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Abstract. A multiresolution finite wavelet domain method, that utilizes Dau-
bechies wavelet and scaling functions for the hierarchical approximation of state
variables, is presented. The multiresolution approximation yields a hierarchical
set of equations of motion involving the coarse component of generalized dis-
placements, while additional equations of finer components are subsequently
added. A coarse solution is first calculated, and finer solutions can be sequen-
tially superimposed on the coarse solution until convergence to the final solution
is achieved. Moreover, it is shown that each resolution can model specific
bandwidths of wavenumbers, thus providing a unique capability to separate
coexisting wave modes and detect converted and reflected waves in the presence
of damage. Two wavelet-based beam elements are explored, the first encom-
passes the Timoshenko shear beam theory and the second a high-order layerwise
laminate theory for the accurate prediction of both symmetric and antisymmetric
guided waves. Numerical results illustrate the inherent property of the method to
a priori localize and isolate coexisting guided wave modes and their conver-
sions, induced by different material regions and weak or debonded layer inter-
faces, thus demonstrating the method’s intrinsic capabilities towards the design
of wave-based SHM systems.

Keywords: Multiresolution analysis � Guided waves � Composite beams �
Damage detection � Daubechies wavelets � Transient analysis

1 Introduction

During the last decades, the transient dynamic response of composite structures is
intensively explored in Structural Health Monitoring (SHM) applications. In particular,
guided wave-based SHM is intensively investigated due to the relatively cheap oper-
ational cost, the capability to scan large areas and the ability to detect small
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imperfections/damage [1]. The design of wave-based SHM systems requires powerful
and efficient simulation techniques because of the highly transient nature of such
physical problems and the complexity of the involved structures.

Traditional computational methods such as the Finite Element, Boundary Element
and Finite Difference method need really dense spatial and temporal discretization for
the accurate solution of such problems and do not provide any additional functionalities
or links with damage identification techniques. On the other hand, wavelet-based
computational methods share the same basis functions as many damage
detection/feature extraction schemes [2, 3]. Various wavelets like the B-spline or
Daubechies have been employed for the development of wavelet-based methods for
static and dynamic simulations [4–8]. Those methods employ only the scaling func-
tions of each wavelet family, so they don’t take advantage of the multiresolution
(MR) property that several wavelet families possess.

However, during the past few years, the implementation of the multiresolution
approach in computational methods for mechanics has been reported. Wang et al. have
constructed finite element multiwavelets using linear Lagrange and cubic Hermite
scaling functions that showed very good results in static analyses of rods and beams
[9]. Liu et al. have proposed a multiresolution wavelet Galerkin method using Dau-
bechies wavelets for the static solution of 2D problems [10]. Theodosiou has developed
a methodology to design custom, non-uniform B-Spline wavelets with orthogonal
derivatives for the hierarchical solution of static problems [11]. Liu et al. have created a
multiresolution interpolation Galerkin approach for targeted solution enrichment of
static problems [12]. Shen et al. have utilized multiresolution B-spline wavelet on the
interval (BSWI) element for the prediction of dispersion characteristics for 2D elastic
waves [13].

Most of the aforementioned methods are confined to static or steady-state dynamic
simulations and don’t address highly transient wave propagation analyses. Also, to the
best of our knowledge, none of the previous or the other well-established numerical
methods have demonstrated inherent damage detection properties that can assist the
effective design of SHM systems. Recently, the authors introduced the Multiresolution
finite wavelet domain (MR-FWD) method for the rapid simulation of elastic wave
propagation in rods, 2D plane strain solids [14] and Timoshenko beams [15]. The MR-
FWD method exhibits critical computational gains by exploiting the non-converged
solution to achieve convergence and evinces extra functionalities such as the ability to
leave the mesh practically unchanged when increasing the order of interpolation (p-
method) because of its meshless character.

In this work, the MR-FWD method is expanded with the incorporation of a high
order layerwise laminate theory [16, 17] for the accurate prediction of higher sym-
metric and antisymmetric guided wave modes, even at thick composites such as
sandwich configurations. Additionally, the performance and enhanced capabilities of
the MR-FWD method are showcased and quantified in the simulation of symmetric and
antisymmetric guided waves in laminated composite beams. The numerical results are
focused on the inherent localization and isolation properties of the method.
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2 Theoretical Background

2.1 Daubechies Wavelets and the Multiresolution Approximation

The Daubechies (DB) wavelet family consists of compactly supported orthogonal
scaling functions (SFs) uðxÞ and wavelet functions (WFs) w(x). Both SFs and WFs are
required to form the multiresolution approximation [18]. Their basic mathematical
properties are outlined:

Compact Support. Both SFs and WFs are bounded within an interval, which spans
over a compact support domain of grid points [0, 2 L − 1], where L is the order of the
SF/WF. For the sake of conciseness, DB WFs/SFs of order L are termed as DBL. In
Fig. 1 the DB8 SFs/WFs and their frequency content are shown.

Orthogonality. The integer translates of the SFs/WFs are orthogonal to each other, so
they form an orthogonal basis in the Lebesgue space.

Z 1

�1
uðx� iÞuðx� jÞdx ¼ di j;

Z 1

�1
wðx� iÞwðx� jÞdx

¼ di j;
Z 1

�1
uðx� iÞwðx� jÞ ¼ 0 ð1Þ

Vanishing Moments. The number of vanishing moments indicates the degree of
polynomial that can be exactly approximated by SF/WF. DB SFs/WFs of order L have
L vanishing moments and can exactly represent polynomials up to L-1 order.

Two Scale Relation/Dilation Property. The dilation property constitutes the basis for
the MR analysis. It is provided by the dilation equations,

uð2jxÞ ¼
ffiffiffi
2

p
�
X2L�1

k¼0

hk � uð2jþ 1x� kÞ;wð2jxÞ ¼
ffiffiffi
2

p X2L�1

k¼0

ð�1Þkh2L�k�1 � uð2jþ 1x� kÞ ð2Þ

where hk is the set of 2 L filter coefficients, and j is the resolution or scale.
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Fig. 1. Example of Daubechies SFs/WFs of order L = 8, DB8 (left), and their respective
frequency content using Fourier transform (right)
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2.2 The Multiresolution Finite Wavelet Domain Method

In this subsection, the generalized approximation of state variables and the formulation
of the MR-FWD are briefly described. The one-dimensional MR reconstruction
approach can be visualized in Fig. 2.

In Fig. 3, a beam structure that is divided into 2 segments using a uniform grid of 3
nodes is depicted. Additional 2 L-2 grid points are introduced to the left side of the
physical domain, forming the wavelet domain. The generalized displacement approx-
imation in the segment between 2 grid points, for R resolutions is expressed as:

uLðx; tÞ ¼
X0

n¼�ð2L�2Þ
û0CnðtÞuðn� nÞþ

X0
n¼�ð2L�2Þ

f
XR
S¼0

ûSFnðtÞwð2sn� nÞg ð3Þ

where û0Cn are the coarse wavelet coefficients at resolution 0, ûSFn are the fine wavelet
coefficients at resolution S. The support domain of the MR approximation of the field
variables in Eq. (3) is not confined in a finite volume or element, therefore, it yields a
meshless method. For the shake of brevity, the term “element” is used to describe the
segment between 2 grid points. A normalized local coordinate system n, is associated
with each element (Fig. 3). In Fig. 2 it is shown that the MR procedure starts with the
coarse solution (C0), and then that solution is incrementally enriched by the fine
solutions of each resolution (Fi).

Fig. 2. Schematic diagram of the MR reconstruction procedure

Fig. 3. Discretization of the wavelet domain for two DB3 MR wavelet-based elements
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Single-Resolution or Resolution 0 (C0). The C0 solution is obtained employing only
the DB SFs and is the same as the FWD method. The equation of motion is:

½MCC�€̂uCCðtÞþ ½KCC�ûCCðtÞ ¼ FCðtÞ ð4Þ

where ûCC are the generalized wavelet coefficients that correspond to the degrees of
freedom of the coarse approximation, ½KCC� and ½MCC� are the coarse resolution stiff-
ness and mass matrices, and FC is the coarse resolution load vector.

Resolution 1 (C1). According to the MR process, the fine solution at resolution 0 (F0)
needs to be calculated and added to the coarse solution at resolution 0 (C0) so as to
obtain C1 solution. The MR solution system is:

MCC 0
0 MFF

� �
€̂uCðtÞ
€̂uFðtÞ

� �
þ KCC KCF

KFC KFF

� �
ûCðtÞ
ûFðtÞ

� �
¼ FCðtÞ

FFðtÞ
� �

ð5Þ

where ûF are the generalized fine wavelet coefficients, ûC are the generalized coarse
wavelet coefficients of the coupled equations of motion for resolution 1, ½KFF � and
½MFF � are the fine resolution stiffness and mass matrices, respectively, and FF is the fine
resolution load vector. It should be noted that ûC is not equal to ûCC because of the
stiffness coupling terms, ½KCF � and ½KFC�. On the other hand, ½MCF � and ½MFC� are equal
to zero because of the cross-orthogonality between SFs and WFs, so the total mass
matrix is resolution-decoupled. Moreover, due to the orthogonality of SFs and WFs,
½MCC� and ½MFF � are diagonal and consistent.

The hierarchical MR approach is a two-step process. First, the C0 solution (single
resolution) is obtained. Then, to take advantage of the already calculated C0 solution,
the component ûC at resolution 1 (Eq. 5) is set as ûC ¼ Dûþ ûCC. The Dû is the
residual between ûC and ûCC. So, Eq. 5 can be expressed as:

MCC 0
0 MFF

� �
D€̂uðtÞ
€̂uFðtÞ

� �
þ KCC KCF

KFC KFF

� �
DûðtÞ
ûFðtÞ

� �
¼ 0

FFðtÞ � KFCûCCðtÞ
� �

ð6Þ

Employing central differences explicit integration, the diagonality of the total mass
matrix results in two uncoupled equations for the prediction of Dû and ûF . The total
resolution 1 solution (C1) is given as û1CC ¼ û0CC þDû0 þ û0F . For the interested reader,
the hierarchical MR process for resolution S is meticulously described in [14, 15].

2.3 High-order Layerwise Laminate Theory

A High-order Laminate Layerwise Theory (HLLT) is encapsulated in the MR-FWD
method. The kinematic assumptions of the HLLT [16, 17] are expressed as:

uðx; z; tÞ ¼ u1ðx; tÞW1ðfÞþ u2ðx; tÞW2ðfÞþ cxðx; tÞW3ðfÞþ dxðx; tÞW4ðfÞ
wðx; z; tÞ ¼ w1ðx; tÞW1ðfÞþw2ðx; tÞW2ðfÞþ czðx; tÞW3ðfÞþ dzðx; tÞW4ðfÞ ð7Þ
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where superscript i ¼ 1; 2 denotes the bottom and top surface of a discrete layer with
regards to the axial displacements (u) and vertical displacements (w), c and d are hyper-
rotations, and the interpolation functions W fð Þ are given as W1 ¼ 1� fð Þ=2,
W2 ¼ 1þ fð Þ=2,W3 ¼ � f2 � 1

� �
=2 andW4 ¼ �f f2 � 1

� �
=6 in which f ¼ 2z=h is the

non-dimensional thickness variable.

3 Numerical Results

3.1 Composite Beam with First-order Shear Kinematic Assumptions

The localization and isolation capabilities of the MR-FWD method are initially
demonstrated in the simulation of guided waves in a damaged laminated beam modeled
with Timoshenko wavelet-based beam elements. The formulation of the wavelet-based
Timoshenko beam elements is described in [15]. The laminated beam is 1 m long, with
a lay-up of [0/90/0/90]S carbon/epoxy plies, has a cross section of 10−4 m2, is clamped
at its left edge and transversely excited at its center by a 5-cycle tone burst with 50 kHz
central frequency. The damage is assumed to induce 80% degradation to all the elastic
moduli. The damaged area ranges from 0.5714 m < x < 0.6714 m. The mechanical
properties of the involved materials are shown in Table 1.

The MR analysis starts with the SR approximation (C0) that involves 70 DB8
elements. The vertical displacement field of each component is shown in spatiotem-
poral surface plots (Fig. 4). Those plots depict the evolution of the wave propagation
phenomenon both in space and time. It is captivating to observe that the C0 solution
(w0

CC) does not enter the damaged region because of the higher wavenumber content
inside the damage (Fig. 4a). The reflection at the damage interface is clear, and it seems
that there is no transmitted wave inside the damage or beyond it. However, the residual
term Dw0 can predict the wave packet inside the healthy region at the right side of the
damage (x > 0.6714 m) but does not participate in the solution inside the damage
(Fig. 4b). The residual term mainly rectifies the erroneously dispersive coarse solution.
The wave packet in the damage span is isolated by the fine component w0

F(Fig. 4c). In
that way, the participation of the w0

CC and Dw0 solution at the resolution 1 solution
(w1

CC or C1) are confined in the healthy region, whereas the solution inside the damage
has essentially emanated from the w0

F solution (Fig. 4d). The performance of the coarse
and fine solutions originates from the low-pass filter behavior of the DB SFs and the
band-pass filter behavior of the DB WFs (Fig. 1).

Table 1. Mechanical properties of the carbon/epoxy plies

E11 (GPa) E22 = E33 (GPa) G12 = G23 = G13 (GPa) v12 = v13 = v23 q (kg/m3)

120 7.9 5.5 0.3 1580
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3.2 Composite Beam Using HLLT

The MR-FWD method is extended with the incorporation of high-order layerwise
expansion, enabling the efficient simulation of both symmetric and antisymmetric wave
modes, the enforcement of surface shear excitation and the modelling of partially
embedded delaminations (PED) [19]. A guided wave propagation case in a delaminated
composite beam modelled with HHLT is showcased. The unidirectional laminated strip
is 0.4 m long, with total thickness of 1 mm and width of 20 mm. It is clamped at its left
edge and transversely excited at its top and bottom face at x = 0.2 m by a 5-cycle tone
burst with 200 kHz central frequency, so as to generate an A0 wave. The delamination
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Fig. 4. Predicted transverse displacement field for each component till resolution 1: a) coarse
component, b) residual component, c) fine component, d) total C1 solution
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is modelled as a PED, namely a discrete layer with 0.1 mm thickness and material
properties that are degraded to the 1% of the pristine carbon/epoxy (Table 1). The
delaminated area ranges from 0.24 m < x < 0.4 m, as shown in Fig. 5 with the dark
grey.

The composite beam is modelled with three discrete layers, so as to fully represent
the independent motion of the top and bottom sublaminate in the delaminated region.
The MR analysis involves 260 DB6 elements and goes up to resolution 1. The axial
and vertical displacement field of the top face of the beam structure are illustrated in
Fig. 6 for resolution 1 solution (C1). In view of the vertical displacement (W), the
delamination can be perceptible by the reflected A0 wave packet. When it comes to the
axial displacement (U), it is obvious that an S0 wave is generated after the incident A0

wave enters the delaminated region. The S0 wave exhibits a smaller wavenumber.

The axial strains at the top and bottom surface of the beam are shown in Fig. 7. It is
observed that the fine solution (Fig. 7 Right) isolates the A0 wave packets due to its
higher wavenumber and does not capture the S0 wave at all, because of the already

Fig. 5. Geometrical representation of the delaminated composite strip
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Fig. 6. Axial (U) and vertical (W) displacement field of the top surface of the composite beam at
t = 0.05 ms (C1 solution)
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mentioned filter-like behavior of the DB SFs/WFs. That can result to additional
detection features even if the time series from a single sensor are used.

In Fig. 8, the axial strain of the top and bottom surface is presented at x = 0.26 m.
The noted difference between the total (C1) and fine (F0) solution signal (Fig. 8 Left)
indicates the presence of the S0 wave and can be used to extract the time of flight of the
S0 and A0 wave. Therefore, the proposed method provides a baseline-free detection
feature that emanates from the multiple resolution components of the total solution.

4 Conclusions

In this work, the localization and isolation capabilities of the MR-FWD method are
demonstrated in the simulation of guided wave propagation in damaged composite
beams. The MR-FWD method is expanded with the inclusion of a high-order laminate
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Fig. 7. Axial strain fields of the top (superscript: 2) and bottom (superscript: 1) surface of the
beam at t = 0.05 ms. Left: C1 solution. Right: F0 solution

0 1 2 3 4 5
Time [s] 10-5

-4

-2

0

2

4 10-9

ε1
2 C1

ε1
1 C1

S0 wave

0 1 2 3 4 5
Time [s] 10-5

-1

-0.5

0

0.5

1 10-9

ε1
2 F0

ε1
1 F0
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layerwise theory for the though-thickness approximation that permits the efficient
modelling of symmetric and antisymmetric guided waves and partially embedded
delaminations. The presented case studies manifest the remarkable detection capabil-
ities of the proposed method both in spatial and temporal domain. Consequently, either
with full-field measurements or with point sensors, the proposed method is able to
provide additional damage detection information. Future work may focus on the pro-
cessing of experimental data for the exploitation of the enhanced capabilities of the
MR-FWD method in the design of SHM systems.

References

1. Ostachowicz, W., Kudela, P., Krawczuk, M., Zak, A.: Guided Waves in Structures for SHM
(2012)

2. Chui, C.: An Introduction to Wavelets. Academic Press, San Diego, CA (1992)
3. Su, Z., Ye, L.: Identification of Damage Using Lamb Waves: From Fundamentals to

Applications. Springer, London (2009)
4. Xiang, J.W., Chen, X.F., He, Z.J., Dong, H.B.: The construction of 1D wavelet finite

elements for structural analysis. Comput. Mech. 40, 325–339 (2007). https://doi.org/10.
1007/s00466-006-0102-5

5. Zuo, H., et al.: Analysis of laminated composite plates using wavelet finite element method
and higher-order plate theory. Compos. Struct. 131, 248–258 (2015). https://doi.org/10.
1016/j.compstruct.2015.04.064

6. Nastos, C.V., Theodosiou, T.C., Rekatsinas, C.S., Saravanos, D.A.: A finite wavelet domain
method for the rapid analysis of transient dynamic response in rods and beams. C - Comput..
Model. Eng. Sci. 107, 379–409 (2015). https://doi.org/10.3970/cmes.2015.107.379

7. Nastos, C.V., Theodosiou, T.C., Rekatsinas, C.S., Saravanos, D.A.: A 2D Daubechies finite
wavelet domain method for transient wave response analysis in shear deformable laminated
composite plates. Comput. Mech. 62, 1187–1198 (2018). https://doi.org/10.1007/s00466-
018-1558-9

8. Nastos, C.V., Saravanos, D.A.: A finite wavelet domain method for wave propagation
analysis in thick laminated composite and sandwich plates. Wave Motion 95, 102543
(2020). https://doi.org/10.1016/j.wavemoti.2020.102543

9. Wang, Y., Chen, X., He, Y., He, Z.: The construction of finite element multiwavelets for
adaptive structural analysis. Int. J. Numer. Meth. Biomed. Eng. 27(4), 562–584 (2011).
https://doi.org/10.1002/cnm.1320

10. Liu, Y., Liu, Y., Cen, Z.: Multi-scale Daubechies wavelet-based method for 2-D elastic
problems. Finite Elem. Anal. Des. 47, 334–341 (2011). https://doi.org/10.1016/j.finel.2010.
11.004

11. Theodosiou, T.C.: Derivative-orthogonal non-uniform B-Spline wavelets. Math. Comput.
Simul. 188, 368–388 (2021). https://doi.org/10.1016/j.matcom.2021.04.012

12. Liu, X., Liu, G.R., Wang, J., Zhou, Y.: A wavelet multiresolution interpolation Galerkin
method for targeted local solution enrichment. Comput. Mech. 64, 989–1016 (2019). https://
doi.org/10.1007/s00466-019-01691-6

13. Shen, W., Li, D., Ou, J.: Dispersion analysis of Multiscale wavelet finite element for 2D
elastic wave propagation. J. Eng. Mech. 146, 1–17 (2020). https://doi.org/10.1061/(ASCE)
EM.1943-7889.0001756

98 D. Dimitriou et al.

https://doi.org/10.1007/s00466-006-0102-5
https://doi.org/10.1007/s00466-006-0102-5
https://doi.org/10.1016/j.compstruct.2015.04.064
https://doi.org/10.1016/j.compstruct.2015.04.064
https://doi.org/10.3970/cmes.2015.107.379
https://doi.org/10.1007/s00466-018-1558-9
https://doi.org/10.1007/s00466-018-1558-9
https://doi.org/10.1016/j.wavemoti.2020.102543
https://doi.org/10.1002/cnm.1320
https://doi.org/10.1016/j.finel.2010.11.004
https://doi.org/10.1016/j.finel.2010.11.004
https://doi.org/10.1016/j.matcom.2021.04.012
https://doi.org/10.1007/s00466-019-01691-6
https://doi.org/10.1007/s00466-019-01691-6
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001756
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001756


14. Nastos, C.V., Saravanos, D.A.: Multiresolution Daubechies finite wavelet domain method
for transient dynamic wave analysis in elastic solids. Int. J. Numer. Methods Eng. 122,
7078–7100 (2021). https://doi.org/10.1002/nme.6822

15. Dimitriou, D.K., Nastos, C.V., Saravanos, D.A.: Multi-resolution finite wavelet domain
method for fast transient dynamic analysis in homogeneous and heterogeneous rods and
beams. In: 8th International Conference on Computational Methods in Structural Dynamics
and Earthquake Engineering, pp. 1458–1475 (2021). https://doi.org/10.7712/120121.8573.
19594

16. Plagianakos, T.S., Saravanos, D.A.: Higher-order layerwise laminate theory for the
prediction of interlaminar shear stresses in thick composite and sandwich composite plates.
Compos. Struct. 87, 23–35 (2009). https://doi.org/10.1016/j.compstruct.2007.12.002

17. Rekatsinas, C.S., Nastos, C.V., Theodosiou, T.C., Saravanos, D.A.: A time-domain high-
order spectral finite element for the simulation of symmetric and anti-symmetric guided
waves in laminated composite strips. Wave Motion 53, 1–19 (2015). https://doi.org/10.1016/
j.wavemoti.2014.11.001

18. Daubechies, I.: Ten Lectures on Wavelets. SIAM (1992)
19. Siorikis, D.K., Rekatsinas, C.S., Chrysochoidis, N.A., Saravanos, D.A.: A cubic spline

layerwise spectral finite element for robust stress predictions in laminated composite and
sandwich strips. Eur. J. Mech. A/Solids 91, 104362 (2022). https://doi.org/10.1016/j.
euromechsol.2021.104362

Guided Waves and Damage Localization in Composite Strips 99

https://doi.org/10.1002/nme.6822
https://doi.org/10.7712/120121.8573.19594
https://doi.org/10.7712/120121.8573.19594
https://doi.org/10.1016/j.compstruct.2007.12.002
https://doi.org/10.1016/j.wavemoti.2014.11.001
https://doi.org/10.1016/j.wavemoti.2014.11.001
https://doi.org/10.1016/j.euromechsol.2021.104362
https://doi.org/10.1016/j.euromechsol.2021.104362

	Enhanced Simulation of Guided Waves and Damage Localization in Composite Strips Using the Multiresolution Finite Wavelet Domain Method
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Daubechies Wavelets and the Multiresolution Approximation
	2.2 The Multiresolution Finite Wavelet Domain Method
	2.3 High-order Layerwise Laminate Theory

	3 Numerical Results
	3.1 Composite Beam with First-order Shear Kinematic Assumptions
	3.2 Composite Beam Using HLLT

	4 Conclusions
	References




