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Preface

Biosurfactants represent an interesting group of substances in industrial microbiol-
ogy, which is increasingly gaining research interest. They do not represent a uniform
class, but are characterized by their great structural diversity. Structural classes
relevant to a future bioeconomy are glycolipids and lipopeptides, which receive
special attention in this volume. As such, this volume focuses on these microbially
and enzymatically produced biosurfactants of industrial biotechnology.

One reason for the increasing research interest in biosurfactants is the undeniable
warming of the earth’s climate and the finite nature of fossil resources. In general,
this has led to increased use of renewable raw materials as carbon sources in the
chemical industry. In this context, the slow but steady paradigm shift in recent years
has brought to light the need to replace the substrates previously used for
biosurfactant production, especially glucose and vegetable oils that compete with
food, with new bioeconomic substrates, especially wood sugars.

In addition, consumer demand for sustainable and carbon-neutral products is also
driving the need to replace petrochemically produced chemicals with biochemically
produced alternatives based on renewable resources. Already today, some microbial
surfactants, namely the glycolipids, mannosylerythritol lipids, rhamnolipids,
sophorose lipids, and the lipopeptide surfactin are commercially available on an
industrial scale. It is foreseeable that screening and synthetic biology will lead
research into new commercially relevant biosurfactants, which will include designer
biosurfactants.

It is anticipated that bioproduction of microbial surfactants will bring increased
efficiency in the future through metabolic engineering and new bioprocesses to be
developed for in situ product separation, ensuring economic competitiveness in an
increasing number of applications. Biosurfactants serve these requirements in their
entirety. Surfactants, in general, are among the highest volume chemicals and to date
have been produced by petrochemical or oleochemical routes. In both cases, envi-
ronmental and climate issues are evident due to the use of fossil carbon or tropical
palm oil, respectively.
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Biosurfactants, however, offer additional advantages besides surface activity. As
a rule, biosurfactants exhibit specific bioactivities against fungi and other agricul-
tural pests. Here, it is important to further explore and implement this potential as
biopesticides.

In this context, it is of particular importance to scientifically prove the presumed
ecological benefits of biosurfactants and make them transparent through well-
established life cycle assessments. So far, however, there is a need for research in
the creation of the biotechnological and process engineering data basis.

With the volume presented here, the world’s leading experts in the various fields
of biosurfactant research present their views on the subject. We are very pleased to
present deep insights into the current and future development of biosurfactant
research with this collection of articles.

Stuttgart, Germany Rudolf Hausmann
Marius Henkel
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Abstract Within the bio-economy, more specifically within the bio-based indus-
tries, biomass feedstock – in contrast to fossil feedstocks in the fossil-based
economy – is converted into the so-called bio-based products such as biosurfactants,
bioplastics, pharmaceuticals, paper, textiles, and biofuels using either chemical or
biological production methods or a combination thereof. In Europe a turnover of
60 billion EUR is associated with bio-based plastics and chemicals such as
biosurfactants, and 40% of the global biosurfactant market turnover is associated
with the European market. The growing use of bio-based surfactants in detergents,
personal care products, and oilfield chemicals is fueling the growth of this market,
which is driven, in many applications, by more stringent regulations and by an
increasing consumer demand for “green and sustainable” products. Microbial
biosurfactants are a biologically produced type of bio-based surfactants which are
quickly evolving from a scientific curiosity to an industrial reality.
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Graphical Abstract

Keywords Biosurfactant, Industry, Innovation, Investments, Market failure,
Microbial biosurfactant

1 Introduction

Anno 2022, one cannot open a newspaper without reading about global warming,
greenhouse gas (GHG) emissions, (plastic) waste and pollution, and the imminent
shortage of petroleum in the future. Together this has resulted into a new and
growing movement toward the development of a bio-based economy providing an
alternative for the fossil-based economy. The feedstock used in the bio-economy is
“biomass,” which – in contrast to fossil feedstocks – is a renewable feedstock
derived from land and sea: i.e., from plants, algae, animals, fungi, and microorgan-
isms. Within the bio-economy, more specifically within the bio-based industries, this
biomass feedstock is converted into the so-called bio-based products including
biochemicals (e.g. biosurfactants), bioplastics, pharmaceuticals, paper, forest-based
industries, textiles, biofuels, and bioenergy using both chemical and biological
production methods. The percentage of bio-based carbon in chemicals and chemical
products produced in the EU-28 – excluding biodiesel and bioethanol (NACE
division 20) – corresponded to 15% in 2017. Surfactants are a class of chemicals
that fall under the abovementioned category of chemicals and a big portion of the
carbon used to produce surfactants is already derived from biomass (i.e.,
oleochemicals) while about 4% of the globally produced surfactants are fully
bio-based [1]. The bio-economy (see Fig. 1) in the EU-28 was characterized by a
turnover of 2.4 trillion EUR in 2017 of which 20% is associated with the primary
sector producing the biomass feedstock, i.e. agriculture, fishery, forestry, etc. and
50% by its main downstream markets, i.e. the food and beverage industries. The
remaining 30% of the overall European turnover (750 billion EUR) is generated by
the abovementioned “bio-based industries” of which 60 billion EUR turnover is
associated with bio-based chemicals and plastics under which category bio-based
surfactants also fall.
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Throughout this chapter we will use the term “biosurfactant” as a synonym for
“bio-based surfactant” or “wholly bio-based surfactant,” which thus refers to the
origin of the used carbon in these molecules (i.e., 100% bio-based), just as is the case
for the term “bioplastic,” which is synonymous for bio-based plastics. Wholly
bio-based surfactants are surfactants of which the carbon is entirely (100%) derived
from biomass as defined by the European Committee for Standardization – Techni-
cal Committee 411 (bio-based products) and 276 (surface-active agents). The use of
clear and uniform terminology is extremely important as misuse and non-uniform
use will result in confusion, not only in the field, but also with the consumer, which is
highly undesired. In specialized literature about microbial biosurfactants, the term
“biosurfactant” is often used as a synonym for “microbial biosurfactants,” which
according to the authors is confusing and not in line with other definitions used,
e.g. bioplastics, biofuels, etc. where “bio” refers to the origin of the contained carbon
herein. We will come back to this aspect later on.

The most significant part of the global bio-based surfactant or biosurfactant
market are the chemically produced biosurfactants (see below) and this market is
projected to reach USD 17.27 billion by 2022, at a CAGR of 5.1% between 2017 and
2022 [3], while the microbial biosurfactant market is projected to reach 5.5 million
by 2022 [5]. The market share of chemically produced biosurfactants corresponded
to about 30% in value of the total global surfactant market in 2017 [3, 4]. About 40%
of the biosurfactant market turnover is associated with the European market
[3, 5]. The growing use of bio-based surfactants in detergents, personal care prod-
ucts, and oilfield chemicals is fueling the growth of this market, which is driven, in
many applications, by more stringent regulations and by an increasing consumer
demand for “green and sustainable” products. Many companies also have incorpo-
rated sustainability as a core value into their “company goals and values,”which also
puts pressure from within to achieve them. The authors of this book chapter are
convinced that companies not making this switch will not survive in this very fast
changing landscape.

The focus of this book chapter lies on a specific type biosurfactants: the so-called
microbial biosurfactants. These are biosurfactans which are produced by microor-
ganisms, such as bacteria and fungi, and are in general divided into glycolipids;

Fig. 1 Overall turnover and employment of the bio-economy and its bio-based industries in the
EU-28 in 2017 (figure adapted from [2])
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lipopeptides; neutral lipids and fatty acids; phospholipids and polymeric
biosurfactants. According to a recent market report, the global microbial
biosurfactant market was valued at USD 3.99 Billion in 2016 and is projected to
reach USD 5.52 Billion by 2022, at a CAGR of 5.6% during the forecast period in
contrast to a CAGR of 5.0% for the fossil-based surfactants [5]. Similar to the overall
market of bio-based surfactants, the major revenue share of the microbial
biosurfactant market is associated with the European market with about 45% market
share associated with Europe in 2016 [5]. According to the authors’ information and
according to ECCHA, the production volumes of the various types of microbial
biosurfactants in Europe mentioned in this market report (200,000 tonnes in 2017) in
reality remain modest (100–1,000 tonnes range in total in Europe), which is thus a
factor 200 lower compared to the volumes mentioned in the abovementioned market
report, which the authors of this book chapter thus doubt. Also, when looking at the
mentioned market value, this would correspond to an average cost of 2 euro/kg of
microbial biosurfactant, which is also at least a factor 10 off compared to reality.
Although the values mentioned in this report are thus questionable to say the least,
microbial biosurfactants are regarded as one of the top emerging bio-based products
[6] and a significant increase both in volumes and revenues is expected the next few
years as will be further discussed below.

2 Surfactants, Biosurfactants, and Microbial
Biosurfactants

Surfactants are industrially important chemicals. The global surfactants market
accounted to around 43 Billion dollars in 2017 and is estimated to reach 55 Billion
dollars by 2027 [7]. In its totality surfactants are one of the largest markets (20 Mil-
lion tonnes/year) of bulk chemicals. Surfactants are performance molecules that
intervene in nearly every aspect of our daily lives due to their versatile surface-
active properties. They are applied in consumer- and industrial products such as
personal care, cosmetics, cleaning, paints and coatings, chemical industry, pharma-
ceuticals, textiles, softeners, food and feed, beverages, crop protection, metal extrac-
tion, bioremediation, packaging, construction, pulp and paper, etc. (see Fig. 2). The
most important drivers of the growth of the surfactant market are a rising demand for
personal care products and from the Asia-Pacific region, which are both expected to
witness the highest growth rate. The implementation of stringent regulations by
government agencies is one of its main restraints [4].

Looking at the sourcing of feedstock for surfactant production (see Fig. 3), the
surfactant market can roughly be divided into three segments: non-bio-based sur-
factants (fully derived from fossil resources), partly bio-based, and fully bio-based
surfactants. The partly bio-based surfactants can be further divided into majority
(95� x> 50) and minority (50� x� 5) bio-based surfactants. As mentioned above,
approximately 4% of the produced surfactants are fully bio-based, which means the
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carbon contained within these surfactants is entirely derived from biomass as can be
determined by C-14 analysis. An error margin of 5% is allowed.

Fully bio-based surfactants can be produced through chemical or biological
means (see Fig. 4) and chemically produced biosurfactants currently dominate the
biosurfactant market. One of the very first “surfactants” produced by humans, of
which the production and use at least dates back to 2,800 BC [9], is a chemically
produced biosurfactant, which we all know very well: “soap.” Soap is produced

52% Household detergents

Others (paints & inks, oilfield
chemicals. textiles,...)

Personal Care

Industrial cleaners

Food processing

Agricultural chemicals

19%

12%

7%

6%

4%

Fig. 2 Overview of the applications of surfactants. The volume is composed of a low value
detergent segment and a higher-value segment, which includes cosmetics, personal care, and
other higher-end markets. More than half of the produced production volume of surfactants is
used for application in household detergents

Fig. 3 Feedstock sourcing of the carbon contained within the total surfactant market. The largest
part of the market (52%) is “partly bio-based,” which comprises the “majority” (95 � x > 50) and
“minority” (50 � x � 5) bio-based surfactants, while only a small portion is fully bio-based (about
4%). Still 44% of the market volume is fully fossil based
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using a very straightforward (one- or two-step) chemical process (saponification),
converting vegetable oils or animal fats and lye (e.g., sodium hydroxide) into soap
and glycerol. Soap (salts of fatty acids) are thus also bio-based surfactants, as the
carbon contained within soap is entirely derived from animal and/or plant-derived
biomass. The hydrophilic part contained within soap is thus an inorganic compound
such as sodium, kalium, etc. combined with the carboxy group of the fatty acid.

In the last decades other more specialized chemically produced biosurfactants
were developed and commercialized: Methyl Ether Sulfonates (MES), Alkyl
Polyglucosides (APGs), sorbitan esters (Spans), sucrose ester, betaines, and fatty
acid glucamides [3]. MES, APGs, and sorbitan esters currently have the largest
markets and are produced by many different companies such as Stepan Company,
Lion Corporation, Guangzhou Lonkey, BASF SE, Dow Chemical Company,
Nouryon (Akzo Nobel), Kao Corporation, Croda International Plc, Seppic and
Henkel KGaA. Sucrose esters or fatty acid glucamides are produced in smaller
amounts, respectively, by, for example, Sisterna and Clariant AG. Croda recently
has invested 170 million US dollars into a production plant for the production of
fully bio-based ethylene oxide to be used for the production of 100% bio-based
non-ionic bio-based surfactants [10].

The substrates for chemical biosurfactant production are typically refined sub-
strates such as carbohydrates (e.g., sucrose, glucose, etc.) and fatty alcohols/fatty
acids/oils. It should be mentioned that for the sourcing of the latter substrates, the
market largely relies on palm oil derived from tropical areas for the provision of the
hydrophobic moiety, which is associated with clear concerns. The chain length
(short to medium chain length) required for good functionality of these surfactants
is typically present in these tropical plant oils and not in plant oils from more
moderate climates (mainly long chain lengths). Palm oil cultivation is characterized
by high yields of oil per hectare, but as the available plantations could not cope with
the increasing demand, this resulted in deforestation of pristine forest inhabited by
endangered animals such as orang-outangs resulting in clear concerns associated

Fig. 4 Production methods for fully or wholly bio-based surfactants

6 S. L. K. W. Roelants and W. Soetaert



with palm oil production. It makes no sense to shift to other plant oils, such as
coconut oil (which is sometimes advocated for as an alternative for palm oil) as the
yields per hectare are lower, which would thus result in even more deforestation for
the same amount of oil. The RSPO (roundtable on sustainable palm oil) was initiated
in 2004 to make sustainable palm oil the norm. However, RSPO is criticized (e.g. by
IUCN (International Union for Conservation of Nature and Natural Resources)) for
only providing a marginal advantage in terms of putting a halt to deforestation
compared to non-certified palm oil and is providing some suggestions on how to
improve in the future [11]. Alternative/complementary solutions allowing circular
and more sustainable production not relying on tropical oils as an alternative for
fossil oils are thus sought for, which could be supplied by (some of) the examples
provided below.

The second type of biosurfactants are produced through biological production
methods and can be divided into three types: those extracted from plants, those
obtained using enzymes (biocatalysis), and a last type obtained using microbes:
microbial biosurfactants. The three types will be further described below.

One of the best-known examples of biosurfactants extracted from plants are
saponins [12]. Saponins are a group of glycosides produced as secondary plant
metabolites which are widely represented in the plant kingdom in levels ranging
between 0.1 and 30%. Saponins were actually one of the very first surfactants used
by mankind as “soap,” which is also reflected in its name: the Latin word “sapo”
means soap. Saponins are mainly commercialized by Asian (mainly Chinese) com-
panies (e.g., Laozhiqing Group, Yongxin Youxiang, Tianmao, Hubei Jusheng
Technology, and Weihe Pharma) [12] and are extracted from various plant materials
(leaves, legumes, roots, flowers, etc.). The global saponin market increased from
13.3 kilo tonnes in 2011 to 14.7 kilo tonnes in 2016 with an average growth rate of
1.97% and was valued at US$ 954 Million in 2019 [12] and is slowly growing with a
CAGR of 0.2%. Saponins are applied in cosmetic, food, agrochemical, and other
applications for their physicochemical (surfactant) properties, but also for their
biological activity (antimicrobial, anticholesterol, etc.) and/or the combination
thereof [13]. The main substrate for plant derived biosurfactants is CO2 taken up
from the atmosphere by the plants and the cultivation of the plants also requires the
use of fertilizers and water as important resources. The saponins are extracted from
the plant materials using various solvent-based approaches.

Biocatalytic production of biosurfactants has until today not resulted in large-
scale production volumes of biosurfactants. A few examples are commercialized,
e.g. by Evonik, but the production volumes remain low. However, biocatalysis is a
powerful and versatile tool to replace and/or complement chemical routes, especially
toward the synthesis of biosurfactants, i.e. starting from biomass. One could image
biocatalytic routes for the production of (some of) the abovementioned chemically
produced biosurfactants: sugar esters, alkyl poly glycosides, etc. A number of
biotech companies have biocatalytic platform technology available, which is suitable
to move into this direction and are currently looking into opportunities while
optimizing the technology. The authors of this book chapter thus expect this
technology to lift off in the coming years as the “need for green” (see below)
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increases and companies are increasingly and more urgently looking for greener
production routes and products. However, similar bottlenecks and hurdles exist as
for microbial biosurfactants, explained in detail below: further investments in the
optimization and elaboration of this technology will be required to enable it to serve
as base technology for cost-efficient and scalable production of (bulk)
biosurfactants. The authors expect these technologies to lift off in the coming
years. The substrates for biocatalytic production of biosurfactants are typically the
so-called first-generation refined substrates such as carbohydrates or amino acids and
fats and oils.

The third type of biologically produced biosurfactants are microbial
biosurfactants. Here microbes such as fungi, yeasts, and bacteria are used as
biocatalysts to produce biosurfactants (Fig. 5).

A wide range of biomass substrates can be converted into biosurfactants by
different types and species of microorganisms through the complex biocatalytic
pathways encoded within their genomes. This is associated with certain benefits,
as these technologies do not require the use of first-generation refined substrates
(although these are currently used for industrial production for practical reasons)
such as refined sugar and/or oils/fatty acids, but allow the use of waste- and/or side
streams, e.g. from (industrial) food waste and/or agro- origin. This opens up oppor-
tunities for circular and more sustainable production of biosurfactants as the use of
first-generation substrates such as glucose and plant oils has a significant negative
effect on the sustainability of microbial biosurfactants as demonstrated for
sophorolipids [14]. Moreover, some microorganisms are capable of producing
fatty acids, fatty alcohols, etc. for incorporation in biosurfactants starting from
other types of (lower cost, lower impact) carbon sources, such as (waste)

Fig. 5 Schematic representation of a production process for microbial biosurfactants. Typical
processes are operated between 20 and 37�C at low pressures and in water. Medium components
provide elements for growth and maintenance of the microorganism (typically in a monoculture)
and substrates are fed for conversion into biosurfactants

8 S. L. K. W. Roelants and W. Soetaert



carbohydrate streams, e.g. food waste to SLs [15], glucose to RLs [16], etc. Both SLs
and RLs contain a lipophilic part incorporated in their structures. The microorganism
thus uses its metabolic pathways to convert the carbohydrate into a lipophilic
precursor for conversion into a biosurfactant. This omits the need to supply certain
higher cost or higher impact (to the environment) substrates (e.g., fatty alcohols) into
the process, which again represents a serious advantage. It should be noted that the
above is only true in case the process efficiencies are similar. The latter aspect is
often forgotten by the microbial biosurfactant community. Lower cost and lower
impact substrates can seem very interesting, but if the process efficiencies drop
significantly, this will obviously negatively affect the overall costs and sustainability
of the biosurfactant. This can result in an even higher cost and higher impact per kg
of produced biosurfactant compared to the reference (in this case a first-generation
biosurfactant), but is often not considered by researchers looking into alternative
substrates. Moreover, the variability and availability at the relevant scale of such
alternative substrates should be taken into account by researchers early on. Often
marginal, highly scattered and variable streams are considered in publications,
without taking into account the projected production scales, logistics (often impos-
sible) or variability within these biomass streams. A higher sense of responsibility
and interaction with the “real world” is thus required from academic researchers to
investigate and define solutions which are relevant to the “real world” and thus to the
industry and not just nice to publish.

Many of the microbial biosurfactant technologies are still immature and operated
at small scale (lab to 100 tonnes range) resulting in high costs compared to tradi-
tional surfactants as the economy of scale has not kicked in yet [17], but also
compared to chemically produced biosurfactants such as APGs, which are already
more expensive compared to fossil derived biosurfactants. The higher costs com-
pared to chemically produced biosurfactants from similar resources can generally be
attributed to three main reasons according to the authors: scale, immaturity of
processes (not optimized yet), and typically new installations required (new
CAPEX), which is not always the case for chemical processes for which many
plants exist with some spare capacity and (partly) depreciated installations.

The field of commercialized microbial biosurfactants is thus still quite limited in
types and producers/suppliers. Summarized, the commericalized products are gly-
colipids (sophorolipids (SLs), rhamnolipids (RLs), and mannosyl erythritol lipids
(MELs)), lipopetides (LPs), phospholipids/fatty acids, and particulate and polymeric
biosurfactants. About 10 companies worldwide are producing and commercializing
microbial biosurfactants of which SLs take the biggest market share followed by
RLs, MELs, and LPs [3]. An increasing amount of B2B and B2C companies is
taking interest in microbial biosurfactants in general, which the authors of this book
chapter clearly notice by the amount of new parties expressing their interest in the
field through the extensive network the Bio Base Europe Pilot Plant and InBio.be.

Sophorolipids produced by Starmerella bombicola are commercialized by B2B
companies such as Evonik, Wheatoleo, and Holiferm in Europe and applied in
consumer products by several companies e.g. Ecover, Soliance, Henkel, etc. mainly
for applications in household detergents and personal care products, but applications
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are also emerging in agriculture, poultry farming, etc. Applications are also possible
in the agrochemical, food, and pharmaceutical industry. A number of Asian com-
panies also commercialize SLs, mainly for oilfield applications, but also for house-
hold and cosmetic applications and a number of Asian companies apply SLs in
consumer products, e.g. Saraya. Companies in North- and South America are also
investing in this technology and/or putting SLs on the market, e.g. Locus in the USA.
The fact that SLs were the first microbial biosurfactant to really find their way to the
market in a number of applications is because the natural SL producers, such as
S. bombicola, are highly efficient microbial biosurfactant producers and productiv-
ities between 2 and 4 g/L h are reached, which are acceptable levels for industrial
production.

Also, rhamnolipids are in the lift. Although RLs produced by Pseudomonas
aeruginosa have been available on the market for over 20 years,
e.g. commercialized by Jeneill and Rhamnolipid Inc., more recently other companies
with larger ambitions have invested in production technology for rhamnolipids. The
RL technology from Logos Technologies (NatSurFact) has recently been acquired
by Stepan [18] and is currently producing at pilot scale. Evonik has taken a more
surprising though very important approach. They developed a heterologous
non-pathogenic (in contrast to P. aeruginosa) production host for RLs and are
exploring the market together with Unilever. The RL containing dishwash liquid
Quix was launched on the market by Unilever [19] and received with big success.
The construction of a multi-thousand tonne production plant for rhamnolipids is
currently ongoing based on the Evonik technology. This is a very important step in
the further development of the microbial biosurfactant market. It shows that it is
feasible to develop sustainable though cost-efficient and scalable biological produc-
tion methods for commercially relevant and industrially scalable microbial
biosurfactants. Evonik had already set a milestone in 2015 by launching SLs on
the B2B market (Rewoferm), and now, only a few years later they launch a second
microbial biosurfactant on the market. This has been received as big and important
news in the surfactant market to say the least. Also, this success story indirectly
makes a very clear statement about the use of GM (genetically modified) derived
products in consumer products. The reason therefore is the fact that the most efficient
wild-type RL producer P. aeruginosa is an opportunistic pathogen rendering large-
scale industrial production of RLs with an efficient wild-type organism troublesome.
Although heterologous production of RLs seems an obvious option, this has been an
important bottleneck in the past decade mainly through negative public perception
associated with GMO derived products.

Clearly the consumer comes in contact with many GMO derived products (not
containing the genetically modified organism itself) on a daily basis (e.g., enzymes
used in detergents, insulin, enzymes used in the food industry, novel food products,
amino acids, etc.). However, consumers are typically not aware of this fact and at the
same time very sceptic about GM technology. The term “GMO” has a negative
connotation, because the consumer in general is not well informed about this topic
and a lot of Scepticism and suspicion exists. However, biotechnology and GM
derived products are key toward the transition of a fossil-based to a bio-based
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economy. In the past, big companies often stayed away from GM technology for the
production of ingredients for consumer products such as household detergents and
cosmetics due to potential negative effects exerted through public perception on their
businesses. However, increasing sustainability and moving away from fossil-based
technologies inevitably requires the use of molecular biology and GM organisms
and catalysts. The abovementioned joint venture can thus be considered as a very
important step in the good direction and according to the authors will be a milestone
in the field of microbial biosurfactants as well.

Lipopeptides are a quite diverse group of microbial biosurfactants with surfactin
being the best-known one. The commercialized lipopeptides are typically produced
with Bacillus species, e.g. Lipofabrik. Although these are very promising molecules
and strong surfactants, the production volumes remain low. This is mainly because
the natural production capabilities of the producing microorganisms are typically a
factor 10–20 lower compared to those obtained for SLs and RLs, which makes the
compounds quite expensive. However, lipopeptides are – similar to saponins
described above – besides their surfactant properties also characterized by dual
functionality, e.g. strong antimicrobial effects, elicitation effects in plants (arousing
defense mechanisms before plant pathogens are present, as such making the plants
more resistant against pests: hence the name “plant vaccination”). These
non-surfactant properties have already resulted in market introduction of
lipopeptides in agricultural applications and post-harvest protection, e.g. by
Janssen PMP.

Mannosylerythritol lipids have been the subject of much industrial interest during
the past few years, many companies have looked into production technology for
MELs, e.g. Oleon, Fraunhofer, etc. However, MELs are quite complex compounds
with many variants being co-produced resulting in a quite complex production
profile, which is influenced by a variety of factors and not easy to control. Although
clear interest in these compounds in the industry thus exists, further optimization and
investigation is required to develop robust and scalable processes. Oleon is planning
to produce and market MELs in the near future.

3 The Trend for Biosurfactants

Biosurfactants and especially biologically produced biosurfactants have recently
attracted strong attention from surfactant producers because the consumer demand
for greener products has gone mainstream. In contrast to a decade ago, a large part of
the general public – especially in the Western world – is aware of and acknowledges
the problematics associated with pollution, global warming, and deforestation.
Although the shift toward a bio-based economy is inevitable toward sustaining
mankind’s future on earth, the only factor that has really forced true and significant
change in the past is (changing) legislation imposed by national and international
governments. This is, according to the authors, also expected to remain the most
powerful method for change. However, in this digitalized society, the influence of
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the consumer cannot be underestimated. Social media have provided consumers with
a very powerful tool to effectively criticize (large) companies about aspects such as
sustainability, feedstock sourcing and safety, which was not the case in the past. The
rise of social media also assisted in the abovementioned increasing awareness,
although it also results in polarization.

The drive toward more sustainable products is now thus finally moving into the
realization phase. Most industrial companies are currently expanding/initiating their
bio-based portfolio and investing in sustainability not to fall behind. This resulted in
a clear increase in R&D developments of bio-based alternatives for both commodity
and high-value molecules over the past few years. However, as R&D and innovation
require time and money, there currently exists a disbalance between the demand and
supply for biosurfactants: biosurfactants are currently not available at large scale at
affordable cost, which is in sharp contrast to the clear demand. This market failure is
not so easy to overcome as the risk of venturing into the biosurfactant field is still
quite high for industrial companies. Moreover, most conventional surfactant pro-
ducers are chemistry based, they are not familiar with bioprocessing and typically
have no bioproduction facilities. The result is that many conventional surfactant
producers are now actively looking for industrial manufacturing technology for
biosurfactants. This demand for industrial production technology is currently not
met as most of the microbial biosurfactant technologies are still immature. However,
the abovementioned recent successful venture of an established “traditional” surfac-
tant producer, i.e. Evonik into the microbial biosurfactants area has demonstrated
that biosurfactants are quickly evolving from a scientific curiosity to an industrial
reality. The pivoting point and shift in ambitions from the industry thus seems to be
reached. A clear proof of this eminent switch was provided by a Unilever’s recent
statements toward their ambition to completely eliminate fossil feedstocks for the
production of cleaning products by 2030 [20] and a reserved budget of one billion
euro to do so. Their abovementioned investments together with Evonik to build a
multi-thousand tonne scale microbial biosurfactant (rhamnolipid) production plant
in Europe are clearly a building block in this strategy. The substantioal investments
these two companies are making is backed up with a clear market pull of consumers
for green and mild products, which was shown by the great success of the RL based
liquid detergent QUIX. As Unilever is one of the largest brand owners, this puts
large pressure on B2B companies supplying ingredients and materials to Unilever.

4 Opportunities and Restraints for (Microbal)
Bio-surfactants

The surfactant market grew at a CAGR of 5.4% over the past 5 years [4]. The most
important drivers of the growth of the surfactant market are a rising demand for
personal care products and from the Asia-Pacific region, which are both expected to
witness the highest growth rate. The implementation of stringent regulations by
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government agencies is one of its main restraints. The main current market oppor-
tunity is the production of sustainable green surfactants [3, 4]. The chemically
produced biosurfactant market grew at a CAGR of 5.1% over the past 5 years,
while the microbial biosurfactant market grew at a CAGR of 5.6% during the same
period [3, 5]. This faster growth rate demonstrates the opportunity and demonstrates
the potential impact of this technology on the market.

Especially the cosmetic and personal care industry are now serious about making
the switch to bio-based ingredients and biosurfactants are an important developing
field within the abovementioned megatrend. The personal care segment is estimated
to experience the largest growth (CAGR of 5.7%) of all market segments [3]. The
main reasons for the expected growth are the big demand in the growing moistur-
izing cream industry due to rising skin concerns among consumers. Biosurfactants
show interesting properties for a more widespread implementation in skin cosmetics.
Interesting target markets for market entry of novel (microbial) biosurfactants are
thus the personal care and cosmetics markets, which are the second largest applica-
tion sectors of surfactants after detergents. This market segment is characterized by
(1) a higher accepted average cost of the used surfactants and (2) a clear continual
pressure from consumers based on “green” factors, climate change, carbon footprint,
deforestation linked to palm oil, but also mildness and undesired activities linked
with preservatives in such products. Moreover, surfactants are the largest ingredient
category within the personal care segment (25–30% share) [8]. A shampoo, for
example, can contain up to 20 different types of surfactants. The abovementioned
market segments are as mentioned above very susceptible to green and mild alter-
natives to “traditional” surfactants. Moreover, some (microbial) biosurfactants are
also characterized by additional properties such as antimicrobial properties, which
also holds a clear opportunity in these markets where several players are looking to
decrease the use of preservatives in their products and are in need of safe and
sustainable alternatives.

However, once a novel biosurfactant has been developed to a point that commer-
cial application in, e.g. skin care products becomes relevant, still a large amount of
work lies ahead as the reformulation of personal care products with new ingredients
requires time and money. The high safety standards in this industry in conjunction
with the banning of animal testing leads to the current situation that the desire for
change is clear but the actual change is rather slow. Moreover, for most of these
novel technologies the current costs are as mentioned above a factor 10–50 more
expensive compared to conventional bulk surfactants. Bringing the technologies to
larger scale would result in lower costs through the economy of scale and through
further optimization. However, the high current costs inhibit a lift off of the market
and production and selling volumes. One of the solutions to escape from this catch-
22 situation is to invest in larger scale production capacities besides investing in
optimization of production technology to increase the efficiencies. Especially for the
first solution a clear ambition from the industry is required. Such ambition has
clearly been shown as mentioned above by Evonik-Unilever, Stepan, and more
recently also BASF [21] and more examples are expected to follow now that the
tone is set and clear actions are demanded by the consumer.
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5 Ambitions of the Authors

The authors of this book chapter have been working on a microbial biosurfactant
platform technology at UGent (InBio.be) and BBEPP over the past 15 years. Several
novel microbial biosurfactants were developed and scaled up to 15 m3 scale. Within
the framework of several (international) projects a vast network of parties active in
the surfactants value chain has been built and new collaborations were setup. This
allows us to state that a clear traction has been building up toward (microbial)
biosurfactants. The authors are planning to valorize the developed technology by
setting up the spin-off company “Amphi-Star” This spin-off aims to accelerate the
generation of variation on the (microbial) biosurfactant market and would be com-
plementary to the already commercialized compounds. The main hurdles to over-
come are related to cost, registration, and further upscaling to large industrial scale.
Given the low maturity of the microbial biosurfactant market, a technology package
will be offered to the industry as the most attractive valorization path for the
developed technology.

Acknowledgements The authors wish to acknowledge Studio Mol for the graphics included in
this book chapter.
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characteristics being screened for and the uniqueness of the microorganisms being
screened. Therefore, given that rather few novel biosurfactant structures have been
discovered during the last decade, advanced strategies are now needed to widen
access to novel chemistries and properties. In addition, more modern Omics tech-
nologies should be considered to the traditional culture-based approaches for
biosurfactant discovery. This chapter summarizes the screening methods and strat-
egies typically used for the discovery of biosurfactants and highlights some of the
Omics-based approaches that have resulted in the discovery of unique
biosurfactants. These studies illustrate the potentially enormous diversity that has
yet to be unlocked and how we can begin to tap into these biological resources.

Keywords Bioprospecting, High-throughput, Functional properties, Microbial,
OMICS, OSMAC, Sequence-based, Surface-active

1 Introduction

Diverse microbial genera, from all domains of life, Bacteria, Archaea, and
Eukaryota, have been identified as biosurfactant producers. To this end biodiscovery
efforts have primarily focused on the screening of culturable isolates and generally
included (1) the enrichment of microorganisms from a wide range of environments;
(2) high-throughput screening using numerous assays suitable for the evaluation of
large numbers of isolates; followed by (3) isolation and structural determination of
the biosurfactant (Fig. 1). To increase the chance of identifying a novel compound,
several culturing considerations have been applied in the biodiscovery stage. These
include sampling from exotic (extreme) and underexplored environments [1];
targeting environments with prior exposure to hydrocarbon pollutants which have
naturally selected for biosurfactant-producing microorganisms [2–4]; utilizing
hydrophobic compounds in the culture media to enrich for the most capable pro-
ducers [5]; and focusing on microorganisms from underrepresented phyla [6]. Con-
sidering that the compound identification and structural determination entails a time-
consuming investigation, strain prioritization and dereplication are normally applied
after the primary screening. Factors that are typically considered to select the most
superior and novel producers include the novelty of the strain, the biosurfactant yield
(based on the initial screening), and the activity range across property-based assays
[7]. However, despite all these considerations, the structural diversity of the com-
mercially available biosurfactants remains limited, and literature continues to report
the rediscovery of structurally similar biosurfactants. Therefore, to identify truly
novel biosurfactants, discovery efforts need rejuvenated approaches that critically
assess the aspects that limit access to the novelty that is sought.

Indicated by Omics studies, it has become widely accepted that we have only
scraped the tip of the iceberg in terms of accessing the biotechnological potential
harbored in microorganisms. It can be reasonably expected, therefore, that there is
yet much biosurfactant diversity to be discovered by investigating non-cultivable
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microorganisms using culture-independent screening approaches, followed by the
assessment of the activity through heterologous expression (Fig. 1). Moreover, the
increased sequencing of culturable bacterial genomes has revealed great disparity
between the number of putative secondary metabolite gene clusters identified based
on bioinformatics analyses vs. the actual number of secondary metabolites detected
from culture fermentations [8]. This not only points to an astounding level of as yet
undiscovered metabolites for the majority of cultured organisms, but it also provides
the opportunity to employ sequence-based analyses to inform on strategies to elicit
the biosynthetic pathways that remain silent during the growth of culturable isolates
under standard laboratory conditions. The level to which genome mining
(vs. screening for biosurfactant activity) can already contribute to biosurfactant
discovery will be discussed in this chapter (Fig. 1).

Regardless of whether culture-based or culture-independent approaches are
employed for biosurfactant discovery, assessment of the activity constitutes a crucial
component of each biodiscovery approach. Focused on the detection of novel
biosurfactants with specific physicochemical characteristics and performance prop-
erties, the selection of a strategy to screen for biosurfactant-producing microorgan-
isms is of vital importance. The strategy sets the scene for the likelihood and the level
of success in the identification of novel and structurally diverse biosurfactants with
potential commercial value in different sectors of bioeconomy. In the interest of
product development, the strategy should not only incorporate methods to screen
large collections of microorganisms rapidly, easily and with a high level of sensi-
tivity, but should also facilitate the detection of specific biosurfactant characteristics
and the quantification of key parameters for the selection of the most promising
biosurfactant candidates. Therefore, this chapter will provide an exhaustive sum-
mary of the wide range of screening methods available, addressing specific factors
that need to be considered and revised in the prospecting efforts to ensure that novel
properties and structures are identified. Another major obstacle to the development
of biosurfactants for commercial application is the yield, which may be factored into
the screening process. However, some bioengineering approaches to improve strain
yields are available, therefore, this chapter will not incorporate yield as a screening
criterium.

2 Screening Methods Based on Physical Properties

A wide range of screening methods, based on the physicochemical properties
displayed by surfactants, are available for the identification of biosurfactants pro-
duced by microorganisms. These are mostly dependent on direct and indirect
measures of surface and interfacial tension activity, with a few methods that assess
specific physicochemical features of specific groups of biosurfactants. Screening for
surface activity, using a single or a combination of assays, can be performed on
purified biosurfactants, on whole cells, or culture supernatants, where both qualita-
tive and quantitative data can be obtained. The principal aim in such screenings is to
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identify structurally new biosurfactants with effective surface and interfacial tension
reduction, low critical micelle concentration (CMC), high emulsion capacity, good
solubility and retained activity at a broad pH, salinity, and temperature range
[10]. Notably, the screening methods can also be employed to prioritize cultures
that could offer a commercial competitiveness by demonstrating a high production
rate/yield at low production costs.

This section provides an overview of all the methods reported to date and
highlights the screening strategies most often employed. The screening methods
are categorized here as “Universal” – assays for the initial screening of large
numbers or collections for general biosurfactant activity; or, “Targeted” – which
includes either indirect assays to detect specific biochemical or performance prop-
erties or the more sophisticated direct assays to identify biosurfactants based on
physicochemical properties. The described methods are compared in terms of
necessary processing efforts, skill level, and equipment requirement, and suitability
for high-throughput screening and quantification (Table 1). Notably, many of these
methods lack specificity, therefore the initial results, in particular from universal
screening methods, should be confirmed with complementary methods up to struc-
tural elucidation. A guideline for screening and characterization approaches for
biosurfactants was recently suggested by Twigg et al. [29].

2.1 Universal Screening Assays

Included in this category are screening methods based on an indirect measure of the
ability to reduce surface and interfacial tension, the phenotypic characteristics shared
by surfactants. They are easy, rapid, sensitive, do not normally require expensive
equipment (Table 1), and are often suitable for the screening of large numbers of
cultured strains or metagenomic library clones. Hence, such assays are typically used
as the first line of screening for the isolation of positive biosurfactant-producing
strains/clones. Of all the assays described hereafter, the drop collapse, oil spread test,
and the atomized oil spray have been the most widely applied in biodiscovery and
screening studies [30, 31].

2.1.1 The Drop Collapse Test

This method assesses the stability of drops of culture broth, culture supernatant or
solutions of pure biosurfactant when they encounter an oil-coated or hydrophobic
surface (Fig. 2) [32]. The underlining principle is that the drop collapse occurs as a
result of the reduction of interfacial tension within the liquid and the surface tension
reduction on the hydrophobic surface caused by biosurfactant activity [33, 34]. The
control drops without biosurfactant activity remain stable and do not collapse due to
the hydrophobic surface repelling the polar water. The stability of the drop depends
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Table 1 Comparison of the ease of use of the methods available for the screening of
biosurfactantsa

Screening method Sample type Sensitivity Level of 
difficulty

Analysis 
speed

Special 
equipment 
required

Qualitative 
(QL), semi -
quantitative 

(S-QN),
quantitative 

(QN)

Applicability 
for high 

throughput 
screening
aCan be 

adapted to be

Recent biodiscovery
examples employing 

the respective 
method

Atomized Spray 
Method

Colonies H Easy Sec N S-QN Y [11]

Drop Collapse Test Culture 

supernatant, 

relatively pure 
compound

M Easy Min N S-QN Y [7]

Oil Spread Test Culture 

supernatant, 
relatively pure 

compound

H Easy Sec N S-QN N [12]

Micro Plate Assay Culture 

supernatant, 
relatively pure 

compound

H Easy Min N QL Y [13]

Penetration Assay Culture 

supernatant

M Easy Min N QN Y [14]

Tilting Slide Test Culture 

supernatant, 

relatively pure 
compound

M Easy Min N QL N [15]

VPBO-Assay Culture 

supernatant, 

relatively pure 
compound

H (>CMC) Easy Sec N QN Y [16]

EC 24 Culture 

supernatant

M Easy Hours N QN N [13]

Hemolytic Assay Colonies M Easy Days N S-QN Na [7]

CTAB-Methylene 

Blue

Colonies H Easy Days N S-QN Na [17]

CPC-Bromothymol 
Blue

Culture 
supernatant, 

crude extract

H Easy Min N S-QN
QN

Na depends on 
the need for 

extraction

[18]

TLC Crude extract H Medium Hours N S-QN N [19]

Hydrocarbon 

Overlay Agar

Colonies M Easy Days N QL N [20]

BATH Culture with 
cells

H Easy Hours Y QL N [20]

HIC Relatively pure 

compound

H Challenging Hours Y QL N [21]

Replica Plate Test 
Assay

Colonies H Easy Min N QL N

Salt aggregation Culture 

supernatant

H Easy Min N QN N [22]

Solubilization of 

Crystalline 
Anthracene

Culture 

supernatant, 
relatively pure 

compound

H Challenging Min N QN N

MALDI-TOF/MS Crude extract H Advanced Hours Y QN N [23]

Du-Nouy-Ring 
Method

Culture 
supernatant, 

relatively pure 
compound

H Medium Hours Y QN N [24]

Wilhelmy Plate 

Method

Culture 

supernatant, 

relatively pure 
compound

H Medium Hours Y QN N [25]

Stalagmometric 

Method

H Medium Hours Y QN N [26]

Axisymmetric Drop 

Shape Analysis by 
Profile

Culture 

supernatant, 

Culture 

supernatant 

relatively pure 

compound

H Challenging Hours Y QN N [27]

Pendant Drop Shape 
Technique

Culture 
supernatant, 

relatively pure 
compound

H Medium Hours Y QN N [28]

aThe methods are compared in terms of necessary processing efforts, skill level, and equipment
requirement, and suitability for high-throughput screening and quantification. The methods are
presented in four categories (yellow) “Universal” preliminary screening assays; (gray) methods that
screen for specific biochemical or physicochemical characteristics and performance of the
biosurfactant; and (green) those that directly measure surface and interfacial tension reduction
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on the concentration and surface tension reduction capabilities of the biosurfactant
being screened.

One of the advantages of this method is its sensitivity and ease of use, with just a
small volume of sample needed and no special equipment required [34]. It can be
applied in large sample screening, and modifications to enable automated screening
in microplates for high-throughput screening have been successfully employed
[33, 35]. Staining of the droplets is an additional modification to enhance the
visualization of the drops [36]. Disadvantageously, hydrophobic biosurfactants,
and those that possess surface reduction capabilities but do not necessarily result
in droplet collapse, cannot be detected using this method [37]. Activity relies
obviously on a detectable concentration of the compound in the droplet and the
hydrophobicity of the applied surface. Notably, there is actually no conclusive
evidence that links surface tension reduction to the method, thus reducing its
reliability. Lastly, the method is only qualitative, although it can be adapted to be
quantitative for relative measurement of biosurfactant concentration for pure surfac-
tants by measuring the drop size or the contact angle [7].

2.1.2 Oil Spread Test

The oil spread test is a rapid and easy method that does not require any special
equipment [38]. A volume of crude oil is added to the surface of distilled water in a
petri dish, resulting in the formation of a thin layer of oil on top of the water. The
culture or culture supernatant is then placed on the oil layer, and where a
biosurfactant is present, it displaces the oil creating a clear zone. This occurs as a
result of the pressure formed upon contact of the hydrophobic part of the oil and that
of the biosurfactant; the interface tension is reduced and the oil layer breaks resulting
in a zone of clearing. The assumption is that the displacement of oil is directly

Fig. 2 The drop collapse method is used to screen for biosurfactant activity by observing the
stability of drops containing biosurfactant on a hydrophobic surface. (a) Pure water samples without
the presence of biosurfactant. (b) Mono-rhamnolipid containing supernatants of recombinant
P. putida
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proportional to the concentration of the biosurfactant in the sample tested, and
therefore provides both qualitative and semi-quantitative measurements [39]. A
correlation between the oil spread test and the drop collapse method suggests that
both could be used for preliminary screening; however, due to the disadvantages
associated with the drop collapse method, perhaps the oil spread test represents a
more appropriate assay for generalized screening.

2.1.3 The Atomized Oil Spray Method

In this assay a thin mist of paraffin is sprayed over bacterial colonies cultivated on
agar plates, revealing the formation of droplets as a halo around a biosurfactant-
producing colony (Fig. 3), the radius of which can be measured for a semi-
quantitative analysis [35]. The method rapidly detects activity and does not require
sample preparation, making it suitable for high-throughput screening of thousands of
colonies at once, and therefore ideal for metagenomic library screening [31, 40]. Fur-
thermore, the atomized spray method (also known as the oil vaporization assay)

Fig. 3 The atomized oil spray method showing biosurfactant activity as a light-diffractive halo via
formation of uniformed droplets surrounding microbial growth on agar. (a) Recombinant E. coli
producing Serrawettin W1; (b) Recombinant P. putida producing mono-rhamnolipid; (c) Recom-
binant Erwinia billingiae producing Serrawettin W1
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provides greater sensitivity than the drop collapse method, detecting 10–100-fold
lower surfactant concentrations and allows the detection of biosurfactants with low
water solubility [35]. Due to the versatility and sensitivity of the atomized oil assay,
it is considered a more superior screening method than most of its indirect screening
method counterparts.

2.1.4 Microplate Assay

The microwell plate assay has been patented as a qualitative measure to screen
culture supernatant for surface tension reduction abilities [41]. The assay involves
assessing optical changes of gridded paper placed under the 96 well plate containing
the culture supernatant being tested (Fig. 4). Pure water in a hydrophobic well has a
flat surface and no optical distortion, whereas the presence of a biosurfactant results
in optical distortion. As a consequence, the fluid changes the surface brought about
by the wetting of the edge of the well, subsequently becoming concave and taking
the shape of the diverging lens. The assay is easy, rapid, sensitive, allowing
instantaneous detection of surface-active compounds from a small volume [42]
and is suitable for automated high-throughput screening, therefore appropriate as a
method for functional metagenomic library screening [31]. Proper imaging is
required to capture the correct optical distortion to remove subjective bias. Besides,
the sample must be clear with no turbidity or intense color to observe the underlying
grid changes [33].

Fig. 4 Microwell plate assay measures the surface activity of biosurfactants in a solution. (a) Pure
water in a hydrophobic well which has a flat surface; (b) optical distortion that is caused by mono-
rhamnolipid recombinantly expressed in P. putida
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2.1.5 Penetration Assay

This colorimetric qualitative assay is based on the infusion of two insoluble phases in
a 96 well plate that results in a color change [43]. A hydrophobic paste mixture
consisting of oil and silica gel applied to the wells is then covered with oil. The
culture supernatant or sample, colored by adding a red staining solution, for example
1% safranin, is then placed on the surface of the oil mixture. In the presence of
biosurfactant, the hydrophilic liquid breaks through the oil film barrier into the paste
causing the stain to be absorbed by the silica, and the color of the upper phase
changes from clear red to cloudy white within 15 min. The effect is based on the
ability of the silica gel to enter the hydrophilic phase from the hydrophobic paste
much more quickly in the presence of a biosurfactant. In the case of no biosurfactant
activity, the upper layer will turn cloudy but remain red. The assay is simple, and
with the help of tools such as a Cybi-Disk robot, it can be applied in high-throughput
screening [43].

2.1.6 Tilting Slide Test

This test examines the flow of water droplets over a glass slide surface and can be
applied in preliminary screenings [44]. A single test colony picked from an agar
plate is applied onto a sterilized glass slide near the glass edges and mixed with 1%
saline water. The glass slide is gradually tilted to observe the flow of the water
droplet over the glass surface, and activity is recorded if it flows. The method is easy
to apply and does not require any expensive or specialized equipment [25], but
serves only as a preliminary screening method and must be supported by secondary
screening.

2.1.7 Victoria Pure Blue BO (VPBO) Assay

This assay is based on the surfactant-dependent solubilization of Victoria Pure Blue
BO, a hydrophobic blue dye typically used in ballpoint pens. Assay plates are
prepared before the screening by immobilizing the dye on 96-well polystyrene
plates. The surfactants in aqueous solutions applied to the wells, e.g., supernatants
of bacterial cultures can re-solubilize the dye into the liquid [16, 45]. The solubilized
dye can be quantified, if desired, after the transfer of the liquid to a clean plate
(Fig. 5) via the specific absorption at 625 nm. The method, initially used to
determine residual detergent levels in medical preparations, offers a broad range of
applications beyond the qualitative high-throughput screening for biosurfactant
production, including biosurfactant quantification, e.g., for the comparative evalua-
tion of different cultivation conditions and assessment of the CMC and solubilization
properties of isolated surfactants [16, 46]. The VPBO Assay has been shown to be
suitable for chemically different ionic and non-ionic biosurfactants; however, like
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for the drop collapse assay, water solubility of the biosurfactant and a concentration
above the CMC appear to be a prerequisite.

2.2 Targeted Screening Assays

The assays described here encompass two parts: methods that assess specific bio-
chemical or physicochemical characteristics and performance of the biosurfactant;
and those that directly measure surface and interfacial tension reduction.

2.2.1 Emulsification After 24 h (EC24)

The emulsification capacity index (EC24) measures the ability of an emulsifier to
stabilize the emulsion of immiscible liquids over 24 h. After the mixing of two
immiscible phases, for example, water and oil, the unstable emulsion divides into
separate phases depending on the respective densities, whereas in the presence of a
biosurfactant with emulsification capabilities, the emulsion is stabilized through
interfacial tension reduction between the immiscible phases allowing them to readily
mix (Fig. 6). This method, therefore, assesses the capability of a culture
(or supernatant) to form an emulsion with a hydrocarbon such as paraffin, kerosene,
and hexadecane after they are mixed [47]. The EC24 is measured as the height of the
emulsification over the total height of the two-phased mixture, 24 h after mixing by
agitation to form emulsions. Alternatively, emulsification can be detected by quan-
tifying the turbidity from the emulsion using a turbidimeter [48].

However, the ability of a biosurfactant to form an emulsion is rarely associated
with its surface and interfacial tension reduction potential [31, 37]. Therefore, good
emulsion does not necessarily equate to surface and interfacial tension reduction [9],

Fig. 5 Biosurfactant solutions after VPBOAssay in a microwell plate. The presence of surfactant is
indicated by the blue dye Victoria Pure Blue BO that is released from the surface of the plate well by
surfactant activity. This response (b + c) is concentration dependent, whereas in the absence of
surface-active agents (or in amounts below CMC) the solution remains uncolored (a)
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and vice versa, biosurfactants capable of reducing the surface and interfacial tension
are not necessarily good emulsifiers.

2.2.2 Hemolytic Assay

The blood agar method is widely used to detect biosurfactant production through the
lysis of erythrocytes cells producing a colorless transparent ring around the colonies
(Fig. 7) [49, 50]. It is a semi-quantitative method as the concentration of
biosurfactant correlates to the linear increase of the diameter of lysis on the blood
agar. The assay is also suitable for a 96-well and liquid format where the amount of
hemoglobin released into the solution is determined photometrically [51]. However,
hemolysis is not a universal property of biosurfactants. Furthermore, hemolysis may

Fig. 6 Emulsification after
24 h, after mixing paraffin
with culture supernatant.
Following the mixing of two
immiscible phases an
unstable emulsion divides
into separate phases (b),
whereas a stabilized
emulsion is formed due to
the presence of
recombinantly expressed
lyso-ornithine lipid (LOL)
in the cell-free culture media
(a)

Fig. 7 The blood agar method detects hemolytic capabilities of some biosurfactants (b) through
lysis of erythrocytes cells, producing a colorless transparent ring around the agar well, compared to
no clear zone for a control solution (a)
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also be evoked by pore-forming proteins or phospholipases [52] which can yield
false-positive results. Hence, hits from this assay must be treated with care and
maybe not as the method of choice for primary screenings.

2.2.3 Colorimetric Complex Release Assays

The complex formation of biosurfactants with cationic detergents, resulting in the
displacement of a dye molecule, can be applied to determine the presence of
biosurfactants in supernatants photometrically at 96 well scale.

CTAB-Methylene Blue Plate Assay

The cetyltrimethylammonium bromide (CTAB)-methylene blue method, also
referred to as the “blue agar plate” method, serves as a semi-quantitative assay for
the preliminary detection of extracellular anionic surfactants [17]. The positive
detection of biosurfactants on agar containing 0.5 mg/ml CTAB and 0.2 mg/ml
methylene blue is seen by the formation of a blue halo surrounding a bacterial colony
or sample (Fig. 8). The blue halo is formed through the binding and forming of a
complex of anionic surfactant with the cationic surfactant of CTAB. Not all bacteria
can be screened using the method because CTAB is toxic to some bacteria including
E. coli [31].

Fig. 8 The CTAB-
methylene blue method for
the detection of extracellular
glycolipids or other anionic
surfactants. SDS shows the
positive detection of
surfactants as seen by the
formation of a blue halo
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CPC-Bromothymol Blue Assay

Cetylpyridinium chloride (CPC) in combination with bromothymol blue (BTB) or
fluorescein has been successfully applied in a similar manner as the CTAB-
methylene blue assay [18, 53]. Biosurfactant presence and concentration can be
determined via the color/fluorescence shift evoked by the displacement of the dye
components. This strategy was described as a very reliable method to even quantify
the anionic lipopeptide surfactin [18] but it may interfere with media components or
primary metabolites [54] and may therefore require extraction procedures before the
assay. Furthermore, it is most likely that both complex release assays are restricted to
anionic biosurfactants.

2.2.4 Detection of Biosurfactant Production by Thin Layer
Chromatography (TLC)

Thin layer chromatography (TLC) is mainly applied in the characterization of the
chemical nature of the produced biosurfactants by using selective reagents and
manipulating the polarity of solvents when separating crude extracts on a silica gel
plate. For the detection of functional groups of biosurfactants, different staining
reagents can be used, e.g. ninhydrin stains lipopeptides red whereas α-naphthol
stains glycolipids purple (Fig. 9). Hydrophobic moieties like aromatic ring systems
or lipid chains can be visualized applying iodine vapor or primuline. This method is
not suitable for high-throughput screening.

Fig. 9 TLC analyses of different biosurfactant extracts, (a) stained with primuline for lipid
detection; (b) stained with iodine for lipid detection; (c) stained with α-naphthol for sugar detection;
(d) stained with orcinol/sulfuric acid for sugar detection
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2.2.5 Screening Methods Based on Cell Surface Hydrophobicity

Several indirect methods are suitable to screen for differences in cell surface
hydrophobicity. The cell-bound biosurfactant production by a microorganism is
associated with high hydrocarbon uptake and therefore high surface hydrophobicity,
whereas microorganisms that release biosurfactant extracellularly are associated
with low surface hydrophobicity. Many other factors influence the hydrophobicity
of bacteria, such as physiological aspects like growth conditions and cellular age.
Therefore, these methods are generally used for rapid identification during the
isolation stages and are followed by secondary screening.

Hydrocarbon Overlay Agar

Microbial isolations on oil-coated agar plates can identify strains that degrade
hydrocarbons and produce biosurfactants by the production of an emulsified halo
surrounding the colony [36, 55]. The method is easy to set up and does not require
special equipment, but it cannot be applied for strains that do not degrade hydrocar-
bons. The method is used for initial screening purposes only and requires further
confirmation of positive results.

Bacterial Adhesion to Hydrocarbon Test (BATH)

The photometrical bacterial adhesion to hydrocarbons (BATH) assay measures the
hydrophobicity of a cell surface by measuring the degree of adhesion of washed
microbial cells to different hydrocarbon compounds, such as hexadecane or octane
[56]. Hydrophobicity of the cells is measured by assessing changes in absorbance at
550 nm of the lower aqueous phase before and after the mixing procedure, expressed
as a percentage. The basic principle is that a decrease in the turbidity of the aqueous
phase correlates to the hydrophobicity of the cell; however, it is considered one of
the least reliable methods [30].

Hydrophobic Interaction Chromatography (HIC)

This chromatography screening method is based on the hydrophobic interaction
between non-polar group regions of particles and the non-polar groups on a hydro-
phobic chromatographic resin. It was initially employed to purify and separate
biomolecules based on differences in their surface hydrophobicity [27] and was
modified for biosurfactant screening. A bacterial suspension in a high-salt buffer is
allowed to flow through a gel bed of hydrophobized Sepharose to which hydropho-
bic cells adhere. Turbidity and bacterial counting in the elute are measured to obtain
the degree of adsorption of the cells to the gel. Stepwise or continuous decrease of
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the ionic strength for desorption of the adherent microbes promotes their elution.
This way, microbes of different surface hydrophobicity can be separated. The main
advantage of applying HIC for screening biosurfactant production is that it is
convenient because both isolation and screening of strains can be achieved simulta-
neously while also serving as a good comparative analysis of the hydrophobic
properties of microorganisms.

Replica Plate Test Assay: Adhesion of Bacteria to Hydrophobic Polystyrene

This simple assay is used to identify and isolate hydrophobic microorganisms by
their adhesion to hydrophobic polystyrene by pressing a flat sterile disk of polysty-
rene onto agar containing the colonies [57]. The underlying principle is that the
affinity of bacteria to polystyrene strongly correlates to the hydrophobicity of the cell
surface [58]. The advantage of this method is that hydrophobic strains can be
simultaneously isolated and identified.

Salts Aggregation Assay

This assay involves the precipitation of cells by increasing salt concentration, the
same principle used in salting out proteins [59]. The underlining principle is that the
more hydrophobic the surface of the cell, the lower the salt concentration that is
required to aggregate the cells. A bacterial suspension is mixed with various
ammonium sulfate concentrations on glass depression slides and monitored for the
formation of a white aggregate.

Solubilization of Crystalline Anthracene

This quantitative assay is based on the solubilization of anthracene, a highly
hydrophobic crystalline compound, when added to the culture supernatant
[60]. The production of biosurfactant is determined by measuring the concentration
of the solubilized anthracene at 354 nm with a photometric device. Important to note
is that the cell-free supernatant of the culture is used to conduct the assay, since
bacteria could metabolize the anthracene, which may be mistakenly interpreted as
biosurfactant activity [61, 62].

2.2.6 Structure-Based Screening as a Recent Advance
in Physicochemical Screening Methods

The typically low biosurfactant titers in broth cultures not only impact the efficiency
of the screening process, but also impede the structural determination of the isolated
biosurfactants which relies on a large amount of purified compound and
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time-consuming methods. To overcome these bottlenecks, Sato and co-authors [23]
recently demonstrated a structure-based screening method in the early stages of the
screening process. The approach they developed relies on the use of matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS), a
technique that is commonly used to identify organic molecules based on precise
mass-to-charge ratio measurements. Although MALDI-TOF/MS has been applied
for the structural determination of purified biosurfactants [63–67], this study has
been the first to employ it for screening for biosurfactant producers and on crude
samples. Currently, this method has only been applied for the screening of
glycolipid-type producers, and therefore its application to other classes of
biosurfactants has yet to be ascertained. Since the technique is premised on identi-
fying mass to charge ratios of known compounds, its ability to identify completely
novel structures is most likely very limited. However, this does represent a rapid and
reliable tool to detect variants of a class of compound, as was demonstrated by Sato
et al. [23]. Additional advantages of this approach are that MALDI-TOF/MS
requires a small amount of sample for measurement and can distinguish structural
differences in mixtures because of the precise measurement of the mass-to-charge
ratio corresponding to the molecular weights of the compounds. Furthermore, it can
be used to screen unidentified microbial cultures in addition to new biosurfactant
variants. The fact that the structure can already be ascertained in the primary
screening of the crude extract is an obvious advantage for accelerating the screening
process.

2.2.7 Quantitative Screening Methods Based on the Direct Measure
of the Surface and Interfacial Tension

Surface and interfacial tension reduction is the common measure of the physical
property of surfactants, defined in two ways; the tension force per unit length exerted
by a liquid in all directions at an interface of a solid or another liquid; or, explained in
terms of energy, as the amount required to decrease the interior forces of bulk liquid
molecules and molecules at the interface of the liquid in contact with other surfaces
[68, 69]. The surface tension is measured as dimensions force/length in the units
dyne/cm or mN/m. At a value of 72 mN/m, water is known to be one of the organic
liquids with the highest surface tension value [10]. An effective surfactant should
interrupt the forces per unit length of water and lower the surface tension from 72 to
30 mN/m [9]. Interfacial tension (IFT) is the intermolecular attractive force of the
molecule in a liquid and represents the emulsion capacity of a surfactant. A high
emulsion relates to a low IFT [10]. A surface-active biomolecule must lower the
interfacial tension for water against n-hexadecane from 40 to 1mN/m.

Tensiometers can be universally used to quantify the activity of any biosurfactant
by measuring the change in surface and interfacial tension at their air/water and
oil/water interfaces. Force or optical tensiometry are techniques that are commonly
used to measure the surface and interfacial tension. Force tensiometry involves a
direct measure of the surface or interfacial force exerted on a probe, whereas the
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optical tensiometry unit measure is calculated from theoretical equations whereby an
image profile of a drop or bubble is extracted and fitted to an equation.

The reduction of the interfacial tension in air/water or oil/water systems increases
with (bio)surfactant concentration but only up to a critical point, above which no
further surface tension reduction occurs, instead, surfactants aggregate to form
structures like micelles, bilayer, and vesicles. The value at the critical point is
known as the critical micelle concentration (CMC) [9]. The efficiency of the
surfactant is determined by how low its critical micelle concentration is, the lower
the CMC, the less product needed to reduce the surface and interfacial tension. In
most industrial processes, ranging from drug delivery systems to agricultural reme-
diation technologies, the CMC value is considered particularly important for deter-
mining the biosurfactants’ suitability in the respective application [70]. Discussed
below are some of the direct screening techniques:

Du-Nouy-Ring Method

This is a traditional technique used for the direct measurement of surface or interface
tension change generally using an automated tensiometer [36]. The method involves
measuring the force required to pull through a fully submerged ring or loop of
platinum wire from an interface or surface of the liquid of interest. The detachment
force is measured relative to the surface or interfacial tension. A biosurfactant-
containing solution is noted as one that reduces the tension of pure water to
40 mN/m or less [68, 69]. This measure shows a direct relationship to the drop
collapse, oil spreading, and surface tension assays. It is the most widely applied
method as it is accurate and easy to use; however, it requires specialized
equipment [71].

Wilhelmy Plate Method

This is a universal method for measuring surface or interfacial tension at an air–water
or water–water interface. A thin Wilhelmy plate is submerged perpendicular to the
air–liquid or liquid–liquid interface and the force applied on it is measured [72]. The
Wilhelmy plate is often made from filter paper, glass, or platinum with a rough
surface to ensure wetting. The choice of material is not particularly important, but the
material must have the capacity to be wetted by a liquid. The advantages of this
method include that one can use disposable papers; it is considered the simplest and
most accurate measure; it does not require correction factors when calculating
surface tension, because the Wilhelmy plate assumes a zero-contact angle with the
liquid; and there is no need to measure or know the density of liquids, only mass of
plate and wetting force is considered [36]. The disadvantage of the application is that
a large volume of liquid is needed.
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Stalagmometric Method

This is one of the most common methods adopted to screen for biosurfactant
production, using a traube stalagmometer to measure surface tension activity [73].
A pipette with a broad flattened tip is used as the capillary system, with which large
drops of reproducible size are suspended from the tip, drop once a maximum weight/
volume is reached. The volume is calibrated by the stalagmometer and the weight of
the drop is dependent on the characteristics of the liquid being tested. The underlying
principle is that the weight of volume is in equilibrium with the surface tension.
Biosurfactant production is measured by counting the number of each drop that falls
per volume from the glass capillary tube, and by measuring the density of the sample
and the surface tension of the control sample liquid used, which is normally water.
The main disadvantage of this screening method is the large variability usually
obtained in the results, suggested being due to drop formation being too fast and
not allowing the complete adsorption of the surfactant to the newly generated drop
surface [10]. Another disadvantage is that consecutive measurements are not
possible.

Axisymmetric Drop Shape Analysis by Profile (ADSA-P)

This optical method is used to simultaneously measure liquid surface tension and
contact angle from the profile of a droplet resting on a solid surface [74]. The
underlying principle is that the shape of a liquid droplet depends greatly on the
liquid surface tension; biosurfactant solutions with low surface tension tend to
minimize the surface area of the drop causing the droplet to deviate from a perfectly
spherical shape when compared to those with high surface tension, as indicated by
the drop collapse test (Sect. 2.1.1). The circumference of a liquid on a solid surface is
captured as an image and the measurements are subsequently fitted to the capillary
Laplace equation to calculate the surface tension [68, 69, 75]. The advantage of the
ADSA-P is the small volume needed for the drop shape analysis. However, the
shortcomings of using this method include the requirement for a camera and
software; and it involves complex calculations; complex computational routine
and samples cannot be measured in parallel [10, 36, 75].

Pendant Drop Shape Technique

This is the most common optical tensiometry method used to screen for biosurfactant
activity and is considered an excellent screening technique for a quick analysis of
surface and interfacial tension and measurement of contact angle [74]. The surface
and interfacial tension properties are measured from a drop of liquid allowed to hang
from the end of a capillary. The drop adopts an equilibrium profile based on the tube
radius, the interfacial tension, its density, and the gravitational field [76].
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3 In Silico Screening of Sequence Datasets for Novel
Biosurfactants

The development and continuous improvement of next-generation sequencing
(NGS) platforms and the subsequent scalability, cost reductions, and development
of in silico tools have enabled the advancement of sequence-based screening for the
discovery of novel biomolecules. The availability of genome sequences for over
800,000 bacteria and 4,000 fungi [77], as well as enormous metagenomic sequence
datasets in public databases, representing largely untapped resources from diverse
organisms from almost every environment imaginable, makes sequence-based
screening particularly attractive. Not only can researchers bypass the sampling and
isolation of strains and/or (meta)genomic DNA and sequencing costs, it enables also
the convenient de novo synthesis of the identified genes and pathways, cloned into a
plasmid vector of choice, through a number of service providers [78]. Without
question DNA sequencing technologies have reinvigorated the discovery of new
microbial enzymes and secondary metabolites [79, 80], but it has had rather limited
application for the discovery of novel biosurfactants. However, several genome-
guided efforts involving biosurfactant-producing strains have reinforced the notion
that targeted sequence-based approaches have the potential to contribute to
biosurfactant discovery. The following sections will outline the sequence-based
screening process and discuss the potential for biosurfactant discovery.

3.1 Gene/Pathway Identification

Assembled genomes and/or contigs are queried to identify protein-coding sequences
based on homology to reference sequence data in curated sequence databases where
open reading frames (ORFs) or conserved protein motifs (for example active sites/
domains) are identified through similarity search algorithms (e.g., BLAST [81],
COG [82], KEGG [83, 84]. In many cases, expression of secondary metabolites,
which encompass biosurfactants, involves more than one gene for biosynthesis. One
of the most popular tools for the identification of biosynthetic gene clusters (BGCs)
in general is antiSMASH (antibiotic and secondary metabolite analysis shell)
[85]. This tool is continuously developed and currently provides researchers with
an easy-to-use, up-to-date collection of state-of-the-art annotated BGC data. It
identifies all BGCs present in the query sequence as well as facilitating cross-
genome analyses. In addition to cluster predictions, more complex searches can be
implemented via the graphical query builder from which researchers can gauge the
novelty of the clusters, and by extension, the novelty of the compound they encode.
Therefore, in addition to discovery, sequence-based mining can also serve as a
dereplication tool that can be used to prioritize strains most likely to produce a
novel biosurfactant. Advantageously, sequence-based screenings can be conducted
in an ultra-high-throughput manner provided suitable bioinformatics and
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computational capacity is available. Another advantage of sequence-based mining
pertains to the realization that there is great disparity between the number of putative
secondary metabolite gene clusters identified based on bioinformatics analyses vs
the actual number of secondary metabolites detected from culture fermentations
[86]. Such BGCs are regarded as cryptic, where either the genes are not expressed
under standard laboratory cultivation conditions or they encode compounds that are
produced in yields insufficient for direct isolation and characterization [80]. This not
only points to an astounding level of as yet undiscovered metabolites for the majority
of cultured organisms, but it also provides the opportunity to employ genome-guided
strategies to identify biosurfactant BGCs in organisms that may have initially tested
negative in a functional screen [87].

Given the structural and biosynthetic diversity of biosurfactants, there is no
universal sequence-based screen to detect biosurfactant genes or pathways from
datasets a priori [31]. For example, glycolipid discovery using a sequence-based
approach is currently not viable due to the lack of a specific conserved domain to
distinguish glycolipid associated enzymes from the wealth of glycosyltransferases
performing a multitude of functions in bacteria [88, 89]. In consequence, glycolipid
operon prediction is not implemented e.g., in antiSMASH. However, for lipopeptide
biosurfactants which are encoded by nonribosomal synthase (NRPS) gene clusters,
the conserved adenylation domain of the synthase gene could be targeted to identify
NRPS BGCs, followed by a secondary screen of the initiation domains to discern for
lipopeptide-specific NRPS BGCs [31]. For example, holrhizin A, a novel linear
lipopeptide from the Burkholderia rhizoxinica, an endosymbiont of the rice seedling
blight fungus Rhizopus microspores, was discovered through such a genome mining
approach [90]. The identification of a conserved cryptic NRPS gene cluster among
all sequenced Rhizopus endosymbionts led to the isolation and characterization of
holrhizin A as a biosurfactant. It was further demonstrated to influence the formation
of mature biofilms and thus cell motility behavior, typical for biosurfactants, and
thus ultimately supports the colonization and invasion of the fungal host, furthering
the understanding of the mechanism behind the exceptional Burkholderia-Rhizopus
symbiosis relationship.

The discovery of holrhizin A represents an elegant example of how a genomics-
led discovery not only resulted in the description of a novel biosurfactant, but also
provided a functional link between orphan NRPS genes and a chemical mediator that
promotes bacterial invasion into the fungal host. But this example also serves to
highlight that sequence alone could not have predicted the biosurfactant properties of
the NRPS-encoded metabolite. Therefore, it can be reasonably expected that a purely
sequence-based screening approach will have limited success for biosurfactant
discovery. A much higher success rate can, however, be expected when employing
sequence-based screening for strains with confirmed biosurfactant activity, espe-
cially in the case where the primary or secondary screening already points to a
specific class of biosurfactant which can inform the sequence-based search [91–93].

Another limitation of sequence-based screening pertains to the level of novelty
that can be identified. Since sequence-based searches rely on similarity algorithms
that score based on sequence identity, the discovery of completely novel
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biosurfactants will be limited; and true novelty may be overlooked as very distantly
related sequences are often unlikely to be found by homology-based searches
[94]. However, a sequence-based approach could have enormous value in identify-
ing variants of certain classes of biosurfactants. For example, rhamnolipids encom-
pass a wide diversity of congeners and homologues [95], the synthesis of which are
encoded by the rhlA, rhlB, and rhlC genes. Perhaps, sequence variations in the genes
could be a proxy for predicting novel homologues and therefore sequence-based
screening could identify new targets to validate by culturing the native host or
through heterologous expression of the genes (discussed further below). Especially
the products of BGCs that are not readily expressed by the natural producers under
the chosen growth parameters may be accessed using heterologous expression
and/or genetic engineering approaches to bypass the strict regulation systems in
the natural hosts [96].

3.2 Heterologous Expression of Putative
Biosurfactant-Encoding Genes/Pathways Identified
Through In Silico Mining

Once identified, the genes or pathways can be cloned and heterologously expressed
in a suitable host, to produce the biosurfactants for purification and characterization.
The transfer of complete biosynthetic pathways is a considerable challenge because
the respective genes may be dispersed over the chromosome (as for example the
genes necessary for di-rhamnolipid biosynthesis in P. aeruginosa) [68, 69] or
organized in very large BGCs. For the NRPS-synthesized lipopeptides, where
BGCs can span >50 kb in size, standard cloning procedures involving polymerase
chain reaction (PCR) amplification are not suitable and de novo synthesis
approaches would not be feasible [97, 98]. However, if identified from genomes of
culturable organisms, a large collection of tools has become available for generating
conventional genome libraries and/or capturing even large BGCs in clones which
can then be screened (in the case of a genome library) or assessed for biosurfactant
activity [5, 99].

Even if complete BGCs are transferred to suitable host strains, the successful
expression and biosynthesis for a specific biosurfactant is to a large extent dependent
on the chosen host strain that must be suitable to produce a respective biosurfactant
in amounts at least sufficient for detection and structural elucidation. This typically
requires promoter recognition (or a suitable promoter sequence on the applied vector
backbone), efficient translation of the foreign genes, supply of accessory proteins
and cofactors, supply of precursor metabolites, and tolerance toward the surface-
active and often also bioactive product itself. For example, Gram-positive bacteria
like Bacillus or Staphylococcus are very susceptible to surface-active compounds in
general, most likely because of the lack of a protective LPS-containing outer
membrane [100]. Hence, although Gram-positive organisms are often pronounced
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lipopeptide producers, they appear to not be favorable hosts to produce recombinant
biosurfactants at high levels. The dependence of active production of NRPS machin-
ery on a phosphopantetheinyl transferase (PPT) for posttranslational modification
exemplifies the importance of suitable enzymatic capabilities of a host strain
[101]. PPTs are often not part of BGCs and therefore must be supplied by the host
in these cases, preferably with a broad substrate spectrum. Another consideration for
host selection is for the host strain to lack biosurfactant/bioemulsification activity
itself, to facilitate the isolation and characterization of the recombinantly expressed
biosurfactant.

Approaches toward recombinant biosurfactant production are so far mainly
focused on different proteobacteria like E. coli [102, 103], Burkholderia sp., and
several non-pathogenic members of the Pseudomonas genus [103] as host organ-
isms. In this context, the well-explored production of rhamnolipids in P. putida
exemplifies the potential of recombinant production in a strain that combines high
tolerance, a versatile metabolism, sufficient precursor supply, and low background
activity with effective expression to enable high-yield production and, besides that,
tailoring of biosynthetic pathways [104, 105]. With respect to recombinant
lipopeptide production, Bacillus sp. and Streptomyces sp. as naturally potent
lipopeptide producers have been additionally applied as hosts [5].

Recombinant production strategies have been largely based on prokaryotic host
organisms so far. However, fungi represent a technologically important class of
biosurfactant producers well-known for the production of sophorolipids,
mannosylerythritol lipids, cellobiose lipids or hydrophobines and functional expres-
sion of related BGCs of fungal origin can often not be achieved in prokaryotic hosts.
To this respect, there is a need to complement the established set of microorganisms
for recombinant biosurfactant production with eukaryotic expression systems.
Accordingly, a few initial studies report successful functional heterologous expres-
sion of (partial) biosynthetic pathways for biosurfactants in Saccharomyces
cerevisiae, Starmerella bombicola, or Pichia pastoris [84, 106–108].

4 Metagenomic Biodiscovery: Unlocking Hidden Diversity

It is acknowledged that diverse and complex microbial communities inhabiting
many unique niches remain undiscovered; yet could represent the source of enor-
mous biosurfactant novelty. Moreover, researchers have for decades appreciated the
difficulty of bringing the abundant microbial diversity to culture in the laboratory. To
overcome the culturing limitations and to explore the natural wealth beyond the
minority of microorganisms that is culturable, metagenomic screening approaches
have been established in the hope of accelerating biodiscovery, and to specifically
tap into novel chemical space [96, 109]. Metagenomic approaches for the identifi-
cation of novel biomolecules utilize both approaches that have been explained in the
previous sections, functional, activity-based screenings of metagenomic libraries
constructed in a heterologous host; and sequence-based screening via bioinformatic
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analysis of next-generation sequencing data of environmental DNA (eDNA) [21,
84]. For reasons that have already been eluded to, functional metagenomics
(as opposed to sequence-based) has been considered the more promising approach
for the discovery of novel biosurfactants [31, 84, 110]. However, only few studies
have so far employed metagenomic screening successfully for surface-active metab-
olite discovery, in which novel genes encoding the synthesis of N-acylated amino
acids are largely reported. N-acyl amino acid synthases (Nas) catalyzing the synthe-
sis of acylated aromatic amino acids appeared rather frequently in functional screens
for active compounds against Gram-positive bacteria [111]. However, aromatic
N-acylated amino acids show pronounced surface activity and were, hence, detected
in functional screenings for biosurfactants [112]. Considering the susceptibility of
Firmicutes toward surfactants, it would be reasonable to assume that the observed
antibiotic effect of many biosurfactants is connected to their surface activity. A
recent study showed the advantage of different expression hosts even for such simple
molecules by indicating that the expression of the same nas gene in different
Proteobacteria led to different products [113]. Whereas E. coli extracts contained
predominantly N-acyl tyrosine, P. putida produced mainly N-acyl-phenylalanine. In
P. koreensis extracts, N-acyl-leucine was detected additionally.

Recent functional screens for surface activity revealed a structurally different
biosurfactant from the family of acylated amino acids, namely lactamized lyso-
ornithine lipids and ornithine lipids [40]. Key to success in this study was the
simultaneous screening in different hosts, because the respective library clone
showed surface activity only in the P. putida screening, whereas it was not detectable
in the E. coli library, although later experiments proofed the functionality of the
responsible metagenomic acyl-ACP-ornithine acyl transferase in E. coli. Here again,
the different strains produced biosurfactants of different composition, with only
P. putida producing ornithine lipids. Interestingly, a chromosomal integration shut-
tle vector was applied here for screening in P. putida, which might be a useful
strategy to stabilize large eDNA fragments in the host cells.

The potential of especially functional metagenomics for the detection of
completely novel biosurfactants was recently illustrated by the discovery of
MBSP1, a protein with emulsifying properties [114]. Remarkably, this protein is
putatively of archaeal origin whereas the known classes of emulsifying proteins,
hydrophobins and cerato-platanines, are produced by fungi [115, 116]. Hence,
MBSP1 represents the first example of a prokaryotic homologue. Moreover,
sequence searches revealed that homologues of MBSP1 are common among
Halobacteriaceae but were previously unassigned to a function. Although advances
are being made in computational tools to improve predictions of hypothetical pro-
teins which represent a significant fraction of the sequences in public databases
[117], this study elegantly exemplifies functional metagenomics as the most reliable
method for determining the functionality of novel protein sequences, a task which is
currently beyond the capabilities of existing in silico annotation technologies [94].

The available studies on functional metagenomic identification of biosurfactants
commonly reported surface-active molecules retractable to the activity of one
protein, whereas the biosynthesis of the majority of known biosurfactants is encoded

40 M. Trindade et al.



in operons of several genes or even in large BGCs. This bias may, in part, be related
to the challenges associated with maintaining a complete biosynthetic pathway
during library construction. In particular, with regard to lipopeptides, it is unlikely
to achieve clones encoding a complete NRPS gene cluster in a plasmid, cosmid, or
fosmid library with typical average fragment sizes of 5–40 kb [97, 98]. Although
there are examples for very compact NRPS machineries (e.g., Serrawettin W1
synthesized in an iterative mode by only one NRPS module [118]), to successfully
access this class of biosurfactant from uncultured representatives, metagenomic
libraries need to ensure fragment sizes greater than 40 kb. This not only presents
an enormous challenge to the handling and maintenance of DNA fragments of this
size from environmental samples, there are also very few vectors and expression
hosts available for the construction of such libraries [31, 119]. Alternatively,
lipopeptide gene clusters can be reassembled from sequence-based screenings and
cloned for recombinant expression as discussed earlier; however, metagenomic
sequencing datasets are overly complex and prediction and correct reassembly of
gene clusters from several contigs remain a challenge [120, 121].

Occasional reports on the discovery of novel lipopeptides through metagenomic
approaches illustrate that sequence-based approaches targeting this group may be
feasible despite the mentioned challenges. Nonribosomal peptides in general are
well-known for their bioactivities, e.g., as antibiotics or anticancer agents. Hence,
many studies were conducted with this focus to identify novel nonribosomal pep-
tides and the related biosynthetic machinery using sequence-based screening
approaches to explore novel pharmaceutic lead structures [122]. Several of those
studies revealed lipopeptides which were, however, not tested for surface activity yet
most likely exhibit it because of the amphiphilic structure of the molecules. Recently
discovered examples are the antibiotics cadaside A and malacidin A with massively
charged cyclic peptide headgroups [123, 124]. Here, the adenylation modules
incorporating the charged amino acids were used as target for sequence-based
screenings for novel calcium-dependent antibiotics. Another likely biosurfactant
candidate is humimycin A, a linear lipopeptide with activity against Staphylococcus
that was resynthesized according to a NRPS machinery architecture discovered in
metagenomic sequence data [125].

Strikingly, most of the successful recombinant biosurfactant production examples
described utilize biosynthetic genes from related strains, e.g., P. aeruginosa
rhamnolipid genes were used to establish rhamnolipid production in P. putida.
Such a strategy appears advantageous to avoid issues of promoter/RBS recognition
or differing codon usage. In this light, it appears as a strong limitation that E. coli is
still overwhelmingly applied as host strain for functional metagenomic library
screens, probably because well-established protocols and commercial kits for library
construction are based on E. coli vectors. A number of studies reported accordingly
the successful application of shuttle vectors to enable screening for natural product
formation in different hosts, specifically in a range of proteobacteria including
Pseudomonads and in actinomycetes [97]. Their results illustrated the huge advan-
tage of considering screening strains other than E. coli or even parallel screening in
different strains [31, 122, 126]. Different hosts did not only vary in their capabilities
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to realize a specific biosynthetic pathway encoded by the introduced DNA, even the
compounds produced from the same BGC differed sometimes in dependence of the
host, as described before [40, 113, 127]. Furthermore, if the recombinant production
of a certain biosurfactant is detrimental for the applied host, these novel
biosurfactants will obviously remain undiscovered using only this specific host for
the screening.

In this context the application of functional metagenomics using eukaryotic hosts
remains comparably unexplored; probably because the reassembly of BGCs from
intron-free metagenomic cDNA libraries, which are usually used to uncover single
biocatalysts, appears challenging [128]. However, the bacteria-similar organization
of biosurfactant-related genes in S. bombicola or U. maydis as a distinct gene cluster
without or with just a few introns [129–131] suggests that yeast-based screening
might be a useful tool to identify novel fungi-borne biosurfactants within classical
eDNA libraries in the future.

5 Coming Full Circle: Culturing Considerations to Unlock
Novel Biosurfactant Potential

Due to the “Great Plate Count Anomaly,” referring to the orders of magnitude
difference between the number of organisms that can be cultured on laboratory
media vs. the numbers countable by microscopic examination [132], together with
the availability of well-established culture-independent technologies with revolu-
tionary impact, the merits of continued traditional culture-based approaches for the
discovery of novel biosurfactants could be questioned. This is especially pertinent
given the dearth in novel structures despite ongoing culture-based screening efforts,
whereas metagenomics has more recently revealed novel biosurfactant classes
[114]. Furthermore, genomics presents a number of advantages for overcoming the
limitations associated with the culturing of microorganisms for biosurfactant dis-
covery; both in terms of the inability to establish pure cultures of representatives of
all bacterial divisions and accessing the number of biosynthetic pathways that
remain “silent” in the native host. These will undoubtedly open new possibilities
for biosurfactant discovery.

However, despite the genomic revolution, bringing a microorganism into culture
is still essential for realizing its full potential [133], especially toward designing and
operating stable and resilient high-performing systems required for industrial scale
production. This is particularly relevant for biosurfactant discovery since in many
cases the biosurfactant production is tightly linked to the physiology of the micro-
organism. For example, culture-based studies continue to bring new understanding
of the various roles that biosurfactants play in quorum sensing and swarming
motility and how this contributes to bacteria co-ordinating virulence and pathogen-
esis [134, 135]. The value of having the organism in culture to query experimentally
provides unmatched opportunities to understand the microorganism in question

42 M. Trindade et al.



which may be crucial to the downstream aspects concerning the development of the
biosurfactant for industrial application [136]. This highlights two major consider-
ations for biosurfactant discovery:

1. Many biosurfactants will likely remain undiscovered if the producing microor-
ganisms are not brought into culture. In other words, the success of discovering
novel biosurfactants is as much dependent on the employment of novel isolation
approaches as on the aspects concerning screening. Several advances have been
made over the last decade to improve the culturability of rare and novel micro-
organisms and the reader is referred to a number of recent reviews on this topic
[133, 136–140]. Although very much needed, not all currently proposed alterna-
tive isolation protocols are feasible with the screening technologies available; for
example, where the isolation involves diffusion chambers due to a dependence on
metabolic consortia [133].

2. Biosurfactant production may be strongly influenced by cell culture conditions
and therefore the screening process needs to take cognizance of this. For example,
the production of surfactants has been shown to be conditional on whether the
bacteria are grown on a surface or cultured planktonically [141], while in others
expression is influenced by growth stage [142, 143]. Therefore, the traditional
approach to assess culture supernatants for biosurfactant activity may completely
miss the discovery of those that are only produced when cultured on agar. While a
move to more high-throughput screening methods is advocated as being key to
the discovery of new biosurfactants [10], it needs to take into consideration the
more tedious and slower One Strain Many Compounds (OSMAC) principles.
OSMAC is a culture-based approach that involves the manipulation of easily
accessible culturing conditions to induce the expression of all the biosynthetic
pathways encoded by a single microorganism [144]. A major advantage provided
by OSMAC is that it eliminates bias during biosurfactant screening because the
stimuli responsible for the activation of the many biosurfactant pathways differ
between microorganisms. This approach exploits the fact that microorganisms
produce secondary metabolites as a defense mechanism against other organisms
in nature [145] and that under stressful conditions, microorganisms tend to
produce secondary metabolites either to adapt to the environment for self-defense
or intercellular communication [146, 147]. Moreover, OSMAC is aimed at
stimulating the expression of the “silent” biosynthetic pathways and should
form an integral part of the screening process, to unlock expression of untapped
microbial-derived biosurfactants [148]. Biotic and abiotic parameters such as
nutrient content (carbon, phosphate, nitrogen sources, and trace elements), aera-
tion levels and shape of the culturing flasks, physical parameters (i.e., pH,
temperature, salinity, heat shock treatments), the effect of ethanol or organic
compounds, the presence of precursors of secondary metabolites and
co-culturing can be easily changed and may alter the global physiology of a
microbial strain, and in turn significantly affect biosurfactant expression
[80, 149]. It is important to note that the expression could be subject to regulation
that might not be immediately linked to biosurfactant production and rather
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associated with central physiological features and/or dependent on the coordi-
nated expression of different pathways [80]. Furthermore, the triggers are organ-
ism and pathway specific [150], therefore systematic alterations to culture
conditions need to be conducted. The empirical nature of the OSMAC approach
is therefore time-consuming, laborious, and challenging from a practical stand-
point, as the number of cultivation parameters that can be changed is virtually
limitless. However, the rewards could be enormous as it offers the potential to
further diversify the biosurfactant repertoire and improve the hit-rate to feed the
biosurfactant pipeline, essential toward creating eco-friendly and cost-effective
industrial scale production processes.

6 Concluding Remarks

There is a need and a gap to finding new biosurfactants with structural diversity
suitable for specifically tailored applications in different industries beyond the three
main products surfactin, sophorolipids, and rhamnolipids that are currently available
commercially. In this chapter, we have highlighted the main areas that with con-
certed effort could help uncover much diversity that is undoubtedly still hidden in
nature.

Firstly, increased effort in the application of a broad range of different screening
methods has been highlighted as one of the solutions to finding new biosurfactant
products. The screening methods over the years have been dominated by those
mainly relying on the detection of surface or interfacial tension reduction and
emulsion activity. One of the biggest challenges of using well-established assays
is that it places a substantial restriction on the level of novelty that can be acquired,
thus the same groups of biosurfactants will continue to be isolated. There has been
little to no effort in developing alternative methods that assess properties other than
the ones already screened for and therefore this is an area that calls for technological
innovation to accelerate the discovery of novel biosurfactants. Sequence based
screening has been presented in this chapter as an alternative approach to the more
traditional activity-based screening of culture fermentations. Although the heterol-
ogous expression of biosurfactant pathways identified through in silico screening
opens a number of opportunities for biosurfactant discovery and development,
especially in the case of lipopeptide biosurfactants and for those encoded by “silent”
BGCs, it remains to be seen the level to which novel chemistry can be revealed
through homology dependent screening. The added advantages of employing an in
silico screen followed by heterologous expression for biosurfactant discovery is that
the cloning strategy can be designed to maximize the biosurfactant yield, and by
using metabolically characterized hosts, the biosurfactant purification and charac-
terization steps can be substantially accelerated in comparison with conducting this
from the native host [151]. An important aspect to its success will be the ability to
tackle some of the challenges associated with heterologous expression, most
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notably, the development of a wider range of bacterial and fungal hosts and
corresponding genetic tools to maximize the expression and production.

Secondly, the cultivation of microorganisms poses a significant limitation on
biosurfactant discovery. On the one hand, metagenomic biodiscovery has the poten-
tial to contribute to biosurfactant discovery without the need to culture microorgan-
isms, which holds much promise since only less than 1% of the microbial diversity is
currently accessible through the traditional laboratory-based culturing [111]. There-
fore, if this vast genetic repertoire is to be exploited and novel microbial-derived
biosurfactants uncovered, it is clear that culture-independent approaches will need to
be employed. On the other hand, it is recognized that the pure culture of microor-
ganisms to gain insight into their physiological and cell-biological properties is
essential to progressing biosurfactant discovery. The application of new isolation
protocols has demonstrated that the number of species isolated can be doubled and
allows the culturing of microorganisms corresponding to sequences previously not
assigned [137], therefore we are far from having exhausted all culturing options.
Even for already cultured isolates, extensive experimentation is needed to ensure that
the right culturing conditions are used to trigger biosurfactant production, as there
are potentially many undiscovered biosurfactants from previously isolated and
screened microorganisms. Therefore, greater attention should be given to the isola-
tion and culturing and not just the screening aspects of biosurfactant discovery, even
though these may sometimes result in an overall long and costly route to undertake
[80]. However, mature technologies such as micro-fermentation and experimental
design represent promising strategies that in combination should streamline the
discovery processes.

Finally, as with many other biodiscovery programs aimed to develop novel
biocatalysts to improve industrial pipelines, the overall notion is that integrated
strategies that include genomic and synthetic biology approaches have the potential
to fast-track the discovery and subsequent improvement of a new generation of
biosurfactants [152]. We have without question only scratched the tip of the iceberg
with respect to biosurfactant diversity, and there is no single approach that will
ensure that we fully realize all that Nature has to offer. Bottlenecks exist in both
culture-based and culture-independent approaches; however, the continuous devel-
opment of more efficient and powerful tools to explore the expansive potential
harbored in natural environments will undoubtedly deliver novel biosurfactants.
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Abstract Glycolipids are biodegradable, non-toxic surfactants with a wide range of
applications. Enzymatic esterification or transesterification facilitated in reaction
media of low water activity is a reaction strategy for the production of tailor-made
glycolipids as a high structural diversity can be achieved. Organic solvents, ionic
liquids, and deep eutectic solvents have been applied as reaction media. However,
several challenges need to be addressed for efficient (trans-)esterification reactions,
especially for the lipophilization of polar substrates. Therefore, crucial parameters in
(trans-)esterification reactions in conventional and non-conventional media are
discussed and compared in this review with a special focus on glycolipid synthesis.
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Graphical Abstract

Keywords Biosurfactants, Deep eutectic solvents, Enzymatic synthesis,
Glycolipids, Lipases

1 Introduction

Glycolipids are non-ionic surfactants that are not of fossil origin and can be produced
entirely based on renewables. They are more ecofriendly than petrochemically-
derived surfactants as they pose no risk of accumulation in the environment because
they are readily biodegradable [1–6]. Moreover, glycolipids are considered as
non-toxic exhibiting no mutagenic potential, low toxicity toward invertebrate and
zebra fish, as well as low cytotoxicity against human epidermal keratinocytes [3, 4,
6, 7].

Glycolipids were shown to have excellent surface properties: high surface activ-
ities in combination with an efficient lowering of surface tension [8–10]. They
efficiently stabilize emulsions and foams [9, 11–13]. Therefore, they present a
sustainable alternative to petrochemical surfactants.

Generally, surfactants have a wide field of applications in everyday life, as well as
in industry. They are used in detergents, cosmetics and foods, as well as in fire-
fighting and petrochemistry [14, 15]. Sucrose esters are glycolipids already approved
for application in food industry [16]. Due to their drug permeability enhancing
effects glycolipids are also of relevance for the pharmaceutical industry [17]. More-
over, antibacterial, anti-adhesive, antiviral, and tumor inhibiting activities are
reported for glycolipids [10, 13, 18–20].
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Chemical synthesis, microbial fermentation, and enzymatic synthesis are possible
strategies for glycolipid production. Chemical glycolipid synthesis is industrially
established on a large scale by Fischer glycosylation, which ensures low cost
production with high yields [21–23]. However, chemical synthesis also has a
number of disadvantages: harsh reaction conditions are necessary using high tem-
peratures and acidic catalysts [21–23]. Product mixtures are generated and products
are formed which make a costly purification necessary [21–23].

Rhamnolipids, sophorolipids, and mannosylerythritol lipids are microbial lipids
with commercial applications in cosmetic and detergent industry [14]. However,
structural variety of glycolipids in microbial fermentation is limited to the metabo-
lism of the host. Low glycolipid titers in fermentation broth render purification
laborious and costly [24, 25].

Enzymatic synthesis is a method enabling the production of a nearly unlimited
diversity of glycolipids [9, 11, 26–29]. Thus, the tailor-made production of glyco-
lipids gets possible. Enzymatic synthesis is based on reverse hydrolysis, which can
be catalyzed enzymatically under conditions of reduced water activity (Fig. 1).
Hence, organic solvents, ionic liquids, and deep eutectic solvents (DES) are appli-
cable reaction media [30–35]. The use of DES enables glycolipid production entirely
based on renewables. A process solely based on lignocellulosic biomass was
presented in 2018 by Siebenhaller et al. [36]. By application of a microwave reactor,
even a one-pot synthesis of glycolipids from yeast biomass without previous extrac-
tion and transesterification of fatty acids was achieved [37].

This review discusses the latest findings on different parameters influencing
enzymatic transesterification. Section 2 deals with deep eutectic solvents as they
emerged only recently as green alternative to common solvents. Their properties and
their health and environmental risk assessment will be addressed. Section 3 presents
crucial parameters for enzymatic transesterification. Here, the role of different
enzymes (Sect. 3.1), the impact of the sugar loading (Sect. 3.2), the influence of
the fatty acid concentration (Sect. 3.3), and the role of water in the reaction systems
(Sect. 3.4.) are discussed, as well as the impact of solvent nucleophilicity and solvent
hydrophobicity (Sect. 3.5.).

Fig. 1 Reaction scheme of reversed hydrolysis
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2 Deep Eutectic Solvents

Deep eutectic solvents were first described in 2003 by Abbott et al. [38]. They are a
mixture of two solid components, a hydrogen bond donor and a hydrogen bond
acceptor, which result in a liquid at room temperature after heating or freeze-drying.
DES are considered as supramolecular structures with hydrogen bond interactions
[39–41]. A wide range of hydrogen bond donors and acceptors are applicable for
DES formation which enable tailoring of the physicochemical properties of DES
[42, 43]. There are hydrophilic, water-miscible DES and hydrophobic, water-
immiscible DES, binary and ternary DES, as well as acidic, neutral, and alkaline
DES covering a wide range of polarities [39, 44–49]. Due to this diversity, DES can
be applied as “designer-solvents.” DES have a high dissolution power, e.g. choline
chloride: urea- and choline chloride: glycerol-DES, as well as ternary DES
consisting of choline chloride or guanidine hydrochloride combined with ethylene
glycol, propylene glycol or glycerol and p-toluenesulfonic acid are reported to
dissolve up to 80% of xylan and lignin from biomass [50, 51]. DES are reported
to have stabilizing effects on enzymes while their individual components lead to
enzyme denaturation. Urea leads to denaturation and inactivation of Candida ant-
arctica lipase B (CalB) by disrupting hydrogen bonds of the enzyme [52]. In choline
chloride: urea- DES, diffusion of urea is limited due to the strong hydrogen bond
network within the DES and the enzyme remains stable and active [52]. The DES
forms hydrogen bonds with the surface of the enzyme resulting in a more rigid
structure of the enzyme and an increased thermal stability [52]. In dissolutions of
hydrophilic DES the supramolecular structure of DES is remained even with addi-
tion of up to 50% water, as water gets incorporated into the hydrogen bond network,
only at higher dissolution the structure of DES gets disrupted [39, 41, 53].

In contrast to organic liquids DES are non-volatile and non-flammable
[42, 43]. DES have some further advantages over ionic liquids: DES are easier to
prepare than ILs and due to the low cost raw materials, DES cost only about 20% of
ILs [54]. Furthermore, DES have a higher biodegradability and lower toxicity
compared to ILs (see Sects. 2.1 and 2.2).

The applicability of DES-buffer mixtures for fed-batch and continuous processes
was shown for the enzymatic esterification of glycerol and benzoic acid in 2019
[55]. Recently, also scalability of a DES system for glycolipid synthesis was proven
[56].

2.1 Toxicity of DES

DES are less cytotoxic than ILs [57]. Choline chloride: amino acid DES show about
10 times lower inhibitory effects on enzymes than the imidazolium-based IL [Bmim]
[BF4] on acetyl choline esterase and the minimal inhibitory concentration toward
catalase was even 600–800 times higher than those toward acetyl choline esterase
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[58]. DES cytotoxicity is cell line dependent and depends on the hydrogen bond
donor used [57]. DES with urea as hydrogen bond donor are less toxic than those
with glycerol, ethylene glycol or triethylene glycol [57]. Interestingly, these DES
show lower cytotoxicity than aqueous solutions of their single components which
indicates a reduced reactivity after DES formation due the strong hydrogen bond
network. Glucose based DES are less harmful than fructose based DES [59]. The
sugars are metabolized differently in the cells which leads to a higher formation of
reactive oxygen species in fructose metabolism compared to glucose metabolism
[59]. The cytotoxic effects of DES are related to an increased cell membrane
permeability and an increase in reactive oxygen species level [57, 59].

Toxicity of hydrophobic DES has still to be assessed more thoroughly. It is
merely known that menthol: lauric acid DES exhibit cytotoxicity toward HACaT
cells similar to pure menthol [60].

Choline chloride: amino acid DES also showed 10–200 times lower toxicity
toward bacteria than imidazolium or pyridinium derived ILs [58]. DES based on
choline chloride or choline acetate as hydrogen bond acceptors and acetamide,
glycerol, ethylene glycol or urea as hydrogen bond donors exhibit low toxicity to
bacteria at concentrations below 75 mM while they show antibacterial activity at
high concentrations [61]. Inhibitory effects toward gram-negative bacteria were
higher than toward gram-positive bacteria, suggesting a different mode of action
than conventional bacteriocides, e.g. increasing cell permeability [58, 62].

Inhibitory effects of DES based on cholinium and alkanoates on growth of
filamentous fungi decreased with increasing alkyl chain. The minimal inhibitory
concentrations of all cholinium alkanoates were higher than those of SDS and
benzalkonium chloride [63].

Choline chloride based DES show phytotoxic effects depending on the hydrogen
bond donor, while the use of ethylene glycol and acetamide shows phytotoxic effects
on garlic, urea- and glycerol-DES exhibited no significant phytotoxic effect on
garlic [61].

Hydras are freshwater invertebrate used for ecotoxicological studies. Choline
based DES exhibit lower toxicity on hydra than their single components and
therefore also a lower ecotoxicological burden [61, 64].

2.2 Biodegradability of DES

Biodegradability of the solvents plays a major role in the evaluation of the environ-
mental burden of manufacturing processes. Therefore, this is an important criterion
in the selection of reaction media.

DES based on choline chloride with urea or acetamide are characterized as readily
biodegradable while those with glycerol and ethylene glycol only showed biode-
gradability comparable to IL [61]. DES based on ChCl:amino acids were also readily
biodegradable [58]. Likewise, the more hydrophobic DES consisting of cholinium
hydrogen carbonate and fatty acids showed biodegradability [63]. In DES, a
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correlation between low toxicity and high biodegradability was observed [58]. This
simplifies solvent selection compared to ILs, since ILs of low toxicity usually show
low biodegradability and therefore a high environmental burden [58]. However,
there are only a few studies existing on the biodegradability of hydrophobic DES
while these data are still missing for most hydrophobic, water-immiscible DES.

3 Enzymatic Synthesis

Success of biotransformations is strongly related to the choice of appropriate reac-
tion conditions. Several parameters are already identified as crucial for enzymatic
synthesis of glycolipids in organic solvents as well as in uncommon reaction media.
Besides the selection of a suitable enzyme, the water content, substrate concentra-
tions, and solvent properties such as nucleophilicity and hydrophobicity are decisive
for efficient enzymatic synthesis (Table 1). These parameters will be discussed in
detail in the following chapter.

Enzymatic glycolipid synthesis was demonstrated with three different enzyme
classes: lipases, glycosidases, and proteases. Glycolipid production using proteases
or glycosidases was less investigated than lipase-catalyzed synthesis.

Protease catalyzed synthesis of sugar fatty acid esters was successfully conducted
in organic solvents using subtilisin and Bacillus pseudofirmus Al-89 protease [65–
67]. 90% conversion was reached in a DMF/water-mixture using subtilisin [65] and
98% conversion to sucrose laurate in 9 h using Protex 6L protease in a tert-amyl
alcohol/DMSO/water solvent mixture [67]. In a comparative study, Bernal et al. [68]
reached 57% lactulose yield within 24 h using subtilisin and 61% using
Thermomyces lanuginosus lipase in acetone [68]. So far, no studies on glycolipid

Table 1 Parameters positively influencing the efficiency of transesterification reactions

Parameter Organic solvents Ionic liquids Deep eutectic solvents

Sugar loading Supersaturated
solution

Supersaturated
solution

Supersaturated
solution

Molar ratio of sugar and
fatty acid

Equimolar n.e.d. n.e.d.

Water activity aw < 0.2 aw ~ 0.2 0.15 < aw < 0.25

Water content Water removal
system

Addition of water up to
10%

Solvent nucleophilicity Low
nucleophilicity

Low
nucleophilicity

Low nucleophilicity

Solvent hydrophobicity Medium polarity

Others Low halide
content

Table 1 shows which parameters were shown to work out most efficient for enzymatic glycolipid
synthesis in the different solvent systems, using Novozym 435 as biocatalyst. n.e.d. not enough data
for a clear evidence
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synthesis using proteases in DES are available. Albeit, it was shown that subtilisin
exhibits transesterification activity in choline chloride: urea DES [69].

Glycosidase catalyzed synthesis of glycolipids was conducted in organic solvents
and biphasic systems [70, 71]. Miranda-Molina et al. [72] reported the first glyco-
sidase catalyzed glycolipid synthesis in DES [72]. Organic acid containing DES
inactivated α-amylase within 4 h while hydrolytic activity was still measureable after
4 h in choline chloride: urea, propanediol: choline chloride: water, choline chloride:
glucose: water, and choline chloride: sucrose: water DES. However, at least 20% of
the cosolvent water was necessary to maintain alcoholysis activity of α-amylase, in
choline:chloride: glucose: water even 60% water was mandatory. At high DES
concentrations reaction rates of hydrolysis and alcoholysis reaction were decreased
with hydrolysis being affected more strongly. Selectivity of methyl-glucoside syn-
thesis was higher in DES containing reaction media than in pure buffer [72]. There-
fore, DES has potential for further investigations as solvent for glucosidase catalyzed
glycolipid synthesis.

First lipase-catalyzed lipophilization of polar substrates in DES was reported
2013 by Durand et al. [73]. Water activity, solvent hydrophobicity, and solvent
nucleophilicity are parameters that have already been identified as crucial for
enzymatic glycolipid synthesis using lipases (Table 1).

3.1 Different Lipases for Transesterification

Several lipases have been screened for activity in DES. Novozym 435 revealed to be
the most effective lipase for biodiesel production in DES, followed by Lipozyme
TLIM while lipases from Penicillium expansum, Aspergillus niger, Aspergillus
oryzae, and Rhizopus chinensis showed no or only little activity [64]. The study of
Zhao et al. [74] demonstrated that the transesterification activity of Novozym 435 in
DES is also higher than that of Amano lipase, porcine pancreas lipase, Pseudomonas
cepacia lipase, and Candida cylindracea lipase in DES [74]. Novozym 435 also
proved to be a more active enzyme in the synthesis of trehalose diesters compared to
Lipozyme TLIM, porcine pancreas lipase, and Carica papaya lipase [12]. Moreover,
Novozym 435 was the most effective lipase in sorbitol laurate synthesis in a 2-in-1-
DES system consisting of sorbitol and choline chloride [56].

In a two-phase system of an IL and t-butanol Novozym 435 was the most active
enzyme for glucose laurate synthesis with a conversion of 59%, while T. lanuginosa
lipase reached 33% and R. miehei 8% [32]. Pseudomonas cepacia lipase, Aspergillus
sp. acylase, Candida antarctica lipase A, Candida rugosa lipase were also tested in
that system, but showed conversions of less than 5% [32].

In organic solvents Novozym 435 was also revealed as efficient biocatalyst.
Novozym 435 showed superior performance in glycolipid synthesis in several
studies compared to Lipozyme IM, Candida antarctica lipase A, and lipases from
Rhizomucor miehei, Thermomyces lanuginosa, Pseudomonas cepacia, and Fusar-
ium solani [35, 75, 76].
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Novozym 435 was more active and stable than CalB covalently immobilized on
activated silica supports, activated alumina supports, epoxy-activated sepharose, and
tresylated sepharose. Native CalB loses activity exponentially in a first order deac-
tivation pattern, while Novozym 435 shows a much slower deactivation pattern
[77]. Due to its robustness and high activity, Novozym 435 is a promising biocat-
alyst for enzymatic glycolipid synthesis in DES (Table 2).

3.2 Influence of Water Activity on Lipase-Catalyzed
Transesterification

Hydration of enzymes is important for their stability and activity [78–81]. However,
for transesterification reaction almost anhydrous conditions are necessary in order to
reverse the enzymes’ activity from hydrolysis to esterification [82, 83]. Therefore,
water activity is a crucial parameter in enzymatic glycolipid synthesis. Water
removal systems were improving reaction yields of glucose fatty acid esters and
trehalose diesters in different organic solvents with conversions up to 95% [12, 84,
85].

Novozym 435 is an enzyme widely applied in transesterification reaction due to
its beneficial properties. Due to the immobilization of Candida antarctica lipase B
on a hydrophobic polymeric resin, the carriers do not strip off water from the enzyme
and a sufficient hydration level is possible also at low water content of the media
[77]. In 2-methyl-2-butanol, highest glucose palmitate yields were reached at a water
activity of 0.07, however at such low water content enzyme selectivity was reduced
and the diester was produced as side product [31]. Lee et al. [33] reported an optimal
water activity of 0.2 for transesterification reactions in ILs with Novozym 435, 0.4
with Candida rugosa lipase, and 0.5 with Lipozyme IM. At higher water activities
the reaction rates decreased [33]. However, due to the strong hydrogen bond
network, a defined water content is necessary for biocatalysis in DES in order to
make substrates accessible. Low conversions of phenolic acids were observed
without addition of water, while at 8–10% of water (water activity between 0.15
and 0.25) almost complete transesterification occurred [73]. Arabinose laurate yield
in DES was significantly increased by an addition of 4% water compared to the
reaction in DES without addition of water [86] and also sorbitol laurate conversion in
DES was highest with addition of 5% water [37, 56].

3.3 Influence of Sugar Loading on Enzymatic Glycolipid
Synthesis

Sugar solubility is rather poor in organic solvents applied for glycolipid synthesis,
such as acetonitrile, acetone, t-butanol, hexane, or 2-methyl-2-butanol [85]. Ionic
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Table 2 Conversions of different lipases in organic solvents, ionic liquids, and deep eutectic
solvents

Solvent Lipase Reaction conditions Conversion Reference

Organic
solvents

Novozym 435 Acetone, 45�C, 72 h, glucose palmitate,
transesterification

93 [75]

t-Butanol, 45�C, 72 h, glucose palmitate,
transesterification

88% [75]

2-Methyl-2-butanol, 40�C, 72 h, fruc-
tose palmitate, esterification

53% [35]

Rhizomucor
miehei

Acetone, 45�C, 72 h, glucose palmitate,
transesterification

2% [75]

t-Butanol, 45�C, 72 h, glucose palmitate,
transesterification

3% [75]

2-Methyl-2-butanol, 40�C, 72 h, fruc-
tose palmitate, esterification

30% [35]

Thermomyces
lanuginose

Acetone, 45�C, 72 h, glucose palmitate,
transesterification

28% [75]

t-Butanol, 45�C, 72 h, glucose palmitate,
transesterification

32% [75]

Pseudomonas
cepacia

Acetone, 45�C, 72 h, glucose palmitate,
transesterification

– [75]

t-Butanol, 45�C, 72 h, glucose palmitate,
transesterification

3% [75]

Ionic
liquids

Novozym 435 60�C, 72 h, glucose fatty acid esters,
transesterification [BMIM][BF4]:
t-butanol or [BMIM][PF6]: t-butanol
(3:2)

59 [32]

Rhizomucor
miehei

8

Thermomyces
lanuginose

33

Pseudomonas
cepacia

<5

Candida
rugosa

<5

Candida ant-
arctica lipase
A

<5

Deep
eutectic
solvents

Novozym 435 50�C, 48 h, transesterification of
Millettia pinnata seed oil, choline ace-
tate: glycerol

55 [64]

Lipozyme
TLIM

45

Penicillium
expansum

8

Novozym 435
Lipozyme TL
IM
CalA Immo
150
Lipase TL
CLEA
Lipozyme 435

50�C, 48 h, sorbitol laurate,
transesterification, sorbitol: choline
chloride

20
<10
<10
<10
20

[56]
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liquids and DES are solvents with a wide range of different physical properties, so
that in some, such as [Bmim][TfO] and hydrophilic DES, the sugar solubility is very
good while in others it is as limited as in organic solvents [33, 36]. A limited sugar
solubility and thus reactant availability can strongly influence the synthesis effi-
ciency and is therefore a crucial parameter.

Flores et al. [85] showed that the dissolution of the excess sugar is not as fast as
initial reaction rate in transesterification in 2-methyl-2-butanol [85]. Glucose disso-
lution rate was enhanced by crystalline ß-glucose and amorphous glucose resulting
in higher dissolution rates and higher initial reaction rates. However, only for
amorphous glucose a slightly higher yield was observed. A four times higher initial
reaction rate and an 18% higher yield were achieved by the application of supersat-
urated glucose solution [85]. Acylation rates of disaccharides in organic solvents
also depend on the dissolved sugar. Higher conversions were reported for disaccha-
rides with a higher solubility. For the production of butanoate esters in tert-butanol
yields were improved by using amorphous disaccharides compared to less soluble
crystalline disaccharides [87].

Lee et al. [33] could correlate enzyme activity with the dissolved sugar concen-
tration for glycolipid synthesis in ionic liquids [33]. Higher reaction rates and yields
were achieved using supersaturated glucose solution than using saturated glucose
solution in ionic liquids [33]. These results are in accordance with Shin et al. [88]
who reported higher reaction rates, yields and productivities using supersaturated
sugar solutions for glucose, fructose, and sucrose laurate synthesis in ionic
liquids [88].

A beneficial effect of increased sugar amounts on initial reaction rates and yields
was also shown in DES. Higher initial sugar addition resulted in a ninefold increase
in glucose monodecanoate yield in a hydrophobic (�)-menthol: decanoic acid DES
[28].

3.4 Influence of Fatty Acid Concentration
on Transesterification Reactions

Inhibiting effects of high fatty acid concentrations were observed in
transesterification reactions in organic solvents. Equimolar ratios of fatty acid and
sugar led to highest yields in glucose myristate synthesis in organic solvents while
fatty acid excess resulted in reduced conversions [89, 90]. An inhibitory effect of
high fatty acid concentrations was also observed in other transesterification reactions
catalyzed by Candida antarctica lipase B, Candida rugosa lipase, and Rhizopus
oryzae lipase [91–96]. The inhibiting effect of fatty acids is due to the formation of
non-productive complexes between fatty acids and the enzyme that are reported for
reactions following ping-pong mechanism [91, 93, 96].

Lin et al. [97] reported an optimal fatty acid to sugar ratio of 1:5 for a biphasic
system of ionic liquid and 2-methyl-2-butanol while productivity decreased with
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higher fatty acid concentrations [97]. Ha et al. [98] investigated sugar to fatty acid
ratio from 1:1 to 1:10 in ionic liquids with highest enzyme activity for an equimolar
ratio of sugar and fatty acid [98]. However, Mai et al. [99] reported highest glucose
laurate yields with an excess of fatty acid (sugar: fatty acid, 1:7.6) and also Galonde
et al. [100] reported beneficial effects of a strong excess of fatty acid on mannosyl
myristate synthesis in pure ionic liquids [100]. In ionic liquid with DMSO as
cosolvent (DMSO:IL, 1:20) a sugar to fatty acid ratio of 3:1 resulted in highest
conversions while at equimolar ratios or a greater excess of fatty acid yields
decreased [101]. The difference in these studies might be explained by the fact
that Ha et al. used free fatty acids and supersaturated sugar solutions in an esterifi-
cation while Mai et al. and Galonde et al. used vinylated fatty acids and sugar
concentrations below saturation in a transesterification reaction. Therefore, the
mechanism of the reaction as well as the overall substrate loading differed between
the studies limits their comparability. During esterification reaction water is released
as a side product which shifts the reaction toward hydrolysis. While in
transesterification ethenol is released which tautomerizes to acetaldehyde and evap-
orates. Thus, the reaction gets shifted toward transesterification and is, therefore,
thermodynamically favored.

In DES, an inhibitory effect of excess fatty acid was observed similar to the
studies in organic solvents [27].

While fatty acids show in general good solubility in the organic solvents applied
in transesterification, fatty acid solubility is limited in many ionic liquids and deep
eutectic solvents [27, 102]. Therefore, fatty acids are not necessarily dissolved in
ionic liquids and DES, but fatty acid-solvent emulsions may be formed. This
inherent difference between the solvent systems might also be an explanation for
the varying observations in suitable fatty acid ratios for transesterification reaction.

3.5 Influence of Solvent Hydrophobicity and Nucleophilicity
on Lipase-Catalyzed Transesterification

Furthermore, solvent hydrophobicity and nucleophilicity are parameters that are
identified as crucial for transesterification reactions. For transesterification of 2-phe-
nyl-1-propanol with vinyl acetate, transesterification rates were higher in more
hydrophobic organic solvents: methyl-t-butyl-
ether>hexane>toluene>tetrahydrofuran>acetonitrile>dimethylsulfoxide [80]. In
organic solvents, higher sugar ester yields were achieved in less nucleophilic
solvents. For transesterification using Novozym 435, Šabeder et al. [35] reported
higher conversions in butanone and acetone than in t-butanol [35] and Bouzaouit and
Bidjou-haiour [30] reported higher reaction rates in tetrahydrofuran and butanone
than t-butanol [30]. t-butanol is more polar than butanone and tetrahydrofuran
according to the solvatochromic parameter ET

N [103]. The same pattern was
observed using Candida antarctica lipase B,Mucor miehei lipase and Pseudomonas
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cepacia lipase for lactose and sucrose ester synthesis, yields were higher in 2M2B
than in acetone and lowest in methyl ethyl ketone [104]. Less hydrophilic solvents
have lower ability to strip off water from the enzyme [79–81].

It has also been shown for ionic liquids that the enzyme activity depends on the
properties of the solvent. For transesterification of benzyl alcohol with vinyl acetate,
enzyme stability and enzyme activity was dependent on hydrophobicity of the ionic
liquid used [105]. More nucleophilic ILs like [Bmin][TfO] enabled lower enzyme
activity and stability than less nucleophilic, more hydrophobic IL [105]. In a
transesterification study by Kaar et al. [106], enzyme activity in the ionic liquid
[Bmim][PF6] was higher than in organic solvents [106]. However, no
transesterification occurred by varying the anions resulting in more hydrophilic
ILs. Re-suspension of the enzyme in water revealed that inhibition was reversible
with acetate and methylsulfonate anions while nitrate anions exhibited irreversible
inactivation of enzymes [106]. Immobilization could not enhance enzyme stability in
hydrophilic ionic liquids [106]. Investigations of enzyme structure using IR analysis
revealed a loss of the secondary structure of the enzyme in ionic liquids with ethyl
sulfate, nitrate, or lactate anions [107]. In these solvents transesterification activity of
Novozym 435 was strongly reduced, indicating that nucleophilicity, strong hydro-
gen bond accepting and donating properties of ionic liquids lead to reduced lipase
activity [107]. Similar effects were also reported for transesterification of 2-phenyl-
1-propanol with vinyl acetate: transesterification rates were higher in more hydro-
phobic ILs with higher reaction rates in [Emim][Tf2N] than in [C2OC1mim][Tf2N]
and [C2OHmim][Tf2N] [80].

Ganske and Bornscheuer [32] reported no activity of Candida antarctica lipase B
for synthesis of glycolipids in pure [Bmim][BF4]. However, a conversion of 59% to
glucose laurate was achieved by adding t-butanol to the ionic liquid resulting in a
two-phase system [32]. In the less nucleophilic ionic liquids [Bmim][TfO] and
[Hmim][TfO], Zhao et al. [108] reported up to 26% conversion in pure ionic liquids
[108]. In ionic liquids with the more nucleophilic anion methyl sulfate lower
conversion was achieved even though sugars were highly soluble in that system
[108]. Also for those ionic liquids, higher conversion rates were achieved after
mixing with an organic solvent [108]. Lin et al. [97] reported also that ionic liquids
with methyl sulfate anion showed low conversions, while conversions in ionic
liquids were better with increasing hydrophobicity of the cations. In a comparative
study with four different ionic liquids and their mixtures, highest productivities
combined with a high lipase stability were reported for mixtures of hydrophilic
and hydrophobic ionic liquids [33].

Effects of deep eutectic solvents are less thoroughly investigated than in organic
solvents or ionic liquids. However, some similarities between DES, organic sol-
vents, and ionic liquids could already be observed. Hollenbach et al. [27, 28] showed
that an increased solvent hydrophobicity increases glycolipid yields and also initial
reaction rates were higher in the hydrophobic (�)-menthol: decanoic acid DES than
in hydrophilic ones [27, 28]. Full conversion to menthyl laurate was reported for
transesterification reaction using Candida rugosa lipase in a hydrophobic menthol:
lauric acid DES [109, 110].
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Moreover, the anion of the hydrogen bond donor affected transesterification
reactions in DES. Zhao et al. [108] investigated glucose laurate synthesis in two-
phase systems of 2-methyl-2-butanol and DES. Almost no conversion was observed
(Lipozyme TLIM and Novozym 435) in choline chloride: urea and choline chloride:
glycerol-DES, neither with Novozym 435 nor with Lipozyme TLIM, while higher
conversion rates were obtained in choline acetate based DES, which were neverthe-
less lower than 15% [108]. Also for biodiesel production, choline acetate based DES
were better suited than choline chloride based ones [64]. Glycerol and ethylene
glycol as hydrogen bond donor resulted in higher activity than urea or acetamide for
the production of biodiesel [64]. It was suggested that the hydrogen bonding network
of the polyols would have an activating effect on the enzyme by interacting with a
serine residue [64]. Elgharbawy [111] demonstrated increased hydrolytic lipase
activity in choline chloride based DES with sugars as hydrogen bond donor for
porcine pancreas lipase, Novozym 435, Immobead 150, and Rhizopus niveus lipase,
while Candida rugosa lipase and Amano lipase PS stayed unaffected [111]. Con-
trarily, malonic acid and glycerol as hydrogen bond donors showed some inhibitory
effects [111]. Oh et al. [47] investigated lipase activity and lipase stability in various
DES [47]. Lipase was more active in DES with an amide hydrogen bond donor than
with a polyol hydrogen bond donor, but for lipase stability the relation was reversed
[47]. Still, they could not identify a correlation between solvatochromic properties of
the DES and lipase activity [47].

4 Conclusion

The selection of the reaction conditions is a crucial step in biotransformation. For
lipophilization of polar substrates, some parameters could already be identified as
decisive for synthesis success independent of the solvent type.

High sugar concentrations and the use of supersaturated sugar solutions were
revealed as beneficial for transesterification yields in all solvent types. In organic
solvents an equimolar ratio of sugar and fatty acids resulted in highest conversion
rates as an excess of fatty acids might lead to inhibitory effects. For ionic liquids and
deep eutectic solvents, there are still more studies necessary to provide clear
evidence as the field of applicable ionic liquids and deep eutectic solvents is a
widely diverse field and solubility of fatty acids in these solvents varies
considerably.

Low water activity is necessary to prevent hydrolysis of the ester products in
organic solvents, as well as in ionic liquids and deep eutectic solvents. However, a
certain water addition is mandatory in deep eutectic solvents to allow for an efficient
reaction.

Solvent nucleophilicity and solvent hydrophobicity were also crucial no matter
what type of solvent was used. Selecting a solvent with low nucleophilicity promises
the highest yields as no water will be stripped off from the enzyme and solvents of
low nucleophilicity do not disturb enzyme structure. Nevertheless, comparative
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studies with solvents of different nucleophilicity and hydrophobicity are still needed,
especially for DES, as the currently available studies do not cover the broad
spectrum of possible DES systems.
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Abstract Wide ranges of microorganisms produce glycosylated lipids (GL), which
are characterized by their tensio-active properties. Therefore, they can be used in
different industrial applications as biosurfactants, such as food, agriculture, cos-
metics, and health products among others. Two GL biosurfactants, rhamnolipids
(RL) and sophorolipids (SL), are now commercially available and share a significant
part of the biosurfactant market that in 2017 represented about 2.5% of the total
surfactants market, estimated at 15 million tons globally.

In this chapter, we present a general overview of GL biosurfactants in terms of
their diversity and the microorganisms that produce them. Additionally, we focus on
the more detailed description of RL, SL, mannosylerythritol lipids (MEL), and
cellobiose lipids (CL).

Pseudomonas aeruginosa, the ubiquitous opportunistic pathogenic bacterium, is the
best RL producer, but other non-pathogenic bacteria like Burkholderia thailandensis
and Pseudomonas chlororaphis NRRL B-30761 are also capable of producing them
naturally. In addition, Pseudomonas putida has been used as heterologous host to
produce RL with good yields. Here we describe the biosynthetic pathway for RL
production, the genes involved in its synthesis, and some of the challenges for producing
a homogeneous RL product in high quantities that is suitable for specific applications.

SL, MEL, and CL are some of the GL biosurfactants produced in high quantities by
fungi, like Starmerella bombicola, Moesziomyces aphidis, or Ustilago maydis. We
provide an overview of some of their characteristics, insights on the metabolic pathways
involved in their synthesis and genetic modifications performed to increase their produc-
tion, as well as fermentation and purification strategies and some of their applications.
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1 Glycolipid Biosurfactants Produced by Bacteria

1.1 General Characteristics of GL Produced by Bacteria

Simple GL produced by bacteria have tensio-active properties since they are com-
posed of a sugar moiety that is hydrophilic and a lipid part that is hydrophobic. It has
been reported that different bacteria produce hundreds of GL. The bacterial genera
that produce the higher number of these compounds are Actinobacteria, followed by
Proteobacteria [1].

GL produced by bacteria are believed to play a biological role due to their
antimicrobial activity determined by its surface-active properties, such as promoting
the competition with other microorganisms [1]. Thus, these compounds have poten-
tial in industrial applications in several areas. However, in most cases they are
produced at such a low amount that it is not feasible to produce them at an industrial
scale.

1.2 RL General Characteristics and Industrial Applications

Despite the high diversity of GL produced by bacteria, the most studied of these
glycolipid biosurfactants is rhamnolipids (RL). This is due to its excellent properties
(Table 1) for different industrial applications [28–30], its low toxicity [31], and high
biodegradability. Additionally, because RL is produced at a higher level compared
with other bacterial GL, it can be produced at around 100 g/L in industrial condi-
tions. At present, RL that are in the market are primarily used in the petrochemical
industry, bioremediation of different pollutants, household products, agricultural
chemicals, and personal care products [30]. In addition, RL present other activities
such as antifungal properties [32, 33], antimicrobial activity, and they show low
toxicity and do not disturb the immune response, so these characteristics expand its
applications in pharmaceutical and therapeutic industries. RL potential industrial
uses go from cosmetic, antimicrobial, and antibiofilm agents and other uses in
biomedicine [34–37], agricultural and composting [38–40], and environmental
remediation [41, 42], among others. These GL biosurfactants have reached the
market in the last decade and nearly 95,000 tons were produced in 2013 representing
nearly 455 millions of US dollars but there are some challenges to be solved in order
for RL representing a big share of the surfactant market. These challenges will be
highlighted in this chapter.
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Several reviews about different aspects of RL research have been published (see,
for example, [41, 43–46]). Hence, we will only focus on the discussion of some
aspects of RL production that are currently being studied.

P. aeruginosa, the bacterium that produces the highest RL yields, mainly pro-
duces two types of RL, the one that contains one rhamnose moiety called mono-RL,
and the one containing two rhamnose molecules called di-RL (Fig. 1, Table 1). In
turn, these two types of RL have different congeners with respect to their lipidic part,
being the α-L-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate
(Rha-C10-C10) and α-L-rhamnopyranosyl-(1–2)-α-L-rhamnopyranosyl-3-
hydroxydecanoyl-3-hydroxy-decanoate (Rha2-C10-C10), the most abundant conge-
ners. However, smaller proportions of molecules containing C12-C10, C12-C12,
and C10-C12:1 dimers are also produced [47]. Most P. aeruginosa isolates produce
a mixture of mono- and di-RL, but those strains that belong to the PA7 clade, such as
strain ATCC 9027, produce only mono-RL [48].

Physicochemical characteristics of mono- and di-RL are different (Table 1) [2],
thus the characteristic of the biosurfactant produced by different P. aeruginosa
strains will depend on the molar ratio of these two types of RL. The di-/mono-RL
molar ratio is characteristic of each P. aeruginosa isolate and shows little variation in
different culture conditions [2].

1.3 RL Synthesis and Regulation in P. aeruginosa

The best RL producer is P. aeruginosa, a γ-proteobacterium that is on the one hand,
a widespread environmental bacterium [49, 50], and on the other hand, also an
important opportunistic pathogen [51]. The pathogenicity of P. aeruginosa repre-
sents a serious limitation for its industrial use for RL production, especially because
the production of this biosurfactant is regulated at the transcription level by the
so-called quorum-sensing (QS) response that regulates the expression of most of its
virulence-associated traits [52]. This co-regulation may be due to the participation of
RL in processes that are important for the establishment of P. aeruginosa infections
[53], such as swarming motility [54].

P. aeruginosa QS is a complex regulatory hierarchical cascade that includes three
transcriptional regulators LasR, RhlR, and PqsR that activate transcription when
coupled with their cognate autoinducer 3-oxo-dodecyl homoserine lactone
(C12-HSL), butanoyl homoserine lactone (C4-HSL), or 2-heptyl-3,4-
dihydroxyquinoline (PQS), respectively [55, 56]. Genes involved in the production
of mono-RL (rhlAB) [57] or di-RL (rhlC) [58], as well as those involved in the
synthesis of dTDP-L-rhamnose (rmlBDAC) [59], the precursor of mono- and di-RL,
are regulated by RhlR/C4-HSL. The expression of rhlR is under a positive
autoregulatory loop, since it can form an operon with the upstream-encoded rhlAB
operon under conditions of high RL production [60], such as temperatures above
37�C [61]. Thus, this P. aeruginosa genetic circuit permits the coordinate induction
of genes involved in RL production.
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di-RL mono-RL

A B

n = 1-9
m = 1-9

mono-acylated MEL di-acylated MEL tri-acylated MEL

n = 2-10
m = 2-16
MEL-A: R1 = R2 = Ac
MEL-B: R1 = Ac, R2 = H
MEL-C: R1 = H, R2 = Ac
MEL-D: R1 = R2 = H

acidic SL
lactonic SL

n = 12-14
SL-1: R1 = R2 = Ac
SL-2: R1 = Ac, R2 = H
SL-3: R1 = H, R2 = Ac
SL-4: R1 = R2 = H

C D

E F G

Flocculosin

R1, R2 = H or OH
CL-A: R3, R4, R5 = H
CL-B: R3 = H, R4 = Ac, R5 = n = 2-4
CL-C: R3 = Et , R4 = Ac, R5 = n = 2-4

CL

H I

Fig. 1 Chemical structures of the glycolipid biosurfactants described in this work. (a) mono-
rhamnolipid produced by P. aeruginosa, (b) di-Rhamnolipid produced by P. aeruginosa, (c) acidic
sophorolipid (d) lactonic sophorolipid (e) mono-acylated mannosylerythritol lipid (f) diacylated
mannosylerythritol lipid (g) triacylated mannosylerythritol lipid (h) cellobiose lipid (i) flocculosin
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1.4 P. aeruginosa RL Biosynthesis Is Interrelated
with the Synthesis of Polyhydroxyalkanoates (PHA)

P. aeruginosa RL biosynthetic pathway is very intricate and the precursors of this
biosurfactant are derived from central metabolic pathways (Fig. 2). Mono-RL is
produced by the coordinated activity of RhlA that uses mainly Co-A linked fatty
acids produced by RhlY and RhlZ [62, 63] to synthetize 3-(3-hydroxyalkanoyloxy)
alkanoic acids (HAAs), mainly 3-hydroxydecanoyl-3-hydroxydecanoate, that are
used as precursor by RhlB to produce mono-RL. In turn, RhlC uses mono-RL to
produce di-RL [58]. Rhamnosyl transferases RhlB and RhlC use as rhamnosyl donor
dTDP-L-rhamnose that is synthetized from glucose 6-phosphate by AlgC [64]
RmlA, RmlB, RmlC, and RmlD enzymes [59].

P. aeruginosa produces polyhydroxyalkanoates (PHA) as carbon storage, which
are constituted mainly of C10 fatty acid monomers. PHA synthesis diminishes the
production of RL, since the synthesis of this fatty acid polymer competes at several
points for fatty acids precursors (Fig. 2). Furthermore, it has been reported that RhlA
produces PHA intermediates [62], so when either of the PHA synthases PhaC1 or
PhaC2 are active, a portion of the fatty acid precursors of RL will be drained to PHA
synthesis even in the absence of the PhaG thioesterase [65].

1.5 Other Bacteria That Produce RL

Pseudomonas aeruginosa is not the only bacterial species that produces RL, but it is
the best producer [66]. Several Burkholderia species, including some that are

Fig. 2 Schematic representation of P. aeruginosa PA14 RL biosynthetic pathway (modified from
[62])
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non-pathogenic such as B. thailandensis [67] and B. kururiensis [68], can produce
mainly di-RL, but with a lipid moiety of a HAA of C14-C14 fatty acids.

In addition, strain NRRL B-30761 of the non-pathogenic P. chlororaphis is able
to produce mono-RL [69, 70] and has been engineered to produce also di-RL by the
expression of P. aeruginosa rhlC [71, 72].

A non-pathogenic marine bacterium (Marinobacter spMCTG107b) was reported
to produce a mixture of RL, with over 95% of di-RL, being di-RL with a lipidic
dimer of C10-C10, the most abundant congener [73].

These non-pathogenic RL-producing bacteria are an important resource for the
industrial production of RL, but a large amount of work remains to be done with
them to attain a much higher RL productivity.

The screening of different environments for non-pathogenic bacteria that produce
high levels of biosurfactants, specifically of RL, that might be used in different
industrial applications is an important research area. The production of
biosurfactants by marine bacteria was reviewed, but none avirulent RL-producing
bacterium was mentioned [74].

1.6 Bioengineering Strategies for RL Production

Several aspects of RL production have been studied to achieve the large-scale
production of this GL biosurfactant with an appropriate cost for its industrial
application [45, 75, 76]. One of the main problems to produce RL and other
biosurfactants in bioreactors is foaming with the subsequent loss of biomass. To
cope with this situation, different strategies have been followed [44, 77, 78]; within
these strategies, RL have been produced under microaerophilic conditions using
nitrate as an electron acceptor, with good results [79].

It has been recognized that RL production is enhanced when P. aeruginosa is
cultivated on media that have a limitation of phosphorous [80, 81], or with nitrate as
nitrogen source [82], and using glucose, glycerol, or vegetable oils as carbon sources
[83, 84]. The effect of the use of glucose as carbon source plus fatty acids of different
length for high levels of mono-RL production by strain ATCC 9027 was reported
[85]. Culture media have been devised using optimization models to optimize RL
production [86–88]. In addition, several renewable or waste products have been
evaluated as substrates to produce RL at lower cost [28, 89–92].

1.7 Downstream Processing of RL

The purification of biosurfactants is costly, as this process can represent more than a
half of the production cost. This is especially the case when they are applied in the
cosmetic or biomedical industries where a high purity level is required.
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In the case of RL, the advantage is that it can be produced using glucose [93] or
glycerol [94] as carbon sources. As a result, this allows the purification step from
culture supernatants to occur without solvent extraction to separate this biosurfactant
from oils used as fermentation substrates. The most common procedures for RL
extraction are foam fractionation and adsorption [95–97]. An efficient method using
silica gel column chromatography for the separation of mono- RL from di-RL was
reported [2].

1.8 Genetic Engineering Strategies to Build Bacterial Strains
with Enhanced RL Production

In general, two strategies can be distinguished to construct bacterial strains that
produce higher RL levels. One of these strategies uses natural RL producers, mainly
P. aeruginosa, to build genetic engineered strains that have an enhanced production
of this biosurfactant. Yet, the other strategy uses non-pathogenic bacteria as heter-
ologous host for the expression of genes involved in RL production.

In the case of the genetic manipulation of P. aeruginosa strains, it has been
reported that the expression from a plasmid of the rhlAB-R operon in the avirulent
ATCC 9027 strain causes an increased mono-RL production reaching a level
comparable with RL (a mixture of mono- and di-RL) produced by the PAO1 type
strain [98]. It has also been reported that a PA14 derivative with a redirected carbon-
flow to RL production by the complete blockage of PHA synthesis and expressing
from a plasmid the rhlAB-R operon produces considerably more RL than the original
PA14 strain, and nearly two times the RL produced by PAO1 strain [65]. The main
advantage of the genetically manipulating of P. aeruginosa strains to enhance their
RL for developing strains suitable for large-scale production is that genes involved
in the synthesis of this biosurfactant are coordinately induced by RhlR/C4-HSL
which is positively auto-regulated. Another advantage is that this bacterium
expresses the enzymes RhlY and RhlZ that produce the fatty acid intermediates of
RL synthesis that have been used as heterologous host for RL production in other
bacterial models where they are absent. In addition to the genetic manipulation of the
QS-regulated genes, it was reported that the overexpression of estA encoding for an
esterase in P. aeruginosa cultivated in a simple medium increased RL
production [99].

Several bacterial models have been used as heterologous hosts for RL production,
and the best results were obtained using P. putida to produce mono-RL by
expressing P. aeruginosa rhlAB operon [94, 100, 101]. In the case of P. putida
KT2440, a significant RL production was achieved using a derivative that expressed
the rhlAB operon from an inducible promoter and contained a partial blockage of
PHA synthesis [101]. The expression of the rhlAB operon together with rhlC in
P. putida KT2440 leads to the production of both mono- and di-RL, but the level of
their production is low [102]. The optimization of medium composition and
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fermentation conditions for heterologous mono-RL production by P. putidaKT2440
has been reported [77, 78] and the production of significant titers of this
biosurfactant has been achieved (Table 2) [95]. The rhlAB operon of Burkholderia
glumae was expressed in P. putida KT2440 to produce RL with long-length fatty
acid moieties, mainly C14-C14 [119].

The production of RL using Escherichia coli has been reported, but only a very
low production was achieved and only when the rmlBDAC operon was expressed
together with the rhlAB operon, showing the importance of dTDP-L-rhamnose
availability for the synthesis of this biosurfactant [120]. The expression in E. coli
of P. aeruginosa rhlAB operon and rhlC, and the site directed mutagenesis of rhlB
permitted the production of modified RL that were said to be useful for enhanced oil
recovery [121]. In addition, the expression in E. coli of the codon-optimized
P. aeruginosa and B. pseudomallei rhlAB operon and rhlC in different combinations
and under the control of different promoters was investigated and the production of
mainly di-RL congeners was attained [122].

The best-characterized GL biosurfactants are still RL, but as will be described,
they are produced at a considerably lower concentration than GL biosurfactants
produced by fungi, even when they are produced by P. aeruginosa, the best RL
producer (Table 2).

2 Glycolipid Biosurfactants Produced by Fungi

2.1 Different Strains to Produce Fungal Glycolipids

Besides bacteria, there are many fungi known for their production of simple glyco-
lipids, especially fungi from the phylum Ascomycota and Basidiomycota.
Ascomycota include species like Komagataella phaffii (initially referred to as a
Pichia pastoris), Sordaria macrospora, Rhynchosporium secalis, and all of them
have been described to produce glycosylated sterols [123]. Polyketide glycosyde are
produced by Gliocladium catenulatum [124–128] or Clonostachys candelabrum
[129], whereas glycosyl- and mannosyl-lipids are produced by Aspergillus niger
[130], Fusarium sp.[131], and Simplicillium lamellicola [132] and Liamocins,
polyol fatty acid esters by Aureobasidium pullulans. MEL lipids are synthesized
by Geotrichum candidum [133].

The most prominent strain to produce SL is Starmerella bombicola (initially
referred to as Torulopsis or Candida bombicola), discovered by Gorin et al. [134]
[135]). SL synthesis is also described for C. batistae [136, 137], C. floricola [3, 138],
C. apicola [138], C. riodocensis [139], and C. stellata [140]. Furthermore, SL
synthesis is described for C. kuoi [140, 141], Candida albicans O-13-1 [142],
C. rugosa [143], C. tropicalis [143], Cyberlindnera samutprakarnensis [144], and
Lachancea thermotolerans [145]. For Wickerhamiella domercqiae [146, 147] SL
synthesis was shown, however the strain was later reclassified to S. bombicola
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[148]. A deeper overview for SLs is given in the review by Claus and Van Bogaert
[149] and Roelants et al. [150].

Within the phylum of Basidiomycota Rhodotorula glutinis and R. graminis are
described to produce mannitol and pentitol esters of 3-D-hydroxypalmitic and 3-D,-
hydroxystearic acids. Synthesis of SLs is described for Rhodotorula mucilaginosa
[143], R. babjevae [151], Pseudohyphozyma bogoriensis (initially referred to as
Candida, then Rhodotorula) [152, 153], and Cryptococcus sp.[154] like Cryptococ-
cus curvatus [155].

CLs were first found in Ustilago zeae [114, 156], which was renamed to Ustilago
maydis and characterized from Frautz et al. and Spoeckner et al. [115, 157]. CL is
also synthesized by Cryptococcus humicola [26], Sympodiomycopsis paphiopedili
[158], Anthracocystis flocculosa [159], Sporisorium graminicola [160],
Kalmanozyma fusiformata [161], Trichosporon porosum [162], and Sporisorium
scitamineum [163–165].

MELs are known to be produced by U. maydis [157, 166], Kurtzmanomyces
[167], Dirkmeia churashimaensis [168], Ustilago cynodontis [169], U. shanxiensis
[170], U. siamensis as well as by [25], Sporisorium scitamineum [164],
Moesziomyces antarcticus [171], M. parantarcticus [172], M. aphidis [111],
M. rugulosus [173], Kalmanozyma fusiformata [174], Pseudozyma tsukubaensis
pro tem.1 [175], P. hubeiensis pro tem. [22], Sporisorium graminicola [160], and
Triodiomyces crassus [15]. For some of the basidiomycetes mentioned above both
metabolic pathways to produce MEL and CL are present. We would like to point out
that many of the strains have been reassigned [176]. For consistency reasons, we
used this latest nomenclature for the biosurfactants producer in this review. A
comparison of the names before and after the renaming of MEL producers is very
well presented by Beck et al. [177].

2.2 Structural Variety of SL, MEL, and CL in Wild-Type
Strains

In the basic structure of SLs (Fig. 1), the hydrophilic group consists of sophorose, a
disaccharide of two β-1,2-glycosidically linked glucose molecules that can be
acetylated on the C6’- or/and C6”-position. As hydrophobic tail, a terminal (ω) or
subterminal (ω-1) hydroxylated fatty acid with usually16–18 carbon atoms is
β-glycosidically bound (i.e., via an ether bond) to the sophorose molecule
[178, 179]. There are also examples for fatty acid chains with 22 carbon atoms
shown in wild-type strains, like SLs produced by Pseudohyphozyma bogoriensis
[71]. The hydroxylated fatty acid can be saturated or unsaturated, having one or
more double bonds, depending on the oil or fatty acid used as feeding source. SL can

1pro tem. ¼ pro tempore: The strains have been reclassified, but since they have not yet received a
new clade name, they are referred to by the old name with the addition pro tem.
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either take an open, so-called acid form in which the carboxyl group of the fatty acid
is present as free fatty acid, or the fatty acid can be intramolecularly esterified so that
the carboxyl group at the C4'' position forms a lactone structure (Fig. 1). SL can also
form lactones between two SL molecules [152]. Strains usually produce a mixture of
several molecule variants, but specific variants are often associated to each micro-
organism. An overview of commonly produced structures is shown in Table 3.

The basic structure of MEL consists of a hydrophilic sugar head group 4-O-β-D-
mannopyranosyl-D-erythritol to which usually two fatty acids with a chain length
between 2 and 18 carbon atoms are linked via ester bonds to the mannose C2’ and
C3’ position. Depending on the carbon source there are also some strains producing
rare MELs, where small amounts of monoacylated or triacylated MELs are found.
An overview of the molecule variants is also given in Table 3. Besides the variety in
fatty acid residues, the mannose molecule within MEL can be acetylated at C4’
and/or C6’position (Fig. 1) [196]. Generally, MELs are synthesized as a complex
mixture of different chemical variants. The classification of the main variants
MEL-A, MEL-B, MEL-C, and MEL-D refers to the degree of acetylation, which
leads to different polarity and thus to different elution behavior on silicate-coated
thin-layer chromatography (TLC) [171]. MEL-A is the diacetylated form, while
MEL-B and MEL-C are monoacetylated at positions C6’or C4’ respectively, and
MEL-D is completely deacetylated. The group of Kitamoto and Morita reported in a
series of articles the favored production of different strains, where Moesziomyces
rugulosus, M. aphidis, and M. parantarcticus mainly produce MEL-A [16, 173,
174], Sporisorium scitaminea secrete MEL-B [12], M. antarcticus synthetize
MEL-A and MEL-B and low amounts of MEL-C [171], P. tsukubaensis pro tem.
preferably produce the diastereomer of MEL-B [175], and S. graminicola,
P. hubeiensis pro tem., Ustilago shanxiensis, and U. siamensis mainly MEL-C
[21, 22, 25, 170]. The molecule variation is also influenced by the number, length,
and saturation of the fatty acid side chains, by the sugar configuration of the
erythritol (S to R form) and mannosyl or by its exchange with other alditols (e.g.,
mannitol). The modification of individual MEL structures or the MEL mixture is
mainly determined by the strain and its metabolism. However, also the saturation of
the fed oil may have an impact on the fatty acid introduced into the MEL molecule.
Beck et al. showed that different oils (soybean, canola, olive, coconut oil) do not
significantly affect the acetylation pattern or fatty acid chain length, whereas the
amount of double bonds in the substrate oil can be reflected in the MEL product.
This was revealed in species that introduce a long-chain C14-C16 fatty acid chain
into MEL, like U. siamensis or U. shanxiensis [187]. CL production was displayed
for several MEL producing strains. For M. aphidis and P. hubeiensis pro tem. a low
amount of CL was detected at nitrogen limiting conditions [190]. It is assumed that
both pathways for MEL and CL are present in most of the MEL producing strains.
Nevertheless, this is not yet proven for all strains.

The hydrophilic group in CLs is represented by cellobiose, a disaccharide with
two glucose molecules linked by a β-1,4-glycosidic bond. Cellobiose is linked via an
O-glycosidic bond (or ether bond) on C1'- position to the fatty acid residue in
ω-position. This O-substituent could differ in the number of hydroxy-groups in the
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Table 3 SL, MEL, and CL variants produced by different strainsa

Species
Acetylation of
sugar

Most common fatty
acid residue Carbon source References

Sophorolipids

Candida batistae Diacetylated 75% ω-hydroxy fatty
acids (etherified);
mostly C18:1 acidic
form, small content
of C18:0 and C18:2

Glucose with
olive oil

[136]

Candida floricola Diacetylated Acidic form Glucose with
olive oil (oleic
acid)

[3, 180,
181]

Candida apicola Mainly mono-
and
nonacetylated
forms

Mainly consisting of
lactonic, C18:,1
hydroxy fatty acid
group is mainly ω-1
linked to the
sophorose head
group

Glucose with,
oleic acid

[140]
[141]

Candida
riodocensis and
Candida kuoi

Mainly
diacetylated,
small amount of
mono- and
nonacetylated

Mainly C18:1acid
form, also lactonic
ω-C18:1 form

Glucose with
oleic acid

[140, 141]

Candida stellata Mainly
diacetylated,
also mono- and
nonacetylated

Mainly C18:1 acidic
form

Glucose with
oleic acid

[140]

Candida albicans
O-13-1

Mainly
diacetylated

Mainly C18:1 lac-
tonic form, also C18:
2 and C18:0

Glucose with
sugar- cane
molasses and
soybean oil

[142],

Candida rugosa
and C. tropicalis

Monoacetylated Lactonic C18:1 or
C20:4 acidic and
lactonic form

Diesel oil [182, 143]

Cyberlindnera
samutprakarnensis

Suggestion:
Non- and
monoacetylated

Suggestion: C16:2
nonacetylated lac-
tonic and C18:1
monoacetylated
acidic form

Glucose with
palm oil

[144, 150]

Lachancea
thermotolerans

Acidic and lactonic
form

Crude oil [145]

Starmerella.
Bombicola

Mainly
diacetylated

Mainly C18:1 lac-
tonic form, some-
times also C18:0 and
C16:1 or C16:1
hydroxy fatty acid
chain

Glucose or oleic
acid

[140, 183]

Rhodotorula
mucilaginosa

Diacetylated C18:1 acidic form Diesel oil [182]

(continued)
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Table 3 (continued)

Species
Acetylation of
sugar

Most common fatty
acid residue Carbon source References

Pseudohyphozyma
bogoriensis

Mono- and
diacetylated

13-
hydroxydocosanoic
acid (13-OH-C22)

Glucose [71, 72]

Cryptococcus sp.
VITGBN2

Diacetylated C18:1 acidic form Glucose and
vegetable oil

[154]

Mannosylerythritol lipid

Dirkmeia
churashimaensis

MEL-A C2, C4, C6, C14,
C16

Glucose [168]

Moesziomyces
antarcticus

MEL-A,B,C, D C8, C10 n-alkanes [184]

C8, C10, C10:1 C12,
C14

Different vegeta-
ble oil (soybean,
safflower, coco-
nut, cottonseed,
corn, palm oil)

[184, 185]

Monoacylated, C8,
C10, C12, C14

Glucose [10]

Triacylated, C8,
C10, C18

Soybean oil [186]

C8, C10, C10:1 C12,
C12:1,C14, C14:2,
C16:0

Sucrose [12]

C8, C10, C10:1 C12,
C12:1,C14, C14:2,
C16:0

Olive oil

Moesziomyces
parantarcticus

MEL-A,B,C C8, C10, C10:1 Soybean oil [174, 172]

Monoacylated, C8,
C10, C12, C14

Glucose [10]

Triacylated, C8,
C10, C18

Soybean oil [172]

MRL
mannosylribitol
lipid

C8, C10 Olive oil, ribitol [17]

MAL
mannosyl-D-
arabitol lipid

C8, C10 Olive oil,
D-arabitol

[17]

MML
mannosyl-D-
mannitol lipid

MML: C8, C10,
C10:1, C12

Olive oil,
D-mannitol

[16]

MEL-A,
MML-A

Diacylated C12/C12
and C10/C8

Different feed
(soybean, rape-
seed, olive,
coconut oil)

[187]

Moesziomyces
rugulosus

MEL-A,B,C C8, C8:1, C10, C10:
1, C10:2, C12:1,
C13, C14:2

Soybean oil [173]

(continued)
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Table 3 (continued)

Species
Acetylation of
sugar

Most common fatty
acid residue Carbon source References

Triacylated, C8,C10,
C18

Soybean oil [186]

Pseudozyma
tsukubaensis
pro tem.

MEL-B
diastereomer

C8, C12, C14 Olive oil [175]

MEL-B C6, C8, C8:1, C10,
C10:1, C10:2, C12,
C12:1, C12:2, C14,
C12:1, C14:2

Olive oil [164]

MEL-B With additional OH
at C14:

Castor oil [18]

MLAL
mannosyl-L-
arabitol lipid

C8, C12, C14 Soybean oil,
L-arabitol

[19]

MEL-A,B,C Diacylated C14:1/
C8:1 and C12:1/C8:0

Different feed
(soybean, rape-
seed, olive,
coconut oil)

[187]

Sporisorium sp. aff.
Sorghi

MEL-A C12, C14, C16 or
C14:1

Soybean oil [188]

Triodiomyces
crassus

MEL-A,B,C
diastereomer

C2, C4, C14, C16,
C18

Glucose and
oleic acid

[15]

Ustilago
cynodontis

MEL-C C2,C4, C6, C14,
C14:2, C16, C16:1

Soybean oil [169]

Ustilago
shanxiensis

MEL-C C2, C4, C14, C16 Soybean oil [170]

MEL-B,C,D Diacylated C16:0/
C4:0 and C16:2/C2:0

Soybean oil, fur-
ther oils are
tested (rapeseed,
olive, coconut
oil)

[187]

Ustilago siamensis MEL-B,C C2, C4, C14, C16 Safflower oil [25]

MEL-A,B,C C12:1, C14, C16,
C16:1, C18, C18:1
C18:2

Sucrose [12]

C14,C14:1, C14:2,
C16, C16:1, C16:2,
C18:2

Olive oil

MEL-A,B,C,D
MML-A,
MML-B/C

Diacylated for
MEL-B C16:0/C4:
0 and 16:2/C2:0; for
MML-B/C C16:0/
C4:0

Different feed
(soybean, rape-
seed, olive,
coconut oil)

[187]

Moesziomyces
aphidisb

MEL-A,B,C,D;
low amounts CL

C8, C10, C12 Soybean oil and
glucose

[13]

(continued)
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Table 3 (continued)

Species
Acetylation of
sugar

Most common fatty
acid residue Carbon source References

MELs C8, C10, C10:1,
C10:2, C12, C12:1,
C14, C14:1, C14:2,
C16, C16:1

Glucose [189]

MELs C8, C8:1, C10, C10:
1, C10:2, C12, C12:
1, C14:2

Soybean oil

MEL-A,B,C,D;
MML-A,
MML-B/C

Diacylated for
MEL-A C10:1/C10:
0 and C10:0/C8:0;
for MEL-B and
MEL-C C10:1/10:0

Different feed
(soybean, rape-
seed, olive,
coconut oil)

[187]

CL-B and MEL Main CL-B: Two
further hydroxy-
groups in C16 acid
part and acylated
hydroxy-C6 acid at
C2”

Glucose and
soybean under
nitrogen-
limitation

[157, 190]

Mannosylerythritol lipid and cellobiose lipids

Kalmanozyma
fusiformata

MEL, CL C8, C10, C10:1, C12 Soybean oil [174]

CL-B CL: Further two
hydroxyl groups in
C16 acid part and
acylated hydroxy-C6
acid at C2”

Glucose [191]

Pseudozyma
hubeiensis pro tem.

MEL-A,C; low
amounts CL

C6, C10, C12, C16 Olive oil and
glucose

[22]

MEL-A,B,C;
MML-A;
MML-B/C

Diacylated for
MEL-A and MEL-B
C12:0/C6:0

Different feed
(soybean, rape-
seed, olive,
coconut oil)

[187]

CL-B and MEL CL: Two further
hydroxyl-groups in
the C16 acid part and
acylated hydroxy-C6
acid at C2”

Glucose, soy-
bean oil, nitro-
gen-limitation

[190]

MEL-C C8, C10, C12, C14:
2, C14:3, C16, C16:
1, C18:2

Soybean oil [23]

Sporisorium
graminicola

MEL-A,B,C;
low amounts CL

C6, C8, C12, C14;
C14:1

Soybean oil [21]

MEL-A,B,C,D Diacylated for
MEL-A and MEL-C
C14:0/C8:0 and C14:
0/C6:0; for MEL-B
C14:0/C6:0

Different feed
(soybean, rape-
seed, olive,
coconut oil)

[187]

(continued)
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Table 3 (continued)

Species
Acetylation of
sugar

Most common fatty
acid residue Carbon source References

CL-B and MEL CL: Two further
hydroxyl-groups in
C16 acid part and
acylated hydroxy-C6
acid at C2” and acet-
ylation at C6”

Glucose [192]

CL and MEL CL: Two further
hydroxyl-groups in
C16 acid part and
acylated hydroxy-C6
acid at C2”

Glucose, soy-
bean oil, nitro-
gen-limitation

[190]

Sporisorium
scitamineum

MEL-A,B; low
amounts CL

C8, C10, C12, C14 Sugar cane [20]

MEL-A, B, C C6,C8, C10, C10:1,
C12, C12:1, C12:2,
C14, C14:1

Sucrose [12]

C8, C10, C10:1 C12 Olive oil

Ustilago maydis MEL-A,B and
CL-A.B,C

MEL mainly C6 and
C14:1 CL: Two fur-
ther hydroxyl-groups
in C16 fatty acid;
hydroxy-C8 at C2”,
small amount
deacetylated CL-A

Glucose or sun-
flower oil

[157]

CL Ustilaginic acid, one
or two further
hydroxyl groups in
C16 acid part, acyl-
ated with hydroxyl-
C6 at C2”, acetylated
at C6’

Glucose, nitro-
gen starvation

[193]

MEL-A, B, C C6,C8, C10, C12,
C14, C14:1, C14:2,
C16, C16:1, C16:2,
C18:1, C18:2

Sucrose [12]

C8, C10, C10:1 C12 Olive oil

Cellobiose lipids

Anthracocystis
flocculosa

Flocculosin, CL
with an addi-
tional acetyl
group

One further
hydroxyl-groups at
C16 acid part; acyl-
ated hydroxy-C6
acid at C2”

Sucrose [194]

Cryptococcus
humicola

CL; with four to
five acetyl
groups at the
sugar group

One or two further
hydroxyl-groups at
C16 acid part

Glucose [26, 27]

(continued)
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fatty acid with a chain length of usually C16, resulting in different CL structure
variants. Depending on the producing strain, up to four side groups may be attached
to the cellobiose molecule via ester bonds. CL-B is the main variant found in the
produced CL mixtures ofU. maydis, with up to two additional hydroxy-groups in the
C16 acid and a (hydroxy)-hexanoic acid or (hydroxy)-octanoic acid residue at
C2''position of the cellobiose; there is an aceylation group at C6’. CL-A is the
deacylated structure and CL-C is an acylated form with an additional esterified
carboxylic acid group [157, 193] (Fig. 1). CLs produced by U. maydis are also
referred to as ustilagic acid and the CLs from Anthracocystis flocculosa (initially
referred to as Pseudozyma flocculosa) are referred to as flocculosin, which is a CL
structure with a further hydroxy-group in the C16 acid part, a hydroxylated C8 fatty
acid chain esterified at C2” position and acetylation at C6’ as well as at C3”
[159]. Table 3 offers an overview of CL producing strains and the associated
structures.

2.3 Metabolism and Genetic Engineering of Fungi

The metabolic pathways for GL produced by fungi and their genetic basis are not yet
fully understood. Here we present the status of these pathways that are based on
observations in laboratory experiments and comparisons between related
microorganisms.

Van Bogaert et al. proposed the pathway of SL production using their own
findings and combining published knowledge [197] (Fig. 3). In the first step, fatty
acid is oxidized by a NADPH-dependent monochromoxydase enzyme cytrochrome

Table 3 (continued)

Species
Acetylation of
sugar

Most common fatty
acid residue Carbon source References

Trichosporon
porosum

CL; with four to
five acetyl
groups at the
sugar group

One or two further
hydroxyl-groups at
C16 acid part

Malt [162]

Sympodiomycopsis
paphiopedili

CL Two further
hydroxyl-groups at
C16 acid part

Glucose [158]

aA clear distinction of which strains make exclusively MEL, CL, or a mixture is only possible to a
limited extent. The subdivision was made by the literature references of the measurements used.
There should certainly still be investigations at the genomic level in order to find the gene clusters
for the metabolic pathways or to prove the production of the respective biosurfactants in the
laboratory. Most abundant variant is underlined
bGuenther et al. showed forM. aphidisDSM70725 that not all CL cluster genes homologs ORFs for
the CL pathway are found. These results indicate that a CL cluster as observed inU. maydis does not
exist in M. aphidis [195]
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P450 to a hydroxyfatty acid, in terminal or subterminal positions. Then, glucose is
glycosidically coupled to the hydroxyl-group of the fatty acid. SL is then acetylated
by an acetyltransferase At. The conversion of the acidic SL is catalyzed by the
enzyme lactone esterase. In 2007 a tool for genetic modification of S. bombicola
ATCC 22214 was developed; the marker gene ura3 was found [198], which allowed
the development of a system for transformation and selection [199]. Thus, genes and
enzymes could be identified that are involved in the SL biosynthesis: the enzyme
glyceraldehyde-3-phosphate dehydrogenase [199], the gene mfe-2 involved in
β-oxidation [200] and three cytochrome P450 monooxygenases [201, 202]. Hence,
the SL gene cluster was reported [203]. In another approach, the fatty acid-synthase
complex was specifically inhibited by the addition of cerulenin so that no de-novo
fatty acid synthesis could occur; and the resulting products were evaluated. Similar
findings were achieved by cultivating a strain that impaired in β-oxidation [204]. The
development of genetic tools made it possible to limit the large SL spectrum
produced by a strain to produce defined SLs [205–208]. These publications show
that metabolic engineering can produce a variety of SL molecules.

MEL biosynthesis cluster was first described inU. maydis [209] but was later also
genetically explored in M. antarcticus [210, 211], P. hubeiensis pro tem. [212],
P. tsukubaensis pro tem. [213], and M. aphidis [214]. Inducible promoters for
controlled expression of genes for MEL producers were identified for
M. antarcticus [215] and U. maydis [216]. The cluster consists of five genes
encoding for a glycosyltransferase (Emt1, erythritol-mannosyl-transferase), two
acyltransferases (Mac1 and Mac2, mannosylerythritol-acyl-transferases), one
acetyltransferase (Mat1, mannosylerythritol-acetyl-transferase), and one cellular
exporter (Mmf1, mannosylerythritol-major-facilitator protein). MEL biosynthesis
pathway was first proposed by [209, 217] (Fig. 3). When using oil as carbon source,
the first step is the secretion of lipases, which cleave the triglycerides into fatty acids
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mannosylerythritol
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acetylated MEL-A,B,C

glycosyltransferases
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acyltransferases
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acetyltransferases
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shortening
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Fig. 3 Schematic models of the biosynthetic pathways for SL, CL, and MEL production
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and glycerol. The regulation of lipase activity is strain specific. While M. aphidis
only releases lipases into the medium in the presence of triglycerides,M. antarcticus
shows 50% of its activity even without a hydrophobic carbon source [189]. For
M. aphidis it is shown that most MEL cluster genes are strongly induced when
hydrophobic carbon sources are present [195]. Within the MEL pathway the fatty
acids are coupled to coenzyme-A and will enter either mitochondrial ß-oxidation or
the so-called chain-shortening pathway. Here a partial ß-oxidation pathway takes
place, where the fatty acids are shortened and afterwards incorporated into the MEL
molecule [218, 219]. Prior to this reaction, an activated mannose is linked to
erythritol via the enzyme glycosyltransferase Emt1. Emt1 has a key role, because
its deletion completely prevents MEL biosynthesis [209, 216, 220]. In the next step,
two fatty acids are combined by the two acyltransferases Mac1 and Mac2 with C2'
and C3' of mannose to form MEL-D. As the chain length of the two residues differs
in some strains, it is assumed that these enzymes have different substrate specificity
[209]. As the last step, the acetyl-Co-A dependent acetyltransferase Mat1 binds one
or two acetyl groups to C4' and C6' position of mannose rendering MEL-A,B, or
C. Finally, MELs are exported by Mmf1 transporter [209].

Development of ura3 deletion strains of P. tsukubaensis pro tem. and
M. antarcticus enabled selection and detailed genetic modification studies
[221, 222]. For U. maydis and M. antarcticus it is shown that MEL can no longer
be formed when emt1, mac1, or mac2 are deleted [209, 220]. However, a deletion of
mac2 in P. tsukubaensis pro tem. caused the secretion of monoacylated MEL with
one fatty acid in C2’ position [223]. MEL-D was mainly produced when mat1 was
deleted in U. maydis and P. hubeiensis pro tem. [24, 209]. In addition, the
overexpression of lipase-encoding genes from M. antarcticus in P. tsukubaensis
pro tem. resulted in an increased production of the diastereomer-type MEL-B
[221]. In summary, it can be said that it will also be possible to produce tailor-
made MEL molecules in the future.

U. maydis is the first and best described microbial producer of CL [224]. In 2006,
the fully sequenced and annotated genome of U. maydis was published as the first
fungus of the family Ustilaginaceae. It comprises a total sequence of 20.5 Mb,
divided into 23 chromosomes with 6,902 genes [225]. Teichmann et al. were able to
identify the complete 58 kb gene cluster of the CL synthesis, which comprises
12 genes [193]. They were able to clarify the biosynthetic pathway (Fig. 3) by
generating deletion mutants of these genes. As a precursor of the CL synthesis
palmitic acid is synthesized de-novo. Then, palmitic acid is terminally and
subterminally hydroxylated by the cytochrome 450 monooxygenases Cyp1 and
Cyp2. Subsequently, the UDP-glucose dependent glycosyltransferase links two
glucose molecules o-glycosidically with dihydroxypalmitic acid to form the basic
structure of CL-A. The acetyltransferase Uat2 then acetylates the cellobiose at C6'.
After that another fatty acid is attached to the C2'' position by the acyltransferase
Uat1 to build CL-B. In turn, the hydroxylase Ahd 1 catalyzes the α-hydroxylation of
palmitic acid. The transporter Atr1 seems to be necessary for the export of CLs
[193, 226, 227].
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As described, U. maydis contains both pathways, for MEL and CL production.
For the regulation of the CL pathway, the gene sequence of Rua1, a zinc finger
protein was identified [226, 228]. A deletion of the gene did prevent CL synthesis
but not MEL synthesis. Therefore, the two glycolipids appear to be regulated
differently. There is evidence suggesting that the glutamate level represses the
Rua1 activity, which in turn is regulated by cell nitrogen content. Furthermore, the
regulator Nit1 was also found outside the cluster, which can also regulate Rua1.
Turning nit1 off inhibits both MEL and CL synthesis. However, the exact regulatory
mechanism has not yet been clarified [228]. In 2011, Teichmann et al. sequenced the
genome of A. flocculosa and explored the gene cluster for the synthesis of
flocculosin [226, 227]. Most of the genes in this cluster were homologous to
U. maydis genes, however the cluster in A. flocculosa contains Fat3, an additional
acetylase, presumably responsible for linking the additional acetyl group to C3''.

2.4 GL Produced by Fungi in a Bioreactor

There are many publications available in literature reporting the growth of strains in
small microtiter plates or shaking flasks. At this small scale, effects of different
carbon sources, nitrogen sources, and media components on molecular structure,
growth and production have been studied. However, if one moves toward industrial
use, scale over into bioreactors and optimization of a purification method becomes
necessary. The most common is the use of a stirred bioreactor combined with a
multistep purification method including, e.g., filtration, solvent extraction, precipi-
tation, or solubility changes due to pH and chromatography. All the described GL
biosurfactant producing strains are aerobic and produce GL under aerobic condi-
tions. The formation of biosurfactants is an oxidative process and requires oxygen
molecules for their synthesis. Therefore, one of the major challenges facing GL
production in bioreactors is the handling of the foam that is generated due to aeration
of the bioreactor, intensified by the simultaneous production of GL biosurfactants.
Controlled addition of oil can be used to reduce foam formation [111]. This is of
great advantage since vegetable oils are already used alongside glucose as substrates
for SL and MEL production. However, if the strains secrete lipases, for example,
which cleave the triglycerides extracellularly to fatty acids, which are also surface
active, the foaming may even be enhanced.

Most commonly, a GL fermentation process of those fungi starts with the growth
stage toward biomass production and switches to the second stage in which a trigger
initiates the GL production, as SL, MEL, and CL are part of the secondary metab-
olism [229]. However, in a batch process, biosurfactant formation could start in
parallel with biomass production, when also the hydrophobic substrate is in the
media [111]. It is worth noting that growth is a very energy intensive and an oxygen
consuming process and could be separated from GL production. It would be
desirable that as oxygen demand decreases during the GL production phase, growth
slows or stops. A possible strategy is to derivate regulation of oxygen transfer to the
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bioreactor, as this might help to better control the foaming. As a result, if aeration
and agitation of the fermenter are reduced during GL production phase, less foam
will be produced.

SL and MEL are produced using glucose and vegetable oils, feeding first and
second generation substrates and waste streams, respectively. This is presented in
recent excellent review articles [150, 177, 230, 231]. For most wild-type strains
producing SLs andMELs, hydrophobic carbon sources such as plant oils, fatty acids,
or alkanes are usually required for their production. In comparison, but in the case of
CL production, no hydrophobic sources are required, only a sugar source [27, 114,
115]. An excellent overview for CL is given in recent reviews [232, 233].

For MELs the expression of this GL gene cluster at high level occurs especially at
nitrogen starvation conditions [195]. CL production is also enhanced under nitrogen
starvation [157, 169, 193]. SLs production starts at high amounts when nitrogen or
phosphorous sources are depleted [234, 235].

Fungal GL production in bioreactors has been reported using different process
strategies such as batch, repeated batch, fed batch with sequential or constant feeding
or also few continuous processes in which an in situ product separation was aimed.

For SL there are several activities for production in bioreactors (Table 2 contains
highlights for fed batch processes). Starmerella bombicola ATCC22214 is the most
studied strain in fermentation processes. The highest titers were 300 g/L [104] using
soybean oil and 422 g/L [107] using rapeseed oil as hydrophobic substrate within a
fed batch process. With S. bombicola NRRL Y17069 120 g/L were achieved with
sunflower oil [109]. For Pseudohyphozyma bogoriensis ATCC18809 the production
of 51 g/L C22-SL was shown with glucose as substrate [71]. For MEL and CL, there
are only a few publications in a stirred reactor (Table 2). With Candida sp. SY16
(P. tsukubaensis) a titer of up to 95 g/L MEL in a 5-L reactor with soybean oil and
glucose as carbon source was reported [110, 113]. M. aphidis DSM14930 produced
up to 165 g/L MEL with soybean oil and glucose in a 72-L fermenter [111], while
M. aphidis DSM70725 produced 70 g/L MEL [111, 112]. In turn, S. scitamineum
NBRC32730 produced 25 g/L of MEL formation with sugarcane syrup in a 1.5-L
reactor [20]. Up to 33 g/L CL was produced with different U.maydis strains in a
fermenter [114–118], whereas with C. humicola JCM1461 13 g/L CL was reached in
a 5-L reactor using glucose as feedstock [27].

However, we would like to point out that in some of the cases mentioned above a
verification of the reported concentration should be carried out. The reason for this is
that GL analysis methods have improved over the last few years and it was known
until recently that MEL and CL can be produced simultaneously. It is often unclear,
due to the production of the analytical preparations, whether a separation of CL and
MEL or remaining oil or fatty acids from GL was achieved.

2.5 Downstream Processing of Fungal GL

After fermentation, GL needs to be separated from the aqueous broth containing
inorganic salts, biomass, remaining fatty acids, oils, or sugars. SLs, MELs, and CLs
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are usually secreted, so no cell disruption is necessary. Nevertheless, downstream
processing is usually a multistep process with differently interconnected process
units. Depending on the purification grade quality and necessary apparatus, this is a
costly driver of the production process [236–238]. Separation becomes a major
challenge due to surface-active properties of GL in the presence of microorganisms’
surface components and remaining hydrophobic substrates (oil, fatty acids) that form
a conglomerate or (micro)-emulsions [239, 240]. This mixture can only be separated
by the combination of mechanical force such as centrifugation and (organic) sol-
vents, salts, or agents. This then leads to a change in the solubility properties or
physics of the surface of the substances within the conglomerate [238, 241]. Salting
out effects are common in the petroleum industry for the de-emulsification of
oil-water systems formed by enhanced oil recovery techniques [242].

For purification of GL, numerous publications are available for analytical pur-
poses to follow the produced biosurfactant and the (hydrophobic) carbon source
during the fermentation process. However, the development of simple scalable
processes for downstream processing of GL that can be applied at an industrial
scale would be a very valuable contribution to the field. Most of the published
methods are based on the extraction of an organic solvent. For SLs, ethyl acetate is
described as extraction solvent and the use of hexane for washing out the remaining
hydrophobic substrate [109, 243, 244]. The extracted raw SLs could be purified by
chromatography [245, 246]. To separate the lactonic and acidic SL forms, different
methods such as precipitation and solvent extraction [247], the use of different
adsorbents and elution solvents [248] and even crystallization have been described
[142]. Examples of integrated approaches in which fermentation and separation of
SLs could be implemented in parallel have been reported using a conical-bottom
bioreactor with an integrated sieve plate [249, 250], or a settling column connected
to the fermenter [251]. In another approach, SL could be separated due to their
higher density compared to the fermentation liquid and a filtration setup was
connected to the fermenter [150].

MEL extraction from cultivation broth is done by prior acidification to pH 2 or
3 [13, 111, 118, 171], or even without acidification using ethyl acetate as organic
solvent (reference: nearly all literature deals with MEL cultivation). Acidification
could lead to a chemical deacetylation [118], however, it could be used as a post-
modification method as well as using lipases [252]. As an interesting preliminary
stage, heating of the fermentation broth up to 110�C and cooling down led to
separation of MEL and other hydrophobic compounds from the water phase and
this makes the decantation possible [237] . In the so-called MEL, raw extract (from
decantation as well as from solvent extraction) and free fatty acids or acylglycerides
are contained as residues from broth cultivation. A higher-order multistep extraction
with methanol, cyclohexane, and hexane was successful but had a low yield [237]. In
contrast, chromatographic purification showed a high yield and high performance in
purification of MEL [19, 23, 24, 187, 188, 253, 254]. Chromatography allows also
separating the different MEL-A, -B, -C, -D variants [112]. Additionally, methods
such as adsorption on XAD resins [237] or activated charcoal [255] followed by
solvent elution with, e.g., MTBE or methanol are also described. A foam fractioning
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could be integrated in an in situ recovery during the fermentation. Andrade et al.
described combined micro- and ultrafiltration (100 kDa cut off) of a foam overflow
in a fermentation process [239].

Roxbourg et al. first described CL production in a fermentation process using
U. maydis and glucose as the only carbon source. CL was secreted and transformed
in insoluble crystals in the cultivation broth and centrifuged after cultivation. Then
CL was extracted with methanol and recrystallized. Contaminants like lipids were
removed with ether [114]. Günther et al. showed that production of CL and parallel
crystallization could be intensified at low pH [117, 118]. After fermentation, puri-
fication was performed by sedimentation of CL crystals at acidic pH, ethanol
extraction, and washing of the recrystallized product using ethyl acetate. A similar
method was used for the separation of flocculosin, in which cell suspension was
acidified and filtered and flocculosin was extracted with chloroform [256]. It has
been reported that for strains producing MEL and CL in parallel, extraction methods
with MTBE, chloroform [115] or ethyl acetate with 2-propanol [190] can be used.
Subsequently, MEL and CL could be separated from each other by chromatography
[157, 190].

2.6 Physical Properties, Biological Activity, and Application
Potential of Fungal GLs

One of the greatest successes in bringing GL biosurfactants produced by fungi to the
market is SLs, produced by Starmerella bombicola. Fermentation processes at
research level showed titers of 422 g/L [257]. MELs have also been reported to be
used in commercialized products [258]. Here, especially the diastereomer type of
MEL-B produced by P. tsukubaensis pro tem. is commercialized as a cosmetic
ingredient [230]. Fermentation processes produced in research have reached titers
up to 165 g/L, depending on strain and process conditions, which were achieved
withMoesziomyces aphidis [111]. The highest titer reported for Ustilago maydis for
the production of CLs was 33 g/L [114, 118]. However, CLs are not yet used
commercially.

Inspired by the critical discussion in the reviews by Roelants et al., Claus and van
Bogaert, and Irorere et al. [149, 150, 259], the authors would like to mention that
these high titers should be taken with caution. This is because the quantification
methods used until the early 2000s could lead to over-determination of these GLs.
Having a deeper look into literature, the following sections will focus on the
production of SL, MEL, and CL.

SLs, MELs, and CLs can present different structure, depending on the strain,
feedstock, and the production process. In addition, the degree of purity and stability
of the biosurfactant is important for the evaluation of the applications. For example,
chemical changes of the molecules like deacetylation or chain length of the fatty acid
residues can lead to changes in their properties. The next sections will give an
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overview of the physical properties, like surface tension, CMC (also listed in
Table 1), and biological activities, like antimicrobial, fungal activity, influences to
cell lines.

2.6.1 SLs

An enormous number of publications are available for SLs; however, only selected
ones are presented in this review. Although many SL properties are changed by
varying their structure, the ability to lower the surface tension to an average value of
35 mN/m remains. This is true for most structural variants, when only the chain
length of the main fatty acid is slightly varied or non- or diacetylated SLs were
studied (compare this in Table 1). However, cleaving one glucose molecule from the
sophorose increases the surface tension to 47.3 mN/m [3] and diacylation at C6’ and
C6” with a hydroxy-C10 group decreases surface tension to 27 mN/m [6]. Interest-
ingly, different CMC values were measured: the greatest differences become appar-
ent when SL is present in the lactonic form with 45.1 mg/L or acidic nonacetylated
form with 245 mg/L [4]. SLs have self-assembly properties and can aggregate to
supramolecules. Baccili et al. described this well in different publications [260–
265]. For SLs, different biological activities were analyzed. Natural SLs from
S. bombicola ATCC 22215 showed antimicrobial activity against Cupriavidus
necator and B. subtilis and SLs were also able to disrupt biofilms (mixtures of
B. subtilis and Staphylococcus aureus) [266]. SLs from the same strain (90%
nonacetylated C18:1; 4 g/L) showed effective reduced growth of Enterococcus
faecalis and Pseudomonas aeruginosa, whereupon the application is seen to be
used as a wound healing agent [267]. Further studies on the pharmacological effect
of SLs were performed: Different SLs (natural mixture, lactonic, acidic form, methyl
ester, hexyl ester, mono-acetate ethyl ester, di-acetate ethyl ester) from S. bombicola
ATCC 22214 were tested for antiviral (anti-HIV) and sperm immobilizing proper-
ties. Diacetate ethyl ester SL gave the best results, however, sensitivity to vaginal
epithelial cell was also noted [268]. These SLs were also applied to human pancre-
atic cancer cells and produced promising results [269, 270]. Additionally, SLs
showed good properties against sepsis [271]. Natural produced SLs from the same
strain cause significant neurite outgrowth in PC12 cells [272]. These SLs also
induced the human promyelocytic leukemia cell line HL60 to differentiate to mono-
cytes, the human myelogenous leukemia cell line K562 and the human basophilic
leukemia cell line KU812 to differentiate into monocytes, granulocytes, and mega-
karyocytes [273]. For SLs also immune modulatory effects are known; IgE produc-
tion in U266 cells was decreased [274, 275]. For deeper insights, we recommend the
original literature or several reviews [1, 276].

SLs are manufactured by various companies and can be used in a wide range of
applications, such as in the cleaning and cosmetic industry or as additives in the
food, pharmaceutical, and agricultural sectors. An overview of potential applications
are given in an excellent review [150]. For an environmentally friendly use of SLs,
complete biodegradability is an important aspect. This has been investigated for the
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production of SLs from S. bombicola 22214, furthermore, no significant impact on
the reproduction of Daphnia magna (water flea) was shown [277].

2.6.2 MELs

Different MEL variants can reduce the surface tension of water to a value between
24.2 and 30.8 mN/m. The CMC (critical micelle formation concentration) is for
MEL-A-D usually between 2.6 and 15.8 � 10�6 mol/L. Rare MEL, like MML,
MRL, MAL, was in the same range, monoacylated MEL showed surface tension
decrease to 33.8 mN/m and a CMC of 3.6 � 10�4 mol/L. Most MELs were purified
to such extent that only the individual variants MEL-A, B or C were obtained and
measured. Synergistic effects from the determination of the naturally occurring MEL
mixture are thus not recorded. An overview of the surface tension and CMS is given
in Table 1. After exceeding the CMC, all MEL variants form three-dimensional,
liquid-crystalline structures (lyotropic mesophases) by self-aggregation in aqueous
solution and could aggregate to the so-called sponge, bi-continuous, and lamellar
phases, resulting in formation of liposomes, vesicles, single-layer or multi-layer
structures [278–280]. The number of acetyl groups in the MELs influences self-
aggregation. With increasing concentration, MEL-B, -C, and -D form predominantly
lamellar phases over a wide concentration range [280, 281]. In contrast, MEL-A
changes the phase composition between sponge, lamellar, and bi-continuous cubic
phase [278, 279]. Thermostable vesicles can be generated by dispersion of the
sponge phase and are suitable for transport and delivery of active substances
[282], or gene transfer into human cells [283, 284]. For MEL-A without addition
of salts or co-surfactants the formation of W/O microemulsions was detected. With
MEL-B, O/LC-emulsions (oil in liquid-crystalline phase) could be produced,
whereby a stable gel was formed [285]. Different applications could be shown for
these properties. Self-aggregated monolayers of MEL-A from M. antarcticus T-34
coated to poly (2-hydroxyethyl methacrylate) (pHEMA) beads bind human immu-
noglobulin IgG with high affinity and could be used as ligand for affinity chroma-
tography [286]. Imura et al. showed a high affinity of self-assembled monolayers of
MEL-A to IGM and IgM antibodies [287]. Inoh et al. indicate that gene transfection
into mammalian cultured cells could be efficient by using liposomes containing
MEL-A [283, 284]. More insights on their three-dimensional behavior are also given
in the several review articles [281, 288].

In addition to these physical-chemical properties, MELs have different biochem-
ical effects. Most of the MEL-A and MEL-B investigated were synthesized with
M. antarcticus T-34. Both, MEL-A and B had an effect against gram-positive
bacteria, like Bacillus subtilis, Micrococcus luteus, Mycobacterium rhodochrous,
Staphylococcus aureus, and Pseudomonas rivoflavina [7]. For monoacylated MEL a
less antimicrobial activity was investigated [10]. Interestingly, there is no publica-
tion about antifungal activity.

Effects on cell lines were also investigated: MELs from M. aphidis DSM 70725
induced melanoma cell apoptosis [14]. For MEL-A from M. antarcticus T-34 it was
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found that PC12 cells had a significant neurite outgrowth [272]. MEL-A and B from
the same strain induced malignant melanoma B16 cell lines at 5 μM, but caused
apoptosis at >10 μM [8, 289]. These MELs also induced the differentiation of the
human myelogenous leukemia cell line K562 [290], the human basophilic leukemia
cell line KU812 into monocytes, granulocytes, and megakaryocytes [291] and the
differentiation of human promyelocytic leukemia cell line HL60 into granulocytes.
Furthermore, it was observed that these MELs inhibited the activity of phospholipid-
and Ca 2 +-dependent protein kinase [273, 291]. For MELs derived from
M. antarcticus KCTC7804 the toxicity of mouse fibroblast L929 with LD50 ¼ 5 g/
L was measured. MELs from the same strain also proved to be readily
biodegradable [11].

For a possible application, the cosmetics sector was suggested, as MELs from
M. antarcticus T-34 and P. tsukubaensis pro tem. NBRC 1940 have a strong
rehydrating and regenerating effect on skin and hair. This effect is known from
ceramides [292–294]. Furthermore, MELs from M. antarcticus T-34 could be used
as an anti-agglomeration agent to suppress agglomeration and growth of ice-particles
[185]. MELs from the same strain could also be used as additives for plant protection
due to their wettability on hydrophobic surfaces [295, 296].

2.6.3 CLs

For CLs, only few data for surface tension and CMC value are available, an
overview is given in Table 1. However, many studies on antifungal and antimicro-
bial effects have been conducted for CLs. One of the oldest studies was conducted in
1951 for U. zeae PRL 112 (later referred to as U. maydis) [297]. Haskin and Thorn
tested 10 bacteria and 27 fungi. The following gram-positive and -negative bacteria
showed the best effects: Micrococcus pyogenes var. aureus, Xanthomonas
camestris, X. translucens cerealis, Bacillus subtilis, Corynebacterium
flaccumfaciens, Brucella bronchiseptica, Mycobacterium butyricum; and the
fungi: Thielaviopsis basicola, Streptomyces griseus, Ascochyta sp., Claviceps
purpurea and Neurospora sitophila.2 In addition, preliminary tests with rats and
white mice have shown that CL is relatively non-toxic when administered by feeding
or intraperitoneal injections [297]. Later, several other strains were discovered and
analyzed. For K. fusiformata VKM Y-2821 and C. humicola 9–6 an antifungal
activity against Filobasidiella neoformans, C. terreus, S. cerevisiae, C. albicans,
C. glabrata. C. viswanathii, and Sclerotinia sclerotiorum was shown [298, 299].
Flocculosin from A. flocculosa was used to test ~65 bacteria strains and was found to
have high activity against gram-positive and -negative bacteria, with the best activity
shown against Staphylococcus aureus [300]. Good fungal activity was displayed
against C. glabrata, S. cerevisiae, C. krusei, and C. parapsilosis, while activity
against C. albicans, C. lusitaniae, Cr. Neoformans, and Trichosporon asahii was

2Original strain names from literature were used.
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low [159, 300]. About 52 genera of fungi showed sensitivity to CLs from
Trichosporon porosum strains, whereas a high sensitivity (cell death) was shown
for C. albicans, Filobasidiella neoformans, S. cerevisiae, and C. terreus when using
CLs from T. porosium VKM-Y-2056 [162]. CLs from Sympodiomycopsis
paphiopedili VKM Y-2817 showed a good activity against C. terreus, C. albicans
[158]. For CLs from S. graminicola L1-20, L1-46 about 377 fungal strains were
tested and 95 genera, e.g. C. albicans, C. glabrata, C. viswanathii, Clavispora
lusitaniae, S. cerevisiae, C. terreus, and F. neoformans were sensitive to them
[192]. Possible applications for CLs would therefore be as a preservative in the
food and animal feed sector or as a fungicide in agricultural sector [300]. It was
found that the acetyl groups in the cellobiose molecule and the OH- groups in
palmitic acid are essentially responsible for the fungicidal effect. It was assumed
that these side groups protect against degrading fungal enzymes [301]. The antibiotic
effect of CLs was shown by affecting the cell membrane, in which it led to leakage of
potassium ions and ATP [161, 302].

For flocculosin from A. flocculosa their toxic effect on cell lines was also
investigated. There was no effect on human cancer cell lines, like T24, Rupp2,
Lovo, HepG2, HACAT, CHODOFF, and hemolysis of sheep erythrocytes [159].

CLs form needle-shaped crystal-structures under acidic conditions. Self-assembly
properties were shown for CLs from U. maydis [264]. If the pH value rises above
pH 7, they form a gel-like mass in aqueous solution. These gelling properties were
investigated by Imura et al. [303]. It has been found that solid gels are formed in
various solvents, including ethanol-butanediol-water mixtures. According to Imura
et al., CLs thus have the potential to be used as low molecular weight gelators in
hydrogels or organogels. These are currently used in cosmetics, for transport of
active substances, in biosensors and for the processing of designed food [303].

3 Concluding Remarks

The industrial application of GL biosurfactants is now a reality, since both RL and
SL containing products have reached the market. However, there are several points
that need to be studied to explore the full potential of these fascinating molecules.
There are ample research opportunities that include the isolation and characterization
of novel bacteria and fungi that exhibit increased GL biosurfactant production to
understand the metabolic pathways and genetic regulation circuits involved in the
synthesis of these tension active compounds. This could lead to genetic manipulation
of these microorganisms to enhance GL production. In addition, there are important
challenges in the development of large-scale fermentation and downstream pro-
cesses that make GL biosurfactants competitive to increase their share in the
surfactant market.
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Abstract Surfactin, one of the best lipopeptide surfactants, was first isolated from
Bacillus sp. in 1969. Since then, Bacillus sp. has been a remarkable source of
bioactive lipopeptides, with a huge natural biodiversity. Lipopeptides from Bacillus
sp. are now divided into three main families: surfactin, fengycin, and iturin. The
peptide moiety of these lipopeptides is synthesised by huge multi-enzymatic proteins
called nonribosomal peptide synthetases, which are responsible for the peptide
biodiversity of these lipopeptides. Moreover, the fatty acid chain also encompasses
a high diversity with different β-hydroxy or β-amino fatty acid chains of different
lengths, isomery, or saturation, which can be incorporated. After describing the
mode of synthesis of the different families of lipopeptides produced by Bacillus
sp. and their biodiversity, this chapter describes how this lipopeptide biodiversity
can be increased using genetic engineering and how the lipopeptides can be
overproduced and purified. The high biodiversity of lipopeptides induces a broad
range of physicochemical properties, which can be linked to multiple biological
activities with many applications in different sectors. The increasing understanding
of the mode of biosynthesis of these lipopeptides should lead to the development of
novel compounds with increased properties and applications.
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Keywords Bacillus, Lipopeptide, NRPS, Genetic engineering, Biodiversity,
Physicochemical properties, Bioactivity, Application

1 Lipopeptide Biosynthesis and Natural Biodiversity

1.1 Nonribosomal Peptide Synthesis

Lipopeptides produced by Bacillus strains are divided into three main families of
compounds: surfactin, iturin, and fengycin [1], produced by different strains belong-
ing to the Bacillus subtilis or Bacillus cereus groups and a set of molecules produced
by one or a very limited number of strains, such as kurstakin [2], antiadhesin [3],
bamylocin A [4], circulocin [5, 6], licheniformin [7], and locillomycin [8]. All of
them are composed of β-hydroxy (surfactin, fengycin, kurstakin, antiadhesin,
bamylocin A, circulocin, and locillomycin) or β-amino (iturin and licheniformin)
fatty acid (FA) chain of different lengths, isomery, or saturation (fengycin).
Guanylated fatty acid (gFA) chains have been detected in circulocins. The peptide
moiety consists of five (circulocin 1), six (circulocin 3), seven (surfactin, iturin,
antiadhesin, bamylocin, and licheniformin), nine (locillomycin), or ten (fengycin)
amino acid residues of the L or D form. All lipopeptides are cyclised or partially
cyclised; however, in some cases, linear forms are concomitantly observed [9]. All
of them are synthesised by nonribosomal peptide synthetases (NRPS) with the help
of polyketide synthases (PKS) in the case of iturin or locillomycin. These two types
of bio-catalysers are multi-enzymatic proteins consisting of repeated modules, which
function as assembly line machinery for the biosynthesis of a high set of bioactive
microbial secondary metabolites [10]. The first NRPS complex was described by
Lipmann et al. in 1971 [11] and is responsible for the biosynthesis of gramicidin S,
an antibiotic produced by B. subtilis. Since this discovery, several thousands of
compounds synthesised by this mechanism have been characterised. Most of them
are gathered in a database called NORINE [12]. Interestingly, this mode of biosyn-
thesis is mainly responsible for the high biodiversity observed in lipopeptide struc-
tures. Each NRPS is subdivided into modules, which contain the set of enzyme
activities necessary to catalyse the incorporation of one specific amino acid into a
peptide backbone. Five main catalytic activities, called domains, are used in NRPSs
responsible for the biosynthesis of lipopeptides in Bacillus sp. The adenylation
(A) domain recognises one amino acid residue and catalyses its transformation
into amino-acyl adenylate by a reaction with ATP. Several A domains show low
specificity and can activate amino acid residues with structural similarities, such as
valine, leucine, and isoleucine. This low specificity induces biodiversity in
lipopeptides synthesised by the same NRPS. The peptidyl carrier protein (PCP)
domain, also called the thiolation (T) domain, has to be transformed from
apo-protein in active holo-protein by the addition of a serine residue of a
phosphopantetheine arm, which is a part of coenzyme A. This transformation is
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catalysed by a phosphopantetheinyl transferase encoded in Bacillus by the sfp gene
[13, 14]. It generates a sulfhydryl group that can react with an aminoacyl adenylate
to create a thioester bond between the carboxylate group of the amino acid residue
and the PCP domain. The third domain is the condensation (C) domain, which
catalyses (1) the formation of a peptide bond between an acceptor substrate (the
nascent peptide) and a donor substrate (the amino acid carried by the adjacent
module) and allows for (2) the subsequent translocation of the growing chain to
the following module. This C domain can be separated into two subdomains called
C-donor (CD) and C-acceptor (CA), each of which is specific for the previous and
current amino acids, respectively [15]. One main characteristic of NRPS responsible
for the biosynthesis of lipopeptides is the presence of a C starter (CS) domain that
catalyses the acylation of the amino acid residue activated by the first module
[15]. This CS domain is known for its low specificity and ability to incorporate FA
of different lengths and isomeries. Sometimes, an epimerisation (E) domain can be
present in the module and will catalyse the conversion of the L-amino acid residue
previously activated and fixed in the PCP domain of the module in a D-amino acid
residue. The last domain, a thioesterase (TE), is necessary for the release of the
peptide and its cyclisation. This domain is only present in the last module. It was not
clear whether the presence of linear forms observed with surfactins, for example, is
the result of either an inefficient activity of the thioesterase or the presence of a
lactonase, which could open the cycle. In any case, this would increase the biodi-
versity of the compounds produced. For some synthetases of lipopeptides, a second
thioesterase is present and is involved in the initiation of the synthesis. Except for
locillomycin, NRPSs involved in lipopeptide synthesis operate according to a linear
synthesis, with an initiation module (CS-A-T) able to recognise the first amino acid
residue, followed by as many modules (C-A-T) as monomers required to complete
the peptide and a last module (C-A-T-TE), which will incorporate the last monomer,
release, and cyclise the lipopeptide. As previously mentioned, PKS is involved in the
synthesis of iturin and locillomycin lipopeptides. For iturin, three catalytic domains
are responsible for the last steps of FA biosynthesis (last elongation and β-amination
[16]) before its transfer to the first amino acid of the peptide moiety (acyl-CoA ligase
(AL domain), acyl carrier protein (ACP domain), β-ketoacyl synthetase
(KS-domain) and amino transferase (AMT domain)). Hansen et al. [17] have
shown that the AL domain can activate free FA through an acyl-adenylate interme-
diate and load it on the adjacent T domain independently of coenzyme A. Compared
to other lipopeptides, the biosynthesis of locillomycin is specific. It contains three
catalytic domains of PKS, a fatty acid acyl-coenzyme A synthetase (ACS) domain,
an acyl carrier protein/thiolation (T) domain, and a β-ketoacyl synthetase
(KS) domain; however, this last domain seems to be skipped. On the NRPS side, a
synthetase with three modules is iteratively used with an epimerase, which appears
to function optionally.
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1.2 Biodiversity of Surfactins

Surfactin is one of the three main lipopeptide families produced by Bacillus sp. All
of the surfactins are heptapeptides, with the chiral sequence LLDLLDL, and have an
FA linked to the peptide chain by lactone closure (Fig. 1).

For the surfactin family, four genes encode NRPS: srfAA, srfAB, srfAC, and
srfAD. From the heptamodular NRPS obtained from these genes, srfAA codes for the
first three modules, srfAB codes for the next three modules, srfAC codes for the
seventh module and a thioesterase, and srfAD codes for a second thioesterase/
acyltransferase domain that stimulates surfactin biosynthesis initiation (Fig. 2).

In this family, three main types of lipopeptides have been identified. Surfactin is
produced by Bacillus sp., including B. subtilis, B. amyloliquefaciens, and
B. velezensis, lichenysin is produced by B. licheniformis [18], and pumilacidin is
produced by B. pumilus [19]. These differences are in the peptide chain and amino
acid composition.

Surfactin is composed of Glu1-Leu2-Leu3-Val4-Asp5-Leu6-Leu7, whereas
lichenysin has a glutamine residue at position 1 instead of a glutamic acid residue,
and pumilacidin has a leucine residue at position 4 instead of a valine residue and an
isoleucine residue at position 7 instead of a leucine residue.

Furthermore, a different level of diversity was observed. For the same strain, there
can be a change in one amino acid of the lipopeptide produced, and thus the
production of different peptide chains. The origin of this change is the
non-specificity of the A domain in NRPS. For positions 2, 4, and 7, there was
greater variability and the amino acid accepted belonged to the aliphatic group
(leucine, valine, isoleucine, and alanine) [20, 21]. For the other positions 1, 3,
5, and 6, the lack of variability could be due to the type of amino acid (negatively
charged for Glu1 and Asp5) and epimerisation (D-Leu at positions 3 and 6). In
addition to the peptide chain variation, there is also a variation in the length of the FA
or its isomery. For the surfactin family, the chain can vary from 12 to 17 carbon
atoms and have a linear (n) or branched configuration (iso and anteiso).

Lastly, surfactin forms that could result from a chemical change have nonetheless
been observed naturally. Linear surfactins have been produced by Bacillus strains
[9] and surfactin methyl esters have been produced by B. subtilis [22],
B. licheniformis [23], and B. pumilus [24].

1.3 Biodiversity of Fengycins

Fengycins or plipastatins were described in 1986, isolated for the first time from
B. subtilis and B. cereus strains, and then proved to be identical compounds
[25]. Several studies have reported their production from other Bacillus species
[26–28].

These molecules are lipodecapeptides and display an internal lactone ring in the
peptide moiety between the carboxyl terminal amino acid (Ile) and the hydroxyl
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group in the side chain of the tyrosine residue at position 3 [29, 30] (Fig. 1).
Fengycin or plipastatin NRPS is encoded by five genes: ppsA, ppsB, ppsC, ppsD,
and ppsE, which correspond to fenC, fenD, fenE, fenA, and fenB [31] (Fig. 2). The
first three enzymes contain two modules. For fenC: fenC1 and fenC2, which activate
Glu and Orn, respectively [32], fenD: fenD1 and fenD2 activate Tyr and Thr,
respectively [33], and fenE with two modules: fenE1 activates Glu and fenE2,
which is less specific, can activate two different amino acids, Ala and Val. Val is
activated in fengycin B, whereas Ala is incorporated into fengycin A [34]. The
enzyme fenA contains three modules: fenA1, fenA2, and fenA3, which activate Pro,
Gln, and Tyr, respectively [35]. Finally, fenB activates the last amino acid, Ile, and a
thioesterase domain involved in the release of the peptide and the formation of an
ester bond between the last and third amino acids of the peptide moiety [36].

To date, large structural heterogeneity has been reported in the fengycin family.
This biodiversity is generated by variations in both the β-hydroxy fatty acid moiety
and the partially cyclic amino acid chain. Fengycins A and B have been reported as
the two main classes of fengycin, differing in their sixth amino acid of the peptide
chain [30]. There are only two other variants reported in the literature that contain a
different amino acid in that position: one structure of fengycin, including an
aminobutyric acid (abu6) [37, 38], and a second fengycin variant with Leu/Ile6 and
Ile10 [39]. Furthermore, several structures have been described and confirmed
recently: fengycin A2 (Ala6 and Val10), fengycin B2 (Val6 and Ala10) [39], fengycin
C (Ala6 and Thr9) [40], fengycin D (Val6 and Val10), and S (Ser3, Val6, and Ile10)
[38, 41], and, recently, fengycin X (Ala6 and Leu/Ile8), and Y (Val6 and Leu/Ile8)
[42]. To date, all reported fengycins contain Glu residues at positions 1 and 5 and a
Gln residue at position 8, except in one report in which the analysis showed a rare
form of fengycin from B. subtilis K1 containing only Glu in the three positions [39].

The β-hydroxy FAmoiety varies from C14 to C18, with C15, C16, and C17 being
the main representative FA. The lipid moiety is linked by an amide bond to the
N-terminal amino acid residue (Glu1) [29, 30]. The most common forms are
saturated, except in some cases where a C15 β-hydroxy FA includes a mono-
unsaturation between carbon C13 and C14 [39, 43].

1.4 Biodiversity of Iturins

The iturin family was discovered in 1950 [44] and was defined as lipoheptapeptides
interlinked with a β-amino FA of length varying from C14 to C17 [45] (Fig. 1). They
are known to be strong antimicrobial compounds that are active against yeast and
most fungal phytopathogens [46–48].

Iturins are synthesised by a PKS–NRPS hybrid complex [49]. The operon coding
for iturins contains four open reading frames: fenF, mycA, mycB, and mycC for
mycosubtilin [50] and bmyD, bmyA, bmyB, and bmyC for bacillomycin D [51]. The
iturin A operon is synthesised by ituD, ituA, ituB, and ituC (Fig. 2). ItuD is essential,
specifically for iturin A, as it encodes malonyl coenzyme A transferase, which
participates in the formation of side FA. In addition, its deletion leads to loss of
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production of iturin A [52]. The ituA gene encodes the PKS modules responsible for
the last elongation, β-amination, and incorporation of the acyl chain, and the first
amino acid residue (Asn). The ituB gene encodes an NRPS of four modules
responsible for the incorporation of Tyr, Asn, Gln, and Pro. The last gene, ituC,
encodes a two-module protein incorporating the last two amino acid residues (Asn
and Ser) and releases the peptide. Two epimerisation domains in modules 3 and
6 transform L-Asn into D-Asn.

All of the compounds within the iturin family share some common structural
characteristics: (a) the peptide cycle is characterised by a constant LDDLLDL chiral
sequence of the amino acid residues; (b) the first three amino acids correspond to a
conserved pattern (L-Asx1 D-Tyr2 D-Asn3); (c) the last four amino acids constituting
the peptide moiety are variable, depending on the compound [20]. In addition to the
structural variations in the peptide moiety, the classification of each molecule also
depends on the length of the FA [53].

Seven iturins have been reported to date, with iturin A being the most studied, and
its complete structure was elucidated by Peypoux et al. in 1978 [45]. Iturin A is a
heptapeptide containing L-Asn, D-Tyr, D-Asn, L-Gln, L-Pro, D-Asn, and L-Ser,
related to a C14 or C15 fatty acyl chain [45]. Similar to iturin A, iturin C [54],
bacillomycin D [55], and bacillomycin L [56] (which is the same as bacillomycin Lc
[57, 58]), all exhibited the same length of the lipid moiety. In contrast, bacillomycin
F [59] and mycosubtilin [60] have long C16 and C17 forms, similar to iturin AL

[47]. More recently, a new iturinic lipopeptide, mojavensin A, was isolated from
Bacillus mojavensis B0621A [61].

1.5 Other Lipopeptides from Bacillus sp.

Numerous other lipopeptides were isolated, and their structures and biosynthesis
characterised from Bacillus sp. These metabolites are all composed of either an FA
or a gFA, linked by an amide or ester bond to a cyclic or partially cyclic peptide
chain. The latter contains 5 to 13 amino acids, some of which appear in the D-form.

In Bacillus sp., these lipopeptides include the following:

1.5.1 Antiadhesin

Antiadhesin from B. licheniformis 603 is an FA-O-heptapeptide with antiadhesive
activity [3]. This lipopeptide consists of a heptapeptide, N-acylated to the N-terminal
amino acid, L-Asp, by a 3-hydroxy FA (from 13:0 to 17:0 with n-, iso-, and anteiso-
chains) (linked to the carbon 3 of the FA): FA-β-O-L-Asp-L-Leu-L-Leu-L-Val-L-
Val-L-Glu-L-Leu.
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1.5.2 Bamylocin A

Bamylocin A from B. amyloliquefaciens LP03, an FA-O-heptapeptide with antifun-
gal activity [4]. This secondary metabolite is composed of an FA linked by an ester
bond to a heptapeptide.

FA-β-O-L-Glu-L-Leu-x-Met-x-Leu-x-Pro-D-Leu-L-Leu.
Cyclisation occurs as for surfactin, that is, by linkage to the carbon 2 of the FA.

1.5.3 Circulocins

Circulocins α-δ from B. circulans J2154 are gFA-penta/hexa-peptides [5, 6]. These
lipopeptides result from an ester linkage of a gFA and a pentapeptide or
heptapeptide.

– Circulocin α: gFA-β-O-x-Thr-x-Phe-x-Ile-x-Dba-x-Asp
– Circulocin δ: gFA-b-O-x-Thr-x-Leu-x-Ile-x-Thr-x-Asn- x-Ala

1.5.4 Kurstakins

Kurstakins from B. cereus and B. thuringiensis are FA-N-heptapeptides with anti-
fungal activity [2, 62–64]. The kurstakin family consists of partially cyclic
heptapeptides associated with an amide bond with four different FAs (isoC11,
nC12, isoC12, and isoC13). Lactonisation occurs between the carboxyl group of
the terminal Gln and the hydroxyl group on the side chain of the Ser residue. The
common peptide sequence is FA-b-N-Thr-Gly-Ala-Ser-His-Gln-Gln (Fig. 1). The
NRPSs implied in kurstakin synthesis are encoded by the krs locus, which consists
of six genes: (1) krsE, whose product is involved in the efflux of kurstakin; (2) the
synthetase genes krsA, krsB, and krsC, which contain one, two, and four modules,
respectively, with an E domain present in both the first and sixth modules; (3) sfp,
which codes for a phosphopantetheinyl transferase; and (4) krsD, which mediates a
type II thioesterase (Fig. 2).

1.5.5 Licheniformin

Licheniformin from B. licheniformis MS3 is an FA-N-heptapeptide containing an
unusually long FA. This lipopeptide consists of a C43H87 branched fatty acid with a
13-fold repeated C3H6 unit linked by an amide bond to a heptapeptide: FA-β-N-Ala-
Gly-Val-Asp-Ser-Gly-Tyr. Cyclisation occurs via an ester bond between the termi-
nal Tyr and Asp [7].

Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides 133



1.5.6 Locillomycins

Locillomycins from B. subtilis 916 have both antibacterial and antiviral activities.
These lipopeptides are FA-N-nonapeptides linked by an amide bond to a linear C13
or C15 FA, then cyclised by the formation of a macrolactone between the threonine
hydroxyl and the valine carboxylate: FA-β-N-L-Thr-D-Gln-L-Asp-L-Gly-L-Asn-L-
Asp-L-Gly-L-Tyr-L-Val (Fig. 1).

The nonlinear hexamodular NRPSs governing locillomycin synthesis are
encoded by the loc cluster, which contains four genes: (1) locD, which encodes a
polyketide synthase module; and (2) the NRPS locA, locB, and locC genes, which
contain one, three, and two modules, respectively, with an E domain being present in
the second module. The latter function iteratively (Fig. 2) [8, 65].

To date, no studies on the NRPSs involved in the synthesis of the four
lipopeptides, antiadhesin, bamylocin A, circulocins, and licheniformin, have been
reported.

For a more detailed listing of nonribosomal lipopeptides from Bacillus sp., see the
reviews of Aleti et al. [66] and Zhao and Kuipers [67].

2 Increasing Biodiversity by Genetic Engineering

As explained previously, NRPSs are composed of different modules, with different
domains responsible for each step of amino acid integration in the peptide chain.
Module or domain insertion, deletion, duplication, or exchange leads to multiple
possibilities for biosynthesis in a design-based fashion of lipopeptides. Computa-
tional tools can be used to aid the combinatorial design of NRPS. Part mining for the
collection and assembly of components can be linked to comparative analyses of
gene clusters. However, the domain specificities and protein–protein interactions are
complex and need to be studied to understand the molecular interactions between
domains and modules.

2.1 Precursor Directed Biosynthesis

The first strategy, called precursor-directed biosynthesis, is not linked to the mod-
ification of the NRPS system, but the non-specificity of the A domain. Indeed, it has
been observed that in natural biosynthesis, various products are formed in different
proportions, some more abundantly than others. This is due to the substrate flexi-
bility of the A domain, which can recognise similar amino acids. Thus, the feeding of
monomers can enhance their concentration in the intracellular pool and change the
final product of the NRPS, thereby enhancing their diversity. This strategy was
frequently used, for example, with surfactin to increase the proportion of surfactin
with valine at position 7 [68], to have an isoleucine residue at position 2 and/or
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4 [69], to have an alanine residue at position 4 [70] or with iturin and fengycin to add
a fluorinated non-proteinogenic amino acid [71, 72].

In the cases described above, the precursors were directly added to the culture
medium and used for lipopeptide production. However, the feeding of some amino
acids, not specifically precursors, also influences the final product by modifying
metabolic pathways. Thus, independent of the recognition ability of the NRPS, but
regarding the biosynthesis of branched FAs, the feeding of branched amino acids
influences the proportion of even/odd FAs produced [73]. For surfactin, even iso FA
is obtained with valine addition and uneven iso or anteiso FA is obtained with
leucine or isoleucine addition.

Genetic engineering of the metabolic pathways involved in the biosynthesis of
these precursors has also been investigated. Genetic engineering of the leucine
pathway showed that the deletion of a global transcriptional regulator, codY, led to
a 1.4-time increase in the surfactin form with valine at position 7 [74]. Similarly, the
repression of different genes in the bkd operon led to an increase in the proportion of
nC14 surfactin [74, 75].

However, there is still competition between the added and natural amino acids for
cellular uptake and for A domain. To avoid this, a mutasynthesis can be performed
[76–78]. In this case, the gene responsible for the synthesis of the natural precursor is
deleted in the microorganism, and only monomer source is fed to control NRPS
product synthesis. This technique was successfully used for some NRPS peptides,
such as calcium-dependent antibiotics [78], and could be used for lipopeptides from
Bacillus sp.

Other strategies to enhance lipopeptide diversity are based on modifications of the
NRPS itself.

2.2 Specificity Code Mutations

The smallest modification that can be made to change the amino acid specificity is in
the region coding for the specificity of the A domain itself. It was shown that eight
amino acid residues in the active site of this domain allow for substrate specificity
prediction. These residues, also known as ‘Stachelhaus code’ or ‘NRPS code’, are
the basis for bioinformatic predictions [79, 80]. Thus, by modifying the residues of
this Stachelhaus code, the substrate specificity can be changed. For surfactin, with
site-directed mutagenesis, the A domain specificity changed from glutamic acid to
glutamate and from aspartic acid to asparagine at positions 1 and 5, respectively [81].

2.3 Domain Exchange

Since an NRPS is composed of modules for each amino acid insertion, it is
composed of domains for each step of the monomer aggregation, and the domain
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exchange was one of the first techniques studied. Since the A domain is responsible
for monomer insertion, its modification can lead to modification of the final product.
This type of exchange was performed for the single A domain, but also for this
domain combined with the others around it (condensation-adenylation or
adenylation-thiolation) or for the whole module.

For surfactin, module swaps were performed, leading to variations in all seven
amino acids, such as changes in the final amino acid from leucine to phenylalanine,
ornithine, cysteine, and valine, or the replacement of an internal amino acid, such as
leucine to ornithine [81–84]. In addition to domain exchanges, domain deletion
leading to a shorter peptide chain in the lipopeptide also exists. Surfactin without
Leu2, Leu3, Asp5, or Leu6 was produced by Mootz et al. [85] and Jiang et al. [86].

However, even if they could be increased, the yields obtained were lower than of
the original products. Indeed, if the new domain is from the same biosynthetic gene
cluster or from one that encodes a molecule of the same family, the exchange is more
successful. Furthermore, a study performed by Bozhüyük et al. [87] showed that
there is high flexibility between the C and A domains, and they created a new
combination of domains called exchange units composed of A-T-C instead of
C-A-T. Even if the NRPS of xenotetrapeptides was successfully redesigned, the
yield obtained was still low [87]. Thus, these authors continued their studies and
focused on C domains. Because the C domain catalyses the link between the amino
acid of the preceding module and the current module, the concept of condensation
subdomains was created. It separates the C domain into CD and CA, each of which is
specific for the previous and current amino acids, respectively [15]. Thus, they
redefined the exchange unit containing the CA subunit, the A and T domains, and
the CD subunit. This redefinition of module boundaries allowed for the successful
production of molecules through domain exchange with no loss in yield for the first
time [88].

2.4 Starter Units and Tailoring Modifications

In addition to the exchange of domains within the NRPS, the initiation modules have
been exchanged in the NRPS [89, 90]. Even if the downstream compatibility remains
and must be addressed, upstream restraints do not exist in the initiation module. The
addition of tailoring domains can also be achieved. They can be added to the
domains as subdomains, thus allowing site-specific modifications. Selective meth-
ylation [91], halogenation, glycosylation, acylation, and sulphation [78] were
performed on NRPS peptides and could be applied to lipopeptides from Bacillus sp.
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3 Bioproduction in a Controlled Environment

3.1 Genetic Engineering Overproduction

The production process and its improvements are discussed later. First,
overproduction through genetic engineering is covered. Because it is at the source
of production, strain modification is important and influences the optimisation of the
production process.

3.1.1 Transcription

Promoter exchange is one of the most common methods used to overproduce
lipopeptides. It consists of the exchange of the original gene promoter by an
induced-specific, constitutive, or stronger promoter. This method has been used
for surfactin, and it has been shown that the use of an inducible promoter leads to
a 17-fold increase in surfactin production [92]. However, the use of constitutive
promoters depends on the original promoter. Indeed, if the bacterial strain is a strong
surfactin producer, then the production will decrease with the change, whereas if the
bacterial strain is a weak surfactin producer, the production will increase with the
change [93]. Similarly, for iturin and fengycin, changes in the promoter also lead to
an increase in production [94–97].

Additionally, transcriptional regulatory genes also influence lipopeptide produc-
tion by regulating the NRPS operon of the lipopeptide or other mechanisms that
indirectly impact their production. Positive regulators, such as PerP [98], DegQ
[94, 99], ComA, and SigA [100], or negative regulators, such as CodY [101], Rap
[102], SinI [103, 104], Spx [105], and AbrB [97], have been found to be involved in
lipopeptide production by Bacillus sp. It has been shown that the cell density-
dependent quorum-sensing system influences surfactin production through the
ComQXP quorum-sensing locus [106] as well as ComX and PhrC [107].

3.1.2 Increase in Precursor

Coutte et al. [101] showed that the feeding of leucine to the culture medium led to a
three-fold increase in surfactin production. Comparable results were obtained for the
iturin family with the addition of its amino acid to the culture medium [108–111]. It
was thus shown that the addition of lipopeptide precursors to the culture medium for
their synthesis led to increased production.

Furthermore, as mentioned before, to avoid the feeding of monomers that
enhance their concentration in the intracellular pool, metabolic engineering can be
used to modify the metabolic pathways involved in their production. This approach
was used by Dhali et al. [74] and Wang et al. [75]. From the modelling of the
metabolic pathway of leucine, gene knockout was selected and led to a 5.8-time
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increase in surfactin production [74]. Similarly, the knockout of three negative
regulators of glutamate metabolism leads to an increase in surfactin production [75].

This precursor increase strategy was also used for the fatty acid part of the
molecule. The synthesis of branched-chain α-ketoacyl-CoA and malonyl-ACP
increased [74, 112]. Wu et al. [112] also overexpressed the entire FA synthase
complex.

3.1.3 Excretion

From a production point of view, even if the NRPS assembly of a lipopeptide is high,
if its excretion does not follow, the final product recovered will not be satisfactory.

Despite their nature, the efflux of lipopeptides is mediated by protein transporters.
Li et al. [113] showed that an increase in surfactin export was observed after the
overexpression of three lipopeptide transporters.

3.1.4 Degradation

As for excretion, a degradation that could occur after production would diminish the
final lipopeptide production capacity. This problem was confirmed by the observed
decrease in surfactin concentration during fermentation [114, 115]. This could result
from the action of a protease produced by the bacterial strain that produces the
lipopeptide [115]. This degradation process could be developed by the Bacillus
strain for two reasons. The first is the use of the product as a carbon source after the
depletion of other sources. The second is the degradation of the lipopeptide because
of its possible inhibitory effect at higher concentrations [114].

3.2 Bioprocess Optimisation

As lipopeptides are surfactants, they decrease the energy needed for foam formation
by increasing the stability of the bubbles in the gas–liquid dispersion. Indeed, by
reducing the surface tension, the coalescence of bubbles in the foam is inhibited. The
most common procedure to avoid foam is to add anti-foam to the culture medium.
However, the addition of anti-foam to the culture medium has many drawbacks. It is
costly and can have a negative effect on cell growth. Furthermore, since it is added to
the culture medium, it adds a purification step because it must be removed. Thus,
alternatives are needed to address foam production during lipopeptide production.
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3.2.1 Foaming Processes

Because the lipopeptides are placed at the gas–liquid interface, this foam formation
can be seen as a drawback because of the loss of surfactant production. However, it
can also be used as an advantage because the foam can be recovered and used as the
first purification step. Furthermore, the continuous extraction of lipopeptides from
the culture avoids any possible feedback inhibition from the products. A lipopeptide
production with a foam fractionation strategy was put into place, with the fermenter
linked to foam columns. The foam filling the headspace of the fermenter was
collected into a sterile vessel. However, the outgoing flow rate needs to be tightly
controlled because it can block the exit filters or even overflow out of the fermenter.
Furthermore, a drawback of these foaming processes is that the culture medium and
cells are trapped in the foam, leading to a decrease in production. Despite these
inconveniences, foam fractionation has been used for lipopeptide production, mostly
for surfactin. Cooper et al. [116] used a batch process composed of a fermenter with
a collection vessel in the air exhaust line for surfactin production. The foam was
continuously carried away with the air. The foam column can also be inserted into
the fermentation vessel head plate [117]. The complexity of the outgoing foam flow
rate control was highlighted in Davis et al.’s experiment [117]. Higher aeration of the
culture through mixing and air supply led to better surfactin production and foam
production that carried away the culture medium. This problem was addressed by
Yeh et al. [118] with a cell recycler and surfactin precipitator to maintain the culture
medium in the fermenter. The use of two foam collectors has been investigated to
enhance foam recovery [119]. Guez et al. [120] adapted this method for
mycosubtilin production in a fed-batch process. Even if less foam is produced by
this lipopeptide because of its lower surfactant abilities compared to surfactin, foam
fractionation is still needed. A feeding rate law was computed for fed-batch pro-
cesses [121], limiting the feed rate to 0.1 h�1 to avoid culture medium loss in the
foam. A continuous process linked to foam fractionation [122] can solve the
problems mentioned above and lead to a culture that can last up to 100 h of
fermentation.

3.2.2 Non-foaming Processes

Solid-State Fermentation

Historically, B. subtilis has been used in alkaline food fermentation throughout the
world and produces lipopeptides in addition to fermentation [123, 124]. Since it is a
possible production method, and most of the cheap substrates, such as waste or
by-products from the agro-industrial field, are used in solid-state fermentation, solid-
state is a surging method used for lipopeptide production. It has been used for a long
time with soybean curd residue [125, 126], and a lot of research has been performed
for surfactin production with various wastes, such as soybean flour, rice straw, corn
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steep liquor, olive oil mill waste, brewery wastewater, beet molasses, apple peel
extract, carrot peel extract, and glycerol [127–131].

Immobilised Cells

Cells immobilised on solid particle carriers in a liquid fermenter have been used for
lipopeptide production. Reduced foam formation, in addition to enhanced
lipopeptide production, was observed. Activated carbon, agar, and expanded clay
have been added to the culture medium as solid carriers for the bacteria that produce
surfactin [132]. Polypropylene particles of low density have also been used to
produce surfactin and fengycin [133, 134]. These low-density particles were used
in a three-phase inverse fluidised bed bioreactor. This resulted in a high oxygen
transfer rate, but foam production was also observed. It has been reported that
oxygenation can influence the production of different lipopeptide families by
B. subtilis [135]. Moderate oxygenation leads to the production of a mix of families,
whereas high oxygenation leads to the production of surfactin alone.

Rotating Disc Reactor

Bioreactors containing rotating discs partially immersed in the culture medium are
called rotating disc bioreactors. The aeration is made through the rotation of the discs
and the contact between the air and the liquid film on their surface, allowing no foam
production. Bacterial cells are mainly attached to the discs. This technique is often
used in wastewater treatment since it is easy to use and to scale up [136], but, until
now, not much for the production of molecules of interest. Chtioui et al. [137]
produced two lipopeptides, surfactin and fengycin, in such a bioreactor. As it has a
low oxygen transfer rate, they later modified the rotating disc bioreactor by adding
mechanical agitators to enhance the aeration of the culture medium, thus improving
fengycin production [138].

Biofilm Reactors

In biofilm bioreactors, structured packing, which allows cell adhesion and biofilm
formation, is added to the same vessel above the culture medium or in a separate
vessel. In this type of reactor, the trickling of the culture medium on the packing
enhances oxygenation and thus promotes lipopeptide production. In addition, it can
reduce foam formation during lipopeptide production. Indeed, the cells, at first in
suspension in the culture medium, form a biofilm on the packing due to the
continuously recirculated culture medium on it. Furthermore, the oxygenation of
the culture medium takes place in a liquid-to-gas dispersion type instead of a gas-to-
liquid dispersion, leading to less foam formation. Biofilm formation is strongly
dependent on the liquid distribution style and flow rate. For the liquid distribution,
a distributor plate instead of a single injection point leads to a slower liquid velocity,
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and thus, an optimal biofilm dispersion on the packing and better aeration with less
foam formation [139, 140]. Another method to optimise biofilm formation is to
genetically modify the strains to obtain filamentous growth or exopolysaccharide
production [141]. To optimise this process, biofilm dynamics analysis can be
performed directly through X-ray tomography analysis of the packing [139], or
indirectly through the cells released from the biofilm in the culture medium using
flow cytometry or other single-cell techniques [142, 143]. This type of biofilm
reactor has been used by Zune et al. [140] and Brück et al. [144] for lipopeptide
production, and, more specifically, surfactin.

Air Liquid Membrane Contactors

Air liquid membrane contactors are composed of an organic high-area membrane,
separating the compartment flushed with air from the one flushed with the culture
medium. The oxygen transfer is made through this membrane from the air compart-
ment to the liquid compartment, avoiding foam formation. This bioreactor has been
used for surfactin production [145]. Optimisation of this technique was conducted,
with a change in the culture medium composition, from a bacterial growth optimised
medium to a surfactin production optimised medium [146]. Another advantage of
the membrane is the possibility of coupling it with the first step of purification, such
as cell filtration. Thus, a continuous process can be put in place with increased
productivity [147]. However, fouling of the membrane with cells or produced
molecules is a disadvantage, as is the price of the membrane.

3.3 Purification

The downstream processes are responsible for more than half of the production cost
of a molecule. Thus, the extraction, recovery, and purification techniques for
lipopeptides have been thoroughly studied. These studies were mainly based on
B. subtilis cultures, with surfactin, fengycin, and iturin production.

3.3.1 Acid Precipitation

Purification using acid precipitation is the oldest lipopeptide purification technique
used. After culture, the culture medium is centrifuged to remove the cells. Then, the
lipopeptides are precipitated by acidification at pH 2 overnight at 4�C, followed by
the addition of chloric or sulphuric acid. Centrifugation allows the separation of the
precipitated molecules. Finally, the extraction is performed using organic solvents
(methanol, chloroform, acetonitrile, and acetone) [148]. The solvent can be used
alone, but better results were obtained through their coupling, mostly with methanol/
chloroform (2:1 v/v) [149]. Because it is acid precipitation, this technique is only
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suitable for negatively charged lipopeptides, such as surfactin. Furthermore, it is not
possible to continuously couple this technique with production. Because the purity is
frequently insufficient, multiple steps of solvent extraction should be used to
enhance this procedure, or it should be coupled with another technique.

3.3.2 Foam Fractionation

As mentioned previously, a foam fractionation production technique allows the
recovery of the foam containing lipopeptides during fermentation [117, 120, 121].
Therefore, this process combines production and purification. For a continuous
approach, the foaming rate, linked to agitation, must be closely monitored. However,
even if a semi-batch mode allows up to 100% recovery, the continuous mode allows
only 70% recovery [150].

3.3.3 Adsorption

Another technique that allows continuous purification during the production process
is the adsorption of lipopeptides on various supports [151, 152]. An adsorption
column is coupled to the fermenter, and its physicochemical properties cause only
the lipopeptide to adsorb. The absorption column can be composed of a microporous
PVDF hollow fibre membrane or active carbon. The purity obtained is always
acceptable (higher than 75%), but the recovery rate depends on different factors,
such as the initial concentration in the culture medium or the temperature.

Chromatographic methods, even if not applicable for high volumes, lead to the
best purity and the separation of different lipopeptide forms if several families are
produced at the same time in the fermenter. Chromatographic derivative methods
were developed for larger volumes, with the same family separation and a lower, but
still above 70%, purity [153].

3.3.4 Membrane Ultrafiltration

Surfactants can form micelles above their critical micelle concentrations. They are
aggregates of the surfactant, and thus have a larger diameter than the individual free
molecules. Because lipopeptides are subjected to this phenomenon, this size
enhancement can be used to purify them. A membrane with a molecular weight
cut-off of 10 to 100 kDa can retain surfactin and mycosubtilin, thus enhancing their
concentration in the retentate [154]. Afterwards, resolubilisation in an organic
solvent breaks down the micelles into individual molecules. The pH of the solution,
membrane type, and lipopeptide concentration affect the process. Membrane fouling
with micelles can decrease the permeate flux [155]. Since surfactin micelles can
interact with bivalent positive ions, such as CaCl2, their size can be enhanced and a
larger molecular weight cut-off can be used for the membranes [156].
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3.3.5 Liquid/Liquid Solvent Extraction

Liquid membrane pertraction was used by Dimitrov et al. [157] and Chtioui et al.
[133] with n-heptane/1-octanol (50/50) and n-heptane as solvents, respectively. This
process extracts and purifies lipopeptides, with recovery from 75% to 97%
depending on the solvent and pH. A solvent extraction assisted with ultrasound
treatment enabled the extraction of iturin and surfactin, allowing up to 100%
recovery [158].

3.3.6 Hybrid Methods

Most of the methods described above are not used alone, but in combination with
one another to provide higher recovery and purification rates. Membrane ultrafiltra-
tion is mostly used for precipitation or adsorption. Membrane ultrafiltration can be
carried out in one or two stages and can be combined with diafiltration or precipi-
tation to give a purity of 70% to 98% [154, 155, 159, 160]. It can also be combined
with a preceding salting-out using ammonium sulphate and ethanol [161], or
adsorption on various resins, such as XAD-7 [162].

4 Biodiversity and Physicochemical Properties

The amphiphilic structure of the lipopeptides produced by Bacillus sp. confers
interesting physicochemical properties, including surface-tension reduction and
self-assembly capacity. Some are also able to bind to ions. The distribution of the
hydrophobic and hydrophilic moieties, the presence of charge(s), as well as the
cyclic or linear form of the peptide part, the ring closure type, and the length and
configuration of the lipidic part highly affect these properties.

Owing to these physicochemical properties, these lipopeptides show promising
applications, mainly in the environmental sector as oil recovery enhancers, xenobi-
otic hydrocarbon biodegradation activators or as metal recovers from soil or water,
and in pharmaceutical areas for formulating stable microemulsions for drug delivery
(for a recent review on lipopeptide applications, see [163]) (Fig. 3).

In literature, the surfactin family is the most extensively studied lipopeptides in
terms of physicochemical properties (see our recent review [164]), followed by the
iturin family. The other families are much less investigated, probably due to the low
production yield limiting the amount of high-purity compounds necessary for
physicochemical experiments. This is particularly true for locillomycin [1, 8].
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4.1 Surface Activity

The surface-active property refers to the capacity of a surfactant molecule to reduce
the surface or interfacial tension between a gas and a liquid or between two
immiscible liquids, respectively. This characteristic correlates with the foaming or
emulsifying properties of the surfactant.

Lipopeptides from the surfactin family are the most active in reducing the surface
tension (γ) of the air–water interface (Table 1). A reduction from γ~72 mN/m to
values between 29 and 56 mN/m depending on the structure of the surfactin and the
experimental conditions were reported. The native surfactin [166], and lichenysin
with a Gln instead of Glu at position 1 in the peptide cycle are the most active [165]
and pumilacidin in the presence of Leu4 instead of Val4 is less active [171]. The
length and branching configuration of the alkyl chain influence surface tension. A
longer chain is more efficient [170] and the normal configuration is more active than
the iso one, which is more powerful than the anteiso [175].

Iturinic lipopeptides globally show a lower surface tension reduction power than
the surfactin family, with γ values between 46 and 55 mN/m at an air–water interface
(Table 1) [167]. Compared to iturin A, mycosubtilin with an inversion of Ser and
Asn between positions 7 and 6, and bacillomycin D (with the sequence L-Pro/L-Glu/
D-Ser/L-Thr for positions 4 to 7) have similar behaviour, bacillomycin F with a Thr
residue instead of Ser at position 7 had intermediate activity, whereas iturin C with

Table 1 Critical micellar concentration (CMC) and surface tension at the critical micellar concen-
tration (γCMC) of the main lipopeptides produced by Bacillus sp. at an air–water interface

Lipopeptides CMC (μM) γCMC (mN/m) Reference

Surfactin (mixture of homologues) 9–220 30–31 [20, 165–167]

Linear surfactin C14 374 36–37 [168]

Surfactin C13 83.6 36.4 [169, 170]

Surfactin C14 65.1 33.5 [169, 170]

Surfactin C15 19.5 31.9 [169, 170]

Lichenysin 22 29 [20, 165]

Pumilacidin C14 94 56 [171]

Iturin A (mixture of homologues) 43 54.5 [167]

Iturin A C14 141 45.4 [172]

Iturin A C15 88 45.6 [172]

Iturin A C16 79 41.9 [172]

Iturin A C17 68 38.3 [172]

Mycosubtilin 37 55 [167]

Bacillomycin D 170 53 [167]

Bacillomycin F 27 50.5 [167]

Iturin C 80 49.6 [167]

Bacillomycin L 160 46 [167]

Fengycin (mixture of A, B, and homologues) 4.6 43 [173]

Kurstakin 162 33 [174]
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Asp instead of Asn at position 1 and bacillomycin L (with L-Asp at position 1 and
L-Ser/L-Gln/D-Ser/L-Thr at positions 4 to 7) had the highest activity. For iturin A,
an increase in chain length from C14 to C17 globally decreases the γCMC value
[172], in accordance with the results of Habe et al. [176].

It is worth noting that surfactin and iturin can form a complex at a surfactin-iturin
molar ratio of 2:3 that exerts a synergistic effect on the dynamic surface tension
reduction [177].

The surface activity of the fengycin family has not been thoroughly investigated.
A mixture of fengycin A and B homologues has an air–water surface tension
reduction capacity [173] between those of surfactin and iturin families (Table 1).

The same trend between the three main families of lipopeptides produced by
B. subtilis was also observed at the dodecane/water interface. Surfactin is more
effective than fengycin, which is better than iturin A in reducing interfacial
tension [178].

By reducing the surface tension of water to 33 mN/m [174], kurstakin has
surface-active performance comparable to that of surfactin.

No data are available for locillomycin and other lipopeptides produced by
Bacillus sp.

Besides their activity at an air–liquid or liquid–liquid interface, some lipopeptides
are able to adsorb on solid surfaces and modify their surface hydrophobicity. The
effect depends on the nature of the lipopeptide, its concentration, and the solid
support. On polystyrene and stainless steel, kurstakin (produced by Enterobacter
cloacae C3 strain) and surfactin decreased the surface hydrophobicity, resulting in a
decrease in hydrophobic interactions with the cell wall of microorganisms and
consequently their adhesion to these solid supports [179, 180]. The adsorption of
fengycin onto stainless steel increases its hydrophobicity up to its CMC and
decreases it at higher concentrations [173]. Surfactin, mycosubtilin, and iturin A
decrease the hydrophobicity of Teflon [173]. Surfactin and mycosubtilin are also
able to increase the wettability of agar solid surfaces, which facilitates bacterial
swarming [181].

Moreover, some lipopeptides have also been shown to modify the surface
hydrophobicity of their producing bacteria, and consequently, to impact bacterial
adhesion to solid surfaces. The effect of surfactin and iturin A on the surface
hydrophobicity of B. subtilis was observed. Their effect depends on the initial
bacterial hydrophobicity, as well as the lipopeptide type and concentration
[182]. Surfactin and iturin A enhance or decrease the bacterial surface hydropho-
bicity, making it less or more hydrophobic. Surfactin is more efficient than iturin
A. Kurstakin has also been shown to increase the surface hydrophobicity of
Acinetobacter haemolyticus strain 2SA, facilitating the contact of hydrophobic sub-
strates with this bacterium [174].
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4.2 Self-assembly

One common feature of surfactants is their ability to self-assemble in aqueous media
at a defined concentration threshold called the critical aggregation concentration
(CAC). In most cases, the self-assembly is a sphere-like micelle (in this case, CAC
can be named CMC for critical micellar concentration) but other self-assembled
nanostructures like wormlike micelles, unilamellar bilayers, and larger aggregates
can co-exist depending on the surfactant concentration, pH, temperature, ionic
strength, and the nature of the ions (see the review of Carolin et al. for further
information [163]). A lower CAC value correlates with higher efficiency for
solubilising hydrophobic compounds.

Among the three main cyclic lipopeptide families produced by B. subtilis,
fengycin has the lowest CMC value, followed by surfactin, and iturin A (Table 1)
[167, 173]. The synergistic effect between surfactin and iturin A observed for surface
tension reduction was not observed for the self-assembly property [177]. Kurstakin
has a lower propensity for self-association (Table 1) [174]. No data were found for
the other lipopeptides produced by Bacillus sp.

Within the surfactin family, a small structural difference can significantly affect
CMC. The presence of a methyl ester on the Glu residue or the replacement of the
Glu residue with Gln, as in lichenysin, decreases the CMC (Table 1) [20, 165]. The
linearisation of the peptide cycle [168] and the presence of a Leu4 instead of Val4, as
in pumilacidin [171] is unfavourable to the propensity for self-assembly (Table 1).
As commonly observed for surfactants, a longer FA favours aggregational behaviour
(Table 1) [169, 170].

Among iturin members, the CMC value is also greatly influenced by its structure
in the following order: bacillomycin F < mycosubtilin < iturin A < iturin C <
bacillomycin L< bacillomycin D (Table 1) [167]. The presence of a carboxyl group
on an aspartyl (iturin C and bacillomycin L) or glutamyl (bacillomycin D) residues
seems to be unfavourable for self-aggregation. The FA length can also have an
influence since mycosubtilin and bacillomycin F have a C16 or C17 chain length,
whereas iturin A, C, and bacillomycin D and L have a C14 or C15 chain. In the case
of iturin A, a longer chain length also favours a decrease in the CMC value
(Table 1) [172].

The nanostructure of the self-assemblies of some lipopeptides has been investi-
gated and shows contrasting results. Surfactin and plipastatin self-assemble into
spherical micelles, whereas mycosubtilin forms extended nanotapes composed of a
stacking of lipopeptide bilayers [183]. The branching of the lipid chain of
mycosubtilin can be the origin of this peculiar self-assembly behaviour. It was also
shown that at a concentration well above its CMC, iturin A forms vesicles with a
lamellar organisation [184].
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4.3 Ion Complexation

Some lipopeptides can bind ions, which can be beneficial for the decontamination of
polluted soil or water.

The presence of electrostatic charges in the peptide cycle, such as the two
carboxylic groups in surfactin, is favourable for this interaction. Surfactin is indeed
able to bind divalent cations, and this property is dependent on the pH; a higher pH
value increases its binding ability. The binding is not only driven by the presence of
the charges, but also by the steric hindrance of the cation and the size of the claw
formed by the two acidic side chains [20]. This explains the better selectivity of
surfactin for Ca2+ than for Mg2+. Surfactin is also able to bind monovalent cations,
such as Rb+, but with a lower affinity than divalent cations [185]. The ability of
surfactin to extract Ca2+ and Rb+ from an aqueous phase to give lipid-soluble
complexes has suggested that surfactin can be a mobile carrier of cations [185],
which could have an impact on its biological properties.

Lichenysin can also complex divalent cations and has been demonstrated to be a
better divalent cation chelating agent than surfactin [165]. This effect is attributed to
the increased accessibility of the carboxyl group to the cation in the case of
lichenysin [186]. The complexation of divalent cations with the lipopeptide in a
molar ratio of 2:1 for lichenysin leads to the formation of an intermolecular salt
bridge that is stronger than the intramolecular complexation in a 1:1 ratio with
surfactin [165, 186].

Iturin A can also bind alkali metal ions with the following ion selectivity order:
Na+>K+> Rb+ [187]. It is hypothesised that alkali metal ions bind to either one of
the two β-turns in the peptide ring, with the carbonyl oxygen moieties acting as
chelating atoms.

5 Biodiversity and Biological Activities

Bacillus lipopeptides are also able to strongly interact with biological membranes
[188]. This property is the basis of most of their biological activities, including
antimicrobial and antiviral activities, cytotoxicity, and the ability to induce systemic
resistance in plants (Fig. 3). In addition, some other specific targets are involved in
biological activities, such as anticancer, anti-inflammatory, and immunomodulatory
activities.

5.1 Antimicrobial and Antifungal Activity

The best described activity of Bacillus lipopeptides is their antimicrobial properties.
Indeed, iturin and fengycin are well-known antifungal compounds. The mode of
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action generally includes membrane destabilisation and pore formation, leading to
cytosol leakage and subsequent cell death [189–194]. However, the detailed inter-
actions between lipopeptides and cell membranes remain to be elucidated. Interest-
ingly, it seems that the lipid composition of the targeted membrane affects the
potency of the lipopeptide [195–197]. Iturin and mycosubtilin inhibit various fungal
phytopathogens, such as Fusarium graminearum, Monilinia fructicola,
Colletotrichum gloeosporioides, Aspergillus flavus, and the oomycete Phytophthora
infestans [198–202]. Furthermore, fengycin is effective against F. graminearum and
M. fructicola in addition to Rhizopus stolonifer, Magnaporthe grisea, and Rhizoc-
tonia solani [196, 199, 200, 202–204]. Fengycin also inhibits the synthesis of
mycotoxins by F. graminearum [200]. In addition to their antifungal activities,
some articles have reported the antibacterial properties of these compounds against
the phytopathogens Xanthomonas campestris pv. cucurbitae, X. axonopodis
pv. vesicatoria, Pectobacterium carotovorum, and Ralstonia solanacearum
[194, 205, 206]. Finally, the synergistic effect of these lipopeptides with surfactin
has been reported. The combination of the latter with either iturin variants
(bacillomycin D or mycosubtilin) or fengycin improves the biocontrol of Botrytis
cinerea, F. oxysporum, and P. infestans [207–209]. Even though surfactin has been
described as an antimicrobial agent sensu stricto, the concentrations required (from
50 to 200 μM) are far higher than those found under natural conditions [210–
213]. Nevertheless, surfactin can alter other microorganisms by interfering with
the establishment process, as reported for Pseudomonas syringae and
R. solanacearum [214–217]. Moreover, the roles of surfactin, independent of its
surfactant properties or membrane destabilisation ability, have been reported.
Indeed, surfactin inhibits the erection of aerial hyphae and subsequent spore forma-
tion by Streptomyces coelicolor by altering the expression of developmental genes
required for secondary mycelium development [218, 219]. Moreover, surfactin has
been reported to block the synthesis of β-glucan and weaken the fungal cell wall
[220]. These more subtle activities support the multifaceted and complex biological
activities of Bacillus cyclic lipopeptides (CLPs).

So far, the antimicrobial activities of these lipopeptides have been mainly carried
against phytopathogens, as producing strains are potent biocontrol agents. Nonethe-
less, antimicrobial properties of human pathogens have been reported. Mycosubtilin
shows high anticandidacidal activity [221]. Surfactin is effective against Legionella
pneumophila, and Listeria monocytogenes and lichenysin showed a synergetic effect
when combined with the gemini surfactant C3(LA)2 towards Escherichia coli,
P. aeruginosa, Klebsiella pneumoniae, Yersinia enterocolitica, L. monocytogenes,
and Candida albicans [222–225].

5.2 Cytotoxicity

As lipopeptides produced by Bacillus sp. affect the cell membrane, these
lipopeptides can be toxic to cells at high concentrations and can cause cell death
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through membrane disruption. The interaction of surfactin with biological mem-
branes can be linked to the length of the FA, with the highest cytotoxicity observed
for longer chains than for smaller chains [226].

Surfactin could be considered safe as its acute toxicity in mice was determined
with an LD50 higher than 100 mg/kg by intravenous administration [227]. When
administered orally to mice, up to 10 mg/kg of surfactin in the long-term application
did not show apparent toxicity [228]. A study has determined the no-observed-
adverse-effect level of surfactin to be 500 mg/kg, following oral administration in
rats [229] and the same study found no mutagenic toxicity of surfactin. Iturin was
also found to be safe and non-toxic for oral consumption at concentrations lower
than 5 g/kg and did not cause organ damage or abnormal blood indices in mice after
feeding for 28 days at a dose of 2 g/kg [230]. Other studies have shown that iturin A
had an IC50 of approximately 50 mM in BRL-3A rat liver cells [231] and that
exposure to fengycin at 200 mg/L did not have any adverse effect on the viability of
MRC-5 human normal lung fibroblasts [205].

The haemolytic activities of surfactin and surfactin-like lipopeptides were further
studied for potential medical applications of surfactin. A study by Dehghan-Noudeh
et al. [232] concluded that surfactin has haemolytic activity at concentrations above
0.05 g/L, which is lower than that of chemical surfactants but could limit the use of
surfactin in medical applications. Symmank et al. produced a new lipohexapeptide
with reduced toxicity against erythrocytes and enhanced antibacterial activity
[233]. Linear analogues of surfactins were synthesised by Dufour et al., who showed
no significant haemolysis activity compared with cyclic surfactin, demonstrating the
importance of the cyclic structure to disrupt cellular membranes [168]. More
recently, surfactin analogues were chemically synthesised, and one of the linear
analogues with a shorter peptide chain had increased antiviral activity and lower
haemolytic activity than surfactin. These studies indicate that new surfactin ana-
logues could have the same or increased biological activity with a lower haemolytic
activity, which could greatly increase the usage and impact of surfactin-like
lipopeptides in medical applications. The haemolytic activity of iturin has also
been reported, with iturin A and bacillomycin L exhibiting complete haemolysis at
20 mg/L and 10 mg/L, respectively, when iturin C did not show any effects on
erythrocytes [234]. The haemolytic activity of iturin A was further studied by
Aranda et al. [235], who found that iturin A released haemoglobin at approximately
10 μM, and that at 25 μM, haemolysis was complete. They demonstrated that iturin
A causes haemolysis of human red blood cells via a colloid-osmotic mechanism.
Finally, a study by Vanittanakom and Loeffler showed that fengycin has a 70-fold
lower haemolytic activity than iturin A [30].

5.3 Antiviral Activity

Lipopeptides produced by Bacillus have been shown to have antiviral properties,
with studies focusing on the antiviral activity of surfactin. Surfactin has been shown
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to inactivate a wide range of enveloped DNA and RNA viruses, including Semliki
Forest virus, herpes simplex virus-1 and -2, vesicular stomatitis virus, simian
immunodeficiency virus, pseudorabies virus, Newcastle disease virus, transmissible
gastroenteritis virus, porcine epidemic diarrhoea virus, and human coronavirus
229E, Middle East respiratory syndrome coronavirus, recombinant severe acute
respiratory syndrome coronavirus, chikungunya virus, Nipah virus, Dugbe virus,
Zika virus, Crimean-Congo haemorrhagic fever virus, influenza A H1N1 and H3N2,
and Ebola virus [236–242]. Surfactin was found to be less effective or ineffective
against non-enveloped viruses, such as feline calicivirus, murine encephalomyocar-
ditis virus, porcine parvovirus, infectious bursal disease virus, and coxsackievirus
B3 [236, 237, 239]. These studies suggest that at a high concentration, surfactin
disintegrates the lipidic envelope of the virions. However, at a low concentration,
surfactin could act as a membrane fusion inhibitor by insertion into the viral
envelope and stabilisation of the positive curvature of the envelope [237, 239,
242]. Furthermore, the composition of the envelope, the number of carbon atoms
in the FA of surfactin, and the charge of the peptide moiety influence the antiviral
activity of surfactin [237–239, 241]. In vivo experiments have shown that oral
administration of surfactin to piglets could protect them against porcine epidemic
diarrhoea virus infection; however, prophylactic treatment failed to protect mice
against severe acute respiratory syndrome coronavirus [237, 242]. Finally, a study
by Yuan et al. evaluated surfactin analogues obtained by chemical synthesis and
found an analogue with the same antiviral activity as surfactin but with lower
haemolytic activity [241].

5.4 Anticancer Activity

Lipopeptides produced by Bacillus sp. have been shown to have cytotoxic effects on
many different cancer types, including breast cancer, colon cancer, leukaemia,
hepatocellular cancer, cervical cancer, and lung cancer. Lipopeptides from Bacillus
sp. have been reported to induce apoptosis and arrest the cell cycle in different
tumour cell lines. Different mechanisms have been suggested for their anticancer
activity: inhibition of the nuclear factor-κB (NF-κB) activator protein 1;
phosphatidylinositol 3-kinase/Akt and the extracellular signal-regulated kinase sig-
nalling pathway [243, 244]; cell arrest at G(2)/M phase [245], through reactive
oxygen species-mediated mitochondrial/caspase pathway [246, 247]; and distur-
bance of the cellular FA composition of the cancerous cells [226]. Liu et al. [226]
demonstrated that the length of the FA affected the cytotoxicity of surfactin on
cancer cells, with the cytotoxicity increasing with the length of the FA.

Human breast cancer cells (MCF-7) were successfully inhibited by surfactin in a
dose-dependent manner, with an IC50 of approximately 10 μg/mL at 24 h [248]. Dey
et al. showed that iturin A also inhibited human breast cancer in vitro using the cell
lines MDA-MB-231 and MCF-7 and in vivo using mouse xenograft models, and
induced apoptosis by disrupting the Akt pathway [249]. A study by Zhao et al. also
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showed that iturin A had an IC50 of approximately 60 μM at 48 h in MCF-7
cells [230].

Studies have also described the anticancer activity of surfactin, fengycin, and
iturin in colon cancer. Kim et al. reported the inhibition of LoVo cell proliferation by
inducing pro-apoptotic activity and stopping the cell cycle with an IC50 of 26 μM at
48 h [243]. Sivapathasekaran et al. isolated isoforms of surfactin and fengycin from a
marine B. circulans DMS-2, which inhibited HCT-15 and HT-29 cell lines with an
IC50 of 80 μg/mL against HCT-15 cells and 120 μg/mL against HT-29 cells
[250]. These results were confirmed by Cheng et al., who showed that fengycin
had an inhibitory effect on HT-29 cells at 20 μg/mL at 72 h and could induce HT-29
cell apoptosis and stop the cell cycle [251]. Additionally, iturin A had an IC50 of
approximately 70 μM at 48 h in Caco-2 cells [230].

Lipopeptides from Bacillus sp. also have anticancer effects on leukaemia. Indeed,
a surfactin-like lipopeptide purified from B. subtilis natto T-2 exhibited an inhibitory
effect against human K562 leukaemia cells and caused dose-dependent apoptosis of
K562 myelogenous leukaemia cells through cell phase arrest [252]. In another study,
a mixture of iturin homologues was shown to inhibit K562 cells, with an IC50 of
65.76 μM [230].

Surfactin has also been shown to have anticancer activity against Ehrlich ascites
carcinoma [253], hepatocellular carcinoma, cervical cancer, human oral epidermoid
carcinoma, pancreatic, and rat melanoma cancer [226]. Fengycin has been found to
inhibit the proliferation of the human lung cancer cell line 95D and the growth of
xenografted 95D cells in nude mice [247]. Finally, a study by Zhao et al. [230]
showed that iturin inhibited the growth of human liver cancer (HepG2 cell line) and
lung cancer (A549 cell line).

5.5 Anti-inflammatory Activity

Studies on the anti-inflammatory activity of Bacillus sp. lipopeptides have mostly
focused on surfactin and have demonstrated the potential of surfactin as a new anti-
inflammatory molecule. Several studies have demonstrated that surfactin can inhibit
the inflammatory effects of lipopolysaccharide (LPS) on eukaryotic cells. As
recently reviewed by Zhao et al., the mechanisms involved in this anti-inflammatory
activity are thought to be interaction with cytosolic phospholipase A2 (PLA2),
modulation of the TLR4 and NF-κB cell signalling pathways, inhibition of
lipoteichoic acid-induced NF-κB, activation of signal transducer and activator of
transcription-1, and increased phosphorylation of signal transducer and activator of
transcription -3 [254]. Kim et al. were the first to demonstrate the anti-inflammatory
activity of surfactin by selective inhibition of cytosolic PLA2, which could suppress
inflammatory responses [255]. Surfactin also inhibits the LPS-induced transcription
of inflammatory mediators, such as IL-1β, inducible nitric oxide synthase (iNOS),
and reducing nitric oxide (NO) production [256]. Surfactin treatment reduces plasma
endotoxin, TNF-α, and NO levels in response to septic shock in rats [228]. A study
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comparing the anti-inflammatory effects of C13, C14, C15, and C16 surfactin found
that C14 surfactin was the most efficient at inhibiting NO production, iNOS, and
monocyte chemoattractant protein 1 (MCP-1) [257]. The interaction of lipid A with
LPS-binding protein (LBP) was shown to be suppressed by surfactin [258]. Other
anti-inflammatory activities of surfactin include the downregulation of LPS-induced
TLR4 protein expression in macrophages and attenuation of the activation of NF-κB,
which is involved in the NF-κB cell signalling pathways [259]. Finally, Park et al.
have studied the anti-neuroinflammatory properties of surfactin and found that
surfactin could significantly inhibit the excessive production of pro-inflammatory
mediators in microglial cells [260].

5.6 Immunomodulatory Activity

In addition to its anti-inflammatory activity, surfactin also has many other immune
activities. A study by Park and Kim found that surfactin significantly decreased the
expression of surface molecules (CD40, CD54, CD80, and MHC-II) of activated
macrophages as well as the level of IL-12 [261]. Macrophages treated with surfactin
displayed impaired phagocytosis and impaired translocation and activation of
NF-κB p65. Moreover, surfactin inhibited the activation of CD4+ T cells, the
phosphorylation and degradation of IκB-α, and suppressed the activation of IκB
kinase, Akt, c-Jun N-terminal kinases (JNK), and p38 kinase. Surfactin could act as
an immunomodulator in autoimmune disease and transplantation, as surfactin
impairs the antigen-presenting function of macrophages by inhibiting the expression
of MHC-II and costimulatory molecules via suppression of NF-κB, p38, JNK,
and Akt.

Surfactin was also shown to trigger an immune response by inducing the matu-
ration of dendritic cells (DCs) in vitro [262]. DCs treated with surfactin showed
morphological and phenotypic characteristics of a mature state with high expression
of MHC-II, CD40, IL-6, and TNF-α. The induction of DC maturation by surfactin
may implicate the NF-κB signalling pathway as surfactin-treated DCs showed an
increase in nuclear p65 levels and a decrease in IκB-α levels.

Interestingly, a surfactin produced by B. amyloliquefaciens WH1, WH1fungin,
has been used as an immunoadjuvant. WH1fungin induces both durable humoral and
cellular immune responses, even as strong as Freund’s adjuvant by a mixed Th1/Th2
response [263]. WH1fungin was used as an adjuvant with hepatitis B surface antigen
and elicited a strong immune response towards the antigen [264]. WH1fungin also
suppresses type 1 diabetes mellitus in mice [265].
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5.7 Induction of Systemic Resistance in Plants

In addition to their direct antagonistic activities, surfactin, iturin, and, to a lesser
extent, fengycin improve plant protection via induction of systemic resistance (ISR).
ISR can be conceptualised as a primed state of resistance that renders the plant less
sensitive to various pathogen ingress such as microbial pathogens, nematodes, and
insects [266–268]. The ISR-state is materialised by the induction of early signalling
events of plant defence (i.e. ion fluxes, reactive oxygen species accumulation, and
phosphorylation cascade), which ultimately leads to the activation of the salicylic
and jasmonic acid responses, the main plant defence response systems
[269, 270]. The efficiency of CLPs in inducing ISR is tightly linked to their
structures. Indeed, structural variants show differential ISR activities; linear forms
of surfactin (hydrolysis of the peptide ring) are much less efficient than canonical
ones, and short-length aliphatic chain-bearing surfactin homologues (C12 and C13)
are also less efficient than long ones (C14 and C16) to induce ISR in tobacco cells
[271, 272]. Therefore, ISR induction has been reported, among others, for surfactin
in bean, tomato, tobacco, against B. cinerea, in melon against Podosphaera fusca, in
peanut against Sclerotium rolfsii, in lettuce against R. solani, and in wheat against
Zymoseptoria tritici [273–278]. Similarly, iturin family members stimulate plant
defences in different pathosystems, such as strawberry against C. gloeosporioides,
chilli pepper against P. capsici, wheat against Z. tritici, grapevine against B. cinerea,
and cotton against Verticillium dahliae [279–283]. Finally, fengycin triggers ISR in
tomato against B. cinerea, Plasmopara viticola, and Sclerotinia sclerotiorum
[277, 284, 285].

5.8 Biofilm and Motility

CLPs, especially surfactin, play an essential role in biofilm formation, motility, and
root colonisation of Bacillus cells, which are essential for proper plant protection
[66, 216, 286]. Biofilms are usually defined as a communal lifestyle of cells that are
encased in an extracellular matrix secreted by the cells. The matrix is composed of
polymers (proteins, exopolysaccharides, and DNA) and constitutes a shelter where
bacteria are protected from environmental vagaries and competitor ingress [287–
289]. For instance, the biofilm matrix prevents P. chlororaphis from invading
B. subtilis 3610 colonies [290]. Beyond its protective role, a biofilm allows cells
to coordinate for motile behaviour, allowing migration, and for the production of
secondary metabolites, which are crucial for biocontrol [287, 289, 291, 292]. The
biofilm thus offers a great fitness advantage for Bacillus, and it is not surprising that
root-associated B. velezensis FZB42 is known to form biofilm structures upon plant
roots, such as Zea mays, Arabidopsis thaliana, and Lemna minor [293]. Coherently,
mutants of B. subtilis 3610 and B. subtilis 6051 impaired biofilm production and
exhibited lower biocontrol efficacy of tomato roots towards R. solanacearum and
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A. thaliana roots towards P. syringae, respectively [215, 216]. The mechanism by
which surfactin induces biofilm production goes beyond its function as a wetting
agent, as it is involved in quorum sensing, which regulates matrix production and
motility. The proposed mechanism states that surfactin, when in sufficient amounts,
activates Spo0A via potassium leakage, which in turn de-represses biofilm matrix
synthesis [103, 104]. Accordingly, mutants of B. subtilis 6051, B. subtilis OKB120,
and B. atrophaeus ATCC 9372, deprived of surfactin synthesis, are impaired in
biofilm formation [66, 215]. For B. subtilis 916, bacillomycin L and surfactin both
contribute to biofilm [65]. A recent study reported that surfactin is not required for
proper biofilm formation by B. subtilis 3610, which suggests that the involvement of
CLPs in biofilm formation may be complex and diverse within the Bacillus
genus [294].

Cell motility is also key for root colonisation, as it allows the bacteria to relocate
or colonise new root portions, thereby expanding the biofilm surface. Bacillus
motility is usually associated with sliding or swarming. Sliding is a passive motility
in which cells are pushed away by dividing neighbours, whereas swarming is a
coordinated flagellar-dependent motility across surfaces [295]. In either case, cell
motility is favoured by surfactants, such as CLPs, as they lower the surface tension
and friction between cells [295]. Experimental data show that surfactin-deficient
B. subtilis mutants were unable to slide and that chemical or genetic complementa-
tion could recover the wild-type phenotype [296–299]. Furthermore, mycosubtilin
also contributes to the sliding phenotype [181]. Similarly, B. velezensis y6 requires
all three lipopeptides (surfactin, iturin, and fengycin) for proper cell motility
[300]. Similar to biofilm formation, the mechanism by which CLPs enhance motility
may go beyond their wetting properties. Indeed, surfactin has been reported to
enhance flagellar synthesis, thereby enhancing swarming motility [301].

6 Applications

The global surfactants market size was valued at $41.3 billion in 2019, and is
projected to reach $58.5 billion by 2027, registering a compound annual growth
rate of 5.3% from 2020 onwards [302]. The biosurfactant market is also increasingly
growing because of its more environmentally friendly effects compared to chemical
surfactants, owing to their biodegradability.

Owing to the multiple activities of surfactin and mostly to the wide application
fields of some of them, surfactin has a broad range of applications [303]. It can
replace chemical surfactants, but surfactin also has specific properties and applica-
tions. To the best of our knowledge, surfactin is currently being sold in the detergents
and cosmetics market.
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6.1 Agriculture

Agriculture is a field in which most of the activities of surfactin can be used. It can be
used indirectly for the development of beneficial rhizobacteria for plants. The
enhancement of root colonisation with the biofilm and swarming activities of
surfactin [215, 304, 305] boosts the rhizosphere competence of these bacteria and
thus their survival. In addition, surfactin can also be directly used to counter
pathogens. This antagonism is due to its antiviral and antibacterial activities
[222, 306]. Furthermore, surfactin can be used indirectly against pathogens by
triggering ISR in plants. Surfactin has been shown to trigger ISR in tomato, tobacco,
and bean plants, but also in rice against certain pathogens [277, 307]. Mycosubtilin
and fengycin can also be used as biopesticides with a double mode of action: direct
antagonistic activity against several fungal phytopathogens or induction of systemic
resistance [308].

6.2 Food

The food sector uses chemical surfactants in an indirect way to clean and treat
surfaces in contact with food, but also directly as food additives for solubilising,
emulsifying, and foaming capacities. For additive applications, even if B. subtilis is
generally recognised as safe, surfactin has not yet been used owing to the novel food
regulation. Indeed, one of the drawbacks of surfactin is its toxicity above a certain
concentration, but because of its high surfactant power, a very low amount would be
needed.

As a food additive, surfactin can be used as a food preservative or as a food
emulsifier. A study has been performed with the addition of B. subtilis surfactant to
cookies [309] and bread [310], which enhanced their properties. Huang et al. [311]
showed that a mixture of surfactin and polylysine reduced Salmonella contamination
and that it could be used as an antimicrobial agent. Thus, surfactin can also be added
to create a nanoemulsion through its surfactant properties and simultaneously has at
the same time an antimicrobial effect. Joe et al. [312] demonstrated that the appli-
cation of a nanoemulsion of surfactin and sunflower oil to vegetables, chicken, milk,
and apple juice protected against three pathogens. However, the main current
application of surfactin in the food industry is through its use as a chemical
detergent, which will be further discussed.

6.3 Environmental

Surfactin allows the separation of oil from the environment. It can also be used for
microbial-enhanced oil recovery in oil reservoirs [313–315]. Surfactin is produced in
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high quantities outside the oil reservoir and is then added to extract the component of
interest from the soil.

Thus, it can be used for bioremediation and oil recovery from contaminated soils
[316, 317]. It can also remove heavy metals from soil [318] and water through the
micellar-enhanced ultrafiltration technique [319].

6.4 Pharmaceutical

Surfactin can be used in the pharmaceutical field because of its many features. First,
its membrane-disrupting activity leads to antiviral [238, 239], antibacterial, and
antimycoplasmic [320] applications. Immunomodulatory activity could lead to the
use of surfactin in the treatment of allergies, diabetes, arthritis, and autoimmune
diseases, and help for transplantations [321]. The anticancer activity of surfactin has
been demonstrated against multiple cancer types: Ehrlich ascites, breast, colon,
leukaemia, hepatocellular, cervical, oral epidermoid, pancreatic, and rat melanoma
[322]. Lastly, Chen et al. [321] have shown that surfactin has an effect on lipase and
could therefore be used as an anti-obesity drug.

The major drawback of using surfactin in the pharmaceutical field is its
haemolytic activity. However, it was shown that the concentration needed is lower
than the one showing haemolytic behaviour: the haemolytic activity appears at
40–60 μM [232], whereas the anticancer activity is shown at 30 μM [243]. Another
possibility to counter toxicity is to modify the chemical structure. Indeed, as
mentioned before, linear surfactin is not haemolytic and can protect red blood cells
from other surfactants.

The antibacterial activity of surfactin against Legionella opens its potential use
for the cleaning of facilities with stagnant water [222].

6.5 Detergent

The detergent application is the one in which the change of chemical surfactants by
biosurfactants is most interesting from an environmental point of view since
surfactin itself brings no new activity. However, its higher biodegradability is very
important for the future of this sector. As previously mentioned, surfactin has
antiadhesive activities that can hinder microbial and biofilm development. In the
food industry, where microbial development is a risk to public health and product
deterioration, the development of biofilms is of great concern. Surfactin was thus
used by do Valle Gomes and Nitschke [323] to remove food pathogen biofilms.
Surfactin inhibited biofilm formation by pathogenic organisms by preventing them
from adhering to solid surfaces, infection sites, or catheters. These pathogenic
organisms include Salmonella enterica, S. enterica serovar Typhimurium, E. coli,
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and Proteus mirabilis. Surfactin at concentrations between 5 and 50 mg/L can inhibit
biofilm formation by Salmonella on catheters [324].

The surfactant properties of surfactin can also be used as laundry detergents. A
mix of biosurfactants produced by a B. subtilis strain producing mainly surfactin,
added to a chemical detergent, showed a high wash quality [325]. Furthermore,
surfactin does not inhibit the activity of subtilisin, a Bacillus protease often used in
laundry formulations [326].

6.6 Cosmetics

Owing to its antibacterial, emulsifying, and deterging activities, surfactin has a broad
range of applications in cosmetics, such as cleansing products and external skin
preparations, and many patents mention it in their cosmetic composition
[327]. Surfactin has been used as a carrier in a mixture to encapsulate active
substances. These carriers enable the transport of substances deep into the skin,
stopping at the dermis border and reducing the discolouration, vascular lesions, and
depth of the wrinkles on the tested skin [328]. Moreover, a study by Yan et al.
demonstrated that surfactin has effects on wound healing, angiogenesis, cell migra-
tion, inflammatory response, and scar formation, demonstrating the potential appli-
cation of surfactin as a wound-healing drug [329]. Finally, patents have been filed
for the use of surfactin in cosmetics, demonstrating anti-aging and anti-wrinkle
activities and increasing skin penetration of cosmetic products (skin penetration
agent), highlighting the broad applications of surfactin in this field [330, 331].

7 Conclusion

During the last 30 years, the literature on lipopeptides from Bacillus has exponen-
tially increased, demonstrating the interest of these compounds. Their remarkable
structural biodiversity offers many bioactive compounds with many applications in
different sectors. The progress in their production optimisation has rendered their
commercial development possible. In addition, the modulatory mode of their bio-
synthesis and the deep knowledge of how they function should lead to the build-up,
by synthetic biology, of a novel generation of novel compounds with increased
beneficial properties and decreased cytotoxicity.
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1 Introduction

The literature is replete with numerous papers reporting the production of
biosurfactants from already well-characterised bacteria, from newly isolated bacte-
ria, new biosurfactant compounds, the use of recycled waste feedstocks and using
new fermentation strategies. Many of these reports contain the aspiration for their
new product or process to find a place in the panoply of commercial products
[1, 2]. Unfortunately, these aspirations have only been achieved for a small propor-
tion of the biosurfactants that have been extensively researched [3, 4]. In this chapter
we will examine what are some of the essential criteria that need to be met for a new
biosurfactant to be adopted and incorporated into a commercial product and more
importantly what are the impediments to its uptake. Using examples of microbial
biosurfactants already in use and those that have not yet found any use we will try to
identify the key critical points that may be amenable to future experimentation and
development to increase the range of biosurfactants used.

There are three major considerations that drive whether a new biosurfactant is
likely to be suitable for a particular commercial application these are: SAFETY,
EFFICACY and COST. In addition to these major considerations there are a number
of other subsidiary factors which will also be taken into account before a final
commitment can be made regarding the use of a particular biosurfactant in a product
or formulation [5].

2 Safety

In general, microbial biosurfactants have not faced major issues of safety; however,
the type of organism producing the biosurfactant is a critical factor in the issues that
do exist. Some of the most thoroughly investigated glycolipid biosurfactants,
e.g. sophorolipids and mannosylerythritol lipids (MELs) are produced by yeasts
and yeast-like fungi and although some close relatives of the producer organisms
may be pathogenic to plants and indeed humans there has been no suggestion of
the production of any toxins produced by these organisms that can contaminate the
biosurfactants produced. The situation is however rather different for the
biosurfactants produced by some of the bacterial species, the best example of
which are the rhamnolipids produced by Pseudomonas aeruginosa. Extensive
research, over many years, has been carried out using various strains of this Gram-
negative bacterium despite the fact that it is a category II human pathogen.

P. aeruginosa is an opportunistic pathogen important in wound infections and a
major complicating lung infection in cystic fibrosis patients and is responsible for
substantial nosocomial mortality [6]. The organism produces a range of virulence
factors such as elastase and pyocyanin and in addition has an LPS endotoxin
originating from the cell membrane structure of the cells. The production of
endotoxin is a likely outcome from any process using a Gram-negative producer
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organism and should always be borne in mind [7]. The endotoxins produced by
Gram-negative bacteria are highly bioactive even at very low concentrations and
while they may be tolerated in some applications, food and pharmaceutical products
require special care. Due to the infection and toxicity risks associated with the use of
P. aeruginosa companies in Europe have been very unwilling to consider the use of
rhamnolipids from this organism for use in commercial products. Interestingly in the
USA large-scale fermentation production of P. aeruginosa rhamnolipids does seem
to take place even in proximity to production of other food product components.

Due to the safety concerns with P. aeruginosa researchers have been seeking
alternative means of producing rhamnolipids from other non-pathogenic organisms.
This approach has taken two routes: (1) Bioprospecting for new bacterial species,
(2) The metabolic engineering of related bacteria such as Pseudomonas putida to
express the rhamnolipid synthetic genes of P. aeruginosa. The first route has resulted
in the discovery of new organisms such as Burkholderia thailandensis which uses a
similar synthetic pathway to P. aeruginosa but with non-homologous genes [8]. In
this case the rhamnolipids have slightly longer lipid chains which give different
physicochemical characteristics to the biosurfactant. Unfortunately the yields of
rhamnolipids from B. thailandensis do not yet make it an attractive commercial
producer organism even when the synthetic pathway for the storage material
polyhydroxyalkanoate (PHA) is knocked out to direct more metabolites towards
rhamnolipid synthesis and the quorum sensing system is manipulated [9, 10]. Other
recently reported strains of non-pathogenic Pseudomonas and Marinobacteria have
been reported to produce low concentrations of rhamnolipids and remain under
investigations [11, 12]. The second strategy has been pursued successfully by
EVONIK who have metabolically engineered the rhamnolipid genes into a
non-pathogenic producer organism and have at the same time overcome the tight
genetic regulation imposed by quorum sensing in P. aeruginosa to give much higher
product yields as was reported by the Evonik and Unilever collaboration for large-
scale production of the world’s first “green” biosurfactant (see Ref. [13]).

3 Efficacy

Microbial biosurfactants have two possible broad routes to commercialisation, first
as replacements, complete or partial, for chemical surfactants in existing product
formulations and second as components of entirely new products exploiting specific
characteristics of the biosurfactant molecules. If we consider the first option, we need
to be aware that there are different forms of surfactants that have specific applica-
tions in particular products. These different forms are characterised by differences in
the charge carried on the hydrophilic end of the molecule, thus there are neutral
surfactants without any charge, anionic surfactants with a positive charge, cationic
surfactants with a negative charge and zwitterion surfactants (amphoteric) carrying
both a negative and positive charge. Examples of commonly used chemical surfac-
tants in these categories are given in Table 1.
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A cursory examination of the list of ingredients in common household laundry,
cleaning and personal care products reveals that these different products employ
specific types of surfactants depending on the type of application. Where detergency
is the prime requirement, as in non-biological laundry products, anionic surfactants
are the surfactants of choice, with up to 30% of the formulation comprising
alkylbenzene sulfonates. In the equivalent biological laundry detergent products,
the surfactant components of the formulation are selected to be compatible with the
lipases and proteases that are incorporated to aid the cleaning process. In contrast
laundry fabric softeners contain 5–15% cationic surfactants while we find betaines as
important constituents of personal care products such as hand sanitisers and sham-
poos, due to their antimicrobial activity, formulated with anionic surfactants such as
SLS. In other home-care products such as surface cleaners the products contain low
concentrations of amphiphilic and non-ionic surfactants while dishwashing prepa-
rations are a mixture of anionic and non-ionic surfactants. What is immediately
obvious from scrutiny of the above information is that the surfactant constituents of
these commercial products are carefully chosen to carry out specific functions. It is
equally clear that we cannot expect to simply replace the chemical surfactants in
products directly and completely with microbial biosurfactants, particularly since
most biosurfactants are either anionic or amphiphilic with only a few containing
amine groups being cationic.

For a biosurfactant to be acceptable as a complete or partial replacement for an
existing chemical surfactant in a commercial product the performance of the
biosurfactant must be at least as good, or preferably better, than the compound it is
replacing. We will deal with the issue of cost in the next section of this article. Also,

Table 1 Commonly used chemical surfactants and their applications

General
Structure

Common/
Trade Name Structure/Name Applications

Nonionic
surfactants

Triton™X-100 Polyoxyethylene glycol
octylphenol ethers

Wetting agent – coating

Nonoxynol-9 Polyoxyethylene glycol
alkylphenol ethers

Spermicide

Polysorbate Polyoxyethylene glycol
sorbitan alkyl esters

Food ingredient

Span® Sorbitan alkyl esters Polishes, cleaners, fra-
grance carriers

Anionic
surfactants

Calsoft® Linear alkylbenzene sulfonates Laundry detergents

Texapon® Sodium lauryl ether sulphate Shampoos, bath products

N/A Sodium stearate Hand soap

Cationic
surfactants

CPC Cetylpyridinium chloride Antimicrobials

CTAB Cetyl trimethylammonium
bromide

Antimicrobials

Amphoteric
surfactants

Sultaines Sulphonates Various

Betaines Cocamidopropyl betaine Various, e.g., fast dry
paints
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since the range of types of biosurfactant is more limited than the chemical versions
the range of potential applications is also more limited. Various characteristics of the
biosurfactants are relevant to the potential applications e.g. certain products like
dishwasher preparations need to have the capability to foam since customers link
foaming with cleaning. Obviously, detergency is a key capability for a biosurfactant
in a laundry product, however, they often compete poorly with chemical surfactants
in this area.

3.1 Exploitation of Unique Biosurfactant Properties

Rather than viewing biosurfactants simply as replacements for existing surfactants in
use an alternative approach is to consider possible unique properties of these
molecules as a different route to exploitation. An important ability of surfactants is
emulsification which allows the formation of emulsions of oil in water or water in
oil. One of the biological functions of biosurfactants in microbes is believed to be the
conversion of oily substrates into an accessible form for the microbial cells. In
general, the low molecular weight biosurfactants such as the glycolipids are not
highly efficient emulsifiers while the high molecular weight biosurfactants such as
lipopolysaccharides and lipopeptides can produce stable and long-lasting emulsions.
Potential applications for microbial biosurfactants in this area include the formula-
tion of pharmaceutical and personal care creams, particularly with the increasing
concerns about some of the detrimental effects of the chemical components that have
been used previously like parabens [14, 15]. Unfortunately, some of these applica-
tions are not entirely straightforward since some of the purified biosurfactant prep-
arations, e.g. rhamnolipids are coloured and have an odour which makes their use in
cosmetic products extremely problematic.

One of the major requirements in the food industry is for emulsifiers that are
capable of maintaining stable emulsions for extended periods to ensure suitable shelf
life for the product. The idea that microbial biosurfactants are natural ‘green’
products is inviting as a marketing strategy, while they can also be considered as
sustainable through their production by fermentation processes using renewable
substrates [16]. Many ‘natural’ and modified emulsifiers are currently used such as
lecithins, which are mixtures of phospholipids, esters of monoglycerides of fatty
acids created with acetic, citric, lactic or tartaric acid, mono and diglycerides of fatty
acids, xanthan, polysorbate, and carrageenan. There have been suggestions that
microbial biosurfactants/emulsifiers ranging from the low molecular weight
sophorolipids to the high molecular weight lipopeptides could have applications in
the food industry (reviewed by [17]), however, although many of these microbial
products do have emulsifying activity the longevity and stability of the emulsions do
not always meet the requirements necessary for commercial exploitation. Also the
safety issues are clearly paramount for food applications which places constraints on
the use of producer organisms that are not Group I; generally regarded as safe
(GRAS) microorganisms and while some of the producer microorganisms,
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particularly the yeasts, may have few issues, testing and certification of products
from many of the bacterial producers would be time consuming and costly and
probably not worthwhile unless the advantages were significant. However, potential
application of high molecular weight biosurfactants as gelling agents does have
some possibilities. The example of the effort and cost that was required to achieve
acceptance of the fungal single-cell mycoprotein QUORN indicates the potential
difficulties in this area to [18].

A more promising route for further commercialisation of biosurfactants is prob-
ably through exploitation of their bioactivities. There is an increasing list of antimi-
crobial, anticancer and other biological activities being ascribed to microbial
biosurfactants. The potential to make use of these specific activities does open the
door for a new range of applications. There are however some hurdles which need to
be overcome first. Many of the microbial biosurfactants are not produced by the
organisms as a single type of molecule but as a mixture of different congeners of
related molecules. For example, the rhamnolipids produced by P. aeruginosa and
other bacteria are produced as either mono- or dirhamnolipids with a range of
different lipid chain lengths [19, 20] while the sophorolipids of the yeast Starmerella
bombicola are produced in acidic and lactonic forms [21]. Because the congeners are
very similar in size and chemical composition post-production separation is difficult
and while some metabolic engineering is possible to reduce the product diversity it is
not always possible to direct the synthesis exactly as desired. It has already been
shown that different congeners of a biosurfactant may have different and even
opposing activities [22] which means that any claims for specific bioactivity must
be carried out using highly purified single congeners, which would in any case be
necessary for any quality controlled biomedical application. Major bioactivities of
microbial biosurfactants are their biofilm disruption potential and their direct bio-
cidal and biostatic capabilities [23–28]. The biofilm disruption capability has appli-
cation particularly in surface cleaning preparations while the anti-bacterial effects
could be exploited in oral health products such as toothpastes and mouthwashes and
in skin cleansing and treatment preparations [29]. The critical aspect with
biosurfactant use in products for skin application is how selective is the biocidal
activity since the maintenance of a balanced skin microbiome is essential for health
and a complete non-selective biocidal activity would be undesirable.

In contrast to the glycolipid family of biosurfactants there is a group of
lipopeptide biosurfactants such as the three families of cyclic compounds surfactin,
iturin and fengycin produced by Gram positive members of the genus Bacillus. Each
family contains variants with the same peptide structure but with residues at different
positions and different length fatty acid chains. Surfactin, for example, is produced
in four different congeners by Bacillus subtilis with a common seven loop amino
acid cyclic peptide linked to a long chain fatty acid (C10–C13) [30]. Surfactin is
highly effective at reducing surface tension giving a surface tension value of 27 mN/
m at a concentration of 20 μM in water and has been demonstrated to have a number
of bioactivities including anti-bacterial, anti-viral and anti-fungal. The potential
applications for biosurfactants of this type therefore appear promising, however,
the critical problem for economic exploitation resides with the yield of these
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products. Yields from fermentation systems using expensive complex media tend to
be in the 2–3 g/L range making any production process prohibitively expensive [30].

Lipopeptide biosurfactants are also produced by other bacterial groups including
Pseudomonas [31] where they have been classified into four major groups: viscosin,
amphisin, tolaasin and syringomycin [32]. Once again there is structural diversity in
the molecules produced and they have a wide range of different bioactivities but the
problems of developing a production system to produce economic quantities of
sufficiently pure compounds using naturally occurring strains seem remote. A
metabolic engineering approach could however provide a route to future use of
these types of microbial biosurfactants in niche products exploiting their specific
bioactivities.

4 Cost

The third major consideration after safety and efficacy for the exploitation of
biosurfactants is cost. The cost of the final biosurfactant product that can be used
in any commercial formulation will depend on a number of specific factors. The
most important and probably the one which provides the greatest current hurdle for
most biosurfactants to reach the market is the yield of the product in the fermentation
process. Most natural bacterial producers only achieve yields of tens of grams per
litre. This problem has been overcome by EVONIK through the metabolic engi-
neering of rhamnolipid synthetic genes into a new host organism. The best producer
organisms are by far the yeast and fungal strains producing sophorolipids and MELs
where yields are in the range of hundreds of grams per litre by naturally occurring
strains and this is certainly the reason why these are predominant in the market [33].

We can gain some idea of the target cost necessary to strive towards for effective
commercialisation by re-examining the consumer products currently on the market.
For example, laundry detergent costs €4–5/L retail and contains up to 30% surfac-
tant, which immediately dictates a very low cost for the surfactant component.
Another more recent proposed application include potential use in sanitising
cleaning and antimicrobial formulations that can be effective in combating
COVID019 and similar future microbial threats [34]. We have to consider that
these microbial biosurfactants are secondary metabolites and are generally produced
towards the end of a batch fermentation implying long fermentation times with high
energy costs. Some of the substrates that can be used for the fermentations are
relatively cheap, however, the suggestion is frequently made in publications that
waste materials can be used to reduce the cost, but unless the waste is available at
sufficient scale, with consistent composition this may not be a viable option. Waste
materials are also probably of complex mixed composition increasing the difficulties
of producing a pure final product in the downstream processing system and once
waste materials have some use it would mandate value.

Downstream processing of BSs plays a vital role in their purity, production costs
and potential applications. The most commonly used solvent extraction processes
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have many disadvantages when products are to be used in food and pharmaceutical
applications. As the demand for biosurfactants increases, developing new down-
stream processes or fine-tuning of existing methods becomes more important. One
such approach could be the utilisation of the micelle behaviour of biosurfactants at
concentrations higher than their CMC allowing phase-separation from the culture
broth and precipitation which allows easier isolation from fermentation broths and
further purification by exclusion filtration. The use of ultrafiltration of BSs where
micelles can lead to an increase in the molecular size of the BSs improving
membranes retention and/or precipitation by centrifugation is also important
[35]. Another important potential downstream process is through using Supercritical
CO2 (ScCO2) as a solvent to separate and fractionate biosurfactants from their
production medium. This converts current environmentally and economically costly
processes, based on solvent extraction processes to a more economic and environ-
mentally sustainable process with practically zero waste, since the CO2 can be
recycled, and with the added advantage of being able to separate the main congeners
of these biosurfactants [36].

5 Flexibility of Biosurfactants

There are available to manufacturing companies a wide range of different chemical
surfactants that can be combined in specific formulations to achieve the desired final
product. In contrast the range of different biosurfactants is more limited (Table 2)
and more importantly it is not straightforward to make subtle changes to their
structure. The whole situation is also made more complicated by the fact that we
are not able to accurately predict how changing the structure of a biologically
produced surfactant molecule would alter its physicochemical or biological charac-
teristics. Some attempts have been made to create ‘new to nature’ biosurfactants,
most notably by van Bogaert and her co-workers using Starmerella bombicola
produced sophorolipids [37]. How far this approach can be further exploited remains
to be seen.
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Table 2 The main types of biosurfactants, producer organisms and their general application

Biosurfactant Producing
microorganisms General applicationsStructure Types

Glycolipids Rhamnolipids Pseudomonas
aeruginosa, Pseu-
domonas sp.
Burkholderia
thailandensis
Other Burkholderia
sp.

Enhancing hydrocarbons bio-
availability, biodegradation, dis-
persion, emulsification
Enhanced oil recovery
Antimicrobial and biomedical

Trehalolipids Rhodococcus
erythropolis,
Arthrobacter sp.
Nocardia
erythropolis
Mycobacterium
tuberculosis
Corynebacterium
sp.

Enhancement of the bioavailabil-
ity of hydrocarbons

Sophorolipids Starmerella
bombicola
Candida antarc-
tica, C. batistae
C. apicola,
C. riodocensis,
C. stellata,
C. bogoriensis
C. lipolytica

Enhancing bioavailability of
hydrophobic compounds, bio-
degradation, dispersion, emulsifi-
cation of hydrocarbons
Laundry detergent agents antimi-
crobial and biomedical

Mannosylerythritol
lipids

Ustilago zeae,
U. maydis
Pseudozyma
fusiformata
Sympodiomycopsis
paphiopedili

Antimicrobial, immunological
and neurological biomedical
application

Cellobiose lipids Ustilago maydis
Cryptococcus
humicola
Pseudozyma
aphidis
Pseudozyma.
hubeiensis

Detergent, antimicrobial, anti-
fungal and biomedical
applications

Fatty acids,
phospholipids
and neutral
lipids

Corynomycolic
acid

Corynebacterium
lepus

Enhancement of bitumen
recovery

Spiculisporic acid Penicillium
spiculisporum
Corynebacterium
lepus
Arthrobacter
paraffineus
Talaromyces
trachyspermus

Dispersion, emulsification,
organogels formation, superfine
microcapsules production (vesi-
cles or liposomes)
Heavy metal sequestrants

(continued)
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Table 2 (continued)

Biosurfactant Producing
microorganisms General applicationsStructure Types

Nocardia
erythropolis

Phosphati-
dylethanolamine

Acinetobacter sp.,
Rhodococcus
erythropolis

Pharmacological application
Food products

Lipopeptides Surfactin
Iturin
Fengycin

Bacillus subtilis
Bacillus
amyloliquefaciens
Bacillus pumilus

Enhanced biodegradation of
hydrocarbons and chlorinated
pesticides; heavy metal removal.
Enhanced phytoextraction. Bio-
medical and cosmetic uses

Lichenysin Bacillus
licheniformis

Enhancement of oil recovery

Rhodofactin Rhodococcus sp. Bioremediation

Viscosin, amphisin,
tolaasin,
syringomycin

Pseudomonas
fluorescens
Pseudomonas spp.
Leuconostoc
mesenteroides

Bioremediation and biomedical
applications

Subtilisin Bacillus subtilis Antimicrobial properties

Polymeric
biosurfactants

Emulsan Acinetobacter
calcoaceticus
RAG-1

Stabilisation of hydrocarbon-in-
water emulsions
Bioemulsifiers

Alasan Acinetobacter
radioresistens

Biodispersant Acinetobacter
calcoaceticus

Liposan Candida lipolytica

Mannoprotein Saccharomyces
cerevisiae

Particulate
biosurfactants

Whole cells vesi-
cles and Fimbriae

Acinetobacter
calcoaceticus
Pseudomonas
marginalis
P. maltophilia,
Cyanobacteria

Bioflocculants and
biodegradation
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Abstract Biosurfactants encompass a number of structurally and chemically
diverse compounds, all of which demonstrate surface active properties. The potential
and current application of these compounds ranges from enhanced oil recovery,
through detergents, emulsifiers in foods, antifungal agents, antibiotics, and even to
uses in the minerals processing industry. And while the market demand for these
products is growing, the industry still is significantly smaller than the synthetic
surfactants market. Part of the reason for this is that biosurfactants are currently
comparatively expensive to produce. This article reviews the process consideration
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steps required to develop a biosurfactant bioprocess (organism selection and mod-
ification, reactor type and operation, media, downstream processing, and final use)
and considers the state of the art of each process step, with an eye to considering the
overall process development, and establishment of both technically and economi-
cally viable routes to production.

Graphical Abstract

Keywords Bioreactor choice, Biosurfactants, Industry review, Process choice,
Process development

1 Introduction

Biosurfactants are biologically produced molecules which contain both hydrophobic
and hydrophilic moieties. Such molecules exhibit a variety of properties, the most
pertinent of which is their ability to change the interfacial tension between phases of
the solution they are in – they are SUrface ACTive AgeNTS. This surface activity
can then be utilised in a number of applications; from use as detergents, in cosmetics,
in enhanced oil recovery, as flotation agents, in bioremediation, or as a foaming
agent, to name a few [1]. Table 1 gives a list of non-exhaustive list of applications
noted in the literature, along with the biosurfactants used for each (where identified –
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alternatively the organism used). Some of these applications are more mature than
others, for instance there is significant variability in the results described by literature
in bioremediation, whereas use of biosurfactants in enhanced oil recovery is wide-
spread. Nonetheless, the list of applications is long and varied: the usefulness of
biosurfactants is recommended by their versatility.

Biosurfactants are produced by a number of living organisms – from microor-
ganisms (bacteria, yeast, fungi) to plants and animals. However, baring saponified
fatty acids (a chemical modification of biological triglycerides) and saponins
(sourced from plant material) the overwhelming majority of biosurfactant work
has been conducted in the microbial sphere [72]. This review will therefore focus
on microbially produced biosurfactants.

In their general form biosurfactants usually take the shape of a hydrophobic ‘tail’
(so named since it is commonly composed of a linear alkyl or alkaryl, usually
derived from a fatty acid) and hydrophilic ‘head’ (which can be comprised of a
number of species: amino acids or polypeptides, carbohydrates (of various types),
phosphate, carboxylic acid or alcohol). Table 2 gives a non-exhaustive list of
biosurfactants, in their generalised categories, as well as the organisms found to
produce each.

The biological pathways responsible for the production of these compounds are
frequently promiscuous, and so produce a range of similar, but compositionally

Table 1 Examples of applications of biosurfactants

Biosurfactant applications Biosurfactant used References

Bioremediation, soil washing and oil spill
remediation

Rhamnolipids [2–5]

Cell cultures [6–10]

Enhanced oil recovery and processing Indigenous bacteria (i.e. a variety of
biosurfactants)

[11–17]

Rhamnolipids [17–21]

Lipopeptides [22–26]

Antibiotic/antimicrobial Lipopeptides Surfactin [27–31]

Daptomycin [32–34]

Glycolipids Rhamnolipids [3, 35]

Sophorolipids [36–39]

Mannosylerythritol
lipids

[40, 41]

Antifungal Lipopeptides Cell cultures [42–44]

Iturin [45–47]

Fengycin [48–50]

Glycolipids [51, 52]

Flotation Multiple biosurfactants [53–57]

Metal ion chelation Multiple biosurfactants [58–61]

Detergents Glycolipids, lipopeptides [62–64]

Emulsifiers Multiple biosurfactants [65–68]

Cosmetics MELs, glycolipids [69–71]
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distinct, products known as congeners [73]. This variability represents both a
significant difficulty (in that purification and separation of congeners is complex
and expensive) and a significant opportunity: subtly different congeners can have
different properties [74]. A group of compounds with variable properties is a rich
seam from which to mine activity for novel applications.

Market analysis for ‘natural surfactants’ (a category which includes both
microbially produced biosurfactants, and other biologically based surfactants) was
approximately US$14.3 billion in 2018 [75], and while it expected to grow at a

Table 2 Categories and classes of lipopeptides and their producing organisms

Biosurfactant
type Biosurfactant Organism which commonly produces

Glycolipids Rhamnolipids Pseudomonas sp., Serratia rubidae, Marinobacter sp.

Sophorolipids Candida apicola, Rhodotorula bogoriensis,
Wickerhamiella domercqiae, Starmerella bombicola,
Torulopsis bombicola

Trehalolipids Rhodococcus sp., Arthrobacter sp., Nocardia
erythropolis, Mycobacterium sp., Corynebacterium sp.,

Cellobiose lipids Pseudozyma sp., Ustilago maydis, Cryptococcus
humicola

Mannosylerythritol
lipids

Pseudozyma sp., Ustilago sp., Schizonella
melanogramma, Candida Antarctica, Kurtzmanomyces
sp.

Polyol lipids Aureobasidium pullulans, Rhodotorula sp.

Lipopeptides Surfactin Bacillus sp.

Bacillomycin
(Iturins)

Bacillus sp.

Fengycin Bacillus sp.

Daptomycin Streptomyces roseosporus

Viscosin Pseudomonas fluorescens

Peptide lipids Bacillus sp., Pseudomonas sp., Rhodobacter sp.,

Serrawettin Serrati sp.

Echinocandins Papularia sphaerosperma, Glarea lozoyensis, Aspergil-
lus sp., Actinoplanes utahensis, Zalerion arboricola,
Emericella rugulosa, Tolypocladium parasiticum, Can-
dida fermentati

Lichenysin Bacillus licheniformis

Pontifactin Pontibacter korlensis

Unidentified Paenibacillus sp.

Polymerics Emulsan Acinetobacter calcoaceticus

Biodispersant Acinetobacter calcoaceticus

Alasan Acinetobacter radioresistens

Liposan Candida lipolytica, Yarrowia lipolytica

Phospholipids Phospholipids Essentially all

Nucleolipids Nucleolipids Marine sponges

Hydrophobins Hydrophobin Trichoderma reesei, Schizophyllum commune
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healthy compound annual growth rate of 4.9%, its size is still dwarfed by that of
traditional, synthetic surfactants at approximately US$45 billion in 2018. Of course,
these market indicators are just that – indicators – and do not give particular insight
into the technical development of novel biosurfactants. Nonetheless, the attraction of
the market towards biosurfactants lies, partly, in their potentially lower environmen-
tal impact. By their nature they are biodegradable, and so do not persist in nature
long. Further, they can be produced from renewable resources and do not rely on
fossil resources for their production. Nonetheless, a significant shift in industry
would be needed for biosurfactants to eclipse their synthetic cousins. This shift is
fundamentally driven by the economics of production and consumption. Of course,
no product has zero impact, and a proper analysis of environmental benefits and
limitations of each process would be needed to make sensible comparisons. Tools
such as life-cycle analysis can assist with this, although comparatively few have
been performed on biosurfactants or their comparison to synthetic surfactants [76–
78].

Techno-economic analyses [79, 80] of biosurfactant production processes are
unfortunately fairly rare. However, there are industrial players in this field which
operate profitably on the production of biosurfactants (see the excellent review by
Geetha et al. [17] for, amongst other information, details of which companies
currently operate). Of work that is available in the literature, much focusses on
rhamnolipids, or sophorolipids, for the most part since the organisms which produce
these biosurfactants can produce them at significant concentrations. However, it is
not sufficient to simply relegate all low-concentration products to non-economic
viability; it is important to consider the whole of a potential bioprocess. Currently,
biosurfactants are significantly more expensive to produce than synthetic surfactants
[81], and so much progress is needed in process intensification and cost reduction. In
order to achieve this reduction in cost, it is sensible to break down a process into
constituent stages, and consider the state of the art of each in turn. This review
therefore aims to break down the development of a biosurfactant-producing process
into a series of choice-steps, to examine what has been done in the literature within
each space, and to highlight where areas of improvement might be possible.

2 Process Considerations

In the development of a bioprocess to produce biosurfactants, many choices are
made which affect the trajectory and techno-economic viability of the process.
Presented here is a non-exhaustive look at some of the considerations when devel-
oping a process, with an eye to understanding the state of the art in each regard, and
with some notation of potential areas for improvement. Figure 1 presents the sections
schematically, and the following paragraphs will deal with each point in turn.

Process Development in Biosurfactant Production 199



Fig. 1 Schematic flow diagram of points of consideration in the development of a biosurfactant-
producing process
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3 Organism Selection

A significant portion of the biosurfactant literature deals with isolation and identifi-
cation of biosurfactant-producing organisms. Strains of interest first need to be
harvested from source, oftentimes referred to as bioprospecting, and then isolated
using various culture techniques. Subculturing is often accompanied by enrichment
with the target for bioremediation (such as hydrocarbon pollutants) across a dilution
series. Strains that efficiently utilise the compound of interest, preferentially as the
sole carbon and energy source, and which attain the highest cell density at a certain
OD, are then subjected to a battery of assessments, including Gram-staining ana-
lyses, motility, shape (e.g. rod-shaped, coccoid, bacilli), catalase (or other enzyme)
sensitivity, and other tests, if necessary. Isolates displaying higher levels of
biosurfactant production and generally also emulsification properties (or oil dis-
placement), depending on end use, as well as an acceptably high growth rate, will
undoubtedly generate attention for bioremediation, biocontrol or pharmaceutical
application. Genetic identification is done using 16S rDNA sequencing analysis
and thereafter a phylogenetic tree is useful to detect evolutionary relationships
between species.

Biosurfactant-producing organisms might also be selected based on their poten-
tial to benefit or facilitate specific purposes, such as an isolate that demonstrates
ability to degrade a metal or pesticide known to contaminate marine reserves
[82]. Countless papers have been published identifying new organisms producing
a variety of known and novel biosurfactants; however, there seems to be a dearth of
information characterising production pathways or investigations into why some
microbes manufacture different congener profiles or homologue analogues under
certain conditions. Of course, the bioprospectors should not stop – you can’t find
something interesting if you’re not looking, but once identified, the organism should
be sequenced, the known pathways for biosurfactant production looked for in the
sequence, and the surfactant analysed by GC-MS, if possible, or using other
advanced analytical techniques. Simply showing surface tension changes is more
of a high school experiment; the road to commercial relevance is still littered with
question marks.

4 Genetic Modification/Strain Selection

Seyedsayamdost, in his 2019 review of bacterial secondary metabolism, spoke about
‘biosynthetically gifted microbes’, to which many biosurfactant-producing organ-
isms, such as Bacillus subtilis, lay claim. The Princeton paper pointed out that the
research community is yet to elucidate the secondary metabolome of these microbial
powerhouses [83]. In Jimoh and Lin, the authors, too, concede that existing research
inadequately illustrates the molecular profile of biosurfactants [84]. These secondary
metabolites, which predominate the late exponential and stationary growth phases,
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have much to do with enabling a microbe’s exogenous experience. Exogenous
variables could be chemical (nutrients, pesticides, metals, intra-/interspecies com-
munication signals, pH changes, aeration, oxidative stress) or physical (temperature
changes or heat shock, agitation, exposure to radiation or UV light), which in turn
induce epigenetic changes to the organism’s genetic sequence. It’s imperative that
we gain some perspective on the different feedback loops involved in biosurfactant
metabolism – some level of molecular characterisation will go a long way in
elucidating downstream output variance.

A review published in Biotechnology Journal in 2017 elegantly sets out numer-
ous heterologous production strategies used in rhamnolipid and surfactin titre
enhancement, differentiating between approaches taken using non-pathogenic Pseu-
domonas and other species such as Burkholderia and E. coli. The paper touches on
quorum sensing (QS) networks used by various bacterial strains and how the QS
cascade could be triggered by either paracrine signalling, in the case of Bacillus, or
autocrine communication markers [85]. The QS molecule, ComX, is thought to be a
key component in boosting surfactin yield in Bacillus sp., however, an understand-
ing of the molecular network that underplays productivity is essentially a mystery.
Overcoming knowledge gaps in these regulatory induction pathways would bode
well for commercialisation of biosurfactants. Mannosylerythritol lipids (MELs) and
sophorolipids (SLs) are suited to bulk production using wild-type strains and their
progeny (rhamnolipid development is thought to be once again progressing in this
direction, although with recombinant strains); however, metabolic engineering
approaches in augmenting yields would significantly reduce costs and molecular
biology tools are appealing as an aid in amplification of target metabolites. Interest-
ingly, an in silico study found that metabolic modelling and knockout prediction of
the precursor leucine intensified surfactin production 20-fold [85].

Jimoh and Lin note that recombinant strains exhibit improved product outcomes
(more uniform output in terms of congener profiles) as well as effecting reduction in
the number of spurious (redundant) proteins, thus simplifying purification and
recovery protocols [84]. Engineered Saccharomyces cerevisiae, as a GRAS status
organism, has been reported to produce monorhamnolipid utilising sucrose as
substrate [86]. GRAS status is desirable in an industrial setting as it becomes
dramatically more expensive to set up a factory authorised to safely handle infectious
agents with highly regulated containment standards. Biosafety concerns, out of
necessity, are therefore a major consideration when engineering strains for superior
performance. Due to naturally occurring endotoxins, wild-type E. coli strains are
usually not conferred GRAS status, whereas B. subtilis is suitable for human
ingestion. Pseudomonas sp., prime candidates for rhamnolipid production, generally
demonstrate features of pathogenicity; however, some Pseudomonas strains, such as
Pseudomonas putida KT2440, are designated as HV1 (FDA classification: host-
vector system safety level 1), meaning it is permissible to work with this strain in a
P1 or ML1 facility [87]. Escherichia coliK12 is similarly described as an HV1 strain
and is safe to work with due to an absence of virulence factors.

While no rhamnolipid-producing organism is as yet known to be commissioned
for industrial use, in 2016, Evonik Industries AG revealed that they had a
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commercial rhamnolipid product in their pipeline – no mention of the strain was
made, however, an existing Evonik patent [88] does list recombinant P. putida in its
claims. Evonik is also actively marketing, through Ecover, a manufacturer of
cleansers and detergents, products containing sophorolipids. The yeast, Starmerella
bombicola, is currently the most industrially prolific strain used in sophorolipid
production (volumetric productivity<3.7 g l�1 h�1 and highest titre of 477 g l�1). A
comprehensive mini-review of a decade of metabolic engineering of S. bombicola
was presented in 2018 [89]. This is a useful reference for genetic modifications of
S. bombicola’s biosynthetic pathways in aid of SL efficiency improvements. A 2020
article describes the deletion, overexpression and construction of complementary
mutant strains to S. bombicola CGMCC, specifically pertaining to the Bro1 protein.
Rate-limiting enzymes in SL biosynthesis were significantly down-regulated in the
Δbro1 and the deletion mutant did not produce SLs [90].

Despite P. putida’s reputation for being metabolically versatile and physiologi-
cally resilient in the face of exogenous pressures, under micro-oxic conditions it
struggles to maintain redox balance and generate energy in the form of ATP. As an
obligate aerobe, the absence of molecular oxygen hampers its potential as an
industrial workhorse, which is expected to have a negative impact on biosurfactant
output, considering scale-up of good oxygen transfer is difficult in bioreactors.
Kampers et al. combined genome-scale metabolic modelling with comparative
genomics to recombine P. putida strains with acetate kinase from E. coli, and a
dehydrogenase and ribonucleotide triphosphate reductase from Lactobacillus lactis,
to correct ATP and essential metabolite production, respectively. The team success-
fully used adaptive laboratory evolution to adjust computational models [91].

Chemical mutagenesis using 50 μg/10 ml ethidium bromide (EtBr) exposure for
60 min caused an Aspergillus niger, or black rot fungus, mutant strain (A. nigerM2)
to produce 3.3 g l�1 biosurfactant in comparison with the native strain output of
2.3 g l�1. Oil displacement, emulsification activity and the emulsification index also
increased from 49.74 to 59.81 cm2, 1.024 to 1.262 (OD540), and 57% to 62.3%,
respectively. Aspergillus nigerM2 produced a maximum of 5.50 g l�1 biosurfactant
after optimising the solid-sate fermentation run with response surface methodology
(RSM) in a central composite design (CCD) [92]. No mention of the type or
classification of biosurfactants produced was mentioned in the paper.

Lei et al. used genomic fragments from P. aeruginosa SG to construct recombi-
nant plasmids, which were introduced into an E. coli S17-1 strain by transformation,
and then re-introduced into wild-type P. aeruginosa SG using conjugation. The team
was able to identify key genes involved in rhamnolipid synthesis (pslAB,
phaC1DC2) using knockout strategies targeting secondary metabolic bypass path-
ways (Pel, Psl and PHA). The double mutant strain, SG ΔpslAB ΔphaC1DC2, which
was designed to generate higher levels of fatty acid and glycosyl precursors,
produced 67.7% more biosurfactant than the wild-type strain, at a maximum of
21.496 g l�1 rhamnolipid. This could be improved by statistically optimising
medium composition and fermentation parameters [93].

All this is to say that due to the variety of organisms used in biosurfactant
synthesis, the number of products produced, and the relative newness of the field,
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there is still significant work needed in the molecular biological optimisation of
biosurfactant production.

5 Reactor Type and Operation

The type, size, shape, and metabolic requirements of the organism defines what
bioreactor can be used in a process. The list of organisms producing biosurfactants is
long, and the number we have identified is growing. For the most part the organisms
fall within bacteria and fungi, generally single-celled and metabolising under aerobic
conditions. There are of course exceptions to this, and indeed each bioprocess must
be designed around a specific chassis organism, which may have particular require-
ments. A specific counter example to the usual aerobic production of surfactin by
B. subtilis is that of Willenbacher et al. [94], who demonstrated anaerobic fermen-
tative production of surfactin, with titres exceeding those achieved in aerobic
fermentation. Nonetheless, most work has been done for processes fitting the
description: aerobic, submerged, planktonic culture [95]; for the most part, these
fermentations are done in temperature, oxygen, agitation controlled vessels – vessels
specified for planktonic submerged culture [96]. The physical configuration that
biosurfactant reactors take varies somewhat, with CSTRs being the most common.
These various reactors can also be operated under a number of modes. Beuker et al.
[97] give a good discussion on batch, fed-batch and continuous fermentation
strategies.

However, normal aerated CSTRs commonly are difficult to use for the production
of biosurfactants. They are:

1. comparatively expensive to operate – aeration and agitation are significant oper-
ational costs. Since they are commonly operated in batch, there is significant
down-time for set-up and cleaning. Sterilisation costs before and after fermenta-
tion can be significant

2. suffer from excessive foaming [98] – ironically, the success of the fermentation
produced a product which makes the fermentation difficult to perform. Excessive
foaming often overflows CSTR reactors, despite significant use of antifoam and
foam-breakers

3. at high cell concentrations can become oxygen limited – the volumetric produc-
tivity of a reactor can be improved at high cell concentrations, but since
biosurfactant production requires oxygenic metabolism, if the concentration of
metabolising cells in the reactor gets too high, areas of oxygen depletion can
occur

4. run into a number of complications when scaling up – specifically with regard to
mixing and sparging: as one scales up, volume increases cubically, while required
power (for mixing or sparging) increases by power 5 [99].
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In order to circumvent some of these issues, and to improve productivity some
modified reactor geometries specifically for biosurfactant production have been
proposed in the literature:

5.1 Foam Fractionation Reactor

Conventional cultivation techniques for biosurfactant production often suffer from
severe foaming, which can even crash fermentations. To combat this foam breaking
agents are commonly employed, such as antifoam chemicals added to the fermen-
tation broth, or mechanical foam-breakers in the headspace. These interventions add
complexity and cost to the process and can reduce productivity (particularly in the
case of chemical antifoam agents which can interfere with the organisms’ metabo-
lism). An alternative approach is to use the foam formation rather than try to prevent
it. Biosurfactants (which cause the foaming) collect at gas–liquid interfaces, and so
are concentrated in the foam. The foam can therefore be used as a separation tool for
in situ product removal during fermentation.

Reactors have been designed and demonstrated which utilise this principle; called
foam fractionation reactors [100], they include a tube above the fermentation vessel,
and a foamate collection vessel. The riser tube is designed such that the foam,
containing the biosurfactant (and a significant amount of culture medium) emerges
as a column. Bubble coalescence and foam stabilisation occur through this riser tube,
while the entrained culture medium trickles back down into the reactor vessel. The
foam, which is now concentrated in surface active compounds, then moves to the
foamate collection vessel, where a foam-breaker is employed to destabilise the foam
back to a liquid phase. Often either a mechanical foam-breaker is used or low
pressure is used to burst the foam. The process separates compounds with low
surface activity from high, such that the collected foamate is rich in biosurfactants,
and can be sent for further processing: indeed, processing can even occur in the
foamate collection vessel: Anic et al. [101] demonstrated the integration of an
adsorption column in the foamate collection vessel, so that foamate (now poor in
product) could be recycled back to the fermentation vessel. Najmi et al. [102] have a
good discussion on foam fractionation and the parameters affecting biosurfactant
collection using it.

Foam fractionation has been demonstrated in a number of biosurfactant produc-
tion studies. Chen et al. [103] used foam fractionation to concentrate surfactin from
Bacillus cultivation 50-fold over the culture medium, while Perna et al. [104]
developed models to describe surfactin collection using foam fractionation and
showed 30-fold concentration. Both Khondee et al. [105] and Yi et al. [106]
combined foam fractionation with cell immobilisation to improve surfactin produc-
tivity, although the volumetric productivity is still far short of that seen in
rhamnolipids and sophorolipids.

Rhamnolipids have also been demonstrated to be concentrated via foam fraction-
ation, although the organisms used to produce these compounds tend to collect in the
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foam, reducing productivity. Anic et al. [101] integrated foam fractionation and
adsorption of rhamnolipids, which improved productivity by allowing cell recycling,
and resulted in a claimed 100% rhamnolipid recovery. Zheng et al. [107] linked
cyclic fermentation to foam fractionation, with a 75% recovery of produced
rhamnolipids while Long et al. [108] demonstrated an 83% increase in productivity
when using foam fractionation (fitted with a valve foam-breaker) to recover the
rhamnolipids. Bueker et al. [109] demonstrated excellent rhamnolipid recoveries,
with low biomass removal, potentially due to the heterologous host used – P. putida
instead of P. aeruginosa, which appeared to have a lower affinity for bubbles. Xu
et al. [110] demonstrated the use of a novel foam-breaker methodology, to improve
rhamnolipid productivity, which although they did not use the apparatus for foam
fractionation, could be implemented in that fashion.

Foam fractionation of sophorolipids also suffers from significant cell entrainment
in the bubble phase, however, there has been some work using the configuration for
in situ product recovery, when cell recycling can be enacted. Liu et al. [111] used a
modified version of foam fractionation where they added a second oil phase to
collect the sophorolipids, before using foaming to collect the sophorolipid-rich oil
and separate it from the culture medium, which they recycled. This methodology
aligns well with other in situ solvent extraction based systems, such as those
implemented for acetone-ethanol-butanol fermentation [112].

Trehalolipids separation using foam fractionation has been demonstrated, with
Bages-Estopa et al. [113] using a hexadecane substrate which suppresses foaming
during fermentation. When the substrate is exhausted, the trehalolipid product
caused foaming, collecting the product in the foamate, cleverly combining substrate
exhaustion with product recovery.

A significant limitation of this methodology is that many media components in
biosurfactant fermentation themselves have a hydrophobic activity, and so also
partition to the foamate, removing them from the reaction volume. Further, the
organisms themselves often also become entrained, reducing biomass concentration.
Additionally, because the productivity of biosurfactants changes through the course
of the fermentation, the amount of liquid lost to foam fractionation changes over
time. This poses control issues for a bioprocess, as highlighted in Chenikher et al.
[114]. These issues can be overcome if the foamate can be depleted in product and
then recycled, or if the cells can be held within the reactor and prevented from
partitioning to the gas–liquid interface. This can be achieved through immobilisation
or through a biofilm. But where foam fractionation really becomes a viable process
option is when the product is preferentially partitioned to the foam phase, while cells
and media components are not. This is very much a function of solution properties
(such as pH and salinity), and the chassis organism used. With the advent of
powerful molecular biological tools, suitably hydrophilic organisms might be
engineered to produce the desired products and linked to foam fractionation reactors.
Nonetheless, the methodology has significant merit – combining fermentation with
the first step in downstream processing.
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5.2 Membrane-Based Reactors

There are two main configurations where membranes can become integral parts of a
biosurfactant fermentation [115]: (1) the membrane is used to retain active biomass
within the reactor, while product-rich or substrate-depleted medium is removed
through the membrane, or (2) the membrane is used for oxygenation of the reaction
vessel. The second configuration has been more commonly demonstrated in
biosurfactant production studies than the first – with little work specifically demon-
strating the retention of biosurfactant-producing cells through the use of a mem-
brane. However, this is not necessarily an indication that membrane cell retention is
not a viable process option: indeed, there is an implicit bias in laboratory-based
experimentation towards batch processes (they are easier to conduct at laboratory
scale), while a membrane reactor for cell retention is more favourable for continuous
production studies.

A major process operational consideration in biosurfactant production, as has
come up several times in this discussion, is that of excessive foaming when a sparged
reactor is used. The utilisation of a membrane for oxygenation is one potential
solution to this difficulty: oxygen or air can be passed through solid membranes
within the fermentation medium, allowing oxygen to diffuse into the liquid
(or emerge as small bubbles). However, to get equivalent oxygen transfer from
membranes rather than using sparging requires significant membrane area, or oxy-
gen partial pressure. Additionally, membranes are comparatively expensive, rela-
tively delicate, and liable to becoming blocked by organisms growing on the
membrane surface.

Coutte et al. [116] demonstrated the use of oxygenation using hollow fibre
membranes for the production of surfactin and fengycin by Bacillus, with some
success, and then went further to demonstrate continuous surfactin production [117],
using both membrane oxygenation and membrane-based cell recycling. Although a
they did note the tendency for the surfactin to adsorb onto the membrane, reducing
oxygen transfer rates. Motto dos Santos et al. [118] built on this work, using the
same reactors, to examine media limitations on surfactin production and to develop a
high-throughput methodology for media testing. Noting the issue of substantial
surfactin adsorption onto the oxygenation membranes, Behary et al. [119] modified
PET membranes to reduce adsorption, with some success. Beth et al. [120] took a
more fundamental approach, through modelling the gas–liquid mass transfer which
occurs in these reactors. Pinzon et al. [121] demonstrated the production of
rhamnolipids using a membrane-based approach, but utilising nitrate as an oxygen
source rather than molecular oxygen.

These types of reactors show good promise, but comparatively little work has
been done in the field: there is clearly still significant work to be done in this field –

both in terms of membrane-based oxygenation and membrane-based cell retention.
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5.3 Slurry Bioreactors

Slurry reactors have for the most part been used in the treatment of petrochemical
contaminated soils [122]. The aim of these processes is not to produce a
biosurfactant product, but rather to use biosurfactant-producing organisms in the
bioremediation of contaminated soil [5]. As such, these reactors operate with a slurry
of soil, culture medium, aeration and (often inoculated) microorganisms. Robles
et al. [122] present a good review of the application of slurry reactors for the
treatment of recalcitrant contaminants in soil, which often involves the use of
organisms which produce biosurfactants. While this work is useful and important,
it is unlikely to give rise to an economical method for large-scale purified
biosurfactant product.

5.4 Solid State Fermentation

Solid state fermentation is based on the use of a solid substrate phase (commonly an
agri-waste [123] or other low-value substrate [124]), which is inoculated with the
desired organism and kept at growth conditions. After a period of fermentation, in
which the organism proliferates, consumes those parts of the substrate which are
degradable (often a liquid substrate is also added, should the solid material be low in
fermentable compounds) and produces the desired product. In the most commonly
used procedure a batch fermentation is followed by extraction of the product from
the solid via solubilisation in a selective solvent, ending the fermentation. There is
some disagreement in the literature on the exact definition of ‘solid state fermenta-
tion’: some consider SSF to only include solid substrates which are themselves at
least partially fermentable (substrates such as agro-processing wastes [125]), while
others consider fermentations conducted using liquid substrate, but inert solid media
(such as polymer solids) to also be considered. The distinction is semantic, but the
choices between solid support do have cost and processing implications; for
instance, choosing agricultural wastes as a solid support can be cost-effective, but
can also introduce impurities and complicating compounds to the product solution,
which then will require further downstream processing.

Solid state fermentation avoids the issue of excessive foaming, since minimal
liquid is present, and oxygenation can be easily achieved by passing air over the
substrate solid. The technology also limits operational expenses such as agitation,
liquid composition control and sparging associated with submerged culture [124].

Rhamnolipid production via solid state fermentation has been demonstrated by
Camilios-Neto et al. [126], and El-Housseiny et al. [127] using agro-processing
wastes, which produced comparable or improved concentrations of rhamnolipid
product, when considered on a per volume of liquid basis, but which
underperformed standard submerged cultures significantly on a per volume of
reactor basis. Gong et al. [128] utilised a polyurethane solid support on which to
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grow Pseudomonas on a palm-oil substrate, to produce 39.8 g/l of rhamnolipid
product. Lopes et al. [129] demonstrated co-culture of ethanol and rhamnolipid-
producing organisms on sugarcane bagasse, producing 9.1 g/l of biosurfactant
product. Co-culture has several economic and process design implications that
have yet to be fully explored in the literature, but which provide interesting potential
for a biorefinery-type approach to biosurfactant production.

Sophorolipid production using SSF was demonstrated by Jiménez-Peñalver et al.
[130], first using an inert polymer foam support and molasses and stearic acid as
substrate, and then on sunflower oil agro-processing waste [131]. They achieved a
fairly good yield, and reasonable congener distribution, but the product titre was low
in comparison with submerged culture production of sophorolipids, which can reach
extremely high levels [132].

Slivinsky et al. [133] produced surfactin via SSF on sugarcane bagasse-okara
support, producing 0.8 g/l of surfactin per volume of impregnating liquid, while
Kumar et al. [134] demonstrated iturin A production of 0.8 g/l using SSF based on
sunflower oil cake, another agro-processing waste material. While these productiv-
ities are comparatively high when considered on the liquid volume basis, they are
low when considering the reactor volume as a basis. Lourenço et al. [135] utilised
Trametes versicolor, an organism not commonly reported to produce biosurfactants,
to produce an unidentified lipid- and protein-containing biosurfactant on olive mill
solid waste using SSF.

Faria et al. [136] demonstrated the production of MELs using SSF under a variety
of conditions (with or without pre-treatment and simultaneous saccharification)
giving productivities of 4.5 g/l, far below the best submerged culture productivities
(which can exceed 100 g/l: see Beck et al. [137] for an excellent review of MELs).

Other biosurfactants have also been reported to be produced using SSF. Velioglu
and Urek [138, 139] cultivated Pleurotus djamor on a variety of solid substrates, to
produce a water solubilised extract containing an unknown biosurfactant. While
Brumano et al. [140] reported production of an unidentified biosurfactant (poten-
tially glycerol-liamocin, considering the use of Aureobasidium pullulans [141]) on
bagasse-based SSF. Rubio-Ribeaux et al. [142] demonstrated the production of an
unidentified biosurfactant from Candida Tropicalis cultivated on food waste and
crude glycerol, however, due to the unidentified compound, no comparisons to other
processing methods can be drawn.

In all, SSF is a processing route with significant potential, particularly in the use
of waste agricultural residues, and in the use of filamentous fungi. However,
significant strides in process economics, scale-up, and increased product titre will
likely be needed for this to become a viable industrial process route.

5.5 Immobilised Cell or Biofilm Based Reactors

There are a number of potential benefits to utilising a bioreactor based on
immobilised cells, or cells adhered to a solid support, usually in the form of a
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biofilm. The methodology de-couples hydraulic retention time (the period of time
the medium spends in the reactor) from solids retention time (the period of time cells
and other solids spend in the reactor). This can allow the development of either fully
continuous, or fill-and-draw operational strategies.

Further, the biology of the fermentative organisms often shifts significantly when
growing under biofilm-forming conditions, rather than planktonically. This can
result in a shift in product distribution (as was shown by the increased production
of fengycin in the work of Chtioui et al. [143]) or increased yield.

Depending on the physical configuration of the reactor in question,
immobilisation/biofilm can also be a strategy to prevent foaming, by reducing the
need for sparged oxygen. Solid supports can allow more direct contacting of the gas
phase within the reactor, such as in a drip-flow reactor, however, it also decreases the
effective productive volume as a smaller portion of the reactor contains productive
cells.

Additionally, the continued operation of continuous fermentation requires sta-
tionary phase production of the desired products – this is not always the case, and so
organism and strain selection as well as media composition can have a large role
here. For instance, Sodagari and Ju [144] demonstrated a restart in stationary phase
rhamnolipid production through replenishing nitrogen sources in the media;
although this was only required periodically and not continuously. Investigations
into the implications of continuous production are sorely needed in the literature to
bolster our understanding of stationary phase metabolism and reactor operation.

There are a number of physical configurations in which researchers have dem-
onstrated the applicability of immobilised or biofilm based cells for biosurfactant
production:

5.5.1 Immobilised Cells

It is the case that several biosurfactant-producing organisms do not form biofilms,
and so an alternative strategy is needed for biomass retention. One route, which is
commonly used in biotechnology, is the entrapment of cells within a solid matrix.
This matrix, usually in the form of millimetre-scale beads, can then be retained
within the reactor, allowing flow-through of medium. Comparatively high biomass
loading can be induced, through cell loading in the beads, although cognisance must
be taken of potential mass transfer limitations of substrates into the beads and
product out: concentration gradients can induce metabolic variation through the
bead cross-section.

Khondee et al. [105] have demonstrated the immobilisation of Bacillus in
chitosan-based hydrogel beads, followed by product recovery with foam fraction-
ation. They showed how these beads could be recycled for several fermentations
with stable surfactin production. Ohadi et al. [145] encapsulated Bacillus
licheniformis in alginate, for the production of unidentified biosurfactants.

In a different processing route choice, Hidayat et al. [146] immobilised active
enzymes on Amberlite resin beads, for chemical production of fructose oleic ester
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biosurfactants. The idea is an attractive one: instead of immobilising the whole
organism, can the enzyme operate alone? This depends on the enzyme in question,
and unfortunately most biosurfactants require a cascade of enzymes not a single one.

Kebbouche-Gana et al. [147] investigated the immobilisation of a halophilic
Natrialba sp. in alginate beads, to produce an unidentified biosurfactant. As has
been discussed in the section on strain selection, there are a number of organisms
identified which produce biosurfactants, and a large part of producing an econom-
ically viable process is choosing an appropriate chassis organism. These authors’ use
of a halotolerant organism speaks to the possibility of using extreme culture condi-
tions, to prevent contamination.

Abouseoud et al. [148] followed by Onwosi and Odibo [149], following a similar
procedure, demonstrated immobilisation of Pseudomonas in alginate gel beads, for
rhamnolipid production. Abouseoud [148] clearly illustrated one of the limitations in
immobilised cell bioprocesses – that of diffusion limitations. In the case of
biosurfactants in particular, the substrates required to diffuse through the matrices
are alkanes or fatty acids. These compounds can exhibit slow diffusion characteris-
tics, and thereby limit productivity. On the positive side, immobilised cells can be
recycled: Jeong et al. [150] showed rhamnolipid production, through 15 cycles with
well-maintained productivity, of Pseudomonas immobilised in polyvinyl alcohol
hydrogel. This material has very good mechanical properties for cell immobilisation
in a number of fields [151], in contrast to the more widely used alginate gels, which
are comparatively delicate and susceptible to chemical dissolution. Work by Heyd
et al. [152] focussed on the cycling of immobilised cells, through the integration of
magnetic separation for magnetic hydrogel beads containing Pseudomonas for
recycling of biomass in a process intensification strategy.

5.6 Biofilm Support

Brück et al. [153] used genetically modified Bacillus to improve biofilm adhesion,
which then resulted in improved lipopeptide productivity when using laboratory
scale drip-flow reactors. Vandermies et al. [154] similarly demonstrated variable cell
adhesion after genetic manipulation of Yarrowia. Adhesive cell strategies would
allow for continuous flow-through of medium and collection of product, as demon-
strated in this drip flow reactor: the method has potential for reduced operational cost
at scale.

Brück et al. [155] demonstrated the production of lipopeptides using a trickle-bed
bioreactor, filled with structured metal packing on which Bacillus developed a
biofilm, while Vandermies et al. [154] similarly demonstrated biofilm establishment
of the yeast Yarrowia on comparable structured packing. Zune [156] demonstrated
the production of surfactin (via Bacillus [157]), hydrophobin (via Trichoderma
[158]) and recombinant proteins (via Aspergillus) using a trickle-bed structured
packing bioreactor system. The trickle-bed configuration demonstrates excellent
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oxygen transfer, while avoiding excessive foaming, and has the potential to be
developed into a continuous process.

Fahim et al. [159] allowed polymer beads to be colonised with Bacillus biofilm,
before insertion of the beads into an inverse fluidised bed reactor. This configuration
allows for excellent oxygen transfer, but may also succumb to significant foaming.

5.7 Rotating Disc Bioreactors

While technically a specific configuration of a biofilm reactor, they differ in their
moving components and air–liquid contacting from most other configurations. In
this configuration, solid supports, in the form of rotating disks, on which biomass
grows in a biofilm, rotate between growth media and the gas phase. Generally
growth of cells in the liquid medium is quickly limited by oxygen transfer, and so
the majority of biomass grows adhered to the disks. This configuration prevents
excessive foaming, and the biosurfactant product can accumulate in the liquid media,
which is useful if a continuous or semi-continuous process is to be used. However,
these reactors suffer from a number of limitations: biomass is limited by disk area,
effectively reducing productivity. Further, only organisms which form biofilms can
be used in these systems (unless an additional immobilisation step is employed);
several of the biosurfactant-producing organisms do not form biofilms, and so
without genetic modification (as was done by Brück et al. [153]), these organisms
could not be used with this technology.

Few researchers have demonstrated the use of rotating disk bioreactors for the
production of biosurfactants: Chtioui et al. [143] demonstrated production of
surfactin and fengycin lipopeptides, with their later work [160] improving fengycin
concentrations achieved up to 0.8 g/l fengycin concentration and 88% selectivity
(the remainder being surfactin), a comparatively high concentration for fengycin.
Amin et al. [161] used the vertical rotating immobilised cell reactor, developed by
that research group in the 1980s [162], to immobilise Bacillus on polyurethane foam
support, for surfactin production used in a linked bio-desulphurisation process. No
reports of other biosurfactants made using this or similar technology are available,
which may either speak to the limitations of the technique or its relative novelty.

5.8 In Situ Extraction Reactors

Dolman et al. [132, 163] have developed a reactor which utilises a liquid–liquid
phase separation between a sophorolipid-rich phase and a cell-rich phase. This
reactor includes an in situ settler volume for gravity settling of the two phases,
allowing continuous collection of product and recycling of fermentation medium
[163]. Similarly, Wang et al. [164] have built on the idea of self-separating
sophorolipid-rich phase, based on S. bombicola cultivated on food waste as a
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substrate. Zhang et al. [165] developed a methodology for product separation, as
well as cell and substrate recycle.

This work highlights a difficulty in implementing in situ extractive systems with
biosurfactant production: most of these fermentations include an immiscible oil
phase as a substrate, and so a solvent extraction system (the most widely
implemented in situ extraction methodology) would not be suitable for biosurfactant
fermentation.

Nonetheless, the potential for in situ product recovery is an attractive one for the
operating engineer – it allows continuous processing, and a consistent (and prefer-
ably high) rate, prevents product inhibition or post-fermentation consumption of
product. In all, in situ reactors provide an excellent opportunity, which should be
further pursued.

6 Media Composition

Much work has focussed on the use of different carbon sources for cultivation of
biosurfactant production, and there are several excellent reviews which focus on this
aspect of biosurfactant productivity to which the reader can refer for a more in-depth
analysis than that presented here [81, 166–175].

The work on media development has been driven primarily by two forces: firstly,
the carbon source makes up a significant portion of the cost of cultivation, and so the
logic is that using cheaper substrates will improve the economics. This is certainly
true, and several authors have shown fairly good productivities on such substrates as
waste materials, agro-processing by-products and other low-value substrates.
Table 3 gives a non-exhaustive list of some of the substrates used for the production
of biosurfactants. Substrate cost can make up a significant portion of the total cost,
particularly when pure or virgin substrates are used. Indeed, it is not quite true that
the cheapest substrate is free – through integrating valuable compound production
with the treatment of a waste stream or wastewater, the cost of wastewater treatment
can be offset by the product sale. Giving rise to an integrated wastewater
biorefinery [176].

However, the use of waste materials is not without limitations – a significant area
of concern is consistency: waste materials can vastly vary in composition, which can
give rise to variable product compositions. Further, contaminating components from
the waste substrates may require further downstream processing steps to remove –
these additional steps could be as, if not more, costly than the savings from using the
waste substrate in the first place. And finally, depending on the final use of the
biosurfactant, there may be market resistance to using waste as substrate. For
instance, MELs are predominantly used in cosmetics [70, 177], a high value market
that may object if the MELs were produced from, for example, food waste [178].

The second drive in the choice of substrate is the desire to limit congener
variability within a batch. By limiting the feedstock to a single fatty acid [224], for
instance, the biosurfactant congeners can be limited to incorporate that fatty acid
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moiety [215], or a greater degree of control over congener distribution can be
achieved [225, 226]. This does not entirely limit congener production, since the
organism is still able to produce its own fatty acids (of varying lengths), and
interconvert between those is metabolises, but the strategy may improve product
composition, and inter-batch variability. This is a comparatively unexplored area of
biosurfactant metabolism, which could improve the cost of bringing a product to
market through reducing downstream processing costs, and producing a more
consistent and higher purity product.

Beyond these two major considerations in media optimisation, there are other
factors that should be considered with regard to media composition. While a carbon
source may be supplied from a low-value waste substrate, other macro-nutrients also
required by the organisms: nitrogen and oxygen predominantly. Indeed several

Table 3 Summary of some key low-value substrates used for biosurfactant production

Substrate Biosurfactant produced
Reference
(s)

Lignocellulosic
biomass

Lignocellulose Rhamnolipids, sophorolipids, trehalolipids,
MELs

[179–184]

Hydrolysed
wood or paper

Rhamnolipids, lipopeptide [184, 185]

Food waste Kitchen waste Lipopeptides, biosurfactant, sophorolipids [79, 182,
186–188]

Molasses Biosurfactants [189]

Potato waste Lipopeptides, rhamnolipid [123, 190,
191]

Fish residue Lipopeptide [192]

Grapeseed flour Lipopeptide [193]

Brewery waste Lipopeptide [194, 195]

Whey Biosurfactant [196]

Cassava
wastewater

MELs [197]

Coconut water MELs [198]

Pineapple
waste

Lipopeptides [199]

Vegetable oils Palm-oil mill
effluent

Rhamnolipids [200–202]

Cooking oil Rhamnolipids, MELs, glycolipids,
biosurfactants, lipopeptide, sophorolipids

[178, 203–
215]

Biodiesel waste Biosurfactants [216]

Olive mill
waste

Rhamnolipids, lipopeptides, biosurfactant [135, 217,
218]

Coconut oil
cake

Rhamnolipids [219]

Sunflower oil
cake

Sophorolipids [131]

Glycerol Sophorolipids, rhamnolipids [220–223]
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researchers have noted that the producing organisms’ metabolism may be driven
towards increased biosurfactant production if the C:N ratio is tuned correctly [227–
230]. And a major process control constraint is dissolved oxygen concentration –

affected by aeration rate and agitation.
Micronutrients are also important for optimal biosurfactant productivity. The

enzymes which catalyse the metabolism of these products are metal-containing
(manganese [231], zinc and iron in particular, but also including a host of other
metallic and other compounds [232]), and so at least sufficient amounts of those
micronutrients are needed. However, the question does not appear to be simply one
of stoichiometry, with a more complicated physiological response to metallic
micronutrients in the organism [233, 234].

The media environment can have an inordinate and difficult to predict effect on
biosurfactant productivity – Wang et al. [235] even demonstrated that simply using
tap water instead of distilled can change sophorolipid productivity. This sensitivity is
extremely difficult for the bioprocess engineer operating a fermentation: control of
sensitive systems is paramount, and if the system is unstable, control is virtually
impossible.

In general there has been a significant focus on media optimisation in the
literature – there are several examples of multifactorial investigations to find the
‘optimum’ concentration of various components in biosurfactant production. This is
useful work, but a significant limitation is that optimal media compositions are
extremely species (and even strain) dependent. And so, media optimisation should
be one of the last factors to be considered in the development of a process.

7 Downstream Processing

Downstream processing often accounts for a significant (if not the majority, if not the
vast majority) of a bioprocess’s cost. The level of purity required for a product
defines the required levels of purification needed, and in general a process will only
purify to just within specification and no more. And of course, the purification
method must not damage the activity of the biosurfactant – there is no point in
purifying a product which no longer displays the desired activity. Thus product
stability through the process is a significant consideration in downstream processing;
biosurfactants are comparatively stable, so many purification routes are viable. Many
studies, however, do not verify activity post purification – this is a significant gap
that needs further validation by researchers in separations.

During purification, a series of unit operations are commonly employed, to
remove contaminating compounds via each potential difference from the desired
product. And so any discussion of purification will not simply consider a single unit
operation (unless you are lucky enough to find a single operation which selectively
separates only the compound of interest – an unlikely occurrence). Commonly
separation proceeds from easiest to separate, to most difficult, and in the case of
biosurfactants the most difficult to separate is commonly congeners of the same

Process Development in Biosurfactant Production 215



biosurfactant. If congener purity is not essential, an impure product is cheaper to
produce.

This discussion will not aim to examine all the purification methodologies
employed by researchers in biosurfactant production, both since most processing
options are standard purification technologies which can be found in most
bioprocessing textbooks. And further, many laboratory-based studies utilise purifi-
cation routes which are unlikely to be feasible at large scale. Indeed, there are a few
reviews which deal with this topic specifically, to which the reader might refer.
Clarke and Ranganjaran [236] give a good review of some of the more common
purification routes used, specifically for lipopeptides.

Nonetheless, a summary of some purification methodologies that have been
demonstrated, and the basis for separation, may guide the reader’s thinking with
regard to major unit operation choices. Table 4 summarises processes demonstrated
on biosurfactants, with detail on the principle behind the separation. Of course, in
many of these studies several purification methods were employed, in series, in order
to achieve the required purity. Some of the methods tabulated here might be scaled to
industrial levels, but many are only really useful at laboratory scale:

8 Final Use and Market

The deployment of a product to market relies not only on sound science and
engineering, in developing and enacting a production process, but also on a number
of following steps: how is the product packaged and stored? Is it shelf-stable
for long? Does it require formulation with stabilisers or binders? If it is produced
as powder, can it be spray dried, lyophilised or must it be dried under low impact
conditions.

These are the sorts of questions which are not commonly answered in the
academic literature, and fall more within the wheelhouse of production companies.
However, these downstream choices can have implications for upstream process

Table 4 Separation methodologies employed for biosurfactant purification

Method Mechanism of separation Reference(s)

Gravity settling Density [132, 163]

Adsorption Adsorption [237–239]

Precipitation (acid,
salting out or solvent)

Solubility (solid–liquid) [240–244]

Solvent extraction Solubility (liquid–liquid [245–248]

Filtration Size (of molecule, crystal and micelle) [102, 197,
249, 250]

Foam fractionation Hydrophobicity [102]

Chromatography (col-
umn, TLC, gas)

Diffusion speed through medium (based on size,
charge, hydrophobicity, binding, ligation etc)

[251–253]
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choices, and so should be considered as soon as is reasonable. Nonetheless, there is
some work in the literature to which one can refer:

Freitas et al. [254] demonstrated the production of a biosurfactant by Candida
bombicola, and the subsequent formulation of a product with inclusion of potassium
sorbate as a stabiliser, and using tyndallisation as a sterilisation methodology. The
product retained its biosurfactant properties even after 120 days of storage. Soares
Da Silva et al. [255] used a similar methodology to Freitas on biosurfactants
produced by Pseudomonas cepacia, with biosurfactant activity retained. Almeida
et al. [256] produced biosurfactant using Candida tropicalis formulating a product
with potassium sorbate as preservative. They investigated product stability over
120 days under varying conditions of pH, temperature and salinity and found the
product to retain its biosurfactant properties. Salek and Euston [67] have an excellent
review on bioemulsifiers, including their stability, as a particular application of
biosurfactants.

One of the major opportunities of biosurfactants is the variety of functional
groups which they can include. The same family of biosurfactants can have hundreds
of congeners, which may have quite different physical properties. These properties
have hardly been explored, with much literature and industrial work done on a
comparatively low number of congeners. This is hardly surprising – the science here
is complex, getting pure congeners is exceedingly difficult, and the relative youth of
the industry means that low hanging fruit have been sought first. But this is an area
where much work might yet be done – producing congeners with varying compo-
sition, and examining their activities. But to achieve this the fields of strain selection,
modification, media control and certainly congener separation have much work to
do. However, once new compositions and properties are investigated, invariably
new markets and uses will be found which fit with these properties.

9 Conclusions

This article has highlighted some key considerations when developing a bioprocess
based on microbial production of biosurfactants. The state of the art for many of
these considerations is critically presented, with consideration for specific gaps in the
literature, and areas which may benefit from further work. It is clear that the field of
biosurfactant research is growing, commensurately with the growing market and
demand for these products. Further, the structural diversity of these compounds
(even within a particular class) lends itself to new application discovery. The
significant limitation of the field at the current time is the relative expense of
(1) production of the compounds (considering substrate costs, reactor operation,
and product yield and titre) and (2) downstream processing costs. Nonetheless, many
researchers around the world are investigating aspects of this field, and significant
advances are made continuously.
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Abstract Biosurfactants are considered as an environmentally friendly and sustain-
able alternative to conventional fossil-derived and chemically produced surfactants.
Their production pathways, physicochemical properties, and applications are widely
researched and discussed in literature. In this context, investigating the different
impacts from the entire life cycle of biosurfactants is important to understand and
mitigate potential environmental hotspots. Life Cycle Assessment (LCA) is an
internationally accepted and standardized methodology to analyze the environmental
impacts of products from a holistic view. Therefore, this study provides a detailed
overview of existing LCA studies of biosurfactants by means of a systematic
literature research. The focus specifically lies on articles that investigated microbial
biosurfactants. However, the systematic approach used ensured a broader overview
related to bio-based surfactants as well. Furthermore, two related topics, ecotoxicity
and biodegradability of biosurfactants, were identified and discussed based on the
search findings. After screening over 2,500 documents using Scopus and Google
Scholar, six relevant LCA articles of biosurfactants could be identified. The identi-
fied articles are divided into LCA studies of alkyl polyglycosides, chemically
produced bio-based surfactants, and LCA studies of microbial biosurfactants, their
content analyzed and discussed in context. In conclusion, the number of available
LCA studies is very limited and their results are often not comparable. To the best of
the authors’ knowledge, this review is the first of its kind to provide a detailed
overview of LCA studies of biosurfactants. Consequently, the need for
implementing more LCA studies becomes clear.
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1 Introduction

The Paris Agreement and the United Nations Sustainable Development Goals are
two recent examples of global efforts to work together towards a sustainable future
[1, 2]. Furthermore, the combat against climate change and the implementation of
sustainable solutions regarding social, environmental, and economic aspects have
become an urgent international mission, for example, reflected by the European
Green Deal [3]. In doing so, the European Union follows various strategies, such as
the “Bioeconomy Strategy” [4]. The concept of bio-economy “encompasses pro-
duction of renewable biological resources and their conversion into food, feed,
bio-based products and bioenergy” [4]. It addresses numerous industries, such as
the chemical and biotechnological industry, where solutions are being investigated,
demonstrated, and scaled up from laboratory to industrial scale [4, 7,
8]. Biosurfactants are one example of a bio-economic product. While chemically
produced surfactants can also be bio-based, the term biosurfactant usually refers to
microbially produced surfactants [5, 6]. Various types of biosurfactants can be
produced utilizing the metabolic processes of microorganisms, such as bacteria or
fungi. Depending on the molecular weight of microbial amphiphilic metabolites, a
distinction is made between high-molecular-weight amphiphilic polymers or
bioemulsifiers, such as polysaccharides, and low-molecular-weight biosurfactants,
such as glycolipids and lipopeptides [9]. Widely studied glycolipids include
rhamnolipids (e.g., by Pseudomonas aeruginosa) [9], sophorolipids (e.g., by Can-
dida bombicola) [10], as well as mannosylerythritol lipids and cellobiose lipids by
variousUstilaginaceae species [11, 12]. Lipopeptides include surfactin and fengycin
produced by Bacillus subtilis, among others [13]. The applications of biosurfactants
are as diverse as their chemical structures and range from laundry detergents,
household cleaners, cosmetics, and pharmaceuticals to bioremediation [14–
21]. Some biosurfactants are produced on industrial scale and are commercially
available, such as sophorolipids and rhamnolipids [6]. More biosurfactants showing
promising properties and potentials for a sustainable production and respectively a
wide range of applications are studied and lab-scale processes are developed, such as
mannosylerythritol lipids, cellobiose lipids, surfactin, and polymyxin [5, 7, 16, 22,
23]. An excellent overview over bio-based surfactants is given in the book by Hayes
et al. [20].

When the potential benefits of biosurfactants regarding environmental sustain-
ability are pointed out, they are often referred to as being biodegradable, non-toxic,
generally eco-friendly, and considered having a low overall environmental impact
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[5, 6]. These attributes are often associated with bio-based products, however, not
automatically true in every case. For example regarding toxicity, it can be mentioned
that biosurfactants often show a low(er) toxicity compared to chemical surfactants
[24–29], but referring to them as non-toxic is incorrect. Separate and more detailed
investigations of the specific properties of each biosurfactant are needed to allow
these statements and cannot generally be applied to all biosurfactants. Furthermore,
the above-mentioned terms refer to different levels of the product; some describe
inherent properties of the product, such as biodegradability, others refer to the
production process or overall life cycle of the product, such as “having a low
environmental impact” [6, 30].

Taking the entire life cycle of a product into account is a common approach to
identify process steps within its production and disposal/use phase with high envi-
ronmental impacts and derive recommendations for effective measures to improve
the sustainability of products. In order to do this, Life Cycle Assessment (LCA) is an
internationally established and standardized method with life cycle thinking at its
core [31, 32]. LCA can quantify the environmental impacts of a product or service in
regard to various environmental issues, such as climate change, acidification and
eutrophication, etc. The obtained results can be used for holistic assessments and to
avoid a shift of burdens from one life cycle phase to another. Consequently,
researchers and companies alike can learn how to improve their production pro-
cesses and how to use a product more sustainably. In the case of chemicals, LCA
studies are often conducted using a cradle-to-gate approach focusing on their
production, as there are often many different possible applications strongly influenc-
ing the use phase [33]. Accordingly, a recent study investigated and presented a Life
Cycle Inventory dataset that represents a European average of the production of
conventional surfactants and raw materials (including coconut and palm oil) for the
reference year 2011 [34]. The dataset was developed in cooperation with 14 compa-
nies emphasizing the relevance of LCA studies for industrial stakeholders. However,
the relevance of the application and, consequently, the influence of the use phase on
the overall environmental impacts should not be neglected when following the life
cycle approach.

This study aims at providing a detailed overview of the existing LCA studies of
biosurfactants by means of a systematic literature research. The focus specifically
lies on studies that investigated microbially produced surfactants. However, the
systematic approach used ensures a broader overview related to bio-based surfac-
tants as well, where renewable resources are converted with chemical methods.
Additionally, the fields of ecotoxicity and biodegradability of biosurfactants are
summarized and discussed in relation to their relevance from the life cycle perspec-
tive. Relevant LCA studies related to the production, use and disposal of
biosurfactants are identified and put into context with the life cycle perspective.
The studies are compared on the basis of a content analysis. Research gaps and
requirements for future research are identified. In summary, this article aims to
provide a thorough literature review of existing LCA studies of microbially pro-
duced surfactants and bio-based surfactants. Furthermore, recent findings are
pointed out and future research perspectives are identified.
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2 Systematic Literature Research Approach

In order to provide a complete overview of existing LCA studies, a detailed and
systematic approach was followed during the research for this study. First, relevant
search terms were defined and combined. Second, relevance criteria were defined to
identify the relevant documents. Third, a predefined screening procedure was
followed. Finally, the identified studies’ content was analyzed regarding predefined
characteristics. This entire process is described in detail in the following paragraphs.

2.1 Search String Combinations

The literature research was carried out using the scientific search engines Scopus
(scopus.com [35]) and Google Scholar (scholar.google.com [36]) and was
performed in January and February 2020. The search strings used for the research
consisted of combinations of two or three search string components. The compo-
nents are associated with biosurfactants and sustainability assessment studies.
Although “biosurfactant” seems to be the most commonly used term, there are
different notations and expressions for referring to microbial biosurfactants. There-
fore, a number of terms for microbial biosurfactants and different spellings were
used for the search. The same applies to the terminology surrounding LCA. Numer-
ous variations were used as search string components, for example “TITLE-ABS-
KEY (“microbial surfactant” AND “life cycle assessment”).” All components used
for the search string combinations are shown in Fig. 1. 70 different search strings
resulted from combining the previously defined components. The results of these
70 document searches were then screened.

Biosurfactant synonyms

biodetergent
biodispersant
bioemulsifier
bio-surfactant
biosurfactant

biosynthetic actives
enzymatic surfactant
microbial surfactant

Biosurfactant types

alkyl polyglucoside
glycolipid

lipopeptide
mannosylerythritol

phospholipid
rhamnolipid
sophorolipid

surfactin

Biosurfactant-related search terms

assessment
carbon footprint

ecological assessment
ecological evaluation
ecological footprint
ecological impact

ecological production
environment

environmental 
assessment

environmental evaluation
environmental footprint

environmental impact 
assessment

environmental impact
evaluation

green production
LCA

life cycle assessment
life cycle engineering

life cycle
production

sustainability
sustainable

70 combinations of two or three search string components used for literature research

Life cycle assessment related search terms

Fig. 1 Search string combinations used during the literature research
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2.2 Definition of Relevance Criteria

As this literature review focuses on the evaluation of environmental impacts in a
holistic way, publications were considered if an LCA was conducted. Furthermore,
only peer-reviewed articles were taken into account to ensure a high-quality level. All
types of microbial biosurfactants were included. During the research it became clear
that the very narrow definition of biosurfactant limited to the microbial pathway would
exclude some detailed LCA studies of alkyl polyglycosides (APGs), which are
chemically produced but bio-based surfactants and often referred to as “first genera-
tion biosurfactants” [37]. Therefore, we included these studies in this review.

2.3 Screening Procedure

An illustration of the screening procedure is given in Fig. 2. First, if the search string
produced a high number of results (more than 200 results), the search string was

Combination of search strings 
components

Search string 
sufficiently specific 

(<200 results)?

Screening titles and abstract 
preview

Reading screening

Potentially 
meeting scope 
and relevance 

criteria?

Meeting scope 
and relevance 

criteria?

Content analysis

ca. 85 %

ca. 95 %

Modify 
search string 
combination

70 search strings

>350 abstracts screened

• Only application of biosurfactants
• No LCA or other sustainability assessment

• Only application of biosurfactants
• No LCA or other sustainability assessment

Snowballing 
and reverse 
snowballing

no

yes

yes

Search strings meeting number of results criteria: 
Scopus: 64, Google Scholar: 26

>2.600 titles screened:
Scopus: 461, Google Scholar: 2.165, reverse snowballing: 97

> 350 titles potentially meeting relevance criteria:
Scopus: 139, Google Scholar: 212, reverse snowballing: 6

6 relevant LCA studies on biosurfactants identified:
Scopus: 3, Google Scholar 5, reverse snowballing: 1

Fig. 2 Screening procedure during the systematic literature research
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assumed to be too unspecific. In this case some results were screened to verify the
low share of relevant studies, and the search string was modified to increase the share
of relevant literature. Second, all titles and abstract previews of sufficiently specific
searches were screened to examine if the study could be relevant to the scope of this
literature review. Third, the next step was to read the full abstract and check against
the predefined relevance criteria. Additionally, more relevant articles in the field of
interest were retrieved from the relevant studies’ citations (snowballing) and using
the Scopus online database citation tracking (reverse snowballing).

2.4 Content Analysis Approach

Finally, the identified studies were analyzed in detail. For this content analysis, the
most important LCA characteristics were defined. These LCA characteristics
include:

• biosurfactant type,
• goal and scope,
• functional unit,
• software and database used,
• chosen impact assessment characterization method and categories,
• raw materials,
• production scale and production pathways,
• the field of the surfactant’s application,
• regional and temporal context.

These characteristics were analyzed for each LCA study on biosurfactants,
compared to the other LCA studies’ characteristics and discussed.

3 Results

This section first provides a general overview of the findings during the research for
this publication. Next to numerous studies related to the application of
biosurfactants, two related topics to LCA in the general field of environmental
analyses were identified and a short summary is given for both ecotoxicity and
biodegradability. Finally, an overview is presented for the six identified LCA studies
of biosurfactants.

3.1 General Overview Over the Search Findings

The titles of more than 2,600 documents were screened within this literature
research, consisting of almost 500 search results from Scopus and more than 2,100
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search results from Google Scholar. Most of the literature from the first evaluation
step covers related subjects rather than assessing the environmental sustainability of
the surfactants. Articles in this context focusing solely on the application of
biosurfactants account for a large share of results for the used search string combi-
nations. The potential application of biosurfactants for remediation is widely
discussed in academic literature [38]. Documents focusing on remediation account
for approximately half of the overall search findings.

To illustrate our findings, we created a word cloud of the 50 most frequently
occurring words in title, abstract, and keywords of the 71 documents found on
Scopus using one of the search string combinations, that was specific enough but
still resulted in articles from a broad range of fields (“biosurfactant” AND “environ-
mental impact”), displayed in Fig. 3. The list of words was processed by only
including the most frequently used words linked to the content of the text,
i.e. excluding words without meaning, such as articles, conjunctions, and pronouns.
In a second processing step, words found in singular and plural were aggregated to a
single word. The frequency of each word is represented by the size of the word in the
illustration, with “biosurfactant” having the highest number (267) and “compounds”
the lowest (34). This visualization in Fig. 3 shows many remediation-related words,
such as “bioremediation,” “biodegradation,” “pollution,” and “removal.” Various
research groups reported on biosurfactant-enhanced bioremediation processes
[38, 39]. Biosurfactants can be used in remediation of oil, petroleum, and diesel
spills [40], polycyclic aromatic hydrocarbons [41, 42], and heavy metal contamina-
tions of soil and ground water [43, 44]. The application of biosurfactants increases
the solubility of hydrophobic substances and bioavailability for microorganisms.
Corresponding word cloud listings are, for instance, “heavy,” “metal,” and “soil.”

Next to the application potential of biosurfactants in bioremediation, a further
research field is the use of biosurfactants in tertiary oil recovery discussed in various
articles [45–47]. It is represented by roughly 20% of documents in the search results.
Furthermore, main applications for biosurfactants are represented in the search
findings, for example, as detergents in washing agents and household cleaning

Fig. 3 Word cloud of the top 50 words from abstract and keywords of all results in an exemplary
search string combination of a Scopus search: “biosurfactant” AND “environmental impact”
(71 results)
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products or as emulsifiers in cosmetics [48, 49]. Furthermore, researchers are
investigating anti-bacterial, anti-fungal, and anti-cancer properties of biosurfactants,
which offers opportunities for the use in medicine in the future [18, 50].

Another large share of results deals with new and optimized production processes
for biosurfactants (corresponding words in Fig. 3: “process,” “fermentation”) and
their substance properties (“properties,” “tension”). The use of microorganisms
(corresponding words in Fig. 3: “bacteria,” “biomass,” “fermentation,” “microor-
ganisms,” and “pseudomonas”) as essential feature of biosurfactants is often put in
contrast to the conventional production pathway for surfactants (“chemical”). Sev-
eral articles focus on process optimization to improve the yield and conversion rate
through enhanced production strains, feedstocks, and operating conditions [23, 51–
53]. The use of agricultural side products and waste streams as feedstock for the
biosurfactant production offers potential for cost reduction (corresponding word in
Fig. 3: “waste”).

For the next selection, over 350 articles were considered potentially relevant. This
accounts for approximately 15% of the search results. Due to the information
provided in the abstract, six articles met the predefined relevance criteria investigat-
ing the environmental impact of biosurfactants with an LCA approach.

3.2 Ecotoxicity of Biosurfactants: A Summary

Biosurfactants are described to exhibit a “low toxicity” respectively “lower toxicity”
compared to fossil-based surfactants [24, 25]. However, only few toxicity studies on
specific biosurfactant variants deploying bioassays are available [26–29]. Therefore,
by increasingly applying biosurfactants, a probable entry into the environment has to
be considered and toxicity carefully assessed [26]. Different toxicity impacts ranging
from the environment (ecotoxicity, e.g., phytotoxicity, aquatic or microbial toxicity)
to humans (e.g., general toxicity, reproductive toxicity and carcinogenicity) are
conceivable given the above-mentioned applications [54, 55]. In the scope of this
short summary, we are focusing on ecotoxicity given that biosurfactants may be used
as household detergents and potentially ending up in the environment. Ecotoxicity
has been described as a chemical compounds’ “[. . .] toxic impact to the organisms
living in an environmental compartment like water, sediment or soil, is a substance-
specific property forming an essential element for the environmental safety assess-
ment” [55]. It is emphasized that not only the toxicity of a substance has to be
evaluated but also whether the amount released into the environment is sufficiently
high to have a toxic impact. This classification is underlined by the environmental
risk assessment regulation “REACH” as outlined by the European Chemicals
Agency, ECHA. For risk characterization of a substance, they describe a ratio of
(predicted) environmental concentration (PEC) to the (predicted) no-effect concen-
tration (PNEC) [55, 56]. In the following an exemplary study from 2016 was
selected to illustrate the assays deployed to test ecotoxicity of a (bio)surfactant.
The authors Johan et al. tested the toxicity of mono-rhamnolipid (m-RL) produced
by a recombinant Pseudomonas putida strain using different representative
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bioindicators. Different model organisms were treated with a dilution series of
m-RL. The organisms were used as bioindicators to test for: (1) embryotoxicity
and teratogenicity (Danio rerio), (2) cytotoxicity and growth inhibition (Aspergillus
niger, Candida albicans) as well as (3) immobilization (Daphnia magna) according
to OECD guidelines, international DIN standard and reported by [57–60]. Toxicity
was described by means of LC50 respectively EC50 values which are the lethal
concentration of a substance causing death to 50% of the organisms exposed
respectively the effect concentration causing 50% of immobilization of the organ-
isms exposed. High values represent a lower toxicity. The authors reported a mean
LC50 value of 60 mg/L m-RL for D. rerio, a dose dependent decrease in growth for
C. candida between 17 and 51 g/L, prevention of hyphen formation of A. niger at
68 g/L and an EC50 value of 50 mg/L (after 24 h) respectively 30 mg/L (after 48 h)
for immobilization of D. magna. In Table 1 representative (eco)toxicity studies for
prominent biosurfactants and synthetic surfactants are listed for comparison.

Table 1 Toxicity studies for biosurfactants. LC50 (50% of exposed organisms killed) and EC50

(50% of exposed organisms immobilized) with respective time of exposure to substance (rounded
values)

Surfactant Bioindicator LC50 (1)/EC50 (2) Reference

Biosurfactants

Mono-RL D. rerio 60 mg/L (1; 48 h) [26]

C. albicans >17 g/L, growth inhibition

A. niger 68 g/L, prevention hyphen
formation

D. magna 50–30 mg/L (2; 24–48 h)

RL and sophorolipids “Aquatic
toxicity”

20–77 mg/L (2; N/A) [29, 61,
62]

Surfactin D. magna 170 mg/L (2; 48 h) [28]

Saponin D. magna 128 mg/L (2; 48 h) [28]

Sophorolipids D. magna 11 mg/L (NOECa) [29]

Sophorolipids “Aquatic
toxicity”

29 mg/L (2; 48 h) [37, 63]

Synthetic surfactants

Sodium dodecyl sulfate D. rerio 4 mg/L (1; 96 h) [64]

D. magna 24–29 mg/L (2; 24 h); 18 mg/L
(2, 48 h)

[65, 66]

LAS (C9 – C14)
b D. magna 53–0.7 mg/L (2; 48 h) [67]

LAS (C10 – C18)
b D. magna 30–0.1 mg/L (1; 48 h) [68]

LAE (C14AE1 – C14AE9)
c 0.8–10 mg/L (1; 48 h)

Alkyl polyglycoside (C8) D. magna 557 mg/L (2, 48 h) [69]

Alkyl polyglycoside (C12–

14)
12 mg/L (2; 48 h)

Triton X-100 D. magna 18–26 mg/L (2; 48 h) [70]
aNOEC, no observed-effect concentration
bLAS, linear alkylbenzene sulfonates
cLAE, linear alkyl ethoxylate (CH3 – (CH2)X – (C2H4O)YH); X ¼ 13, Y ¼ 1–9
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3.2.1 Toxicity in LCA

The impact assessment part of an LCA can include toxicity related impact catego-
ries, such as fresh-water ecotoxicity or human toxicity. Generally, the scope of an
LCA study includes the entire product system. Consequently, all substances entering
and leaving the product system (inputs and outputs) are taken into account. For the
evaluation of the environmental impacts, each substance of the inventory is taken
into account by multiplying the emitted amount with the respective characterization
factor [31, 32]. The development of characterization factors is complex and specific
for each impact category. Characterization models include the fate of a substance
once it is emitted into a compartment of the environment (air, water, soil), the
exposure of organisms (e.g., humans) to this substance and its effect once an
organism has been exposed [71, 72]. Especially for toxicity related impact catego-
ries, various differing models are available and calculations are bound to uncer-
tainties [72, 73]. For example, a recent study investigated the availability of
characterization factors for pharmaceutical emissions and their modelling in LCA.
The results of the study revealed several relevant methodological gaps, such as
missing specific impact pathways and a limited availability of characterization
factors in existing toxicity models regarding the studied substances [74].

Therefore, the toxicity of biosurfactants as investigated in the above-mentioned
studies could be included in future LCA studies, if proper characterization factors are
developed. At the same time, evaluating toxicity categories in LCA can shed light on
the impacts of the overall product system in this regard, while keeping in mind the
inherent uncertainties of current modelling approaches. However, LCA cannot be
used to determine the toxicity of a biosurfactant, or any substance for that matter.

3.3 Biodegradability of Biosurfactants: A Summary

As indicated by our search findings, biodegradability is a characteristic often asso-
ciated with biosurfactants. However, studies that actually assess their biodegradabil-
ity are rather limited and were previously described by Klosowska-Chomiczewska
et al. [75]. At the same time antimicrobial characteristics are also attributed to some
biosurfactants [16, 47, 76–80]. While this seems promising for their application in
pharmaceuticals or as antimicrobial agents, it may pose a challenge for biodegrada-
tion at high biosurfactant concentrations. After their release to the environment,
these antimicrobial characteristics of the biosurfactants could prevent or at least
delay a biodegradation [78]. Some described applications include an intended
emission of biosurfactants to the environment during their use phase. One example
is the widely described application for bioremediation, where their amphiphilic
characteristics are used to facilitate the solubilization of hydrocarbons and thus
enable their subsequent biodegradation [24, 47, 81]. Here the biodegradability of
the used biosurfactant itself would be a necessary prerequisite for its application, as it
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stays in the environment. Another example is using biosurfactants as detergents in
cleaning agents or as ingredients for cosmetics [82]. After their use by consumers
and disposal into the public wastewater system, an exposure to a water treatment
plant and afterwards the environment occurs.

The consideration of biodegradability is already taken into account in many
regulations and laws. The European Detergent Regulation (EC) No 648/2004, or
even REACH, imposes minimal degradation limits for a surfactant to be approved
for application as a detergent or as a chemical ingredient in other products, thus
making biodegradability assessments inevitable.

In biodegradability tests, a mineral medium solution or suspension containing the
test substance is inoculated with a mixed population of microorganisms (derived
from activated sludge, sewage effluents (unchlorinated), surface waters and soils, or
from a mixture of these [83] and incubated under aerobic or anaerobic conditions,
while dissolved organic carbon (DOC), CO2 production, or O2 uptake are measured
as indicators for biodegradation. A widely used test method for biodegradability is
standardized by the Organisation for Economic Co-operation and Development
(OECD). According to the OECD guideline, a substance is considered “readily
biodegradable,” when 70% of DOC, or 60% of the theoretical CO2 (equivalent to
C content in the test substance) is measured within a 10-day window in the 28-day
test period under test conditions [83].

As published in part by Klosowska-Chomiczewska et al. [16] and summarized in
Table 2, most examined microbial biosurfactants show biodegradability and in some
cases with rates superior to some representative synthetic surfactants. Variations in
biodegradability results amongst the same biosurfactant group can be attributed to
either different test conditions or different compositions of the used biosurfactant
mixtures. For better comparability it is thus advised to use the standardized OECD
methods for future biodegradability studies.

3.3.1 Biodegradability in LCA

Information on the biodegradability of the biosurfactant is necessary for end-of-life
modelling in LCA, especially when assessing the ecotoxicity of a certain
biosurfactant after its release to the environment, as discussed above. Biodegrad-
ability values would provide the data needed to model the impact of remaining
residues of the biosurfactant after its use phase, whether the release to the environ-
ment is during the use phase (e.g., for bioremediation) or rather after its use phase
(e.g., as an ingredient in detergents or cosmetics).

As shown in our short summary, most examined biosurfactants show ready
biodegradability. This means that �60% of the biosurfactant is biodegraded within
a 10-day window, which is a good indication for an overall low impact on
ecotoxicity. However for a proper assessment of ecotoxicity, detailed kinetics of
biodegradation should be considered.
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3.4 Systematic Analysis of Existing LCA Studies

A total of six articles were found as described above. To illustrate the specific focus
of these studies, we created a second word cloud shown in Fig. 4 with the top
50 words from title, abstract, and keywords of the identified relevant LCA studies for
this review. Therefore, Fig. 4 visualizes keywords in a more specific context
compared to Fig. 3. Out of the top 50 words for each visualization, 13 are the
same, for example “environmental” and “biosurfactant” are similarly prominent
compared to Fig. 3. Moreover, both Figs. 3 and 4 show terms related to the
production of biosurfactants, production organisms, and biosurfactant types. How-
ever, the surrounding words in Fig. 4 show the specific focus of these studies, such as
“life,” “cycle,” “impact,” and “assessment.” Very specific LCA related terms can be
found, such as “functional,” “unit,” and “global,” “warming,” “potential,” or “CO2”.
Furthermore, each study left a distinct “finger print,” one example being the repre-
sentation of Azotobacter vinelandii, a production strain used in one of the studies
[52]. The number of occurrence for each word in Figs. 3 and 4 can be found in the
supporting information.

In the following, the content of all articles is summarized and divided into two
sections. One dedicated to the three articles covering LCA studies of APGs and the
other dedicated to LCA studies of microbial biosurfactants. Table 3 provides an
overview over all 6 investigated articles and the specific boundary conditions of the
conducted LCAs.

3.4.1 LCA Studies of APGs

Three LCA articles of alkyl polyglycosides (APGs) were found. APGs are chemi-
cally derived from renewable resources, mainly tropical oils and a sugar fraction. As

Fig. 4 Word cloud of the top 50 words from title, abstract, and keywords of the six relevant LCA
studies on biosurfactants
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APGs have been commercialized in large quantities for many years, studies on their
characteristics and applications are available as well as LCA studies. For this reason,
these studies can serve as a benchmark for LCAs of other biosurfactants. Figure 5
illustrates the life cycle stages considered in the relevant LCA studies on APGs.

In 2013 Guilbot et al. conducted a cradle-to-grave life cycle assessment for an
APG containing cosmetic cream and a cradle-to-gate life cycle assessment for raw
APG [92]. The APGs are synthesized via Fischer’s glycosylation of fatty alcohols
from palm kernel oil and glucose in France. The data for the synthesis of APG is
based on industrial primary data. Palm trees are assumed to be cultivated in Malaysia
and Indonesia, as well as the oil extraction. The following conversion of raw palm
kernel oil to fatty alcohol via transesterification and hydrogenation in Germany is
also based on industrial primary data. For the saccharide feedstock, glucose is
assumed to be produced from wheat starch in France. The LCA was carried out
using SimaPro 7.3.2 software and the Ecoinvent 2.0 database for background data.
The functional unit for the first investigation was defined as 1,000 kg of packed
APG. In addition, the use of the above-mentioned APG as emulsifier in a cosmetic
cream was investigated in a cradle-to-grave LCA. In this scenario, the functional unit
was defined as the provision of a cosmetic face hydration cream for one person for a
year, which equals 584.0 g of cream containing 29.2 g of APG. In the formulation
process, water, an oil phase, and APG are mixed. Packaging, transportation, store
supply, purchasing by the consumer, and use are also taken into account for this
consideration. Guilbot et al. showed that for the cosmetic cream, the formulation
phase and the use phase are most relevant for the environmental impact. The main
impact in the formulation phase is caused by the oil used in the formulation.
Regarding the use phase, transportation of the cream from stores to consumers
plays an important role. By contrast, the production of APG does not contribute
much to the environmental impact of the final cosmetic cream because of the low
weight share of only 5% in the formulation. Focusing on the production of the APG,
Guilbot et al. showed that raw materials, in particular fatty alcohol from palm kernel
oil, account for the highest environmental impacts in all categories considered. The
environmental impact of the fatty alcohol is induced through land use change in a
great extent and largely depends on the cultivation conditions of palm trees. Uncer-
tainties in the former land use, soil type, yield, and other assumptions more for the
palm tree cultivation result in significant variations on the carbon footprint.

Lokesh et al. introduced a method to produce APGs from only wheat straw
instead of typically used raffinated glucose and vegetable oils [53]. In this new
production process, the feedstock chemicals for the APG synthesis, octacosanol and
levoglucosan, are both produced from wheat straw. First, wax esters are produced
via supercritical CO2 extraction of wheat straw. In a fractionation process,
octacosanol is separated from other fatty alcohols, fatty acids, esters, and dewaxed
straw. In the next process step, dewaxed wheat straw is pelletized. In a low
temperature microwave pyrolysis process with in-situ separation, the anhydro
sugar levoglucosan can be produced from dewaxed straw pellets and used as
feedstock for the glycosylation reaction for APG synthesis. The research group
carried out an LCA to investigate if this new method is more advantageous to
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conventional APG production from an environmental point of view. Therefore, a
functional unit of 1 g APG was defined and the above-mentioned LCA model of
Guilbot et al. was used as a baseline scenario. The APG production in the baseline
scenario is characterized by the use of glucose from wheat starch and palm kernel oil
instead of wheat straw. The cultivation of wheat and production was assumed to take
place in Great Britain. The research group used different literature data sources,
Ecoinvent 2.2 data, other databases and national inventories, as well as experimental
data for a newly developed ball milling process. Environmental impacts were
calculated by spreadsheet calculations for the impact category global warming
potential and subdivided into direct emissions and emissions from land use. The
wheat straw based APG appeared to have a lower direct GWP than the glucose and
palm kernel oil based counterpart, for both direct emissions and land use emissions.
The global warming potential caused by land use change was further investigated.
The study found that the fatty alcohol and starch production caused a higher GWP
than octacosanol and levoglucosan extracted from wheat straw. Furthermore, a
carbon storage credit was given for biochar to the wheat straw based APG. Biochar
is also known as activated wheat straw. It is formed as a side product of the pyrolysis
process. CO2 stored as biogenic carbon in the biochar could potentially be seques-
tered via re-incorporation of the biochar into the soil. Three different change
scenarios were implemented to evaluate emissions from land use. Besides the
LCA impact category GWP, the additional indicators fossil-derived energy con-
sumption, water consumption, and the waste factor (mass of waste per mass of
product) were calculated. In a later study, Lokesh et al. extended their sustainability
analysis by conducting a life cycle costing analysis to quantify the economic
feasibility and resource efficiency of the described production process of APG
from wheat straw [93].

Another LCA study investigated the environmental impact of the APG produc-
tion from wheat straw and fatty alcohols from various sources [94]. Although Brière
et al. used the same raw materials for the APG production as Guilbot et al., the
feedstock for the Fischer glycosylation reaction is produced from wheat straw via a
newly developed acid-assisted ball milling process. Wheat straw crushing and
depolymerization of cellulose and hemicellulose take place at the same time. The
reactive short chain oligosaccharides obtained are directly used in the APG synthesis
with fatty alcohols, without any separation or purification steps. A cradle-to-gate
LCA was conducted for the production of 1,000 kg of APG to revise the environ-
mental impact of this new pathway. The SimpaPro 8.3 software and the Ecoinvent
3.3 database were used and the production was assumed to take place in France. In
the reference scenario, corn starch was used as carbohydrate source for the glyco-
sylation instead. Fatty alcohols were assumed to be obtained from palm kernel oil in
both scenarios. The impact assessment was carried out using the ReCiPe 2016
characterization factors and all 17 midpoint impact categories were taken into
account. The research group found that using this new method, the environmental
impact of the carbohydrate can be significantly reduced. The provision of fatty
alcohols from palm kernel oil causes the largest share in almost all impact categories.
Because of the low share of wheat straw and acid-assisted milling to the impact of
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the APG production, allocation procedure and the electricity mix only have a low
influence on the overall impact. Additionally, three different sources of fatty alco-
hols were compared to the global market mix of fatty alcohols used for the baseline
scenarios, in particular palm kernel oil, coconut oil, and petrochemicals. In general,
coconut oil generated the largest impacts, while palm kernel oil seems to generate
lower impacts. In contrast to the low impacts of wheat straw on the environmental
impact of the final product, the source of fatty alcohols strongly affects the APGs
environmental performance.

Three LCA articles on the environmental impact of APGs, a first generation
biosurfactant, were summarized in this section and an overview is provided in
Table 3. The first study used primary data from industrial APG production (Guilbot
et al.). The two subsequent articles originate from other research groups. They both
used raw materials for the APG production obtained from wheat starch in newly
developed processes. These two new APG production processes based on wheat
straw were both investigated in laboratory experiments. The scaled-up experimental
data was then used for a life cycle assessment analysis to identify hot spots in the
production. Both studies on wheat straw based APG referenced the industrial data
study of Guilbot et al. as a benchmark scenario.

3.4.2 LCA Studies of Microbial Biosurfactants

Following the defined relevance criteria of this literature review, only three LCA
studies of microbial biosurfactants were found. The life cycle stages considered in
these studies are presented in Fig. 6. Their scopes and main findings are shortly
summarized and discussed in the following paragraphs.

In 2017, Baccile et al. presented a multidisciplinary study focusing on acetylated
acidic sophorolipids [37]. The LCA study was conducted in addition to synthesis,
purification and characterization of the produced compounds, which were carried out
by all co-authors simultaneously using the same sample from one batch. For the
LCA, a cradle-to-grave approach was chosen. The application of the surfactant in a
household hand-washing detergent was investigated using the functional units of “1
hand wash” and, additionally, “1 kg of surfactant” for a comparative analysis. While
the focus was put on the impacts from the experimental fermentation and purification
processes of the original 150 L pilot scale, the processes were “assumed at a larger
scale” for the calculations. The exact scale taken into account is not specified by the
authors. The geographical reference is Belgium. The results for midpoint indicators
(ILCD midpoint v1.04 method) showed that the highest impacts in all evaluated
impact categories originate in the production phase, specifically from the substrates
(glucose and rapeseed oil). While the use phase had overall small impacts, the end of
life phase had noticeable impact in some categories, e.g. climate change and
eutrophication. Additionally, using endpoint indicators (ReCiPe endpoint v1.10
Europe H/A) the authors compare their results with reference products ranging
from linear alkylbenzene sulfonate (LAS) to APGs. The total environmental impacts
of the investigated sophorolipids are in the same range as for the reference products.
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It is pointed out that the currently small production volume should be kept in mind,
as the results are shown per volume of product. Baccile et al. conclude that the
environmental impacts depend largely on the raw material input and, therefore, an
optimization of the substrate ratio would lead to significant improvements. More-
over, the use of second-generation raw materials is mentioned as another optimiza-
tion possibility.

An article by Aru and Ikechukwu presents a gate-to gate LCA of biosurfactants
produced by a diculture of Azotobacter vinelandii and Pseudomonas sp. for an
application in bioremediation of oil spills in Nigeria [52]. The specific surfactant
type is not mentioned in the article. The analysis was based on laboratory processes,
including fermentation, purification steps, and recycling of solvents, and linearly
scaled to industrial production of “1,000 kg surfactant” which served as functional
unit. Although the LCI data for the entire process is given, only the metabolic CO2

emissions from the cultivation process are taken into account for calculating the
global warming potential. Similarly, the NH3 emissions are solely used to calculate
the acidification potential. Additionally, the electricity consumption is investigated
separately. Emissions to the environment are calculated assuming a power supply by
natural gas with a 33% conversion efficiency and using emission factors from the
United States Environmental Protection Agency. The authors conclude that the
emissions from the power supply contribute the most to the overall environmental
impacts. Furthermore, they point out that the intended application plays a key role, as
in the investigated case of bioremediation the microorganisms could be directly
applied to the soil avoiding the production of large amounts of surfactant in a
technical process and the associated emissions from the power supply.

Kopsahelis et al. [51] investigated the production of biosurfactants and
bioplasticizers from waste oils within the EU-project Bio-SURFEST [51]. In this
study, the environmental impacts resulting from the production of rhamnolipids and
sophorolipids are analyzed in a gate-to-gate LCA. The fermentation process condi-
tions of a pilot production in Greece and the reference year 2013 are taken into
account. Since the study focused on the synthesis of biosurfactants, the functional
unit is defined as “1 kg of product” and detailed results are provided for the
pre-inoculum, inoculum, and fermentation process stages. Purification of the surfac-
tants was not taken into account in this study. The results are calculated for six
midpoint indicators using the EPD 2008 V1.03 method. The authors point out that
the environmental impacts of the investigated rhamnolipids production are lower
compared to those of the sophorolipids production, due to the shorter duration of the
main fermentation process resulting in lower thermal energy and electricity demand
as well as less CO2 emissions from the metabolic activity of the microorganisms
during fermentation. Furthermore, the obtained results are discussed in context with
the findings of Baccile et al. [37] and Guilbot et al. [92] and found to reach similar
conclusions. It is concluded that the biosurfactant fermentation mainly contributes to
the overall environmental impacts. Furthermore, Kopsahelis et al. [51] point out that
there are only few studies in recent literature that conducted life cycle based
sustainability analyses and, consequently, their importance is highlighted.
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In summary, the three analyzed articles presented LCA results of various micro-
bial biosurfactants using experimental data. While the specific surfactant type was
not mentioned in the limited study by Aru and Ikechukwu, Baccile et al. and
Kopsahelis et al. investigated sophorolipids and rhamnolipids in detail from a life
cycle perspective. While Kopsahelis et al. and Aru and Ikechukwu implemented a
gate-to-gate approach, Baccile et al. evaluated the application of the studied
biosurfactant in a hand-washing detergent and compared it with other conventional
surfactants. Kopsahelis et al. point out that there is a lack of similar studies in current
literature, which is reflected by the fact that Baccile et al. and Aru and Ikechukwu do
not mention other studies in their articles.

4 Discussion of Findings in Published LCA Studies

Even though thousands of documents were screened and abundant literature on the
characteristics and various environmental properties of biosurfactants are available,
surprisingly only two detailed LCA articles of microbially produced surfactants
could be found. As summarized above, ecotoxicity and biodegradability of
biosurfactants are in the focus of researchers and these findings can be useful in
the context of LCA. Contrarily, investigating the overall environmental impacts of
these substances by means of LCA seems to be neglected so far in literature.
Therefore, we broadened the scope of the original selection criteria during our
research to include relevant LCA studies of other bio-based surfactants as well.

The studied surfactants in the investigated studies were microbially produced
rhamnolipids and sophorolipids, as well as bio-based and chemically produced
APGs. Only one study did not specify the biosurfactant type, although the microbial
origin was made clear. It is not surprising that there were more studies found on
APGs (half of the results), due to the fact that they have been commercialized on a
larger scale. This is also reflected by the fact that the only study using industrial data
for the LCA was Guilbot et al. [92] investigating APGs. All other studies used
experimental or pilot-scale data and assumptions or simulations for scale-up calcu-
lations. In the case of the microbially produced biosurfactants, this reflects the fact
that many biosurfactants are still being researched and developed in lab-scale.
Similarly, only half of the investigated studies took into account the intended
application of the surfactant. Furthermore, the applications mentioned vary from
the use in a cosmetic cream or a hand-washing detergent to bioremediation.

Most of the analyzed articles focused on the biosurfactant production process,
more specifically, in the case of microbially produced biosurfactants, on the fermen-
tation process. While the downstream recovery and purification processes of the raw
surfactant from the fermentation broth were not explicitly mentioned in Kopsahelis
et al. [51], Baccile et al. described their ultrafiltration and extraction processes, but
did not discuss the influence on the LCA results in detail [37]. This might be due to
the fact that, in this case, “90% of the impact from the production phase is caused by
the fermentation and [. . .] especially the use of the renewable resources” [37].
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Generally, bio-based raw materials were in the focus of all studies and related
uncertainties discussed, especially concerning tropical oils used for the production of
APGs. In this context, the integration or omission of emissions from land use change
has a high influence on the LCA results, as shown in the investigated studies.
Furthermore, other associated topics, such as the loss of biodiversity, are relevant
when comparing the environmental impacts of different types of surfactants. Due to
these complex problems associated with tropical oils, waste streams are considered a
more sustainable alternative. This fact is reflected by half of the studies: two studies
that investigated wheat straw as a raw material for APG production and one study
investigating waste oil for rhamnolipid and sophorolipid production.

Almost all studies were published in the last few years (2017 and 2018) showing
the recent development of this research field. The exception of the earlier study by
Guilbot et al. [92] became a sort of benchmark study. Another common attribute of
almost all studies is their geographical reference. All studies clearly stating the
location mentioned European countries (France, Greece, Belgium and Great Britain)
and took this into account for the LCA modelling. Although Aru and Ikechukwu
[52] mention Nigeria as the location of the intended application of their
biosurfactant, it is unclear if this fact was taken into account for the LCA modelling.

The software applied to conduct LCA in three of the investigated studies was
SimaPro, and therefore the most frequently used software in the investigated LCA
studies of biosurfactants. One other study was carried out using spreadsheet calcu-
lations due to limitations of commercially available LCA software [53]. For two
studies the used software was not further specified. The Ecoinvent database provided
life cycle inventories for the background system for the majority of the investigated
studies, except for one study where software and database were not specified.

A wide variety of impact assessment methods were used in the investigated
studies, such as ReCiPe, ILCD, Impact 2000+, Eco Indicator, and EPD characteri-
zation factors for impact assessment at midpoint level. Baccile et al. additionally
assessed environmental impacts at endpoint level based on weighted sums of
midpoint impacts and used these to compare their results to a number of other
surfactants. The results are given as absolute values in some studies, whereas several
studies give the relative contribution of particular process steps to the overall impact
without going into detail. This might be caused by the experimental character of the
production process for microbial biosurfactants. At this early development stage,
LCA is an excellent tool to identify the optimization potentials of the newly
developed process. Thus, environmental hotspots can be found and improved before
going into scale-up. The functional unit was defined considerably consistent by mass
unit of surfactant (e.g., “1,000 kg of surfactant”) in the investigated studies. Since the
application of the surfactant was not specified in most cases, biosurfactants might be
used in different products. Therefore, the function of a product is hard to predict and
most studies’ scope was defined as cradle-to-gate or gate-to-gate. Only two cradle-
to-grave LCA studies were available. In these two cases, the quantification of the
function of the biosurfactant containing product was possible. While Guilbot et al.
took a closer look at the use of APG as emulsifier in cosmetic cream, which
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represents a commercial use case of APGs already, Baccile et al. considered
sophorolipids in a hand-washing detergent application.

Some studies concluded that the number of LCA studies of biosurfactants is
limited, which is also in line with our findings. Furthermore, only one study
compared their results to other surfactants. Baccile et al. showed that already
small-scale production conditions (i.e., estimated upscaling from 150 L pilot scale)
resulted in similar impacts compared to conventional detergents as reference prod-
ucts, such as bio-based soap, fossil-derived linear alkylbenzene sulfonate and
oleochemically produced ethoxylated alcohol among others [37]. Future optimiza-
tion seems likely and the authors mention the use of second-generation raw materials
and increased efficiency of the production process in this regard. This fact can only
encourage more researchers to conduct and publish LCA studies in the future.

The presented work provides a detailed overview of the published LCA studies
on microbial biosurfactants based on a systematic literature research. Nevertheless
there are still some limitations regarding the comparability of the investigated studies
and the derivation of significant findings or recommendations, for example regarding
a comparison of microbial biosurfactants with fossil-derived surfactants. In order to
facilitate such a comparison, firstly, goal and scope of the LCA studies require a high
level of similarity. The definition of the functional unit and cut-off criteria are crucial
determinants for the LCA. Moreover, the selection of life cycle inventory databases
for background processes and the impact assessment methods applied strongly affect
the results of the impact assessment. Besides methodological aspects of the life cycle
assessment, the development stages and production scales of microbial surfactants
differ strongly from the production of conventional surfactants and, therefore, offer
limited comparability. However, a study of conventional surfactants performed
within the ERASM SLE project [34] provides a proficient overview on life cycle
assessment of conventional surfactants and their precursors, of which some are also
relevant for microbial surfactant production. Furthermore, Rebello et al. compare the
outcomes of LCA studies of specific conventional surfactants and biosurfactants and
highlight the relevance of LCA for environmentally friendly surfactant production
[95]. The article finds that LCA of surfactants require the inclusion of appropriate
impact factors and points out the need for suitable and consistent data as well as LCA
expertise to perform a reliable comparison of different surfactants [95].

All in all, to perform a comprehensive LCA, it is required to take into account all
life cycle stages, such as production, use phase, and disposal. Due to the early stage
of their development, it is currently difficult to specify the use of microbial
biosurfactants in final products and their corresponding disposal pathways and,
therefore, to assess the use and end-of-life phases in LCA. Additionally, it is
necessary for a comprehensive LCA to address a wide range of environmental
impacts by assessing various impact categories in the impact assessment. This is
essential to identify hotspots in the product life cycle, since a specific production step
might correspond with high impacts in one impact category, while other production
steps cause significant impacts in others. This way, a shift of burdens between impact
categories and life cycle stages can be identified.
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5 Conclusions and Research Perspectives

This study provided a detailed overview of existing LCA studies of biosurfactants by
means of a systematic literature research. Over 2,500 documents were screened in
this process leading to six published peer-reviewed LCA studies that were investi-
gated and summarized in detail in this work. During the search process it became
clear that biosurfactants are often considered to be environmentally friendly, due to
the use of natural resources, their low ecotoxicity, and high biodegradability. These
properties are taken into account when conducting LCA. However, they are not
standalone indicators for sustainable products, but rather input parameters for a
comprehensive sustainability assessment. Studies that exclusively investigated
ecotoxicity or biodegradability of biosurfactants were not the primary focus for
this review, though playing an important role for assessing environmental impact
of biosurfactants. For this reason, ecotoxicity and biodegradability of biosurfactants
were identified as relevant topics and discussed in short summaries as part of
this work.

Regarding LCA studies of biosurfactants it can be concluded that the number of
available literature is very limited. Furthermore, a comparison of the results of the
investigated studies was not possible, due to various above-mentioned reasons. First,
the scope of the studies varied from gate-to-gate to cradle-to-grave. Second, partial
comparisons were not possible, because the results were calculated using various
methods and only in some cases presented in absolute values. Third, the applications
varied widely adding to the difficulty of a reasonable comparison. Taking the
application into account is highly relevant to be able to make concrete statements
about the environmental effects of a specific surfactant. Nevertheless, it became clear
that the main influence on the environmental impacts in the production phase of the
investigated biosurfactants can be attributed to the raw material inputs and energy
demand during the fermentation processes.

Although only few types of biosurfactants were in the focus of the investigated
studies, the overall importance of second- and third-generation feedstock for their
production became clear. Especially in the context of APGs, the replacement of
tropical oils, which are associated with burdens caused by emissions from land use
change and the loss of biodiversity, can be recommended from an environmental
point of view.

To the best of the authors’ knowledge, this review is the first to provide a
systematic and detailed overview of LCA studies of biosurfactants. At the same
time, only two detailed studies of microbially produced surfactants could be found.
Consequently, the need for implementing more LCA studies becomes clear. The
findings of the investigated studies give promising insights into lab-scale processes.
While individual environmental hotspots could be identified, the need for more
transparency and detailed reporting of LCA results became clear. These are required,
in order to provide comparable results and enable broader recommendations regard-
ing sustainable biosurfactant production and use in the future. Furthermore, to
implement sustainable processes on industrial scale and find suitable applications
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for biosurfactants, LCA studies can be a useful tool, as they provide a holistic
overview over the life cycle of a product and its environmental impacts on various
levels. In this regard, this study provided an overview of key findings in existing
studies and pointed out relevant research gaps. On this basis, future research can
contribute to closing these gaps and leading to truly sustainable biosurfactants.
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