T of the form w10, which read
in input s and ignore the output t. Since the automaton A(T) only reads the
output word t, we add to A(T) a corresponding ε-transition, and show how to
remove the ε-transitions from a swVPA while preserving its language. ��
We present now a procedure for searching a word of minimal weight for
a swVPA A, a variant of reachability problems in pushdown automata [6].

76 F. Jacquemard and L. Rodriguez de la Nava

First of all, for a complete semiring S, we consider the following operators
on the functions of a label theory Φ̄:

⊕
Σ : ΦΣ → S, φ �→

⊕

a∈Σ
φ(a),

⊕1
Σ : ΦΣ,Δ → ΦΔ, η �→ (

y �→
⊕

a∈Σ
η(a, y)

)
,

⊕2
Δ : ΦΣ,Δ → ΦΣ , η �→ (

x �→
⊕

b∈Δ
η(x, b)

)
.

Intuitively,
⊕

Σ returns the global minimum, wrt ≤⊕, of a function φ of ΦΣ ,
and

⊕1
Σ ,

⊕2
Δ return partial minimums of a function η of ΦΣ,Δ. A label theory

is called effective when the three above operators applied on its functions are
recursively enumerable, and there exists a function returning a witness symbol
that reaches the minimum. In the complexity bounds, we assume a constant
time evaluation for these operators. Effectiveness of label theories is a strong
restriction, although realistic for the case study presented in this paper. It is
satisfied e.g. by functions with a codomain {0, α}, with α <⊕ 0, generalizing the
boolean guards of [8,9] to filters returning null or constant weight values.

Theorem 4. For a swVPA A over Δ, S commutative, complete, bounded and
total, and Φ̄ effective, one can construct in PTIME a word t ∈ Δ∗ such that A(t)
is minimal wrt the natural ordering ≤⊕ for S.

Proof. Let A = 〈Q,P, in, w̄, out〉. For every q, q′ ∈ Q, let b⊥(q, q′) be the min-
imum, wrt ≤⊕, of the function βq,q′ : t �→ weightA(q[⊥], ε, t, q′[⊥]). By def-
inition of ≤⊕, and since S is complete and total, it holds that: b⊥(q, q′) =⊕

t∈Δ∗
weightA

(
q[⊥], ε, t, q′[⊥]

)
(see (1) for the definition of weightA). Following (2),

and the algebraic properties of ⊗ and ⊕, the minimum of A(t) wrt ≤⊕ is:
⊕

t∈Δ∗
A(t) =

⊕

t∈Δ∗

⊕

q,q′∈Q

in(q)⊗ βq,q′(t)⊗ out(q′) =
⊕

q,q′∈Q

in(q)⊗ b⊥(q, q′)⊗ out(q′)

(4)
Hence, in order to prove Theorem 4, it is sufficient to show that for all

q, q′ ∈ Q, we can compute b⊥(q, q′) in PTIME. We proceed by searching for a best
weighted derivation in a S-labeled hypergraph GA associated to the swVPA A. It
has a set of vertices VA = (Q×{⊥,�}×Q), where � is a new symbol representing
a non-empty stack, a set of hyperedges EA = (VA ×VA)∪(VA ×VA ×VA), and an
hyperedge labelling function ηA : EA → S defined as follows, for q0, q

′
0, q1, q2, q3 ∈

Q, (wi is another name for w01, like in [1, § C]):

〈q0,⊥, q1〉, 〈q′
0, γ, q2〉 �→ 0 if γ = � or (γ = ⊥ and q′

0 = q0)
〈q0,⊥, q1〉, 〈q0,⊥, q2〉 �→ ⊕

Δi
wi(q1, q2) ⊕ ⊕

Δr
we
r (q1, q2)

〈q1,�, q2〉, 〈q0,⊥, q3〉 �→
⊕

p∈P

⊕
Δc

[
wc(q0, q1, p) ⊗ ⊕2

Δr
wr(q2, p, q3)

]

〈q1,�, q2〉, 〈q0,�, q3〉 �→
[⊕

q1=q0

⊕
Δi

wi(q2, q3)
]
⊕

[⊕

p∈P

⊕
Δc

[
wc(q0, q1, p) ⊗2

⊕2
Δr
wr(q2, p, q3)

]]

〈q0, γ1, q1〉, 〈q1, γ2, q2〉, 〈q0, γ, q2〉 �→ 1 if γ1 = γ2 = γ or 0 otherwise.

Symbolic Weighted Language Models, Quantitative Parsing 77

Intuitively, a vertex v = 〈q,⊥, q′〉 (resp. v = 〈q,�, q′〉) of GA represents
computations of A starting in state q with an empty stack (resp. non-empty
stack γ), and ending in state q′ with an empty stack (resp. the same non-empty
stack γ). The best weight of such computations is the best cumulated weight
of hyperedges along a derivation to v. More precisely, a derivation of GA is a
VA-labeled binary tree of the form, v, v(θ1) or v(θ1, θ2), where θ1 and θ2 are sub-
derivations, and its weight is defined by (for i = 1, 2, the root of θi, is labeled
with vi ∈ VA):

– weight(〈q,⊥, q〉) = weight(〈q,�, q〉) = 1,
– weight(〈q,⊥, q′〉) = weight(〈q,�, q′〉) = 0 if q = q′,
– weight

(
v(θ1)

)
= weight(θ1) ⊗ ηA(v1, v),

– weight
(
v(θ1, θ2)

)
= weight(θ1) ⊗ weight(θ2) ⊗ ηA(v1, v2, v).

With D(GA, v) denoting the set of derivations of GA with root labeled with v ∈
VA, it holds that ([1, § E]): for all q, q′ ∈ Q, b⊥(q, q′) =

⊕

θ∈D(GA,〈q,⊥,q′〉)
weight(θ).

Therefore, computing b⊥(q, q′) reduces to the search for a smallest weighted
derivation of GA (wrt ≤⊕) rooted with 〈q,⊥, q′〉, a problem solvable in
PTIME [14], because S is monotonic wrt ≤⊕ and superior (Lemma 2). Therefore,
by (4), the minimum of t �→ A(t), wrt ≤⊕, can be computed in PTIME.

Moreover, a witness t ∈ Δ∗ for this minimum can be associated to the appro-
priate best derivation, with no additional cost, see [1, § E] for details. ��

Conclusion

We presented closure properties and one decision algorithm for three classes of
Symbolic Weighted language models: swVPT, swT and swVPA, and applied these
results to the problem of parsing with infinitely many input symbols (typically
timed events). In our approach to parsing, words are compared by computing
a distance between them, defined by a given sw-transducer, which allows to
consider finer word relationships than strict equality.

The application to automated music transcription suggested in a toy exam-
ple has been implemented in a C++ library [2], following the principles of the
present sw-parsing framework, although with some differences; e.g. the automata
constructions are performed on-the-fly during best-search for efficiency reasons.
One advantage of this swVPA approach is the global view provided by the stack
during transcription, as opposed to other HMM-based approaches [23].

This work can be extended in several directions. The best-search algorithm
for swVPA could be generalized from 1-best to n-best [15], and to k-closed semir-
ings [17] (instead of bounded, which corresponds to 0-closed). One could also
study the generalization of the best-search algorithm of Theorem 4 to the com-
putation of the best possible output of a swVPT for a given input, or even to
the more general models of [13].
Finally, the best-search algorithm presented here works offline, whereas an on-
the-fly approach coupling automata construction and best-search would be inter-
esting e.g. for online XML validation or filtering, or program monitoring [8].

78 F. Jacquemard and L. Rodriguez de la Nava

Acknowledgments. The authors would like to thank the reviewers at CIAA for their
useful remarks.

References

1. Extended version of this article. https://hal.archives-ouvertes.fr/hal-03647675
2. Library qparse for music transcription. https://qparse.gitlabpages.inria.fr
3. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43

(2009)
4. Alur, R., Mamouras, K., Stanford, C.: Automata-based stream processing. In: 44th

ICALP. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2017)
5. Bahar, R.I., et al.: Algebraic decision diagrams and their applications. Formal

Methods Syst. Des. 10(2–3), 171–206 (1997)
6. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:

application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

7. Caralp, M., Reynier, P.-A., Talbot, J.-M.: Visibly pushdown automata with mul-
tiplicities: finiteness and K -boundedness. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT
2012. LNCS, vol. 7410, pp. 226–238. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31653-1 21

8. D’Antoni, L., Alur, R.: Symbolic visibly pushdown automata. In: Biere, A., Bloem,
R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 209–225. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 14

9. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 3

10. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

11. Goodman, J.: Semiring parsing. Comput. Linguist. 25(4), 573–606 (1999)
12. Grune, D., Jacobs, C.J.H.: Parsing Techniques. MCS, Springer, New York (2008).

https://doi.org/10.1007/978-0-387-68954-8
13. Herrmann, L., Vogler, H.: Weighted symbolic automata with data storage. In:

Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 203–215. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53132-7 17

14. Huang, L.: Advanced dynamic programming in semiring and hypergraph frame-
works. In: COLING (2008)

15. Huang, L., Chiang, D.: Better k-best parsing. In: Proceedings of the 9th Interna-
tional Workshop on Parsing Technology. ACL (2005)

16. Ma, M., Du, D., Liu, Y., Wang, Y., Li, Y.: Efficient adversarial sequence generation
for RNN with symbolic weighted finite automata. In: Proceedings of the Workshop
on Artificial Intelligence Safety (SafeAI), vol. 3087 (2022)

17. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J.
Autom. Lang. Comb. 7(3), 321–350 (2002)

18. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Int. J. Found. Comput. Sci. 14(06), 957–982 (2003)

19. Mörbitz, R., Vogler, H.: Weighted parsing for grammar-based language models.
In: 14th International Conference on Finite-State Methods and Natural Language
Processing. ACL (2019)

https://hal.archives-ouvertes.fr/hal-03647675
https://qparse.gitlabpages.inria.fr
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/978-3-642-31653-1_21
https://doi.org/10.1007/978-3-642-31653-1_21
https://doi.org/10.1007/978-3-319-08867-9_14
https://doi.org/10.1007/978-3-319-08867-9_14
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-3-662-53132-7_17

Symbolic Weighted Language Models, Quantitative Parsing 79

20. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-
delberg (1997). https://doi.org/10.1007/978-3-642-59136-5

21. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).
https://doi.org/10.1007/11874683 3

22. Selfridge-Field, E. (ed.): Beyond MIDI: The Handbook of Musical Codes. MIT
Press (1997). http://beyondmidi.ccarh.org/beyondmidi-600dpi.pdf

23. Shibata, K., Nakamura, E., Yoshii, K.: Non-local musical statistics as guides for
audio-to-score piano transcription. Inf. Sci. 566, 262–280 (2021)

24. Waga, M.: Online quantitative timed pattern matching with semiring-valued
weighted automata. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS,
vol. 11750, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29662-9 1

25. Yust, J.: Organized Time. Oxford University Press, Oxford (2018)

https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/11874683_3
http://beyondmidi.ccarh.org/beyondmidi-600dpi.pdf
https://doi.org/10.1007/978-3-030-29662-9_1
https://doi.org/10.1007/978-3-030-29662-9_1

A Similarity Measure for Formal
Languages Based on Convergent

Geometric Series

Florian Bruse(B), Maurice Herwig, and Martin Lange

University of Kassel, Kassel, Germany

florian.bruse@uni-kassel.de

Abstract. We present a distance metric on formal languages based on
the accumulated weight of words in their symmetric difference. The con-
tribution of an individual word to this weight decreases exponentially in
its length, guaranteeing the distance between languages to be a real value
between 0 and 1. We show that this distance is computable for regular
languages. As an application, we show how the similarity measure derived
from a modification of this metric can be used in automatic grading of
particular standard exercises in formal language theory classes.

1 Introduction

A similarity measure is a function that associates a numerical value to two
objects of some class in order to quantify how similar they are. Such a measure
typically satisfies certain properties, for instance symmetry, since A should be as
similar to B as B is to A. It should be monotonic in the sense that the numerical
similarity of A and B should be higher than that of A and C, when C appears
to be more different to A than B does. The triangular inequality ensures that
the numerical values measure similarity evenly throughout the entire class: C
cannot be appear to be less similar to A than the sum of the values indicating the
similarity of C to B and that of B to A. Finally, it should satisfy a maximality
condition ensuring that no B can be more similar to A than A itself.

There is not an established theory of similarity measures, probably because
of its close connection to the established theory of distance in metric spaces. In
fact, similarity can be seen as the absence of distance in such a space. In other
words, one can typically obtain a similarity measure satisfying the properties
above by inverting a distance metric on such objects.

Similarity measures are heavily used in many applications, not at all
restricted to formal language theory or even computer science. They play vital
roles in psychology [3] and educational sciences [11] but also in other fields
within computer science, for example image processing [9], bioinformatics [13]
and data science [5]. In fact, it is the recent resurgence of machine learning and
the progress it has brought to many applications areas which has created new

c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 80–92, 2022.
https://doi.org/10.1007/978-3-031-07469-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_6

A Similarity Measure for Formal Languages Based on Geometric Series 81

interest in the study of similarity measures. Supervised learning relies on a thor-
ough understanding of similarity between objects, for example images, in order
to guarantee reliable classification results by trained neural networks.

Fundamental formal language theory provides results and concepts which
may apply to other areas through the encoding of their primary objects of study
by words and languages, cf. modelling of DNA sequences or program runs as
words over a finite alphabet. Similarity measures and, more specifically, distance
metrics have therefore been studied in the context of formal language theory,
mainly on words. Essentially all known types of distance/similarity like Euclid-
ian, Manhattan, Cosine, Hamming, Levenshtein, Jaccard, etc. can be used to
turn the set of words over some alphabet into a metric space.

A distance measure d on words naturally induces a distance d̂ on languages
via d̂(L1, L2) := min{d(w1, w2) | wi ∈ Li}. This is unsuitable as a basis for a
similarity measure on languages for many applications, though, as it ignores the
inner structure of these languages. Worst of all, it considers two languages to
be closest, and therefore most similar, already when their intersection is non-
empty. For example, {anbn | n ≥ 1} and a∗b∗ would be as similar as a∗b∗

is to itself. A more involved definition lifts these distance notions from words
to languages using the Hausdorff distance, i.e. d̂(L1, L2) = max

({d̃(L1, w) |
w ∈ L2} ∪ {d̃(L2, w

′) | w′ ∈ L1}
)

where d̃(L,w) = min{d(w′, w) | w′ ∈ L}.
This notion assigns distance 0 only to equal sets, yet one quickly runs into
undecidability problems using this definition [4].

In this paper we propose a new distance metric for formal languages, based on
the sparsity of the symmetric difference between two languages. This is standard;
however, given that the symmetric difference can be of infinite size, there is no
standard way to obtain a finite numerical distance value from this. We define
the distance as the accumulated weight of all words in the symmetric difference,
where the weight of a word is exponential in the inverse of its length. This
guarantees well-definedness of the distance metric, as it is bounded from above
by a convergent geometric series.

In Sect. 2 we recall necessary preliminaries, present the formal definition of
this distance metric, discuss its most important algebraic and computational
properties, and compare it to other proposals from the literature. In Sect. 3 we
show its usefulness in a particular application scenario: the similarity measure
derived from this distance metric can be used to automatically assess and grade
students’ solutions to exercises of the form “construct an NFA/DFA/regular
expression for the language L = . . .” We show how this measure can be modified
to better suit the needs of this application scenario, describe its implementation
and how an empirical evaluation can be used to tweak the measure’s parameters.
Section 4 concludes with remarks on further work.

82 F. Bruse et al.

2 Distance Based on a Convergent Geometric Series

2.1 Formal Languages and Metrics

We briefly recall a few preliminaries about formal languages, finite automata
and metric spaces.

An alphabet is a finite nonempty set Σ = {a, b, . . . } of letters. A (finite) Σ-
word is a sequence w = a1 · · · an of letters. Its length |w| is n. The empty word is
denoted by ε and has length 0. Σ∗ is the set of all Σ-words; Σn denotes the set
of Σ-words of length n. A Σ-language is an L ⊆ Σ∗. We write L(n) for L ∩ Σn,
L(≤n) for

⋃
i≤n L(i) and L(>n) for

⋃
i>n L(i). As usual, for a ∈ Σ and L ⊆ Σ∗

we write aL for the language {aw | w ∈ L}.
A nondeterministic finite automaton (NFA) is an A = (Q,Σ, δ,QI , QF)

where Q is a finite non-empty set of states, Σ is an alphabet, δ : Q × Σ → 2Q is
the transition relation and QI , QF ⊆ Q are the sets of initial, resp. final states.

The extended transition relation δ̂ : Q × Σ∗ → 2Q can be obtained via
δ̂(q, ε) = {q} and δ̂(q, wa) =

⋃
q′∈δ̂(q,w) δ(q′, a). As usual L(A) := {w | ex. q ∈

QI s.t. δ̂(q, w) ∩ QF �= ∅} is the language of words accepted by A. An L ⊆ Σ∗

is regular if it is accepted by some NFA.
An NFA is called deterministic, or a DFA, if |δ(q, a)| = 1 for all q ∈ Q, a ∈ Σ

and |QI | = 1. It follows by induction that |δ̂(q, w)| = 1 for all q ∈ Q,w ∈ Σ

and that the automaton accepts iff δ̂(q, w) ∈ QF for the unique q ∈ QI . For an
underlying DFA we simply write δ̂(q, w) = q′ instead of δ̂(q, w) = {q′}, etc.

It is folklore that for every NFA there is a DFA that accepts the same lan-
guage, and that the regular languages are closed under the usual operations, in
particular union, intersection, complementation, Kleene star, etc. [10].

Finally, we recall the definition of a metric space, i.e. a pair (M,d) of a
set M and a function d : M2 → R

≥0 satisfying the following properties for all
x, y, z ∈ M :

– d(x, y) = 0 iff x = y (identity of indiscernibles),
– d(x, y) = d(y, x) (symmetry),
– d(x, z) ≤ d(x, y) + d(y, z) (the triangular inequality).

2.2 Formal Definition of the Distance Metric

Let Σ be an alphabet. The distance metric presented in the following is defined
as d(L1, L2) = ωλ(L1 Δ L2) where L1 Δ L2 is the symmetric difference of L1

and L2 and ωλ : 2Σ∗ → [0, 1] is a sum-based weight function that assigns a real
number to each language, depending on a parameter λ ∈ Q with 0 < λ < 1.

Let L ⊆ Σ∗ be a language. Let fL : N → Q ∩ [0, 1] be defined as

fL(n) =
|L(n)|
|Σn|

i.e. fL assigns to each number the fraction of all words in Σn that are in L.
The value of ωλ(L) depends on the values of fL(n) for all n ∈ N and, hence,

A Similarity Measure for Formal Languages Based on Geometric Series 83

all of L. In order to derive a finite value from the generally infinite sequence
(fL(n))n∈N, we use the fact that the geometric series

∑∞
i=0 λi converges to 1

1−λ
for all λ ∈ [0, 1). Hence, if we discount the elements of the sequence (fL(n))n∈N

by the corresponding terms of the geometric series, we obtain a finite value, i.e.
for all λ ∈ [0, 1), the infinite sum

∑∞
i=0 λi · fL(i) is well-defined and yields a

value between 0 and 1
1−λ . Clearly, this value is only interesting when λ > 0.

Boundedness of the infinite sum follows from the fact that
∑∞

i=0 λi converges
for λ ∈ [0, 1) and 0 ≤ fL(i) ≤ 1 for all i.

In order to use the above for a similarity measure on languages that has a
fixed range, we normalise the value obtained in the infinite sum to [0, 1]. This
yields, for each λ ∈ (0, 1), the following definition for a function ωλ : 2Σ∗ → [0, 1].

Definition 1. Let λ ∈ (0, 1) and let Σ be an alphabet. Then the sum-based
measure ωλ is defined via

ωλ(L) = (1 − λ) ·
∞∑

i=0

λi · fL(i) = (1 − λ) ·
∞∑

i=0

λi · |L(i)|
|Σi| .

We drop the parameter λ if it is clear from context or not important, and simply
write ω(L). We will use both the characterisation using fL(i) and that using the
fraction, depending on which presentation is more useful in the situation.

Observation 1. For all λ ∈ (0, 1), we have that ωλ(L) = 0 iff L = ∅ and
ωλ(L) = 1 iff L = Σ∗. Moreover, ωλ is strictly monotone, i.e. if L � L′ then
ωλ(L) < ωλ(L′). The converse, is not true: ωλ(L) < ωλ(L′) does not imply
L � L′ as can easily be seen from the example where L = {ε, a} and L′ = {a, aa}
over the alphabet {a}. We have ω0.5(L) = 3

4 > 3
8 = ω0.5(L′).

Finally, if L = L1 ∪̇ L2, then ωλ(L) = ωλ(L1) + ωλ(L2).

From this observation, we conclude that ωλ is well-defined:

Lemma 1. Let Σ be an alphabet and let λ ∈ (0, 1) and let the sum-based func-
tion dλ : 2Σ∗ × 2Σ∗ → [0, 1] be defined via dλ(L1, L2) = ωλ(L1 Δ L2). Then dλ

is a metric on the space of all Σ-languages.

Proof. By Observation 1, dλ(L1, L2) = 0 iff L1 = L2. Next, the definition of dλ

is clearly inherently symmetric since L1 Δ L2 = L2 Δ L1. Hence, it only remains
to show that dλ satisfies the triangular inequality.

Let L1, L2, L3 ⊆ Σ∗. We have to show that dλ(L1, L2) + dλ(L2, L3) ≥
dλ(L1, L3). Since dλ(L1, L3) is defined as ωλ(L1 ΔL3) and since ωλ is monotone
by Observation 1, it is sufficient to observe that if w ∈ L1ΔL3 then w ∈ L1ΔL2

or w ∈ L2 Δ L3 whence L1 Δ L3 can be divided into L1 Δ L3 = D1 ∪̇ D2 such
that D1 ⊆ L1 Δ L2 and D2 ⊆ L2 Δ L3. ��

We now show that ωλ(L) is computable if L is regular and, hence, dλ con-
stitutes a computable distance metric on the regular languages. Since the class

84 F. Bruse et al.

of regular languages is closed under all Boolean operations – in particular sym-
metric differences – and distances are invariant under the formalism used to
represent a language, it suffices to show that, for a DFA A = (Q,Σ, δ, qi, QF),
the value ωλ(L(A)) is computable.

For q ∈ Q, let Lq be the language defined by the automaton Aq =
(Q,Σ, δ, q,QF), i.e. the DFA that results from A by making q the unique start-
ing state. It is well-known that the languages Lq can be characterised recursively
via Lq = χq ∪ ⋃

a∈Σ aLδ(q,a) with χq = {ε} if q ∈ QF and χq = ∅ otherwise. We
can use a similar characterisation for the computation of the values of ωλ(Lq)
for all q. First, by definition we have

ωλ(Lq) = (1 − λ) ·
∞∑

i=0

λi · |L(i)
q |

|Σi| .

The individual terms of this infinite sum are all computable, for example |L(0)
q |

|Σ0|
is 1 if Lq contains the empty word, and 0 otherwise. For i ≥ 1, a word in L

(i)
q is

of the form aw where w ∈ L
(i−1)
δ(q,a). Hence, the fraction |L(i)

q |
|Σi| can be rewritten as

|L(i)
q |

|Σi| =
|⋃a∈Σ aL

(i−1)
δ(q,a)|

|Σi| =

∑
a∈Σ |L(i−1)

δ(q,a)|
|Σi| . (1)

It follows that the infinite sum for ωλ(Lq) can also be rewritten as

ωλ(Lq) = (1 − λ)
(
|L(0)

q | +
∞∑

i=1

λi · |L(i)
q |

|Σi|
)

= (1 − λ) · |L(0)
q | + (1 − λ) ·

∞∑

i=1

λi ·
∑

a∈Σ |L(i−1)
δ(q,a)|

|Σi|

= (1 − λ) · |L(0)
q | + λ · (1 − λ) ·

∞∑

i=1

λi−1 ·
∑

a∈Σ |L(i−1)
δ(q,a)|

|Σ| · |Σi−1|

= (1 − λ) · |L(0)
q | +

λ

|Σ| ·
∑

a∈Σ

(1 − λ) ·
∞∑

i=0

λi ·
|L(i)

δ(q,a)|
|Σi|

= (1 − λ) · |L(0)
q | +

λ

|Σ| ·
∑

a∈Σ

ωλ(Lδ(q,a))

We write tq,q′ for |{a∈Σ|δ(q,a)=q′}|
|Σ| and eq for |L(0)

q |, i.e. eq = 1 if q ∈ QF and
eq = 0 otherwise. Assume that Q = {q1, . . . , qn} for some n. Then the above
equation can be rewritten as

ωλ(Lq) = (1 − λ) · eq + λ · tq,q1ωλ(Lq1) + · · · + λ · tq,qn
ωλ(Lqn

). (2)

A Similarity Measure for Formal Languages Based on Geometric Series 85

From this we derive the following equation system relating the values of ωλ(Lq):

−(1 − λ) · eq1 = (λ · tq1,q1 − 1) · ωλ(Lq1) + · · · +λ · tq1,qn
· ωλ(Lqn

)
...

...
. . .

...
−(1 − λ) · eqn

= λ · tqn,q1 · ωλ(Lq1) + · · · +(λ · tqn,qn
− 1) · ωλ(Lqn

)

(3)

By the above, this system is satisfied by the individual Lq and their weights.
Uniqueness of a solution can be shown in a standard way.

Lemma 2. Let A be a DFA and let E be the set of equations associated to it as
in Eq. 3. Then E possesses a unique solution.

It follows that ωλ(L) is computable if L is regular.

Theorem 2. Let A be a DFA with n states. Then ωλ(L(A)) can be computed
in time O(n3).

The given runtime follows from the well-known complexity of e.g. Gaussian elim-
ination. This does of course not preclude asymptotically better procedures based
on other equation solvers.

It is a standard exercise to construct a DFA for the symmetric difference from
two given DFA via the product construction. This then yields computability of
both the weight function ωλ and the distance metric dλ on regular languages.

Corollary 1. Let L1, L2 be regular and given as a DFAs with n, resp. m states.
Then dλ(L1, L2) can be computed in time O((n · m)3).

Clearly, computability holds also for any other representation that can be
translated into DFA like NFA, (extended) regular expressions, formulas of Mon-
adic Second-Order Logic, etc. with corresponding effect on the overall runtime. A
fair question here concerns the feasibility of this approach for NFA directly with-
out prior determinisation. The problem is that in an NFA a word aw accepted
from some state q may have more than one accepting run. In particular, there
may be different successors q′, q′′ s.t. w ∈ Lq′ ∩ Lq′′ . Since the weight of a lan-
guage accumulates weights of all words in it, the approach sketched above would
either count w several times and thus include aw into Lq with a wrong weight;
or there would have to be some mechanism that intuitively subtracts |Lq′ ∩Lq′′ |
from the nominators occurring in the corresponding terms in the equations above
which, as such, is not well-defined as this set may be infinite.

It is possible to pinpoint exactly where this approach fails for NFA: the second
equality in Eq. 1 simply does not hold for genuinely nondeterministic automata.

2.3 A Comparison with Other Metrics

The sum-based distance metric defined in Lemma 1 is based on the sum-based
weight function ω(L) which accumulates the fractions fL(n) of how many words
of length n are included in L. These infinitely many fractions are then condensed

86 F. Bruse et al.

into a single value by giving non-zero, but exponentially less weight to fractions
associated to longer words. This places a lot of emphasis on whether short words
are in L or not. Thus, finite languages that contain only short words might end
up with a higher weight than infinite languages that contain all but a few short
words, depending on the value of λ.

A different approach to derive one finite value from the infinite sequence
(fL(n))n∈N is to look at possible limits of this sequence, or of similar sequences.
Clearly, already for regular languages the limit limn→∞ fL(n) need not exist at
all (e.g. for the language containing only words of even length). However, this
limit, resp. an asymmetric approximation to it has seen some use in automatic
grading of homework assignments [2]. A related version of this approach relates
not the number of words in L(n) to Σn, but log |L(n)| to n, where convergence still
is not guaranteed. However, in certain settings convergence exists; this goes back
to Shannon [14] under the name channel capacity, see also [6] for an investigation
w.r.t. regular languages. In [8], the upper limit lim supn→∞

|L(n)|
n is taken to

obtain a size measure for languages, and this is computable for regular languages.
Another related notion is that of (conditional) language density [12] where the
denominator langauge in the fraction fL(n) can be any regular language.

As mentioned in the introduction, one can derive distance measures on lan-
guages from distances on words for instance via d(L1, L2) := min{d(w1, w2) |
wi ∈ Li}. This results in a distance measure with very different properties com-
pared to the one defined in the previous section. Since such measures are quite
useless for the application presented in the next section, we do not elaborate any
further on them. Another possible way is to construct a distance measure on lan-
guages based on properties of the shortest word in their symmetric difference.
Again, this completely ignores the structure of the difference except for a finite
part which we discard here for the same reason. Using the Hausdorff distance
yields better properties but the resulting metric is often undecidable [4].

Finally, one can construct distance measures on languages based on syntactic
criteria of their representations. Such measures also have their place in e.g. auto-
mated grading of homework (cf. [2]) but suffer from their inherent flaw that two
representations of the same language may and often will have positive distance.
Moreover, they can often be cheated by taking two objects clearly representing
different languages, but drowning the difference in useless padding, e.g. by adding
similar but unreachable components to two NFAs accepting different languages.

3 Similarity in Formal Language Exercises

3.1 Automatic Assessment and Grading

Formal language theory is a standard part of the syllabi of computer science
programs at universities worldwide. One of the basic competencies taught in
corresponding courses is to understand the representation of a possibly infinite
language by finite means like automata. A standard exercise on the way to
achieving such competencies gives a description of a formal language and asks

A Similarity Measure for Formal Languages Based on Geometric Series 87

students to construct an automaton recognising exactly this language. Construc-
tivistic learning theories require the students to be given adequate feedback on
their solution attempts in order to initiate error-driven learning cycles that will
eventually result in the acquisition of said competencies.

Feedback can be a counterexample to a wrong solution, a hint on where to
look for errors, or – in the simplest form – a grade that puts a numerical value
onto the assessment of how well the task was solved. Exmploying automatic
grading yields several advantages: scalability makes it possible to keep up with
growing student numbers and increased demand for exercises, while digitisation
yields its typical benefits like increased fairness, faster response times and more
focused learning efforts in the absence of human correctors.

Automatic assessment of exercises is an important application for similarity
measures on formal languages. As mentioned in the introduction, any distance
measure can be turned into a similarity measure by inverting (and possibly
scaling) it. In the following, we use sim for the similarity measure on languages
obtained as sim(L1, L2) = s(1−dλ(L1, L2)) for the distance measure dλ defined
in the previous section and some monotonic function s that maps the interval
[0, 1] to a (typically discrete) range of grades or points. We will not discuss
the choice of the scaling function s, as this is highly dependent on the context
dictated by the point scale in use and what teachers may consider to be a “good
enough” solution etc. We discuss the choice of a good discounting factor λ below.

In comparison to other similarity measures found in the literature and men-
tioned in the previous section, sim features some good properties for the grading
task, like well-definedness, effective computability, and – most of all – the fact
that it considers two languages to be very similar when they deviate on few words
only. However, the exponential decline in the weight function w.r.t. word length
puts disproportionately high weights onto short words. Hence, students could
achieve high marks already by covering the shortest words inside and outside of
that language. Worst of all, this would give false learning incentives compara-
ble to what can occur in test-based automatic grading, often to be observed for
instance in the context of programming exercises [7].

There are two ways to remedy this: one can employ a non-linear scaling
function s. This can have undesired effects, as it does not distinguish between the
two situations in which low grades are achieved either by getting many long words
or only some shorts words wrong. We therefore amend sim by redistributing
weights of short words. This requires students’ solutions to capture much larger
parts of the target language in order to achieve high numerical similarity values.

3.2 Redistribution of Weights on Short Words

While some rebalancing of the individual weights associated to words can be
obtained by adjusting the value λ that controls how much weight is given to
each Σn, this still will assign an exponentially smaller weight to words of length
n + 1 compared to those of length n, since all words of length n + 1 together
share λ times the weight as those of length n, but there are |Σ| times more of

88 F. Bruse et al.

them. Hence, we aim to equalise the weight of all words up to a certain length
η, yielding a weighting scheme defined via

ωη
λ(L) = ω′

λ(L(≤η)) + ωλ(L(>η))

where ω′
λ satisfies the following.

– ω′
λ({w}) = ω′

λ({v}) for all w, v ∈ L(≤η), i.e. all words of length up to η
contribute equally to the weight of a language;

– ω′
λ(Σ∗) = ωλ(Σ∗), i.e. on the set of all words this really is a redistribution.

For any L � Σ∗, though, we generally have ωη
λ(L) �= ωλ(L), and depending on

the distribution of words in L(≤η), this rearrangement of weights of words can
result in a higher or lower weight of the overall language. We discuss suitable
choices for η in Sect. 3.4.

In order to compute the rebalancing, we only need the overall weight of all
words of length up to η, and the values of the respective fL(n) for 0 ≤ n ≤ η.
The first value can be computed straightforwardly as (1−λ)·∑η

i=0 λi = 1−λη+1.
Since there are

∑η
i=0 |Σ|i many words of length between 0 and η, the weight of

an individual word of such length is 1−λη+1
∑η

i=0 |Σ|i under the new weighting scheme.
The values of the individual fL(n) are known to be computable [6,14]; we give
a short proof tailored to our notions.

Lemma 3. Let A = (Q,Σ, δ, qi, QF) be a DFA such that L = L(A) and let
n ∈ N. Then the values of fL(0), . . . , fL(n) are computable in combined time
O(n · |Q|3 + |Q|2 · |Σ|).
Proof. Recall the values tq,q′ and eq used in Eq. 3. Note that the tq,q′ define a
|Q| × |Q| matrix M . Let tkq,q′ denote the entry in Mk in the row for q and the
column for q′. Then t1q,q′ = tq,q′ . We claim that

tkq,q′ =
|{w ∈ Σk | δ̂(q, w) = q′}|

|Σ|k (†)

holds for all k ∈ N. For k ≤ 1 this is straightforward. Assume that † holds for
k ≥ 1, we show that it holds for k+1. By the definition of matrix multiplication,

tk+1
q,q′ =

∑

q′′∈Q

tkq,q′′tq′′,q′ =
|{w ∈ Σk | δ̂(q, w) = q′′}|

|Σ|k · |{a ∈ Σ | δ(q′′, a) = q′}|
|Σ|

=
|{wa ∈ Σk+1 | δ̂(q, wa) = q′}|

|Σ|k+1

which proves † for k + 1. But then fL(k) is easily computed as
∑

q∈QF
tkq0,q.

Creating the matrix M1 is done via computing all the tq,q′ which takes time
in O(|Q|2 · |Σ|). Computing fL(k) from Mk takes time in O(|Q|). The main cost
is generated when computing M2, . . . ,Mn. Individual matrix multiplication can
be done in time O(|Q|3) which yields a time of O(n · |Q|3) for all matrices.1 ��
1 Actual matrix multiplication can be done in time O(|Q|2.37286), cf. e.g. [1]. We state

the cubic runtime here for the sake of readability.

A Similarity Measure for Formal Languages Based on Geometric Series 89

If all the fL(k) are known for k ≤ η, the rebalanced weight of L is obtained via
subtracting the sum of the weights of words under the old weight and re-adding
them with their new weight, which yields

ωη
λ(L) = ωλ(L) −

η∑

i=0

fL(i) · λi +
η∑

i=0

fL(i) · cη
λ · |Σ|i,

where cη
λ = 1−λη+1

∑η
j=0 |Σ|j is the weight of an individual word of length η or less under

the new weighting scheme.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 1. Comparison of the weights of symmetric difference of the submitted automata
and Labba using ω5

0.87 on the x-axis. Left plot: weight using ω0
0.87 (blue), resp. ω10

0.87

(red) on the y-axis. Right plot: weight using ω5
0.5 (blue), resp. ω5

0.99 (red) on the y-axis.
(Color figure online)

3.3 An Implementation and Test Cases

There is an implementation of a procedure that computes similarity values
between regular languages based on the weight functions ωη

λ, or just the weights
of such languages. Inputs are accepted as NFA in a straight-forward format;
these are turned into DFA using the standard powerset construction. The imple-
mentation is written in Python3 and is publicly available.2

Also included are various methods for visualising the effect that different
choices of η and λ have on weight distributions. These can help to determine
optimal parameter values in a concrete use case. Finally, we also provide, in
this repository, a data set of 754 NFA taken from students’ homework exercises
asking for the construction of an NFA for some particular language.

On average, similarity of one of these submissions to a model solution was
computed in 0.089 s for a total of 754 submissions on a desktop PC with four
2.40 GHz Cores and 8 GB RAM. The tests are run on a single core under Win-
dows 10. Calculations for most automata were made significantly faster than
0.089 s with only a few showing runtimes in the range of seconds.
2 https://github.com/maurice-herwig/wofa.git.

https://github.com/maurice-herwig/wofa.git

90 F. Bruse et al.

3.4 Empirical Determination of Good Parameter Values

We close this section with a brief discussion on what are good values for the
parameters η and λ in the context of automated grading of homework assign-
ments, using the collected data for the target language Labba := Σ∗ \Σ∗abbaΣ∗,
where Σ = {a, b}, as a benchmark. Out of the 174 submissions for this exercise,
75 correctly capture Labba and are omitted from this discussion, as their distance
is 0 under any parameter configuration.

In Fig. 1, we plot the weights of all these automata under different settings
for η and λ. The default values are λ = 0.87 and η = 5, the latter chosen as the
length of the longest acyclic path through the standard 5-state DFA for Labba.
Then λ is chosen such that exactly half of the potential weight is assigned to
words of length up to η.

In the left plot of Fig. 1, the distances between a correct DFA for Labba

and the NFA from the benchmark set are compared to those under two dif-
ferent values of η, namely 0 (no rebalancing) and 10 (more rebalancing). The
x-axis denotes weights (of the symmetric difference) under ω5

0.87; the y-axis their
weights under ω0

0.87 (squares) resp. ω10
0.87 (triangles). From the clustering of points

in the left lower corner it is apparent that automata which define a language close
to Labba receive similar distances in either setting. Some automata with weight
around 0.1 under ω5

0.87 have a much higher weight under ω0
0.87, i.e. they benefit

from the rebalancing. These are solution attempts that wrongly categorise short
words such as ε, which the rebalancing penalises less strongly. For most other
automata, rebalancing increases the weight. This is due to mistakes which only
manifest themselves on longer words, in particular those that induce cycles in
the automata. We conclude from this data set that rebalancing all words up to
at least the length of the longest cycle-free path in the automaton is a viable
way to make the distance metric put weight onto words more evenly.

For variations of the parameter λ (right plot in Fig. 1), we obtain a different
picture. Here, the x-axis represents automata weights under ω5

0.87, and the y-axis
shows their weights under ω5

0.5 (squares) resp. ω5
0.99 (triangles). There is little

difference between λ = 0.5 and λ = 0.87 in the presence of moderate rebalancing.
However, the extreme choice of λ = 0.99 pushes most of the potential weigh out of
the rebalancing zone and heavily de-emphasises short words. However, almost all
long words do not belong to Labba (cf. the limit based distance metrics discussed
in Sect. 2.3), whence any automaton that rejects many words due to any reason
will receive a low weight under this scheme. The few automata with high weight
under this scheme all reject almost no words. Hence, extremely high values of λ
may not make for a good and levelled similarity measure, especially when many
deviations from the target language manifest themselves already on short words,
i.e. those that use only one or two cycles in the automaton. All in all, the exact
choice of λ appears to be less important in the presence of rebalancing.

A Similarity Measure for Formal Languages Based on Geometric Series 91

4 Conclusion

We have introduced a new distance metric for formal languages based on con-
vergent geometric series. This guarantees some nice properties, in particular
well-definedness and effective computability for regular languages. The tech-
niques employed here are not new; the use of discounting of values of words that
decrease exponentially in their lengths can be seen in various concepts found in
formal language theory. Yet, the distance metric introduced here, resp. the sim-
ilarity measures drawn from it, especially after rebalancing the weights of short
words, seem to be the first to be used in the application domain of automatic
grading, and which provide properties like well-definedness etc.

Work in this area can be continued in several ways. An obvious question
that arises asks for an effective way to compute distances between languages
represented by nondeterministic models, without explicitly determinising them
first. As argued at the end of Sect. 2.2, the method presented here cannot be
applied to NFA directly. However, the argument leaves open the possibility that
it may work for unambiguous NFA. Besides that, it of course remains to be seen
whether the weight of a language of a truly nondeterministic finite automaton
can be calculated directly, as this may be useful for efficiency purposes in other
application areas. Another question to investigate concerns the nature of the
equation systems representing the weights of languages per DFA state. It remains
to be seen if these fall into some class for which better solving methods are known,
like sparse matrices for instance.

References

1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication.
In: Proceedings ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pp.
522–539. SIAM (2021). https://doi.org/10.1137/1.9781611976465.32

2. Alur, R., D’Antoni, L., Gulwani, S., Kini, D., Viswanathan, M.: Automated grad-
ing of DFA constructions. In: Proceedings 23rd International Joint Conference on
Artificial Intelligence, IJCAI 2013, pp. 1976–1982. IJCAI/AAAI (2013)

3. Ashby, F.G., Ennis, D.M.: Similarity measures. Scholarpedia 2(12), 4116 (2007)
4. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-

tions. Theor. Comput. Sci. 286(1), 117–138 (2002). https://doi.org/10.1016/
S0304-3975(01)00238-9. Mathematical Foundations of Computer Science

5. Choi, S., Cha, S.H., Tappert, C.: A survey of binary similarity and distance mea-
sures. J. Syst. Cybern. Inf. 8 (2009)

6. Chomsky, N., Miller, G.A.: Finite state languages. Inf. Control. 1(2), 91–112
(1958). https://doi.org/10.1016/S0019-9958(58)90082-2

7. Combéfis, S.: Automated code assessment for education: review, classification and
perspectives on techniques and tools. Software 1(1), 3–30 (2022). https://doi.org/
10.3390/software1010002

8. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Similarity in languages and pro-
grams. Theor. Comput. Sci. 498, 58–75 (2013). https://doi.org/10.1016/j.tcs.2013.
05.040

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1016/S0304-3975(01)00238-9
https://doi.org/10.1016/S0304-3975(01)00238-9
https://doi.org/10.1016/S0019-9958(58)90082-2
https://doi.org/10.3390/software1010002
https://doi.org/10.3390/software1010002
https://doi.org/10.1016/j.tcs.2013.05.040
https://doi.org/10.1016/j.tcs.2013.05.040

92 F. Bruse et al.

9. Furht, B. (ed.): Distance and Similarity Measures, pp. 207–208. Springer, Boston
(2006). https://doi.org/10.1007/0-387-30038-4 63

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, N. Reading (1979)

11. Ifenthaler, D.: Measures of similarity. In: Seel, N.M. (Ed.) Encyclopedia of the
Sciences of Learning, pp. 2147–2150. Springer, New York (2012). https://doi.org/
10.1007/978-1-4419-1428-6 503

12. Kozik, J.: Conditional densities of regular languages. Electr. Notes Theor. Comput.
Sci. 140, 67–79 (2005). https://doi.org/10.1016/j.entcs.2005.06.023

13. Pearson, W.R.: An introduction to sequence similarity (“homology”) search-
ing. Current Protoc. Bioinf. 42(1), 3.1.1–3.1.8 (2013). https://doi.org/10.1002/
0471250953.bi0301s42

14. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

https://doi.org/10.1007/0-387-30038-4_63
https://doi.org/10.1007/978-1-4419-1428-6_503
https://doi.org/10.1007/978-1-4419-1428-6_503
https://doi.org/10.1016/j.entcs.2005.06.023
https://doi.org/10.1002/0471250953.bi0301s42
https://doi.org/10.1002/0471250953.bi0301s42
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Hybrid Tree Automata and the Yield
Theorem for Constituent Tree Automata

Frank Drewes1, Richard Mörbitz2(B), and Heiko Vogler2

1 Ume̊a University, Ume̊a, Sweden
2 Technische Universität Dresden, Dresden, Germany

richard.moerbitz@tu-dresden.de

Abstract. We introduce an automaton model for recognizing sets of
hybrid trees, the hybrid tree automaton (HTA). Special cases of hybrid
trees are constituent trees and dependency trees, as they occur in nat-
ural language processing. This includes the cases of discontinuous con-
stituent trees and non-projective dependency trees. In general, a hybrid
tree is a tree over a ranked alphabet in which symbols can additionally
be equipped with an index, i.e., a natural number which indicates the
position of that symbol in the yield of the hybrid tree. As a special case
of HTA, we define constituent tree automata (CTA) which recognize sets
of constituent trees. We show that the set of yields of a CTA-recognizable
set of constituent trees is an LCFRS language, and vice versa.

1 Introduction

In order to specify the syntax of natural languages in a finite manner, two very
prominent types of formal grammars have been considered: context-free gram-
mars (CFG) [2] and linear context-free rewriting systems (LCFRS) [7,13,14].

Although being string grammars, each parse of a natural language sentence
by such a grammar results in a tree-like analysis of the sentence, which can
be viewed as the description of its syntactic structure. Due to the ambiguity of
natural language, parsing a sentence can lead to a whole set of such analyses. The
forms of analyses in which we are interested in this paper are constituent trees
[11] and dependency trees [9,10]. They can be discontinuous or non-projective,
respectively, as shown in Fig. 1. There, the order in which the words occur in a
natural language phrase or sentence is indicated by indices next to the symbols,
e.g., helpen〈5〉 means that the word “helpen” occupies position 5 of the phrase.
Constituent trees and dependency trees are special cases of hybrid trees [5]. In
general, a hybrid tree ξ is a tree over some ranked alphabet of symbols and of
indexed symbols such that no two positions of ξ carry the same index.

The question arises, for which classes of hybrid tree languages there exist
automaton models which directly recognize these classes. For the class generated
by CFG (i.e., continuous constituent trees), finite-state tree automata (FTA)
[4,6] serve this purpose. The following might be called the yield theorem for
FTA [1,3]: a string language L is context-free if and only if there exists an FTA
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 93–105, 2022.
https://doi.org/10.1007/978-3-031-07469-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_7

94 F. Drewes et al.

VP

V

hat〈1〉 gekocht〈3〉

schnell〈2〉

(a) (b) zag〈4〉

Jan〈1〉 helpen〈5〉

Piet〈2〉 lezen〈6〉

Marie〈3〉

Fig. 1. (a) Discontinuous constituent tree for the German phrase “hat schnell gekocht”,
(b) non-projective dependency tree for the Dutch phrase “Jan Piet Marie zag helpen
lezen” where we have ignored dependency labels at the edges.

A such that L is equal to the set of yields of trees recognized by A (where the
yield of a tree is obtained by concatenating its leaf labels from left to right).

We introduce hybrid tree automata (HTA) as a generalization of FTA. Each
HTA recognizes a set of hybrid trees. In each transition, the HTA can constrain
the indices occurring in subtrees below the current tree position and at this
position. The yield of a tree is generalized to hybrid trees by arranging the
indexed symbols in the order of their indices and ignoring symbols which do not
carry an index. By means of examples, we demonstrate that HTA can be used
to specify and recognize sets of constituent trees and dependency trees. Since
index constraints are unrestricted, HTA are computationally very powerful.

As a restriction of HTA, we define constituent tree automata (CTA) which
are mild extensions of FTA. A CTA recognizes a set of constituent trees. We
introduce an inductively defined semantics of CTA for which we establish a
yield theorem: the set of yields of a CTA-recognizable hybrid tree language is
an LCFRS language, and vice versa. Moreover, we consider the projection of
hybrid trees to ordinary trees (by removing the indices). We show that the class
of such projections of CTA-recognizable hybrid tree languages is the class of
FTA-recognizable tree languages.

As another restriction of HTA, we can define dependency tree automata
(DTA). Interesting questions for further research are the existence of a yield
theorem for DTA and their relationship to FTA. Here we do not deal with DTA.

2 Preliminaries

The Set N and Intervals. The set {0, 1, . . .} of all natural numbers is denoted by
N; and N+ = N \ {0}. For every k, � ∈ N, we let [k, �] = {i ∈ N | k ≤ i ≤ �}.
Thus [k, �] = ∅ for k > �. We abbreviate [1, �] by [�].

Hybrid Tree Automata and the Yield Theorem 95

The set I of all intervals (of N+) is given by I = {[k, �] | k, � ∈ N+ and k ≤ �}.
For all I, I ′ ∈ I, the expression I < I ′ holds if max I < min I ′, and the expression
I � I ′ holds if max I + 1 = min I ′. Thus I � J implies I < J .

Strings. The set of all strings over some set A is denoted by A∗; ε is the empty
string. For w = a1 · · · ak in A∗ with k ∈ N and a1, . . . , ak ∈ A, the length of w,
denoted by |w|, is k. For each k ∈ N, the set of strings of length k over A is
denoted by Ak. We identify strings of length k and k-tuples, e.g., we identify the
string abbc and the tuple (a, b, b, c). Then, also, we have (abb, cb, aa) ∈ (A∗)∗.

Trees. A ranked set is a non-empty set Σ together with a mapping rk: Σ → N

(rank mapping). A ranked set is a ranked alphabet if its set is finite. For each
k ∈ N, we let Σ(k) = rk−1(k). In examples we will show the rank of a symbol as
a superscript in parentheses, e.g., a(k) if rk(a) = k.

The set TΣ of trees over Σ is defined in the usual way, i.e., a tree has the form
a(ξ1, . . . , ξk) where k ∈ N, a ∈ Σ(k), and ξ1, . . . , ξk are trees. The set of positions
of trees is defined by the function pos : TΣ → P((N+)∗) in the usual way. For
the tree ξ′ in Fig. 2 (right), we have pos(ξ′) = {ε, 1, 11, 111, 112, 2, 21, 22}. Let
ξ ∈ TΣ and w ∈ pos(ξ). Also the label of ξ at w, denoted by ξ(w), and the
subtree of ξ at w, denoted by ξ|w, are defined as usual.

Indexed Symbols and Hybrid Trees. The ranked set of indexed Σ-symbols, denoted
by Σ〈N+〉, is the ranked set such that Σ〈N+〉(k) = {a〈n〉 | a ∈ Σ(k), n ∈ N+}.
An element a〈n〉 is an indexed symbol and n is the index of a〈n〉. The ranked set
(Σ, N+) is defined by (Σ, N+)(k) = Σ(k) ∪Σ〈N+〉(k) for each k ∈ N. (We assume
that Σ and Σ〈N+〉 are disjoint.) The mapping (.)Σ : (Σ, N+) → Σ maps each
α ∈ (Σ, N+) to its Σ-component; the mapping (.)N : (Σ, N+) → P(N+) maps
each a〈n〉 to {n} and each a to ∅. These mappings are generalized in a canonical
way to mappings (.)Σ : T(Σ,N+) → TΣ and (.)N : T(Σ,N+) → P(N+) (cf. Fig. 2).

A tree ξ ∈ T(Σ,N+) is a hybrid tree if, for all distinct positions w,w′ ∈ pos(ξ),
it holds that (ξ(w))N ∩ (ξ(w′))N = ∅ (e.g., ξ in Fig. 2 is a hybrid tree). Thus, in
a hybrid tree each index occurs at most once. The set of all hybrid trees over Σ
is denoted by HΣ . Any set of hybrid trees is called a hybrid tree language.

The mapping yield : HΣ → (Σ∗)∗ is defined such that yield(ξ) is the tuple
of strings obtained from the set of all indexed symbols occurring in ξ as fol-
lows. We sequentialize this set according to its indices (turning each gap into
a comma), and then we drop the indices. For the hybrid tree ξ in Fig. 2, the
set of indexed symbols is {b〈2〉, a〈3〉, a〈4〉, d〈7〉, c〈9〉}, its sequentialization is
(b〈2〉a〈3〉a〈4〉, d〈7〉, c〈9〉), and thus yield(ξ) = (baa, d, c).

Intuitively, a hybrid tree ξ ∈ HΣ is continuous if it has no subtree ξ′ such
that an index outside of ξ′ is interleaved into the set of indices of ξ′. Moreover,
at each node the indices of the ith subtree are smaller than those in the (i+1)st
subtree. Formally, we say that ξ is continuous if for each w ∈ pos(ξ):

(i) there do not exist m ∈ (ξ)N \ (ξ|w)N and n, n′ ∈ (ξ|w)N with n < m < n′ and
(ii) if ξ|w = α(ξ1, . . . , ξk), then (ξi)N < (ξj)N for all i, j ∈ [k] with i < j.

96 F. Drewes et al.

ξ ∈ HΣ :

a

b〈2〉

a〈4〉

c d〈7〉

a〈3〉

c c〈9〉

a

b

a

c d

a

c c

ξ′ ∈ TΣ :

(baa, d, c)

{2, 3, 4, 7, 9}

(.)Σ

(.)N

yield

Fig. 2. Illustration of several mappings defined on T(Σ,N+).

Thus, the hybrid trees in Fig. 1 and Fig. 2 are not continuous.

Constituent Trees and Dependency Trees. A hybrid tree ξ ∈ HΣ is a constituent
tree if each leaf is labeled by an element of Σ〈N+〉 and each non-leaf is labeled
by a symbol of Σ (i.e., ξ ∈ HΣ ∩TΔ where Δ = Σ(0)〈N+〉 ∪ Σ \ Σ(0), Fig. 1(a)).
We note that, for each continuous constituent tree ξ for which (ξ)N is an interval,
yield(ξ) is the usual concatenation of leaf labels from left to right. A hybrid tree
ξ ∈ HΣ is a dependency tree if each position of ξ is labeled by an element of
Σ〈N+〉 (i.e., ξ ∈ HΣ ∩ TΣ〈N+〉, Fig. 1(b)).

FTA. A finite-state tree automaton (for short: FTA) is defined in the usual way
as a tuple A = (Q,Σ, δ, F) where Q is a finite set of states, Σ is a ranked
alphabet of input symbols, δ ⊆ ⋃

k∈N
Qk × Σ × Q is a set of transitions, and

F ⊆ Q is a set of final states.
Let ξ ∈ TΣ . A run of A on ξ is a mapping ρ : pos(ξ) → Q. It is valid if for

all w ∈ pos(ξ) with ξ(w) ∈ Σ(k) it holds that (ρ(w·1) · · · ρ(w·k), ξ(w), ρ(w)) ∈ δ,
and it is accepting if it is valid and ρ(ε) ∈ F . The tree language recognized by A,
denoted by L(A), is the set of all trees over Σ for which there is an accepting run.

LCFRS. We recall the concept of linear context-free rewriting systems (LCFRS).
For instance, we consider the LCFRS G which has the rules as shown in Fig. 3.
The symbols S,D,A,B are the nonterminals and a, b are the terminals of G. Each
nonterminal X has a fanout fo(X) and it generates a tuple of fo(X) terminal
strings. The variable xj

i represents the jth component of the tuple of strings
which is generated by the ith nonterminal of the right-hand side of the rule.

We allow an LCFRS to have a set of initial nonterminals, each of fanout 1.
The finite set of terminal symbols is Δ. Each rule has the form A → e(A1, . . . , Ak)
where e is a tuple of fo(A) words over Δ and the set X(fo(A1),...,fo(Ak)) = {xj

i |
i ∈ [k], j ∈ [fo(Ai)]} of variables; each variable in that set occurs exactly once
in e. For each κ ∈ (N+)k with k ∈ N, we denote by W

n
κ(Δ) the set of all such

word tuples of length n with variables from Xκ, for short: (n, κ)-word tuples. For
instance, (x1

1x
1
2, x

2
1x

2
2) ∈ W

2
(2,2)(∅) and (a) ∈ W

1
()({a}). An (n, κ)-word tuple e is

monotone if for every xj1
i , xj2

i ∈ Xκ, if j1 < j2, then xj1
i occurs left of xj2

i in e.

Hybrid Tree Automata and the Yield Theorem 97

S → (x1
1x

1
2x

2
1x

2
2) D, D

)
D → (x1

1x
1
2, x

2
1x

2
2) D, D

)
D → (x1

1, x
1
2) A, A

)
D → (x1

1, x
1
2) B, B

)
A → (a)
B → (b)

S → (x1
1x

1
2x

2
1x

2
2) D, D

)

D → (x1
1, x

1
2) A, A

)

A → a A → a

D → (x1
1, x

1
2) B, B

)

B → b B → b

Fig. 3. The rules of the example LCFRS G where S is the initial nonterminal and
fo(S) = fo(A) = fo(B) = 1 and fo(D) = 2, and a rule tree d ∈ RTG with π(d) = abab.

Each word tuple determines how the strings contained in the tuples gen-
erated by the nonterminals on the right-hand side are combined into a tuple
of strings for the left-hand side nonterminal. For instance, the word tuple e =
(bx1

2ax1
1x

3
2, acx2

2x
2
1a) in W

2
(2,3)({a, b, c, d}) induces the word function [[e]] : (Δ∗)2×

(Δ∗)3 → (Δ∗)2 with [[e]]((w1
1, w

2
1), (w

1
2, w

2
2, w

3
2)) = (bw1

2aw1
1w

3
2, acw2

2w
2
1a).

We consider each rule A → e(A1, . . . , Ak) as a k-ary symbol. The set RTG
of rule trees of G is the set of all trees over R such that, if a node has the
label A → e(A1, . . . , Ak), then the rules labeling its k children have left-hand
sides A1, . . . , Ak (Fig. 3). The mapping π : RTG → (Δ∗)∗ applies in a bottom-up
manner, at each position w of the rule tree d, the word function [[e]] where e is the
word tuple in the rule d(w). The language L(G) generated by G is the set of all
strings w ∈ Δ∗ such that there exists a rule tree d ∈ RTG with an initial rule (i.e.,
a rule whose left-hand side is an initial nonterminal) at its root and π(d) = w.
The language generated by our example LCFRS G is {ww | w ∈ {a, b}+, |w| ≥ 2}.

Let G be an LCFRS. We call G an n-LCFRS if the maximum of the fanout of
its nonterminals is n. We call G simple if, for each rule A → e(A1, . . . , Ak) with
k ≥ 1, the word tuple e does not contain terminal symbols and, for each rule
A → e (i.e., k = 0), we have fo(A) = 1 and e = (a) for some terminal symbol a.
We call G monotone if the word tuple of each rule is monotone. In particular, a
context-free grammar is nothing else but a monotone 1-LCFRS.

3 The Basic Model

Intuitively, a hybrid tree automaton is an FTA in which each transition on a k-
ary input symbol contains an additional k-ary index constraint. Such a constraint
ic is a set of pairs (U1 · · · Uk, U) where U1, . . . , Uk, U are pairwise disjoint sets of
indices with |U | ∈ {0, 1}. Now the transition is only applicable to an input tree ξ
at position w if the sets of indices of the subtrees of ξ|w and the set of indices of
the symbol ξ(w) satisfy the constraint ic, i.e., if ((ξ|w·1)N · · · (ξ|w·k)N, ξ(w)N) ∈ ic.

Formally, we let IC =
⋃

k∈N
ICk where ICk = ICk,0 ∪ ICk,1 and ICk,i (for i ∈

{0, 1}) is the set of all (U1 · · · Uk, U) ∈ P(N+)k × P(N+) in which U1, . . . , Uk, U
are pairwise disjoint and |U | = i. Thus, e.g., IC0,1 = {(ε, {i}) | i ∈ N+}. A k-ary
index constraint is a subset of ICk.

98 F. Drewes et al.

A hybrid tree automaton (HTA) is a tuple A = (Q,Σ, δ, F) where Q is a
finite set of states, Σ is a ranked alphabet, and δ is a finite set of transitions;
each transition has the form (q1 · · · qk, a, ic, q) where k ∈ N, q1, . . . , qk, q ∈ Q,
a ∈ Σ(k), and ic is a k-ary index constraint; moreover, F ⊆ Q (final states).

Let A = (Q,Σ, δ, F) be an HTA. We consider Q×P(IC) as a ranked alphabet
with (Q×P(IC))(k) = Q×P(ICk) (k ∈ N). A run of A is a tree over Q×P(IC).
Let ξ ∈ T(Σ,N+). A run ρ is a run on ξ if pos(ρ) = pos(ξ). For a pair p ∈
Q × P(IC), let us denote the projections onto its components by pQ and pIC,
respectively. A run ρ on ξ is valid or consistent if the respective property holds
for each w ∈ pos(ξ):

– valid for ξ:
(
ρ(w·1)Q · · · ρ(w·k)Q, ξ(w)Σ , ρ(w)IC, ρ(w)Q

) ∈ δ and
– consistent for ξ:

(
(ξ|w·1)N · · · (ξ|w·k)N, ξ(w)N

) ∈ ρ(w)IC.

Since ρ(w)IC is an index constraint, the sets (ξ|w·1)N, . . . , (ξ|w·k)N, ξ(w)N are
pairwise disjoint for each w ∈ pos(ξ). Hence the existence of a consistent run
on ξ ∈ T(Σ,N+) guarantees that ξ ∈ HΣ . A run ρ of A on ξ is accepting if ρ is
valid and consistent for ξ and ρ(ε)Q ∈ F . The sets of valid runs and accepting
runs of A on ξ are denoted by Rv

A(ξ) and Ra
A(ξ) respectively. The hybrid tree

language recognized by A is the set L(A) = {ξ ∈ HΣ | Ra
A(ξ) �= ∅}. A hybrid tree

language L ⊆ HΣ is recognizable if there exists an HTA A such that L = L(A).

Example 1. Let Σ = {c(2), a(0), b(0)}. We define an HTA A such that L(A) is a
set of constituent trees and yield(L(A)) = {uu | u ∈ {a, b}+, |u| ≥ 2}. We let
A = ({qa, qb, q, qf}, Σ, δ, {qf}) where δ consists of the transitions (ε, z, ic1, qz)
and (qzqz, c, ic2, q) for each z ∈ {a, b}, and (qq, c, ic3, q) and (qq, c, ic4, qf);

ic1 = IC0,1,

ic2 = {({i}{j}, ∅) ∈ IC2,0 | i, j ∈ N+, i < j},

ic3 = {((I ∪ J)(I ′ ∪ J ′), ∅) ∈ IC2,0 | I, I ′, J, J ′ ∈ I, I � I ′ < J � J ′}, and
ic4 = {((I ∪ J)(I ′ ∪ J ′), ∅) ∈ IC2,0 | I, I ′, J, J ′ ∈ I, I � I ′

� J � J ′}.

Intuitively, ic3 expresses that the yield of the first subtree consists of two sub-
strings u1 and u2 (i.e., the respective sets I and J of positions form two intervals),
and the same holds for the second subtree (with u′

1, u′
2, I ′, and J ′); moreover,

u1 and u′
1 can be put together (due to I � I ′), and the same holds for u2 and u′

2

(due to J � J ′); in the complete yield, u1u
′
1 occurs left of u2u

′
2 (due to I ′ < J).

In Fig. 4 we illustrate a hybrid tree ξ and an accepting run ρ of A on ξ. For
instance, at position 2 the HTA A can apply the transition (qq, c, ic3, q) because
({2, 5}{3, 6}, ∅) ∈ ic3 (using I = {2}, J = {5}, I ′ = {3}, J ′ = {6}). We have
yield(ξ|2) = (bb, bb). The final transition (qq, c, ic4, qf) guarantees that (ξ)N is an
interval, thus yield(ξ) = abbabb. In general, for every ξ ∈ L(A) and w ∈ pos(ξ)
with ξ(w) = c, there exists u ∈ {a, b}+ with yield(ξ|w) ∈ {uu, (u, u)}. �

Example 2. Let Σ = {a
(2)
2 , b

(2)
2 , a

(1)
1 , b

(1)
1 , a

(0)
0 , b

(0)
0 }, where subscripts distinguish

differently ranked versions of a and b. We define an HTA A such that ξ ∈ L(A)

Hybrid Tree Automata and the Yield Theorem 99

c

c

a〈1〉 a〈4〉
c

c

b〈2〉 b〈5〉
c

b〈3〉 b〈6〉

(qf , ic4)

(q, ic2)

(qa, ic1)

(q, ic3)

(q, ic2)

(qb, ic1)

(q, ic2)
(qa, ic1)

(qb, ic1) (qb, ic1) (qb, ic1)

Fig. 4. A visualization of a constituent tree ξ and an accepting run ρ ∈ Ra
A(ξ), where

the states and index constraints of ρ are written next to or below the positions of ξ.

if the following four properties hold. (1) ξ is a dependency tree. (2) ξ is a left-
growing comb of which the spine finishes with a unary symbol (cf. Fig. 5). (3)
Ignoring subscripts, the two strings obtained from ξ by reading from left to right
(a) the leaf labels and (b) the spine labels, respectively, are the same (e.g., for ξ
in Fig. 5 this string is aab). (4) yield(ξ) = uu for some u ∈ {a, b}+ with |u| ≥ 2.

We let A = ({qa, qb, q, qf}, Σ, δ, {qf}) where δ consists (for each z ∈ {a, b}) of
the transitions (ε, z0, ic1, qz), (qz, z1, ic2, q), (qqz, z2, ic3, q), and (qqz, z2, ic4, qf);

ic1 = IC0,1,

ic2 = {({i}, {j}) ∈ IC1,1 | i, j ∈ N+, i < j},

ic3 = {((I ∪ J){i}, {j}) ∈ IC2,1 | i, j,∈ N+, I, J ∈ I, I � {i}, J � {j}}, and
ic4 = {((I ∪ J){i}, {j}) ∈ IC2,1 | i, j,∈ N+, I, J ∈ I, I � {i} � J � {j}}.

Figure 5 shows a dependency tree ξ and an accepting run ρ of A on ξ. For
instance, the automaton A can apply at position 1 the transition (qqa, a2, ic3, q)
because ({1, 4}{2}, {5}) ∈ ic3 with I = {1} and J = {4}. We have yield(ξ|1) =
(a0a0, a1a2) and yield(ξ) = a0a0b0a1a2b2. �

4 Constituent Tree Automata

In index constraints, the relationship between the index sets is not per se
restricted and may thus not even be computable. Thus, HTA are very pow-
erful and must be restricted to constitute meaningful models of computation. In
this section, we introduce constituent tree automata as particular HTA in which
the index constraints are restricted: the index constraint of transitions on non-
nullary symbols is determined by means of a word tuple e over ∅ (as for simple
LCFRS) and assignments of intervals to variables in e; transitions on nullary
symbols use as index constraint the full set IC0,1.

Formally, let e be in W
n
κ(∅) with κ = (�1, . . . , �k) in (N+)k and k ∈ N+. A κ-

assignment is a mapping ϕ : Xκ → I such that ϕ(x)∩ϕ(y) = ∅ for every x, y ∈ Xκ

with x �= y. We let seq(ϕ) denote the string U1 · · · Uk where Ui =
⋃

j∈[�i]
ϕ(xj

i).
We say that ϕ models e, denoted by ϕ |= e, if the following expression e′

holds: e′ is obtained from e by (a) writing � between each two consecutive

100 F. Drewes et al.

b2〈6〉

a2〈5〉

a1〈4〉

a0〈1〉

a0〈2〉

b0〈3〉

(qf , ic4)

(q, ic3)

(q, ic2)

(qa, ic1)

(qa, ic1)

(qb, ic1)

Fig. 5. A visualization of a dependency tree ξ and an accepting run ρ ∈ Ra
A(ξ), where

the states and index constraints of ρ are written next to the positions of ξ.

variables, (b) replacing each comma by <, and (c) replacing each variable xj
i by

ϕ(xj
i). For instance, for e = (x1

2x
1
1x

3
2, x

2
2x

2
1) in W

2
(2,3)(∅) and the (2, 3)-assignment

ϕ(x1
1) = {2, 3}, ϕ(x2

1) = {8, 9}, ϕ(x1
2) = {1}, ϕ(x2

2) = {7}, and ϕ(x3
2) = {4},

we have that e′ = {1} � {2, 3} � {4} < {7} � {8, 9} holds. We denote by
IC(e) the index constraint {(seq(ϕ), ∅) | ϕ a κ-assignment and ϕ |= e}; note
that IC(e) ⊆ ICk.

An HTA A = (Q,Σ, δ, F) is a constituent tree automaton (CTA) if there
exists a mapping fo : Q → N+ (fanout-mapping) such that, for each transition
(q1 · · · qk, a, ic, q) in δ, the following holds:

– if k = 0, then fo(q) = 1 and ic = IC0,1,
– if k > 0, then there is an e ∈ W

fo(q)
(fo(q1),...,fo(qk))

(∅) such that ic = IC(e); in this
case, we specify the transition by (q1 · · · qk, a, e, q).

Let A = (Q,Σ, δ, F) be a CTA. It is final state normalized if fo(F) = {1}. It
is a n-CTA (n ∈ N+) if max fo(Q) ≤ n. It is monotone if the word tuple in each
transition is monotone.

Example 3. We consider the string language L = {uu | u ∈ {a, b}+, |u| ≥ 2}
from Example 1 and construct a 2-CTA A such that yield(L(A)) = L. We
let A = ({qa, qb, q, qf}, Σ, δ, {qf}) where Σ = {c(2), a(0), b(0)}, the fanout of
the states qa, qb, and qf is 1 and fo(q) = 2. For each z ∈ {a, b}, δ con-
tains the transitions (ε, z, IC0,1, qz), (qzqz, c, (x1

1, x
1
2), q), (qq, c, (x1

1x
1
2, x

2
1x

2
2), q),

and (qq, c, (x1
1x

1
2x

2
1x

2
2), qf). In fact, A is final state normalized and monotone. �

Inspired by the semantics of LCFRS, we wish to define an inductive semantics
for CTA. Let us consider a CTA A, a constituent tree ξ, and a valid run ρ of A
on ξ. Now we wish to define inductively a family

P(ξ, ρ) =
(
(Θw, ϕ̂w) | w ∈ pos(ξ) \ leaves(ξ)

) ∪ (
Θw | w ∈ leaves(ξ)

)

such that the following is true at every position w ∈ pos(ξ), where n is the fanout
of ρ(w)Q and κ = (fo(ρ(w·1)Q) · · · fo(ρ(w·rk(ξ(w)))Q):

Hybrid Tree Automata and the Yield Theorem 101

a

b

c d

Θ1 = ({1, 2}, {3, 5}, {6, 7})

Θ11 = ({1}, {5}) Θ12 = ({2}, {3}, {6, 7})

(q2, (x1
1 , x2

1 x3
1))

ϕ̂ε:

�→ �→ �→

{1, 2}{3, 5}{6, 7}

(q3, (x1
1 x1

2 , x2
1 x2

2 , x3
2))

ϕ̂1:

�→ �→ �→ �→ �→
{1}{2} {5}{3} {6, 7}

.

Fig. 6. Fragments of a constituent tree ξ, a run of some (unspecified) CTA A on ξ,
and the family Θ = (Θw | w ∈ pos(ξ)).

(i) Θw = (Θ1
w, . . . , Θn

w) is the partitioning of (ξ|w)N into n intervals such that
(a) if w is a leaf, then Θw = ((ξ|w)N) (recall that, in this case, n = 1 and
(ξ|w)N is a singleton) and (b) if w is not a leaf, then

Θ�
w =

⋃
(Θj

w·i | xj
i occurs in the �th component of ρ(w)IC).

(ii) if w is not a leaf, then ϕ̂w is the unique κ-assignment where ϕ̂w(xj
i) is the

jth interval in the partitioning Θw·i for all i ∈ [k] and j ∈ [fo(ρ(w·i)Q)],
and

(iii) if w is not a leaf, then ϕ̂w |= ρ(w)IC.

Items (i) and (ii) are used for the induction, which is performed by starting at the
leaves (as the induction base) and proceeding to a position w once (Θw·i, ϕ̂w·i)
has been defined for each child position w · i of w.

This construction of P(ξ, ρ) may face two obstacles, which then makes P(ξ, ρ)
undefined. First, it may happen that there is a Θ�

w which is not an interval; then
Θ�

w cannot appear in the image of an assignment. (E.g., in Fig. 6 at w = 1, the
component Θ2

1 = {3, 5} is not an interval. Thus, one level higher up, ϕ̂ε is not
a κ-assignment as ϕ̂ε(x2

1) = {3, 5}.) Second, even if, for some non-leaf position
w, the partitions Θw·1, . . . , Θw·k at the children of w only have intervals in their
components, the resulting ϕ̂w may not satisfy ρ(w)IC, i.e., that (iii) is violated.
For instance, in Fig. 6 at w = 1, the assignment ϕ̂1 does not model ρ(1)IC
because ρ(1)IC contains the substring x2

1x
2
2, which translates to the requirement

ϕ̂1(x2
1) � ϕ̂1(x2

2) whereas, in fact, ϕ̂1(x2
1) = {5} �� {3} = ϕ̂1(x2

2). In contrast,
the (2, 3)-assignment ϕ′ defined by

x1
1 → {1} x2

1 → {5} x1
2 → {2, 3} x2

2 → {6} x3
2 → {7}

models ρ(1)IC and thus ρ is still a consistent run on ξ.
These considerations lead us to the following definition. Let ξ ∈ HΣ be a

constituent tree and ρ ∈ Rv
A(ξ). We call ρ inductively consistent for ξ if the

family P(ξ, ρ) is defined. Clearly, every inductively consistent run of A on ξ is

102 F. Drewes et al.

c

c

a〈1〉 a〈4〉

c

c

b〈2〉 b〈5〉

c

b〈3〉 b〈6〉

Θε = ({1, 2, 3}, {4, 5, 6})

Θ1 = ({1}, {4}) Θ2 = ({2, 3}, {5, 6})

Θ21 = ({2}, {5}) Θ22 = ({3}, {6})

(qf , (x1
1 x1

2 x2
1 x2

2))
ϕ̂ε:

�→ �→ �→ �→

{1}{2, 3}{4}{5, 6}

(q, (x1
1 , x1

2))
ϕ̂1:

�→ �→

{1} {4}

(q, (x1
1 x1

2 , x2
1 x2

2))
ϕ̂2:

�→ �→ �→ �→

{2}{3} {5}{6}

(q, (x1
1 , x1

2))
ϕ̂21:

�→ �→

{2} {5}

(q, (x1
1 , x1

2))
ϕ̂22:

�→ �→

{3} {6}

(qa, IC0,1) (qa, IC0,1) (qb, IC0,1) (qb, IC0,1) (qb, IC0,1) (qb, IC0,1)
Θ11 = ({1}) Θ12 = ({4}) Θ211 = ({2}) Θ212 = ({5}) Θ221 = ({3}) Θ222 = ({6})

Fig. 7. Inductively consistent run of the CTA of Example 3 on the constituent tree of
Fig. 4.

also consistent. The inductive semantics of A, denoted by Lind(A), is the set of
all constituent trees ξ ∈ HΣ such that there exists an accepting run ρ ∈ Ra

A(ξ)
which is inductively consistent for ξ. Thus Lind(A) ⊆ L(A). For the monotone
CTA A in Example 3 we have Lind(A) = L(A) (Fig. 7).

Future work may investigate the questions: (a) Is it true that Lind(A) =
L(A) for each monotone CTA? (b) Does there exist a CTA A such that L(A) \
Lind(A) �= ∅? (c) For which CTA A does yield(Lind(A)) = yield(L(A)) hold?

Now we turn to our first main result (yield theorem for CTA): the yield of
the inductive semantics of CTA characterizes the class of LCFRS languages.

Theorem 1. Let L be a string language and n ∈ N+. Then there exists a mono-
tone and final state normalized n-CTA A such that L = yield(Lind(A)) if and
only if there exists an n-LCFRS G such that L = L(G).

Due to space restrictions, we only present a proof sketch. Since each LCFRS
can be transformed into an equivalent simple and monotone LCFRS [8,12] (dis-
regarding ε) the central idea is as follows. We will establish a relation between:

(1) a monotone final state normalized n-CTA A over the ranked alphabet Σ and
(2) the so-called Σ-extension extΣ(G) of a simple monotone n-LCFRS G over Δ.

The Σ-extension adds information about the non-nullary symbols of Σ to the
nonterminals of G (cf. the superscripts in Fig. 8). Of course, L(G) = L(extΣ(G)).

We prove that, if A and extΣ(G) are related, then yield(Lind(A)) = L(G).
Since for each A of type (1) there exists a related extΣ(G) of type (2), and vice
versa, this equality implies the theorem. We say that A and extΣ(G) are related
if the following holds. The nullary symbols of Σ are the elements of Δ. The
states of A correspond to the nonterminals of G (preserving the fanout); thus

Hybrid Tree Automata and the Yield Theorem 103

Sc → (x1
1x

1
2x

2
1x

2
2) Dc, Dc

)

Dc → (x1
1, x

1
2) Aa, Aa

)

Aa → a Aa → a

Dc → (x1
1x

1
2, x

2
1x

2
2) Dc, Dc

)

Dc → (x1
1, x

1
2) Bb, Bb

)

Bb → b Bb → b

Dc → (x1
1, x

1
2) Bb, Bb

)

Bb → b Bb → b

Fig. 8. A rule tree of the LCFRS extΣ(G), where G is the LCFRS of Fig. 3 and Σ is
the ranked alphabet of the CTA A of Example 3.

the final states of A have fanout 1, just as the initial nonterminals of extΣ(G).
The transitions of A correspond to the rules of extΣ(G). The fact that the
LCFRS is simple reflects the form of the index constraints in the transitions of
the CTA. For instance, the CTA over Σ of Example 3 and the Σ-extension of
the LCFRS G of Fig. 3 are related (identifying the states qf , q, qa, and qb, with
the nonterminals S, C, A, and B, respectively).

Let TRA be the set of all pairs (ξ, ρ) consisting of a constituent tree ξ and
an inductively consistent run ρ of A on ξ. We define a bijection ψ : TRA/∼ →
RText(G) where ∼ is the equivalence relation on TRA such that (ξ, ρ) ∼ (ξ′, ρ′)
if (ξ)Σ = (ξ′)Σ and ρ = ρ′. This factorizes out the indices from the pair (ξ, ρ),
which is necessary because they are not contained in a rule tree. For instance,
for the constituent tree ξ and the inductively consistent run ρ on ξ of Fig. 7, we
have that ψ([(ξ, ρ)]∼) is the rule tree of Fig. 8.

Injectivity of ψ is easy to show. The proof of surjectivity is more involved.
Moreover, monotonicity of A and G is a necessary condition for surjectivity.
We can show that ψ preserves yields in a certain sense. For this, we define
the mapping cc : (Σ∗)∗ → Σ∗ which concatenates the components of a tuple of
strings into one string (by removing the commas). Using the assumption that ρ is
inductively consistent for ξ, we can show that cc(yield(ξ)) = cc(π(ψ([(ξ, ρ)]∼))).
Since A is final state normalized, this statement implies

yield(ξ) = π(ψ([(ξ, ρ)]∼)) (1)

whenever ρ(ε)Q is a final state. Then, for each w ∈ Δ∗,

w ∈ yield(Lind(A))
⇔ (∃(ξ, ρ) ∈ TRA, ρ accepting) : w = yield(ξ) (by definition)
⇔ (∃(ξ, ρ) ∈ TRA, ρ accepting) : w = π(ψ([(ξ, ρ)]∼)) (by (1))
⇔ (∃d ∈ RTextΣ(G), d(ε) initial) : w = π(d) (because ψ is bijective)
⇔ w ∈ L(extΣ(G)) (by definition)
⇔ w ∈ L(G). (since L(G) = L(extΣ(G)))

104 F. Drewes et al.

This finishes the proof sketch of Theorem 1.
For n = 1, Theorem 1 recalls the well-known fact that the yield languages of

recognizable tree languages are context-free languages, and vice versa [1,3].
Our second main result concerns the relationship between CTA and FTA:

the class of Σ-projections of CTA-recognizable languages is equal to the class
of FTA-recognizable languages. By the definitions of CTA and FTA, dropping
all index contraints from the transitions of a CTA A results in an FTA. We call
it the Σ-reduct red(A) of A. By construction, L(A)Σ ⊆ L(red(A)). The proof
of the other inclusion is more involved, but here is a sketch: let ξ ∈ TΣ and ρ
be a valid and consistent run of red(A) on ξ. By the definition of red, for every
w ∈ pos(ξ) there exists an (n, κ)-word tuple which we can add to ρ(w) such that
we obtain a valid run ρ′ of A. Then we add indices to the leaves of ξ such that
we obtain a constituent tree ξ′ and ρ′ is consistent for ξ′. The non-obvious part
of the proof is to show that such indices always exist.

Vice versa, the CTA-embedding of an FTA A = (Q,Σ, δ, F) is the monotone
1-CTA emb(A) = (Q,Σ, δ′, F) such that, if a ∈ Σ(0) and (ε, a, q) ∈ δ, then
(ε, a, IC0,1, q) ∈ δ′, and if k ∈ N+, a ∈ Σ(k), and (q1 · · · qk, a, q) ∈ δ, then
(q1 · · · qk, a, (x1

1 · · · x1
k), q) ∈ δ′. Since we have A = red(emb(A)), the language

L(A) is the Σ-projection of L(emb(A)).

Theorem 2. 1. For every CTA A, we have L(A)Σ = L(red(A)).
2. For every FTA A, we have L(A) = L(emb(A))Σ.

We note that Theorem 2 does not hold if we replace L(A) by Lind(A).

References

1. Brainerd, W.S.: Tree generating regular systems. Inform. Control 14, 217–231
(1969)

2. Chomsky, N.: Context-free grammars and pushdown storage. Technical report,
MIT Research Lab. in Electronics, Cambridge, MA (1962)

3. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4,
406–451 (1970)

4. Engelfriet, J.: Tree automata and tree grammars. Technical report, DAIMI FN-10,
Institute of Mathematics, University of Aarhus, Department of Computer Science,
Denmark (1975). arXiv:1510.02036v1 [cs.FL], 7 October 2015

5. Gebhardt, K., Nederhof, M.J., Vogler, H.: Hybrid grammars for parsing of dis-
continuous phrase structures and non-projective dependency structures. Comput.
Linguist. 43(3), 465–520 (2017)

6. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984).
arXiv:1509.06233v1 [cs.FL], 21 September 2015

7. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14846-0

8. Kracht, M.: The Mathematics of Language, vol. 63. Walter de Gruyter (2003)
9. Kübler, S., McDonald, R., Nivre, J.: Dependency Parsing, Synthesis Lectures on

Human Language Technologies, vol. 2(1). Morgan & Claypool Publishers LLC
(2009)

http://arxiv.org/abs/1510.02036v1
http://arxiv.org/abs/1509.06233v1
https://doi.org/10.1007/978-3-642-14846-0

Hybrid Tree Automata and the Yield Theorem 105

10. Kuhlmann, M.: Mildly non-projective dependency grammar. Comput. Linguist.
39(2), 355–387 (2013)

11. McCawley, J.: Parentheticals and discontinuous constituent structure. Linguist.
Inq. 13(1), 91–106 (1982)

12. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoret. Comput. Sci. 88(2), 191–229 (1991)

13. Vijay-Shanker, K., Weir, D., Joshi, A.: Charaterizing structural descriptions pro-
duced by various grammatical formalisms. In: Proceedings 25th Annual Meeting
of the ACL, pp. 104–111. Association for Computational Linguistics (1987)

14. Weir, D.: Characterizing mildly context-sensitive grammar formalisms. Ph.D. the-
sis, University of Pennsylvania (1988)

Some Results Concerning Careful
Synchronization of Partial Automata
and Subset Synchronization of DFA’s

Jakub Ruszil(B)

Jagiellonian University, Cracow, Poland

ruszil@ii.uj.edu.pl

Abstract. The goal of this paper is to present a family of partial
automata that achieve length Θ(3

n
3) of the shortest carefully synchro-

nizing words, but using 2
9
n + 2 letters, thus substantially improving the

result obtained in [19], which is 1
3
n + 1 letters. Additionally, modifying

our idea we obtain a family of automata over a three letter alphabet and
a subexponential length of the shortest carefully synchronizing words
and, as a corollary of that construction, a series of binary automata with
a subexponential length of word reducing set of states to a particular
subset.

Keywords: Černý Conjecture · Automata synchronization

1 Introduction

The concept of synchronization of finite automata is essential in various areas
of computer science. It consists in regaining control over a system by applying
a specific set of input instructions. These instructions lead the system to a fixed
state no matter in which state it was at the beginning. The idea of synchroniza-
tion has been studied for many classes of complete deterministic finite automata
(DFA) [1,2,8,12,13,22,24,26–30] and non-deterministic finite automata [10,20].
One of the most famous longstanding open problems in automata theory, known
as Černý Conjecture, states that for a given synchronizing DFA with n states
one can always find a synchronizing word of length at most (n − 1)2. This con-
jecture was proven for numerous classes of automata, but the problem is still
not solved in general case. The concept of synchronization has been also consid-
ered in coding theory [5,11], parts orienting in manufacturing [8,21], testing of
reactive systems [25] and Markov Decision Processes [14,15].

Allowing no outgoing transitions from some states for certain letters helps us
to model a system for which certain actions cannot be accomplished while being
in a specified state. This leads to the problem of finding a synchronizing word
for a finite automaton, where transition function is not defined for all states.
Notice that this is the most frequent case, if we use automata to model real-
world systems. In practice, it rarely happens that a real system can be modeled
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 106–115, 2022.
https://doi.org/10.1007/978-3-031-07469-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_8&domain=pdf
http://orcid.org/0000-0002-0659-2575
https://doi.org/10.1007/978-3-031-07469-1_8

Some Results Concerning 107

with a DFA where transition function is total. The transition function is usually
a partial one. This fact motivated many researchers to investigate the properties
of partial finite automata relevant to practical problems of synchronization.

We know that, in general case, checking if a partial automaton can be syn-
chronized is PSPACE-complete [17] even for binary alphabet [31]. In this paper
we investigate the case of deterministic finite automata such that transition from
state to state is not necessary defined for all states. We refer to this model as
partial finite automaton (PFA). We will say that a word which synchronizes
a PFA is carefully synchronizing word. There exists also different definition of
synchronization of PFA’s, for example in here [3]. Our particular interest lies in
the following question: what is the influence of alphabet size on the length of
the carefully synchronizing word? Namely, we investigate the problem of reduc-
ing the alphabet size in carefully synchronizing automata and maximizing at
the same time the length of the carefully synchronizing words. The problem of
estimating the length of a shortest carefully synchronizing word for PFA was
considered, among others, by Rystsov [23], Ito and Shikishima-Tsuji [20], Mar-
tyugin [18,19], Gazdag et al. [32] and de Bondt et al. [6]. Martyugin established a
lower bound on the length of such words of size Θ(3n/3) and Rystsov [23] estab-
lished an upper bound of size O((3 + ε)n/3), where n is the number of states of
the automaton.

The second problem that we study in this paper is a synchronization of a DFA
to a subset. Having a subset S of the set of states of a DFA, one can understand
a problem synchronization to a subset as seeking for a word, such that no matter
which state we apply it to, the result will be always in S. Our motivation lies in
the fact, that synchronization to a subset is a generalization of synchronization
of automata and is frequently used as an immediate step in algorithms that find
short synchronizing words. It was proven in [4] that deciding whether the given
DFA can be synchronized to a given subset of its states is PSPACE-complete
even in the case of strongly connected automata. This concept has also been
studied for example in [7,9].

2 Preliminaries

A partial finite automaton (PFA) is an ordered tuple A = (Σ,Q, δ) where Σ
is a finite set of letters, Q is a finite set of states and δ : Q × Σ → Q is a
transition function, not everywhere defined. For w ∈ Σ∗ and q ∈ Q we define
δ(q,w) inductively: δ(q, ε) = q and δ(q, aw) = δ(δ(q, a),w) for a ∈ Σ, where
ε is the empty word and δ(q, a) is defined. A word w ∈ Σ∗ is called carefully
synchronizing if there exists q ∈ Q such that for every q ∈ Q, δ(q,w) = q and
all transitions are defined. A PFA is called carefully synchronizing if it admits
any carefully synchronizing word. For a given A we define power-automaton
P(A) = (2Q, Σ, τ), where 2Q stands for the set of all subsets of Q, and alphabet
Σ is defined as in A. Transition function τ : 2Q × Σ → 2Q is defined as follows:
let Q′ ⊆ Q, for every a ∈ Σ we define τ(Q′, a) =

⋃
q∈Q′ δ(q, a) if δ(q, a) is

defined for all states in q ∈ Q, otherwise τ(Q′, a) is not defined. We also consider

108 J. Ruszil

a deterministic finite automaton DFA. The only difference to a PFA is that the
transition function is total in this case. All definitions regarding PFA also apply
to DFA, but we speak rather about synchronization than careful synchronization
in the case of DFA. Consider DFA A = (Q,Σ, δ) and S ⊆ Q. We say that A
is synchronizable to S (or S in reachable in A), if there exists a word w ∈ Σ∗,
such that δ(Q,w) = S. We also can say that w synchronizes automaton A to a
subset S. We can now state obvious fact, useful to decide whether a given PFA is
carefully synchronizing, whether given DFA is synchronizing or whether a given
DFA is synchronizable to a given subset.

Fact 1. Let A be a PFA and P(A) be its power automaton. Then A is synchro-
nizing (resp. synchronizable to S ⊆ Q) if and only if for some state q ∈ Q (resp.
for S) there exists a labelled path in P(A) from Q to {q} (resp. to S). The short-
est synchronizing word (resp. word synchronizing Q to S) for A corresponds to
the shortest labelled path in P(A) as above.

An example of the carefully synchronizing automaton Acar is depicted in
Fig. 1. Its shortest carefully synchronizing word wcar is abc(ab)2c2a, which can
be easily checked via the power automaton construction.

Fig. 1. A carefully synchronizing Acar

Let Ln = {A = (Σ,Q, δ) : A is carefully synchronizing and |Q| = n}.
Notice that Ln does not depend on alphabet size. We define d(A) = min{|w| :
w is a carefully synchronizing word for A} and d(n) = max{d(A) : A ∈ Ln}.
It can be easily verified from Fig 1. that the Černý Conjecture is not true for
PFAs, since |wcar| = 10 > (4 − 1)2 = 9.

3 Reducing the Number of Letters

In this section we provide a construction of series of automata with reduced
number of letters, comparing to Martyugin construction, but with the same

Some Results Concerning 109

asymptotic length of shortest carefully synchronizing words. In particular we
construct an infinite family of automata with number of states equal to n, and
number of letters equal to 2

9n + 2 with shortest carefully synchronizing words of
length Θ(3

n
3).

This is an improvement in a number of letters, since the best known con-
struction (Martyugin) uses 1

3n + 1 letters to achieve shortest words of the same
length. It is worth mentioning that family of automata in [19] has shortest care-
fully synchronizing words of length 3

n
3 − 1 where n is a number of states, which

is exactly the same result as presented in this paper. In [6] the authors obtained
infinite family of PFA’s over binary alphabet having the shortest carefully syn-
chronizing words of length Ω(2

n/3

n3/2) and over ternary alphabet of length Ω(2
2n/5

n)
what is asymptotically smaller than our result.

The idea of construction is similar as in [19] but by choosing different method
of “dividing” the set of states we obtain significantly (linear factor) lower alpha-
bet size. In order to make proofs easier for a reader we assume that n = 9k
for k ∈ N, but it is easy to modify it to work in general case. Consider the
automaton A3 depicted in Fig. 2.

Fig. 2. Automaton A3

Let An
3 = (Q,Σ, δ) such that Q = Q1 ∪ ... ∪ Qk where Qi = {qi0, .., q

i
8},

We define Σ = {c, a1, b1, a2, b2, .., ak, bk, d}. The transition function is defined as
follows:

1 δ(qj3m+i, c) = qji for m ∈ {0, 1, 2} and i ∈ {0, 1, 2}
2 δ on {ai, bi} imitates A3 on subset of states Qi

3 δ(qi0, aj) = qi0, δ(qi5, aj) = qi1, δ(qi7, aj) = qi2 for i < j

110 J. Ruszil

4 δ(qi0, bj) = qi0, δ(qi5, bj) = qi1, δ(qi7, bj) = qi2 for i < j
5 δ(qil , aj) = δ(qil , bj) = qil , for i > j and for all l ∈ {0, .., 8}
6 δ(qi0, d) = δ(qi5, d) = δ(qi7, d) = q10

Denote any {qif , qig, q
i
h} = Qi

s, where {f, g, h} is a state in P(A3), and s is a
length of a path from {0, 1, 2} to {f, g, h}. For example {qi3, q

i
4, q

i
5} = Qi

3. It
can be verified with Fig. 3. Also denote Sb =

⋃k
i=1 Qi

0 and Sf =
⋃k

i=1 Qi
26. The

intuition behind the construction is that after applying letter c to the state Q
in a power automaton, we obtain state Sb. Then we treat Q′

i ⊂ Qi such that
|Q′

i| = 3 and Q′
i ⊂ Sb as i-th position of 0 in a k digit number of base 33. Any

consecutive letter of the shortest carefully synchronizing word of that automaton
acts like incrementing the former number by one. Namely we implement base 27
counter with the power automaton of An

3 .

Lemma 1. The shortest w ∈ Σ∗ such that τ(Sb, w) = Sf has length (33)k − 1.

Proof. The result follows by induction on k.
Let k = 1. Then the result is easily verified with Fig. 3. Now assume

that statement holds for k − 1. It means that there exists w′ such that
τ(

⋃k−1
i=1 Qi

0, w
′) =

⋃k−1
i=1 Qi

26. We can easily verify from the definition of δ (Point
5), that also τ((

⋃k−1
i=1 Qi

0) ∪ Qk
i , w

′) = (
⋃k−1

i=1 Qi
26) ∪ Qk

i for 0 ≤ i < 27. From the
definition of δ (Point 3) we can deduce that τ(Sb, w

′ak) = (
⋃k−1

i=1 Qi
0) ∪ Qk

1 . We
can repeat this reasoning to obtain τ(Sb, (w′ak)8) = (

⋃k−1
i=1 Qi

0)∪Qk
8 . Notice that

τ(Sb, (w′ak)9) = Sb. However τ(Sb, (w′ak)8w′bk) = (
⋃k−1

i=1 Qi
0) ∪ Qk

9 . Acting like
that we obtain τ(Sb, w) = Sf , where w = (w′ak)8w′bk(w′ak)8w′bk(w′ak)8w′.
To prove minimality of w it suffices to show that for each prefix v of w and
for each e ∈ Σ such that ve is not a prefix of w either there exists a prefix
u of v such that τ(Sb, ve) = τ(Sb, u) or τ(Sb, ve) is not defined. Straight from
the definition of δ we obtain that τ(Sb, vc) = Sb and τ(Sb, vd) is not defined.
Consider the state τ(Sb, v) = (

⋃l−1
i=1 Qi

pi
) ∪ (

⋃k−1
j=l Qj

rj), where l ∈ {1, ..., k},
pi ∈ {8, 17, 26}, rj ∈ {0, ..., 26} and rl /∈ {8, 17, 26}. Notice that if m > l,
transitions τ((

⋃l−1
i=1 Qi

pi
) ∪ (

⋃k−1
j=l Qj

rj), am) and τ((
⋃l−1

i=1 Qi
pi

) ∪ (
⋃k−1

j=l Qj
rj), bm)

are undefined. Otherwise, if m < l then τ((
⋃l−1

i=1 Qi
26) ∪ (

⋃k−1
j=l Qj

rj), am) and

τ((
⋃l−1

i=1 Qi
26) ∪ (

⋃k−1
j=l Qj

rj), bm) results in states visited before, which can be
verified from Fig. 3 and the definition of δ. We conclude that the lemma holds.

Now we can state and prove the following theorem.

Theorem 1. For each n > 0 the automaton An
3 has shortest carefully synchro-

nizing word of length 3
n
3 + 1 and uses � 2

9n	 + 2 letters.

Proof. It is easy to observe from definition of δ that only letter c is defined for
all states, so all synchronizing words must start with this letter. Also, we have
τ(Qi, c) = Qi

0 for all i ∈ {1, .., k}, so τ(Q, c) = Sb. From Lemma 1 we deduce
that there exists a word w with |w| = (33)k−1, such that τ(Sb, w) = Sf and w is
shortest word with that property. Letter d is defined for Sf and also τ(Sf , d) =
q10 . Observe also, that for any proper prefix w′ of w we have that τ(Q, cw′c) = Sb

and τ(Q, cw′d) is not defined. From all that we claim the theorem holds.

Some Results Concerning 111

In [6] there were presented several families of PFA’s with constant alphabet
size and exponentially long shortest carefully synchronizing words, but asymp-
totically smaller than in construction presented here. Observe also that our con-
struction achieves asymptotically the same lower bound for the shortest carefully
synchronizing word as in [18] and the same length of the shortest carefully syn-
chronizing word as in [19] but with reduced alphabet comparing to those results.

Fig. 3. Path from 012 to 057 in P(A3)

4 Constant Number of Letters and Subset
Synchronization

In this section we provide a construction of automata for a given partition of a
number n. Notice that although this construction does not improve the result
established in [6], where authors obtained the best known lower bounds for d(n)
with a restriction of constant alphabet size, it can be also used to establish a
lower bound for subset synchronization in DFA.

Let p = (k1, .., ks) be such that
∑s

i=1 ki = n. Let n > 1, Qi = {0i, 1i, .., (ki −
1)i}, Q =

⋃s
i=1 Qi and Σ = {a, b, c}. We define a partial transition function

δ : Q × Σ → Q for Ap = (Σ,Q, δ) as follows:

1. δ(yi, a) = 0i, yi ∈ Qi, i ∈ {1, .., s}
2. δ(yi, b) = ((y + 1) mod ki)i, yi ∈ Qi, i ∈ {1, .., s}
3. δ((ki − 1)i, c) = 01, j ∈ {1, .., s}
In Fig. 4 we can see Ap for p = (2, 2, 3) and in Fig. 5 is depicted P(Ap).

We state and prove the following theorem.

112 J. Ruszil

Fig. 4. Automaton Ap for p = (2, 2, 3)

Fig. 5. Power automaton P(Ap) with a path from Q to 01 (bolded arrows)

Theorem 2. Ap is carefully synchronizing, and the length of its shortest care-
fully synchronizing word is lcm(k1, .., ks) + 1.

Proof. First, observe that a and b are defined for all states in Q and, since b is
a bijection, we have τ(Q, b) = Q and τ(Q, a) = {01, 02, .., 0s} = Q0. We can also
deduce that the permutation type induced by the action of b on a set of states
is [k1

1k
1
2..k

1
s] = r, and from that we have τ(Q0, b

r) = Q0 and for any p < q < r
holds τ(Q0, b

p)
= τ(Q0, b
q). Denote τ(Q, bp) = Qp. From the definition of δ we

deduce that for any p we have τ(Qp, a) = Q0, since for any i ∈ {1, .., s} we have
|Qp ∩ Qi| = 1. Letter c is defined only for Qp = Qr−1 = {(k1 − 1)1, .., (ks − 1)s},
which can be verified by analysing the definition of δ. On the other hand, it is
well-known that r is an order of permutation induced by b, and by that we have
r = lcm(k1, .., ks). So τ(Q, abr−1c) = 01 and we claim that the theorem holds.

Corollary 1. Let n be the number of states. There exists pn such that d(Apn
) ∝

e
√
n lnn.

Proof. Using Theorem 2 we can construct an automaton for any given cycle
decomposition of a permutation. On the other hand, we know that Landau’s

Some Results Concerning 113

function [16], for a given n, is the largest order of an element of Sn. Denote it
as g(n). The way to obtain such a family for any n is by taking a permutation
pn with the largest order of all in Sn and constructing an automaton like in
Theorem 5. It is well-known that g(n) ∝ e

√
n lnn and by that the corollary holds.

We can also consider above construction with removed transition labelled
with letter c. Denote such automaton as Bp for a given partition p. Now we can
formulate the following corollary.

Corollary 2. Let Bp be defined as above and let S = {(k1 − 1)1, .., (ks − 1)s}.
Then Bp is a DFA synchronizable to S, and the shortest w ∈ Σ∗ such that
δ(Q,w) = S is of length O(e

√
n lnn).

5 Conclusions and Further Work

We improved the result from [19] and gave a family of automata that has
the same asymptotical length of shortest carefully synchronizing word, but we
reduced significantly the number of letters. We also described how to use our
method to construct the family of automata over three-letter alphabet with the
shortest synchronizing word of length O(e

√
n lnn). As a corollary of that con-

struction we gave an infinite series of binary DFA with a set that is reachable
with a word of length O(e

√
n lnn) at least.

Notice that the construction from Sect. 4 gives us the DFA which are not
strongly connected. We would like to investigate the case of synchronization
to a subset in with strongly connected DFA’s. In [9] there is a construction of
automata having longer words synchronizing automaton to a subset, but the
alphabet size in this construction is exponential and resulting automata are
synchronizing. In the future work we are going to deal with the case of non-
synchronizing automata and small number of letters.

References

1. Berlinkov, M.V.: On two algorithmic problems about synchronizing automata. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 61–67. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09698-8 6

2. Berlinkov, M., Szyku�la, M.: Algebraic synchronization criterion and computing
reset words. Inf. Sci. 369, 718–730 (2016)

3. Berlinkov, M.V., Ferens, R., Ryzhikov, A., Szyku�la, M.: Synchronizing strongly
connected partial DFAs. In: Bläser, M., Monmege, B. (eds.) 38th International
Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 187, pp. 12:1–12:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021).
https://doi.org/10.4230/LIPIcs.STACS.2021.12. https://drops.dagstuhl.de/opus/
volltexte/2021/13657

https://doi.org/10.1007/978-3-319-09698-8_6
https://doi.org/10.4230/LIPIcs.STACS.2021.12
https://drops.dagstuhl.de/opus/volltexte/2021/13657
https://drops.dagstuhl.de/opus/volltexte/2021/13657

114 J. Ruszil

4. Berlinkov, M.V., Ferens, R., Szyku�la, M.: Preimage problems for deterministic
finite automata. J. Comput. Syst. Sci. 115, 214–234 (2021). https://doi.org/
10.1016/j.jcss.2020.08.002. https://www.sciencedirect.com/science/article/pii/
S0022000020300805

5. Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for Huffman codes.
Theoret. Comput. Sci. 410, 3925–3941 (2009)

6. de Bondt, M., Don, H., Zantema, H.: Lower bounds for synchronizing word lengths
in partial automata. Int. J. Found. Comput. Sci. 30, 29–60 (2019)

7. Don, H.: The Černý conjecture and 1-contracting automata. Electron. J. Comb.
23 (2016)

8. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

9. Gonze, F., Jungers, R.M.: Hardly reachable subsets and completely reachable
automata with 1-deficient words. J. Automata Lang. Comb. 24(2–4), 321–342
(2019). https://doi.org/10.25596/jalc-2019-321

10. Imreh, B., Steinby, M.: Directable nondeterministic automata. Acta Cybern. 14,
105–115 (1999)

11. Jürgensen, H.: Synchronization. Inf. Comput. 206, 1033–1044 (2008)
12. Kari, J.: A counter example to a conjecture concerning synchronizing word in finite.

EATCS Bull. 73, 146–147 (2001)
13. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput.

Sci. 295, 223–232 (2003)
14. Doyen, L., Massart, T., Shirmohammadi, M.: Robust synchronization in Markov

decision processes. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol.
8704, pp. 234–248. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44584-6 17

15. Doyen, L., Massart, T., Shirmohammadi, M.: The complexity of synchronizing
Markov decision processes. J. Comput. Syst. Sci. 100, 96–129 (2019)

16. Landau, E.: Über die maximalordnung der permutationen gegebenen grades. Arch.
Math. Phys. 3 (1903)

17. Martyugin, P.: Computational complexity of certain problems related to carefully
synchronizing words for partial automata and directing words for nondeterministic
automata. Theory Comput. Syst. 54, 293–304 (2014). https://doi.org/10.1007/
s00224-013-9516-6

18. Martyugin, P.: A lower bound for the length of the shortest carefully synchronizing
words. Russ. Math. 54, 46–54 (2010)

19. Martyugin, P.V.: Careful synchronization of partial automata with restricted
alphabets. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp.
76–87. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-0 7

20. Ito, M., Shikishima-Tsuji, K.: Some results on directable automata. In: Karhumäki,
J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol.
3113, pp. 125–133. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27812-2 12

21. Natarajan, B.K.: An algorithmic approach to the automated design of parts orien-
ters. In: 27th Annual Symposium on Foundations of Computer Science, pp. 132–142
(1986)

22. Pin, J.E.: On two combinatorial problems arising from automata theory. In: Pro-
ceedings of the International Colloquium on Graph Theory and Combinatorics,
vol. 75, pp. 535–548 (1983)

23. Rystsov, I.K.: Asymptotic estimate of the length of a diagnostic word for a finite
automaton. Cybernetics 16, 194–198 (1980)

https://doi.org/10.1016/j.jcss.2020.08.002
https://doi.org/10.1016/j.jcss.2020.08.002
https://www.sciencedirect.com/science/article/pii/S0022000020300805
https://www.sciencedirect.com/science/article/pii/S0022000020300805
https://doi.org/10.25596/jalc-2019-321
https://doi.org/10.1007/978-3-662-44584-6_17
https://doi.org/10.1007/978-3-662-44584-6_17
https://doi.org/10.1007/s00224-013-9516-6
https://doi.org/10.1007/s00224-013-9516-6
https://doi.org/10.1007/978-3-642-38536-0_7
https://doi.org/10.1007/978-3-540-27812-2_12
https://doi.org/10.1007/978-3-540-27812-2_12

Some Results Concerning 115

24. Rystsov, I.K.: Reset words for commutative and solvable automata. Theoret. Com-
put. Sci. 172, 273–279 (1997)

25. Sandberg, S.: 1 Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490 2

26. Szyku�la, M.: Improving the upper bound on the length of the shortest reset word.
In: STACS 2018, pp. 56:1–56:13 (2018)

27. Trahtman, A.: The Černý conjecture for aperiodic automata. Discrete Math. Theor.
Comput. Sci. 9, 3–10 (2007)

28. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Mat. Fyz. Cas. Slovens. Akad. Vied. 14, 208–216 (1964)

29. Volkov, M.: Synchronizing automata and the Černý conjecture. Lang. Automata
Theor. Appl. 5196, 11–27 (2008)

30. Volkov, M.: Slowly synchronizing automata with idempotent letters of low rank.
J. Autom. Lang. Comb. 24, 375–386 (2019)

31. Vorel, V.: Subset synchronization and careful synchronization of binary finite
automata. Jour. Found. Comput. Sci. 27, 557–578 (2016)

32. Gazdag, Z., Ivan, I., Nagy-Gyorgy, J.: Improved upper bounds on synchronizing
nondeterministic automata. Inf. Processi. Lett. 109, 986–990 (2009)

https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2

A Toolkit for Parikh Matrices

Laura K. Hutchinson, Robert Mercaş(B) , and Daniel Reidenbach

Department of Computer Science,
Loughborough University, Loughborough LE11 3TU, UK
{L.Hutchinson,R.G.Mercas,D.Reidenbach}@lboro.ac.uk

Abstract. The Parikh matrix mapping is a concept that provides infor-
mation on the number of occurrences of certain (scattered) subwords in
a word. Although Parikh matrices have been thoroughly studied, many
of their basic properties remain open. In the present paper, we describe a
toolkit that has been developed to support research in this field. Its func-
tionality includes elementary and advanced operations related to Parikh
matrices and the recently introduced variants of P-Parikh matrices and
L-Parikh matrices.

Keywords: Toolkit · Parikh matrices · P-Parikh matrices · L-Parikh
matrices · Amiable words

1 Introduction

The Parikh vector (also referred to as abelianization) – i. e., a vector that, for a
given word w, contains the number of occurrences of all letters in the w – is a
classical concept in language and automata theory [17]. It can be easily computed
and is guaranteed to be logarithmic in the size of the word it represents, but
it is almost always ambiguous; that is, multiple words typically share the same
Parikh vector.

Parikh matrices [15] were introduced to address this problem. They are an
extension of Parikh vectors, and they do not only contain the Parikh vector of the
word, but also the frequencies of some of the word’s (scattered) subwords. The
specific subwords that are considered are all factors of the word a1a2a3 · · · an,
where {a1, a2, a3, . . . , an} is the ordered alphabet of all distinct letters occurring
in the word. For example, if w = abcaba and we consider the usual lexicographical
order, then its Parikh matrix contains the counts of a, b, c, ab, bc, and abc. A
Parikh matrix is always an upper triangular matrix with 1 on the main diagonal;
the frequencies of subwords of length 1 (corresponding to the Parikh vector) on
the 1-diagonal; frequencies of subwords of length 2 on the 2-diagonal; and so on.
Hence, for our above example word w, we have the following Parikh matrix:(

1 3 3 1
0 1 2 1
0 0 1 1
0 0 0 1

)

Parikh matrices have the same asymptotic compactness as Parikh vectors and
are associated to a significantly smaller number of words. However, they do
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 116–127, 2022.
https://doi.org/10.1007/978-3-031-07469-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_9&domain=pdf
http://orcid.org/0000-0001-6034-433X
http://orcid.org/0000-0001-7996-5291
https://doi.org/10.1007/978-3-031-07469-1_9

A Toolkit for Parikh Matrices 117

not normally remove ambiguity entirely. Our above example matrix has two
associated words, namely abcaba and abacba; such words, which share a Parikh
matrix, are called amiable.

Despite intensive research (see, e. g., [1–6,9,10,13,18–21]), many fundamental
problems for Parikh matrices are still open. These include the following ques-
tions:

– When is a matrix a Parikh matrix? Only some upper triangular matrices with
1 on the main diagonal and non-negative integers in the upper triangle are
indeed Parikh matrices. While it is possible to decide this problem by enu-
merating and testing all words that have the Parikh vector that is specified
by the 1-diagonal of a given “candidate” matrix, it is open if there is an effec-
tive characterisation of Parikh matrices that yields a more efficient decision
procedure.

– When are two words amiable? What are the words associated to a given
Parikh matrix? These problems can again be solved via brute-force algo-
rithms, but comprehensive characterisations of amiable words have so far not
been found.

– When is a word uniquely described by a Parikh matrix? What potential varia-
tions or extensions of Parikh matrices can reduce their ambiguity effectively?

Progress on these questions has been impeded by the fact that the man-
ual construction and analysis of Parikh matrices is tedious and error-prone. We
have therefore designed and implemented a toolkit that automises a range of
the most important operations, so that research hypotheses can be tested more
efficiently.1 Our tool includes functionality to calculate the Parikh matrix and
all amiable words for a given word, decide on whether a given matrix is a Parikh
matrix, and mechanisms to investigate concepts that can reduce the ambiguity
of Parikh matrices. The latter are based on the recently introduced P-Parikh
matrices and L-Parikh matrices [7]. The main idea of these approaches is to
apply a simple modification to a given word (namely a projection or the con-
struction of the Lyndon conjugate, respectively) and to store the Parikh matrices
of both the original and the modified word. The combination of these two matri-
ces then typically has a significantly smaller number of associated words than
the standard Parikh matrix alone.

A detailed description of the functionality and underlying algorithmic and
design decisions of the toolkit is provided in the main Sect. 3 of this paper. Before
we present these details, we describe the formal foundations of the tool in Sect. 2.

2 Preliminaries

We refer to a string of arbitrary letters as a word which is formed by the con-
catenation of letters. The set of all letters used to create our word is called an
1 The software is implemented in Java, it is open-source and has been made available
under the MIT License. It is available online at www.github.com/LHutch1/Parikh-
Matrices-Toolkit.

www.github.com/LHutch1/Parikh-Matrices-Toolkit
www.github.com/LHutch1/Parikh-Matrices-Toolkit

118 L. K. Hutchinson et al.

alphabet. We represent an ordered alphabet as Σk = {a1 < a2 < · · · < ak}, where
k ∈ N is the size of the alphabet, and by convention ai is the ith letter in the
Latin alphabet. Whenever the alphabet size is irrelevant or understood, we omit
this from notation, using only Σ. All alphabets referred to in this thesis have an
order imposed on them. The Kleene star, denoted ∗, is the operation that, once
applied to a given alphabet, generates the set of all finite words that result from
concatenating any letters from that alphabet.

We denote the concatenation of two words u and v as uv. The length of a
word is the total number of, not necessarily distinct, letters it contains and the
empty word, of length zero, is referred to as ε.

We say that v is a factor of w if and only if w can be written as w = w1vw2 for
some w1, w2 ∈ Σ∗. If w1 = ε, then we also call v a prefix of w, and if w2 = ε, then
v is a suffix of w. A word u = u[1]u[2] · · · u[m], where u[1], u[2], . . . , u[m] ∈ Σ,
is a subword of a word v if there exists factors v0, v1, . . . , vm ∈ Σ∗ such that
v = v0u[1]v1u[2] · · · vm−1u[m]vm. We use |v|u to denote the number of distinct
occurrences of u as a subword in v. We say that a word u ∈ Σ∗ is lexicographically
smaller than a word v ∈ Σ∗, denoted u <lex v, if u �= v and either u is a prefix
of v or, for the smallest i satisfying u[i] �= v[i], the letter u[i] precedes the letter
v[i] in the order on Σ.

We say that two words w and w′ are conjugates if we can write w = uv and
w′ = vu. For a word w, the conjugacy class of w, denoted C(w), is the class of
all of its possible conjugates.

The Parikh vector [17] associated with a word w ∈ Σ∗
k is obtained through a

mapping φ : Σ∗
k → (N ∪ {0})k, defined as φ(w) = [|w|a1 , |w|a2 , . . . , |w|ak

]. For a
matrix M of size k × k, the j-diagonal is defined as all elements of M that are
in the position Mi,i+j , for i = 1, 2, . . . , k − j.

Unlike what is suggested in Sect. 1, the formal definition of a Parikh matrix
is based on the multiplication of the Parikh matrices of the individual letters in
the order in which they appear in the word:

Definition 1 ([15]). Let Mk+1 denote the set of all square matrices of size
(k+1) × (k+1), where k is the size of the ordered alphabet Σ = a1 < a2 <
· · · < ak. The Parikh matrix mapping is the morphism Ψ : Σ∗ → Mk+1, defined
as follows. For aq ∈ Σ with q representing where in the ordered alphabet the
letter lies, if Ψ(aq) = (mi,j)1≤i,j≤k+1, then for each 1 ≤ i ≤ k + 1, mi,i = 1,
mq,q+1 = 1, and all other elements of the matrix Ψ(aq) are zero.

This elegant definition, which is also used as the basis of the related algorithm
in our toolkit, then leads to the more intuitive structure of Parikh matrices as
described in Sect. 1:

Theorem 1 ([16]). Let Σ = {a1<a2 < · · · < ak} be an ordered alphabet, where
k ≥ 1, and assume that w ∈ Σ∗. The matrix Ψ(w) has the following properties:

1. mi,j = 0, for all 1 ≤ j < i ≤ (k + 1);
2. mi,i = 1, for all 1 ≤ i ≤ (k + 1);
3. mi,j = |w|u where u = aiai+1 . . . aj−2aj−1, for all 1 ≤ i < j ≤ (k + 1).

A Toolkit for Parikh Matrices 119

One notion we introduce in this paper relies on a change in alphabet. As
such, to emphasise the alphabet Σ used for obtaining a Parikh matrix, we write
ΨΣ(w). If no confusion arises, we shall omit the alphabet from the notation, in
favour of legibility, and write Ψ(w).

An example illustrating Definition 1 is given in Sect. 3.1. For conciseness,
when presenting specific examples of Parikh matrices in the remainder of this
paper, we omit all entries that are immutable across all Parikh matrices, i. e.,
we only show the upper triangle. For example, the full Parikh matrix given in
Sect. 1 is therefore displayed as follows:

Ψ(abcaba) =
〈

3 3 1
2 1
1

〉

As explained in Sect. 1, a Parikh matrix can be common to multiple words,
and we call words amiable if they are associated to the same Parikh matrix. If two
or more words are associated to a single Parikh matrix, we say that the matrix
is ambiguous. This potential ambiguity has been a focus of research on Parikh
matrices, and our toolkit implements methods related to P-Parikh matrices and
L-Parikh matrices [7], which often allow for a reduction in ambiguity. These two
approaches are based on the idea that the standard Parikh matrix of a word
w is considered alongside the Parikh matrix of a simple modification of w, and
that the combination of these two matrices is associated to fewer words than the
standard Parikh matrix.

The P-Parikh matrix is in essence the Parikh matrix of a projection of a word,
and represents a special case of the extension of the Parikh matrix mapping
presented in [21]. Formally, for n ∈ N, w ∈ Σ∗

n and S ⊂ Σn, the P-Parikh matrix
of w with respect to S is defined as follows.

Definition 2. For m,n ∈ N with 1 ≤ m ≤ n, let S ⊂ Σn such that
S = {ak1 , ak2 , . . . , akm

}, where 0 < k1 < k2 < · · · < km ≤ n. We define the
P-Parikh matrix of the word w with respect to S as ΨS(πS(w)), where the mor-
phism π : Σ∗

n → Σ∗
m is defined as

πS(ai) :=

{
ai : ai ∈ S,

ε : ai /∈ S.

An example of a P-Parikh matrix can be found in Sect. 3.3.
An L-Parikh matrix of a word w is the Parikh matrix of the Lyndon conjugate

of w (denoted L(w)), i. e., it is the Parikh matrix of the conjugate of w that is
lexicographically smallest based on the order on the alphabet:

Definition 3. Given a word w, we define its L-Parikh matrix, Ψ�ex , as the
Parikh matrix associated with its Lyndon conjugate, L(w).

An example of an L-Parikh matrix is given in Sect. 3.2.

120 L. K. Hutchinson et al.

Fig. 1. Two screenshots of the user interface.

3 Toolkit

Our toolkit is accessible on GitHub2 either as an executable .jar file, or as a
collection of individual Java classes, which can be downloaded, compiled and
run together to allow the user to make changes to the code to suit their indi-
vidual needs. It is an open-source software, licensed with the MIT License. Two
screenshots of the user interface are given in Fig. 1.

In the present section we shall explain and discuss the eight different functions
that can be computed as a part of this toolkit:

1. ‘Parikh Matrix’ - Calculate the Parikh matrix of a given word.
2. ‘L-Parikh Matrix’ - Calculate the L-Parikh matrix of a given word.
3. ‘P-Parikh Matrix’ - Calculate the P-Parikh matrix of a given word using a

given set of letters.
4. ‘Amiable Words’ - Find all words that are amiable with a given word.
5. ‘L-Amiable Words’ - Find all words that share a Parikh matrix and an L-

Parikh matrix with a given word.
6. ‘P-Amiable Words’ - Find all words that share a Parikh matrix and a P-

Parikh matrix with a given word using a given set of letters.
7. ‘Is It Parikh?’ - Determine if a given matrix is a Parikh matrix.
8. ‘Associated Words’ - Find all words associated with a given Parikh matrix.

3.1 Parikh Matrix

This function takes a word as input and outputs the Parikh matrix of that word.
To calculate the Parikh matrix of a word, we first determine the Parikh matrix
of each letter in the alphabet that the word uses, according to Definition 1.
We then multiply the matrix of each letter in the order that they appear. The
following example illustrates this method:

2 www.github.com/LHutch1/Parikh-Matrices-Toolkit.

www.github.com/LHutch1/Parikh-Matrices-Toolkit

A Toolkit for Parikh Matrices 121

Example 1. Let w = cbbab ∈ Σ3. Then we have: Ψ(a) =
〈

1 0 0
0 0
0

〉
, Ψ(b) =

〈
0 0 0
1 0
0

〉
,

Ψ(c) =
〈

0 0 0
0 0
1

〉
. Now we calculate the Parikh matrix of w:

Ψ(cbbab) = Ψ(c) × Ψ(b) × Ψ(b) × Ψ(a) × Ψ(b)

=
〈

0 0 0
0 0
1

〉
×

〈
0 0 0
1 0
0

〉
×

〈
0 0 0
1 0
0

〉
×

〈
1 0 0
0 0
0

〉
×

〈
0 0 0
1 0
0

〉
=

〈
1 1 0
3 0
1

〉
�

While the function requires n matrix multiplications of size (m+1)×(m+1),
where n is the length of the word and m is the size of the alphabet, we note that
the Parikh matrices corresponding to the letters are transvection matrices, i.e.,
identity matrices with a single value replacing one of the zeroes. Thus, rather
than using the näıve method or Strassen’s algorithm [22] for matrix multiplica-
tion, we make use the of the shear transformations; note that the transvection
matrices are generators for the special linear group SLk(Z) [11]. That is, the
composition to the right of a matrix A with a transvection matrix that has a
value c at position (i, j) implies adding to the jth column of A the cth multiple
of the column i of A. This leads to a time complexity of only O(mn).

3.2 L-Parikh Matrix

To calculate the L-Parikh matrix of a word, we begin by finding the Lyndon
conjugate of that word. To this end, we make use of Duval’s algorithm [8],
which runs in linear time with respect to n. The algorithm finds the Lyndon
factorisation of any given word w, that is, the factorisation w = w1w2 · · · wp

where the lexicographically ordered sequence w1 ≥ w2 ≥ · · · ≥ wp consists of
Lyndon words wi, i.e., words strictly smaller than any of their conjugates. In [8],
it is shown that the Lyndon conjugate of any Lyndon word u can be found by first
finding the Lyndon factorisation of uu (since this concatenation must contain
the Lyndon conjugate as a factor), and then choosing the first Lyndon factor of
length n that we find. We can easily first find the root u of our word w, and then
run the above strategy to find u’s Lyndon conjugate starting position, and thus
the starting position of the Lyndon conjugate of w, which we are interested in.
We then calculate the Parikh matrix of the Lyndon conjugate of w in the same
way as with the Parikh Matrix function.

Example 2. Let w = (cbbabc)3 be the input word. We first find the root u =
cbbabc and then the Lyndon factorisation of the word uu = cbbabccbbabc: u1 = c,
u2 = bb, u3 = abccbb, u4 = abc. The only of these words that is of equal size to
u is abccbb, and so we now must find the Parikh matrix of the word (abccbb)3,
which is Ψ((abccbb)3) =

〈
3 12 24

9 27
6

〉
. Note that we have Ψ(w) =

〈
3 18 36

9 24
6

〉
. �

This function works in a very similar way as the Parikh Matrix function. We
know that it takes O(mn) time to calculate a Parikh matrix, which we do twice
in this function. Since finding both the roots and then the Lyndon conjugates
takes linear time O(n), as explained above, the total time complexity of this
function is O(mn).

122 L. K. Hutchinson et al.

3.3 P-Parikh Matrix

For the P-Parikh matrix, we first calculate the word’s projection using the map-
ping given below, taken from the definition of a P-Parikh matrix, Definition 2.

Definition 4. For 1 ≤ p ≤ m ∈ N, let S ⊂ Σm such that S =
{ak1 , ak2 , . . . , akp

}, where 0 < k1 < k2 < · · · < kp ≤ m. The morphism
πS : Σ∗

m → Σ∗
p is defined as πS(ai) := ai if ai ∈ S and πS(ai) := ε if ai /∈ S.

We then calculate the Parikh matrix of the new word using the same method
as described in Definition 1.

Example 3. Let w = cbbabc and S = {a, c}. Then we first find the projection
of w as πS(w) := cac. Finally, we calculate the Parikh matrix of the projected
word to obtain the P-Parikh matrix of w. This yields Ψ(πS(w)) = 〈 1 1

2 〉.
The time required by this function is just as before O(mn), since the time

needed to obtain the projection word is linear O(n).

3.4 Amiable Words

A brute force approach that finds all words that are amiable with an input word
w of length n produces a list of all permutations of w and then compares the
Parikh matrix of each of these n! words to that of w. Since finding the Parikh
matrix as discussed above can be done in O(mn), while each comparison is done
in at most O(m2) time, such an approach would require O(m × n!) time. Note
that the size of the considered alphabet can by de facto be considered smaller
than the length of the word in this case, since the extra symbols of the whole
alphabet can easily be ignored, i.e., m ≤ n.

The implementation of our toolkit is based on a more sophisticated approach,
namely on an algorithm by [12] that finds the 2-binomial equivalence class of a
word and reduces the number of words for which we must calculate the Parikh
matrix. The algorithm finds all words that have the same number of subwords
aiaj , such that i < j and ai, aj ∈ Σ, as a given word. Since the Parikh matrix
contains counts of a subset of these factors (namely those where i + 1 = j), we
conclude that all words amiable with our entered word w are contained in the
output of this algorithm. We can then calculate the Parikh matrices of all of
these words and compare them to Ψ(w) to see if they are equal.

The algorithm is based on a certain type of transformations:

Definition 5. Let w1, w2, u, v ∈ Σ∗
m where w1 = uaiajv, with i < j and ai, aj ∈

Σm. We say that a Switch Transformation has been applied to w1 to obtain w2

if w2 = uajaiv, and denote this as w1
S−→ w2.

Note that applying a Switch Transformation on the factor aiaj reduces the
number of occurrences of the subword aiaj by 1.

We can now state the algorithm given in [12] that forms the basis of our
implementation. However, the below method is a simplified version of that algo-
rithm, as Lejeune et al. also incorporate a term to monitor the longest common

A Toolkit for Parikh Matrices 123

Algorithm 1 [12]
Input: A word w ∈ Σ∗

m

Output: A list α of words with equal occurrences of the subword aiai+1 as w

1: Let χ(w) = (|w|a1a2 , |w|a2a3 , · · · , |w|am−1am)
2: Let β be the list of all words found during our search
3: Let w1 be the lexicographically smallest word such that φ(w) = φ(w1).
4: Add w1 to β
5: while |β| has increased from the previous iteration or |β| = 0 do
6: for each word wk in β that was found in the previous iteration do
7: for all factors aiaj in wk, where ai < aj do

8: wk
S−→ u {using the factor aiaj in wk}

9: if χ(w) == χ(u) then
10: Add u to α
11: if χ(u) ≥ χ(w) then
12: Add u to β

prefix of two finite words. This helps to impose an order in which the Switch
Transformations should be applied, and prevents any word from appearing in
their search multiple times. In our implementation, we mimic this effect by stor-
ing the words that are constructed by the algorithm in a Java object called
TreeSet. Without removing duplicates in the process, the worst-case complexity
of the algorithm would be O(nn2

) and, hence, exceed the complexity of the brute
force approach.

We now consider an example of the effect of the above algorithm on the
search space of potentially amiable words.

aabc (2,1,2)

abac (1,1,2)

abca (1,1,1)

acba (1,0,1)

caba (1,0,0)

ac

bc

ac

ab

aacb (2,0,2)

acab (2,0,1)

caab (2,0,0)

ac

ac

bc

Fig. 2. Tree of single Switch Transfor-
mations for aabc, used in Example 4.

abbc (2,2,1)

babc (1,2,1)

bacb (1,1,1)

bc

ab

abcb (2,1,1)

bc

Fig. 3. Tree of single Switch Transfor-
mations for abbc, used in Example 7.

124 L. K. Hutchinson et al.

Example 4. Let w = caba. If we used a brute force approach to generate and
test all words with the same Parikh vector as w, then we would have to compare
the Parikh matrices of 11 words to that of w. We now show how the use of the
above algorithm reduces the number of comparisons that need to be performed.

The lexicographically smallest word with the same Parikh vector as w is
aabc, so this will be the starting point of our search. Since the word is ternary,
ab → ba, bc → cb and ac → ca are the only possible Switch Transformations.

We will represent the process in the form of a tree, where each child represents
a word that can be obtained by performing a single Switch Transformation on
the parent (see Fig. 2). We also record the number of subwords ab, bc and ca
at each node in the form (|w|ab, |w|bc, |w|ac). Note that |w|ab = 1, |w|bc = 0 and
|w|ac = 0. We can therefore stop searching once any further transformations
would result in less than 1 subword ab, 0 subwords bc and 0 subwords ac, and
we do not pursue any paths with duplicate words.

In this example, removing duplicate entries prevents us from switching ab in
acab (which would lead to acba, and this word is already in the tree), and from
switching ab in caab (since caba is already in the tree).

Finally, we now collect any word in the tree that has 1 occurrence of the
subword ab and 0 occurrences of the subword bc. These are acba and our input
word caba. We then calculate the Parikh matrices of the words, and since they
are the same, acba is the only word that is amiable with caba. �

The worst-case complexity of the implemented algorithm is O(n!) and there-
fore equivalent to the brute force approach described at the beginning of this
sub-section. However, this worst case only occurs in the special situation when
the word we consider is the lexicographically largest word with a given Parikh
vector. The average case of our approach is therefore superior to the brute force
method due to the fact that the search is stopped as soon as a lexicographi-
cally larger word is encountered and the fact that words with a lower number of
specific 2-letter subwords are excluded from the start.

3.5 L-Amiable Words

This function works in a very similar way as the Amiable Words function. To find
all L-amiable words, we first calculate the Lyndon factorisation of the square of
our given word, in the same way as in Sect. 3.2. We then find all words that are
amiable with the entered word using the algorithm discussed in Sect. 3.4, before
calculating the L-Parikh matrix of each of those words. We then compile a list of
words that share an L-Parikh matrix with the given word. This is demonstrated
in the next example.

Example 5. Let w = abbacc. We first must find all words that are amiable with
w using the algorithm discussed in the previous section. After completing this
step, we have three words that are distinct from w and have the same number
of occurrences of the subwords ab and bc as w, namely abbcac, abbcca, and

A Toolkit for Parikh Matrices 125

baabcc. We now calculate the Parikh matrices of w and these words: Ψ(abbacc) =〈
2 2 4
2 4
2

〉
, Ψ(baabcc) =

〈
2 2 4
2 4
2

〉
, Ψ(abbcac) =

〈
2 2 4
2 4
2

〉
, Ψ(abbcca) =

〈
2 2 4
2 4
2

〉
.

Since all four matrices are equal, all words output by the algorithm are
amiable with w. Now we calculate the L-Parikh matrices of these four words.

Ψ(L(abbacc)) = Ψ(abbacc) =
〈

2 2 4
2 4
2

〉
Ψ(L(baabcc)) = Ψ(aabccb) =

〈
2 4 4
2 2
2

〉

Ψ(L(abbcac)) = Ψ(abbcac) =
〈

2 2 4
2 4
2

〉
Ψ(L(abbcca)) = Ψ(aabbcc) =

〈
2 4 8
2 4
2

〉

There is one word that is distinct from w that shares both a Parikh and L-Parikh
matrix with it. Hence the word that is L-amiable with abbacc is abbcac. �

As this algorithm utilises the algorithm discussed in Sect. 3.4, it has asymp-
totically identical time complexity.

3.6 P-Amiable Words

To find all words that are P-amiable with a given word, we apply a similar
method as described in Sect. 3.5, except instead of finding the Lyndon conjugate
of the entered word, we find its projection. Let us demonstrate this using the
same word explored in Example 5.

Example 6. Consider w = abbacc. Let us find all words that are P-amiable with
w using S = {a, c}. As shown in Example 5, there are three words amiable with
w: baabcc, abbcac and abbcca. Now we find the Parikh matrices of the projections
of w and these words.

Ψ(πS(abbacc)) = Ψ(aacc) = 〈 2 4
2 〉 Ψ(πS(baabcc)) = Ψ(aacc) = 〈 2 4

2 〉
Ψ(πS(abbcac)) = Ψ(acac) = 〈 2 3

2 〉 Ψ(πS(abbcca)) = Ψ(acca) = 〈 2 2
2 〉

Only one word shares a Parikh and P-Parikh matrix with w. Therefore the word
that is P-amiable with w using the set S is baabcc. �

As with L-Parikh matrices, since this function uses the same algorithm as the
Amiable Words function, the time complexity is the same as described previously.

3.7 Is It Parikh?

This function takes a matrix as input and determines if it is the Parikh matrix
of a word. Before performing complex operations, we first run some initial tests
on the entered matrix to check if it meets some basic necessary conditions for a
matrix to be Parikh:

– The matrix is square.
– The diagonal of the matrix only contains 1’s.
– There are only zeroes under the diagonal.

126 L. K. Hutchinson et al.

– Let mi,j represent the element on the ith row and jth column of a matrix. If
i < j then mi+1,j × mi,j−1 ≤ mi,j .

Note that it was proven in [14] that a matrix must be Parikh if it is of size
3×3 and all four of these points are true. Therefore to reduce computation time,
we simply terminate the calculation immediately after these checks if the matrix
is of size 3 × 3, and output that the matrix is Parikh if all four criteria are met,
otherwise we output that the matrix is not Parikh.

To determine if a given matrix M of size (m×m), with m > 3, is Parikh,
we find the lexicographically smallest word such that the Parikh vector of that
word is equal to the 1-diagonal of M . Next, we proceed as with the strategy for
Amiable Words, see Sect. 3.4. That is, we apply Switch Transformations as long
as we can without obtaining fewer 2-letter subwords than the numbers on the
2-diagonal of M . Then we construct the Parikh matrices of all words that are
enumerated in this process, and M is Parikh iff it is identical to at least one of
these matrices.

Example 7. Consider the matrix
〈

1 1 0
2 1
1

〉
. Let us determine if this matrix is

Parikh. First we ensure that the standard criteria of a Parikh matrix have been
met. This matrix is square, contains only ones on the diagonal and only zeroes
underneath it. Furthermore, there does not exist an element in the upper triangle
of the matrix that is greater than the product of the elements to its immediate
left and immediately below it. Therefore this matrix could be Parikh.

Next, we consider the lexicographically smallest word with one occurrence
of a, two of b and one of c, namely abbc. Now we apply Switch Transformations
as long as we do not obtain fewer than one ab and one bc. See Fig. 3 for a
visualisation. Observe that Ψ(bcab) =

〈
1 1 0
2 1
1

〉
, which is identical to our given

matrix, and this allows us to conclude that it is indeed Parikh. This example
illustrates that, in the worst case, our approach merely involves constructing
the Parikh matrices of the 4 words in our Switch Tree, whereas a brute force
method would have had to consider the Parikh matrices of all 12 permutations of
abbc. �

As this algorithm utilises the algorithm discussed in Sect. 3.4, it has asymp-
totically identical time complexity, namely O(n!).

3.8 Associated Words

The Associated Words function works in a very similar way to the Is It Parikh?
function. Namely, it takes a Parikh matrix as input and performs the same
series of tests on it to determine if the matrix firstly meets the given criteria
to be Parikh, and secondly if there are any words associated with it. The only
difference between these two functions is the output, as it outputs any associated
words it finds.

Acknowledgements. The authors wish to thank the anonymous referees for their
thorough and helpful comments and suggestions.

A Toolkit for Parikh Matrices 127

References

1. Alazemi, H.M.K., Černý, A.: Several extensions of the Parikh matrix L-morphism.
J. Comput. Syst. Sci. 79, 658–668 (2013)

2. Atanasiu, A.: Parikh matrix mapping and amiability over a ternary alphabet. In:
Discrete Mathematics and Computer Science in Memoriam Alexandru Mateescu
(1952–2005), pp. 1–12 (2014)

3. Atanasiu, A., Atanasiu, R., Petre, I.: Parikh matrices and amiable words. Theoret.
Comput. Sci. 390, 102–109 (2008)

4. Atanasiu, A., Mart́ın-Vide, C., Mateescu, A.: On the injectivity of the Parikh
matrix mapping. Fund. Inform. 49, 289–299 (2002)

5. Atanasiu, A., Teh, W.C.: A new operator over Parikh languages. Int. J. Found.
Comput. Sci. 27, 757–769 (2016)

6. Bera, S., Mahalingam, K.: Some algebraic aspects of Parikh q-matrices. Int. J.
Found. Comput. Sci. 27, 479–500 (2016)

7. Dick, J., Hutchinson, L.K., Mercaş, R., Reidenbach, D.: Reducing the ambiguity
of Parikh matrices. Theoret. Comput. Sci. 860, 23–40 (2021)

8. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4, 363–381
(1983)

9. Egecioglu, O., Ibarra, O.H.: A matrix Q-analogue of the Parikh map. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 125–138.
Springer, Boston (2004). https://doi.org/10.1007/1-4020-8141-3 12

10. Fossé, S., Richomme, G.: Some characterizations of Parikh matrix equivalent binary
words. Inf. Process. Lett. 92, 77–82 (2004)

11. Hall, B.C.: Lie Groups, Lie Algebras, and Representations. GTM, vol. 222.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13467-3

12. Lejeune, M., Rigo, M., Rosenfeld, M.: On the binomial equivalence classes of finite
words. Int. J. Algebra Comput. 30, 1375–1397 (2020)

13. Mahalingam, K., Subramanian, K.G.: Product of Parikh matrices and commuta-
tivity. Int. J. Found. Comput. Sci. 23, 207–223 (2012)

14. Mateescu, A., Salomaa, A.: Matrix indicators for subword occurrences and ambi-
guity. Int. J. Found. Comput. Sci. 15, 277–292 (2004)

15. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: On an extension of the Parikh
mapping. Turku Centre for Computer Science (2000)

16. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: A sharpening of the Parikh map-
ping. RAIRO-Theor. Inf. Appl. 35, 551–564 (2001)

17. Parikh, R.J.: On context-free languages. J. ACM 13, 570–581 (1966)
18. Poovanandran, G., Chean Teh, W.: Strong (2·t) and strong (3·t) transformations

for strong M-equivalence. Int. J. Found. Comput. Sci. 30, 719–733 (2019)
19. Salomaa, A., Yu, S.: Subword occurrences, Parikh matrices and Lyndon images.

Int. J. Found. Comput. Sci. 21, 91–111 (2010)
20. Şerbănuţă, T.F.: Extending Parikh matrices. Theoret. Comput. Sci. 310, 233–246

(2004)
21. Şerbănuţă, V.N.: On Parikh matrices, ambiguity, and prints. Int. J. Found. Com-

put. Sci. 20, 151–165 (2009)
22. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356

(1969)

https://doi.org/10.1007/1-4020-8141-3_12
https://doi.org/10.1007/978-3-319-13467-3

Syntax Checking Either Way

Martin Kutrib1(B) and Uwe Meyer2

1 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

2 Technische Hochschule Mittelhessen, Wiesenstr. 14, 35390 Giessen, Germany

uwe.meyer@mni.thm.de

Abstract. We consider parsers of deterministic context-free languages
and study the sizes of their syntax checking components. More precisely,
we allow the input processing from left to right or, alternatively, from
right to left, whatever is best for the given language. We establish an
infinite sequence of deterministic context-free languages Lk, for k ≥ 1,
such that there is an exponential size trade-off between a deterministic
pushdown automaton that reads its input from right to left and another
one that reads its input from left to right. Concerning the constructibil-
ity of such a parser out of a given deterministic context-free language,
it is shown that it is undecidable whether the reversal of a given deter-
ministic context-free language is again deterministic context free. Fur-
thermore, we study the expressive capacity of the family of languages
whose reversals are deterministic context free. Finally, we turn to the
family of deterministic context-free languages whose reversals are also
deterministic context free and collect several of their closure properties.

1 Introduction

In the process of constructing a compiler for programming or other languages a
parser has to be built. A parser takes some input text and translates it to some
kind of parse tree or abstract syntax tree, while it checks for the correct syntax
of the input. It is evident that the size of the parser is one of its most important
properties. Since the translation process performed by the parser is often closely
linked with the syntax analysis, the size of the component that checks the syntax
is dominant.

A first step in this connection is the description of the syntax of the language,
which is in most cases deterministic context free. Two standard methods for syn-
tax representation are context-free grammars (the usual approach in compiler
construction) and deterministic pushdown automata. But which method can
represent the context-free language more succinctly? Does it depend on the lan-
guage? This question is addressed in [6]. A partial answer is given as follows.
For every pair of positive integers n ≥ 2 and p, there is a language that can be
accepted by a real-time deterministic pushdown automaton with n states and p
pushdown symbols and size O(np), for which every context-free grammar must
have at least n2p+1 nonterminals and hence must have size at least proportional
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 128–139, 2022.
https://doi.org/10.1007/978-3-031-07469-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_10&domain=pdf
http://orcid.org/0000-0002-9564-2625
http://orcid.org/0000-0003-0216-8803
https://doi.org/10.1007/978-3-031-07469-1_10

Syntax Checking Either Way 129

to n2p. It follows that some context-free languages can be defined much more
concisely by deterministic pushdown automata than by context-free grammars.
These results direct our interest to the pushdown automata or parser.

Two important types of parsers check the syntax of the input in a top-down
or bottom-up fashion. These deterministic pushdown automata are based on
LL(k) [13] and LR(k) grammars [12]. While even LR(1) grammars characterize
the family of deterministic context-free languages, their parsing strategy has an
impact on their structure and, thus, on their sizes. In [2] it is shown that there
can be exponential differences between the size of an arbitrary deterministic
pushdown automaton for a language and the size of any deterministic pushdown
automaton which behaves as an LR(1) parser for the same language.

These results raise the question of whether a parser can represent a determin-
istic context-free language still more succinctly than a grammar when it has to
obey the LR(k) strategy. How much larger must a deterministic LL(k) or LR(k)
parser be than the context-free grammar it parses? This question is addressed
in [16]. Trade-off results concerning the economy of description for parsers when
the ability for early error detection varies and for LR(k) grammars when the
length of the lookahead k varies are established in [15].

Here we focus on another aspect that may have an impact on the size of
deterministic pushdown automata which check the syntax of a deterministic
context-free language. In particular, it is well known that the family of deter-
ministic context-free languages is not closed under reversal. The LL(k) as well
as the LR(k) parsers read their inputs from left to right. So, what if we allow the
input processing from left to right or, alternatively, from right to left, whatever
is best for the given language? If we know which direction is better, this seems
to be a cheap maneuver from a practical point of view.

The paper is organized as follows. Section 3 is devoted to the question whether
the idea to allow the syntax checking either way makes sense at all. In order to
answer this question in the affirmative, we present an infinite sequence of deter-
ministic context-free languages Lk, for k ≥ 1, such that each Lk is accepted by a
deterministic pushdown automaton of size O(2k · k), whereas any deterministic
pushdown automaton accepting LR

k , that is by processing the input from right to
left, has size Ω(22

k

). So, we obtain an exponential trade-off. In Sect. 4 we turn to
the question for the constructibility of such a parser out of a given deterministic
context-free language. Starting with a simpler question one can ask more pre-
cisely if it is decidable for a given deterministic context-free language, whether
or not its reversal is again deterministic context free? This question is answered
negatively. Then we turn to the expressive capacity of the family of languages
whose reversals are deterministic context free. We consider the relationships with
unambiguous languages, with the family of deterministic context-free languages
whose reversals are also deterministic context free, and with further restrictions
to languages accepted by one-turn pushdown automata. Finally, in Sect. 6 we
collect several closure properties of the family of deterministic context-free lan-
guages whose reversals are also deterministic context free.

130 M. Kutrib and U. Meyer

2 Definitions and Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The set of words of length at most k ≥ 0
is denoted by Σ≤k. For convenience, we use Σλ for Σ ∪ {λ}. The reversal of a
word w is denoted by wR and for the length of w we write |w|. Set inclusion is
denoted by ⊆, and strict set inclusion by ⊂.

A nondeterministic pushdown automaton (NPDA, for short) is a system M =
〈Q,Σ, Γ, δ, q0,⊥, F 〉, where Q is a finite set of internal states, Σ is a finite input
alphabet, Γ is a finite pushdown alphabet, q0 ∈ Q is the initial state, ⊥ ∈ Γ is a
particular pushdown symbol, called the bottom-of-pushdown symbol, F ⊆ Q is
the set of accepting states, and δ is a mapping from Q×Σλ ×Γ to finite subsets
of Q × Γ ∗ called the transition function.

A configuration of a pushdown automaton is a triple (q, w, γ), where q is the
current state, w the unread part of the input, and γ the current content of the
pushdown store, the leftmost symbol of γ being the top symbol. If p, q are in Q, a
is in Σλ, w is in Σ∗, γ and β are in Γ ∗, and Z is in Γ , then we write (q, aw,Zγ)

(p,w, βγ), if the pair (p, β) is in δ(q, a, Z). In order to simplify matters, we
require that during any computation the bottom-of-pushdown symbol appears
only at the bottom of the pushdown store. Formally, we require that if (p, β) is
in δ(q, a, Z), then either β does not contain ⊥ or β = β′⊥, where β′ does not
contain ⊥, and Z = ⊥. As usual, the reflexive transitive closure of
 is denoted
by
∗.

The language accepted by M with accepting states is

L(M) = {w ∈ Σ∗ | (q0, w,⊥)
∗ (q, λ, γ), for some q ∈ F and γ ∈ Γ ∗ }.

Special kinds of NPDAs are deterministic and unambiguous pushdown
automata. A pushdown automaton M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉 is deterministic
(DPDA) if (i) δ(q, a, Z) contains at most one element, for all a in Σλ, q in Q,
and Z in Γ , and (ii) for all q in Q and Z in Γ : if δ(q, λ, Z) is not empty, then
δ(q, a, Z) is empty for all a in Σ. In this case we simply write δ(q, a, Z) = (p, β)
instead of δ(q, a, Z) = {(p, β)} assuming that the transition function is a map-
ping Q × Σλ × Γ → Q × Γ ∗. Moreover, the NPDA M is unambiguous (UPDA)
if for every word w ∈ L(M) there is at most one accepting computation path,
that is, the sequence of configurations seen during an accepting computation on
the given word is unique.

NPDAs characterize the family of context-free languages (CFL) defined by
context-free grammars. This characterization carries over to UPDAs in the sense
that the family of unambiguous context-free languages (UCFL), generated by
unambiguous context-free grammars, is equal to the family of languages accepted
by UPDAs. Finally, the family of deterministic context-free languages (DCFL)
is simply defined to be the family of all languages accepted by DPDAs (or
equivalently generated by LR(k) context-free grammars). These three types of
devices induce a strict hierarchy of language families [8].

The size of a system is measured as the length of its description in some
fixed coding alphabet. So, there are only finitely many systems of the same size.

Syntax Checking Either Way 131

3 Syntax Checking Either Way – Could It Make Sense?

As said before, one of our main interests is the optimization of the resources
needed to build a parser for deterministic context-free languages. Particularly,
we are interested in the sizes of the parser components that check the syntax
of the input. The idea is, for a given deterministic context-free language L, to
consider the size of a DPDA that processes the input from left to right, and
the size of a DPDA that processes the input from right to left, and to take
the more efficient one of both, that is, the smaller one. So, the first DPDA
accepts L, while the second DPDA has to accept LR. Clearly, since the family
DCFL is not closed under reversal, this is only possible for deterministic context-
free languages whose reversal languages are deterministic context free as well.
We denote the family of reversals of deterministic context-free languages by
DCFLR = {LR | L ∈ DCFL }. So, we are interested in the family RDCFL =
DCFL ∩ DCFLR.

Let us first give evidence that this idea makes sense at all. The following
example and proposition provide a language in RDCFL for which the processing
of the input in one direction yields an exponentially more succinct DPDA than
processing the input in the opposite direction.

Example 1. For any k ≥ 1, the deterministic context-free language

Lk = {u#an#v#an | n ≥ 1, u ∈ {a, b}k ∪ {λ}, and v ∈ ({a, b}k)∗u({a, b}k)∗ }
is accepted by a DPDA Mk of size O(2k · k).

For u = λ any input accepted by Mk must have # as first symbol. For
u = λ each accepted input must have a letter from {a, b} as first symbol. So, Mk

can deterministically decide which case is. The simulation in the first case is
independent of k and takes some fixed number of states.

Next, we construct the part M ′
k = 〈Q,Σ, Γ, δ, q0,⊥, F 〉 of Mk that accepts Lk

if u = λ. To this end, we set Σ = {a, b, #}, Γ = {A,⊥}, F = {qacc}, and

Q = { qw | w ∈ {a, b}≤k } ∪ { (qw,+) | w ∈ {a, b}k }
∪ { (qw, i, h) | w ∈ {a, b}k, 0 ≤ i ≤ k − 1, h ∈ {D,N} }
∪ { i | 0 ≤ i ≤ k − 1 } ∪ {q−, qacc}

and q0 = qλ.
According to the structure of inputs from Lk the DPDA Mk works in four

phases. For their implementations the different subsets of Q are used.
In the first phase, Mk gathers the prefix u symbol by symbol, whereby its

correct length k is checked. For all x, y, z ∈ {a, b} and all w′ ∈ {a, b}≤k−1,
w ∈ {a, b}k, and ŵ ∈ {a, b}k−1 we set:

(1) δ(qw′ , x,⊥) = (qw′x,⊥)
(2) δ(qw, #,⊥) = ((qw,+),⊥)

If the length of u is different from k the computation gets stuck in this phase.
Otherwise, the second phase starts with state (qu,+). In the second phase, Mk

reads and pushes the following a-factor.

132 M. Kutrib and U. Meyer

(3) δ((qw,+), a,⊥) = ((qw,+), A⊥)
(4) δ((qw,+), a, A) = ((qw,+), AA)
(5) δ((qw,+), #, A) = ((qw, 0,D), A)

If there is no a after the first #, the computation gets stuck immediately. Other-
wise, the third phase starts with state (qu, 0,D) with pushdown content An⊥. In
the third phase, Mk reads the factor v, checks that its length is a multiple of k,
and checks whether it contains the factor u at a correct position. To this end,
the states of the form (qw, i, h) are used until the factor u has been detected.
Afterwards, the states of the form i are used to check whether the remaining
suffix of v has a length that is a multiple of k. While searching for u the states
(qw, i, h) are used as follows. In the first component of the state qw we encode
the word u. But u is rotated by one position in each step. So, the next symbol
to be compared is the first symbol in the index. At the beginning and the end of
processing a block of k symbols the index is u. The second component i is used
to remember the current position in each block. The third component indicates
that the checking of the current block has been successful so far. If yes, the
component is D. Otherwise, it is set to N . The implementation of the searching
for u is as follows.

(6) δ((qxŵ, i,D), x, A) = ((qŵx, i + 1,D), A) for 0 ≤ i ≤ k − 2
(7) δ((qxŵ, k − 1,D), x, A) = (0, A)
(8) δ((qxŵ, i,D), y, A) = ((qŵx, i + 1, N), A) for = y, 0 ≤ i ≤ k − 2
(9) δ((qxŵ, i, N), z, A) = ((qŵx, i + 1, N), A) for 0 ≤ i ≤ k − 2

(10) δ((qxŵ, k − 1,D), y, A) = ((qŵx, 0,D), A) for x = y
(11) δ((qxŵ, k − 1, N), z, A) = ((qŵx, 0,D), A)

So, if and only if factor u is found at a correct position, in this phase, the compu-
tation continues with states of the form i. As long as the search is unsuccessful
states of the form (qw, i, h) are used. In the first situation the length of the
remaining suffix of v is checked.

(12) δ(i, x,A) = (i + 1, A) for 0 ≤ i ≤ k − 2
(13) δ(k − 1, x, A) = (0, A)
(14) δ(0, #, A) = (q−, A)

If no factor u at a correct position is found before the third # appears in the
input or if the length of the factor v is not a multiple of k, then the computation
gets stuck. Otherwise, the fourth phase starts with state q−, still with pushdown
content An⊥. In the fourth phase, Mk compares the length of the remaining
a-factor with the pushdown content, that is, with the length of the a-factor
following the first #.

(15) δ(q−, a, A) = (q−, λ)
(16) δ(q−, λ,⊥) = (qacc,⊥)

Syntax Checking Either Way 133

So, if there are too less a’s in the suffix then the computation ends rejecting in
state q−. If there are too many a’s in the suffix, it gets stuck in state qacc but
without processing the input entirely and, thus, rejecting. We conclude that the
input is accepted if and only if it belongs to Lk.

Finally, we have to estimate the size of Mk. To this end, first we consider the
number of states. By adding the sizes of the subsets of Q we obtain 2k+1 + 2k +
2k · k · 2 + k + 2 ∈ O(2k · k). Multiplying this number with the number of input
symbols, the number of pushdown symbols, the number of final states, and the
maximal number of symbols pushed in a single transition does not change the
order of magnitude since all these sets are independent of k. Similarly, adding
the size of the part of Mk that handles the case u = λ does not change the order
of magnitude, it is independent of k as well. We conclude that the size of Mk is
O(2k · k). �

Clearly, the language LR
k is deterministic context free. So, the next step is to

show a lower bound for the size of DPDAs accepting it.

Proposition 2. Let k ≥ 1. Any DPDA that accepts LR
k is of size Ω(22

k

).

Proof. Let M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉 be some DPDA accepting LR
k . It is well

known that any DPDA can be converted into an equivalent DPDA whose λ-
transitions are all popping from the pushdown. Moreover, this conversion does
not increase the size of the DPDA. So, we may safely assume that M has this
property.

During the computation of M on input prefixes a+ no combination of state
and content of the pushdown store may appear twice. If

(q0, an#v#an#u,⊥)
∗ (q1, an−m1#v#an#u, γ1)
+ (q1, an−m1−m2#v#an#u, γ1)

is the beginning of an accepting computation, then so is

(q0, an−m2#v#an#u,⊥)
∗ (q1, an−m1−m2#v#an#u, γ1),

but an−m1−m2#v#an#u does not belong to LR
k . This implies that each height of

the pushdown store may appear only finitely often, and thus, that the height
increases arbitrarily. So, M runs into a cycle while processing input prefixes a+,
that is, the combination of a state and, for any fixed number h, some h top-
most pushdown symbols α appear again and again. To render the cycle more
precisely, let (q, ax#v#an#u, αγ) be a configuration of the cycle. Then there
is a successor configuration with the same combination of state and topmost
pushdown symbols (q, ax−y#v#an#u, αβ). We may choose α so that during the
computation starting in (q, ax#v#an#u, αγ) no symbol of γ is touched, that is,
αβ = αγ′γ. Therefore, the computation continues as (q, ax−y#v#an#u, αγ′γ)
+

(q, ax−2y#v#an#u, αγ′γ′γ).
Now we turn to the input factors a+ following the v. While M processes

these input factors, no combination of state and content of the pushdown store
may appear twice. If (q2, an#u, σ)
∗ (q3, an−m3#u, σ1)
+ (q3, an−m3−m4#u, σ1)

134 M. Kutrib and U. Meyer

results in an accepting computation, then so does (q2, an−m4#u, σ)
∗

(q3, an−m3−m4#u, σ1), but an#v#an−m4#u does not belong to LR
k . This implies

that each height of the pushdown store may appear only finitely often. Moreover,
in any accepting computation the pushdown store has to be decreased until some
symbol of γ appears. Otherwise, we could set u = λ and increase the number
of a’s in the prefix by y to drive M through an additional cycle while process-
ing the input prefix. The resulting computation on an+y#v#an# would also be
accepting but the input does not belong to LR

k .
Now let us consider the infinite set of numbers n that drive M through

complete cycles while processing the input prefix an. That is, there is a fixed
state q′ reached at the end of a cycle, and we consider the set

N = {n | (q0, an#,⊥)
∗ (q′, #, α(γ′)xγ) for some x ≥ 1 }.

Let N = {n1, n2, n3, . . . } with ni < ni+1, for i ≥ 1. Then, for all v ∈ ({a, b}k)∗

and for some xi ≥ 0, the beginnings of accepting computations on ani#v#ani#u
and ani+1#v#ani+1#u are (q0, ani#v#ani#u,⊥)
∗ (q′, #v#ani#u, α(γ′)xiγ) and
(q0, ani+1#v#ani+1#u,⊥)
∗ (q′, #v#ani+1#u, α(γ′)xi+1γ). Next, we consider the
configuration in which the first computation touches the topmost symbol of γ:
(q′, #v#ani#u, α(γ′)xiγ)
∗ (qv, w#u, γ), where qv may depend on v, and w is
of the form a∗. Since M is deterministic, the second computation continues as
(q′, #v#ani+1#u, α(γ′)xi+1γ)
∗ (qv, ani+1−niw#u, γ′γ). Note that γ′ and γ are
fixed and, thus, are independent of v.

Next, we split each v into factors of length k and associate v with the subset
Bv ⊆ {a, b}k of these factors. Finally, we claim that qv = qv′ if and only if Bv =
Bv′ . Assume contrarily that qv = qv′ and Bv = Bv′ . Without loss of generality
there is some factor z ∈ Bv \Bv′ . Since the computation (q0, ani#v#ani#z,⊥)
∗

(qv, w#z, γ) continues accepting, the computation (q0, ani#v′#ani#z,⊥)
∗ (qv =
qv′ , w#z, γ) continues accepting as well. However, since z /∈ Bv′ it is not a factor
of v′ and, thus, ani#v′#ani#z does not belong to LR

k . The contradiction shows
the claim.

Since there are 22
k

subsets of {a, b}k we conclude that M has Ω(22
k

) states
which implies that it is of size Ω(22

k

). ��
Though they provide just a lower bound, the previous example and the propo-

sition already show, in fact, that the processing of the input from right to left
makes sense. It can be done with an exponentially more succinct machinery.

4 Decidability – Why We Need Man-Made Proofs

We have already seen that syntax checking either way can help to save resources.
This immediately raises the natural question for the constructibility of such a
parser out of a given deterministic context-free language. Starting with a simpler
question one can ask more precisely if it is decidable for a given deterministic
context-free language, whether or not its reversal is again deterministic context
free? The next theorem answers this question negatively.

Syntax Checking Either Way 135

In the following, we will use a reduction of a problem for Turing machines. To
this end, histories of Turing machine computations are encoded into strings [9].
It suffices to consider deterministic Turing machines with one single tape and
one single read-write head. Without loss of generality and for technical reasons,
we assume that the Turing machines can halt only after an odd number of moves,
accept by halting, make at least three moves, and cannot print blanks. A valid
computation is a string built from a sequence of configurations that are passed
through at the beginning of a computation.

Let Q be the state set of some Turing machine M , where q0 is the initial
state, T is the tape alphabet (T ∩ Q = ∅) containing the blank symbol, and
Σ ⊂ T is the input alphabet. Then a configuration of M can be written as a
word of the form T ∗QT ∗ such that t1t2 · · · tiqti+1 · · · tn is used to express that M
is in state q, scanning tape symbol ti+1, and t1, t2 to tn is the support of the
tape inscription. For the purpose of the following, valid computations VALC(M)
are now defined as strings of the form $w1$wR

2 $w3$wR
4 $ · · · $w2n−1$wR

2n$, where
$ /∈ T ∪ Q, wi ∈ T ∗QT ∗ are configurations of M , w1 is an initial configuration
of the form q0Σ

∗, and wi+1 is the successor configuration of wi.
We consider the following decomposition of VALC(M): VALC1(M) is the set

of strings of the form $w1$wR
2 $ · · · $w2n−1$wR

2n$, where w1 is an initial configura-
tion and w2i+1 is the successor configuration of w2i, for 1 ≤ i ≤ n−1. VALC2(M)
is the set of strings of the form $w1$wR

2 $ · · · $w2n−1$wR
2n$, where w1 is an initial

configuration and w2i is the successor configuration of w2i−1, for 1 ≤ i ≤ n.
Clearly, VALC1(M) and VALC2(M) as well as VALC1(M)R and

VALC2(M)R are deterministic context-free languages, such that their determin-
istic pushdown automata can effectively be constructed from M .

Theorem 3. It is undecidable whether or not the reversal of a given determi-
nistic context-free language is again a deterministic context-free language.

Proof. We will show the theorem by reduction of the halting problem for Turing
machines on a given finite set of inputs to the problem in question. That is, given
a Turing machine M and a finite set of inputs I, determine whether M halts
on all w ∈ I. So, let M ′ be an arbitrary Turing machine of the type considered
here. First, M ′ is modified to M as follows. Basically, M simulates M ′, but after
having simulated one step, it marks the current position on the tape, moves to
the first blank on the right, rewrites the blank by some fixed new tape symbol,
moves back to the marked tape position, removes the mark, and simulates the
next step, and so on. The new tape symbol plays the role of the blank symbol.
Clearly, M halts on some input w if and only if M ′ halts on w. The effect
of the modification is that during a non-halting computation the length of the
support of the configurations increases arbitrarily. Now, let M have state set Q,
tape alphabet T , input alphabet Σ, and let I = {v1, v2, . . . , vk} ⊂ Σ∗ with
k ≥ 1 be a finite set. Furthermore, let Ã1 and Ã2 be the two deterministic
pushdown automata constructed from M that accept the languages VALC1(M)R

respectively VALC2(M)R. Since deterministic context-free languages are closed
under intersection with regular languages, we can construct the two deterministic

136 M. Kutrib and U. Meyer

pushdown automata A1 and A2 that accept L1 = VALC1(M)R ∩ ((T ∪ Q ∪
{$})∗$Iq0$) respectively L2 = VALC2(M)R ∩ ((T ∪ Q ∪ {$})∗$Iq0$). We take
two new symbols a and b and construct a deterministic pushdown automaton A
that accepts the language L = aL1 ∪ bL2.

We consider LR = LR
1 a∪LR

2 b and claim that LR is deterministic context free
if and only if M accepts all inputs from I.

First, we consider the case that M accepts all inputs from I. The intersection
LR
1 ∩LR

2 contains exactly the words that encode the beginnings of computations
of M on inputs from I. Since M halts on all inputs from I, there exists a
longest word u such that there is no word of length |u| + 1 which is a prefix in
both languages LR

1 and LR
2 . So, by inspecting the first |u| + 1 input symbols a

deterministic pushdown automaton can decide to which language the input may
still possibly belong. We conclude that there exists a deterministic pushdown
automaton that accepts LR.

Second, we consider the case that there is at least one input v ∈ I such
that M does not halt on input v. Then the computation of M on v implies that
LR
1 ∩ LR

2 is infinite. In contrast to the assertion, we assume that LR is accepted
by some deterministic pushdown automaton B.

It is known that, by applying the technique of predicting machines [11], B can
effectively be converted into a deterministic pushdown automaton that accepts
immediately upon consuming the last input symbol, without subsequent λ-steps
(see, for example, Exercise 10.7 in [11]). So, we safely may assume that B has this
property. Since any word in LR either ends with a or b and both symbols cannot
appear anywhere else in an accepted word, we can modify B to B′ as follows.
Basically, B′ simulates B. However, whenever B reads an a or a b and, thus,
performs its final transition, the deterministic pushdown automaton B′ does the
following. It enters an accepting state and halts if and only if B would enter
an accepting state on input symbols a and b. Otherwise, B′ enters a rejecting
state and halts. In this way, we have constructed a deterministic pushdown
automaton B′ that accepts (LR

1 ∩ LR
2){a, b}.

Since deterministic context-free languages (for example represented by deter-
ministic pushdown automata) are effectively closed under right quotient with reg-
ular languages, from B′ we effectively obtain a deterministic pushdown automa-
ton accepting LR

1 ∩ LR
2 . However, since LR

1 ∩ LR
2 is infinite, a simple application

of the pumping lemma for context-free languages shows that LR
1 ∩LR

2 is not even
context free.

From the contradiction we deduce that LR cannot be accepted by any deter-
ministic pushdown automaton if M does not accept all inputs from I.

Altogether we have that L is deterministic context free, while LR is deter-
ministic context free if and only if M halts on all inputs from I. Since the latter
is undecidable for Turing machines the theorem follows. ��

Theorem 3 implies that one needs a representation for both deterministic
context-free languages L and LR in order to deal with syntax checking either
way. Moreover, even if it exists the representation of LR by a deterministic
pushdown automaton cannot be obtained algorithmically out of L.

Syntax Checking Either Way 137

5 Expressive Capacity of DCFLR

By the results of the previous sections there is a particular interest in the lan-
guage family RDCFL = DCFL∩DCFLR. While the family DCFL is well under-
stood, only little is known about the family DCFLR. So, here we will first turn
to examine its expressive capacity. The relationships between several language
families are depicted in Fig. 1 at the end of the section.

Lemma 4. The family DCFL ∪ DCFLR is properly included in UCFL.

This gives an upper bound for the expressive capacity of DCFLR. However,
this upper bound is somehow uncomfortable since it is undecidable whether a
given unambiguous context-free grammar or UPDA generates or accepts a deter-
ministic context-free language [17]. Moreover, to our knowledge, the problem to
decide regularity for UPDAs is an open problem.

We turn to a slightly generalized point of view. It is known that the family
of deterministic context-free languages is characterized by the class of LR(k)
grammars, for all k ≥ 1 [12]. The languages accepted by an LR(k) parser with
a finite number of runs, or equivalently by a finite cascade of possibly different
LR(k) parsers, can be defined as the finite union of the languages accepted in
each single run, or equivalently by the finite union of languages from DCFL. In
other words, is the family DCFLR included in the finite union closure of DCFL?

Proposition 5. The families of languages DCFLR and the finite union closure
of DCFL are incomparable. In particular, there is a deterministic context-free
language whose reversal cannot be represented as finite union of deterministic
context-free languages.

Proof. Since the family DCFL is not closed under reversal, there is a language
in DCFL \ DCFLR. For the converse direction we consider the language

L = ({ canbn | n ≥ 0 } ∪ { danb2n | n ≥ 0 })∗

as witness. Clearly, L belongs to DCFL.
In [14] the finite union closure of DCFL has been characterized by pushdown

automata with limited nondeterminism. In particular, the family of languages
accepted by pushdown automata that perform a constant number of guesses on
each input coincides with the finite union closure of DCFL. However, in [5] it
has been shown that any pushdown automaton accepting LR requires a linear
amount of nondeterminism (there unessentially only one letter is used instead of c
and d). So, LR cannot be represented as finite union of deterministic context-free
languages. ��

Next, we consider a restricted version of pushdown automata. Though deter-
ministic pushdown automata are already parsing rapidly in linear time, the addi-
tional property of being finite-turn can make them faster. A nondeterministic
pushdown automaton is said to be finite turn if the height of the pushdown
store alternatively increases and decreases at most a fixed bounded number

138 M. Kutrib and U. Meyer

UCFL

DCFLR

DCFL

RDCFL

DLIN

RDLIN

REG

Fig. 1. Hierarchical structure of language families.

of times in any computation [4]. Such pushdown automata can reject inputs
faster because the computation can be halted as soon as it exceeds the fixed
bound of alternations. The families of languages accepted by finite-turn push-
down automata are also characterized, for example, by certain type of context-
free grammars. Of particular interest are one-turn pushdown automata that
are characterized by linear context-free grammars. The corresponding family of
languages is denoted by LIN. The deterministic counterpart of one-turn push-
down automata is characterized by linear context-free grammars restricted by
an LR(1) condition [10]. The corresponding family of languages is denoted by
DLIN. In connection with syntax checking either way we are mainly interested
in the family RDLIN = DLIN ∩ DLINR. It is well known that it is not enough
to consider the intersection of LIN and DCFL to obtain DLIN [1]. We provide
an example for this fact whose languages are utilized as witnesses below.

Example 6. The language L = { akblambn | k, l,m, n ≥ 1 and k = l } ∪
{ akblambn# | k, l,m, n ≥ 1 and m = n } clearly belongs to LIN ∩ DCFL but
does not belong to DLIN. �

The existence of a language in DLIN whose reversal is not deterministic
context free, that is, it does not belong to RDCFL is known from [3]. This shows
one direction of the next proposition which justifies that we have to consider
RDLIN for the purpose of syntax checking either way.

Proposition 7. The families DLIN and RDCFL are incomparable.

Finally, the family RDLIN can be placed into the hierarchy of languages as
follows.

Proposition 8. The family RDLIN is properly included in the intersection
RDCFL ∩ DLIN.

Syntax Checking Either Way 139

6 Closure Properties of RDCFL

Finally, we are going to collect several closure properties of the family RDCFL.
The properties are summarized and compared with those of DCFL in Table 1.

Table 1. Closure properties of the language families DCFL and RDCFL.

Family ∪ ∩ ∩REG · ∗ R hlen.pres. h−1 /REG

DCFL ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

RDCFL ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗

References

1. Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown
automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Lan-
guages, pp. 111–174. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-
642-59136-5 3

2. Geller, M.M., Hunt III, H.B., Szymanski, T.G., Ullman, J.D.: Economy of descrip-
tion by parsers, DPDA’s, and PDA’s. Theor. Comput. Sci. 4, 143–153 (1977)

3. Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Inform. Control
9, 620–648 (1966)

4. Ginsburg, S., Spanier, E.H.: Finite-turn pushdown automata. SIAM J. Contr. 4,
429–453 (1966)

5. Goldstine, J., Leung, H., Wotschke, D.: Measuring nondeterminism in pushdown
automata. J. Comput. Syst. Sci. 71, 440–466 (2005)

6. Goldstine, J., Price, J.K., Wotschke, D.: A pushdown automaton or a context-free
grammar - which is more economical? Theor. Comput. Sci. 18, 33–40 (1982)

7. Greibach, S.A.: The unsolvability of the recognition of linear context-free lan-
guages. J. ACM 13, 582–587 (1966)

8. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

9. Hartmanis, J.: Context-free languages and Turing machine computations. In: Pro-
ceedings Symposia in Applied Mathematics, vol. 19, pp. 42–51 (1967)

10. Holzer, M., Lange, K.-J.: On the complexities of linear LL(1) and LR(1) grammars.
In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57163-9 25

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

12. Knuth, D.E.: On the translation of languages from left to right. Inform. Control
8, 607–639 (1965)

13. Knuth, D.E.: Top-down syntax analysis. Acta Inform. 1, 79–110 (1971)
14. Kutrib, M., Malcher, A.: Context-dependent nondeterminism for pushdown

automata. Theor. Comput. Sci. 376, 101–111 (2007)
15. Leung, H., Wotschke, D.: On the size of parsers and LR(k)-grammars. Theor.

Comput. Sci. 242, 59–69 (2000)
16. Ukkonen, E.: Lower bounds on the size of deterministic parsers. J. Comput. Syst.

Sci. 26, 153–170 (1983)
17. Valiant, L.G.: A note on the succinctness of descriptions of deterministic languages.

Inform. Control 32, 139–145 (1976)

https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/3-540-57163-9_25

On the Power of Pushing or Stationary
Moves for Input-Driven Pushdown

Automata

Martin Kutrib(B), Andreas Malcher, and Matthias Wendlandt

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,andreas.malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. Input-driven pushdown automata (IDPDAs) are pushdown
automata where the next action on the pushdown store (push, pop, noth-
ing) is solely governed by the input symbol. Nowadays such devices are
usually defined such that every push operation pushes exactly one addi-
tional symbol on the pushdown store and, in addition, the devices work
in real time so that stationary moves are not allowed. Here, we relax
this strong definition and consider IDPDAs that may push more than
one symbol in one step (push-IDPDA) or may perform stationary moves
(stat-IDPDA). We study the computational power of the extended vari-
ants both in the deterministic and nondeterministic case, we investi-
gate several decidability questions for the new automata classes, and we
obtain useful interesting representations by inverse homomorphisms.

1 Introduction

Input-driven pushdown automata (IDPDAs) have been introduced in [11] and
their motivation stems from the search for an upper bound for the space needed
for the recognition of deterministic context-free languages. IDPDAs are a sub-
class of pushdown automata that work in real time and, more importantly, in
an input-driven way. That is, no moves on empty input are allowed, and the
actions on the pushdown store are dictated by the input symbols. The basic
results in [11] and its follow-up papers [3,7] are the equivalence of nondetermin-
istic and deterministic models and the proof that the membership problem is
solvable in logarithmic space.

Input-driven pushdown automata have been revisited in [1,2], where such
devices are called visibly pushdown automata or nested word automata. Some
of the results comprise descriptional complexity aspects for the determinization
as well as closure properties and decidability questions which turned out to be
similar to those of finite automata. Further aspects such as the minimization of
IDPDAs and a comparison with other subfamilies of deterministic context-free
languages have been studied in [5,6]. A recent survey with many valuable refer-
ences on complexity aspects of input-driven pushdown automata may be found
in [12]. An extension of input-driven pushdown automata towards pushdown
automata sychronized by a finite transducer has been discussed in [4].

c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 140–151, 2022.
https://doi.org/10.1007/978-3-031-07469-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_11

On the Power of Pushing or Stationary Moves for IDPDAs 141

The renewed interest in input-driven pushdown automata has also affected
the definition of the devices. While in the early papers IDPDAs are defined
as ordinary real-time pushdown automata whose behavior on the pushdown is
solely driven by the input symbols, the definition in [1] stipulates that at most
one symbol is pushed in a single push operation. Moreover, instead of getting
stuck when popping from the empty pushdown it is allowed to pop from the
empty pushdown by simply defining that popping from the empty pushdown
results in an empty pushdown. The latter restriction has been given up in [9]
where so-called digging input-driven pushdown automata have been introduced
and studied in depth. It turned out that digging IDPDAs have similar properties
as IDPDAs with regard to determinization, closure properties, and decidability
questions.

In this paper, our goal is to consider variants of input-driven push-
down automata whose definition is closer to classical deterministic pushdown
automata. To this end, we will further relax the restrictions of allowing only at
most one symbol to be pushed in a single step and the processing of the input
in real time. In detail, we consider pushing input-driven pushdown automata
(push-IDPDAs) that are allowed to push more than one symbol in a single step.
Moreover, to relax the real-time condition we consider stationary input-driven
pushdown automata (stat-IDPDAs) where the input symbols still dictate which
operation on the pushdown has to be carried out, but the transition functions
determine whether the head remains on the current input symbol or moves to the
right as usual. As a first result, which is in contrast to classical IDPDAs and dig-
ging IDPDAs, we obtain the nondeterministic push-IDPDAs and stat-IDPDAs
are computationally stronger than their deterministic counterparts. In addi-
tion, it can be shown both in the deterministic and nondeterministic case that
stat-IDPDAs are computationally stronger than push-IDPDAs which in turn
are computationally stronger than classical IDPDAs. On the other hand, classi-
cal deterministic and nondeterministic pushdown automata are computationally
stronger than the corresponding stat-IDPDAs. Another interesting result is that
the introduced variants are well-suited for a representation by inverse homomor-
phism. In detail, it is shown that there is a homomorphism hr such that every
context-free language L can be represented as the inverse homomorphic image
h−1
r (L′) = L of a language L′ accepted by a nondeterministic push-IDPDA.

Using the same homomorphism it is also possible to obtain similar character-
izations of the real-time deterministic context-free languages by deterministic
push-IDPDAs and of general deterministic context-free languages by determin-
istic stat-IDPDAs. These characterizations can in particular be used to obtain
undecidability results. It turns out that the inclusion problem for two determinis-
tic push-IDPDAs with compatible signatures is not even semidecidable, whereas
the problem is decidable for classical IDPDAs. Hence, the restriction to allow at
most one symbol to be pushed is essential in order to get decidability. In the non-
deterministic case, we can show that the questions of universality, equivalence,
and regularity are not semidecidable for push-IDPDAs and stat-IDPDAs.

142 M. Kutrib et al.

2 Definitions and Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \{λ}. The set of words of length at most n ≥ 0 is
denoted by Σ≤n. The reversal of a word w is denoted by wR. For the length of
w we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions. We write |S|
for the cardinality of a set S. We say that two language families L1 and L2 are
incomparable if L1 is not a subset of L2 and vice versa.

A classical pushdown automaton is called input-driven if the next input sym-
bol defines the next action on the pushdown store, that is, pushing a symbol onto
the pushdown store, popping a symbol from the pushdown store, or changing the
state without modifying the pushdown store. To this end, the input alphabet Σ
is partitioned into the sets ΣD, ΣR, and ΣN , that control the actions push (D),
pop (R), and state change only (N). However, if the next input symbol forces the
input-driven pushdown automaton to pop a symbol from the empty pushdown
then the computation does not get stuck but continues with an empty pushdown.
Moreover, an input-driven pushdown automaton always works in real-time, that
is, it is forced to move its input head in each step. Finally, an input-driven
pushdown automaton must not push more than one symbol in a single step.

Definition 1. A nondeterministic input-driven pushdown automaton
(NIDPDA) is a system M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉, where Q is the finite
set of internal states, Σ is the finite set of input symbols partitioned into the
sets ΣD, ΣR, and ΣN , Γ is the finite set of pushdown symbols, q0 ∈ Q is
the initial state, F ⊆ Q is the set of accepting states, ⊥ /∈ Γ is the empty-
pushdown symbol, δD is the partial transition function mapping Q × ΣD × Γ
to the subsets of Q × { push(x) | x ∈ Γ 2 }, and Q × ΣD × {⊥} to the sub-
sets of Q × { push(x) | x ∈ Γ }, δR is the partial transition function mapping
Q × ΣR × (Γ ∪ {⊥}) to the subsets of Q, δN is the partial transition function
mapping Q × ΣN × (Γ ∪ {⊥}) to the subsets of Q × { top(x) | x ∈ Γ ∪ {⊥} },
where (q′, top(⊥)) ∈ δN (q, a, z) if and only if z = ⊥.

A configuration of an NIDPDA M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 is a triple
(q, w, s), where q ∈ Q is the current state, w ∈ Σ∗ is the unread part of the
input, and s ∈ Γ ∗ denotes the current pushdown content, where the leftmost
symbol is at the top of the pushdown store. The initial configuration for an
input string w is set to (q0, w, λ). During the course of its computation, M
runs through a sequence of configurations. One step from a configuration to
its successor configuration is denoted by
. Let q, q′ ∈ Q, a ∈ Σ, w ∈ Σ∗,
z, z′, z′′ ∈ Γ , and s ∈ Γ ∗. We set

1. (q, aw, zs)
 (q′, w, z′z′′s), if a ∈ ΣD and (q′, push(z′z′′)) ∈ δD(q, a, z),
2. (q, aw, λ)
 (q′, w, z′), if a ∈ ΣD and (q′, push(z′)) ∈ δD(q, a,⊥),
3. (q, aw, zs)
 (q′, w, s), if a ∈ ΣR and q′ ∈ δR(q, a, z),
4. (q, aw, λ)
 (q′, w, λ), if a ∈ ΣR and q′ ∈ δR(q, a,⊥),
5. (q, aw, zs)
 (q′, w, z′s), if a ∈ ΣN and (q′, top(z′)) ∈ δN (q, a, z),
6. (q, aw, λ)
 (q′, w, λ), if a ∈ ΣN and (q′, top(⊥)) ∈ δN (q, a,⊥).

On the Power of Pushing or Stationary Moves for IDPDAs 143

So, whenever the pushdown store is empty, the successor configuration is com-
puted by the transition functions with the special empty-pushdown symbol ⊥.
As usual, we define the reflexive and transitive closure of
 by
∗.

Next, we turn to the variants of NIDPDAs that are closer to classical deter-
ministic pushdown automata having the property that the next input symbol
defines the next action on the pushdown store. First, we consider the variant
that may push more than one symbol in a single step.

An input-driven pushdown automaton is a pushing input-driven pushdown
automaton (push-NIDPDA) if its transition function δD maps Q × ΣD × Γ to
the finite subsets of Q × { push(x) | x ∈ Γ+Γ }, and Q × ΣD × {⊥} to the finite
subsets of Q × { push(x) | x ∈ Γ+ }.

Second, we consider the variant that is not forced to work in real time. To
this end, it must be possible to keep the input head at its current position. Since
λ-steps are somehow in conflict with the idea that the input symbol defines
the action on the pushdown store, we consider stationary moves. So, an input-
driven pushdown automaton is a stationary input-driven pushdown automaton
(stat-NIDPDA) if its transition functions δD, δR, and δN result in additional
components from {0, 1}. These components determine if the head moves to the
right (1) as usual, or if it resides stationary on the current input symbol (0).
In the second case the symbol is read again in the next step. This implies that
the action on the pushdown store dictated by this symbol is applied again. The
relation
 is straightforwardly extended to cover these cases.

Finally, some variant of input-driven pushdown automaton is said to be deter-
ministic (IDPDA, push-IDPDA, respectively stat-IDPDA) if |δx(q, a, z)| ≤ 1 for
x ∈ {D,N,R} and all q ∈ Q, a ∈ Σx, and z ∈ Γ ∪ {⊥}.

The language accepted by some variant of input-driven pushdown automa-
ton M is the set L(M) of words for which there exists some computation begin-
ning in the initial configuration and ending in a configuration in which the whole
input is read and an accepting state is entered. Formally:

L(M) = {w ∈ Σ∗ | (q0, w, λ)
∗ (q, λ, s) with q ∈ F, s ∈ Γ ∗ }.

In general, the family of all languages accepted by automata of some type X
will be denoted by L (X).

Some properties of language families implied by classes of input-driven push-
down automata may depend on whether all automata involved share the same
partition of the input alphabet. For easier writing, we call the partition of an
input alphabet a signature, and say that two signatures Σ = ΣD ∪ΣR ∪ΣN and
Σ′ = Σ′

D ∪ Σ′
R ∪ Σ′

N are compatible if and only if
⋃

j∈{D,R,N}
(Σj \ Σ′

j) ∩ Σ′ = ∅ and
⋃

j∈{D,R,N}
(Σ′

j \ Σj) ∩ Σ = ∅.

In order to clarify these notions, we continue with an example.

Example 2. The language L = { anblcmdn | l,m, n ≥ 0 and l ≥ m } is
accepted by the stat-IDPDA M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 with the state

144 M. Kutrib et al.

set Q = {q0, qa, qb, rb, qc, rc, qd, qs, q+, q−}, ΣD = {a, b}, ΣR = {c, d}, ΣN = ∅,
the set of pushdown symbols Γ = {A,A′, B}, the set of accepting states
F = {q0, q+, rb, rc}, and the transition functions specified as:

(1) δD(q0, a,⊥) = (qa, push(A′), 1)
(2) δD(q0, b,⊥) = (rb, push(B), 1)
(3) δR(q0, c,⊥) = (q−, 1)
(4) δR(q0, d,⊥) = (q−, 1)
(5) δD(qa, a, A′) = (qa, push(AA′), 1)
(6) δD(qa, a, A) = (qa, push(AA), 1)
(7) δD(qa, b, A′) = (qb, push(BA′), 1)
(8) δD(qa, b, A) = (qb, push(BA), 1)
(9) δR(qa, d, A′) = (q+, 1)

(10) δR(qa, d, A) = (qd, 1)
(11) δD(qb, b, B) = (qb, push(BB), 1)
(12) δR(qb, c, B) = (qc, 1)
(13) δR(qb, d, B) = (qs, 0)

(14) δR(qc, c, B) = (qc, 1)
(15) δR(qc, d, B) = (qs, 0)
(16) δR(qc, d, A′) = (q+, 1)
(17) δR(qc, d, A) = (qd, 1)
(18) δR(qd, d, A) = (qd, 1)
(19) δR(qd, d, A′) = (q+, 1)
(20) δR(qs, d, B) = (qs, 0)
(21) δR(qs, d, A′) = (q+, 1)
(22) δR(qs, d, A) = (qd, 1)
(23) δD(rb, b, B) = (rb, push(BB), 1)
(24) δR(rb, c, B) = (rc, 1)
(25) δR(rc, c, B) = (rc, 1)

At the beginning of the computation three cases can be distinguished. First, if
the input is empty, M accepts in state q0. The second case is that there is some a
in the input, that is, n ≥ 1 (Transition (1)). In the third case, the first input
symbol is a b, that is, n = 0 (Transition (2)). If the first input symbol is c, the
condition l ≥ m is violated and the computation blocks rejecting in state q−
(Transition (3)). Similarly, if the first input symbol is d, the number of d’s is
not equal to the number of a’s and the computation blocks rejecting in state q−
(Transition (4)).

In the third case the computation continues in states rb and rc by applying
Transitions (23–25). Both states are accepting and the computation does not
block as long as the number of c’s does not exceed the number of b’s. Should
this happen, the computation blocks without having processed the input entirely
and, thus, rejects.

The details of the second case are omitted here. �

3 Homomorphic Reduction

In [10] the family of context-free languages is characterized by the closure of
L (IDPDA) under λ-free homomorphisms. Such results open the possibility to
characterize certain language families by, in some sense, simpler ones and some
kind of operations. Besides they shed some light on the structure of the family
itself, they may be used as powerful reduction tool in order to simplify some
proofs or constructions.

Here we turn to show that all context-free languages can be represented as
preimages of languages from L (push-NIDPDA) under a simple injective homo-
morphism. Similarly, the family of deterministic context-free languages can be
represented as preimages of languages from L (stat-IDPDA) and the family of
deterministic real-time context-free languages can be represented as preimages

On the Power of Pushing or Stationary Moves for IDPDAs 145

of languages from L (push-IDPDA). Let Σ be some alphabet and # be a fresh
symbol. Then we define the homomorphism hr : Σ∗ → (Σ∪{#})∗ as hr(a) = a#2,
for all a ∈ Σ. Clearly, hr depends on Σ but it is always clear from the context
which Σ is meant.

Theorem 3. Let L ⊆ Σ∗ be accepted by some deterministic real-time pushdown
automaton M . Then there exists a push-IDPDA M ′ such that L = h−1

r (L(M ′)).
Let L ⊆ Σ∗ be accepted by some nondeterministic pushdown automaton M .

Then there exists a push-NIDPDA M ′ such that L = h−1
r (L(M ′)).

Next, we turn to involve λ-transitions of the deterministic pushdown automa-
ton. Even if we may assume that all these λ-transitions are pop moves, it
may happen that the number of consecutive λ-transitions in some computation
exceeds any fixed constant. So, we cannot provide enough # symbols to simulate
them. Instead we are going to use stationary moves. However, the construction
is more involved since a possible sequence of λ-transitions must be simulated on
an input symbol # and, thus, M ′ has to be able to predict that M would perform
λ-transitions. To this end, in certain situations the topmost pushdown symbol
unequal to d has to be stored into the states.

Theorem 4. Let L ⊆ Σ∗ be accepted by some deterministic pushdown automa-
ton M . Then there exists a stat-IDPDA M ′ such that L = h−1

r (L(M ′)).

Proof. Let language L be given by a deterministic pushdown automaton M =
〈Q,Σ, Γ, p, F,�, δ〉. As in the proof of Theorem 3 let M never remove or change
the bottom-of-pushdown symbol at the bottom of the pushdown, nor push the
bottom-of-pushdown symbol anywhere else in the pushdown. Moreover, we may
assume that in every step M adds at most one symbol to the pushdown store.
So, δ maps Q × (Σ ∪ {λ}) × (Γ ∪ {�}) to Q × (Γ ∪ {�})≤2 obeying the restric-
tions concerning �. Additionally, we may assume that all λ-transitions of M
are popping (see, for example, Exercise 10.2 in [8]). We construct a stat-IDPDA
M ′ = 〈Q′, Σ ∪ {#}, Γ ∪ {d,�}, p�, F ′,⊥, δD, δR, δN 〉 that on inputs hr(w), for
w ∈ Σ∗, simulates the computation of M on input w. Again, d /∈ Γ is a new
dummy symbol and we set ΣD = Σ, ΣR = {#}, and ΣN = ∅. We define

Q′ = { qz | q ∈ Q, z ∈ Γ ∪ {�} } ∪ { q(i)z | q ∈ Q, i ∈ {1, 2}, z ∈ Γ ∪ {�} },

where the superscript expresses how many symbols d are still to be pushed and
the subscript stores the topmost pushdown symbol below possible symbols d.
The set of accepting states F ′ is then { qz | q ∈ F, z ∈ Γ ∪ {�} }.

By the properties of M , its first move is not a λ-transition. So, the computa-
tion of M ′ starts in state p�, that is, in the initial state of M that additionally
stores the topmost pushdown symbol of M ’s initial configuration.

Next, we define the transition function δD. The idea is similar to that in the
proof of Theorem 3. However, here we have to handle the fact that M ′ must not
push more than one additional symbol, and we have to implement the update
of the subscript of the states.

For p ∈ Q, a ∈ Σ, and z ∈ Γ , we define δD for all z′ ∈ Γ ∪ {�} as follows.
If δ(p, a, z) = (q, xy) is a push move of M , then we set

146 M. Kutrib et al.

(1) δD(pz, a, z′) = (q(2)x , push(yz′), 0),

and if δ(p, a,�) = (q, x�), then

(2) δD(p�, a,⊥) = (q(2)x , push(�), 0).

If δ(p, a, z) = (q, x) is a top move of M , then we set

(3) δD(pz, a, z′) = (q(1)x , push(dz′), 0),

and if δ(p, a,�) = (q,�), then

(4) δD(p�, a,⊥) = (q(1)� , push(d), 0).

If δ(p, a, z) = (q, λ) is a pop move of M , then we set

(5) δD(pz, a, z′) = (qz′ , push(dd), 1).

Furthermore, the states q(1) and q(2) are used to push one and two more
dummy symbols. So, for all q ∈ Q, a ∈ Σ, and z, z′ ∈ Γ ∪ {�} we set

(6) δD(q(2)z , a, z′) = (q(1)z , push(dz′), 0),
(7) δD(q(1)z , a, d) = (qz, push(dd), 1).

Let us summarize what the construction yields so far. It shows that

(p, aw, xs)
M (q, w, ys′) if and only if (px, aw, s)
+
M ′ (qy, w, dds′).

Now, we turn to the definition of δR. On the first of two adjacent sym-
bols #, M ′ just pops one dummy symbol in a non-stationary move. So, for all
p ∈ Q and z, z′ ∈ Γ ∪ {�} we set

(8) δR(pz, #, d) = (p(1)z , 1).

On the second of two adjacent symbols #, M has to pop the remaining
dummy symbols (in fact, by construction, there is exactly one d left). If the next
move to be simulated is a λ-transition of M , then M ′ performs a stationary
move, otherwise not. The information about which case applies comes from the
state p

(1)
z , that is, the information if δ(p, λ, z) is defined or not.

If δ(p, λ, z) is undefined, then we set

(9) δR(p(1)z , #, d) = (pz, 1).

If δ(p, λ, z) = (q, λ) is defined, then we set

(10) δR(p(1)z , #, d) = (p(1)z , 0).

In this way, there is always one λ-transition pending, and M ′ can decide
whether the next but one transition is again a λ-transition. So, M can perform
a non-stationary move while simulating the last λ-transition in this sequence.
Let δ(p, λ, z) = (q, λ). If δ(q, λ, z′) is undefined, then we set

On the Power of Pushing or Stationary Moves for IDPDAs 147

(11) δR(p(1)z , #, z′) = (qz′ , 1).

Let δ(p, λ, z) = (q, λ). If δ(q, λ, z′) = (r, λ) is defined, then we set

(12) δR(p(1)z , #, z′) = (q(1)z′ , 0).

Let us summarize what the extended construction yields. It shows that

(p, aw, xs)
+
M (q, w, ys′) such that δ(q, λ, y) is undefined

if and only if (px, a##w, s)
+
M ′ (qy, w, s′).

As before, the construction of M ′ is finally extended such that it accepts
only inputs of the form (Σ##)∗. We conclude (p,w,�)
∗

M (q, λ, zs) if and only
if (p�, hr(w), λ)
∗

M ′ (qz, λ, s). This together with L(M ′) ⊆ (Σ##)∗ implies L =
h−1
r (L(M ′)). ��

4 Computational Capacity

Here we consider the computational capacities of the different types of input-
driven pushdown automata. It turns out that they form a hierarchy as shown
in Fig. 1 at the end of the section. In particular, for the classes beyond classical
IDPDAs nondeterminism is better than determinism. Moreover, the possibility
to perform stationary moves implies stronger devices than the possibility to
push more than one symbol. This is true for the deterministic as well as for the
nondeterministic classes. Further relations with (non)deterministic (real-time)
pushdown automata are established.

We precede the comparisons by a useful technical lemma.

Lemma 5. Let M be any IDPDA, stat-NIDPDA, push-NIDPDA, stat-IDPDA,
or push-IDPDA with input alphabet Σ that contains the symbols a and b. If
L(M) ∩ a∗b∗ is not regular then a ∈ ΣD and b ∈ ΣR.

We continue with a result that says that the restriction to push at most one
symbol in each step is a serious one. As mentioned before, a DPDA can always
be transformed into an equivalent one that obeys this part of a normal form, but
an input-driven pushdown automaton cannot. So, this property is an essential
restriction. Later it will be shown that this restriction is also unavoidable if
the neat properties of IDPDAs should be obtained. A witness language for the
following proper inclusion is { anb2n | n ≥ 1 }.

Theorem 6. The family of languages accepted by push-IDPDAs is a proper
superset of the family of languages accepted by IDPDAs.

By the known equality L (IDPDA) = L (NIDPDA) and Theorem 6 we imme-
diately obtain L (NIDPDA) ⊂ L (push-IDPDA). Next, we climb up the next
level of the automata hierarchy and compare input-driven pushdown automata
that may push more than one symbol and input-driven pushdown automata that
may perform stationary moves. Though the latter may push only one symbol in
each move, clearly, they can simulate the former by sequences of stationary push
moves.

148 M. Kutrib et al.

Theorem 7. The family of languages accepted by stat-NIDPDAs is a proper
superset of the family of languages accepted by push-NIDPDAs.

The family of languages accepted by stat-IDPDAs is a proper superset of the
family of languages accepted by push-IDPDAs.

Proof. Since any push move of a push-IDPDA that pushes more than one symbol
can be simulated by some stat-IDPDA that pushes the same symbols one by
one in a sequence of stationary moves that is controlled by states, we have
the inclusion L (push-IDPDA) ⊆ L (stat-IDPDA), and similarly the inclusion
L (push-NIDPDA) ⊆ L (stat-NIDPDA).

In order to show the properness of the inclusion we use the witness language
L = { anblcmdn | l,m, n ≥ 0 and l ≥ m }. By Example 2, L is accepted by a
stat-IDPDA.

By way of contradiction, assume now that L is accepted by a push-NIDPDA
M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉. Applying Lemma 5 to L∩a∗d∗ and to L∩b∗c∗

yields that a ∈ ΣD and b ∈ ΣD must be push symbols and the symbols c ∈ ΣR

and d ∈ ΣR must be pop symbols.
We consider accepting computations on words of the form anbn+1dn, for

n ≥ 1. Since there are infinitely many of those words, but |Q| · |Γ | is finite,
there are two different numbers n1 > n2 such that the accepting computations
on an1bn1+1dn1 and an2bn2+1dn2 pass through configurations in which the state
and topmost pushdown symbol are identical after having processed the prefixes
an1 and an2 . More precisely, we have

(q0, an1bn1+1dn1 , λ)
+ (q1, bn1+1dn1 , zγ1)
+ (q2, dn1 , γ2γ1)
+ (q+, λ, γ3γ1)

and

(q0, an2bn2+1dn2 , λ)
+ (q1, bn2+1dn2 , zγ′
1)
+ (q′

2, d
n2 , γ′

2γ
′
1)
+ (q′

+, λ, γ′
3γ

′
1),

where q1, q2, q+, q′
2, q

′
+ ∈ Q, q+, q′

+ ∈ F , z ∈ Γ , and γ1, γ2, γ, γ′
1, γ

′
2, γ ∈ Γ ∗.

Moreover, since b ∈ ΣD we know that |γ2| ≥ n1 + 2. So, M can perform the
computation

(q0, an2bn1+1dn1 , λ)
+ (q1, bn1+1dn1 , zγ′
1)
+ (q2, dn1 , γ2γ

′
1)
+ (q+, λ, γ3γ

′
1)

and, thus, accept an2bn1+1dn1 which does not belong to L, a contradiction. ��
The next level of the hierarchy is the top level formed by pushdown automata

not obeying the input-driven property.

Theorem 8. The family of languages accepted by NPDAs is a proper superset
of the family of languages accepted by stat-NIDPDAs.

The family of languages accepted by DPDAs is a proper superset of the family
of languages accepted by stat-IDPDAs.

The family of languages accepted by real-time DPDAs is a proper superset of
the family of languages accepted by push-IDPDAs.

On the Power of Pushing or Stationary Moves for IDPDAs 149

Finally, we consider the classes depicted in Fig. 1 that are not connected
by a path. Each pair of these classes describes two language families that are
incomparable.

A witness language for Theorem 8 is the deterministic real-time context-free
language { ambmbnan | m,n ≥ 0 }. It is not accepted by any stat-NIDPDA and,
thus is not accepted by any stat-IDPDA and push-IDPDA either. On the other
hand, the language { anbn | n ≥ 0 } ∪ { anb2n | n ≥ 0 } is known not to be deter-
ministic context free. But a push-NIDPDA accepting it can straightforwardly be
constructed.

rt-DPDA DPDA NPDA

stat-IDPDA stat-NIDPDA

push-IDPDA push-NIDPDA

IDPDA NIDPDA

Fig. 1. Hierarchy of automata classes, where rt-DPDA denotes the class of determinis-
tic real-time pushdown automata. An arrow indicates a proper inclusion of the induced
language families. Each pair of nodes not connected by a path means that the two lan-
guages families are incomparable.

Corollary 9. The families of languages accepted push-NIDPDA and
stat-NIDPDA are both incomparable with each of the families L (rt-DPDA) and
L (DPDA).

Furthermore, from Example 2 and the proof of Theorem 7 we know that the
language { anblcmdn | l,m, n ≥ 0 and l ≥ m } is accepted by a stat-IDPDA but
cannot be accepted by any push-NIDPDA. Additionally, it is not accepted by
any deterministic real-time pushdown automaton.

Corollary 10. The family of languages accepted by stat-IDPDA is incomparable
with the families L (push-NIDPDA) and L (rt-DPDA).

5 Decidability Questions

In this section, we will discuss some decidability questions for push-IDPDAs,
stat-IDPDAs, push-NIDPDAs, and stat-NIDPDAs. Let us recall that a decid-
ability problem is semidecidable whenever the set of all instances for which

150 M. Kutrib et al.

the answer is “yes” is recursively enumerable. The families L (push-IDPDA)
and L (stat-IDPDA) are effective subsets of the deterministic context-free lan-
guages. Thus, all decidability questions that are decidable for DPDAs are
decidable for push-IDPDAs and stat-IDPDAs as well. Analogously, the families
L (push-NIDPDA) and L (stat-NIDPDA) are effective subsets of the context-
free languages and, hence, inherit the their positive decidability results.

Our first result is that the inclusion problem is not semidecidable for two
push-IDPDAs with compatible signatures. This is in strong contrast to the result
that the problem is decidable for IDPDAs and NIDPDAs. Hence, the ability of
push-IDPDAs to push more than one symbol in one step turns the problem from
decidability to non-semidecidability.

Theorem 11. Let M and M ′ be two push-IDPDAs with compatible signatures.
Then the inclusion problem L(M) ⊆ L(M ′) is not semidecidable.

Corollary 12. The inclusion problem as well as the inclusion problem with com-
patible signatures is not semidecidable for push-IDPDAs, stat-IDPDAs and their
nondeterministic variants push-NIDPDAs and stat-NIDPDAs.

Next, we are studying the universality and the regularity problem and show
its non-semidecidability for push-NIDPDAs and stat-NIDPDAs.

Theorem 13. Let M ′ be a push-NIDPDA or stat-NIDPDA over some input
alphabet Σ. Then it is not semidecidable whether or not L(M ′) = Σ∗.

The equivalence problem with compatible signatures as well as the gen-
eral equivalence problem is neither semidecidable for push-NIDPDAs nor for
stat-NIDPDAs.

It is not semidecidable whether or not M ′ accepts a regular language.

Finally, we show that it is neither semidecidable whether a stat-NIDPDA
accepts a language that is already accepted by some push-NIDPDA or IDPDA,
nor whether an NPDA accepts a language that is already accepted by some
stat-NIDPDA, push-NIDPDA or IDPDA, nor whether a push-NIDPDA accepts
a language that is already accepted by some IDPDA. This means that it is not
possible for NPDAs, stat-NIDPDAs and push-NIDPDAs to semidecide whether
or not they accept languages already acceptable by weaker devices.

Theorem 14. 1. Let M ′ be a stat-NIDPDA. Then it is neither semidecid-
able whether or not L(M ′) belongs to L (push-NIDPDA) nor whether or not
L(M ′) belongs to L (IDPDA).

2. Let M ′ be an NPDA. Then it is neither semidecidable whether or not L(M ′)
belongs to L (stat-NIDPDA), L (push-NIDPDA), and L (IDPDA).

3. Let M ′ be a push-NIDPDA. Then it is not semidecidable whether or not
L(M ′) belongs to L (IDPDA).

The status of the decidability questions discussed in this section together
with the results for IDPDAs, DPDAs, and NPDAs is summarized in the following
Table 1.

On the Power of Pushing or Stationary Moves for IDPDAs 151

Table 1. Decidability questions of the language families discussed. Symbols ⊆c and =c

denote inclusion and equivalence with compatible signatures. Such questions are not
defined for non-input-driven devices and are marked with ‘—’.

∅ FIN Σ∗ ⊆ ⊆c = =c REG

L (IDPDA) ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

L (push-IDPDA) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

L (stat-IDPDA) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

L (DPDA) ✓ ✓ ✓ ✗ — ✓ — ✓

L (push-NIDPDA) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

L (stat-NIDPDA) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

L (NPDA) ✓ ✓ ✗ ✗ — ✗ — ✗

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Symposium on Theory
of Computing (STOC 2004), pp. 202–211. ACM (2004). https://doi.org/10.1145/
1007352.1007390

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

3. von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n
space. In: Topics in the Theory of Computation, Mathematics Studies, vol. 102,
pp. 1–19. North-Holland, Amsterdam (1985)

4. Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z.
(eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006).
https://doi.org/10.1007/11779148 12

5. Chervet, P., Walukiewicz, I.: Minimizing variants of visibly pushdown automata.
In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 135–146.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74456-6 14

6. Crespi-Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown
property. J. Comput. System Sci. 78, 1837–1867 (2012). https://doi.org/10.1016/
j.jcss.2011.12.006

7. Dymond, P.W.: Input-driven languages are in log n depth. Inform. Process. Lett.
26, 247–250 (1988)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Massachusetts (1979)

9. Kutrib, M., Malcher, A.: Digging input-driven pushdown automata. RAIRO Theor.
Informatics Appl. 55, 6 (2021). https://doi.org/10.1051/ita/2021006

10. Kutrib, M., Malcher, A., Wendlandt, M.: Tinput-driven pushdown, counter, and
stack automata. Fund. Inform. 155, 59–88 (2017). https://doi.org/10.3233/FI-
2017-1576

11. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 89

12. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45, 47–67 (2014). https://doi.org/10.1145/2636805.2636821

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/11779148_12
https://doi.org/10.1007/978-3-540-74456-6_14
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1051/ita/2021006
https://doi.org/10.3233/FI-2017-1576
https://doi.org/10.3233/FI-2017-1576
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1145/2636805.2636821

The Cut Operation in Subclasses
of Convex Languages
(Extended Abstract)

Michal Hospodár1 and Viktor Olejár1,2(B)

1 Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia
olejar@saske.sk

2 Department of Computer Science, P. J. Šafárik University, Košice, Slovakia

Abstract. The cut of two languages is a subset of their concatena-
tion given by the leftmost maximal substring match. We study the state
complexity of the cut operation assuming that both operands belong to
some, possibly different, subclasses of convex languages, namely, right,
left, two-sided, and all-sided ideal, prefix-, suffix-, factor-, and subword-
closed, and -free languages. For all considered pairs of classes, we get
the exact state complexity of cut. We show that it is m whenever the
first language is a right ideal, and it is m + n − 1 or m + n − 2 if the
first language is prefix-closed or prefix-free. In the other cases, the state
complexity of cut is between mn − 2n − m + 4 and mn − n + m, the
latter being the known state complexity of cut on regular languages. All
our witnesses are described over a fixed alphabet of size at most three,
except for three cases when the witness languages are described over an
alphabet of size m or m− 1.

1 Introduction

The concept of regular expressions (regex) offers an elegant solution to a large
number of string-searching problems. Specific regex matching functionality is
implemented in so-called regex engines. There exist several such regex engines
with different internal workings [10]. A common strategy, when it comes to
implementing regex matching, is a greedy leftmost maximal substring match
with the searched pattern. Such behaviour has been well defined theoretically
in the context of formal languages as the cut operation [1,9]. The cut of two
languages K and L is a subset of their concatenation defined as the language
K ! L = {uv | u ∈ K, v ∈ L, and uv′ /∈ K for every non-empty prefix v ′of v}.

If languages K and L are accepted by the deterministic finite automata
(DFAs) A and B, then K ! L is accepted by the cut automaton A ! B, described
by Berglund et al. [1], which has a grid-like structure similar to the product
automaton. The DFA A ! B simulates A and starts also simulating B when a
final state of A is reached, but it restarts the computation in B whenever a final
state of A is reached again. If A goes to a non-final state, then A ! B simulates

Research supported by VEGA grant 2/0132/19 and grant APVV-15-0091.

c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 152–164, 2022.
https://doi.org/10.1007/978-3-031-07469-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_12&domain=pdf
http://orcid.org/0000-0002-1752-544X
http://orcid.org/0000-0003-4308-9159
https://doi.org/10.1007/978-3-031-07469-1_12

The Cut Operation in Subclasses of Convex Languages (Extended Abstract) 153

A and B similarly as the ordinary product automaton. This construction gives
the upper bound mn − n + m on the state complexity of the cut operation;
recall that the state complexity of a binary regular operation ◦ is given by the
function (m,n) �→ max{sc(K ◦ L) | sc(K) ≤ m, sc(L) ≤ n} where sc(L) is the
size of the minimal DFA accepting L. This upper bound is met by the binary
languages K = {w ∈ {a, b}∗ | |w|a mod m = m − 1} and L = {w ∈ {a, b}∗ |
|w|b mod n = 0} as shown by Drewes et al. [9, Theorem 3.1]. The range of
attainable state complexities for this operation was investigated by Holzer and
Hospodár [13] who proved that the range of possible complexities of cut of two
languages with state complexities m and n is contiguous from 1 up to the upper
bound in the case when an input alphabet has at least two symbols, while the
values from 2 m to n − 1 are unattainable in the unary case if 2m ≤ n − 1.

Here we continue this research and study the state complexity of the cut
operation assuming that its operands belong to some subclasses of convex lan-
guages, namely, right, left, two-sided and all-sided ideal, prefix-, suffix-, factor-
and subword-closed, and prefix-, suffix-, factor- and subword-free languages. Our
motivation for investigating this topic is two-fold.

Our first motivation is in regards to the more practical aspects of the cut
operation. A number of modern regex engines heavily rely on the functional-
ity that the cut operation models. Google’s open source regex engine RE2 [8] is
a prime example, which is utilized in many services and frameworks that the
company provides. RE2 is a DFA-based engine with some key advantages over
the backtracking-based engine counterparts, namely, reliable and fast run-time
execution, bounded program stack, and avoidance of certain security vulnerabil-
ities [2,7]. These advantages are further magnified when large amounts of data
are processed, which is often the case with the company in question. Thus, even
small refinements in complexity measures could present a welcome contribution.

Our second motivation comes from the fruitful research regarding operational
complexity in many important subclasses of regular languages arising in theory
and practice. Some suitable examples include results in the classes of prefix-
and suffix-free languages by Han et al. [11,12]. Brzozowski et al. examined the
classes of factor- and subword-free languages [3], ideal languages [4], and closed
languages [5]. Particularly interesting are the classes of free languages since they
are uniquely decodable codes arising often in practice as a result of Huffman cod-
ing [15] and other widespread coding schemes. In all these papers, the question
was: What is the state complexity of an operation if the operands belong to some
subclass of regular languages? It turned out that membership of languages in
some classes does not decrease the state complexity of some operations. On the
other hand, in some cases, the resulting complexity can be significantly smaller
than in the general case of regular languages. For example, the DFAs for prefix-
free languages have specific characterizations that decrease the state complexity
of concatenation and star from an exponential to a linear function [12].

We can observe that if K is a right ideal, then K ! L is either empty or equal
to K, and if K is prefix-free or L is suffix-closed, then K ! L is equal to KL. Hence
it has little sense to consider the complexity of cut on two left ideal languages,

154 M. Hospodár and V. Olejár

and similar observations, which decrease the state complexity, hold for nine out
of twelve considered subclasses. Therefore, unlike the above mentioned papers,
in this paper we study the state complexity of the cut operation assuming that
its operands belong to some, possibly different, subclasses of convex languages.

We provide the exact complexity of cut for each of 144 possible pairs of classes
by grouping them in clusters that can be handled uniformly, by the same proof
argument or by the same witnesses. For upper bounds, we use the properties
of DFAs recognizing languages belonging to the considered classes, mainly the
presence of the dead state for prefix-closed and free languages, the non-returning
property for suffix-free languages, and the property of all states except dead being
final for prefix-closed languages. If these properties are satisfied, some states in
the resulting cut automaton are unreachable or equivalent to other states.

Having upper bounds in hand, it was not difficult to describe the correspond-
ing witnesses over a ternary alphabet for the majority of cases. Subsequently, we
were curious whether these could be further improved to binary witnesses. These
improvements were then achieved with the help of some supplementary compu-
tations that we designed. As a result, all our witnesses are defined over a unary
or binary alphabet, except for nine cases where we use a ternary alphabet, and
three more cases where the alphabet grows linearly with m. Whenever we use a
binary alphabet, it is always optimal in the sense that the corresponding upper
bounds cannot be met in the unary case. In nine cases with a ternary alphabet,
our computations did not result in binary witnesses attaining the state complex-
ity upper bound for m,n ≤ 5. The source code and supplementary computations
can be accessed at https://github.com/ViktorOlejar/cut-convex-subclasses.

2 Preliminaries

We assume that the reader is familiar with the standard notation in automata
theory. For details, we refer to [14,16]. We denote the set {0, 1, . . . , n − 1} by n.

Let Σ be a non-empty alphabet of symbols. Then Σ∗ denotes the set of all
strings over Σ, including the empty string ε. A language over Σ is any subset
of Σ∗. The length of a string w is denoted by |w|, and the number of occurrences
of a symbol a in w is denoted by |w|a. For a regular expression r, we denote
the expression rr · · · r (i-times) by ri. Next, r≤k denotes r0 + r1 + · · · + rk,
and r≥k denotes rk + rk+1 + · · · . The complement of a language L over Σ is
the language Lc = Σ∗ \ L. The concatenation of languages K and L is the
language KL = {uv | u ∈ K and v ∈ L}. The cut of K and L is the language

K ! L = {uv | u ∈ K, v ∈ L, and uv′ /∈ K for every non-empty prefix v′ of v}.

A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ, ·, s, F)
where Q is a finite non-empty set of states, Σ is a finite non-empty input alphabet,
· is the transition function from Q×Σ to Q which can be naturally extended to
the domain Q × Σ∗, s ∈ Q is the initial state, and F ⊆ Q is the set of final or
accepting states. The language accepted by A is L(A) = {w ∈ Σ∗ | s · w ∈ F}.

https://github.com/ViktorOlejar/cut-convex-subclasses

The Cut Operation in Subclasses of Convex Languages (Extended Abstract) 155

If p · a = q for some states p, q and symbol a, then we speak of a transi-
tion (p, a, q) which is an out-transition of p and an in-transition of q. We also
use p

a−→ q to denote that p · a = q. A DFA is non-returning if its initial state
has no in-transitions. A state q is called a sink state if q · a = q for each input
symbol a. A non-final sink state is called a dead state. A state q is reachable in
the DFA A if q = s · w for some string w. Two states p and q are distinguishable
if there exists a string w such that p · w and q · w do not have the same finality.

If a language L is accepted by a DFA A = (Q,Σ, ·, s, F), then the language Lc

is accepted by the DFA Ac = (Q,Σ, ·, s,Q \ F). For two languages accepted
by DFAs A and B with m and n states, respectively, we can construct the cut
automaton A ! B as described in [13, p. 193]. Let us recall this description.

Let A = (m, Σ, ·A, 0, FA) and B = (n, Σ, ·B , 0, FB) be two DFAs. Define the
cut automaton A ! B = (Q,Σ, ·, s,m × FB) where Q = (m × {⊥}) ∪ (m × n),
s = (0,⊥) if ε /∈ L(A) and s = (0, 0) otherwise, and for each state (i, j) in Q and
each input symbol a in Σ, we have

(i,⊥) · a =

{
(i ·A a,⊥), if i ·A a /∈ FA;
(i ·A a, 0), otherwise;

and

(i, j) · a =

{
(i ·A a, j ·B a), if i ·A a /∈ FA;
(i ·A a, 0), otherwise.

By row i, we mean the states (i, j) with j ∈ {⊥}∪n, and by column j, we mean
the states (i, j) with i ∈ m. Therefore, the cut automaton has m rows and n+1
columns. By the product part of A ! B, we mean the states (i, j) with j
= ⊥. For
each final state f of A, the states (f, j) with j
= 0 are unreachable in A ! B. This
gives the upper bound mn−n+m on the state complexity of the cut operation,
which is known to be tight in the binary case [9, Theorem 3.1]. The following
lemma presents the properties of the cut automaton under some conditions.

Lemma 1. Let A = (m, Σ, ·A, 0, FA) and B = (n, Σ, ·B , 0, FB) be DFAs.
(a) If ε ∈ L(A), then the states (i,⊥) are unreachable in A ! B.
(b) If B has a dead state d, then each state (i, d) is equivalent to (i,⊥).
(c) If B is non-returning, then no state (i, 0) with i /∈ FA is reachable, so at

most m states in columns ⊥ and 0 are reachable.
(d) If A is non-returning, then only the initial state is reachable in row 0.

Proof. (a) The initial state of A ! B is (0, 0) and no state (i,⊥) can be reached
from the product part of A ! B.

(b) Let 0 ≤ i ≤ m − 1 and j ∈ {⊥, d}. Then for each symbol a, assuming
that i ·A a = k, each state (i, j) is sent to (k, j) on a if k is non-final in A, and
it is sent to (k, 0) if k is final in A. Therefore the states (i,⊥) and (i, d) are
equivalent.

(c) Since no transition goes to 0 in B, no transition goes to any state (i, 0)
in A ! B if i is a non-final state of A. On the other hand, if i is a final state of A,
then (i,⊥) is unreachable.

156 M. Hospodár and V. Olejár

(d) Since no transition goes to 0 in A, no transition goes to any state (0, j)
in A ! B. Since the initial state of A ! B is (0,⊥) or (0, 0), the claim follows. ��

A language L over Σ is a right ideal if L = LΣ∗, it is a left ideal if L = Σ∗L,
it is a two-sided ideal if L = Σ∗LΣ∗, and it is an all-sided ideal if L is equal to
the language of strings obtained from strings of L by inserting any number of
alphabet symbols in any position.

For a string uxv, u is its prefix, x is its factor, and v is its suffix. A subword
is a possibly scattered subsequence of a string. A language L is prefix-closed if
for every string of L, each its prefix is in L, and it is prefix-free if for every string
of L, no its proper prefix is in L. Suffix-, factor-, and subword-closed and -free
languages are defined similarly.

A language L is ≺-convex with respect to a partial order ≺ if for every
strings u, v in L and each x with u ≺ x ≺ v, we have x ∈ L. Each prefix-
free, prefix-closed, or right ideal language is prefix-convex, and similar inclusions
hold also for suffix- (factor-, subword-)free, -closed, and left (two-sided, all-sided)
ideal languages. The complement of a closed language is a corresponding ideal
language. If a language is prefix-free, then we sometimes say that it is accepted
by a prefix-free DFA; analogously for the other subclasses.

It is known that each non-empty prefix-free language is accepted by a DFA
that has exactly one final state with out-transitions going to the dead state.
Next, each non-empty suffix-free language is accepted by a non-returning DFA
that has a dead state. The next lemma provides a sufficient condition for DFAs
to be suffix-free, and the following proposition provides properties of the cut
operation on some classes.

Lemma 2 (Cmorik’s, cf. [6, Lemma 1]). Let L be accepted by a non-
returning DFA with a single final state in which no state, except for the dead
state, has more than one in-transition on the same input symbol. Then L is
suffix-free. ��
Proposition 3. Let K and L be regular languages.

(a) If K is a right ideal, then K ! L = K if ε ∈ L, and K ! L = ∅ otherwise.
(b) If K is prefix-free, then K ! L = KL.
(c) If L is suffix-closed, then K ! L = KL. ��

3 Results

We start with empty or universal languages. The universal language is the only
prefix-closed language whose minimal DFA has no dead state. The empty lan-
guage is the only suffix-free language whose minimal DFA is not non-returning.

Proposition 4. Let K and L be languages over Σ.

(a) If K = ∅ or L = ∅, then K ! L = ∅ and sc(K ! L) = 1.
(b) If K = Σ∗, then K ! L ∈ {∅, Σ∗} and sc(K ! L) = 1.

The Cut Operation in Subclasses of Convex Languages (Extended Abstract) 157

(c) If L = Σ∗, then K ! L = KΣ∗ and sc(K ! L) ≤ sc(K). If moreover ε ∈ K,
then K ! L = Σ∗ and sc(K ! L) = 1. For n ≥ 3 and |Σ| ≥ 2, there exist
all-sided ideal and subword-free languages K over Σ such that sc(K ! Σ∗) =
sc(K) = n.

Proof. Case (a) follows from the fact that K ! L ⊆ KL and KL = ∅ if K or L
is empty. Since Σ∗ is a right ideal, case (b) follows from Proposition 3(a). The
upper bound in case (c) follows from Proposition 3(c) since Σ∗ is suffix-closed
and sc(KΣ∗) ≤ sc(K). For the lower bound, consider the unary all-sided ideal
language K = a≥n−1 and the binary subword-free language K = an−2. In both
cases we have sc(KΣ∗) = sc(K) = n. ��

Now we assume that the first language is a right (two-sided, all-sided) ideal
or prefix- (factor-, subword-) closed or -free language. The next three theorems
give the exact complexity of K ! L whenever K is in these classes.

Theorem 5. Let K,L ⊆ Σ∗ and K,L /∈ {∅, Σ∗}. Let K and L be accepted by an
m-state and n-state DFA, respectively. Let K be a right ideal. Then sc(K ! L) ≤
m, and this upper bound is met by the unary all-sided ideal a≥m−1 and (a) unary
all-sided ideal and subword-closed language a∗, (b) unary subword-free language ε
if n ≥ 2. If n = 1, then sc(K ! L) = 1 in case (b).

Proof. By Proposition 3(a), K ! L ∈ {K, ∅} and if ε ∈ L, then K ! L = K.
Hence sc(K ! L) ≤ m. Next, for K = a≥m−1 we have K ! a∗ = K ! ε = K, and
sc(K) = m, sc(a∗) = 1, sc(ε) = 2. If n = 1 and L is prefix-free or suffix-free,
then L = ∅, so K ! L = ∅ and sc(K ! L) = 1. ��
Theorem 6. Let K,L ⊆ Σ∗ and K,L /∈ {∅, Σ∗}. Let K and L be accepted
by an m-state and n-state DFA, respectively. Let K be prefix-closed. Then we
have sc(K ! L) ≤ m + n − 1, and this bound is met by the subword-closed lan-
guage (b∗a)≤m−2b∗ and (a) all-sided ideal (a∗b)n−1(a + b)∗, (b) subword-closed
language (a∗b)≤n−2a∗, and (c) prefix-free language (a∗b)n−2. If L is suffix-free,
then sc(K ! L) ≤ m + n − 2, and this upper bound is met by the subword-closed
language a≤m−2 and subword-free language an−2.

Proof. Let A and B be DFAs for K and L, respectively. We may assume that
all states of A are final, except for the dead state. It follows that in A ! B, we
have m−1 reset states, and at most n states in the dead state row. This gives the
upper bound m+n−1. If, moreover, the language L is suffix-free, we may assume
that B is non-returning, hence the state in the dead state row and initial state
column is unreachable by Lemma 1(c). For every pair of witnesses K and L from
the statement of the theorem, we use the minimal DFAs A and B for K and L,
respectively, to construct the cut automaton A ! B. In A ! B, the corresponding
number of states are reachable and pairwise distinguishable in the initial state
column and in the dead state row. ��
Theorem 7. Let K,L ⊆ Σ∗ and K,L /∈ {∅, Σ∗}. Let K and L be accepted
by an m-state and n-state DFA, respectively. Let K be prefix-free. Then we

158 M. Hospodár and V. Olejár

have sc(K ! L) ≤ m + n − 1, and this upper bound is met by the subword-free
language am−2 and (a) all-sided ideal language (a + b)≥n−1, (b) suffix-closed
language a≤n−2 + (a + b)∗ba≤n−2. If L is prefix-closed or prefix- or suffix-free,
then sc(K ! L) ≤ m + n − 2, and this upper bound is met by the subword-free
language am−2 and (c) subword-closed language a≤n−2, (d) subword-free lan-
guage an−2.

Proof. Let A and B be DFAs for K and L, respectively. We may assume that A
has exactly one final state f and a dead state d such that f · a = d for each
input symbol a. By Proposition 3(b), we have K !L = KL if K is prefix-free.
We can get a DFA for KL from A and B by omitting every transition (f, a, d)
and merging f with the initial state of B. This gives the upper bound m+n− 1
in cases (a) and (b). If, moreover, the language B has a dead state, we can merge
it with the dead state of A, which gives the upper bound m + n − 2 in cases (c)
and (d). For every pair of witness languages K and L from the statement of this
lemma, we construct a DFA for KL from minimal DFAs accepting K and L as
described above, and we show that the resulting DFAs are minimal. ��

In the next three theorems, we assume that the first language is a left ideal,
suffix-closed, or suffix-free. For lower bounds, we use languages from the list
below repeatedly, so we refer to them by the lower index number. Let A1 be the
DFA from Fig. 2 (left), and A4, A7, and B8 be the DFAs from Fig. 1. Next, let

Ki = L(Ai) for i ∈ {1, 4, 7},
K2 = (a + b + c)∗(b∗a)m−1b∗,
K3 = (a + b)∗a≥m−1,
K5 =

(
c + (a + b)(b∗a)≤m−3b∗c

)∗,
K6 = a∗ + (a + b)∗ba≥m−1,
K8 = a(b∗a)m−3b∗(c(b∗a)m−3b∗)∗,
K9 = a

(
bb + (ab∗)m−4ab

)∗,
K10 = a

(
(ba∗)m−5ba∗b

)∗(ba∗)m−5b,
K11 = a(b∗a)m−3

(
c(b∗a)m−3

)∗,

L1 = (a∗b)n−1(a + b)∗,
L2 =

{
v, ucv | u ∈ {a, b, c}∗,
v ∈ {a, b}∗, |v|b ≤ n − 2

}
,

L3 =
(
(a + c)∗b

)n−2,
L4 = b

(
(ab∗)n−3a

)∗,
L5 = (b + c)

(
a∗b

)n−3,
L6 = (ba∗)n−2,
L7 = a∗b(a + b)n−3,
L8 = L(B8).

It follows directly from the definitions of these languages that K2 and K3 are
left ideals, L1 is all-sided ideal, L3 and L7 are prefix-free, K8, K9, K10, K11, L4,
and L6 are suffix-free, L5 is factor-free, and K5, K6, and L2 are suffix-closed.
Next, K7 and L8 are suffix-free since DFAs A7 and B8 satisfy the conditions
of Cmorik’s Lemma. If we add a loop on b in the initial state of A1 and mark
all non-dead states of A4 as initial, and then determinize and minimize the
resulting automata, we get DFAs that are isomorphic to the original ones. It
follows that K1 is left ideal and K4 is suffix-closed.

The next theorem gives the exact complexity of K ! L if K is a left ideal.

The Cut Operation in Subclasses of Convex Languages (Extended Abstract) 159

0A4 1 2 . . . m−2 m−1
a a a a a

ab

b

b
b

b

0A7 1 2 3 . . . m−2 m−1
a

a, b

a
a a a ab

b b b b

b

0B8 1 2 . . . n−3 n−2 n−1
a a a a a a

a, b

b

bb b b b

Fig. 1. The suffix-closed DFA A4 and suffix-free DFAs A7 and B8.

Theorem 8. Let K,L ⊆ Σ∗ and K,L /∈ {∅, Σ∗}. Let K and L be languages
accepted by an m-state and n-state DFA, respectively. Let K be a left ideal.

(a) If L is an ideal or suffix-closed, then sc(K ! L) ≤ mn−n+m. This bound
is tight if |Σ| ≥ 2 for an ideal L, and if |Σ| ≥ 3 for suffix-closed L.

(b) If L is prefix-free or prefix-closed, then sc(K ! L) ≤ mn − n + 1. This
bound is tight if |Σ| ≥ 2 for prefix-free L, and if |Σ| ≥ 3 for prefix-closed L.

(c) If L is suffix-free, then sc(K ! L) ≤ mn−n−m+2. This bound is tight
if |Σ| ≥ 2 for suffix-free L, |Σ| ≥ 3 for factor-free L, and |Σ| ≥ m for subword-
free L.

Proof. To get upper bounds, let A and B be an m-state and n-state DFAs for K
and L, respectively. The upper bound in case (a) is the same as in the case
of regular languages. If L is prefix-closed or prefix-free, then we may assume
that B has a dead state. Then the corresponding states in the column ⊥ and
the dead state column are equivalent by Lemma 1(b). This decreases the upper
bound from case (a) by m − 1. If L is suffix-free, then we may assume that B is
non-returning and has a dead state. Then by Lemma 1(c), there are at most m
reachable states in columns ⊥ and 0, including the states in rows corresponding
to final states of A. In the other rows, there are at most (m−1)(n−2) additional
states, not counting the states in rows ⊥, 0, and the dead state column. This gives
at most m + (m − 1)(n − 2) = mn − n − m + 2 reachable and distinguishable
states.

Now we prove lower bounds. In each of the cases (a)-(c), we consider sub-
cases (i), (ii), and (iii) depending on L. We provide a detailed proof for case (a)(i).

(a)(i) Let us show that the languages K1 and L1 defined on p. 7 meet the
upper bound mn − n + m. These languages are accepted by DFAs A1 and B1

from Fig. 2. The figure also shows the cut automaton A1 ! B1.
In the cut automaton A1 ! B1, each state (i,⊥) with i
= m − 1 and the

state (m−1, 0) are reached from the initial state (0,⊥) by a string in b∗ and each
state (i, j) with i
= m−1 and j
= ⊥ is reached from (m−1, 0) by a(ab)jam−2−i.

160 M. Hospodár and V. Olejár

For distinguishability, let (i, j) and (k, �) be two distinct reachable states of
the cut automaton A1 ! B1. There are two cases to consider.

Case 1: If, without loss of generality, j < �, then the string a(ab)n−1−� sends
state (k, �) to a state in the final state column n − 1, while (i, j) is sent to a
non-final state in column ⊥ if j = ⊥, and in column n − 1 − (� − j) otherwise.

Case 2: If j = �, without loss of generality let i < k, then the string bm−2−i(ab)n

sends (k, �) to the non-final state (m−1, 0), while it sends (i, j) to the final state
(m − 2, n − 1).

A1 !B1

0,⊥

1,⊥

. . .

0, 0 0, 1 0, 2 . . .

1, 0 1, 1 1, 2 . . .

.

. . .

b

b

b

b

a

a

a

a

a

a

a

b

a

a

a

b

a

a

a

a

a

b

a

a

a

b

a a a a a

b

a b

a

a

a

a

b b b b b

b b b b b

b b b b b
b

b

b

0

A1

1

..
.

m−2

m−1

b

b

b

b

a

b

a

a

a

a

0B1 1 2 . . . n−2 n−1
b b b b b

a a a a a, b

Fig. 2. The left ideal DFA A1 and all-sided ideal DFA B1 meeting the upper
bound mn− n + m. In A1 !B1, the unreachable states are not shown.

The witnesses for the remaining cases are as follows: ternary left ideal K2

and suffix-closed L2 in case (a)(ii), binary left ideal K1 and subword-closed Lc
1

in case (b)(i), ternary left ideal K2 and prefix-free L3 in case (b)(ii), binary left
ideal K3 and suffix-free L4 in case (c)(i), ternary left ideal K2 and factor-free
L5 in case (c)(ii). In case (c)(iii) we use the alphabet Σ = {a, b0, b1, . . . , bm−2},
left ideal K12 = {a� | � ≥ m − 1} ∪ ⋃m−2

i=0 {ubia
� | u ∈ Σ∗, � ≥ m − 1 − i}, and

subword-free L9 = {w ∈ Σ∗ | |w| = n − 2}. ��
Now we examine the cases where K is suffix-closed. Notice that every closed
language includes ε, and hence column ⊥ is unreachable in the cut automaton.

Theorem 9. Let K,L ⊆ Σ∗ and K,L /∈ {∅, Σ∗}. Let K and L be accepted by
an m-state and n-state DFA, respectively. Let K be suffix-closed.

The Cut Operation in Subclasses of Convex Languages (Extended Abstract) 161

(a) If L is ideal, closed, or prefix-free, then sc(K ! L) ≤ mn − n + 1, and this
bound is tight if |Σ| ≥ 2 for an ideal or closed L, and if |Σ| ≥ 3 for prefix-free L.

(b) If L is suffix-, factor-, or subword-free, then sc(K ! L) ≤ mn−n−m+2,
and this upper bound is tight if |Σ| ≥ 2 for suffix-free L, if |Σ| ≥ 3 for factor-
free L, and if |Σ| ≥ m for subword-free L.

Proof. To get upper bounds, let A and B be DFAs for K and L, respectively,
with the initial state of B denoted by 0. Since K is suffix-closed, we have ε ∈ K.
Hence the initial state of A ! B is in column 0 and each state in column ⊥ is
unreachable. This gives the upper bound mn − n + 1. Moreover, if L is suffix-
free, we may assume that B is non-returning, so no state (i, 0) is reachable
if i is a non-final state of A. If A has k ≥ 1 final states, this gives an upper
bound k + (m − k)(n − 1) ≤ mn − m − n + 2.

The upper bound mn−n+1 in case (a) is met by the suffix-closed language K4

and (a)(i) the all-sided ideal L1; (a)(ii) the subword-closed language Lc
1; in sub-

case (a)(iii), we use the suffix-closed language K5 and prefix-free language L3.
The upper bound mn − n − m + 2 in case (b) is met by (b)(i) the binary
suffix-closed language K6 and the suffix-free language L6; (b)(ii) the ternary
suffix-closed language K5 and the factor-free language L5.

In case (b)(iii), we use the alphabet Σ = {a, b0, b1, . . . , bm−2}, the suffix-
closed language K13 = a∗ ∪ ⋃m−2

i=0 {ubia
� | u ∈ Σ∗, � ≥ m − 1 − i}, and the

subword-free language L9. Then sc(K13 ! L9) = mn − n − m + 2. ��
Our last theorem examines the cases in which the first language is suffix-free,

that is, it is accepted by a non-returning DFA.

Theorem 10. Let K,L ⊆ Σ∗ and K,L /∈ {∅, Σ∗}. Let K and L be accepted by
an m-state and n-state DFA, respectively. Let K be suffix-free.

(a) If L is ideal or suffix-closed, then sc(K ! L) ≤ mn − 2n + m, and this
upper bound is tight if |Σ| ≥ 2 for an ideal L, and if |Σ| ≥ 3 for prefix-free L.

(b) If L is prefix-closed or prefix-free, then sc(K ! L) ≤ mn− 2n+2, and this
upper bound is tight if |Σ| ≥ 2 using a subword-closed or prefix-free language L.

(c) If L is suffix-free, then sc(K ! L) ≤ mn−2n−m+4, and this upper bound
is tight if |Σ| ≥ 2 for suffix-free L, if |Σ| ≥ 3 for factor-free L, and if |Σ| ≥ m−1
for subword-free L.

Proof. Let A and B be m-state and n-state DFAs for K and L, respectively.
Since K is a non-empty suffix-free language, we may assume that A is non-
returning. By Lemma 1(d), the only reachable state in row 0 is the initial state.
This decreases the upper bound to mn − 2n + m in case (a). Moreover, if L
is prefix-closed or prefix-free, B has a dead state, and hence each state in the
dead state column is equivalent to the corresponding state in column ⊥ by
Lemma 1(b). This decreases the upper bound from case (a) by m−2 to mn−2n+2
in case (b). Finally, if L is non-empty and suffix-free, we may assume that B is
non-returning and has a dead state. By Lemma 1(c), there are at most m states
in columns ⊥ and 0, and the dead state column is equivalent to column ⊥. This
results in the upper bound m + (m − 2)(n − 2) = mn − 2n − m + 4 in case (c).

162 M. Hospodár and V. Olejár

The corresponding upper bounds are met by K7 and L1 in case (a)(i), by K8

and L2 in case (a)(ii), by K7 and Lc
1 in case (b)(i), by K9 and L7 in case (b)(ii),

by K10 and L8 in case (c)(i), and by K11 and L5 in case (c)(ii). In case (c)(iii),
consider the alphabet Σ = {a, b1, b2, . . . , bm−3, c}. Then the language

K14 = {ca� | � ≥ m − 3} ∪
m−2⋃
i=0

{cubia
� | u ∈ (Σ \ {c})∗, � ≥ m − 2 − i}

is suffix-free since every string in K14 starts with c but each proper suffix of
every string in K14 does not start with c. Next, L10 = {w ∈ Σ∗ | |w| = n − 2}
is subword-free, and sc(K14 ! L10) = mn − 2n − m + 4. ��

4 Conclusions

We investigated the state complexity of the cut operation assuming that the
operands belong to some (not necessarily the same) of 12 subclasses of con-
vex languages: right, left, two-sided, all-sided ideal, and prefix-, suffix-, factor-,
subword-closed and prefix-, suffix-, factor-, and subword-free languages. In all
144 cases, we got the exact complexity of cut. Table 1 summarizes all our results,
including the size of alphabet used to describe witnesses.

The complexity of cut in cases where the first operand is right ideal, prefix-
closed, or prefix-free (first nine rows of the table), is m, m + n − 1, or m + n − 2
with binary or unary witnesses. The binary alphabet is optimal in the sense that
the corresponding upper bounds cannot be met in the unary case since then the
dead states would not be reachable.

The regular upper bound mn − n + m is met only if the first language is left
ideal and the second language is ideal or suffix-closed (the last row of the table).
In all the remaining cases, the resulting complexity is between mn − 2n − m + 4
and mn − n + m. Except for the case when the second language is subword-
free, all our witnesses are binary or ternary and result from 11 different kinds
of the first language and 8 different kinds of the second language. Whenever we
used the binary alphabet, it was always optimal since in the unary case the four
classes of ideal, closed, and free languages coincide, so the upper bounds given
in the first nine rows of the table apply.

We conjecture that the alphabet is optimal for all our ternary witnesses as
well. Our computations support this hypothesis. We also think that if the second
language is subword-free, the corresponding upper bounds cannot be met by any
languages defined over a fixed alphabet.

The Cut Operation in Subclasses of Convex Languages (Extended Abstract) 163

Table 1. The state complexity of the cut operation on subclasses of convex languages.
The dot signifies that the state complexity is the same as in the cell closest to the left.
The size of alphabet used to describe witnesses is shown in brackets after the state
complexity.

K\L Ri Li Ti Ai Sc Pc Fc Swc Pf Sf Ff Swf
Ri

m (1)Ti
Ai
Pc
Fc m+ n − 1 (2) m+ n − 2 (1)
Swc
Pf
Ff m+ n − 1 (2) m+ n − 2 (1)
Swf
Sf mn−2n+m (2) · (3) mn−2n+2 (2) mn−2n−m+4 (2) · (3) ·(m−1)
Sc mn−n+1 (2) · (2)

mn−n+1(2) · (3) mn−n−m+2 (2) · (3) ·(m)Li mn−n+m (2) · (3)

References

1. Berglund, M., Björklund, H., Drewes, F., van der Merwe, B., Watson, B.: Cuts in
regular expressions. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907,
pp. 70–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38771-
5 8

2. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtracking
behavior in practical regular expression matching. Electron. Proc. Theor. Comput.
Sci. 151, 109–123 (2014). https://doi.org/10.4204/eptcs.151.7

3. Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-,
factor-, and subword-free regular languages. Acta Cybern. 21(4), 507–527 (2014).
https://doi.org/10.14232/actacyb.21.4.2014.1

4. Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
Theor. Comput. Sci. 470, 36–52 (2013). https://doi.org/10.1016/j.tcs.2012.10.055

5. Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages.
Theor. Comput. Syst. 54(2), 277–292 (2013). https://doi.org/10.1007/s00224-013-
9515-7

6. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-25929-6 9

7. Cox, R.: Regular expression matching in the wild, January 2007. https://swtch.
com/∼rsc/regexp/regexp3.html. Accessed 21 Feb 2022

8. Cox, R.: Re2: A principled approach to regular expression matching, March 2010.
https://opensource.googleblog.com/2010/03/re2-principled-approach-to-regular.
html. Accessed 21 Feb 2022

9. Drewes, F., Holzer, M., Jakobi, S., van der Merwe, B.: Tight bounds for cut-
operations on deterministic finite automata. Fundam. Inform. 155(1-2), 89–110
(2017). https://doi.org/10.3233/FI-2017-1577, Preliminary version in: MCU 2015.

https://doi.org/10.1007/978-3-642-38771-5_8
https://doi.org/10.1007/978-3-642-38771-5_8
https://doi.org/10.4204/eptcs.151.7
https://doi.org/10.14232/actacyb.21.4.2014.1
https://doi.org/10.1016/j.tcs.2012.10.055
https://doi.org/10.1007/s00224-013-9515-7
https://doi.org/10.1007/s00224-013-9515-7
https://doi.org/10.1007/978-3-642-25929-6_9
https://doi.org/10.1007/978-3-642-25929-6_9
https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html
https://opensource.googleblog.com/2010/03/re2-principled-approach-to-regular.html
https://opensource.googleblog.com/2010/03/re2-principled-approach-to-regular.html
https://doi.org/10.3233/FI-2017-1577

164 M. Hospodár and V. Olejár

LNCS, vol. 9288, pp. 45–60. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-23111-2 4

10. Friedl, J.E.: Mastering Regular Expressions. O’Reilly Media, Inc., Newton (2006)
11. Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular

languages. Theor. Comput. Sci. 410(27–29), 2537–2548 (2009). https://doi.org/
10.1016/j.tcs.2008.12.054

12. Han, Y.S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. In: Ésik, Z., Fülöp, Z. (eds.) Automata, Formal Languages, and
Related Topics, pp. 99–115. University of Szeged, Hungary (2009)

13. Holzer, M., Hospodár, M.: The range of state complexities of languages resulting
from the cut operation. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA
2019. LNCS, vol. 11417, pp. 190–202. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-13435-8 14

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

15. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. IRE 40(9), 1098–1101 (1952). https://doi.org/10.1109/JRPROC.1952.
273898

16. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston
(2012)

https://doi.org/10.1007/978-3-319-23111-2_4
https://doi.org/10.1007/978-3-319-23111-2_4
https://doi.org/10.1016/j.tcs.2008.12.054
https://doi.org/10.1016/j.tcs.2008.12.054
https://doi.org/10.1007/978-3-030-13435-8_14
https://doi.org/10.1007/978-3-030-13435-8_14
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898

Variations of the Separating Words
Problem

Nicholas Tran(B)

Department of Mathematics & Computer Science, Santa Clara University,
Santa Clara, CA 95053, USA

ntran@scu.edu

Abstract. The separating words problem seeks to determine the asymp-
totic growth of the minimum number of states of a deterministic finite
automaton that accepts x but rejects y, where x and y are given strings.
We study three natural variants of this problem which impose additional
constraints on the start and/or end states: ∀-separation requires different
end states for every common start state; ∀2-separation requires different
end states for every pair of start states; and ∀201-separation requires
fixed different end states for every pair of start states.

For distinct strings of the same length, we establish exact bounds on
the number of states for ∀2- and ∀201-separation, as well as a logarithmic
lower bound and a linear upper bound for ∀-separation.

Keywords: Separating words · DFA · Lower and upper bounds

1 Introduction

Given two strings x and y over an alphabet Σ, let d(x, y) denote the minimum
number of states needed for a deterministic finite automaton to accept x but
reject y. For each positive integer n, define the distance functions

D‖(n) = max
x�=y & |x|=|y|=n

d(x, y)

D∦(n) = max
|x|<|y|=n

d(x, y)

to be the largest such minimum value among all pairs of distinct x and y of length
n, and all pairs of x and y of different lengths whose maximum is n, respectively.
The separating words problem is to determine the asymptotic growths of D‖(n)
and D∦(n).

Goralč́ık and Koubek [3] were the first to study this problem. They settled
the D∦(n) case with a tight Θ(log n) bound for arbitrary alphabets and proved
an o(n) upper bound on D‖(n) for nonunary alphabets. Robson [4] improved
their sublinear upper bound to O(n2/5 log3/5 n). Demaine et al. [2] established
an Ω(log n) lower bound on D‖(n) and showed that it is tight when the difference
between x and y is countable with a DFA. Recently, Chase [1] improved Robson’s

c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 165–176, 2022.
https://doi.org/10.1007/978-3-031-07469-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_13&domain=pdf
http://orcid.org/0000-0002-3164-4330
https://doi.org/10.1007/978-3-031-07469-1_13

166 N. Tran

upper bound to O(n1/3 log7 n). The gap between the polynomial upper bound
and logarithmic lower bound on D‖(n) remains significant.

In this paper we study natural variants of the separating words problem to
gain new perspectives and to obtain sharper bounds on the distance functions.
First, we return to the more general definition of separation as ending in different
states that was originally used in [3]; the equivalent definition involving accepting
states was introduced later in [4]. Second, we impose additional conditions on
the start and end states that result in a hierarchy of separation of two strings x
and y by a DFA M :

– ∃-separation: for some common start state, M ends in different states after
reading x and y (this is the problem studied in [3]);

– ∀-separation: for every common start state, M ends in different states after
reading x and y;

– ∀2-separation: for every pair of start states, M ends in different states after
reading x and y;

– ∀201-separation: for every pair of start states, M ends in fixed different states
after reading x and y.

For each variant ν ∈ {∃,∀,∀2,∀201}, we define dν(x, y), D
‖
ν(n), and D

∦
ν(n)

similarly to d(x, y), D‖(n), and D∦(n) and seek to determine the asymptotic
growths of D

‖
ν(n) and D

∦
ν(n). It is clear that d∃(x, y) = d(x, y), D

‖
∃(n) = D‖(n),

and D
∦
∃(n) = D∦(n).

Requiring separation for every pair of start states (∀2-separation) may seem
overly restrictive or even impossible when, in addition, the end states are fixed
(∀201-separation); however, we can show that such separating automata exist iff
one string is not a suffix of the other, and their maximum number of states is
1+min(|x|, |y|). In particular, we obtain exact bounds on the distance functions
for ∀2- and ∀201-separation:

D
‖
∀2(n) = D

‖
∀201(n) = n + 1

D
∦
∀2(n) = D

∦
∀201(n) = ∞.

Requiring separation for every common start state (∀-separation) is also a
natural restriction of the original formulation. We show a tight Θ(log n) bound
on D

∦
∀(n) for arbitrary alphabets, as well as an Ω(log n) lower bound and an

O(n) upper bound on D
‖
∀(n) for nonunary alphabets.

Requiring separation for some pair of start states yields an uninteresting
variant. We show that a 2-state separating automaton always exists, even when
x = y or when they have different lengths.

The rest of this paper is organized as follows: Sect. 2 defines the various
notions of separation and establishes some simple properties of the resulting
separation distance functions. Section 3 proves bounds for ∀2- and ∀201 sepa-
ration, Sect. 4 proves bounds for ∀-separation, and Sect. 5 suggests some open
problems for the new separation distance functions.

Variations of the Separating Words Problem 167

2 Preliminaries

Σ∗/Σ+/Σn denote the sets of strings/nonempty strings/strings of length n over
alphabet Σ respectively. The ith symbol of string x is denoted by xi. The length
of a string x is denoted by |x|.

Define L(n) = lcm(1, 2, . . . , n) to be the least common multiple of the first
positive n integers. It is known that 1.03883n > ln(L(n)) for n > 0 [5], and
hence n ∈ Ω(log(L(n))).

We use the following simplified definition of deterministic finite automata
that does not specify an initial state or accepting states:

Definition 1. A deterministic finite automaton (DFA) is a triple

M = (QM , ΣM , δM),

where QM is a finite set of states, ΣM is an alphabet, and δM : QM ×ΣM → QM

is the transition function. We call the number of states of M its size and denote
it with |M |.

The extended transition function δ′
M : QM ×Σ∗

M → QM is defined recursively:

1. δ′
M (q, ε) = q, where ε is the empty string, for q ∈ QM ;

2. δ′
M (q, xa) = δM (δ′

M (q, x), a) for a ∈ ΣM , x ∈ Σ∗
M and q ∈ QM .

The first and last state in the sequence of states of M while reading x are called
the start and end state respectively.

We now introduce variants of the separating words problems which impose
additional conditions on the start state(s) and/or end states.

Definition 2. Let x and y be string over an alphabet Σ. We say a DFA M

– ∃-separates x and y if δ′
M (s, x) �= δ′

M (s, y) for some s ∈ QM ;
– ∀-separates x and y if δ′

M (s, x) �= δ′
M (s, y) for every s ∈ QM ;

– ∀2-separates x and y if δ′
M (sx, x) �= δ′

M (sy, y) for every pair sx, sy ∈ QM ;
– ∀201-separates x and y if there exist e0, e1 ∈ QM such that δ′

M (sx, x) = e0 �=
e1 = δ′

M (sy, y) for every pair sx, sy ∈ QM .

Definition 3. Let x and y be strings over an alphabet Σ and ν ∈ {∃,∀,∀2,∀201}.
Define the ν-separation distance between strings x and y as follows:

dν(x, y) = dν(y, x) = min{|M | : M is a DFA that ν-separates x and y}
or ∞ if no such M exists.

Define the ν-distance functions D
‖
ν(n) and D

∦
ν(n) as follows:

D‖
ν(n) = max{dν(x, y) : x, y ∈ Σn, x �= y}

D∦
ν(n) = max{dν(x, y) : |x| < |y| = n}.

168 N. Tran

The above definitions immediately imply the following:

Proposition 1. Let x �= y, v, and w be arbitrary strings over Σ ⊇ {0, 1}.
1. d∃(x, y) ≤ d∀(x, y) ≤ d∀2(x, y) ≤ d∀201(x, y);
2. dν(x, x) = ∞, ν ∈ {∃,∀,∀2,∀201};
3. dν(x, y) ≥ 2, ν ∈ {∃,∀,∀2,∀201};
4. dν(0, 1) = 2, ν ∈ {∃,∀,∀2,∀201};
5. If M ∀-separates x and y, then M also ∀-separates vx and vy. Hence

d∀(vx, vy) ≤ d∀(x, y), and this inequality is strict in some cases.
6. If M does not ∀-separate x and y, then M does not ∀-separate xv and yv

either. Hence d∀(x, y) ≤ d∀(xv, yv), and this inequality is strict in some cases.
7. For ν ∈ {∀2,∀201}, if M ν-separates x and y, then M also ν-separates vx

and wy. Hence dν(vx,wy) ≤ dν(x, y), and this inequality is strict in some
cases.

8. If M does not ∀2-separate x and y, then M does not ∀2-separate xv and yv
either. Hence d2∀(x, y) ≤ d2∀(xv, yv), and this inequality is strict in some cases.

Proof.

1. Immediate from Definition 2.
2. For every DFA M , δ′

M (s, x) = δ′
M (s, x) for every state s ∈ QM , so d∃(x, x) =

∞; the rest follow from item 1.
3. Immediate from Definition 2.
4. Figure 1 shows a two-state DFA M which ∀201-separates 0 and 1 (a stands

for every symbol not 0). The rest follow from items 1 and 3.
5. Let M be a DFA with k states that ∀-separates x and y. For every state p,

δ′
M (p, vx) = δ′

M (δ′
M (p, v), x) �= δ′

M (δ′
M (p, v), y) = δ′

M (p, vy),

so M also ∀-separates vx and vy. Hence d∀(vx, vy) ≤ d∀(x, y), and in partic-
ular, by exhaustive search

d∀(0 0101, 0 1111) = 2 < 3 = d∀(0101, 1111).

6. Let M be a DFA with k states that does not ∀-separate x and y. There must
be some state s such that δ′

M (s, x) = δ′
M (s, y), so

δ′
M (s, xv) = δ′

M (δ′
M (s, x), v) = δ′

M (δ′
M (s, y), v) = δ′

M (s, yv),

so M does not ∀-separate xv and yv either. Hence d∀(x, y) ≤ d∀(xv, yv), and
in particular, by exhaustive search

d∀(0001, 0100) = 2 < 3 = d∀(0001 0, 0100 0).

7. Let M be a DFA with k states that ∀2-separates x and y. For every pair of
states p, q in QM ,

δ′
M (p, vx) = δ′

M (δ′
M (p, v), x) �= δ′

M (δ′
M (q, w), y) = δ′

M (q, wy),

Variations of the Separating Words Problem 169

so M also ∀2-separates vx and wy. Hence d∀2(vx,wy) ≤ d∀2(x, y), and in
particular, by exhaustive search

d∀2(0 0101, 0 1111) = 2 < 3 = d∀2(0101, 1111).

The same argument and example hold for ∀201-separation.
8. Let M be DFA with k states that does not ∀2-separate x and y. There exists

a pair of states p, q in QM such that δ′
M (p, x) = δ′

M (q, y), so

δ′
M (p, xv) = δ′

M (δ′
M (p, x), v) = δ′

M (δ′
M (q, y), v) = δ′

M (q, yv),

i.e., M does not ∀2-separate xv and yv either. Hence d∀2(x, y) ≤ d∀2(xv, yv),
and in particular, by exhaustive search

d∀2(0001, 0100) = 2 < 3 = d∀2(0001 0, 0100 0).

Fig. 1. A two-state DFA that ∀201-separates 0 and 1.

��
Following [2], we show that the distance functions D

‖
ν(n) and D

∦
ν(n) are

independent of the alphabet size, provided it is at least 2, for ν ∈ {∃,∀,∀2,∀201}.

Proposition 2. D
‖
ν(n) and D

∦
ν(n) for the binary alphabet are the same as those

for larger alphabets for ν ∈ {∃,∀,∀2,∀201}.

Proof. Let D
‖
ν(n, k) denote D

‖
ν(n) for alphabets of size k for ν ∈ {∃,∀,∀2,∀201}.

We show that D
‖
ν(n, k) = D

‖
ν(n, 2) for k > 2. Since D

‖
ν(n, k) is the maximum ν-

distance between two distinct strings of length n over an alphabet of size k > 2,
which include the cases of distinct strings of length n over the binary alphabet,
D

‖
ν(n, k) ≥ D

‖
ν(n, 2). Similarly, D

∦
ν(n, k) ≥ D

∦
ν(n, 2).

Conversely, suppose two strings x and y (not necessarily of the same length)
over an alphabet Σ of size k > 2 differ at some position j, i.e., xj = 0 and yj = 1
for two different symbols 0 and 1. Replace all symbols in x and y that are not
0 with 1 to obtain strings x′ and y′ where |x′| = |x| and |y′| = |y|. Let M be a
DFA that ν-separates x′ and y′. By adding transitions δM ′(q, a) = δM (q, 1) for
all q ∈ QM and all a ∈ Σ − {0}, we obtain a DFA M ′ with the same size as M
that ν-separates x and y.

170 N. Tran

Now suppose x is a proper suffix of y, and let M be a DFA that ν-separates
1|x| and 1|y|. By adding transitions δM ′(q, a) = δM (q, 1) for all q ∈ QM and all
a ∈ Σ − {1}, we obtain a DFA M ′ with the same size as M that ν-separates x
and y.

The above two paragraphs show that D
‖
ν(n, k) ≤ D

‖
ν(n, 2) and D

∦
ν(n, k) ≤

D
∦
ν(n, 2). In combination with the inequalities shown in the first paragraph, these

results show that D
‖
ν(n, k) = D

‖
ν(n, 2) and D

∦
ν(n, k) = D

∦
ν(n, 2) for k > 2 and

ν ∈ {∃,∀,∀2,∀201}. ��
The above proposition allows us to prove our subsequent results for the binary

alphabet only without loss of generality.
Finally, suppose we say M ∃2-separates x and y if δ′

M (p, x) �= δ′
M (q, y) for

some pair of start states p and q and define d∃2(x, y) similarly to the other
separation distances. The following proposition shows that a separating DFA
with two states always exists, even when x = y or when their lengths are different.
We will not study this trivial variant further.

Proposition 3. d∃2(x, y) = 2 for every pair of strings x and y.

Proof. Figure 2 shows a two-state DFA which ∃2-separates every pair of strings
x and y. Starting in the same state separates strings whose lengths have different
parities; starting in different states separates strings whose lengths have the same
parity.

Fig. 2. A two-state DFA that ∃2-separates every pair of strings.

��

3 ∀2-separation and ∀201-separation

In this section, we derive exact bounds for D
‖
∀2(n) and D

‖
∀201(n) but show that

D
∦
∀2(n) and D

∦
∀201(n) are unbounded. As a result, we obtain a characterization

of pairs of binary strings that can be ∀2- and ∀201-separated.

Variations of the Separating Words Problem 171

To begin, we show that if x is a proper suffix of y, then no DFA can ∀2- or
∀201-separate them.

Proposition 4. d∀2(x, zx) = d∀201(x, zx) = ∞ for any binary strings x and z
where |z| ≥ 1.

Proof. For every DFA M and state p ∈ QM ,

δ′
M (p, zx) = δ′

M (δ′
M (p, z), x),

so M neither ∀2-separates nor ∀201-separates zx from x. ��

Corollary 1. D
∦
∀2(n) = D

∦
∀201(n) = ∞ for n ≥ 1.

On the other hand, the following theorem shows that d∀2(x, y) must be finite
for distinct x and y of the same length, and the largest ∀2-distance and ∀201-
distance between distinct strings of length n are n + 1.

Theorem 1. D
‖
∀2(n) = D

‖
∀201(n) = n + 1 for n ≥ 1.

Proof. First we show that D
‖
∀2(n) > n for n ≥ 1. Consider an arbitrary DFA M

with k ≤ n states on inputs 0n and 10n−1. For every s ∈ QM , let t = δM (s, 1)
and pl = δ′

M (t, 0l) for each l ≥ 0. There must be 0 ≤ i < j ≤ k such that pi = pj

by the pigeonhole principle.
Letting sy = s and sx = pj−i−1, we have

δ′
M (sy, 10k−1) = δ′

M (s, 10k−1)
= δ′

M (δM (s, 1), 0k−1)
= δ′

M (t, 0k−1)
= pk−1

δ′
M (sx, 0k) = δ′

M (pj−i−1, 0k)
= δ′

M (pj , 0k−i−1)
= δ′

M (pi, 0k−i−1)
= pk−1.

Since δ′
M (sy, 10k−1) = δ′

M (sx, 0k) and k ≤ n, δ′
M (sy, 10n−1) = δ′

M (sx, 0n). In
other words, no DFA M with at most n states can ∀2-separate 0n and 10n−1.

Next we show that D
‖
∀201(n) ≤ n + 1 by induction on n.

Base case: n = 1. There are only two strings of length 1, and we have already
seen a two-state DFA in Fig. 1 which ∀201-separates 0 from 1.

Induction: given two different strings x and y of length n, we construct a
DFA M to ∀201-separate them with at most n + 1 states as follows. There are
two cases:

172 N. Tran

1. The rightmost bits of x and y are different, e.g., x = x′0 and y = y′1. Then
the DFA in Fig. 1 satisfies the claim.

2. The rightmost bits of x and y are the same, e.g., x = x′b and y = y′b, where
b ∈ {0, 1}. Since x and y are different, so are x′ and y′, hence, by induction
hypothesis, there is a DFA M ′ with at most n states that ∀201-separates x′

and y′, i.e., M ′ ends in some state e′
x after reading x′ and some different state

e′
y after reading y′ regardless of the starting states. We construct a DFA M

to ∀201-separate x and y for three different cases based on ex = δM ′(e′
x, b)

and ey = δM ′(e′
y, b):

(a) ex �= ey: M ′ always ends in ex after reading x = x′b and in ey after reading
y = y′b regardless of the start states, so M = M ′ also ∀201-separates x
and y (Fig. 3);

(b) ex = ey and ex �= e′
x and ex �= e′

y: let M be obtained from M ′ by
– adding a new state e, i.e., QM = QM ′ ∪ {e};
– setting transitions from e identical to transitions from ey, i.e.,

δM (e, a) = δM ′(ey, a) for a ∈ {0, 1};
– changing the transition from e′

y on b to e, i.e., δM (e′
y, b) = e.

From any pair of start states (including the new state e), M ends in state
e′
x and e′

y after reading x′ and y′ respectively. After reading the final bit b,
M ends in state ex and e respectively. In other words, M ∀201-separates
x and y (Fig. 4).

(c) ex = ey = e′
y: let M be obtained from M ′ by

– adding a new state e;
– setting δM (e, b) = e and δM (e, 1 − b) = δM ′(e′

y, 1 − b);
– changing the transition from e′

y on b (back to itself originally) to e,
i.e., δM (e′

y, b) = e.
From any start state (including the new state e), M ends in state e′

x after
reading x′ and hence ex = e′

y after reading the final bit b. From any start
state (including the new state e), M ends either in state e′

y or e after
reading y′. In either case, M ends in state e �= ex after reading the final
bit b. In other words, M ∀201-separates x and y (Fig. 5).

In all three cases, M has at most n+1 states and ∀201-separates x and y. Since
D

‖
∀201(n) ≤ n+1 ≤ D

‖
∀2(n) ≤ D

‖
∀201(n), we have D

‖
∀2(n) = D

‖
∀201(n) = n+1.

��

Fig. 3. If M ′ always ends in e′
x after reading x′ and e′

y after reading y′, then M ′ always
ends in ex after reading x = x′b and ey after reading y = y′b.

Variations of the Separating Words Problem 173

Fig. 4. If M ′ (left) always ends in e′
x after reading x′ and e′

y after reading y′, then M
(right) always ends in ex after reading x = x′b and e after reading y = y′b. The states
e and ex have the same transitions on 0 and 1.

Fig. 5. If M ′ (left) always ends in e′
x after reading x′ and e′

y after reading y′, then M
(right) always ends in ex = e′

y after reading x = x′b and e after reading y = y′b. e′
y

and e have the same transition on 1 − b.

We obtain from Proposition 4 and Theorem 1 a characterization of string
pairs that cannot be ∀2- and ∀201-separated:

Theorem 2. d∀2(x, y) = d∀201(x, y) = ∞ iff one string is a suffix of the other
for x, y ∈ {0, 1}∗.

In particular, d∀2(x, y) = d∀201(x, y) = ∞ for all x, y ∈ {0}∗.

Proof. If x is a suffix of y, i.e., y = x or y = zx for some z ∈ {0, 1}+, then
d∀2(x, y) = d∀201(x, y) = ∞ by Proposition 1.2 or 4.

If one string is not a suffix of the other, then we can write x and y as
x = x′0z and y = y′1z for some string x′, y′ and z. There is a DFA M with at
most 2 + |z| states to ∀2- or ∀201-separate 0z and 1z by Theorem 1. M also ∀2

or ∀201-separates x and y by Proposition 1.7. ��

4 ∀-separation
We establish a tight logarithmic bound on D

∦
∀(n), as well as a logarithmic lower

bound and a linear upper bound on D
‖
∀(n) in this section.

A tight bound of Θ(log n) on d∃(x, y) when x and y have different lengths at
most n was established in [2,3]. The same proof holds for ∀-separation.

Proposition 5. D
∦
∀(n) ∈ Θ(log n).

174 N. Tran

Proof. Let x and y be binary strings such that |x| < |y| = n. There is a prime p ≤
4.4 ln n such that |y|− |x| �≡ 0 (mod p). The DFA Mp with p states 0, 1, . . . , p−1
with transition function

δMp
(l, 0) = δMp

(l, 1) = (l + 1) (mod p), 0 ≤ l < p,

separates x and y starting in any (common) state.
On the other hand, for every DFA M with at most n states and for every

p ∈ QM , δ′
M (p, 0n−1) = δ′

M (p, 0n−1+L(n)), so ∀-separating 0n−1 from 0n−1+L(n)

requires at least n + 1 ∈ Ω(log(n − 1 + L(n))) states. ��
The following theorem establishes an Ω(log n) lower bound on D

‖
∀(n).

Although it follows from the Ω(log n) lower bound on D‖(n) = D
‖
∃(n) in [2],

our proof uses a shorter pair of witness strings.

Theorem 3. D
‖
∀(n) ∈ Ω(log n).

Proof. For m ≥ 1, let x = 0L(m)0m−1 and y = 1L(m)0m−1, where L(m) =
lcm(1, 2, . . . ,m). We show that d∀(x, y) = m + 1. In comparison, it was shown
in [2] that

d∃(0m−11m−1+L(m), 0m−1+L(m)1m−1) ≥ m + 1.

Let M be a DFA with m states. For every start state s, define pl = δM (s, 0l)
for l ≥ 0. By the pigeonhole principle, there are 0 ≤ i < j ≤ m such that pi = pj

and j − i ≤ m, so

δ′
M (s, 0i) = δ′

M (s, 0i+(j−i))
= δ′

M (s, 0i+2(j−i))
= . . .

= δ′
M (s, 0i+L(m))

δ′
M (s, 0i+(m−1−i)) = δ′

M (s, 0i+L(m)+m−1−i)
δ′
M (s, 0m−1) = δ′

M (s, 0L(m)+m−1).

Similarly, for every start state t, define ql = δ′
M (t, 1l) for l ≥ 0. There are

0 ≤ i < j ≤ m such that qi = qj and j − i ≤ m. But

δ′
M (qj , 1L(m)0m−1) = δ′

M (qj , 0m−1)

= δ′
M (qj , 0L(m)+m−1)

so M does not separate x and y when started in state qj . This shows that
d∀(x, y) ≥ m + 1.

On the other hand, the following m + 1-state DFA S ∀201-separates x and
y:

δS(l, 0) = l + 1, 1 ≤ l ≤ m

δS(m + 1, 0) = m + 1
δS(l, 1) = 1, 1 ≤ l ≤ m + 1

Variations of the Separating Words Problem 175

Fig. 6. A 6-state DFA S that ∀201-separates 0L(5)04 and 1L(5)04, where L(5) = 60.

Figure 6 shows S for m = 5. It is easily seen that δ′
S(s, x) = m + 1 and

δ′
S(s, y) = 1 for any 1 ≤ s ≤ m + 1.

The asymptotic bound follows from the fact that m ∈ Ω(ln(L(m) + m − 1)).
��

It was shown in [2] that d∃(x, y) ≤ p + 2 if x and y differ at position p
from the left, starting with 0. In contrast, the above proof shows that d∀(x, y)
is unbounded even when x and y differ at the leftmost position. On the other
hand, the same upper bound of p + 1 holds for d∀ as for d∃ when x and y differ
at position p from the right, starting with 1.

Proposition 6. If x and y differ at position p from the right, starting with 1,
then d∀(x, y) ≤ d∀201(x, y) ≤ p + 1.

Proof. The proof of Theorem 2 shows that there is a p + 1-state DFA M that
∀201-separates two strings x and y that differ at position p from the right,
starting with 1. Hence d∀(x, y) ≤ d∀201(x, y) ≤ p + 1. ��
Corollary 2. d∀201(x, y) ≤ 1 + min(|x|, |y|) for all binary strings x and y such
that neither is a suffix of the other.

A linear upper bound on D
‖
∀(n) follows from d∀(x, y) ≤ d∀201(x, y):

Corollary 3. D
‖
∀(n) ≤ n + 1.

5 Open Problems

We showed that D
‖
∀2(n) = D

‖
∀201(n) = n+1. The remaining problem for ∀2- and

∀201-separation is to find a polynomial-time algorithm to compute d∀2(x, y) and
d∀201(x, y) given distinct x and y of the same length.

Our lower bound and upper bound on D
‖
∀(n) remain even farther apart than

for D
‖
∃(n), the original formulation, and need to be tightened. A feasible first step

is to improve the upper bound on D
‖
∀(n), as seemingly suggested by empirical

data (Table 1):

176 N. Tran

Table 1. D
‖
∀(n) for small values of n obtained from exhaustive search.

n 1–2 3–7 8–14 15–18

D
‖
∀(n) 2 3 4 5

Acknowledgments. I thank the anonymous referees for their careful reading of the
manuscript. Their detailed comments and suggestions help improve the presentation
of this paper.

References

1. Chase, Z.: Separating words and trace reconstruction. In: Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pp. 21–31 (2021)

2. Demaine, E.D., Eisenstat, S., Shallit, J., Wilson, D.A.: Remarks on separating
words. In: Descriptional Complexity of Formal Systems, pp. 147–157 (2011)

3. Goralč́ık, P., Koubek, V.: On discerning words by automata. In: International Col-
loquium on Automata, Languages and Programming on Automata, Languages and
Programming, pp. 116–122 (1986)

4. Robson, J.: Separating strings with small automata. Inf. Process. Lett. 30(4), 209–
214 (1989)

5. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime
numbers. Ill. J. Math. 6(1), 64–94 (1962)

Homomorphisms on Graph-Walking
Automata

Olga Martynova1,2 and Alexander Okhotin1(B)

1 Department of Mathematics and Computer Science, St. Petersburg State
University, 14th Line V.O., 29, Saint Petersburg 199178, Russia

{st062453,alexander.okhotin}@spbu.ru
2 Leonhard Euler International Mathematical Institute at St. Petersburg State

University, Saint Petersburg, Russia

Abstract. Graph-walking automata (GWA) analyze an input graph by
moving between its nodes, following the edges. This paper investigates
the effect of node-replacement graph homomorphisms on recognizability
by these automata. The family of graph languages recognized by GWA
is closed under inverse homomorphisms. The main result of this paper is
that, for n-state automata operating on graphs with k labels of edge end-
points, the inverse homomorphic images require GWA with kn + O(1)
states in the worst case. The second result is that already for tree-walking
automata, the family they recognize is not closed under injective homo-
morphisms; here the proof is based on a homomorphic characterization
of regular tree languages.

1 Introduction

A graph-walking automaton moves over a labelled graph using a finite set of
states and leaving no marks on the graph: this is a model of graph traversal
using finite-state control. There is a classical result by Budach [3] that for every
automaton there is a graph in which it cannot visit all nodes, see a modern proof
by Fraigniaud et al. [6]. On the other hand, Disser et al. [5] recently proved that
if such an automaton is additionally equipped with O(log log n) memory and
O(log log n) pebbles, then it can traverse every graph with n nodes, and this
amount of resources is optimal. For graph-walking automata, there are results
on the construction of halting and reversible automata by Kunc and Okhotin [14],
as well as recent lower bounds on the complexity of these transformations and
related bounds on the state complexity of Boolean operations established by the
authors [16,17].

Graph-walking automata are a generalization of two-way finite automata
and tree-walking automata. Two-way finite automata are a standard model in
automata theory, and the complexity of their determinization remains a major
open problem, notable for its connection to the L vs. NL problem in the complex-
ity theory [11]. Tree-walking automata (TWA) have received particular attention

This work was supported by the Ministry of Science and Higher Education of the
Russian Federation, agreement 075-15-2019-1619.

c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 177–188, 2022.
https://doi.org/10.1007/978-3-031-07469-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_14&domain=pdf
http://orcid.org/0000-0002-1249-5173
http://orcid.org/0000-0002-1615-2725
https://doi.org/10.1007/978-3-031-07469-1_14

178 O. Martynova and A. Okhotin

in the last two decades, with important results on their expressive power estab-
lished by Bojańczyk and Colcombet [1,2].

The theory of tree-walking and graph-walking automata needs further devel-
opment. In particular, not much is known about their size complexity. For two-
way finite automata (2DFA), only the complexity of transforming them to one-
way automata has been well researched [7,8,10,12,18]. Also some bounds on the
complexity of operations on 2DFA are known [9,13], which also rely on the trans-
formation to one-way automata. This proof method has no analogue for TWA
and GWA, and the complexity of operations on these models remains uninvesti-
gated. In turn, lower bounds on the complexity of transforming GWA to halting
and reversible [16] also have no analogues for TWA and 2DFA. Using these
methods, state complexity of Boolean operations on graph-walking automata
has recently been determined [17].

This paper continues the investigation of the state complexity of graph-
walking automata, with some results extending to tree-walking automata. The
goal is to study some of the few available operations on graphs: node-replacement
homomorphisms, as well as inverse homomorphisms. In the case of strings, a
homomorphism is defined by the identity h(uv) = h(u)h(v), and the class of reg-
ular languages is closed under all homomorphisms, as well as under their inverses,
defined by h−1(L) = {w | h(w) ∈ L }. For the 2DFA model, the complexity of
inverse homomorphisms is known: as shown by Jirásková and Okhotin [9], it
is exactly 2n in the worst case, where n is the number of states in the original
automaton. However, this proof is based on the transformations between one-way
and two-way finite automata, which is a property unique for the string case. The
state complexity of homomorphisms for 2DFA is known to lie between exponen-
tial and double exponential [9]. For tree-walking and graph-walking automata,
no such questions were investigated before, and they are addressed in this paper.

The closure of graph-walking automata under every inverse homomorphism
is easy: in Sect. 3 it is shown that, for an n-state GWA, there is a GWA with
nk+1 states for its inverse homomorphic image, where k is the number of labels
of edge end-points. If the label of the initial node is unique, then nk states are
enough. This transformation is proved to be optimal by establishing a lower
bound of nk states. The proof of the lower bound makes use of a graph that
is easy to pass in one direction and hard to pass in reverse, constructed in the
authors’ [16] recent paper.

The other result of this paper, presented in Sect. 4, is that the family of
tree languages recognized by tree-walking automata is not closed under injec-
tive homomorpisms, thus settling this question for graph-walking automata as
well. The result is proved by first establishing a characterization of regular tree
languages by a combination of an injective homomorphism and an inverse homo-
morphism. This characterization generalizes a known result by Latteux and
Leguy [15], see also an earlier result by Čuĺık et al. [4]. In light of this char-
acterization, closure under injective homomorphisms would imply that every
regular tree language is recognized by a tree-walking automaton, which would
contradict the famous result by Bojańczyk and Colcombet [2].

Homomorphisms on Graph-Walking Automata 179

2 Graph-walking Automata

A formal definition of graph-walking automata (GWA) requires more elaborate
notation than for 2DFA and TWA. It begins with a generalization of an alphabet
to the case of graphs: a signature.

Definition 1 (Kunc and Okhotin [14]). A signature S is a quintuple S =
(D,−, Σ,Σ0, (Da)a∈Σ), where:

– D is a finite set of directions, which are labels attached to edge end-points;
– a bijection − : D → D provides an opposite direction, with −(−d) = d for all

d ∈ D;
– Σ is a finite set of node labels;
– Σ0 ⊆ Σ is a non-empty subset of possible labels of the initial node;
– Da ⊆ D, for every a ∈ Σ, is the set of directions in nodes labelled with a.

Like strings are defined over an alphabet, graphs are defined over a signature.

Definition 2. A graph over a signature S = (D,−, Σ,Σ0, (Da)a∈Σ) is a
quadruple (V, v0,+, λ), where:

– V is a finite set of nodes;
– v0 ∈ V is the initial node;
– edges are defined by a partial function +: V × D → V , such that if v + d is

defined, then (v + d) + (−d) is defined and equals v;
– node labels are assigned by a total mapping λ : V → Σ, such that v + d is

defined if and only if d ∈ Dλ(v), and λ(v) ∈ Σ0 if and only if v = v0.

The set of all graphs over S is denoted by L(S).

In this paper, all graphs are finite and connected.
A graph-walking automaton is defined similarly to a 2DFA, with an input

graph instead of an input string.

Definition 3. A (deterministic) graph-walking automaton (GWA) over a sig-
nature S = (D,−, Σ,Σ0, (Da)a∈Σ) is a quadruple A = (Q, q0, F, δ), where

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q × Σ is a set of acceptance conditions;
– δ : (Q×Σ)\F → Q×D is a partial transition function, with δ(q, a) ∈ Q×Da

for all a and q where δ is defined.

A computation of a GWA on a graph (V, v0,+, λ) is a uniquely defined sequence
of configurations (q, v), with q ∈ Q and v ∈ V . It begins with (q0, v0) and proceeds
from (q, v) to (q′, v + d), where δ(q, λ(v)) = (q′, d). The automaton accepts by
reaching (q, v) with (q, λ(v)) ∈ F .

On each input graph, a GWA can accept, reject or loop. The set of all graphs
accepted is denoted by L(A).

180 O. Martynova and A. Okhotin

The operation on graphs investigated in this paper is a node-replacement
homomorphism, which replaces nodes with subgraphs.

Definition 4. Let S and ̂S be two signatures, with the set of directions of S
contained in the set of directions of ̂S. A mapping h : L(S) → L(̂S) is a homo-
morphism, if, for every graph G over S, the graph h(G) is constructed out of G
as follows. For every node label a in S, there is a connected subgraph h(a) over
the signature ̂S, which has an edge leading outside for every direction in Da;
these edges are called external. Then, h(G) is obtained out of G by replacing
every node v with a subgraph h(v) = h(a), where a is the label of v, so that the
edges that come out of v in G become the external edges of this copy of h(a).

The subgraph h(a) must contain at least one node. It contains an initial node
if and only if the label a is initial.

3 Inverse Homomorphisms: Upper and Lower Bounds

Given a graph-walking automaton A and a homomorphism h, the inverse homo-
morphic image h−1(L(A)) can be recognized by another automaton that, on a
graph G, simulates the operation of A on the image h(G). A construction of such
an automaton is presented in the following theorem.

Theorem 1. Let S be a signature with k � 1 directions, and let ̂S be a signature
containing all directions from S. Let h : L(S) → L(̂S) be a graph homomorphism
between these signatures. Let A be a graph-walking automaton with n states that
operates on graphs over ̂S. Then there exists a graph-walking automaton B with
nk +1 states, operating on graphs over S, which accepts a graph G if and only if
A accepts its image h(G). If S contains a unique initial label, then it is sufficient
to use nk states.

In order to carry out the simulation of A on h(G) while working on G, it is
sufficient for B to remember the current state of A and the direction in which
A has entered the image in h(G) of the current node of B. The full construction
is omitted due to space constraints.

It turns out that this expected construction is actually optimal, as long as the
initial label is unique: the matching lower bound of nk states is proved below.

Theorem 2. For every k � 9, there is a signature S with k directions and a
homomorphism h : L(S) → L(S), such that for every n � 4, there exists an n-
state automaton A over the signature S, such that every automaton B, which
accepts a graph G if and only if A accepts h(G), has at least nk states.

Proving lower bounds on the size of graph-walking automata is generally not
easy. Informally, it has to be proved that the automaton must remember a lot;
however, in theory, it can always return to the initial node and recover all the
information it has forgotten. In order to eliminate this possibility, the initial
node shall be placed in a special subgraph Hstart, from which the automaton

Homomorphisms on Graph-Walking Automata 181

can easily get out, but if it ever needs to reenter this subgraph, finding the
initial node would require too many states. This subgraph is constructed in the
following lemma; besides Hstart, there is another subgraph Hdead end, which is
identical to Hstart except for not having an initial label; then, it would be hard
for an automaton to distinguish between these two subgraphs from the outside,
and it would not identify the one in which it has started.

Lemma 1. For every k � 4 there is a signature Sstart with k directions, with two
pairs of opposite directions +1, −1 and +2, −2, such that for every n � 2 there
are graphs Hstart and Hdead end over this signature, with the following properties.

I. The subgraph Hstart contains an initial node, whereas Hdead end does not;
both have one external edge in the direction +1.

II. There is an n-state automaton, which begins its computation on Hstart in
the initial node, and leaves this subgraph by the external edge.

III. Every automaton with fewer than 2(k − 3)(n − 1) states, having entered
Hstart and Hdead end by the external edge in the same state, either leaves
both graphs in the same state, or accepts both, or rejects both, or loops on
both.

The proof reuses a graph constructed by the authors in a recent paper [16].
Originally, it was used to show that there is an n-state graph-walking automaton,
such that every automaton that accepts the same graphs and returns to the initial
node after acceptance must have at least 2(k −3)(n−1) states [16, Thm. 18], cf.
upper bound 2nk + n [16, Thm. 9]. The adaptation of this argument necessary
to match the statement of Lemma 1 is omitted due to space constraints.

Now, using the subgraphs Hstart and Hdead end as building blocks, the next
goal is to construct a subgraph which encodes a number from 0 to n − 1, so
that this number is easy to calculate along with getting out of this subgraph for
the first time, but if it is ever forgotten, then it cannot be recovered without
using too many states. For each number i ∈ {0, . . . , n−1} and for each direction
d ∈ D, this is a graph Fi,d that contains the initial label and encodes the number
i, and a graph Fd with no initial label that encodes no number at all.

Lemma 2. For every k � 4 there is a signature SF obtained from Sstart by
adding several new node labels, such that, for every n � 2 there are subgraphs
Fi,d and Fd, for all i ∈ {0, . . . , n − 1} and d ∈ D, with the following properties.

I. Each subgraph Fi,d and Fd has one external edge in the direction d. Sub-
graphs of the form Fi,d have an initial node, and subgraphs Fd do not have
one.

II. There is an automaton with states {q0, . . . , qn−1}, which, having started on
every subgraph Fi,d in the initial node, eventually gets out in the state qi.

III. Every automaton with fewer than 2(k − 3)(n− 1) states, having entered Fi,d

and Fd with the same d by the external edge in the same state, either leaves
both subgraphs in the same state, or accepts both, or rejects both, or loops
on both.

182 O. Martynova and A. Okhotin

+1

–1

+1

–1

+1

–1

+1

–1

v0

+1

–1
c'–2+2 +2 –2 +2 –2 +2 –2 +1... ... –1 dcst

u0

Hdead end Hstart

ugo
c' c' go'+1 god

u1 ui un–2 un–1

Hdead end Hdead end Hdead end

Fig. 1. The subgraph Fi,d, with d �= −1; for d = −1 the subgraph has un−1 labelled
with go′

+2, and a (+2,−2)-edge to ugo.

Each subgraph Fi,d is a chain of n nodes, with the subgraph Hstart attached
at the i-th position, and with n−1 copies of Hdead end attached at the remaining
positions, as illustrated in Fig. 1. The automaton in Part II gets out of Hstart

and then moves along the chain to the left, counting the number of steps, so that
it gets out of the final node ugo in the state qi. The proof of Part III relies on
Lemma 1 (Part III): if an automaton enters Fi,d and Fd from the outside, it ends
up walking over the chain and every time it enters any of the attached subgraphs
Hstart and Hdead end, it cannot distinguish between them and continues in the
same way on all Fi,d and Fd.

Proof (of Theorem 2). The signature S is SF from Lemma 2, with a few extra
node labels: { go−d,+1 | d ∈ D \ {−1} } ∪ {go+1,+2, c−, q0?} ∪ { d? | d ∈ D } ∪
{ accd, rejd | d ∈ D }. Let the directions be cyclically ordered, so that next(d)
is the next direction after d and prev(d) is the previous direction. The order is
chosen so that, for each direction d, its opposite direction is neither next(d) nor
next(next(d)).

The new labels have the following sets of directions: Dgod1,d2
= {d1, d2};

Dc− = {−1,+1}; Dq0? = {−1}; Dd? = D for all d ∈ D; Daccd =
Drejd = {−d,−next(d), next(next(d))} for all d ∈ D, where the directions
−d,−next(d), next(next(d)) are pairwise distinct by assumption.

The homomorphism h affects only new labels of the form d?, with d ∈ D,
whereas the rest of the labels are unaffected. Each label d?, for d ∈ D, is replaced
with a circular subgraph h(d?), as illustrated in Fig. 3. The node entered in the
direction d has label accd, and every other node is labelled with reje, with e �= d.
When the automaton enters this subgraph in the image, it knows the direction
it came from, whereas in the original graph, it has to remember this direction
in its state.

Homomorphisms on Graph-Walking Automata 183

Fi,d
ugo

+1 –1d –d +1 –1god
wgo,2wgo,1 w1 wj

go–d,+1 c– q0?c–go–1,+1
+1 –1+1 –1...

v0
wend

Fig. 2. The graph Gi,j,d, with d �= −1; for d = −1 the graph has wgo,1 labelled with
go+1,+2 and wgo,2 labelled with go−2,+1, linked with a (+2,−2)-edge.

gonext(d)Fnext(d)

goprev(d)Fprev(d)

d?–d

–next(d)

–prev(d)

...

...
godFi,d

v0

vd

vprev(d)

vnext(d)

–d

–next(d)

–next(next(d))
next(next(d))

–next(d)

rejnext(d)

rejprev(d)

accd

next(d)

–prev(d)

gonext(d)Fnext(d)

goprev(d)Fprev(d)

godFi,d
v0

Fig. 3. The graph Gi,d,d and its image h(Gi,d,d).

The graph Gi,j,d is defined by taking Fi,d from Lemma 2 and attaching to it
a chain of j + 3 nodes, as shown in Fig. 2.

The graph Gi,d,d′ is presented in Fig. 3 for the case d = d′. It has a subgraph
Fi,d with the initial node, and k−1 subgraphs Fe, with e ∈ D\{d}. The external
edges of these k subgraphs are all linked to a new node v labelled with d′?.

Claim 1. There exists an n-state automaton A, which accepts h(Gi,j,d) if and
only if i = j, and which accepts h(Gi,d,d′) if and only if d = d′.

The automaton is based on the one defined in Lemma 2 (Part II). On the
graph h(Gi,j,d), it gets out of the subgraph Fi,d in the state qi, and then decre-
ments the counter j times as it continues to the right; if it reaches the end of the
chain in q0, it accepts. On the graph h(Gi,d,d′), the automaton comes to the ring
h(d′?); if d = d′, it arrives at the node with label accd and accepts; otherwise,
the label is rejd, and it rejects.

Claim 2. Let an automaton B accept a graph G if and only if A accepts h(G).
Then B has at least nk states.

The proof is by contradiction. Suppose that B has fewer than nk states.
Since nk � 2 · 2

3k · 3
4n � 2(k − 3)(n − 1), Lemma 2 (Part III) applies, and the

automaton B cannot distinguish between the subgraphs Fi,d and Fd if it enters
them from the outside.

On the graph Gi,j,d, the automaton must check that i is equal to j, where the
latter is the number of labels c− after the exit from Fi,d. In order to check this,

184 O. Martynova and A. Okhotin

B must exit this subgraph. Denote by qi,d the state, in which the automaton B
leaves the subgraph Fi,d for the first time. There are nk such states { qi,d | i =
0, . . . , n − 1; d ∈ D }, and since B has fewer states, some of these states must
coincide. Let qi,d = qj,d′ , where d �= d′ or i �= j. There are two cases to consider.

– Case 1: d �= d′. The automaton B must accept Gi,d,d and reject Gj,d′,d. On
either graph, it first arrives to the corresponding node v in the same state
qi,d = qj,d′ , without remembering the last direction taken. Then, in order to
tell these graphs apart, the automaton must carry out some further checks.
However, every time B leaves the node v in any direction e ∈ D, it enters a
subgraph, which is either the same in Gi,d,d and Gj,d′,d (if e �= d, d′), or it
is a subgraph that is different in the two graphs, but, according to Lemma 2
(Part III), no automaton of this size can distinguish between these subgraphs.
Therefore, B either accepts both graphs, or rejects both graphs, or loops on
both, which is a contradiction.

– Case 2: d = d′ and i �= j. In this case, consider the computations of B on
the graphs Gi,j,d and Gj,j,d: the former must be rejected, the latter accepted.
However, by the assumption, the automaton leaves Fi,d and Fj,d in the same
state qi,d = qj,d. From this point on, the states of B in the two computations
are the same while it walks outside of Fi,d and Fj,d, and each time it reenters
these subgraphs, by Lemma 2 (Part III), it either accepts both, or rejects
both, or loops on both, or leaves both in the same state. Thus, the whole
computations have the same outcome, which is a contradiction.

The contradiction obtained shows that B has at least nk states. ��

4 A Characterization of Regular Tree Languages

The next question investigated in this paper is whether the family of graph lan-
guages recognized by graph-walking automata is closed under homomorphisms.
In this section, non-closure is established already for tree-walking automata and
for injective homomorphisms.

The proof is based on a seemingly unrelated result. Consider the following
known representation of regular string languages.

Theorem A (Latteux and Leguy [15]). For every regular language L ⊆ Σ∗

there exist alphabets Ω and Γ , a special symbol #, and homomorhisms f : Ω∗ →
#∗, g : Ω∗ → Γ ∗ and h : Σ∗ → Γ ∗, such that L = h−1(g(f−1(#)).

A similar representation shall now be established for regular tree languages,
that is, those recognized by deterministic bottom-up tree automata.

For uniformity of notation, tree and tree-walking automata shall be repre-
sented in the notation of graph-walking automata, as in Sect. 2, which is some-
what different from the notation used in the tree automata literature. This is
only notation, and the trees and the automata are mathematically the same.

Homomorphisms on Graph-Walking Automata 185

Definition 5. A signature S = (D,−, Σ,Σ0, (Da)a∈Σ) is a tree signature, if:
the set of directions is D = {+1,−1, . . . ,+k,−k}, for some k � 1, where direc-
tions +i and −i are opposite to each other; for every label a ∈ Σ, the number of
its children is denoted by rank a, with 0 � rank a � k; every initial label a0 ∈ Σ0

has directions Da0 = {+1, . . . ,+ rank a0}; every non-initial label a ∈ Σ \ Σ0 has
the set of directions Da = {−d,+1, . . . ,+ rank a}, for some d ∈ {1, . . . , k}.

A tree is a connected graph over a tree signature.

This implements the classical notion of a tree. The initial node is its root. In
a node v with label a, the directions +1, . . . ,+ rank a lead to its children, and
the child in the direction +i has direction −i to its parent. There is no direction
to the parent in the root node. Labels a with rank a = 0 are used in the leaves.

Definition 6. A (deterministic bottom-up) tree automaton over a tree signature
S = (D,−, Σ,Σ0, (Da)a∈Σ) is a triple A = (Q, qacc, (δa)a∈Σ), where

– Q is a finite set of states;
– qacc ∈ Q is the accepting state, effective in the root node;
– δa : Qrank a → Q, for each a ∈ Σ, is a function computed at the label a.

Given a tree T over a signature S, a tree automaton A computes the state
in each node, bottom-up. The state in each leaf v labelled with a is set to be the
constant δa(). Once a node v labelled with a has the states q1, . . . , qrank a in its
children, the state in the node v is δa(q1, . . . , qrank a). This continues until the
value in the root is computed. If it is qacc, then the tree is accepted, and otherwise
it is rejected. The tree language recognized by A is the set of all trees over S that
A accepts. A tree language recognized by some tree automaton is called regular.

The generalization of Theorem A to the case of trees actually uses only two
homomorphisms, not three. The inverse homomorphism f−1 in Theorem A gen-
erates the set of all strings with a marked first symbol out of a single symbol;
trees cannot be generated this way. The characterization below starts from the
set of all trees over a certain signature, with their roots marked by definition;
this has the same effect as f−1

({#}) in Theorem A. The remaining two homo-
morphisms do mostly the same as in the original result, generalized to trees.

Theorem 3. Let L be a regular tree language over a tree signature Sreg.
Then there exists tree signatures Scomp and Smid, and injective homomor-
phisms g : L(Scomp) → L(Smid) and h : L(Sreg) → L(Smid), such that L =
h−1(g(L(Scomp))).

Proof (a sketch). Let L be a non-empty regular tree language over a signa-
ture Sreg = (D,−, Σ,Σ0, (Da)a∈Σ), recognized by a tree automaton A =
(Q, qacc, (δa)a∈Σ). Let Q = {1, . . . , n}.

The homomorphism h is defined to effectively replace each (+i,−i)-edge with
a fishbone subgraph, as illustrated in Fig. 4. The original nodes and their labels
are not affected. This is formally done by replacing each non-initial node labelled
with a ∈ Σ \Σ0 with the same node with the edge to the parent replaced with a

186 O. Martynova and A. Okhotin

(a,q1,...,qr)
–d

+r...+1

b

–d

–d

...
...

crc1

gha

n–q1

n–qr

q1
qr

crc1

b

(c1,...) (cr,...)

(b,...)
+d

–r–1

–d

+d

–r–1

+r
...

+1 ...
+r+1

+d

–1

...
...

...

...

a

a(q1,...,qr)

n–a(q1,...,qr)

–r

n

+r+1 +r+1 +r+1

Fig. 4. Homomorphisms h and g mapping the original tree T (left) and the correspond-
ing valid annotated tree Tcomp (right) to the same tree with fishbones.

fishbone. The initial node is mapped to itself. The signature Smid extends Sreg

with the labels needed to define the fishbones.
The main idea of the construction is to take a tree accepted by A and anno-

tate node labels with the states in the accepting computation of A on this tree.
Another homomorphism g maps such annotated trees to trees over the signature
Smid, with fishbones therein. Annotated trees that correctly encode a valid com-
putation are mapped to trees with all fishbones of length exactly n; then, h−1

decodes the original tree out of this encoding. On the other hand, any mistakes
in the annotation are mapped by g to fishbones of length other than n, and the
resulting trees have no pre-images under h.

Trees with annotated computations, defined over the signature Scomp, have
each node labelled with a pair (a, (q1, . . . , qrank a)), where a ∈ Σ is its label in
the original tree, and q1, . . . , qrank a ∈ Q are meant to be the states computed
by A on the children of this node. The homomorphism g replaces such a node
with a node labelled a, with attached fragments of fishbones in all directions.
The fishbone directed to the i-th child has length n− qi, and the fishbone in the
direction upwards is of length δa(q1, . . . , qrank a). In the root node, only labels
(a0, (q1, . . . , qrank a)) with δa0(q1, . . . , qrank a) = qacc are allowed.

Homomorphisms on Graph-Walking Automata 187

Let T be a tree accepted by A, and let Tcomp be an annotated tree that
encodes the computation of A on T . Then the image g(Tcomp) has each fishbone
made of two fragments, one of length q coming from the child, where q is the
state in the child, and the other of length n − q coming from the parent. Thus,
every fishbone is of length n, and g(Tcomp) has a pre-image under h, which is T .

On the other hand, every annotated tree ˜T over the signature Scomp which
encodes something other than a valid accepting computation, has at least one
mismatch in the states between a parent and a child, and g maps this mismatch
to a fishbone of length other than n. So, g(˜T) has no pre-images under h. This
proves that h−1(g(L(Scomp))) = L. ��
Theorem 4. The class of tree languages recognized by tree-walking automata is
not closed under injective homomorphisms.

Proof. Suppose it is closed. It is claimed that then every regular tree language
is recognized by a tree-walking automaton. Let L be a regular tree language
over some tree signature Sreg. Then, by Theorem 3, there exist tree signatures
Scomp and Smid, and injective homomorphisms g : L(Scomp) → L(Smid) and
h : L(Sreg) → L(Smid), such that L = h−1(g(L(Scomp))). The language L(Scomp)
is trivially recognized by a tree-walking automaton that accepts every tree right
away. Then, by the assumption on the closure under g, the language g(L(Scomp))
is recognized by another tree-walking automaton. By Theorem 1, its inverse
homomorphic image L is recognized by a tree-walking automaton as well. This
contradicts the result by Bojańczyk and Colcombet [2] on the existence of regular
tree languages not recognized by any tree-walking automata. ��

5 Future Work

The lower bound on the complexity of inverse homomorphisms is obtained using
graphs with cycles, and thus does not apply to tree-walking automata (TWA).
On the other hand, in the even more restricted case of 2DFA, the state complexity
of inverse homomorphisms is 2n [9], which is in line of the kn bound in this paper,
as 2DFA have k = 2. It would be interesting to fill in the missing case of TWA.

References

1. Bojanczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized.
Theor. Comput. Sci. 350(2–3), 164–173 (2006)

2. Bojanczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular
languages. SIAM J. Comput. 38(2), 658–701 (2008)

3. Budach, L.: Automata and labyrinths. Mathematische Nachrichten 86(1), 195–282
(1978)

4. Cuĺık, K., II., Fich, F.E., Salomaa, A.: A homomorphic characterization of regular
languages. Discret. Appl. Math. 4(2), 149–152 (1982)

5. Disser, Y., Hackfeld, J., Klimm, M.: Tight bounds for undirected graph exploration
with pebbles and multiple agents. J. ACM 66(6), 40:1–40:41 (2019)

188 O. Martynova and A. Okhotin

6. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

7. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theor. Comput. Sci. 295, 189–203 (2003)

8. Geffert, V., Okhotin, A.: Deterministic one-way simulation of two-way determin-
istic finite automata over small alphabets. In: Han, Y., Ko, S. (eds.) Descriptional
Complexity of Formal Systems - 23rd IFIP WG 1.02 International Conference,
DCFS 2021, Virtual Event, 5 September 2021, Proceedings. LNCS, vol. 13037, pp.
26–37. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93489-7 3

9. Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way finite
automata. Inf. Comput. 253, 36–63 (2017)

10. Kapoutsis, C.: Removing bidirectionality from nondeterministic finite automata.
In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp.
544–555. Springer, Heidelberg (2005). https://doi.org/10.1007/11549345 47

11. Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of l/poly
versus NL. Theory Comput. Syst. 56(4), 662–685 (2015)

12. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite
automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT
2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22321-1 28

13. Kunc, M., Okhotin, A.: State complexity of operations on two-way finite automata
over a unary alphabet. Theor. Comput. Sci. 449, 106–118 (2012)

14. Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata.
Inf. Comput. 275, 104631 (2020)

15. Latteux, M., Leguy, J.: On the composition of morphisms and inverse morphisms.
In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 420–432. Springer, Heidelberg
(1983). https://doi.org/10.1007/BFb0036926

16. Martynova, O., Okhotin, A.: Lower bounds for graph-walking automata. In: Bläser,
M., Monmege, B. (eds.) 38th International Symposium on Theoretical Aspects of
Computer Science, STACS 2021, 16–1, March 2021, Saarbrücken, Germany (Vir-
tual Conference). LIPIcs, vol. 187, pp. 52:1–52:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021)

17. Martynova, O., Okhotin, A.: State complexity of union and intersection on graph-
walking automata. In: Han, Y., Ko, S. (eds.) Descriptional Complexity of Formal
Systems - 23rd IFIP WG 1.02 International Conference, DCFS 2021, Virtual Event,
September 5, 2021, Proceedings. LNCS, vol. 13037, pp. 125–136. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-93489-7 11

18. Petrov, S., Okhotin, A.: On the transformation of two-way deterministic finite
automata to unambiguous finite automata. In: Leporati, A., Mart́ın-Vide, C.,
Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 81–93. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-68195-1 7

https://doi.org/10.1007/978-3-030-93489-7_3
https://doi.org/10.1007/11549345_47
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/978-3-642-22321-1_28
https://doi.org/10.1007/BFb0036926
https://doi.org/10.1007/978-3-030-93489-7_11
https://doi.org/10.1007/978-3-030-68195-1_7

Nondeterministic State Complexity
of Site-Directed Deletion

Oliver A.S. Lyon(B) and Kai Salomaa(B)

School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
{oliver.lyon,salomaa}@queensu.ca

Abstract. Site-directed deletion is a biologically inspired operation that
removes a contiguous substring from the host string guided by a tem-
plate string. The template string must match the prefix and suffix of a
substring. When this occurs the middle section of the substring not con-
tained in the prefix or suffix is removed. We consider the nondetermin-
istic state complexity of the site-directed deletion operation. For regular
languages recognized by nondeterministic finite automata with N and
M states, respectively, we establish a new upper bound of 2NM + N
and a new worst case lower bound of 2NM . The upper bound improves
a previously established upper bound, and no non-trivial lower bound
was previously known for the nondeterministic state complexity of site-
directed deletion.

Keywords: Descriptional complexity · Nondeterministic finite
automaton · Fooling set · Bio-inspired operations

1 Introduction

Polymerase Chain Reaction (PCR) is a family of laboratory methods for edit-
ing and manipulating DNA [16]. One such method is site-directed mutagenesis,
which uses single strands of DNA as a template to guide the insertion or deletion
of DNA [3]. In general, insertion and deletion operations are natural complemen-
tary operations when working with DNA editing. We consider site-directed dele-
tion mutagenesis, which uses DNA primers to identify complementary substrings
in a host strand and remove the contiguous substring between the primers. We
can informally describe the site-directed deletion operation as using a target
string to identify a non-empty outfix of a substring from the host string. Once
a non-empty outfix is identified, the section of substring not contained in the
outfix is deleted.

Algorithms and computational models employing PCR have been studied
previously [1,8,15,17]. There have been several studies of bio-inspired insertion
and deletion systems to assess computational power [13,14,18]. Since biology has
a wide variety of methods for editing and manipulating DNA, there have been
several definitions developed in formal languages to describe different deletion
operations [7,9,12].

c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 189–199, 2022.
https://doi.org/10.1007/978-3-031-07469-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_15

190 O. A. S. Lyon and K. Salomaa

Site-directed insertion is, roughly speaking, the operation complementary to
site-directed deletion. The language-theoretic properties and state complexity
of site-directed insertion have been considered in [5,6]. The language-theoretic
definitions of site-directed deletion were originally given by Cho et al. [4]. In this
work they also provide an upper bound for the nondeterministic state complexity.

In this paper, we develop new bounds on the nondeterministic state complex-
ity for site-directed deletion. We begin by improving the upper bound on the
nondeterministic state complexity of site-directed deletion, and then we provide
a nearly matching lower bound for site-directed deletion. Finally, we establish
tight bounds on the nondeterministic state complexity of site-directed deletion
as it acts over unary languages.

2 Preliminaries

This paper uses much of the notation defined in introductory automata text-
books [11]. In this section, a review of the essentials is provided. We are primarily
focused on nondeterministic finite automata (NFA) and their associated state
complexity.

In the following Σ is a finite alphabet, Σ∗ is the set of all strings over Σ,
Σ+ is the subset of Σ∗ where all strings have length greater than zero. We use
ε to represent the empty string. The length of a string is denoted by | w | for a
string w ∈ Σ∗.

An NFA A is represented with a tuple (Q,Σ, δ, s, F), where Q is the finite
set of states of A, Σ is the finite alphabet, δ is the partial transition function
defined over Q × Σ → 2Q, s ∈ Q is the start state and, F ⊆ Q is the set of final
states. A path P is a sequence of states in A that are connected by transitions.
Each path is associated with a string w. We consider a path accepting if it starts
at s and ends at q ∈ F . The language L(A) is the set of all strings in Σ∗ with
accepting paths in A. We also introduce the function ClosureA, defined for NFA
A as follows, ClosureA(q) = {q′ | ∃ path P from q to q′ in A}

To establish lower bounds on nondeterministic state complexity we recall the
fooling set technique.

Proposition 1 (Fooling Set Technique [2]). Let L ⊂ Σ∗ be a reg-
ular language. Additionally consider a set containing pairs of strings
FS = {(x1, y1), (x2, y2), · · · , (xn, yn)} such that xiyi ∈ L, for i = 1, 2, ..., n and
xiyj /∈ L or xjyi /∈ L where 1 ≤ i, j ≤ n and i �= j. Then any NFA recognizing
L must contain at least n states.

We now introduce the definition of site-directed deletion language operation
as it was defined by Cho et al. [4].

Definition 1. For languages L1 and L2, the site-directed deletion language of
L2 on L1 is defined as follows:

L1
SDD←−−− L2 = {xy1y2z | xy1ȳy2z ∈ L1, y1y2 ∈ L2, y1 �= ε, y2 �= ε}.

Nondeterministic State Complexity of Site-Directed Deletion 191

Cho et al. [4] showed that for regular languages L1 and L2 the language
L1

SDD←−−− L2 is regular and their construction implies an upper bound for the
nondeterministic state complexity of site-directed deletion.

3 General Alphabet Site-Directed Deletion

We consider the nondeterministic state complexity of site-directed deletion over
a general alphabet. We begin by improving the known 2NM +2N upper bound
from Cho et al. [4].

Theorem 1. For NFAs A1 and A2 with N and M states, respectively, the lan-
guage L(A1)

SDD←−−−L(A2) is recognized by an NFA with 2NM + N states.

Proof. For NFAs A1 = (Q,Σ, δ, s1, F1) and A2 = (P,Σ, γ, s2, F2), we can define
the automaton ASDD = (QSDD, Σ,Ω, (s1, s2)X1 , FSDD), which recognizes the
language L(A1)

SDD←−−−L(A2). We define the states in QSDD as follows:

QSDD = (Q × P)X1 ∪ (Q × P)X2 ∪ (Q × {pf}).

Subscripts indicate copies of the Cartesian product of the sets Q and P . The set
of final states is defined as:

FSDD = {(q, pf) | q ∈ F1}.

We define the transition function Ω for α ∈ Σ as follows:

(i) for (q, s2)X1 where q ∈ Q :

Ω((q, s2)X1 , α) = {(q′, s2)X1 | q′ ∈ δ(q, α)}
∪ {(q′, p′)X1 | q′ ∈ δ(q, α), p′ ∈ γ(s2, α)}
∪ {(q′′, p′)X2 | q′′ ∈ ClosureA1(q

′), q′ ∈ δ(q, α), p′ ∈ γ(s2, α)}.

(ii) for (q, p)X1 where q ∈ Q and p ∈ P :

Ω((q, p)X1 , α) = {(q′, p′)X1 | q′ ∈ δ(q, α), p′ ∈ γ(p, α)}
∪ {(q′′, p′)X2 | q′′ ∈ ClosureA1(q

′), q′ ∈ δ(q, α), p′ ∈ γ(p, α)}.

(iii) for (q, p)X2 where q ∈ Q and p ∈ P :

Ω((q, p)X2 , α) = {(q′, p′)X2 | q′ ∈ δ(q, α) and p′ ∈ γ(p, α)}
∪ {(q′, pf) | q′ ∈ δ(q, α) and γ(p, α) ∩ F2 �= ∅}.

(iv) for (q, pf) where q ∈ Q :

Ω((q, pf), α) = {(q′, pf) | q′ ∈ δ(q, α)}.

192 O. A. S. Lyon and K. Salomaa

We first show the inclusion L(A1)
SDD←−−−L(A2) ⊆ L(ASDD).

To prove the inclusion we consider a string xy1y2z ∈ L(A1)
SDD←−−−L(A2),

where xy1ȳy2z ∈ L(A1) and y1y2 ∈ L(A2). To provide insight we can generally
say the states (q, s2)X1 read the prefix x. The states (q, p)X1 are used to read
the substring y1 and ensure that it is non-empty. The states (q, p)X2 read the
substring y2 and also ensure that it is non-empty. Lastly, the states (q, pf) are
used to read any suffix z.

For a string xy1y2z ∈ L(A1)
SDD←−−−L(A2), there exist accepting paths

PA1 = s1, . . . , qx, . . . , qy1 , . . . , qȳ, . . . , qy2 , . . . , qz in A1 recognizing xy1ȳy2z and
PA2 = s2, . . . , py1 , . . . , py2 in A2 recognizing y1y2.

From the initial state (s1, s2)X1 , the prefix x can be read using the transitions
defined in (i) to arrive at the state (qx, s2)X1 . The substring y1 can be read using
transitions defined in (ii) to arrive at the state (qȳ, py1)X2 . To follow an accepting
path the last symbol of y1 is read nondeterministically to transition to (qȳ, py1)X2

instead of (qy1 , py1)X1 . This choice of state allows the transition to enforce the
non-empty condition on reading y1. The substring y2 is read using transitions
defined in (iii) to arrive at the state (qy2 , pf). Once again a nondeterministic
choice to move to this state forces the non-empty condition on the substring y2.
Lastly, the suffix z is read using the transitions defined in (iv) to arrive at the
final state (qz, pf).

We next show the inclusion L(ASDD) ⊆ L(A1)
SDD←−−−L(A2).. Let xy1y2z be a

string with an accepting path in ASDD. We can decompose the strings accepting
path into four paths as follows:

P1 = (s1, s2)X1 , . . . , (qx, s2)X1 ,P2 = (qx, s2)X1 , . . . , (qȳ, py1)X2

P3 = (qȳ, py1)X2 , . . . , (qy2 , pf) and P4 = (qy2 , pf), . . . , (qz, pf)

The path P1 implies that a path s1, . . . , qx exists in A1 recognizing x. The
path P2 implies the existence of the paths qx, . . . , qy1 in A1 and s2, . . . , py1 in A2

recognizing the substring y1. There is a nondeterministic transition from state
(qy1 , py1)X1 to (qȳ, py1)X2 in ASDD. These transitions exist because there is a
path between qy1 and qȳ in A1 recognizing a substring ȳ. The path P3 implies
the existence of paths qȳ, . . . , qy2 in A2 and py1 , . . . , py2 recognizing the substring
y2 where py2 is a final state in A2. Finally, the path P4 implies that the path
qy2 , . . . , qz exists in A1 recognizing the suffix z. These paths allow us to draw
the conclusion that xy1ȳy2z ∈ L(A1) and y1y2 ∈ L(A2). �

Figure 1 depicts the automaton ASDD. The different boxes identify states
that have different outgoing transitions. The box labeled with X1 contains a
rectangle, which contains states with outgoing transitions defined in (i). The
remainder of the states in box X1 have outgoing transitions defined in (ii). The
middle box labeled with an X2 contains states with outgoing transitions defined
in (iii). Lastly, the states labeled with (q, pf) have outgoing transitions defined
in (iv).

Nondeterministic State Complexity of Site-Directed Deletion 193

s1, s2start

...

qN , s2

. . . s1, pM

...

qN , pM. . .

. . .

s1, s2

...

qN , s2

. . . s1, pM

...

qN , pM. . .

. . .

qN , pf

...

s1, pf

X1

X2

(q, pf)

Fig. 1. The construction of the site-directed deletion automaton.

Next we turn to the lower bound. To obtain a lower bound that is reasonably
close to the upper bound, we use languages defined over a variable size alphabet,
that is, the size of the alphabet depends on the number of states in the automata.

To prove the lower bound on nondeterministic state complexity of site-
directed deletion, we introduce notation to simplify the following proof. We use
the notation •ji for i ≤ j < N to be the string aiai+1 . . . aj−1aj , where each sym-
bol is unique and contained in the alphabet Σa = {a0, a1, . . . , aN} For example,
•41 = a1a2a3a4.

Let Σ = Σa ∪ {b}. The lower bound construction of Theorem 2 uses the
following languages over Σ:

L1 =(b∗a0b
∗a1b

∗ · · · b∗aN−2b
∗aN−1b

∗)∗

L2 ={w ∈ {a0, · · · , aN−1, b}∗ | #b(w) ≡ 0 (mod M)} (1)

Lemma 1. The languages L1 and L2 in Eq. 1 can be recognized with NFAs that
have N and M states respectively.

Lemma 1 is self-evident, thus the proof is omitted.

Theorem 2. For 2 ≤ M,N ∈ N , there exist two regular languages L1 and L2

over an alphabet of size N +1 with NFAs that have N and M states, respectively
such that any NFA recognizing the language L1

SDD←−−−L2 needs at least 2NM
states.

194 O. A. S. Lyon and K. Salomaa

Proof. Using the languages defined in Eq. 1 we define our witness language as
L1

SDD←−−−L2. From Lemma 1, we know that L1 and L2 can be recognized with
NFAs with N and M states respectively. Our fooling set for the witness language
is defined by FS = FS1 ∪ FS2.

The subset FS1 is defined as follows:

FS1 = {(•j−1
0 bia(j+1) mod N , bM−i•N−1

(j+2) mod N) | 1 ≤ i ≤ M, 1 ≤ j ≤ N}

In the following (x, y) is (•j−1
0 bia(j+1) mod N , bM−i•N−1

(j+2) mod N) a pair

as in definition of FS1. We also take (x′, y′) as (•j′−1
0 bi

′
a(j′+1) mod N ,

bM−i′•N−1
(j′+2) mod N) pair as defined in FS1, where i, j are replaced with i′, j′.

For each pair (x, y) ∈ FS1, we find the string xy takes the form,
•j−1
0 bia(j+1) mod NbM−i•N−1

(j+2) mod N . The string xy is always in the witness lan-
guage since we can parse it into the substrings described in Definition 1. Let
x = •j−1

0 , y1 = bi, ȳ = aj , y2 = a(j+1) mod NbM−i and z = •N−1
(j+2) mod N . We can

see that xy1ȳy2z is in L1 since it has contiguous subscripts for the a symbols.
We can also see that the string y1y2 contains M b’s.

If we take (x, y), (x′, y′) ∈ FS1, then we can show that xy′ is not in the
witness language when (x, y) �= (x′, y′). If we assume i < i′, then the string xy′

takes the form, •j−1
0 bia(j+1) mod NbM−i′•N−1

(j+2) mod N . Since 0 < i, there is always
at least one b symbol between aj−1 and aj+1, which implies it is either in the
substring y1 or y2. The string xy′ does not contain a multiple of M b symbols,
which implies it is not possible to parse the string xy′ to meet the criteria set
by L2 in the definition of the operation.

Secondly, in the case where j < j′ the string xy′ is not in the language. The
string xy′ takes the form, •j−1

0 bia(j+1) mod NbM−i′•N−1
(j′+2) mod N . The string xy′

is not in the language since there must have been two deletions conducted in
this string to have the substring aj−1b

ia(j+1) mod NbM−ia(j′+2) mod N . Therefore
the properties of a fooling set are upheld by FS1

The subset FS2 is defined as follows:

FS2 = {(•j−2
0 bi, a(j−1) mod NbM−i•N−1

(j+1) mod N) | 0 ≤ i ≤ M−1, 2 ≤ j ≤ N+1}

Similarly to the pairs of FS1, each pair (x, y) ∈ FS2, forms the
string xy which is in the witness language. The string xy takes the form,
•j−2
0 bia(j−1) mod NbM−i•N−1

(j+1) mod N , and can be parsed with accordance to Def-

inition 1. We can take x = •j−2
0 , y1 = bia(j−1) mod N , ȳ = a(j) mod N , y2 = bM−i,

and z = •N−1
(j+1) mod N .

If we take (x, y), (x′, y′) ∈ FS2, then we can show that x′y is not in the
witness language when (x, y) �= (x′, y′). Let i < i′, then the string x′y takes
the form, •j−2

0 bi
′
a(j−1) mod NbM−i•N−1

(j+1) mod N . This string is not in the language
since there is at least one b symbol in gap between a(j−1) mod N and a(j+1) mod N ,
which implies that the b′s are in the substring y1 or y2. Since there are not M
b′s in the string x′y, it is not possible for y1 and y2 to form a string in L2.

Nondeterministic State Complexity of Site-Directed Deletion 195

Secondly, in the case where j < j′ we can show that x′y is not in the witness
language. The string x′y takes the form, •j′−2

0 bia(j−1) mod NbM−i•N−1
(j+1) mod N .

The string x′y is not in the language since there must have been at least two dele-
tion operations to contain the substring aj′−2b

ia(j−1) mod NbM−ia(j+1) mod N .
This can be seen since for (j − 1) mod N to be sequential after j′ − 2, j would
have to equal j′. Thus FS2 is internally consistent with the properties of a fooling
set.

If we take (x, y) ∈ FS1 and (x′y′) ∈ FS2, then the string
xy′ is not in the witness language. The string xy′ takes the form,
•j−1
0 bia(j+1) mod Na(j′−1) mod NbM−i′•N−1

(j′+1) mod N . This string is not in the wit-
ness language since for any value of j or j′, it would appear that two deletions
present in the string. Thus, the set FS2 maintains the fooling set properties. �

4 Unary Alphabet Site-Directed Deletion

In this section we consider the nondeterministic state complexity of site-directed
deletion when restricted to languages over a unary alphabet. To prove the
upper bounds on nondeterministic state complexity, several properties must be
observed.

We first observe that unary concatenation is commutative and this implies
that we are able to rewrite the definition of site-directed deletion in the unary
case in order to simplify later proofs.

Proposition 2. For unary languages L1 and L2,

L1
SDD←−−−L2 = {y1y2xz | xy1ȳy2z ∈ L1, y1y2 ∈ L2, y1 �= ε, y2 �= ε}

The second property of interest is that with unary languages L1 and L2, the
language L1

SDD←−−−L2 is equivalent to the language L1
SDD←−−−{w}, where w is the

shortest string in L2 that has a length greater than 1.

Lemma 2. For a unary language L1 and two strings w and w′ where
2 ≤ |w| < |w′|, we have L1

SDD←−−−{w′} ⊆ L1
SDD←−−−{w}.

Proof. If we consider w = y1y2 and w′ = y1y
′
2 where y2 < y′

2, then the strings
produced by SDD with y1y

′
2 are a subset of those recognized by y1y2. If a string

y1y
′
2 is in L1

SDD←−−−{w′}, then it must also be in L1
SDD←−−−{w} and can be parsed

with respect to Proposition 2 as y1y2xz with w where |xz| = |y1y′
2| − |y1y2|. �

The final property we consider is if L1 has infinite cardinality, the language
L1

SDD←−−−L2 contains all strings longer than the shortest string w2 ∈ L2. This
occurs because a string of arbitrary length from w1 ∈ L1 can be selected and
strings of length between |w2| and |w1| are generated.

196 O. A. S. Lyon and K. Salomaa

Lemma 3. Let L1 and L2 be unary languages and L1’s cardinality be infinite.
All strings of length at least k will be in L1

SDD←−−−L2 where k is the length of the
shortest string in L2 of length at least that of the smallest string w ∈ L2 such
that 2 ≤| w |.
Proof. Let y1y2 be the shortest string in L2 of length at least 2, where y1 �= ε
and y2 �= ε. Consider an arbitrary p ∈ N, p ≥| y1y2 |.

Choose w ∈ L1 such that | w |≥ p and write w = w1w2 where | w1 |=
p − | y1y2 |.

Now w1y1w2y2 ∈ L1, y1y2 ∈ L2 and, by the definition of site-directed dele-
tion, w1y1y2 ∈ L1

SDD←−−−L2. Thus L1
SDD←−−− L2 contains a string of length p.

�
Consider NFAs A1 and A2 with N and M states, respectively. Using these

properties we can show that an NFA with either N or M states recognizes
the language L(A1)

SDD←−−−L(A2), depending on whether or not L(A1) is a finite
language.

Theorem 3. For unary NFAs A1 and A2 with N and M states, respectively,
the language L(A1)

SDD←−−−L(A2) is recognized by an NFA with N states, when
L(A1) is finite.

Proof. Let A1 = (Q,Σ, δ, q0, F1) and A2 = (P,Σ, γ, p0, F2) be automata recog-
nizing the unary languages L1 and L2 with N and M states respectively. Given
these NFAs, we can construct the NFA Au−SDD = (Qu−SDD, Σ,Ω, p0, Fu−SDD).

If we label the states in Q and P with a subscript i, such that i is the minimal
number of steps from the start sate. If we also define k to be the shortest string in
L2 with length greater than 1. We then define the states in Qu−SDD as follows:

Qu−SDD = {p0, p1, . . . , pk−1} ∪ {qk, . . . , qN−1}

A state qi is in Fu−SDD when qi ∈ F1 and k ≤ i < N . The transitions of Ω for
α ∈ Σ are defined as follows:

(i) for the state p ∈ P :

Ω(pi, α) ={p′ | p′ ∈ γ(pi, α) and p′ /∈ F2}
∪{qj | 1 < i < j < N and γ(pi, α) ∩ F2 �= ∅}.

(ii) for the state q ∈ Q :

Ω(q, α) ={q′ | q′ ∈ δ(q, α)}.

First we show the inclusion L(A1)
SDD←−−−L(A2) ⊆ L(Au−SDD). Generally

speaking, the automaton Au−SDD uses the states {p0, p1, . . . , pk−1} to compute
the substring y1y2, and the states {qk, . . . , qN−1} to compute xz.

Nondeterministic State Complexity of Site-Directed Deletion 197

p0start p1 pM−2 pM−1

q0 q1 qM−2 qM−1 qM qN−1

...

...

Fig. 2. NFA construction of the case where L1 is finite for unary SDD. This diagram
retains the unused states without transitions to illustrate the state savings visually.

If we take an arbitrary string y1y2xz from L(A1)
SDD←−−− L(A2), there exists

paths, PA1 = q0, . . . , qy1 , . . . , qy2 , . . . , qȳ, . . . , qx, . . . , qz recognizing y1y2ȳxz in
A1 and PA2 = p0, . . . , py1 , . . . , py2 recognizing y1y2 in A2.

We can construct an accepting path through Au−SDD to read the string
y1y2xz. Starting at p0, we next read the prefix y1 using the transition defined
in (i) to arrive at the state py1 . Again, using the transitions defined in (i) we
read y2 to arrive at the state qȳ. It is important to note that the transition (i)
nondeterministically chooses qȳ since qȳ has a subscript larger than k − 1 by
definition. Finally, the suffix xz is read using the transitions defined in (ii) to
arrive at the accepting state qz.

We next show the inclusion L(Au−SDD) ⊆ L(A1)
SDD←−−−L(A2). For a string

y1y2xz recognized by an accepting path Pu−SDD = p0, . . . , qȳ, . . . , qz in Au−SDD,
we can decompose this path into P1 = p0, . . . , qȳ and P2 = qȳ, . . . , qz.

The path P1 implies that the prefix y1y2 is recognized by A2. The second
path P2 nondeterministically guesses how long ȳ is and implies that a string
y1y2ȳxz is recognized by L1. �

Figure 2 illustrates the construction of Au−SDD when L1 is a finite language.
We next establish a matching lower bound on state complexity for unary site-
directed deletion, when L1 is a finite language.

Theorem 4. Let M , N ∈ N where 2 ≤ M . There exists a finite unary language
L1 with an NFA with N states and L2 with an NFA with M states such that any
NFA recognizing the language L1

SDD←−−−L2 needs at least N states.

Proof (Proof Sketch). From the witness language aN−1 SDD←−−−{a2, aM−1} =
{a2, a3, . . . , aN−1}, we can produce the fooling set {(aN−1−i, ai) | 0 ≤ i ≤ N−1}.
�
The second case we consider for unary site-directed deletion is the case when L1

is an infinite language.

Theorem 5. For M , N ∈ N. Let A1 and A2 be unary NFAs with N and M

states, respectively, where L(A1) is infinite. Then L(A1)
SDD←−−−L(A2) is recognized

by an NFA with M + 2 states.

198 O. A. S. Lyon and K. Salomaa

Proof (Proof Sketch). The proof of the nondeterministic state complexity in the
case where L(A1) is an infinite language follows from Lemma 2 and 3. We can
simply add 2 states to A2 to add a minimum length of strings recognized. In
addition all final states in A2 shall have a transition its self consistent with
Lemma 3. �
We establish the corresponding lower bound for unary site-directed deletion when
L1 has infinite cardinality.

Theorem 6. Let M , N ∈ N, where 3 ≤ M . There exists an infinite unary
language L1 recognized by an NFA with N states and L2 with an NFA containing
M states such that, any NFA recognizing the language L1

SDD←−−−L2 needs at least
M + 2 states.

Proof (Proof Sketch). The lower bound follows from the witness language
(aN)∗ SDD←−−−a(aM)∗ = aM+1(a)∗, this follows from Lemma 3. The accompanying
fooling set is as follows: {(ai, aM+1−i) | 0 ≤ i ≤ M + 1}. �

For an N (respectively, M) state unary NFA A1 (respectively, A2) we
have observed the following concerning the nondeterministic state complexity
of L(A1)

SDD←−−−L(A2). When the cardinality of L(A1) is known, then a tight
bound on the nondeterministic state complexity can be found. When L(A1) has
finite cardinality, a tight bound of N states is required. When L(A1) is an infi-
nite language, a tight bound of M + 2 states is required. In the general case
of site-directed deletion over unary languages we can conclude that the state
complexity is bound between min(N,M + 2) and max(N,M + 2).

5 Conclusion

Tight bounds on nondeterministic state complexity over unary languages were
obtained when the cardinality of L1 is known. For site-directed deletion of lan-
guages over a general alphabet, tight nondeterministic state complexity bounds
were not obtained. An upper bound of 2NM + N was shown to be sufficient in
Theorem 1. This marks an improvement of N states from the bound 2NM +2N ,
which was previously established by Cho et al. [4]. We were also able to obtain a
lower bound of 2NM in Theorem 2. The lower bound required alphabets to be
of variable size. It remains an open problem to reduce the alphabet size, and to
produce a tight bound on nondeterministic state complexity for general alphabet
site-directed deletion. Future work could examine the deterministic state com-
plexity of site-directed deletion. Tight bounds for deterministic state complexity
of unconstrained deletion have been established by Han et al. [10].

References

1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266(5187), 1021–1024 (1994)

Nondeterministic State Complexity of Site-Directed Deletion 199

2. Birget, J.C.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43(4), 185–190 (1992)

3. Carter, P.: Site-directed mutagenesis. Biochem. J. 237(1), 1–7 (1986)
4. Cho, D.-J., Han, Y.-S., Kim, H., Salomaa, K.: Site-directed deletion. In: Hoshi, M.,

Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 219–230. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98654-8 18

5. Cho, D.J., Han, Y.S., Ng, T., Salomaa, K.: Outfix-guided insertion. Theoret. Com-
put. Sci. 701, 70–84 (2017)

6. Cho, D.J., Han, Y.S., Salomaa, K., Smith, T.: Site-directed insertion: language
equations and decision problems. Theoret. Comput. Sci. 798, 40–51 (2019)

7. Domaratzki, M.: Deletion along trajectories. Theoret. Comput. Sci. 320(2), 293–
313 (2004)

8. Franco, G., Manca, V.: Algorithmic applications of XPCR. Nat. Comput. Int. J.
10(2), 15 (2011)

9. Han, Y.S., Ko, S.K., Ng, T., Salomaa, K.: State complexity of insertion. Int. J.
Found. Comput. Sci. 27(07), 863–878 (2016)

10. Han, Y.-S., Ko, S.-K., Salomaa, K.: State complexity of deletion and bipolar dele-
tion. Acta Informatica 53(1), 67–85 (2015). https://doi.org/10.1007/s00236-015-
0245-y

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, Boston (1979)

12. Ito, M., Kari, L., Thierrin, G.: Insertion and deletion closure of languages. Theoret.
Comput. Sci. 183(1), 3–19 (1997)

13. Kari, L.: On Insertion and Deletion in Formal Languages. Ph.D. thesis, University
of Turku (1991)

14. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

15. Manca, V., Franco, G.: Computing by polymerase chain reaction. Math. Biosci.
211(2), 282–298 (2008)

16. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., Erlich, H.: Specific enzymatic
amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb.
Symp. Quant. Biol. 51, 263–273 (1986). https://doi.org/10.1101/sqb.1986.051.01.
032

17. Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing
Paradigms (Texts in Theoretical Computer Science. An EATCS Series). Springer,
Berlin (2006)

18. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 269–
280. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36440-4 24

https://doi.org/10.1007/978-3-319-98654-8_18
https://doi.org/10.1007/s00236-015-0245-y
https://doi.org/10.1007/s00236-015-0245-y
https://doi.org/10.1101/sqb.1986.051.01.032
https://doi.org/10.1101/sqb.1986.051.01.032
https://doi.org/10.1007/3-540-36440-4_24

Energy Complexity of Regular Language
Recognition

Öykü Yılmaz1, Fırat Kıyak2, Meriç Üngör1, and A. C. Cem Say1(B)

1 Department of Computer Engineering, Boğaziçi University, İstanbul, Turkey
say@boun.edu.tr

2 Department of Mathematics, Boğaziçi University, İstanbul, Turkey

Abstract. The erasure of each bit of information by a computing device
has an intrinsic energy cost. Although any Turing machine can be rewrit-
ten to be thermodynamically reversible without changing the recognized
language, finite automata that are restricted to scan their input once in
“real-time” fashion can only recognize the members of a proper subset
of the class of regular languages in this reversible manner. We use a gen-
eral quantum finite automaton model to study the thermodynamic cost
per step associated with the recognition of different regular languages.
We show that zero-error quantum finite automata have no energy cost
advantage over their classical deterministic counterparts, and prove an
upper bound for the cost that holds for all regular languages. We also
demonstrate languages for which “error can be traded for energy”, i.e.
whose zero-error recognition is associated with provably bigger energy
cost per step when compared to their bounded-error recognition by real-
time finite-memory quantum devices.

Keywords: Quantum finite automata · Reversibility

1 Introduction

The discovery of the relationship between thermodynamics and computation,
revealing the links between the concepts of heat, entropy, and information, is
a landmark scientific achievement [10]. As shown by Landauer [9], the erasure
of each bit of information by a computing device necessitates the dissipation of
an amount of heat proportional to the absolute temperature of the device, and
therefore has an unavoidable minimum energy cost for any fixed temperature.
Turing machine programs [2] (and even finite automata with two-way access to
their input strings [7]) can be rewritten to be reversible, so that each one of their
configurations has a single possible predecessor, and their computational steps
can therefore in principle be executed using arbitrarily small amounts of energy,
but things change when one limits attention to real-time finite automata.

It is known [13] that reversible real-time finite automata (where each state has
at most one incoming transition with each possible symbol of the input alphabet)
recognize only a proper subset of the class of regular languages, so some regular
languages necessarily have automata with states receiving multiple transitions
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 200–211, 2022.
https://doi.org/10.1007/978-3-031-07469-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_16

Energy Complexity of Regular Language Recognition 201

with the same symbol. Intuitively, it is impossible to “rewind” computations of
such machines, since they “forget” which one of a set of possible predecessor
states led them to their present state. It is natural to ask if this energy-related
criterion could be used to define a hierarchy whose levels are associated with
the minimum values of these “in-degrees” required to recognize the languages in
question.

It was precisely because of the reversibility requirement inherent in unitary
matrices that early definitions of real-time quantum finite automata (QFAs) [3,
7,12] were not able to capture all regular languages. Modern definitions of QFAs
[5,14], which recognize all and only the regular languages with bounded error,
are able to handle irreversible languages by using not one but many instances
of an architectural component (called an operation element) that can be seen
to correspond to the notion of “incoming transitions” discussed above, so the
hierarchy question raised above is relevant for the study of bounded-error QFAs
as well.

In this paper, we use the general QFA model of [14] which allows us to model
the information loss inherent in the computations of such machines, establishing
a clear link with Landauer’s principle (Sect. 2) to study the thermodynamic cost
per step associated with the recognition of different regular languages. In Sect. 3,
we show that zero-error quantum finite automata have no energy cost advantage
over their classical deterministic counterparts. That equivalence is used in Sect. 4
to establish an upper bound on the number of bits that have to be “forgotten”
per computational step during the recognition of any regular language, namely,
any such language on an alphabet with k symbols can be recognized by a zero-
error quantum finite automaton that has at most k + 1 operation elements for
each input symbol, and thus requires no more than log2(k + 1) bits to be erased
per step. In Sect. 5, we demonstrate languages for which “error can be traded
for energy”, i.e. whose zero-error recognition is associated with provably bigger
energy cost per step when compared to their bounded-error recognition by real-
time finite-memory quantum devices. Section 6 lists some open questions.

2 The General QFA Framework and Information Erasure

Although classical physics, on which the intuition underlying deterministic com-
putation models is based, is supposed to be subsumed by quantum physics, early
definitions of quantum finite automata (e.g. [7,12]) resulted in “weak” machines
that could only capture a proper subset of the class of regular languages. The
cause of this apparent contradiction was identified [5] to be those early defi-
nitions’ imposition of unnecessarily strict limitations on the interaction of the
automata with their environments. Classical finite automata, after all, are not
“closed” systems, with loss of information about the preceding configuration and
the ensuing transfer of heat to the environment implied by their logical struc-
ture. The modern definition of QFAs to be given below [5,14] allows a sufficiently

202 Ö. Yılmaz et al.

flexible repertory of unitary transformations and measurements that does not
overrule any physically realizable finite-memory computation.1

A quantum finite automaton (QFA) is a 5-tuple (Q,Σ, {Eσ|σ ∈ Σ�}, q1, F),
where

1. Q = {q1, . . . , qn} is the finite set of machine states,
2. Σ is the finite input alphabet,
3. q1 ∈ Q is the initial state,
4. F ⊆ Q is the set of accepting states, and
5. Σ� = Σ∪{ � }, where � /∈ Σ is the left end-marker symbol, placed automat-

ically before the input string, and for each σ ∈ Σ�, Eσ is the superoperator
describing the transformation on the current configuration of the machine
associated with the consumption of the symbol σ. For some l ≥ 1, each Eσ

consists of l operation elements {Eσ,1, . . . , Eσ,l}, where each operation ele-
ment is a complex-valued n × n matrix.

Although it is customary in the literature to analyze these machines using
density matrices [1,5], we take the alternative (but equivalent) approach of [14],
which makes the thermodynamic cost of computational steps explicit by repre-
senting the “periphery” that will support intermediate measurements during the
execution of our QFA. For this purpose, consider an auxiliary system with the
state set Ω = {ω1, ..., ωl}, and an additional set of classical states {s1, ..., sl} that
will mirror the members of Ω during computation, as will be described below.

Considered together, the auxiliary system and the “main system” of our
machine defined above have the state set Ω×Q. The quantum state space of the
overall system is Hl ⊗Hn, the composite of the corresponding finite-dimensional
Hilbert spaces. Initially, this composite system is in the quantum state |ω1〉⊗|q1〉,
and the classical state is s1. At the beginning of every computational step, it
will be ensured that the auxiliary system is again at one of its computational
basis states, i.e. |ωj〉 for some j, and the classical state will be sj .

Let |ψx〉 = α1|q1〉 + + αn|qn〉 denote any vector in Hn that is attained
by our QFA with nonzero probability after it has consumed the string x ∈ Σ∗.
We will examine the evolution of the overall system for a single step starting at
a state |ωj〉 ⊗ |ψx〉. If the symbol σ is consumed from the input, the composed
system first undergoes the unitary operation described by the product UσUsj

,
as described below.

Usj
is designed so that its application rotates the auxiliary state from ωj to

ω1, so that Uσ will act on

|Ψx〉 = |ω1〉 ⊗ |ψx〉 = (α1, α2, ..., αn
︸ ︷︷ ︸

amplitudes of |ψx〉

, 0, 0, ..., 0
︸ ︷︷ ︸

(l−1)×n times

)T .

Only the leftmost n columns of the matrix Uσ are significant for our purposes,
and the remaining ones can be filled in to ensure unitarity. Those first n columns

1 References [1] and [14] provide a more comprehensive introduction to the quantum
computation notation and concepts discussed here.

Energy Complexity of Regular Language Recognition 203

will be provided by the operation elements Eσ,1, . . . , Eσ,l, as indicated by the
following partitioning of Uσ into n × n blocks:

Uσ =

⎡

⎢

⎢

⎢

⎣

Eσ,1 ∗ ... ∗
Eσ,2 ∗ ... ∗

...
...

. . .
...

Eσ,l ∗ ... ∗

⎤

⎥

⎥

⎥

⎦

(Since Uσ is unitary, one sees that the operation elements should satisfy the
constraint

∑l
j=1 E†

σ,jEσ,j = I.)

Consider the n-dimensional vectors ˜|ψxσ,i〉 = Eσ,i|ψx〉 for i ∈ {1, . . . , l}.

Clearly, the vector ˜|Ψxσ〉 = Uσ|Ψx〉 that represents the overall system state
obtained after the unitary transformation described above can be written by
“stacking” these vectors, each of which corresponds to a different auxiliary state,
on top of each other, as seen in Eq. 1.

˜|Ψxσ〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

˜|ψxσ,1〉
˜|ψxσ,2〉

...
˜|ψxσ,l〉

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= |ω1〉 ⊗ ˜|ψxσ,1〉 + |ω2〉 ⊗ ˜|ψxσ,2〉 + . . . + |ωl〉 ⊗ ˜|ψxσ,l〉 (1)

At this point in the execution of our QFA, the auxiliary system is measured
in its computational basis. The probability pk of observing outcome “ωk” out of
the l different possibilities is the square of the length of ˜|ψxσ,k〉. As a result of this

probabilistic branching, the main system collapses to the state |ψxσ,k〉 =
˜|ψxσ,k〉√

pk

with probability pk (for k such that pk > 0), and the fact that this observation
result is recorded for usage in the next step is represented by setting the classical
state to sk, overwriting its present value. It is this final action of “forgetting”
the previous value of the classical state that causes the energy cost associated
per step of a QFA: log2 l classical bits are required to hold this information,
and one needs to expend a minimum of kBT ln 2 joules to erase each bit, where
kB is Boltzmann’s constant, and T is the ambient temperature in kelvins [9]. A
machine with l > 1 operating elements in its superoperators is therefore faced
with an energy cost proportional to log2 l.

After processing the entire input string symbol by symbol in this manner,
the main system, described by some n-dimensional vector |ψ〉, is measured in its
computational basis. The probability of acceptance at this point is the sum of the
squares of the lengths of the amplitudes of the accepting states in |ψ〉. Rejection
is similarly defined in terms of the non-accepting states. A language L is said to
be recognized by a QFA with bounded error if there exists a number ε < 1

2 such
that every string in L is accepted and every string not in L is rejected by that
QFA with probability at least 1 − ε. If ε = 0, i.e. the QFA has the property that

204 Ö. Yılmaz et al.

it accepts every input string with either probability 0 or 1, it is said to recognize
the set of strings that it does accept with zero error.

It is known [11] that “modern” QFAs defined in this manner can recognize
all and only the regular languages with bounded error.2 Given any deterministic
finite automaton (DFA) with n states, it is straightforward to build a QFA
with n machine states that recognizes the same language M with zero error. An
examination of this construction is useful for understanding the nature of the
information lost when the classical state is overwritten during a computational
step of a QFA.

Fig. 1. A DFA and superoperators for its QFA implementation

Consider the DFA whose state diagram is shown in Fig. 1a. Figures 1b and 1c
depict the operation elements associated with symbols a and b in the QFA imple-
mentation of this machine.3 In each square matrix, both the rows and columns
correspond to the states of the QFA, which in turn correspond to the states of
the DFA of Fig. 1a. The entry at row i, column j of the k’th operation element
for symbol a represents the transition that the QFA would perform from its j’th

2 “Zero-energy” QFAs with a single operation element in each superoperator corre-
spond to the earliest definition in [3,12], and can recognize all and only the group
languages (a proper subclass of the class of regular languages, whose DFAs have
the property that one again obtains a DFA if one reverses all their transitions) with
bounded error [3,4].

3 The left end-marker is inconsequential in DFA simulations, and its superoperator is
not shown.

Energy Complexity of Regular Language Recognition 205

machine state to the combination of its i’th machine state and k’th auxiliary
state upon consuming a. Starting with the vector (1, 0, 0, 0)T representing the
machine being at the initial state with probability 1, the QFA would trace every
step in the execution of the DFA on any input string, and recognize the same
language with zero error.

The reader will note in Fig. 1 that the superoperators, which are just adja-
cency matrices for the DFA, have not one, but three operation elements precisely
because state 3 has three incoming transitions labeled with the same symbol in
Fig. 1a: We cannot have two 1’s in the same row of two different columns of the
matrices in Figs. 1b and 1c, since they must be orthonormal. We use the addi-
tional operation elements to represent the additional ways in which the machine
can switch to state 3 with input b. Intuitively, the auxiliary state records which of
the three transitions was used to enter state 3, and it is not possible to “trace the
computation backwards” from that state when one has forgotten that informa-
tion.4 This is why the language recognized by these machines is not “reversible”
[8].

We have seen how any DFA with n states and at most l incoming transitions
to the same state with the same symbol can be simulated by a zero-error QFA
with n machine states and l operation elements (that only contain 0’s and 1’s)
per superoperator. Note that the QFAs that are constructed to imitate DFAs
in the fashion exemplified above do not use any “quantumness”: At all times,
the state vector of the QFA never represents a superposition of more than one
classical state, and just tracks the execution of the DFA faithfully. There is no
probabilistic “branching” (since only one auxiliary state has nonzero amplitude
at any step), and no constructive or destructive interference among amplitudes.
It is natural to ask if QFAs with other complex-valued entries in their operation
elements can utilize the famous non-classical capabilities of quantum systems
to perform the same task in a more energy-efficient manner, i.e. with fewer
operation elements. We turn to this question in the next section.

3 Zero-Error QFAs Have No Energy Advantage

For any language L defined over alphabet Σ, the “indistinguishability” relation
≡L on the set Σ∗ is defined as follows:

(x ≡L y) ⇐⇒ (∀z ∈ Σ∗[xz ∈ L ⇐⇒ yz ∈ L]).

Lemma 1. Let M be a QFA recognizing a language L with zero error. Let x and
y be strings such that x ≡L y. If |ψx〉, |ψy〉 ∈ Hn are any two vectors that are
attained by M with nonzero probability after it reads x or y, respectively, then
〈ψx|ψy〉〉 = 0.

4 Since none of the three states with b-transitions into state 3 is more likely to be the
source than the others, this information amounts to log2 3 bits.

206 Ö. Yılmaz et al.

Proof. Let us say that x and y are distinguishable with respect to L in k steps
if there exists a string z of length k that distinguishes them, i.e. xz ∈ L if and
only if yz /∈ L. We will prove the statement by induction on the number of steps
in which x and y are distinguishable with respect to L.
Basis:
If x and y are distinguishable with respect to L in 0 steps, let us say without loss
of generality that x ∈ L and y /∈ L. In this case, all entries of |ψx〉 corresponding
to the non-accepting states in Q must be zero, since M would otherwise reject
x with nonzero probability. Similarly, all entries of |ψy〉 corresponding to the
accepting states in Q must be zero. But this means that 〈ψx|ψy〉〉 = 0.
Induction Step:
Assume that the statement is true for all pairs of strings that are distinguishable
with respect to L in k steps, where k ≥ 0, and consider the case of any x and y
that are distinguishable in k + 1 steps. In this context, we will further assume
that 〈ψx|ψy〉〉 = 0, and reach a contradiction.

Let σ be the leftmost symbol of the string z (of length k+1) that distinguishes
x and y. Consider two copies of M at states |ψx〉 and |ψy〉. When these two
machines consume the input symbol σ, the corresponding vectors representing
the composite system of the machine and its environment are both multiplied
by the unitary matrix Uσ to yield two nl-dimensional vectors, say,

˜|Ψxσ〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

˜|ψxσ,1〉
˜|ψxσ,2〉

...
˜|ψxσ,l〉

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and ˜|Ψyσ〉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

˜|ψyσ,1〉
˜|ψyσ,2〉

...
˜|ψyσ,l〉

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (2)

where n and l are respectively the numbers of machine and auxiliary states,
as we saw in Eq. 1. Since Uσ preserves inner products and angles, these “tall”
vectors are also not orthogonal by our assumption that 〈ψx|ψy〉〉 = 0.

As discussed in Sect. 2, the state vectors that M can attain with nonzero
probability after consuming this σ are the normalized versions of the (nonzero) n-

dimensional “slices” of ˜|Ψxσ〉 and ˜|Ψyσ〉. Note in Eq. 2 that if
〈

˜ψxσ,j |˜ψyσ,j〉
〉

= 0

for all j ∈ {1, . . . , l}, then ˜|Ψxσ〉 and ˜|Ψyσ〉 must also be orthogonal. This means
that 〈ψxσ,j |ψyσ,j〉〉 = 0 for at least one j, which is a contradiction, since xσ and
yσ are distinguishable in k steps. ��

It follows that the subspace generated by the vectors attainable by M through
reading strings in a particular equivalence class of ≡L must be orthogonal to all
the subspaces corresponding to the other classes. This provides a new proof of the
(already known) fact that zero-error QFAs can only recognize regular languages.

Corollary 1. If a language L is recognized by a zero-error QFA M with n
machine states, each equivalence class C of ≡L corresponds to a subspace SC

of Hn, and any two subspaces corresponding to different classes are orthogonal

Energy Complexity of Regular Language Recognition 207

to each other. Since the sum of the dimensions of these subspaces is at most n,
≡L can have at most n equivalence classes, and L is regular by the Myhill-Nerode
theorem.

We can now demonstrate that every zero-error QFA M has a corresponding
DFA M ′ which recognizes the same language, and is as efficient as M in terms
of both memory (number of states) and energy requirement per computational
step.5

Theorem 1. For any n, l > 0, if a language is recognized with zero error by a
QFA with n machine states and l operation elements per superoperator, then the
same language is also recognized by a DFA with n states and at most l incoming
transitions to the same state with the same symbol.

Proof. Let M be a zero-error QFA with n machine states and l operation ele-
ments per superoperator. By Corollary 1, M recognizes a regular language L.
Let k be the number of states of the minimal DFA D recognizing L. Each input
string x that carries D to state i ∈ {1, . . . , k} of D will carry M to a state vector
in a corresponding subspace Si of Hn.6 Consider the DFA M ′ that is described
by the 5-tuple (Q,Σ, δ, q1, F), where

1. Q is the finite set of states, containing
∑

i dim(Si) elements, with dim(Si)
equivalent states corresponding to Si for each i ∈ {1, . . . , k},

2. Σ is the same as the input alphabet of M ,
3. q1 is the initial state, selected arbitrarily from among the elements of Q

that correspond to the subspace containing the vector attained by M after
consuming the empty input string,

4. F is the set of accepting states, designated to contain all and only the elements
of Q that correspond to any subspace containing vectors attained by M after
consuming members of L, and

5. δ is the transition function, which mimics M ’s action on its state vector, as
follows: For each i ∈ {1, . . . , k}, call the subset of dim(Si) states corresponding
to Si “the i’th bag”. If M maps vectors in Si to vectors in Sj upon reading a
symbol σ, all states in the i’th bag of M ′ will transition to states in the j’th
bag with the symbol σ. For each bag, incoming transitions will be distributed
as “evenly” as possible among the members of that bag, so that if M ′ has a
total of Tj incoming σ-transitions to its j’th bag, no state in that bag will
have more than �Tj/dim(Sj)� incoming σ-transitions.

5 The fact that zero-error QFAs have no advantage over equivalent DFAs in terms of
the number of machine states was first proven by Klauck [6], using Holevo’s theorem
and communication complexity arguments.

6 At this point, one may be tempted to declare that the set of subspaces already
provides the state set of the DFA we wish to construct. After all, each matrix of the
form Uσ that we saw in Sect. 2 “maps” a vector in Si to one or more vectors in Sj

if and only if D switches from state i to state j upon consuming σ. However, this
simple construction does not guarantee our aim of keeping the maximum number of
incoming transitions with the same label to any state in the machine to a minimum.

208 Ö. Yılmaz et al.

Let us calculate the maximum possible number of incoming σ-transitions
that can be received by a state in M ′. Let j be some state of D with p incoming
σ-transitions from states {i1, i2, ..., ip}. For any r ∈ {1, 2, ..., p}, let x be some
string which carries D to state ir and M to some vector |ψx〉 ∈ Hn with nonzero
probability. We know that the processing of σ corresponds to the action of the
matrix we called Uσ in Sect. 2. Recall from Eq. 1 that

Uσ(|ω1〉 ⊗ |ψx〉) = |ω1〉 ⊗ ˜|ψxσ,1〉 + |ω2〉 ⊗ ˜|ψxσ,2〉 + . . . + |ωl〉 ⊗ ˜|ψxσ,l〉.

Since M transitions to a vector in Sj with probability 1 upon receiving σ, all the
˜|ψxσ,k〉 must lie in Sj (for 1 ≤ k ≤ l). We therefore have Uσ(|ω1〉⊗|ψx〉) ⊆ Hl⊗Sj .
This is true for all x and |ψx〉, and Sir

is, by definition, generated by such vectors;
therefore, Uσ(C|ω1〉 ⊗ Sir

) ⊆ Hl ⊗ Sj .
By Corollary 1, the spaces C|ω1〉⊗Sir

are disjoint for all r ∈ {1, 2, ..., p}. We
have

dim(C|ω1〉 ⊗ Si1) + dim(C|ω1〉 ⊗ Si2) + ... + dim(C|ω1〉 ⊗ Sip
) ≤ dim(Hl ⊗ Sj),

since Uσ is an injective linear map. In other words,

Tj = dim(Si1) + dim(Si2) + ... + dim(Sip
) ≤ l.dim(Sj).

Therefore, Tj

dim(Sj)
≤ l, and no state receives more than l incoming σ-transitions.

��
Having seen that the erasure costs associated with zero-error QFAs are pre-

cisely representable by DFAs, we will use this link to establish an upper bound
for the energy requirement of regular language recognition in the next section.

4 An Upper Bound for Information Erasure Per Step

It is natural to ask if there exists a universal bound on the number of bits that
have to be “forgotten” per computational step of any finite automaton. In this
section, we provide an answer to this question.

Theorem 2. Every language on an alphabet Σ can be recognized by a DFA that
has at most |Σ| + 1 incoming transitions labeled with the same symbol to any of
its states.

Proof. See the unabridged version of the paper at arXiv:2204.06025 [cs.CC].

We now show that the bound shown in Theorem 2 is tight.

Theorem 3. For every j ≥ 1, there exists a language Lj on a j-symbol alphabet
with the following property: All DFAs recognizing Lj have a state q such that at
least j + 1 states transition to q upon receiving the same symbol.

Energy Complexity of Regular Language Recognition 209

Proof. For the unary alphabet, it is easy to see that the language L1 containing
all strings except the empty string must have the property. For j > 1, define the
“successor” function F on {1, ..., j} by F (i) = (i mod j) + 1, and let B be F ’s
inverse. On the alphabet Σj = {σ1, ..., σj}, define

Lj = {w| w ends with σiσF (i) for some 1 ≤ i ≤ j}.

Let M be a DFA recognizing Lj . Assume, without loss of generality, that M
does not have unreachable states.

Similarly to the proofs of Theorems 1 and 2, we will be talking about “bags”
into which the states of M are partitioned. Each bag contains states that are
equivalent to the ones in the same bag, and distinguishable from all states in the
other bags. S is the bag that contains the initial state. For each k, Ak is the bag
containing the state reached by the input σB(k)σk, and Rk is the bag containing
any state reached by inputs of the form τσk, where τ is any substring not ending
with σB(k). Note that Ai and Rk are distinct bags for any i, k ≤ j, because all
states in Ai are accepting states and those in Rk are not. For X ∈ {A,R}, Xk

and Xl are also distinct when k = l, since M would reach an accepting state if
it consumes the symbol σF (k) when in a member of Xk, whereas it would reach
a rejecting state with that symbol from a state in Xl. S is distinct from all the
Ai and Ri, because it contains the only state which is two steps away from any
accept state. The bags (Ak)k, (Rk)k and S partition the entire state set.

The definition of Lj dictates that all incoming transitions to states in Ak or
Rk are labeled with the symbol σk. Let i (1 ≤ i ≤ j) be the index minimizing
|Ai| + |Ri|, i.e. the sum of states in Ai and Ri. Note that all states in all bags
(Ak)k, (Rk)k and S transition to either Ai or Ri upon reading the symbol σi, so
there are

(∑

1≤k≤j

|Ak|) +
(∑

1≤k≤j

|Rk|) + |S|

transitions with the symbol σi. Since |Ai| + |Ri| is minimal and |S| > 0, this
number is strictly larger than j(|Ai|+ |Ri|). At least one state in Ai or Ri should
thus have at least j + 1 incoming σi-transitions by the pigeonhole principle. ��

Theorems 2 and 3 imply that, for any particular temperature T , given any
amount of energy, there exists a regular language (on a suitably large alphabet)
whose recognition at T requires a DFA with at least that much energy cost per
computational step. When the alphabet is fixed, one can always rewrite any DFA
on that alphabet to obtain an “energy-efficient” machine recognizing the same
language with each step costing no more than the bound proven in Theorem 2.
By Theorem 1, the same energy costs are associated with zero-error QFAs for
that language.

Since smaller alphabets are associated with less energy cost per step, one
may ask whether encoding a language on a bigger alphabet by replacing each
symbol by a binary substring would decrease the overall energy consumption.
For any j > 1, any machine recognizing language L2j as defined in the proof of

210 Ö. Yılmaz et al.

Theorem 3 needs to forget n log2(2j +1) bits to process an input of length n. For
a machine recognizing a version of Lj encoded in binary, the cost per step would
be less, but the encoded input string would be longer, with the total number of
erased bits amounting to the greater value nj log2 3.

5 Trading Energy for Error

It turns out that the minimum energy required for the recognition of some regular
languages is reduced if one allows the finite automaton to give erroneous answers
with probability not exceeding some bound less than 1

2 .
Recall the language family {Lj |j ≥ 1} defined in the proof of Theorem 3.

Any zero-error QFA recognizing some Lj must have at least j + 1 operating
elements by Theorem 1. Since L1 is not a group language, no QFA with a single
operating element can recognize it, even with bounded error [4].

Theorem 4. There exists a QFA with two operating elements per superoperator
that recognizes the language L2 with bounded error.

Proof. See the unabridged version of the paper at arXiv:2204.06025 [cs.CC].

Fig. 2. Submachine Mj,i in the construction of Theorem 5

Theorem 5. For all j ≥ 3, there exists a QFA Mj with three operating elements
per superoperator that recognizes the language Lj with error probability bounded
by j−1

2j−1 .

Proof. The argument is similar to the one in the proof of Theorem 4. Machine
Mj has j + 1 submachines. For i ∈ {1, . . . , j}, submachine Mj,i (depicted in
Fig. 2) accepts its input if and only if it ends with σiσF (i), whereas submachine
Mj,j+1 accepts every input. (In Fig. 2, arrow labels of the form Σj − Γ express
that all symbols of the input alphabet except those in set Γ effect a transition
with amplitude 1 between the indicated states.) Mj starts by branching with
amplitude 1√

2j−1
to each of Mj,i for i ∈ {1, . . . , j}, and with amplitude

√
j−1√
2j−1

to Mj,j+1. Strings in Lj must lead one of the first j submachines to acceptance,
and “tip the balance” for the overall machine to accept with probability at least

j
2j−1 . It is easy to see in Fig. 2 that the superoperators would have just three
operating elements. ��

Energy Complexity of Regular Language Recognition 211

6 Concluding Remarks

The approach we present for the study of energy complexity can be extended to
several other scenarios, like interactive proof systems, involving finite-memory
machines. We end with a list of some open questions.

– Is there a regular language whose zero-error recognition requires a QFA with
more than two operation elements, whereas no energy savings are possible
when one allows some bounded error in the recognition process?

– Is there a regular language whose bounded-error recognition requires a QFA
with more than three operation elements?

– Can the construction in the proof of Theorem 5 be improved to reduce the
error bounds, the energy requirement, or both?

References

1. Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing (2018).
arXiv:1507.01988v2

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

3. Bertoni, A., Carpentieri, M.: Regular languages accepted by quantum automata.
Inf. Comput. 165(2), 174–182 (2001)

4. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata.
SIAM J. Comput. 31, 1456–1478 (2002)

5. Hirvensalo, M.: Quantum automata with open time evolution. Int. J. Nat. Comput.
1, 70–85 (2010)

6. Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way
protocols. In: 32th ACM Symposium on Theory of Computing, pp. 644–651 (2000)

7. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Pro-
ceedings 38th Symposium on Foundations of Computer Science, pp. 66–75 (1997)

8. Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S.,
Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808,
pp. 83–98. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13350-8 7

9. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

10. Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon 2: Entropy, Classical and Quantum
Information, Computing. CRC Press, Boca Raton (2002)

11. Li, L., Qiu, D., Zou, X., Li, L., Wu, L., Mateus, P.: Characterizations of one-way
general quantum finite automata. Theoret. Comput. Sci. 419, 73–91 (2012)

12. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoret.
Comput. Sci. 237(1), 275–306 (2000)

13. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583,
pp. 401–416. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023844

14. Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: A modern introduction.
In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources.
LNCS, vol. 8808, pp. 208–222. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13350-8 16

http://arxiv.org/abs/1507.01988v2
https://doi.org/10.1007/978-3-319-13350-8_7
https://doi.org/10.1007/BFb0023844
https://doi.org/10.1007/978-3-319-13350-8_16
https://doi.org/10.1007/978-3-319-13350-8_16

Real-Time, Constant-Space,
Constant-Randomness Verifiers

Özdeniz Dolu, Nevzat Ersoy, M. Utkan Gezer(B), and A. C. Cem Say

Department of Computer Engineering, Boğaziçi University,
34342 Bebek, İstanbul, Turkey

{ozdeniz.dolu,nevzat.ersoy,utkan.gezer,say}@boun.edu.tr

Abstract. We study the class of languages that have membership proofs
which can be verified by real-time finite-state machines using only a con-
stant number of random bits, regardless of the size of their inputs. Since
any further restriction on the verifiers would preclude the verification of
nonregular languages, this is the tightest computational budget which
allows the checking of externally provided proofs to have meaningful
use. We show that all languages that can be recognized by two-head one-
way deterministic finite automata have such membership proofs. For any
k > 0, there exist languages that cannot be recognized by any k-head one-
way nondeterministic finite automaton, but that are nonetheless real-
time verifiable in this sense. The set of nonpalindromes, which cannot be
recognized by any one-way multihead deterministic finite automaton, is
also demonstrated to be verifiable within these restrictions.

Keywords: Interactive proof systems · Real-time finite automata ·
Probabilistic finite automata

1 Introduction

The characterization of problem classes in terms of the computational require-
ments on machines that are supposed to check purported proofs of membership
of their input strings in a language has been an important theme of complex-
ity theory, leading to landmark achievements like the PCP Theorem [2,3] and
celebrated open questions like the P vs. NP problem.

As expected, imposing tighter bounds on the computational resources of
the verifiers for these proofs of membership seems to restrict the associated
language classes: Limiting a polynomial-time deterministic verifier to use only
a logarithmic, rather than polynomially bounded amount of working memory
“shrinks” the class of verifiable languages to NL from NP, and the same apparent
loss of power also occurs when a logarithmic-space, polynomial-time probabilistic
verifier is restricted to use only a constant, rather than logarithmically bounded
number of random bits for bounded-error verification. [4,12]

In this paper, we focus on the tightest possible “budgetary” restrictions that
can be imposed on such verifiers by considering the case where the machine’s
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 212–224, 2022.
https://doi.org/10.1007/978-3-031-07469-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_17

Real-Time, Constant-Space, Constant-Randomness Verifiers 213

working memory and the amount of usable random bits are both constants irre-
spective of the input length, and the runtime is maximally constrained, so that
only a real-time scan of the input string is allowed. We examine the class of
languages whose membership proofs can be checked under these extreme condi-
tions. Note that decreasing the number of random bits from a positive constant
to zero would make such a proof system equivalent to a nondeterministic finite
automaton, unable to recognize any nonregular languages. Since membership
in any regular language can be decided by a “stand-alone” real-time determin-
istic finite automaton with no need of an externally provided certificate, the
machines we consider are truly the weakest possible verifiers of meaningful use,
highlighting the issues involved in the checking of the proofs of extremely long
claims.

We build on previous work [12] which showed an equivalence between con-
stant-space, constant-randomness verifiers and multihead nondeterministic finite
automata working as language recognizers. This equivalence breaks down when
the machines are restricted to consume their inputs in real-time fashion: A real-
time multihead automaton is no more powerful than a single-head one, and can
only recognize a regular language, whereas Say and Yakaryılmaz were able to
demonstrate a nonregular language [12] which has membership proofs that can
be checked by a real-time finite-state verifier with a fixed number of coin tosses.

In this paper, we prove the following facts about these very weak verifiers:
All languages that can be recognized by two-head one-way deterministic finite
automata have membership proofs that can be verified by these machines. For
any k > 0, there exist languages that cannot be recognized by any k-head one-
way nondeterministic finite automaton, but that are nonetheless real-time veri-
fiable in this sense. The set of nonpalindromes, which cannot be recognized by
any one-way multihead deterministic finite automaton, is also demonstrated to
be verifiable in this setup. We conjecture that the real-time requirement truly
decreases the verification power, i.e. that there exist languages that can be ver-
ified only when the definition of these machines is relaxed to allow them the
ability to pause on the input tape.

The rest of the paper is structured as follows: Sect. 2 provides the neces-
sary definitions and previous results regarding the relation between multihead
finite automata and constant-randomness finite-state verifiers. Our results are
presented in Sect. 3. Section 4 is a conclusion.

2 Preliminaries

2.1 One-Way Multihead Finite Automata

A one-way k-head nondeterministic finite automaton (1nfa(k)) is a nondetermin-
istic finite-state machine with k read-only heads that it can direct on an input
string flanked by two end-marker symbols. Each head can be made to stay put
or move one symbol to the right in each computational step. Formally, a 1nfa(k)
is a 6-tuple (Q,Σ, δ, q0, qacc, qrej), where

214 Ö. Dolu et al.

1. Q is the finite set of internal states,
2. Σ is the finite input alphabet,
3. δ:Q × Σk

�� → P(
Q × Δk

)
is the transition function describing the sets of

alternative moves the machine may perform at each execution step, where
each move is associated with a state to enter and whether or not to move
each head, given the machine’s current state and the list of symbols that are
currently being scanned by the k input heads:

– Δ = { 0,+1 } is the set of possible head movements, where 0 means “stay
put” and +1 means “move right”,

– Σ�� = Σ ∪ { �,� }, where �,� /∈ Σ are respectively the left and right
end-markers, placed automatically to mark the boundaries of the input,

4. q0 ∈ Q is the initial state,
5. qacc ∈ Q is the final state at which the machine halts and accepts, and
6. qrej ∈ Q is the final state at which the machine halts and rejects.

Given an input string w ∈ Σ∗, a 1nfa(k) M = (Q,Σ, δ, q0, qacc, qrej) begins
execution from the state q0, with �w� written on its tape, and all k of its
heads on the left end-marker. At each timestep, M nondeterministically updates
its state and head positions according to the choices dictated by its transition
function. Computation halts if one of the states qacc or qrej has been reached, or
a head has moved beyond the right end-marker.

Each different sequence of choices M may take corresponds to a different
computation history, i.e. a sequence of tuples describing all the state and head
positions that M goes through in that particular eventuality.

M is said to accept w if there exists a computation history where it reaches
the state qacc, given w as the input. M is said to reject w if every computation
history of M on w either reaches qrej, ends with a transition whose associated
set of choices is ∅, or a head has moved beyond the right end-marker without a
final state being entered. M might also loop on the input w, neither accepting
nor rejecting it.

The language recognized by M is the set of strings that it accepts.
A one-way k-head deterministic finite automaton, denoted 1dfa(k), is a special

case of 1nfa(k) (Q,Σ, δ, q0, qacc, qrej) whose transition function presents exactly
one “choice” of move for every input (|δ(q, x1, . . . , xk)| = 1 for all q ∈ Q and
x1, . . . , xk ∈ Σ��).

1nfa(1) and 1dfa(1) are simply called one-way nondeterministic and deter-
ministic finite automata, respectively. The “real-time” versions of these single-
head machines are obtained by forcing the head to move to the right at each
step (by setting Δ = { +1 }). Real-time nondeterministic and deterministic finite
automata have runtimes of at most n + 2 on input strings of length n.

The classes of languages recognized by each of the machine models defined
above will be denoted by the uppercase versions of the associated machine deno-
tations. For example, 1NFA(6) denotes the class of languages recognizable by
1nfa(6)’s. The following facts [7] about these language classes will be useful:

Real-Time, Constant-Space, Constant-Randomness Verifiers 215

For any k ≥ 1,

1DFA(k) � 1DFA(k + 1).
1NFA(k) � 1NFA(k + 1).

Lnonpal is the language which contains every string except palindromes on
the alphabet { 0, 1 }. This language can be recognized by a 1nfa(2). Since its
complement cannot be recognized by any 1dfa(k) for any k [9], there exists no
deterministic one-way multihead automaton that recognizes Lnonpal either, by
the fact [11] that the class of languages recognized by 1dfa(k)’s is closed under
complementation. This proves the inequality 1NFA(2) \ ⋃

k 1DFA(k) �= ∅.

2.2 Verifiers

There exist several elegant characterizations of language classes in terms of
bounds imposed on the resources available to probabilistic Turing machines
(“verifiers”) tasked with checking purported proofs (“certificates”) of member-
ship of their input strings in a language.

Formally, a verifier is a 6-tuple (Q,Σ,Φ,Γ, δ, q0), where

1. Q is the finite set of states, such that Q = P ∪ D ∪ { qacc, qrej } where
– P is the set of coin-tossing states,
– D is the set of deterministic states, such that P ∩ D = ∅, and
– qacc and qrej are the accept and reject states, respectively.

2. Σ is the input alphabet, not containing the end-markers � and �,
3. Φ is the work tape alphabet,
4. Γ is the certificate alphabet, not containing �,
5. δ is the transition function, described below, and
6. q0 is the initial state, q0 ∈ Q.

As in Sect. 2.1, Σ�� will be used to denote the union Σ ∪ { �,� }.
The transition function δ is constructed in two parts, as follows: For q ∈ P ,

q′ ∈ Q, σ ∈ Σ��, φ, φ′ ∈ Φ, γ ∈ Γ ∪ { � }, b ∈ { 0, 1 }, di, dw ∈ { −1, 0,+1 }, and
dc ∈ { 0,+1 }, δ(q, σ, φ, γ, b) = (q′, φ′, di, dw, dc) dictates that the machine will
switch to state q′, write φ′ on the work tape, and move the input, work tape
and certificate heads in directions di, dw, and dc, respectively, if it is originally
in state q, scanning σ, φ, and γ on the three respective tapes, and has obtained
the random bit b as the result of a fair coin toss. For q ∈ D, δ(q, σ, φ, γ) =
(q′, φ′, di, dw, dc) dictates a similar, but deterministic transition.

A verifier halts with acceptance (rejection) when it executes a transition
entering qacc (qrej). Any transition that moves the input or certificate head
beyond an end-marker delimiting the string written on the associated read-only
tape leads to a rejection, unless that last move enters qacc. The head on the cer-
tificate tape is defined to be one-way, since it is known [1] that allowing two-way
access to that tape can lead to “unfair” accounting of the space usage. The input
and work tape heads are two-way in the general definition above, although we

216 Ö. Dolu et al.

will be considering restricting the movement types of the input tape head (and
completely removing the work tape) in most of the following.

We say that such a machine V verifies a language L with error ε if there
exists a number ε < 1 where

– for all input strings w ∈ L, there exists a certificate string cw such that V
halts by accepting with probability 1 when started on w and cw, and,

– for all input strings w /∈ L and for all certificates c, V halts by rejecting with
probability at least 1 − ε when started on w and c.

We will be using the notation VER(restriction1,restriction2,...,restrictionk) to
denote the class of languages that can be verified by machines that operate
within the added restrictions indicated in the parentheses. These may represent
bounds for runtime, working memory usage, and number of random bits to be
used as a function of the length of their input strings. The terms 0, con, log,
and poly will be used to represent the well-known types of functions to be con-
sidered as resource bounds, with “con” standing for constant functions of the
input length, the others being self evident, to form arguments like “poly-time”
or “log-space”. The “one-way” mode, where the input head is not allowed to
move left, will be indicated by the parameter “1way-input”, whereas the further
restriction to real-time movement, where the head is not allowed to pause at any
step during its left-to-right scan, will be indicated by “rt-input’’.

The following characterizations in terms of zero-error verifiers are well known.

VER(poly-time,poly-space,0-random-bits) = NP

VER(poly-time,log-space,0-random-bits) = NL

When one allows nonzero error, significant gains in space usage seem to be
achievable:

VER(poly-time,log-space,log-random-bits) = NP [4]
VER(con-space,con-random-bits) = NL [12]

For verifiers using at least logarithmic space, the magnitude of the one-sided
error can be reduced without significant increase in the runtime, whereas the
constant-space verifiers of [12] (all of which have correct certificates that can be
checked in polynomial time) do not seem [6] to have this property in general.1

Say and Yakaryılmaz [12] also considered the case where a constant-space,
constant-randomness verifier is forbidden to move its input head to the left.
Using their techniques, one can obtain the following characterization:

Theorem 1.

VER(con-space,con-random-bits,1way-input) =
⋃

k 1NFA(k).
1 Note that a constant-space machine is equivalent to a finite-state automaton with no
work tape, since the bounded amount of information in the work tape of a constant-
space verifier can also be kept using a suitably large set of internal states.

Real-Time, Constant-Space, Constant-Randomness Verifiers 217

Proof. Given a 1nfa(k) M recognizing a language LM , one can construct a one-
way, constant-space, constant-randomness verifier VM for LM as follows: VM

expects the certificate to contain a proof of the existence of an accepting compu-
tation history (in the form of a sequence of tuples representing the nondetermin-
istic branch taken and list of symbols scanned by the heads at each step) of M
working on the input string. VM uses its random bits to select a head of M and
simulates its execution on the input, relying on the certificate for information
on what symbols would be scanned by the other heads of M at every step. If
VM ever sees the certificate reporting that the head it is tracking is currently
scanning a symbol other than the correct value, it rejects. If the input is in LM ,
a correct certificate that carries VM to acceptance with probability 1 exists. Oth-
erwise, in order to trick VM to reach an accept state, the certificate would have
to “lie” about what is being seen by at least one of the heads of M in at least
one step, and VM has a constant probability of having selected that head, and
therefore rejecting the input. Since M can be assumed to run in linear time in
all its nondeterministic branches without loss of generality, any attempt by an
overly long certificate to trick VM to loop without accepting will also be caught
by nonzero probability.

In the reverse direction, given a finite-state verifier V with one-way input
that uses at most r random bits, one can build a 1nfa(2r) MV for the verified
language LV as follows: V ’s behavior on each different random bit sequence can
be represented by a deterministic verifier obtained by “hardwiring” that particu-
lar sequence into V ’s transition function. MV is designed to nondeterministically
guess a certificate and use its heads to simulate all these 2r deterministic veri-
fiers operating on the input string and the common certificate. For each newly
guessed certificate symbol, MV goes through all the deterministic verifiers, trac-
ing each one’s execution (by changing its state and possibly moving the corre-
sponding head) until that deterministic verifier accepts, rejects, or performs a
transition consuming that new certificate symbol by moving its certificate tape
head. (Since the collection of deterministic verifiers has only a fixed number of
possible tuples of states, MV can detect when the deterministic verifiers run for
more than that number of steps without moving any input heads, and reject on
such nondeterministic branches corresponding to unnecessarily long certificates.)
This procedure continues until either a deterministic verifier rejects, or all the
2r deterministic verifiers are seen to accept. MV accepts if it arrives in a state
representing all the deterministic verifiers having accepted. 	

This link between finite-state constant-randomness verifiers and multihead
automata is broken when one further restricts the input heads to be real-time:
A multihead finite automaton operating all its heads in real time is easily seen
to be no stronger than a single-head finite automaton, and therefore cannot
recognize a nonregular language. Say and Yakaryılmaz, however, were able to
demonstrate [12] a finite-state constant-randomness verifier with real-time input
that verifies the nonregular language Ltwin =

{
w#w

∣
∣ w ∈ { 0, 1 }∗ }

on the

218 Ö. Dolu et al.

alphabet { 0, 1,# }:2 The certificate is expected to consist of the string w, which
is supposed to appear on both sides of the symbol # in the input. The machine
tosses a coin to decide whether it should compare the substring appearing to the
left or to the right of the # with the certificate as it is consuming the input in real
time, and accepts only if this comparison is successful. Acceptance with proba-
bility 1 is only possible for members of the language associated with well-formed
certificates.

Note that such a machine must use its capability to pause the certificate tape
head for some steps. This is easy to see when one considers the computational
power of a verifier with real-time heads on both the input and certificate tapes:
All the “deterministic” verifiers that can be obtained from the probabilistic
verifier by hardwiring the possible random sequences (as we saw in the proof of
Theorem 1) would then be running both their heads on exactly the same strings
in perfect synchrony, and it would be possible to build a single real-time one-head
finite automaton simulating this collection. This machine would be equivalent
to a one-head nondeterministic finite automaton, with no power of recognizing
nonregular languages.

In a very real sense, VER(con-space,con-random-bits,rt-input) corresponds to the
weakest computational setup where externally provided proofs are meaningful.
In the next section, we will examine this interesting class and its relationship
with VER(con-space,con-random-bits,1way-input) in detail.

3 Real-Time, Finite-State, Constant-Randomness
Verification

3.1 1DFA(2) is Real-Time Verifiable

We start by demonstrating that every language that is recognizable by a 1dfa(2)
is verifiable by a constant-space, constant-randomness verifier that scans its
input in real time. The technique employed in the proof of Theorem 1 for con-
structing verifiers is not useful here, since it requires the verifier to pause its
input head occasionally when processing certain portions of the certificate. We
will show that all languages in 1DFA(2) have more concise proofs of membership
that can be checked by our restricted machines. Some examples of languages
on the alphabet { 0, 1,# } in 1DFA(2) are Ltwin, the set of all strings containing
equal numbers of 0’s and 1’s, the set of all odd-length binary strings with the
symbol # at the middle position, the language { w | w ∈ (x#)+, x ∈ (0 ∪ 1)+ },
and their complements.

Theorem 2. 1DFA(2) ⊆ VER(con-space,con-random-bits,rt-input).

2 Note that the construction in the proof of Theorem 1 produces a multihead automa-
ton with heads that can pause on the input, even when it is fed a verifier with
real-time input.

Real-Time, Constant-Space, Constant-Randomness Verifiers 219

Proof. Let M = (QM ,Σ, δM , q0, qacc, qrej) be a 1dfa(2) recognizing some lan-
guage A. At any given step of its execution, M might be moving none,
one, or both of its heads. We start by modifying M to obtain a 1dfa(2)
M ′ = (QM ′ ,Σ, δM ′ , q0, qacc, qrej) that recognizes the same language while moving
exactly one of its heads at every step, starting with the first head. The details
of this construction procedure are as follows:

The state set of the machine M ′ is defined as QM ′ = QM ∪ { q′ | q ∈ QM }.
Each transition of M that moves both heads at once is simulated by two transi-
tions that move the heads one after another in M ′. Formally, for all q, s ∈ QM ,
x, y ∈ Σ��, if δM (q, x, y) = (s,+1,+1), we set δM ′(q, x, y) = (s′,+1, 0). Further-
more, for all s ∈ QM , x, y ∈ Σ��, we set δM ′(s′, x, y) = (s, 0,+1).

If a transition of M is stationary, i.e., is of the form δM (q, x, y) = (s, 0, 0),
it is a member of either an infinite sequence representing a loop (of length at
most |QM |) in which M scans the symbols x and y without changing the head
positions, or a finite sequence ending with acceptance, rejection, or the moving
of some head. In the infinite-loop case, we set the corresponding transition in M ′

to δM ′(q, x, y) = (qrej,+1, 0). In the finite-sequence case, the value of δM ′(q, x, y)
will be set to (qacc,+1, 0) or (qrej,+1, 0) if the sequence is ending with acceptance
or rejection, respectively, and to the value of the final transition in the sequence
otherwise.

Any transition of M that moves a single head is inherited without modifica-
tion by M ′.

It may be the case that the new machine built according to these specifica-
tions moves its second head first. This problem can be handled easily by just
rearranging the transition function to effectively “swap” the names of the two
heads. (Such a simple swap is possible, because the fact that both heads scan
the left end-marker symbol at the beginning means that it is only the transition
function, and not the particular input string, that determines which head moves
first.)

Consider the computation history of M ′ running on an input string w: Keep-
ing in mind that exactly one head moves at every step, the computation his-
tory can be split into sub-histories H1,H2,H3,H4, . . . , where only the first head
moves during the odd-numbered sub-histories, and the second head moves dur-
ing the even-numbered ones. Let us call H1H3H5 · · · (i.e. the concatenation of
the odd-numbered sub-histories) the odd part of the history, and H2H4H6 · · ·
the even part.

Note that, if one visualizes the odd part of the history, one sees the first head
moving in real time. Furthermore, the state sequence traversed during these
moves is easy to trace step by step employing knowledge of M ′’s transition
function, except at the “joints” between sub-histories, where the machine’s state
and the position of the second head make “leaps” corresponding to (possibly
long) sequences of moves made by the second head while the first head was
pausing. A similar observation can be made for the even part. Intuitively, both
parts of the history can be thought of as describing the execution of a real-time
automaton that momentarily “blacks out” as it switches from any Hi to Hi+2,

220 Ö. Dolu et al.

finding the machine’s state and the other head’s position updated to new values
when it wakes up. Our strategy for real-time verification will follow directly from
this observation, and the certificate will supply the necessary information to deal
with the blackouts.

We will construct a real-time, finite-state verifier V that uses a single random
bit to verify the language A. The certificate alphabet of V is QM ′ ×Σ�� ×QM ′ ×
Σ��, with each symbol corresponding to a tuple of two states and two input
symbols (including end-markers) of M ′.

The certificate cw for a string w ∈ A will be a concise description of the state
and head position values required by the two probabilistic paths of V that will
be assigned (as will be described shortly) to trace the odd and even parts of the
computation history of M ′ on w to recover from the blackouts mentioned above:

cw = (s1, z1, s2, z2)(s3, z3, s4, z4)(s5, z5, s6, z6) · · ·

The sequence above is to be interpreted as follows: For each i, the certificate
“claims” that M ′ will be in state si at the end of Hi. For odd i, it claims that
the first head will be scanning the input symbol zi at the end of Hi. Finally, for
even i, the certificate claims that the second head will be scanning the symbol
zi at the end of Hi.

Given an input and a certificate, V starts by tossing a coin to choose which
head of M ′ to trace. If the first head is chosen, V initiates a simulation of M ′

from q0 using its knowledge that the second head is paused on the symbol � to
determine the next state to transition to at each step. V traces the first head
of M ′ with its own real-time head until it reaches a point during the simulation
where M ′ pauses the first head. (Recall that pausing its own head is impossible
for V .) At that point, V performs the following two operations at once: It verifies
that it has just transitioned out of the state s1 and that its input head is indeed
scanning the symbol z1, consistently so with the claims of the first certificate
symbol (s1, z1, s2, z2) (rejecting immediately if it discovers an inconsistency). It
also advances its certificate head, and continues its simulation from the “wake-
up” state s2 with the transition δM ′(s2, z1, z2), assuming that the second head
is now paused on the symbol z2 as claimed by the certificate.3

The procedure to be followed by V if it chooses the second head at the
beginning is similar, with some minor differences: In this case, V moves the
certificate head at its first step, leaving the first certificate symbol (s1, z1, s2, z2)
behind. (It stores s2 and z2 in its memory for later use.) V starts simulating M ′

from the state s1, trusting the certificate’s claim that M ′’s first head is paused on
the symbol z1, and using its own real-time head to mimic M ′’s second head.4 This
simulation proceeds until the point where M ′ pauses its second head. V checks
whether the certificate’s claims about s2 and z2 were indeed consistent with its
current information about the simulation state and head reading, consumes the
next certificate symbol, and proceeds simulation from the new “wake-up” setting
as described above if it has not discovered a lie of the certificate.
3 If δM′(s2, z1, z2) happens to be a transition that moves the second head, V rejects.
4 If the first simulated step from state s1 does not move the second head, V rejects.

Real-Time, Constant-Space, Constant-Randomness Verifiers 221

Each probabilistic branch of V accepts if and only if the simulation reaches
the accept state of M ′. All w ∈ A are accepted by V with probability 1 when
coupled with a proper certificate cw describing the sub-history transitions cor-
rectly. Whenever w /∈ A, a cw that describes the history faithfully will lead both
branches of V to rejection. Any dishonest certificate trying to divert a branch
to acceptance by giving false wake-up values will be caught out by the other
branch that has direct access to the relevant state and head information, so all
nonmembers of A will be rejected with probability at least 1

2 . 	

3.2 Real-Time Verification Beyond 1DFA(2)

Consider the language LIK =
{

aibjck
∣
∣ i = j or i = k or j = k

}
, which is in

1DFA(3), but not in 1DFA(2) [8]. A real-time, finite-state verifier using a single
random bit can verify LIK by checking certificates of the form σxl, where σ is
a ternary symbol that indicates which two of the three “segments” of the input
string are claimed to be of the same length l. Depending on the values of σ and
the random bit, the verifier decides which segment to attempt to match with the
certificate postfix xl, and accepts only if this match succeeds.

More generally, for any k > 0, there exists a language of the form

Ln =
{

y1#y2# · · · #y2n

∣
∣ yi ∈ { a, b }∗ and yi = y2n+1−i, for 1 ≤ i ≤ n

}

which can be recognized by a 1dfa(k + 1), but not by any 1nfa(k) [13]. Such
a language Ln can be verified by a real-time, constant-space machine using
log(n+1)� random bits to split into n+1 paths that would compare the relevant
segments of a certificate of the form y1#y2# · · · #yn with the corresponding
input segments. So we have VER(con-space,con-random-bits,rt-input) \ 1NFA(k) �= ∅ for
all k ≥ 1.

We now exhibit a language that is verifiable in real time by constant-random-
ness finite-state machines, but is unrecognizable by any deterministic multihead
automaton.

Theorem 3. VER(con-space,con-random-bits,rt-input) \ ⋃
k 1DFA(k) �= ∅.

Proof. We will construct a verifier V for the language Lnonpal, which was noted
to be outside

⋃
k 1DFA(k) in Sect. 2.

Every string w in Lnonpal matches the pattern xσyσ′z, where x, y, z ∈ { 0, 1 }∗

and σ, σ′ ∈ { 0, 1 }, such that |x| = |z| and σ �= σ′. The correct certificate cw for
such an input will encode the positions of the “unmatching” symbols σ and σ′

as follows:
cw = 0|x|10|y|

V tosses a single coin at the beginning of the computation to probabilistically
“branch” to one of two “deterministic verifiers” V0 and V1, each of which checks
the certificate 0i10j in a different way, as described below.

Note that, if 0i10j is indeed a correct certificate for the input, claiming that
the two unmatching symbols are at positions i + 1 and i + j + 2, then the input

222 Ö. Dolu et al.

string must be exactly i + 1 symbols longer than this certificate. V0 checks this
by moving the certificate head only once for every two moves of the input head
over the input string until it passes over the 1 in the certificate. At that point,
it switches to moving the certificate head at every step as well. If the certificate
is of the correct length, the two heads will consume their right end-markers
simultaneously, in which case V0 will accept.

The task of V1 is to assume that the certificate is well-formed in the sense
described above, and accept if the two symbols at positions i + 1 and i + j + 2
really are unequal. This can be done by moving the certificate head at the same
speed as the input head, recording the symbol at position (i+1) in memory, and
comparing it with the input symbol scanned at the step where the certificate
string has been consumed completely.

If the input is a member of Lnonpal, both V0 and V1 accept with the correct
certificate. Otherwise, the input is a palindrome, and the certificate will either
be malformed (and therefore be rejected by V0), or the two symbols it points
out will be equal, in which case it will be rejected by V1. 	

4 Concluding Remarks

Fig. 1. An inclusion diagram of our results.

Figure 1 summarizes the landscape of complexity classes covered in this
paper. The ©© symbol denotes that the two related sets are neither disjoint,
nor a subset of one another.

We conjecture that

VER(con-space,con-random-bits,rt-input) � VER(con-space,con-random-bits,1way-input),

that is, restricting the input head to move in real-time yields machines which are
not capable of verifying some languages that can be handled by verifiers with

Real-Time, Constant-Space, Constant-Randomness Verifiers 223

one-way input. The reasoning behind this conjecture is based on considerations
of the following languages:

Lmatch =
{

x#y1#y2# · · · #yk

∣
∣
∣
∣

x, yi ∈ { 0, 1 }+ for all i, k > 0,
and yi = x for some i

}

L 1
2

=
{

ww
∣
∣ w ∈ { 0, 1 }∗ }

L 2
3

=
{

xwx
∣
∣ x,w ∈ { 0, 1 }∗ and |x| = |w| }

These languages, which are in VER(con-space,con-random-bits,1way-input), seem to
be beyond the capabilities of real-time verifiers. Verification of membership in
these languages requires two input substrings (whose lengths are not bounded,
and which cannot therefore fit in a fixed amount of memory) to be “matched” in
a certain sense. Furthermore, the start position of the second substring cannot
be determined in a one-way pass without external help. Therefore, membership
certificates have to contain information about both the position of the second
substring and the content of these substrings. We suspect that it is impossible
to design certificates from which real-time input machines can acquire these two
pieces of information without getting tricked into accepting some illegal inputs.

For further study, it would be interesting to examine the power of real-time
finite-state verifiers with less severe bounds on the amount of randomness that
can be used, as well as real-time verification of debates [5] between two opposing
“provers” by similarly restricted machines. Restricting the verifiers further by
imposing other conditions like reversibility [10] is another possible direction.

Acknowledgment. The authors thank Martin Kutrib for his helpful answers to sev-
eral questions. This work is supported by the Turkish Directorate of Strategy and
Budget under the TAM Project number 2007K12-873.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, USA (2009)

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

3. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998)

4. Condon, A., Ladner, R.: Interactive proof systems with polynomially bounded
strategies. J. Comput. Syst. Sci. 50(3), 506–518 (1995)

5. Demirci, H.G., Say, A.C.C., Yakaryılmaz, A.: The complexity of debate checking.
Theor. Comput. Syst. 57(1), 36–80 (2015)

6. Gezer, M.U., Say, A.C.C.: Constant-space, constant-randomness verifiers with arbi-
trarily small error. Inf. Comput. 104744 (2021, in press)

7. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata:
origins and directions. Theor. Comput. Sci. 412(1–2), 83–96 (2011)

8. Ibarra, O.H., Kim, C.E.: On 3-head versus 2-head finite automata. Acta Informat-
ica 4(2), 193–200 (1975)

224 Ö. Dolu et al.

9. Kutrib, M., Malcher, A., Wendlandt, M.: Set automata. Int. J. Found. Comput.
Sci. 27(02), 187–214 (2016)

10. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583,
pp. 401–416. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023844

11. Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10(5), 388–394
(1966)

12. Say, A.C.C., Yakaryılmaz, A.: Finite state verifiers with constant randomness. Log-
ical Methods Comput. Sci. 10(3) (2014). https://lmcs.episciences.org/724

13. Yao, A.C., Rivest, R.L.: k + 1 heads are better than k. J. ACM 25(2), 337–340
(1978)

https://doi.org/10.1007/BFb0023844
https://lmcs.episciences.org/724

Constrained Synchronization
for Monotonic and Solvable Automata

and Automata with Simple Idempotents

Stefan Hoffmann(B)

Fachbereich 4 - Abteilung Informatikwissenschaften, Universität Trier,
Trier, Germany

hoffmanns@informatik.uni-trier.de

Abstract. For general input automata, there exist regular constraint
languages such that asking if a given input automaton admits a syn-
chronizing word in the constraint language is PSPACE-complete or NP-
complete. Here, we investigate this problem for the following classes of
input automata: monotonic automata, solvable automata and automata
with simple idempotents over a binary alphabet. The latter class con-
tains, for example, the Černý family of automata, an infinite family of n-
state automata whose shortest synchronizing words have length (n−1)2.
Solvable automata generalize both commutative automata and weakly
acyclic automata. We find that for monotonic automata, the problem
is solvable in nondeterministic logarithmic space, for every regular con-
straint language. We identify a subclass of solvable automata for which
the problem is in NP. This subclass strictly contains the weakly acyclic
automata. In the course of our investigation we derive a sharp linear
upper bound for the length of a shortest synchronizing word in a given
constraint language, improving previous quadratic bounds for weakly
acyclic and commutative automata. We also give structural characteri-
zations of solvable automata and their recognized languages that imply
that they recognize languages for which partial commutation closures
give regular languages. Lastly, we show that for input automata with sim-
ple idempotents over a binary alphabet and with a constraint language
given by a partial automaton with up to three states, the constrained
synchronization problem is in P.

Keywords: Constrained synchronization · Monotonic automata ·
Solvabe automata · Automata with simple idempotents

1 Introduction

A deterministic semi-automaton (which is an automaton without a distinguished
start state and without a set of final states) is synchronizing if it admits a
reset word, i.e., a word which leads to a definite state, regardless of the starting
state. This notion has a wide range of applications, from software testing, circuit
synthesis, communication engineering and the like, see [15,18].
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 225–237, 2022.
https://doi.org/10.1007/978-3-031-07469-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_18&domain=pdf
http://orcid.org/0000-0002-7866-075X
https://doi.org/10.1007/978-3-031-07469-1_18

226 S. Hoffmann

The famous Černý conjecture [2] states that a minimal synchronizing word,
for an n-state automaton, has length at most (n − 1)2. The best general upper
bound known so far is cubic [16].

The sharp upper bound of n − 1 was shown for n-state commutative
automata [12] and for monotonic automata [1]. For automata with simple idem-
potents, the bound 2(n − 1)2 is known [13].

In [4] the constrained synchronization problem was introduced, where we ask
for a synchronizing word contained in a given (fixed) contraint language. It was
shown that we can realize PSPACE-complete, NP-complete or polynomial time
solvable constrained problems by appropriately choosing a constraint language.
Investigating the reductions from [4], we see that most reductions yield automata
with a sink state, which then must be the unique synchronizing state. Hence,
we can conclude that we can realize these complexities with this type of input
automaton. Contrary, for example, unary automata are synchronizing only if
they admit no non-trivial cycle, i.e., only a single self-loop. In this case, we can
easily decide synchronizability for any constraint language in polynomial time
(even determinstic logarithmic time). Hence, for these simple types of automata,
the complexity drops considerably. So, a natural question is, if we restrict the
class of input automata, what complexities are realizable? Or more precisely:

What features in the input automata do we need to realize certain com-
plexities?

In [7] this question was investigated for weakly acyclic, or partially ordered,
input automata. These are automata where all cycles are trivial, i.e., the only
loops are self-loops. It was shown that in this case, the constrained synchroniza-
tion problem is always in NP and, for suitable constraint languages, NP-complete
problems are realizable.

Contribution. Here, we investigate the constrained synchronization when the
input is restricted to the class of monotonic automata, the class of solvable
automata and to automata with simple idempotents. Solvable automata gener-
alize weakly acyclic automata, previously investigated in [7], and commutative
automata [7]. We state that for monotonic input automata, the constrained
synchronization problem is solvable in nondeterministic logarithmic space for
every constraint automaton. For a subclass of solvable automata we show con-
tainment in NP. This subclass properly contains the weakly acyclic automata.
Furthermore, we give a sharp linear upper bound for the length of a shortest
synchronizing word with respect to a given constraint. This improves previously
given quadratic bounds [6,7]. Furthermore, we show that languages recognized
by solvable automata are in the unambiguous polynomial closure of commuta-
tive 0-group1 languages. This implies that partial commutation closures on these
languages give regular languages.
1 A 0-group language L ⊆ Σ∗ is a language recognized by a 0-group (a group with

zero), i.e. there exists a morphism ϕ : Σ∗ → G into a 0-group, a group G with a
zero symbol, such that L = ϕ−1(ϕ(L)).

Constrained Sync. for Monotonic Aut., Solvable Aut. & Aut. with Simple Id 227

Lastly, we show that for input automata with simple idempotents over a
binary alphabet and small constraint automata, the constrained synchronization
problem is in P.

2 Preliminaries and Some Known Results

We assume the reader to have some basic knowledge in computational complexity
theory and formal language theory, as contained, e.g., in [9]. For instance, we
make use of regular expressions to describe languages. By Σ we denote the
alphabet, a finite set. For a word w ∈ Σ∗ we denote by |w| its length, and, for
a symbol x ∈ Σ, we write |w|x to denote the number of occurrences of x in the
word. We denote the empty word, i.e., the word of length zero, by ε. We call
u ∈ Σ∗ a prefix of a word v ∈ Σ∗ if there exists w ∈ Σ∗ such that v = uw.
For U, V ⊆ Σ∗, we set U · V = UV = {uv | u ∈ U, v ∈ V } and U0 = {ε},
U i+1 = U iU , and U∗ =

⋃
i≥0 U i and U+ =

⋃
i>0 U i. We also make use of

complexity classes like NL, P, NP, or PSPACE.
A tuple A = (Σ,Q, δ, q0, F) is a partial deterministic finite automaton

(PDFA), where Σ is a finite set of input symbols, Q is the finite state set,
q0 ∈ Q the start state, F ⊆ Q the final state set and δ : Q × Σ ⇀ Q the partial
transition function. The partial transition function δ : Q × Σ ⇀ Q extends to
words from Σ∗ in the usual way. Furthermore, for S ⊆ Q and w ∈ Σ∗, we set
δ(S,w) = { δ(q, w) | δ(q, w) is defined and q ∈ S }. We call A a complete (deter-
ministic finite) automaton if δ is defined for every (q, a) ∈ Q × Σ. If |Σ| = 1, we
call A a unary automaton and L ⊆ Σ∗ is also called a unary language. The set
L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F } denotes the language recognized (or accepted)
by A.

A deterministic and complete semi-automaton (semi-DFA) A = (Σ,Q, δ) is
a deterministic and complete finite automaton without a specified start state
and with no specified set of final states. When the context is clear, we call
both deterministic finite automata and semi-automata simply automata. Here,
when talking about semi-automata, we always mean complete and deterministic
semi-automata, as we do not consider other models of semi-automata. Concepts
and notions that only rely on the transition structure carry over from complete
automata to semi-automata and vice versa and we assume, for example, that
every notion defined for semi-automata has also the same meaning for complete
automata with a start state and a set of final states.

Let A = (Σ,Q, δ) be a semi-automaton. A maximal subset S ⊆ Q with the
property that for every s, t ∈ S there exists u ∈ Σ∗ such that δ(s, u) = t is
called a strongly connected component of A. We also say that a state s ∈ Q is
connected to a state t ∈ Q (or t is reachable from s) if there exists u ∈ Σ∗ such
that δ(s, u) = t.

A complete automaton A is called synchronizing if there exists a word w ∈
Σ∗ with |δ(Q,w)| = 1. In this case, we call w a synchronizing word for A.
We call a state q ∈ Q with δ(Q,w) = {q} for some w ∈ Σ∗ a synchronizing
state. For a semi-automaton (or PDFA) with state set Q and transition function

228 S. Hoffmann

δ : Q×Σ ⇀ Q, a state q is called a sink state, if for all x ∈ Σ we have δ(q, x) = q.
Note that, if a synchronizing automaton has a sink state, then the synchronizing
state is unique and must equal the sink state.

Let A = (Σ,Q, δ) be a semi-automaton. Then, A is called an automaton with
simple idempotents, if every a ∈ Σ either permutes the states or maps precisely
two states to a single state and every other state to itself. More formally, every
a ∈ Σ either (1) permutes the states, i.e., δ(Q, a) = Q, or (2) it is a simple
idempotent, i.e., we have |δ(Q, a)| = |Q| − 1 and δ(q, aa) = δ(q, a) for every
q ∈ Q. Letters fulfilling condition (1) are also called permutational letters, and
letters fulfilling (2) are called simple idempotent letters.

The automaton A is a permutation-reset automaton if every letter is a per-
mutational letter (or permutation symbol) or a reset symbol, i.a. a symbol a ∈ Σ
mapping every state to a single state (the letter induces a constant mapping on
the states). A permutation-reset automaton without a reset symbol is called a
permutation automaton.

An automaton A = (Σ,Q, δ) with Q = {1, . . . , n} is monotonic, if i ≤ j
implies δ(i, x) ≤ δ(j, x) for each x ∈ Σ. We assume that for a given monotonic
automaton, the linear order is encoded into the states (by representing them by
numbers) and hence can be read off readily.

The semi-automaton A is called commutative, if for all a, b ∈ Σ and q ∈ Q
we have δ(q, ab) = δ(q, ba). The semi-automaton A is called weakly acyclic, if
there exists an ordering q1, q2, . . . , qn of its states such that if δ(qi, a) = qj for
some letter a ∈ Σ, then i ≤ j (such an ordering is called a topological sorting).
An automaton is weakly acyclic, if δ(q, uxv) = q for u, v ∈ Σ∗ and x ∈ Σ implies
δ(q, x) = q, i.e., the only loops in the automaton graph are self-loops. This is
also equivalent to the fact that the reachability relation between the states is a
partial order.

The class of solvable automata was introduced in [12] as a generalization of
commutative automata. It was shown that for a synchronizable solvable n-state
automaton the length of a shortest synchronizing word is at most n − 1.

Originally, in [12] this class was introduced only for so called 0-automata, i.e.,
automata having a sink state. However, the notions transfer without difficulty to
general automata. Let A = (Σ,Q, δ) be a semi-DFA and S ⊆ Q. Then this subset
of states defines a subautomaton B = (Σ,S, δ) if δ(S, a) ⊆ S for each a ∈ Σ.
Note that the subautomaton has the same transition function, but restricted to
the subset S. Having a subautomaton B = (Σ,S, δ), we can define the factor
automaton A/B = (Σ,T, μ) with state set T = Q \ S ∪ {S} and, for each a ∈ Σ
and q ∈ Q \ S, transition function μ(q, a) = δ(q, a) if δ(q, a) /∈ S, μ(q, a) = S if
δ(q, a) ∈ S and μ(S, a) = S, i.e., we collapse S to a single sink state.

Let A = (Σ,Q, δ) be a semi-DFA. A composition series is a maximal sequence
of subautomata Ai = (Σ,Si, δ), i ∈ {0, . . . , m} with Am = A, such that

S0 ⊆ S1 ⊆ . . . ⊆ Sm = Q. (1)

A maximal such sequence is called a composition series in [12].
The semi-DFA A is called solvable if there exists a composition series as in

Eq. (1) such that the factor automata Ai/Ai−1 for i ∈ {1, . . . , m} and A0 are

Constrained Sync. for Monotonic Aut., Solvable Aut. & Aut. with Simple Id 229

commutative. In fact, the requirement of maximality can be dropped and only
the existence of a series as in Eq. (1) with commutative factor automata and A0

commutative equivalently characterizes solvability.

Remark 1. Our notion of solvability generalizes the notion of solvability intro-
duced in [12] for synchronizable automata with a sink state. In [12] another
notion of solvability is introduced that only applies to synchronizable automata.
Our definition allows non-synchronizable but solvable automata.

In [4] the constrained synchronization problem was defined for a fixed PDFA
B = (Σ,P, μ, p0, F).

Decision Problem 1: [4] L(B)-Constr-Sync
Input: semi-DFA A = (Σ,Q, δ).
Question: Is there a synchronizing word w ∈ Σ∗ for A with w ∈ L(B)?

The automaton B will be called the constraint automaton. If an automaton A
is a yes-instance of L(B)-Constr-Sync we call A synchronizing with respect
to B. Occasionally, we do not specify B and rather talk about L-Constr-Sync.

Previous results have shown that unconstrained synchronization is solvable
in polynomial time, and constrained synchronization in polynomial space.

Theorem 2.1 ([18]). We can decide Σ∗-Constr-Sync in time O(|Σ||Q|2).
Theorem 2.2 ([4]). For any constraint automaton B = (Σ,P, μ, p0, F) the
problem L(B)-Constr-Sync is in PSPACE.

In [4], a complete analysis of the complexity landscape when the constraint
language is given by small partial automata was done.

Theorem 2.3 ([4]). Let B = (Σ,P, μ, p0, F) be a PDFA. If |P | ≤ 1 or |P | = 2
and |Σ| ≤ 2, then L(B)-Constr-Sync ∈ P. For |P | = 2 with Σ = {a, b, c}, up
to symmetry by renaming of the letters, L(B)-Constr-Sync is either in P or
is PSPACE-complete precisely in the following cases for L(B):

a(b + c)∗ (a + b + c)(a + b)∗ (a + b)(a + c)∗ (a + b)∗c
(a + b)∗ca∗ (a + b)∗c(a + b)∗ (a + b)∗cc∗ a∗b(a + c)∗

a∗(b + c)(a + b)∗ a∗b(b + c)∗ (a + b)∗c(b + c)∗ a∗(b + c)(b + c)∗.

For |P | = 3 and |Σ| = 2, the following is known: In [4] it has been shown
that (ab∗a)-Constr-Sync is NP-complete for general input automata. In [4,
Theorem 33] it was shown that (b(aa+ba)∗)-Constr-Sync is PSPACE-complete
for general input automata. Further, it was shown [8] that for the following
constraint languages the constrained problem is PSPACE-complete: b∗a(a+ba)∗,
a(b + ab)∗ + b(bb∗a)∗, which are all accepted by a 3-state PDFA over a binary
alphabet. So, with Theorem 2.3, at least three states are necessary and sufficient
over a binary alphabet to realize PSPACE-complete problems.

For an overview of the results for different classes of input automata, see
Table 1.

230 S. Hoffmann

Table 1. Overview of known result of the complexity landscape of L(B)-Constr-Sync
with B = (Σ, P, μ, p0, F) when restricted to certain input automata. Constraint lan-
guages giving intractable problems are written next to the hardness claim. For a binary
alphabet, the 3-state PDFA language b(aa + ba)∗ gives an PSPACE-complete problem
for general input automata.

Input Aut. type Complexity class Hardness Reference

General automata PSPACE PSPACE-hard for a(b + c)∗ [4]

With sink state PSPACE PSPACE-hard for a(b + c)∗ [4]

Weakly acyclic NP NP-hard for a(b + c)∗ [7]

Monotonic NL – Theorem 3.1

Solvable with cycle restriction NP contains weakly acyclic, hence NP-hard by [7] Theorem 4.6

Simple idempotents P for |Σ| = 2, |P | ≤ 3 – Theorem 5.3

3 Monotonic Automata

Monotonic automata2 were introduced by Ananichev & Volkov [1]. In [14],
further problems related to (subset) synchronization problems on monotonic
automata were investigated. Checking if a given automaton is monotonic is NP-
complete [17].

Theorem 3.1. Let B = (Σ,P, μ, p0, F) be a constraint automaton. For mono-
tonic input automata it is in NL to decide whether there exists a synchronizing
word of this automaton in L(B) when the minimal and maximal states are known.
Furthermore, a shortest synchronizing word in L(B) for an n-state monotonic
automaton has length at most n · |P | and this bound is sharp.

4 Solvable Automata

Beside the rather algebraic treatment by Rystsov [12] himself, the following
properties equivalently characterize solvable automata.

Theorem 4.1. Let A = (Σ,Q, δ) be a complete and determinstic semi-DFA.
Then the following are equivalent:

1. A is solvable,
2. There exists a composition series Q = Sm ⊃ Sm−1 ⊃ . . . ⊃ S0 where the

factor automata Ai/Ai−1, i ∈ {1, . . . , m}, are commutative permutation-reset
automata and A0 is a commutative permutation automaton,

3. For every strongly connected component S ⊆ Q, the following two conditions
hold true:
(a) for all a ∈ Σ, we either have δ(S, a) ∩ S = ∅ or δ(S, a) = S,

2 Note that the monotonic automata as introduced earlier by Eppstein [3] are more
general, as they are only required to respect a cyclic order (they were called oriented
automata by Ananichev & Volkov in [1]).

Constrained Sync. for Monotonic Aut., Solvable Aut. & Aut. with Simple Id 231

(b) if a, b ∈ Σ are such that δ(S, a) = δ(S, b) = S, then3 δ(q, ab) = δ(q, ba)
for all q ∈ S.

Given a class of language C, the polynomial closure are all finite unions of
marked products, i.e., languages of the form L0a1L1 · · · anLn with Li being lan-
guages from the class with Li ⊆ Σ∗ and ai ∈ Σ for i ∈ {1, . . . , n}.

The unambiguous polynomial closure is the same construction but with the
additional requirements that (1) we are taking the finite union over disjoint
languages and (2) instead of marked products, we have unambiguous marked
products, where a marked product L0a1L1 · · · anLn is unambiguous if for each
u ∈ L0a1L1 · · · anLn the factorization u = u0a1u1 · · · anun with the ui ∈ Li,
i ∈ {0, 1, . . . , n}, is unique.

Proposition 4.2. The languages accepted by solvable automata are in the
unambiguous polynomial closure of commutative 0-group languages.

Partial commutation closures arises in model-checking and verification. In
general, this operation does not preserve regularity. In [5, Corollary 2.4] it was
shown that when a class of regular languages has the property that partial
commutation closures give regular languages, then the polynomial closure has
this property as well. Hence, with the previous result, we can deduce that partial
commutation closures of languages accepted by solvable automata give regular
languages.

The solvable automata generalize commutative and weakly acyclic automata.
For commutative automata this is clear by definition.

By Theorem 4.1, the factor automata are permutation-reset automata.
That every weakly acyclic automaton is a solvable automaton follows with

Theorem 4.1 as the only strongly connected components are singleton sets in a
weakly acyclic automaton and so the factor automata are two-state automata
with a sink state, hence commutative. Property 3a from Theorem 4.1 is clearly
satisfied.

Proposition 4.3. Every commutative DFA is solvable and every weakly acyclic
DFA is solvable.

Next, we state an upper bound for the length of a shortest synchronizing
word in a given constraint language.

Proposition 4.4. Let B = (Σ,P, μ, p0, F) and A = (Σ,Q, δ) be a solvable and
synchronizable semi-DFA with n states. Then a shortest synchronizing word for
A in L(B) has length at most n · |Σ| · L · |P | − 1, where L denotes the least
common multiple of the cycle lengths for the letters, i.e.,

L = lcm{p | ∃q ∈ Q ∃a ∈ Σ : δ(q, ap) = q ∧ p > 0 ∧ p minimal }.

Furthermore, there exist constraint automata and solvable input automata attain-
ing the bound.
3 If the images are not in S, then δ(q, ab) �= δ(q, ba) is possible.

232 S. Hoffmann

Proof (sketch). We only sketch the argument for the upper bound. It follows by
inductively showing the following statement: Given a composition series Q =
Sm ⊃ Sm−1 ⊃ . . . ⊃ S0, let i ∈ {1, . . . , m} and u ∈ Σ∗ be such that |δ(T, u)| = 1
with T ⊆ Si non-empty and μ(p, u) ∈ F for some p ∈ P . Then we claim that
there exists u′ ∈ Σ∗ with |u′| ≤ (i + 1) · |Σ| · L · |P | − 1, |δ(T, u′)| = 1 and
μ(p, u′) ∈ F .

In the induction step, we can, by commutativity, rearrange u into |Σ| blocks
of single letters. When one block has length at least (i + 1) · L · |P |, then there
exists a shorter word that ends at the same states (for this we need L) in A and
at the same state in B (for this we need |P |).

That the bound is sharp is easily seen by considering a constraint automaton
with a single state recognizing Σ∗ and a unary input semi-DFA A = ({a}, Q, δ)
with n states Q = {q0, q1, . . . , qn−1} such that δ(qi, a) = qmin{i+1,n−1}. ��

For weakly acyclic automata, we can improve the stated bound.

Proposition 4.5. Let B = (Σ,P, μ, p0, F) and A = (Σ,Q, δ) be a weakly acyclic
and synchronizable automaton with n states. Then a shortest synchronizing word
for A in L(B) has length at most n · |P | − 1 and there exists input automata and
constraint automata such that this bound is attained.

The constraint automaton and input automata attaining the bound in the
proof sketch of Proposition 4.4 also works for Proposition 4.5.

Landau’s function g(n) equals the largest order of a permutation on n points
or the least common multiple of any partition of n. As we can have arbitrary
cycles in the strongly connected components, we find that in general L from
Proposition 4.4 grows asymptotically like g(n), which asymptotically equals
exp(1 + o(1))

√
n ln n) [10].

However, for input automata where L is bounded by a polynomial, we can
guess and check a given synchronizing word in non-deterministic polynomial
time.

Theorem 4.6. Let B = (Σ,P, μ, p0, F). For solvable input automata A =
(Σ,Q, δ) with n states the constrained synchronization problem with constraint
language L(B) is in NP for the following classes of solvable input automata:

1. when the shortest cycles in A have the same length,
2. when the lengths of the shortest cycles divide n,
3. when there exists a polynomial p such that the least common multiple of the

lengths of the shortest cycles with the property that every transition in the
cycle is labeled by the same letter (where distinct letters for different such
cycles are allowed) is bounded by p(n).

Note that the previous statement properly extends the result for weakly
acyclic input semi-automata [7].

By the results from [7] and Proposition 4.3, there exist constraint automata
such that the problem is NP-complete, as it is already NP-hard for weakly acyclic
automata.

Constrained Sync. for Monotonic Aut., Solvable Aut. & Aut. with Simple Id 233

5 Synchronizing Automata with Simple Idempotents
over a Binary Alphabet

Here, we show that for input automata with simple idempotents over a binary
alphabet and a constraint given by a PDFA with at most three states, the con-
strained synchronization problem is always solvable in polynomial time. Note
that, as written at the end of Sect. 2, the smallest constraint languages giving
PSPACE-complete problems are given by 3-state automata over a binary alpha-
bet. But, as shown here, if we only allow automata with simple idempotents as
input, the problem remains tractable in these cases.

Intuitively, by applying an idempotent letter, we can map at most two states
to a single state. Hence, to synchronize an n-state automaton with simple idem-
potents, we have to apply at least n − 1 times an idempotent letter. This is the
content of the next lemma.

Lemma 5.1. Let A = (Σ,Q, δ) be an n-state semi-automaton with simple idem-
potents and let Γ ⊆ Σ be the set of all simple idempotent letters (that are not
permutational letters). Suppose w ∈ Σ∗ is a synchronizing word for A. Then,∑

a∈Γ |w|a ≥ n − 1.

In [11, Proposition 6.2] it was shown that the possible synchronizing
automata with simple idempotents over a binary alphabet fall into two classes,
depicted in Fig. 1 (note our parameter p has a different meaning as in [11, Propo-
sition 6.2], where it denotes p + 1 in our notation).

A more formal statement of this fact is given next.

Proposition 5.2. Let Σ = {a, b} be a binary alphabet and A = (Σ,Q, δ) be
an n-state automaton with simple idempotents. Suppose A is synchronizing and
n > 3. Then, up to renaming of the letters, we have only two cases for A:

1. There exists a sink state t ∈ Q, the letter b permutes the states in Q\{t} in a
single cycle and |δ(Q, a)| = n−1 with t ∈ δ(Q\{t}, a), i.e., t = δ(t, a) = δ(s, a)
for two distinct states s, t ∈ Q.

2. The letter b permutes the states in Q in a single cycle and there exists 0 < p <
n coprime to n and two distinct states s, t ∈ Q such that t = δ(s, a) = δ(s, bp).

Recall that as a is a simple idempotent letter, we have δ(q, a) = q for each
q ∈ Q \ {s} in both cases.

Note that the set of synchronizing words can be rather complicated in both
cases. For example, the language Σ∗a+(b((ba∗)n−1)∗)a+)n−2Σ∗ contains4 only
synchronizing words for automata of the first type in Proposition 5.2, and, simi-
larly, Σ∗a+((ba∗)n−p(ba∗)na+)n−2Σ∗ in the second case. However, for example,

4 Note that there might be other synchronizing words not in the stated language. For
example if n = 6, the word abbabbabbabba synchronizes the automaton of the first
type from Proposition 5.2.

234 S. Hoffmann

s t

a

a

a

a

a a

b

b

b b

b

b

a

a, b

. . .

t

s

a

a
a

a

a

a
a

a
b

b

b

b

b

b

. . .

. . .

Fig. 1. The two cases from Prop. 5.2. In the second case, for p = 1 with the notation
from the statement, we get Černy family [2], a family of automata giving the lower
bound (n − 1)2 for the length of a shortest synchronizing word.

the language (bbba)∗bb(bbba)∗bb(bbba)∗ contains synchronizing words and non-
synchronizing words for automata of the first type.

Finally, for binary automata with simple idempotents and an at most 3-state
constraint PDFA, the constrained synchronization problem is always solvable in
polynomial time. The proof works by case analysis on the possible sequences
of words in the constraint language and if it is possible to synchronize the two
automata types listed in Proposition 5.2 with those sequences.

Theorem 5.3. Let B = (Σ,P, μ, p0, F) be a constraint automaton with |P | ≤
3 and |Σ| ≤ 2. Let A = (Σ,Q, δ) be an input semi-automaton with simple
idempotents. Then, deciding if A has a synchronizing word in L(B) can be done
in polynomial time.

Proof (sketch). The cases |Σ| ≤ 1 or |P | ≤ 2 and |Σ| = 2 are polynomial time
decidable in general as shown in [4, Corollary 9 & Theorem 24]. So, we can
suppose Σ = {a, b} and P = {1, 2, 3} with p0 = 1. As in [4], we set Σi,j = {x ∈
Σ : μ(i, x) = j}. If the cases in Proposition 5.2 apply, and if so, which case,
can be checked in polynomial time, as we only have to check that one letter is a
simple idempotent and the other letter permutes the states in a single cycle or
two cycles with the restrictions as written in Proposition 5.2.

So, we can assume A has one of the two forms as written in Proposition 5.2.
Without loss of generality, we assume a is the simple idempotent letter and b
the permutational letter. Set n = |Q|. We also assume n > 4. If n ≤ 4, then we
have to compare A to finitely many automata that are synchronizing for a given
(fixed) constraint language L(B). This can be done in constant time.

Next, we only handle the first case of Proposition 5.2 by case analysis. The
other case can be handled similarly. Further, let t ∈ Q be the state as written in
the first case of Proposition 5.2.

Further, in this sketch, we only handle the case that the strongly connected
components of B are {1} and {2, 3} and the subautomaton between the states
{2, 3} is one of the automata listed in Table 2. These are the most difficult cases,
for the remaining cases of B we refer to the full proof in the appendix.

Constrained Sync. for Monotonic Aut., Solvable Aut. & Aut. with Simple Id 235

Table 2. Cases for a partial subautomaton between the states {2, 3} that is not com-
plete. See the proof of Theorem 5.3 for details.

For p ∈ P and E ⊆ P , we write Bp,E = (Σ,P, μ, p, E) for the PDFA that
results from B by changing the start state to p and the set of final states to E.

We present the arguments for Case 1 and 4.

Case 1 In this case L(B2,{2}) = (a + bb)∗. We show that in the case under
consideration, if A has the form stated in case one of Proposition 5.2, A is
synchronizing if and only if n is even. Let s ∈ Q \ {t} be the state with δ(s, a) =
δ(t, a) = t. If n is odd, then |Q\{t}| is even and the single cycle induced by b on
the states in Q \ {t} splits into two cycles for the word bb, i.e., we have precisely
two disjoint subsets A,B ⊆ Q\{t} of equal size such that the states in one subset
can be mapped onto each other by a word in (bb)∗ but we cannot map states
between those subset by a word from (bb)∗. Suppose, without loss of generality,
that s ∈ B. For each q ∈ A we have δ(q, a) = q and δ(q, bb) ∈ A. Hence, we
cannot map a state from A to s, and so not to t, the unique synchronizing
state. As n ≥ 5, which implies |A| = |B| ≥ 2, and for every w ∈ Σ∗

1,1Σ1,2 we
have |δ(Q,w)| ≥ n − 1 (recall Σ1,1 ∪ Σ1,2 ⊆ {a, b} and Σ1,1 ∩ Σ1,2 = ∅ as B is a
deterministic automaton), we must have δ(Q,w)∩A �= ∅ for every w ∈ Σ∗

1,1Σ1,2.
So, A cannot be synchronized by a word from L(B1,{2}) = Σ∗

1,1Σ1,2(a + bb)∗. If
n is even, than bb also permutes the states in Q \ {t} in a single cycle and the
word a(bba)n−2 synchronizes A. So, picking any u ∈ {a, b}∗ with μ(1, u) = 2,
the word u(bba)n−1 ∈ L(B) synchronizes A.

Case 4 In this case L(B2,{2}) = (aa∗b)∗. The word (ab)n−1 synchronizes A. Pick
any u ∈ L(B1,{2}), then u(ab)n−1 ∈ L(B) synchronizes A. Hence, if A has the
form as assumed, then there always exists a synchronizing word for it in the
constraint language. ��

6 Conclusion

It is still an open problem if the constrained synchronization problem is in NP for
arbitrary solvable input automata and if it is always polynomial time solvable
for arbitrary automata with simple idempotents as input. Furthermore, with
respect to Theorem 3.1, we conjecture that there exist constraint automata for
which the problem NL-hard when restricted to monotonic input automata.

236 S. Hoffmann

Acknowledgement. I thank the anonymous reviewers for careful reading, spotting
typos and unclear formulations. Furthermore, I thank two reviewers for helping me in
improving Theorem 3.1: one pointed out that it can be improved to show containment
in nondeterministic logarithmic space, the other reviewer pointed out that it yields a
polynomial time algorithm to compute a shortest synchronizing word.

References

1. Ananichev, D.S., Volkov, M.V.: Synchronizing monotonic automata. Theor. Com-
put. Sci. 327(3), 225–239 (2004)

2. Černý, J.: Poznámka k. homogénnym experimentom s konecnými automatmi. Mat.
fyz. čas SAV 14, 208–215 (1964)

3. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

4. Fernau, H., Gusev, V.V., Hoffmann, S., Holzer, M., Volkov, M.V., Wolf, P.: Compu-
tational complexity of synchronization under regular constraints. In: Rossmanith,
P., Heggernes, P., Katoen, J. (eds.) MFCS 2019. LIPIcs, vol. 138, pp. 63:1–63:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

5. Gómez, A.C., Guaiana, G., Pin, J.: Regular languages and partial commutations.
Inf. Comput. 230, 76–96 (2013)

6. Hoffmann, S.: Constrained synchronization and commutativity. Theor. Comput.
Sci. 890, 147–170 (2021)

7. Hoffmann, S.: Constrained synchronization and subset synchronization problems
for weakly acyclic automata. In: Moreira, N., Reis, R. (eds.) DLT 2021. LNCS,
vol. 12811, pp. 204–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-81508-0 17

8. Hoffmann, S.: Ideal separation and general theorems for constrained synchroniza-
tion and their application to small constraint automata. In: Chen, C.-Y., Hon,
W.-K., Hung, L.-J., Lee, C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 176–
188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89543-3 15

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, Boston (1979)

10. Landau, E.: über die Maximalordnung der Permutationen gegebenen Grades.
Archiv der Mathematik und Physik 5(3), 92–103 (1903)

11. Martyugin, P.: Complexity of problems concerning reset words for some partial
cases of automata. Acta Cybernetica 19(2), 517–536 (2009)

12. Rystsov, I.: Reset words for commutative and solvable automata. Theor. Comput.
Sci. 172(1–2), 273–279 (1997)

13. Rystsov, I.: Estimation of the length of reset words for automata with simple
idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000)

14. Ryzhikov, A., Shemyakov, A.: Subset synchronization in monotonic automata. Fun-
damenta Informaticae 162(2–3), 205–221 (2018)

15. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490 2

16. Shitov, Y.: An improvement to a recent upper bound for synchronizing words of
finite automata. J. Autom. Lang. Comb. 24(2–4), 367–373 (2019)

https://doi.org/10.1007/978-3-030-81508-0_17
https://doi.org/10.1007/978-3-030-81508-0_17
https://doi.org/10.1007/978-3-030-89543-3_15
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2

Constrained Sync. for Monotonic Aut., Solvable Aut. & Aut. with Simple Id 237

17. Szyku�la, M.: Checking whether an automaton is monotonic is NP-complete. In:
Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 279–291. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22360-5 23

18. Volkov, M.V., Kari, J.: Černý’s conjecture and the road colouring problem. In:
Éric Pin, J. (ed.) Handbook of Automata Theory, vol. I, pp. 525–565. European
Mathematical Society Publishing House (2021)

https://doi.org/10.1007/978-3-319-22360-5_23

An Ambiguity Hierarchy of Weighted
Context-Free Grammars

Yusuke Inoue(B), Kenji Hashimoto, and Hiroyuki Seki

Graduate School of Informatics, Nagoya University, Nagoya, Japan
{y-inoue,seki}@sqlab.jp, k-hasimt@i.nagoya-u.ac.jp

Abstract. Weighted context-free grammar (WCFG) is a quantitative
extension of context-free grammar (CFG). It is known that unambigu-
ous weighted automata (WA), finitely-ambiguous WA, polynomially-
ambiguous WA and general WA over the tropical semiring have different
expressive powers. We prove that there exists a similar ambiguity hier-
archy of WCFG over the tropical semiring, using an extended Ogden’s
lemma. Furthermore, we show that the hierarchy we proved is different
from the known ambiguity hierarchy of unweighted CFG.

Keywords: Weighted context-free grammar · Ambiguity · Pumping
lemma

1 Introduction

Weighted context-free grammar (WCFG) is a quantitative extension of context-
free grammar (CFG). WCFG originates from the study of algebraic formal series
by Chomsky and Schützenberger [2]. Since then, mathematical properties of
WCFG and the formal series (or functions) defined by WCFG have been exten-
sively studied. There are various applications of WCFG to real-world problems
such as parsing natural language sentences and biological sequence analysis [4].
In some applications, weights correspond to probabilities, which are useful for
selecting better estimations of the hidden structure from experimental or observ-
able data. However, it is not yet very clear whether and how a hierarchy in terms
of the expressive power is induced in the class of context-free languages by intro-
ducing weights to CFG.

In general, a weighted model (automaton, grammar, etc.) is defined with a
semiring, and each model defines a function that maps a word to an element of
the semiring, instead of a language. When the semiring is positive, the support of
the function defined by a weighted model naturally corresponds to the language
generated by the unweighted counterpart of the model, where the support is a
homomorphism from the semiring to Boolean semiring {0, 1}.

The expressive power of weighted automata (WA) has been studied in the
literature. In particular, it is known that unambiguous WA, finitely-ambiguous
WA, polynomially-ambiguous WA and general WA over the tropical semir-
ing have different expressive powers [1,7]. Unambiguous WA (resp. finitely-
ambiguous WA, polynomially-ambiguous WA) are WA such that the number
c© Springer Nature Switzerland AG 2022
P. Caron and L. Mignot (Eds.): CIAA 2022, LNCS 13266, pp. 238–250, 2022.
https://doi.org/10.1007/978-3-031-07469-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07469-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-07469-1_19

An Ambiguity Hierarchy of Weighted Context-Free Grammars 239

of accepting runs is bounded by one (resp. by a constant, by a polynomial in
the size of an input) for any input. Similar results are known for weighted tree
automata over the tropical semiring [6] although the tree languages proved to be
in the gaps between the adjacent two layers are essentially the same as those in
[1,7]. For an (unweighted) finite automaton (FA), the ambiguity does not affect
the expressive power since the determinization is possible for nondeterministic
FA and a deterministic FA is apparently unambiguous. Therefore, the above
mentioned results on WA indicate that the strict ambiguity hierarchy is caused
by introducing weights. On the other hand, the ambiguity already increases the
expressive power for unweighted CFG because there exist inherently ambiguous
CFG [8]. In fact, it is shown that unambiguous CFG, finitely-ambiguous CFG,
polynomially-ambiguous CFG and general CFG have different expressive powers
[9].

In this paper, we study an ambiguity hierarchy of WCFG over the tropical
semiring where the ambiguity of a word w in a WCFG G means the number of
distinct parse trees of w in G. We show that there is a strict ambiguity hierarchy
of WCFG over the tropical semiring caused by introducing weights. Specifically,
we prove that there exist functions fEX2, fEX3, fEX4 ∈ U-CF such that fEX2 ∈
FA-WCF \ U-WCF, fEX3 ∈ PA-WCF \ FA-WCF and fEX4 ∈ WCF \ PA-WCF.
U-CF is the class of functions defined by WCFG over the tropical semiring whose
supports coincide with the languages defined by unambiguous CFG, i.e., U-CF
corresponds to the class of unambiguous context-free languages. U-WCF, FA-
WCF, PA-WCF and WCF are the classes of functions defined by unambiguous
WCFG, finitely-ambiguous WCFG, polynomially-ambiguous WCFG and general
WCFG over the tropical semiring, respectively. That is, functions fEX2, fEX3 and
fEX4 exist in the gaps caused by introducing weights (see Fig. 1).

Fig. 1. The ambiguity hierarchy caused by introducing weights

Deciding the expressive power of weighted models is more difficult than that
of unweighted ones. For unweighted automata (resp. grammars), we only need
to check the existence of an accepting run (resp. a parse tree). For weighted
automata (resp. grammars), we have to consider all accepting runs (resp. parse
trees) to compute the weight of a given word because the weight of a word is
defined by the semiring sum of the weights of all accepting runs (resp. parse

240 Y. Inoue et al.

trees) of the word. For example, we have to find the minimum weight among
all accepting runs when we compute the function value defined by WA over
the tropical semiring. (Note that the sum in the tropical semiring means the
minimum.) This difficulty is more remarkable for WCFG than for WA. This is
because, the ambiguity for WA is caused by only the choice of a state, while the
ambiguity for WCFG is also caused by the shape of a parse tree. Therefore, the
expressive power of WCFG cannot be determined by a simple iteration property.
For these reasons, we cannot show a strict ambiguity hierarchy of WCFG by
a straightforward extension of the discussion on the ambiguity hierarchy for
WA. To overcome this problem, we focus on the functions defined by WCFG
that assign non-zero weights only to the words having specific form such as
palindromes and well-nested parentheses (Dyck words).

In Sect. 2, we introduce semiring, weighted context-free grammar and weight
function. Furthermore, we show some examples of functions defined by WCFG
(Examples 1 to 5). These functions will be used to prove the strict hierarchy
in Sect. 4. In Sect. 3, we show a pumping lemma for CFG, which is helpful for
proving the hierarchy (Lemma 3). The lemma is an extension of the theorem for
CFG known as Ogden’s lemma. In Sect. 4, we prove that functions fEX2, fEX3 and
fEX4 defined in Sect. 2 lie in the gaps caused by introducing weights (Theorems
1, 2 and 3), and as a corollary of them, we show the strict ambiguity hierarchy
of WCFG (Corollary 1).

2 Preliminaries

Let N be the set of all non-negative integers. The cardinality of a set X is denoted
by |X|. Let Σ be a (finite) alphabet. For a word w ∈ Σ∗ and a letter a ∈ Σ,
the length of w and the number of occurrences of a in w are denoted by |w| and
|w|a, respectively. The empty word is denoted by ε, i.e., |ε| = 0. Let wR be the
reversal of w. For example, (aab)R = baa. We say that w′ ∈ Σ∗ is an (even)
palindrome if there exists a word w ∈ Σ∗ such that w′ = wwR.

2.1 Semirings

A semiring (S,⊕,�,0,1) is an algebraic structure where

– (S,⊕,0) is a commutative monoid,
– (S,�,1) is a monoid,
– � distributes over ⊕,
– 0 is the zero element of �.

A semiring (S,⊕,�,0,1) is called a commutative semiring if (S,�,1) is also a
commutative monoid. We abbreviate (S,⊕,�,0,1) as S.

In this paper, we mainly consider the following two semirings : the trop-
ical semiring Nmin,+ = (N ∪ {∞},min,+,∞, 0) and Boolean semiring B =
({0, 1},∨,∧, 0, 1).

An Ambiguity Hierarchy of Weighted Context-Free Grammars 241

For a commutative semiring S, we define the mapping hS : S → B as follows:
hS(x) = 0 if x = 0, and hS(x) = 1 otherwise. A semiring S is said to be
positive if hS : S → B is a semiring homomorphism, i.e., hS(0) = 0, hS(1) = 1,
hS(a ⊕ b) = hS(a) ∨ hS(b) and hS(a � b) = hS(a) ∧ hS(b) for all a, b ∈ S [3]. Note
that Nmin,+ is a positive semiring.

2.2 Weighted Context-Free Grammars

Let S be a commutative semiring. A weighted context-free grammar (WCFG)
over S is a tuple G = (V,Σ, P, I,wt), where

– V is a finite set of nonterminals, and I ∈ V is the initial symbol,
– Σ is a finite set of terminals, disjoint from V ,
– P is a set of productions of the form: A → γ where A ∈ V and γ ∈ (V ∪ Σ)∗,
– wt : P → S \ {0} is a weight function.

We say that (αAβ, αγβ) ∈ ((V ∪ Σ)∗)2 is a direct derivation if there exists
a production p = A → γ ∈ P , and we write αAβ ⇒ αγβ or αAβ

c⇒ αγβ where
c = wt(p). For a sequence of direct derivations ρ : α0

c1⇒ α1
c2⇒ · · · cn⇒ αn (n ≥ 0),

the weight of ρ is defined by wt(ρ) = c1 � c2 � · · · � cn. We say that ρ is a

derivation, and we write α0A0β0 ⇒∗ αnAnβn or α0A0β0

c

⇒∗ αnAnβn where
c = wt(ρ). If a derivation ρ1 can be written as α ⇒∗ α1γβ1 ⇒∗ α1δβ1 ⇒∗ η

where ρ2 : γ ⇒∗ δ is also a derivation, we say that ρ2 is a subderivation of ρ1.
A derivation ρ : α0A0β0

c1⇒ · · · cn⇒ αnAnβn (n ≥ 0) is said to be a leftmost

derivation if α0, · · · , αn ∈ Σ∗. A leftmost derivation ρ : I
c

⇒∗ w is said to be a
complete leftmost derivation of w if c �= 0 and w ∈ Σ∗. Note that for each word
w ∈ Σ∗, complete leftmost derivations of w have a one-to-one correspondence
with parse trees of w in the usual sense [5]. Therefore, we will call a complete
leftmost derivation ρ : I ⇒∗ w a parse tree of w. For a word w ∈ Σ∗, the weight
of w is defined by [[G]](w) =

⊕
T∈parse(w) wt(T) where parse(w) is the set of

parse trees of w. We say that [[G]] : Σ∗ → S is the function defined by WCFG G
over S.

For a WCFG G = (V,Σ, P, I,wt), we say that CFG G′′ = (V,Σ, P, I) is
the underlying CFG of G. If [[G]](w) �= 0, then w ∈ L(G′′) where L(G′′) is
the language generated by G′′ in the standard definition. However, the converse
direction does not always hold. For example, if there are two derivations T1

and T2 of w in G where wt(T1) = 1 and wt(T2) = −1, then [[G]](w) = 0 over
(Z,+,×, 0, 1) while w ∈ L(G′′).

Assume that S is positive (see Sect. 2.1). For the function f = [[G]] defined
by a WCFG G = (V,Σ, P, I,wt) over S, the support of f is defined by
supp(f) = hS ◦ f . Then, supp(f) coincides with the function defined by WCFG
G′ = (V,Σ, P, I,wt′) over B where wt′(p) = hS(wt(p)). Let G′′ = (V,Σ, P, I) be
the underlying CFG of G. Since S is positive,

[[G]](w) �= 0 ⇐⇒ supp([[G]])(w) = 1 ⇐⇒ w ∈ L(G′′).

242 Y. Inoue et al.

A WCFG G over S is unambiguous (U-WCFG) if |parse(w)| ≤ 1 for all
w ∈ Σ∗. G is finitely-ambiguous (FA-WCFG) if there exists m ∈ N such that
|parse(w)| ≤ m for all w ∈ Σ∗. G is polynomially-ambiguous (PA-WCFG) if
there exists a polynomial p(·) such that |parse(w)| ≤ p(|w|) for all w ∈ Σ∗.

Fix a semiring S and assume that S is positive. We define U-WCF, FA-
WCF, PA-WCF and WCF as the classes of functions defined by U-WCFG,
FA-WCFG, PA-WCFG and WCFG over S, respectively. Clearly, U-WCF
⊆ FA-WCF ⊆ PA-WCF ⊆ WCF. Furthermore, we define U-CF = {f |
∃ U-WCFG G over B. supp(f) = [[G]]}. That is, U-CF is the class of functions
whose supports are defined by some U-WCFG over B. In this paper, we fix the
semiring S to Nmin,+ when we refer to these classes of functions.

Example 1. Let G1 = ({I}, {a, b}, P, I,wt) where P = {
I → aIa | bIb (weight : 1),
I → ε (weight : 0) }.

G1 is a WCFG over Nmin,+ and the function fEX1 defined by G1 is

fEX1(w′) =

{
|w| w′ = wwR ,

∞ otherwise .

Clearly G1 is unambiguous, and hence fEX1 ∈ U-WCF.

Example 2. Let G2 = ({I,A,B}, {a, b}, P, I,wt) where P = {
I → A | B (weight : 0),
A → aAa (weight : 1), A → bAb | ε (weight : 0),
B → bBb (weight : 1), B → aBa | ε (weight : 0) }.

G2 is a WCFG over Nmin,+, and the function fEX2 defined by G2 is

fEX2(w′) =

{
min{|w|a, |w|b} w′ = wwR ,

∞ otherwise .

G2 is finitely-ambiguous because there are two parse trees of w′ if w′ is a palin-
drome. One of them counts the number of letter a using nonterminal A, and
the other counts the number of letter b using nonterminal B. Hence, fEX2 ∈
FA-WCF.

Example 3. Let G3 = ({A,B}, {a, b, $}, P,B,wt) where P = {
B → aBa | A | $$ (weight : 0), B → bBb (weight : 1),
A → bAb | $$ (weight : 0), A → aAa (weight : 1) }.

G3 is a WCFG over Nmin,+, and the function fEX3 defined by G3 is

fEX3(w
′) =

{
min0≤i≤n{|a1 · · · ai|b + |ai+1 · · · an|a} w′ = wwR, w = a1a2 · · · an$,

∞ otherwise .

For a palindrome w′ = wwR, G3 counts the number of letter b using nonterminal
B, and counts the number of letter a using nonterminal A. G3 has a choice when
to start counting a. Hence, G3 is polynomially-ambiguous and fEX3 ∈ PA-WCF.

An Ambiguity Hierarchy of Weighted Context-Free Grammars 243

Example 4. Let G4 = ({I,A,B}, {a, b,#, $}, P, I,wt) where P = {
I → A | B | $$ (weight : 0),
A → aAa (weight : 1), A → bAb | #I# (weight : 0),
B → bBb (weight : 1), B → aBa | #I# (weight : 0) }.

G4 is a WCFG over Nmin,+ and the function fEX4 defined by G4 is

fEX4(w′) =

{∑
1≤i≤n min{|wi|a, |wi|b} w′ = wwR, w = w1#w2# · · · wn#$,

∞ otherwise .

For a palindrome w′ = wwR, G4 counts the number of letter a or letter b in wi.
For each i (1 ≤ i ≤ n), G4 has a choice whether to count the number of a in
wi using nonterminal A or to count the number of b in wi using nonterminal B.
Hence, G4 is not polynomially-ambiguous.

Example 5. Let G5 = ({I}, {a, b}, P, I,wt) where P = {I → aIa | bIb | ε} and
wt(p) = 1 for all p ∈ P . G5 is a WCFG over B and the underlying CFG of G5 is
G′

5 = ({I}, {a, b}, P, I). The function fEX5 defined by G5 satisfies fEX5(w′) = 1
iff w′ = wwR. Furthermore, supp(fEX1) = supp(fEX2) = fEX5. Clearly G5

is unambiguous, and hence fEX1, fEX2, fEX5 ∈ U-CF. We can also show that
fEX3, fEX4 ∈ U-CF by considering variants of G5.

3 An Extended Ogden’s Lemma

In this section, we give an extension of Ogden’s lemma, which is useful for proving
the main results of this paper. We first review Ogden’s lemma. The original
Ogden’s lemma in [8] is a statement for a word w, but we slightly extend it to
a statement for a word w and a parse tree T of w. It is clear from the proof of
Ogden’s lemma in [8] that this extension also holds.

Lemma 1 (Ogden’s Lemma [8]). For each CFG G = (V,Σ, P, I), there exists
a constant N ∈ N that satisfies the following condition :

Let w be any word in L(G) and T be any parse tree of w in G. For any
way to mark at least N positions in w as distinguished, there exist A ∈ V
and u, v, x, y, z ∈ Σ∗ such that
– T can be represented as I ⇒∗ uAz ⇒∗ uvAyz ⇒∗ uvxyz = w,
– x has at least one of the distinguished positions,
– Either u and v both have distinguished positions, or y and z both have

distinguished positions, and
– vxy has at most N distinguished positions.

��
We define the relation �w⊆ (Σ∗)3 × (Σ∗)3 as follows: for a word w = uvx =

λμν ∈ Σ∗, (u, v, x) �w (λ, μ, ν) if there exist words λ′, ν′ ∈ Σ∗ such that
μ = λ′vν′, λλ′ = u, ν′ν = x. If (u, v, x) �w (λ, μ, ν) where the word w and the
partitions w = uvx = λμν are clear or not relevant, we say that μ contains v.

244 Y. Inoue et al.

Lemma 2. Let G = (V,Σ, P, I) be a CFG and L be the language defined by G.
There exists a constant N ∈ N that satisfies the following condition :

Let w = λμν ∈ Σ∗ be any word such that w ∈ L and |μ| ≥ N . For every
parse tree T of w, there exist A ∈ V and u, v, x, y, z ∈ Σ∗ such that T can
be represented as

I ⇒∗ uAz ⇒∗ uvAyz ⇒∗ uvxyz = w ,

and the following (i) or (ii) holds.
(i) 1 ≤ |v| < N and μ contains v, i.e., (u, v, xyz) �w (λ, μ, ν).
(ii) 1 ≤ |y| < N and μ contains y, i.e., (uvx, y, z) �w (λ, μ, ν).

Proof. The above property can be obtained by applying Lemma 1, by letting all
letters in μ be distinguished positions. ��

Lemma 2 states that every word w ∈ L having a sufficiently long subword μ
can be divided as w = uvxyz such that μ contains one of v and y. We call such
a pair (v, y) a pump in w.

As stated in the next theorem, Lemma 2 can be generalized in such a way
that if a word w ∈ L has 2n long subwords μ1, . . . , μ2n, then w has n pumps
(vi, yi) (1 ≤ i ≤ n) such that some n subwords out of μ1, . . . , μ2n either contains
the left subwords vi (1 ≤ i ≤ n) or the right subwords yi (1 ≤ i ≤ n). This
generalization is essential for proving the existence of a function not in FA-WCF
(Theorem 2) and a function not in PA-WCF (Theorem 3).

Lemma 3. Let G = (V,Σ, P, I) be a CFG and L be the language generated by
G. There exists a constant N ∈ N that satisfies the following condition :

Let w = λ1 · μ1 · λ2 · μ2 · · · · · λ2n · μ2n · λ2n+1 ∈ Σ∗ be any word such
that w ∈ L and |μ1|, . . . , |μ2n| ≥ N . For every parse tree T of w, there
are subderivations Ai ⇒∗ viAiyi of T where Ai ∈ V, vi, yi ∈ Σ∗ for each
i (1 ≤ i ≤ n) such that there exists a monotone injection g : {1, . . . , n} →
{1, . . . , 2n} and the following (i) or (ii) holds.
(i) For each i (1 ≤ i ≤ n), 1 ≤ |vi| < N and μg(i) contains vi.
(ii) For each i (1 ≤ i ≤ n), 1 ≤ |yi| < N and μg(i) contains yi.

Proof. Let N be a constant in Lemma 2 and λ′
j , ν′

j be λ′
j = λ1μ1 · · · λj , ν′

j =
λj+1μj+1 · · · λ2n+1 for each j (1 ≤ j ≤ 2n) (see Fig. 2). By applying Lemma 2 to
w = λ′

jμjν
′
j (note that |μj | ≥ N) and a parse tree of w, we obtain that there is a

subderivation Aj ⇒∗ vjAjyj of T , and (i’) μj contains vj such that 1 ≤ |vj | < N
or (ii’) μj contains yj such that 1 ≤ |yj | < N . Since we have 2n subwords
μ1, . . . , μ2n that do not pairwise overlap in w, there exist j1, j2, · · · , jn (1 ≤ j1 <
j2 < · · · < jn ≤ 2n) such that the following (i) or (ii) holds.

(i) For each ji (1 ≤ i ≤ n), μji contains vji .
(ii) For each ji (1 ≤ i ≤ n), μji contains yji .

Let Ai = Aji , vi = vji , yi = yji and define the injection g as g(i) = ji, then the
claim of the theorem holds. ��

An Ambiguity Hierarchy of Weighted Context-Free Grammars 245

Fig. 2. Illustration for the proof of Lemma 3

4 An Ambiguity Hierarchy of WCFG over Nmin,+

The purpose of this paper is to prove a strict ambiguity hierarchy caused by
introducing weights. Namely, we would like to prove that there exists a function
in (U-CF∩FA-WCF)\U-WCF (resp. a function in (U-CF∩PA-WCF)\FA-WCF,
a function in (U-CF∩WCF)\PA-WCF). We use fEX2 (resp. fEX3, fEX4) as such a
function that exists in the gap. We already know that fEX2 ∈ U-CF ∩ FA-WCF
(resp. fEX3 ∈ U-CF ∩ PA-WCF, fEX4 ∈ U-CF ∩ WCF) by Example 2 (resp.
Example 3, Example 4) and Example 5. Therefore, we just need to prove fEX2 /∈
U-WCF (resp. fEX3 /∈ FA-WCF, fEX4 /∈ PA-WCF).

To prove them, we use Lemma 3. Note that Nmin,+ is a positive semiring
(see Sect. 2.1), and hence [[G]](w) �= ∞ iff w ∈ L(G′′) where G is a WCFG over
Nmin,+ and G′′ is the underlying CFG of G. Therefore, Lemma 3 can be applied
to WCFG over Nmin,+, by regarding “Let G = (V,Σ, P, I) be a CFG and L be
the language generated by G” as “Let G = (V,Σ, P, I,wt) be a WCFG over
Nmin,+ and f be the function defined by G” and “w ∈ L” as “f(w) �= ∞”.

Theorem 1. fEX2 /∈ U-WCF.

Proof. We suppose that fEX2 can be defined by an unambiguous WCFG G =
(V,Σ, P, I,wt) and let N be a constant in Lemma 3. Consider the word w =
bNaN+1aN+1bN . Clearly, w is a palindrome and fEX2(w) = N . Let T be a parse
tree of w such that wt(T) = N .

Let us apply Lemma 3 to w and T by letting n = 1 and w = λ1μ1λ2μ2λ3

where λ1 = λ3 = ε, μ1 = μ2 = bN and λ2 = aN+1aN+1. Then, T can be written

as I ⇒∗ uAz
c

⇒∗ uvAyz ⇒∗ uvxyz = w for some A ∈ V and u, v, x, y, z ∈ Σ∗,
and one of the following four conditions holds: (i-1) μ1 contains v, or (i-2) μ2

contains v, or (ii-1) μ1 contains y, or (ii-2) μ2 contains y (see Fig. 3). We examine
these four cases.

The case (i-2) contradicts the definition of fEX2. This is because w2 =
uvvxyyz = bNaN+1aN+1bN ′

(N ′ > N) has a parse tree whose weight is N + c
but fEX2(uvvxyyz) = ∞ since w2 is not a palindrome. The case (ii-1) is not
possible by a similar reason to (i-2).

246 Y. Inoue et al.

Fig. 3. Case analysis for the proof of Theorem 1

If (i-1) holds, it follows that v = y = bk (1 ≤ k < N) and μ2 contains y
because, by the definition of fEX2, fEX2(w) �= ∞ iff w is a palindrome. If (ii-2)
holds, v = y = bk (1 ≤ k < N) and μ1 contains v by the same reason as in
the case (i-1). For these subcases (i-1) and (ii-2), consider the parse tree T ′ of
w′ = uv3xy3z = bN+2kaN+1aN+1bN+2k, which is constructed by pumping the

subderivation A
c

⇒∗ vAy in T twice. Apparently, wt(T ′) = N + 2c. Because
k ≥ 1, N + 1 = fEX2(w′) �= wt(T ′) for any c ∈ N. Hence, there exists a parse
tree of w′ whose weight is N + 1. Therefore, |parse(w′)| ≥ 2, but it contradicts
the assumption that G is unambiguous. ��
Remark 1. We used a WCFG that generates palindromes to prove Theorem 1,
but the technique can be applied to other WCFG. For example, we consider the
following function f ′

EX2 defined by FA-WCFG :

f ′
EX2(w) =

{
min{|w| [, |w| 〈} w ∈ Dyck([], 〈 〉)
∞ otherwise

where Dyck([], 〈 〉) is Dyck language consisting of two types of brackets [] and
〈 〉. We can prove that f ′

EX2 is not in U-WCF using the word 〈N [N+1]N+1〉N as
well. For Theorems 2 and 3 below, we also use palindromes for simplicity.

Every non-empty (even) palindrome can be written as wwR where w =
an1
1 an2

2 · · · ank

k , nj ≥ 1 for each j (1 ≤ j ≤ k) and aj �= aj+1 for each j
(1 ≤ j < k). We call each a

nj

j a block in w. We say that a
nj

j in w and a
nj

j

in wR forms a symmetrical block pair of wwR.
To prove Theorems 2 and 3 below, we show a pumping lemma for CFL that

contain only palindromes. Lemma 4 states that if a parse tree T of a palindrome
with distinct central positions such as w$$wR where w ∈ (Σ − {$})∗ has pumps
(vi, yi), T must consist of only linear recursions of nonterminals and vi, yi are
contained in a symmetrical block pair, respectively. This is a generalization of
the case analysis in the proof of Theorem 1.

An Ambiguity Hierarchy of Weighted Context-Free Grammars 247

Lemma 4. Let G = (V,Σ, P, I) be a CFG that generates only palindromes, and
Σ is divided as Σ = Γ ∪ Δ ∪ Ω with Γ , Δ, Ω pairwise disjoint. There exists a
constant N ∈ N that satisfies the following condition :

Let wwR = λ1 · μ1 · λ2 · μ2 · · · · · λ2n · μ2n · λ2n+1 ∈ L(G) where |μi| ≥ N ,
μi = μ2n+1−i ∈ a∗ with some a ∈ Γ , λ2n−i+2 = (λi)R ∈ Δ∗ for every i
(1 ≤ i ≤ n) and λn+1 ∈ Ω+ is a palindrome. For every parse tree T of
wwR, there are subderivations Ai ⇒∗ viAiyi of T where Ai ∈ V, vi, yi ∈
Σ∗ for each i (1 ≤ i ≤ n) such that
(1) 1 ≤ |vi| < N and μi contains vi.
(2) vi = yi, and
(3) vi and yi are contained in a symmetrical block pair of wwR.

Proof. Let N be a constant in Lemma 2. By applying Lemma 2 to the assumed
CFG G in the same way as the proof in Lemma 3, there are subderivations
Ai ⇒∗ viAiyi of T where (i’) μi contains vi such that 1 ≤ |vi| < N or (ii’) μi

contains yi such that 1 ≤ |yi| < N , for each i (1 ≤ i ≤ 2n).
If (ii’) holds for some i ≤ n, then T can be represented as I ⇒∗

uAizλn+1z
′ ⇒∗ uviAiyizλn+1z

′ ⇒∗ uvixyizλn+1z
′ = wwR for some u, x, z, z′ ∈

Σ∗. Note that λn+1 ∈ Ω∗, uvixyiz, z′ ∈ (Γ ∪ Δ)∗ and yi �= ε, contradicting the
assumption that G generates only palindromes. Therefore, (i’) holds for every i
(1 ≤ i ≤ n). That is, (1) 1 ≤ |vi| < N and μi contains vi for every i (1 ≤ i ≤ n).
Furthermore, we can show the following in the same way as the proof of Theo-
rem 1. Subderivations Ai ⇒∗ viAiyi satisfy the conditions (2) and (3) for each i
(1 ≤ i ≤ n), otherwise, G can generate non palindromes by pumping (vi, yi).

Theorem 2. fEX3 /∈ FA-WCF.

Proof. We suppose that fEX3 can be defined by a WCFG G = (V,Σ, P, I,wt)
such that there exists m ∈ N and |parse(w)| ≤ m − 1 for all w ∈ Σ∗. Let N be
a constant in Lemma 4. For each � (1 ≤ � ≤ m), consider the word

w� = α1β1α2β2 · · · αmβm$$βm+1αm+1 · · · β2m−1α2m−1β2mα2m

where

(αj , βj) =

{
(aN(m·N !+1), bN(m·N !+1)) j = �, 2m − � + 1 ,

(aN , bN) otherwise ,

for each j (1 ≤ j ≤ 2m). Note that w� is a palindrome. We include long subwords
aN(m·N !+1) in w� by the following reason. Below we will show that there are
pumps (aki , aki) and (bki , bki) where ki < N (1 ≤ i ≤ 2m(1 + N !)). We would
like to obtain an identical word of the form (*3) below from multiple w� for
different � by repeating some of the above pumps depending on �.

By the definition of fEX3, the value fEX3(w�) is obtained when we divide
w� into α1β1α2β2 · · · β�−1α� and β�α�+1β�+1α�+2 · · · αmβm$. Hence, fEX3(w�) =
|α1β1α2β2 · · · β�−1α�|b + |β�α�+1β�+1α�+2 · · · αmβm|a = (� − 1)N + (m − �)N =
(m − 1)N . Let T� be a parse tree of w� such that wt(T�) = (m − 1)N .

248 Y. Inoue et al.

Let us apply Lemma 4 to w� and T� by letting n = 2m(1 + N !), Γ =
{a, b},Δ = ∅, Ω = {$} and μ1, · · · , μ2n ∈ {aN , bN}, λ1 = · · · = λn = ε, λn+2 =
· · · = λ2n+1 = ε, λn+1 = $$ (*1). Then, there are subderivations Ai ⇒∗ viAiyi of
T� where Ai ∈ V , vi, yi ∈ Σ∗ for each i (1 ≤ i ≤ n) (*2) such that 1 ≤ |vi| ≤ N ,
μi contains vi, vi = yi = aki (or = bki), and α2m−j+1 (or β2m−j+1) contains yi

if αj (or βj) contains vi.

Consider Ai

ci⇒∗ viAiyi such that vi is contained in α� among the subderiva-
tions mentioned in (*2). There are exactly m · N ! + 1 of such subderivations by
the following reason. We have α� = aN(m·N !+1) and by the assumption (*1), α�

is the concatenation of some μi of length N and hence the number of such μi is
exactly m ·N ! + 1. Since wt(T�) = (m− 1)N < m ·N ! + 1 and ci ∈ N, there is at
least one i such that ci = 0. (Otherwise, wt(T�) would be greater than or equal
to m · N ! + 1.) For any i such that ci = 0, vi = yi = aki in α� can be pumped
with weight 0. The same property holds for vi = bki contained in β�.

Next, we consider vi = yi = aki (resp. vi = yi = bki) that is not contained in
α�, α2n−�+1 (resp. β�, β2n−�+1). Note that ki (< N) must be a devisor of m · N !
and all pumps (vi, yi) are nested each other on T�. Hence we can construct a
parse tree T ′

� of w′ =

aN(m·N !+1)bN(m·N !+1) · · · bN(m·N !+1)
︸ ︷︷ ︸

m

$$ bN(m·N !+1) · · · bN(m·N !+1)aN(m·N !+1)
︸ ︷︷ ︸

m

(*3)
by pumping subderivations in Tl.

We now consider two parse trees T ′
�1

, T ′
�2

of w′ (1 ≤ �1 < �2 ≤ m). Note that
T ′

�1
can pump subwords ak1 contained in �1-th aN(m·N !+1) and bk′

1 contained in
�1-th bN(m·N !+1) with weight 0, while T ′

�2
can pump subwords ak2 contained in

�2-th aN(m·N !+1) and bk′
2 contained in �2-th bN(m·N !+1) with weight 0. By the

definition of fEX3, the value of fEX3 increases if subwords ak1 , bk′
1 , ak2 , bk′

2 can be
all pumped simultaneously. If T ′

�1
= T ′

�2
, then this simultaneous pump does not

increase the weight, which is a contradiction. Hence, T ′
�1

and T ′
�2

are different
trees. Thus, T1, T2, · · · , Tm are pairwise different and |parse(w′)| ≥ m. However,
this contradicts the assumption that the ambiguity of G is at most m − 1. ��
Remark 2. In the proof of Theorem 2, we said that some vi = aki contained in
α� can be pumped with weight 0, but we can also say that every vi contained in
α� can be pumped with weight 0. That is because, if a subword of α� is generated

by a derivation Ai

ci⇒∗ akiAia
ki ⇒∗ akiakAja

kaki

cj

⇒∗ akiakakjAja
kjakaki (with

pairwise different subderivations Ai

ci⇒∗ akiAia
ki and Aj

cj

⇒∗ akjAja
kj), there

are 2n ways to derive a(ki+kj)n+k. This contradicts the assumption that G is
finitely-ambiguous. Therefore, all vi = aki contained in α� are generated by the
same subderivation. This remark also holds for the proof in Theorem 3.

We can prove that fEX4 /∈ PA-WCF in a similar way to the proof of Theorem
2.

An Ambiguity Hierarchy of Weighted Context-Free Grammars 249

Theorem 3. fEX4 /∈ PA-WCF.

Corollary 1. U-WCF � FA-WCF � PA-WCF � WCF. Furthermore, (U-
WCF ∩ U-CF) � (FA-WCF ∩ U-CF) � (PA-WCF ∩ U-CF) � (WCF ∩ U-CF).

5 Conclusion

We proved a pumping lemma for CFG, which is helpful for demonstrating an
iteration without increasing weights, and showed the strict ambiguity hierarchy
of WCFG. Since the functions proved to exist in the gaps are all in U-CF, this
hierarchy is different from the ambiguity hierarchy of CFG known as inherent
ambiguity. In other words, the hierarchy shown to exist in this paper is caused
by introducing weights.

We defined U-CF as the class of functions whose supports are defined by some
U-WCFG over B. Similarly, we can define FA-CF and PA-CF as the classes of
functions whose supports are defined by some FA-WCFG over B and some PA-
WCFG over B, respectively. For these classes, we expect to prove the inclusion
(FA-WCF∩FA-CF) � (PA-WCF∩FA-CF) � (WCF∩FA-CF) and (PA-WCF∩
PA-CF) � (WCF ∩ PA-CF) in the same way.

The discussion on the ambiguity hierarchy of WA in [1,7] is generalized by
using pumping lemmas that correspond to each hierarchy level. Showing similar
pumping lemmas for U-WCFG, FA-WCFG and PA-WCFG is left as future work.
However, showing them seems difficult because the expressive power of WCFG
cannot be determined by a simple iteration property, as explained in Sect. 1.

The techniques in Theorems 1, 2 and 3 could be applied to other weighted
models and other semirings. In particular, Remark 2 is useful. For example, if

there are n of the same subderivations A
c

⇒∗ vAy and f(w) = W , then c must be
smaller than or equal to W 1/n for WCFG over the semiring (N∪{∞},+,×, 0, 1)
of natural numbers.

References

1. Chattopadhyay, A., Mazowiecki, F., Muscholl, A., Riveros, C.: Pumping Lemmas
for Weighted Automata, CoRR abs/2001.06272 (2020)

2. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages.
Stud. Logic Found. Math. 26, 118–161 (1959)

3. M. Droste, W. Kuich and H. Vogler, Handbook of Weighted Automata, Springer
Science & Business Media, Berlin (2009). https://doi.org/10.1007/978-3-642-01492-
5

4. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press,
Cambridge (1998)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Boston (1979)

6. Maletti, A., Nasz, T., Stier, K., Ulbricht, M.: Ambiguity hierarchies for weighted
tree automata. In: Maneth, S. (ed.) CIAA 2021. LNCS, vol. 12803, pp. 140–151.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79121-6 12

https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-030-79121-6_12

250 Y. Inoue et al.

7. Mazowiecki, F., Riveros, C.: Pumping lemmas for weighted automata. STACS 50(1–
50), 14 (2018)

8. Ogden, W.: A helpful result for proving inherent ambiguity. Math. Syst. Theor.
2(3), 191–194 (1968)

9. Wich, K.: Exponential Ambiguity of Context-free Grammars, DLT 1999, pp. 125–
138 (1999)

Author Index

Berglund, Martin 53
Bruse, Florian 80

Cheon, Hyunjoon 34

Dolu, Özdeniz 212
Drewes, Frank 93

Ersoy, Nevzat 212

Gezer, M. Utkan 212
Gruber, Hermann 3

Han, Yo-Sub 34
Hashimoto, Kenji 238
Herwig, Maurice 80
Hoffmann, Stefan 225
Holzer, Markus 3
Hospodár, Michal 152
Hutchinson, Laura K. 116

Inoue, Yusuke 238

Jacquemard, Florent 67

Kıyak, Fırat 200
Kutrib, Martin 128, 140

Lange, Martin 80
Lyon, Oliver A. S. 189

Malcher, Andreas 140
Martynova, Olga 177
Mercaş, Robert 116
Meyer, Uwe 128
Mörbitz, Richard 93
Moreira, Nelma 19

Okhotin, Alexander 177
Olejár, Viktor 152

Rauch, Christian 3
Reidenbach, Daniel 116
Reis, Rogério 19
Rodriguez de la Nava, Lydia 67
Ruszil, Jakub 106

Salomaa, Kai 189
Say, A. C. Cem 200, 212
Seki, Hiroyuki 238
Sung, Sicheol 34

Tran, Nicholas 165

Üngör, Meriç 200

van der Merwe, Brink 53
Vogler, Heiko 93

Wendlandt, Matthias 140

Yılmaz, Öykü 200

	 Preface
	 Organization
	 Contents
	Invited Lectures
	On 25 Years of CIAA Through the Lens of Data Science
	1 Introduction
	2 Conference Versus Paper Topics
	3 Collaboration Patterns
	References

	Manipulation of Regular Expressions Using Derivatives: An Overview
	1 Preliminares
	2 Derivatives
	3 Partial Derivatives
	3.1 Position Automaton

	4 Complexity of Partial Derivatives
	4.1 Complexity of Building APD

	5 Beyond Regular Languages
	References

	How to Settle the ReDoS Problem: Back to the Classical Automata Theory
	1 Introduction
	2 Background
	2.1 Theoretical Foundations
	2.2 ReDoS Problem: Regular Expression Denial-of-Service
	2.3 Related Work

	3 Proposed Approach
	4 Experimental Results and Analysis
	4.1 Dataset
	4.2 Experiment Settings
	4.3 Results and Analysis

	5 Conclusions
	References

	Conference Papers
	Ordered Context-Free Grammars
	1 Introduction
	2 Definitions and Elementary Properties of oCFG
	3 oCFG Derivations
	4 oCFG Extensions
	5 Conclusions and Future Work
	References

	Symbolic Weighted Language Models, Quantitative Parsing and Automated Music Transcription
	1 Introduction
	2 Preliminary Notions
	3 SW Visibly Pushdown Automata and Transducers
	4 Symbolic Weighted Parsing
	5 Properties and Best-Search Algorithm
	References

	A Similarity Measure for Formal Languages Based on Convergent Geometric Series
	1 Introduction
	2 Distance Based on a Convergent Geometric Series
	2.1 Formal Languages and Metrics
	2.2 Formal Definition of the Distance Metric
	2.3 A Comparison with Other Metrics

	3 Similarity in Formal Language Exercises
	3.1 Automatic Assessment and Grading
	3.2 Redistribution of Weights on Short Words
	3.3 An Implementation and Test Cases
	3.4 Empirical Determination of Good Parameter Values

	4 Conclusion
	References

	Hybrid Tree Automata and the Yield Theorem for Constituent Tree Automata
	1 Introduction
	2 Preliminaries
	3 The Basic Model
	4 Constituent Tree Automata
	References

	Some Results Concerning Careful Synchronization of Partial Automata and Subset Synchronization of DFA's
	1 Introduction
	2 Preliminaries
	3 Reducing the Number of Letters
	4 Constant Number of Letters and Subset Synchronization
	5 Conclusions and Further Work
	References

	A Toolkit for Parikh Matrices
	1 Introduction
	2 Preliminaries
	3 Toolkit
	3.1 Parikh Matrix
	3.2 L-Parikh Matrix
	3.3 P-Parikh Matrix
	3.4 Amiable Words
	3.5 L-Amiable Words
	3.6 P-Amiable Words
	3.7 Is It Parikh?
	3.8 Associated Words

	References

	Syntax Checking Either Way
	1 Introduction
	2 Definitions and Preliminaries
	3 Syntax Checking Either Way – Could It Make Sense?
	4 Decidability – Why We Need Man-Made Proofs
	5 Expressive Capacity of DCFLR
	6 Closure Properties of RDCFL
	References

	On the Power of Pushing or Stationary Moves for Input-Driven Pushdown Automata
	1 Introduction
	2 Definitions and Preliminaries
	3 Homomorphic Reduction
	4 Computational Capacity
	5 Decidability Questions
	References

	The Cut Operation in Subclasses of Convex Languages (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Results
	4 Conclusions
	References

	Variations of the Separating Words Problem
	1 Introduction
	2 Preliminaries
	3 2-separation and 201-separation
	4 -separation
	5 Open Problems
	References

	Homomorphisms on Graph-Walking Automata
	1 Introduction
	2 Graph-walking Automata
	3 Inverse Homomorphisms: Upper and Lower Bounds
	4 A Characterization of Regular Tree Languages
	5 Future Work
	References

	Nondeterministic State Complexity of Site-Directed Deletion
	1 Introduction
	2 Preliminaries
	3 General Alphabet Site-Directed Deletion
	4 Unary Alphabet Site-Directed Deletion
	5 Conclusion
	References

	Energy Complexity of Regular Language Recognition
	1 Introduction
	2 The General QFA Framework and Information Erasure
	3 Zero-Error QFAs Have No Energy Advantage
	4 An Upper Bound for Information Erasure Per Step
	5 Trading Energy for Error
	6 Concluding Remarks
	References

	Real-Time, Constant-Space, Constant-Randomness Verifiers
	1 Introduction
	2 Preliminaries
	2.1 One-Way Multihead Finite Automata
	2.2 Verifiers

	3 Real-Time, Finite-State, Constant-Randomness Verification
	3.1 1DFA@瑥浰搠*@瑥浰挠*2 is Real-Time Verifiable
	3.2 Real-Time Verification Beyond 1DFA@瑥浰搠*@瑥浰挠*2

	4 Concluding Remarks
	References

	Constrained Synchronization for Monotonic and Solvable Automata and Automata with Simple Idempotents
	1 Introduction
	2 Preliminaries and Some Known Results
	3 Monotonic Automata
	4 Solvable Automata
	5 Synchronizing Automata with Simple Idempotents over a Binary Alphabet
	6 Conclusion
	References

	An Ambiguity Hierarchy of Weighted Context-Free Grammars
	1 Introduction
	2 Preliminaries
	2.1 Semirings
	2.2 Weighted Context-Free Grammars

	3 An Extended Ogden's Lemma
	4 An Ambiguity Hierarchy of WCFG over Nmin,+
	5 Conclusion
	References

	Author Index

