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Abstract. Delivering a reproducible environment along with complex
and up-to-date software stacks on thousands of distributed and het-
erogeneous worker nodes is a critical task. The CernVM-File System
(CVMFS) has been designed to help various communities to deploy soft-
ware on worldwide distributed computing infrastructures by decoupling
the software from the Operating System. However, the installation of
this file system depends on a collaboration with system administrators
of the remote resources and an HTTP connectivity to fetch dependencies
from external sources. Supercomputers, which offer tremendous comput-
ing power, generally have more restrictive policies than grid sites and
do not easily provide the mandatory conditions to exploit CVMFS. Dif-
ferent solutions have been developed to tackle the issue, but they are
often specific to a scientific community and do not deal with the prob-
lem in its globality. In this paper, we provide a generic utility to assist
any community in the installation of complex software dependencies on
supercomputers with no external connectivity. The approach consists in
capturing dependencies of applications of interests, building a subset of
dependencies, testing it in a given environment, and deploying it to a
remote computing resource. We experiment this proposal with a real use
case by exporting Gauss - a Monte-Carlo simulation program from the
LHCb experiment - on Mare Nostrum, one of the top supercomputers of
the world. We provide steps to encapsulate the minimum required files
and deliver a light and easy-to-update subset of CVMFS: 12.4 Gigabytes
instead of 5.2 Terabytes for the whole LHCb repository.

Keywords: Supercomputer · Software distribution · Automation ·
CVMFS · Monte Carlo simulation

1 Introduction

To study the constituents of matter and better understand the fundamental
structure of the universe, HEP collaborations rely on complex software stacks
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and a worldwide distributed system to process a growing amount of data: the
World Wide LHC Computing Grid (WLCG) [23]. The infrastructure involves
170 computing centers, 1 million cores and 1 exabyte of storage spread around
42 countries.

Delivering a reproducible environment along with up-to-date software across
thousands of heterogeneous computing resources is a major challenge: Buncic
et al. designed CernVM and CVMFS (CernVM-File System) [16] to tackle it by
decoupling the software from the Operating System.

CernVM [20] is a thin Virtual Software Appliance of about 150 Mb in its
simplest form. It supports a variety of hypervisors and container technologies
and aims to provide a complete and portable user environment for developing
and running HEP applications on any end-user computer and Grid Sites, inde-
pendently of the underlying Operating Systems used by the targeted platforms.

CVMFS [20] is a scalable and low-maintenance file system optimized for
software distribution. CVMFS is implemented as a POSIX read-only file system
in user space. Files and directories are hosted on standard web servers and
mounted on the computing resources as a directory. The file system performs
aggressive file-level caching: both files and file metadata are cached on local disks
as well as on shared proxy servers, allowing the file system to scale to a large
number of clients [16].

This approach has been mainly adopted by the HEP community and is now
getting users from various communities according to Arsuaga-Ŕıos et al. [3]. In
a few years, it has become the standard software distribution service on Grid
Sites of WLCG. Nevertheless, computing infrastructure and funding models are
changing, and national science programs are consolidating computing resources
and encourage using cloud systems as well as supercomputers, as Barreiro et al.
explain [5]. CVMFS developers have extended the features of the file system and
have provided additional tools to support clouds [36,46] and supercomputers [9].

Supercomputers are highly heterogeneous architectures that pose higher inte-
gration challenges than traditional Grid Sites. Many supercomputers do not
allow a CVMFS client to be mounted on the worker nodes and/or do not pro-
vide external connectivity, which is critical to work with CVMFS. CVMFS tools
designed to interact with High-Performance Computing sites are aimed at admin-
istrators of scientific communities that would like to integrate their workflows on
such machines: they ease some steps of the process but may require additional
efforts on behalf of the administrators.

In this study, we aim to automate the whole process and reduce these addi-
tional efforts by providing a utility able to extract, test and deploy parts of
CVMFS on supercomputers not having outbound connectivity. Section 2 briefly
introduces CVMFS and the ecosystem developed around it, in order to deal
with supercomputers. Section 3 focuses on the design of the utility, the steps to
extract software dependencies and to deploy them on a given supercomputer.
Finally, Sect. 4 presents a use case and the obtained results in detail.
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2 Context

2.1 CVMFS to Distribute Software on Grid Resources

At the beginning of 2021, CVMFS was managing about 1 billion files delivered
to more than 100,000 computing nodes by (i) 10 public data mirror servers -
called Stratum1 s - located in Europe, Asia and the United States and (ii) 400
site-local cache servers [8].

To keep the file system consistent and scalable, developers conceived CVMFS
as a read-only file system. Release managers - or continuous integration workers -
aiming to publish a software release has to log in to a dedicated machine - named
Stratum0 - with an attached storage volume providing an authoritative and
editable copy of a given repository [11]. Changes are written into a staging area
until they are committed as a consistent changeset: new and modified files are
transformed into a content-addressed object providing file-based deduplication
and versioning. In 2019, Popescu et al. [43] introduced a gateway component, a
web service in front of the authoritative storage, allowing release managers to
perform concurrent operations on the same repository and make CVMFS more
responsive (Fig. 1.1.b and 1.2.b).

The transfer of files is then done lazily via HTTP connections initiated by the
CVMFS clients [43] (Fig. 1.3.b). Clients request updates based on their Time-to-
Live (TTL) value, which is generally about a few minutes. Once the TTL value
expires, clients download the latest version of a manifest - a text file located in
the top-level directory of a given repository composed of the current root hash,
metadata and the revision number of this repository - and make the updated con-
tent available. Dykstra et al. [27] provide additional details about data integrity
and authenticity mechanisms of CVMFS to ensure that data received matches
data initially sent by a trusted server. This pull-based approach has been proven
to be robust and efficient, according to Popescu et al. [43], and has been widely
used to distribute up-to-date software on grid sites for many years (Fig. 1.2.a).
Figure 1 presents a simplified schema summarizing the software distribution pro-
cess on grid sites via CVMFS.

Users may need to use various versions of software on heterogeneous comput-
ing resources implying different OS and architectures. To provide a convenient
environment for the users, release managers generally provide software along
with build files related to many architectures, OS and compilers. Framework for
building and installing scientific software on heterogeneous systems can be used
to supply CVMFS with build files. Easybuild [28], Spack [49], Nix [40] or Gentoo
[33] are popular choices in this area [17,56,57].

2.2 Software Delivery on Supercomputers

Communities working around the Large Hadron Collider (LHC) [21] have exten-
sively used WLCG and CVMFS to process a growing amount of data. This app-
roach was reliable during LHC Run1 but has demonstrated its limit. According to
the analysis of Stagni et al. [50] on the use of CPU cycles in 2016, all the LHC
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Fig. 1. Schema of the CVMFS workflow on Grid Sites: (a) the steps to get software
dependencies from the job; (b) the steps to publish a release of a software in CVMFS.

experiments have consumed more CPU-hours than those officially pledged to
them by the WLCG: they found ways to exploit opportunistic and not officially
supported resources. Moreover, in the High-Luminosity Large Hadron Collider
(HL-LHC) [2] era, experiments are expected to produce up to an order of magni-
tude more data compared to the current phase (LHC Run2). To keep up with the
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computing needs, experiments have started to use supercomputers. They offer
a significant amount of computing power and would potentially offer a more
cost-effective data processing infrastructure compared to dedicated resources in
the form of commodity clusters, as Sciacca emphasizes [45]. Nevertheless, super-
computers have more restrictive security policies than Grid Sites: they do not
allow CVMFS to be mounted on the nodes by default and many of them have
limited or even no external connectivity. The LHC communities have developed
different solutions and strategies to cope with the lack of CVMFS, which is a
critical component to run their workflows.

Stagni et al. [51] rely on a close collaboration with some supercomputer cen-
ters - Cineca in Italy and CSCS in Switzerland - to get CVMFS mounted on
the worker nodes. Nevertheless, their strategy is limited to a few supercomput-
ers and their approach would be difficult to reproduce on a large number of
supercomputers: most of them do not allow such collaboration.

To deal with the lack of CVMFS on supercomputers with outbound con-
nectivity, Filipčič et al. studied two solutions: rsync and Parrot [31]. The first
solution consisted in copying the CVMFS software repository in the shared file
system using rsync: a utility aiming to transfer and synchronize files and directo-
ries between two different systems. rsync added a significant load on the shared
file system of the supercomputers and required changes in the repository abso-
lute paths. The second solution was based on Parrot: a utility copied on the
shared file system of the supercomputer, usable without any user privileges.
Parrot is a wrapper using ptrace attached to a process that intercepts system
calls that access the file system and can simulate the presence of arbitrary file
system mounts, CVMFS in this case. Nevertheless, the solution was “unreli-
able in a multi-threaded environment” [31] because it was unable to handle race
conditions. These methods did not constitute a production-level solution but
contributed to further and future advanced solutions.

In recent years, developments in the Fuse user space libraries and the Linux
kernel have lifted restrictions for mounting Fuse file systems such as CVMFS.
Developers of CVMFS have integrated these changes and designed a package
called cvmfsexec [26], which allows mounting the file system as an unprivileged
user. The program needs a specific environment to work correctly: (i) external
connectivity; (ii) the fusermount library or unprivileged namespace mount points
or a setuid installation of Singularity (efficient High-Performance Computing
container technology). Blomer et al. provide additional details about the package
[10].

Communities exploiting supercomputers that do not provide outbound con-
nectivity cannot directly benefit from cvmfsexec: the package still needs to pull
updated data via HTTP, which is not available in such context. We can distin-
guish two cases: (i) supercomputers that grant outside network or specific service
access to a limited number of nodes and (ii) supercomputers that do not provide
nodes with any external connectivity at all.
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Tovar et al. recently worked on the first case [54]. They managed to build
a virtual private network (VPN) client and server to redirect network traffic
from the workloads running on the worker nodes to external services such as
CVMFS. In this configuration, the VPN client runs on a worker node along
with the job, while the VPN server is hosted on one of the specific nodes of the
supercomputer and can interact with external services. Communities working on
supercomputers from the second case cannot leverage the solution developed by
Tovar et al.

O’Brien et al., one of the first teams to work with supercomputers in the LHC
context, address the lack of external network access by copying part of it to the
shared Lustre file system accessible by the WNs [41]. The approach (i) worked
because the environment of the supercomputer was similar to a grid site one, (ii)
required changes in the CVMFS files and (iii) degraded the performance of the
software as Angius et al. described [42]. To tackle the latter issue on the Titan
supercomputer, Angius et al. moved the software to a read-only NFS server [42]:
this eliminated the problem of metadata contention and improved metadata read
performance.

Similarly, on the Chinese HPC CNGrid, Filipčič regularly packed a part
of CVMFS in a tarball. Filipčič provided a deployment script to install the
software and fix the path relocation on the shared file system to the local system
administrators: they were then responsible for getting and updating the CVMFS
tarball on the network when requested [30].

To help communities to unpack a CVMFS repository in a file system, a team
of developers designed uncvmfs [37]. The utility deduplicates files of a software
stack: it populates a given directory with the CVMFS files that are then hard-
linked into it, if possible. The program was used, in combination with Shifter
[34], a container technology providing a reproducible environment, in the context
of the integration of the ALICE and CMS experiments workflows on the NERSC
High-Performance Computing resources [29,38]. As a proof of concept, Gerhardt
et al. used uncvmfs to deduplicate the ATLAS repository and copy it into an
ext4 image - about 3.5 Tb of data containing 50 million files and directories -,
compressed into a 300 Gb squashfs image; and Shifter to provide a software-
compatible environment to run the jobs [34]. Despite encapsulating the files in
a container reduced the startup time of the applications, the solution generated
large images, long to update and deliver on time.

To cope with large images, Teuber and the CVMFS developers conceived
cvmfs shrinkwrap [52]. The tool supports uncvmfs features with certain opti-
mizations and delivers additional features: cvmfs shrinkwrap can extract specific
files and directories based on specification files, deduplicate them, making them
easy to export in various formats such as squashfs or tarball. In this way, the
following operations remain on behalf of the user communities: (i) trace their
applications - meaning, in this context, “capturing all their dependencies and
their locations in the file system” -, (ii) call cvmfs shrinkwrap to get a subset of
CVMFS composed of the minimum required files, and (iii) export this subset in
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a certain format and deploy it on sequestered computing resources to run their
jobs.

Douglas et al. already described such a project in an article [7], but the
work remains specific to the ATLAS experiment. They use uncvmfs to produce
a large image that has to be filtered afterward. In this paper, we aim at assisting
various user communities in this process by providing an open-source utility that
would take applications of interest in input and would output - with the help of
cvmfs shrinkwrap - a subset of CVMFS with the minimum required files to run
the given applications, in combination with a container image if needed. To our
knowledge, no paper has already covered the subject.

3 Design of the CVMFS Subset Builder

3.1 Input and Output Data

The utility takes a directory as input that should contain: (i) a list of appli-
cations of interest (apps): a command along with its input data in a separate
sub-directory for each application to trace; and/or (ii) a list of files composed of
paths to include in the subset of CVMFS (namelists). Additionally, user com-
munities can embed a (iii) container image compatible with Singularity to get a
specific environment to trace and test the applications; (iv) and a configuration
file to fine-tune the utility with variables related to the deployment process, or
information about repositories. A schema of the inputs is available in Fig. 2.

The expected output can take different forms depending on the utility
configuration:

– The subset of CVMFS, generated as a standalone. In this case, administrators
representing their user communities need to provide the right environment by
themselves, which might also involve discussions with the system administra-
tors.

– The subset of CVMFS embedded within the given Singularity container
image. The utility merges both elements and submits the resulting image,
which can be long to generate and deploy but may limit manual operations
on the remote location.

3.2 Features

We break down the process into four main steps, namely:

– Trace: consists in running applications contained in apps and trapping their
system calls at runtime, using Parrot, to identify and extract the paths of their
dependencies. Applications can run in a Singularity container when provided,
which delivers further software dependencies and a reproducible environment.
Dependencies are then saved in a specific file namelist.txt. In this context,
Parrot is only used to capture system calls and, thus, is not impacted by the
issues mentioned in Sect. 2.2. If the step detects an error during the execution
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command-input2.sh
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command.sh
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appA.txt

appB.txt

container-image.sif

pipeline-config.json

Fig. 2. Schema of the input structure given to the utility.

of an application, then the program is stopped. The step is particularly helpful
for users of the utility having no technical knowledge of the applications of
interest.

– Build : builds a subset of CVMFS based on the paths coming from Trace
and the namelists directory. First, the step merges the namelist files to
remove duplicated or non-existent path references, and then separates the
paths in different specification files related to repositories. Finally, the step
calls cvmfs shrinkwrap to generate the subset of CVMFS. Figures 3 and 4.3
illustrate an example. The utility deduplicates the files, and hard-link data
to populate a directory, ready to be exported in various formats as explained
in Sect. 2.2 and shown in Fig. 4.3.

– Test : consists in testing certain applications - in the given Singularity con-
tainer environment when provided - using the subset of CVMFS obtained
during the Build step (see Fig. 4.4). By default, applications from apps are
used but further tests can also be provided by modifying the utility config-
uration. All the applications have to complete their execution to go to the
next step.
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in namelist1.txt:

/cvmfs/repoA/path/to/file

/cvmfs/repoB/path/to/another/file

in namelist2.txt:

/cvmfs/repoA/path/to/file

/cvmfs/repoB/path/to/yet/another/file

in repoA.spec:

/path/to/file

in repoB.spec:

/path/to/another/file

/path/to/yet/another/file

Fig. 3. Transformation process occurring during the Trace step: CVMFS dependencies
are extracted from namelist.txt and moved to specification files.

– Deploy : deploys the subset of CVMFS (Fig. 4.5) embedded or not within the
container image depending on the configuration options. If such is the case,
then the utility (i) generates a new container definition file that includes the
files with the container image, (ii) executes it to produce a new read-only
container image. The utility supports ssh deployment via rsync, provided the
right credentials in the configuration.

3.3 Implementation

The utility is built as a 2-layer system. The first layer, subcvmfs-builder [12], is
the core of the system and is self-contained. It takes the form of a Python pack-
age, which embeds the steps described in Sect. 3.2, and provides a command-line
interface to call and execute steps independently from each other. The first layer
is, and should remain, simple and generic to be easily managed by developers
and used by various communities.

The second layer is the glue code: it consists of a workflow executing - all,
or some of - the steps of the first layer. It contains the complexity required to
generate and deliver a subset of dependencies according to the needs of its users.
Unlike the first layer, the second one can take several forms and each community
can tailor it for its software stack.

We propose a first, simple and generic layer-2 implementation calling each
step one after the other: subcvmfs-builder-pipeline [13]. This layer-2 implemen-
tation is executed from a GitLab CI/CD [35], which provides a runner and a
docker executor bound to a CVMFS client to execute the code (see Fig. 5) Git-
Lab includes features such as log preservation to help debug the implementation
and integrates a pipeline scheduling mechanism to regularly update a subset
of dependencies. Even though this layer-2 solution is adapted for basic exam-
ples - implying a few commands to trace and test, having a small number of
dependencies -, it might require further fine-tuning for more advanced use cases.
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Fig. 4. Schema of the utility workflow: from getting an application to trace to a subset
of CVMFS on the Data Transfer Node of a High-Performance Computing cluster.

Indeed, this generic layer-2 implementation is not scalable as it (i) is a single-
threaded and single-process program, and (ii) requires manual operations to
insert additional inputs in the process. This is not adapted to communities hav-
ing to trace and test hundreds of various applications to generate large sub-
sets of CVMFS. Two possibilities for such communities: building a new layer-2
implementation - able to automatically fetch applications and trace/test them
in parallel - based on subcvmfs-builder-pipeline or creating one from scratch.

In the next section, we are going to study how the LHCb experiment [25]
leverages subcvmfs-builder and subcvmfs-builder-pipeline to deliver Gauss [24], a
Monte-Carlo simulation program, on the worker nodes of Mare Nostrum [55], a
supercomputer with no external connectivity based in Barcelona, Spain.
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Fig. 5. Schema of a layer-2 implementation within GitLab CI.

4 A Practical Use Case

4.1 Gauss

To better understand experimental conditions and performances, the LHCb col-
laboration has developed Gauss, a Monte-Carlo simulation application - based on
the Gaudi framework [4] - that reproduces events occurring in the LHCb detec-
tor. The application consists of two independent phases executed sequentially,
namely the generation of the events [6] relying on Pythia [48] by default; the
tracking of the particles through the simulated detector depending on Geant4
[1].

In 2021, Gauss represents about 70% of the distributed computing activities
of the LHCb collaboration and 150 million events are simulated per day. The
application has originally been tailored for WLCG grid sites: Gauss is a compute-
intensive single-process (SP), single-threaded (ST) application, only supporting
×86 architectures and CERN-CentOS-compatible environments [19]. Gauss and
most of its dependencies are delivered via CVMFS.

Gauss takes a certain number of events to process as inputs, as well as a
“run number” and an “event number”. The combination of both numbers forms
a seed, which ensures repeatability during the generation and simulation phases.
It mainly relies on packages such as Python, Boost and gcc to produce histograms
and ntuples under the form of a ROOT [22] file.

Gauss is modular and highly configurable and constitutes a complex use-
case: it can integrate extra packages such as various event generators and decay
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tools. Depending on LHCb production needs and the computing environments
available, different versions of Gauss and its attached packages can be used.
A plethora of option files can also be passed as inputs to the extra packages.
Figure 6 describes the inputs, outputs and dependencies of Gauss as well as its
interactions with some extra packages and their options.

4.2 Mare Nostrum

To start integrating their workflows on High-Performance computing resources,
LHC experiments can benefit from a collaboration with PRACE [44] and
GÉANT [18,32]. This collaboration gives them access to several European super-
computers such as Marconi in Italy and Mare Nostrum in Spain.

Managed by the Barcelona Supercomputing Center (BSC), MareNostrum
is the most powerful and emblematic supercomputer in Spain [15]. MareNos-
trum was built in 2004 (MareNostrum 1), has been updated 3 times since then
(Mare Nostrum 2, 3 and 4) and was ranked 63rd in the June 2021 Top500 list
[53]. Each node composing the general-purpose block is equipped with two Intel
Xeon Platinum 8160 24 cores at 2.1 GHz chips, and at least 2 GB of RAM: this
configuration matches with Gauss requirements. Nevertheless, Mare Nostrum is
more restrictive than a traditional Grid Site on WLCG: (i) no external connec-
tivity at all; (ii) no service can be installed on the edge node; (iii) no CVMFS,
and thus, no Gauss and its dependencies available.

4.3 Running Gauss on Mare Nostrum

Running embarrassingly parallel applications such as Gauss on a supercomputer
can be seen as counterproductive. While it is true that the interconnect of the
supercomputer partitions has not been designed for millions of small Monte-
Carlo runs, it is better to use available, otherwise unused, cycles in agreement
with the management of the supercomputer sites. In the meantime, developers
are adapting software [39,47], but it remains a long process, requiring deep and
technical software inputs.

To deliver Gauss on Mare Nostrum, LHCb can rely on (i) subcvmfs-builder
to produce a subset of CVMFS containing the required files; (ii) a CernVM
Singularity container to provide a Gauss-compatible environment and to mount
the subset of CVMFS as if it was a CVMFS client.

Nevertheless, as we explained in Sect. 4.1, a Gauss execution can involve
different packages, extra packages, options, data and versions. Encapsulating
its ecosystem requires a good understanding of the application and/or a large
amount of storage to encapsulate the right dependencies. Therefore, different
options are available:

– Include the whole LHCb CVMFS repository: would not require any specific
knowledge about Gauss and would involve all the necessary files to run any
Gauss instance. However, this option would imply a tremendous quantity of
storage - the full LHCb repository needs 5.2 TB -, long periods to update the
subset and many unnecessary files.
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Fig. 6. Example of a Gauss instance, its dependencies and some interactions with extra
packages and their options.

– Include the dependencies of various Gauss runs: as the first option, would not
need any specific knowledge about Gauss and would include a few gigabytes
of data. Nevertheless, such an option would not guarantee the presence of all
needed files and would require a tremendous amount of computing resources
to trace Gauss workloads continuously.

– Include all the known dependencies of Gauss: would require a deep under-
standing of Gauss and its dependencies to include all the required files in a
subset of CVMFS. While this option would not involve many computing or
storage resources, it would include human resources to update the content
of the subset of CVMFS according to the releases of Gauss and its extra
packages.

As the default storage quota on Mare Nostrum is smaller than the LHCb
repository, we decided to reject the first option. LHCb has access to tremen-
dous computing power: it interacts with hundreds of WLCG Sites to run Gauss
workloads and could theoretically trace them and extract their requirements.
In practice, tracing Gauss workloads in production could slow down the appli-
cations and their execution, which is not an option. Similarly, LHCb does not
have human resources to update the subset of CVMFS according to the changes
done. Thus, we chose to combine the second and the third options to propose a
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light and easy to update and maintain solution. The process consists in getting
insights into the structure of the Gauss dependencies by running and tracing a
small set of Gauss workloads and analyzing the system calls before including the
structure in subcvmfs-builder-pipeline.

After analyzing 500 commands calling Gauss from the LHCb production
environment and tracing 3 Gauss applications using subcvmfs-builder [14], we
noticed that:

– 97% of the workloads studied were running the same Gauss versions (v49r20)
with the same extra packages and versions. The versions of Gauss and its
extra packages seem related to the underlying architecture.

– 846 Mb of files were needed to run 3 Gauss (v49r20) workloads. About 95% of
the size is related to the Gauss version and the underlying architecture, and
is common to the Gauss workloads traced, while the 5% left is bound to the
options and Geant4 data used that are specific to a given Gauss workload.

– Integrating all the options and Geant4 data related to Gauss v49r20 would
correspond to 1.8 Gb of files.

Based on these assumptions, we created a namelist file containing (i) the
files shared by the 3 Gauss applications that we traced and (ii) all the options
and Geant4 data in order to generate a subset of CVMFS able to run any
Gauss workload targeting the v49r20 version. We used subcvmfs-builder-pipeline
to build the subset of CVMFS, to successfully test it with 5 Gauss workloads -
different from the ones we used previously - and to deploy it to Mare Nostrum.
We fine-tuned the utility to disable the trace step and to deploy the subset sepa-
rately from the container. Indeed, CernVM - the container that we use to provide
a reproducible environment to the workload - does not need regular updates and
merging it with the subset of CVMFS is a time-consuming operation.

This resulted in a CernVM singularity container occupying 6.4 Gb on the
General Parallel File System (GPFS) of Mare Nostrum combined with a subset
of CVMFS covering 6 Gb: dependencies occupies 3.2 Gb of space while 2.8 Gb
are required for the cvmfs shrinkwrap metadata. Thus, 12.4 Gb of space on the
GPFS of Mare Nostrum is currently sufficient to run 97% of the Gauss workloads
analyzed: 0.24% of the LHCb repository.

Even though this approach provides a light, easy and fast-to-update solution,
LHCb developers need to keep it up to date to integrate new versions or structure
changes. One way to proceed would consist in automating and repeating the
analysis work regularly. One could also integrate the trace command of subcvmfs-
builder within the LHCb production test phase, which consists in running a few
events of upcoming Gauss workloads on a given Grid Site. LHCb developers could
trace some of them during the process and store the traces in a database. An
LHCb-specific subcvmfs-pipeline-builder could then periodically fetch the content
of the database to build, test and deploy a new subset of dependencies to Mare
Nostrum.
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5 Conclusion

This paper presents a dependency delivery system based on CVMFS to pro-
vide complex software stacks on sequestered computing resources such as worker
nodes of supercomputers not having external connectivity.

After introducing CVMFS (Sect. 2.1), a critical tool - especially for LHC
communities - to supply workloads with complex dependencies on Grid Sites, we
have described the context of this study (Sect. 2.2): several virtual organizations
are exporting their workflow from WLCG to supercomputers, which have more
restrictive policies than grid sites and generally do not allow to mount CVMFS
on the worker nodes.

We have highlighted several solutions aiming to overcome the issue such as
collaborating with the system administrators and using tools such as Parrot and
cvmfsexec. Nevertheless, these approaches do not work when worker nodes have
no external connectivity. Then, we have emphasized different ways to export
parts of CVMFS to supercomputers with no external connectivity: uncvmfs and
cvmfs shrinkwrap. These solutions require several manual steps and therefore we
have proposed a utility to assist communities in this process.

We have explained the different steps of the utility in detail (Sect. 3.2). It
traces - captures the system calls of - applications of interest, builds a subset with
the required files, tests the subset and deploys it to a remote computing resource.
We also described the structure of the solution (Sect. 3.3), which is composed of
two layers: a first one, generic with simple components, and a second one more
complex, adapted to communities needs that can be fine-tuned.

Finally, we have provided a use case based on Gauss, a Monte-Carlo simula-
tion application reproducing events occurring in the LHCb detector (Sect. 4.1).
Gauss is highly configurable and can be coupled with different packages, extra
packages, options, data and versions. It represents a complex bundle of depen-
dencies, which makes it ideal to test our utility. We have proposed a method
to encapsulate Gauss and its dependencies in a subset, which represents 12.4
Gb of space on the GPFS of the Mare Nostrum supercomputer (Sect. 4.3). The
solution produced represents 0.24% of the full LHCb repository and, thus, is
easier to update. We have successfully tested the solution with different Gauss
workloads. Future work could focus on encapsulating further applications from
different domains using this utility, and analyzing its performances to deploy
subsets on various supercomputers.
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