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Chapter 4
Broadscale Variation of Phytoplankton 
Richness in Brazilian Inland Waters

Lúcia Helena Sampaio da Silva, Juliana Barreto Oliveira dos Santos, 
Letícia Barbosa Quesado, Davi Almeida Barreto, Indhira Viana Freire, 
Mariângela Menezes, Maria da Graça Sophia, Donato Seiji Abe, 
and Vera Lúcia de Moraes Huszar

Abstract Species richness is a primary biodiversity measure in ecosystem func-
tioning studies. The main factors shaping broadscale patterns of phytoplankton spe-
cies richness (PhyRich) are temperature, system area, productivity, and less assessed 
light, flushing, and grazing. Our understanding of how the environment affects 
PhyRich is limited on broad spatial scales because of the lack of data using the same 
sampling and analysis methods. We selected three essential factors and hypothe-
sized that PhyRich increases with water temperature, light availability (as turbidity), 
and intermediate productivity (as total phosphorus) levels. We assessed PhyRich 
from samples taken by a specially equipped hydroplane at 1045 sites across subcon-
tinental (entire dataset) and regional (hydrographic regions) scales in Brazil 
(4°N–33°S and 34°–73°W) by quantifying the species number per site (settling 
technique). We selected models using the Akaike Information Criterion to under-
stand which combination of variables better described PhyRich patterns. On our 
subcontinental scale, PhyRich was positively related to water temperature and nega-
tively to light availability and productivity, although PhyRich was similar in oligo- 
and mesotrophic conditions, approaching the expected unimodal relationship. The 
trend for a slight reduction at the end of all gradients (univariate models) may have 
implications for the ecological functioning of freshwater systems.
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4.1  Introduction

Species richness has been used as a primary measure of biodiversity and to assess 
its relationship to ecosystem functioning (Díaz and Cabido 2001; Magurran 2005; 
Vogt et al. 2010; Magurran and McGill 2011). Except for the neutral theory (Hubbel 
2001), the ability to predict patterns of species richness is based on the assumption 
that different species respond differently to environmental gradients (Tilman 2004; 
Cadotte et  al. 2011). As for macroorganisms, microbial communities also affect 
ecosystem processes, including respiration and decomposition, autotrophic and het-
erotrophic production, and nutrient cycling.

Phytoplankton is a highly diverse community composed of 10,000 to 25,000 
marine and freshwater species (Sournia et al. 1991; Falkowski et al. 2004; Vargas 
et al. 2015). The rapid response of phytoplankton to environmental changes may 
reflect water quality (Padisák et  al. 2006; Chen et  al. 2021; Zhang et  al. 2018). 
Although quantifying species richness changes (or lack thereof) has been consid-
ered only one measure of a much more complex phenomenon of biodiversity change 
through time and space (Chase et al. 2019), phytoplankton species richness can help 
to understand ecosystem processes.

The main ecological drivers of phytoplankton species richness are temperature, 
system area, productivity, and light and, to a lesser extent, hydraulic flow and graz-
ing pressure. Water temperature directly affects individual and population meta-
bolic processes through its direct relationship with the growth of phytoplankton 
communities (Roland et al. 2010; Weyhenmeyer et al. 2013; Kruk et al. 2017) and 
its indirect effect on the thermal structure of the water column (Winder and Hunter 
2008). Several phytoplankton studies have shown positive relationships between 
species richness and temperature (Ptacnick et  al. 2010; Thomas et  al. 2012; 
Weyhenmeyer et al. 2013; Kruk et al. 2017). This is in line with the metabolic the-
ory of ecology, where a more intense flow of energy in the food chain increases the 
productivity of systems and consequently the availability of resources, enabling the 
coexistence of a larger number of species (Hawkins et al. 2003; Segura et al. 2017).

In addition to water temperature, a positive relationship between phytoplankton 
species richness and ecosystem surface area has been observed in both natural and 
experimental aquatic ecosystems. In an experimental study, Smith et al. (2005) con-
firmed that patterns in microbial diversity are highly consistent with those that have 
been repeatedly reported for macroorganisms. However, in a study of 30 subarctic 
rock pools, phytoplankton richness was not positively related to the pool volume, 
i.e., it did not support the species-area relationship (Soininen and Meyer 2014).

A unimodal relationship (higher values at intermediate levels) between phyto-
plankton species richness and productivity has been reported along the entire nutri-
ent enrichment gradient (Dodson et al. 2000; Smith 2007). This relationship depends 
on the productivity interval analyzed: it is direct in systems with increasing produc-
tivity, inverse when the productivity decreases, and absent at intermediate produc-
tivity levels (Smith 2007). However, the mechanisms that lead to this pattern are still 
widely debated. At low productivity levels, competition for resources and essential 
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variables (e.g., temperature) directly affects individual phytoplankters and popula-
tion metabolic processes and can be determinant for phytoplankton richness and 
composition.

Light availability is another critical factor, but the relationship patterns remain 
unclear. The duration of the open-water season (as a proxy of light) was positively 
related to the PhyRich along a latitudinal gradient in Sweden, favoring growth and 
increasing the number of available niches (Weyhenmeyer et  al. 2013). In highly 
productive systems, high biomass can lead to lower PhyRich due to greater compe-
tition for light (Zhang et  al. 2018). In experimental studies, species richness 
decreased in treatments with high and low light availability, but the decrease was 
larger in conditions of high light availability due to photoinhibition (Litchman 1998).

Although hydrology is not as crucial for most large lakes, in small lakes, the 
runoff during large storm events can potentially increase the rate of loss from com-
munities to the drainage basin. Hydraulic flow tends to be important in reservoirs, 
especially run-of-river reservoirs (inflow = outflow) and, more markedly, in lotic 
ecosystems where unidirectional flow is one of the main factors controlling pelagic 
communities (Reynolds et  al. 1994; Schmidt 1994). In floodplain systems, the 
hydrological pulse is the main regulatory factor for phytoplankton (Zalocar de 
Demitrovic 2002; Devercelli 2006; Salmaso and Zignin 2010; Talling and Prowse 
2010), with phytoplankton showing negative (Huszar et  al. 1998; Nabout et  al. 
2007; Borges and Train 2009) or positive relationships (Train and Rodrigues 1998) 
to the hydraulic flow. Grazing pressure is an essential factor for controlling phyto-
plankton, and selective predation may cause low diversity and lead to a negative 
relationship (Muylaert et al. 2010; Vallina et al. 2014; Kruk et al. 2017).

These responses of phytoplankton species richness to different environmental 
gradients result in a nonlinear relationship between biodiversity and ecosystem 
functioning and may differ between local and regional scales, as illustrated by data 
obtained from several river basins (Chase and Ryberg 2004). The importance of 
understanding these responses is due mainly to the impact of global changes on 
biodiversity and ecosystem functioning (Weyhenmeyer et  al. 2013). Despite the 
importance of species richness, our understanding of how the environment affects 
PhyRich at large spatial scales is limited. This metric can only be used with confi-
dence when phytoplankton sampling and quantification are correctly performed, to 
provide an accurate survey of the taxa in a system (Várbiró et  al. 2017; Borics 
et al. 2021).

Here, we offer a comprehensive analysis based on 1045 sites (Moss and Moss 
2005; Abe et al. 2006) to assess how PhyRich varies concerning common major 
factors (temperature, light, and productivity). We followed the space-for-time- 
substitution approach by retrieving samples through a specially equipped hydro-
plane in motion, over an unprecedentedly large spatial scale in Brazil (Brasil das 
Águas Project). We hypothesized that PhyRich increases with water temperature 
and light availability (decreases with turbidity as a proxy) and increases at interme-
diate productivity (total phosphorus as a proxy) levels. We explicitly addressed spe-
cies richness as estimated from single phytoplankton samples, most directly related 
to ecosystem processes carried out by phytoplankton.

4 Broadscale Variation of Phytoplankton Richness in Brazilian Inland Waters
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4.2  Material and Methods

4.2.1  Study Area

The sampling points were based on broad latitudinal and longitudinal scales 
(4°N–33°S and 34–73°W) in 12 hydrographic regions (HRs; Fig. 4.1) defined by 
the National Water Resources Council (CNRH) and ANA (National Water Agency). 
We included as wide a variety of water bodies as possible, such as rivers, coastal 
lagoons, floodplain lakes, other natural lakes, reservoirs, rivers, and estuaries. Brazil 
is about 8.5 million km2 in area, with between 12% and 16% of all freshwater pro-
duction on the planet. The climate ranges from humid temperate to humid equato-
rial (Köppen-Geiger classification, updated by Alvares et al. 2013). It varies from 
areas with sparse (<1 inhabitant per km2) to high human population densities (>400 

Fig. 4.1 Map of Brazil, showing the sampling sites in the 12 hydrographic regions. Information 
obtained in the “ANA Metadata Catalog” (https://metadados.snirh.gov.br/geonetwork/srv/por/cat-
a l o g . s e a r c h ; j s e s s i o n i d = 0 1 A 6 6 B C 2 0 6 A A B 1 3 7 A 7 3 D 5 C 4 F 7 D 7 6 1 A 8 9 # /
metadata/0574947a- 2c5b- 48d2- 96a4- b07c4702bbab, accessed in September 21)

L. H. S. da Silva et al.
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Table 4.1 Main features of the 12 Brazilian hydrographic regions, with abbreviations used in the 
text. Data for population and treated sewage refer to the study period and were extracted from 
Moss and Moss (2005)

Hydrographic regions/
abbreviation

Area 
(km2) Biome

Human population 
(million inhabitants and 
%)

Treated 
sewage
(%)

Amazon (Ama) 3,805,850 Amazon rainforest 7.6 (4.5) 2.3
Coastal east (CoastE) 374,677 Atlantic Forest, 

Cerrado
13.6 (8) 30

Coastal northeast
(CoastNE)

287,348 Atlantic Forest, 
caatinga

21.6 (12.7) 18.2

Coastal northwest
(CoastNW)

254,100 Amazon rainforest, 
Cerrado

4.7 (2.8) 0.1

Coastal southeast
(CoastSE)

229,972 Atlantic forest 25.6 (15.1) 26.4

Coastal south 
(CoastS)

185,856 Atlantic Forest, 
pampa

11.6 (6.8) 8.2

Paraguay (Parag) 363,445 Cerrado, Pantanal 1.9 (1.1) 17.2
Paraná (Paran) 879,860 Atlantic Forest, 

Cerrado
54.6 (32.2) 24.9

Parnaíba (Parnb) 344,112 Cerrado, caatinga 3.6 (2.1) 4.8
São Francisco 
(SFranc)

638,324 Atlantic Forest, 
Cerrado, caatinga

12.8 (7.6) 3.2

Tocantins/Araguaia
(TocArag)

967,059 Amazon Rainforest, 
Cerrado

7.9 (4.7) 2.4

Uruguay (Urug) 174,612 Atlantic Forest, 
pampa

3.8 (2.3) 6.0

inhabitants per km2; Moss and Moss 2005; Abe et al. 2006; Table 4.1). HRs include 
areas with different land uses, from large natural forest areas, savanna (Cerrado), 
and caatinga, to anthropic landscapes such as urban regions, mining, and agriculture 
(Table 4.1).

4.2.2  Sampling

We followed the space-for-time-substitution approach (Jeppessen et  al. 2014; 
Meehrhof et al. 2012) by retrieving samples through a specially equipped hydro-
plane in motion, over an unprecedentedly broad spatial scale in Brazil (Brasil das 
Águas project. www.brasildasaguas.com.br). Water temperature, turbidity, and total 
phosphorus (TP) were analyzed at 1164 and PhyRich at 1045 sampling sites. 
Sampling was conducted from November 2003 to December 2004, encompassing 
177 lakes and reservoirs and 366 watercourses, including the broadest possible vari-
ety of protected, agricultural, and urban areas. Samples were taken through a tube 
20 cm below the water surface, connected to an autosampler on board a hydroplane 

4 Broadscale Variation of Phytoplankton Richness in Brazilian Inland Waters
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(Lake LA-250 Renegade, Lake Aircraft, USA) in motion. The system was flushed 
with lake and river water four times before samples were taken.

We describe richness patterns and three of the most reported drivers of PhyRich: 
(i) temperature, as water temperature (WTemp); (ii) total phosphorus (TP), as a 
proxy of productivity; and (iii) turbidity (Turb) as a proxy of light availability. 
Because many sites were sampled in lotic systems and the sampling approach did 
not allow us to assess zooplankton, we did not evaluate the crucial relationships 
between PhyRich vs. area and grazing, respectively. We focused on the subconti-
nental (whole country) and regional (hydrographic regions) scales. WTemp and 
Turb were measured directly on board the hydroplane with a YSI 660 multiparam-
eter water quality probe (Yellow Springs, USA). Phytoplankton samples were fixed 
with Lugol’s solution. Samples for TP were frozen immediately after sampling, 
using liquid nitrogen. Upon arrival in the laboratory, they were stored at −20 °C and 
analyzed within 20 days after sampling.

Maps were constructed using ArcMap 10.8 software. Information obtained in the 
“ANA Metadata Catalog” (https://metadados.snirh.gov.br/geonetwork/srv/por/cata-
log.search;jsessionid=01A66BC206AAB137A73D5C4F7D761A89#/
metadata/0574947a- 2c5b- 48d2- 96a4- b07c4702bbab, accessed in September/21) 
was used as a reference to delimit the hydrographic regions. The points indicated on 
the maps (1045 for PhyRich and 1164 for WTemp, Turb, TP) correspond to the 
sampling sites. For PhyRich, Turb, and TP, we used the manual classification to 
define the different categories of values, and for WTemp, we used the Jenks Natural 
Breaks algorithm (Smith et al. 2018).

4.2.3  Analytical Methods

TP concentrations in water samples were analyzed by digestion with potassium 
persulfate and subsequent colorimetric reaction by ascorbic acid (Valderrama 1981), 
using a Varian Cary 50 spectrophotometer. PhyRich was assessed by quantifying 
the species number from single samples per site, using the settling method (Utermöhl 
1958) under an inverted microscope (Zeiss Axiovert 10, Oberkochen, Germany). 
Only two counters analyzed the phytoplankton samples.

4.2.4  Data Analyses

All data obtained (1164 samples) were included for environmental variables and, 
for regression and GLM analysis, only samples containing phytoplankton data 
(1045 samples). Trophic states were assessed according to Nürnberg (1996) based 
on TP concentrations: oligotrophic <10 μg/L; mesotrophic 10–30 μg/L; eutrophic 
30–100 μg/L; and hypereutrophic >100 μg/L.

L. H. S. da Silva et al.
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To perform the cumulative species curve at the subcontinental scale (all sample 
points), we used the estimator Chao 2 (Chao 1987), which includes rare species, 
as the species number found in one sample (unique) and as the species number 
found in two samples (duplicates). To compare PhyRich at the regional scale (for 
each HR), we used the rarefaction method. This allowed us to compare the num-
ber of species between communities when the abundance of individuals was not 
the same (Gotelli and Chao 2013). Rarefaction calculates the expected number of 
species in each HR, based on a value where all samples reach a standard size, or 
comparisons based on the community with fewer individuals as a comparative 
basis. The analyses were carried out in R 4.1.1 (R Core Team 2021). The cumula-
tive species curve was constructed using the vegan package (Oksanen et al. 2020). 
Sample-based rarefaction curves were performed using the iNEXT package 
(Hsieh et al. 2016).

We tested the statistical differences of the variables among HRs using the non-
parametric Kruskal-Wallis test (Kruskal and Wallis 1952), followed by Dunn’s post 
hoc pairwise comparisons. Statistical analyses were performed in SigmaPlot 12.5 
software at the significance level of p < 0.05. Turb and TP were log10-transformed 
before the analysis. To avoid zeros in Turb values, we added 0.2 (lowest observed 
value) before the log10 transformation.

To describe the pattern of phytoplankton richness along the gradients of 
WTemp, Turb, and TP, we regressed with a generalized linear model (GLM). We 
plotted 95% confidence intervals on the fitted function, with the function geom_
smooth and the generalized additive model (GAM) in the R package ggplot2. The 
significance of the relationship was calculated with GAM function in the R pack-
age mgcv. We used TP as a proxy for productivity (Ptacnick et al. 2010) and Turb 
for light availability.

To understand the PhyRich patterns at subcontinental and regional scales, we 
performed multiple combinations of environmental variables. First, we log10 trans-
formed the data to reduce the dispersion of Turb (plus its minimum value) and 
TP. Then, from each environmental gradient tested, we removed the variation of the 
other variables using a generalized linear model (GLM) with a Gaussian error dis-
tribution, with the function glm in the R package stats. We selected models using the 
Akaike Information Criterion (AIC), with the regression residuals from the first 
step. For each dataset, we first constructed a full model with all variables (i.e., 
WTemp, TP, and Turb). Then, the best models, which retained the most information 
with the fewest variables, were selected using a model selection table based on 
ΔAICc (difference between the AICc of a given model and the AICc of the best 
model – Akaike Information Criterion) (Burnham and Anderson 2004), with the 
function aictab in the R package AICcmodavg. We also used the Dsquared (D2) 
model selection, which is the explained deviance of the model expressed as a per-
centage and is considered a pseudo r2 of the best-selected model and a measure of 
model fit (Guisan and Zimmermann 2000).

4 Broadscale Variation of Phytoplankton Richness in Brazilian Inland Waters
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Fig. 4.2 (a) Measured and estimated (Chao 2) cumulative species curves for the subcontinental 
scale (n = 1045) in Brazil; (b) sample-based rarefaction curves for phytoplankton samples in the 
12 hydrographic regions in Brazil. The curves show the observed (interpolated; solid lines) and 
extrapolated (dashed lines) cumulative phytoplankton species numbers. Ama Amazon, CoastE 
coastal east, CoastNE coastal northeast, CoastNW coastal northwest, CoastSE coastal southeast, 
CoastS coastal south, Parag Paraguay, Paran Paraná, Parnb Parnaíba, SFranc São Francisco, 
TocArag Tocantins/Araguaia, Urug Uruguay

4.3  Results

The combined phytoplankton dataset from the 12 hydrographic regions (HRs) 
contained 605 species (morphospecies). They belonged to 10 algal taxonomic 
classes: 102 cyanobacteria, 18 cryptomonads, 22 dinoflagellates, 85 diatoms, 43 
chrysophyceans, 10 xanthophyceans, 30 euglenoids, 3 raphidophyceans, 204 
chlorophyceans, and 68 zygnematophyceans. Of the total morphospecies, only 20 
were observed in at least 1 sample in the 12 HRs. At the continental scale, we 
observed many rare species; 134 occurred only at 1 site (singletons) and 86 twice 
(doubletons). Accumulation (Fig. 4.2a) and rarefaction (Fig. 4.2b) curves, both 
based on Chao 2 estimator, showed no tendency to stabilize at an asymptote. It 
also estimated the possibility of finding 100 more species with a greater sampling 
effort. The rarefaction curves did not show differences between the cumulative 
number of phytoplankton species in the TocArag and Ama HRs. Nonetheless, 
these two basins showed almost twice as many cumulative numbers of species as 
the other HRs (Fig. 4.2b).

4.3.1  Phytoplankton Richness

Phytoplankton richness (PhyRich) at the subcontinental scale ranged between 0 and 
62 spp./sample, with a median of 10 spp./sample. CoastE and CoastSE showed the 
significantly lowest PhyRich (median  =  3 spp./sample), and TocArag and Urug 
showed the highest (median = 16 spp./sample; p < 0.001; Figs. 4.3a and 4.4a). 

L. H. S. da Silva et al.
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Fig. 4.3 (a) Phytoplankton richness, PhyRich; (b) water temperature, WTemp; (c) turbidity, Turb; 
and (d) total phosphorus, TP, expressed by box-whisker plots, where the horizontal lines inside the 
box plots indicate the median and the boundaries of the box plots indicate the 25th and 75th per-
centiles. Whiskers above and below indicate the 90th and 10th percentiles; dots are outliers in the 
12 Brazilian hydrographic regions. Ama Amazon, CoastE coastal east, CoastNE coastal northeast, 
CoastNW coastal northwest, CoastSE coastal southeast, CoastS coastal south, Parag Paraguay, 
Paran Paraná, Parnb Parnaíba, SFranc São Francisco, TocArag Tocantins/Araguaia, Urug Uruguay

4.3.2  Environmental Variables

Variables described in this section are some of the most often reported to drive 
PhyRich over a broad spatial scale. WTemp ranged from 20.6 °C (Paran) to 36.4 °C 
(CoastE). Median values were significantly higher in Parag, Ama, and CoastNW 
and lower in CoastSE, CoastS, and Paran (Figs. 4.3b and 4.4b). 

The range of Turb was between 0.2 (Ama, CoastE, CoastS, Paran, and Urug) and 
1429 NTU (Ama). Two hundred and forty-four sites had Turb <5 NTU, 655 from 5 
to 50, and 212  >  50 NTU over the subcontinental scale. For the regional scale, 
median values were highest in SFranc, CoastS, and CoastNW and lowest in Paran 
and Urug (Figs. 4.3c and 4.4c). Our data also showed that clear waters influenced 
sampling sites in the Amazon HR (Fig. 4.4c).

4 Broadscale Variation of Phytoplankton Richness in Brazilian Inland Waters
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Fig. 4.4 (a) Spatial structure of phytoplankton richness, PhyRich; (b) water temperature, WTemp; 
(c) turbidity, Turb; (d) total phosphorus, TP. Values increase from the lighter to the darker color 
(n = 1045 in a and n = 1164 in b, c, d)

Based on TP concentrations, 21 sites were oligotrophic, 528 mesotrophic, 490 
eutrophic, and 109 hypereutrophic. TP concentrations ranged from 5 μg/L in Ama, 
CoastS, CoastE, SFranc, and TocArag to 1671 μg/L (Paran). Median values were at 
mesotrophic levels (20.4–28.1 μg/L) in Ama, Parnb, and TocArag. The other nine 
HRs showed median values at eutrophic levels (35.4–79.2  μg/L; Fig.  4.3d). 
Furthermore, some sampling sites in the coastal RHs, Paran, and Parag were hyper-
eutrophic (Fig. 4.4d).

L. H. S. da Silva et al.
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4.3.3  Relationships Between Species Richness 
and Environmental Variables

The univariate relationships between PhyRich and environmental drivers showed 
different patterns. PhyRich was similar from 20 to ~28 °C, increased to 34 °C, and 
then decreased slightly to the end of gradient (Fig. 4.5a). PhyRich increased slightly 
until turbidity ~40 NTU L and then reduced to the end of the gradient (Fig. 4.5b). 
PhyRich remained similar until TP concentrations ~30 μg/L and then decreased to 
~350 μg/L (Fig. 4.5c). At the beginning and end of the WTemp and TP gradients, we 
observed greater variability at the 95% confidence range.

Fig. 4.5 The relationship between phytoplankton richness (PhyRich, taxa/sample) and (a) water 
temperature (Wtemp, °C, n = 1025), (b) turbidity (Turb, NTU, n = 1017), and (c) total phosphorus 
(TP, μg/L, n = 1045) obtained by GLMs (Generalized linear model regressions). The gray area is 
the approximate 95% confidence interval of the fitted function

4 Broadscale Variation of Phytoplankton Richness in Brazilian Inland Waters
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The full GLM for the subcontinental scale selected WTemp, Turb, and TP 
(Table  4.2). PhyRich was significant and positively associated with WTemp and 
negatively with TP and Turb. For the regional scale, the three factors were signifi-
cant only in the Ama HR, following a similar signal of the entire dataset. WTemp 
and Turb, both positively, explained the variability in PhyRich in the Parnb HR. In 
CoastNW, TocArag, and Parag, PhyRich was explained by WTemp as the only sig-
nificant variable, and Urug and CoastE only by TP.

CoastNW showed the highest PhyRich variance explained by the environmental 
conditions (D2 = 35.303%), followed in descending order by Parnb (D2 = 31.357%), 
Ama (D2 = 25.160%), and Urug (D2 = 24.011%). For 5 of the 12 HRs, no model 
significantly explained PhyRich variability: CoastNE, CoastSE, CoastS, SFranc, 
and Paran (Table 4.2).

Table 4.2 The selected models for subcontinental and regional scales, where a significant 
combination of the environmental variables (autocorrelation removed) best explained the variation 
in phytoplankton richness

Regions Model AICcWt D2 n

Subcontinental scale
12.183*** + 1.255 Wtemp*** – 2.606 log(Turb+0.2)*** – 
7.586 log(TP) ***

0.999 10.192 1017

Regional scale
CoastNW 9.513*** + 2.399 Wtemp** – 6.734 log(Turb+0.2) + 5.890 

log(TP)
0.481 35.303 39

Parnb 16.423*** + 3.671 Wtemp* + 10.790 
log(Turb+0.2)* + 34.530 log(TP)

0.282 31.357 26

Ama 12.781*** + 2.659 Wtemp*** – 5.806 log(Turb+0.2)*** – 
15.518 log(TP)***

1.000 25.160 456

Urug 16.056*** + 0.453 Wtemp +0.662 log(Turb+0.2) – 20.439 
log(TP)**

0.560 24.011 36

TocArag 17.302*** + 2.737 Wtemp*** + 3.527 log(Turb+0.2) – 
3.768 log(TP)

0.344 14.961 96

Parag 12.318*** + 1.617 Wtemp* – 3.385 log(Turb+0.2) + 0.506 
log(TP)

0.541 14.823 44

CoastE 5.217*** + 0.607 Wtemp – 0.199 log(Turb+0.2) – 6.917 
log(TP)*

0.395 10.867 69

AICcWt AIC weight for the most parsimonious among the candidate model set, D2 explained 
model deviance (%). All ΔAICc were zero. WTemp water temperature, Turb turbidity, TP total 
phosphorus. PhyRich in the five remaining hydrographic regions was not significantly explained 
by any variable
Ama Amazon Rainforest, CoastE coastal east, CoastNE coastal northeast, CoastNW coastal north-
west, CoastS coastal south, CoastSE coastal southeast, Parag Paraguay, Paran Paraná, Parnb 
Parnaíba, SFranc São Francisco, TocArag Tocantins/Araguaia, Urug Uruguay. Signif. codes: 
***p = <0.001; **p = <0.01; *p = <0.05
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4.4  Discussion

Species richness (PhyRich), the number of morphospecies per site, is a primary 
measure of biodiversity in ecosystem functioning studies. The main factors shaping 
the broadscale patterns of PhyRich are temperature, system area, productivity, and, 
less often assessed, light, flushing, and grazing (Litchman 1998; Train and Rodrigues 
1998; Smith et  al. 2005; Nabout et  al. 2007; Smith 2007; Muylaert et  al. 2010; 
Weyhenmeyer et al. 2013; Vallina et al. 2014). Here, we evaluated PhyRich along 
with three of these gradients: temperature, productivity (total phosphorus as a 
proxy), and light availability (turbidity as a proxy). Our dataset is unprecedented in 
its broad spatial scale and inclusion of difficult-to-reach sites in Brazil. We hypoth-
esized that PhyRich increases with water temperature and light availability (i.e., 
decreases with turbidity) and increases at intermediate productivity levels. Our 
hypotheses were partially confirmed since our broad spatial scale study showed that 
PhyRich was positively related to Wtemp and negatively to turbidity (lower light 
availability) and TP. Regarding the productivity gradient, PhyRich remained similar 
under oligo- and mesotrophic conditions, approximating the expected unimodal 
relationship. On a regional scale, we observed similar tendencies: for temperature, 
PhyRich initially increased to 34 °C and then slightly decreased; for turbidity, it 
smoothly increased until ~40 NTU and then decreased to the end of the spectrum; 
and for total phosphorus, it remained similar from 5 to 30 μg/L and then decreased 
until ~350 μg/L.

Phytoplankton is a highly diverse group composed of 10,000 to 25,000 extant 
species in marine and freshwater ecosystems (Sournia et al. 1991; Falkowski et al. 
2004; Vargas et al. 2015). The 605 morphospecies found here comprise about 17% 
of the total number of freshwater phytoplankton species (~4000 spp.; Reynolds 
(2006). On our subcontinental scale, the most important major taxonomic groups 
were chlorophyceans and cyanobacteria, followed by zygnematophyceans, com-
prising ~60% of the total morphospecies. Of this total, only 20 (3%) were found in 
at least one sample in the 12 HRs. On a large scale, common species drive the spe-
cies richness patterns (Jetz and Rahbek 2002; Lennon et  al. 2004; Vázquez and 
Gaston 2004) because the richness of common species is more closely related to 
environmental variations than the richness of rare species (Jetz and Rahbek 2002; 
Kreft et al. 2006; Rahbek et al. 2007). Despite the extensive sampling program, we 
found no trend for the cumulative species curve to stabilize at an asymptote. With a 
greater sampling effort, we estimate that 100 more species could be found. The role 
of rare species in communities has been widely discussed through maintaining eco-
system processes and perhaps as a hidden driver of microbiome function (e.g., Jain 
et al. 2014; Mouillot et al. 2013; Jusset et al. 2017; Säterberg et al. 2019). However, 
the role of these species remains controversial because it may vary with local abun-
dance, habitat specificity, and geographical spread (Rabinowitz 1981). The role of 
rare species can also be interpreted as complementarity or redundancy of the spe-
cific function. Some authors have suggested that rare species have low functional 
redundancy and are likely to support the most vulnerable ecosystem functions, with 
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no other species carrying similar trait combinations. Rarity can result from different 
mechanisms, such as stochastic processes, inherent trade-offs in life-history strate-
gies, and biotic and abiotic interactions (Jusset et al. 2017). On our subcontinental 
scale, of the 605 species, 22% were singletons and 14% doubletons.

The lowest PhyRich on our subcontinental scale  – algae not detected by the 
method employed – occurred in ~10% of the samples, mainly in Ama (Amazonas 
main system, Madeira and Purus rivers) and CoastE HRs (Doce River). The highest 
PhyRich (62 species/sample) was found in a floodplain lake in the Ama HR (Xingu 
River watershed). Floodplain lakes are usually rich in phytoplankton species due to 
their strong interaction with the floodplain, modulated by the regular pulse of the 
hydrometric level, such as in the TocArag (Nabout et  al. 2007) and Ama HRs 
(Huszar and Reynolds 1997; Cardoso et al. 2017).

The univariate relationships between PhyRich and the selected environmental 
drivers showed different patterns. On our subcontinental scale, the water tempera-
ture range was relatively narrow (20.6 to 36.4 °C). Despite this somewhat limited 
range, we found an increase of PhyRich with increasing temperature. PhyRich 
remained steady at the beginning of the gradient and then increased as the tempera-
ture rose to 34 °C. This finding contradicts the view that the low amplitude of tem-
perature and irradiance through the entire annual cycle in tropical systems allows a 
permanently high biological activity, i.e., the alleged “endless summer” (Kilham 
and Kilham 1990). Even in warmer climates, the temperature matters and influences 
phytoplankton responses in tropical systems (Lewis 1987, 1996; Sarmento 2012; 
Silva et al. 2014; Rangel et al. 2016).

The positive influence of temperature as a determinant factor for diversity is well 
recognized in macroorganisms (Allen et  al. 2002; Currie et  al. 2004; Mittelbach 
et al. 2007). Particularly for phytoplankton, the temperature is among the major fac-
tors acting directly on growth rates and nutrient stoichiometry and indirectly on the 
lake mixing regime, shaping the spatial and temporal distribution of populations in 
freshwater systems (Schabhüttl et al. 2013; Kruk et al. 2017). Several phytoplank-
ton studies have shown positive relationships between species richness and tem-
perature (Ptacnick et al. 2010; Weyhenmeyer et al. 2013; Thomas et al. 2012; Kruk 
et al. 2017). This finding agrees with the metabolic theory of ecology, where a larger 
flow of energy in the food chain increases the productivity of systems and conse-
quently the availability of resources, enabling more species to coexist (Hawkins 
et al. 2003; Segura et al. 2017). Temperature acts as an essential selective agent in 
species adaptation, influencing the occurrence of certain functional traits and maxi-
mizing their performance and maintenance in the system (Thomas et  al. 2012; 
Schabhüttl et al. 2013).

Our models also indicated that temperature was essential to explain PhyRich at 
the regional scale, particularly for HRs above latitude 20°S (Ama, CoastNW, Parnb, 
TocArag, and part of Parag). Water temperature was positively related to PhyRich, 
but the largest increase was observed between 28 and 34 °C, with a tendency to 
decline in higher temperatures. However, the slight decrease at the end of the spec-
trum was driven by only three lotic sites with high temperatures and low PhyRich, 
located in the CoastE (Jequitinhonha River) and Ama (Negro River) HRs.
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Besides temperature, light availability is another critical factor, favoring growth 
and increasing the number of available niches (Weyhenmeyer et al. 2013). The rela-
tionship between light and PhyRich remains controversial, but there is some conver-
gence toward a decrease of PhyRich with decreasing light (Weyhenmeyer et  al. 
2013; Zhang et al. 2018), although Litchman (1998) found a reduction of PhyRich 
at both low and high light levels.

Turbidity, as a proxy for light availability, was an essential factor for explaining 
PhyRich, mainly on our subcontinental scale. PhyRich smoothly increased until 
turbidity was ~40 NTU and then decreased toward the end of the spectrum (~1000 
NTU). The highest PhyRich at the intermediate levels may be linked to the produc-
tivity gradient based on the photoinhibition process. High light availability in clear 
water and low nutrient conditions are on one side of the gradient. On the other, 
turbid water promotes self-shading conditions in enriched waters (Zhang et  al. 
2018). On both sides, PhyRich was lower, as experimentally shown by Litchman 
(1998), who found a decrease of PhyRich in treatments with high and low light 
availability. At low light intensities, species that disappeared had low initial densi-
ties and low growth rates, explaining their exclusion. With high light availability, 
species had high growth rates, and some species may have been competitively 
excluded (Litchman 1998).

Our models indicated a decrease in PhyRich with increasing turbidity at the sub-
continental scale and the Ama HR at the regional scale. The negative relationship in 
the Ama HR may be related to the broad spectrum of turbidity. One of the factors 
contributing to the increase in turbidity in this HR is the flux of suspended matter 
transported by the Amazon River to the ocean and the Andean contributions, trans-
ported mainly by the Solimões and Madeira rivers (Abe et  al. 2006; Silva et  al. 
2013). On the other hand, waters draining the old Precambrian terrains have low 
suspended-matter content (Junk et al. 2011). Random field data may explain the 
positive relationship between PhyRich and turbidity in the Parnb HR since high 
PhyRich values were observed in samples from less- or more-enriched sites and 
with a wide variety of turbidity values. For example, in the eutrophic Parnaíba 
River, the smallest and largest PhyRich values (0 and 18 spp., respectively) were 
observed, with Turb between 13 and 603 NTU.  Higher PhyRich values were 
observed in conditions of intermediate light availability and may be related to dif-
ferent niches provided by variations in light availability in the water column. Since 
light incidence decreases with increasing depth, different species have various light 
absorption capacities. Besides, light availability was not significantly related to 
PhyRich in any other HR.

In addition to temperature and light availability, productivity is essential for 
explaining PhyRich variability. Over our sizeable total phosphorus gradient 
(5–1671 μg/L), used as a proxy of productivity, 45% of the sites were mesotrophic 
and were primarily located in HRs where more pristine areas occur (Ama, Parnb, 
and TocArag); and 42% were eutrophic and located mainly in the other nine HRs. 
The remaining sites were hypereutrophic (~10%), located in the most populated and 
agricultural areas (coastal RHs, Paran, and Parag), and oligotrophic (~3%), sparsely 
distributed in all HRs except CoastNE and Urug.

4 Broadscale Variation of Phytoplankton Richness in Brazilian Inland Waters



112

Over large gradients, unimodal patterns of PhyRich have been observed (Dodson 
et al. 2000; Smith et al. 2005; Stomp et al. 2011), but some positive (Korhonen et al. 
2011; Weyhenmeyer et al. 2013), negative, or nonsignificant relationships (Smith 
2007) can occur over smaller gradients. This apparent contradiction has been attrib-
uted to the scale of a productivity gradient and synergy with other environmental 
factors (Smith et  al. 2005; Cermeño et  al. 2013; Rodríguez-Ramos et  al. 2015; 
Zhang et al. 2018). Over our wide productivity gradient at the subcontinental scale, 
PhyRich was negatively related to productivity, remaining similar in oligo- and 
mesotrophic conditions (TP concentrations <30 μg/L) and decreasing toward eutro-
phic and hypereutrophic waters (~350 μg/L), approximating the expected unimodal 
relationship. The competition for resources explains the lower species richness at 
the extremes of the productivity gradient, with low productivity on the one hand and 
limitation by light in highly productive systems on the other (Zhang et al. 2018).

At the regional scale, PhyRich tended to decrease with increasing trophic states 
in Ama, Parnb, and TocArag, the HRs with the highest proportions of relatively 
pristine areas and with lower human population densities (see Table 4.1). In Ama, 
sites with high Turb and TP concentrations are primarily of natural origin, resulting 
from the weathering of rocks in the Andes where their sources are located (Abe 
et al. 2006; McClain and Naiman 2008; Almeida et al. 2015). These rivers exert a 
significant influence on the concentration of fine P-rich suspended sediments in the 
Amazon basin. The good water conditions in TocArag and Parnb, with low popula-
tion densities (Moss and Moss 2005), may explain the high PhyRich.

On the other hand, the Paran and coastal regions, except CoastS, showed a trend 
toward lower PhyRich and high Turb and TP concentrations. These densely popu-
lated regions have poor sanitation and extensive agricultural and industrial areas 
(Moss and Moss 2005; Abe et al. 2006). The CostS and Parag HRs showed rela-
tively high PhyRich. Notably, CoastS was also marked by high concentrations of TP 
due to the extensive agricultural areas with heavy use of fertilizers, as well as areas 
where the high TP concentration may be related to natural enrichment processes due 
to the influence of a large community of migratory birds that feed in these systems 
(Moss and Moss 2005). In the Parag HR, the high TP concentrations may be due to 
the low percentage of treated sewage and the influence of extensive cultivation 
areas, mainly soybean and cotton, as well as intensive livestock ranching (Abe et al. 
2006). At some sites in Parag, high TP concentrations may also be of natural origin; 
in that region, the many bird roosts on the riverbanks can significantly contribute to 
phosphorus input (Moss and Moss 2005; Abe et al. 2006).

Over our wide TP gradient, the high data variability within the same hydro-
graphic region may explain the D2 values of our results. Furthermore, the causality 
of field data, bias from potential unmeasured variables, and the inherent chaotic 
behavior of phytoplankton communities must be considered to explain the PhyRich 
results (Beninca et  al. 2008; Kosten et  al. 2012). Despite this, we still observed 
higher PhyRich at sites with intermediate concentrations. In low TP concentrations, 
competition for resources may explain the lower PhyRich. In contrast, at sites with 
high TP concentrations, light limitation due to either high phytoplankton biomass or 
high concentrations of other solids in suspension may have determined the lower 
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PhyRich. Massive phytoplankton blooms, especially cyanobacteria, can accumulate 
in surface waters, reducing light availability to other phytoplankton species and thus 
biodiversity (Chorus et  al. 2000; Smith 2003; Huisman et  al. 2018; Zhang et  al. 
2018). The negative relationship between PhyRich and Turb in Ama may be related 
to the high correlation of TP with the fine suspended sediments transported from the 
Andes to Amazonian rivers (Devol et al. 1995; Abe et al. 2006). For 5 of the 12 HRs, 
no model significantly explained PhyRich variability (CoastNE, CoastSE, CoastS, 
SFranc, and Paran).

In summary, by combining the variables that best described the PhyRich patterns 
on subcontinental and regional scales, WTemp most frequently explained PhyRich. 
On our subcontinental scale, PhyRich was positively related to water temperature 
and negatively to turbidity (lower light availability) and productivity, although 
PhyRich was similar in oligo- and mesotrophic conditions, approaching the expected 
unimodal relationship. Furthermore, we observed a tendency toward a slight reduc-
tion in the univariate models at the end of all gradients, with implications for the 
ecological functioning of freshwater systems.

Across a subcontinental scale, these findings contribute to a better understanding 
of how the environment affects phytoplankton species richness, with implications 
for their ecological functioning in freshwater ecosystems. In addition, our data 
include information from locations that have never been reached previously, many 
of them in a pristine state of conservation, serving as a reference for future studies 
that enable the identification of impacts in these areas.
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