
Ana-Lucia Varbanescu
Abhinav Bhatele
Piotr Luszczek
Baboulin Marc (Eds.)

LN
CS

 1
32

89 High Performance
Computing
37th International Conference, ISC High Performance 2022
Hamburg, Germany, May 29 – June 2, 2022
Proceedings

Lecture Notes in Computer Science 13289

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Ana-Lucia Varbanescu · Abhinav Bhatele ·
Piotr Luszczek · Baboulin Marc (Eds.)

High Performance
Computing
37th International Conference, ISC High Performance 2022
Hamburg, Germany, May 29 – June 2, 2022
Proceedings

Editors
Ana-Lucia Varbanescu
University of Twente
Enschede, The Netherlands

Piotr Luszczek
University of Tennessee
Knoxville, TN, USA

Abhinav Bhatele
University of Maryland
College Park, MD, USA

Baboulin Marc
Université Paris-Saclay
Orsay, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-07311-3 ISBN 978-3-031-07312-0 (eBook)
https://doi.org/10.1007/978-3-031-07312-0

© Springer Nature Switzerland AG 2022, corrected publication 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4932-1900
https://orcid.org/0000-0002-0089-6965
https://doi.org/10.1007/978-3-031-07312-0

Preface

ISCHigh Performance Computing—formerly known as the International Supercomput-
ing Conference—was founded in 1986 as the Supercomputer Seminar. Originally orga-
nized byHansMeuer, Professor ofComputer Science at theUniversity ofMannheim, and
former director of its computer center, the 1986 edition of the seminar brought together a
group of 81 scientists and industrial partners who shared an interest in high-performance
computing (HPC). Since then, the annual conference has become a major international
event within the HPC community, growing beyond its humble beginnings, and moving
out of Mannheim into other cities throughout the years: Frankfurt, Heidelberg, Dresden,
Hamburg, Leipzig, and this year back to Hamburg. Prior to the coronavirus pandemic,
the conference had seen a steady increase in the number of submissions of high-quality
research papers and corresponding growth in the number of conference attendees. Ben-
efiting from the improving health indicators, ISC-HPC 2022 was again held in person
in Hamburg.

The call for papers to ISC-HPC2022was issued in Fall 2021, inviting the researchers,
developers, and practitioners alike to submit their latest results for consideration for one
of the five conference tracks: (1) Architecture, Networks, and Storage; (2) HPC Algo-
rithms and Applications; (3) Machine Learning, AI, and Emerging Technologies; (4)
Performance Modeling, Evaluation, and Analysis; and (5) Programming Environments
and Systems Software. In all, 53 full submissions were received from authors all over
the world. The Research Papers Program Committee consisted of 71 members from
18 countries. After initial reviews were completed, a rebuttal process offered authors
an opportunity to respond to reviewers’ questions and help clarify issues the reviewers
might have had. A virtual ProgramCommittee meeting was held to discuss all the papers
and to finalize consensus on the papers. Finally, the committee selected 18 papers for
publication.

For the past several years, the ISC-HPC conference has presented an ISC-sponsored
award to encourage outstanding research in HPC and to honor the overall best research
paper submitted to the conference. Four years ago, this annual award was renamed in
memory of the late Dr. Hans Meuer, who was general chair of the ISC-HPC conference
from 1986 through 2014, and a co-founder of the TOP500 project. This year, from all
research papers submitted, the Best Paper Committee selected the best paper based on its
technical merit, its novelty, and impact on the HPC community. During a live ceremony,
the following paperwas awarded theHansMeuerAward:Remote OpenMP Offloading by
Atmn Patel from University of Waterloo, Canada, and Johannes Doerfert from Argonne
National Laboratory, USA. The paper extended the canonical scope of OpenMP, which
is traditionally confined to a shared memory domain, by utilizing the standard’s modern
features to offload the computational workload to GPU accelerators housed in remote
cluster nodes. The Best Paper Committee appreciated the paper’s unique combination
of OpenMP familiarity and ease of use with accelerated and distributed computing that
were accompanied by analysis of scaling capabilities. Thewinning paper also showed the

vi Preface

solution’s versatility and how it could use multiple transport layers, each of which offers
a different set of trade-offs between performance, portability, and scalability potential.

As the chairs of the Research Papers Committee, we would like to express our grat-
itude to our colleagues for submitting high-quality papers to all five ISC-HPC scientific
tracks. Also, we wish to extend our thanks to the track, area, and conflict chairs, as well
as the members of the Best Paper Committee, and finally to the Research Papers Com-
mittee that provided the reviews and manuscript evaluation throughout the submission
stages.We hope to express our thanks in person during this year’s meeting and upcoming
ISC-HPC 2023.

May 2022 Ana Lucia Varbanescu
Abhinav Bhatele

Organization

Program Chair

Keren Bergman Columbia University, USA

Program Deputy Chair

John Shalf Lawrence Berkeley National Laboratory, USA

Research Papers Program Committee

Research Papers Chairs

Ana Lucia Varbanescu (Chair) University of Amsterdam, Netherlands
Abhinav Bhatele (Deputy Chair) University of Maryland, USA

Architecture, Networks, and Storage

Jay Lofstead (Chair) Sandia National Laboratories, USA
Edson Borin University of Campinas, Brazil
Elsa Gonsiorowski Lawrence Livermore National Laboratory, USA
Mozhgan Kabiri Chimeh NVIDIA, UK
Nectarios Koziris National Technical University of Athens, Greece
Michael Kuhn Otto von Guericke University Magdeburg,

Germany
Jay Lofstead Sandia National Laboratories, USA
Preeti Malakar Indian Institute of Technology Kanpur, India
Dhabaleswar Panda Ohio State University, USA
Guangming Tan Institute of Computing Technology (ICT), China
Osamu Tatebe University of Tsukuba, Japan
Carsten Trinitis Technical University of Munich, Germany
Venkatram Vishwanath Argonne National Laboratory, USA

HPC Algorithms and Applications

Didem Unat (Chair) Koç University, Turkey
Sameh Abdulah KAUST, Saudi Arabia
Mehmet Belviranli Colorado School of Mines, USA
Xing Cai Simula Research Laboratory and University of

Oslo, Norway

viii Organization

Lin Gan Tsinghua University and National
Supercomputing Center in Wuxi, China

Clemens Grelck University of Amsterdam, Netherlands
Fuerlinger Karl Ludwig Maximilian University Munich (LMU),

Germany
Kamer Kaya Sabancı University, Turkey
Simon McIntosh-Smith University of Bristol, UK
Gabriel Noaje NVIDIA, Singapore
Lena Oden Fernuniversität in Hagen and Forschungszentrum

Jülich GMBH, Germany
Johann Rudi Argonne National Laboratory, USA
Tuğba Torun Koç University, Turkey
Miwako Tsuji RIKEN, Japan

Machine Learning, AI, and Emerging Technologies

Theodore L. Willke (Chair) Intel Corporation, USA
Nikoli Dryden ETH Zurich, Switzerland
Gurbinder Gill Katana Graph Inc., USA
Jiajia Li William and Mary College, USA
Maryam Mehri Dehnavi University of Toronto, Canada
Bogdan Nicolae Argonne National Laboratory, USA
Mostofa Patwary NVIDIA, USA
Shaden Smith Microsoft, USA
Edgar Solomonik University of Illinois at Urbana-Champaign, USA
Sofia Vallecorsa CERN, Switzerland
Abhinav Vishnu AMD, USA
Yang You National University of Singapore, Singapore

Performance Modeling, Evaluation, and Analysis

Nathan Tallent (Chair) Pacific Northwest National Laboratory, USA
Ivy B. Peng Lawrence Livermore National Laboratory, USA
Alexandru Calotoiu ETH Zürich, Germany
Marc Casas Barcelona Supercomputing Center, Spain
Tom Deakin University of Bristol, UK
Seyong Lee ORNL, USA
Simon McIntosh-Smith University of Bristol, UK
Xiaozhu Meng Rice University, USA
Bernd Mohr Juelich Supercomputing Centre, Germany
Scott Pakin Los Alamos National Laboratory, USA
Xian-He Sun Illinois Institute of Technology, USA
Jidong Zhai Tsinghua University, China
Tianwei Zhang Nanyang Technological University, Singapore

Organization ix

Programming Environments and Systems Software

Michele Weiland (Chair) EPCC, University of Edinburgh, UK
Bilel Hadri KAUST Supercomputing Laboratory,

Saudi Arabia
Guido Juckeland HZDR, Germany
Michael Klemm AMD and OpenMP ARB, Germany
Pouya Kousha Ohio State University, USA
John L. inford Arm, USA
István Z. Reguly Pázmány Péter Catholic University, Hungary
Harvey Richardson Hewlett Packard Enterprise, UK
Martin Ruefenacht Leibniz Supercomputing Centre, Germany
Roxana Rusitoru Arm, UK
Thomas R. W. Scogland Lawrence Livermore National Laboratory, USA
Simon Smart ECMWF, UK
Hiroyuki Takizawa Tohoku University, Japan
Christian Terboven RWTH Aachen University, Germany
Justs Zarins EPCC, University of Edinburgh, UK

Birds of a Feather Committee

Roman Wyrzykowski (Chair) Czestochowa University of Technology, Poland
Iosif Meyerov (Deputy Chair) Lobachevsky State University of Nizhni

Novogorod, Russia
Michael Bader Technical University of Munich, Germany
Claudia Blaas-Schenner TU Wien, VSC Research Center, Austria
Dominik Göddeke University of Stuttgart, Germany
Aleksandar Ilic INESC-ID and Universidade de Lisboa, Portugal
Jacek Kitowski AGH University of Science and Technology,

Poland
Dieter Kranzlmueller Ludwig Maximilian University Munich (LMU)

and Leibniz Rechenzentrum, Germany
Carola Kruse Centre Européen de Recherche et de Formation

Avancée en Calcul Scientifique (CERFACS),
France

Krzysztof Kurowski Poznań Supercomputing and Networking Center,
Poland

Marco Lapegna University of Naples Federico II, Italy
Simon McIntosh-Smith University of Bristol, UK
Iosif Meyerov Lobachevsky State University of Nizhni

Novogorod, Russia
Koji Nakano Hiroshima University, Japan
Gabriel Oksa Slovak Academy of Sciences, Slovakia
Dana Petcu West University of Timisoara, Romania

x Organization

Antonio J. Peña Barcelona Supercomputing Center, Spain
Thomas Rauber University of Bayreuth, Germany
Lubomir Riha IT4Innovations National Supercomputing Center

and Technical University of Ostrava,
Czech Republic

Masha Sosonkina Old Dominion University, USA
Vladimir Stegailov Higher School of Economics and JIHT RAS,

Russia
Dave Turner Kansas State University, USA
Bora Ucar CNRS and ENS-Lyon, France

Project Posters Committee

Christian Perez (Chair) Inria, France
Are Magnus Bruaset

(Deputy Chair)
Simula Research Laboratory, Norway

Marco Aldinucci University of Torino, Italy
Bartosz Bosak Poznań Supercomputing and Networking Center,

Poland
Nick Brown EPCC, University of Edinburgh, UK
Theodoros Christoudias The Cyprus Institute, Cyprus
Andrew Ensor Auckland University of Technology, New Zealand
Ana Gainaru Oak Ridge National Laboratory, USA
Andra Hugo Apple, France
Kamer Kaya Sabancı University, Turkey
Francesc Lordan Gomis Barcelona Supercomputing Center, Spain
Maciej Malawski Sano Centre for Computational Medicine,

Institute of Computer Science AGH, Poland
Kengo Nakajima University of Tokyo and RIKEN, Japan
Bogdan Nicolae Argonne National Laboratory, USA
Eric Petit Intel, France
Phil Ridley Arm, UK
Jonathan Rouzaud-Cornabas Inria and INSA de Lyon, France
Kentaro Sano RIKEN, Japan
Francieli Zanon Boito Inria, France
Ameli Chi Zhou Shenzhen University, China

Research Posters Committee

Aparna Chandramowlishwaran
(Chair)

UCI, USA

Hartwig Anzt Karlsruhe Institute of Technology, Germany and
University of Tennessee, USA

Organization xi

Maryam Mehri Dehnavi University of Toronto, Canada
Jee Choi University of Oregon, USA
Ana Gainaru Oak Ridge National Laboratory, USA
Lin Gan Tsinghua University and National

Supercomputing Center in Wuxi, China
Amal Khabou Université Paris-Saclay, France
Mariam Kiran Lawrence Berkeley National Laboratory, USA
Penporn Koanantakool Google LLC, USA
Ronald Kriemann MPI for Math. i.t.S., Germany
Ang Li Pacific Northwest National Laboratory, USA
Jiajia Li William and Mary College, USA
Piyush Sao Oak Ridge National Laboratory, USA
Christian Terboven RWTH Aachen University, Germany
Bo Wu Colorado School of Mines, USA
Rio Yokota Tokyo Institute of Technology, Japan
Rohit Zambre AMD Research, USA

Tutorials Committee

Kathryn Mohror (Chair) Lawrence Livermore National Laboratory, USA
Suren Byna (Deputy Chair) Lawrence Berkeley National Laboratory, USA
Ritu Arora University of Texas at San Antonio, USA
Rosa M. Badia Barcelona Supercomputing Center, Spain
Wahid Bhimji Lawrence Berkeley National Laboratory, USA
Philip Carns Argonne National Laboratory, USA
James Dinan NVIDIA, USA
Ann Gentile Sandia National Laboratories, USA
Tanzima Islam Texas State University, USA
Simon McIntosh-Smith University of Bristol, UK
Diana Moise Cray, and HPE, Switzerland
Sarah Neuwirth Goethe-University Frankfurt, Germany
C. J. Newburn NVIDIA, USA
Dhabaleswar Panda Ohio State University, USA
Raghunath Raja Chandrasekar Frau, USA
Michela Taufer The University of Tennessee, USA
Michele Weiland EPCC – University of Edinburgh, UK

Workshops Committee

Hartwig Anzt (Chair) Karlsruhe Institute of Technology, Germany and
University of Tennessee, USA

Amanda Bienz (Deputy Chair) University of New Mexico, USA
Cody Balos Lawrence Livermore National Laboratory, USA

xii Organization

Harun Bayraktar NVIDIA, USA
Natalie Beams University of Tennessee, USA
Luc Berger-Vergiat Sandia National Laboratories, USA
George Bosilca University of Tennessee, USA
Lisa Claus LBNL, USA
Terry Cojean Karlsruhe Institute of Technology, Germany
Anthony Danalis University of Tennessee Knoxville, USA
Edoardo Di Napoli Juelich Supercomputing Centre, Germany
Markus Goetz Karlsruhe Institute of Technology, Germany
Aditya Kashi Karlsruhe Institute of Technology, Germany
Sarah Knepper Intel, USA
Andreas Knuepfer Technische Universität Dresden, Germany
Martin Kronbichler Technical University of Munich, Germany
Weifeng Liu China University of Petroleum, China
Simone Pezzuto Università della Svizzera italiana, Switzerland
Enrique S. Quintana-Orti Universitat Politècnica de València, Spain
Estela Suarez Jülich Supercomputing Centre, Germany
Nico Trost AMD, Germany
Markus Wittmann Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany

HPC in Asia Committee

Kento Sato (Chair) RIKEN, Japan
James Lin (Deputy Chair) Shanghai Jiao Tong University, China

Inclusivity Committee

Laura Schulz (Chair) Frau, Germany

Publicity Committee

Carsten Trinitis (Chair) Technical University of Munich, Germany

Proceedings Chairs

Piotr Luszczek (Chair) University of Tennessee, USA
Marc Baboulin (Deputy Chair) Université Paris-Saclay, France

Contents

Architecture, Networks, and Storage

Accelerating MPI All-to-All Communication with Online Compression
on Modern GPU Clusters . 3

Qinghua Zhou, Pouya Kousha, Quentin Anthony,
Kawthar Shafie Khorassani, Aamir Shafi, Hari Subramoni,
and Dhabaleswar K. Panda

NVIDIA’s Quantum InfiniBand Network Congestion Control Technology
and Its Impact on Application Performance . 26

Yuval Shpigelman, Gilad Shainer, Richard Graham, Yong Qin,
Gerardo Cisneros-Stoianowski, and Craig Stunkel

LLM: Realizing Low-Latency Memory by Exploiting Embedded Silicon
Photonics for Irregular Workloads . 44

Marjan Fariborz, Mahyar Samani, Pouya Fotouhi, Roberto Proietti,
Il-Min Yi, Venkatesh Akella, Jason Lowe-Power, Samuel Palermo,
and S. J. Ben Yoo

SU3_Bench on a Programmable Integrated Unified Memory Architecture
(PIUMA) and How that Differs from Standard NUMA CPUs 65

Jesmin Jahan Tithi, Fabio Checconi, Douglas Doerfler,
and Fabrizio Petrini

Machine Learning, AI, and Emerging Technologies

“Hey CAI” - Conversational AI Enabled User Interface for HPC Tools 87
Pouya Kousha, Arpan Jain, Ayyappa Kolli, Saisree Miriyala,
Prasanna Sainath, Hari Subramoni, Aamir Shafi,
and Dhableswar K. Panda

Hy-Fi: Hybrid Five-Dimensional Parallel DNN Training
on High-Performance GPU Clusters . 109

Arpan Jain, Aamir Shafi, Quentin Anthony, Pouya Kousha,
Hari Subramoni, and Dhableswar K. Panda

xiv Contents

HPC Algorithms and Applications

Efficient Application of Hanging-Node Constraints for Matrix-Free
High-Order FEM Computations on CPU and GPU . 133

Peter Munch, Karl Ljungkvist, and Martin Kronbichler

Dynamic Task Fusion for a Block-Structured Finite Volume Solver
over a Dynamically Adaptive Mesh with Local Time Stepping 153

Baojiu Li, Holger Schulz, Tobias Weinzierl, and Han Zhang

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 174
Yi-Hua Chung, Cheng-Jhih Shih, and Shih-Hao Hung

m-Cubes: An Efficient and Portable Implementation of Multi-dimensional
Integration for GPUs . 192

Ioannis Sakiotis, Kamesh Arumugam, Marc Paterno, Desh Ranjan,
Balša Terzić, and Mohammad Zubair

Performance Modeling, Evaluation, and Analysis

Comparative Evaluation of Call Graph Generation by Profiling Tools 213
Onur Cankur and Abhinav Bhatele

MAPredict: Static Analysis DrivenMemory Access Prediction Framework
for Modern CPUs . 233

Mohammad Alaul Haque Monil, Seyong Lee, Jeffrey S. Vetter,
and Allen D. Malony

Rapid Execution Time Estimation for Heterogeneous Memory Systems
Through Differential Tracing . 256

Nicolas Denoyelle, Swann Perarnau, Kamil Iskra, and Balazs Gerofi

Understanding Distributed Deep Learning Performance by Correlating
HPC and Machine Learning Measurements . 275

Ana Luisa Veroneze Solórzano and Lucas Mello Schnorr

A Motivating Case Study on Code Variant Selection by Reinforcement
Learning . 293

Oliver Hacker, Matthias Korch, and Johannes Seiferth

Programming Environments and System Software

Remote OpenMP Offloading . 315
Atmn Patel and Johannes Doerfert

Contents xv

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 334
Raju Ram, Daniel Grünewald, and Nicolas R. Gauger

A Subset of the CERN Virtual Machine File System: Fast Delivering
of Complex Software Stacks for Supercomputing Resources 354

Alexandre F. Boyer, Christophe Haen, Federico Stagni,
and David R. C. Hill

Correction to: “Hey CAI” - Conversational AI Enabled User Interface
for HPC Tools . C1

Pouya Kousha, Arpan Jain, Ayyappa Kolli, Saisree Miriyala,
Prasanna Sainath, Hari Subramoni, Aamir Shafi,
and Dhableswar K. Panda

Author Index . 373

Architecture, Networks, and Storage

Accelerating MPI All-to-All
Communication with Online Compression

on Modern GPU Clusters

Qinghua Zhou(B), Pouya Kousha, Quentin Anthony,
Kawthar Shafie Khorassani, Aamir Shafi, Hari Subramoni,

and Dhabaleswar K. Panda

The Ohio State University, Columbus, OH 43210, USA
{zhou.2595,kousha.2,anthony.301,shafiekhorassani.1,shafi.16,

subramoni.1,panda.2}@osu.edu

Abstract. As more High-Performance Computing (HPC) and Deep
Learning (DL) applications are adapting to scale using GPUs, the com-
munication of GPU-resident data is becoming vital to end-to-end appli-
cation performance. Among the available MPI operations in such appli-
cations, All-to-All is one of the most communication-intensive operations
that becomes the bottleneck of efficiently scaling applications to larger
GPU systems. Over the last decade, most research has focused on the
optimization of large GPU-resident data transfers. However, for state-
of-the-art GPU-Aware MPI libraries, MPI Alltoall communication for
large GPU-resident data still suffers from poor performance due to the
throughput limitation of commodity networks. However, the develop-
ment of GPU-based compression algorithms with high throughput can
reduce the volume of data transferred. The recent research of point-to-
point-based online compression with these compression algorithms has
shown potential on modern GPU clusters.

In this paper, we redesign an MPI library to enable efficient collective-
level online compression with an optimized host-staging scheme for
All-to-All communication. We demonstrate that the proposed design
achieves benefits at both microbenchmark and application levels. At the
microbenchmark level, the proposed design can reduce the All-to-All
communication latency by up to 87%. For PSDNS, a traditional HPC
application, our proposed design can reduce the All-to-All communica-
tion latency and total runtime by up to 29.2% and 21.8%, respectively,
while ensuring data validation and not affecting the application conver-
gence time. For Microsoft’s DeepSpeed, a DL optimization library, the
proposed design reduces the MPI Alltoall runtime by up to 26.4% com-
pared to a state-of-the-art MPI library with point-to-point compression
while ensuring data validation. To the best of our knowledge, this is
the first work that leverages online GPU-based compression techniques
to significantly accelerate MPI Alltoall communication for HPC and DL
applications.

*This research is supported in part by NSF grants #1818253, #1854828, #1931537,
#2007991, #2018627, #2112606, and XRAC grant #NCR-130002.

c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 3–25, 2022.
https://doi.org/10.1007/978-3-031-07312-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_1

4 Q. Zhou et al.

Keywords: All-to-All · GPU · Compression · GPU-Aware MPI ·
HPC · DL

1 Introduction

Emerging high-performance computing (HPC) and cloud computing systems are
widely adopting Graphics Processing Units (GPUs) to support the computa-
tional power required by modern scientific and deep learning (DL) applications.
By offering high-bandwidth memory, tensor processing, and massive parallelism,
GPUs enable running complex applications such as weather forecasting, brain
data visualization, and molecular dynamics. MPI is the de facto communica-
tion standard widely used in developing parallel scientific applications on HPC
systems. To further enhance the high compute power of current generation of
hardware, researchers are building large-scale GPU clusters to benefit from mas-
sive computation capabilities offered by these accelerators.

Due to the computing power offered by GPUs, a large range of applications
have been adapted to scale on GPU-based systems by application developers.
Communication performance plays a vital role in end-to-end application perfor-
mance on such systems. In fact, at a large scale, the communication operations
become the performance bottleneck for any massively parallel HPC and DL appli-
cation. Over the last decade, researchers have significantly optimized data trans-
fers in MPI for GPU-resident data [2,21,24]. Inter-node communication opera-
tions for large messages are highly optimized to saturate the bandwidth of the
InfiniBand network by the state-of-the-art MPI libraries [9,24]. [32] has shown
the saturated inter-node network bandwidth of the state-of-the-art MPI libraries.
Although these MPI libraries are well optimized, the communication time at the
application level is still a major bottleneck for many HPC and DL applications.
Since the inter-node communication bandwidth is already saturated via optimiza-
tions implemented by major MPI libraries, we should seek other innovative ways
to reduce the communication time of the HPC applications.

Thinking outside the box, we propose exploiting compression to aid with opti-
mizing the performance of MPI stacks and HPC/DL applications, subsequently.
Compression can reduce the amount of data that needs to be transmitted and/or
stored helping to mitigate the cost of communication. Various compression tech-
niques have been proposed in the literature diving into CPU-based algorithms and
GPU-based algorithms. The common issue with CPU-based algorithms is the low
throughput compared to GPU-based designs [14,31]. Existing GPU-based com-
pression schemes such as MPC [31], SZ [3], and ZFP [14] are typically focused on
achieving a high compression ratio and not absolute high performance.

1.1 Motivation

There are challenging aspects to consider when applying compression to the
HPC domain. HPC requires low overhead while maintaining high throughput.
Further, some HPC applications require that the underlying compression and

Accelerating MPI All-to-All Communication with Online Compression 5

decompression operations are handled by the MPI library, leaving the HPC/DL
application unchanged. We refer to this qualifier as “Online” compression. Online
compression means the message should be compressed and decompressed in real-
time inside the MPI library during a communication operation without any
modifications to the end applications. This implies that the online compression
algorithms should be self-contained with low overheads. Meeting these require-
ments first before maximizing the compression ratio and revamping the commu-
nication pattern/algorithm to fully exploit the HPC system’s available transfer
bandwidth is a challenging task that we undertake in this paper.

Since most MPI users are domain scientists first and programmers second,
modifying the application to use compression is often out of reach. Adding sup-
port often involves understanding compression techniques and when to apply
them based on message features such as size. Therefore, using compression
directly in HPC/DL applications is a daunting task for domain scientists. In
this context, [32] proposed an online compression enabled MPI library for point-
to-point operations—this is an initial work in this direction.

Fig. 1. Motivating Example: All-to-all communication time for 8 GPUs on 2 Longhorn
nodes. The observed message range in PSDNS is 1.2 MB to 9.5 MB. With more GPUs,
All-to-all communication time becomes dominant within the overall runtime of PSDNS
application.

In this paper, we use the online compression idea to optimize the performance
of MPI collective operations and improve HPC/DL application performance.
One of the most communication-intensive operations is MPI Alltoall which is
used in many applications like PSDNS [23] and DeepSpeed [22]. DeepSpeed
depends on MPI Alltoall to support the addition of Mixture-of-Experts [10]. As
shown in the Fig. 1(a), with larger scale, the MPI Alltoall time dominates the
overall execution time of the PSDNS application. Figure 1(b) shows the message
size range of MPI Alltoall operations observed in PSDNS application. In this
context, the MPI Alltoall operation is ideally suited to benefit from compression
since it is the most dense communication operation used in various HPC and
DL applications.

6 Q. Zhou et al.

1.2 Challenges

To design an efficient online compression scheme for MPI Alltoall operation,
following research challenges need to be addressed.
Challenge-1: The Limitation of Point-to-Point Based Online Com-
pression Technique: MVAPICH2-GDR-2.3.6 is the only public library that
has support for online compression. Table 1 summarizes the representative
MPI Alltoall algorithms in the MVAPICH2-GDR-2.3.6 MPI library and existing
support for online compression.

Both the Scatter Destination (SD) and Pairwise Exchange (PE) algorithms
rely on the GPU-based point-to-point communication to transfer data between
GPUs. With the current point-to-point based online compression, these algo-
rithms can leverage compression for both inter-node and intra-node communica-
tion. However, there are limitations in the existing point-to-point based online
compression design. For the PSDNS application, we use the NVIDIA profiler
Nsight to monitor the compression behavior of the existing GPU-based Scatter
Destination and Pairwise Exchange All-to-All algorithms in the state-of-the-
art MVAPICH2-GDR-2.3.6 library. Figure 2 shows the existing design that uti-
lizes point-to-point operations in the MVAPICH2-GDR-2.3.6 library. The figure
also proposes a design to overcome this limitation. As shown in the existing
design section of Fig. 2, when a process sends data to other processes, the
compression kernel in a single send operation does not overlap with kernels
in other send operations even though they run on different CUDA streams.

Table 1. Comparison of existing online compression support in MVAPICH2-GDR-
2.3.6 with proposed design

Algorithms Compression

support

Compression

level

Inter-node

data

transfer

Intra-node

data

transfer

Multiple

streams

compression

Hide

compression

overhead

Overlap

opportunity

GPU-aware

Scatter

Destination

[28]

Y Point-to-

Point

GPUDirect IPC Within single

Send/Recv

N N

GPU-aware

Pairwise

Exchange

[29]

Y Point-to-

Point

GPUDirect IPC Within single

Send/Recv

N N

CPU Staged

Scatter

Destination

[28]

N N RDMA Shared

Memory

N N N

CPU Staged

Pairwise

Exchange

[29]

N N RDMA Shared

Memory

N N N

Proposed Y Collective Staging + RDMA Across Y Y

Design level multiple

Send/Recv

Accelerating MPI All-to-All Communication with Online Compression 7

This limitation is similar for the decompression kernels in receive operations.
This essentially becomes a bottleneck for implementing dense collective opera-
tions like MPI Alltoall efficiently.

Fig. 2. Comparison between using existing compression method for point-to-point
operations versus proposed design. The proposed design increases the overlap of kernel
initialization and wait time by enabling compression at the collective level instead of
the point-to-point level.

Challenge-2: Move the Point-to-Point Compression to the Collective-
Level: The above limitation can be handled by utilizing compression at the
collective level. In MPI libraries, collectives operations are typically built
using point-to-point operations. In collective-level compression, the compres-
sion/decompression is done at the collective algorithm level before calling the
underlying point to point send/receive operation to transfer data. This provides
us the opportunity that CUDA kernels across multiple send/receive operations
can be overlapped to reduce the compression overheads—this is depicted in Fig. 2
and forms the primary motivation of our proposed design in this paper. However,
the underlying mechanism of Scatter Destination and Pairwise Exchange algo-
rithms prevents us from moving the compression to the collective level efficiently.
This pushes us to explore other MPI Alltoall algorithms. The CPU Staging algo-
rithm [28] moves the data from GPU to host and leverages the host-based Scatter
Destination, Pairwise Exchange, or other MPI Alltoall algorithms to transfer the
data. Since the send and receive operations are host-based, we cannot merely
use the existing GPU-based point-to-point compression. We need to co-design
the GPU-based compression at the collective level (Sect. 3).

Challenge-3: Revamp and Optimize GPU-Based Compression for the
Collective-Level Online Compression: While point-to-point compression
focuses on reducing the inherent compression-related overheads, collective-level
compression aims to further reduce the effective kernel computing time by
co-designing the compression with the collective operations. This needs the

8 Q. Zhou et al.

enhancement of designing interfaces for the existing collective operations to
support GPU-based compression. Furthermore, naive integration of the com-
pression algorithms at the collective level may not achieve optimal performance
(Sect. 3.1). We have to analyze the bottlenecks of such naive compression designs,
revamp the existing GPU-based algorithm, upgrade the naive design to support
the new interface, and optimize the collective operations. The implementations
of each optimization will be proposed (Sect. 4).

1.3 Contributions

In this paper, we design and implement high-performance online message com-
pression for the MPI Alltoall communication operation on modern GPU clusters.
To the best of our knowledge, this is the first work that leverages GPU-based
compression techniques to significantly improve MPI Alltoall communication
performance while maintaining data validation and not affecting the convergence
time. To summarize, this paper makes the following main contributions:

– We conduct a thorough analysis of the limitations and possible optimization
opportunities for existing MPI Alltoall algorithms with online compression
support on modern GPU systems.

– We propose an online compression design that is integrated into the underly-
ing communication libraries (e.g., MPI) for host-staging based MPI Alltoall
communication. Later, we analyze the limitations of naively integrating the
existing ZFP compression library.

– We optimize the ZFP compression library to enable execution of compression/
decompression kernels on multiple CUDA streams. These strategies reduce
the overhead of compression/decompression kernels and improve overall
performance.

– We use the OSU Micro Benchmark (OMB) suite to evaluate MPI Alltoall
communication and show that the proposed design can achieve up to 87%
improvement in performance. We also enhance OMB to use real data sets
and get up to 75% improvement in the MPI Alltoall operation.

– We evaluate the effectiveness of the proposed design through application
studies. In the PSDNS application, we can gain up to 29.2% and 21.8%
reduced MPI Alltoall runtime and total execution time, respectively, com-
pared to the existing MVAPICH2-GDR-2.3.6 with point-to-point compres-
sion. In the Deep Learning framework DeepSpeed, the proposed design
reduces the MPI Alltoall runtime by up to 26.4% and improves throughput
by up to 35.8%.

2 Background

In this section, we provide the necessary background knowledge including
the recent development of GPU based compression algorithms, MPI Alltoall
algorithms in MPI libraries, GPUDirect technology, and GPU-aware communi-
cation middlewares.

Accelerating MPI All-to-All Communication with Online Compression 9

2.1 Compression Algorithms for HPC Applications

In recent years, lossy compression libraries have shown acceptable error-
bounds [6] for HPC applications. Among them, ZFP [14] is a well-known public
compression library with user-friendly interfaces and supports CUDA-enabled
fixed-rate compression. ZFP deconstructs a d-dimensional array into 4d blocks.
The resulting compression rate is the number of amortized compressed bits
among these blocks. For example, for single-precision (32-bit) floating-point data,
a compression rate of 8 bits/value can get a compression ratio of 4. In this work,
we use the ZFP compression library.

NVIDIA recently proposed nvCOMP [19], a CUDA-based lossless compres-
sion interface to achieve high-performance compression kernels. nvCOMP sup-
ports Cascaded, LZ4, and Snappy compression methods. However, the burden of
integrating nvCOMP APIs and using them for HPC applications requires chang-
ing application code. Since nvCOMP is a user-level library, we don’t consider it
for online compression.

2.2 Algorithms for MPI Alltoall Communication

Different MPI libraries have their own implementations of MPI Alltoall algo-
rithms and often tune their library to pick up the most efficient MPI Alltoall
algorithm for a given system and message size at runtime. In existing MPI
libraries, there are three representative MPI Alltoall algorithms for large-
message data transfers. (a) In the Scatter Destination algorithm [28], each pro-
cess posts a series of MPI Isend and MPI Irecv operations and waits for these
operations to complete. (b) In the Pairwise Exchange algorithm [29], each process
runs MPI Sendrecv to communicate with only one source and one destination.
These send and receive operations will reply with GPU-based point-to-point
communication schemes to transfer data between GPUs. (c) The CPU staging
algorithm [28] leverages the host-based send and receive operations to transfer
the data. The GPU data will be moved from GPU to host before the MPI Isend
operation, and will be copied back from host to GPU after MPI Irecv.

2.3 GPU-Aware Communication Middleware

GPU-aware MPI libraries like SpectrumMPI [5], OpenMPI [20], and MVAPICH2
[17] can distinguish between host buffers and GPU buffers. These libraries have
been optimized with GPU-based point-to-point communication schemes like
CUDA Inter-Process Communication (IPC) [25] and NVIDIA GPUDirect tech-
nology [18] which supports direct reading and writing to host and device memory
by the CPU and GPU. Such technologies provide optimal performance across
varied communication paths.

10 Q. Zhou et al.

3 Proposed Online Compression Design for MPI Alltoall
Communication

To tackle the limitation of using point-to-point based compression (Challenge-1)
for MPI Alltoall communication and move the point-to-point compression to col-
lective level (Challenge-2), we redesign the host-staging based MPI Alltoall algo-
rithm in the MPI library to implement efficient MPI Alltoall communication of
GPU data with online compression. Figure 3 depicts the data flow of host-staging
based MPI Alltoall operations with compression. GPU data are exchanged among
fourGPUs. InGPU0, the device buffer sendbuf contains dataA0,A1,A2,A3which
will be sent to the recvbuf in GPU0, GPU1, GPU2 and GPU3 respectively.

Fig. 3. Host-Staging based MPI Alltoall with compression. GPU data will be com-
pressed to the temporary device buffer sendbuf tmp and copied by cudaMemcpyAsync
to the host buffer sendbuf host. MPI Isend sends out the data in the host buffer to other
CPUs. MPI Irecv collects the data to the host buffer recvbuf host from other CPUs.
The received data will be copied by cudaMemcpyAsync to the temporary device buffer
recvbuf tmp and decompressed to the recvbuf.

Algorithm 1 provides a high-level overview of the compression design for
host-staging based MPI Alltoall. Before staging the GPU data to the CPU, a
compression kernel will be launched on the send buffer for each process (Line 4).
The compressed data will be stored into the corresponding part of a temporary
device buffer sendbuf tmp. Once the compression kernel finishes, the compressed
data will be copied to the host buffer sendbuf host using cudaMemcpyAsync on
a specific CUDA stream Stream1 (Line 5). After each cudaMemcpyAsync, a
CUDA event will be recorded on the same CUDA stream (Line 6).

With compression, the data size of the transferred data is changed. The
MPI Isend operation needs to specify the compressed data size instead of the
original data size. We use a data size array B to record the data size of each
compressed data after compression. For the peer processes on other GPUs, they

Accelerating MPI All-to-All Communication with Online Compression 11

also should specify the correct data size for the upcoming data in MPI Irecv. To
transfer such data size information before transferring the compressed data, we
run an MPI Alltoall to exchange the elements in the data size array between all
the CPUs (Line 7). Since each element is only a 4 bytes integer, the overhead of
such operation is negligible compared to the large data transfer.

The multiple MPI Irecv operations for all the peer processes will be issued
ahead of MPI Isend (Line 9). Each MPI Irecv is associated with a receive request.
Before MPI Isend, we use cudaEventSynchronize to indicate the completion of
related cudaMemcpyAsync from device to host (Line 11). The MPI Isend will be
issued to send out data in the host buffer S H to the buffer address in another
CPU (Line 12).

Once a receive request is completed, the related compressed data is stored in
the host buffer R H. Similar to the send operation, the data will be copied to
a temporary device buffer R tmp using cudaMemcpyAsync on a specific CUDA
stream (Line 14). The decompression kernel will be launched on the data of each
process in R tmp after the corresponding cudaMemcpyAsync is finished (Line
19). The compressed data will be restored to the receive buffer R.

Algorithm 1: Online Compression/Decompression Design for Host-Staging

based MPI Alltoall Communication
Input : Send buffer S, Control parameters A, Number of MPI processes N ,

Preallocated GPU buffer S tmp, R tmp, Preallocated Host buffer S H, R H,
CUDA events for send E S, CUDA events for receive E R

Output: Receive buffer R, Compressed data size B for send buffer, Compressed data
size C for receive buffer

1 for i = 1 to N do

2 Construct zfp stream and zfp field;
3 Attach A to zfp stream and zfp field;
4 (Bi, S tmpi)=zfp compress(Si, Ai); //Runs on default CUDA Stream0

5 cudaMemcpyAsync(S tmpi, S Hi, Bi, cudaMemcpyDeviceToHost, Stream1);

6 cudaEventRecord(E Si, Stream1);

7 MPI Alltoall(B, 1, MPI INT, C, 1, MPI INT, MPI COMM WORLD); // Exchange
the compressed data size

8 for i = 1 to N do
9 MPI Irecv(R Hi, Ci, ...) //Receive compressed data;

10 for i = 1 to N do
11 cudaEventSynchronize(E Si);

12 MPI Isend(S Hi, Bi, ...); // Send compressed data;
13 if MPI Irecv finishes for R Hi then
14 cudaMemcpyAsync(R tmpi, R Hi, Ci, cudaMemcpyHostToDevice, Stream2);

15 cudaEventRecord(E Ri, Stream2);

16 for i = 1 to N do

17 cudaEventSynchronize(E Ri);

18 Construct zfp stream and zfp field based on control parameter A;

19 Ri = zfp decompress(R tmpi, Ci, Ai); //Runs on default CUDA Stream0

12 Q. Zhou et al.

We define runtime parameters to enable/disable compression in the host-
staging based MPI Alltoall design. We also define several control parameters
such as compression rate, dimensionality, and data type to run the ZFP com-
pression library,

3.1 Analysis of the Benefits and Limitation for the Naive
Compression Design

In this section, we analyze the compression-related benefits and costs to find out
the bottleneck (Challenge-3) in the naive compression design. With compression,
there will be less data movement by cudaMemcpyAsync between CPU and GPU
in the staging operations. The run time of the staging operation will be reduced.
MPI Isend can send out the data in the host buffer much earlier. Similarly, the
run time of transferring data between the CPUs will be reduced. On the receiver
side, it will take less time to copy data from the host buffer to the device buffer.
However, similar to the point-to-point based compression [32], there is also extra
compression/decompression kernel execution time and related kernel launching
overheads in the naive host-staging based compression. When the compression
ratio is not high enough, the benefits brought by the reduced data size may
not compensate for these extra running time costs. We need to optimize the
compression design to reduce such costs.

Fig. 4. Performance of host-staging based MPI Alltoall with naive compression design
on 2 nodes (4 ppn) of the Longhorn cluster. Higher compression rate (16, 24) indicates
a lower compression ratio. The design only starts to outperform the baseline from larger
message size 1 MB for rate = 16 and 2 MB for rate = 24. The time breakdown shows
the latency of single compression/decompression kernel, and data copy from host to
device and device to host.

We evaluate the proposed compression design using the OSU Micro-
Benchmark suite (OMB) on 2 nodes with 4ppn (4GPUs/node) of the TACC

Accelerating MPI All-to-All Communication with Online Compression 13

Longhorn cluster. As shown in Fig. 4(a), the proposed host-staging based naive
ZFP compression design can achieve benefits from 512 KB with low compres-
sion rates 8 and 4. However, with a higher compression rate (and consequently
a lower compression ratio), it only starts to outperform the baseline for larger
message size. Since ZFP is a lossy compression algorithm, this shortage will pre-
vent the design from applying to those applications which need higher accuracy.
Figure 4(b) depicts the time breakdown of some key operations in the naive com-
pression design with ZFP (rate:24). The results show the latency of every single
operation.

In the existing ZFP library, compression kernel cuZFP::encode runs on the
default CUDA stream. In the naive compression design, although the cudaMem-
cpyAsync executing on a non-default stream with a non-blocking flag cudaS-
treamNonBlocking can achieve overlap with the compression kernels for other
ranks, each cudaMemcpyAsync still needs to wait for the completion of com-
pression kernel for its rank. As we can see in Fig. 5(a), since the compression
kernels run serially in the default stream, there is a long waiting time for the
MPI Isend operation to send out the data since MPI Isend must wait for the
finish of compression kernel and memory copy from device to host.

Fig. 5. Comparison between compression on the default CUDA stream and multiple
CUDA streams for send operations in the host-staging based All-to-All. Overall com-
pression time is reduced due to the overlap between the compression kernels. The data
will be sent out faster since the cudaMemcpyAsync and MPI Isend can be executed
much earlier.

There is also a similar limitation for the decompression phase. As shown in
Fig. 6(a), the decompression kernel cuZFP::decode also runs on default CUDA
stream. Although the cudaMemcpyAsync can be overlapped with the decom-
pression kernel, it will cost a long operation time to restore data in the GPU
due to the serial operations among the decompression kernels.

14 Q. Zhou et al.

Fig. 6. Comparison between ZFP decompression on the default CUDA stream and mul-
tiple CUDA streams. Explicit calling of cudaEventSynchronize is not needed. Overall
decompression time is reduced due to the overlap between the decompression kernels.

4 Optimization Strategies in the Host-Staging Based
MPI Alltoall

Based on the previous analysis of the limitation of the naive compression design,
we propose the following optimizations to address the Challenge-3.

4.1 Enabling Multiple CUDA Streams in ZFP Library

To reduce the overall compression and decompression time, we aim to achieve
overlap between the kernels. However, the current ZFP library does not pro-
vide such an interface to run the kernels concurrently on non-default CUDA
streams. Therefore, we enhance the existing ZFP library to allow compres-
sion and decompression kernels to run on multiple streams. We define two new
functions, zfp compress multi stream and zfp decompress multi stream. A new
parameter of CUDA stream object cudaStream t is added to these functions. At
the user level, we can assign a specific stream to the compression and decom-
pression. ZFP uses a function table to select the correct low-level compression
and decompression functions according to the execution policy (Serial, OpenMP,
CUDA), stride, dimensionality, and scalar type. We extend the function table
and introduce a new execution policy named zfp exec cuda multi stream to allow
the selection of new lower-level APIs with a stream parameter. We add a new
cudaStream t parameter to all the related lower-level APIs.

In the proposed compression design, we use the 1D array type for ZFP com-
pression with the number of floating-point values as the dimensionality. The
compression kernel cudaEncode1 and decompression kernel cudaDecode1 will
be launched to the CUDA stream specified by the new High-level APIs. In the
existing compression kernel, launch function, and constant setup function, two
synchronous CUDA memory copy functions (cudaMemset and cudaMemcpy-
ToSymbol) are used to prepare for the compression and decompression on the
default stream. We change them to cudaMemsetAsync and cudaMemcpyToSym-
bolAsync, respectively, with the same CUDA stream used for compression or
decompression.

Accelerating MPI All-to-All Communication with Online Compression 15

4.2 Proposed Optimization Metrics

With the enhanced ZFP library (ZFP-OPT), we use two new API calls in the com-
pression design: zfp compress multi stream and zfp decompress multi stream.

Algorithm 2: Proposed optimized multi-stream compression/decompression

for MPI Alltoall Communication
Input : Send buffer S, Control parameters A, Number of MPI processes N ,

Preallocated GPU buffer S tmp, R tmp, Preallocated Host buffer
S H, R H, CUDA events for send E S, CUDA events for receive E R
[S1, ..., SN]= Send buffers for peer processes in Send buffer S;
[S tmp1, ..., S tmpN]= Divided N partitions of S tmp;
[R H1, ..., R HN]= Receive buffers for peer processes in R H;
[R tmp1, ..., R tmpN]= Divided N partitions of R tmp

Output: Receive buffer R, Compressed data size B for send buffer, Compressed
data size C for receive buffer

1 Multi-stream compression for send operation:
2 for i = 1 to N do
3 Construct zfp stream and zfp field based on control parameter A;
4 zfp stream set execution(zfp stream, zfp exec cuda multi stream);
5 (Bi, S tmpi)=zfp compress multi stream(Si, Ai, Streami); //Runs on

non-default CUDA Stream
6 cudaMemcpyAsync(S Hi, Mi, Bi, cudaMemcpyDeviceToHost, Streami);

//Run on the same CUDA stream
7 cudaEventRecord(Ei, Streami);

8 MPI Isend, MPI Irecv operations;
9 Multi-stream decompression for receive operation:

10 for i = 1 to N do
11 cudaMemcpyAsync(R Hi, R tmpi, Ci, cudaMemcpyHostToDevice,

Streami); // Runs on non-default CUDA stream
12 Construct zfp stream and zfp field based on control parameter A;
13 zfp stream set execution(zfp stream, zfp exec cuda multi stream);
14 Ri=zfp decompress multi stream(R tmpi, Ai, Streami); //Runs on the

same CUDA Stream

Algorithm 2 provides a high-level overview of the multi-stream compression
and decompression for the for MPI Alltoall operation. For the compression on
send operation side, we set a new execution policy zfp exec cuda multi stream
(Line 4). Then we launch the compression kernels to different CUDA streams
(Line 5). Each corresponding cudaMemcpyAsync also runs on the same stream as
the kernel (Line 6). The benefits of concurrent kernel execution are two-fold. Due
to the overlap between the compression kernels, the overall compression time is
reduced. Furthermore, since cudaMemcpyAsync can copy the compressed data to
CPU earlier, MPI Isend can send out the data from CPU in advance. Figure 5(b)
depicts the optimized send operations with this mechanism. Note that, the

16 Q. Zhou et al.

overlapping situation among the kernels and data copy operations depends on
the number of processes in the MPI Alltoall operation and the compression rate.

Similarly, on the receive operation side, we optimize decompression using
multiple CUDA streams. Once a receive request is finished, we run the cud-
aMemcpyAsync on a non-default stream to copy the compressed data from host
to device (Line 11). To enable the multi-stream decompression, we also need to
use the execution policy of zfp exec cuda multi stream (Line 13). The related
decompression kernel will also run on the same stream (Line 14). In this way,
we do not need to explicitly launch cudaEventSynchronize to wait for the com-
pletion of cudaMemcpyAsync. As shown in Fig. 6(b), the overlap between the
decompression kernels will reduce the overall decompression time and thus, accel-
erate the data restoration phase in the GPU. In the proposed design, we define
wrapper functions to execute the compression/decompression kernels. Such opti-
mization metrics can be easily applied to compression/decompression kernels of
other compression algorithms.

5 Microbenchmark Results and Analysis

We run the experiments on three GPU-enabled clusters: Longhorn [16] and the
Liquid [15] subsystem at the Texas Advanced Computing Center, and the Lassen
[13] system at Lawrence Livermore National Laboratory. Each computing node
on the Longhorn and Lassen systems is equipped with IBM POWER9 CPUs
and 4 NVIDIA V100 GPUs. They use RHEL operating system. Both systems
enable NVLink2 interconnection between CPU and GPU, and Infiniband EDR
between nodes. Each node on Frontera Liquid is installed with Intel Xeon E5-
2620 CPUs and 4 NVIDIA Quadro RTX5000 GPUs. Frontera Liquid uses PCIe
Gen3 interconnection between CPU and GPU, and Infiniband FDR between
nodes. It installs CentOS operating system. More details about the system con-
figurations can be found in their respective specification documents.

We used osu alltoall in the OSU Micro-Benchmark suite (OMB) to evalu-
ate the MPI Alltoall communications of GPU data on multiple nodes. We also
enhanced OMB to use real data sets for the MPI Alltoall communication tests.

5.1 MPI Alltoall Communication Latency on Micro-Benchmark

We run the OSU Micro-Benchmark suite (OMB) to evaluate the MPI Alltoall
communication latency. Figures 7(a) and 7(b) show the MPI Alltoall commu-
nication latency of message size from 256 KB to 16 MB on the Frontera Liquid
system. Since the proposed design is aimed at the transfer of large GPU mes-
sages, the performance results of smaller message sizes are not shown in the
figures. We observe performance improvement with the optimized compression
design in the 256 KB to 16 MB message range. With a lower compression rate,
ZFP-OPT achieves a higher compression ratio and a further reduced commu-
nication latency. Compared to the baseline, ZFP-OPT (rate:4) can achieve up
to 87.1% reduced latency at 16 MB on both 2nodes and 4nodes with 4ppn

Accelerating MPI All-to-All Communication with Online Compression 17

(4 GPUs/node). Figures 7(c) and 7(d) show the MPI Alltoall communication
latency on the Longhorn system. On 2 nodes with 4ppn, ZFP-OPT starts to
outperform the baseline from around 512 KB. Compared to Fig. 4(a), Fig. 7(c)
demonstrates the performance improvement with the optimization strategies dis-
cussed in Sect. 4. On 4 nodes, except for rate = 24, ZFP-OPT has performance
benefits starting from 256 KB. Similar to the Frontera liquid system, ZFP-OPT
(rate:4) can achieve up to 87.1% reduced latency at 16 MB on 2 nodes and 4
nodes.

Fig. 7. Latency of MPI Alltoall on Frontera Liquid and Longhorn. On Frontera Liq-
uid, ZFP-OPT starts to show benefits from 256 KB on both 2 nodes and 4 nodes.
With a lower compression rate, ZFP-OPT achieves a higher compression ratio and
reduces communication latency. On Longhorn, ZFP-OPT shows performance improve-
ment from about 512 KB on 2 nodes. On 4 nodes, except for rate = 24, ZFP-OPT
achieves benefits from 256 KB. On both systems, ZFP-OPT (rate:4) can achieve up to
87.1% reduced latency at 16 MB on 2 nodes and 4 nodes.

5.2 MPI Alltoall Communication Latency with Real Data Sets

This section evaluates the impact of the proposed design on the MPI Alltoall
communication performance on the Longhorn system with real data sets from
[31]. Figures 8(a) and 8(b) show the results of MPI Alltoall communication
latency on 2 nodes and 4 nodes respectively. In the fixed-rate compression mode,
with the same compression rate, ZFP will have the same compression ratio it
has in the micro-benchmark test. The proposed design achieves similar benefits
as the Micro-benchmark test. With lower compression rate, it reduces communi-
cation latency further. ZFP-OPT (rate:4) reduces the MPI Alltoall communica-
tion latency by up to 75% (num plasma) on 2 nodes, 72% (obs info) on 4 nodes
respectively.

18 Q. Zhou et al.

Fig. 8. Latency of MPI Alltoall with real datasets on Longhorn. With a lower compres-
sion rate, ZFP-OPT achieves greater performance benefit. ZFP-OPT (rate:4) reduces
the MPI Alltoall communication latency by up to 75% (data set num plasma) on 2
nodes and 72% (data set obs info) on 4 nodes, respectively.

5.3 Comparison of the Proposed Design and Existing MPI Alltoall
Algorithms with Point-to-Point Compression

In this section, we compare our proposed design with different algorithms:
CPU Staging (No compression), Scatter Destination, and Pairwise Exchange
in MVAPICH2-GDR-2.3.6. We use the runtime parameters provided by the
MVAPICH2-GDR-2.3.6 to trigger the point-to-point compression for Scatter
Destination and Pairwise Exchange.

On the Lassen system, for 8 GPUs on 2 nodes, our proposed design per-
forms better than these algorithms starting from 1 MB as shown in Fig. 9(a)
and 9(b). Figure 9(a) shows, for 16 MB data, the proposed design reduces the
MPI Alltoall latency by up to 11.2%, 17.8% and 26.6% compared to the Scat-
ter Destination(zfp rate:24), Pairwise Exchange(zfp rate:24), and CPU Staging
(No compression), respectively. In Fig. 9(b), with zfp compression (rate:4), the
latency is reduced by up to 12.4%, 32.3%, and 85.4% compared to the Scatter
Destination, Pairwise Exchange, and CPU Staging (No compression), respec-
tively.

In application tests, we observe greater benefit compared to the Scatter Des-
tination and Pairwise Exchange on larger scales.

Accelerating MPI All-to-All Communication with Online Compression 19

Fig. 9. MPI Alltoall latency with different algorithms for 8 GPUs on 2 Lassen nodes.
With zfp compression (rate:24), the proposed design reduces the MPI Alltoall latency
by up to 11.2%, 17.8%, and 26.6% compared to the Scatter Destination, Pairwise
Exchange, and CPU Staging (No compression), respectively. With zfp compression
(rate:4), the latency is reduced by up to 12.4%, 32.3%, and 85.4% compared to the
Scatter Destination, Pairwise Exchange, and CPU Staging (No compression), respec-
tively

6 Application Results and Analysis

6.1 PSDNS

We evaluate the proposed design with a modified 3D-FFT kernel of the Fourier
pseudo spectral simulation of turbulence (PSDNS) application [23]. The code was
written in Fortran with a hybrid MPI+OpenMP approach and compiled with
the IBM XL compiler. We run PSDNS on the Lassen system which uses the IBM
Power9 CPU architecture. In the 3D-FFT kernel, MPI Alltoall is used to transfer
the transposed data among the multiple GPUs. The kernel will also generate a
timing report about the runtime per timestep of MPI Alltoall operations, FFT
computing, and other operations. It also checks the max global difference of
the sinusoidal velocity field as an accuracy criteria. The underlying different
algorithms of MPI Alltoall can be triggered by runtime parameters. Note that
the Scatter Destination and Pairwise Exchange algorithms are built on top of
point-to-point operations. We compare our proposed design with the state-of-
the-art MVAPICH2-2-GDR-2.3.6 with point-to-point compression.

20 Q. Zhou et al.

Fig. 10. MPI Alltoall runtime in the 3D-FFT kernel of the PSDNS application on
the Lassen system. The proposed design with optimized ZFP(rate:24) can reduce the
MPI Alltoall runtime and total runtime by up to 29.2% and 21.8%, respectively, on
64 GPUs compared to the state-of-the-art MVAPICH2-GDR-2.3.6 with point-to-point
compression.

As shown in Fig. 1(a), the MPI Alltoall communication is dominant when
the application runs on large scale. In this section, by increasing the grid size
of nx, ny, nz along with the number of GPUs, we can evaluate our compression
design on different problem scales. For 128 GPUs, the grid size (nx, ny, nz) is
(1536, 1536, 1536).

Figure 10(a) depicts the MPI Alltoall runtime per time step in the appli-
cation. The proposed design with optimized ZFP (rate:24) is able to reduce
the latency up to 29.2% on 64 GPUs(4 GPUs/node) compared to the state-
of-the-art MVAPICH2-GDR-2.3.6 with point-to-point based compression. For
MVAPICH2-GDR-2.3.6, we report the best result of either Scatter Destination
or Pairwise algorithms with point-to-point based compression. Note that we set
the same rate:24 for MVAPICH2-GDR-2.3.6. Since ZFP compression is lossy,
we have ensured by working with application developers that the data gener-
ated with compression rate (>= 24) maintains acceptable precision for the FFT
computation. Table 2 shows the max global difference of the proposed design
reported in the 3D-FFT kernel. The tolerance of this value is 1.0E–05.

Table 2. Max global difference error

GPUs No compression Compression (rate:24)

16 3.492E–06 5.257E–06

32 3.721E–06 5.050E–06

64 3.275E–06 5.133E–06

128 2.943E–06 4.886E–06

256 3.218E–06 5.173E–06

Accelerating MPI All-to-All Communication with Online Compression 21

Figure 10(b) depicts the total runtime per time step in the application.
Despite the use of ZFP (rate:24) with low compression ratio for PSDNS, we
are still able to show overall improvements in the application execution time.
The proposed design with optimized ZFP (rate:24) reduces the total runtime by
up to 21.8% on 64 GPUs compared to the MVAPICH2-GDR-2.3.6 with com-
pression. These results demonstrate the scalability of the proposed design. The
proposed design could be applied to larger scales due to the straightforward
send/receive operations.

6.2 Deep Learning Application

Given DeepSpeed’s addition of Mixture-of-Experts support [10] which depends
on All-to-All operations, we have evaluated our compression designs at the
PyTorch level. To measure potential deep learning training benefits, we have
implemented a communication benchmark in PyTorch and DeepSpeed [22].
Specifically, our benchmark initializes MPI through DeepSpeed, initializes
PyTorch tensors of varying sizes, and calls MPI Alltoall on each tensor. We
conduct the experiments on the Lassen system. For different numbers of GPUs,
we use the following tensor sizes as shown in Table 3.

Table 3. Tensor size and message size

GPUs Tensor size (Bytes) Message size (Bytes)

8 2097152× 8× 4 8M

16 1048576× 16× 4 4M

32 1048576× 32× 4 4M

64 524288× 64× 4 2M

128 524288× 128× 4 2M

Fig. 11. MPI Alltoall runtime and throughput in DeepSpeed benchmark on Lassen.
The proposed design with optimized ZFP (rate:16) reduces the MPI Alltoall latency
by up to 26.4% and improves the throughput by up to 35.8% on 32 GPUs compared
to the MVAPICH2-GDR-2.3.6 with point-to-point based compression.

22 Q. Zhou et al.

Figure 11(a) shows MPI Alltoall runtime in DeepSpeed on Lassen system
with 4 GPUs per node. Figure 11(b) shows the throughput result. Similar to
the PSDNS application, we compare our proposed design with the state-of-the-
art MVAPICH2-GDR-2.3.6. The proposed design with optimized ZFP (rate:16)
reduces the MPI Alltoall latency by up to 26.4% and improves the throughput
by up to 35.8% on 32 GPUs compared to MVAPICH2-GDR-2.3.6 with point-
to-point based compression support. These results demonstrate the potential
benefits for deep learning training.

7 Related Work

MPI Alltoall communication operations [7] are data-intense operations in mod-
ern HPC and Deep Learning applications. In [1], Bruck et al. evaluate
MPI Alltoall collective algorithms, and propose efficient MPI Alltoall operation
implementations for multi port message-passing systems. In [26,27], Singh et
al. utilize CUDA-aware MPI to implement the GPU-based MPI Alltoall col-
lective operations. More recently, with the advent of NVLINK interconnects
on modern GPU clusters, additional design challenges are incorporated in the
adaptive MPI Alltoall design [8]. However, no work has been done to optimize
GPU-based MPI Alltoall operations using a GPU-based compression in MPI
run-time. In previous work, Filgueira et al. [4] use CPU-based lossless compres-
sion algorithms for MPI communication, CoMPI, to show host-based benefits
of compression. Jin et al. [6] show high compression throughput for large-scale
HPC applications through using GPU-based lossy compression algorithms. Zhou
et al. [32] proposed a framework to integrate the GPU-based compression algo-
rithms MPC [31] and ZFP [14] into MPI library to realize online compression
for point-to-point based GPU communication. Recently, Tian et al. proposed
cuSZ [30] with dual-quantization schemes for NVIDIA GPU architectures. A
recent lossless GPU-based compression library built by NVIDIA, nvCOMP [19],
provides a compression interface for applications.

8 Conclusion

In this paper, we propose a host-staging based scheme with online compression in
the MPI library for MPI Alltoall communication of large GPU data. Moreover,
we move the compression to the collective level and optimize the existing ZFP
compression library to enable the compression/decompression kernels to run on
multiple CUDA streams to achieve overlap across the send/receive operations
and improve the performance of MPI Alltoall while maintaining data validation
and not affecting the convergence time. The proposed design demonstrates up
to 87.1% reduced MPI Alltoall communication latency at the benchmark-level.
At the application level, we compare the proposed design to the state-of-the-
art MPI library MVAPICH2-GDR-2.3.6 with point-to-point compression. In the
PSDNS application, the proposed design yields up to 21.8% reduced overall

Accelerating MPI All-to-All Communication with Online Compression 23

running time. In the DeepSpeed benchmark, the proposed design reduces the
MPI Alltoall runtime by up to 26.4%.

As future work, we plan to study and incorporate more GPU-based com-
pression algorithms, like cuSZ [30] and NVIDIA’s nvCOMP [19]. To analyze
the communication time in the compression design, we plan to utilize real-time
monitor tools like OSU INAM [11,12]. Also, we plan to exploit the online com-
pression design for various collective communications like All-Reduce and study
the impact on more HPC and Deep Learning applications.

Acknowledgment. The authors would like to thank Kiran Ravikumar and Prof. P.K.
Yeung from Georgia Institute of Technology for guiding conducting experiments with
the 3D-FFT kernel of application PSDNS.

References

1. Bruck, J., Ho, C.T., Kipnis, S., Upfal, E., Weathersby, D.: Efficient algorithms
for All-to-All communications in multiport message-passing systems. IEEE Trans.
Parallel Distrib. Syst. 8(11), 1143–1156 (1997)

2. Chu, C.H., Kousha, P., Awan, A.A., Khorassani, K.S., Subramoni, H., Panda,
D.K.: NV-group: link-efficient reduction for distributed deep learning on modern
dense GPU systems. In: Proceedings of the 34th ACM International Conference
on Supercomputing (2020)

3. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In:
International Parallel and Distributed Processing Symposium (IPDPS) (2016)

4. Filgueira, R., Singh, D., Calderón, A., Carretero, J.: CoMPI: enhancing MPI based
applications performance and scalability using run-time compression. In: European
Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp.
207–218 (2009)

5. IBM: IBM Spectrum MPI: accelerating high-performance application paralleliza-
tion (2018). https://www.ibm.com/us-en/marketplace/spectrum-mpi. Accessed
13 May 2022

6. Jin, S., et al.: Understanding GPU-Based Lossy Compression for Extreme-Scale
Cosmological Simulations. ArXiv:abs/2004.00224 (2020)

7. Kale, L., Kumar, S., Varadarajan, K.: A framework for collective personalized
communication. In: Proceedings International Parallel and Distributed Processing
Symposium, p. 9 (2003). https://doi.org/10.1109/IPDPS.2003.1213166

8. Khorassani, K.S., Chu, C.H., Anthony, Q.G., Subramoni, H., Panda, D.K.: Adap-
tive and hierarchical large message All-to-All communication algorithms for large-
scale dense GPU systems. In: 2021 IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), pp. 113–122 (2021). https://
doi.org/10.1109/CCGrid51090.2021.00021

9. Khorassani, K.S., Chu, C.H., Subramoni, H., Panda, D.K.: Performance evaluation
of MPI libraries on GPU-enabled OpenPOWER architectures: early experiences.
In: International Workshop on OpenPOWER for HPC (IWOPH 19) at the 2019
ISC High Performance Conference (2018)

10. Kim, Y.J., et al.: Scalable and efficient MOE training for multitask multilingual
models (2021)

https://www.ibm.com/us-en/marketplace/spectrum-mpi
http://arxiv.org/2004.00224
https://doi.org/10.1109/IPDPS.2003.1213166
https://doi.org/10.1109/CCGrid51090.2021.00021
https://doi.org/10.1109/CCGrid51090.2021.00021

24 Q. Zhou et al.

11. Kousha, P., et al.: Designing a profiling and visualization tool for scalable and in-
depth analysis of high-performance GPU clusters. In: 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC), pp. 93–
102 (2019). https://doi.org/10.1109/HiPC.2019.00022

12. Kousha, P., et al.: INAM: Cross-Stack Profiling and Analysis of Communication in
MPI-Based Applications. Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3437359.3465582

13. Lawrence Livermore National Laboratory: lassen—high performance computing
(2018). https://hpc.llnl.gov/hardware/platforms/lassen. Accessed 13 March 2022

14. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Visualiz.
Comput. Graph. 20 (2014). https://doi.org/10.1109/TVCG.2014.2346458

15. Liquid Submerged System - Texas Advanced Computing Center, Frontera - Spec-
ifications. https://www.tacc.utexas.edu/systems/frontera

16. Longhorn - Texas Advanced Computing Center Frontera - User Guide. https://
portal.tacc.utexas.edu/user-guides/longhorn

17. Network-Based Computing Laboratory: MVAPICH: MPI over InfiniBand, Omni-
Path, Ethernet/iWARP, and RoCE (2001). http://mvapich.cse.ohio-state.edu/.
Accessed 13 March 2022

18. NVIDIA: NVIDIA GPUDirect (2011). https://developer.nvidia.com/gpudirect.
Accessed 13 March 2022

19. NVIDIA: nvCOMP (2020). https://github.com/NVIDIA/nvcomp. Accessed 13
March 2022

20. Open MPI: Open MPI: Open Source High Performance Computing (2004). https://
www.open-mpi.org/. Accessed 13 March 2022

21. Potluri, S., Hamidouche, K., Venkatesh, A., Bureddy, D., Panda, D.K.: Efficient
inter-node MPI communication using GPUDirect RDMA for infiniBand clusters
with NVIDIA GPUs. In: 42nd International Conference on Parallel Processing
(ICPP), pp. 80–89. IEEE (2013)

22. Rasley, J., Rajbhandari, S., Ruwase, O., He, Y.: Deepspeed: system optimizations
enable training deep learning models with over 100 billion parameters. In: Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 3505–3506. KDD 2020, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3394486.3406703

23. Ravikumar, K., Appelhans, D., Yeung, P.K.: GPU acceleration of extreme scale
pseudo-spectral simulations of turbulence using asynchronism. In: Proceedings of
the International Conference for High Performance Computing, Networking, Stor-
age and Analysis. SC 2019, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3295500.3356209

24. Sharkawi, S.S., Chochia, G.A.: Communication protocol optimization for enhanced
GPU performance. IBM J. Res. Develop. 64(3/4), 9:1–9:9 (2020)

25. Shi, R., et al.: Designing efficient small message transfer mechanism for inter-
node MPI communication on InfiniBand GPU clusters. In: 2014 21st International
Conference on High Performance Computing (HiPC), pp. 1–10 (2014)

26. Singh, A.K., Potluri, S., Wang, H., Kandalla, K., Sur, S., Panda, D.K.: MPI All-
toAll personalized exchange on GPGPU clusters: design alternatives and benefit.
In: 2011 IEEE International Conference on Cluster Computing, pp. 420–427 (2011)

27. Singh, A.K.: Optimizing All-to-All and Allgather Communications on GPGPU
Clusters. Master’s thesis, The Ohio State University (2012)

https://doi.org/10.1109/HiPC.2019.00022
https://doi.org/10.1145/3437359.3465582
https://hpc.llnl.gov/hardware/platforms/lassen
https://doi.org/10.1109/TVCG.2014.2346458
https://www.tacc.utexas.edu/systems/frontera
https://portal.tacc.utexas.edu/user-guides/longhorn
https://portal.tacc.utexas.edu/user-guides/longhorn
http://mvapich.cse.ohio-state.edu/
https://developer.nvidia.com/gpudirect
https://github.com/NVIDIA/nvcomp
https://www.open-mpi.org/
https://www.open-mpi.org/
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3295500.3356209

Accelerating MPI All-to-All Communication with Online Compression 25

28. Singh, A.K., Potluri, S., Wang, H., Kandalla, K., Sur, S., Panda, D.K.: MPI All-
toAll personalized exchange on GPGPU clusters: design alternatives and benefit.
In: 2011 IEEE International Conference on Cluster Computing, pp. 420–427 (2011).
https://doi.org/10.1109/CLUSTER.2011.67

29. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communi-
cation operations in MPICH. Int. J. High Perform. Comput. Appl. 19(1), 49–66
(2005). https://doi.org/10.1177/1094342005051521

30. Tian, J., et al.: CUSZ: an efficient GPU-based error-bounded lossy compression
framework for scientific data. In: Proceedings of the ACM International Confer-
ence on Parallel Architectures and Compilation Techniques, pp. 3–15. PACT 2020,
Association for Computing Machinery, New York, NY, USA (2020). https://doi.
org/10.1145/3410463.3414624

31. Yang, A., Mukka, H., Hesaaraki, F., Burtscher, M.: MPC: a massively parallel
compression algorithm for scientific data. In: IEEE Cluster Conference (2015)

32. Zhou, Q., et al.: Designing high-performance MPI libraries with on-the-fly com-
pression for modern GPU clusters*. In: 2021 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 444–453 (2021). https://doi.org/10.
1109/IPDPS49936.2021.00053

https://doi.org/10.1109/CLUSTER.2011.67
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1145/3410463.3414624
https://doi.org/10.1145/3410463.3414624
https://doi.org/10.1109/IPDPS49936.2021.00053
https://doi.org/10.1109/IPDPS49936.2021.00053

NVIDIA’s Quantum InfiniBand Network
Congestion Control Technology and Its
Impact on Application Performance

Yuval Shpigelman(B), Gilad Shainer, Richard Graham, Yong Qin,
Gerardo Cisneros-Stoianowski, and Craig Stunkel

NVIDIA Corporation, Santa Clara, USA
{yuvals,shainer,richgraham,yongq,gcisneross,cstunkel}@nvidia.com

Abstract. Applications running on large scale systems often suffer from
degraded performance and lack of reproducible run-times due to network-
level congestion, whether caused by the application network traffic itself,
or by unrelated background network traffic (i.e. other applications). This
paper describes the hardware-based congestion control algorithm imple-
mented in NVIDIA’s Quantum HDR 200Gb/s InfiniBand generation and
the AI-based training used to obtain algorithm parameters. The hard-
ware leverages NVIDIA’s Data Center Quantized Congestion Notifica-
tion (DCQCN) algorithm and protocol and applies it to the InfiniBand
network layer. Congestion patterns described in the literature are stud-
ied and enhanced to create greater congestion and are used to study the
impact of such patterns on three applications: Incompact3D, LAMMPS
and VASP. The study shows that network congestion increases individ-
ual measured application run time by up to a factor of ten or greater,
while introduction of the implemented congestion control on the Quan-
tum HDR InfiniBand technology recovers most of the lost time for the
tested applications and congestion.

Keywords: Infiniband congestion control · NVIDIA Quantum
InfiniBand technology · Application performance

1 Introduction

Computer systems that execute High Performance Computing (HPC) and Arti-
ficial Intelligence (AI) applications typically run parallel workflows. As a result,
data is exchanged over the network between workflow components. The data
paths between such components tend to be shared between the elements of a
workflow or between workflows, causing competition for those resources. Such
competition often leads to a reduction in overall system efficiency and to unpre-
dictable application performance. From a systems perspective, such platforms
are costly and the reduction in system performance due to interference between
different data flows reflects loss of available system resources. From an appli-
cation performance perspective, lack of reproducible run-times makes it quite
c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 26–43, 2022.
https://doi.org/10.1007/978-3-031-07312-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_2

NVIDIA Quantum InfiniBand Congestion Control 27

a challenge for code optimization as well as making it difficult to estimate the
resources needed for a given task. Such losses are magnified when running paral-
lel workflows, as the slowest component tends to determine the overall run-time
due to tail-latency effects.

There are three different network-level mechanisms in common use that are
used to reduce the network interference: (1) resource isolation, (2) data-path
spreading and (3) data flow metering. Each of these addresses a different aspect
of the challenge of using shared data paths efficiently.

Resource isolation, also known as Quality of Service (QoS), is used to separate
resources associated with different classes of traffic and for managing data flow
priority. Separate resources are used in the switches to keep different flows from
interfering with each other due to resource sharing. While a very effective mech-
anism for avoiding overall system performance degradation, this suffers from the
fact that the number of such resources that can be effectively supported is small.
The InfiniBand specification defines 16 such levels, for example.

Data path spreading, also known as adaptive routing, is a mechanism used
to leverage the plurality of data paths that may exist between two different end-
points. This is a very effective mechanism [1] for spreading and separating traffic
by strategically utilizing all available parallel routes.

Data flow metering, a part of congestion control algorithms, is used to con-
trol the end-node data injection rate into the network to allow for efficient data-
path sharing where such sharing cannot be avoided, such as in N → 1 incast sce-
narios. Such mechanisms are applied to individual data flows and are designed to
keep links on the network from saturating and applying indiscriminate data back-
pressure to avoid dropping traffic that can’t be handled. Such back-pressure is dra-
conian, and often results in congestion spreading to other parts of the network,
because of head-of-line blocking [2,3] and the parking lot effect. Such congestion
spreading can also result in impacting victim flows that are unrelated to the origi-
nal source of the problem. This paper describes the mechanisms used in NVIDIA’s
Quantum InfiniBand network platforms to handle network congestion problems.

This paper briefly describes the hardware implementation of the NVIDIA
DCQCN algorithm used by the Quantum InfiniBand hardware to implement
congestion control. The DCQCN parameters are obtained using an AI training.
The congestion patterns used by the GPCNet [4] benchmark are studied to setup
traffic producing larger congestion effects. These network congestion patterns are
used to study the impact of congestion on the run-time of randomly distributed
parallel applications. Incompact3D, LAMMPS and VASP are the applications
used, with the performance of each simulation measured when running in iso-
lation using about 20% of the system nodes, when running with about 80% of
the nodes generating background network congestion and finally with adding in
congestion control to remedy the congestion effects.

This paper’s contributions include a description of the implementation of the
DCQCN algorithm in NVIDIA’s Quantum HDR InfiniBand hardware technology.
To our knowledge, This is the first attempt to apply DCQCN to a network with
much lower latencies than Ethernet in conjunction with adaptive routing. This was

28 Y. Shpigelman et al.

applied to HPC workloads that don’t typically exhibit long-lasting “flows”, which
necessitates algorithm parameters that respond more quickly to traffic changes.
The paper also describes an AI-based methodology used to determine DQCQN
algorithm parameters. Finally, the paper studies the impact of these capabilities
on the performance under load of some widely used applications.

2 Previous Work

The importance of reducing congestion has been recognized since electronic net-
works were first developed. Solutions have included robust topologies [5] and
accompanying routing techniques to avoid contention, dropping packets when
excessive congestion occurs, utilizing multiple routes or adaptive routing [6]
to spread traffic more evenly across network switches, use of virtual networks
[7,13] to provide separate buffering resources for different classes of traffic or ser-
vice/priority levels, and congestion control methods. Congestion control methods
measure status of the network devices and properties of the network traffic to
detect congestion, and then modify injection at traffic sources in order to reduce
or avoid such congestion.

TCP was developed to handle both congestion and lossy or unreliable net-
works, and can handle networks that drop packets in response to congestion. This
requires congestion control techniques that handle such packet drops or failures
well. However, modern data centers and applications perform much more effi-
ciently when the network latencies are more predictable and do not have long
tail latencies. Therefore most data centers today use link-level flow control such
as Ethernet’s PFC [8] to avoid dropping packets. This has led to TCP congestion
control algorithms that optimize traffic with this assumption, such as Data Cen-
ter TCP (DCTCP) [9], which utilizes Explicit Congestion Notification (ECN)
packets [10] that are now commonly supported in switches. More recently, the
DCQCN protocol [11] builds upon DCTCP and ECN and leverages the Quan-
tized Congestion Notification (QCN) algorithm [12] to guide flow decisions at
the reaction point (the source).

The InfiniBand standard [13] was developed to provide high levels of perfor-
mance while offloading much of the network stack to hardware, and also uses
link-level flow control. When first architected, InfiniBand defined its own con-
gestion control mechanisms [14,15]. In addition, other congestion control algo-
rithms relying on PFC are interesting to consider for InfiniBand, although Infini-
Band’s much lower latencies necessitate the use of different parameters, and the
algorithm must be offloadable. In this paper we apply NVIDIA’s DCQCN [11]
protocol to InfiniBand hardware, and we do not compare performance to other
congestion control algorithms. However, congestion control remains a very active
area of research, and we briefly overview other efforts here.

The most common congestion detection methods measure queue length or
queue delay at a network device, and mark packets going through these queues.
Network delay has also been used as a criteria for congestion detection, and
a target for acceptable network delay can be utilized to regulate traffic flow

NVIDIA Quantum InfiniBand Congestion Control 29

[16,17]. Combinations of queue length/delay and network delay have also been
used to guide decisions [18]. Other congestion detection and response techniques
are explored in recent work [19,20]. Congestion control continues to be a rich
and important area of research, and these examples are not intended to fully
represent recent advances in the field. Yang and Reddy provide an excellent
early survey of congestion control strategies [21].

3 Congestion Control Implementation

Network congestion occurs when a network device (e.g., a switch or an adapter)
receives traffic faster than it can forward it or consume it. This causes buffer
occupancy to increase, and when a buffer is full, no more data can be received.
Congestion control algorithms are designed to mitigate these effects. In lossless
networks such as InfiniBand, this can quickly result in head-of-the-line blocking
[2,3], as packets that could otherwise make progress are stuck behind packets
that cannot do so.

Flow control can impact multiple flows running though a congested port,
including flows that aren’t being routed through the downstream source of the
congestion, and therefore need not have their rate impacted to the same degree.
These flows are known as victim flows. Figure 1a shows an example of such a
situation, where the A flows cause congestion toward OA. Flow control will cause
the bandwidth allocation over the link between S1 and S2 to reduce flow V to
20% of the maximum line rate. Optimally, congestion control should provide
flow V with an 80% bandwidth allocation.

(a) Congestion example. Flows to OA will
cause network congestion, with the V flow
towards OV becoming the victim flow. (b) Parking-lot effect example.

Fig. 1. Congestion illustration.

Another phenomenon caused by congestion is the “parking lot effect,”
wherein local flows gain more bandwidth than remote flows, because the remote
flows share upstream network links. Figure 1b shows such an example, where
arbitration in S2 will give 25% of the line rate to every ingress port. Therefore,
A1 and A2 will get 12.5%, while the other 3 flows will get 25%. Congestion
control can be used to give all five flows a similar bandwidth allocation, by pro-
viding the S2 ingress port coming from S1 40% of the link bandwidth, and 20%

30 Y. Shpigelman et al.

bandwidth to the other flows. These examples illustrate why congestion-control
is critical for obtaining good efficiency and performance on large-scale networks.

To maintain the high-performance characteristics of networks under load,
it is critical that congestion control algorithms react quickly to changing net-
work conditions, to prevent quickly spreading the impact of full buffers. There-
fore, InfiniBand HCAs offload the congestion control into the ASIC, rather than
implementing it on the host as in TCP. This offloaded implementation provides
reaction times on the order of magnitude of the network round trip, while in TCP
algorithms the reaction time also includes the software stack latency, which tends
to be much higher.

The end-to-end congestion control implementation includes several compo-
nents: 1) a network injection rate-limiting component, or reaction point, 2) a
congestion point (CP) and 3) a notification point. The rate-limiting algorithm
is implemented in NVIDIA’s ConnectX-6 InfiniBand HCA hardware, and uses
NVIDIA’s DCQCN [11] algorithm. Its congestion notification scheme is the
Explicit Congestion Notification protocol (ECN) [10], informing the DCQCN
algorithm via Congestion Notification Packets (CNPs). ECN is a standard capa-
bility supported by NVIDIA’s Quantum InfiniBand HDR switches. The DCQCN
algorithm builds upon QCN [12] and DCTCP [9], where the rate increase scheme
is taken from the QCN algorithm and the rate decrease scheme is taken from
the DCTCP algorithm.

When congestion starts to build at a switch in the network, it will mark the
forwarded packets with a probability determined by the ECN protocol.

When an ECN-marked packet arrives at the notification point (the destina-
tion HCA), this HCA will send a CNP packet on a fast path (bypassing normal
packet scheduling) and on a dedicated virtual network back to the reaction
point (the source HCA), which handles the packet at the network layer, bypass-
ing transport processing. Such packets are limited to no more than one every N
microseconds.

When the first CNP packet arrives at the reaction point, the DCQCN algo-
rithm is initialized, setting an initial rate for the corresponding flow. From that
time onward, the flow rate will be determined by the DCQCN algorithm using
rate-increment and rate-decrement schemes, until full wire speed is restored.

Two types of triggers cause the rate associated with a given stream to
increase: 1) Time: After every time interval T that passes without a CNP packet
arriving, and 2) Data: After every B bytes of data sent without a CNP packet
arriving. Three types of rate increments are used: 1) fast recovery, 2) additive
increase, with strength controlled by the DCQCN parameter AI, and 3) hyper
increase, with strength controlled by the DCQCN parameter HAI.

The algorithm chooses the increment type based on the amount of successive
intervals each increment trigger is triggered. Fast recovery is used for each time
or data interval that passes without a CNP arrival, up to F successive intervals.
At or above F intervals for either time or data, additive recovery is used. Finally,
if both time and data intervals trigger more than F intervals in a row, the hyper
rate increase algorithm is used.

NVIDIA Quantum InfiniBand Congestion Control 31

A factor of α rate reduction is triggered by arriving CNP packets. The vari-
able α’s update is triggered by its own alpha timer and by CNP packets, as
described in the DCQCN paper [11]. The rate computed by the DCQCN algo-
rithm is adjusted using a mapping function from the computed rate to the
applied rate. At low data rates α changes at a lower rate than the algorithm
suggests, and at high data rates α changes more aggressively to recover full line
rate sooner. The InfiniBand QP rate-limiting capabilities are used to control the
data transmission rate.

DCQCN Parameter Optimization: InfiniBand networks pose additional
challenges in comparison to Ethernet networks when determining the DCQCN
algorithm parameters. InfiniBand adaptive routing capability can spray pack-
ets from the same source across multiple paths in the network, and therefore
increases path diversity and creates a need for faster reaction times. These chal-
lenges force the reevaluation of DCQCN parameters, given that DCQCN has 12
parameters and the ECN protocol has another three parameters.

The ECN and DCQCN algorithm parameters are determined using the EVO
[22] optimization package. EVO is a hybrid optimizer that employs evolution-
ary algorithms paired with other techniques such as ant colony optimizations
that are controlled by internal reinforcement (meta) learning agents. EVO uses
a user-defined cost function for optimization purposes, along with a set of con-
straints. The constraints are applied to ensure that the solution space will avoid
values that provide unattainable system parameters, such as unattainable net-
work bandwidth. An AI approach was chosen with the assumption that such a
tool might analyze performance data in a more complete manner than manual
methods. The results of the experiments are promising.

For this Evo cost function we use a metric with a max threshold parameter
Mt. As shown in Fig. 2, the metric is linear between zero and Mt, where the cost
of Mt is one. For results higher than Mt the function is linear with very steep
slope, to avoid the high range of values.

The total cost function is the average of each of the contributing metrics.
The metrics are defined such that lower is better.

Three network test codes are used to provide the cost function parameters.
The tests include:

1. The b effective test [23], with the normalized computed average bandwidth
and its standard deviation from several measurements being the parameters
contributing to the cost function.

2. A test code that generates an N to 1 incast traffic pattern, and with an
additional victim flow. I.e., N servers A1 to AN send data to a single server
OA, while a separate server V sends data to a server OV attached to the same
destination/leaf switch as OA. The path from V to the leaf switch overlaps at
least one of the N server to OA paths (see Fig. 1a). The test is run with several
values of N . The metrics used include the normalized standard deviation
of the measured bandwidth at the N servers, and the normalized available

32 Y. Shpigelman et al.

Fig. 2. Metric for measurement’s cost function

bandwidth of the victim flow at OV and of the incast receiver at OA, where
available bandwidth is the line rate minus the measured bandwidth.

3. The GPCNet benchmarks [4], where the metrics used are the GPGNet “key”
results for the point-to-point latency test, the point-to-point bandwidth test,
and the eight-byte allreduce latency test, for both the average and the 99th
percentile measurements.

4 Experimental Setup

4.1 System Configuration

Table 1 describes the system configurations used in the testing.

4.2 Congestion Patterns

The four congestion patterns used to create background traffic include one-
sided Remote Memory Access (RMA) N → 1 incast (put incast), point-to-point
N → 1 incast (p2p incast), one-sided broadcast (get bcast), and alltoall. These
patterns are the ones used in the GPCNet benchmark. To generate more conges-
tion, while maintaining medium-sized messages in the range frequently used by
HPC applications, the GPCNet benchmark was run varying the data sizes used
by the congestor patterns. For this set of tests congestion control was not used,
as the goal is to measure the effect of the message size used by the GPCNet
defined congestors on application performance. The default message size used
by the test is 4 KBytes. Congestion impact (CI) values are reported, with CI for
latency and bandwidth defined in Eqs. 1 and 2, respectively. Figure 3 shows the
CI values for the test run on 96 nodes and 32 processes per node of the in-house
cluster, with message sizes in the range of 4 to 16 KBytes.

NVIDIA Quantum InfiniBand Congestion Control 33

Table 1. Test system details.

Feature In-house cluster Azure cluster

Operating system Red Hat Enterprise Linux Ubuntu 18.04.5 LTS (Bionic

Server release 7.6 (Maypo) Beaver) VM under Microsoft

Host Hypervisor

CPU Intel Xeon E5-2697A v4 AMD EPYC 7V12 CPU

Number of Nodes

Clock frequency 2.60 GHz 2.687GHz

Sockets/node 2 2

Cores/socket 16 48 VM cores

InfiniBand driver MLNX OFED LINUX5.4-1.0.3.0 MLNX OFED LINUX5.4-1.0.3.0

Subnet Manager OpenSM 5.10.0 UFMAPL 4.6.1.4 UFM 6.7.0.12

HCA NVIDIA ConnectX-6, HDR100 NVIDIA ConnectX-6, HDR

HCA Firmware 20.31.1014 20.28.4000

Storage NFS NFS

CIl = Latencycongested/Latencyisolated (1)

CIb = Bandwidthisolated/Bandwidthcongested (2)

Note that the CI parameters are chosen to be unit-less, as a ratio of the
isolated to congested measurements. With the application host configuration
selected at random for each pair of measurements, congested and uncongested,
some of the differences between the pairs of measurements are due to changes
in the network topology. Using the ratio of the performance metric helps reduce
the impact of application topology on the measurements and aids in exposing
the impact of congestion control on application performance.

As Fig. 3 shows, for the message sizes used by the congestors, a message size
of 8 KBytes impacts the key-results the most and is therefore the message size
used to produce application background traffic.

The applications being studied were also used as congestors, replacing the
congestors with both copies of the same application, as well as a mix of applica-
tions. This had minimal impact on application performance, and therefore was
not further pursued.

4.3 Applications

Three applications are used to study the impact of congestion-control on the
application: Incompact3D, LAMMPS and VASP. Incompact3D is chosen because
it makes extensive use of FFTs, with about a third of the time for the test case
spent in alltoall operations with message sizes of tens of KBytes each. LAMMPS
and VASP are chosen because they are in wide use. The impact of congestion and
congestion control on several other apps was also briefly examined, showing ben-
efits similar to those of these three applications. However, resource constraints
precluded these from the current study.

34 Y. Shpigelman et al.

Fig. 3. Congestion Impact on 8-Byte random ring latency, 128-KByte random ring
bandwidth, and 8-Byte multiple allreduce, average and 99th percentile for each bench-
mark without applying InfiniBand congestion control.

Application performance is measured with one copy run in isolation pro-
viding the baseline performance characteristics. In addition, each application is
run with congestors executing in the background with and without congestion
control. Congestion Impact values are reported for applications as well and the
definition is similar to Eqs. 1 and 2 using the actual performance metrics defined
in each application respectively. For VASP and Incompact3D the performance
metric is wall-clock time in seconds, and for LAMMPS the performance metric
is simulation speed in nanoseconds per day (ns/day).

Incompact3D. Xcompact3d is a Fortran 90, MPI-based, finite difference high-
performance framework for solving the Navier-Stokes equations and associated
scalar transport equations. Incompact3d is the flagship solver of the Xcompact3d
ecosystem and is designed to study incompressible flows [24,25]. For the Cylinder
input chosen for testing, when run with 608 processes on 19 nodes, Incompact3D
spent over 90% of MPI communications time in MPI Alltoall and MPI Allreduce,
as measured by an MPI profiling tool. This corresponds to about 40% of the
runtime.

LAMMPS. The Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) is a classical molecular dynamics code. It runs on a single processor
or in parallel using message-passing techniques with a spatial-decomposition of
the simulation domain [26,27]. For the Rhodopsin input chosen when running
LAMMPS, over 70% of the MPI time is spent in MPI Send, and about 10% is
spent in MPI Allreduce, as measured by an MPI profiling tool. This corresponds
to about 13% of the runtime.

NVIDIA Quantum InfiniBand Congestion Control 35

VASP. The Vienna Ab initio Simulation Package (VASP) is a computer pro-
gram for atomic scale materials modeling, e.g. electronic structure calculations
and quantum-mechanical molecular dynamics, from first principles [28–32]. For
the Pt 111 test input chosen, well over 80% of time spent in MPI communications
in VASP is spent in collective operations, namely: MPI Alltoall, MPI Bcast,
MPI Allreduce, MPI Alltoallv and MPI Barrier, as measured by an MPI profil-
ing tool. This corresponds to about 50% of the runtime.

5 Synthetic Congestion Bare-Metal Workload

To study the impact of congestion generated by synthetic congestors, a test-
ing infrastructure was developed which coordinates running a single application
along with congestors in a fully controlled environment. This infrastructure ran-
domizes a given node list and divides it into two groups. The first group contains
roughly 20% of the total number of nodes in the list, which are used to run the
chosen application, and the remaining nodes are used to run the congestors,
with a roughly equal number of hosts used for each congestor. Randomization
of the node list affords the opportunity to simulate applications being run in a
real HPC data center through a job scheduler. This avoids potential artifacts
caused by using a fixed node allocation and/or a pre-selected network layout.
The infrastructure collects the application performance metrics in three modes
within the same node allocation. In the first mode the application is run in its
node group without any congestors to collect baseline performance data. In the
second mode both the application and congestors are run simultaneously and
application performance is collected again to measure the impact of congestion
on the application. The third mode is similar to the second one, but is executed
using an InfiniBand service level that is configured to support congestion control.

As Sect. 4.2 describes, there are four basic congestion patterns. For a more
comprehensive study of the impact of congestion on the applications, several
combinations of these patterns are used. Because of the large amount of time
required to collect all the data for a single congestion pattern, seven of the
possible pattern combinations are used. Each of the individual congestors is
used as the only congestor, and three more added, starting with the strongest
congestor, and successively adding the next strongest congestor. Table 2 lists all
the congestion patterns used in this paper. For each application and congestor
combination, 50 jobs were run for each of the three test modes. The results
are reported relative to the baseline runs, making it easier to compare results
obtained from the different host layouts.

Figures 4, 5, and 6 show the results of the tests run to measure the impact
of congestion and congestion control on the three applications and the seven
data patterns used to generate congestion. This data was collected on the in-
house bare-metal system. Table 3 lists the Congestion Impact values for these
applications for reference. The first half are values without congestion control
and the second half are values with congestion control.

36 Y. Shpigelman et al.

Table 2. Congestion patterns

Congestor configuration Activated congestor(s)

x11 put incast

x12 p2p incast

x13 get bcast

x14 alltoall

x2 put incast, p2p incast

x3 put incast, p2p incast, get bcast

x4 put incast, p2p incast, get bcast, alltoall

Fig. 4. Impact of congestion and congestion control as a function of congestor type for
VASP. The average and standard deviation from 50 jobs per bar run on the 19 nodes
for application and 74 nodes for the congestor are displayed.

Table 3. CI average and standard deviation as a function of congestor type for appli-
cations running on in-house cluster. Congestors are used for all runs. The top set of
measurement do not use congestion control and the bottom set have congestion control
activated.

x11 x12 x13 x14 x2 x3 x4

VASP 2.21 ± 0.93 1.90 ± 0.82 1.02 ± 0.10 1.44 ± 0.20 1.42 ± 0.39 1.27 ± 0.28 1.23 ± 0.19

Incompact3D 1.20 ± 0.12 2.77 ± 1.55 1.01 ± 0.02 1.98 ± 0.24 1.11 ± 0.06 1.08 ± 0.07 1.05 ± 0.02

LAMMPS 2.09 ± 0.95 2.14 ± 1.02 1.00 ± 0.01 1.41 ± 0.26 1.79 ± 0.51 1.61 ± 0.38 1.51 ± 0.30

VASP 1.02 ± 0.05 1.17 ± 0.15 0.99 ± 0.04 1.13 ± 0.12 1.25 ± 0.27 1.21 ± 0.20 1.14 ± 0.18

Incompact3D 1.01 ± 0.01 1.06 ± 0.10 0.93 ± 0.06 0.97 ± 0.07 1.05 ± 0.05 1.04 ± 0.03 1.02 ± 0.02

LAMMPS 1.01 ± 0.01 1.17 ± 0.08 1.00 ± 0.01 1.12 ± 0.10 1.09 ± 0.06 1.06 ± 0.04 1.12 ± 0.07

NVIDIA Quantum InfiniBand Congestion Control 37

Fig. 5. Impact of congestion and congestion control as a function of congestor type for
Incompact3D. The average and standard deviation from 50 jobs per bar run on the 19
nodes for application and 74 nodes for the congestor are displayed.

Fig. 6. Impact of congestion and congestion control as a function of congestor type for
LAMMPS. The average and standard deviation from 50 jobs per bar run on the 19
nodes for application and 74 nodes for the congestor are displayed.

38 Y. Shpigelman et al.

As the data shows, all applications are impacted by the background conges-
tion, with the degree of impact varying from application to application and on
a per-congestor basis.

VASP is impacted to some degree by all the congestors, with the put incast
and the point-to-point incast having the largest impact, increasing the average
run-time by an average factor of 2.21. The broadcast congestor increases the
average run time by a factor of 1.89. Both have a large standard deviation, close
to that of the average reference value. The remaining congestors increase run
time much less, between 2% and 44% on average. Congestion control reduces
the congestion impact for all congestors, to within a couple of percent of the
reference value, and as high as 25%.

Incompact3D is impacted most by the point-to-point congestor, with run time
increased by a factor of 2.77 on average, with the alltoall congestor increasing run
time by a factor of 1.98 on average. The impact of the remaining congestors is
small, increasing the average run-time between 1% and 11%. Congestion control
reduces the congestion impact for all congestors, to within a single-digit percent-
age of the reference value, with some cases providing even better performance
than that of the reference value.

LAMMPS is noticeably impacted by all of the congestors with the excep-
tion of the broadcast congestor. Its performance metric, nanoseconds per day,
is decreased by a factor of 2.13 for the point-to-point get incast congestor on
average, and by a factor of 2.09 for the put incast congestor. The remaining
congestors, with the exception of the broadcast congestor, reduce application
performance by a factor between 1.41 and 1.79. Congestion control reduces the
congestion impact for all but the broadcast congestor, for which congestion does
not change the average performance. The performance loss relative to the refer-
ence value improves and is in the range of zero to 17%.

Table 4. CI average and standard deviation as a function of congestor type for appli-
cations running on Azure HPC cloud cluster. Congestors are used for all runs. The top
set of measurement do not use congestion control and the bottom set have congestion
control activated.

x2 x3 x4

VASP 10.22 ± 1.74 6.87 ± 1.45 6.58 ± 1.23

Incompact3D 9.47 ± 3.04 7.30 ± 3.03 5.52 ± 1.76

LAMMPS 4.63 ± 0.89 3.62 ± 0.66 2.90 ± 0.53

VASP 1.08 ± 0.02 1.07 ± 0.03 1.08 ± 0.02

Incompact3D 1.29 ± 0.44 1.26 ± 0.19 1.19 ± 0.17

LAMMPS 1.06 ± 0.05 1.08 ± 0.03 1.07 ± 0.04

NVIDIA Quantum InfiniBand Congestion Control 39

Fig. 7. Impact of congestion and congestion control as a function of congestor type
for VASP. Average and standard deviation from 50 jobs per bar run with 80 nodes for
application and 320 nodes for congestors.

Fig. 8. Impact of congestion and congestion control as a function of congestor type for
Incompact3D. Average and standard deviation from 50 jobs per bar run with 80 nodes
for application and 320 nodes for congestors.

40 Y. Shpigelman et al.

Fig. 9. Impact of congestion and congestion control as a function of congestor type for
LAMMPS. Average and standard deviation from 50 jobs per bar run with 80 nodes for
application and 320 nodes for congestors.

6 Synthetic Congestion HPC Cloud Workload

The previous section presented results from the in-house cluster. The data pre-
sented and analyzed in this section was collected on the Azure HPC cloud system.
Table 4 lists the Congestion Impact values for these applications for reference.
The first half are values without congestion control and the second half are values
with congestion control.

Figures 7, 8, and 9 show the results of the tests run to measure the impact of
congestion and congestion control on the three applications and the seven data
patterns used to generate congestion.

Due to the length of time required to collect the data on 400 nodes of the
Azure system, we have data for only three congestion configurations.

The same job input parameters were used for the in-house bare-metal plat-
form runs and the HPC cloud platform runs. As expected, the communication to
computation ratio increases between the 608-process runs on the bare-metal sys-
tem and the 3,480-process runs on the HPC cloud system. For Incompact3D com-
munication time increases from 40% to 81% of the total run time, for LAMMPS
from 13% to 65% and for VASP from 50% to 93%.

Due to the larger communication to computation ratios, these cloud cluster
results show noticeably more impact of congestion on the 3 base applications
than for our in-house cluster, ranging to over a 10x execution multiple for VASP.
However, when DCQCN congestion control is applied, for VASP and LAMMPS
the application performance returns to within 10% of the baseline uncongested
performance. For Incompact3D, the execution multiple ranges up to almost 1.3x,
but this still represents a recovery of over 95% of the extra execution time of the
congested runs.

NVIDIA Quantum InfiniBand Congestion Control 41

7 Discussion

This paper describes the congestion control algorithm used by NVIDIA’s Quan-
tum 200 Gbit/s InfiniBand network, the method used to optimize the algorithm’s
parameters, and its impact on the performance of three applications. The impact
is measured with synthetic congestor patterns running simultaneously, but orig-
inating at and terminating at different network end points than those used by
the applications. While the congesting communication patterns were taken from
the GPCNet benchmark, the data transfer size was changed from the default
4-KByte setting to 8 KBytes to produce more congestion. This data size of 8
KBytes is in the range used by many applications.

The data collected for this paper shows that the synthetic congestors do
indeed reduce application performance, anywhere from the rare case of no impact
on the average performance of LAMMPS running with the broadcast congestor
on the bare metal system, to an order of magnitude slowdown for VASP with
the x2 congestor running on the HPC cloud platform. However, the congestion
control algorithm recovers the vast majority of this performance loss, even for the
worst case resulting performance penalty we encountered, which was almost 1.3x
on average when running Incompact3D with the x2 congestor with congestion
control on the Azure system. What is clear from this data is that the congestion
control support provided by the end-to-end Quantum technology works well for
these applications, and greatly improves performance for the communication
patterns used in this study.

In conclusion, the congestion control technology deployed in NVIDIA’s Quan-
tum InfiniBand technology increases system throughput by significantly reducing
the impact of congestion on the applications. In NVIDIA’s Quantum-2 Infini-
Band technology (400 Gbit/s), which is now in an early stage of its life-cycle,
additional capabilities in support of congestion control have been added, such
as the usage of further telemetry information, new time sensors, and innovative
proactive traffic planners. It has been predicted in simulations to further reduce
the impact of congestion on running applications, and these new capabilities will
be evaluated with similar GPCNet testing in future work.

References

1. C. Zimmer, S. Atchley, R. Pankajakshan, et al.: An evaluation of the CORAL
interconnects. In: Proceedings of the International Conference for High Perfor-
mance Computing, pp. 1–18 (2019). https://doi.org/10.1145/3295500.3356166

2. Geoffray, P., Hoefler, T.: Adaptive routing strategies for modern high performance
networks. In: 16th IEEE Symposium on High Performance Interconnects (Hot
Interconnects), pp. 165–172 (2008). https://doi.org/10.1109/HOTI.2008.21

3. Mittal, R., et al.: Revisiting network support for RDMA. In: Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication, pp.
313–326 (2018) https://doi.org/10.1145/3230543.3230557

4. Chunduri, S., Groves, T., Mendygral, P., et al.: GPCNeT: designing a benchmark
suite for inducing and measuring contention in HPC networks. In: Proceedings of

https://doi.org/10.1145/3295500.3356166
https://doi.org/10.1109/HOTI.2008.21
https://doi.org/10.1145/3230543.3230557

42 Y. Shpigelman et al.

the International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC 2019), pp. 1–33 (2019). https://doi.org/10.1145/3295500.
3356215

5. Clos, C.: A study of nonblocking switching networks. Bell Syst. Technol. J. 32(2),
406–424 (1953). https://doi.org/10.1002/j.1538-7305.1953.tb01433.x

6. Ngai, J., Seitz, C.: A framework for adaptive routing in multicomputer networks.
In: Proceedings of ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 1–9 (1989). https://doi.org/10.1145/72935.72936

7. Dally, W.: Virtual-channel flow control. In: Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture (ISCA), pp. 60–68 (1990). https://
doi.org/10.1145/325164.325115

8. IEEE 802.11Qbb. Priority based flow control (2011)
9. Alizadeh, M., Greenberg, A., Maltz, D., et al.: Data Center TCP (DCTCP). In:

ACM SIGCOMM (2010). https://doi.org/10.1145/1851275.1851192
10. Ramakrishnan, K., Floyd, S., Black, D.: The addition of explicit congestion noti-

fication (ECN). RFC 3168. https://doi.org/10.17487/RFC3168
11. Zhu, Y., Eran, H., Firestone, D., et al.: Congestion Control for Large-Scale

RDMA Deployments. In: ACM SIGCOMM (2015). https://doi.org/10.1145/
2829988.2787484

12. IEEE. 802.11Qau. Congestion notification (2010)
13. IBTA: InfiniBand Architecture Specification, Volume 1, Release 1.5. Available to

IBTA members via. https://www.infinibandta.org
14. Gusat, M., Craddock, D., Denzel, W., et al.: Congestion control in infiniband

networks. In: Hot Interconnects, pp. 158–159 (2005). https://doi.org/10.1109/
CONECT.2005.14

15. Gran, E., Eimot, M., Reinemo, S.-A., et al.: First experiences with congestion con-
trol in InfiniBand hardware. In: International Parallel and Distributed Processing
Symposium. (2010). https://doi.org/10.1109/IPDPS.2010.5470419

16. Mittal, R., Lam, V., Dukkipati, N., et al.: TIMELY: RTT-based congestion control
for the datacenter. In: ACM SIGCOMM (2015). https://doi.org/10.1145/2785956.
2787510

17. Kumar, G., Dukkipati, N., Jang, K., et al.: Swift: delay is simple and effective
for congestion control in the datacenter. In: SIGCOMM 2020: Proceedings ACM
Special Interest Group on Data Communication, pp. 514–528 (2020). https://doi.
org/10.1145/3387514.3406591

18. Wang, Y., Lan, M., Zhao, T., et al.: Combining RTT and ECN for RoCEv2 proto-
col. In: HPCCT and BDAI 2020: Proceedings 2020 4th High Performance Comput-
ing and Cluster Technologies Conference and 2020 3rd International Conference on
Big Data and Artificial Intelligence, pp. 158–164, Qingdao, China (2020). https://
doi.org/10.1145/3409501.3409509

19. Li, Y., Miao, R., Liu, H., et al.: HPCC: high precision congestion control. In:
SIGCOMM 2019: Proc. ACM Special Interest Group on Data Communication,
pp. 44–58 (2019). https://doi.org/10.1145/3341302.3342085

20. Xue, J., Chaudhry, M., Vamanan, B., et al.: Dart: divide and specialize for fast
response to congestion in RDMA-based datacenter networks. IEEE/ACM Trans.
Networking 28(1), 322–335 (2020). https://doi.org/10.1109/TNET.2019.2961671

21. Yang, C., Reddy, A.: A taxonomy for congestion control algorithms in packet
switching networks. IEEE Network 9(4), 34–45 (1995). https://doi.org/10.1109/
65.397042

https://doi.org/10.1145/3295500.3356215
https://doi.org/10.1145/3295500.3356215
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.1145/72935.72936
https://doi.org/10.1145/325164.325115
https://doi.org/10.1145/325164.325115
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.17487/RFC3168
https://doi.org/10.1145/2829988.2787484
https://doi.org/10.1145/2829988.2787484
https://www.infinibandta.org
https://doi.org/10.1109/CONECT.2005.14
https://doi.org/10.1109/CONECT.2005.14
https://doi.org/10.1109/IPDPS.2010.5470419
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1145/3409501.3409509
https://doi.org/10.1145/3409501.3409509
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1109/TNET.2019.2961671
https://doi.org/10.1109/65.397042
https://doi.org/10.1109/65.397042

NVIDIA Quantum InfiniBand Congestion Control 43

22. Saylor, D.: Evo: a hybrid optimizer employing evolutionary algorithms and rein-
forcement meta learning agents. [Unpublished manuscript]. Applied Machine
Learning and Artificial Intelligence, NVIDIA (2013)

23. Effective Bandwidth Benchmark Homepage. https://fs.hlrs.de/projects/par/mpi/
b eff/b eff 3.1

24. Incompact3D Homepage. https://www.incompact3d.com
25. Bartholomew, P., Deskos, G., et al.: Xcompact3D: an open-source framework for

solving turbulence problems on a Cartesian mesh. SoftwareX 12, 100550 (2020).
https://doi.org/10.1016/j.softx.2020.100550

26. LAMMPS Homepage. https://www.lammps.org
27. Thompson, A., Aktulga, H., et al.: LAMMPS - a flexible simulation tool for

particle-based materials modeling at the atomic, meso, and continuum scales.
Comp. Phys. Comm. 271, 10817, 100550 (2022). https://doi.org/10.1016/j.cpc.
2021.108171

28. VASP Homepage. https://www.vasp.at
29. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev.

B 47, 558 (1993). https://doi.org/10.1016/0022-3093(95)00355-X
30. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-

metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251
(1994). https://doi.org/10.1103/PhysRevB.49.14251

31. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15
(1996). https://doi.org/10.1016/0927-0256(96)00008-0

32. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://
doi.org/10.1103/PhysRevB.54.11169

https://fs.hlrs.de/projects/par/mpi/b_eff/b_eff_3.1
https://fs.hlrs.de/projects/par/mpi/b_eff/b_eff_3.1
https://www.incompact3d.com
https://doi.org/10.1016/j.softx.2020.100550
https://www.lammps.org
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://www.vasp.at
https://doi.org/10.1016/0022-3093(95)00355-X
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169

LLM: Realizing Low-Latency Memory
by Exploiting Embedded Silicon

Photonics for Irregular Workloads

Marjan Fariborz1(B), Mahyar Samani1, Pouya Fotouhi1, Roberto Proietti1,
Il-Min Yi2, Venkatesh Akella1, Jason Lowe-Power1, Samuel Palermo2,

and S. J. Ben Yoo1

1 University of California Davis, Davis, CA 95616, USA
{mfariborz,msamani,pfotouhi,rproietti,akella,jlowepower,

sbyoo}@ucdavis.edu
2 Texas A&M University, College Station, TX 77843, USA

{ilmin.yi,spalermo}@tamu.edu

Abstract. As emerging workloads exhibit irregular memory access pat-
terns with poor data reuse and locality, they would benefit from a DRAM
that achieves low latency without sacrificing bandwidth and energy effi-
ciency. We propose LLM (Low Latency Memory), a codesign of the DRAM
microarchitecture, the memory controller and the LLC/DRAM intercon-
nect by leveraging embedded silicon photonics in 2.5D/3D integrated sys-
tem on chip. LLM relies on Wavelength Division Multiplexing (WDM)-
based photonic interconnects to reduce the contention throughout the
memory subsystem. LLM also increases the bank-level parallelism, elim-
inates bus conflicts by using dedicated optical data paths, and reduces
the access energy per bit with shorter global bitlines and smaller row
buffers. We evaluate the design space of LLM for a variety of synthetic
benchmarks and representative graph workloads on a full-system simula-
tor (gem5). LLM exhibits low memory access latency for traffics with both
regular and irregular access patterns. For irregular traffic, LLM achieves
high bandwidth utilization (over 80% peak throughput compared to 20%
of HBM2.0). For real workloads, LLM achieves 3× and 1.8× lower exe-
cution time compared to HBM2.0 and a state-of-the-art memory system
with high memory level parallelism, respectively. This study also demon-
strates that by reducing queuing on the data path, LLM can achieve on
average 3.4× lower memory latency variation compared to HBM2.0.

1 Introduction

Emerging applications, such as recommendation systems, mining large sparse
graphs, etc., exhibit irregular memory access patterns with little data reuse and
poor locality [17]. For these irregular workloads, the memory subsystem is increas-
ingly becoming the bottleneck in modern computing architectures. The mem-
ory subsystem should not only provide high bandwidth but also low latency to

This work was supported in part by ARO award W911NF1910470.

c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 44–64, 2022.
https://doi.org/10.1007/978-3-031-07312-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_3

LLM 45

achieve high performance for irregular applications [9,14]. In addition, variability
in memory latency is another concern as it limits the performance of computing
systems [9] and increases the burden on the programmer. It is desirable that both
the average memory access latency and its variability (e.g., as measured by the
95th percentile) are low.

To address these challenges, there has been a resurgence of interest in DRAM
microarchitectures and memory system designs. With the emergence of silicon
photonics technologies, and chiplet-based architectures with 2.5D/3D packag-
ing, there are new opportunities to co-design the various components of the
memory subsystem. Recent advances in DRAM architecture, such as wider I/O
enabled by 2.5D/3D packaging (as in HBM and its derivatives [20,30]), higher
data rates with serial links, and increased bank-level parallelism (again with
HBM like technologies), have improved DRAM bandwidth significantly. How-
ever, often these bandwidth improvements come at the expense of additional
latency and variability due to deeper queues in the memory controller to take
advantage of the bank-level parallelism and serialization/deserialization (SerDes)
latency [10]. There are also proposals [8,19,21,22] in literature that explicitly
address the latency question in DRAM microarchitectures, and most of these
proposals simply take advantage of locality to reduce latency.

We argue that the main source of latency for irregular workloads in the
memory subsystem is contention caused by sharing resources such as buffers,
ports, data/command/control buses, and the DRAM cells where the data actu-
ally resides. Increasing these resources comes at a significant cost and may have
physical limits such as the number of pins (I/O pads) that can be placed in a
given space. Thus, we must consider sources of contention in the entire end-to-
end path, which includes the processor/memory interconnect, memory controller,
and DRAM microarchitecture. In the past, end-to-end optimization of the mem-
ory subsystem was not feasible in commodity CPUs (though there has been a
slow transition in this direction with integrated memory controllers and special-
purpose processors with GDDR SDRAM). However, chiplet-based architectures
such as AMD’s EPYC and recently announced Intel’s Sapphire Rapids offer
the opportunity to co-design the off-chip(let) processor/memory interconnect,
memory controller, and the DRAM microarchitecture [4].

This paper describes our co-design approach, which we call Low Latency Mem-
ory (LLM). LLM simultaneously optimizes latency, bandwidth, and energy effi-
ciency by taking advantage of silicon photonics (SiPh) interconnects with optical
parallelism and wavelength routing to reduce contention in the entire path from
chiplet to the DRAM subarrays. This co-optimization is now possible because sil-
icon photonics offers lower energy/bit [35], high bandwidth density (Gb/s/mm2)
with wavelength division multiplexing (WDM) [29], and all-to-all interconnectiv-
ity with chip-scale AWGRs (Arrayed Waveguide Grating Routers) [36].

46 M. Fariborz et al.

2 Motivation

The primary source of performance degradation for irregular applications is con-
tention among shared resources [14]. Figure 1a shows the high-level schematic of
a generic chiplet-based architecture such as AMD EPYC [4]. There are four
major components in this system: the interconnect fabric between each chiplet
and the memory controllers, usually a complex crossbar-like structure with high
bisection bandwidth; the memory controller, which consists of queues to buffer
read/write requests bound for the particular memory channel; and finally the
DRAM device, which consists of multiple banks, with each bank itself made up of
subarray of cells. It is important to note that the interconnect fabric, the queues
inside the memory controllers, data buses within the channel, global sense ampli-
fiers, and global bitlines within the DRAM devices are shared, which introduces
the potential for contention and additional latency due to arbitration, buffering,
and serialization (time multiplexed sharing).

Figure 1b, shows the simulation results of end-to-end latency by adding par-
allelism only at the DRAM microarchitecture. Here we used eight random traffic
generators connected to 4-Hi stack HBM2.0 (eight channels) in gem5 [26]. We
used HBM as a baseline model of HBM2.0 working in the pseudo-channel mode,
which divides each HBM2.0 channel into two pseudo-channels that share the

Fig. 1. (a) Generic high-level architecture of the memory subsystem. (b) Breakdown
of end-to-end latency. HBM+ increase the pseudo-channels, HBM++ reduces the size
of each bank, and WHBM++ increases the data bus width compared to HBM++.

Table 1. DRAM configuration

Category HBM HBM+ HBM++ WHBM++

Channels/stack 8 8 8 8

Pseudo-channel/channel 2 4 16 8

Banks/channel 16 16 32 32

Pins/pseudo-channel 64 32 8 64

tBURST 4 8 32 4

LLM 47

channel’s address/control (ADD/CMD) bus but have their own 64-bit wide I/O
interface. Table 1 shows the specification of different memories. WHBM++ has
an 8× number of pins compared to HBM++ while providing the same number
of banks and pseudo-channels as HBM++.

We divided the end-to-end latency into three categories: network latency, the
queuing latency at the memory controller, and DRAM access latency. Figure 1b
shows that for HBM, most of the latency is in the queuing at the memory con-
troller. When we increase resources without considering co-design, the memory
controller bottleneck is alleviated. Still, the other components (the device and the
network latency) begin to dominate the total latency, and there are diminishing
returns. Thus, a high-performance memory, not only needs higher parallelism to
reduce the memory controller queuing latency, but it must also reduce the device
and interconnect latency. In fact, we propose to re-architect the entire end-to-end
system to reduce the latency of the memory subsystem, specially as we scale the
system to large number of compute units and run irregular workloads with poor
data reuse and locality.

LLM makes the following contributions towards removing these sources
of contention: (a) It proposes a ground up co-design of the entire path from
the processor/memory interconnect to the DRAM microarchitecture. This co-
design enables both bandwidth and latency improvement without sacrificing
one for the other. LLM is composed of three pieces: a contention-less optical
data plane, a low-bandwidth electrical control plane, and fine-grained memory
banks with integrated photonics. (b) In the data plane (Fig. 2a), LLM provides a
dedicated data path from every requestor to every memory bank. An LLM-like
architecture is impractical with electrical interconnects because of the energy
costs of data movement and the wiring complexity of providing these dedicated
data paths. We propose using a passive and contention-less optical interconnect
for the data plane with no intermediate buffering, thus reducing the queuing
and the interconnect latency compared to other chiplet-based architectures. (c)
The control plane (shown in Fig. 2b) communicates the address and command
between chiplets and memory and coordinates the time that a chiplet sends or
receives its data. A low bandwidth electrical network is used for carrying this
control information. (d) LLM uses fine-grained memory units called µbanks that
are exposed to the memory controller to exploit massive amounts of parallelism.
LLM memory devices have integrated optics to allow low-latency high-bandwidth
direct connections from the requestors to the memory µbanks.

3 Silicon Photonic Enabling Technologies

Over the past decade, optical interconnects have shown great potentials in over-
coming the bandwidth bottlenecks that limit inter-processor and memory per-
formance [5,15,44]. Commercial products (e.g., Ayar Labs in collaboration with
Intel) leveraging foundry-enabled (e.g. GlobalFoundries offers SiPh-CMOS fabri-
cation) SiPh fabrics and WDM SiPh transceivers have been announced, making
SiPh technology feasible for chiplet-based communications [1].

48 M. Fariborz et al.

The first SiPh device we use in this study is a microring resonator. Microrings
are compact and energy efficient, WDM-compatible devices that are designed to
resonate when presented with specific individual wavelengths and remain quies-
cent at all other times. Active microrings are designed to tune their resonance
frequency as the amount of current in their base layer changes, enabling data
modulation and demodulation. Microring modulators encode bits onto the opti-
cal medium (electrical-to-optical (EO) conversion), and microring filters extract
the optical signal and send it to a photodetector performing optical-to-electrical
(OE) conversion.

Earlier proposals used optical buses and large matrices of microrings (consist-
ing of hundreds of microrings) for the memory-to-processor network [5,12,23].
In this proposal, we use AWGR [16,33,36,38] which is a passive silicon photonic
fabric with a compact layout that offers scalable all-to-all connectivity through
wavelength routing. Recent advances in the fabrication process of AWGRs now
enable their integration with a significantly reduced footprint (1 mm2), crosstalk
(<–38 dB), and loss (<2 dB) [36]. This makes the AWGR a favorable can-
didate for energy-efficient, high bandwidth, all-to-all connectivity within HPC
systems. Initial studies have shown AWGR to be promising choice for processor-
to-memory network [15,16]. Figure 2d shows the wavelength routing in a 5× 5
AWGR; all wavelengths inside a waveguide entering one input port of AWGR
are evenly distributed over all the output ports, each to a unique output port.

A Vertical Optical Interconnect (VOI) is an optical waveguide that can poten-
tially replace through-silicon vias (TSVs) in 3D stacked memories. Unlike pre-
viously demonstrated optical TSVs [32], VOIs have 1–2 µm pitch size [48] and
they can provide higher bandwidth density compared to state-of-the-art TSVs
(20 µm pitch size [31]).

4 Architecture

In this section we present the detailed design and implementation of LLM that
harnesses the benefits of silicon photonics to reduce contention in the entire
memory subsystem from the requestor (chiplet or group of chiplets) to the fine
grain access units called µbanks inside the DRAM.

4.1 Processor-Memory Interconnect

LLM reduces contention by taking advantage of the lower energy consumption
and the higher bandwidth density of optical interconnects for data communi-
cation. In addition, it uses a low bandwidth all-to-all electrical interconnect to
manage bank conflicts and orchestrate the data movement.

Figure 2a shows the optical data plane with an AWGR provideing an all-
to-all connection. On the memory-side, each channel is connected to a port of
the AWGR using a waveguide. Each waveguide carries a wavelength for each
µbank. Inside the memory channel, µbanks modulate/demodulate data on the
waveguide through a tuned microring which is tuned to a specific wavelength. To

LLM 49

Fig. 2. High-level Overview of (a) data plane, and (b) control plane, (c) demonstrates
an example of routing scheme in LLM, and (d) shows the wavelength routing property
illustration of AWGR.

enable simultaneous reads/writes per channel we can assign two waveguides per
channel to connect to two separate AWGRs (one for carrying read and another
for write data).

While the AWGR can route the optical signal to the destination µbank, the
requestors should modulate the data on the intended wavelength and send it to
the correct AWGR port. Thus, each chiplet uses an array of tunable microrings
where each microring in the array directly connects to a different input ports of
the AWGR to send/receive the data. For an n×n AWGR, each chiplet requires
n microrings.

The request’s µbank address indicates the wavelength, and its channel
address indicates which microring on which waveguide needs to be tuned to
the corresponding wavelength. This configuration allows (a) single requestor to
send requests to every bank within a single channel using a different wavelength
on each of the waveguides connected to different input ports of the AWGR; (b)
at a particular time, all the requestors can send requests to different channels
using different wavelengths on a single waveguide connected to a single port of
the AWGR; (c) at a particular time any combination of the above could occur.
Note that the only possible contentions are bank conflicts, which cannot proceed
in parallel anyway and are stalled at the memory controllers.

The choice of the number of waveguides, the number of wavelengths per
waveguide, and the data rate in the waveguide are design parameters which dic-
tate the maximum number of requestors, memory channels, µbanks, and µbank

50 M. Fariborz et al.

bandwidth. An n× n AWGR interconnects n memory channel and n requestors
(or group of requestors) each connected to n microrings using n wavelengths.
The scalability of the system depends on the scalability of AWGR. The number
of ports in an AWGR can easily scale up to 64 ports [11]. For larger systems,
multiple smaller AWGRs (lower port count) can be used in parallel to provide
the all-to-all interconnection as a large AWGR [33].

Due to the small size of control packets, an electrical interconnect can pro-
vide sufficient bandwidth for the communication of command and address bits.
Therefore, LLM takes advantage of an electrical interconnect for the implemen-
tation of the control plane.

Figure 2c illustrates an example of our proposed routing scheme, where multi-
ple chiplets are performing write operations. When request 1 from chiplet 0 wins
the arbitration in the memory controller (Explained in Sect. 4.2), the memory
controller sends an acknowledgment signal to chiplet 0, allowing it to send data
to the memory. Chiplet 0 uses the second ring and tunes it to the wavelength
of its destination (in this example µbank 1 is the destination, which operates
with blue wavelength). At the same time, chiplet m can use the red wavelength
on a different waveguide connected to another port on the AWGR to reach the
µbank 0 in the same channel. After issuing a request to the DRAM, data will be
ready in the memory at a predefined time later (which is related to the memory
access latency). The requestor uses this latency to tune the correct microring
(the channel and µbank address indicate which microring must be tuned to
which wavelength). Therefore, the memory device needs to have a deterministic
response time. Hence, LLM uses a closed-page policy, where the DRAM row
buffer is closed immediately after every read or write.

4.2 Memory Controller

LLM redesigns the memory controller to accomplish three main tasks- (i) issuing
request at a high rate to increase throughput, (ii) manage arbitration in case of
bank conflicts, and (iii) coordinate between requests and data signals (control
flow scheme to enable processors to tune the microrings at a particular time).

To improve throughput, we propose reducing the head-of-line-blocking in
memory controllers. In a standard memory controller, a bursty sender can over-
load the entire queue in the memory controller, forcing other processing units to
stall. To avoid this, we assigned a single entry queue per requestor (a single or
group of processing units) as shown in Fig. 3a. These single-entry queues only
store the electrical command signals and the data is buffered at the requestor.
Then, instead of requiring a complex priority queue (e.g., first-ready first-come-
first-serve), we use a round robin arbiter to select an available request from one
queue to a free memory µbank.

To maintain consistency between data and control signal, the memory con-
troller must let the requestors know when to tune their microrings. On an LLC
miss or write-back, the requestor sends a request to the memory controller.
Then, every cycle, the arbiter selects a ready request from one of the command

LLM 51

queues. For read requests, the memory controller asserts the appropriate com-
mand and address on the electrical command bus (shown in Fig. 3a in red). At
the same time, the arbiter sends a notification back to the requestor to inform the
requestor when the data will appear on the dedicated data bus for that µbank,
allowing the requestor to tune its microring to an specific wavelength. We use
electro-optically tunable microrings with few-nanosecond tuning speed [28,40].
The requestor can tune its microring while memory is activating the correspond-
ing row in the memory. The microring at the requestor needs to be tuned to the
corresponding wavelength once the memory row is activated. To ensure this,
memory controller delays the activation request by guard time of 10 ns.

4.3 Memory Microarchitecture

For irregular workloads, bank conflicts could cause long latency due to their ran-
dom memory access pattern. Bank conflicts happen when multiple consecutive
requests target different rows in the same bank. The impact of bank conflicts
on latency is quite high. For instance, in HBM2.0 this latency is approximately
50 ns (precharge latency plus activation latency) [2].

Fig. 3. (a) LLM channel organization. Data and commands are communicated through
optical waveguide and electrical bus respectively. (b) µbank architecture which is
divided into two sub-µbank that share the same optical data bus through a multi-
plexer. Each µbank is connected to a microring which is tuned to a certain wavelength.

LLM reduces the probability of bank conflicts by dividing HBM banks into
smaller µbanks. In both HBM and LLM, groups of DRAM cells are combined
into “mats” which are planar 2D arrays of 512× 512 DRAM cells. Mats inside
of a subarray are connected to a local sense amplifier and a global bitline con-
nects local sense amplifiers to a global sense amplifier. In LLM µbanks, both
the number and size of subarrays are 2× smaller than HBM banks. Lower num-
ber of subarrays in LLM µbanks results in shorter global bitlines compared to
HBM since each µbank is physically smaller than the HBM banks. LLM further

52 M. Fariborz et al.

reduces the size of the row buffer by splitting each µbank into two sub-µbanks.
This design further reduces the activation energy in LLM which allows for more
parallel accesses. Figure 3b shows the detailed architecture of µbank. The impact
of our design decisions on the DRAM die size is discussed in Sect. 5.

In addition to the increased parallelism, this new bank organization also
reduces the activation energy. A series of studies have shown that the activation
row size directly impacts the DRAM activation energy [13,18,30,47]. Dividing
the HBM banks into µbanks and sub-µbanks, reduces the activation row size
and the activation energy by 75% compared to HBM2.0.

The second source of contention is the data bus shared by multiple banks
inside of one channel. To remove this contention requests targeting different
banks need to be tBURST apart. LLM removes the contention on the shared
data bus inside the channels by assigning a dedicated optical wavelength to each
µbank. Each µbank uses a SerDes and a tuned microring to communicate data.

These microarchitectural changes in DRAM also affect the timing constraint
of the memory system. tCAS or tCL defines the time between the column com-
mand and the appearance of the data at the memory interface I/O. This makes
tCAS the data movement latency within the memory die, which consists of pre-
GSA (global sense amplifier) and post post-GSA latency. Reducing the length
of the global bitline (2× smaller), lowers the capacitance which reduces the pre-
GSA tCAS by 2×. Post-GSA tCAS also will be 1 ns [16,43] since the banks send
data to the I/O through optical wavelengths. Note that the E-O and O-E latency
is discussed in Sect. 5.

tFAW limits the activation rate in DRAM to limit the drawn current. Since
LLM reduces the number of activated bits by 4×, it can activate 4× more rows
compared to HBM2.0. In HBM2.0, tFAW is 12 ns. If the command bus works
at a high frequency of 2 GHz, memory controller can issue the maximum of
24 activations which is still lower than the limitations of tFAW in LLM (32
activations). Therefore, the parallelism in LLM channels is not limited by the
power delivery constraints.

tBURST is the time to transfer the data for a single DRAM request on the
I/O bus. With 32 Gb/s data bus bandwidth and 64 byte data, the tBURST in
LLM is 16 ns. However, since each µbank in LLM has a dedicated data bus
increasing tBURST does not affect the requests targeting different µbanks in
one channel. In a system with a shared data bus, the long tBURST increases the
serialization effect, enforcing all requests going to different banks in each channel
to be tBURST apart. The dedicated data bus eliminates the bus contention in
LLM.

4.4 LLM Organization and Packaging

LLM dies can be organized as both 3D stacks (similar to HBMs) or non-stacked
DRAMs (similar to GDDR memories). In this study, we assume that the LLM
dies are organized in 3D stacks to offer increased capacity and bandwidth. To
this end, we propose using the innovatively new enabling technology called Ver-
tical Optical Interconnects (VOIs) [48] to replace the TSVs. These optical vias

LLM 53

allow substantially higher bandwidth and scaling with number of channels, while
keeping the area and number of I/O pins the same. In 3D stacked LLM, data
can be moved between µbanks in different layers vertically through optical links.
Thus VOIs can replace most of the electrical copper TSVs. Werner et al. explored
the bandwidth and scalability advantages of VOIs in 3D stacked memories [45].

We place memory stacks, AWGR, and compute cores on the same package
substrate and use a previously proposed technique for intra-package communica-
tion [15,41]. This approach uses dedicated processor node chiplets, and memory
node chiplets with embedded SiPh transceivers. For instance the processor node
chiplet consists of SerDes, SiPh transceivers, and the compute core dies. The ded-
icated SiPh transceivers are connected to the chiplets through Si bridges (which
are ideal for short-distance electrical interconnection) and optically to AWGR
through polymer waveguides. The memory node has SiPh transceivers embed-
ded inside and can use polymer waveguides to connect to AWGR. The polymer
waveguides are integrated on top of the organic package substrate and provide
connectivity to AWGR. SiPh is ideal for long-distance, inter-package communi-
cation, enabling this system to scale out to multiple packages. The multipack-
age system uses a polymer waveguide for interconnecting separate packages for
computing cores, AWGR, and memory stacks without performance and energy
degradation.

5 Methodology

To evaluate the performance and latency of LLM, we used the gem5 simulator
version 21.0 [26] with both synthetic workloads and full-system (with Linux
kernel version 5.2.3). We modeled the network interconnect with Garnet3.0 and
the cache hierarchy using Ruby to evaluate the system architecture.

We compared our design with high bandwidth memory systems such as
HBM2.0. In addition, we used two state-of-the-art memory systems with more
memory level parallelism. The first one is HBM2.0, with added subarray level
parallelism for lower memory access latency. We augmented HBM2.0 by adding
techniques from Kim et al. [22]. Throughout the paper, we refer to this as HBM-
SALP. The second one is a highly concurrent memory system with 4× higher
bandwidth than HBM2.0. In this architecture, the memory banks are finer and
more independent. A narrow electrical bus with 4× higher datarate compared
to HBM2.0 is assigned to these fine-grain memory banks. This design is our
interpretation of Fine-Grained DRAM, and we refer to it as FGDRAM [30].
FGDRAM shows the benefits of incorporating µbanks without the contention-
less optical data plane.

To be able to fully stress the bandwidth, we used synthetic traffic with differ-
ent access patterns both with high and low locality. We used three different traffic
patterns: Stream, Random, and GUPS. The Stream and Random traffic create
a sequence of requests with linearly increasing and uniform random distributed
addresses respectively. They both generate requests at user-specified frequen-
cies. GUPS is a data dependent application [27] with a random distribution over
memory addresses.

54 M. Fariborz et al.

Using traffic generators is a processor architecture agnostic evaluation allow-
ing these results to be portable whether LLM is used in a CPU, GPU, or acceler-
ator platforms. Using traffic generators also enables experiments with different
network injection rates to model memory intensive workloads that can fully
stress the high bandwidth of our proposed memory system.

For the synthetic traffic simulation we used 32 traffic generators. For this
experiment we scaled our high bandwidth baseline memories to reach the same
peak bandwidth as LLM stack which is 4 TB/s (iso-bandwidth). In these iso-
bandwidth experiments, both HBM and HBMSALP are given 8× the channels
of LLM and FGDRAM 2× compared to LLM.

For latency and overall evaluation, we ran real workloads in the gem5 sim-
ulator. We used applications such as GAP benchmark suite (GAPBS) [7] as a
representative for irregular workloads due to their random memory access pat-
tern. Table 2 shows the system configuration. We used a multiple core CPU
system, each with two levels of cache hierarchy.

Latency Parameters: The memory system needs to model both the net-
work latency (which also includes the O-E and E-O and SerDes latencies) and
the DRAM timing constraints. Both of these timings are included in our simula-
tion platform. Due to the different bank and channel organizations, some timing
constraints are different from LLM and HBM2.0. Table 2 illustrates the changed
timing constraints between HBM, FGDRAM, and LLM. We assumed an optical

Table 2. Full system simulation parameters

Parameter Description Timing
parameter (ns)

HBM2.0 [2] FGDRAM [30] LLM

CPU 16 cores; ×86 @
4 GHz

tCAS 16 16 5

Caches Private 32 kB L1I/D,
2/8-way per core

tBURST 4 16 16

Private 512 kB, 8-way
L2 per core

tFAW 12 12 12

Directory coherence Activates in
tFAW

8 32 32

Memory 8 DRAM channels

Table 3. Silicon photonic device parameters

Parameter Value Parameter Value Parameter Value

VOI loss 1.3 dB Photodetector loss 0.1 dB Modulator
Insertion loss

1 dB

Waveguide loss 0.5 dB/cm Filter through loss 0.1 dB Power margin 3 dB

Filter drop loss 1.5 dB Receiver sensitivity –17 dBm Laser efficiency 14%

Coupler: Fiber-
to-Package

3 dB AWGR crosstalk –20 dB AWGR loss 1.8 dB

LLM 55

traversal of 1 ns [16,24]. We are using a low-power 16 Gb/s SerDes for seriliaz-
ing/deserializing 32 bits of data from global sense amplifiers, resulting in 2 ns
latency. We assume that the E-O, O-E conversion latency takes 35 ns [28,40].
We also modeled the electrical control plane in LLM with a network latency of
20 ns, which is a conservative assumption in our system.

Power Model: For the power modeling of the optical interconnects, we
used values for 65 nm CMOS [24,46] and scaled it down to 28 nm using SPICE
models [24,46]. The laser efficiency is based on commercially-available comb
lasers [3]. Table 3 illustrates the details of our silicon photonic devices.

Area: We compared the area of LLM stack based on both microarchitectural
changes and the optical circuitry we have added to the memory microarchitecture
design. We compared the area for a 4 die stack (4Hi) LLM and HBM. The
dimensions of HBM dies are typically 5.5 mm × 7.7 mm [25].

Each µbank includes SiPh transmitter and receiver circuitry (5 µm pitch
size), and a 16 Gb/s serializer-deserializer (SerDes) with an area of 0.0045 mm2

(estimated using TSMC 28 nm CMOS process). Two waveguides are connected
to each memory channel, each with 2 µm pitch size [48]. A 4Hi HBM requires
1024 TSVs for data but LLM requires only 32 VOIs. Overall, optical circuitry
add 4.94% area overhead compare to a HBM stack.

LLM also requires 2× more column decoders and 4× more global sense ampli-
fiers. Dividing each µbanks to sub-µbanks adds additional circuitry such as 4 bit
wordline-select, and sub-µbank multiplexer. These area overhead are equal to
FGDRAM and subchannel [10,30] which are 4.67%. LLM also requires latches
to enable subarray level parallelism. Each latch requires 2 µm2 area. In total
microarchitectural changes to DRAM adds an additional 4.8% area overhead. A
4 stack-high LLM requires 9.74% area overhead compare to HBM2.0.

6 Evaluation

6.1 Synthetic Traffic Evaluation

In the first experiment, we ran stream and random synthetic traffic with dif-
ferent traffic rates to see how latency and throughput change as we increase
the traffic rate. Figure 4 shows both the achieved throughput and the average
access latency for read-only memory requests under varying injection rates. With
stream traffic, all memories can achieve high throughput. However, under high
injection rates, LLM has lower latency than the other designs due to its low
latency interconnect and zero data queuing at the memory controller. At very
low injection rates, HBMSALP has a lower average latency due to increased
page hit rate and the SALP optimizations [22]. Since LLM uses closed-page pol-
icy for applications with high locality LLM will not show significant reduction in
latency compered to HBMSALP. However, at all injection rates LLM has lower
latency than FGDRAM and HBM.

56 M. Fariborz et al.

For random traffic, Fig. 4b shows that LLM has much lower latency for all
injection rates. The main reason HBM’s latency increases even under a relatively
low injection rate is due to DRAM row buffer misses which incur high latency.
These row buffer misses cause contention in the memory controller which results
in a high queuing delay. For LLM, reducing the size of the queues in the memory
controller and using a closed-page policy leads to low latency under high injec-
tion rates. This low queuing is unlike HBM and FGDRAM which experience
significant increase in latency as the traffic rate increases. Figure 4b shows the
biggest difference between LLM and prior technologies. LLM can achieve nearly
the same throughput with random traffic as with streaming traffic. In contrast,
the best other technology, FGDRAM, can only achieve approximately 50% of
its peak theoretical bandwidth under a random access pattern. The difference
between LLM and FGDRAM, also shows that simply adding parallelism in the
memory subsystem (µbanking) without re-architecting the entire datapath will
not remove the contention in the system; it will simply move the contention to
another point in the datapath.

To increase complexity in our synthetic traffic experiments, we applied
the Giga Updated Per Second (GUPS) benchmark which has data dependent
accesses. We measured the performance of these systems based on the GUPS as
defined by the benchmark. Similar to Random and stream we used iso-bandwidth
test for GUPS. Figure 4c show that even when given significantly more I/O (and
cost) HBM and FGDRAM cannot match LLM’s performance for this irregular
workload.

Although HBMSALP adds more intra-bank parallelism compared to HBM,
Fig. 4c shows it does not achieve considerable performance improvements. This
result demonstrates the importance of optimizing the memory system for both
bandwidth and latency. Even for latency-critical workloads like GUPS, the band-
width can also be the limiting factor. Only optimizing for latency does not nec-
essarily lead to the best performance.

6.2 Irregular Workloads

In a more realistic setup, we used gem5 21.0 full system mode to compare LLM
with, HBM, HBMSALP, and FGDRAM in a system with 8 processing cores and
8 memory channels (iso-capacity configuration of different memory technologies)
as opposed to the iso-bandwidth tests used in the synthetic traffic experiments.
Though it is difficult for us to estimate the costs of each technology, this iso-
capacity experiment compares the performance in a real system setting with
each technology given approximately the same amount of resources. Due to the
extensive time of simulation for each system configuration, we created traces
for 8 core system and extended it to 16 core configuration. This enabled us to
stress the bandwidth of the system under the same traffic pattern. We used
64 × 64 AWGRs with 64 wavelengths.

LLM 57

Fig. 4. Iso-bandwidth synthetic traffic with (a) Stream, (b) Random, and (c) GUPS
traffic pattern. (a–b) Comparing the average read latency and throughput for different
injection rates and access patterns. (c) GUPS traffic, shows even with the same peak
bandwidth LLM provides more parallelism resulting in 2× improvement on average
performance compared to HBM (with 8× more channels).

For the first experiment we compared the average latency for DRAM access,
the queuing latency at the memory controller, and the average network latency.
Figures 6(a–c) show the normalized comparison between these memory systems.
For all workloads LLM has significantly lower queuing at the memory controller
which is what we expected based on lack of data queuing at the memory con-
troller. Also, the network latency for LLM remains smaller for all workloads
because in large scale systems with higher crossbar radix electrical interconnect
latency is higher. Compared to HBM, FGDRAM shows lower queuing latency
which indicates the benefits of added parallelism at the memory microarchitec-
ture without the optical datapath. Comparing LLM and FGDRAM, the queuing
latency is on average 3× lower which shows the benefit of the co-design architec-
ture of the memory controller, the interconnect design, and the all-optical data
path. Finally, for the device latency (Fig. 5c), all systems have approximately
the same latency except FGDRAM which is higher due to the larger tBURST .

Figure 5d shows the total average latency of the three components (device,
queuing, and network latency). This shows that for all systems except LLM,
queuing latency is the dominant portion of the time (broken out in Fig. 5b).

58 M. Fariborz et al.

Fig. 5. Average latency normalized to HBM2.0 for (a) network (b) queuing (c) mem-
ory device, and (d) shows the average end-to-end latency. (a) shows LLM achieves in
average 2× lower network latency, 1.1× higher DRAM latency due to the long bus
latency, and (b) indicates 10× lower queuing latency compared to HBM2.0.

Figure 5d indicates the memory intensity of the workloads as well. For instance,
tc has lower average end-to-end latency with lower queuing compared to the
other workloads. Thus, optimizing just for throughput will not improve the exe-
cution time for this workload (e.g., FGDRAM does not improve performance for
tc as shown in Fig. 6a since it sacrifices latency for bandwidth).

Figure 6a compares the execution time of GAPBS workloads for HBM, HBM-
SALP, FGDRAM, and LLM. Compared to HBM, LLM provides 3× reduction on
average execution time. For the more memory intensive workloads, the increased
bandwidth of LLM provides reduced execution time. Importantly, for the lower
intensity workloads, LLM also provides an improvement over the other tech-
nologies (most notably FGDRAM running tc) due to its lower contention on the
shared data bus.

LLM 59

Fig. 6. Execution time (a) and power consumption (b) normalized based on HBM2.0.
LLM provides in average 3× lower execution time while maintaining same power con-
sumption compared to HBM2.0.

Fig. 7. The latency distribution for different memory systems under 3 types of synthetic
traffic: (a) Random, (b) Stream, and (c) GUPS. LLM has a lower 95th percentile (shown
as dashed lines) and therefore has lower latency variation. In (b) HBM and HBMSALP
have the same distribution of latency.

6.3 Energy and Power Analysis

The DRAM access energy consists of activation energy, data movement energy,
and I/O energy. We used the HBM2.0 energy values from O’Conner et al. [30].
The activation energy directly depends on the number of bits in a row that get
activated. Similar to FGDRAM [30], LLM reduces the size of the row by a factor
of 4×, and therefore, we reduce the activation energy to 227 pJ for LLM from
909 pJ in HBM 2.0. Pre-GSA energy is the energy of moving data from local
and master bitlines to the global row buffer, and it depends on the length of
bitline. Since we are reducing the size of the global bitlines, this energy will also
be reduced to 0.755 pJ/bit from 1.51 pJ/bit in HBM2.0.

LLM uses optical links to move data between µbanks and processing cores.
Therefore, both I/O and post-global sense amplifier energy values are equal and
are independent of laser, SerDes, and modulation circuitry. For this SiPh stack,
we used the parameters shown in Table 3 to match realistic current technologies.
We found the total I/O energy (including laser, SerDes, modulation circuitry)
to be 760 fJ/bit. In comparison, for conventional DRAM the I/O requires 800

60 M. Fariborz et al.

fJ/bit [30], which is expected to increase as the height of DRAM stacks increases.
Figure 6b illustrates a comparison of overall memory power consumption nor-
malized to HBM between a DRAM stack interconnected electrically with TSVs
against LLM with SiPh DRAM stacks. As shown, the LLM is approximately the
same power as the electrically implemented FGDRAM showing the SiPh imple-
mentation is feasible to integrate in a chiplet-based package. In some cases, the
power is higher, mostly due to the higher bandwidth that FGDRAM and LLM
enable compared to HBM.

6.4 Latency Variation

Finally, we analyzed the latency variation in each memory system. In current
systems, the main cause of latency variation in the system is queuing. Thus, one
of the byproducts of our low contention memory system should be lower latency
variation. Figure 7 shows the distribution of access times for each technology
under stream, random, and GUPS synthetic traffics using 16 memory channels.
This figure also shows the 95th percentile latency with dashed vertical bars.

Figure 7 shows that LLM achieves significantly lower and more predictable
latency compared to other technologies. In general HBM has the broadest dis-
tribution, with FGDRAM and HBMSALP having slightly less variation than
HBM for Random and GUPS traffics. On average LLM has 3× lower 95th per-
centile latency compared to HBM which can be translated into 3× lower memory
latency variations. We see similar results for the full system graph workloads as
well.

7 Related Work

Several studies have shown the benefits of using photonics to increase bandwidth
and reduce data movement energy for processor/memory communication [5,6,
34,37,39,45]. Although these studies reduce contention at the interconnect, they
did not contribute to increasing memory performance at the microarchitectural
level. LLM extends these prior works by (a) reducing in-memory activation and
data movement energy, allowing for higher parallelism, and (b) integrating optics
inside of the memory channel and co-designing the memory controller to facilitate
both bandwidth and latency improvements.

Previous work on DRAM energy [13,18,30,47] showed the benefits of reduc-
ing activation energy while maintaining a higher bandwidth than HBM2.0. These
studies are still bounded by the processor/memory data movement energy. LLM
extends these prior works by exploiting silicon photonic interconnects. Optical
links do not suffer from the distance/bandwidth trade-off that impacts electri-
cal interconnects. This allows LLM to achieve a low energy data movement in
a chiplet based architecture while achieving higher peak bandwidth than the
previous studies.

Creating smaller channels with narrower data bus and higher datarate is
the technique used both in in the industry (with HBM2.0 and HBM2.0 pseudo-
channel mode, and GDDR) and research [30] to enable high throughput memory

LLM 61

systems. However, they do not consider optimizing the memory for latency. Fur-
thermore, they use deep queues for bandwidth improvements which will result
in higher latency. In contrast, LLM is a redesign of the complete memory sub-
system. Decoupling data and control signals in the LLM allows for bandwidth
and latency improvement at the same time.

Previous work, has explored many different avenues for decreasing DRAM
latency including changing the DRAM controller [8], segmenting and shorten-
ing bitlines [22] and caching and paging policies [21]. Although these techniques
proved to be effective in reducing the DRAM access latency, they are not opti-
mized for irregular applications and in some cases can increase memory access
latency variability. Wang et al. improved latency for irregular workloads by cre-
ating a low-cost DRAM substrate that enables data relocation [42]. Although
effective for irregular workloads they have not shown any benefits for appli-
cations with high locality and the effects on memory latency variations. LLM
reduces the amount of data queuing on the entire path and assigns a dedicated
data path between each requestor and memory µbank. This technique reduces
latency in both regular and irregular workloads but it also reduces memory
access variability due to low queuing on the path.

8 Conclusion

In this paper, we investigated a new memory system that is optimized for applica-
tions with both regular and irregular access patterns with poor spacial locality.
LLM introduces lower execution time compared to the baseline HBM2.0 sys-
tems. It also utilizes an all optical data communication fabric that provides a
direct contention-free data link between processing cores and memory banks.
The use of optical interconnects, optical links, and the new memory microarchi-
tecture improve data movement, reduces activation energy and provides higher
bandwidth/mm2. By incorporating all these methods, LLM can reduce the exe-
cution time and energy with a modest area overhead. The cost increase for
optoelectronic integrated LLM would be around 30% compared to electronic
only HBM2.0. However, LLM achieves around 3× better execution time while
maintaining the same power consumption as HBM2.0.

Due to low-contention data access in LLM, we believe that LLM-like designs
can improve the performance in other computing systems. As future work we
would like to evaluate the architectural impact and benefits of LLM in other
systems such as graph accelerators.

References

1. Ayar Labs Realizes Co-Packaged Silicon Photonics - WikiChip Fuse. https://fuse.
wikichip.org/news/3233/ayar-labs-realizes-co-packaged-silicon-photonics/

2. JEDEC. https://www.jedec.org/sites/default/files/docs/JESD212.pdf
3. Thermistor Specification Fiber Specification an exemplary Eye Diagram of one F-P

mode Externally modulated at 2.5 GHz filtered-out single channel. www.innolume.
com

https://fuse.wikichip.org/news/3233/ayar-labs-realizes-co-packaged-silicon-photonics/
https://fuse.wikichip.org/news/3233/ayar-labs-realizes-co-packaged-silicon-photonics/
https://www.jedec.org/sites/default/files/docs/JESD212.pdf
www.innolume.com
www.innolume.com

62 M. Fariborz et al.

4. Zen - Microarchitectures - AMD - WikiChip. https://en.wikichip.org/wiki/amd/
microarchitectures/zen

5. Batten, C., et al.: Building many-core processor-to-dram networks with mono-
lithic CMOS silicon photonics. In: International Symposium on Microarchitecture
(MICRO), pp. 8–21 (2009)

6. Beamer, S., et al.: Re-architecting dram memory systems with monolithically inte-
grated silicon photonics. In: Proceedings International Symposium on Computer
Architecture (ISCA), pp. 129–140. IEEE (2010)

7. Beamer, S., et al.: The gap benchmark suite. arXiv preprint arXiv:1508.03619
(2015)

8. Carter, J., et al.: Impulse: building a smarter memory controller. In: Proceedings
Fifth International Symposium on High-Performance Computer Architecture, pp.
70–79. IEEE (1999)

9. Chatterjee, N., et al.: Managing dram latency divergence in irregular GPGPU
applications. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), pp. 128–139 (2014)

10. Chatterjee, N., et al.: Architecting an energy-efficient dram system for GPUS.
In: IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 73–84. IEEE (2017)

11. Cheung, S., et al.: Ultra-compact silicon photonic 512× 512 25 GHZ arrayed waveg-
uide grating router. IEEE J. Selected Top. Quant. Electron. 20, 310–316 (2013)

12. Cianchetti, M.J., et al.: Phastlane: a rapid transit optical routing network. In:
Proceedings of the International Symposium on Computer Architecture (ISCA),
pp. 441–450 (2009)

13. Cooper-Balis, E., et al.: Fine-grained activation for power reduction in dram. In:
International Symposium on Microarchitecture (MICRO), pp. 34–47 (2010)

14. Eklov, D., et al.: Bandwidth bandit: quantitative characterization of memory con-
tention. In: Proceedings of the 2013 IEEE/ACM CGO, pp. 1–10 (2013)

15. Fotouhi, P., et al.: Enabling scalable chiplet-based uniform memory architectures
with silicon photonics. In: Proceedings of the International Symposium on Memory
Systems (MEMSYS), pp. 222–334 (2019)

16. Grani, P., et al.: Design and evaluation of AWGR-based photonic NOC architec-
tures for 2.5 d integrated high performance computing systems. In: IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA), pp.
289–300. IEEE (2017)

17. Gupta, U., et al.: The architectural implications of facebook’s DNN-based person-
alized recommendation. In: IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 488–501. IEEE (2020)

18. Ha, H., et al.: Improving energy efficiency of dram by exploiting half page row
access. In: International Symposium on Microarchitecture (MICRO), pp. 1–12.
IEEE (2016)

19. Hassan, H., et al.: Chargecache: reducing dram latency by exploiting row access
locality. In: IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE (2016)

20. JESD235A, J.: High Bandwidth Memory (HBM) Dram. JEDEC Solid State Tech-
nology Association (2015)

21. Kaseridis, D., et al.: Minimalist open-page: a dram page-mode scheduling policy for
the many-core era. In: International Symposium on Microarchitecture (MICRO),
pp. 24–35. IEEE (2011)

https://en.wikichip.org/wiki/amd/microarchitectures/zen
https://en.wikichip.org/wiki/amd/microarchitectures/zen
http://arxiv.org/abs/1508.03619

LLM 63

22. Kim, Y., et al.: A case for exploiting subarray-level parallelism (SALP) in dram. In:
Proceedings of the International Symposium on Computer Architecture (ISCA),
pp. 368–379. IEEE (2012)

23. Kirman, N., et al.: Leveraging optical technology in future bus-based chip multipro-
cessors. In: International Symposium on Microarchitecture (MICRO), pp. 492–503.
IEEE (2006)

24. Li, H., et al.: A 25 Gb/s, 4.4 v-swing, ac-coupled ring modulator-based WDM
transmitter with wavelength stabilization in 65 nm CMOS. IEEE J. Solid-State
Circuits 50, 3145–3159 (2015)

25. Li, L., et al.: 3d sip with organic interposer for ASIC and memory integration.
In: IEEE 66th Electronic Components and Technology Conference (ECTC), pp.
1445–1450. IEEE (2016)

26. Lowe-Power, et al.: The gem5 simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152 (2020)

27. Luszczek, P.R., et al.: The HPC challenge (HPCC) benchmark suite. In: Proceed-
ings of the 2006 ACM/IEEE Conference on Supercomputing, p. 213-es (2006)

28. Matsuo, S.A.O.: Microring-resonator-based widely tunable lasers. IEEE J. Select.
Top. Quant. Electron. 15, 545–554 (2009)

29. Nitta, C.J., et al.: On-chip photonic interconnects: a computer architect’s perspec-
tive. Synthesis Lectures on Computer Architecture, pp. 1–111 (2013)

30. O’Connor, M., et al.: Fine-grained dram: energy-efficient dram for extreme band-
width systems. In: International Symposium on Microarchitecture (MICRO), pp.
41–54. IEEE (2017)

31. Papistas, I., et al.: Bandwidth-to-area comparison of through silicon VIAS and
inductive links for 3-d ICS. In: European Conference on Circuit Theory and Design
(ECCTD), pp. 1–4. IEEE (2015)

32. Parekh, M.S., et al.: Electrical, optical and fluidic through-silicon VIAS for silicon
interposer applications. In: IEEE Electronic Components and Technology Confer-
ence (ECTC), pp. 1992–1998. IEEE (2011)

33. Proietti, R., et al.: Experimental demonstration of a 64-port wavelength routing
thin-clos system for data center switching architectures. J. Opt. Commun. Network.
10, 49–B57 (2018)

34. Rumley, S., et al.: Silicon photonics for exascale systems. J. Lightwave Technol.
33, 547–562 (2015)

35. Shacham, A., et al.: Photonic networks-on-chip for future generations of chip mul-
tiprocessors. IEEE Trans. Comput. 57, 1246–1260 (2008)

36. Shang, K., et al.: Low-loss compact silicon nitride arrayed waveguide gratings for
photonic integrated circuits. IEEE Photon. J. 9, 1–5 (2017)

37. Shen, Y., et al.: Silicon photonics for extreme scale systems. J. Lightwave Technol.
37, 245–259 (2019)

38. Takada, K., et al.: Low-crosstalk 10-GHZ-spaced 512-channel arrayed-waveguide
grating multi/demultiplexer fabricated on a 4-in wafer. IEEE Photon. Technol.
Lett. 13, 1182–1184 (2001)

39. Udipi, A.N., et al.: Rethinking dram design and organization for energy-constrained
multi-cores. In: Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), pp. 175–186 (2010)

40. de Valicourt, et al.: Dual hybrid silicon-photonic laser with fast wavelength tun-
ing. In: Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3
(2016)

http://arxiv.org/abs/2007.03152

64 M. Fariborz et al.

41. Wade, M., et al.: Teraphy: a chiplet technology for low-power, high-bandwidth in-
package optical I/O. In: International Symposium on Microarchitecture (MICRO),
pp. 63–71 (2020)

42. Wang, Y., et al.: Figaro: Improving system performance via fine-grained in-dram
data relocation and caching. In: International Symposium on Microarchitecture
(MICRO), pp. 313–328. IEEE (2020)

43. Werner, S., et al.: Amon: an advanced mesh-like optical NOC. In: IEEE 23rd
Annual Symposium on High-Performance Interconnects, pp. 52–59 (2015)

44. Werner, S., et al.: AWGR-based optical processor-to-memory communication for
low-latency, low-energy vault accesses. In: Proceedings of the International Sym-
posium on Memory Systems (MEMSYS), pp. 269–278 (2018)

45. Werner, S., et al.: 3d photonics as enabling technology for deep 3d dram stacking.
In: Proceedings of the International Symposium on Memory Systems (MEMSYS),
pp. 206–221 (2019)

46. Yu, K., et al.: A 25 Gb/s hybrid-integrated silicon photonic source-synchronous
receiver with microring wavelength stabilization. IEEE J. Solid-State Circuits 51,
2129–2141 (2016)

47. Zhang, T., et al.: Half-dram: a high-bandwidth and low-power dram architecture
from the rethinking of fine-grained activation. In: Proceedings of the International
Symposium on Computer Architecture (ISCA), pp. 349–360. IEEE (2014)

48. Zhang, Y., et al.: High-density wafer-scale 3-D silicon-photonic integrated circuits.
IEEE J. Select. Top. Quant. Electron. 24, 1–10 (2018)

SU3 Bench on a Programmable
Integrated Unified Memory Architecture

(PIUMA) and How that Differs
from Standard NUMA CPUs

Jesmin Jahan Tithi1(B), Fabio Checconi1, Douglas Doerfler2,
and Fabrizio Petrini1

1 Parallel Computing Labs, Intel Corporation, Santa Clara, CA 95054, USA
{jesmin.jahan.tithi,fabio.checconi,fabrizio.petrini}@intel.com
2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract. SU3 Bench explores performance portability across multi-
ple programming models using a simple but nontrivial mathemati-
cal kernel. This kernel has been derived from the L

¯
attice Q

¯
uantum

C
¯
hromod

¯
ynamics (LQCD) code used in applications such as Hadron

Physics and hence should be of interest to the scientific community.
SU3 Bench has a regular compute and data access pattern and on

most traditional CPU and GPU-based systems, its performance is mainly
determined by the achievable memory bandwidth. However, this paper
shows that on the new Intel Programmable Integrated Unified Mem-
ory Architecture (PIUMA) that is designed for sparse workloads and
has a balanced flops-to-byte ratio with scalar cores, SU3 Bench’s perfor-
mance is determined by the total number of instructions that can be exe-
cuted per cycle (pipeline throughput) rather than the usual bandwidth
or flops. We show the performance analysis, porting, and optimizations
of SU3 Bench on the PIUMA architecture and discuss how they are
different from the standard NUMA CPUs (e.g., Xeon required NUMA
optimizations whereas, on PIUMA, it was not necessary). We show
iso-bandwidth and iso-power comparisons of SU3 Bench for PIUMA vs
Xeon. We also show performance efficiency comparisons of SU3 Bench
on PIUMA, Xeon, GPUs, and FPGAs based on pre-existing data. The
lessons learned are generalizable to other similar kernels.

Keywords: SU3 Bench · SU3 · LQCD · QCD · PIUMA · Quantum
chromodynamics

1 Introduction

SU3 Bench [2] is a microbenchmark developed at the L
¯
awrence B

¯
erkeley

N
¯
ational L

¯
aboratory (LBNL) to explore performance portability across multiple

programming models and architectures using a simple, but nontrivial, mathemat-
ical kernel. This kernel has been derived from the (M

¯
ultiple I

¯
nstruction M

¯
ultiple

c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 65–84, 2022.
https://doi.org/10.1007/978-3-031-07312-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_4

66 J. J. Tithi et al.

D
¯
ata) M

¯
IMD L

¯
attice C

¯
omputation (MILC) L

¯
attice Q

¯
uantum C

¯
hromodynamics

(LQCD) code [14]. The MILC Code is a body of high-performance software writ-
ten in C for doing SU(3) (special unitary group of degree 3) lattice gauge theory
on high-performance computers, as well as single-processor workstations. The
SU3 Bench microbenchmark calculates an SU (3) matrix-matrix multiply using
complex floating-point arithmetic. It operates over a lattice of dimension of L4.
The matrix-matrix and matrix-vector SU(3) operations are fundamental build-
ing blocks of LQCD applications. Most LQCD applications use domain-specific
implementations (libraries) written in machine-specific languages and/or intrin-
sics. Hence, performance portable methodologies are of interest.

The SU3 Bench code available on GitHub [2] mainly focuses on performance
portability on different GPUs. There is a recent attempt to port it to FPGAs
[9] using OpenCL. SU3 Bench has different versions available for different plat-
forms (CPU, GPUs, FPGAs) and different programming environments (CUDA,
Intel dpcpp, hip, hipsycl, OpenACC, OpenCL, OpenMP, sycl). A common main
driver routine is used for all programming models, with implementations spe-
cific to each model self-contained in respective C++ include files. This paper
shows performance portability on two different architectures—the new Intel Pro-
grammable Integrated Unified Memory Architecture (PIUMA) and state-of-the-
art Xeon NUMA Architecture. We share the step-by-step optimization methods
and the insightswe got fromoptimizing SU3 Bench onPIUMAandXeon.Wehigh-
light how they are different architecturally, as we believe that this will be valuable
to the community.

PIUMA is a Distributed Global Address Space (DGAS) architecture devel-
oped under the DARPA HIVE [3] program supporting native scale-out. Thus, the
same program works for shared and distributed memory in the conventional sense.
Although PIUMA targets sparse and irregular workloads, its design is centered
on programmability (OpenMP-style programs can be easily adapted to run on
PIUMA, with no difference between shared or distributed memory implementa-
tion), performance portability, and scalability. Mapping and analyzing the perfor-
mance of any HPC workload on such a novel architecture is an interesting learning
exercise on its own. Moreover, as a kernel, SU3 Bench is dense and poses a chal-
lenge, given how PIUMA is designed for sparse and irregular workloads. Unlike
traditional architectures, where the “flops-to-byte” ratio is often a number in the
range of 10 to 20 or even higher, on PIUMA this ratio is much smaller (1 to 2)
and therefore, is not suitable for flop intensive workloads or kernels. SU Bench
has an arithmetic intensity of 1.35 for single precision (0.675 for double precision).
Since PIUMA’s arithmetic intensity is also less than 2, SU3 Bench’s performance
on PIUMA gives us some early insights on how a low flop intensive dense workload
would perform on a low flop architecture that targets sparse workloads.

Contributions: We make the following contributions:

– This is the first paper showing the performance modeling of a dense workload
on the recently proposed PIUMA [3] architecture.

– We show how to port and optimize SU3 Bench on PIUMA and contrast the
optimization needs for PIUMA with Xeon. We show a roofline analysis of

SU3 Bench on PIUMA and NUMA CPUs 67

SU3 Bench on PIUMA and Xeon and used that analysis to guide the opti-
mization choices. We show step by step optimization on both platforms that
allowed us to obtain close to the attainable peak performance for both plat-
forms.

– We show comparative performance analysis (iso-bandwidth and iso-power) of
SU3 Bench on PIUMA vs. Xeon.

– We also show a comparative analysis of performance efficiency with respect
to the existing GPU [8] and FPGA [9] results of SU3.

2 Related Work

SU3 Bench development to date has been primarily focused on evaluating vari-
ous programming models for acceleration using general-purpose GPU computing
architectures [8]. Although most of the GPU programming models also support
running on CPUs, optimization for NUMA architecture had not been a focus.
The current SU3 Bench code has also not been tuned for a very wide SIMD archi-
tecture (e.g., AVX512 on Xeon CPUs) either. Tuning for wide SIMD primarily
involves remapping the data structures to better expose vectorization oppor-
tunities to the compiler. While this has been extensively studied for popular
LQCD domain-specific library implementations, for example [10], these imple-
mentations also rely on architecture-specific intrinsics that SU3 Bench avoids for
portability. Davis [6] performed an extensive study of the OpenMP implemen-
tation using a wide variety of compilers, but only investigated the target offload
performance on GPUs. Very recent work has shared experience in porting SU3
OpenCL code to FPGAs [9] and reported more than the expected amount of
programming effort for the porting. We summarize the performance trends in
different architectures in the results section.

Since PIUMA [3] is a relatively new architecture and the hardware is not
yet available, all application performance reported on PIUMA used a cycle-
accurate simulator. The original paper on PIUMA [3] reports application perfor-
mance for several sparse workloads including Application Classification, Random
Walks, Graph Search, Louvain Community Detection Algorithm, TIES Sampler,
Graph2Vec, Graph Sage, Graph Wave, Parallel Decoding FST, Geolocation,
SpMV, SpMSpV, and Breadth-First Search. The authors expect an order or
two magnitudes of speedup over Xeon (iso-power comparison) for these work-
loads. PIUMA’s large number of threads, 8-byte granularity data access, selective
caching, global shared memory and offload engine (e.g., DMA) helped in achiev-
ing such speedup and scaling. Another recent research [15] shows how to port
the Sinkhorn Word Movers Distance computation to PIUMA which is a mix of
sparse and dense compute with relatively lower average arithmetic intensity and
shows around 2× speedup for iso power comparison. Some of the optimizations
the authors applied for this application on PIUMA are selective caching, use of
faster scratchpads, remote atomics, DMAs, and use of build-in transcendental
functions.

In contrast, in this paper, we consider a purely dense application and explore
porting and optimization options to reach the peak performance.

68 J. J. Tithi et al.

3 Background on SU3 Bench

In this section, we share details about the SU3 Bench kernel. Figure 1 shows how
the kernel looks in its sequential form. The i loop iterates over L4 sites. Each site
has four neighbors, or links, and loop j iterates over them. For each such link, it
computes a 3×3×3 general matrix multiplication (GEMM) among the complex
numbers (real, img) representing the links using k, l, and m loops. There are
3 × 3 matrix elements per link and the innermost m loop is essentially doing a
dot product, multiplying a row of A[i]’s element matrix with a column of B[j]’s
link matrix.

Fig. 1. SU3 Bench core kernel.

In some sense, SU3 Bench is sim-
ilar to the STREAM benchmark [7,
12] since it loads SU(3) matrices lin-
early from memory and stores the
multiplication back to memory. This
kernel has ≈ (L4×3×3×3×2) com-
pute and ≈ (L4 × 3 × 3 × 3) memory
operations and hence is memory-bound on all (or most) modern architectures.

We first consider two key data structures used in the kernel. Figure 2 and
Fig. 3 show the definitions for the su3 matrix and site data structures. An
su3 matrix is a 3 × 3 matrix of complex type: for FP32 (single precision) data
type, it requires 72 bytes (144 bytes for FP64, or double precision) of storage.

Fig. 2. SU3 Matrix data structure.

The site definition (Fig. 3) is
based on MILC [14], but reduced to
the bare minimum. It contains four
links of type su3 matrix, coordinates
of this site, index in the large site
array, and whether the parity is even
or odd. It has some padding to make
it a multiple of 64 and requires 320 bytes for FP32 or 640 bytes for FP64 type.

Next, we consider the sizes of the input and output arrays and their impli-
cations for performance. When L = 32 in Fig. 1, the size of site array A would
be 320 MiB for FP32 (324 × 320 = 320 MiB) and 640 MiB for FP64 data type.
Similarly, the output array C would be of the same size as A.

Fig. 3. Site data structure.

There is no expected cache re-use
for A and C outside of the GEMMs.
The size of B is 288 bytes for FP32,
576 bytes for FP64 data type, and
this size is constant. B could stay in
the cache and can be reused. Note
that, in most state-of-the-art Xeon
machines this data (A, B, and C) will
not fit in the L3 cache, which is often
of size 40 MiB or less per socket. A and C data would usually need to be streamed
from/to memory.

SU3 Bench on PIUMA and NUMA CPUs 69

According to Fig. 1, the number of floating point operations for each site is
4 × (3 × 3 × 3)) × (4 mul + 4 add) = 4 × (108 mul + 108 add) = 4 × 216 ops =
4 × 216 = 864. The data size for each of A[i] and C[i] is 320 Bytes for FP32
(single precision) and 640 Bytes for FP64 (double precision) values. Therefore,
the arithmetic intensity (AI) is 864/(320 × 2) = 1.35 for FP32 data and 0.675
for FP64 data. This calculation ignores reading from B.

The key takeaway here is, SU3 Bench is a dense kernel and has a low flops-
per-byte requirement. It is expected to be memory bound in standard CPU/GPU
architecture and it is interesting to explore whether that is also the case for the
new PIUMA architecture that has a low flop-per-byte ratio.

4 Background on PIUMA

In this section, we give an overview of the PIUMA Architecture [3] and contrast
that with Xeon.

The PIUMA architecture [3,5,13] consists of a collection of highly multi-
threaded cores (MTC) and single-threaded cores (STC) as shown in Fig. 4. The
MTCs are round-robin multi-threaded to address the lack of instruction-level
parallelism in sparse workloads and incorporate latency hiding through thread-
level parallelism instead of aggressive out-of-order or speculative execution mod-
els. Each thread can have one in-flight instruction, which simplifies the core
design [3]. However, this also can be a limiting factor when an operation (e.g.,
fused multiply-add (FMA)) requires several data to be loaded before the oper-
ation can be executed. In contrast, on Xeon, we typically have only one type of
core, that can execute instructions out of order and usually have large vector
units to support single instruction multiple data (SIMD) executions as well.

While the MTCs are the data parallel engines in PIUMA, the STCs are used
for single-thread performance-sensitive tasks, such as memory allocation and
thread management. The cores are in-order stall-on-use scalar cores. Each core’s
offload region in Fig. 4 contains a direct memory access (DMA) engine that exe-
cutes gather, scatter, copy, initialization, reduction, and broadcast operations.
The DMA engine supports executing atomic operations at the remote destina-
tions [3]. In contrast, Xeons typically do not have DMA engines or support for
remote atomics.

Fig. 4. High-level diagram of PIUMA architecture (collected from [3]).

70 J. J. Tithi et al.

All the cores have a local instruction cache (I$), data cache (D$), and register
file (RF) and support selective data caching through the use of a unique bit in
the address space. Caches are not coherent across the whole system to provide
better scalability [3]. For correctness, a programmer may need to flush caches if
shared data is modified.

The MTC and STC cores are grouped into blocks and each of them has
a faster local scratchpad (SPAD) as low latency storage that can be used for
optimizations such as double buffering. Data is not automatically cached (except
thread-local stacks) and the programmers select which memory accesses to cache
(e.g., local stack), which to put on SPAD (e.g., frequently reused data structures
or the result of a DMA gather operation), and which to store on the shared
global memory. There are no default prefetchers (to save bandwidth and energy
and avoid wastage). Instead, the offload engines are used to efficiently fetch large
chunks of data when needed [3]. In contrast, on Xeon, everything is automatically
cached and prefetched. Xeon usually does not have SPAD, however, its last level
cache is usually large. There is only one type of memory where everything gets
allocated.

On PIUMA, there is no implementation difference between accessing local and
remote memory [3]. However, PIUMA is not a large shared memory machine;
rather, it’s a collection of cores grouped hierarchically into blocks, dies, subnodes,
and nodes, sharing a distributed global address space (DGAS). PIUMA imple-
ments the DGAS paradigm in hardware, giving each core a uniform view of the
memory of the full system in one address space. This provides native hardware
support for a wide variety of programming models. The memory controllers (one
per block) can support native 8-byte accesses while supporting standard cache line
accesses as well [3]. In contrast, Xeon only supports cache line width accesses.

PIUMA has a high-radix, low-diameter HyperX topology network which is
optimized for 8-byte messages. PIUMA is designed to have higher/equal network
bandwidth compared to the local DRAM bandwidth which is different from
conventional architectures that assume higher local traffic than remote traffic [3].

PIUMA is a data accelerator and a Xeon works as a host to offload/launch
the job to PIUMA in a seamless manner.

5 SU3 Bench on PIUMA

In this section, we show an early preview of SU3 Bench’s performance on the new
PIUMA architecture. To ease programming, PIUMA supports C and a subset
of C++. It has its own OpenMP style programming extensions to exploit both
Single Program Multiple Data (SPMD) and task-based parallelization schemes.

5.1 Porting Process

Since any memory location can be read/written by simple load/store opera-
tions, it’s fairly easy to port an OpenMP or pthread style shared-memory code
to PIUMA. We started with the OpenMP code available on GitHub [2] and
simplified it to fit our needs. The most substantial changes were:

SU3 Bench on PIUMA and NUMA CPUs 71

– We changed the main program to include PIUMA library header files and the
Makefile to support PIUMA runtime.

– We used PIUMA specific memory allocation/free libraries which are special-
ized for DGAS allocations.

We split the workload equally among the MTC threads using an SPMD
parallelization scheme by dividing the number of sites (i loop in Fig. 1). We used
the STCs only for memory allocations/deallocations and the MTCs to initialize
and execute the main kernel in parallel.

Since PIUMA supports a variety of memory allocation options, the porting
process involves deciding how to allocate various data structures in memory and
data gets allocated based on the instruction provided (no default first-touch
policy [11]). By default, PIUMA uses an interleaved/striped memory allocation
policy. For a program running on M blocks with M memory controllers, any
memory allocation is striped in round-robin chunks across those memory con-
trollers. This helps ensure even distribution of access pressure across the mem-
ory controllers and reduces queueing latency and conflicts for randomly accessed
data. For our initial porting effort, we allocated everything in the main mem-
ory, striped across memory controllers. This default allocation does not appear
to be the best allocation policy, since SU3 Bench has strictly sequential access.
The best option would be to allocate data close to the memory controller where
the accessing threads are. However, this research shows that since PIUMA is
a DGAS system and the network bandwidth matches the local memory band-
width, even when striping results in mostly remote accesses, we can achieve a
substantial percentage of the peak memory bandwidth of the system.

Recall that PIUMA allows a program to selectively cache data by setting
a given bit in its address. Caches are small in size. Additionally, data is not
automatically prefetched. We initially chose to cache both A and B.

Simulation and Modeling. We have used a modified Sniper simulator [4] to
simulate1 the PIUMA system in a cycle-accurate manner. Since we run the code
on a simulator that can be over 10, 000× slower compared to running on the
actual hardware, it restricted our ability to simulate large problems and more
iterations. The original code runs some warmup iterations (parameter -W) to
warm up the caches. To reduce simulation time, we removed warmups on PIUMA
while running the experiments. It had almost no impact on performance.

5.2 Roofline Analysis on PIUMA

To understand what to expect in terms of performance on PIUMA, we show the
roofline analysis (Fig. 5) in the following section. In Sect. 3, we show that the arith-
metic intensity of SU3 Bench for FP64 data type is 0.675 and PIUMA’s effective
flops-per-byte ratio is 1.25 (when only MTCs are used). Therefore, without fur-
ther analysis, one can assume that for FP64 data, SU3 Bench’s performance will
1 We are in the power-on phase of a PIUMA system and we plan to update and

integrate the simulated results with actual experimental data.

72 J. J. Tithi et al.

be bandwidth bound and for FP32 data, it will be compute-bound (needing 1.35
flops-per-byte). However, the details are a little more complicated. We focus on
the FP64 case in the following.

If compute bound, the performance of SU3 Bench on PIUMA would be lim-
ited by the 8 GF/s peak (assuming 1 GHz clock) if all multiply-add operations
were done using FMAs. If not using FMAs, the theoretical peak flop is 4 GF/s.

The upper bound imposed by memory bandwidth on performance on PIUMA
is 4.32 GF/s (≈ 0.675 × MainMemoryBW).

Fig. 5. Roofline model on PIUMA.

Apart from these two theoreti-
cal upper bounds, there is a third
aspect of PIUMA that may dictate
the performance of the SU3 Bench
kernel and that is the rate of instruc-
tion issued per cycle. Since PIUMA
has single-issue in-order scalar cores,
the instruction mix limits how many
cycles can be spent issuing FMAs,
due to the need of loading and even-
tually storing data from the same
scalar pipeline. For example, if we
revisit the SU3 Bench kernel shown
in Fig. 1, we see in the innermost dot
product loop that for each element of C we need 12 FMAs and at least 12 loads
for A and B in total and 2 stores for C. In other words, to produce 24 FLOPs, at
least 12 loads, 2 stores, and 12 FMAs need to be executed. This leads to 24/(12
+ 2 + 12) GF/s per pipeline and 3.7 GF/s per PIUMA core. Therefore, according
to roofline analysis, we can only expect to get the minimum of the above three as
the maximum performance, i.e., 3.7 GF/s from a single PIUMA core.

Thus, on PIUMA, the pipeline throughput or the instruction execution rate
becomes the limiting factor. This is different from Xeon, where the performance
is typically limited by FLOPs or Bandwidth. Since the performance on PIUMA
is instruction throughput bound, we did not try SPAD optimizations or DMAs
as it is unlikely that would improve performance.

5.3 Optimization on PIUMA

When we run our initial ported version of SU3 Bench on PIUMA simulator with
L = 16, we obtained 2.14 GF/s, and an average DRAM bandwidth utilization
of 74%, with an IPC (Instructions Per Cycle) of 3.7 for FP64 data. Thus, our
initial implementation on PIUMA did not reach the roofline.

Register Blocking. We inspected the generated code and realized that it had
a few extra instructions to handle register spilling and the compiler was unable
to generate FMA instructions for all the updates. We realized that the 3 × 3 × 3
complex GEMM might be too big for the simple MTC pipelines of PIUMA,
causing frequent register spills. Instead, a tiled GEMM of size 2 × 3 of A times
3 × 3 of B followed by 1 × 3 of A times 3 × 3 of B could be a better approach.

SU3 Bench on PIUMA and NUMA CPUs 73

The tiled multiplication of complex A[2 × 3] by B[3 × 3] requires 12 loads
from A, 18 loads from B, and does 12 stores to C. Also, it requires 2 × 3 × 3
complex multiplications, or 72 FMAs. A tiled multiplication of A[1 × 3] by
B[3 × 3] requires 6 loads from A, 18 loads from B, and does 6 stores to C
and requires 1 × 3 × 3 complex multiplications, or 36 FMAs. Overall, the upper
bound of FLOPs when limited by instruction issue rate in this case is 2 × (72 +
36)/(12 + 18 + 12 + 72 + 6 + 18 + 6 + 36) = 1.2 GF/s per pipeline and 4.8 GF/s
per MTC core. Thus, tiled GEMM improves the roofline bound compared to
using dot product in the innermost loop and the achievable peak flop becomes
4.32 GF/s bounded by the memory bandwidth.

FP32 Packed Store. Since PIUMA cores read/write at 8-byte granularity,
for FP32 data types, we packed the real and the imaginary parts of a complex
number into one 8-byte using bit shift and OR operators while storing them. This
helped us to avoid the inefficiency of storing real and imaginary parts separately
and saved one store operation and bandwidth.

Performance on PIUMA. We ran this tiled GEMM with L = 32 for FP64
(double precision) data type for 4 iterations.

Fig. 6. Strong scaling on PIUMA.

We get 3.72 GF/s, and a bandwidth
of 5.1 GB/s on one core (or block) of
PIUMA. We strong scaled the problem
up to 128 cores, where it obtains 244 GF/s
and is around 70× faster than 1 PIUMA
core for FP64 type and 105× faster for
FP32 type. Figure 6 shows the strong scal-
ing for L = 32, Iterations, I = 4, FP64,
and FP32 data types. SU3 Bench appears
to scale well up to 128 cores (16 dies and
8192 MTC threads).

Note that, there are 128 cores on 16
dies of PIUMA and these cores are dis-
tributed across those dies communicating using the inter die networks. Figure 6
suggests that, when running across multiple dies, the NUMA effects do not have
a significant impact on performance, which is often a problem on multi-socket
Xeon systems. There is a slightly better strong scaling for FP32, as its arithmetic
intensity is higher and has 2× the cycles per load (compared to FP64) and also
uses fewer cache lines with the 3×3 blocking. As we increase the number of cores,
the uncore latency and imbalance/sync-delay gradually increase. For FP64, the
barrier cost increased noticeably from 1 die to 2 dies (2% to 8%) in addition to
the remote access latency. However, the impact on scaling is insignificant.

To summarize, what we learned from our exercise of porting SU3 Bench to
PIUMA is as follows: on PIUMA where cores have simple scalar pipelines, the
performance of the SU3 Bench kernel is limited by the effective instruction issue
rate. PIUMA follows a non-conventional stripped allocation policy and both the
memory and the network are optimized for 8-byte accesses granularity. With a
few optimizations, the SU3 Bench kernel was able to obtain good performance

74 J. J. Tithi et al.

up to 16 dies (8192 threads) of PIUMA distributed across the DGAS memory
system. Considering performance portability, it was relatively easy to reach close
to PIUMA’s architectural peak for SU3 Bench, even though PIUMA has not
been optimized for dense workloads.

6 Performance on Xeon

Originally, SU3 Bench had been mainly optimized for GPUs [8] (code available
on GitHub [2]). It was missing an optimized version for Intel Xeon CPUs. The
mainline OpenMP code failed to saturate the bandwidth of a Xeon socket.

In this section, we discuss the challenges in obtaining peak performance on
a state-of-the-art Intel Xeon system, and show how the subtleties of variable
definition, value initialization of C++ standard template library (STL), and the
NUMA nature of the machine affect the performance of SU3 Bench. The NUMA
optimization we discussed here has been integrated into the SU3 Bench GitHub
repository [2].

6.1 Roofline Analysis on Xeon

Similar to PIUMA, we start with a roofline analysis. For analysis, we used the
following Xeon platform and compiler:

– CPU: Intel(R) Xeon(R) Platinum 8280 CPU (CLX 8280)
– Clock: 2.70 GHz, Turbo Boost was ON by default
– Number of Sockets: 2, 56 cores, 56 threads
– Memory Capacity: 196 GiB (DRAM), 39.4 MiB (L3), 1 MiB (L2), 32 KiB (L1)
– Memory bandwidth: 105 GB/s (1 socket).
– STREAM bandwidth: 200 GB/s (2 sockets).
– Compiler: Intel(R) 64 Version 2020

Each core has 2 SIMD units with 8 lanes per unit and each of those lanes
can execute two flops per cycle. Therefore, the maximum GFLOPS per second
(GF/s) on this core is = 86.4 = 2.7 GHz × 2 SIMD units × 8 lanes/SIMD unit
× 2 FLOPs/lane. On a single socket with 28 cores, maximum GF/s is 2150.4.
The maximum bandwidth per single socket is = 105 GB/s. Therefore, the flops
per byte ratio of this architecture is 20.5 = 2150.4/105 for FP64. The arithmetic
intensity of the SU3 Bench kernel is 1.35 for FP32 data (0.675 for FP64 data)
type and therefore, SU3 Bench should be bandwidth bound on Xeon.

SU3 Bench on PIUMA and NUMA CPUs 75

Fig. 7. Roofline model on Xeon.

Figure 7 shows the theoretical
roofline analysis of SU3 Bench on
this Xeon. Because of the way data
structures have been implemented
(see Fig. 2, 3), it is difficult for com-
pilers to identify vectorization oppor-
tunities for the inner loop (see Fig. 1),
especially for CPUs with wide SIMD
units. Assuming only 1 lane per each
of the 2 SIMD units are used, the
peak performance for a single-core is
10.4 GF/s and for a single socket, it
is 141.8 GF/s. The peak performance
with 1 SIMD unit and 1 lane per unit
utilization is 5.4 GF/s for a core and 141.8 GF/s for a socket. Lastly, the peak
performance with 1 SIMD unit and 1 lane per unit without any FMA utilization
is 2.7 GF/s for a core and 75.6 GF/s for a socket.

6.2 SU3 Implementation

Since we are interested in performance on Xeon, we built on top of the existing
OpenMP implementation. Originally, there were four OpenMP versions in the
GitHub repository, each of which uses different “#pragma omp target teams”
constructs on the i, j, k, and l loops. There is an additional outermost loop that
runs the core kernel a given number of iterations (I) and warmup (W) times to
provide stable performance data.

Despite having four versions, the SU3 Bench OpenMP implementation was
missing a very basic OpenMP loop structure of “#pragma omp parallel for” on
the i loop. The “#pragma omp target teams distribute num teams (num teams)
thread limit (threads per team)” directive used in the original four versions cre-
ates a league of teams each with (threads per team) threads to hierarchically
distribute the threads which might be unnecessary for Xeon CPUs. We added a
simple implementation of SU3 Bench with “#pragma omp parallel for” on the
i loop and called it VersionX. VersionX is faster than all prior OpenMP ver-
sions of SU3 Bench, most likely due to not being burdened by the overhead of
hierarchical threading of teams. In the rest of this section, we focus on VersionX.

6.3 Performance on Xeon

Table 1 shows the initial performance of VersionX on two sockets of CLX 8280.
Since the CLX 8280 is a NUMA machine, to reduce NUMA impact, we set the
thread affinity to be compact. Table 1 shows that the performance on two sockets
is close to half of what we expected from the roofline analysis. The value of L,
in this case, is 32, so, none of the arrays other than B would fit in the cache
completely, and data should be streamed from memory. However, the maximum
bandwidth obtained is only 75 GB/s which is lower than what even one socket

76 J. J. Tithi et al.

could offer. One reason behind this is that some portion of each site data (x,
y, z, t, parity, pad in Fig. 3) gets wasted (around 10% of the bandwidth) while
reading from A or writing to C. Another reason could be the well-known non-
uniform memory access (NUMA) impact – on two sockets of Xeon, unoptimized
codes often face NUMA issues due to higher access latency to a remote socket
that we explore next.

6.4 NUMA Effects

To verify how the NUMA imbalance affects performance, we rerun the above
experiment adding numactl -C 0-55 -N 0,1 -m 0,1 to the command line while
running the program to use both nodes 0 and 1 for the compute resources and
memory allocation. The second row of Table 1 shows the performance data. Con-
trolling NUMA allocation marginally improves performance for a single iteration
(-I 1 -W 1). However, the obtained bandwidth is still 54.4 GB/s—only half of the
single socket’s streaming bandwidth. Also, notice that the performance degraded
for 100 or 200 iterations compared to not using numactl. As a result, the maxi-
mum bandwidth obtained is reduced to only 56 GB/s and it did not change much
by increasing the number of iterations (increased number of iterations usually
makes the loop and OpenMP thread launching overhead negligible).

To get further information on the runs, we used the Intel Vtune tool to
analyze the performance for the 200 iteration case without using numactl. We
found that although the application reported bandwidth (effective bandwidth)
was only ≈82 GB/s, the actual bandwidth noted by Vtune is around 182 GB/s—
almost double of what the useful bandwidth was. This 182 GB/s is close to 210
GB/s, the maximum offered by the system. It also maxed out the system’s UPI
bandwidth (68.9 GB/s) indicating substantial cross-socket traffic.

6.5 Impact of Page Migration

Fig. 8. Total page sizes at different sockets.

In order to explain the dependency
on the number of iterations and
numactl, we looked at the impact
of automatic page migration. The
Linux memory management sub-
system, unless directed otherwise,
supports migrating pages between
NUMA nodes to improve the locality
of the accesses. The use of numactl
prevents automatic page migrations,
automatic NUMA balancing, and
automatic NUMA placement of an application [1]. Therefore, whatever bene-
ficial page migrations were happening with more iterations got stopped with the
use of numactl flag.

SU3 Bench on PIUMA and NUMA CPUs 77

Table 1. Performance of VersionX, with and without using numactl to control affinity.
I and W indicate number of total iterations and warmup iterations respectively.

Runs -I 200 -W 1 -I 100 -W 1 -I 1 -W 1

GF/s GB/s GF/s GB/s GF/s GB/s

Without numactl 100.8 74.7 76.4 56.6 73.3 54.3

With numactl 75.0 55.6 74.9 55.5 73.5 54.4

We developed a custom library to print the allocated memory in each socket
and Fig. 8 shows that with an increased number of iterations, the distribution
of the pages allocated to each socket becomes more balanced as Linux migrates
pages closer to the node where the thread is. Since threads are pinned, each page
is migrated at most once, and increasing the number of iterations amortizes the
migration cost over a longer execution time. That is why with numactl off,
performance improves with iterations. However, if numactl is on, the automatic
page migration stops and as a result, the performance remains the same other
than smoothing out the thread launching and cache warmup overheads.

The above results indicate that during allocation, the data is mainly placed
in the first socket.

6.6 Parallel Initialization

As a commonly practiced solution, we parallelized the data initialization routine
making sure the memory access pattern mirrored the ones used during time-
sensitive compute phases. This allows us to take advantage of the first touch
page allocation policy, guaranteeing that data is allocated with proper affinity
to the NUMA node that will use it the most.

Fig. 9. Variable declaration in
SU3 Bench.

We added empty default constructors
for site and su3 matrix objects, to pre-
vent the STL containers from performing
value initialization on them. The C++ stan-
dard mandates that upon construction, con-
tainers zero-initialize their elements under
certain circumstances, including those that
arise in SU3 (shown in Fig. 9). When this is applied to a global shared con-
tainer, whose constructor is generally called before entering a parallel region,
zero-initialization results in the main thread accessing all the elements, with the
consequent slowdown and sub-optimal first-touch placement. We measured the
imbalance resulting from not providing empty default constructors. Figure 10
shows that the data gets allocated and touched on socket 0 during the declara-
tion of the variables itself when empty default constructors are not provided.

78 J. J. Tithi et al.

Fig. 10. Amount of data allocated on both sockets at different stages.

Ensuring proper data placement with STL containers, and consequently elim-
inating page migration (and subsequent bandwidth wastage) issues, improves
performance by 2.6× over the naive implementation, resulting in 143.46 GB/s
effective memory bandwidth and 193.54 GF/s floating-point performance on the
2 sockets (56 cores) of CLX8280—69% of 210 GB/s (close to peak considering
20% wastage in bandwidth for A and C).

How Xeon Optimizations are Different from PIUMA. If we contrast the
above optimization efforts with the optimization efforts on PIUMA, it emerges
that we did not pin threads or needed to resort to default constructors to obtain
good performance across dies for PIUMA. The data was evenly distributed across
memory controllers. The effect of data placement on PIUMA was negligible,
making it a competitive option for performance portability. This result is also
different from the experience in porting this benchmark to FPGAs [9] where
the authors reported that interleaved data allocations across different memory
channels led to poor performance.

6.7 Additional Optimizations and Performance

Strong Scaling. Figure 11 shows strong scaling of VersionX on Xeon. We see a
linear increase in performance from 1 to 14 cores, minimal performance improve-
ment from 14 to 28 cores since it had already saturated the single socket band-
width with 14 cores), then a linear performance increase from 29 to 56 cores,
albeit, with a smaller slope than 1 to 14 cores.

SU3 Bench on PIUMA and NUMA CPUs 79

Fig. 11. Strong scaling (with and with-
out empty constructor). Input, L = 32 -I
1 -W 1, data type: FP32

This strong scaling trend matches
our expectation considering a non-
NUMA software whose performance is
not sensitive to NUMA issues. The
speedup line in Fig. 11 shows that till
28 cores (i.e., within a single NUMA
domain), the performance for both with
and without the empty constructor is
similar. However, beyond one socket, the
version with an empty constructor is
over 2× faster than the original one. The
total speedup obtained using 56 cores
(compared to one core run) is 32.4×.

Note that for a bandwidth-bound kernel the expected maximum speedup
from 56 cores is around 21× if one core can drive up to 10 GB/s STREAM
bandwidth. This implementation of SU3 Bench obtaining 32.4× speedup indi-
cates inefficiency of the single-core run which obtains 4.34 GB/s bandwidth in
this case (recall that roofline shows single core can achieve 10.4 GF/s and hence,
8 GB/s of bandwidth).

Fig. 12. Using GEMM instead of dot
product. Input, L = 32 -I 1 -W 1, data
type: FP32

Improving Single Core Perfor-
mance. At this point, although the
performance improvement on two sock-
ets is satisfactory and relatively close
to the peak, the single-core performance
(5.85 GF/s) appeared to be indicative of
the case where only 1 SIMD unit is used
or the case where 2 SIMD units are used
without any FMA. This motivated us
to use explicit general matrix multipli-
cation (GEMM) and FMA instructions
instead of depending on the compiler to
do so. We replaced the k, l,m loops with
an explicit 3×3×3 GEMM routine that
manually called the FMA instructions after unrolling all products. This improved
performance by 1.6×–1.8× up to 8 cores (see Fig. 12). However, at 28 cores, the
performance improvement is only 11%, and at 56 cores, it is down to 0%. We
observe a significant variance in performance from run to run at 56 cores for this
version. Additionally, we had to use the compiler flag -xCORE-AVX512 and
without this flag, the performance goes down below the original version.

This suggests that doing the manual GEMM allowed it to use AVX units.
The single-core performance of this version reaches the peak performance of 2
SIMD units (10.4 GF/s). The total speedup with 56 cores, in this case, is 18.4×
with respect to its one core run. Full SIMD utilization is a known issue in the

80 J. J. Tithi et al.

LQCD community, and specialized libraries have been developed for Intel Xeon
CPUs with very high bandwidth memory subsystems, such as the Intel Xeon
Phi [10]. Those types of optimizations are outside the scope of this paper.

6.8 Limitations

Notice that we did not reach the STREAM bandwidth of the system. Obtaining
STREAM [7,12] bandwidth would require us to use streaming write instructions.
Since the site data structure has 320 bytes size and we are only writing 288 bytes
of it, the compiler is unable to use streaming writes because of the gaps between
writes. Reading efficiency is also lowered by the same issue. Using arrays of
structures of arrays (AOSOA) might help which is outside the scope of this
paper since minimal changes in the code is desired.

6.9 Lessons Learned

From our porting effort to Xeon we learned that not providing a default con-
structor could create a potentially unexpected performance problem by allocat-
ing memory on single NUMA node at creation. Using an empty constructor and
then initializing memory in parallel solves the issue. Simple OpenMP pragma
provides good (and better) performance for SU3 Bench compared to hierarchi-
cal threading. Replacing dot products with a tiled GEMM only improves per-
formance at low core counts. If we are running on the full system, tiling has
no positive impact on the performance due to the increased saturation of the
memory bandwidth. In contrast, on PIUMA, we did not have to add special
constructors and we did not see any NUMA issue there. On PIUMA, 3×3 tiling
was necessary to avoid register spilling and not for better vectorization (as is the
case for Xeon).

7 Comparative Analysis

7.1 Comparison with Xeon

In this section, we compare the performance of PIUMA with that of Xeon.
Figure 13 compares strong scaling of SU3 Bench on both platforms. With L =
32 for FP64 (double precision) data, and for 4 iterations, one PIUMA core is
1.57× slower than the CLX core and this difference is justified by the bandwidth
difference among the two platforms. Eight PIUMA cores are 1.42× slower than
8 CLX cores. Again, this performance is consistent with the gap in bandwidth
between the two. However, the speedup from 8 cores on PIUMA is 6.61× and
for CLX, it is 6.04×. Sixteen cores of PIUMA are on par with 16 CLX cores
because the bandwidths are on par too.

SU3 Bench on PIUMA and NUMA CPUs 81

Fig. 13. Strong scaling, input: L = 32 -I 4 - W 1, data type: FP64.

At 32 cores, PIUMA is 1.48× faster than 32 cores of CLX. This happens
mainly due to the difference between the effective bandwidth that each of these
platforms can obtain and the fact that PIUMA supports 8-byte accesses and
hence wastes less bandwidth than CLX. At 32 cores, PIUMA cores get 108 GB/s
whereas Xeon gets 73.8 GB/s. PIUMA appears to strong scale better than Xeon
as shown by Fig. 13. Although Xeon’s architectural flops-per-byte ratio is 20.5
and PIUMA’s effective flops-per-byte ratio is 1.25 (when only MTCs are used),
PIUMA wins here in the effective usage of that flops-per-byte for a benchmark
with 0.675 flops-per-byte need.

Fig. 14. PIUMA vs. Xeon iso comparison, input: L = 32 -I 4 - W 1, data type: FP64.

Instead of core-to-core comparison, next, we perform an iso-bandwidth com-
parison. In an ideal scenario, 32 cores of PIUMA should be able to drive the
same bandwidth of 2 sockets of CLX8280, and 16 cores of PIUMA should be
able to drive the same amount of bandwidth as one socket of Xeon. Figure 14
shows that 16 PIUMA cores are slower than 1 socket of Xeon (1 socket of Xeon
is about 44% faster than 16 PIUMA cores for FP32 types) and 2 sockets of Xeon
is about 60% faster than 32 cores of PIUMA. For FP64 type, on the other hand,
16 PIUMA cores are on par with Xeon, and 32 PIUMA cores are 24% slower
than two sockets of Xeon. On PIUMA, the instruction issue rate is a limiting

82 J. J. Tithi et al.

factor for SU3 Bench, and thus, with iso-bandwidth, there was still the perfor-
mance gap. Also note that PIUMA cores are scalar (no vector units and in-order
executions) and thus, the performance gap for FP32 is even higher than FP64.
At 32 cores, 8192 lightweight MTC threads are reading and writing across the
distributed global address space stranding across 32 memory controllers. Fur-
thermore, the data is allocated in a round-robin interleaved format across all
memory controllers and the threads do a significant amount of remote access
while computing. Even after all those unfavorable conditions, the obtained per-
formance is promising which is close to the attainable peak. The lessons learned
from these comparison results and the potential architectural significance should
be helpful.

Now, if we perform an iso-power comparison, PIUMA cores would be faster
than Xeon ones on both FP32 and FP64 types as shown in Fig. 14 right side. For
FP32 type, PIUMA cores are 20% to 33% faster and for FP64, PIUMA cores
are about 49% to 64% faster than Xeon cores.

It appears that the best part of PIUMA for SU3 Bench is the native scale-out
and ease of programming. Remember the minimal optimizations we had to do to
port and optimize the code for PIUMA to get them close to the roofline perfor-
mance. Despite not being architecturally designed for dense and flop-intensive
workload, PIUMA was able to shine on the SU3 Bench microkernel showing
hope for applicability for quantum chromodynamics HPC workloads.

As mentioned earlier, PIUMA hardware is not yet available and we hope that
it will be available soon. We plan to verify our projected/simulated performance
on the hardware as soon as it becomes available and share it with the community.

7.2 Comparison with Other Architectures

Table 2 summarizes the performance data for SU3 Bench on GPUs [8] and
FPGAs [9] and compare that with our CPU and PIUMA performance. Since
it would be unfair the compare these platforms based on pure flops, we can look
at the efficiency with respect to the expected roofline peak on the respective
platform.

Table 2. Comparison with other architectures. The data for GPU and FPGA is re-
printed from [8] and [9].

Platform Obtained GF/S Efficiency % Flops-per-byte

GPU: Nvidia V100 1111 86.9 16

GPU: AMD Vega 20 908 66.9 14

GPU: Intel Gen9 34.6 99 23

Xeon: Intel Xeon (CLX) 193.5 85 40

DGAS: Intel PIUMA 230.3 75 <2

FPGA: Intel Arria 10 GX 16.1 47.6 NA

FPGA: Xilinx Alveo U280 6.2 35.2 NA

SU3 Bench on PIUMA and NUMA CPUs 83

On Intel Gen9, performance is close to 99% of the peak, on AMD Vega, it
is 66.9%, on Nvidia V100, performance is close to 86.9% of the peak, on Xeon,
performance is close to 85% of the peak and on PIUMA, performance is close
to 75% of the peak. To put them in perspective of flops per byte ratio (single
precision), V100 offers a sustained flop per byte ratio of 16, AMD Vega has 14,
Gen9 has 23, Xeon (CLX) has 40 and PIUMA has less than 2. We believe that
our study shows that PIUMA, based on an entirely different design paradigm
and not based around compute throughput, can still be competitive on dense
regular applications like SU3, once we take into account the scalability of the
design, keeping the ease of programmability of a shared memory system.

8 Conclusion

To summarize, this paper talks about SU3 Bench, a microbenchmark derived
from LQCD to test performance portability. We show its performance portability
on two very different architectures—a state-of-the-art Xeon and the new Intel’s
Programmable Integrated Unified Memory Architecture (PIUMA). We show how
to port the SU3 Bench to PIUMA with a few changes in the standard Xeon
code to obtain good performance and how the effective instruction issue rate
can impact application performance on PIUMA. Alternatively, this paper also
serves as a use case study for porting “dense codes with low arithmetic intensity”
to the PIUMA architecture that is primarily designed for sparse workloads. We
learned that despite PIUMA’s low architectural flop-per-byte capacity and non-
conventional memory allocation policy, such a code (SU3 Bench) can obtain close
to the peak performance in the system.

References

1. NUMA Balancing in RedHat. https://access.redhat.com/documentation/en-us/
red hat enterprise linux/7/html/virtualization tuning and optimization guide/
sect-virtualization tuning optimization guide-numa-auto numa balancing

2. SU3 Bench. https://gitlab.com/NERSC/nersc-proxies/su3 bench
3. Aananthakrishnan, S., et al.: PIUMA: programmable integrated unified memory

architecture. arXiv preprint arXiv:2010.06277 (2020)
4. Carlson, T.E., Heirman, W., Eyerman, S., Hur, I., Eeckhout, L.: An evaluation of

high-level mechanistic core models. ACM Trans. Archit. Code Optim. 11(3), 1–25
(2014). https://doi.org/10.1145/2629677

5. David, S.: DARPA ERI: HIVE and Intel PUMA Graph Processor. WikiChip
Fuse (2019). https://fuse.wikichip.org/news/2611/darpa-eri-hive-and-intel-puma-
graph-processor/

6. Davis, J.H., Daley, C., Pophale, S., Huber, T., Chandrasekaran, S., Wright, N.J.:
Performance assessment of OpenMP compilers targeting NVIDIA V100 GPUs. In:
Bhalachandra, S., Wienke, S., Chandrasekaran, S., Juckeland, G. (eds.) WACCPD
2020. LNCS, vol. 12655, pp. 25–44. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-74224-9 2

7. Deakin, T.: BableStream Benchmark (2017). http://uob-hpc.github.io/
BabelStream/

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-auto_numa_balancing
https://gitlab.com/NERSC/nersc-proxies/su3_bench
http://arxiv.org/abs/2010.06277
https://doi.org/10.1145/2629677
https://fuse.wikichip.org/news/2611/darpa-eri-hive-and-intel-puma-graph-processor/
https://fuse.wikichip.org/news/2611/darpa-eri-hive-and-intel-puma-graph-processor/
https://doi.org/10.1007/978-3-030-74224-9_2
https://doi.org/10.1007/978-3-030-74224-9_2
http://uob-hpc.github.io/BabelStream/
http://uob-hpc.github.io/BabelStream/

84 J. J. Tithi et al.

8. Doerfler, D., Daley, C., Applencourt, T.: SU3 Bench, a micro-benchmark for
exploring exascale era programming models, compilers and runtimes. In: 2020 Per-
formance, Portability, and Productivity in HPC Forum (2020)

9. Doerfler, D., et al.: Experiences porting the SU3 bench microbenchmark to the
Intel Arria 10 and Xilinx Alveo U280 FPGAs. In: International Workshop on
OpenCL, pp. 1–9 (2021)

10. Jeffers, J., Reinders, J., Sodani, A.: Quantum chromodynamics. In: Intel Xeon Phi
Processor High Performance Programming: Knights Landing Edition, 2nd edn.
Morgan Kaufmann Publishers Inc., San Francisco (2016)

11. Lameter, C.: NUMA (non-uniform memory access): an overview. ACM Queue
11(7) (2013). https://dl.acm.org/ft gateway.cfm?id=2513149&ftid=1388705&
dwn=1

12. McCalpin, J.D.: STREAM: Sustainable Memory Bandwidth in High Performance
Computers. https://www.cs.virginia.edu/stream/

13. McCreary, D.: Intel’s Incredible PIUMA Graph Analytics Hardware. Medium
(2020). https://dmccreary.medium.com/intels-incredible-piuma-graph-analytics-
hardware-a2e9c3daf8d8

14. MIMD Lattice Collaboration, Bernard, C., et al.: The MILC Code (2010)
15. Tithi, J.J., Petrini, F.: A new parallel algorithm for sinkhorn word-movers distance

and its performance on PIUMA and Xeon CPU. CoRR abs/2107.06433 (2021).
https://arxiv.org/abs/2107.06433

https://dl.acm.org/ft_gateway.cfm?id=2513149&ftid=1388705&dwn=1
https://dl.acm.org/ft_gateway.cfm?id=2513149&ftid=1388705&dwn=1
https://www.cs.virginia.edu/stream/
https://dmccreary.medium.com/intels-incredible-piuma-graph-analytics-hardware-a2e9c3daf8d8
https://dmccreary.medium.com/intels-incredible-piuma-graph-analytics-hardware-a2e9c3daf8d8
https://arxiv.org/abs/2107.06433

Machine Learning, AI, and Emerging
Technologies

“Hey CAI” - Conversational AI Enabled
User Interface for HPC Tools

Pouya Kousha(B), Arpan Jain, Ayyappa Kolli, Saisree Miriyala,
Prasanna Sainath, Hari Subramoni, Aamir Shafi, and Dhableswar K. Panda

The Ohio State University, Columbus, OH 43210, USA
{kousha.2,jain.575,kolli.38,miriyala.6,prasanna.11,shafi.16}@osu.edu,

{subramon,panda}@cse.ohio-state.edu
Abstract. HPC system users depend on profiling and analysis tools
to obtain insights into the performance of their applications and
tweak them. The complexity of modern HPC systems have necessitated
advances in the associated HPC tools making them equally complex with
various advanced features and complex user interfaces. While these inter-
faces are extensive and detailed, they require a steep learning curve even
for expert users making them harder to use for novice users. While users
are intuitively able to express what they are looking for in words or text
(e.g., show me the process transmitting maximum data), they find it
hard to quickly adapt to, navigate, and use the interface of advanced
HPC tools to obtain desired insights. In this paper, we explore the chal-
lenges associated with designing a conversational (speech/text) interface
for HPC tools. We use state-of-the-art AI models for speech and text
and adapt it for use in the HPC arena by retraining them on a new HPC
dataset we create. We demonstrate that our proposed model, retrained
with an HPC specific dataset, can deliver higher accuracy than the exist-
ing state-of-the-art pre-trained language models. We also create an inter-
face to convert speech/text data to commands for HPC tools and show
how users can utilize the proposed interface to gain insights quicker lead-
ing to better productivity.

To the best of our knowledge, this is the first effort aimed at designing
a conversational interface for HPC tools using state-of-the-art AI tech-
niques to enhance the productivity of novice and advanced users alike.

Keywords: Conversational AI · Performance tools · Speech
recognition · Natural language processing

1 Introduction and Motivation

Recently, High-Performance Computing (HPC) has been empowering advances
in Artificial Intelligence (AI) and Deep Learning (DL). Popular DL frameworks
such as TensorFlow [1] and PyTorch [26] are adopting high-performance mes-
saging libraries for scaling-out workloads on HPC platforms [29]. This trend has
resulted in AI practitioners and enthusiasts attempting to utilize HPC software

The original version of this chapter was revised: The name of the fourth author was
inserted. The correction to this chapter is available at
https://doi.org/10.1007/978-3-031-07312-0 19

c© Springer Nature Switzerland AG 2022, corrected publication 2023
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 87–108, 2022.
https://doi.org/10.1007/978-3-031-07312-0 5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_5

88 P. Kousha et al.

and hardware resources for their applications. It is important for developers of
HPC software subsystems to make this transition smoother by enhancing the
productivity of HPC tools and libraries for the AI community where the exper-
tise in traditional HPC technologies varies significantly.

One area where new and expert HPC users often struggle, alike, is under-
standing the performance of their parallel workloads. Analyzing performance
bottlenecks for HPC and AI workload is a complicated task. This is, however,
critical to improve performance and push boundaries of the state-of-the-art solu-
tions. In this context, the challenge for traditional HPC software, tools, and
frameworks is to provide intuitive and simple—yet efficient—interfaces to HPC
software and hardware resources. The goal here is to reduce the steep learning
curves of HPC tools and libraries.

There are various tools in HPC for monitoring, analyzing, and characterizing
the performance of applications. Profiling tools can be categorized into user-level
profiling and system-level profiling based on their usage and provided privileges.
For example TAU [22], HPCToolkit [18], and mpiP [2] provide user-level pro-
filing insights while Prometheus [4], TACC STATS [11], and LDMS [9] give us
system-level monitoring insights. While HPC tool interfaces are comprehensive
and extensive, they require a steep learning curve for learning terminologies and
visual interfaces making them very hard to use for novice users with little HPC
experience (depicted in Fig. 1). Consider the example of NVIDIA-Nsight [6] or
TAU tools that give very detailed insights. Although their interfaces are excel-
lent, navigating and using their interfaces by using keyboard and mouse still
requires a lot of learning which includes referring to documentation and going
over tutorials and instructional videos - all of which takes time and reduces
overall productivity of end users.

This steep learning curve reduces the productivity of expert users while deter-
ring new HPC users to even try these tools that are important for identifying
and fixing performance bottlenecks. On the other side, most HPC tool users are
intuitively able to express what they are looking for in words or text. Unfortu-
nately, there is no user interface available to HPC tools that can accept such
forms of user input.

There are alternative interfaces that the user can utilize. Surveys of end users
done by firms like [5] and [7] indicate that users are more likely to use a conver-
sational AI interface as opposed to using older keyboard/mouse style inputs. For
example in mobile devices graphical user interface (GUI) exists but, over time
the users are more interested to perform daily tasks through Alexa or Siri or sim-
ilar conversational interfaces. This shows that once the capability is introduced
the users are likely to benefit from it as part of future interface expansion as
conversational interface is more intuitive. Unfortunately, no interface exists that
allows end-users to interact with state-of-the-art HPC tools using speech/text.

1.1 Contributions

In this paper, we take up this challenge and attempt to minimize the learning
curve and complexities needed to use state-of-the-art performance profiling tools.

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 89

Our proposed solution, titled Conversational AI Interface (CAI) exploits
Automatic Speech Recognition (ASR) and Natural Language Understanding
(NLU)—using DL behind the scenes. CAI has a novel Conversational User Inter-
face (CUI) powered by AI/DL to provide relevant and contextual information
to end users. In CUI, while ASR models convert spoken language to text, NLU
classifies the text into an intent (the overall objective of the query like network
topology) and assigns slots (optional arguments to customize the given intent)
thereby allowing CAI to convert the conversational AI input to a format that
is understood by the profiling tool. Thus, CAI uses a combination of ASR and
NLU to realize a AI-based conversational interface for profiling tools that allows
users to interact with these tools using ❶ text and ❷ speech. Both of these novel
interfaces provide solutions to increase the productivity of users by reducing the
learning curve and hiding the complexity of advanced tool interfaces. Note that
the aim is not to replace existing GUI-based interfaces for HPC tools but to sup-
plement t hem and enhance the overall user experience. Further, to demonstrate
the feasibility of our approach, we take one HPC profiling tool, OSU INAM [8],
and create a conversational AI interface for it as a sample case study. Figure 1
depicts a high-level overview and motivation for CAI. As depicted in Fig. 1, we
believe such a solution will result in productivity benefits for novice and expert
users alike.

State of the Art Proposed

HPC Tool Users

Novice Expert

HPC Tool Users

Novice Expert

Text Speech
Proposed User Interac�on

Novice Tool User
Gains Insight

Experts Tool User
Gain Insight

Expected
Produc�vity
Benefits

for Novice Tool
Users

Values Visualiza�on Levels
Tool Naviga�on Interface

Scopes

Time to Learn Tool Interface
for Novice Tool User

Exis�ng User Interac�on
Keyboard Mouse

Touchpad

Values Visualiza�on Levels
Tool Naviga�on Interface

Scopes

Touch Screen Proposed Conversa�onal AI Conversion Layer

Ti
m
e
to

In
sig

ht
s

Time

Time to
Insights

Novice Tool User
Gains Insight

Experts Tool User
Gain Insight

Expected
Produc�vity Benefits
for Expert Tool Users

Fig. 1. Comparison HPC tool usage for state-of-the-art and CAI. Insight#1: On the
left side, there is a different overhead in getting performance insight for expert vs novice
users but the proposed designs would eliminate this overhead. Insight#2: By using text
or speech interface the response time for both users will be lower.

To summarize, the key contributions of this paper are as follows:

1. Proposed an AI-based conversational interface for HPC profiling tools that
allows users to interact using speech/text.

90 P. Kousha et al.

2. Designed and created the first speech and text datasets that contain HPC
specific terminologies for training ASR and NLU models to be used by the
HPC community.

3. Fine-tuned Speech2Text and Wav2Vec ASR models with the proposed HPC
dataset to convert a speech command to a text command and trained Joint-
Bert and StackPropagation NLU models to understand the context of text
command.

4. Improved error rate for Speech2Text DL model from 64% to 2.8% for HPC
dataset and 27% to 12% for HPC+TIMIT dataset.

5. Reported 93% accuracy for intent classification and 0.8773 score (F1 score)
for slot detection using JointBert DL model for NLU on HPC dataset.

6. Compared the performance of DL inference on client/end user systems (e.g.
laptops, desktops) that use HPC profiling tools. Also, implemented a central-
ized server for inferring on an in-house HPC cluster to reduce the latency for
slower client/end user systems.

7. Implemented a simple web-based interface for a sample profiling tool and
provided visibility into the intermediate results to better understand the data
flow and final output.

8. Deployed and tested CAI and the CAI enhanced tool OSU INAM on a state-
of-the-art production HPC system and evaluated the ability of CAI to cor-
rectly interpret speech/text input from multiple different volunteer users and
display the correct visualization output from the HPC tool.

The rest of the paper is organized as follows: Sect. 2 describes the various
challenges we address in this paper. Section 3 provides background on relevant
technologies. Section 4 presents our design and implementation for CAI to enable
AI-powered conversational user interface for a selected HPC tool. Section 5 eval-
uates our proposed framework via different performance metrics. Section 6 covers
running CAI on client side versus centralized server deployment, trade-offs for
speech model selection, explainable flow of CAI, and extending our designs to
other HPC tools. Section 7 discusses the related work in the community. Section 8
concludes this paper.

2 Challenges in Exploiting Conversational AI for HPC
Tools

We highlight the AI-specific and System-specific challenges associated with cre-
ating a conversational AI interface for HPC tools in this section.

AI-Challenge-1 (AI-#1): Creating Text and Speech Dataset with HPC
Terminologies/Abbreviations—Each scientific field including HPC has its
own terminologies and abbreviations—like Central Processing Unit (CPU), Host
Channel Adapter (HCA)—that are typically well-understood in the community.
We will refer to these as HPC jargon in the rest of the paper. Currently, available
language datasets naturally do not provide coverage of HPC jargon. To develop

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 91

NLU/ASR DL models, the first step is to create such textual and speech-based
datasets. To the best of our knowledge, these kinds of datasets do not exist today.

AI-Challenge-2 (AI-#2): Custom ASR Model for HPC—The perfor-
mance, in terms of accuracy, of existing off-the-shelf ASR models degrades when
the input contains HPC jargons. Figure 2 shows a real example of two sentences,
representing a typical interaction of a user with an HPC profiling tool, being
transformed to wrong texts by existing ASR models. Our evaluation of state-of-
the-art ASR models, presented later in Table 2, depict that the Word Error Rate
(WER) for such input data is 64.6 and 77.3. For natural languages, the WER is
2. This clearly motivates that need to retrain and fine-tune existing ASR models
for HPC-specific dataset.

Fig. 2. Real Output of Automatic Speech Recognition (ASR) by Speech2Text model
for two HPC phrases - By using original ASR model, HPC phrases on the left would
transform to wrong text (in red) on the right (Color figure online)

AI-Challenge-3 (AI-#3): Custom NLU Model for HPC—Existing off-
the-shelf NLU models do not have intents and slots required in HPC tools. In
fact, there is no existing model nor dataset for NLU for HPC. This motivates
the need to retrain off-the-shelf NLU models with hyper parameter tuning using
HPC dataset capable of performing well for this kind of input data.

System-Challenge-1 (Sys-#1): Defining Interface between Conversa-
tional AI and HPC Tools—A conversational AI interface to a tool requires
a layer that can translate and communicate the result of speech/text input from
the user to a format the tool understands. This involves labeling missing argu-
ments for specific user intents and proper mapping of these to the tool per-
formance insight features. User input can have multiple values with different
formats and the interface should correctly distinguish them. Considering that
HPC tools are written in variety of programming languages and have their own
framework, it is challenging to ascertain the communication interface, or stan-
dard, between the NLU module and the HPC profiling tool.

System-Challenge-2 (Sys-#2): Integration of Conversational AI to
HPC Tools—Another system specific challenge is the integration of NLU+ASR

92 P. Kousha et al.

models into existing profiling tools. The conversational interface component
needs to be modular in order to accommodate better NLU and ASR models
in future without a significant revamp. Also, we plan to evaluate the automation
of this integration process for an existing profiling tool. A challenge here is to
ascertain and minimize the changes needed to enable the end-to-end pipeline.

3 Background

3.1 Deep Neural Networks Training

Deep neural networks (DNNs) are multi-layer variants of traditional Artificial
Neural Networks (ANNs). Each layer in DNN is a collection of basic mathe-
matical functions like weighted summation, called neurons. The forward pass is
used to make predictions that are compared with actual output to compute the
error. Errors are used to adjust the weights in the backward pass. This process
continues till set iterations or till there is a desired loss/convergence. One pass
over the entire dataset is known as an epoch, each model requires dozens or even
hundreds of epochs to converge.

3.2 Deep Learning Frameworks

Deep learning frameworks are the packages for easy development of the Deep
Learning models. They support building and training models for both GPUs
and CPUs with built-in libraries for model definition. PyTorch is a well-known
open-source Deep Learning framework with define-by-run approach. It provides
libraries for defining layers in deep learning models, which developers can use
while building their model and it handles the remaining work in training and
inferencing of the model.

3.3 OSU INAM

OSU INAM [23] is a HPC network communication profiling, monitoring, and
analysis tool designed to provide a holistic online and scalable insight for the
understanding of communication traffic on HPC interconnect and GPU through
tight integration with MPI runtime, job scheduler, and MPI-based application
[19]. INAM runs on one node in the cluster and remotely gathers information
from HPC layers in scalable manner [8]. It provides insight and profiling for var-
ious HPC users like administrators, software developers, and domain scientists.
INAM is capable of gathering and storing performance counters at sub-second
granularity for very large clusters (≈2,500 nodes). It supports gathering met-
rics from the PBS and SLURM job schedulers. INAM has been deployed at
various HPC clusters and downloaded more than 4,400 times from the project
website [23].

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 93

4 Design and Implementation

In this Section, we elaborate our design and implementation to enable the con-
versational interface for HPC profiling tools. Our goal is to remain as modular as

Fig. 3. High level design and flow of trans-
forming HPC user query into performance
visualization

possible and integrate the proposed
conversational interface for an exist-
ing profiling tool (Reference deleted
to follow the double-blind policy).
Although we choose one HPC tool,
the design choices and implementa-
tions for NLU and ASR are portable
to other tools. However, the interface
and integration components require
some adjustment to port it to another
HPC profiling tool (refer to Sect. 6.4
for more info). Figure 3 shows the high
level perspective of our design compo-
nents that we describe in this section.

4.1 Terminologies and Performance Metrics

Terms and legends used in this paper are explained below.

– ASR: Automatic Speech Recognition
– NLU: Natural Language Understanding
– Intent: An intent is high-level goal that the user is trying to accomplish
– Slot: Optional arguments that customizes the intent.
– TIMIT Dataset: A publicly available speech dataset consisting of 8 major

American English dialects.
– HPC-ASR Dataset: An in-house ASR dataset created by us for HPC ter-

minologies.
– HPC-NLU Dataset: Slots and Intents dataset created by us for training

NLU models for HPC profiling tools.
– Speech Query: This is an audio that is passed to the ASR and NLU models

to generate the visualization. This is spoken by the user. It is one of the ways
in which the user can interact with CAI.

– Text Query: This is a text that is passed to the NLU model to generate the
visualization. This is typed by the user on the web UI. This is the other way
in which the user can interact with CAI.

– WER: Word Error Rate is the performance metric commonly used to evalu-
ate the ASR models. WER is a metric that works by comparing words in the
predicted text and the reference text.
The formula is as follow:
WER = (S+D+I)

N where “S” is the number of substitutions, “D” is the num-
ber of deletions, “I” is the number of insertions, “C” is the number of correct
words, and “N” is the number of words in the reference (N = S + D + C).

94 P. Kousha et al.

– F1 score: The performance metrics used to evaluate the NLU models for the
slot accuracy and classification accuracy for intents.

F1score =
2 ∗ (precision ∗ recall)

Precision + Recall
Accuracy =

number of correct predictions

total number of predictions

4.2 Generating HPC Dataset for Speech and Text

To address AI-#1 (Sect. 2), we create an HPC dataset for text and speech con-
taining HPC terminology. For HPC-dataset, we generated basic queries and
labeled their slots and intents. Then, we developed synonyms for HPC terminolo-
gies (like CPU, Core, Processor, Central-processor, host-processor for CPU) and
English accents are covered by TIMIT. Then we used the synonyms to generate
combinations of queries and labeled their slots and intents in human-supervised
manner. Both HPC-NLU and HPC-ASR output has been human supervised.
The dataset contains four intents, each corresponding to common profiling tool
usages: 1) node usage, 2) net usage, 3) process usage, and 4) statistics. The
semantic label for each utterance is a dictionary with the intent and a number
of slots. An example of a command and its corresponding semantics is shown
in Fig. 13 under the slot detected box. The scripts are produced with a few
variations of phrases in HPC terminology for each of the intents and recorded
from 12 different people with 6 dialects by reading the scripts. The recordings
are denoised and verified through human supervision for all of the HPC-ASR
database. We labeled the intents and slots for the text in the dataset to create
HPC-NLU dataset. We randomly divide the HPC-NLU and HPC-ASR datasets
into two subgroups each, one for training (70% of total) and another for testing
(30% of total).

4.3 Fine-Tuning Automatic Speech Recognition (ASR) for HPC

To address AI-#2 (Sect. 2) we need a DL model which can understand the audio
and transcribe it to a meaningful sentence. We selected and trained two off-
the-shelf models - Wav2Vec [12] and Speech2Text [30] where the vanilla (base)
models were pre-trained on LibriSpeech ASR corpus, a dataset consisting of
approximately 1,000 h of English speech for ASR. The architecture of the models
is shown in Fig. 4. We train the models with hyper-parameters tuning on a
combination of our in-house HPC-ASR dataset and TIMIT [15]. The TIMIT
dataset is used to accommodate different dialects of users and enhance the speech
utterance. For Speech2Text and Wav2Vec models, the texts are lower-cased,
included with numbers, and tokenized using SentencePiece [20]. By using the
HPC dataset create in Sect. 4.2, our models are able to handle complex HPC
phrases for understanding HPC user query. Figure 5 shows the same example
in Sect. 2 being transformed to the correct text after fine-tuning Speech2Text
ASR model on HPC+TIMIT dataset. We tested our models in 4 configurations
in Sect. 5.3 of the base vanilla model, the model trained on HPC dataset, the
model trained on TIMIT dataset, and the model trained on a combination of
HPC and TIMIT datasets.

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 95

Fig. 4. Architecture of models used for ASR in our proposed design.

Fig. 5. Real Output of customized Speech2Text model with the two HPC phrases in
Fig. 2 where the queries are transformed correctly

4.4 Designing a Natural Language Understanding (NLU) Scheme
for HPC Tools

To address AI-#3 (Sect. 2) we train a DL model which can understand and
extract the HPC-related information from the output of ASR as text or user’s
input. The important information to extract from the text is the intention of the
user, HPC keywords, and numeric or identity values in the text that have differ-
ent format. For example, the job number of “453” should not translate as “four
five three” or “five hundred and fifty three”. We trained two attention-based DL
models (StackPropagation and JointBert) on HPC-NLU dataset. Figure 6 shows
the architecture of StackPropogation and JointBert models for NLU. These mod-
els trained to perform intent detection and slot filling by taking a sentence as
a sequence of tokens and assign a label to each token. Based on the tokens the
models also detect the intention of the whole sentence. The output of NLU mod-
els is a list of Tokens with their assigned labels. This list enables us to extract the
required keywords and values, and intent helps in identifying the corresponding
visualization in the next modules.

96 P. Kousha et al.

Fig. 6. Models used in CAI to understand the text query and predict intents and slots
for HPC profiling tools.

The models use manually labeled HPC terminology to to label the tokens
along with the values in the text. We followed prefix format for slot labels, this
way phrases that are set of tokens in sequence are understood as representing
the same entity (e.g. MPI process counter is labeled as B-process I-process as
these two tokens in the sequence represent the same entity). Using the intent,
slots labeled, and corresponding values for slots, we identify the task or request
in the sentence as discussed in Sect. 4.5.

4.5 Interface Between Conversational AI and HPC Tools

As mentioned in Sys-#1 (Sect. 2), we need to design an interface to map the
processed user query to the corresponding HPC tool visualization. NLU han-
dles and labels the existing slots and values for the given input based on the
speech/text query. The output of NLU is an intent and a list of label-value
pair for each word where the label is slot or utterance as shown in Fig. 13. The
interface layer should process the intent and corresponding slots to generate a
specific tool-related request to the HPC tool. Figure 7 shows the processing steps
for transition from NLU outcome to visualization in green. Each box is a sepa-
rate modules, implemented as a stand-alone python module shown in Fig. 7. We
walk through the interface in the order of the boxes in Fig. 7.

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 97

Fig. 7. Detailed modules of interface and inter-
action for our design

Processing of Intent and
Slots: The first module han-
dles three tasks for processing
of intents and slots as follows:
First, the interface layer handles
missing slots and values as there
could be missing slots when the
user requests a profiling intent.
For example, if a user asks for
visualization of hardware coun-
ters but not specify the metric,
considering we have several hard-
ware counters then we assign uni-
cast counters by the default. Sec-
ond, this module handles incor-
rect slots and values for different
queries and guarantees that from the tools perspective all arguments for decision
making exist. Third, this module standardizes the format of different values like
time, date, and various HPC measurements. For example, the user can request
an insight for the last hour.

Visualization Mapper: This module decides on scope and level of visual-
ization including the chart types and which HPC tool visualization we should
select. The visualization level can be cluster, job, node, or process level. The
scope could be the time frame that the user is requesting. For making the map-
ping of request to the corresponding visualizations, the visualization mapper
needs input from available visualizations from the HPC profiling tool. Hence,
the visualization mapper transforms intents and slots into corresponding perfor-
mance visualizations. This encapsulates the time to train the user for navigating
through different pages and sections of the tool. The alternative design choice
would be to make the mapping at the tool level and pass the slots and intents to
the tool. Our decision to do the visualization mapping in the interface helps to
have fewer changes to the HPC profiler tool as fewer arguments would be passed
to the tool by handling the decision at this level.

URL Generation: By this step of CAI the corresponding visualization and
values are determined. The next step is to create a connection between the HPC
tool and our python-based components. HPC profiling tools and the interface
modules have different programming environments. The format and method to
communicate between HPC tools and DL components is critical as it imposes the
required changes to the HPC tool components to receive and process it. For our
paper, the HPC tool supports web access and there are controller in place to han-
dle different web pages and visualizations. Based on this, we decided to exploit
this option and generate a Uniform Resource Locator (URL) to interact with the
HPC tool. By passing the generated URL to the tool, the tool process the request
and direct it to the corresponding web page to show the visualization. All visual-
ization parameters required by the tool are merged into the URL as parameters

98 P. Kousha et al.

separated by “&”. For example, the partial URL for viewing cluster utilization
for historical view of job ID 1456 is “/network?view = historic&jobid = 1456”.
All the mentioned interface modules run as a python server listening to incoming
voice/text requests from HPC tools to respond with appropiate URL.

4.6 Integration of Conversational AI to HPC Tools

In this section, we present our solution to address Sys-#2 that aims for inte-
gration of CAI interface into an existing profiling tool. By having a URL as
input that gives the arguments and visualization selection for our tool, we aim
to integrate The CAI Interface into the HPC profiler tool. Figure 7 shows the
processing steps for transition from NLU outcome to visualization in blue.

The modifications to the tool are as follows: 1) The tool needs to record the
voice and send it to CAI Interface 2) the tool needs to receive the URL respond
and process it. We aim to support Web UI to allow users to benefit from CAI
on different platforms and assures accessibility of CAI. For the second task, the
flow is as follows: The HPC controller is a Spring Boot controller to redirect the
response URLs to corresponding web pages inside the tool. Then, the web UI
generator adjusts the values and scopes based on the user parameters extracted
from URL for web page initialization. The Data Access Object generates the
query to retrieve the profiling data from the time-series database and pass to
visualization to plots the visualizations. The Data Access Object and Visual-
ization have not been changed. The only changes are required for the first two
components of the HPC tool controller and Web UI Generator. In the case that
the target HPC tool supports web-UI the changes are minimal.

5 Performance Evaluation

5.1 Evaluation Platform

We conducted our experiments on a 58-node cluster with a combination of nodes
of 28 Intel Xeon Broadwell CPU running at 2.40 GHz with NVIDIA Volta V100-
32 GB or Skylake CPU running at 2.60 GHz with K80 nodes GPUs. Each node
is equipped with a 35 MB L3 cache. The cluster is equipped with MT4119
ConnectX-5 HCAs and Interconnected using SB7790 InfiniBand EDR 100 Gb/s
Switches, each having 36 ports.
MPI Library: MVAPICH2 v2.3 [3]
Deep Learning Framework: PyTorch [26] is used to define and train DNNs
for ASR and NLU.
Deep Neural Networks: Speech2Text [30], Wav2Vec [12], JointBert [13], and
StackPropagation [27].
Datasets: LibriSpeech [25] and TIMIT [15], HPC-ASR Dataset, HPC-NLU
Dataset

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 99

Table 1. Hardware details of evaluation platform used to conduct the experiments

Architecture Type Cores Speed (GHz) Label

Broadwell (Server) CPU 28 2.4 BDW

SkyLake (Server) CPU 28 2.6 SKX

K80 (Server) GPU 4992 (Dual socket) - K80

V100 (Server) GPU CUDA: 5120 Tensor: 640 - V100

Intel Core i5 8th gen (Surface Pro) CPU 4 1.8 Client-1

Intel Core i7 11th gen (HP Pavillion) CPU 4 2.8 Client-2

Intel Core i5 (MacBook Pro) CPU 4 1.4 Client-3

5.2 Experimental Methodology

In this section, we describe our evaluation methodology used to conduct exper-
iments. In Sect. 5.3, we first individually test the performance of pre-trained
vanilla ASR models (Speech2Text and Wav2Vec) on our HPC-ASR dataset and
the publicly available TIMIT dataset. Then, we fine-tune ASR models using
HPC-ASR and TIMIT training datasets to achieve better WER on the test set.
Then we train NLU models (JointBert and StackPropagation) from scratch using
our HPC-NLU dataset in Sect. 5.4 to predict the intents and slots for generating
appropriate visualizations for the given query. We used two types of validation
test, some new queries that did not exist in the training and the other queries
are synonym versions of training queries. In Sect. 5.5, we evaluate the perfor-
mance of both ASR and NLU models to get the end-to-end performance for a
speech query. Section 5.6 provides the overhead of deep learning inference for a
speech and text query for variable query length on client devices. To improve the
performance of deep learning inference for slow client devices, we transfer the
inference to a python server running on our in-house cluster with GPU nodes.
In Sect. 6.2, we compare the inference time and overall request time for client
and centralized python server running on RI2 cluster. In Sect. 6.3, we show the
explainability of our proposed conversational UI by providing a detailed flow of
information from speech to URL generation.

5.3 ASR Results

In these experiments, we evaluate the performance of pre-trained vanilla ASR
models (Speech2Text and Wav2Vec) on our HPC-ASR dataset and publicly
available TIMIT dataset. As discussed in Sect. 2, the existing ASR models are
not suitable for CAI conversational needs as models do not recognize HPC termi-
nologies. Our HPC-ASR dataset has HPC terminologies and the publicly avail-
able TIMIT dataset has different accents, which will make our proposed design
available to a wide range of speakers. Figure 8(a) and 8(b) show the fine-tuning
(training) of Speech2Text and Wav2vec on three combinations of two datasets
(training on HPC, TIMIT, and HPC+TIMIT datasets). Final test WER on
TIMIT and HPC test set is shown in Table 2.

100 P. Kousha et al.

Table 2. Evaluation of Automatic Speech Recognition (ASR) models using Word Error
Rate (WER) - Lower WER is better

Train Dataset Dataset used for Test

HPC TIMIT
Speech2Text Wav2Vec

HPC

WER

HPC+Timit

WER

HPC

WER

HPC+Timit

WER

✗ ✗ 64.613 27.53 67.92 27.16

✗ ✓ 71.15 33.18 77.38 35.43

✓ ✗ 2.85 21.8 3.24 65.6

✓ ✓ 2.92 12.18 3.09 14.24

The first row of the table constitutes the base vanilla models which are pub-
licly available trained versions of speech2text and Wav2Vec (trained on Lib-
riSpeech). The lower WER shows that training on our HPC dataset increases
the accuracy of the models to HPC terminologies and combining our training
with the TIMIT dataset gives us a better-generalized model when comparing the
WER of the same row of the table for different test datasets. As WER depends
on the dataset being used, comparing the numbers on the same column shows
that using the HPC dataset leads to better (lower) WER. TIMIT dataset has
several accents; therefore, we see higher WER for the TIMIT+HPC dataset,
but it makes the ASR model more general and applicable to a wide variety
of users. Speech2text performs slightly better than Wav2Vec and hence we use
speech2text as the default ASR model.

Fig. 8. Training loss for ASR models fine-tuned on different combinations of HPC ASR
and TIMIT datasets. We show that both models are trained till the improvement in
training loss is negligible.

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 101

5.4 NLU Results

Fig. 9. Training loss of JointBert and Stack-
Propogation models trained on HPC-NLU
dataset for NLU. We train models till the
improvement in training loss is negligible.

As discussed in Sects. 2 and 4.4,
no pre-trained NLU model is avail-
able for HPC profiling tools; there-
fore, we trained NLU models (Joint-
Bert and StackPropagation) from
scratch using our HPC-NLU dataset.
In this section, we evaluate the
accuracy of predicting intents and
filling slots for our trained NLU
models versus human-supervised and
labeled HPC-NLU dataset. The out-
put of the model is compared to
actual human-supervised HPC-NLU
output, that contains synonyms, to
calculate accuracy and F1-score.
Figure 9 shows the training of JointBert and StackPropagation on HPC-NLU
dataset. Table 3 shows the final test accuracy and F1 score for two StackProp-
agation and JointBert models on the HPC-NLU test set. These two models are
trained on the dataset to understand the text and detect the intent and slots in
it. We choose JointBert as our defualt model for NLU module as it gives better
accuracy for both intents and slots.

Table 3. Evaluation of natural language understanding deep learning models for label-
ing slots and intents - higher value is better

Model F1 Score for slots Intent Accuracy

StackPropagation 0.775 91.79%

JointBert 0.8773 93.36%

5.5 ASR + NLU Analysis

In this experiment, ASR and NLU modules are evaluated together as a pipeline
to see if a user provides a speech query how accurately can we detect and assign
slots and intents based on our models. Therefore, we use our trained NLU and
ASR models to calculate inference accuracy. Table 4 shows the results on end-
to-end inference. This shows the results of the chosen NLU model (JointBert)
based on the output of our trained ASR models. From Table 4 it can be seen
that the F1 score for slots is marginally better when Wav2Vec is used as the
ASR model and the intent accuracy is marginally better when speech2text is
used as the ASR model. In this work, we use Speech2Text with JointBert to
make inference for speech queries. In future, we will use ensemble methods to
get better accuracy by training multiple instances of the same model and taking
majority decision to allot intent and slots.

102 P. Kousha et al.

Table 4. Evaluation of ASR+NLU pipeline with JointBert as the NLU model. Higher
value is better

ASR Model F1 Score for slots Intent Accuracy

Speech2Text 0.8295 92.92%

Wav2Vec 0.8349 92.47%

5.6 End-to-End Overhead

Fig. 10. Inference latency evaluation of ASR+
NLU models on client side for 15 different queries
consisting of different words

In this experiment, we aim to
evaluate the overhead of our full
pipeline: from user speech/text
input in Sect. 5.5) to generat-
ing URL and passing it to the
tool controller and Web UI gen-
erator. Since different visualiza-
tions vary in rendering time
and it is tool-specific imple-
mentation, the numbers do not
include the timing for rendering
visualizations. Figure 10 show-
cases the time taken to process
speech and text queries of vary-
ing lengths on an client device.
In general, it can be seen that the time taken to process speech increases with
an increase in the number of words in the query. This is expected as the ASR
model takes an input of the varying size and hence bigger inputs take more time.
The time taken to process a text query is more or less constant as the input size
of the NLU model is fixed.

6 Discussion

6.1 Trade-Offs for Converting Speech to Intent

In our design, we use speech-to-text (ASR) followed by text-to-command (NLU)
for processing user inputs and mapping them to the tool intents. The alternative
approach for speech processing is to directly use speech-to-intent models. In this
section, we discuss the trade-offs between the two approaches. We selected ASR
+ NLU approach since using speech-to-intent model proposes some problems.
By having Speech-to-intent model working then any changes require the whole
model to train again. In summary, our selection is due to the following reasons.
First, speech-to-intent model requires creating a speech and intent dataset for
all the tools and HPC applications and map each one to the output intent and
slots which will affect modularity and portability of CAI as it limits replacing
ASR and NLU models with state-of-the-art models for maintenance. Second, a

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 103

different text-to-intent-model is required to be trained again for handling text
inputs. Third, the speech-to-intent models are still upcoming as we discuss in
related work section.

6.2 Comparison of Client-Side vs Server-Side Inference in CAI

In this section, we evaluate two choices of running CAI server on the client or
server. If the server is running on client then the inference will be processed on
the user computer to get the URL. In the other case, the inference will be done
by sending the user’s input to a centralized server.

(a) Speech Query (b) Text Query

Fig. 11. Overall inference time comparing client and server configurations. Note that
in Fig. 11(b) the transfer time for text is from client to server is and is thus hard to
see. However, it is included

Figure 11 shows the end-to-end inference time versus the number of words in
a query for both Speech Query and Text Query on Client devices and a Central
Server. The Speech query end-to-end inference time on client device includes
time taken by ASR to convert to transcript + time taken by NLU to extract
intents and slots. Similarly total inference time for Text query is the time taken
by NLU to extract intents and slots. End to end inference time for the server
has time taken for transfer from client to the server in addition to that of time
taken by client devices for both Text and Speech queries.

Table 5. Inference latency of CAI for user input processing comparing client versus
central server for 100 iterations - the client nodes have a “Client” label

Type of device Speech query (secs) Text query (secs)

Client-1 1.2914 0.1243

Client-2 0.7409 0.0994

Client-3 0.7949 0.1406

BDW 0.4361 0.0320

SKX 0.4279 0.0291

K-80 0.2825 0.0195

V-100 0.2791 0.0121

104 P. Kousha et al.

Table 5 shows the inference time for speech query and text query on 3 Client
devices and Central server nodes like BDW, SKX, K-80, and V-100. Speech query
inference time includes time taken by ASR to convert to transcript + time taken
by NLU to extract intents and slots+ time taken by python server to generate
URL and for Text query, it is the time taken by NLU to extract intents and
slots+ time taken by python server to generate URL. The inference time on the
server is less compared to that of on client devices. We can see that the shortest
inference time is obtained on V100 nodes of the server.

6.3 Insights for Getting Explainable Flow of CAI

Fig. 12. Screenshot of developed UI for CAI
showing various methods of getting the user
input in different forms and presenting the
option to get flow insight shown in Fig. 13

It is important to show the clear
transition between components from
input (speech or text) to the final
output (visualization). Having this
insight implemented and transparent
to the user makes our pipeline pro-
cess more explainable as results of
the solution can be understood by
humans, to show which decision was
made based on the input provided
to each design module and enables
understanding the decision making
process.

Figure 12 shows the web UI for
the proposed approach where the
user can choose to get insights into
the flow of CAI by selecting text or
voice query box with “insights” then
the user gets Fig. 8 that shows the
step by step flow with details of each
step along with the performance visualization page. We can see that in the figure
how CAI converts “show me the virtual memory usage for job 727384” as a voice
to outputs for NLU and ASR including the intent and slots and finally make
the visualization selection based on intermediate values (dark green). The final
URL can be tested in the “URL Test”.

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 105

Fig. 13. Screenshot of the flow of information in proposed approach. The numbers show
the latency of ASR and NLU modules and the final number in URL shows end-to-end
latency.

6.4 Integrating Other HPC Tools with CAI

In this Section, we describe the changes required to make CAI work with other
HPC tools. This can be used as take-away for integrating other HPC tools with
CAI. Note that either steps 4 or 5 need modifications to the tool as a tool can
be web-based (online) or stand-alone (offline) but not both.

1. If the tool uses tool-specific abbreviations and terminologies then the new
samples containing those words need to be added to HPC-ASR and HPC-
NLU dataset following step taken in Sect. 4.2 to add more intents and queries.
Otherwise, step 2 can be skipped.

2. Use updated dataset to fine-tune ASR Sect. 4.3 and NLU Sect. 4.4 models to
recognize new words in the queries.

3. Update interface layer of CAI to accommodate tool-specific variables and
visualization types to provide the visualization mapper (Sect. 4.5) knowledge
of different visualizations supported by the tool.

4. Web-based tool modifications: Tool needs to implement a unique URL for
each visualization chart so that CAI can customize the charts through URL
based on user’s input.

5. Offline tool modification: The tool needs to parse the URL to get the values
and pass them to the existing Data Access Object to fetch and visualize.

106 P. Kousha et al.

7 Related Work

Several studies [21,24,28] exist in literature that use an end-to-end based app-
roach to convert the voice directly to intent and slots, combining ASR and NLU
into one model however the trade-off is discussed in Sect. 6.1. Another approach
is to combine ASR and NLU models to understand the context of speech sample.
Several state-of-the-art ASR models [10,12,30] have been proposed in literature
that provide good performance for publicly available dataset and common words
found in day-to-day conversation. However, we need to fine-tune these ASR mod-
els to recognize technical terms found computer science and HPC. Similarly, NLU
models [13,17,27,31,32] are trained for publicly available datasets like Air Travel
Information System (ATIS) [16] and SNIPS [14]. Hence, to develop a system for
HPC profiling tool, we need to generate our own dataset and retrain models
from scratch to get better accuracy. To the best of our knowledge, this is the
first work that develops a conversational AI-based interface for HPC profiling
tools.

8 Conclusion and Future Work

In this paper, we explored the challenges associated with designing a conversa-
tional (speech/text) interface for HPC tools. We used state-of-the-art AI models
for speech and text and adapted it for use in the HPC arena by retraining them
on new HPC datasets we created. We demonstrated that our proposed model,
retrained with an HPC specific dataset, delivers higher accuracy than the exist-
ing state-of-the-art pre-trained language models. We also created an interface to
convert speech/text data to commands for HPC tools and show how users can
utilize the proposed interface to gain insights quicker leading to better produc-
tivity. We also deployed and tested CAI and the CAI enhanced OSU INAM on
a state-of-the-art production HPC system and evaluated the ability of CAI to
correctly interpret speech/text input from multiple different volunteer users and
display the correct visualization output from the HPC tool. To the best of our
knowledge, this is the first effort aimed at designing a conversational interface
using state-of-the-art AI techniques to enhance the productivity of novice and
advanced users of HPC tools alike.

As part of future work, we plan on releasing various components developed
as part of this paper including 1) the HPC-ASR and HPC-NLU datasets, 2)
the retrained ASR and NLU models, 3) CAI, and 4) the enhanced OSU INAM
profiling tool with support for CAI. We also plan to extend CAI to other popular
profiling tools.

Acknowledgement. This research is supported in part by NSF grants #1818253,
#1854828, #1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-
130002.

Hey CAI - Conversational AI Enabled User Interface for HPC Tools 107

References

1. Horovod: Distributed training framework for TensorFlow. https://github.com/
uber/horovod

2. MPIP: Lightweight, Scalable MPI Profiling. http://www.llnl.gov/CASC/mpip/
3. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE.

http://mvapich.cse.ohio-state.edu/features/. Accessed 13 March 2022
4. Prometheus exporter. https://github.com/prometheus/node exporter
5. The future of conversational AI (2021). https://www2.deloitte.com/us/

en/insights/focus/signals-for-strategists/the-future-of-conversational-ai.html.
Accessed 13 March 2022

6. Nvidia Nsight Developer Tools (2022). https://developer.nvidia.com/tools-
overview. Accessed 13 March 2022

7. The impact of voice assistants (2022). https://www.pwc.com/us/en/services/
consulting/library/consumer-intelligence-series/voice-assistants.html. Accessed 13
March 2022

8. Kousha, P., et al.: Accelerated real-time network monitoring and profiling at scale
using OSU INAM. In: Practice and Experience in Advanced Research Computing
(PEARC 2020) (2020)

9. Agelastos, A., et al.: The Lightweight Distributed Metric Service: A Scalable Infras-
tructure for Continuous Monitoring of Large Scale Computing Systems and Appli-
cations, pp. 154–165. SC 2014, IEEE Press, Piscataway, NJ, USA (2014). https://
doi.org/10.1109/SC.2014.18, http://dx.doi.org/10.1109/SC.2014.18

10. Amodei, D., et al.: Deep Speech 2: End-to-End Speech Recognition in English and
Mandarin. CoRR abs/1512.02595 (2015). http://arxiv.org/abs/1512.02595

11. Barth, B., Evans, T., McCalpin, J.: Tacc stats. https://www.tacc.utexas.edu/
research-development/tacc-projects/tacc-stats

12. Baevski, A., Zhou, H., Mohamed, A., Auli, M.: Wav2vec 2.0: a framework for self-
supervised learning of speech representations (2020). https://arxiv.org/abs/2006.
11477

13. Castellucci, G., Bellomaria, V., Favalli, A., Romagnoli, R.: Multi-lingual
intent detection and slot filling in a joint bert-based model. arXiv preprint
arXiv:1907.02884 (2019)

14. Coucke, A., et al.: Snips voice platform: an embedded spoken language understand-
ing system for private-by-design voice interfaces. CoRR abs/1805.10190 (2018).
http://arxiv.org/abs/1805.10190

15. Garofolo, J., et al.: TIMIT Acoustic-Phonetic Continuous Speech Corpus (1993).
11272.1/AB2/SWVENO, https://hdl.handle.net/11272.1/AB2/SWVENO

16. Hemphill, C.T., Godfrey, J.J., Doddington, G.R.: The ATIS spoken language sys-
tems pilot corpus, pp. 96–101. HLT 1990, Association for Computational Linguis-
tics, USA (1990). https://doi.org/10.3115/116580.116613

17. Hosseini-Asl, E., McCann, B., Wu, C., Yavuz, S., Socher, R.: A simple language
model for task-oriented dialogue. CoRR abs/2005.00796 (2020). https://arxiv.org/
abs/2005.00796

18. HPCToolkit: (2019). http://hpctoolkit.org/. Accessed 13 March 2022
19. Kousha, P., et al.: INAM: Cross-Stack Profiling and Analysis of Communication in

MPI-Based Applications. Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3437359.3465582

https://github.com/uber/horovod
https://github.com/uber/horovod
http://www.llnl.gov/CASC/mpip/
http://mvapich.cse.ohio-state.edu/features/
https://github.com/prometheus/node_exporter
https://www2.deloitte.com/us/en/insights/focus/signals-for-strategists/the-future-of-conversational-ai.html
https://www2.deloitte.com/us/en/insights/focus/signals-for-strategists/the-future-of-conversational-ai.html
https://developer.nvidia.com/tools-overview
https://developer.nvidia.com/tools-overview
https://www.pwc.com/us/en/services/consulting/library/consumer-intelligence-series/voice-assistants.html
https://www.pwc.com/us/en/services/consulting/library/consumer-intelligence-series/voice-assistants.html
https://doi.org/10.1109/SC.2014.18
https://doi.org/10.1109/SC.2014.18
http://dx.doi.org/10.1109/SC.2014.18
http://arxiv.org/abs/1512.02595
https://www.tacc.utexas.edu/research-development/tacc-projects/tacc-stats
https://www.tacc.utexas.edu/research-development/tacc-projects/tacc-stats
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
http://arxiv.org/abs/1907.02884
http://arxiv.org/abs/1805.10190
https://hdl.handle.net/11272.1/AB2/SWVENO
https://doi.org/10.3115/116580.116613
https://arxiv.org/abs/2005.00796
https://arxiv.org/abs/2005.00796
http://hpctoolkit.org/
https://doi.org/10.1145/3437359.3465582

108 P. Kousha et al.

20. Kudo, T., Richardson, J.: Sentencepiece: a simple and language independent
subword tokenizer and detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226 (2018)

21. Lugosch, L., Ravanelli, M., Ignoto, P., Tomar, V.S., Bengio, Y.: Speech model
pre-training for end-to-end spoken language understanding (2019)

22. Malony, A.D., Shende, S.: Performance technology for complex parallel and dis-
tributed systems. In: Kotsis, G., Kacsuk, P. (eds.) Proceedings of DAPSYS 2000,
pp. 37–46 (2000)

23. OSU InfiniBand Network Analysis and Monitoring Tool. http://mvapich.cse.ohio-
state.edu/tools/osu-inam/

24. Palogiannidi, E., Gkinis, I., Mastrapas, G., Mizera, P., Stafylakis, T.: End-to-
end architectures for ASR-free spoken language understanding. In: ICASSP 2020–
2020 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 7974–7978 (2020). https://doi.org/10.1109/ICASSP40776.2020.
9054314

25. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an ASR corpus
based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210. IEEE (2015)

26. Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning
Library (2019)

27. Qin, L., Che, W., Li, Y., Wen, H., Liu, T.: A stack-propagation framework with
token-level intent detection for spoken language understanding. arXiv preprint
arXiv:1909.02188 (2019)

28. Serdyuk, D., Wang, Y., Fuegen, C., Kumar, A., Liu, B., Bengio, Y.: Towards
end-to-end spoken language understanding. CoRR abs/1802.08395 (2018). http://
arxiv.org/abs/1802.08395

29. Sergeev, A., Balso, M.D.: Horovod: fast and easy distributed deep learning in
TensorFlow. CoRR abs/1802.05799 (2018). http://arxiv.org/abs/1802.05799

30. Wang, C., Tang, Y., Ma, X., Wu, A., Okhonko, D., Pino, J.: Fairseq s2t: fast
speech-to-text modeling with fairseq (2020). https://arxiv.org/abs/2010.05171

31. Wen, T., et al.: A network-based end-to-end trainable task-oriented dialogue sys-
tem. CoRR abs/1604.04562 (2016). http://arxiv.org/abs/1604.04562

32. Wu, D., Ding, L., Lu, F., Xie, J.: Slotrefine: a fast non-autoregressive model for
joint intent detection and slot filling. CoRR abs/2010.02693 (2020). https://arxiv.
org/abs/2010.02693

http://arxiv.org/abs/1808.06226
http://mvapich.cse.ohio-state.edu/tools/osu-inam/
http://mvapich.cse.ohio-state.edu/tools/osu-inam/
https://doi.org/10.1109/ICASSP40776.2020.9054314
https://doi.org/10.1109/ICASSP40776.2020.9054314
http://arxiv.org/abs/1909.02188
http://arxiv.org/abs/1802.08395
http://arxiv.org/abs/1802.08395
http://arxiv.org/abs/1802.05799
https://arxiv.org/abs/2010.05171
http://arxiv.org/abs/1604.04562
https://arxiv.org/abs/2010.02693
https://arxiv.org/abs/2010.02693

Hy-Fi: Hybrid Five-Dimensional Parallel
DNN Training on High-Performance

GPU Clusters

Arpan Jain(B), Aamir Shafi, Quentin Anthony, Pouya Kousha,
Hari Subramoni, and Dhableswar K. Panda

The Ohio State University, Columbus, OH 43210, USA
{jain.575,shafi.16,anthony.301,kousha.2}@osu.edu,

{subramon,panda}@cse.ohio-state.edu

Abstract. Recent advances in High Performance Computing (HPC)
enable Deep Learning (DL) models to achieve state-of-the-art perfor-
mance by exploiting multiple processors. Data parallelism is a strategy
that replicates the DL model on each processor, which is impossible
for models like AmoebaNet on NVIDIA GPUs. Layer parallelism avoids
this limitation by placing one or more layers on each GPU, but still
cannot train models like AmoebaNet on high-resolution images. We pro-
pose Hy-Fi: Hybrid Five-Dimensional Parallelism; a system that takes
advantage of five parallelism dimensions—data, model, spatial, pipeline,
and bi-directional parallelism—which enables efficient distributed train-
ing of out-of-core models and layers. Hy-Fi also proposes communication-
level optimizations to integrate these dimensions. We report up to 2.67×
and 1.68× speedups over layer and pipeline parallelism, respectively. We
demonstrate Hy-Fi on up to 2, 048 GPUs on AmoebaNet and ResNet
models. Further, we use Hy-Fi to enable DNN training on high-resolution
images, including 8,192× 8,192 and 16,384× 16,384.

Keywords: DNN · Model-parallelism · Distributed training · Hybrid
parallelism · MPI · GPU

1 Introduction

In the last decade, Deep Learning (DL) has emerged as a viable approach to prac-
tice Artificial Intelligence (AI) in emerging disciplines including object recogni-
tion/detection, speech recognition, language translation, and emotion recogni-
tion. A typical DL model is capable of “learning” non-linear mathematical rela-
tionships between the input data and the corresponding output during train-
ing on sufficiently large datasets—this knowledge is later used to make pre-
dictions with new and unseen data. One of the main driving forces behind
the success of complex and large-scale Deep Neural Networks (DNNs) is the
availability of compute resources offered by modern High Performance Comput-
ing (HPC) hardware. Current state-of-the-art models like AmoebaNet [22] and
c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 109–130, 2022.
https://doi.org/10.1007/978-3-031-07312-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_6

110 A. Jain et al.

GPT3 have become complex and computationally expensive—due to a large
number of parameters—and cannot be trained on a single processing element
(for e.g. a GPU). This fundamental limitation on training state-of-the-art DNNs
is resolved by exploiting parallel and distributed training on HPC hardware.
One popular and easy-to-use parallelization strategy for distributed DNN train-
ing is data parallelism [1]. This technique accelerates training by creating model
replicas on multiple processing elements—including GPUs—and performs DNN
training by dividing the input data into multiple batches. Each processing ele-
ment is assigned a unique set of data, called a batch, which is used to perform
parallel training steps, this assignment is followed by a synchronization step
using an allreduce operation. This step incurs communication overhead in order
to accumulate the gradients across all processing elements and ensure weights
are synchronized after each training step.

While data parallelism offers near-linear scaling [3,17] for distributed DNN
training, it incurs significant memory overhead since the entire model is repli-
cated on each GPU. It therefore requires the entire model to fit inside the mem-
ory of a single GPU, which is not always possible especially for emerging large
models. Even at the finest granularity of a training sample, most of the current
state-of-the-art models like AmoebaNet [22] and GPT3 models cannot fit inside
the memory of a single GPU; these models are hence known as out-of-core DNNs
or models. The memory requirement of a DNN depends on its size (number of
parameters) and the size of the input image. For this reason, a DL model that
is trainable on a single GPU for a small-sized images may not be trainable on a
single GPU for high-resolution (large-sized) images. This means that due to the
inability to store a DL model replica on a single GPU, the data parallelism app-
roach is only limited to the training of modestly-sized DNNs on low-resolution
images like Cifar-100 (32 × 32 pixels) and ImageNet (244 × 244 pixels).

However, in modern scientific applications, image sizes can range from 512 ×
512 pixels to 2,048× 2,048 pixels [6]. For example, the 2D mesh-tangling problem
represents hydraulic simulation and can be formulated as semantic image segmen-
tation. The input data in mesh-tangling can range from 1,024× 1,024 pixels to
2,048× 2,048 pixels. In digital pathology, the advent of high-resolution scanners
has led to the adoption of digital whole slide imaging (WSI) for diagnostic pur-
poses. A typical application of WSI is measuring the degree of a tumor grade for
diseases such as cancer. The detection problem [19] can be formulated as a classi-
fication task in which the input is a WSI and output is the presence or absence of
cancer. Normally, WSIs are very high-resolution images.

To address this fundamental limitation of data parallelism, layer-parallelism—
also known as inter-layer model-parallelism—is proposed in the literature [5] to
enable training of the out-of-core DNNs. Here, the DNN is divided into smaller
partitions, each consisting of one or more layers, that can fit inside a single GPU’s
memory.This approach—referred to as basicmodel-parallelism—has inherent scal-
ing issues [10,11]. The reason is as follows: A DNN essentially is a directed acyclic
graph where each node corresponds to a layer. As part of the forward pass, each
layer takes inputs/activations from the previous layer and gives output to the
next layer making this an inherently sequential process. This data dependency

Hy-Fi 111

serializes parallel processing of layers in a DNN since only one GPU does the
computation at any given time. In addition to basic model-parallelism, pipeline-
parallelism [12] and sub-graph parallelism [13] are also instances of the inter-
layer model-parallelism approach. A variant of model-parallelism is to exploit
parallelism within layers. This approach is sometimes called intra-layer model-
parallelism. Here, a single layer is divided across multiple GPUs. An instance
of this technique is spatial parallelism, which partitions the images across multi-
ple GPUs thereby distributing the layer. Hybrid parallelism combines data- and
model-parallelism but also suffers from data dependency limitations.

1.1 Motivation

Several approaches have been proposed in the literature to address some of the
limitations of model parallelism. However, most studies are performed for low-
resolution images that exhibit different characteristics [12]. Compared to low
resolution images, high-resolution images results in higher activation memory
and larger tensors, which results in a larger communication overhead (Fig. 1).

Fig. 1. The emerging need for integrated spatial and
model parallelism solution as suggested in [14]

These approaches inc-
lude pipeline, spatial, and
bi-directional parallelism.
Pipeline parallelism such
as the schemes proposed
in [10,12,21] exploits par-
allelism within training
samples and accelerates
the performance of model
parallelism. However, pip-
eline parallelism is only
possible when the model
is trainable with batch
size >1, which is typically
impossible with high-
resolution images due to memory constraints. There have been efforts to exploit
pipeline parallelism for large-sized images [14] but they still require a single layer
to fit inside the GPU—such layers are called out-of-core layers. Spatial paral-
lelism, on the other hand, has performance issues due to high communication
overhead and the inability to accelerate low-resolution images that are common
in the latter half of DNNs. Bi-directional parallelism exploits the memory and
compute available between the backward and forward passes of the first and
second training iterations. It trains the model from both directions in order to
use these potentially-wasted resources [14]. Therefore, existing solutions [12,14]
limit the ability to train DNNs on very high-resolution images, which affects the
DNN’s accuracy and prohibits the training of complex DNNs.

To summarize, spatial parallelism distributes images across multiple GPUs,
layer parallelism distributes the model, pipeline parallelism parallelizes the

112 A. Jain et al.

samples in a batch, and bi-directional parallelism employs memory-aware solu-
tions to enhance the performance.

This paper focuses on efficiently utilizing distributed training for very high-
resolution images that appear in real-world applications. These have unique
requirements from the underlying DL training framework. Digital pathology,
for example, uses a tiling mechanism to train Tall Cell Variant (TCV) clas-
sifiers on very high-resolution images, limiting the structural information and
local/global context. Based on this, we seek to solve the following application-
level requirements in this paper: 1) Enabling training on very high-resolution
images, 2) Ability to train the model with any batch size on the same number of
resources, and 3) provide speedup and support new emerging applications like
TCV classifier. To address these requirements for training large-sized images,
several design and system-level challenges need to be solved:

– How to efficiently integrate spatial, layer, pipeline, bi-directional, and data
parallelism?

– How to reduce the communication overhead in an integrated distributed DNN
training system?

– Can different distribution layouts improve the performance for spatial paral-
lelism and reduce the communication overhead?

– How to enable the training of out-of-core models and out-of-core layers?
– Can the integration of spatial, layer, pipeline, data, and bi-directional paral-

lelism achieve scalability similar to data parallelism?

Table 1. Features offered by Hy-Fi compared to existing frameworks

Studies Features

Out-of-
core
model
training
(max
batch size
= 1)

Out-of-core
layer training

Out-of-core
batch size

Memory
-aware
solution

Pipelining
support

Bidirectional
training

Optimized
communication
for bi-directional
training

Hybrid
parallelism

Multi-node
support

Speedup
for
out-of-core
BS
training

Speedup
for CNN

Basic model
parallelism
(layer
parallelism)

✔ ✕ ✕ ✕ ✕ ✕ N/A ✕ ✔ ✕ ✔

Pipeline
parallelism
(Gpipe [12])

✕ ✕ ✕ ✕ ✔ ✕ N/A ✔ ✔ ✕ ✔

GEMS [14] ✔ ✕ ✔ ✔ ✔ ✔ ✕ ✔ ✔ ✔ ✔

TorchGipe [16] ✔ ✕ ✔ ✔ ✔ ✕ N/A ✕ ✕ ✔ ✔

PipeDream [10] ✔ ✕ ✕ ✕ ✔ ✕ N/A ✔ ✔ ✕ ✔

LBANN (spa-
tial [6]/domain
parallelism [8])

✔ ✔ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✔

FlexFlow [15] ✔ ✔ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✔

Mesh-
TensorFlow [23]

✔ ✔ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✔

Megatron [24] ✔ ✕ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✕

SUPER [13] ✕ ✕ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✕

Proposed
Hy-Fi ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Hy-Fi 113

1.2 Contributions

In this section, we highlight the major contributions of this study. To the best
of our knowledge, no state-of-the-art distributed DNN training system supports
out-of-core models, layers, and batch size with memory-efficient designs. Table 1
compares related data, model, pipeline, and spatial parallelism studies against
the proposed Hy-Fi system. Section 6 provides an in-depth comparison of related
studies. Major contributions of this study are as follows:

– We propose, design, and evaluate Hy-Fi: an integrated memory-efficient sys-
tem that uses five dimensions of parallelism and provides scalable training.

– We overcome the limitations of individual parallelization techniques—spatial,
layer, and bi-directional parallelism—by proposing communication optimiza-
tions and efficiently integrating all five dimensions of parallelism (spatial,
layer, pipeline, bi-directional, and data) to use in tandem.

– Hy-Fi offers up to 2.02× speedup over pure layer parallelism and 1.44×
speedup over pure pipeline parallelism for the spatial parallelism dimen-
sion. Using memory-efficient bi-directional parallelism, we increase speedup
to 2.67× over pure layer parallelism and 1.68× over pure pipeline parallelism.

– We show near-linear scaling (94.5%) for distributed DNN training using Hy-Fi
on 2,048 Volta V100 GPUs.

– We enable the training of next-generation deep learning models on very high-
resolution images (8,192× 8,192 and 16,384× 16,384 pixels) and show up to
1.47× speedup over spatial parallelism.

2 Challenges in Exploiting Different Parallelism
Dimensions in Distributed DNN Training

We highlight the challenges in implementing a multi-dimensional DNN train-
ing framework like Hy-Fi which has several communication optimizations and
enables training on very high-resolution images.

Challenge-1: Halo Exchange in PyTorch
Spatial parallelism requires the halo exchange to implement distributed convo-
lution and pooling layers. A halo exchange involves communication in different
directions and differs in message size (Fig. 3). The message size and communi-
cation pattern depends on several parameters such as the kernel size, spatial
parallelism size, partition position in the distributed image, and the number of
neighbors, which exacerbates the challenge of implementing a halo exchange. A
halo exchange can be implemented using non-blocking point-to-point communi-
cation provided by CUDA-aware MPI libraries, but they need to be synchronized
with asynchronous execution in PyTorch [20] to ensure data validation.

Challenge-2: Exploitation of Different Parallelism Dimension
The proposed framework must be designed in a modular and user-transparent
fashion to exploit different parallelism dimensions in tandem. Further, the sys-
tem should be robust enough to take advantage of all parallelism dimensions

114 A. Jain et al.

whenever possible. Spatial, layer, pipeline, bi-directional, and hybrid data par-
allelism offer compute parallelization in different dimensions and a potential to
accelerate training of CNN. Hence, every parallelization dimension should be
efficiently implemented and integrated with others in order to fully exploit the
benefits of all the strategies in tandem.

Challenge-3: Scaling Integrated Hybrid Training Solutions
Training CNNs on high-resolution images is a compute-intensive task and
requires a large numbers of GPUs to make it feasible. Hence, the proposed
solution must be scalable to thousands of GPUs, which requires hybrid data
parallelism. Integrating data parallelism into a multi-dimension parallelization
framework like Hy-Fi is a non-trivial task since each parallelization dimen-
sion combines data parallelism differently. For example, spatial parallelism uses
allreduce operations to synchronize weights across the distributed input, layer
parallelism distributes the model and needs sub-communicators to implement
hybrid parallelism, and bi-directional parallelism introduces extra replicas for
data parallelism. Hence, designing a scalable solution exploiting multiple paral-
lelism dimensions is a challenging task.

3 Limitations in Existing Approaches for Model
Parallelism

We provide an overview of various existing model-parallelism approaches and
discuss their limitations.

3.1 Layer Parallelism

The simplest model-parallelism scheme consists of placing DNN partitions (con-
sisting of one or more layers) on separate GPUs before applying distributed
forward and backward passes. These distributed forward and backward passes
are implemented with simple Send and Recv operations. Layer parallelism has
two primary drawbacks: 1) Under-utilization of resources and 2) A complex
implementation compared to data parallelism. Given that only a single GPU
can operate at once, layer parallelism suffers from poor scalability. Since DL
frameworks do not provide distributed back-propagation implementations, layer
parallelism is often challenging to implement. Manually partitioning a DNN is
challenging in itself because not all layer connections preserve a simple ordering
(e.g. skip or residual connections).

3.2 Pipeline Parallelism

Pipelining divides the input batch into smaller batches called micro-batches, the
number of which we call parts. The goal of pipeline parallelism is to reduce under-
utilization by overlapping micro-batches, which allows multiple GPUs to proceed
with compute within the forward and backward passes. Pipeline parallelism has

Hy-Fi 115

two primary drawbacks; 1) batch size limits the length of the pipeline, and 2)
performance is poor compared to data or hybrid Parallelism. Pipelining also
wastes GPU resources when the pipeline is not full. The only case with a full
pipeline occurs when the number of parts equals the number of DNN splits and
the batch size equals the pipeline length. These issues worsen at scale due to
the pipelining bubble [12]. Further, it is not possible to use pipelining when the
largest batch size is 1. Due to the above limitations, there is a need to further
optimize both layer and pipeline parallelism.

3.3 Memory-Aware Synchronized Training (Bi-directional
Parallelism)

Both basic and pipelining model parallelism suffer from under-utilization of
resources. After completing the forward and backward passes for a given model
partition, each GPU has free memory and compute resources available, which
can be utilized to perform the forward and backward passes of a new model.
GEMS-MAST [14] uses this free memory and compute resources by training a
replica of the same DNN in an inverted manner. This design is called GEMS-
Master. We call this bi-directional parallelism in the rest of the paper.

4 Proposed Hybrid Five-Dimensional Parallelism System

4.1 Spatial Parallelism

Fig. 2. High-level overview of proposed Hybrid Five-Dimensional Parallelism (Hy-Fi)
where L# represents layer number. It shows the integration of different parallelism
dimensions in Hy-Fi.

116 A. Jain et al.

Fig. 3. Halo exchange in spatial paral-
lelism. The input image is partitioned into
four regions, and each region is given to the
different processes. To calculate the convo-
lution operation at X location, the value of
nearby pixels is required.

In spatial parallelism, the convolu-
tion layer is replicated across multi-
ple GPUs, and image parts are parti-
tioned across replicas. Specifically, the
level of granularity in layer parallelism
is a layer, while in spatial parallelism
it is neurons. Convolution and Pool-
ing layers can be distributed across
multiple GPUs to work on the dif-
ferent regions of the image. Hence,
unlike layer parallelism, this approach
enables simultaneous computation on
multiple GPUs while facilitating the
training of the out-of-core convolution
layer. There are two significant issues
with the spatial parallelism approach; 1) Extra Communication is necessary and
2) Complex implementation. Spatial parallelism requires a halo exchange (shown
in Fig. 3) at every convolution and pooling layer to compute the result for the
pixels present on the boundary of image parts [6]. Parameters like stride, fil-
ter size, and padding affect the size of the halo exchange, which increases any
spatial parallelism implementation’s complexity compared to layer parallelism.
In the backward pass, allreduce is required to synchronize the weights of the
convolution layer for every process performing spatial parallelism (Fig. 2).

To tackle communication overhead in spatial parallelism, we propose two
optimization strategies.

Layout Optimization. Distribution layout plays an important role in the num-
ber of send/recv operations in a halo exchange. There are many ways to partition
an image among processes. A common approach is to partition the image into
square patches as shown in Fig. 4(a). This approach is known as a square lay-
out. We investigate vertical and horizontal layouts for spatial parallelism. In a
vertical layout, the image is partitioned along the width dimension. Similarly,
in a horizontal layout, the image is partitioned along the height dimension. In a

Fig. 4. Image distribution strategies

Hy-Fi 117

square layout, the maximum number of send/recv operations is 8. For example,
process P6 will send/recv data from P1, P2, P3, P5, P7, P9, P10, and P11.
However in horizontal and vertical layouts, the maximum number of send/recv
operations is limited to 2 (can be inferred from Fig. 4(b) and 4(c)). Peculiar pro-
cess placement in vertical and horizontal layout helps in reducing the inter-node
communication by placing adjacent processes on the same node, which is not
possible in a square layout. These factors help in reducing the communication.

Halo-D2: Reduced Communication Operations. A halo exchange is requi-
red at each layer in spatial parallelism in order to apply convolution/pooling
operation in basic spatial parallelism. The main objective of the convolution
operation is to produce an output of the same width and height. Normally in
CNNs, several convolution operations of kernel size 3 are stacked together to
efficiently implement a large kernel size [25]. This approach leads to several halo
exchanges since it’s required at every layer. We reduced the number of blocking
communication operations by exchanging more pixels around the border. Spatial
parallelism avoids the repeated computation on the border by exchanging data at
every layer. However, in our evaluation, we found that the convolution operation
takes the same time for images with a few more pixels due to the massively
parallel computation provided by GPUs. For example, the computation time for
a 256× 256 image was the same as a 260× 260 image. Therefore, by exchanging
more data at one layer, we can avoid more halo exchanges in subsequent layers.
Figure 5 shows an example of spatial parallelism with Halo-D2.

Fig. 5. Motivation for Halo-D2. Instead of exchanging only required data at every layer,
additional data is exchanged to eliminate the need of exchanging data for subsequent
layers.

118 A. Jain et al.

Fig. 6. Proposed spatial parallelism + layer parallelism design. CNN is sliced into four
partitions. Spatial parallelism is applied to the 1st partition, and layer parallelism is
used for the rest of the partitions.

4.2 Spatial Parallelism + Layer Parallelism

Due to the increased communication overhead, spatial parallelism is more suit-
able for large images, which makes this approach inappropriate for the latter
half of CNNs where the image input size is usually few pixels. Layer parallelism
can be used to compute this latter half. Figure 6 shows a combination of spatial
parallelism and layer parallelism for a CNN partitioned into four partitions on
layer granularity. Spatial parallelism is applied to the first model partition, and
layer parallelism is applied to the other three model partitions.

Fig. 7. Spatial and layer parallelism combined with pipeline parallelism. The combina-
tion of spatial and layer parallelism fail to exploit the parallelism within batches that
can be used by pipeline parallelism to utilize more than one GPU at any given time.

Hy-Fi 119

4.3 Pipeline Parallelism

Spatial and Layer parallelism exploits parallelism within a layer and model. How-
ever, they fail to exploit parallelism within batches. Figure 7 shows the compu-
tational view of spatial and layer parallelism for the model shown in Fig. 6. As
shown in the figure, compute is available between forward and backward pass.
However, previous strategies fail to exploit this compute when the batch size is
greater than 1. We use pipeline parallelism to exploit a third dimension of paral-
lelism using micro-batches. Figure 7 shows the integration of pipeline parallelism
with Spatial and Layer parallelism to exploit parallelism within batches, which
improves the overall performance.

Fig. 8. Bi-directional with spatial and layer parallelism. A naive integration limits the
performance because of blocking allreduce operations at the end. The available compute
can be used to eliminate allreduce operation.

4.4 Spatial + Bidirectional Parallelism

To further improve the performance of spatial, layer, and pipeline parallelism,
we explore a fourth dimension of parallelism i.e. the direction of forward and
backward pass. By using bi-directional parallelism, we are able to overlap com-
putation with different batches and therefore improve performance. This dimen-
sion is suitable when a DL researcher wants to train their model with larger
batch size than the maximum feasible batch size (the maximum batch size is
limited by GPU memory). Bi-directional parallelism increases the performance
when the batch size is not possible under traditional parallelization strategies.
In this section, we integrate first three dimension of parallelism with a fourth
dimension (Bidirectional parallelism). Figure 8 shows the need for communica-
tion optimizations in the integration of spatial, layer, and pipeline parallelism
with bi-directional parallelism.

Communication Optimization for Integration with Spatial Parallelism.
To remove the necessary allreduce operation at the end, we use send/recv oper-
ations to communicate parameters and gradients of replica1 during the dotted

120 A. Jain et al.

bubble in Fig. 8. We divide our design into two steps: 1) Parameters exchange
and 2) Gradient exchange.

Parameters Exchange: In this step, we assume that the first model replica
has the latest DL model parameters and the second model replica does not have
the latest parameters since we are not using an allreduce operation at the end
to synchronize the training. Therefore, we will send the latest parameters from
model replica 1 to model replica 2 during the first bubble.

Gradients Exchange: In an allreduce operation, gradients are averaged across
all model replicas to synchronize the training and make sure parameters remain
the same for all replicas. Since we are updating only the last replica, we need the
gradients of the previous replica in order to synchronize the training and update
replica 2 to the latest parameters. The second bubble in Fig. 8 can be used to
exchange these gradients from replica 1 to replica 2.

After the first iteration of a parameter and gradient exchange, model replica
2 becomes the replica with the latest parameters. Therefore, the next forward
and backward iteration will complete on model replica 2 first. Figure 9 shows
two iterations of our proposed communication optimization.

Fig. 9. Two iterations of communication optimized Hy-Fi master (spatial, layer,
pipeline, and bi-directional)

4.5 Hybrid Data Parallelism

To scale proposed designs to a large number of GPUs, we exploit a fifth dimension
of parallelism: data parallelism. We create clusters of GPUs, where each cluster
implements the first four dimensions of parallelism in Hy-Fi and synchronizes
each replica’s parameters via allreduce operations. The integration with data
parallelism allows our proposed design to scale to a large number of GPUs and
provides better scaling efficiency.

Implementation Details: Our implementation of Hy-Fi is inspired by the
pipeline parallelism fundamentals and APIs presented in the HyParFlow sys-
tem [2]. For communication, we have used PyTorch’s distributed module and
created a wrapper communication class to create required communicators in
proposed hybrid data parallelism (Sect. 4.5) and spatial parallelism (Sect. 4.1).

Hy-Fi 121

A model generator class is created to divide the model into partitions. Trainer
class is created for every parallelism dimension to implement distributed forward
and backward pass. For spatial parallelism, a wrapper class around Conv2D class
is implemented to realize proposed designs for Halo communication.

5 Performance Evaluation

5.1 Evaluation Platform

All the experiments were conducted on LLNL/Lassen, which is an OpenPOWER
system equipped with POWER9 processors and 4 NVIDIA Volta V100 GPUs.
Each node of the cluster is a dual-socket machine, and each socket is equipped
with 22-core IBM POWER9 processors and 2 NVIDIA Volta V100 GPUs with
16 GB HBM2. NVLink is used to connect GPU-GPU and GPU-Processor.

Softwares: Pytorch v1.7 and MVAPICH2-GDR 2.3.5.

Deep Neural Networks: We defined ResNet variants from Keras exam-
ples/applications in PyTorch and used the AmoebaNet model from TorchG-
pipe [16].

5.2 Evaluation Setup and Performance Metrics

We use images per sec as the main performance metric in this paper. Other
terms and legends used in this performance evaluation are explained below.

– Images per sec: Number of images processed in training per sec.
– BS: Batch Size
– LP: Layer Parallelism (or Model-Parallelism Basic)
– Pipeline: Pipeline Parallelism.
– SP and SP-Opt: Hy-Fi’s Spatial Parallelism and its optimized version (Lay-

out Optimization and Halo-D2).
– SP-#: Hy-Fi’s Spatial Parallelism with # Layout (Sq: Square, Hor: Horizon-

tal, and Ver: Vertical)
– SP-#-D2: Hy-Fi’s Spatial Parallelism with # Layout and Halo-D2 optimiza-

tion.
– Master-#: Hy-Fi with four parallelism dimensions (Spatial, Layer, Pipeline,

and Bi-Directional). # is the number of replications in Bi-Directional’s Master
design.

– Master-#-Opt: Master-# with communication optimization.

5.3 Evaluation Methodology

In this section, we describe the evaluation methodology used to conduct experi-
ments and show Hy-Fi’s benefits. Broadly, our experiments can be divided into
four categories; 1) Performance analysis of different dimensions of parallelism in

122 A. Jain et al.

Hy-Fi and their optimizations (Sect. 5.4 and 5.5) 2) Scaling Hy-Fi on a large num-
ber of GPUs (Sect. 5.6), 3) Comparison against existing frameworks (Sect. 5.7),
and 4) Enabling training of very high-resolution images and speedup using Hy-
Fi (Sect. 5.8). We use two variants of AmoebaNet and ResNet-218 v2 model.
AmoebaNet-f214 and AmoebaNet-f416 have 18 cells and the number of initial
filters is 214 and 416, respectively. AmoebaNet model variants are evaluated
on 2,048× 2,048 images. AmoebaNet-f214 is used since it can be trained on 8
GPUs with BS 2, making pipeline parallelism possible. AmoebatNet-f416 on
2,048× 2,048 and ResNet-218-v2 on 1,024× 1,024 can only be trained with BS
= 1 on 8 GPUs, which makes pipeline parallelism impossible.

5.4 Performance Benefits of Spatial Parallelism

We start by demonstrating the benefits of Layout and Halo-D2 optimizations for
Hy-Fi spatial parallelism and compare Hy-Fi’s spatial parallelism with layer par-
allelism and pipeline-parallelism in the literature. Figure 10(a) shows the effect of
number of fused layers in Halo-D2 (Sect. 4.1). The number of fused layers deter-
mines both the size of a halo exchange and how many layers can be skipped for
a halo exchange. For the ResNet-218v2 model, we found that Halo-D2 gives the
best performance for 4 fused layers. Proposed Halo-D2 optimization increases
the training performance by up to 4.8%. Figure 10(b) shows the performance
comparison of different proposed optimizations on spatial parallelism and com-
pares them to LP. Hy-Fi’s spatial parallelism is 1.94× faster than LP without
optimizations for spatial parallelism.

By combining layout and Halo-D2 optimizations, we are able to improve the
performance to 2.04×. Figure 11(a) and Fig. 11(b) show the performance com-
parison of spatial parallelism optimizations, LP, and pipeline parallelism (when
possible). For AmoebaNet-f214, we use the first three dimensions of parallelism
in Hy-Fi (spatial, model, and pipeline) when a batch size greater than 1 is
possible. Hy-Fi is 2.2× faster than LP and 1.44× faster than existing pipeline
parallelism. The proposed optimizations to spatial parallelism increases the per-
formance improvement from 1.98× to 2.2×.

(a) Effect of number of fused layers
in Halo-D2 for different layouts

(b) Performance comparison of LP
and spatial parallelism optimiza-
tions

Fig. 10. ResNet-218v2 on 8 GPUs using 1,024× 1,024 images

Hy-Fi 123

(a) AmoebaNet-f214 (b) AmoebaNet-f416

Fig. 11. Performance comparison of LP and different spatial parallelism optimizations
for AmoebaNet on 8 GPUs using 2,048× 2,048 images

5.5 Improving Performance Using Bi-directional Parallelism

The first three dimensions of parallelism do not exploit the free memory and
compute resources available between training steps. Therefore we integrate bi-
directional parallelism and increases its performance by removing the blocking
allreduce operation at the end (Sect. 4.4). This enables the training of larger
batch sizes on the same number of resources and improves the throughput,
which was impossible earlier because of memory requirements. Figure 12 demon-
strates the benefits of a fourth dimension of parallelism (GEMS-MASTER) in
Hy-Fi. We compare our designs against existing layer and pipleine parallelism.
Bi-directional parallelism uses a number of replications to stack more batches
before the weight update. Therefore, we show performance improvements for up
to 16 replications. The improvement in performance was negligible after 16 repli-
cations. In Fig. 12(a), we improve the performance from 2.04× to 2.67× using bi-
directional parallelism. For AmoebaNet-f214 (Fig. 12(b)) and AmoebaNet-f416
(Fig. 12(c)), we show speedup improvement from 2.05× to 2.56× and from 1.56×
to 1.78×. Using our proposed communication optimization (Sect. 4.4), we are
able to improve speedup for replications = 1 from 2.28× to 2.34× and from
1.63× to 1.68× for AmoebaNet-f214 and AmobaNet-f416. For the ResNet-218v2
model, we observed that the improvement in speedup is 1.01× because of a small
number of parameters compared to the AmoebaNet model, which translated into
negligible allreduce time. As we tack more and more compute in MASTER by
increasing the number of replications and batch size, the percentage of allreduce
time decreases. Therefore, we see smaller and smaller speedup improvement for
the communication optimization approach. However, we found that the commu-
nication optimized design always gave better performance than basic integration
and proposed communication optimization improves the overall training perfor-
mance by up to 7%. Therefore, Hy-Fi improves the performance for smaller batch
sizes and enables researchers to use it without compromising on throughput.

124 A. Jain et al.

1, 024 × 1, 024 images 2, 048 × 2, 048 images
(a) ResNet218-v2 on (b) AmoebaNet-f214on (c) AmoebaNet-f416 on

2, 048 × 2, 048 images

Fig. 12. Performance comparison of Hy-Fi’s 4th dimension of parallelism (bi-
directional) with and without communication optimization

5.6 Hybrid Parallelism

We demonstrate the proposed Hy-Fi system’s scalability (Fig. 17) by scaling four
CNNs. This experiment uses all five dimensions of parallelism and respective
optimizations to scale Hy-Fi to 2,048 GPUs. All four evaluated Hy-Fi designs
(Sp-Opt, Master-1-Opt, and Master-16-Opt) achieve near-linear speedup. For
Hy-Fi’s Master-1-Opt, we achieve 246× speedup for ResNet, 244× speedup for
AmoebaNet-f214, and 242× speedup for AmoebaNet-f416 on 2,048 GPUs. The
ideal speedup is 128× for 1,024 GPUs and 256× for 2,048 GPUs since models
are partitioned across 8 GPUs. VGG16 achieves 199× speedup on 1,024 GPUs.
The near-linear scaling of proposed designs can be attributed to the proposed
communication optimization in Hy-Fi and its efficient implementation. Instead
of doing allreduce operation twice in bi-directional parallelism, we do allreduce
once in our proposed communication optimization (Fig. 13).

(a) ResNet218-v2 on 1, 024 × 1, 024 im-
ages

(b) AmoebaNet-f214 on 2, 048 × 2, 048
images

(c) AmoebaNet-f416 on 2, 048 × 2, 048
images

(d) VGG16 on 4, 096 × 4, 096 images

Fig. 13. Scaling Hy-Fi’s optimized designs with all 5 parallelism dimensions on 2,048
GPUs

Hy-Fi 125

5.7 Hy-Fi vs Existing Frameworks

Comparison with TorchGPipe. We compare Hy-Fi against TorchGPipe for
two primary reasons; 1) TorchGPipe has an efficient implementation of pipeline
parallelism in PyTorch and 2) TorchGpipe has memory-level optimizations to
enable the training of out-of-core batch sizes. Since TorchGpipe does not have
multi-node support, we reduced the number of cells and initial filters in the
AmoebaNet-f214 model to enable training on 4 GPUs. Figure 14(a) compares
TorchGpipe’s layer and pipeline parallelism implementations with ours and
shows the benefits of Hy-Fi (1.2×) on the same batch size. It further validates
the efficiency of our baseline implementation for layer and pipeline parallelism.
Figure 14(b) compares the maximum performance attainable by both frame-
works for any batch size and shows up to 1.06× speedup for Hy-Fi.

(a) Performance for Batch Size = 2 (b) Maximum Performance with
any Batch Size

Fig. 14. Performance comparison of Hy-Fi and TorchGpipe for AmoebaNet on 4 GPUs
using 2,048× 2,048 images

Comparison with Mesh-TensorFlow and GEMS. To the best of our knowl-
edge, there is no distributed training framework in PyTorch that implements
spatial parallelism. Therefore, we use Mesh-TensorFlow since it is implemented
in TensorFlow (TensorFlow and PyTorch are the two most popular DL frame-
works). Since GEMS [14] conducted experiments on the same system, we use
their Mesh-TensorFlow and GEMS numbers to compare our proposed designs.

Fig. 15. Comparison with Mesh-
TensorFlow and GEMS for ResNet-
110 on 4 GPUs using 1,024× 1,024
images

Figure 15 compares Hy-Fi against state-
of-the-art Mesh-TensorFlow and GEMS
frameworks. We show 1.13× and 1.4×
speedup for Hy-Fi over GEMS and Mesh-
TensorFlow, respectively. We attempted to
compare results with the FlexFlow frame-
work, but encountered a number of issues
with their PyTorch plugin. First, at the time
of writing, many of the advanced operators/-
modules in the Amoebanet PyTorch model
are not interpretable by the base FlexFlow
model transformation function. Further, we

126 A. Jain et al.

were unable to train on out-of-core batch sizes due to a conflict with the mem-
ory managers of FlexFlow and Legion [4] (which FlexFlow uses for intra-node
communication).

5.8 Next-Generation DNN Designs on Very High-Resolution
Images Using Hy-Fi

Today, Deep learning researchers develop models restricted by the number of
layers for high-resolution images such as 8,192× 8,192 and 16,384× 16,384. Layer
parallelism can be used to train out-of-core models, yet requires a single layer to
fit inside a GPU’s memory, which is a limitation for very high-resolution images.
For example, a single channel 16,384× 16,384 image consumes around 1GB of
memory with FP32 representation. This makes the training impossible for CNNs
using very high-resolution images. To illustrate the possibility of training models
on very high-resolution images, we stress-test the proposed Hy-Fi system by
training the AmoebaNet-f214 model on 8,192× 8,192 and 16,384× 16,384 very
high-resolution images. Figure 16(a) and Fig. 16(b) demonstrate the benefits of
Hy-Fi for both enabling the training entirely, and further accelerating it.

(a) AmoebaNet-f214 on 8, 192 ×
8, 192 images

(b) AmoebaNet-f214 on 16, 384 ×
16, 384 images

Fig. 16. Enabling and accelerating training on very high-resolution images

At least 16 GPUs are needed to train the AmoebaNet-f214 model on
8,192× 8,192 images (Fig. 16(a)); therefore, we use spatial parallelism on 16
GPUs for convolution and pooling layers and layer parallelism on 1 GPU for
the classification module in the AmoebaNet model. By using the optimizations
in Hy-Fi’s spatial parallelism (Sect. 4.1) and bi-directional parallelism (Sect. 4.4),
we are able to further accelerate the training and achieve up to 1.476× speedup
compared to the basic spatial parallelism approach. Further, we accelerate the
training using strong scaling by increasing the number of GPUs to train the
model with the same batch size. We are able to achieve a 2.26× speedup
using strong scaling. In Fig. 16(b), we enable and accelerate the training for
16,384× 16,384 images and achieve up to 1.47× speedup compared to basic spa-
tial parallelism.

Hy-Fi 127

5.9 Verifying the Correctness of Hy-Fi

We have extended the PyTorch and implemented distributed training from
scratch to support proposed designs. Therefore, it is important to show that
Hy-Fi trains the model in the same number of epochs using proposed designs to
give confidence to DL researchers. We trained ResNet-218 v2 CNN for a subset
of Cifar-10 and Places-365 datasets. First, we provide results for the Cifar-10
dataset as it can be trained on a single GPU without distributed DNN train-
ing. Figure 17(a) shows trend of loss function for 100 epochs The objective of
this experiment is to showcase the correctness of Hy-Fi’s proposed designs with
respect to sequential out-of-the-box training provided by PyTorch.

Figure 17(b) and Fig. 17(c) show trend of loss and accuracy functions for 30
epochs when training ResNet-218 v2 model on a dataset with larger image sizes
(512× 512). It cannot be trained on a single GPU as the model becomes out-of-
core for 512×512 image size. We note that DNN training is a stochastic process;
therefore, there can be variations in few epochs whether we use sequential train-
ing or distributed DNN training. However, the overall trend should remain the
same. We ran these experiments multiple times to ensure that the loss function
trend presented here is reproducible.

(a) On a subset of Cifar-10
dataset

(b) On a subset of Places-
365 dataset (Loss)

(c) On a subset of Places-
365 dataset (Acc)

Fig. 17. Verifying the correctness of proposed designs in Hy-Fi by training ResNet-218
v2 on multiple datasets

6 Related Work

The growth of scientific and medical applications requiring massive data sample
sizes [7] has led deep learning researchers to explore new parallelism techniques
that train on such images without high accuracy and efficiency. Krizhevsky’s
work pioneered basic model parallelism techniques in [18]. GPipe [12] employs
pipeline parallelism to enable the training of extremely large models like Amoe-
baNet [22]. Further, PipeDream [10] expands upon GPipe’s pipelining idea by
introducing pipeline parallelism, which combines inter-batch and intra-batch
parallelism to increase overlap among GPUs. Torchgpipe [16] combined the
overall design of GPipe (pipeline parallelism) with some of the eager execution
and memory-aware enhancements of HyPar-Flow into a distributed PyTorch DL

128 A. Jain et al.

framework. GEMS [14] introduced memory-aware partition overlap for out-of-
core models on GPUs, but does not support spatial parallelism. Spatial par-
allelism, however, is a more recent addition to model parallel techniques [9].
LBANN introduced spatial convolutions split across nodes in [6]. However, spa-
tial parallelism support in LBANN doesn’t include pipelining nor bidirectional
training as in the GEMS design. FlexFlow [15] searches through all paralleliza-
tion strategies with simulation algorithms and highlights different DNN par-
allelism dimensions. We attempted to compare our work with FlexFlow but
ran into issues with the framework when handling large images on our system.
Mesh-TensorFlow (MTF) [23] is a framework for distributed DNN training which
partitions tensors across a processor mesh. We summarize these related studies
and their features in Table 1.

7 Conclusion

Convolutional Neural Networks (CNNs) are making breakthroughs in the com-
puter vision area, but are hard to train on very high-resolution images due to
memory and compute constraints. In this paper, we present Hy-Fi - an integrated
hybrid five-dimensional distributed DNN training system that uses different par-
allelism dimensions in tandem and accelerates training for very high-resolution
images. Hy-Fi uses novel communication and compute optimizations for differ-
ent parallelism dimensions and efficiently integrates these dimensions to speed
up training. The proposed design is evaluated with state-of-the-art deep learning
models like AmoebaNet and ResNet. We report up to 2.02× speedup over layer
parallelism and 1.44× speedup over pipeline parallelism using our optimized
spatial, layer, and pipeline parallelism. Further, we improve speedup using opti-
mized memory-aware designs to 2.67× over layer parallelism and 1.68× over
pipeline parallelism. We scale our designs to 2,048 GPUs and show up to 94.5%
scaling efficiency. In the end, we demonstrate training on very high-resolution
images and report up to 1.47× speedup over basic spatial parallelism. We believe
that Hy-Fi will pave a way forward for solving complex and compute-intensive
problems in scientific, digital pathology, and artificial intelligence areas.

Acknowledgement. This research is supported in part by NSF grants 1818253,
1854828, 1931537, 2007991, 2018627, 2112606, and XRAC grant NCR-130002.

References

1. Awan, A.A., Hamidouche, K., Hashmi, J.M., Panda, D.K.: S-Caffe: co-designing
MPI runtimes and Caffe for scalable deep learning on modern GPU clusters. In:
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 193–205. ACM, New York (2017)

2. Awan, A.A., Jain, A., Anthony, Q., Subramoni, H., Panda, D.K.: HyPar-Flow:
exploiting MPI and Keras for scalable hybrid-parallel DNN training using Tensor-
Flow (2019)

Hy-Fi 129

3. Awan, A.A., Subramoni, H., Panda, D.K.: An in-depth performance characteriza-
tion of CPU- and GPU-based DNN training on modern architectures. In: Proceed-
ings of the Machine Learning on HPC Environments, MLHPC 2017, pp. 8:1–8:8.
ACM, New York (2017)

4. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC 2012.
IEEE Computer Society Press (2012)

5. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: an
in-depth concurrency analysis. CoRR abs/1802.09941 (2018)

6. Dryden, N., Maruyama, N., Benson, T., Moon, T., Snir, M., Essen, B.V.: Improv-
ing strong-scaling of CNN training by exploiting finer-grained parallelism. CoRR
abs/1903.06681 (2019). http://arxiv.org/abs/1903.06681

7. Farrell, S., et al.: Novel deep learning methods for track reconstruction (2018)
8. Gholami, A., Azad, A., Jin, P., Keutzer, K., Buluc, A.: Integrated model, batch,

and domain parallelism in training neural networks. In: Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, pp.
77–86. ACM, New York (2018). https://doi.org/10.1145/3210377.3210394

9. Gholami, A., Azad, A., Jin, P., Keutzer, K., Buluc, A.: Integrated model, batch,
and domain parallelism in training neural networks. In: Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, pp. 77–86 (2018)

10. Harlap, A., et al.: PipeDream: fast and efficient pipeline parallel DNN training.
CoRR abs/1806.03377 (2018). http://arxiv.org/abs/1806.03377

11. Huang, Y., et al.: GPipe: efficient training of giant neural networks using pipeline
parallelism. CoRR abs/1811.06965 (2018). http://arxiv.org/abs/1811.06965

12. Huang, Y., et al.: GPipe: efficient training of giant neural networks using pipeline
parallelism. In: NeurIPS (2019)

13. Jain, A., et al.: SUPER: SUb-graph parallelism for transformers. In: 35th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), May 2021

14. Jain, A., et al.: GEMS: GPU-enabled memory-aware model-parallelism system for
distributed DNN training. In: 2020 SC 2020: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pp. 621–635.
IEEE Computer Society (2020)

15. Jia, Z., Zaharia, M., Aiken, A.: Beyond data and model parallelism for deep neural
networks. CoRR abs/1807.05358 (2018). http://arxiv.org/abs/1807.05358

16. Kim, C., et al.: torchgpipe: on-the-fly pipeline parallelism for training giant models
(2020)

17. Kousha, P., et al.: Designing a profiling and visualization tool for scalable and in-
depth analysis of high-performance GPU clusters. In: 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC), pp. 93–
102 (2019). https://doi.org/10.1109/HiPC.2019.00022

18. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
CoRR abs/1404.5997 (2014). http://arxiv.org/abs/1404.5997

19. Lee, S., et al.: Interactive classification of whole-slide imaging data for cancer
researchers. Cancer Res. 81(4), 1171–1177 (2021). https://doi.org/10.1158/0008-
5472.CAN-20-0668. https://cancerres.aacrjournals.org/content/81/4/1171

20. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
21. Petrowski, A., Dreyfus, G., Girault, C.: Performance analysis of a pipelined back-

propagation parallel algorithm. IEEE Trans. Neural Netw. 4(6), 970–981 (1993).
https://doi.org/10.1109/72.286892

http://arxiv.org/abs/1903.06681
https://doi.org/10.1145/3210377.3210394
http://arxiv.org/abs/1806.03377
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1807.05358
https://doi.org/10.1109/HiPC.2019.00022
http://arxiv.org/abs/1404.5997
https://doi.org/10.1158/0008-5472.CAN-20-0668
https://doi.org/10.1158/0008-5472.CAN-20-0668
https://cancerres.aacrjournals.org/content/81/4/1171
https://doi.org/10.1109/72.286892

130 A. Jain et al.

22. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. CoRR abs/1802.01548 (2018)

23. Shazeer, N., et al.: Mesh-TensorFlow: deep learning for supercomputers. In:
Advances in Neural Information Processing Systems, vol. 31. Curran Associates,
Inc. (2018)

24. Shoeybi, M., Patwary, M.A., Puri, R., LeGresley, P., Casper, J., Catanzaro, B.:
Megatron-LM: training multi-billion parameter language models using model par-
allelism. ArXiv abs/1909.08053 (2019)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

http://arxiv.org/abs/1409.1556

HPC Algorithms and Applications

Efficient Application of Hanging-Node
Constraints for Matrix-Free High-Order
FEM Computations on CPU and GPU

Peter Munch1,2(B), Karl Ljungkvist3, and Martin Kronbichler3

1 Helmholtz-Zentrum Hereon, Geesthacht, Germany
peterrmuench@gmail.com

2 Technical University of Munich, Munich, Germany
3 Uppsala University, Uppsala, Sweden

Abstract. This contribution presents an efficient algorithm for resol-
ving hanging-node constraints on the fly for high-order finite-element
computations on adaptively refined meshes, using matrix-free implemen-
tations. We concentrate on unstructured hex-dominated meshes and on
multi-component elements with nodal Lagrange shape functions in at
least one of their components. The application of general constraints is
split up into two distinct operators, one specialized in the hanging-node
part and a generic one for the remaining constraints, such as Dirich-
let boundary conditions. The former implements in-face interpolations
efficiently by a sequence of 1D interpolations with sum factorization
according to the refinement configuration of the cell. We discuss ways
to efficiently encode and decode such refinement configurations. Further-
more, we present distinct differences in the interpolation step on GPU
and CPU, as well as compare different vectorization strategies for the
latter. Experimental comparisons with a state-of-the-art algorithm that
does not exploit the tensor-product structure show that, on CPUs, the
additional costs of cells with hanging-node constraints can be reduced
by a factor of 5–10 for a Laplace operator evaluation with high-order
elements (k ≥ 3) and affine meshes. For non-affine meshes, the costs for
the application of hanging-node constraints can be completely hidden
behind the memory transfer. The algorithm has been integrated into the
open-source finite-element library deal.II.

Keywords: Adaptively refined meshes · Finite element methods ·
High order · Hanging-node constraints · Matrix-free operator
evaluation · Node-level optimization · SIMD vectorization · Manycore
optimizations

This work was supported by the Bayerisches Kompetenznetzwerk für Technisch-
Wissenschaftliches Hoch- und Höchstleistungsrechnen (KONWIHR) through the
projects “Performance tuning of high-order discontinuous Galerkin solvers for
SuperMUC-NG” and “High-order matrix-free finite element implementations with
hybrid parallelization and improved data locality”. The authors gratefully acknowledge
the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Supercomputer SuperMUC-NG at
Leibniz Supercomputing Centre (LRZ, www.lrz.de) through project id pr83te.

c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 133–152, 2022.
https://doi.org/10.1007/978-3-031-07312-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_7&domain=pdf
www.gauss-centre.eu
www.lrz.de
https://doi.org/10.1007/978-3-031-07312-0_7

134 P. Munch et al.

Fig. 1. The “rising-bubble” benchmark in 2D as an example of a simulation using
AMR: left) velocity contour and zero level-set isoline and right) mesh resolving the
resulting surface-tension forces at the interface accurately. The results have been
obtained with the open-source two-phase solver adaflo [12].

1 Introduction

Matrix-free high-order finite element methods (FEM) are used to efficiently
solve different types of partial differential equations (PDE) with applications
in fluid mechanics [8,11], solid mechanics [7], mesh smoothing [1], or computa-
tional plasma physics [21]. The applicability of matrix-free methods to massively
parallel computers has been demonstrated multiple times in the past [9].

In order to reduce the computational costs, one can adaptively refine meshes
(AMR) to concentrate the work on the most relevant areas of the computa-
tional domain, where, e.g., the solution has high gradients or discontinuities
(see Fig. 1). One of the ways to refine meshes, the non-conforming refinement
strategy, refines cells independently by replacing parent cells by children cells
(octants for hexahedral cells) and results in the occurrence of hanging nodes
(see Fig. 2a). In order to guarantee the continuity, i.e., H1 conformity, of the
tentative solution at these places, hanging-node constraints have to be applied
[25]. Although not strictly needed, many codes limit the difference in refinement
of neighboring cells to one (1-irregular mesh), since a more abrupt transition in
most cases does not lead to a significant reduction of time to solution to justify
the implementation complexity.

Simulations with hanging nodes need iterative solvers that can cope with
these nodes in a robust manner (e.g., geometric multigrid methods [13,20]) and
algorithms to apply hanging-node constraints efficiently. Since matrix-free meth-
ods need to interpolate the constraints in each operator evaluation of each iter-
ation, the efficient application of hanging-node constraints is a crucial HPC
ingredient for the fast solution of PDEs with FEM on adaptively refined meshes
and the core of the present publication.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 135

hanging node

x0

x1
x2 child/octant

parent

(a) Mesh

constrained face

constrained edge

constraining face

constraining edge
constrained DoF
constraining DoF

(b) Degrees of freedom

proc i

compress

proc j

update ghost values

owned DoF not owned DoF

(c) Communication

Fig. 2. Definition of the most important terms of hanging-node constraints on a hex-
ahedral mesh, incl. the communication pattern between two processes i < j, with one
possessing only one unrefined cell and the other all children of a cell.

1.1 Matrix-Free Operator Evaluation

In this work, we consider matrix-free implementations for general meshes, which
compute the integrals underlying a finite-element discretization on the fly. Here,
the operator evaluation performs a loop over all cells and applies the effect of
element stiffness matrices on a vector with the following basic steps [14]:

v = A(u) =
∑

e

GT
e ◦ CT

e ◦ S̃T
e ◦ De ◦ Se ◦ Ce ◦ Ge ◦ u. (1)

In the first step, the degrees of freedom (DoFs) relevant for each cell e are gath-
ered by Ge from the global source vector u. In the remainder of this study, these
unknowns are called cell-relevant DoFs. The application of Ce interpolates from
these cell-relevant DoFs to the cell-local values ue,j in the polynomial expansion
of the finite-element solution uh|e =

∑
j ϕ

(e)
j ue,j , consistent with all constraints

due to hanging nodes and boundary conditions. Subsequently, values and/or
gradients of uh are evaluated at the quadrature points via Se and the computed
quantities are processed on each quadrature point by De. The application of S̃T

e

represents the multiplication by the finite-element test functions and the summa-
tion over quadrature points. For simplicity of notation, we assume a symmetric
(self-adjoint) PDE operator with S̃e = Se in this work. Finally, Ce and Ge are
applied in reverse order during multiplication by the finite-element test functions
and the results are added into the global destination vector v.

The operator Ge is a Boolean matrix (DoF map) representing indirect
addressing into the vectors u and v. In the past decades, significant efforts went
into optimizing the evaluation operator Se. In particular, the exploitation of the
structure of the shape functions and quadrature points allows replacing a gen-
eral dense interpolation matrix by more efficient procedures. For example, sum
factorization [19,22] (see Algorithm 1) performs a sequence of 1D interpolation
steps to evaluate vectors at the quadrature points for tensor-product polynomi-
als, reducing the computational complexity from O(k2d) to O(dkd+1) for scalar
Lagrange elements of degree k. On a per-unknown metric, operation (1) with
sum factorization implies an arithmetic complexity O(k) and a memory access
complexity O(1). This makes the approach the most efficient way to compute the

136 P. Munch et al.

Algorithm 1: Function that performs an inplace interpolation from the
expansion coefficients ue,i to the quadrature points by a sequence of 1D
interpolations. On the GPU, the (thread) indices [i0, i1, i2] are given by the
runtime environment and the synchronization between threads in different
parallel foreach regions can be accomplished by an explicit function call.
1 for direction ← 0 to dim do
2 parallelforeach index ∈ {[i0, i1, i2] | 0 ≤ i0, i1, i2 ≤ k} do

/* interpolate along line (def. by index & direction) */

3 value ← interp matrix[index[direction]]. ∗ data(index, direction)

4 parallelforeach index ∈ {[i0, i1, i2] | 0 ≤ i0, i1, i2 ≤ k} do
5 data(index) = value

action of a discretized differential operator on vectors for higher-order finite ele-
ments with degree k ≥ 3 on general (deformed) meshes [9,14]. On today’s hard-
ware, the boost in efficiency is primarily due to the reduction in memory access
by skipping a memory-intensive assembled matrix in favor of on-the-fly compu-
tations on cached data. Implementations specialized for CPUs [1,14,15,21] and
GPUs [1,16,18,26] are available in the literature.

Given the nested loop structures with different strides and data dependencies
when interpolating in different directions with sum factorization, automatic vec-
torization leads to poor performance on modern CPUs and explicit outer-loop
vectorization based on intrinsics either within a cell, i.e., across DoFs/quadrature
points, or across cells, with each vector lane processing another cell, is neces-
sary [15]. The latter is assumed for the CPU implementation, whereas in a GPU
implementation, which runs parallel “threads” in a team, a thread works on an
individual DoF within cells. Note that the algorithms and performance translate
similarly to other alternatives [26], making the conclusions of this publication
generic.

1.2 Application of Constraints

The constraint operator Ce relates cell-local DoFs to cell-relevant DoFs. Cell-
local DoFs can be either constrained or not (◦ vs. • in Fig. 2b). Constrained DoFs
depend on constraining DoFs in the form of affine combinations xi = Cijxj + bi
with possible inhomogeneity b. Examples of constraints are Dirichlet bound-
ary conditions, periodic boundary conditions, and hanging-node constraints.
Although C is generally sparse and can be efficiently stored in compressed row
storage (CRS) format, it becomes locally dense for certain constraint types. For
example, hanging-node constraints on faces relate all ndofs per face constrained
DoFs of the subface on the fine side to the same number of constraining DoFs
on the coarse side, see Fig. 2b. For the sake of brevity, we will call faces with
DoFs with hanging-node constraints “constrained faces”; in a similar way, we will
use the terms “constrained edges” and “constraining faces/edges”. For tensor-

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 137

product elements and scalar polynomial elements of degree k, the naive evalu-
ation by a dense matrix of size O(n2

dofs per face) implies memory and arithmetic
costs of O(k2(d−1)). These costs become the bottleneck of matrix-free algorithms
of complexity O(dkd+1) for higher k.

1.3 Related Work

The interpolation of data to subcells or subfaces is a common operation in the
context of FEM. For example, geometric multigrid methods [20] need to prolon-
gate and restrict between cells and their children. In the case of discontinuous
Galerkin methods and meshes with hanging nodes, data of neighboring cells have
to be interpolated to subfaces for integration of fluxes on faces [15,17].

The development of adaptive solvers is a highly active field, as evidenced
by the recent publication [23], necessitating advances in fast hanging-node algo-
rithms. Recently, Cerveny et al. [6] presented a global operator C that can handle
arbitrary irregular meshes obtained by anisotropic refinement. Kronbichler and
Kormann [14] proposed a general way to process constraints during matrix-free
loops in the context of FEM by a combined operator (C ◦ G)e. Even though
this approach identifies similar rows in the constraint matrix C to reduce mem-
ory access, it suffers from an exceeding complexity of the naive evaluation at
higher orders (O(k2(d−1))). In the context of spectral element methods [8,10] and
FEM [16,18], a special-purpose hanging-node algorithm for 1-irregular meshes
with only hypercube-shaped cells has been used that relies on the update of the
DoF map Ge and efficient inplace interpolations. While the previous publications
provide a clear understanding of the 2D case, this is not yet the case in 3D, in
particular regarding recent advances in modern hardware, such as SIMD vector-
ization. The main difficulty are the 137 refinement configurations, as opposed to
only 13 cases in 2D, and the appearance of constraints along edges.

1.4 Our Contributions

We present an algorithm to efficiently resolve constraints in the form of Ce and
CT
e of Eq. (1) with hanging-node contributions in the context of matrix-free FEM

on CPUs and GPUs. The algorithm is built on the observation that, for Lagrange
elements, the constraint matrix can be factored into a general-purpose operator
and a special-purpose operator that can exploit the most efficient interpolation
routines, e.g., sum factorization for tensor-product elements, and thus reduce the
computational complexity to O((d−1) ·kd), similarly to the operators developed
in [8,10,16,18]. We give a detailed description of the special-purpose operator in
3D, which is crucial for the efficient implementation of our proposed algorithm.
We assume that 1) the mesh has hypercube-shaped cells, 2) these cells have at
most two children in each direction, and 3) the mesh is 1-irregular.

The algorithm presented in this publication has been integrated into the
open-source C++-based FEM library deal.II [2,3]. The implementation is used
by default in its matrix-free infrastructure; the correctness is checked by several
hundreds of tests.

138 P. Munch et al.

The remainder of this publication is structured as follows. In Sects. 2 and
3, we introduce the algorithm and discuss data structures and implementation
details. In Sect. 4, we present performance results for serial runs and discuss the
benefits of the given algorithm for parallel simulations. The results are obtained
on Intel and AMD CPUs as well as on NVIDIA GPUs. Conclusions are given in
Sect. 5.

2 Algorithm

We split (C ◦ G)e into three contributions (CHN ◦ CGP ◦ G)e with CHN dedicated
to the hanging-node constraints and CGP to the remaining (general-purpose)
constraints. The sequence of these contributions can be chosen arbitrarily. Two
sequences have properties suitable for an HPC implementation and will be used
in the following: (i) CHN

e ◦Ga
e ◦ CGP and (ii) CHN

e ◦ CGP
e ◦Gb

e. Approach (i) applies
the general-purpose constraints on the global vectors and then proceeds with
operations on the element level, gathering the cell-relevant DoFs and apply-
ing the hanging-node constraints on the current cell. In practice, this approach
involves a global pre- and postprocessing step (CGP, (CGP)T) before and after
the matrix-free loop (1). In the literature, it is common to use CGP for the appli-
cation of homogeneous Dirichlet boundary conditions, for which it simplifies to
zeroing out the entries constrained by Dirichlet boundary conditions. We use it
also for more complex types of constraints, such as those constraining the nor-
mal or tangential components of a vector-valued solution. On a GPU, one would
perform the preprocessing step, the matrix-free operator application, and the
postprocessing step sequentially by three kernel calls. Approach (ii) applies the
general constraints after gathering the cell-relevant DoFs within the loop (1).
This approach accesses global vectors only once and operates exclusively on the
fixed-size working set of a cell, assuming that caches are large enough to hold
all cell-local values, which is the case on modern CPUs.

The operator CHN
e independently applies the hanging-node constraints on the

element level. The number of constrained and constraining DoFs is the same,
i.e., size(ue) = size(CHN

e ◦ue). By presorting the indices, this operation becomes
a simple inplace line or face interpolation, which can be handled efficiently, e.g.,
by sum factorization. In approach 1), the presort can be accomplished by replac-
ing the global indices of DoFs on constrained edges/faces by the constraining
counterparts in the DoF map Ga

e . For this operation, one needs to consider the
orientation of the edges/faces within unstructured meshes, for which an extended
version of the algorithm proposed in [24] can be used. In the case of approach
(ii), Gb

e can be constructed by replacing the constrained indices in the DoF map
Ga
e by their constraining counterparts in CGP

e .
Our algorithm can treat components of vectorial elements individually. How-

ever, some components might not be able or might not need to be treated by
the proposed algorithm (e.g., non-nodal elements vs. mixed elements with dis-
continuous Galerkin components). The refinement configuration of a cell and
the information on whether our fast hanging-node-constraint algorithm needs to

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 139

be applied for the given component can be efficiently combined on the fly by a
simple Boolean operation.

3 Implementation Details

In the following, we discuss how to encode the refinement configuration of a
hypercube-shaped cell so that the information can be efficiently decoded during
the interpolation phase. Furthermore, different vectorization strategies for the
interpolation step are presented. Note that, at the time of writing, deal.II falls
back to the general-purpose algorithm for non-hypercube cells on mixed meshes,
which also contain cell shapes like simplices.

3.1 Data Structures

In this subsection, we discuss the data structures of CGP, of (CGP ◦ G)e, and of
CHN
e . By moving the hanging-node constraints to a special-purpose data struc-

ture, the global operator CGP is generally sparse so that a matrix-vector mul-
tiplication with a sparse matrix (as provided by cuSPARSE) is applicable. Data
structures of the merged operator CGP

e ◦Ge for CPUs have been proposed in [14].
They consist of an extended DoF map, indicators of constrained DoFs, and
pointers to the rows of the constraint matrix. In order to minimize memory con-
sumption, the value array of the sparse matrix is only stored for unique rows.

The hanging-node-constraint operator CHN
e requires information regarding

the refinement configuration of each cell and appropriate face-subface interpola-
tion matrices. For tensor-product elements, one only needs to store 1D interpo-
lation matrices to the two 1D subfaces. As a result, we were able to derive—by
exploiting the structure of (CHN ◦ CGP ◦ G)e—an efficient and flexible algorithm
whose memory consumption is O(Ncells) and is independent of the degree k.

3.2 Refinement Configuration

The refinement of a cell relative to the neighboring cells can be described as
a pair (subcell, face) in 2D (not considered in the following) and as a triple
(subcell, face, edge) in 3D. The first entry “subcell” indicates the octant within
the parent cell, the second entry “face” the direction along which constrained
faces (i.e., coarser neighboring cells) appear, and the third entry “edge” the
direction of constrained edges. Note that, if a face is constrained, all its boun-
ding edges are also constrained. Furthermore, we utilize the fact that only one of
the faces/edges along a direction can be constrained as the other side necessarily
belongs to the same leaf in the octree. Figure 3 visualizes all possible values of
the entries of the triple. All 137 resulting valid refinement configurations are:

– the unconstrained case ({(0, 0, 0)}),
– 56 cases with at least one constrained face

{(subcell, face, 0) | 0 ≤ subcell < 8 ∧ 1 ≤ face < 8},

140 P. Munch et al.

0 = 000
su

b
ce

ll
1 = 001 2 = 010 3 = 011 4 = 100 5 = 101 6 = 110 7 = 111

fa
ce

ed
ge

Fig. 3. Depiction of 0 ≤ subcell, face, edge < 8. The latter two refinement-configuration
entries are plotted for subcell = 5. The resulting 137 configurations can be described
by a triple (subcell, face, edge) or 8 bits.

– 56 cases with at least one constrained edge

{(subcell, 0, edge) | 0 ≤ subcell < 8 ∧ 1 ≤ edge < 8},

– and 24 cases in which a face and the edge orthogonal to it are constrained

{(subcell, i, i) | 0 ≤ subcell < 8 ∧ i ∈ {1, 2, 4}}.

The triple could be encoded by a 9-bit integer. Alternatively, one could exploit
the observation that the face and edge entries are either identical or one of them
has the value zero to save a bit and to encode the information as a quadruple
(containing: subcell, whether at least one face is constrained, whether at least
one edge is constrained, non-zero entries of face/edge). The corresponding encod-
ing/decoding routines between the triple (a, b, c) and the quadruple (α, β, γ,
δ) are:

(α, β, γ, δ) ← encode(a, b, c) = (a, b > 0, c > 0, max(b, c))
(a, b, c) ← decode(α, β, γ, δ) = (a, β ? δ : 1, γ ? δ : 1)

3.3 GPU Interpolation

On the GPU, we use an extended version of Algorithm 1 for the application of
hanging-node constraints, as presented in Algorithm 3. During the inplace inter-
polation (see Fig. 4a), threads need to determine whether 1) a DoF is constrained
and if so 2) which 1D interpolation matrix should be used. The information can
be extracted simply with bitwise operations from the refinement configuration,
as shown in Algorithms 2 and 3. Our approach results in threads being idle
during the interpolation if the DoFs processed by those threads are not con-
strained. Nevertheless, it turns out that this approach is very competitive, since
it is approximately as expensive as the interpolation step from the nodal coeffi-
cients ue,j to the quadrature points as they have the same sequence of operations
plus an additional instruction to compute the corresponding masks.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 141

(a) Used on GPU with threads associated with unconstrained DoFs being masked out,
i.e., corresponding threads being idle.

(b) Used on CPU. The interpolations in x0- and x1-direction are simply performed as
in-face interpolations. The interpolation in x2-direction is decomposed in three steps.

Fig. 4. Hanging-node-constraint application via sum factorization for 3D and k = 3
on GPU and CPU for a configuration with coarser neighbors at the right and in front
of the highlighted cell.

3.4 CPU Interpolation

On the CPU, we use a different approach to perform the interpolations without
checks on the DoF level. Motivated by the fact that only the pair (face, edge)
determines the interpolation steps and these steps are additive, we can construct
an algorithm that has a minimal number of if-statements (one switch-statement
for face and one for edge, each with 8 specialized cases) and a limited number of
starting points of faces/edges of the subcell, which can be precomputed at com-
pile time. Figure 4b shows, as an example, the interpolation steps for refinement
configuration (5,3,0). The interpolations in x0- and x1-direction are similar to
the GPU version. In contrast, we decompose the interpolation in x2-direction in
three steps in order to prevent interpolating the values along the shared edges
twice.

For the purpose of vectorization, deal.II provides a wrapper class with a
std::simd-like interface, which is built around a fixed-size array and translates
instructions into the right instruction-set extension [14]. In the vectorization stra-
tegy of deal.II, each lane of the array is associated with a distinct cell so that
each operation on the wrapper class is performed with a single instruction for all
cells in parallel. We will call the collection of cells that are processed at the same
time a “cell batch”. Implementations of operations Se and De only operate on
such vectorized data types; in deal.II, the merged operator CGP

e ◦ Ge performs
the laying out of the data in the right (vectorized, struct-of-arrays) format so
that the input to CHN

e already has this format.

142 P. Munch et al.

Algorithm 2: Function is dof constrained(direction, conf, index) →
bool that returns whether a DoF with index [i0, i1, i2] is constrained in the
given direction for a specified refinement configuration.
1 rotate data structures conf and index to the right by (dim − direction − 1)
2 cell has edge constraint ← conf.edge[2]
3 ∀i ∈ {0, 1}.(cell has face constraint i ← conf.face[i])
4 ∀i ∈ {0, 1}.(dof is on face i ← (conf.subcell[i] ? k : 0) = index[i])
5 if ∃i ∈ {0, 1}.(dof is on face i ∧ cell has face constraint i) then
6 return True ; /* DoF is constrained on face */

7 else if (∀i ∈ {0, 1}.(dof is on face i)) and cell has edge constraint then
8 return True ; /* DoF is constrained on edge */

9 else
10 return False ; /* DoF is not constrained */

Algorithm 3: Function that performs an inplace interpolation by a
sequence of 1D interpolations for constrained DoFs, used on GPU. See
also comments in Algorithm 1.
1 for direction ← 0 to dim do
2 parallelforeach index ∈ {[i0, i1, i2] | 0 ≤ i0, i1, i2 ≤ k} do
3 interp matrix ← interpolation matrices[conf.subcell[direction]]
4 if is dof constrained(direction, conf, index) then
5 value ← interp matrix[index[direction]]. ∗ data(index, direction)

6 parallelforeach index ∈ {[i0, i1, i2] | 0 ≤ i0, i1, i2 ≤ k} do
7 if is dof constrained(direction, conf, index) then
8 data(index) = value

However, the cells of a cell batch typically have different refinement config-
urations if no extra measures are taken, making vectorization of the considered
algorithms more complicated. We will consider the following vectorization strate-
gies in Subsect. 4.1: 1) auto: Cells with hanging-node constraints are processed
individually. In this way, we completely rely on optimizing compilers, which is
possible, since all if-statements and loop bounds are constant expressions. Data
accesses from individual lanes of the struct-of-arrays storage of DoF values, while
reading and writing, are necessary. 2) grouping: Cells with the refinement con-
figuration are globally grouped together in a preprocessing step. As a result, all
cells of a cell batch have the same refinement configuration. 3) masking: Here,
we keep the sequence of the cells unmodified as in the case of auto, however,
we process all geometric entities (6 faces and 12 edges) sequentially entity by
entity and check whether they are constrained in any of the lanes of the cell
batch. We apply a mask, e.g., using the instruction vblendvpd with x86/AVX
or vblendmpd with x86/AVX-512 instruction-set extension, in order to only alter
the relevant lanes.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 143

3.5 Costs of Interpolation

We conclude this section by summarizing the number of floating-point opera-
tions that are needed to perform the interpolation for an arbitrary refinement
configuration (subcell, face, edge) in 3D:

K((•, face, edge)) = K(face) + K(edge) = O(k3).

This value is bounded by the costs of the interpolation from the support points
to the quadrature points (K(cell) = 3(k + 1)3(1 + 2k)). The terms are defined
(with | • | counting bits) as:

K(face) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for |face| = 0
K(single face) for |face| = 1

2K(single face) − K(single edge) for |face| = 2
3(K(single face) − K(single edge)) for |face| = 3

and K(edge) = |edge|K(single edge) with K(single edge) = (k + 1)(1 + 2k) and
K(single face) = 2(k + 1)2(1 + 2k), being the costs of the inplace interpolation
of a single edge/face. The formulas evaluated for k = 1, 4 are shown in Table 1.

On the contrary, the arithmetic cost of the general-purpose algorithm for
applying the hanging-node constraints on a single face is O(k4). Both the
hanging-node algorithm and the general-purpose algorithm have—under the
assumption that the 1D interpolation matrices and the compressed constraint
matrix are in cache for moderate k—a memory cost of O(1). As a consequence,
the difference in performance is due to a different number of floating-point oper-
ations and differences in code generation. For the latter, the proposed specialized
algorithm can use the polynomial degree and hence loop lengths as a compile-
time constant, whereas the generic implementation can not, which on its own
causes a 2x-3x difference in performance [15].

4 Experiments and Results

In this section, we investigate the suitability of the proposed algorithm on mo-
dern hardware. As a metric, we use the cost η of a cell that is either edge- or
face-constrained. We define the cost as η = (THN − TNO)/TNO, i.e., the ratio of
the additional time to process a cell with hanging-node constraints and the time
to process a cell without hanging-node constraints. For this purpose, we use two
approaches to determine the value of η independently in Subsects. 4.1 and 4.2.
The code of our experiments can be found online.1

Our experiments perform operator evaluations (also referred to as “matrix-
vector product” or “vmult”) of a scalar Laplace operator with homogeneous
Dirichlet boundaries on two classes of locally refined 3D meshes. The meshes
1 https://github.com/peterrum/dealii-matrixfree-hanging-nodes with the deal.II

master branch retrieved on March 26 2022, with small adjustments to disable the
automatic choice of the vectorization type by the library.

https://github.com/peterrum/dealii-matrixfree-hanging-nodes

144 P. Munch et al.

Table 1. Number of FLOPs for edge (e) and face (f) constraints as well as for interpo-
lation from solution coefficients ue,i to values at quadrature points (cell). The numbers
in the header indicate the count of constrained faces or edges. The numbers of FLOPs
have been verified with hardware counters.

k 1e+0f 2e+0f 3e+0f 0e+1f 1e+1f 0e+2f 0e+3f cell

1 6 12 18 24 30 42 54 72

4 45 90 135 450 495 855 1215 3375

Table 2. Runtime analysis in terms of memory transfer and GFLOP/s, as measured
with the Likwid tool for k = 4 and affine/non-affine shell mesh (L = 7/6). Run on
Intel Cascade Lake Xeon Gold 6230 (2560 GFLOP/s, 202 GB/s).

No constraints General-purpose algo Hanging-node algo

s GB/s GF/s s GB/s GF/s s GB/s GF/s

Affine 0.028 122 437 0.057 86 252 0.034 107 386

Non-affine 0.016 194 174 0.021 162 149 0.016 191 183

are constructed by refining a coarse mesh consisting of a single cell defined by
[−1,+1]3 according to one of the following two solution criteria: 1) shell: after
L − 3 uniform refinements, perform three local refinement steps with all cells
whose center c is |c| ≤ 0.55, 0.3 ≤ |c| ≤ 0.43, and 0.335 ≤ |c| ≤ 0.39 or 2)
octant: refine all mesh cells in the first octant L times. Figure 5 shows, as
an example, the resulting meshes. Simulations are run with polynomial degrees
1 ≤ k ≤ 6 to cover all cases from low- to high-order FEM.

Unless noted otherwise, the numerical experiments are run on a dual-socket
Intel Xeon Platinum 8174 (Skylake) system of the supercomputer SuperMUC-
NG.2 It supports AVX-512 (8-wide SIMD). The 48 CPU cores run at a fixed fre-
quency of 2.3 GHz, which gives an arithmetic peak of 3.5 TFLOP/s. The 96 GB
of random-access memory (RAM) are connected through 12 channels of DDR4-
2666 with a theoretical bandwidth of 256 GB/s and an achieved STREAM triad
memory throughput of 205 GB/s. We use GCC 9.3.0 as compiler with the flags
-march=skylake-avx512 -std=c++17 -O3. Furthermore, the CPU code uses
the vectorization strategy auto by default, computations are run with double-
precision floating-point numbers and results are reported in 64-bit FLOPs.

4.1 Experiment 1: Serial Simulation

In the first experiment, we execute the program serially to rule out influences
of MPI communication and potential load imbalances. In order to nevertheless
obtain a realistic per-core memory bandwidth, we execute an instance of the
program on all cores of a compute node simultaneously.

2 https://top500.org/system/179566/, received on November 15, 2021.

https://top500.org/system/179566/

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 145

L = 5 L = 7
octant shell

L #cells HN #cells HN

5 4.7E+3 23.0% 1.2E+3 68.9%
6 3.5E+4 12.2% 6.8E+3 78.4%
7 2.7E+5 6.2% 3.7E+4 69.9%
8 2.1E+6 3.1% 2.7E+5 38.3%
9 1.7E+7 1.6% 2.2E+6 19.3%

Fig. 5. Cross section of the octant geometry (left) and of the shell geometry
(right) simulation for specified number of refinements. In addition, the number of
cells (#cells:=NNO + NHN) and the share of cells with hanging-node constraints
(HN:=NHN/(NNO + NHN)) are given for the considered refinement numbers.

In the context of such serial experiments, the total simulation time is the sum
of the time spent on cells with hanging-node constraints and on cells without
hanging-node constraints: T = NHNTHN+NNOTNO = (NNO+(1+η1)NHN)TNO.
From this formula, we derive an experimental definition of the cost:

η1 = (T/TNO − NNO)/NHN − 1. (2)

The cell counts NNO and NHN are given by the geometry (see Fig. 5), the
total simulation time T can be measured, and the time to process a cell with-
out hanging-node constraints TNO can be approximated by running the si-
mulations artificially without hanging-node constraints with runtime T̂ , i.e.,
TNO ≈ T̂ /(NNO + NHN).

Figures 6a and 6b show the throughput of a single operator application (pro-
cessed number of DoFs per time unit) and the cost η1 for different degrees k in
the shell case for the general-purpose algorithm (all constraints, incl. hanging-
node constraints, are processed by CGP

e) and for the specialized hanging-node
algorithm. As a reference, the throughput of the simulation without application
of any hanging-node constraints is presented. One can observe an overall drop
in throughput by 32–63% in the case of the general-purpose algorithm and by
11–34% in the case of the specialized algorithm. This translates into an increase
in runtime for evaluating the discrete PDE operator on a cell with hanging
nodes by 125–215% and 20–136%, respectively. While the costs are increasing in
the case of the general-purpose algorithm, the costs in the specialized case are
decreasing to a value of approx. 20%. This difference in behaviors is related to
the difference in complexities and to the overhead in the low-degree case k = 1.

Furthermore, Figs. 6a and 6b show the results for (high-order) non-affine
meshes (dashed lines). In order to deform the analyzed geometries, the trans-
formation function xi ← xi + Δ sin(π · xi) with Δ = 10−8 is applied. This
transformation makes the matrix-free cell loops memory-bound in the current
implementation, since the code loads a 3×3 Jacobian matrix for each quadrature
point. In such cases, additional work on cached data can be hidden behind the
memory transfer [15], as is verified to be the case for the additional hanging-node
interpolations in our simulations: for linear elements, the costs of the proposed
implementation are reduced from 136% to 58% and, for all higher degrees, no

146 P. Munch et al.

no constraints general-purpose new HN algorithm affine non-affine

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

·108

affine

non-affine

degree k

th
ro

u
gh

p
u
t
[D

oF
s/

s]

(a) Throughput of 1 vmult

1 2 3 4 5 6
0

1

2

degree k

co
st

η
1

(b) Cost η1

1 (8)
2 (56)
3 (44)
4 (427)
5 (322)
6 (1094)
7 (1446)
8 (698)

(c) # cell batches with # HN lanes

1e+0f (4824)
2e+0f (576)
3e+0f (288)
0e+1f (13536)
1e+1f (648)
0e+2f (5016)
0e+3f (952)

(d) Distribution of ref. configurations

Fig. 6. a–b) Experimental results of the shell simulation on the CPU for degrees
1 ≤ k ≤ 6 (for L = 8/8/8/7/7/6 in the affine case and one less for the non-affine
case). c–d) Hanging-node statistics: count of cell batches with the given number of
lanes with hanging-node constraints (L = 7); distribution of refinement-configuration
types (grouped together by the number of edge and face constraints).

overhead can be observed with η1 ≈ 1%. In contrast, one can still observe costs
of up to 34% in the general-purpose case.

Figure 7a presents the results for the octant case. Since the number of han-
ging nodes is significantly less in this case, the penalty of applying the general-
purpose algorithm leads to a throughput reduction of a mere 7–18%, and, in the
case of the specialized algorithm, the throughput is comparable to the case with-
out hanging nodes. The fact that the cost η1 for processing cells with hanging-
node constraints is similar to the one in the shell case makes us confident that
the definition (2) to measure overhead and the experimental results presented
here are transferable to other meshes and other refinement configurations.

We also analyzed the algorithm with hardware counters (for a broad overview
see Table 2). We could observe an increase in scalar operations both in the case
of the special-purpose and the general-purpose algorithm. While, however, the
additional scalar operations per DoF decrease with increasing k in the case of the
special-purpose algorithm, this is not the case for the general-purpose algorithm.
Furthermore, the special-purpose algorithm can be fed with the required data
from the fast L1 cache, while the general-purpose algorithm needs to access
higher memory levels (incl. main memory) for the entries of the matrix C. In
the case of the special-purpose algorithm, the number of branch mispredictions
per operation decreases for increasing k.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 147

no constraint general purpose new HN algorithm
throughput cost

auto grouping masking
throughput cost

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
·108

degree k

th
ro

u
gh

p
u
t
[D

oF
s/

s]

0

0.5

1

1.5

2

co
st

η
1

(a) Octant

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
·108

degree k

th
ro

u
gh

p
u
t
[D

oF
s/

s]

0

0.2

0.4

0.6

0.8

1

throughput

cost co
st

η
1

(b) Vectorization (shell)

Fig. 7. a) Experimental results of the octant simulation for degrees 1 ≤ k ≤ 6 (for L =
7/7/7/6/6/6). See also the comments in Fig. 6. b) Comparison of experimental results
with different vectorization strategies for an affine shell mesh. Setup as in Fig. 6.

Figure 7b shows throughput and cost η1 for the three vectorization strate-
gies presented in Subsect. 3.4 (auto, grouping, and masking) for the shell
case. One can observe that the strategy grouping can significantly reduce the
value of the cost η1: for degrees k ≥ 2, it appears as if cells with hanging-node
constraints would be similar in cost to regular cells. This is not surprising, since
performing one packed operation in contrast to 5–8 scalar operations is signif-
icantly cheaper (see Fig. 6c regarding the number of lanes with hanging-node
constraints). For low degrees, the reduced costs indeed lead to a (slight) increase
in throughput, compared to the (default) auto strategy. For higher degrees, the
strategy grouping reaches a throughput that is 15% lower than the one of the
strategy auto in the shell case. This is related to the fact that the group-
ing results in discontinuous partitions, which lead—in combination with O(kd)
working sets of the cells during cell integrals—to a worse cache-locality behavior
of the whole matrix-free loop (1) and an increase in cell batches, since a growing
number of lanes might not be filled. The vectorization strategy masking adds
costs by setting up the masks for 18 geometric entities and by increasing the
number of conditional branches in contrast to the two switches in auto. While,
for linear and quadratic elements, these additional costs are dominating, leading
to 96% < η1 < 192%, they amortize and higher throughputs than in the case
of auto are reached for higher degrees (k ≥ 4). Our experiments (not presented
here) have shown that, by switching to single-precision computations and hereby
doubling the number of lanes processed by a cell batch, the turning point towards
the vectorization strategy masking is shifted to lower degrees.

148 P. Munch et al.

general-purpose new HN algorithm w. comm wo. comm

0 1 2 3 4 5 6 7 8
2

3

4

5
·109

η2

weight w

th
ro

u
gh

p
u
t
[D

oF
s/

s]

(a) 1 node (48 cores)

0 1 2 3 4 5 6 7 8
3

4

5

6

7
·1010

η2

weight w

th
ro

u
gh

p
u
t
[D

oF
s/

s]

(b) 16 nodes (768 cores)

Fig. 8. Time of an operator application with either the general-purpose or the hanging-
node algorithm and with communication either enabled or disabled. We used octant

with L = 7 and L = 9 number of refinements as geometry and k = 4.

4.2 Experiment 2: Parallel Simulation

In this experiment, we distribute the mesh and the work among all processes
of a compute node. The time spent on the operator evaluation by process i is
proportional to NNO,i+(1+η)NHN,i with NNO,i and NHN,i, being the number of
cells without and with hanging nodes possessed by that process. The overall time
spent by the whole application is ∼ max

i
(NNO,i+(1+η)NHN,i). If the same num-

ber of cells NNO,i+NHN,i is assigned to each process i and additional costs η � 1
are ignored, this leads to load imbalances and to a decreased total throughput.
In such situations, one would not distribute the number of cells but the work by
assigning each cell a user-specified weight, e.g., the weight of 1.0 to cells without
hanging-node constraints and the weight of w+1 ≥ 1 to cells with hanging-node
constraints. Such weights need to be determined by a tuning process. Small costs
are desirable, on the one hand, as the throughput is acceptable without tuning
of additional parameters and, on the other hand, because other code regions in
the same application might have different—contradicting—requirements for the
weights.

The goal of this experiment is to determine a factor η2 that is given as the
weight w for which the execution time is minimal in the octant case for k = 4.
In the optimal case, the value η2 should be comparable to η1 from the first
experiment.

Figure 8 shows the time of an operator application for different weights w on
1 and 16 compute nodes. As expected, the specialized hanging-node treatment
is able to shift η2 from 130% to 60% and from 230% to 90%. At the same time,
it also reaches overall higher throughputs.

Comparing the values η1 and η2, one can observe that η1 < η2. Our investi-
gations have revealed that this is related to the communication. The matrix-free
operator evaluation (1) updates the ghost values during G and collects partial
results from neighboring processes during a “compress” step in GT . The library
deal.II assigns DoFs to cells/processes in the order of a space-filling curve [4,5];

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 149

Intel (2×24 cores) Nvidia (1 device) AMD (2×64 cores)

1 2 3 4 5 6
0

2

4

6

·109

degree k

th
ro

u
gh

p
u
t
[D

oF
s/

s]

new HN algorithm
no constraints

(a) throughput

1 2 3 4 5 6
0

0.5

1

1.5

η′
1 (Nvidia)

η1 (Nvidia)

degree k

co
st

η
1

(b) cost

Fig. 9. Experimental results of the shell simulation for degrees 1 ≤ k ≤ 6.

in particular, all the leaf children of a cell are assigned to the same process. This
leads to communication patterns, as indicated in Fig. 2c, in which only the con-
straining cells need to send data during the update of the ghost values, while
during the compression step only constrained cells are sending data. In many
cases, constraining and constrained cells are well distributed, but not in the
octant case. This can be verified by turning off the communication (dashed
lines in Fig. 8), for which indeed η1 ≈ η2. We defer the development of an
algorithm for smarter assignment of DoFs to future work.

4.3 Experiment 3: Cross-Platform Validation

In the following, we present the results of parallel experiments for affine shell
meshes for 1 ≤ k ≤ 6 additionally on a dual-socket AMD Epyc 7742 CPU com-
pute node and a single GPU device on Summit3 (Nvidia Tesla V100). The AMD
CPU consists of 2 × 64 cores running at 2.25 GHz and uses codes compiled for
the AVX2 instruction-set extension (4-wide SIMD). This gives an arithmetic
peak performance of 4.61 TFlop/s. The memory configuration uses 2 × 8 chan-
nels of DDR4-3200, resulting in a peak bandwidth of 410 GB/s and a measured
STREAM triad bandwidth of 290 GB/s. The performance specifications of the
V100 GPU in terms of GB/s and GFLOP/s are more than twice as high as
the ones of the two CPU systems (arithmetic peak performance of 7.8 TFlop/s,
peak memory bandwidth of 900 GB/s, and measured bandwidth of 720 GB/s),
but with a less sophisticated cache infrastructure. On the AMD CPU, we use
gcc-7.5.0 as compiler with the flags -O3 -march=znver2 -funroll-loops,
and, on the Nvidia GPU, we use nvcc 11.0.3/gcc 9.1.0 as compiler with the
flags -O2. We have chosen the number of refinements to the maximal memory
capacity of the given hardware. We did not perform any tuning of the weight
parameter w (see Subsect. 4.2) and set its value to zero.

Figure 9a presents the obtained throughput. The AMD system reaches the
highest throughput of around 6 GDoFs/s. Nvidia and Intel show similar maximal
3 https://www.top500.org/system/179397/, retrieved on November 15, 2021.

https://www.top500.org/system/179397/

150 P. Munch et al.

throughputs of around 4 GDoFs/s, with Intel having slight advantages at lower
polynomial degrees. The lower performance of the Intel hardware setup compared
to the AMD setup is mainly related to the different memory bandwidths (205
vs. 290 GB/s).

Figure 9b presents the cost η1 for the three processor types. All of them start
with a high value at low degrees, but reach lower costs (6–25%) for higher degrees
(k ≥ 4). For the Nvidia GPU, we present a second set of results (dashed line) in
Fig. 9b. The reason for this is that the hanging-node algorithm is executed—in
contrast to our expectations—on every cell, even if its refinement configuration
(value “0”) indicates that nothing has to be done (by the warp/block). In such
a case, the definition of the cost (2) does not hold and we, therefore, define
η′
1 = (T − T̂)/T̂ , i.e., as the ratio of the additional time to run a simulation with

hanging-node constraints and the time to run the same simulation artificially
without hanging-node constraints. The values 6% ≤ η′

1 ≤ 24% are reasonable,
but implicate that simulations with any number of cells with hanging-node con-
straints have to pay this overall penalty, even if they only have ≈1% such cells,
as is the situation in the octant case.

5 Conclusions and Outlook

We have presented an algorithm for the efficient evaluation of the continuity
constraints at hanging nodes for matrix-free high-order FEM computations on
unstructured, hex-dominated, mixed meshes and for multi-component elements
that contain a Lagrange element in one of their components. The algorithm splits
up the application of constraints into a hanging-node part and a general part,
using efficient inplace interpolations for the former. For this purpose, the DoF
map of the cells has to be updated and the configurations of cell refinements have
to be determined as well as efficiently encoded and decoded. In 3D, we require
8 bits to encode all 137 possible configurations. The algorithm is applicable
for both CPUs and GPUs with two distinct differences: 1) for the GPU, the
application of non-hanging-node constraints, like Dirichlet boundary conditions,
can not be merged into the cell loop, but needs to be applied separately and 2)
specialized interpolation routines have to be used due to different vectorization
strategies.

Experiments have shown that, for high-order finite elements, the costs of cells
with hanging-node constraints can be reduced significantly for affine meshes. For
low-order elements, we also obtain improvements, but the costs remain noticeable
due to conditional branches required for checking the refinement configurations.
For high-order non-affine meshes, the application of hanging-node constraints
can be completely hidden behind memory access. For the CPU, we have discussed
different vectorization strategies and identified that processing cell by cell is the
most efficient approach in the context of matrix-free algorithms that are based
on vectorization across cells for lower degrees k ≤ 3, whereas masking is superior
for k > 3. The benefits of our node-level optimization on parallel applications
are significantly reduced load imbalances and higher throughput with a more
moderate cell-weighting function.

Efficient Application of Hanging-Node Constraints for Matrix-Free FEM 151

Future work will extend the algorithm towards the support of more cell
shapes (e.g., simplex, wedge, pyramid) in the context of mixed meshes and hp-
adaptive FEM so that one does not need to fall back to a slower general-purpose
algorithm in these cases. Moreover, we intend to perform further performance
optimizations, which will target the reduction of overhead in the case of low-order
elements, alternative vectorization strategies, and improved parallel distribution
of degrees of freedom in order to minimize the communication overhead in the
context of hanging-node constraints.

Acknowledgment. The authors acknowledge collaboration with Momme Allalen,
Daniel Arndt, Magdalena Schreter, Bruno Turcksin as well as the deal.II commu-
nity.

References

1. Anderson, R., et al.: MFEM: a modular finite element methods library. Comp.
Math. Appl. 81, 42–74 (2021)

2. Arndt, D., et al.: The deal.II library, version 9.3. J. Numer. Math. 29(3) (2021)
3. Arndt, D., et al.: The deal.II finite element library: design, features, and insights.

Comp. Math. Appl. 81, 407–422 (2021)
4. Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data

structures for massively parallel generic adaptive finite element codes. ACM Trans.
Math. Softw. 38(2), 14/1-28 (2011)

5. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–
1133 (2011)

6. Cerveny, J., Dobrev, V., Kolev, T.: Nonconforming mesh refinement for high-order
finite elements. SIAM J. Sci. Comput. 41(4), C367–C392 (2019)

7. Davydov, D., Pelteret, J.P., Arndt, D., Kronbichler, M., Steinmann, P.: A matrix-
free approach for finite-strain hyperelastic problems using geometric multigrid. Int.
J. Num. Meth. Eng. 121(13), 2874–2895 (2020)

8. Deville, M.O., Fischer, P.F., Mund, E.H.: High-order methods for incompressible
fluid flow. Cambridge University Press (2002)

9. Fischer, P., et al.: Scalability of high-performance PDE solvers. Int. J. High Perf.
Comp. App. 34(5), 562–586 (2020)

10. Fischer, P.F., Kruse, G.W., Loth, F.: Spectral element methods for transitional
flows in complex geometries. J. Sci. Comput. 17(1), 81–98 (2002)

11. Krank, B., Fehn, N., Wall, W.A., Kronbichler, M.: A high-order semi-explicit dis-
continuous Galerkin solver for 3D incompressible flow with application to DNS and
LES of turbulent channel flow. J. Comp. Phy. 348, 634–659 (2017)

12. Kronbichler, M., Diagne, A., Holmgren, H.: A fast massively parallel two-phase
flow solver for microfluidic chip simulation. Int. J. High Perform. Comput. Appl.
32(2), 266–287 (2018)

13. Kronbichler, M., et al.: A next-generation discontinuous Galerkin fluid dynamics
solver with application to high-resolution lung airflow simulations. In: SC 2021
(2021)

14. Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite
element operator application. Comput. Fluids 63, 135–147 (2012)

152 P. Munch et al.

15. Kronbichler, M., Kormann, K.: Fast matrix-free evaluation of discontinuous
Galerkin finite element operators. ACM Trans. Math. Softw. 45(3), 29/1-40 (2019)

16. Kronbichler, M., Ljungkvist, K.: Multigrid for matrix-free high-order finite element
computations on graphics processors. ACM Trans. Parallel Comput. 6(1), 2/1-32
(2019)

17. Laughton, E., Tabor, G., Moxey, D.: A comparison of interpolation techniques
for non-conformal high-order discontinuous Galerkin methods. Comput. Methods
Appl. Mech. Eng. 381, 113820 (2021)

18. Ljungkvist, K.: Matrix-free finite-element computations on graphics processors
with adaptively refined unstructured meshes. In: SpringSim (HPC), pp. 1–1 (2017)

19. Melenk, J.M., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: fast
quadrature. Comput. Methods Appl. Mech. Eng. 190(32), 4339–4364 (2001)

20. Munch, P., Heister, T., Prieto Saavedra, L., Kronbichler, M.: Efficient distributed
matrix-free multigrid methods on locally refined meshes for FEM computations.
arXiv preprint arXiv:2203.12292 (2022)

21. Munch, P., Kormann, K., Kronbichler, M.: hyper.deal: an efficient, matrix-free
finite-element library for high-dimensional partial differential equations. ACM
Trans. Math. Softw. 47(4), 33/1–34 (2021)

22. Orszag, S.A.: Spectral methods for problems in complex geometries. Journal of
Computational Physics 37(1), 70–92 (1980)

23. Saurabh, K., et al.: Scalable adaptive PDE solvers in arbitrary domains. In: SC
2021 (2021)

24. Scroggs, M.W., Dokken, J.S., Richardson, C.N., Wells, G.N.: Construction of arbi-
trary order finite element degree-of-freedom maps on polygonal and polyhedral cell
meshes. ACM Trans. Math. Softw. (2022). https://doi.org/10.1145/3524456

25. Shephard, M.S.: Linear multipoint constraints applied via transformation as part
of a direct stiffness assembly process. Int. J. Num. Meth. Eng. 20(11), 2107–2112
(1984)

26. Świrydowicz, K., Chalmers, N., Karakus, A., Warburton, T.: Acceleration of
tensor-product operations for high-order finite element methods. Int. J. High Perf.
Comput. Appl. 33(4), 735–757 (2019)

http://arxiv.org/abs/2203.12292
https://doi.org/10.1145/3524456

Dynamic Task Fusion
for a Block-Structured Finite Volume

Solver over a Dynamically Adaptive Mesh
with Local Time Stepping

Baojiu Li1 , Holger Schulz2 , Tobias Weinzierl2,3(B) , and Han Zhang1

1 Institute for Computational Cosmology, Durham University,
Durham DH1 3FE, UK

2 Department of Computer Science, Durham University, Durham DH1 3FE, UK
tobias.weinzierl@durham.ac.uk

3 Institute for Data Science, Large-Scale Computing, Durham University,

Durham DH1 3FE, UK

Abstract. Load balancing of generic wave equation solvers over dynam-
ically adaptive meshes with local time stepping is difficult, as the load
changes with every time step. Task-based programming promises to mit-
igate the load balancing problem. We study a Finite Volume code over
dynamically adaptive block-structured meshes for two astrophysics sim-
ulations, where the patches (blocks) define tasks. They are classified into
urgent and low priority tasks. Urgent tasks are algorithmically latency-
sensitive. They are processed directly as part of our bulk-synchronous
mesh traversals. Non-urgent tasks are held back in an additional task
queue on top of the task runtime system. If they lack global side-effects,
i.e. do not alter the global solver state, we can generate optimised com-
pute kernels for these tasks. Furthermore, we propose to use the addi-
tional queue to merge tasks without side-effects into task assemblies, and
to balance out imbalanced bulk synchronous processing phases.

Keywords: Task-based programming · Block-structured dynamic
adaptive mesh refinement · Local time stepping · Wave equation solvers

The authors acknowledge the support through the embedded CSE programme of the
ARCHER2 UK National Supercomputing Service (http://www.archer2.ac.uk) under
grant no ARCHER2-eCSE04-2, Durham’s oneAPI Academic Centre of Excellence made
by Intel, ExCALIBUR’s Phase Ia grant ExaClaw (EP/V00154X/1) and ExCALIBUR’s
cross-cutting project EX20-9 Exposing Parallelism: Task Parallelism (grant ESA 10
CDEL). They furthermore received support through the European Research Council
via grant ERC-StG-716532-PUNCA, the STFC Consolidated Grants ST/T000244/1
and ST/P000541/1, and the China Scholarship Council (CSC) studentship at Durham
University. This work has made use of the Hamilton HPC Service of Durham University.

c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 153–173, 2022.
https://doi.org/10.1007/978-3-031-07312-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_8&domain=pdf
http://orcid.org/0000-0002-1098-9188
http://orcid.org/0000-0003-3428-8922
http://orcid.org/0000-0002-6208-1841
http://orcid.org/0000-0002-7651-1179
http://www.archer2.ac.uk
https://doi.org/10.1007/978-3-031-07312-0_8

154 B. Li et al.

1 Introduction

Dynamic adaptive mesh refinement (AMR) and local time stepping (LTS) are
algorithmic key ingredients behind many efficient simulation codes, i.e. codes
that invest compute resources where they pay off most. We focus on the simula-
tion of waves, i.e. hyperbolic partial differential equations (PDEs), from astro-
physics which are solved via block-structured Finite Volumes with explicit time
stepping. The combination of AMR plus LTS makes it challenging to load bal-
ance, as the workload per subdomain changes per time step. These changes are
often difficult to predict and are not spatially clustered. Any geometric data
decomposition thus has to yield (temporal) imbalances. Modern supercomputer
architectures however exhibit and will exhibit unprecedented hardware paral-
lelism [9], which we have to harness in every single simulation step.

Task-based programming promises to ride to the programmers’ rescue.
Tasks [3,8] allow the programmer to oversubscribe the system logically, i.e. to write
software with a significantly higher concurrency compared to what the hardware
offers. A tasking runtime can then efficiently schedule the work modelled via tasks,
i.e. map the computations onto the machine. The task runtime and its task stealing
eliminate imbalances per rank [8]. In practice, tasking as exclusive overarching par-
allelisation paradigm however often yields inferior performance compared to tra-
ditional domain decomposition with bulk-synchronous processing (BSP). There
are three main reasons for this: First, tasking introduces significant administra-
tive overhead if tasks become too fine grained. Yet, if programmers reduce the
task granularity, they sacrifice potential concurrency. This is problematic in our
context: If too few Finite Volumes are clustered into a task, the task becomes too
cheap. If too many Finite Volumes are clustered, we lose concurrency and constrain
the AMR and LTS. The dilemma becomes particularly pressing for non-linear
PDEs where eigenvalues and, hence, admissible time step sizes per task change—
we hence can not cluster multiple tasks that are always triggered together [23].
Second, assembling the task graph quickly becomes prohibitively expensive and
introduces algorithmic latency if the graphs are not reused, change at runtime,
or are massive. Yet, if codes issue exclusively ready tasks, we deny the runtime
information and any scheduling decision thus might, a posteriori, be sub-optimal.
Finally, generic task code is often not machine-portable. Indeed, we find that dif-
ferent machines require different task granularities. CUDA or KNL-inspired archi-
tectures for example prefer larger tasks with limited data transfer compared to a
mainstream CPU [17,21,25,27] and they penalise too many kernel launches [27].

We study a generic Finite Volume code for wave equations that can handle
different PDEs via functors: It spans a mesh and provides generic numerical
kernels, while the actual PDE terms are injected via callback functions [24]. Our
code is based upon the second generation of the ExaHyPE engine which inherits
all fundamental principles from the first generation [18]. It is similar to others
solver in the field such as SpECTRE [15] as it relies on generic Riemann solvers.
The code features unconstrained dynamic AMR which can change the mesh in
each and every time step, and patch-local LTS, and a combination of traditional
non-overlapping domain decomposition and a task formalism.

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 155

Our novel idea is that the tasks are classified into urgent, i.e. potentially
along the critical path, and non-urgent. The latter are called enclave tasks [6].
The urgent tasks are embedded into the actual BSP code, i.e. the mesh traversal
of the non-overlapping domains. They are executed immediately. Enclave tasks
can be held back in a user-defined task queue and are not instantaneously passed
on to the tasking runtime. Instead, we analyse where BSP imbalances arise and
just take as many tasks from the user queue as we need to compensate for them.
Alternatively, we can spawn them as native tasks on top of the BSP parallelism
and rely on the runtime to compensate for imbalances. Furthermore, we label the
enclave tasks that have no global side-effects, i.e. do not alter the global solver’s
state. These tasks are processed by specialised, optimised compute kernels and
can be batched into task sets which are processed en bloc. Different to other
approaches, our code does not geometrically cluster or combine tasks, and it
does not rely on a priori knowledge of the task creation pattern. We retain
all flexibility and yet obtain compute-intense batches of tasks, while we do not
assemble any task graph at all.

To the best of our knowledge, such a flexible approach has not been proposed
before. Our working hypothesis is that the batching allows us to work with small
tasks and still get high performance compute kernels, that a task graph assembly
is not necessary and actually inadequate for LTS plus AMR, and that task-based
programming plus domain decomposition outperforms plain BSP. We study the
impact of our ideas for two astrophysical problems, though the principles apply
to a lot of mesh-based PDE solvers and even Lagrangian methods which typically
suffer from too fine-granular tasks.

The remainder of the paper is organised as follows: We briefly sketch our
application area of interest and our benchmarks (Sect. 2) before we introduce
our numerical ingredients and the resulting software architecture (Sect. 3). In
Sect. 4, we discuss the four different levels of parallelisation applied, highlight
the rationale behind these levels and the arising challenges. The key ideas of the
present paper are sketched in the introductory paragraph of Sect. 5 before we
provide details on their realisation. Section 6 hosts some numerical experiments.
A brief outlook and summary (Sect. 7) close the discussion.

2 Applications

Our equations of interest are hyperbolic PDEs given in first-order formulation:

∂Q

∂t
+ ∇ · F (Q) +

d∑

i=1

Bi(Q)
∂Q

∂xi

= S(Q) with Q : R3+1 �→ R
N . (1)

They describe time-dependent wave equations. Conservative PDE formulations
comprise a term ∇·F (Q), otherwise non-conservative product (ncp) terms enter
the equation. These Bis act on the directional derivatives. We implement two
astrophysics scenarios on top of (1):

156 B. Li et al.

Fig. 1. Left: Characteristic density and velocity fields from the collisional secondary
infall simulation. Due to the gravitational infall of mass, an outer-propagating shock
appears. Right: Rescaled density and velocity profiles in radial direction.

2.1 Modified Euler Equations: Secondary Infall

Our first simulation is a secondary infall test in a hydrodynamic system on
an expanding (cosmological) background, driven by Newtonian gravity. It stud-
ies spherically-distributed mass (collisional baryonic or collisionless dark matter)
collapsing under self-gravity, which is an important testing scenario in galaxy for-
mation. One property of interest is the theoretically predicted self-similarity after
rescaling in the solution [5]: The density, pressure and velocity profiles depend
exclusively on time, i.e. preserve their shape (Fig. 1). Our own studies with the
present software suggest that this property is even preserved (approximately)
for a set of non-standard graviational models [26]. The underlying equations are
modified compressible Euler equations over five unknowns ρ,E ∈ R and j ∈ R

3.
ρ, j, E represent the density of mass, momentum and energy respectively. The
self-gravitation enters the equations via a source term S(Q) which depends upon
ρg. g is the gravitational acceleration, which is proportional to m<r/r2 where
m<r is the total (overdensity) mass within a given radius r around the infall’s
centre. This system is a flavour of (1) with N = 5, where Bi = 0.

The F term is independent of the global solution behaviour. This does not
hold for the right-hand side: The value of the mass function m<r requires global
information from all volumes within r. We construct a mass array {mi}0≤i≤max

storing the total mass within radii {ri}0≤i≤max. The mi values are calculated
by accumulating the mass within ri per time step. During the subsequent time
step, we feed the following interpolation into the source term S(Q):

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 157

m<r =

⎧
⎪⎨

⎪⎩

m0r
3/r30, r ≤ r0

mi
ri+1−r
ri+1−ri

+ mi+1
r−ri

ri+1−ri
, ri < r ≤ ri+1

mmax + 4π
3 ρ(rmax)

(
r3 − r3max

)
, r > rmax

(2)

The interpolation works with bucketing, i.e. the m<r is discretised, while the
modifications in (2) near and far from center allow us to accumulate only the
mass values within a finite area around the centre. We work with a finite number
of shells or spheres for which we calculate the actual mass. In a Finite Volume
setting, volumes far away from the centre do not feed into the subsequent S
evaluations. Their behaviour is local , i.e. the time stepping’s update of such
volumes has no global side-effect. As the solution Q evolves smoothly in time,
we can evolve {ri}0≤i≤max smoothly in time, too, such that the error due to the
discretisation into spheres remains bounded.

2.2 CCZ4 GR Equations: Gauge Waves

Our second tested scenario solves a complete numerical relativity system based
upon the CCZ4 formalism in vacuum [2]. The equations simulate strong gravity
in regions where the Newtonian approximation is invalid. The textbook version
of the vacuum CCZ4 system involves 25 variables and is second order in space.
It also is subject to constraints. We follow [12] and recast the equations into
first order by introducing auxiliary variables. This expands the whole system
to N = 59 variables in (1). The auxiliary variables allow us to eliminate the
second-order terms. They also map the constraints onto Lagrangian parameters,
i.e. the Einstein constrain equations are enforced weakly.

Our code is a complete C++ rewrite of the equations (12a)-(12m) as pub-
lished in [12] which absorbs the flux terms within the ncp, i.e. F (Q) = 0. Both
the eigenvalue and ncp calculation are phrased as dense tensor products (like
2αΓ̃ i

jkÃjk), i.e. yield a high arithmetic intensity.
In this paper, we assess the code performance through the gauge wave test

from [1]. This setup is derived from a time dependent coordinate transformation
of the flat Minkowski metric: The spacetime is trivial, which is a property we do
not exploit further. We expect a standing wave which travels through the domain
and enters on the other side. The eigenvalues are invariant, and the wave’s ampli-
tude and frequency do not change over time subject to numerical dissipation.
Different to the previous setup, we need periodic boundary conditions.

3 Software and Solver Architecture

We solve both challenges with first-order explicit time stepping (explicit Euler)
on block-structured adaptive meshes. Finite Volumes with a generic Rusanov
solver for the arising Riemann problema deliver our spatial discretisation.

158 B. Li et al.

3.1 Dynamically Adaptive AMR

We discretise the computational domain Ωh through an octree or spacetree for-
malism, as it is state-of-the-art in the field [7,10,11,14,20,22,24]. Let the cubic
domain Ωh represent the root of a tree data structure. Equidistant, axis-aligned
cuts through the cube along each Cartesian coordinate axis yield children of the
tree and span a mesh. For each of these cubes, we decide independently whether
we continue to refine recursively or not. We end up with an adaptive Cartesian
mesh of cells, where each cell is a cube. The cells can have different sizes and
hanging vertices are allowed, i.e. the mesh is non-conformal. We do not impose
any balancing [14,20].

Each unrefined cell, i.e. cell which is not refined further, hosts a p × p × p
Cartesian grid. p ≥ 2 is globally fixed. The elements within this embedded grid
are called volumes. All the volumes within one cell form a patch. The resulting
computational mesh of volumes is adaptive and block-structured. The patch
formalism can also be read as a non-overlapping domain decomposition, where
the patches of different sizes tessellate the computational domain.

The terminology around block-structured adaptive mesh refinement (AMR)
is ambiguous. Different to other papers in the field [11], we employ the phrase
“block-structured” but make all patches within our mesh host the same number
of volumes. Different cardinalities for the subdivision within the tree are popular:
Splitting into two parts along each coordinate axis yields the classic quadree or
octree scheme [14,20], while splitting into k > 2 parts yields shallower trees. For
p = k, our overall formalism results in a tree with fixed branching factor. For
p > k, we can read our mesh as inhomogeneous tree using the same branching
factor of kd everywhere besides the very last level, where the branching factor
suddenly becomes pd. It becomes a hybrid combination of the ideas behind cell-
by-cell refinement and patch-based AMR [22]. To match a given spatial accuracy,
different choices of k and p can yield volumes of sufficiently small size yet with
different topologies. Our code uses k = 3 [24] but leaves p as free parameter.

3.2 Finite Volumes

Let every volume carry a constant shape function. This defines our finite volumes.
We apply an explicit Euler discretisation with time step size T , i.e. assume that
all shape functions per patch remain constant over a time interval of length T . A
weak formulation of (1) allows an integration by parts and the Gauss divergence
theorem to yield a textbook Finite Volume scheme. Along the volume interfaces,
our implementation uses the Rusanov flux

flux±
n (Q)|∂v =

1
2
Fn(Q+) +

1
2
Fn(Q−) ∓ 1

2
(Q+ − Q−)Bn(

Q+ + Q−

2
)

−max(λmax(Q+), λmax(Q−))(Q+ − Q−)

with left/right values Q± and maximum eigenvalues over the Jacobian.
The generic numerical scheme is tailored towards a particular application by

specifying the number of unknowns N in (1) and by providing implementations

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 159

of a source S and the maximum eigenvalue. As we work in a Cartesian world,
we furthermore inject a flux F and the Bi for each of the three coordinate axes.

3.3 Compute Kernels

Let each patch be surrounded by a halo layer of width one. If two face-connected
patches host volumes of exactly the same size, such a halo layer is a copy of the
volumes from the face-connected neighbouring patch. If a neighbouring patch
hosts a coarser mesh, the halo volumes are filled with a linear interpolation of
coarser data. If a neighbouring patch hosts a finer mesh, the halo volumes host
the averaged data of finer meshes.

With the notion of a halo layer, we can phrase the Finite Volume update of a
patch as a compute kernel : It accepts the patch data plus the halo and yields the
next time step’s solution via the PDE term realisations passed in by the user.
The kernel requires an epilogue code which updates the kernel’s halo layer for the
subsequent time step. This is a functional programming approach: We have some
generic numerical code which is passed functors that realise the actual physics.
Our code uses virtual function calls for the functors. These virtual functions
belong to a global solver object which hosts all global solver attributes.

3.4 Time Stepping Variants

We realise four different time stepping schemes. The simplest scheme is fixed
time stepping which consists of two logical steps per time step and works with a
given, time-invariant ΔT : (i) Update all Finite Volumes. For this, we run over all
cells aka patches that host them. (ii) Analyse adaptive mesh refinement (AMR)
criteria, i.e. refine and coarsen the mesh, and update all halo layers with the
correct information from adjacent patches.

Our adaptive time stepping adds an additional epilogue to the kernel invo-
cation and reduces ΔT : (i.a) Update all Finite Volumes. (i.b) Determine the
maximum eigenvalue λmax over all volumes within the patch and compute a
patch-local admissible next time step size ΔT (adm) = Ch/λmax. (ii.a) Realise
the AMR and initialise the halo layers. (ii.b) Reduce a global admissible time
step size and use this one for the next time step. Due to the global reduction, the
adaptive time stepping ensures that the CFL condition is never violated even if
the wave propagation speed changes over time.

Subcycling accepts that volumes of different size are subject to different
(local) CFL conditions: (i.a) Augment each patch with a patch-local time
stamp T (v). (i.b) Run over all patches. Update the Finite Volumes within
a patch if and only if all face-connected patches either carry the same time
stamp or are ahead in time. Otherwise skip the patch. Use the time step size
ΔT = ΔT̂ · h/hmax. hmax is the global coarsest volume size and h is the local
patch’s volume size. (i.c) Determine the normalised admissible patch-local time
step size ΔT̂ (adm)(v) = Chmax/λmax (ii.a) Realise the AMR and initialise the
halo layers. (ii.b) Reduce a global normalised admissible time step size ΔT̂ (v).

160 B. Li et al.

The local time stepping eliminates the strict coupling between neighbouring
patches: (i.a) Augment each patch with a patch-local time stamp T (v) and time
step size ΔT (v). (i.b) Run over all patches. Update the Finite Volumes within a
patch if and only if all face-connected patches either carry the same time stamp
or are ahead in time. Use the local time step size ΔT (v). (i.c) Determine a new
local time step size if the patch has been updated. (ii) Realise the AMR and
initialise the halo layers.

Subcycling requires linear interpolation in time along mesh resolution bound-
aries. Local time stepping requires linear interpolation for each halo layer update.
For linear PDEs, it would yield subcycling. In our case, we solve non-linear PDEs.
There is no clear 1:ki time step relation between patches of different resolution,
and even patches of the same mesh size are allowed to advance in time with
different speed if their eigenvalues differ.

Some literature in the field [22] uses the term adaptive for subcycling. This
is a reasonable decision once we observe that too small time step sizes intro-
duce numerical diffusion and thus pollute the simulation result. In this context,
one can argue that both our fixed time stepping and adaptive time stepping
are inappropriate for dynamically adaptive meshes over non-linear PDEs.Larger
volumes or volumes with small eigenvalues should advance in time faster.

3.5 Concurrency Analysis

Once we have made a decision to update a patch, we are able to process it
independently of other patches as we supplement each patch with a halo layer.
The patch update becomes a task. In a regular mesh with P × P × P volumes,
we obtain a best-case concurrency level of (P/p)3. Within our tree formalism,
we know ∃	 : k� · p = P and we consequently could obtain the same mesh with
patch sizes . . . , k2p, kp, p, p/k, p/k2, . . ., too. Larger p reduce the concurrency of
the patch updates yet increase the arithmetic weight per task. Smaller p yield
higher concurrency yet increase the cost per Finite Volume update due to (time
step) bookkeeping per patch and data movements for the halos, even though the
arithmetic intensity per volume is independent of the choice of p.

Larger p also reduce the AMR cardinality. If shocks arise, smaller values of p
allow us to resolve these features with fewer volumes. Finally, large p constrain
the time step adaptivity, since all Finite Volumes within a patch advance in time
with the same time step size. In the context of subcycling and the local time
stepping, we see that both schemes yield permanently changing concurrency
levels, as the number of patches that are updated per time step changes per
step. This even holds if the AMR grid remains static or we have a regular mesh
in the local time stepping scheme.

The halo data exchange between patches of the same size is embarrass-
ingly parallel. In a distributed memory context, it however requires MPI data
exchange. The halo data projections from coarse to fine impose no concurrency
constraints either. The restriction, i.e. the averaging, requires some local syn-
chronisation, as no two neighbouring patches may restrict into the same halo
volume at the same time.

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 161

4 Parallelisation

4.1 Domain Decomposition

In our code, the computational domain’s adaptive mesh of cells is split along a
space-filling curve (SFC) [4,13]: Curve segments of similar cell count are first dis-
tributed over the compute nodes (ranks), before we split each rank’s subpartition
once again along the SFC into one chunk per thread. Fewer chunks are used if the
subpartitions would become too small. We end up with two levels of data par-
allelism: A distributed memory one and a shared memory one. Both realise the
same SFC decomposition paradigm yet differ in the way they exchange data:
The top level sends MPI messages around, while the shared memory domain
decomposition copies memory segments.

Rationale 1. The two-level domain decomposition maps directly onto plain
SPMD and BSP programming: All MPI ranks run through the same code, spawn
one large parallel region (parallel for) and make each thread run through one
chunk of the domain.

The two-level balancing yields a chains-on-chains problem [13]: The SFC lin-
earises all patches into one long sequence of patches which we cut first into
chunks per MPI rank and then into chunks per thread. We employ a uniform
cost model which is a strong simplification for subcycling. More sophisticated
chains-on-chains approaches tackle this aspect [16]. However, they intrinsically
fail for local time stepping if the underlying PDE is non-linear. A uniform cost
model also fails to reflect that adaptive mesh refinement with non-conformal
meshes requires inter-resolution transfer operators at patch boundaries where
the mesh resolution changes. These induce additional cost.

Challenge 1. The BSP programming model applied to a geometric domain
decomposition is inherently ill-suited to handle local time stepping codes with
dynamic AMR for non-linear hyperbolic PDEs.

4.2 Task Decomposition

The update of the individual patches is embarrassingly parallel. This statement
however ignores data dependencies along mesh refinement transitions, ignores
that dynamic AMR is expensive due to memory allocations which do not arbi-
trarily scale up, and it ignores that the halo data exchange via MPI requires
deterministic messaging, while periodic boundary conditions typically involve
some sorting or mapping. Some patch update tasks might belong to the critical
path of the overall task graph as they are more expensive than others or feed
into data transfer.

We therefore realise the concept of enclave tasking [6] and map each time step
onto two mesh sweeps: Let a skeleton cell be a cell which is flagged to be refined
or coarsened, is adjacent to a coarser cell, adjacent to a subdomain boundary
or adjacent to a periodic boundary. The code sweeps through the domain. Per

162 B. Li et al.

skeleton cell, it invokes the compute kernel, triggers all halo data exchange along
the domain boundaries and realises the adaptive mesh refinement. In a second
sweep, the code receives this boundary data, and updates all halo data.

The non-skeleton cells are treated differently: The first, primary sweep
spawns a task for the corresponding patch and memorises the task’s number
within the cell. In the secondary sweep, each thread waits for the corresponding
task to terminate once it hits a non-skeleton cell. It subsequently works in the
task’s result into the mesh before it updates the halo layers.

Rationale 2. We do not explicitly assemble a task graph. Instead,we spawn only
ready tasks. These tasks should overlap with boundary data transfer, adaptive
mesh refinement operations or mesh administration.

Challenge 2. The scheme bursts large numbers of ready tasks. These have to
be held back until they can be used to compensate for BSP imbalances.

Challenge 3. To gain maximum flexibility to compensate imbalances, the
patches (tasks) have to be small.

4.3 Intra-patch Concurrency

Finite Volume schemes spend the majority of their runtime on patch updates.
Each patch update is a sequence of nested for loops with known cardinality.
In the innermost loop, we invoke the user functions. Our code refrains from
exploiting any patch-internal concurrency for the cores. A patch is an atomic
task which is not subdivided further.

Rationale 3. The patch updates have to yield the MFLOP/s, i.e. aggressive
vectorisation has to result from the patch updates unless the user function itself
is costly and vectorised.

Challenge 4. The compiler cannot vectorise over virtual function calls.

5 Performance Optimisation

5.1 Optimised C++ Kernels

Our implementation hides complexity from the domain code, as domain experts
only write code for the PDE terms. They feed into generic compute kernels.
Our per-patch optimisation efforts focus on those non-skeleton tasks which have
no side-effects. A user-defined flag per cell indicates whether the patch kernel
evaluation alters global variables, i.e. the mi values, or not. For the remaining
tasks, we use our generic compute kernel.

Exploit Lack of Side-Effects. We extract our Rusanov patch update into a C++
template function over the solver type and replicate all PDE terms in the user
code by specialisations: For every PDE term within a solver class, we establish a

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 163

second variant which is static, i.e. has class-bindings instead of object-bindings.
This static flavour is stripped off all global data access routines, aka the {mi}
accumulation. For (2), we hence optimise only patches outside of rmax. Our
patch update for side-effect free cells calls the static PDE term variant, i.e. we
eliminate virtual function calls (cmp. Challenge 4).

Next, we remove all C++ expressions from the template kernels which pro-
hibit the compiler to inline. This involves the elimination of initialisation lists
which are internally mapped onto for or while loops by C++. As we know the
exact loop ranges for all constructs through the template arguments, we can
replace such loops, i.e. manually unroll them. It also implies moving the PDE
term definitions into headers, annotating them with attribute ((always
inline)) and removing explicit template instantiations. Explicit template
instantiations enable the compiler to generate object files and thus speed up
the translation while the library sizes are reduced. However, once machine code
is “hidden away” within object files, our compiler struggles to inline. Aggressive
inlining allows the compiler to unroll the loops, to vectorise, and it enables us to
store all temporary data on the call stack rather than the heap which we use in
our generic kernel implementations accepting functors and any data cardinality.

Finally, we realise a patch update kernel which computes all the fluxes per
volume, all eigenvalues and all ncp terms before it updates the image, as well as a
kernel which updates all volumes in-situ. The former variant requires temporary
arrays which can be realised in different storage formats (AoS or SoA). The in-
situ approach runs over the faces, computes the flux/ncp contribution per face
and immediately updates both adjacent volumes. Similar to a red-black Gauss-
Seidel, we update the columns, rows and layers of the patch in an interleaved
fashion such that no race conditions arise. As the Rusanov flux requires averaging
between two cell fluxes plus left and right eigenvalues, many terms are calculated
twice. Yet, we need no massive temporary data structures.

Batched Kernels. So far, we have two semantically different patch update rou-
tines: The standard routine is a generic numerical scheme which accepts N and
p as parameters and is given one functor per PDE term plus the eigenvalue invo-
cation. Each functor can alter the state of the underlying PDE solver. It can, for
example, aggregate global data views. A second routine is used for cells hosting
patches that do not alter the global solver state.

This second flavour can be extended into a third, batched variant: Assume we
have P̂ patches not causing side-effects, each with its own time stamp and time
step size yet the same patch dimensions and PDE terms. We can then update
all P̂ patches in parallel. The lack of side-effects implies that there are no race
conditions. This adds an additional loop over the patches to our compute kernels.
The batched kernel variant takes the P̂ patches and first computes the flux, e.g.,
of one volume of the first patch, then the second patch, and so forth, before it
continues with the second volume. Despite small patches, the vectorisation now
operates over a large iteration space (cmp. Challenge 3) which can be collapsed.

164 B. Li et al.

5.2 Task Queues

We propose an optimised threading architecture, where each rank issues one
OpenMP thread per rank-local subpartition. This is BSP. To compensate for the
intrinsic imbalances (cmp. Challenge 1), we employ our task-based parallelism
on top: When a traversal encounters a non-skeleton cell, i.e. a patch update that
is not algorithmically latency-sensitive, it creates a task.

This task is not passed into the underlying task runtime. Instead, we store
it in an application queue. Once ready tasks are spawned into a task system,
they are typically “lost” to the application code, i.e. it is difficult to manipulate
them anymore. Furthermore, a fundamental principle of task systems is that
the application code hands the responsibility for when a task is executed over
to the runtime. With the application queue, we keep control over the tasks: If
tasks within the queue are required in a subsequent BSP traversal, i.e. if there’s
a task dependency, and if this task has not yet completed, our BSP code runs
through the user queue, processes one task, and checks again for completion. It
polls the queue. If the queue becomes empty, the underlying BSP thread yields.
This architecture allows us to realise the following tasking schemes:

– BSP tasking. All tasks in the application queue remain there until they are
polled by a subsequent BSP section. This realises a lazy evaluation scheme,
where tasks are evaluated upon demand. We postpone their execution.

– Native tasking. Our native tasking scheme maps all tasks that hit the appli-
cation queue directly onto OpenMP tasks. They are not buffered.

– Fill. This extension of BSP uses an atomic counter within the BSP section.
It is initialised with the number of SFC partitions per rank and decremented
once a BSP thread has finished its thread-local mesh traversal. Each BSP
thread thus sees how many companion threads are still working. As long as
some other BSP threads are still active, a thread does not close the BSP
section but grabs a task from the user queue and executes it directly. It
“releases” tasks if and only if we spot imbalances on the BSP side (cmp. Chal-
lenge 2).

– Specialise late. In this extension of the fill variant, a thread waiting for com-
panion BSP threads first checks if the next task in the queue causes no side-
effects. If so, it invokes the optimised kernel. Otherwise, it calls the generic
kernel.

– Batch(#t) late. If a BSP thread recognises that companion BSP sections
run longer, it takes up to #t consecutive tasks from the queue if they all
have the same task type and lack side-effects. It then invokes the batched,
optimised kernel over this set of #t tasks. Tasks are fused into one large task
(cmp. Challenge 3).

– Specialise immediately or batch immediately. In this variant of the fill strategy,
we immediately check if we can invoke a specialised kernel on one task or over
a sequence of tasks, respectively, whenever a task is spawned.

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 165

6 Results

We run our experiments on Durham’s Hamilton 8 cluster. It hosts AMD EPYC
7702 64-Core processor, i.e. the AMD K17 (Zen2) architecture. The 2× 64 cores
are spread over two sockets, but they are organised in 8 NUMA domains. Each
core has access to 32 kB exclusive L1 cache, and 512 kB L2 cache. The L3 cache
is (physically) split into chunks of 16 MB associated with four cores.

We use the Intel oneAPI software stack with icpx 2021.4.0. Intel’s MPI
(version 2021.4) is used for the distributed memory parallelisation, though
we disable MPI for the single-node measurements. The tasking and vectori-
sation are realised through OpenMP. We use the most aggressive generic com-
piler optimisation level (-Ofast) and native code generation (-mtune=native
-march=native).

6.1 Single Task (Kernel) Optimisations

Table 1. Single patch kernel performance for the modified Euler equations (top) and
CCZ4 (bottom) for various patch sizes p×p×p. We compare the plain kernel with virtual
functions (baseline) against kernels without side-effects which either run through the
patches one by one or batch the operations. Three different realisations w.r.t. the data
organisation and computation orchestration are studied. Per measurement, we present
the time ([t] = s) per Finite Volume update incl. the subsequent CFL computation,
while the fastest configuration and those slower than the baseline run are set in bold.

p Baseline Patch-wise Batched

AoS SoA In-situ AoS SoA In-situ

3 1.12 · 10−6 8.28 · 10−7 8.81 · 10−7 4.27 · 10−7 7.85 · 10−7 7.91 · 10−7 6.52 · 10−7

4 9.11 · 10−7 8.07 · 10−7 8.10 · 10−7 3.93 · 10−7 7.35 · 10−7 7.34 · 10−7 6.21 · 10−7

7 7.91 · 10−7 7.43 · 10−7 7.85 · 10−7 3.54 · 10−7 7.00 · 10−7 7.09 · 10−7 5.62 · 10−7

8 7.84 · 10−7 7.67 · 10−7 7.70 · 10−7 3.52 · 10−7 6.90 · 10−7 6.87 · 10−7 5.63 · 10−7

15 7.99 · 10−7 7.48 · 10−7 7.72 · 10−7 3.44 · 10−7 6.92 · 10−7 6.80 · 10−7 5.47 · 10−7

16 7.95 · 10−7 7.41 · 10−7 7.62 · 10−7 3.45 · 10−7 6.85 · 10−7 6.87 · 10−7 5.47 · 10−7

3 1.84 · 10−5 1.73 · 10−5 1.70 · 10−5 1.17 · 10−5 1.60 · 10−5 1.60 · 10−5 1.26 · 10−5

4 1.68 · 10−5 1.65 · 10−5 1.65 · 10−5 1.12 · 10−5 1.50 · 10−5 1.53 · 10−5 1.22 · 10−5

7 1.56 · 10−5 1.57 · 10−5 1.56 · 10−5 1.02 · 10−5 1.45 · 10−5 1.45 · 10−5 1.10 · 10−5

8 1.55 · 10−5 1.70 · 10−5 1.68 · 10−5 1.03 · 10−5 1.44 · 10−5 1.44 · 10−5 1.11 · 10−5

We first assess the impact of our kernel optimisations in isolation. For this, we
focus only on the runtime of the patch update routines without any time step-
ping, mesh administration, halo updates, and so forth, and compare the generic
FV patch update implementation using functors with the optimised versions
which are used for tasks without side-effects. Our results present data for vari-
ous patch sizes on one core. The compiler optimisation report clarifies that the

166 B. Li et al.

translator succeeds in vectorising the user functions themselves (baseline) or
vectorises over the patch entries or the batch of patches respectively.

The inlining pays off for the Euler equations (Table 1). A tuning of the inter-
mediate data formats (AoS vs. AoS) however is irrelevant. Instead, avoiding the
storage of intermediate results and computing the eigenvalues and fluxes twice
gives the best performance. For CCZ4, the evaluation of a single source, ncp
or eigenvalue is already expensive and utilises all vector capabilities according
to the compiler feedback. The aggressive inlining, collapsing and vectorisation
of the patch loops harms the performance unless we use the in-situ updates or
batching. In-situ without batching continues to yield the best performance over-
all. We have not been able to identify significant runtime differences between
AoS, SoA and in-situ for the baseline code using virtual function calls.

Lessons Learned 1. With a distinction of patch updates with side effects from
kernels without them as well aggressive inlining and vectorisation, the small
patches manage to match the throughput of large regular patches of volumes.

If we first compute all fluxes in one direction, then in the other, then all ncps,
then all eigenvalues, until we eventually combine these ingredients to update
the outcome, the compiler vectorises all calculations once we inline the function
calls. Yet, it suffers from many memory accesses. It is better to compute the
eigenvalues, flux and ncp feeding into the Rusanov flux redundantly and to
update all unknowns in-situ, i.e. to minimise the memory accesses. With this
update scheme plus the exploitation of no side effects, we speed up our code by
a factor of two for a memory-bound, simplistic PDE. For complex PDE terms,
the approach still reduce the runtime robustly by roughly 30%. It remains an
open question if a switch of the intermediate data structures or the elimination of
redundant calculations would be the method of choice for other architectures or
PDE choices. Furthermore, we do not exploit the fact that the arising equation
system is sparse due to the flat Minkowski metric. Our generic kernel evaluates
many terms which degenerate to zero. It is unclear how such domain knowledge
can help to improve the performance further.

6.2 Single Node Studies on Regular Grid

We next study the scaling behaviour on one node. Our first subject of interest is
the performance of the code on a regular grid. Here, subcycling equals the global
adaptive scheme. Our benchmarks use a patch size of p = 4, i.e. each patch hosts
64 volumes. The runs span a total time of (0, 10−3) which allows the solution
to unfold reasonably such that we find a whole spectrum of eigenvalues over the
domain for the modified Euler equations, while the regular grid hosts 34,012,224
(Euler) or 6,751,269 (CCZ4) volumes.

For Euler, the adaptive time stepping outperforms a fixed time stepping, as
it dynamically adopts the time step size to the actual solution’s needs while
the fixed time stepping has to be conservative (Fig. 2): We have to set the fixed
time step to the minimum of admissible step sizes over the whole simulation time

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 167

span. Due to the absence of any clustering [23] in our local time stepping, i.e. the
opportunity for every patch to march with its very own ΔT , the individual
patches get “out of sync” and only few patches can advance in time per grid
sweep. Typically, we update around 0.2% of all patches at one point in time.
Local time stepping hence does not pay off. Adaptive time stepping equals the
fixed time stepping for CCZ4 once we pick the same, time-invariant time step
size for both. We typically do not know the admissible time step sizes for such
complex PDEs a priori and thus have to build in some slack. It manifests in
translated speedup curves. Due to the time invariance, the local time stepping
yields the same performance patterns, too.

All schemes scale reasonably up to half a socket. After that, their scaling
deteriorates. The runtime eventually increases if we use too many cores. Even
though the mesh is perfectly balanced and does not change, we have slight run-
time imbalances between the BSP sections—we use one SFC subpartition per
core—which the native tasking on top of BSP can mitigate. Holding back tasks
in an application queue on top of the OpenMP runtime introduces overhead.
The fill strategy is thus slower than native tasking. Our CCZ4 setups are smaller
than the Euler experiments and thus run into the strong scaling earlier, while the
more expensive patch updates imply that any BSP imbalance—due to periodic
boundary conditions, e.g.—manifests in stronger performance differences. Conse-
quently, any fill-up decision runs risk to delay the termination of the BSP section
further. Once we identify tasks without side-effects and invoke specialised, opti-
mised kernels, we get the better performance than for all other strategies. For
reasonably small core counts, both the immediately spawning of specialised ker-
nels and the holding back of kernels and (late) specialising upon-demand yield
comparable performance.

Fig. 2. Single node scaling behaviour of the modified Euler (left) and CCZ4 (right)
with different time stepping and task orchestration schemes.

Lessons Learned 2. A task parallelisation on top of classic BSP re-stabilises
the code suffering from non-uniform load per BSP partition.

We manage to preserve the positive impact of the kernel specialisations, though
the tasking is responsible for the major runtime improvement. In total, we speed

168 B. Li et al.

up the code by a factor of two. Our development experience suggests that this
is possible if and only if we work with one additional user queue per core into
which enclave tasks are “parked”. This queue is merged into the global task
queue once the corresponding BSP section producing tasks has terminated. If
one global application queue is used right from the start, too many threads hit
this queue and synchronise each other.

While the batching does not yield improved performance, it does not penalise
the performance either as long as the ratio of work to cores remains high. On
an EPYC, we have limited vectorisation potential. Furthermore, OpenMP tasks
are tied to one core. It is thus not a surprise that we do not benefit from the
batching, but the observation is encouraging for other systems, future runtimes
and accelerators where individual tasks have to span multiple cores. This is
facilitated by fused, large tasks.

6.3 Single Node Studies for Adaptive Grids

We continue with the Euler equations and 43 patches and let the AMR refinement
follow the outer-propagating shock (Fig. 1). This is a challenging setup given the
low arithmetic cost and high communication demands. All of our tests use a
domain decomposition which is 90% accurate when the simulation starts, i.e. we
compute the optimal load balancing and ensure that no rank is more than ±10%
off. We do not rebalance subpartitions throughout the test.

Fig. 3. Left: Typical adaptive mesh resulting from the secondary infall setup. Right:
Single node scaling behaviour of the modified Euler over an adaptive grid. The mesh
has three levels of adaptive refinement.

For an adaptive mesh, the task-based approach on top of BSP continues to
outperform its BSP counterpart (Fig. 3). The latter suffers from AMR: As long
as we use up to four cores and hence four partitions only, the BSP partitions
might be imbalanced, but they produce many tasks which help to keep the
cores busy. For more subdomains, fewer tasks are labelled as enclaves. The code

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 169

fails to overlap expensive, “unpredictable” calculations for the mesh resolution
transitions with plain compute tasks corresponding to regular grid subregions.

It continues to be advantageous to check if we can use a specialised compute
kernel for a task. Compared to the kernel benchmarking or the regular grid
calculations, the specialisation however does not yield the full factor of two in
runtime improvements anymore. Finally, subcycling pays off performance-wisely,
while local time stepping is slower than its adaptive algorithmic cousins.

Lessons Learned 3. Our manual task specialisation and scheduling allows us
to preserve reasonable on-node scaling even if we use adaptive mesh refinement.
It can also handle subcycling and local time stepping.

6.4 Multi-node Runs

Our techniques focus on the single node performance of PDE solvers with AMR
and LTS. Yet, they have impact on MPI: The idea to add tasks on top of BSP
implies that we also have tasks which can be used to overlap data exchange
which typically is triggered after a rank’s BSP sections have terminated. This
overlap is the more powerful the more tasks we have relative to any urgent rank
work and data exchange. Therefore, AMR and many MPI ranks challenge the
scheme. At the same time, the balancing with tasks runs risk to suffer from
NUMA effects.

We stick to setups from the previous sections. They have reached a strong
scaling saturation already. As we use one BSP section per core, all experiments
rely on the same geometric partitioning yet distribute the SFC segments differ-
ently between threads and ranks. Our benchmarks suggest that it is advanta-
geous to stick to SPMD/BSP parallelism for regular grids with up to 32 MPI
ranks per node (Fig. 4). It is not clear if the good performance is due to NUMA
effects or other machine characteristics. We however observe that the specialisa-
tion gains are diminished. For adaptive meshes, it is better to work with smaller
rank counts per node.

Fig. 4. Different arrangements of ranks-per-node (rpn) for a four-node (512 core) sim-
ulation run with the modified Euler equations over a regular (left) or adaptive (right)
grid. The setups equal those of the previous sections.

170 B. Li et al.

Lessons Learned 4. Splitting up NUMA nodes into logically separated proces-
sors is usually advantageous from a performance point of view, yet reduces the
number of non-urgent tasks which we can reschedule, optimise or batch. It hence
makes the code performance less robust w.r.t. AMR.

We emphasise that application task queues sitting on top of the tasking system
have to be used carefully in an MPI context if they prevent tasks from overlap-
ping with MPI data exchange. As soon as the problem size relative to the core
count becomes larger again, we retain the qualitative statements of the single
node studies and the specialisation starts to pay of again (not shown).

7 Conclusion and Outlook

Task-based programming is not omnipresent in large-scale PDE solvers. Our
data suggests that it can significantly improve the performance of classic BSP-
style parallelism realised via parallel fors, if tasks can step in to compensate for
BSP imbalances. We do not propose to use tasks as alternative to classic BSP
parallelism but as a complementing technique. For the realisation of this concept,
we avoid assembling any task graph, i.e. focus on the production of ready tasks,
and add an additional task queue on top of the OpenMP task queue. It allows us
to release work into the computation such that BSP imbalances are mitigated.
We get the best of both worlds, i.e. BSP and tasking. While the tasking on top
of BSP helps us to scale better, we also propose to distinguish tasks with global
side-effects from low-priority tasks without side-effects and to handle the latter
with specialised compute kernels that exploit their intrinsically higher internal
concurrency level. In many cases, this doubles the code performance, even though
we do not impose any constraints on the LTS or AMR or require any a priori
analysis of the patch behaviour.

While a batched handling of assemblies of tasks without side-effects is an
appealing concept, it does not robustly translate into an improved performance
in our applications. Such a task fusion is conceptionally close to approaches that
work with different p values for different blocks to keep the administration over-
head low for grid regions where we can use regular submeshes, and it is similar to
geometric clustering [23] or geometric blocking [25] as proposed by other authors.
Different to these techniques or a flexible p selection, our approach does not hard-
wire or pre-determine different p choices or make assumptions on the geometric
distribution of blocks with the same p values or time stepping behaviour. While
the task fusion does not translate into improved performance, the compiler feed-
back reports excellent vectorisation characteristics and hence suggests that the
automatic batching is an interesting candidate for GPU offloading, e.g., as long
as we batch early. It is future work to combine the technique with a performance
model and to generate performance-portable code which exploits the batching
similar to dynamic choices of p for different components of a supercomputer.

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 171

Our manual postponing of task spawns through the application task queue
can be interpreted as an approach which implicitly prioritises BSP code segments
over tasks. The hierarchy of parallelisation approaches in our code translates
into a task prioritisation. It is hence reasonable to assume that carefully chosen
task priorities would allow us to obtain similar runtime characteristics within
an exclusively task-based programming model. Overall, the data suggests that
a task graph assembly is not required as long as the prioritisation works. To
meet our goal, our implementation replicates some OpenMP features such as
queues on the user level. If future OpenMP generations provided options such as
automatic task fusion or a careful prioritisation of tasks, it would be reasonable
to eliminate our added tasking code layers to reduce the code complexity.

Next steps of our work comprise the analysis of the impact of the time step-
ping scheme on the quality of the solution. Our studies suggest that local time
stepping is slower than global adaptive time stepping or subcycling. However,
these measurements do not assess the impact of these schemes on the solution
quality. In theory, local time stepping should introduce less numerical dissipa-
tion than the other schemes and hence yield better results. In this context, we
also have to study more more sophisticated Riemann solvers [15]. This improved
quality has to be assessed against the proposed runtime improvements. Finally,
the generality of our concepts implies that a our approach might be advanta-
geous for very flexible, task-based Lagrangian codes such as [19], too, as well as
other solver components such as linear algebra subsystems.

References

1. Alcubierre, M., et al.: Towards standard testbeds for numerical relativity. Class.
Quantum Gravity 21(2), 589–613 (2004)

2. Alic, D., Bona-Casas, C., Bona, C., Rezzolla, L., Palenzuela, C.: Conformal and
covariant formulation of the Z4 system with constraint-violation damping. Phys.
Rev. D 85(6), 064040 (2012)

3. Ayguade, E., et al.: The design of OpenMP tasks. IEEE Trans. Parallel Distrib.
Syst. 20(3), 404–418 (2009)

4. Bader, M.: Space-Filling Curves: An Introduction with Applications in Scientific
Computing. Texts in Computational Science and Engineering, vol. 9. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-31046-1

5. Bertschinger, E.: Self-similar secondary infall and accretion in an Einstein-de Sitter
universe. Astrophys. J. Suppl. Ser. 58, 39–65 (1985)

6. Charrier, D., Hazelwood, B., Weinzierl, T.: Enclave tasking for dg methods on
dynamically adaptive meshes. SIAM J. Sci. Comput. 42(3), C69–C96 (2020)

7. Daszuta, B., Zappa, F., Cook, W., Radice, D., Bernuzzi, S., Morozova, V.: GR-
Athena: puncture evolutions on vertex-centered oct-tree adaptive mesh refinement.
Astrophys. J. Suppl. Ser. 257(2), 25 (2021)

8. Demeshko, I., et al.: TBAA20: task based algorithms and applications. DOE report
LA-UR-21-20928 (2021)

9. Dongarra, J., et al.: The international exascale software project roadmap. IJHPCA
25, 3–60 (2011)

https://doi.org/10.1007/978-3-642-31046-1

172 B. Li et al.

10. Dubey, A., et al.: A survey of high level frameworks in block-structured adaptive
mesh refinement packages. J. Parallel Distrib. Comput. 74(12), 3217–3227 (2016)

11. Dubey, A., Berzins, M., Burstedde, C., Norman, M.L., Unat, D., Wahib, M.: Struc-
tured adaptive mesh refinement adaptations to retain performance portability with
increasing heterogeneity. Comput. Sci. Eng. 23(05), 62–66 (2021)

12. Dumbser, M., Guercilena, F., Köppel, S., Rezzolla, L., Zanotti, O.: Conformal and
covariant Z4 formulation of the Einstein equations: strongly hyperbolic first-order
reduction and solution with discontinuous Galerkin schemes. Phys. Rev. D 97,
084053 (2018)

13. Harlacher, D.F., Klimach, H., Roller, S., Siebert, C., Wolf, F.: Dynamic load bal-
ancing for unstructured meshes on space-filling curves. In: 26th IEEE International
Parallel and Distributed Processing Symposium Workshops & PhD Forum, IPDPS,
pp. 1661–1669. IEEE Computer Society (2012)

14. Isaac, T., Burstedde, C., Ghattas, O.: Low-cost parallel algorithms for 2:1 octree
balance. In: IEEE 26th International Parallel and Distributed Processing Sympo-
sium, pp. 426–437 (2012)

15. Kidder, E., et al.: SpECTRE: a task-based discontinuous Galerkin code for rela-
tivistic astrophysics. J. Comput. Phys. 335, 84–114 (2017)

16. Meister, O., Rahnema, K., Bader, M.: Parallel memory-efficient adaptive mesh
refinement on structured triangular meshes with billions of grid cells. ACM Trans.
Math. Softw. 43(3), 1–27 (2016)

17. Peterson, B., et al.: Automatic halo management for the Uintah GPU-
heterogeneous asynchronous many-task runtime. Int. J. Parallel Program. 47(5–6),
1086–1116 (2018). https://doi.org/10.1007/s10766-018-0619-1

18. Reinarz, A., et al.: ExaHyPE: an engine for parallel dynamically adaptive simula-
tions of wave problems. Comput. Phys. Commun. 254, 107251 (2020)

19. Schaller, M., Gonnet, P., Chalk, A., Draper, P.: SWIFT: using task-based par-
allelism, fully asynchronous communication, and graph partition-based domain
decomposition for strong scaling on more than 100,000 cores. In: Proceedings of
the Platform for Advanced Scientific Computing Conference, PASC 2016. Associ-
ation for Computing Machinery (2016)

20. Sundar, H., Sampath, R.S., Biros, G.: Bottom-up construction and 2:1 balance
refinement of linear octrees in parallel. SIAM J. Sci. Comput. 30(5), 2675–2708
(2008)

21. Sundar, H., Ghattas, O.: A nested partitioning algorithm for adaptive meshes on
heterogeneous clusters. In: Proceedings of the 29th ACM on International Confer-
ence on Supercomputing, ICS 2015, pp. 319–328 (2015)

22. Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement–a new
high resolution code called RAMSES (2002)

23. Uphoff, C., et al.: Extreme scale multi-physics simulations of the tsunamigenic 2004
Sumatra megathrust earthquake. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2017
(2017)

24. Weinzierl, T.: The Peano software–parallel, automaton-based, dynamically adap-
tive grid traversals. ACM Trans. Math. Softw. 45(2), 14 (2019)

25. Weinzierl, T., Wittmann, R., Unterweger, K., Bader, M., Breuer, A., Rettenberger,
S.: Hardware-aware block size tailoring on adaptive spacetree grids for shallow
water waves, pp. 57–64 (2014)

https://doi.org/10.1007/s10766-018-0619-1

Dynamic Task Fusion for a Block-Structured Finite Volume Solver 173

26. Zhang, H., Weinzierl, T., Schulz, H., Li, B.: Spherical accretion of collisional gas in
modified gravity I: self-similar solutions and a new cosmological hydrodynamical
code. Monthly Notices of the Royal Astronomical Society (2022). Submitted

27. Zhang, W., Myers, A., Gott, K., Almgren, A., Bell, J.: AMReX: block-structured
adaptive mesh refinement for multiphysics applications. Int. J. High Perform. Com-
put. Appl. 35(6), 508–526 (2021)

Accelerating Simulated Quantum
Annealing with GPU and Tensor Cores

Yi-Hua Chung, Cheng-Jhih Shih, and Shih-Hao Hung(B)

Department of Computer Science and Information Engineering,
National Taiwan University, No. 1, Sec. 4, Roosevelt Rd.,

Taipei 10617, Taiwan (R.O.C.)
{r09944072,r09922028,hungsh}@ntu.edu.tw

Abstract. Inspired by quantum annealing, simulated quantum anneal-
ing (SQA) mimics quantum tunneling effects on classical computers
to perform annealing through a path-integral Monte Carlo simulation,
which increases the potential to find the global optima faster than tra-
ditional annealing algorithms for large-size combinatorial optimization
problems while today’s quantum annealing systems are of a limited num-
ber of qubits’. As previous studies have accelerated SQA with Graph-
ics Processing Unit (GPU) and specialized hardware such as Field Pro-
grammable Gate Array (FPGA), we propose an innovative parallelizing
strategy called hierarchical update to vastly improve the efficiency of
parallel computing, which is capable of accelerating state-of-the-art SQA
implementations further by 7X-47.2X based on our case studies. Further-
more, we develop a tensorizing scheme to leverage the Tensor Cores on
modern GPUs to deliver up to 1.83X of additional speedup. Overall, our
work solves fully-connected Ising models faster than any previous SQA
work. Our solution outperforms existing GPU-based solutions by 86.6X
and FPGA-based solutions by 14X.

Keywords: High performance computing · GPU acceleration · Tensor
Cores · Simulated quantum annealing · Optimization problems

1 Introduction

Quantum annealing (QA) is a metaheuristic method to solve combinatorial opti-
mization problems [1], such as portfolio optimization [2], protein folding [3], and
traveling salesman problem [4], which are often NP-hard problems. These com-
binatorial optimization problems can be converted into Ising models [5] and
solved with QA and traditional simulated annealing (SA) [6]. Unlike SA, QA
could potentially solve large problems as it owns the property not subject to the
combinatorial explosion. While SA uses thermal excitations, QA uses quantum
tunneling [7] to tunnel through the tall but narrow barriers, which may help
escape from local minima and find the global best solution for the combinatorial
optimization problems. However, QA systems such as D-Wave are very expensive
today with limited qubits to model the problems.
c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 174–191, 2022.
https://doi.org/10.1007/978-3-031-07312-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_9&domain=pdf
http://orcid.org/0000-0003-2043-2663
https://doi.org/10.1007/978-3-031-07312-0_9

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 175

Simulated quantum annealing (SQA) [8] is inspired by QA and tries to mimic
the quantum tunneling effect on classical computers through a path-integral
Monte Carlo simulation. By mimicking the quantum tunneling effect, SQA has
the potential to find the global minima quicker than traditional SA. It is also
possible to solve large-size combinatorial optimization problems with SQA, while
state-of-the-art QA systems are of limited qubits. To further accelerate SA and
SQA, several studies have employed hardware accelerators, such as Application
Specific Integrated Circuits (ASICs) [9,10], Field Programmable Gate Array
(FPGA) [11–13], as well as Graphics Processing Unit (GPU) [14–16].

Some annealing platforms require an Ising model to be mapped restrictively
onto special topologies, as their processors have limited connectivity. For exam-
ple, D-Wave demands Chimera graph [17] or Pegasus graph [18], which requires
an additional transformation procedure called minor embedding [19] and may
affect the solution quality with additional computation overhead. In this work, we
utilize GPU memory to support a fully-connected Ising model to improve solu-
tion quality and avoid the overhead of embedding. Meanwhile, high-performance
GPUs are widely available today to provide the most cost-effective solutions.

To perform SQA on a GPU, a fully-connected Ising model is transformed
into a matrix form, so that the computing cores on the GPU can operate on
the elements of the matrices in parallel. Among the aforementioned accelerated
solutions, GPU provides a cost-effective, scalable approach, not only because
SQA can compute with thousands of cores on a GPU chip, but it can also run
with thousands of GPU chips in a modern supercomputer [20].

In this work, we further exploit the Tensor Cores [21] that are available on
modern GPU chips to give 7X-86X speed over the previous work [22] for solving
fully-connected Ising models, which is the most efficient SQA implementation as
far as we know. We have developed several tensorizing and parallelizing schemes
to utilize the Tensor Cores and increase the parallelism for the GPU code. With
our optimization, running SQA on GPU with Tensor Cores is even faster than
FPGA-accelerated SQA [12]. Moreover, since Tensor Cores have been actively
developed to support neural network applications, we expect that the proposed
method continues to benefit significantly from this trend.

The remainder of this paper is organized as follows. Section 2 explains the
Ising Model, describes the algorithm and implementations of SQA and introduces
the Tensor Cores. Section 3 proposes a new parallelization scheme to improve
the utilization of GPU cores and further optimizes the code with the Tensor
Cores. Section 4 compares our work to previous works to reveal the performance
advantage of the proposed methods. Finally, we conclude this paper and point
out some potential research directions in the future in Sect. 5.

2 Background and Previous Works

This section first mentions the basics of Ising models for solving combinato-
rial optimization problems. Then, we explain how simulated quantum annealing
(SQA) solves on Ising models, and survey the previously proposed hardware
methods for accelerating SQA. Finally, we introduce the Tensor Cores.

176 Y.-H. Chung et al.

2.1 Ising Model

An Ising model is one of the simplest systems that exhibits a phase transition of
the thermodynamic system [23–26]. In the Ising model, the total energy of the
system for a lattice with N spins is given as:

H(σ) = −
∑

i<j

Ji,jσiσj −
∑

i

hiσi (1)

where binary spin σi ∈ {1,−1}, Ji,j indicates the strength of the coupled inter-
action between σi and σj , and hi is the external magnetic field. Besides, the sign
of the coupling term Ji,j tells us whether the σj prefers to align or to anti-align
with the σi. The size of the external magnetic field hi represents how strong its
field is, revealing how much higher the energy of the σi is than the others. And
the sign of hi tells whether it’s spin up or spin down that’s preferred. Moreover,
hi also represents the external field trying to align all the spins in one direction.

Solving Ising models is NP-complete [5], which means that the solution of
many NP-hard problems, e.g. the traveling salesman problem, can be obtained
by solving Ising models. Hence, many works have focused on solving Ising models
to establish the solution of combinatorial optimization problems [2–4].

2.2 Simulated Quantum Annealing (SQA)

Fig. 1. Transverse-field Ising model

Stoquastic Hamiltonian is applied to various simulation algorithms based on
the classical Markov chain. And these algorithms are collectively referred to as
Quantum Monte Carlo (QMC) methods [28,29]. Different QMC methods can
be applied to the QA Hamiltonian equation [30,31]. The version based on the
path-integral [29] representation of the thermal state is considered in this paper.
Proved by Suzuki, Masuo [8], it is known that the partition function of the
m-dimensional quantum Ising model in the traversed field is mapped to the

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 177

partition function of the classical Ising model with (m+1)-dimension as shown
in Fig. 1, and expressed by [14]:

H(σ) = −
M∑

k=1

(
∑

i<j

Ji,j

M
σi,kσj,k +

∑

i

hi

M
σi,k + J† ∑

i

σi,kσi,k+1) (2)

where J† = T/2·ln coth(Γ (t)/(MT)) indicates the strength of couplings between
replicas, T is a controlled temperature, M is the number of replicas, and Γ (t)
is the controlled transverse field. By reducing the temperature T and transverse
field Γ (t), the system is expected to have the lowest energy. As the temperature
T becomes close to zero at the end of the annealing process, the strength of
the coupling J† will approach infinity and each replica will have the same spin
configuration with high probability. When M is large enough, the behavior of
SQA resembles that of QA. However, it doesn’t mean that the larger M has a
higher probability to achieve the ground state energy [7].

For an Ising model formulated by Eq. (1), the local-field energy of each spin
on the fully-connected graph is the cross dot between all the coupling coefficients
and the corresponding spins on the same trotter, as shown in Eq. (3):

local fieldi,m =
N∑

j=1

Ji,jσj,m (3)

where σj,m is the j-th spin in the m-th trotter. The couplings, spins, and local-
field energy are mapped to the following three matrix forms:

– Coupling matrix: As shown in Fig. 2a, the corresponding coupling coeffi-
cient between σi and σj is placed in the location in the coupling matrix with
column i and row j. Since the interaction relations between σi and σj are
equal, the coupling matrix is symmetric. Hence, the matrix size is N ∗ N .

– Spin matrix: As displayed in Fig. 2b, the spins on the same trotter are
placed in the same column of the spin matrix. That is, for example, if there
is an i-th spin on the j-th trotter, then the spin is notated as σi,j , and it is
placed on the location where row = i and column = j. So, with spin number
= N and trotter number = M , the matrix size will be N ∗ M .

– Local-field energy matrix: Exhibited in Fig. 2c, the matrix elements of
the local-field energy matrix are in the same order as the spin matrix. Hence,
the local-field energy local fieldi,j of σi,j is positioned in the place where row
= i and column = j. Also, the size of the matrix is equal to N ∗ M .

Algorithm 1 shows the SQA algorithm. The algorithm first sets up the Ising
model and the initial condition by (1) loading the coupling data derived by
the Ising problem into the coupling matrix (J) in Line 1, (2) initializing the
elements in the spin matrix (σ) randomly with either –1 or 1 in Line 2, and then
(3) constructing the local-field matrix based on Eq. (3) in Lines 3–11.

The construction of the local-field matrix is basically done with matrix multi-
plication, the entry local fieldi,j of the local-field matrix is derived by multiplying

178 Y.-H. Chung et al.

(a) Coupling matrix (b) Spin matrix (c) Local-field matrix

Fig. 2. The matrices form satisfy the input constraints of Tensor Cores

Algorithm 1: SQA Algorithm
1 Coupling Matrix ← Couplings Data
2 Randomly initialize σ ∈ {−1, 1}
3 local field ← 0
4 // Construct local-field energy
5 for m = 1 to M do
6 for i = 1 to N do
7 for j = 1 to N do
8 local fieldi,m += Ji,j ∗ σj,m

9 end

10 end

11 end

12 for t = 1 to MC-STEP do
13 for i = 1 to N do
14 for m = 1 to M do

15 ΔH = σi,m(local fieldi,m − J†(σi,m+1+σi,m−1))

16 // Judge to Flip

17 if e
−ΔH

T >random() then
18 σi,m=−σi,m

19 // Update local-field energy
20 for j = 1 to N do
21 local fieldj,m+= 2 ∗ Ji,j ∗ σi,m

22 end

23 end

24 end

25 end

26 end

term-by-term the entries of the i-th row of coupling matrix and the j-th column
of the spin matrix, and summing these N products as shown in Eq. (3).

Line 12 to Line 26 of Algorithm 1 is the main algorithm of SQA. The temper-
ature of the system will decrease during each MC-STEP in Line 11. Besides, a
larger MC-STEP usually produces a better result closer to the global optimum.
The loop in Line 13 and Line 14 executed all spins on all trotters of the Ising

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 179

model of SQA. If making a flip of the queried spin will cause a decrease in the sys-
tem energy, then the spin will be flipped. After one spin-flip happens, the local-
field energies of the spins on the same trotter will be updated from Line 20 to Line
22. Suppose the k-th spin on m-th trotter is flipped, local fieldi,m, i ∈ {1, ..., N}
should be updated as follows:

local field′
i,m = Ji,1σ1,m + ... + Ji,kσ

′
k,m + ... + Ji,NσN,m

= local fieldi,m + Ji,kσ
′
k,m − Ji,kσk,m

= local fieldi,m + Ji,kσ
′
k,m − Ji,k(−σ′

k,m)

= local fieldi,m + 2 ∗ Ji,jσ
′
k,m

= local fieldi,m + Ji,j(2 ∗ σ′
k,m)

(4)

where the σ′
k,m is the new state of the flipped spin, and the local-field′

i,m is the
new local-field energy of the corresponding spin.

Many previous attempts at using specialized hardware to accelerate the
annealing processing of SQA were proposed. References [11–14] provide FPGA
implementation on SQA. Among these attempts, [14] focuses on solving king-
graph Ising models with limited connectivity, while the others solve fully-
connected Ising models. Since the spins without connections can be updated
simultaneously, different topologies of SQA may affect the time to sweep all the
spins. However, not-fully-connected SQA requires an additional minor embed-
ding process [19], which may deeply affect not only the spins required to do the
annealing process but also the solution quality [32] due to additional constraints
to fit the target problems into the desired topology.

Several works [15,16,22] make use of GPUs to accelerate the SQA algo-
rithm. While [15,16] target sparse-connectivity Ising models, [22] uses GPUs to
solve fully-connected Ising models. Compared to using FPGAs as an accelerator,
GPUs provide an easier programming interface and have plenty of computational
resources. Besides, GPU can accommodate large-scale Ising models.

In [22], the authors proposed a GPU-based SQA accelerator for fully-
connected Ising models. They used parallel reduction to perform spatial parallel
processing of local-field computation and used concurrent kernel execution to
implement temporal parallel processing for multiple-spin-flips.

2.3 Tensor Cores

NVIDIA introduced Tensor cores [21] as a specialized hardware accelerator for
performing matrix operations in deep learning applications. The Tensor Cores
introduced in the Volta GPU architecture can perform matrix-multiply-and-
accumulate on 4× 4 matrices per clock cycle, as shown in Fig. 3, for low-precision
inputs represented in FP16 or INT8. In the latest Ampere GPU architecture,
the Tensor Core supports more low-precision data representations such as TF32
and BFLOAT16 as well as sparse matrix operations [33].

180 Y.-H. Chung et al.

Fig. 3. In the Volta GPU, a tensor core performs a matrix-multiply-and-accumulate
on 4 × 4 matrices per clock cycle.

We use the NVIDIA cuBLAS [34] library to program Tensor Cores for Gen-
eral Matrix to Matrix Multiplication (GEMM). The cuBLAS library calls the
CUDA Warp Matrix Multiply and Accumulation (WMMA) API [39,40] to per-
form 16× 16 matrix-multiply-and-accumulate using a warp (32 threads). The
cuBLAS library dynamically decides the number of WMMA warps to spawn
based on the matrix size and the GPU resources. The annealing process of SQA
involves lots of multiply-and-accumulate operations during the update of local-
field energies, which can be transformed to run on the Tensor Cores. To our
knowledge, this work is the first published work to accelerate annealing algo-
rithms with Tensor Cores.

3 Methodology

In the previous work, [22], while the loop which does Judge to Flip (Lines 14–24
in Algorithm 1) can be parallelized, it does not offer a high degree of parallelism
as the loop is bounded by the number of trotters (M), nor can it utilize the
Tensor Cores. When M is small, we have to find a way to increase the degree of
parallelism to fully utilize the GPU. However, since the input is a fully-connected
Ising model, any two spins can be connected so that the computation for the
spins on the same trotter cannot be further parallelized within this loop. Thus,
we propose a hierarchical update strategy and modify the algorithm, as shown in
Algorithm 2, to increase the number of GPU threads and let each thread forward
computation results to the affected threads to remove the data dependency as
soon as possible, which is discussed in Sect. 3.1. Matrix operations can be accel-
erated directly with cuBLAS [34], as mentioned in Sect. 2.3. However, while the
SQA algorithm appears to manipulate matrices, it is still necessary to modify
the algorithm in order to solve fully-connected Ising problems effectively with
the Tensor Cores. Thus, we need to convert the operations of SQA into matrix
forms and use cuBLAS, which is discussed in Sect. 3.2.

3.1 Hierarchical Update

In a fully-connected Ising problem, if the flipping takes place for one spin, the
local-fields for all the spins must be updated to calculate ΔH in Lines 20–22 of

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 181

Algorithm 1, which prohibits it from flipping multiple spins before updating the
entire local-field energies. Since the cost of updating the entire local-field energies
is high, we propose to perform hierarchical update in Algorithm 2, which has the
loop indexed by k (Lines 20–22) calculate the local-field energy in advance only
for the block i to keep ΔH updated, so the judgment (e

−ΔH
T > random()) in Line

18 could proceed for the later iterations without updating the entire local-field
energies. However, this strategy introduces additional overhead, which increases
with blk sz, so it is important to adjust the blk sz for best performance.

Performance-wise, the execution time of Algorithm 2 is dominated by the
Monte Carlo simulation performed in Lines 12–36. We apply blocking to the
loop indexed by i (Line 13) to reduce the number of CUDA kernel launches and
increase the data locality as well as the opportunity for tensorizing. Within
the loop, there are two program regions: Judge to Flip (Lines 15–26) and
Update Local-Field Energy (Lines 28–34).

In Judge to Flip, the spins on each trotter (m) have to be judged sequen-
tially to decide whether they should be flipped, while all the trotters can be
processed in parallel. In our implementation, the iterations in the loop indexed
by m are parallelized to run across the streaming multiprocessors (SMs) in the
GPU, but the loop indexed by j has to be executed sequentially. The judgment
(e

−ΔH
T > random()) in Line 18 decides to flip a spin if the energy reduction

caused by the flipping is larger than the random number.
There are blk sz ∗ M spins to be queried in each sub-task. blk sz is called

block size. Due to the dependency of the upper and lower trotters to the proposed
spin, the spins in the same worldline cannot be updated simultaneously from
different parities. We propose to update all the spins with two rounds as shown
in Fig. 4, where the spins framed in the same color can be queried simultaneously.
For example, assume blk sz = 128, the spins numbered from (k+1) to (k+64)
on the odd trotters and the spins numbered from (k+65) to (k+128) on the
even trotters will be queried to flip sequentially in the orange block. After that,
the spins numbered from (k+65) to (k+128) on the odd trotters and the spins
numbered from (k+1) to (k+64) on the even trotters will be queried to flip
sequentially in the blue block. Within two rounds, all the spins in the sub-task
will be judged completely.

The loop indexed by (m), highlighted in red in Line 15 of Algorithm 2, is
executed by multiple streaming processors (SMs). That is, each trotter is handled
by one SM. The loop indexed by (k), highlighted in blue (Line 20), updates the
local-field energies with multiple threads on a SM. If the spin is flipped, the spin
state will be updated and the related local-field energies will also be updated
to fully utilize the resources of the GPU in Lines 20–22. After each thread has
updated its corresponding local-field energies into local memory, the values are
used to determine whether the next spin will be flipped when the program revisits
Line 17. The call to syncthreads() is needed to enforce that the threads on
a SM are synchronized. With sufficient GPU resources, the implementation pre-
calculates the related local-fields with k = 1-blk sz when updating the related
spins located in the assigned block. Note that the random numbers used in Line

182 Y.-H. Chung et al.

Algorithm 2: Proposed Algorithm
1 Coupling Matrix ← Coupling Data
2 Randomly initialize σ ∈ {−1, 1}
3 local field ← 0
4 // Construct local field Energy, using Tensor Cores
5 for m = 1 to M do
6 for i = 1 to N do
7 for j = 1 to N do
8 local fieldi,m += Ji,j ∗ σj,m

9 end

10 end

11 end
12 for t = 1 to MC-STEP do
13 for i = 1; i ≤ N / blk sz; i++ do
14 // Judge to Flip (ii = i ∗ blk sz)
15 for m = 1; m ≤ M; m++ do
16 for j = 1; j ≤ blk sz; j++ do

17 ΔH = σii+j,m (local fieldii+j − J†(σii+j,m+1+σii+j,m−1))

18 if e
−ΔH

T >random() then
19 σii+j,m = −σii+j,m

20 for k = 1; k ≤ blk sz; k++ do
21 local fieldii+k += 2 ∗ Jii+j,i+k ∗ σii+j,m

22 end

23 end
24 syncthreads()

25 end

26 end
27 // Update local field Energy, using Tensor Cores
28 for m = 1; m ≤ M; m++ do
29 for j = 1; j ≤ N; j++ do
30 for k = 1; k ≤ blk sz; k++ do
31 local fieldj,m += 2 ∗ Jj,k ∗ σk,m

32 end

33 end

34 end

35 end

36 end

18 are pre-calculated with log(random()) in the CPU and transferred to the
GPU for every spin in each step. Since the time to generate and transfer random
numbers on the CPU is overlapped with the computation on the GPU, it reduces
the workload for the GPU without increasing the time for each annealing step.

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 183

Fig. 4. Update order of spins

Finally, Update local-field energy can be expressed by matrix multipli-
cation of the coupling matrix and the resulting matrix of judged spin plus the
previous local-field energy matrix. This region can be performed well by the
GPU with the cuBLAS library. It can be further accelerated with Tensor Cores,
as discussed in the following subsection.

3.2 Utilizing the Tensor Cores

To utilize the Tensor Cores, we re-implement the update of local-field energy
(Lines 28–34) in Algorithm 2 by calling cublasGemmEx in the cuBLAS library as
shown in Listing 1.1, where M is the number of trotters, N is the number of spins
and K is set to blk sz. The value of alpha (Line 4) is set to 1.0f , which is the
scalar used for multiplication, and the value of beta (Line 7) is also set to 1.0f ,
which is the scalar utilized for accumulation. In Lines 5–6, couplings matrix
and spin matrix are both declared as FP16 with the CUDA R 16F data type for
best performance. If needed, these matrices can be declared as other data types
supported by Tensor Cores, such as FP32, TF32, BF16, etc. The local field
matrix is declared FP32 with CUDA R 32, which provides the needed range to
accumulate the multiplication results of the couplings and spin matrices.

1 K = blk_sz

2 cublasErrCheck(cublasGemmEx(cublasHandle ,

3 CUBLAS_OP_N , CUBLAS_OP_N ,

4 N, M, K,

5 &alpha ,

6 couplings , CUDA_R_16F , N,

7 judged_spin , CUDA_R_16F , K,

8 &beta ,

9 local_field , CUDA_R_32 , N,

10 CUBLAS_COMPUTE_32F ,

11 CUBLAS_GEMM_DEFAULT_TENSOR_OP));

Listing 1.1. Updating local-field energy

As shown in Fig. 5, compared to FP32, the number of bits of FP16 is reduced
in half. The benefits of using FP16 include reduced usage for GPU device mem-
ory, less time to transfer data from the GPU device memory to the GPU cores,

184 Y.-H. Chung et al.

Fig. 5. The format of half precision (FP16) and single precision (FP32)

and a higher peak FLOPS rate. However, the maximum integer range of consec-
utive without precision loss of FP16 is [−1024, 1024], which limits the range of
the coupling values. Since the couplings matrix and spin matrix can be repre-
sented well with FP16 in our case studies, and the intermediate results of matrix
multiplication are stored without loss in the local field matrix with FP32, the
precision of the proposed system should not be affected by this optimization.

4 Performance Evaluation

We evaluate the proposed method by measuring its performance in solving the
MAX-CUT problem [36], which basically aims to split a graph into two mutually
exclusive subgraphs with maximum number of inter-subgraphs edges. The MAX-
CUT problem is a representative combinatorial problem that can be solved by
SA and SQA. Several previous works have chosen it for performance evaluation
and reported the results [22,37,38]. In these experiments, as discussed in Eq. (2),
the temperature T the magnetic field Γ (t) are gradually reduced, as we sched-
ule 1

T = t ∗ (1 − 1
8)/(MC-STEP), and Γ (t) = G0 ∗ (1 − t/MC-STEP) during the

annealing process, where G0 is initially set to 8. We measure the time required to
complete each annealing step and the number of inter-subgraph edges reported
by the annealers at the end. Section 4.1 evaluates the benefits of the proposed
hierarchical update strategy. Section 4.2 compares the processing time of previ-
ous work and our work. Section 4.3 discusses the choice of blk sz, which affects
the task granularity and impacts the performance significantly. To further break
down the execution time, we examine our proposed method in accelerating the
update of local-field energy by using the Tensor Cores in Sect. 4.4. Finally, we
examine the quality of solutions provided by the proposed method in Sect. 4.5.

4.1 Benefits of Hierarchical Update

The hierarchical update strategy adopted in our work calculates the local-field
energy of the spins in the block so that judgment can proceed continuously in
the later iterations without updating whole local-field energies. We perform 100
annealing steps with and without the hierarchical update strategy on an Intel(R)
Core(TM) i9-9900KF CPU running at 3.60 GHz with Ubuntu 18.04.5 LTS OS

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 185

(a) M = 8 (b) M = 64
(c) M = 512

Fig. 6. The processing time for 100 annealing steps

Table 1. Latency of per annealing step (ms). Tohoku GPU and Tohoku FPGA are
from [22] and [12] respectively, while HU w/o TC is the setting using hierarchical
update without Tensor Cores and HU w/ TC with Tensor Cores.

Method N M = 4 M = 16 M = 64 M = 256 M = 512

Tohoku GPU 4096 12.0 (1X) 15.0 (1X) 32.0 (1X) 215.0 (1X) 826.0 (1X)

Tohoku FPGA 4.61 (2.6X) 5.11 (2.9X) N/A N/A N/A

HU w/o TC 1.7 (6.9X) 1.8 (8.3X) 2.1 (15.1X) 4.4 (48.6X) 6.9 (119.5X)

HU w/ TC 1.7 (6.9X) 1.7 (8.8X) 1.8 (17.7X) 3.3 (65.2X) 5.3 (156.0X)

Tohoku GPU 8192 35.0 (1X) 44.0 (1X) 75.0 (1X) 269.0 (1X) 898.0 (1X)

Tohoku FPGA 17.45 (2.0X) 18.7 (2.4X) N/A N/A N/A

HU w/o TC 3.4 (10.3X) 3.9 (11.2X) 4.7 (15.9X) 11.3 (23.9X) 18.6 (48.4X)

HU w/ TC 3.6 (9.8X) 3.5 (12.4X) 3.7 (20.1X) 8.1 (33.3X) 13.5 (66.7X)

Tohoku GPU 16384 151.0 (1X) 169.0 (1X) 239.0 (1X) 1009.0 (1X) 2130.0 (1X)

Tohoku FPGA 65.77 (2.3X) 70.33 (2.4X) N/A N/A N/A

HU w/o TC 7.5 (20.3X) 9.3 (18.1X) 13.2 (18.1X) 32.1 (31.4X) 56.8 (37.5X)

HU w/ TC 7.4 (20.3X) 7.7 (22.0X) 8.9 (26.9X) 20.9 (48.4X) 36.6 (58.1X)

Tohoku GPU 32768 1003.0 (1X) 1069.0 (1X) 1301.0 (1X) 4754.0 (1X) 8732.0 (1X)

Tohoku FPGA 264.93 (3.8X) N/A N/A N/A N/A

HU w/o TC 19.7 (50.8X) 27.5 (38.9X) 37.1 (35.1X) 104.0 (45.7X) 184.8 (47.2X)

HU w/ TC 19.3 (52.0X) 20.6 (51.8X) 24.9 (52.2X) 59.8 (79.5X) 100.9 (86.6X)

Tohoku GPU 65536 N/A N/A N/A N/A N/A

Tohoku FPGA N/A N/A N/A N/A N/A

HU w/o TC 54.1 82.8 129.6 376.6 683.1

HU w/ TC 54.2 62.0 81.9 203.2 352.8

and a GeForce RTX 3080 GPU with CUDA 11.3 library to compare the total
processing time for various numbers of trotters (M), as shown in Fig. 6. It is
clear that the proposed hierarchical update strategy effectively accelerates the
annealing process, especially when the number of spins (N) is large.

4.2 Per-Step Annealing Time

In this subsection, we compare the proposed method against the state-of-the-
art GPU-based and FPGA-based quantum annealing simulators published by

186 Y.-H. Chung et al.

(a) Total-annealing time (b) Update Local-field time (c) Judge to Flip time

Fig. 7. Processing of the update function, as N = 8192

Tohoku University in [12,22].1. For a fair comparison, we perform the exper-
iments on a setup that consists of an Intel(R) Xeon(R) Gold 6154 CPU chip
running at 3.00 GHz with CentOS Linux release 7.8.2003(Core) and a Tesla
V100-SXM2 GPU with the CUDA 11.3 library. The setup in [22] uses Quadro
GV100 GPU, which adopts the same Volta architecture as the Tesla V100 and
performs single-precision FP operations at 14.8 TFLOPS/s, while the V100-
SXM2 delivers 15.7 TFLOPS/s. Our setup has a 6% advantage over Tohoku’s.

Table 1 shows the processing time cost per MC-STEP for each solution as N
increases from 4096 to 65536 and M increases from 4 to 512. The table also cal-
culates the relative performance using Tohoku’s GPU implementation running on
a Quadro V100 GPU (Tohoku GPU) as the baseline. The baseline implementa-
tion can solve up to 32768 spins due to the constraint of GPU local memory. The
FPGA solution proposed by Tohoku (Tohoku FPGA), running on an Intel Arria
10 FPGA chip outperforms the baseline by 2-3.8X, but the FPGA solution could
not solve large problems due to the memory limitation, and thus some of the data
are missing in the table. Notice that the per-step annealing time grows linearly
with M and N2 in theory, but it may not be the case when M or N is too small to
fully utilize the GPU or the FPGA. Also notice that when (N ,M) = (4096,512),
Tohoku GPU takes an unusually long time to execute, so we treat this data point
as an anomaly and exclude it from the following discussions.

Our proposed hierarchical update strategy enables our GPU solution to out-
perform both solutions provided by Tohoku. Even without using the Tensor
Cores, our solution (HU w/o TC) is 7× to 48× faster than Tohoku GPU2.
With the Tensor Cores, our solution (HU w/ TC) provides 7× to 86× speedup
over the baseline. When N or M increases, the proposed solutions provide
greater acceleration over the baseline as the degree of parallelism becomes higher
and it appears that our solution utilizes the parallelism more efficiently than
Tohoku’s GPU solution does. The Tensor Cores version is especially effective for

1 We acknowledge the authors for sending us the experiment results.
2 The speedup is up to 120× if (N ,M) = (4096,512) is included.

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 187

Fig. 8. Tensor Cores impact on Update local-field Energy

solving large problems. For example, when N = 32768, it provides an extra 1.8×
speedup over the non-TC version. Notice that our solution does not exhibit the
anomaly for (N ,M) = (4096,512). As far as the problem size is concerned, our
GPU implementation can solve Ising problems up to 65536 spins if the coupling
matrix is represented with FP16 with 32 GB GPU memory.

Table 2. The Gset benchmarks and their best known solutions

Gset N #Edges Best known Gset N # Edges Best known

G5 800 19176 11631 G41 2000 11785 2405

G9 800 19176 2054 G42 2000 11779 2481

G13 800 1600 582 G43 1000 9990 6660

G18 800 4694 992 G44 1000 9990 6650

G19 800 4661 906 G47 1000 9990 6657

G20 800 4672 941 G48 3000 6000 6000

G21 800 4667 931 G49 3000 6000 6000

G26 2000 19990 13328 G50 3000 6000 5880

G31 2000 19990 3309 G51 1000 5909 3848

G34 2000 4000 1384 G53 1000 5914 3850

G38 2000 11779 7688 G54 1000 5916 3852

G39 2000 11778 2408 G63 7000 41459 27045

4.3 The Choice of blk sz

As mentioned in Sect. 3.1, the choice of blk sz impacts the effectiveness of the
performance with the hierarchical update, and the aforementioned experimental

188 Y.-H. Chung et al.

Fig. 9. The solution quality of our work, relative to the previous works

results were done by setting blk sz to 128, which was chosen after a series of
experiments. To evaluate the impact of blk sz, we profile the annealing time
under various blk sz. Figure 7a shows the total annealing time under different
blk sz and M , which basically decreases when blk sz increases from 16 to 128
and then increases when blk sz increases beyond 128, so it is obvious that the
performance is best when blk sz is set to 128. To further investigate the impact
of blk sz, we break down the total annealing time into two dominating parts:
Update Local-field Energy and Judge to Flip. As shown in Fig. 7b, the time
required to update the local-field energies decreases as blk sz increases, as the
larger blk sz enables more efficient utilization of the Tensor Cores to perform the
matrix multiplication. On the other hand, Fig. 7c shows that the time required
by Judge to Flip decreases initially, but increases when blk sz becomes large.

The time required by Judge to Flip decreases initially when blk sz increases
from 16 to 128 because the larger block size reduces the number of launches of
the Judge to Flip kernel to the GPU and utilizes more GPU cores to perform
the computation. However, when blk sz keeps increasing, the larger block size
requires each Judge to Flip kernel to examine more spins and causes additional
overhead, which dominates the execution time when blk sz increases beyond 128.
The choice of blk sz depends mainly on the system architecture, i.e. the GPU
and the GPU memory, but is independent of N and M . Thus, we set blk sz to
128 to produce most of the experimental results in this paper.

4.4 The Impact of Tensor Cores

In order to utilize the Tensor Cores, the update of local-field energy is done in
a mixed-precision fashion, where the data types of the two matrices (coupling
and spin) for matrix multiplication are half precision (FP16) while the local-field
energy matrix is single precision (FP32). We run the experiments with N from
1024 to 32768 and M from 1 to 50 and record the time to process. The blk sz is
set to 128 (the selection of blk sz is discussed in Subsect. 4.3) in the experiment

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 189

and the annealing step is set to 100. Under different N and M , we ran each
experiment 10 times and averaged all the outcomes as the results.

As shown in Fig. 8, the solid-line and dashed-line represent the processing
time of Update Local-field Energy with and without using Tensor Cores respec-
tively, and the experiments with the same M are presented in the same color.
The results show that the processing time grows around 4× as N is doubled
when M = 512 in both cases, as its computational complexity, is O(N2) accord-
ing to Algorithm 1. Since the GPU resources are effectively utilized, when the
size of M is smaller than 512, the required time increases less than 4× as N
grows twice. Moreover, in those cases of M ≥ 32, the programs accelerated by
Tensor Cores are faster than those which only use the GPU.

4.5 The Quality of Solution

The proposed hierarchical update strategy may have slight effects on the results,
as it alters the order of data accesses and computations, so we examine the
quality of the solution by comparing our results to previous works to reveal how
close the solutions were delivered by our work. The benchmarks are listed in
Table 2 with the best known results reported by [22]. As shown in Fig. 9, our
best results are within 99.66% of the best known solutions listed in Table 2, while
our average results are within 98.97% of the best known results, exhibiting good
stability while solving the problems much faster than the previous methods.

5 Conclusion

Our experimental results show that the proposed hierarchical update strategy
effectively accelerates SQA on modern GPUs and outperforms the previous
works by far due to efficient parallelization and tensorization. We show that
Tensor Cores can be used to further speed up the proposed solutions, especially
for problems with a large number of spins or many trotters. In particular, increas-
ing the number of trotters allows SQA to impose more of the quantum tunneling
effect and can lead to higher solution quality for certain Ising problems, although
it is not guaranteed as the algorithm is heuristic. Our experiments also show that
the proposed algorithm delivers stable solutions that are very close to the best
Known results from previous work. The memory capacity of today’s GPUs has
limited the problem size which can be solved on one GPU. As shown in Fig. 8,
the Tensor Cores accelerate more effectively with large M at the cost of increased
memory usage. This limitation could be relaxed with more GPU memory capac-
ity in the future or multiple GPUs. Even though this paper mainly focuses on
GPU implementations, the proposed hierarchical update strategy is a general
approach that works to accelerate SQA and SA3. It can be extended to make
use of multiple CPUs/GPUs/accelerators to scale the performance, which also
enlarges the solvable problems with larger distributed memories.

3 SA can be treated as a special case of SQA with M = 1.

190 Y.-H. Chung et al.

References

1. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Phys. Rev. E 58(5), 5355 (1998)

2. Venturelli, D., Kondratyev, A.: Reverse quantum annealing approach to portfolio
optimization problems. Quantum Mach. Intell. 1(1), 17–30 (2019)

3. Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.:
Finding low-energy conformations of lattice protein models by quantum annealing.
Sci. Rep. 2(1), 1–7 (2012)

4. Papalitsas, C., Andronikos, T., Giannakis, K., Theocharopoulou, G., Fanarioti, S.:
A QUBO model for the traveling salesman problem with time windows. Algorithms
12(11), 224 (2019)

5. Cipra, B.A.: The Ising model is NP-complete. SIAM News 33(6), 1–3 (2000)
6. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-

tion of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–
1092 (1953)

7. Heim, B., Ronnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical anneal-
ing of Ising spin glasses. Science 348(6231), 215–217 (2015)

8. Suzuki, M.: Relationship between D-dimensional quantal spin systems and (d+1)-
dimensional Ising systems: equivalence, critical exponents and systematic approx-
imants of the partition function and spin correlations. Prog. Theor. Phy. 56(5),
1454–1469 (1976)

9. Abdel-Aty, A.H., Khedr, A.N., Saddeek, Y.B., Youssef, A.A.: Thermal entangle-
ment in quantum annealing processor. Int. J. Quantum Inf. 16(01), 1850006 (2018)

10. Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.:
A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS
annealing. IEEE J. Solid State Circ. 51(1), 303–309 (2015)

11. Waidyasooriya, H.M., Hariyama, M., Miyama, M.J., Ohzeki, M.: OpenCL-based
design of an FPGA accelerator for quantum annealing simulation. J. Supercomput.
75(8), 5019–5039 (2019). https://doi.org/10.1007/s11227-019-02778-w

12. Waidyasooriya, H., Hariyama, M.: Highly-parallel FPGA accelerator for simulated
quantum annealing. IEEE Trans. Emerg. Topics Comput.9, 2019–2029 (2019)

13. Liu, C.Y., Waidyasooriya, H.M., Hariyama, M.: Data-transfer-bottleneck-less
architecture for FPGA-based quantum annealing simulation. In: 2019 Seventh
International Symposium on Computing and Networking (CANDAR), pp. 164–
170. IEEE, November 2019

14. Okuyama, T., Hayashi, M., Yamaoka, M.: An Ising computer based on simulated
quantum annealing by path integral monte carlo method. In: 2017 IEEE Inter-
national Conference on Rebooting Computing (ICRC), pp. 1–6. IEEE, November
2017

15. Weigel, M.: Performance potential for simulating spin models on GPU. J. Comput.
Phys. 231(8), 3064–3082 (2012)

16. Cook, C., Zhao, H., Sato, T., Hiromoto, M., Tan, S.X.D.: GPU based parallel Ising
computing for combinatorial optimization problems in VLSI physical design. arXiv
preprint (2018). arXiv:1807.10750

17. Dwave, https://www.dwavesys.com/
18. Dattani, N., Szalay, S., Chancellor, N.: Pegasus: the second connectivity graph for

large-scale quantum annealing hardware (2019). arXiv preprint arXiv:1901.07636
19. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter

setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)

https://doi.org/10.1007/s11227-019-02778-w
http://arxiv.org/abs/1807.10750
https://www.dwavesys.com/
http://arxiv.org/abs/1901.07636

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores 191

20. JUQCS-G. https://www.fz-juelich.de/portal/DE/Home/home node.html
21. Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.: Nvidia tensor

core programmability, performance & precision. In: 2018 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW), pp. 522–531.
IEEE, May 2018

22. Waidyasooriya, H.M., Hariyama, M.: A GPU-based quantum annealing simulator
for fully-connected Ising models utilizing spatial and temporal parallelism. IEEE
Access 8, 67929–67939 (2020)

23. Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical anneal-
ing of Ising spin glasses. Science 348(6231), 215–217 (2015)

24. Isakov, S.V., Zintchenko, I.N., Rønnow, T.F., Troyer, M.: Optimised simulated
annealing for Ising spin glasses. Comput. Phys. Commun. 192, 265–271 (2015)

25. Steinberg, A.P., Kosowsky, M., Fraden, S.: Simulations: the Ising Model (2013)
26. Gould, H., Tobochnik, J.: Statistical and Thermal Physics. University Press,

Princeton (2010)
27. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated anneal-

ing. Science 220(4598), 671–680 (1983)
28. Suzuki, M., Miyashita, S., Kuroda, A.: Monte Carlo simulation of quantum spin

systems. I. Prog. Theor. Phys. 58(5), 1377–1387 (1977)
29. Bravyi, S.: Monte Carlo simulation of stoquastic Hamiltonians (2014). arXiv

preprint arXiv:1402.2295
30. Crosson, E., Harrow, A.W.: Simulated quantum annealing can be exponentially

faster than classical simulated annealing. In: 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 714–723. IEEE, October 2016

31. Bravyi, S., Divincenzo, D.P., Oliveira, R.I., Terhal, B.M.: The complexity of sto-
quastic local Hamiltonian problems (2006). arXiv preprint quant-ph/0606140

32. Bernal, D.E., Booth, K.E.C., Dridi, R., Alghassi, H., Tayur, S., Venturelli, D.:
Integer programming techniques for minor-embedding in quantum annealers. In:
Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp. 112–129.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4 8

33. NVIDIA ampere. https://images.nvidia.com/aem-dam/en-zz/Solutions/data-
center/nvidia-ampere-architecture-whitepaper.pdf

34. cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html
35. cutlass. https://github.com/NVIDIA/cutlass
36. Gset. https://web.stanford.edu/∼yyye/yyye/Gset/
37. Benlic, U., Hao, J.K.: Breakout local search for the max-cutproblem. Eng. Appl.

Artif. Intell. 26(3), 1162–1173 (2013)
38. Goto, H., et al.:High-performance combinatorial optimization based on classical

mechanics. Sci. Adv. 7(6), eabe7953 (2021)
39. CUDA-9. https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
40. WMMA. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#

wmma

https://www.fz-juelich.de/portal/DE/Home/home_node.html
http://arxiv.org/abs/1402.2295
https://doi.org/10.1007/978-3-030-58942-4_8
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/cublas/index.html
https://github.com/NVIDIA/cutlass
https://web.stanford.edu/~yyye/yyye/Gset/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

m-CUBES: An Efficient and Portable
Implementation of Multi-dimensional

Integration for GPUs

Ioannis Sakiotis1(B), Kamesh Arumugam2, Marc Paterno3, Desh Ranjan1,
Baľsa Terzić1, and Mohammad Zubair1

1 Old Dominion University, Norfolk, VA 23529, USA
isaki001@odu.com

2 Nvidia, Santa Clara, CA 95051-0952, USA
3 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Abstract. The task of multi-dimensional numerical integration is fre-
quently encountered in physics and other scientific fields, e.g., in mod-
eling the effects of systematic uncertainties in physical systems and in
Bayesian parameter estimation . Multi-dimensional integration is often
time-prohibitive on CPUs. Efficient implementation on many-core archi-
tectures is challenging as the workload across the integration space can-
not be predicted a priori. We propose m-Cubes, a novel implementa-
tion of the well-known Vegas algorithm for execution on GPUs. Vegas
transforms integration variables followed by calculation of a Monte Carlo
integral estimate using adaptive partitioning of the resulting space. m-
Cubes improves performance on GPUs by maintaining relatively uni-
form workload across the processors. As a result, our optimized Cuda
implementation for Nvidia GPUs outperforms parallelization approaches
proposed in past literature. We further demonstrate the efficiency of m-
Cubes by evaluating a six-dimensional integral from a cosmology appli-
cation, achieving significant speedup and greater precision than the Cuba
library’s CPU implementation of Vegas. We also evaluate m-Cubes on
a standard integrand test suite. Our approach yields a speedup of at least
10 when compared against publicly available Monte Carlo based GPU
implementations. In summary, m-Cubes can solve integrals that are pro-
hibitively expensive using standard libraries and custom implementations.

Work supported by the Fermi National Accelerator Laboratory, managed and oper-
ated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with
the U.S. Department of Energy. The U.S. Government retains and the publisher, by
accepting the article for publication, acknowledges that the U.S. Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for U.S. Government purposes.
FERMILAB-CONF-22-043-LDRD-SCD.
We acknowledge the support of Jefferson Lab grant to Old Dominion University 16-
347. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No.
DE-AC05-06OR23177 and DE-AC02- 06CH11357.
We thank Mahsa Sharifi for contributing to the initial implementation of m-Cubes.
code available at https://github.com/marcpaterno/gpuintegration.

c© Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance,
LLC, under exclusive license to Springer Nature Switzerland AG, part of Springer Nature 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 192–209, 2022.
https://doi.org/10.1007/978-3-031-07312-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_10&domain=pdf
https://github.com/marcpaterno/gpuintegration
https://doi.org/10.1007/978-3-031-07312-0_10

m-Cubes 193

A modern C++ interface header-only implementation makes m-Cubes
portable, allowing its utilization in complicated pipelines with easy to
define stateful integrals. Compatibility with non-NvidiaGPUs is achieved
with our initial implementation of m-Cubes using the Kokkos framework.

1 Introduction

The task of multi-dimensional numerical integration is often encountered in
physics and other scientific fields, e.g., in modeling the effects of systematic
uncertainties in physical systems and Bayesian parameter estimation. However,
multi-dimensional integration is time-prohibitive on CPUs. The emerging high-
performance architectures that utilize accelerators such as GPUs can speed up
the multi-dimensional integration computation. The GPU device is best suited
for computations that can be executed concurrently on multiple data elements.
In general, a computation is partitioned into thousands of fine-grained opera-
tions, which are assigned to thousands of threads on a GPU device for parallel
execution.

A naive way to parallelize the multi-dimensional integration computation is
as follows: divide the integration region into “many” (m) smaller sub-regions,
estimate the integral in each sub-region individually (Ii) and simply add these
estimates to get an estimate for the integral over the entire region (Σm

i=1Ii). The
integral estimate in each sub-region can be computed using any of the tradi-
tional techniques such as quadrature or Monte Carlo based algorithms. If we
use a simple way of creating the sub-regions, e.g., via dividing each dimension
into g equal parts, the boundaries of the sub-regions are easy to calculate, and
the estimation of the integral in different sub-regions can be carried out in an
“embarrassingly parallel” fashion. Unfortunately, this approach is infeasible for
higher dimensions as the number of sub-regions grows exponentially with the
number of dimensions d. For example if d = 10 and we need to split each dimen-
sion into g = 20 parts the number of sub-regions created would be gd = 2010

which is roughly 1013. Moreover, uniform division of the integration region is not
the best way to estimate the integral. The intuition is that the regions where the
integrand is “well-behaved” do not need to be sub-divided finely to get a good
estimate of the integral. Regions where it is “ill-behaved” (e.g. sharp peaks, many
oscillations) require finer sub-division for a reliable, accurate estimate. However,
when devising a general numerical integration method, we cannot assume knowl-
edge of the behavior of the integrand. Hence, we cannot split up the integration
region in advance with fewer (but perhaps larger in volume) sub-regions where
the integrand is “well-behaved” and a greater number of smaller sub-regions
in the region where it is “ill-behaved”. To summarize, efficient implementation
of multi-dimensional integration on many-core architectures such as GPUs is
challenging due to two reasons: (i) increase in computational complexity as the
dimension of the integration space increases, and (ii) the workload across the
integration space cannot be predicted.

The first challenge, “curse of dimensionality”, can be addressed to some extent
by using a Monte Carlo based algorithm for multi-dimensional integration, as the

194 I. Sakiotis et al.

convergence rate of such methods is independent of the dimension d. The con-
vergence rate can sometimes be further improved by utilizing low-discrepancy
sequences (Quasi-Monte Carlo) instead of pseudo-random samples [3,8]. When
utilizing Monte Carlo based approaches, the second challenge of consolidating
sampling efforts on the “ill-behaved” areas of the integration space, is addressed
through “stratified” and/or “importance” sampling, which aim to reduce the vari-
ance of the random samples. Stratified sampling involves sampling from disjoint
partitions of the integration space, the boundaries of which can be refined recur-
sively in a manner similar to adaptive quadrature. Importance sampling integra-
tion methods, use Monte Carlo samples to approximate behavior of the integrand
in order to sample from a distribution which would significantly reduce the vari-
ance and accelerate convergence rates. This is accomplished by an initially uniform
weight function that is refined across iterations, and results in more samples in the
location where the magnitude of the integrand is either large or varies significantly.

The sequential Vegas algorithm is the most popular Monte Carlo method
that makes use of importance sampling [10,11]. There are several implemen-
tations and variants, including Python packages, C++-based implementations
in the Cuba and Gsl libraries, and the R Cubature package. Unfortunately,
while Vegas can often outperform standard Monte Carlo and deterministic
techniques, sequential execution often leads to prohibitively long computation
times. A GPU implementation of the original Vegas algorithm was proposed
in [9], but is not packaged as a library though an implementation exists in [2].
VegasFlow is a Python library based on the TensorFlow framework, providing
access to Vegas and standard Monte Carlo implementations that can execute
on both single and multi-GPU systems [4,5]. Another Python package with sup-
port for GPU execution was proposed in [14], incorporating stratified sampling
and a heuristic tree search algorithm. All GPU implementations demonstrate
significant speedup over serial versions of Vegas but impose restrictions on the
required computing platforms and programming environments, e.g., the Cuda
implementation of [9] requires an Nvidia GPU.

We propose m-Cubes, a novel implementation of the well-known Vegas
algorithm for multi-dimensional integration on GPUs. m-Cubes exploits par-
allelism afforded by GPUs in a way that avoids the potential non-uniform dis-
tribution of workload and makes near-optimal use of the hardware resources.
Our implementation also modifies Vegas to make the computation even faster
for functions that are “fully symmetric”. Our approach demonstrates significant
performance improvement over [2,14]. Our initial implementation was targeted
for Nvidia GPUs utilizing Cuda, but the m-Cubes algorithm is applicable to
any many-core system. Utilization of the Kokkos programming model allows
execution on various parallel platforms including non-Nvidia GPUs and even
CPU-clusters. Our goal is to make publicly available a robust, portable and easy-
to-use, implementation of Vegas in Cuda and Kokkos that will be suitable for
the execution of challenging integrands that occur in physics and other scientific
fields.

m-Cubes 195

The remainder of the paper is structured as follows. In Sect.2, we describe var-
ious Monte Carlo based algorithms. In Sect. 3, we describe the Vegas algorithm.
In Sect. 4 we describe the m-Cubes algorithm. In Sect. refexperimentalresults,
we discuss the accuracy and performance of our implementation, comparing its
execution time against publicly available Monte Carlo based methods. In Sect. 6
we discuss the interface and portability features used on an complex integral uti-
lized in parameter estimation in cosmological models of galaxy clusters. Section
7 presents results on an initial Kokkos implementation.

2 Background

We summarize here the previous work related to our research. We first sum-
marize the previously developed sequential Monte Carlo Methods and libraries.
Thereafter we summarize the research on parallel Vegas based methods.

2.1 Monte Carlo Methods

The Gsl library provides three Monte Carlo based methods, standard Monte
Carlo, Miser, and Vegas. Standard Monte Carlo iteratively samples the inte-
gration space of volume V , at T random points xi to generate an integral estimate
in the form of V

T

∑T
t=i f(xi), whose error-estimate is represented by the standard

deviation.
Vegas is an iterative Monte Carlo based method that utilizes stratified sam-

pling along with importance sampling to reduce standard Monte Carlo variance
and accelerate convergence rates. The stratified sampling is done by partitioning
the d-dimensional space into sub-cubes and computing Monte Carlo estimates
in each sub-cube. For importance sampling, Vegas samples from a probabil-
ity distribution that is progressively refined among iterations to approximate
the target-integrand. Vegas uses a piece-wise weight function to model the
probability distribution, where the weight corresponds to the magnitude of the
integral contribution of each particular partition in the integration space. At
each iteration Vegas adjusts the weights and the corresponding boundaries in
the integration space, based on a histogram of weights. The piece-wise weight-
function is intentionally separable to keep the number of required bins small
even on high-dimensional integrands. Existing implementations of Vegas, are
also found within the Cuba and Gsl libraries. A Python package also exists,
with support for parallelization through multiple processors.

Miser is another Monte Carlo based method, which utilizes recursive strat-
ified sampling until reaching a user-specified recursion-depth, at which point
standard Monte Carlo is used on each of the generated sub-regions. Miser gen-
erates sub-regions by sub-dividing regions on a single coordinate-axis and redis-
tributing the number of sampling points dedicated to each partition in order to
minimize their combined variance. The variance in each sub-region is estimated
at each step with a small fraction of the total points per step. The axis to split

196 I. Sakiotis et al.

for each sub-region, is determined based on which partition/point-redistribution
will yield the smallest combined variance.

Cuba is another library that provides numerous Monte Carlo based methods
(Vegas, Suave, Divonne). Suave utilizes importance sampling similar to Vegas
but further utilizes recursive sub-division of the sub-regions like Miser in Gsl.
The algorithm first samples the integration space based on a separable weight
function (mirroring Vegas) and then partitions the integration space in two
similar to Miser. Suave then selects the sub-region with the highest error for
further sampling and partitioning. This method requires more memory than
both Vegas and Miser.

Divonne uses stratified sampling, attempting to partition regions such
that they have equal difference between their maximum and minimum inte-
grand values. It utilizes numerical optimization techniques to find those mini-
mum/maximum values. Divonne can be faster than Vegas/Suave on many inte-
grands while also providing non-statistically based error-estimates if quadrature
rules are used instead of random samples.

2.2 Parallel Programming Models

Cuda is a popular low-level programming model, allowing the execution of par-
allel computations on Nvidia GPUs and has been used extensively in scientific
computing. The Nvidia GPU restriction can be avoided by utilizing Kokkos, a
C++ library that implements an abstract thread parallel programming model
which enables writing performance portable applications for major multi- and
many-core HPC platforms. It exposes a single programming interface and allows
the use of different optimizations for backends such as Cuda, HIP, SYCL, HPX,
OpenMP, and C++ threads [6,13]. Parameter tuning in the parallel dispatch of
code-segments, allows for both automatic and manual adjustments in order to
exploit certain architectural features.

2.3 Parallel GPU Methods

The gVegas method is a Cuda implementation of Vegas that allows execution
on a GPU [2,9]. This method parallelizes the computation over the sub-cubes
used in Vegas for stratification. It uses an equal number of samples in each sub-
cube as proposed in the original Vegas algorithm. It assigns a single thread to
process each sub-cube, which is not very efficient and is discussed in Sect.4. The
importance sampling that requires keeping track of integral values in each bin
(explained in the next section) is done on the CPU which slows down the overall
computation. Additionally, the number of possible samples is limited due to
their allocation on GPU memory which imposes performance limitations. These
design choices are a product of their time as the implementation was developed
in the early stages of the CUDA platform. A modernized version exists in [1] but
does not meet the statistical requirements related to the returned χ2 as indicated
in [10]. For that reason, Sect. 5 includes comparison with the implementation
of [2].

m-Cubes 197

Non-C++ implementations are available as well. ZMCintegral is a Python
library for performing Monte Carlo based multi-dimensional numerical integra-
tion on GPU platforms, with support for multiple-GPUs. The algorithm uses
stratified sampling in addition to a heuristic tree search that applies Monte
Carlo computations on different partitions of the integration space [14].

3 The VEGAS Algorithm

Vegas is one of the most popular Monte Carlo based methods. It is an iterative
algorithm, that attempts to approximate where the integrand varies the most
with a separable function that is refined across iterations. The main steps of a
Vegas iteration are listed in Algorithm3. The input consists of an integrand f
which is of some dimensionality d, the number of bins nb on each dimensional
axis, the number of samples p per sub-cube, the bin boundaries stored in an d-
dimensional list B, and the d-dimensional list C which contains the contributions
of each bin to the cumulative integral estimate.

Initially the integration space is sub-divided to a number of d-dimensional
hyper-cubes, which we refer to as sub-cubes. Vegas processes each sub-cube
independently with a for-loop at line 2. At each sub-cube, the algorithm gener-
ates an equal number of samples1, which are processed through the for-loop at
line 3. To process a sample, Vegas generates d random numbers in the range
(0, 1) at line 4, corresponding to one point per dimensional-axis. Then at line 5,
we transform the point y from the domain of the unit hyper-cube (0, 1) to actual
coordinates in the integration space. At line 6, we evaluate the integrand f at the
transformed point x, yielding the value v which contributes to the cumulative
integral estimate. Before proceeding to the next sample, we identify at line 7 the
bins that encompass each of the d coordinates in x. We use the indices of those
bins (b[1 : d]) to increment their contribution (v) to the integral at line 8. Once
the samples from all sub-cubes have been processed, we exit the twice-nested
for-loop. At line 9, we use the bin contributions stored in d, to adjust the bin
boundaries B in such a way that bins of large contributions are smaller. This
approach results in many small bins in the areas of the integration space where
the integrand is largest or varies significantly, resulting in more samples being
generated from those highly contributing bins. Finally, the contribution of each
sample must be accumulated at line 10, to produce the Monte Carlo integral
estimate and to compute the variance for the iteration.

The most desirable features of Vegas are its “importance sampling” which
occurs by maintaining bin contributions and adjusting the bin boundaries at
the end of each iteration. The use of sub-cubes introduces “stratified sam-
pling” which can further reduce the variance of the Monte Carlo samples. Those
two variance reduction techniques make Vegas successful in many practical

1 Here, we focus on the original Vegas algorithm which uses equal number of samples
in each sub-cube. The later versions of the algorithm deploy adaptive stratification
that adjust the number of integral estimates used in each sub-cube.

198 I. Sakiotis et al.

cases and the independence of the sub-cubes and samples make the algorithm
extremely parallelizable.

Algorithm 1. Vegas

1: procedure Vegas(f , d, nb, p, B, C) � Each iteration consists of the steps below
2: for all sub-cubes do
3: for i ← 1 to p do � f is evaluated at p points in each sub-cube
4: y1, y2, ..., yd ← generate d points in range (0, 1) uniformly at random
5: x1, x2, ..., xd ← map vector y to vector x � f is evaluated at x
6: v ← f(x1, x2, ..., xd)
7: let bi denote the index of the bin to which xi belongs in dimension i
8: increment C[1][b1], C[2][b2], ..., C[d][bd] by v � Store bin contributions

9: B[1 : d][1 : nb] ← adjust all bin boundaries based on C[1 : d][1 : nb]
10: I, E ← compute integral estimate/variance by accumulating v
11: return I, E

4 The Algorithm m-Cubes

The main challenges of parallel numerical integrators are the “curse of dimen-
sionality” and workload imbalances along the integration space. While high-
dimensionality is made manageable by the use of the Monte Carlo estimate in
Vegas (Algorithm 3), workload imbalances need to be addressed. This is par-
ticularly true for newer variations of the Vegas algorithm, which involve a
non-uniform number of samples per sub-cube. Parallelization of Vegas poses
additional challenges from the need to accumulate the results of multiple sam-
ples from different processors. In Algorithm 3, line 10 involves such an accumu-
lation which requires processor synchronization. Furthermore, a race condition
can occur at line 8, where the contributions of a bin may need to be updated by
different processors.

To parallelize Vegas, m-Cubes (Algorithm 4) assigns a batch of sub-cubes
to each processor and generates a uniform number of samples per sub-cube. This
solves the work-load imbalance issue and further limits the cost of accumulating
results from various processors. The integrand contributions from all sub-cubes
of each processor (Algorithm 3, line 6), are processed serially. As a result, those
values can be accumulated in a single local variable, instead of synchronizing and
transferring among processors. This does not eliminate the cost of accumulation,
as we still need to collect the contributions from the sub-cube batches in each
processor at line 10, but the extent of the required synchronization is reduced
significantly.

The input of the m-Cubes algorithm consists of the integrand f and its
dimensionality d, the number of bins per coordinate axis nb, the maximum num-
ber of allowed integrand evaluations maxcalls, and the upper/lower boundaries
of the integration space in each dimension, represented in the form of two arrays
L,H. The user must also supply the required number of iterations itmax and

m-Cubes 199

Algorithm 2. m-Cubes

1: procedure m-Cubes(f, d, nb, maxcalls, L, H, itmax, ita, r)
2: I, E ← 0 � Integral/Error estimate
3: g ← (maxcalls/2)1/d � Number of intervals per axis
4: m ← gd � Number of cubes
5: s ← Set-Batch-Size(maxcalls) � Heuristic
6: B[1 : d][1 : nb] ← Init-Bins(d, nb) � Initialize bin boundaries
7: C[1 : d][nb] ← 0 � Bin contributions
8: p ← maxcalls/m � number of samples per cube
9: for i ← 0 to ita do

10: r, C ← V-Sample()
11: I, E ← Weighted-Estimates(r)
12: B ← Adjust-Bin-Bounds(B, C)
13: Check-Convergence()

14: for i ← ita to itmax do
15: r ← V-Sample-No-Adjust()
16: I, E ← Weighted-Estimate(r)
17: Check-Convergence()

the number of iterations that will involve bin adjustments (ita). We also use the
array r to store the results which consist of the integral estimate and standard
deviation.

In line 2, we initialize the cumulative integral estimate and error-estimate
(standard deviation) to zero. In line 3 we compute the number of intervals per
axis; the boundaries of the resulting sub-cubes remain constant for the duration
of the algorithm. In contrast, the bin boundaries B are adjusted across iterations.
At line 4 we determine the number of sub-cubes m, while we also compute
the batch size s, referring to the number of sub-cubes that each thread will
process iteratively. Then the bin boundaries are generated on line 6, by equally
partitioning each axis into nb bins, and storing their right boundaries in the
list B.

Then we proceed with the m-Cubes iterations. The first step is to compute
the result r and bin contributions C, by executing the V-Sample method (Algo-
rithm4) at line 10. V-Sample produces the Monte Carlo samples, evaluates the
integrals and updates the bin contributions. This method requires almost all
data-structures and variables as parameters, so we omit them in this descrip-
tion. At line 11, the estimates are weighted by standard Vegas formulas that
can be found in Eqs. (5) and (6) of [11]. We then adjust the bin boundaries B
based on the bin contributions C. If the weighted integral estimate and standard
deviation produced at line 11, satisfy the user’s accuracy requirements, execu-
tion stops, otherwise we proceed to the next iteration. Before proceeding to the
next iteration, the bin boundaries B are adjusted at line 12. The only differ-
ence between an m-Cubes and a Vegas iteration from the original algorithm,
are the parallelized accumulation steps and mappings between processors and
sub-cubes.

200 I. Sakiotis et al.

A second loop of iterations (lines 14 to 17) is invoked once ita iterations
are completed. In this set of iterations, we perform the same computations with
the exception of bin adjustments and their supporting computations which are
omitted. This distinction is introduced due to the common occurrence of the
boundaries B converging after a number of iterations and remaining unchanged.
In those cases, the costly operations of keeping track of bin contributions and
updating them has no positive effect. As such, the user can mandate a limit of
iterations with that will involve bin adjustments, and sub-subsequent iterations
will execute faster by avoiding redundant operations.

V-Sample and V-Sample-No-Adjust are the only methods that involve
parallelization, encompassing the functionality of lines 2 to 8 from Algorithm3.
To facilitate the accumulation steps needed to yield the integral contribu-
tions from multiple sub-cube batches, V-Sample utilizes hierarchical paral-
lelism, where each processor launches many groups of cooperative threads (Cuda
thread-blocks/Kokkos teams) of size x, requiring a total m

x such groups. Each
thread within a group is independent and processes its own sub-cube batch of
size s (see Algorithm 4, line 5). The benefit of this approach, is that group-
shared memory and group-synchronization capabilities allow for more efficient
accumulation of the integral estimates v local to each thread. The race condition
involved with incrementing the bin contributions from multiple threads, is solved
through atomic addition operations. The same operation is used to accumulate
the integral estimate from all groups.

The input of the V-Sample method, consists of the integrand f of dimen-
sionality d, the number of sub-cubes m, sub-cube batch size s, number of samples
per sub-cube p, bin bounds B, bin contributions C, and result r. Once finished,
V-Sample will return an estimate for the integral, variance, and updated bin
contributions C.

The for-loop at line 2, indicates the sequential processing of s sub-cubes from
each thread. At line 3 we initialize a random number generator. Each thread has
local integral and error estimates I and E (line 4) respectively, which encompass
the contributions from all s sub-cubes. Each thread processes its assigned sub-
cubes with the serial for-loop at line 5. As the sub-cubes are processed, the local
estimates It and Et of each sub-cube are accumulated in I and E. This involves
yet another for-loop at line 7, to serialize the p samples generated per sub-cube.
Similar to the accumulation of It to I, we accumulate the estimates Ik and Ek

(local to the sample) to It and Et.
For each sample, we generate an d-dimensional point x where we will evaluate

the integrand f . This yields estimates for the sample that are used to increment
the sub-cubes estimates at lines 10 and 11. Then, based on the bin IDs that are
determined in line 12. we update the bin contributions in line 14. The atomic
addition guarantees serial access for each thread updating C at each index b[1 :
s], avoiding race conditions. The actual bin-contribution is the square of the
integral estimate Ik. Then, we update the variance at line 16, followed by the
updating of the thread-local estimates for the entire batch of sub-cubes in lines
16 and 17.

m-Cubes 201

Once the for-loop at line 5 is finished, we accumulate the I, E from each
thread in parallel. This is accomplished by a group-reduction that utilizes shared
memory and warp-level primitives if available. Finally, once each group has accu-
mulated estimates from all its sub-cubes across all its threads, a final atomic
addition in lines 23 and 24 accumulates the estimates from all groups and can
return them as the result r.

The V-Sample-No-Adjust method is almost identical to V-Sample, with
the distinction that the loop at lines 13-14 are not needed which yields a boost
in performance.

Algorithm 3. V-Sample

1: procedure V-Sample(f, d, m, s, p, B, C, r)
2: for m/b threads parallel do
3: Set-Random-Generator(seed)
4: I, E ← 0 � cumulative estimates of thread
5: for t = 0 to s do
6: It, Et ← 0 � estimates of sub-cube t
7: for k ← 1 to p do
8: x[1 : d] ← Generate()
9: Ik, Ek ← Evaluate(f, x)

10: It ← It + Ik � Accumulate sub-cube contributions
11: Et ← Et + Ek

12: b[1 : d] ← Get-Bin-ID(x)
13: for j ← 1 to d do � Store bin contributions
14: AtomicAdd(C[b[j]], I2

k)

15: Et ← UpdateVariance(Et, It, p)
16: I ← I + It � update cumulative values
17: E ← E + Et

18: I ← Reduce(I)
19: E ← Reduce(E)
20: if thread 0 within group then
21: AtomicAdd(r[0], I)
22: AtomicAdd(r[1], E)

5 Experimental Results

We performed two separate series of experiments to compare against the GPU
methods gVegas and ZMCintegral. Our experiments utilized a standard inte-
grand test suite (Eqs. 1 to 6) which consists of several integrals with different
characteristics such as corner/product peaks, Gaussian, C0 form, and oscilla-
tions. We used a single node with a 2.4 GHz Xeon R Gold 6130 CPU, v100
GPU with 16 GB of memory and 7.834 Tflops in double precision floating point
arithmetic, and compiled with Gcc 9.3.1 and Cuda 11.

202 I. Sakiotis et al.

f1,d (x) = cos

(
d∑

i=1

i xi

)

(1)

f2,d (x) =
d∏

i=1

(
1

502
+ (xi − 1/2)2

)−1

(2)

f3,d (x) =

(

1 +
d∑

i=1

i xi

)−d−1

(3)

f4,d (x) = exp

(

−625
d∑

i=1

(xi − 1/2)2
)

(4)

f5,d (x) = exp

(

−10
d∑

i=1

|xi − 1/2|
)

(5)

f6,d (x) =

{
exp

(∑d
i=1 (i + 4) xi

)
if xi < (3 + i) /10

0 otherwise
(6)

5.1 Accuracy

In the m-Cubes algorithm, we use relative error as a stopping criteria for
achieving a specified accuracy, which is the normalized standard deviation (see
Algorithm 4 for the error computation). The required accuracy associated with
numerical integration, can vary significantly across applications depending on
the context. To our knowledge no numerical integration algorithm can claim a
zero absolute error on all integrands or even guarantee integral/error estimates
that satisfy the various relative error tolerances τrel. As such, it is important
to evaluate the degree of correctness for specific challenging integrands whose
integral values are known a priori. It is equally important to demonstrate how
an algorithm adapts to increasingly more demanding precision requirements and
whether the yielded integral/error estimates truly satisfy the user’s required τrel.
This is especially true for Monte Carlo based algorithms, whose randomness
and statistically-based error-estimates make them less robust than determinis-
tic, quadrature-based algorithms. In our evaluation of m-Cubes, we adopt the
testing procedures of [7] in selecting the target integrands but preselect the var-
ious integrand parameter constants as in [12]. We deviate from [12], in that we
omit the two box-integrands that were not challenging for Vegas. We also do
not report results on f1,d in our plots, as no Vegas variant could evaluate it
to the satisfactory precision levels. The various tolerances are the same on all
experiments as each integrand is evaluated on increasingly smaller τrel. We start
evaluating all integrands with a τrel of 10−3. Upon each successful execution, we
divide τrel by five until either surpassing the minimum value of 10−9 (maximum
accuracy) or failing to achieve the required error tolerance.

m-Cubes 203

We investigate the quality of the m-Cubes error-estimates in Fig. 1, where
we display multiple 100-run sets of results on each different level of precision for
each integrand. The user’s requested digits of precision are represented in the
x-axis, while the true relative error is mapped to the y-axis. To make our plots
more intuitive, with the x-axis representing increasing accuracy requirements, we
perform the −log10(τrel) transformation on the x-axis of all plots; this translates
“roughly” to the required digits-of-precision. We still plot the user’s τrel for each
experiment as the orange point. Since we only plot results for which m-Cubes
claimed convergence with appropriately small χ2, comparing against the orange
point indicates whether the algorithm is as accurate as it claims.

Due to the randomness of the Monte Carlo samples, there is a wide range
of achieved relative error values for the same digits-of-precision. This is to be
expected as the error-estimate is interpreted as the standard deviation of the
weighted iteration results. Deviation in the results can be more pronounced when
generating smaller number of samples which is typical in low-precision runs. In
most cases, the number of samples must be increased for higher precisions runs.
This leads to a smaller deviation in the results, demonstrated in the figure by the
increasingly smaller boxes on the right side of the x-axis. This smaller deviation
yields improved accuracy, as we observe the box boundaries encompassing the
target relative error. We observed similar behavior from Gsl, Cuba, and the
Vegas 5.0 Python package on which we performed single-run experiments.

5.2 Performance

m-Cubes generates the random numbers and evaluates the integrand within two
GPU kernels, V-Sample which additionally stores bin contributions in order
to better approximate the distribution of the integrand, and V-Sample-No-
Adjust which does not update bin contributions. The execution time of the
two kernels, is directly dependent on the number of required function calls per
iteration which in turn determines the workload (number of sub-cubes) assigned
to each thread. The required number of iterations tends to increase for higher
precision runs. For low-precision runs, the same number of samples and iterations
can result in convergence. This is why for some integrands (f4,8, f5,8, f3,3, f2,6),
the three, four, and five digits of precision runs display similar execution time.
Missing entries indicate that the corresponding algorithm did not convergence
to the required τrel in a reasonable amount of time.

We compare m-Cubes and gVEGAS by evaluating integrands 1 to 6 for
various τrel. We observe that m-Cubes can be more than one order of magnitude
faster. This is attributed to the additional data movement (function evaluations)
gVegas requires between CPU and GPU, the smaller number of samples per
iteration that are imposed by required memory allocations. By contrast, m-
Cubes accumulates bin contributions and function evaluations within the GPU
and only performs their adjustment on the CPU while the bin boundaries and
their contributions are the only data moved between CPU and GPU.

204 I. Sakiotis et al.

f4 8D f5 8D f6 6D

f2 6D f3 3D f3 8D f4 5D

3 4 5 6 3 4 5 6 7 3 4 5 6

3 4 5 6 5.5 6.0 6.5 7.0 7.5 8.0 3 4 5 6 3 4 5 6

1e−07

1e−05

1e−03

1e−07

1e−05

1e−03

1e−07

1e−05

1e−03

1e−09

1e−08

1e−07

1e−06

1e−07

1e−05

1e−03

1e−07

1e−06

1e−05

1e−04

1e−03

1e−07

1e−06

1e−05

1e−04

1e−03

user−specified digits of precision

Ac
hi

ev
ed

 re
la

tiv
e

er
ro

r

target relative error

Fig. 1. This box plot displays the user-requested relative error tolerance (orange dot)
and the achieved relative errors of m-Cubes algorithm on the y-axis. Each box is a
statistical summary of 100 runs. The top and bottom box boundaries indicate the
first and third quartiles. The middle line is the value of the median while the vertical
lines protruding from the top and bottom box boundaries indicate the minimum and
maximum values. The individual points displayed are outliers. (Color figure online)

fA (x) = sin

(
6∑

i=1

xi

)

(7)

fB (x) =
1

(
√

(2 · π · .01))2
exp

(

− 1
2 · (.001)2

9∑

i=1

(xi)2
)

(8)

The results of ZMCintegral presented in [14] did not include integrands
1 to 6 and our experiments showed that ZMCintegral performed slower than
serial Vegas in those cases; as we are not aware of the “best”configuration
parameters for those integrands, we do not include such results on the grounds
of unfair comparison. Instead, we use the same parameters on the same integrals
reported in [14] (integrands 7 and 8). The fA integrand was evaluated over the
range (0, 10) on all dimensions, while the integration space of fB was the range
(−1, 1) on all axes. Since ZMCintegral does not accept τrel as parameter, we try
to match the achieved standard deviation of ZMCintegral for a fair comparison
by using a τrel of 10−3 and setting the maximum iterations of 10 and 15 respec-
tively. We report our results in Table 1, where we observe a speedup of 45 and
10 respectively, though in both cases m-Cubes reported significantly smaller
error-estimates than ZMCintegral (Fig. 2).

m-Cubes 205

f4 8D f5 8D f6 6D

f2 6D f3 3D f3 8D f4 5D

3 4 5 3 4 5 6 7 3 4 5

3 4 5 6 3 4 5 6 7 8 3 4 5 3 4 5 6
1e+01

1e+02

1e+03

1e+04

1e+05

1e+01

1e+02

1e+03

1e+04

1e+05

1e+02

1e+04

1e+06

1e+01

1e+02

1e+03

1e+04

1e+05

1e+02

1e+04

1e+06

1e+02

1e+04

1e+06

1e+03

3e+03

1e+04

3e+04

user−specified digits of precision

Ti
m

e(
m

s)

gVegas mcubes

Fig. 2. gVegas comparison

Table 1. Comparison with ZMCintegral

Integrand Alg True value Estimate Errorest Time (ms)

fA zmc −49.165073 −48.64740 1.98669 4.75 × 104

fA m-Cubes −49.27284 1.19551 1.07 × 103

fB zmc 1.0 0.99939 0.00133 8.30 × 103

fB m-Cubes 1.00008 0.00005 9.80 × 102

5.3 Cost of Function Evaluation

One of the fundamental operations of m-Cubes and all Monte Carlo integration
methods is the evaluation of the samples after randomly generating their location
in the region space. The execution time for the sample evaluations of the closed-
form integrands 1 to 8 was typically negligible compared to the total execution
time (typically less than 1% and at most 18% in the case of fA). “Real-world”
integrands can be more costly due to often required non-trivial operations or
even expensive memory accesses to look-up tables. In such cases, additional par-
allelism at the sample evaluation level could provide performance improvement.
For example, we could use multiple threads to evaluate a single sample instead
of having each thread compute a sample independently. Such operations could
involve the parallel generation of the points in each dimensional axis, or even
the parallelization of computations requiring multiple look-up operations, such
as interpolation, to minimize serial memory accesses.

206 I. Sakiotis et al.

5.4 The m-Cubes1D Variant

In addition to the m-Cubes algorithm, we also provide the variant m-Cubes1D.
m-Cubes1D mirrors m-Cubes, with the distinction that the bin boundaries
being updated at line 15 in Algorithm4, are identical on all coordinate axes,
thus not requiring the for-loop at line 14. This is beneficial when the integrand
f is fully symmetrical, having the same density across each dimension. Thus,
one series of atomic additions are required for dimension j = 0 at line 15. When
the bins are then adjusted sequentially after the execution of the V-Sample
method, the bins at each dimension will have identical boundaries.

Three of the six integrals presented in Sect. 4, are symmetrical. We per-
formed comparisons between m-Cubes and m-Cubes1D, which demonstrate a
small performance boost in m-Cubes1D. In Fig. 3, we see speedup of various
magnitudes depending on the integrand and degree of precision. Theoretically,
both implementations would perform the same bin-adjustments on a symmetri-
cal integrand, and m-Cubes1D would require fewer computations for the same
effect. We expect that execution of this variant on non-symmetrical integrands,
will severely hinder the bin adjustments.

1.5

2.0

2.5

3 4 5 6
prec

sp
ee

du
p

f2 6D f4 5D f4 8D f5 8D

Fig. 3. Speedup of m-Cubes1D over m-Cubes on symmetrical integrands.

6 Portability

There are two aspects related to portability: restrictions on the execution plat-
form, and maintaining flexibility when defining an integrand.

m-Cubes 207

6.1 Defining Integrands in CUDA

Ideally, an integrator should be “easy” to incorporate into existing codes and
the integrand definitions should be suitable for execution on various platforms,
whether that is CPUs or GPUs regardless of architecture (Nvidia, Intel, Amd,
etc.) Additionally, a user should have minimum restrictions when defining the
integrand, being allowed to use dynamically created data-structures within the
integrand, maintain an integrand state (persistent variables, tabular data, etc.),
and define boundaries in the integration space.

The different memory spaces utilized by a GPU pose a challenge in regards to
defining integrands with complex states (non-trivial structures). While the user
could potentially interface with m-Cubes through the appropriate use of Cuda
to handle the different memory spaces, this would severely hinder its ease-of-
use and require sufficient knowledge of GPU programming. Additionally, a user
who wishes to maintain the option of which platform (CPU, GPU) to execute
on, would be forced to write multiple, potentially very different implementa-
tions of the same integrand to accommodate the requirements of each platform.
To solve this problem, we require the user to define an integrand as a functor
to interface with m-Cubes. We also supply our own data-structures such as
interpolator objects and array-like structures, that handle the GPU related data
manipulations internally, but are set and accessed similar to standard library or
Gsl equivalents. This allows the user to initialize such objects and structures in
a familiar fashion and use them in their defined integrands without having to
worry about allocating and transferring data to GPU memory and without hav-
ing to write any complicated Cuda code. Finally, in regards to “easily” using
integrators in existing code-bases, m-Cubes is implemented as a header-only
library.

A use-case demonstrating these features, involves an integrand required for
a cosmological study in an astrophysics application. The integrand is six dimen-
sional and requires the utilization of numerous interpolation tables that must be
read at run-time and consists of several C++ objects. We evaluated that inte-
grand and compared execution times against the serial Vegas implementation
of Cuba. m-Cubes returns similar results to those of the Cuba implemenation
with appropriate performance. This demonstrates that our solutions pertain-
ing to portability are functional and do not induce any prohibitive costs that
would make m-Cubes is unsuitable for computationally expensive “real-world”
integrands.

6.2 Execution Platform Portability Using Kokkos

We have completed an initial implementation of m-Cubes in Kokkos with min-
imal algorithmic changes to the original Cuda version. The hierarchical paral-
lelism constructs of Kokkos, allow the specification of the same thread-block con-
figuration as required by the Cuda kernels. This makes “translation” to Kokkos
easy to perform but further optimization is required to maintain performance
across architectures.

208 I. Sakiotis et al.

We present results on the fA and fB integrands in Table 2, which displays the
kernel time (time executing on GPU) and total time (CPU and GPU time). We
evaluated both integrands with the Kokkos version, for three digits of precision
on an Nvidia V100 GPU. This demonstrates the minimum expected overhead
in the range 10–15% for the parallel segments of the code, which are expected
to cover the majority of execution time. We note that Kokkos can in some cases
be faster on the serial code execution. This leads to the low-precision runs on
the two integrands being slightly faster in Kokkos. Additional experiments on
other integrands show that this is not the case when computational intensity
increases. For example, when we compare the running times for the integrand
f4,5 with 100 runs for each precision level, Kokkos incurs 20–50% overhead.

Table 2. Confusion matrix of one of the folds for the final classification of DGCNN-
MS-T-W, with W = 150

(a) Execution Time (ms) on fA

platform kernel total

Cuda 829.760 1280.318

Kokkos 968.880 1001.035

Execution Time (ms) on fB

platform kernel total

Cuda 664.977 1126.529

Kokkos 726.766 767.343

7 Conclusion

We presented m-Cubes, a new parallel implementation of the widely used
Vegas multi-dimensional numerical integration algorithm for execution on
GPUs. m-Cubes is a portable header-only library, with a modern interface and
features that allow easy interfacing and requires no knowledge of GPU pro-
gramming to use. We also supply infrastructure to facilitate the definition of
complex and stateful integrands. Our experiments on a standard set of chal-
lenging integrals and a complex stateful integrand consisted of numerous C++
objects, demonstrate superior performance over existing GPU implementations.
Furthermore, We supply the variant m-Cubes1D to accelerate evaluation of
symmetrical integrals. We also provide an initial Kokkos implementation to allow
execution on non-Nvidia GPUs.

Acknowledgment. This manuscript has been authored by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy,
Office of Science, Office of High Energy Physics.

References

1. https://github.com/lbiedma/gVegascp
2. https://xgitlab.cels.anl.gov/whopkins/MadgraphGPU
3. Borowka, S., Heinrich, G., Jahn, S., Jones, S., Kerner, M., Schlenk, J.: A GPU

compatible quasi-monte carlo integrator interfaced to pySecDec. Comput. Phys.
Commun. 240, 120–137 (2019). https://doi.org/10.1016/j.cpc.2019.02.015

https://github.com/lbiedma/gVegascp
https://xgitlab.cels.anl.gov/whopkins/MadgraphGPU
https://doi.org/10.1016/j.cpc.2019.02.015

m-Cubes 209

4. Carrazza, S., Cruz-Martinez, J.M.: VegasFlow: accelerating Monte Carlo simula-
tion across multiple hardware platforms. Comput. Phys. Commun. 254, 107376
(2020). https://doi.org/10.1016/j.cpc.2020.107376

5. Cruz-Martinez, J., Carrazza, S.: N3pdf/vegasflow: vegasflow v1.0, February 2020.
https://doi.org/10.5281/zenodo.3691926

6. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore per-
formance portability through polymorphic memory access patterns. J. Parall.
Distrib. Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.
07.003, http://www.sciencedirect.com/science/article/pii/S0743731514001257,
domain-Specific Languages and High-Level Frameworks for High-Performance
Computing

7. Genz, A.: Testing multidimensional integration routines. In: Proceedings of Inter-
national Conference on Tools, Methods and Languages for Scientific and Engineer-
ing Computation, pp. 81–94. Elsevier North-Holland Inc., USA (1984)

8. Goda, T., Suzuki, K.: Recent advances in higher order quasi-monte carlo methods.
arXiv: Numerical Analysis (2019)

9. Kanzaki, J.: Monte carlo integration on GPU. The Eur. Phys. J. 71(2), 1–7 (2011)
10. Lepage, G.P.: Adaptive multidimensional integration: VEGAS enhanced. J. Com-

put. Phys. 439, 110386 (2021). https://doi.org/10.1016/j.jcp.2021.110386,https://
www.sciencedirect.com/science/article/pii/S0021999121002813

11. Peter Lepage, G.: A new algorithm for adaptive multidimensional integra-
tion. J. Comput. Phys. 27(2), 192–203 (1978). https://doi.org/10.1016/0021-
9991(78)90004-9, https://www.sciencedirect.com/science/article/pii/0021999178
900049

12. Sakiotis, I., Arumugam, K., Paterno, M., Ranjan, D., Terzić, B., Zubair, M.:
PAGANI: a parallel Adaptive GPU algorithm for numerical integration. Associa-
tion for Computing Machinery, New York, NY, USA (2021), https://doi.org/10.
1145/3458817.3476198

13. Trott, C.R., et al.: Kokkos 3: Programming model extensions for the exascale
era. IEEE Trans. Parallel Distrib. Syst. 33(4), 805–817 (2022). https://doi.org/10.
1109/TPDS.2021.3097283

14. Wu, H.Z., Zhang, J.J., Pang, L.G., Wang, Q.: Zmcintegral: a package for
multi-dimensional monte carlo integration on multi-GPUS. Comput. Phys. Com-
mun. 248, 106962 (2020). https://doi.org/10.1016/j.cpc.2019.106962, https://
www.sciencedirect.com/science/article/pii/S0010465519303121

https://doi.org/10.1016/j.cpc.2020.107376
https://doi.org/10.5281/zenodo.3691926
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://arxiv.org/abs/Numerical
https://doi.org/10.1016/j.jcp.2021.110386
https://www.sciencedirect.com/science/article/pii/S0021999121002813
https://www.sciencedirect.com/science/article/pii/S0021999121002813
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://www.sciencedirect.com/science/article/pii/0021999178900049
https://www.sciencedirect.com/science/article/pii/0021999178900049
https://doi.org/10.1145/3458817.3476198
https://doi.org/10.1145/3458817.3476198
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1016/j.cpc.2019.106962
https://www.sciencedirect.com/science/article/pii/S0010465519303121
https://www.sciencedirect.com/science/article/pii/S0010465519303121

Performance Modeling, Evaluation,
and Analysis

Comparative Evaluation of Call Graph
Generation by Profiling Tools

Onur Cankur(B) and Abhinav Bhatele

Department of Computer Science, University of Maryland,
College Park, MD 20742, USA

ocankur@umd.edu, bhatele@cs.umd.edu

Abstract. Call graphs generated by profiling tools are critical to dis-
secting the performance of parallel programs. Although many mature
and sophisticated profiling tools record call graph data, each tool is dif-
ferent in its runtime overheads, memory consumption, and output data
generated. In this work, we perform a comparative evaluation study on
the call graph data generation capabilities of several popular profiling
tools – Caliper, HPCToolkit, TAU, and Score-P. We evaluate their run-
time overheads, memory consumption, and generated call graph data
(size and quality). We perform this comparison empirically by executing
several proxy applications, AMG, LULESH, and Quicksilver on a parallel
cluster. Our results show which tool results in the lowest overheads and
produces the most meaningful call graph data under different conditions.

Keywords: Profiling tools · Call graph · Performance analysis ·
Parallel performance · Measurement

1 Introduction

Analyzing and optimizing the performance of parallel programs is critical to
obtaining high efficiency on high performance computing (HPC) architectures.
The complexity in hardware architectures and system software makes measuring
and recording performance data challenging. At the same time, the complex-
ity in HPC applications and compiler transformations can make analyzing and
attributing performance to source code and external libraries challenging [23].
Even so, a plethora of performance analysis tools exists for gathering and analyz-
ing performance data [1,5,9,13,22]. One category of performance tools collects
performance data that is aggregated over time. In this work, we refer to these as
profiling tools to distinguish them from tracing tools that gather more detailed
time-series data or full execution traces. Specifically, we focus on profiling tools
that record contextual information about the performance data such as calling
context, file and line numbers in the source code, etc., which can help users in
attributing performance to source code.

Although several profiling tools exist in the HPC community, they differ in
their profiling methods and capabilities, which affects their efficiency and the
c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 213–232, 2022.
https://doi.org/10.1007/978-3-031-07312-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_11&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_11

214 O. Cankur and A. Bhatele

quality of generated performance data. Broadly, profiling tools use one of two
methods for collecting information – instrumentation and sampling. Instrumen-
tation involves adding extra instructions to the source or binary code that are
used to measure the execution time of different parts of a program. In contrast,
sampling does not require adding instructions. It periodically samples the pro-
gram counter, uses that to identify the code being executed, and aggregates
the performance measurements of a code block across multiple samples. These
different profiling methods can lead to varying overheads and capabilities in
different profiling tools. For example, an instrumentation-based profiling tool
might cause more overhead than a sampling-based tool while providing more
accurate output. Besides, two different profiling tools that use the same method
might have different capabilities depending on how well they are implemented.
For instance, a sampling-based tool might work better than others under low
sampling intervals. Since end-users have many choices when using a profiling
tool, a systematic study is needed to understand the impact of different profiling
techniques on data generation.

Performance data gathered by profiling tools consist of different kinds of
information about the program such as the call graph, communication patterns,
and MPI process topology. In this study, we focus on the call graph data gener-
ation capabilities of profiling tools since the call graph provides critical informa-
tion about program structure, which can be quite useful in performance analysis.
There are many factors that come into play when comparing call graph data gen-
eration. Runtime overhead and memory consumption are two comparison met-
rics that naturally come to mind since they directly impact the application being
profiled. In addition, profiling complex parallel applications on a large number of
processes can result in a large amount of call graph data being generated, which
can also be an important factor to consider when comparing tools. The quality
and usefulness of the data generated in terms of its correctness (e.g., correctly
measuring and attributing execution time) and ability to attribute performance
to source code are also important. In this paper, we consider runtime overhead,
memory usage, and quality of the call graph data to compare the data generation
capabilities of profiling tools.

We compare several popular tools that are used in the HPC community to
profile parallel programs – Caliper [5], HPCToolkit [1], Score-P [9], and TAU [22]
– in terms of their capabilities, performance, and generation of meaningful call
graph data. More specifically, we compare their runtime overheads, memory
usage, and the size, correctness and quality of the generated call graph data. We
conduct these experiments on a parallel cluster by profiling three different proxy
applications, AMG, LULESH, and Quicksilver, using both instrumentation and
sampling under different sampling intervals and different numbers of processes.
To the best of our knowledge, this is the first comparative evaluation study on
call graph data generation capabilities of profiling tools for parallel programs. In
addition, we extend and use Hatchet [4], a Python-based tool that enables ana-
lyzing the output from profiling tools programmatically, to compare call graph
data. We show which tools are more efficient in terms of measurement overheads
and memory consumption, and generate more meaningful call graph data under

Comparative Evaluation of Call Graph Generation 215

different conditions and for different proxy applications. Specifically, this study
makes the following contributions:

– Comparatively evaluate the call graph generation capabilities of profiling tools
considering their measurement and memory overheads, and quality of the
generated data.

– Extend the Hatchet performance analysis tool to support output data gen-
erated by Score-P and TAU, enabling the comparison of data from several
popular profiling tools.

– Provide feedback to tool developers for the improvement of various aspects
of the performance data gathering process.

2 Background and Related Work

In this section, we provide an overview of the profiling tools used in this paper
and give detailed background information about profiling methods and the out-
put of profiling tools. We also introduce Hatchet, using which we perform our
analyses. Finally, we present related work on the evaluation of profiling tools.

2.1 Different Methods for Profiling

Performance measurement tools can be divided into two categories: profiling and
tracing. In this work, we only consider profiling which can be done using sampling
or instrumentation. Instrumentation can be classified along two dimensions: the
method of instrumentation and where is the instrumentation added. The method
can be manual (by the developer) or automatic (by the tool, compiler, library
interposition, etc.) and it can be performed by adding additional instructions
in the source code, byte code, or binary code [18]. These additional instructions
allow measuring the performance of a code section.

On the other hand, sampling-based profiling tools take periodic snapshots of
the program, check the location of the program counter and collect the function
call stack by performing stack unwinding [23] and then aggregate this data that
they gathered periodically. It also allows to change sampling interval, hence,
provides controllable overhead.

2.2 Information Gathered by Profiling Tools

The data generated by profiling tools usually contains contextual information
(the function name, file name, call path, process or thread ID, etc.) and per-
formance metrics such as time, cache misses, communication information, and
the total number of instructions along with the callpath information on the pro-
gram. Some profiling tools collect individual callpaths (i.e. calling contexts) on
the program and represent it in a tree format called calling context tree. Other
tools aggregate that information and generate call graphs which show aggre-
gated information in which a procedure that is called in multiple distinct paths
is represented as a single node. Profiling tools typically have their own custom
output formats to store the calling context tree (CCT) or call graph. In this
paper, we use call graph as a general term for both CCT and call graph.

216 O. Cankur and A. Bhatele

2.3 Profiling Tools Used in This Study

All profiling tools in this study, which are introduced below, support C, C++,
and Fortran programs and MPI, OpenMP, and pthreads programming models
(see Table 1).

Table 1. Salient features of different profiling tools

Tool Samp. Instr. Languages Output format

Caliper Yes Yes C, C++, Fortran .json and custom

HPCToolkit Yes No C, C++, Fortran XML and custom

Score-P Partially Yes C, C++, Fortran, Python XML and custom

TAU Yes Yes C, C++, Fortran, Java, Python custom

Caliper is a performance analysis toolbox that provides many services for users
to measure and analyze the performance, such as tracing and profiling ser-
vices [5]. It allows users to activate these capabilities at runtime by annotat-
ing the source code or using configuration files. It provides json or custom file
formats and generates CCT data.

HPCToolkit is a toolkit for performance measurement and analysis [1]. It sup-
ports both profiling and tracing and uses sampling instead of instrumentation.
It generates a performance database directory that contains XML and custom
file formats that store CCT information.

Score-P is a measurement infrastructure that supports both profiling and trac-
ing [9]. It is primarily an instrumentation-based tool that supports source, com-
piler, and selective instrumentation, but it also supports sampling for instru-
mented executables. Score-P supports Python in addition to C, C++, and For-
tran. It generates .cubex [20] output tarballs which are in CUBE4 format and
contain files in XML and custom formats and generates CCT information.

TAU is also a performance measurement and analysis toolkit and supports
profiling and tracing [22]. TAU also primarily uses instrumentation but it also
supports sampling. It supports different types of instrumentation such as source
instrumentation using PDT [11], compiler instrumentation, and selective instru-
mentation. It supports C, C++, Fortran, Java, and Python and generates
profile.<rank>.<>.<thread> files which are in custom format and stores
CCT as its default profiling output format.

2.4 Post-mortem Analysis of Profiling Data

Most of the profiling tools we evaluate provide their own analysis and visualiza-
tion tools such as HPCViewer [15], ParaProf [3], and CubeGUI [20]. Visualization
tools usually provide a graphical user interface (GUI) that allows the visualiza-
tion of one or two call graphs at the same time. These GUIs provide limited call

Comparative Evaluation of Call Graph Generation 217

graph analysis capabilities since they do not provide a programmable interface.
In this study, we used and improved Hatchet [4] to compare the call graph data
generated from different profiling tools on the same platform.

Hatchet is a Python-based performance analysis tool that provides a pro-
grammable interface to analyze the call graph profiling data of different tools
on the same platform [4]. It reads in the profiling data and generates a data
structure called graphframe which stores numerical (e.g. time, cache misses) and
categorical (callpath, file and line information, etc.) information along with the
caller-callee relationships on the program.

2.5 Related Work

All tools used in this paper have some kind of prior performance evalua-
tion. For example, some of them study the overhead of TAU using tracing,
profiling, sampling, and instrumentation [14,17,21]. There is a similar study
on HPCToolkit [12] which includes runtime overhead evaluation. Score-P and
Caliper include similar runtime overhead evaluation studies in their correspond-
ing papers [5,9]. Although each tool has been evaluated for performance, these
past studies only cover the runtime and memory overhead of a tool, different
profiling methods a tool supports, or include a simple overhead comparison with
another tool that is not currently state-of-the-art. Therefore, the only criteria
considered in these papers are the runtime and memory overheads, and they do
not evaluate the quality of the call graph data generated by profiling tools.

Other evaluation studies on profiling tools only include functional compar-
isons [8,16]. The closest related work to our paper is published in 2008 [10].
However, it is more like a case study and a generic user experience comparison
of profiling tools that were widely used at that time and it does not contain
empirical experiments. Our study is the first empirical comparative study on
call graph data generation by state-of-the-art profiling tools, considering their
runtime overhead, memory usage, and output quality.

3 Methodology for Comparative Evaluation

In this study, we consider runtime overhead, memory usage, size, richness and
correctness of the generated call graph data. We do not consider information
such as communication volume and process topology. Below, we present the
various axes along which call graph data generation capabilities are compared
and describe the metrics used for comparison.

3.1 Comparison of Runtime Overhead

One of the most important factors to consider when comparing call graph data
generation is the runtime overhead incurred when using them. The execution
time of an application should not be perturbed significantly by the profiling

218 O. Cankur and A. Bhatele

tool. Different profiling methods can incur different overheads. For example,
sampling causes less overhead than instrumentation methods because it is less
intrusive. Similarly, one instrumentation method can cause more overhead than
another instrumentation method. Hence, we evaluate the runtime overhead by
conducting experiments using both sampling and instrumentation techniques
separately. In addition, sampling-based methods have the flexibility to adjust
the runtime overhead by increasing or decreasing the sampling interval. We also
compare the tools by varying the sampling intervals wherever supported.

We run each application without any profiling and measure the execution
time by calling MPI Wtime() at the start and end of the program. Dividing these
two timings gives us the relative execution time of a program. We then run each
application with different profiling tools to calculate the increase in execution
time due to profiling overheads.

3.2 Comparison of Memory Consumption

Ideally, performance tools should not consume large amounts of memory. Hence,
it is important to compare the additional memory consumption of different profil-
ing tools. We compare the amount of memory consumed by profiling tools during
application execution. We perform the same experiments using the default and
varying sampling intervals and using instrumentation.

We measure the memory usage of a program using the getrusage() function
call and obtain the largest memory usage at any point during program execution.
We calculate the additional memory consumed by a tool by gathering memory
usage information for two runs – one with and one without profiling.

3.3 Comparison of the Quality of Call Graph Data

We expect profiling tools to provide useful information without generating
unnecessary or repetitive information. In this study, we evaluate the quality
of the call graph profiling data recorded by each tool considering the data size,
correctness and richness of the data with the assumption that if the data gen-
erated by multiple tools is nearly identical, it should be close to the ground
truth.

Size of Call Graph Data: A significant amount of call graph data can be
generated when profiling HPC applications, which can make post-mortem anal-
ysis challenging. We evaluate the size of the data generated when using different
tools for the same experiments by using default and varying sampling intervals
and instrumentation. We use default settings for each tool without changing the
number of metrics collected and collect per-process data without aggregating it.
We also observe how the data size increases with an increase in the number of
processes since some tools generate a separate file per MPI process while others
represent this data in a more compact output format.

Correctness of Call Graph Data: The correctness of the generated call graph
data is critical in order to perform meaningful analysis. We consider the infor-
mation to be correct if different tools generate the same results with correct

Comparative Evaluation of Call Graph Generation 219

contextual information. We follow two different strategies for this analysis. First,
we load the profiling data from different tools in Hatchet and identify the top
5 slowest call graph nodes in the call graph by inclusive and exclusive time and
investigate if the tools identify the same slowest nodes. We also compare the file,
line numbers, and callpaths reported by each tool for the slowest nodes. Second,
we identify the hot path in each dataset. The hot path refers to a call path in the
graph in which all nodes account for 50% or more of the inclusive time of their
parent [2]. The node at the end of a hot path is called a hot node. Therefore,
hot path analysis gives us the most time-consuming call path in the execution.
Our hot path analysis implementation in Hatchet makes it possible to perform
the same analysis for each tool.

Richness of Call Graph Data: The richness of call graph profiling data refers
to having detailed information in the CCT such as caller-callee relationships,
and contextual information (file and module information, line number, etc.). To
evaluate richness, we take the following parameters into account: the maximum
and average callpath lengths, the number of nodes, the number of identified
.so files (dynamically loaded modules), and the number of MPI routines. The
callpath length provides insight into how detailed the caller-callee relationships
are. In addition, examining the number of total and unique nodes in the call
graph tells us if a tool is missing some information or generating excessive data
that is not required. We also compare the information generated by different tools
about dynamically loaded libraries and MPI routines. Similar to the correctness
evaluation, these comparisons are performed using Hatchet. For example, we
filter the Hatchet dataframe by node names to get the MPI functions or .so files.
We traverse the graph to calculate the maximum and average callpath length.

3.4 Extensions to Hatchet

We have improved Hatchet by implementing TAU and Score-P readers to use in
this study. Below, we explain how we implement these readers.

Score-P Reader: Score-P stores profiling data in CUBE4 tar files (extension:
.cubex) [20]. These tar files in turn contain anchor.xml, .index, and .data files.
The anchor.xml file contains metadata information about metrics and processes
along with caller-callee relationships. The .index and .data files contain infor-
mation about metric measurement and metric values. To implement a Python
reader in Hatchet, we use pyCubexR which is a Score-P reader that can read
cubex files. After implementing the reader, we compared the generated Hatchet
graphframe with the CubeGUI visualization provided by Score-P to confirm the
correctness of our implementation.

TAU Reader: TAU generates profiles in its custom format. It generates a sepa-
rate file for each process and thread. In addition, it generates a separate directory
for each metric (time, cache misses, etc.). We combine all this information gath-
ered from different directories and files, and create a single CCT which is stored
as a graphframe in Hatchet. Finally, we validate our reader implementation by

220 O. Cankur and A. Bhatele

comparing the Hatchet graphframe with ParaProf output which is a visualization
tool for TAU outputs.

4 Experimental Setup

In this section, we describe each experiment in detail. We used three HPC appli-
cations written in C/C++ and four profiling tools in our experiments: AMG [6],
LULESH [7], and Quicksilver [19] proxy applications and Caliper, HPCToolkit,
Score-P, and TAU profiling tools. We chose LULESH because it is a simple code
(lines of code = ∼5.5k), which can help us illustrate differences between tools.
Quicksilver is more complex than LULESH in terms of lines of code (∼10k),
and AMG (∼65k) uses external libraries such as Hypre which makes its call
paths more complex. In addition, all the profiling tools we used in this study
are actively and widely used in many supercomputers and they are still being
improved. We used the latest release versions of these tools: Caliper 2.6.0, HPC-
Toolkit 2021.05.15, Score-P 7.1, and TAU 2.30.1. We compared their sampling
and instrumentation capabilities by running experiments accordingly. We sepa-
rately built each of the applications with these tools using GCC 8.3.1 and Open
MPI 3.0.1. We only used MPI, so multithreading using OpenMP or Pthreads
was not enabled. We ran the applications on a parallel cluster which has x86 64
architecture with 36 cores on each node and performed weak scaling experiments
using 64, 128 (125 for LULESH), 256 (216 for LULESH), and 512 processes using
1 through 16 nodes and 32 cores on each node in all experiments.

4.1 Experiment 1: Comparison of Sampling Capabilities

In this experiment, we used Caliper, HPCToolkit, Score-P, and TAU using their
default sampling intervals. However, it should be noted that Score-P supports
sampling of instrumented programs, while other tools directly perform sampling
on executables without instrumenting them. The default sampling interval for
Caliper, HPCToolkit, Score-P, and TAU is 20, 5, 10, and 30 ms, respectively.
We evaluated the runtime overhead, memory usage and the size, richness, and
correctness of the generated data.

4.2 Experiment 2: Impact of Sampling Intervals

Similar to Experiment 1, we only used the tools that support sampling and
evaluated the same comparison metrics. However, for this experiment, we used
varying sampling intervals as follows: 1.25, 2.5, 5, 10, 20 ms. Sampling interval
refers to the milliseconds spent between two samples (Caliper uses Hertz as a
unit). For example, sampling interval with a value of 5 ms refers that the profiling
tool samples the program for every 5 ms. This experiment shows whether tools
can properly work when the sampling interval is low and how the performance
and the generated data change as we change the interval.

Comparative Evaluation of Call Graph Generation 221

4.3 Experiment 3: Comparison of Instrumentation Capabilities

In this experiment, we compared the instrumentation capabilities of Caliper,
Score-P, and TAU since HPCToolkit does not support instrumentation. We tried
to use the default instrumentation method that the tools support. By default,
Caliper supports manual source instrumentation, Score-P supports compiler
instrumentation, and TAU supports automatic source instrumentation. Dur-
ing the experiments, we realized that TAU’s automatic source instrumentation,
which uses PDT, gives errors for almost all of the runs because it is not fully
updated. Therefore, we decided to use compiler instrumentation for TAU which
works for all applications. Caliper requires manual annotations to perform the
source instrumentation. We used annotated versions of LULESH and Quicksilver
which are publicly shared by Caliper developers on Github and we annotated
AMG by ourselves learning from the already available annotations. We evaluated
the same comparison metrics also in this experiment and this experiment shows
which tool or instrumentation method causes more overhead or can generate
better data and how well these tools can perform an instrumentation method.

5 Evaluation

In this section, we present the findings of our empirical comparison of call graph
data generation by different profiling tools.

5.1 Runtime Overhead

We first evaluate the runtime overhead of the profiling tools by performing exper-
iments using instrumentation and sampling with default and varying intervals.

Fig. 1. Runtime overhead for different tools when the sampling method is used. Default
sampling intervals (20, 5, 10, and 30 ms) were used for Caliper, HPCToolkit, Score-P,
and TAU respectively.

Figure 1 shows runtime overheads caused by Caliper, HPCToolkit, Score-P,
and TAU when we sample the programs using default sampling intervals. We
can see that most tools have a small overhead (slightly over 1×) except Score-
P. Score-P has ∼1.25× overhead for AMG, ∼1.02× for LULESH, and ∼5× for

222 O. Cankur and A. Bhatele

Quicksilver. We think that the significant difference between the overhead caused
by Score-P and other tools is because Score-P samples instrumented executa-
bles while others can directly perform sampling on uninstrumented executables.
Caliper, HPCToolkit, and TAU do not have a significant overhead. The overhead
increases as we increase the number of processes but the increase is small. In
addition, TAU fails to produce output when we use it with AMG and Quick-
silver on 256 and 512 processes. Similarly, Score-P does not work when we run
Quicksilver using 128, 256, and 512 processes. Both TAU and Score-P give seg-
mentation faults in some runs. We tried to fix these errors by debugging, running
the applications multiple times, and contacting the developers but could not find
a solution.

In Fig. 2, we show the runtime overhead of the tools under varying sampling
intervals (1.25–20.0 ms). It can be observed that the runtime overhead does not
change significantly under different sampling intervals and the results are similar
to what we see in Fig. 1. Hence, we can say that the sampling interval does not
have a significant impact on the runtime overhead. We realized that Caliper,
Score-P, and TAU do not work at all when the sampling interval is 1.25 ms on
AMG and Quicksilver runs, and TAU and Score-P do not work deterministically
under some sampling intervals. For example, sometimes three of five experiments
run to completion while at other times, only one of them works. HPCToolkit
works under all samplings intervals and its runtime overhead is stable in all
settings.

Fig. 2. Runtime overhead for different tools as a function of the sampling interval used.
Each execution used 64 MPI processes.

Figure 3 shows the runtime overhead caused by Caliper, Score-P, and TAU
when the instrumentation method is used instead of sampling. As mentioned
before, we used automatic compiler instrumentation for both TAU and Score-P
and manual source instrumentation for Caliper. All three plots in Fig. 3 show
that Caliper results in lower runtime overhead. Interestingly, TAU has the high-
est runtime overhead (∼2×) for LULESH while Score-P has the highest overhead
for Quicksilver (∼10×) although the same compiler version and same compiler
wrappers that the tools provide are used. We believe this is related to the imple-
mentation details of each tool and how they handle some specific cases (e.g. inlin-
ing and loop optimizations). Therefore, we can say that compiler instrumenta-
tion is not stable under different conditions and is highly dependent on the

Comparative Evaluation of Call Graph Generation 223

application. We also note that TAU and Score-P’s compiler instrumentation of
Quicksilver causes more overhead compared to sampling (Fig. 1).

Fig. 3. Runtime overhead for different tools when the instrumentation method is
used. Caliper uses source instrumentation, while Score-P and TAU use compiler
instrumentation.

5.2 Memory Consumption

In this section, we evaluate the memory usage of each tool but we do not report
the results under default sampling intervals because we observed that it does
not change significantly depending on the sampling interval.

Fig. 4. Total additional memory usage (in KB) for different tools as a function of the
sampling interval used. Each execution used 64 MPI processes.

Figures 4 and 5 show that the total memory usage for each tool typically does
not change drastically with different applications, different numbers of processes,
and different sampling intervals. It can be observed in both figures that TAU uses
more memory in all of the runs where it works (∼10 MB in sampling and ∼100 MB
in instrumentation) compared to the other tools. Score-P has the least memory
usage except in AMG runs using 10 ms and 20 ms sampling intervals (see left
plot in Fig. 4). HPCToolkit has the second-highest memory usage while Caliper
has the third-highest. It can also be seen that TAU uses more memory when
compiler instrumentation is used (∼100 MB, Fig. 5) versus sampling (∼10 MB,
Fig. 4). Because of this significant difference between tools, we can say that
memory usage is an important comparison metric to evaluate call graph data
generation.

224 O. Cankur and A. Bhatele

Fig. 5. Total additional memory usage (in KB) for different tools when the instrumen-
tation method is used. Caliper uses source instrumentation, while Score-P and TAU
use compiler instrumentation.

Next, we evaluate the quality of the generated call graph data considering
the size, richness, and meaningfulness of the data.

5.3 Size of Call Graph Data

We compared the size of the generated call graph data while performing the
same experiments. We observed that there is a significant difference between
tools in terms of the size of the generated data.

Fig. 6. Size of the profiling data (in MB) for different tools when the default sampling
method is used. Default sampling intervals (20, 5, 10, and 30 ms) were used for Caliper,
HPCToolkit, Score-P, and TAU respectively.

Figure 6 shows the increase in the data size when the default sampling method
is used for each tool. The size of the generated data increases with an increase
in the number of processes since data for more processes is being recorded. We
can see that TAU generates the largest amount of data for all applications (from
∼100 to ∼1000 MB). In addition, TAU and HPCToolkit generate much more data
compared to Score-P and Caliper because they generate a separate file for each
process while Score-P and Caliper generate more compact data. For example,
Caliper generates only a single json file that contains information about all the
processes. In contrast, Fig. 7 shows the decrease in the data size under varying
sampling intervals. In this case, the size of the data decreases as we increase
the sampling interval since less data is being recorded as we increase the time
between two samples. Interestingly, Caliper has an opposite behavior and it

Comparative Evaluation of Call Graph Generation 225

generates slightly more data as the sampling interval is increased. We examined
the Caliper data and realized that it generates more nodes as we increase the
interval up to 5.0 ms and then, it starts generating fewer nodes again.

Fig. 7. Size of the profiling data (in MB) for different tools as a function of the sampling
interval used. Each execution used 64 MPI processes.

Similar to Fig. 6, we see the increase in data size when using instrumentation
in Fig. 8. As the number of processes is increased, TAU generates the largest
amount of data. In addition, it can be also seen from LULESH plots in Figs. 6
and 8 that TAU generates more data when sampling is used instead of compiler
instrumentation because it generates additional information such as [CONTEXT]
and [SAMPLE] nodes. [CONTEXT] nodes do not store useful information and they
can be removed from the data.

Fig. 8. Size of the profiling data (in MB) for different tools when the instrumenta-
tion method is used. Caliper uses source instrumentation, while Score-P and TAU use
compiler instrumentation.

5.4 Correctness of Call Graph Data

In order to evaluate the correctness of the call graph data, we compare the
two slowest nodes and their identified callpaths and summarize the other find-
ings. We only report results for LULESH since we get similar results with other
applications. First, we identified the slowest and the hot node for each tool and
checked if the file and line information of the slowest node is correct. Table 2
shows the identified slowest nodes, hot nodes, and the correctness of file and line
information for the slowest node. We assume that if the majority of the tools

226 O. Cankur and A. Bhatele

provide the same output, it should be close to the ground truth. As it can be
seen from the table, Caliper instrumentation, HPCToolkit sampling, and TAU
instrumentation can identify the same node, CalcHourglassControlForElems, as
the slowest node with the correct file and line information. Caliper and TAU
sampling cannot identify the same node as the slowest node although they also
have the same node in their output data with the correct file and line infor-
mation which suggests that either these tools record a different time value for
that node or they have incomplete contextual information. The CalcHourglass-
ControlForElems node was missing in Score-P output, therefore, we could not
identify it. We also observed that Caliper instrumentation cannot generate file
and line information but we could not check that for Score-P since the node was
missing in its output. Score-P does not identify the same slowest node because
it does not record information for inlined functions by default but provides an
option to enable it.

Table 2. Comparison of the correctness of the generated call graph data for different
tools when the default sampling interval and instrumentation method are used. The
data was generated by executing LULESH using 64 MPI processes.

Tool Method Slowest node

(inc. time, exc. time)

Hot node File & line

correctness

Caliper Sampling (main, syscall)*** main*** Correct**

Instrumentation (main,

CalcHourglassControl-

ForElems)

lulesh.cycle Missing

HPCToolkit Sampling (main,

CalcHourglassControl-

ForElems)

Loop in lulesh.cc at line 1048

(CalcHourglassControlForElems)

Correct

Correct

Score-P Sampling (lulesh-scorep2.0 (main),

main)

lulesh-scorep2.0 (main) Missing

Instrumentation (lulesh-scorep2.0 (main),

main)

main Missing

TAU Sampling (progress engine,

progress engine)***

.TAU Application*** Correct**

Instrumentation (.TAU Application

(main), CalcHourglass-

ControlForElems)

CalcHourglassControlForElems Correct

Figure 9 shows the callpath for the commonly identified slowest node, Cal-
cHourglassControlForElems. We confirm that TAU and Caliper sampling out-
puts (Fig. 9(b), 9(a)) contain information about that node and can generate its
callpath although they cannot identify it as the slowest node. We can see from
TAU and Caliper sampling callpaths that they do not aggregate the measured
time values for that node and they connect the nodes related to it directly to
the main node which results in having many related nodes with low time values.
In addition, Caliper sampling cannot generate the name of the node as seen
in Fig. 9(a), and the only way to find it is to use the line information on the
output for that node. Score-P is missing that node in its output, therefore, it is

Comparative Evaluation of Call Graph Generation 227

(a) Caliper (sampling)

(b) TAU (sampling)

(c) HPCToolkit

(d) Caliper (instrumentation)

(e) TAU (instrumentation)

Fig. 9. Callpath of the CalcHourglassControlForElems node obtained by different tools
for LULESH running on 64 processes.

not included in this figure. In summary, TAU and Caliper sampling and Score-P
generate incomplete call graphs for LULESH compared to TAU instrumentation,
Caliper instrumentation, and HPCToolkit.

We also investigated the top five slowest nodes and observed that Caliper
instrumentation, HPCToolkit, and TAU instrumentation identify almost the
same nodes as the top five but the order of the top five list is somewhat dif-
ferent in each tool. Score-P sampling and instrumentation also find similar top
five slowest nodes with greater differences. Caliper and TAU sampling do not
identify the same slowest nodes. We present the call paths of the second slowest
node in Fig. 10. The leaf node in each call path is the second slowest node. It
can be seen that the leaf nodes are usually different from each other except for a
few similarities. Score-P instrumentation (Fig. 10(f)) identifies the same second
slowest node as TAU instrumentation (Fig. 10(g)). However, their callpaths are
not identical since they handle inlined functions differently. Similarly, Score-P
sampling (Fig. 10(d)) identifies the same second slowest node as HPCToolkit
(Fig. 10(b)) but the callpaths are different. In addition, Caliper instrumentation
(Fig. 10(e)) does not identify the same slowest node but the node identified by
Caliper is also in the top five list of HPCToolkit and TAU instrumentation.
Caliper sampling (Fig. 10(a)) and TAU sampling (Fig. 10(c)) do not provide as
meaningful results. Note that we do not have Score-P results in Fig. 9 because
Score-P identifies the main node as the slowest node and the slowest node that
is commonly identified by other tools does not exist in the Score-P output.

228 O. Cankur and A. Bhatele

(a) Caliper (sampling)

(b) HPCtoolkit

(c) TAU (sampling)

(d) Score-P (sampling)

(e) Caliper (instrumentation)

(f) Score-P (instrumentation)

(g) TAU (instrumentation)

Fig. 10. Callpath of the second slowest node obtained by different tools for LULESH
running on 64 processes.

However, it identifies the same second slowest node as some other profiling tools,
hence, we included Score-P in Fig. 10.

5.5 Richness of Call Graph Data

We compared the richness of the call graph data generated by the profiling tools
considering the maximum and average callpath depth, the number of nodes,
the number of dynamically loaded libraries (.so files), and the number of MPI
functions. The data is gathered by running each application on 64 processes.

Table 3 shows the richness of the data generated by each tool using their
default method. The fourth and fifth columns show the maximum and aver-
age callpath lengths in the call graph data. The callpaths generated by HPC-
Toolkit and Caliper sampling usually have similar depths. TAU and Score-P
compiler instrumentation abnormally generate very long callpaths for a node
called hypre qsort0 which is a recursive sorting function. Interestingly, they
keep creating a new callpath for that function every time it calls itself instead
of aggregating its information. The other tools usually generate callpaths that
have fewer than ten nodes. The length of the callpaths might be related to how
well a tool can handle inlined functions, but generating unnecessary data might
also result in longer callpaths. Therefore, we cannot infer that a longer callpath
is richer. In addition, some of these tools allow the user to set the maximum call-
path length to be recorded, so expert users could adjust it depending on their
needs. Therefore, this comparison gives insights on tools’ and profiling methods’

Comparative Evaluation of Call Graph Generation 229

Table 3. Comparison of the richness of the generated data for different tools when
a fixed sampling interval (20.0 ms) and the instrumentation method are used. Each
execution used 64 MPI processes.

App. Tool Method Max

depth

Avg

depth

No. of nodes

(all, unq)

No. of .so

files (all,

unq)

No. of MPI

functions

(all, unq)

AMG Caliper Sampling 30 9.724 (1414, 739) (363, 36) (37, 17)

Instrumentation 3 2.384 (50, 22) 0 (38, 10)

HPCToolkit Sampling 35 13.931 (12112, 2528) (4616, 25) (585, 66)

Score-P Sampling 63 10.859 (1470, 199) 0 (668, 52)

Instrumentation 163* 31.428* (3117, 332) 0 (676, 51)

TAU Sampling 12 8.416 (13645, 1976) (2010, 20) (1036, 91)

Instrumentation 111* 10.12* (1956, 334) 0 (683, 52)

LULESH Caliper Sampling 19 3.984 (832, 729) (96, 47) (7, 6)

Instrumentation 7 5.115 (71, 31) 0 (40, 7)

HPCToolkit Sampling 23 10.412 (4546, 1775) (1496, 22) (96, 81)

Score-P Sampling 5 3.0 (97, 65) 0 (19, 11)

Instrumentation 4 2.656 (43, 34) 0 (19, 11)

TAU Sampling 12 5.473 (4999, 1281) (915, 12) (236, 32)

Instrumentation 8 4.408 (114, 78) 0 (36, 11)

Quicksilver Caliper Sampling 30 10.703 (1495, 807) (413, 25) (17, 8)

Instrumentation 8 3.937 (122, 84) 0 (36, 7)

HPCToolkit Sampling 29 14.376 (5253, 2392) (1307, 22) (24, 15)

Score-P Sampling 10 5.05 (343, 206) 0 (40, 15)

Instrumentation 9 5.184 (418, 267) 0 (80, 29)

TAU Sampling 12 7.802 (7776, 1779) (731, 16) (230, 41)

Instrumentation 9 4.831 (401, 246) 0 (47, 18)

capabilities for generating sufficient call graph data with enough caller-callee
relationships.

The next column shows the number of all and unique nodes. HPCToolkit
data usually contains more unique nodes although TAU sampling usually has
the largest number of nodes. We believe that it is related to how [UNWIND] nodes
are stored in TAU data format since we realized that they include unnecessary
information (confirmed by TAU developers). This suggests that the information
is not stored as efficiently in TAU. Caliper and Score-P usually generate call
graphs with fewer nodes since they generate less data.

The difference between the number of all .so files generated by different tools
is larger than the difference between the number of unique .so files. For example,
while HPCToolkit output contains a much larger number of .so files compared
to Caliper sampling, the number of unique .so files in Caliper sampling is larger.
The reason is that HPCToolkit can identify more dynamically loaded libraries
while Caliper can identify only some of them so the number of all .so files is
much higher in HPCToolkit data. We also realized that the number of unique
.so files are is significantly different from each other when sampling is used.
However, Score-P does not provide information about .so files when we use
sampling. The table also shows that .so files cannot be identified when using
instrumentation which is expected since they are dynamically loaded libraries.

230 O. Cankur and A. Bhatele

We emphasize that it does not imply that the instrumentation method provides
poor call graph data compared to the sampling method since information about
.so files might not be necessary for some analyses.

The last column shows the number of MPI functions. We investigated how
many MPI functions can be detected by each tool since it is a commonly used
programming model. TAU sampling generates a significantly large number of
MPI functions in all applications compared to other tools. As mentioned before,
the reason might be that TAU generates unnecessary [CONTEXT] nodes that
do not contain useful information and these nodes are mostly related to MPI
functions.

In summary, all the information about runtime overhead, memory usage, and
data size should be connected to the quality of output to have a more complete
evaluation of call graph data generation. We emphasize that we cannot conclude
that a tool provides richer call graph data by only looking at Table 3. However,
this comparison shows some characteristics, abnormalities, and sufficiency of call
graph data generated by different tools.

6 Discussion

Our comparative evaluation shows that the runtime overhead when using profil-
ing tools is similar, except in the case of Score-P for some applications. Additional
memory consumed by a tool does not vary significantly with the application
being profiled. In general, we can order the memory usage of tools from highest
to lowest as TAU, HPCToolkit, Caliper, and Score-P. Also, TAU typically gener-
ates the largest amount of data with HPCToolkit being a close second. The size
of the data generated by Score-P and Caliper is notably lower compared to TAU
and HPCToolkit because their representation of output data is more compact.
The top five slowest nodes identified by the profiling tools are usually similar to
each other except when using sampling in Caliper and TAU. However, although
different tools identify the same nodes as slow, the relative ordering of the top
five slowest nodes is usually different from each other. In terms of call path
completeness, Caliper instrumentation, TAU instrumentation and HPCToolkit
generate more complete call graphs in default mode.

After extensively using and evaluating the tools, we are also in a position
to provide some feedback to their respective developers. From all the figures in
Sect. 5.3, it can be seen that TAU usually generates the largest amount of data.
The reason for this is that it stores repetitive information such as [CONTEXT]
nodes. These nodes do not have useful metric values and could be removed from
the generated data. In addition, TAU stores the same metric information twice –
in a separate line by itself and at the end of each callpath. This can be optimized
by storing the information only once. When we implemented a reader for TAU
output in Hatchet, we realized that TAU generates a separate file for each metric
that contains exactly the same callpath information when more than one metric
is measured. The size of the output data can be further reduced by storing the
call graph only once.

Comparative Evaluation of Call Graph Generation 231

When using the instrumentation method in Caliper, we observed that Caliper
does not generate file and line number information in instrumentation only mode.
Although we perform manual source instrumentation in this study, it would be
helpful for the end user if file and line number information was in the out-
put. Finally, when using sampling in Caliper and TAU and either method in
Score-P, the generated call graphs are relatively incomplete on the experiments
performed in this study. We believe that their callpath generation capabilities
can be improved.

In summary, we performed the first empirical study to compare call graph
data generation capabilities of profiling tools considering many different aspects.
We used these tools as per their official documentation and contacted the tool
developers when needed. This study shows that more comprehensive evaluation
studies on profiling tools considering their scalability and other performance
analysis capabilities may reveal interesting information and could be helpful for
the community. In the future, we plan to extend this work by using produc-
tion applications, collecting other structural information, and performing more
empirical and analytical analyses on the output data.

Acknowledgments. This work was supported by funding provided by the University
of Maryland College Park Foundation.

References

1. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurr. Comput. Pract. Exp. 22(6), 685–701 (2010)

2. Adhianto, L., Mellor-Crummey, J., Tallent, N.R.: Effectively presenting call path
profiles of application performance. In: 2010 39th International Conference on Par-
allel Processing Workshops, pp. 179–188. IEEE (2010)

3. Bell, R., Malony, A.D., Shende, S.: ParaProf : a portable, extensible, and scalable
tool for parallel performance profile analysis. In: Kosch, H., Böszörményi, L., Hell-
wagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 17–26. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45209-6 7

4. Bhatele, A., Brink, S., Gamblin, T.: Hatchet: pruning the overgrowth in paral-
lel profiles. In: Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2019, November
2019. https://doi.org/10.1145/3295500.3356219. lLNL-CONF-772402

5. Boehme, D., et al.: Caliper: performance introspection for HPC software stacks.
In: SC 2016: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 550–560 (2016). https://doi.
org/10.1109/SC.2016.46

6. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and
preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002). https://doi.org/10.
1016/S0168-9274(01)00115-5. https://www.sciencedirect.com/science/article/pii/
S0168927401001155. Developments and Trends in Iterative Methods for Large Sys-
tems of Equations - in Memorium Rudiger Weiss

7. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical report
LLNL-TR-641973, August 2013

https://doi.org/10.1007/978-3-540-45209-6_7
https://doi.org/10.1145/3295500.3356219
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/10.1016/S0168-9274(01)00115-5
https://www.sciencedirect.com/science/article/pii/S0168927401001155
https://www.sciencedirect.com/science/article/pii/S0168927401001155

232 O. Cankur and A. Bhatele

8. Knobloch, M., Mohr, B.: Tools for GPU computing-debugging and performance
analysis of heterogenous HPC applications. Supercomput. Front. Innov. 7(1), 91–
111 (2020)

9. Knüpfer, A., et al.: Score-p: a joint performance measurement run-time infrastruc-
ture for periscope, Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M.S., Nagel,
W.E., Resch, M.M. (eds.) Tools for High Performance Computing 2011, pp. 79–91.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31476-6 7

10. Leko, A., Sherburne, H., Su, H., Golden, B., George, A.D.: Practical experiences
with modern parallel performance analysis tools: an evaluation. In: Parallel and
Distributed Processing, IPDPS 2008 IEEE Symposium, pp. 14–18 (2008)

11. Lindlan, K.A., et al.: A tool framework for static and dynamic analysis of object-
oriented software with templates. In: SC 2000: Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing, p. 49. IEEE (2000)

12. Liu, X., Mellor-Crummey, J.: A tool to analyze the performance of multithreaded
programs on NUMA architectures. ACM Sigplan Not. 49(8), 259–272 (2014)

13. Madsen, J.R., et al.: Timemory: modular performance analysis for HPC. In:
Sadayappan, P., Chamberlain, B.L., Juckeland, G., Ltaief, H. (eds.) ISC High Per-
formance 2020. LNCS, vol. 12151, pp. 434–452. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-50743-5 22

14. Malony, A.D., Huck, K.A.: General hybrid parallel profiling. In: 2014 22nd Euromi-
cro International Conference on Parallel, Distributed, and Network-Based Process-
ing, pp. 204–212. IEEE (2014)

15. Mellor-Crummey, J., Fowler, R., Marin, G.: HPCView: a tool for top-down analysis
of node performance. J. Supercomput. 23, 81–101 (2002). https://doi.org/10.1023/
A:1015789220266

16. Mohr, B.: Scalable parallel performance measurement and analysis tools-state-of-
the-art and future challenges. Supercomput. Front. Innov. 1(2), 108–123 (2014)

17. Nataraj, A., Sottile, M., Morris, A., Malony, A.D., Shende, S.: TAUoverSupermon:
low-overhead online parallel performance monitoring. In: Kermarrec, A.-M., Bougé,
L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 85–96. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74466-5 11

18. Nethercote, N.: Dynamic binary analysis and instrumentation. Technical report,
University of Cambridge, Computer Laboratory (2004)

19. Richards, D.F., Bleile, R.C., Brantley, P.S., Dawson, S.A., McKinley, M.S.,
O’Brien, M.J.: Quicksilver: a proxy app for the monte Carlo transport code mer-
cury. In: 2017 IEEE International Conference on Cluster Computing (CLUSTER),
pp. 866–873. IEEE (2017)

20. Saviankou, P., Knobloch, M., Visser, A., Mohr, B.: Cube v4: from performance
report explorer to performance analysis tool. Procedia Comput. Sci. 51, 1343–1352
(2015)

21. Shende, S., Malony, A.D.: Integration and application of TAU in parallel Java
environments. Concurr. Comput. Pract. Exp. 15(3–5), 501–519 (2003)

22. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (2006)

23. Tallent, N.R., Mellor-Crummey, J.M., Fagan, M.W.: Binary analysis for measure-
ment and attribution of program performance. ACM Sigplan Not. 44(6), 441–452
(2009)

https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-030-50743-5_22
https://doi.org/10.1007/978-3-030-50743-5_22
https://doi.org/10.1023/A:1015789220266
https://doi.org/10.1023/A:1015789220266
https://doi.org/10.1007/978-3-540-74466-5_11

MAPredict: Static Analysis Driven
Memory Access Prediction Framework

for Modern CPUs

Mohammad Alaul Haque Monil1,2(B), Seyong Lee2, Jeffrey S. Vetter2,
and Allen D. Malony1

1 University of Oregon, Eugene, OR, USA
{mmonil,malony}@cs.uoregon.com

2 Oak Ridge National Laboratory, Oak Ridge, TN, USA
{monilm,lees2}@ornl.gov, vetter@computer.org

Abstract. Application memory access patterns are crucial in deciding
how much traffic is served by the cache and forwarded to the dynamic
random-access memory (DRAM). However, predicting such memory traf-
fic is difficult because of the interplay of prefetchers, compilers, parallel
execution, and innovations in manufacturer-specific micro-architectures.
This research introduced MAPredict, a static analysis-driven framework
that addresses these challenges to predict last-level cache (LLC)-DRAM
traffic. By exploring and analyzing the behavior of modern Intel pro-
cessors, MAPredict formulates cache-aware analytical models. MAPre-
dict invokes these models to predict LLC-DRAM traffic by combining
the application model, machine model, and user-provided hints to cap-
ture dynamic information. MAPredict successfully predicts LLC-DRAM
traffic for different regular access patterns and provides the means to
combine static and empirical observations for irregular access patterns.
Evaluating 130 workloads from six applications on recent Intel micro-
architectures, MAPredict yielded an average accuracy of 99% for stream-
ing, 91% for strided, and 92% for stencil patterns. By coupling static and
empirical methods, up to 97% average accuracy was obtained for random
access patterns on different micro-architectures.

1 Introduction

Recent innovations in computing have been shaped by the end of Dennard scal-
ing and the need to address the memory wall problem. As a result, multicore

This manuscript has been authored by UT-Battelle LLC, under contract DE-AC05-
00OR22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to pub-
lish or reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 233–255, 2022.
https://doi.org/10.1007/978-3-031-07312-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_12&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-031-07312-0_12

234 M. A. H. Monil et al.

and manycore processors with multilevel memory hierarchies on heterogeneous
systems are becoming increasingly common [1]. With increasing hardware com-
plexity, designing analytical models becomes a nontrivial task. With the rise of
heterogeneous systems, the importance of such a modeling approach for predic-
tion has increased significantly. Because executing an application on an ill-suited
processor may result in nonoptimal performance [2], the runtime system must
quickly decide where to execute kernels on the fly. Predicting a kernel’s perfor-
mance and energy consumption can enable runtime systems to make intelligent
decisions. For such predictions, floating-point operations (FLOPs) and memory
traffic (last-level cache [LLC]-dynamic random-access memory [DRAM] traffic)
are important metrics to determine. Although calculating the number of FLOPs
is fairly straightforward, statically predicting memory traffic is complex because
the memory access request can be served by the cache or DRAM.

Statically predicting LLC-DRAM traffic is vital for three reasons. First, a het-
erogeneous runtime system can make intelligent scheduling decisions if it can stati-
cally identify compute and memory-bound kernels based on the Roofline model [3].
A study named MEPHESTO [2] demonstrated that energy performance–aware
scheduling decisions can be made based on operational intensity (FLOPs per LLC-
DRAM bytes) of kernels. Tools such as Intel Advisor and NVIDIA Nsight Compute
can generate the operational intensity of a kernel. However, a runtime system needs
this information before executing the kernel to make better placement decisions.
Although static analysis tools can provide the FLOP count at compile time [4],
statically predicting LLC-DRAM traffic must be explored. Simulation frameworks
can provide LLC-DRAM traffic, but they are not fast enough to be integrated into
a runtime system [5]. Second, developing a framework to predict the energy and
performance of modern CPUs requires predicting LLC-DRAM memory transac-
tions because LLC-DRAM transactions incur a significant amount of energy and
time [6]. Finally, a static approach for predicting the LLC-DRAM traffic enables
simulation-based design space exploration to determine the best memory config-
uration. For these reasons, this study aims to build a framework capable of pre-
dicting the LLC-DRAM traffic statically. However, a static analysis approach for
predicting the LLC-DRAM traffic encounters three main challenges: (1) it must
keep up with the continuous innovation in the processors’ memory hierarchy, (2) it
must deal with the complex memory access patterns and different execution mod-
els (sequential and parallel), and (3) it does not have access to the dynamic infor-
mation needed to obtain high prediction accuracy.

This research presents MAPredict, a framework that predicts the LLC-DRAM
traffic for applications in modern CPUs. To the best of the authors’ knowledge, this
is the first framework that simultaneously addresses all of the aforementioned chal-
lenges. This paper presents systematic experimentation on different Intel micro-
architectures to elicit their memory subsystem behavior and build the analytical
model for a range of memory access patterns. Through static analysis at compile
time, MAPredict creates Abstract Scalable Performance Engineering Notation
(Aspen) [7] application models from annotated source code, captures the dynamic
information, and identifies the memory access patterns. It then couples the appli-
cation and machine models to accurately predict the LLC-DRAM traffic.

MAPredict: Memory Access Prediction Framework 235

Table 1. Machines and micro-architectures.

Name Year Processor detail. Here, L3 = LLC

BW 2016 Xeon E5-2683 v4, 32 cores, L2 - 256 KiB, L3 - 40 MiB

SK 2017 Xeon Silver 4114, 20 cores, L2 - 1 MiB, L3 - 14 MiB

CS 2019 Xeon Gold 6248, 40 cores, L2 - 1 MiB, L3 - 28 MiB

CP 2020 Xeon Gold 6348H, 96 cores, L2 - 1 MiB, L3 - 132 MiB

This paper reports the following contributions:

• a systematic unveiling of the behavior of Intel CPUs for read and write strate-
gies that accounts for prefetchers, compilers, and multithreaded executions;

• a formulation of a cache- and prefetching-aware analytical model using appli-
cation, machine, and compiler features;

• a static analysis-driven framework named MAPredict to predict LLC-DRAM
traffic at compile time by source code analysis, dynamic information, and
analytical modeling; and

• an evaluation of the MAPredict using 130 workloads (summation of
number of functions * input sizes) from six benchmarks in four micro-
architectures of Intel in which higher prediction accuracy was achieved for
regular access patterns compared with the models from literature. MAPredict
also provides means to combine static and empirical observation for irregular
access.

2 Understanding Memory Reads and Writes in Intel
Processors

This section introduces the hardware, LLC-DRAM traffic measurement strategy,
and the factors that trigger an LLC-DRAM transaction. From the application’s
viewpoint, the memory access pattern is crucial. The two most common memory
access patterns—sequential streaming access and strided memory access—were
considered. Cache line size, page size, initialization, and prefetching mechanism
were identified as important factors. This section also explores the effects of the
evolution of CPU micro-architectures.

2.1 Hardware Description

Intel CPUs were considered in this study because they are the most widely
available processors in high-performance computing (HPC) facilities [8]. Table 1
depicts the four recent micro-architectures that were a part of this study: Broad-
well (BW), Skylake (SK), Cascade Lake (CS), and Cooper Lake (CP). The intro-
duction of the noninclusive victim L3 cache and the larger L2 cache (starting
from the SK processors) is the most important change concerning the mem-
ory subsystem [9]. The findings from this work can also be extended for other
manufacturers, including GPUs [10].

236 M. A. H. Monil et al.

(a) Cache line and page size. (b) Array initialization.

(c) Prefetchers.

Fig. 1. LLC-DRAM traffic for different read and write scenarios in Intel processors.
LLC-DRAM traffic is shown at the y-axis. Here, RD-All-No-Pf = read traffic for
all micro-architectures with prefetching disabled and RD-BW-Pf = read traffic for
Broadwell micro-architecture with prefetching enabled.

2.2 A Tool for Measuring the LLC-DRAM Traffic

All the LLC-DRAM traffic measurements reported in this study were gathered
through a script-based dynamic analysis tool. The dynamic analysis tool uses
Tuning and Analysis Utilities (TAU) [11] and Performance Application Pro-
gramming Interface (PAPI) [12] to measure function-wise LLC-DRAM traffic
from uncore counters (imcX::UNC M CAS COUNT) of the integrated memory
controllers. This tool provides LLC-DRAM traffic measurement in the unit of
cache line (64 bytes), and this unit was followed throughout this study.

2.3 Different Read and Write Strategies

To investigate the application-cache interplay, a variant of vector multiplication
code that exhibits sequential streaming (stride = 1) and strided access pattern
(stride > 1) was considered. The code has three arrays (100 million 32 bit floating
points). The cache line length of these Intel processors is 64 bytes and an array
size of 100 million should generate 6.25 million writes and 12.5 million reads (two
reads and one write per index). However, Fig. 1 indicates otherwise, as discussed
in the following sections.

Effect of Cache Line Size. In Fig. 1a, the read-write traffic is shown where the
read traffic is near 12.5 million for stride 1. This trend continues until stride 16

MAPredict: Memory Access Prediction Framework 237

(64 bytes/size of 32bit float = 16), referenced by 1 . Because a cache line is 64
bytes long, while fetching one 32 bit floating-point data, the memory subsystem
fetches 15 (60 bytes’ worth) additional neighboring data. After stride 16 at 1 ,
the read traffic halves every time the stride is doubled. Write traffic for stride 1
is also near 6.25 million. However, for the write traffic, region 2 stretches up to
a stride of 524,288. For a stride of one (100 million access) and a stride 524,288
(only 190 access), the same number of cache lines (6.25 million) are transferred.

Effect of Page Size. In Fig. 1a, the effect of page zeroing is visible because
of uninitialized write array. The write traffic in Fig. 1a is unaffected by the
cache line size and depends instead on the page size. The default page size on
Intel processors is 4 KiB (i.e., a stride of 1,024 for a 32 bit floating point).
Linux supports “transparent huge pages,” which allows for larger page sizes.
Intel processors support large pages of 2 MiB and 1 GiB. In this case, a page
size of 2 MiB was selected by the OS. This explains why there is a transition at
3 on a stride of 524,288 (524,288 * size of 32bit float = 2 MiB).

Effect of Initialization. Figure 1b shows traffic when the write array is initial-
ized. The write traffic is near 6.25 million at stride 1, and at this point, the effect
of the cache line size is visible at 5 . Specifically, the impact of page zeroing is
not observed like Fig. 1a. After a stride of 16, the traffic is reduced by half when
the stride is doubled. However, the read traffic is near 18.75 million for stride 1,
indicating the effect of “allocating store” (i.e., the region indicated by 4).

Effect of Hardware Prefetching. Intel implements aggressive prefetching,
but not all the details are openly available to the community. In the experimental
results shown in Fig. 1a and Fig. 1b, prefetching is disabled. Three regions in
read traffic are shown in Fig. 1c. The regions 6 (strides 1–16) and 8 (strides
128 and onward) show no visible difference with prefetching enabled. Further
investigation by experimenting with a smaller stride confirmed that the effect of
prefetching vanishes after a stride of 80 (indicated by 8). The region 7 (from
strides 32–128) shows that extra cache lines were fetched. Because of Intel’s
prefetchers, for a stride of 64, each access could result in three cache lines being
fetched. Moreover, the prefetching behavior in region 7 is not the same for all
micro-architectures. Read traffic is 10% higher in BW than in SK, CS, and CP,
which show the same level of read traffic. This observation could be attributed to
the change in the cache subsystem design following the BW micro-architecture.

Effect of Compiler and Multithreaded Execution. The GNU compiler
was used to generate Fig. 1. However, using the Intel compiler can provide a
different result because of the default “streaming store” or “nontemporal store”
for a stride of 1. For streaming store, data are not read from the DRAM for a
store miss. Instead, the data are written to DRAM through a write-combining
buffer. When experimenting with a multithreaded version, the authors found no
difference when one thread and 16 thread executions were compared.

238 M. A. H. Monil et al.

3 Modeling Different Types of Access

A static analysis framework needs analytical models for different types of mem-
ory access patterns to predict the LLC-DRAM traffic. This section builds on the
findings from Sect. 2 to formulate analytical models for different access patterns.
This section discusses three kinds of regular access patterns. First, the model is
formulated for the sequential streaming access pattern to predict LLC-DRAM
cacheline transfer. Then, models are prepared for other access patterns by using
the model for streaming access patterns. Finally, irregular random access pat-
terns are discussed.

3.1 Sequential Streaming Access Pattern

The sequential streaming access pattern (i.e., stride = 1) is one of the most
common access patterns found in applications. Prefetching does not affect the
amount of traffic transferred between LLC and DRAM for this pattern. However,
the effect of the cache line and page size must be considered.

Read Traffic. Because the LLC-DRAM read transaction is performed in a
unit of cache lines, the amount of read traffic can be expressed using Eq. (1).
In Eq. (1), a data structure size is Elementcount, and the size of each element
is Elementsize bytes. Readcount is the number of LLC-DRAM transactions for
reading a data structure. Data structure initialization has no effect on Readcount.
Because alignment is uncertain, the ceiling is considered.

Readcount =

⌈
Elementcount ∗ Elementsize

Cachelinesize

⌉
. (1)

Write Traffic. The initialization of the data structures is crucial for write traf-
fic. At first, the case in which the data structure is not initialized but only mem-
ory is allocated is discussed. For such a case, the page size becomes the deciding
factor because of page zeroing, as shown in Sect. 2.3. In Eq. (2), Writenot init

is the number of cache line transfers when the data structure is not initialized.
Because the machines in Table 1 support transparent huge pages by default, the
page size picked by the operating system (OS) depends on the data structure
size. (In this work, no changes were made in the OS.) The ceiling is considered
to capture the extra traffic from the fragmented access on the last page.

When a data structure is initialized, page zeroing does not occur, the cache
line becomes the deciding factor, and the write-allocate policy is used. One write
operation also causes one read operation. The write traffic (Writeinit) is shown in
Eq. (3). The extra read traffic (Readfor write) generated for the write operation
is shown in Eq. (4).

Writenot init =

⌈
Elementcount ∗ Elementsize

Pagesize

⌉
∗ Pagesize

Cachelinesize
, (2)

MAPredict: Memory Access Prediction Framework 239

Writeinit =

⌈
Elementcount ∗ Elementsize

Cachelinesize

⌉
, (3)

Readfor write =

{
0 if data structure is not initialized

Writeinit if data structure is initialized
. (4)

Thus, total read traffic for streaming access, Readstream = Readcount +
Readfor write, and total write traffic for streaming access, Writestream =
Writenot init or Writeinit, are based on data structure initialization. Because
streaming store operations do not cause extra read traffic for initialized write
data structure, Readfor write is set to zero when Intel compilers are used.

3.2 Strided Access Pattern

The strided access pattern is another common pattern. Based on the observation
in Fig. 1c, there are three regions. Read and write traffic formulation for each
region is presented as follows.

Streaming Region. When the (Stride ∗ Elementsize) is smaller than the
Cachelinesize, both reads and writes are the same as streaming access (region
6 in Fig. 1c). In this region (strides 1–16), read and write traffic are same
as streaming access because the whole cache line is transferred. For this rea-
son, total read and write traffic for this region is presented by Readstream and
Writestream.

No Prefetching Region. As discussed in Sect. 2.3, the effect of prefetch-
ing vanishes after stride 80, and thus this is the starting point of a “no
prefetching” region, which is indicated by 8 in Fig. 1c. For this reason, when
(Stride ∗ Elementsize) is larger than (5 ∗ Cachelinesize), no prefetching region is
considered because (5 ∗ Cachelinesize) = stride 80 for 32 bit floating point.

Write traffic is considered first. If the data structure is initialized, then the
write traffic is decided by the cache line size and stride size. It also causes extra
read traffic. This case is expressed in Eq. (5).

Writeinit or Readfor write = Writestream/

(
Stride ∗ Elementsize

Cachelinesize

)
. (5)

If the data structure is not initialized, then the write traffic is decided by
the Pagesize. If (Stride ∗ Elementsize) > Pagesize, then Eq. (6) expresses write
traffic; otherwise, write traffic is equal to Writestream. Read traffic is expressed
as Eq. (7).

Writenon init = Writestream/

(
Stride ∗ Elementsize

Pagesize

)
, (6)

Readcount = Readstream/

(
Stride ∗ Elementsize

Cachelinesize

)
. (7)

240 M. A. H. Monil et al.

Prefetching Zone. Only when (Stride ∗ Elementsize) is larger than the cache
line and smaller than five times the cache line does the effect of prefetching
becomes visible, as denoted by region 7 , which ranges from stride 16 to stride
80 in Fig. 1c). In this region, if prefetching is disabled, write and read traffic
can be expressed as Eq. (5), Eq. (6), and Eq. (7). However, the main difference
is observed when prefetching is enabled, and in that case, only read traffic is
affected. Intel prefetching suggests fetching an adjacent cache line and an addi-
tional cache line if all model-specific register bits are set. For this reason, the data
access number is multiplied by three in the prefetching zone. This is expressed
in Eq. (8). Because prefetching has no effect on write traffic, the write traffic is
expressed as the non-prefetching formula given in Eqs. (5) and (6).

Readcount = 3 ∗
(

Elementcount
Stride

)
. (8)

Moreover, SK, CS, and CP show a 10% read traffic drop compared with BW
(Fig. 1c), which was considered in the model.

3.3 Stencil Access Pattern

Stencil access patterns are also common in scientific applications. The write
operation in a stencil access pattern usually follows a sequential streaming pat-
tern, and thus the equations for streaming access are followed. However, read
operations must be considered for different dimensions.

1D Stencil. In a 1D stencil pattern, consecutive elements are usually accessed
in each operation. Because adjacent elements can be served by the cache, the
read operations follow a sequential streaming pattern.

2D and 3D Stencils. Like a 1D stencil, if the elements are adjacent, a stream-
ing access pattern is followed. When the distance is larger than the cache line
size, individual accesses are counted. However, if the distance between stencil
points is high for a large dataset, then the cache size becomes a limiting factor
by causing capacity misses. Old data may need to be brought to the cache more
frequently for a large 2D or 3D stencil when there are multiple iterations.

3.4 Random Access Pattern and Empirical Factor

The random access pattern is found in applications with irregular access [5].
Moreover, modern CPUs introduce randomness in data reuse because of their
replacement policies, and the cache cannot retain all data for further use. There-
fore, LLC-DRAM traffic prediction for random access must consider the ran-
domness derived from applications and machines. The number of total access in
irregular cases is expressed by Accessrandom. This section first discusses random-
ness in applications, then discusses randomness derived from machines.

MAPredict: Memory Access Prediction Framework 241

Data Structure Randomness. In data structure randomness, the reuse
behavior becomes uncertain because of how the data structures are accessed;
for example, A[B[i]] (A’s memory access can be random). In this case, the ran-
domness has one dimension because only the location of access is random, and
the total number of access, Accessrandom is known. In such cases, cache reuse is
nondeterministic at compile time because the access depends on another data
structure at run time. Furthermore, prefetchers may fetch extra cache lines,
which adds more uncertainty. Thus, machine randomness must be considered
for this case.

Algorithmic Randomness. The worst case of randomness is algorithmic
randomness, which has two dimensions: (1) randomness in the number of
total access, Accessrandom, and (2) randomness in which locations are accessed.
Although the first randomness depends on the data structure size, the second
may introduce data reuse in the cache. Complex branching usually exists in this
kind of randomness. An example of algorithmic randomness is searching algo-
rithms, such as binary search. For such cases, algorithmic complexity analysis
provides an upper bound of memory access on a data structure and is consid-
ered to define Accessrandom. The second dimension is captured through machine
randomness.

Machine Randomness and Empirical Factor. Machine randomness
depends on cache size, replacement policies, and memory access location. In
recent Intel processors since SK, replacement policies are dynamically selected
from a set of policies at run time, and the policy chosen for a given scenario
is not disclosed [9]. Moreover, in the cases of algorithmic and data structure
randomness, the access location is random. So, multiple dimensions of random-
ness from the machine and the application make statically determining the
LLC-DRAM traffic a complex problem. The undisclosed mapping of dynamic
replacement policies from Intel makes it even more complicated. To the best
of the authors’ knowledge, statically determining LLC-DRAM traffic in mod-
ern CPUs for irregular cases is an unsolved problem. This study does not

Fig. 2. Workflow of MAPredict framework.

242 M. A. H. Monil et al.

claim to solve this problem statically; rather, it combines static analysis and
empirical observation. At this point, an empirically obtained Empiricalfactor is
introduced to represent machine randomness. The Empiricalfactor is calculated
from memory access obtained from the dynamic analysis tool (Sect. 2.2) and
statically obtained total access (Accessrandom) where Empiricalfactor = mea-
sured access/statically obtained access. This ratio captures the randomness of
the application and the underlying machine.

4 MAPredict Framework

This section describes the MAPredict framework. MAPredict statically gathers
information from an application and a machine to invoke the appropriate model
presented in Sect. 3 and generates a prediction for LLC-DRAM traffic. MAPre-
dict depends on the Open Accelerator Research Compiler (OpenARC) [13] for
static analysis of the code and on the COMPASS [4] framework for expressing
an application in the Aspen [7] domain-specific modeling language. This section
presents an overview of OpenARC, Aspen, and COMPASS, then describes the
MAPredict framework.

4.1 Aspen, OpenARC, and COMPASS

Aspen [7] is a domain-specific language for analytical performance modeling in a
structured fashion. Aspen’s formal language and methodology provide a way to
express applications and machines’ characteristics abstractly (e.g., Aspen appli-
cation model and machine model). Aspen tools can provide various predictions,
such as predicting resource counts (e.g., number of loads, stores, FLOPs, and so
on). OpenARC [13] is an open-source compiler framework for various directive-
based programming research that provides source-to-source translation, which
is a desired feature for creating Aspen application models. COMPASS [4] is
an Aspen-based performance modeling and prediction framework built on Ope-
nARC. COMPASS provides a set of Aspen pragma-based directives that can
be used in source code. MAPredict extends COMPASS by adding new Aspen
directives to enable cache-aware memory access prediction.

4.2 MAPredict Framework Description

The workflow of the MAPredict framework is shown in Fig. 2. Four phases of
MAPredict are described as follows.

MAPredict: Memory Access Prediction Framework 243

model matmul {

param N = 512

data a [((4*N)*N)]

kernel Matmul_openmp {

execute [N] "block_Matmul" {

loads [((1* sizeof_float)*N)] from b as stride (1)

loads [((1* sizeof_float)*N)] from c as stride(N)

stores [(1* sizeof_float)*N] to a as stride (1)

}}}

Listing 1.1. Application model: matrix multiply (partial view).

Source Code Preparation Phase. The primary purpose of MAPredict is
to prepare a source so that when the preparation is complete, MAPredict can
statically provide memory access prediction. This one-time effort of source code
preparation (i.e., phase 1) is necessary for capturing the dynamic information
unavailable at compile time. First, COMPASS-provided Aspen compiler direc-
tives (i.e., pragmas) identify the target model region in the code to capture
information at compile time. MAPredict introduces new traits that must be
included in the directives to specify memory access patterns, where necessary.
Access pattern traits, such as sequential streaming and strided access patterns,
are automatically generated; however, user input through pragmas is needed
for stencil and random access patterns. User inputs are also needed for specify-
ing dynamic (e.g., malloc) input sizes of data structures and Empiricalfactor for
random access patterns because of their unavailability at compile time.

Compile Time Static Analysis Phase. In phase 2, MAPredict gathers the
application information required to execute the model presented in Sect. 3.
MAPredict invokes OpenARC’s compile time static analysis capability, which
generates an intermediate representation of the code and captures variables,
variable sizes (i.e., Elementsize), instruction types (i.e., load or store), FLOPs,
loop information, access pattern information, machine-specific Empiricalfactor,
and so on from source code. After gathering the needed information, the source-
to-source translation feature of OpenARC is invoked to generate the Aspen
language’s abstract application model by following Aspen’s grammar [7]. An
application model combines different types of statements in a graph of kernels
with one or more execution blocks. An example of an application model is given
in Listing 1.1, which shows load and store information of matrix multiplication.
Every load and store statement shows the access pattern of that data structure.

Machine Model Generation Phase. The machine model is manually pre-
pared by gathering information about the machine, following the Aspen gram-
mar, which is a one-time effort. The machine model contains information
unavailable in the application model and is required to execute the model pre-
sented in Sect. 3. MAPredict gathers information about the micro-architecture,

244 M. A. H. Monil et al.

Cachelinesize, Pagesize, prefetching status, compiler, and so on from the machine
model.

Prediction Generation Phase. MAPredict’s prediction engine is invoked by
passing the application and machine models. MAPredict invocation can also be
made from a runtime system by using the optional runtime invocation feature
of COMPASS. When MAPredict is invoked, it traverses the call graph of the
Aspen application model in a depth-first manner. In this graph, each node rep-
resents an execution block (i.e., a part of a function). MAPredict walks through
every load and store statement of the application model, collects the access pat-
tern, and evaluates the expression to obtain Elementcount, Elementsize, Stride,
and so on. Then, MAPredict uses the machine model information to invoke
the appropriate prediction model to generate memory access prediction for that
statement. MAPredict performs this evaluation for each statement and gener-
ates a prediction for the execution block, which is recursively passed to make a
kernel/function-wise prediction. When the graph traversal finishes, MAPredict
provides a total memory access prediction for the application. MAPredict can
provide kernel-wise memory access and execution block-wise memory access. In
a debug mode, it offers a statement-wise detailed analysis.

4.3 Identifying Randomness and EmpiricalF actor

MAPredict combines static and empirical approaches to address randomness.
In a large code base, identifying randomness is challenging because randomness
usually exists only in certain functions. MAPredict facilitates identifying ran-
domness in source code. First, the source is annotated with basic MAPredict
traits without any Empiricalfactor. When MAPredict is executed, it provides
function-wise memory access prediction. Then, the dynamic analysis tool is run
on real hardware to obtain the same function-wise data. Comparing the results
from both tools shows which functions provide low accuracy, indicating a poten-
tial source of randomness. However, a function can be large. MAPredict provides
execution block-level and statement-wise detailed analysis to pinpoint the ran-
domness. After identification, as described in Sect. 3.4, the Empiricalfactor is cal-
culated by comparing the output from the dynamic analysis tool (i.e., measured
value) and MAPredict (i.e., statically obtained value). Then, the Empiricalfactor
is annotated in the source code for that statement or execution block. When
MAPredict is rerun, it uses the Empiricalfactor to generate the prediction.

5 Experimental Setup

This section discusses the experiment environment. The processors listed in
Table 1 were used in the experiments. The OS of these processors was Cen-
tOS 7, which supports transparent huge pages by default. The applications and
their input sizes and access patterns are listed in Table 2. Forty-four functions
from these applications were evaluated for different input sizes, creating 130

MAPredict: Memory Access Prediction Framework 245

workloads. GCC-9.1 and Intel-19.1 compilers were used for experimentation. For
parallel execution, the OpenMP programming model was used. In the graphs,
BW stands for Broadwell without prefetching, and BW pf stands for Broadwell
with prefetch enabled. A similar convention was used for others. All graphs in
the experiment section show accuracy in the y-axis.

5.1 Accuracy Calculation

Relative accuracy was considered in which accuracy = [100 - Absolute
{(measured-predicted)/measured * 100}]. The measured value was generated by
the dynamic analysis tool described in Sect. 2.2. The predicted values were gen-
erated using MAPredict. Both MAPredict and the dynamic analysis tool provide
function-wise traffic, making function-wise accuracy calculation possible.

Table 2. Benchmarks. Here, R = region, M = million, and B = billion.

Name Pattern Input sizes

STREAM Triad [14] Sequential streaming access pattern 50M, 100M, 150M

Jacobi [13] Stencil pattern without initialization 67M, 268M, 1B

Laplace2D [13] Stencil pattern with initialization 16M, 64M, 100M

Vecmul for R - 7 [13] Strided pattern in prefetching zone 50M, 100M, 200M

Vecmul for R - 8 [13] Strided pattern in no prefetching zone 100M, 200M, 400M

XSBench [15] Algorithmic randomness Large

Lulesh [16] Mixed patterns 15M, 27M, 64M

5.2 Comparison with Literature

Prediction accuracy of MAPredict was compared with a model from litera-
ture [17]. Although the study [17] investigated data vulnerability, its main contri-
bution was the analytical model for LLC-DRAM traffic prediction by considering
application and machine characteristics. Two other studies investigated memory
access prediction for static analysis [4,5]. The main reason they were not con-
sidered for comparison is the lack of a detailed analytical model with equations.
Moreover, one of these studies depends on cache simulation [5], and another
depends on instruction counts without considering machine properties [4].

6 Experimental Results

The accuracy of the MAPredict framework was evaluated in two steps. In the
first step, the prediction accuracy of different applications with regular memory
access patterns was evaluated. In the second step, irregular access patterns and
a large application with mixed access patterns were investigated.

246 M. A. H. Monil et al.

6.1 Regular Access Patterns

Regular access patterns were investigated for various micro-architectures, input
sizes, compilers, and execution models.

Sequential Streaming Access Pattern. To evaluate the model for sequential
streaming memory access pattern, the Triad kernel of STREAM [14] was used.
The data structure was initialized, and the size was 50 million 64 bit floating
points. The total traffic, which was the summation of read and write traffic, was
measured for all the micro-architectures with prefetching disabled and enabled.
The prediction accuracy from MAPredict and the model from the literature [17]
are compared in Fig. 3a. MAPredict invoked Eq. (3) and provided 99.1% average
accuracy in all processors when prefetching was disabled and 99.1% average
accuracy in all processors when prefetching was enabled. For the same cases,
the model from literature provided 75.0% and 75.4% average accuracy when
prefetching was disabled and enabled, respectively.

(a) Stream : Triad. (b) Stencil : Laplace2D.

(c) Stencil : Jacobi. (d) Strided : Vecmul 50.

(e) Strided : Vecmul 200. (f) Single vs. multithreaded.

Fig. 3. Accuracy comparison of different regular access patterns. Y -axis is accuracy,
and x -axis is micro-architectures with prefetching disabled and enabled. Blue is MAPre-
dict, white is the literature, and green is multithreaded. (Color figure online)

Stencil Memory Access Pattern. MAPredict’s accuracy for stencil pat-
tern was evaluated by using two benchmark kernels: Laplace2d and Jacobi [13].
Both kernels have a 2D stencil access pattern with adjacent points. However,
Laplace2D has the write array initialized, and Jacobi has the write array nonini-
tialized. Laplace2D operates on a 4,000 × 4,000 matrix of 64 bit floating points,

MAPredict: Memory Access Prediction Framework 247

whereas Jacobi operates on an 8,912 × 8,912 matrix of 32 bit floating points.
Figure 3b shows the comparison for Laplace2D. Because the data structure is
initialized, allocating-store causes extra read, which the model from literature
does not consider. MAPredict provided 95.9% and 92.5% average accuracy when
prefetching is disabled and enabled, respectively. However, the model from lit-
erature provided 65.7% and 68.5% average accuracy when prefetching was dis-
abled and enabled, respectively. The prediction accuracy of Jacobi is portrayed in
Fig. 3c. Because the write data structure is noninitialized, page zeroing occurred.
Although the model in the literature did not consider page zeroing, the equation
remained the same. Thus, the same accuracy was observed.

Strided Memory Access Pattern. To evaluate strided access patterns of
prefetching and non-prefetching regions (indicated by 7 and 8 in Fig. 1c), vec-
tor multiplication of 100 million was used with strides 50 and 200. A stride size
of 50 was used with a noninitialized write array to evaluate the page zeroing
effect. Initialized write array was considered for stride 200. For the prefetch-
ing zone, traffic is significantly different across micro-architectures. Moreover,
for stride 50, the whole array was written to the memory instead of one in 50.
Figure 3d shows that MAPredict captured the prefetching differences between
different micro-architectures successfully and provided 93.3% and 91.6% aver-
age accuracy when prefetching was disabled and enabled, respectively. However,
the model from literature provided 54.6% and 38.2% average accuracy when
prefetching was disabled and enabled, respectively, because it did not account
for prefetchers and page-zeroing. For stride 200, the initialized data structure
causes allocating-store. The comparison is shown in Fig. 3e in which MAPredict
and the model from literature provided 88.5% and 66.2% average accuracy when
prefetching was disabled and enabled, respectively.

Fig. 4. Accuracy of various input sizes. White is prefetching disabled, and blue is
prefetching enabled. (Color figure online)

Multithreaded Execution and Effect of Compiler. Multithreaded and
single-threaded executions are compared in Fig. 3f. Eight threads of BW were
used for experimentation, and OpenMP from GCC was used. No significant
difference was observed for sequential streaming, stencil, and strided access pat-
terns. Moreover, MAPredict captured the streaming store operation by Intel
compiler and provided better accuracy (93%) than the model from the litera-
ture (74%). All the micro-architectures showed a similar trend.

248 M. A. H. Monil et al.

Comparison of Different Input Sizes. MAPredict’s accuracy was evaluated
for different input sizes for each application with the regular access patterns
given in Table 2. Triad was tested with array sizes of 50 million, 100 million,
and 150 million. Matrix sizes for Jacobi were 8, 192 × 8, 192, 16, 384 × 16, 384,
and 32, 768 × 32, 768. Laplace2D was tested with 4, 000 × 4, 000, 8, 000 × 8, 000,
and 10, 000 × 10, 000 matrix sizes. Strided vector multiplication was tested with
vector sizes of 50 million, 100 million, and 200 million for the prefetching region
and 100 million, 200 million, and 400 million for the no prefetching region. The
prediction accuracies of each dataset for prefetching enabled and disabled cases
are presented in Fig. 4. The accuracy of different input sizes demonstrates that
MAPredict provides consistent accuracy for varied input sizes. The BW proces-
sor was used for this evaluation, and a similar trend was observed for others.

6.2 Irregular Access and Large Application with Mixed Patterns

To evaluate MAPredict’s capability to combine static and empirical data for
irregular access and mixed patterns, XSBench and Lulesh were considered.

Algorithmic Randomness. XSBench [15] is a proxy application that calcu-
lates the macroscopic neutron cross section by randomly searching for energy
and material. The energy search was done by employing a binary search on a
unionized energy grid, an example of algorithmic randomness (total access =
Accessrandom * Empiricalfactor). As discussed in Sect. 3.4, the access number and
location are random. Because it follows a binary search, algorithm complexity
(logn) was used to measure Accessrandom. The Empiricalfactor was calculated for
BW with prefetching disabled and used for all other processors (Empiricalfactor
= the ratio of measured value and Accessrandom). The predicted value was then
compared with the average of five measurements (up to 5% standard devia-
tion) for accuracy calculation. The blue bars in Fig. 5 show that only BW pro-
vided high accuracy when prefetching was disabled, thus demonstrating the need
for machine-specific Empiricalfactor. When individual Empiricalfactor is used, the
accuracy of each processor improved, as indicated by the yellow bar. MAPre-
dict provides the option to include multiple machine-specific Empiricalfactor in
one pragma; thus, one source code can be updated for multiple machines. The
method presented in Yu et al. [17] did not calculate the total number of random
access and rather focused on the access location, which makes the comparison
irrelevant. Algorithmic randomness is an extreme case, and it is only present in

Fig. 5. Accuracy of algorithmic randomness for XSBench.

MAPredict: Memory Access Prediction Framework 249

a certain function. For this reason, a large application with mixed patterns is
investigated next for different input sizes.

Large Application with Mixed Patterns: Lulesh. Lulesh [16] was con-
sidered to demonstrate that MAPredict can work with a large application with
different memory access patterns. Lulesh is a well-known application with dif-
ferent memory access patterns for a 3D mesh data structure. It has 38 functions
with a complex call graph and 4,474 lines of code, making it a large and complex
example. Three large data structure sizes (250× 250× 250, 300× 300× 300, and
400 × 400 × 400) were used. The SK machine was selected for experimentation
because it has the smallest cache and thus stresses the capability of MAPredict
by increasing the probability of machine randomness.

Lulesh Function Categorization. Out of 38 functions in Lulesh, 24 functions
provide significant memory transactions (>1 million LLC-DRAM transactions,
which have different memory access patterns). Most memory-intensive functions
are shown at Table 3 in which the second column shows access patterns. Here,
St is the stencil (eight-point nonadjacent 3D stencil), S is the stream, DR is the
data structure randomness, I is noninitialized arrays, N is nested randomness
(DR with branches), and All is all the above patterns.
Empirical factor . Lulesh has data structure randomness in three functions. The
Empiricalfactor is calculated by comparing the static and dynamic data to address
this randomness, which is a one-time effort. So, three Empiricalfactor values were
used in three functions out of 38.

Table 3. Analysis of Lulesh (selected functions). Here, d1 = input size 1 without
prefetching, p-d1 = input size 1 with prefetching, M = million, and B = billion.

Function name Access MAP TAU Accuracy - 3 input sizes

(shortened) pattern redict PAPI d1 p-d1 d2 p-d2 d3 p-d3

IntegrateStressF.Elm St,S 81M 83M 99.0 97.4 88.5 88.9 91.8 91.7

CFBHour.ForceF.Elm St,S 239M 241M 96.9 99.1 97.0 96.5 82.2 82.6

CHourg.Cont.F.Elm St,I,DR 604M 647M 92.8 93.1 93.0 92.7 76.2 77.9

LagrangeNodal All 824M 874M 94.2 94.2 95.3 95.1 85.4 86.5

CKinematicsF.Elm S,St 99M 100M 98.7 99.7 96.0 96.6 98.3 98.7

CLagrangeElements St,S,I 126M 130M 98.3 97.5 99.7 99.9 98.5 98.3

CMon.QGrad.F.Elm S,St 99M 105M 95.2 94.4 95.6 95.6 94.6 94.5

CMon.QReg.F.Elm DR,N,S 141M 150M 94.9 94.6 95.4 93.2 94.3 93.2

CEnergyF.Elm S 249M 261M 97.7 95.6 94.0 98.6 99.9 93.4

EvalEOSF.Elm DR,S 429M 451M 99.1 95.1 95.7 97.9 98.4 93.0

UpdateVol.F.Elm S 10M 10M 99.9 99.9 99.7 99.9 99.9 99.9

LagrangeElements All 824M 869M 98.4 95.0 99.3 96.7 96.9 93.7

Overall All 1.6B 1.7B 95.0 93.0 96.6 94.3 95.8 99.2

250 M. A. H. Monil et al.

Traffic: Number of LLC-DRAM Transactions. The third and fourth
columns of Table 3 show the LLC-DRAM transaction obtained for MAPredict
and TAU + PAPI (dynamic analysis tool). The last function, which is the parent
of all functions, shows a total of 1.7 billion LLC-DRAM transactions. However,
for the largest data size, Lulesh exhibits 3.5 billion LLC-DRAM transactions.

Lulesh Scaling and Accuracy. Scaling in terms of input sizes provides a
measure of success for a one-time calculation of the Empiricalfactor. The fifth
through tenth columns of Table 3 show the accuracy of different functions for
different input sizes for prefetching enabled and disabled cases. Because some
functions are parents to other functions and the last function is the parent to all
(total traffic), inaccuracy in one function affects the overall accuracy. MAPre-
dict showed more than 93% accuracy for all input sizes, which demonstrates
the scalability of the model and Empiricalfactor. However, when multithreaded
experiments were used, the overall accuracy dropped but still provided more
than 80% accuracy.

6.3 Discussion

For regular access patterns, MAPredict’s static analysis provides higher accu-
racy than the literature model and can handle different input sizes, micro-
architectures, cache sizes, compilers, and execution models. However, MAPredict
requires empirical observation for irregular patterns.

Overhead of MAPredict. One objective of MAPredict is for it to be usable
from runtime systems for fast decisions. The evaluation of Lulesh takes 28.3
ms (38 functions), averaging to less than 1 ms per function. For source code
preparation, 249 lines of Aspen directives (79 MAPredict directives) were used
for 4,474 lines of code in Lulesh, which is 5.5% source code overhead. However,
smaller benchmarks needed fewer directives; for example, Triad needed one, Vec-
mul needed four, Jacobi needed six, and Laplace2D needed six directives.

Usability of EmpiricalFactor . The calculation of Empiricalfactor is needed for
irregular accesses. However, the Empiricalfactor calculation is a one-time effort.
Once calculated, it becomes a part of the source code and can provide prediction
statically. Moreover, randomness usually occurs in only a small portion of an
application because regular access patterns are more commonly found. So, the
Empiricalfactor calculation is needed only where randomness exists.

7 Related Works

This section presents related works, which are divided into two categories.

MAPredict: Memory Access Prediction Framework 251

7.1 Memory Access Prediction

Several studies investigated memory access patterns to make reasonable pre-
dictions. Yu et al. [17] used analytical models of different memory access pat-
terns for investigating application vulnerability. Peng et al. [5] used data-centric
abstractions in Tuyere to predict memory traffic for different memory technolo-
gies. Unlike MAPredict, application models in these aforementioned studies were
manually prepared. Moreover, MAPredict goes beyond these work by including
the effect of page size, prefetchers, and compilers in machine models. Moreover,
the Tuyere framework showed the benefit of using ASPEN application mod-
els over trace-based or cycle-accurate simulators (e.g., Ramulator [18], DRAM-
Sim [19]) in terms of time and space. MAPredict further improved upon Tuyere
by providing predictions in 1–3 ms per function and considering different micro-
architectures. Allen et al. [20] investigated the effect of two memory access pat-
terns (sequential streaming and strided) on GPUs. Some previous works used
load and store instruction counts to measure memory access and used that count
to predict performance (e.g., COMPASS by Lee et al. [4]). Compile time static
analysis tools—such as Cetus [21], OpenARC [13], and Caascade [22]—were also
used to measure instruction counts at compile time and can provide a predic-
tion. MAPredict does not solely depend on instruction counts; it captures the
effect of cache hierarchy through analytical models. In contrast to MAPredict’s
near-accurate prediction, analytical models such as the Roofline Model [3] and
Gable [23] provide an upper bound for a system.

7.2 Understanding Intel Processors

Some studies delved into Intel processors to understand their performance by
using benchmarks. Using the Intel Advisor tool, Marques et al. [25] analyzed the
performance of benchmark applications to understand and improve cache perfor-
mance. Alappat et al. [9] investigated Intel BW and CS processors to understand
the cache behavior using the likwid tool suite [28]. Hammond et al. investigated
the Intel SK processor [26] by running different HPC benchmarks. Hofmann et
al. also investigated different Intel processors to analyze core and chip-level fea-
tures [29,30]. Molka et al. [27] used a micro-benchmark framework to analyze
the main memory and cache performance of Intel Sandy Bridge and AMD Bull-
dozer processors. Performance evaluation using benchmarks was also done in
Saini et al. for Ivy Bridge, Haswell, and Broadwell micro-architectures [31,32].
These studies investigated Intel micro-architectures using benchmarks; however,
unlike MAPredict, they did not develop strategies for predicting memory traffic.

252 M. A. H. Monil et al.

Table 4. Comparison with other works. Here, A = all and P = partial.

Studies Static Analytical Access Diff. micro- Diff. Multi- Pref-

by analysis model pattern architecture compilers threaded etcher

Peng et al.[5] ✓ ✗ A ✗ ✗ ✓ ✗

Yu et al. [17] ✓ ✓ A ✗ ✗ ✗ ✗

Monil et al. [24] ✗ ✗ P ✓ ✗ ✗ ✓

Lee at al. [4] ✓ ✗ P ✓ ✗ ✓ ✗

Marques et al. [25] ✗ ✗ P ✗ ✗ ✓ ✗

Alappat et al. [9] ✗ ✗ P ✓ ✓ ✓ ✓

Hammond et al. [26] ✗ ✗ P ✓ ✗ ✓ ✗

Molka et al. [27] ✗ ✗ P ✓ ✗ ✓ ✗

MAPredict ✓ ✓ A ✓ ✓ ✓ ✓

7.3 Comparing MAPredict with Other Studies

Table 4 compares MAPredict with other literature in which the first four rows
represent the study of memory access patterns and static analysis. The next four
rows represent studies that focused on understanding Intel micro-architectures.
Table 4 shows that MAPredict addresses the missing parts from both domains
to provide a unique framework.

8 Conclusion and Future Work

This paper presents the MAPredict framework, which predicts memory traffic for
Intel processors. This study investigated the interplay between an application’s
memory access pattern and Intel micro-architectures’ cache hierarchy. Based
on the observation from Intel processors, an analytical model was derived that
considers memory access patterns of an application, processor properties, and
compiler choice. MAPredict generated an application model for a given applica-
tion through compile time analysis. The application was combined with a target
machine model to synthesize the appropriate analytical model and predict LLC-
DRAM traffic. Through experimentation with benchmarks on processors from
Intel BW, SK, CS, and CP micro-architectures, the analytical model’s valid-
ity was verified by achieving an average accuracy of 99% for streaming, 91%
for strided, and 92% for stencil patterns. MAPredict also provided hints in the
source code to capture dynamic information and randomness from the applica-
tion or machine to obtain better accuracy. By combining static and empirical
approaches, MAPredict achieved up to 97% average accuracy on different micro-
architectures for random access patterns. Future work will investigate MAPre-
dict on AMD, ARM, and IBM processors.

Acknowledgments. This research used resources of the Experimental Computing
Laboratory at Oak Ridge National Laboratory, which are supported by the US Depart-
ment of Energy’s Office of Science under contract no. DE-AC05-00OR22725.

MAPredict: Memory Access Prediction Framework 253

This research was supported by (1) the US Department of Defense, Brisbane: Pro-
ductive Programming Systems in the Era of Extremely Heterogeneous and Ephemeral
Computer Architectures and (2) DOE Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced Computing (SciDAC)
program.

References

1. Jalby, W., Kuck, D., Malony, A., Masella, M., Mazouz, A., Popov, M.: The long and
winding road toward efficient high-performance computing. Proc. IEEE 106(11),
1985–2003 (2018)

2. Monil, M.A.H., Belviranli, M., Lee, S., Vetter, J., Malony, A. In: International
Conference on Parallel Architectures and Compilation Techniques (PACT), (2020)

3. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

4. Lee, S., Meredith, J., Vetter, J.: Compass: a framework for automated performance
modeling and prediction. In: 29th International Conference on Supercomputing
(ICS15), pp. 405–414 (2015)

5. Peng, I., Vetter, J., Moore, S., Lee, S.: Tuyere: Enabling scalable memory workloads
for system exploration. In: International Symposium on High-Performance Parallel
and Distributed Computing, pp. 180–191 (2018)

6. Umar, M., Moore, S.V., Meredith, J.S., Vetter, J.S., Cameron, K.W.: Aspen-based
performance and energy modeling frameworks. J. Parallel Distrib. Compu. 120,
222–236 (2018)

7. Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance
modeling. In: SC12: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–11, Salt Lake City (2012)

8. Top 500 supercomputers published at sc20. https://www.top500.org/
9. Alappat, C., Hofmann, J., Hager, G., Fehske, H., Bishop, A., Wellein, G.: Under-

standing HPC benchmark performance on Intel Broadwell and Cascade Lake pro-
cessors. arXiv preprint arXiv:2002.03344 (2020)

10. Monil, M.A.H., Lee, S., Vetter, J.S., Malony, A.D.: Comparing LLC-memory traffic
between CPU and GPU architectures. In: 2021 IEEE/ACM Redefining Scalability
for Diversely Heterogeneous Architectures Workshop (RSDHA), pp. 8–16 (2021)

11. Shende, S., Malony, A.: The TAU parallel performance system. Int. J. High Per-
form. Comput. Appl 20(2), 287–311 (2006)

12. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with
PAPI-C. In: Muller, M., Resch, M., Schulz, A., Nagel, W. (eds.) Tools for High
Performance Computing 2009, pp. 157–173. Springer, Berlin (2010). https://doi.
org/10.1007/978-3-642-11261-4 11

13. Lee, S., Vetter, J.S.: OpenARC: open accelerator research compiler for directive-
based, efficient heterogeneous computing. In: ACM Symposium on High-
Performance Parallel and Distributed Computing (HPDC), Vancouver, ACM
(2014)

14. McCalpin, J.D.: Stream benchmarks (2002)
15. Tramm, J., Siegel, A., Islam, T., Schulz,M.: XSBench-the development and verifi-

cation of a performance abstraction for Monte Carlo reactor analysis. In: Confer-
ence: PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future
(PHYSOR) (2014)

https://www.top500.org/
http://arxiv.org/abs/2002.03344
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11

254 M. A. H. Monil et al.

16. Karlin, I.: Lulesh programming model and performance ports overview. Technical
report, Lawrence Livermore National Lab. (LLNL), CA, USA (2012)

17. Yu, L., Li, D., Mittal, S., Vetter, J.S.: Quantitatively modeling application
resiliency with the data vulnerability factor. In: ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage, and Analysis (SC)
(2014)

18. Kim, Y., Yang, W., Mutlu, O.: Ramulator: a fast and extensible DRAM simulator.
IEEE Comput. Archit. Lett. 15(1), 45–49 (2015)

19. Rosenfeld, P., Cooper-Balis, E., Jacob, B.: DRAMSim2: a cycle accurate memory
system simulator. IEEE Comput. Archit. Lett. 10(1), 16–19 (2011)

20. Allen, T., Ge, R.: Characterizing power and performance of GPU memory access.
In: Internatopnal Workshop on Energy Efficient Supercomputing (E2SC), pp. 46–
53 (2016)

21. Dave, C., Bae, H., Min, S., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: a source-
to-source compiler infrastructure for multicores. Computer 42, 36–42 (2009)

22. Lopez, M.G., Hernandez, O., Budiardja, R.D., Wells, J.C.: CAASCADE: a system
for static analysis of HPC software application portfolios. In: Bhatele, A., Boehme,
D., Levine, J.A., Malony, A.D., Schulz, M. (eds.) ESPT/VPA 2017-2018. LNCS,
vol. 11027, pp. 90–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17872-7 6

23. Hill, M., Reddi, V.J.: Gables: a roofline model for mobile SoCs. In: International
Symposium on High Performance Computer Architecture (HPCA), pp. 317–330
(2019)

24. Monil, M.A.H., Lee, S., Vetter, J., Malony, A.: Understanding the impact of mem-
ory access patterns in Intel processors. In: MCHPC 2020: Workshop on Memory
Centric High Performance Computing. IEEE (2020)

25. Marques, D.: Performance analysis with cache-aware roofline model in Intel advi-
sor. In: International Conference on High Performance Computing & Simulation,
pp. 898–907 (2017)

26. Hammond, S., Vaughan, C., Hughes, C.: Evaluating the Intel Skylake Xeon proces-
sor for HPC workloads. In: International Conference on High Performance Com-
puting & Simulation (HPCS18), pp. 342–349 (2018)

27. Molka, D., Hackenberg, D., Schöne, R.: Main memory and cache performance of
Intel Sandy Bridge and AMD Bulldozer. In: Proceedings of the Workshop on Mem-
ory Systems Performance and Correctness, pp. 1–10 (2014)

28. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented
tool suite for x86 multicore environments. In: 2010 39th International Conference
on Parallel Processing Workshops, pp. 207–216. IEEE (2010)

29. Hofmann, J., Fey, D., Eitzinger, J., Hager, G., Wellein, G.: Analysis of Intel’s
Haswell microarchitecture using the ECM model and microbenchmarks. In: Han-
nig, F., Cardoso, J.M.P., Pionteck, T., Fey, D., Schröder-Preikschat, W., Teich, J.
(eds.) ARCS 2016. LNCS, vol. 9637, pp. 210–222. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-30695-7 16

30. Hofmann, J., Hager, G., Wellein, G., Fey, D.: An analysis of core- and chip-level
architectural features in four generations of intel server processors. In: Kunkel,
J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC High Performance 2017. LNCS,
vol. 10266, pp. 294–314. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-58667-0 16

https://doi.org/10.1007/978-3-030-17872-7_6
https://doi.org/10.1007/978-3-030-17872-7_6
https://doi.org/10.1007/978-3-319-30695-7_16
https://doi.org/10.1007/978-3-319-30695-7_16
https://doi.org/10.1007/978-3-319-58667-0_16
https://doi.org/10.1007/978-3-319-58667-0_16

MAPredict: Memory Access Prediction Framework 255

31. Saini, S., Hood, R., Chang, J., Baron, J.: Performance evaluation of an Intel
Haswell-and Ivy Bridge-based supercomputer using scientific and engineering
applications. In: 2016 IEEE 18th International Conference on High Performance
Computing and Communications (HPCC), pp. 1196–1203. IEEE (2016)

32. Saini, S., Hood, R.: Performance evaluation of Intel Broadwell nodes based super-
computer using computational fluid dynamics and climate applications. In: 2017
IEEE 19th International Conference on High Performance Computing and Com-
munications Workshops (HPCCWS), pp. 58–65. IEEE (2017)

Rapid Execution Time Estimation
for Heterogeneous Memory Systems

Through Differential Tracing

Nicolas Denoyelle1, Swann Perarnau1, Kamil Iskra1, and Balazs Gerofi2(B)

1 Argonne National Laboratory, Lemont, USA
{ndenoyelle,swann,iskra}@anl.gov

2 RIKEN Center for Computational Science, Kobe, Japan
bgerofi@riken.jp

Abstract. As the complexity of compute nodes in high-performance
computing (HPC) keeps increasing, systems equipped with heteroge-
neous memory devices are becoming paramount. Efficiently utilizing
heterogeneous memory-based systems, however, poses significant chal-
lenges to application developers. System-software-level transparent solu-
tions utilizing artificial intelligence and machine learning approaches, in
particular nonsupervised learning-based methods such as reinforcement
learning, may come to the rescue. However, such methods require rapid
estimation of execution runtime as a function of the data layout across
memory devices for exploring different data placement strategies, ren-
dering architecture-level simulators impractical for this purpose.

In this paper we propose a differential tracing-based approach using
memory access traces obtained by high-frequency sampling-based meth-
ods (e.g., Intel’s PEBS) on real hardware using of different memory
devices. We develop a runtime estimator based on such traces that pro-
vides an execution time estimate orders of magnitude faster than full-
system simulators. On a number of HPC miniapplications we show that
the estimator predicts runtime with an average error of 4.4% compared
to measurements on real hardware.

Keywords: Memory management · Heterogeneous memory · Machine
learning

1 Introduction

As dynamic random-access memory (DRAM) approaches its limits in terms
of density, power, and cost, a wide range of alternative memory technologies
are on the horizon, with some of them already in relatively large-scale deploy-
ment: 3D NAND flash [32], non-volatile memories such as 3D-XPoint [16], spin-
transfer torque magnetic RAM [45], and phase-change memory [27]. Moreover,
high-performance volatile memories, such as Hybrid Memory Cube [19], high-
bandwidth memory (HBM) [21], and Graphics Double Data Rate 6 [22], are
c© Balzas Gerolfi and UChicago Argonne, LLC, Operator of Argonne National Laboratory,
under exclusive license to Springer Nature Switzerland AG, part of Springer Nature 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 256–274, 2022.
doi.org/10.1007/978-3-031-07312-0 13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_13&domain=pdf
doi.org/10.1007/978-3-031-07312-0_13

Rapid Execution Time Estimation for Heterogeneous Memory Systems 257

actively being developed and deployed. Resource disaggregation [4], an emerg-
ing compute paradigm that has been receiving a lot of attention recently, will
further expand the heterogeneous memory landscape.

While these technologies provide opportunities for improving system utiliza-
tion and efficiency through better matching of specific hardware characteristics
with application behavior, at the same time they pose immense challenges to soft-
ware developers. Management of such heterogeneous memory types is a major
challenge for application developers, not only in placing data structures into the
most suitable memory, but also in adaptively moving content as application char-
acteristics change over time. Operating system and/or runtime level solutions
based on artificial intelligence (AI) and machine learning (ML) that optimize
memory allocations and data movement by transparently mapping application
behavior to the underlying hardware are therefore highly desired.

Although a large body of existing work explores various ML approaches for
heterogeneous memory management [12,18,43,44], to the best of our knowledge
none of this work applies nonsupervised learning such as reinforcement learn-
ing (RL) [41]. This gap exists despite RL’s enormous potential that has been
demonstrated in a wide range of fields recently [31]. RL evolves an agent to
refine its policy through repeatedly interacting with the environment. Hence it
requires rapid and low-overhead estimation of application execution time as a
function of memory layout over heterogeneous memory devices. Cycle-level full-
system simulators such as gem5 [8] and cycle-accurate memory simulators such
as Ramulator [25] and NVSIM [11] incur slowdowns that are prohibitive for
such a scenario. Additionally, restricting the simulation to memory devices only,
namely by feeding memory access traces (captured by tools such as PIN [28] or
DynInst [9]) into memory simulators, loses timing information about the com-
putation, in turn degrading the accuracy of the overall simulation. Furthermore,
these tools are still orders of magnitude slower than execution on real hardware.

This paper explores an alternative approach to rapid execution time estima-
tion over heterogeneous memory devices, a method we call differential tracing.
The basic idea is to obtain high-fidelity memory access traces running on real
hardware using different memory devices; matching the traces to identify dif-
ferences in runtime; and, based on this information, providing an estimate for
execution time as a function of the virtual memory to device mapping. To this
end, we utilize Intel’s precise event-based sampling (PEBS) [20] mechanism and
propose a number of extensions (e.g., the notion of application phasemarks) to
the tracing mechanism that enables high-accuracy matching of memory traces.
Using the matched traces, we develop an estimator that provides a runtime
estimate substantially faster than cycle-level simulators.

Specifically, in this paper we make the following contributions.

• We address the issue of providing an execution time estimator for hybrid
memory systems without incurring unacceptable slowdowns that would oth-
erwise be prohibitive in iterative machine learning methods such as RL.

258 N. Denoyelle et al.

• We introduce a number of novel extensions to sampling-based memory access
tracing (e.g., application phasemarks) that improve our ability to match mem-
ory traces.

• We evaluate our proposal on four HPC miniapplications across a wide range
of memory layouts and compare the estimates with real hardware execution.

We find that the proposed method provides an average estimation error of
4.4% compared with execution on real hardware, while it runs orders of magni-
tude faster than gem5 and Ramulator.

The rest of the paper is organized as follows. We begin with further moti-
vation in Sect. 2. Section 3 provides background information on memory access
tracing and lightweight kernels. Our custom PEBS driver and the estimator are
detailed in Sect. 4, and evaluation is provided in Sect. 5. Section 6 provides
additional discussion, Sect. 7 surveys related work, and Sect. 8 concludes the
paper.

2 Motivation

Before getting into the details of our proposal, we provide a high-level overview
of the approach we are pursuing. Our aim is to further clarify the motivation
for this work. Figure 1 outlines the idea of RL-based heterogeneous memory
management.

Fig. 1. Reinforcement-learning-based heterogeneous memory management.

In essence, the system software runs an RL agent that periodically observes
application behavior through low-level hardware metrics such as memory access
patterns, the current utilization of memory bandwidth, and the measured arith-
metic intensity. Subsequently, it feeds this state information into a policy net-
work that infers an action for potentially rearranging the memory layout of the
application, that is, moving data across memory devices. In turn, the application
(optionally in cooperation with the hardware) provides feedback on progress in
the form of rewards, for example, inverse proportionally with execution time.
The agent’s goal is to maximize rewards and thus to minimize execution time.

Ideally, one would train such agents in a real execution environment on
actual hardware. However, RL requires a large number of iterations for exploring

Rapid Execution Time Estimation for Heterogeneous Memory Systems 259

the environment, which renders real-hardware-based training extremely resource
demanding. Therefore, a better approach is to train the agent offline with a sur-
rogate hardware model faster than the actual hardware. In the remainder of
the paper, we call this model an estimator. While existing hardware simulators
can provide accurate runtime estimation, they are impractical because of the
immense slowdown they incur (see Sect. 5 for a quantitative characterization
of the overhead). Instead, what we need is a simulation environment that pro-
vides swift estimation of application execution time as a function of the memory
layout.

In summary, we emphasize that the goal of this study is not to optimize
the memory layout of the particular applications considered for evaluation but,
rather, to provide a simulation environment that can be used to train machine
learning models for memory management in a general context.

3 Background

3.1 Precise Event-Based Sampling

PEBS is a feature of some Intel microarchitectures that builds on top of Intel’s
Performance Counter Monitor (PCM) facility [20]. PCM enables the monitoring
of a number of predefined processor performance counters by monitoring the
number of occurrences of the specified events1 in a set of dedicated hardware
registers.

PEBS extends the idea of PCM by transparently storing additional processor
information while monitoring a PCM event. However, only a small subset of the
PCM events actually support PEBS. A “PEBS record” is stored by the CPU
in a user-defined buffer when a configurable number of PCM events, named the
“PEBS reset”, occur. The actual PEBS record format depends on the microar-
chitecture, but it generally includes the set of general-purpose registers as well
as the virtual address for load/store operations.

A PEBS assist in Intel nomenclature is the action of storing the PEBS record
into the CPU buffer. When the number of records written by the PEBS assist
events reaches a configurable threshold inside the PEBS buffer, an interrupt is
triggered. The interrupt handler is expected to process the PEBS data and clear
the buffer, allowing the CPU to continue storing more records. The smaller the
threshold, the more frequent the interrupt requests (IRQs). We note that the
PEBS assist does not store any timing information. Timestamping the PEBS
data, however, can potentially occur in the IRQ handler.

3.2 Lightweight Kernel-Based Development Environment

Lightweight multikernels have emerged as an alternative operating system archi-
tecture for HPC, where the basic idea is to run Linux and a lightweight ker-
nel (LWK) side-by-side in compute nodes to attain the scalability properties of
1 The exact availability of events depends on the processor’s microarchitecture.

260 N. Denoyelle et al.

Fig. 2. Overview of the IHK/McKernel architecture.

LWKs and full compatibility with Linux at the same time. IHK/McKernel is
a multikernel OS whose architecture is depicted in Fig. 2. A low-level software
infrastructure, called Interface for Heterogeneous Kernels (IHK) [40], provides
capabilities for partitioning resources in a many-core environment (e.g., CPU
cores and physical memory), and it enables management of lightweight ker-
nels. IHK can allocate and release host resources dynamically. No reboot of the
host machine is required when altering its configuration, thus enabling relatively
straightforward deployment of the multikernel stack on a wide range of Linux
distributions.

McKernel is a lightweight co-kernel developed on top of IHK [15]. It is
designed explicitly for HPC workloads, but it retains a Linux-compatible appli-
cation binary interface so that it can execute unmodified Linux binaries. McKer-
nel implements only a small set of performance-sensitive system calls; the rest
of the OS services are delegated to Linux. Specifically, McKernel provides its
own memory management, it supports processes and multithreading, it has a
simple round-robin cooperative (tickless) scheduler, and it implements standard
POSIX signaling. It also implements interprocess memory mappings, and it offers
interfaces for accessing hardware performance counters.

McKernel has a number of favorable properties with respect to this study.
First, it is highly deterministic. Not only does it provide predictable performance
across multiple executions of the same program, but it also ensures that the
same virtual memory ranges are assigned to a process when executed multiple
times, assuming that the application itself is deterministic. As we will see, this
significantly simplifies comparing memory access traces obtained from multiple
executions.

Second, McKernel’s relatively simple source code provides fertile ground for
developing custom kernel-level solutions. For example, it provides a custom
PEBS driver [29] that we extend with an API to capture higher-level application
information (e.g., the application phasemarks discussed in Sect. 4.1), as well as
another custom interface that enables selectively binding parts of the application
address space to specific memory devices without changing the application code
(detailed in Sect. 4.2).

Rapid Execution Time Estimation for Heterogeneous Memory Systems 261

4 Design and Implementation

This section discusses the design of our proposed execution time estimator along
with its most relevant implementation details.

Application

(a)

Application Profile

Data Mapping

Estimator Execution Time

PEBS+McKernel(b) Phasemark

gem5 / gem5+Ramulator

Intel pin / gem5 Ramulator / Siena

Fig. 3. High-level representation of the steps needed to build the proposed estimator
(a) and the tools that assist with the implementation (b).

Figure 3(a) gives an overview of the steps to build the proposed estimator.
The system comprises two main pieces: the application profiler and the estimator.
First, we collect memory access traces of the target application (Application
Profile in the figure). Since we want to train an agent offline, trace collection
may be slow for the purpose of training. However, the profiling step must have a
low overhead once the agent is deployed (i.e., during inference), and the estimator
has to be fast for training. Thus, it is desired that both pieces be fast, incur low
overhead, and attain high accuracy.

In our implementation of this system (PEBS+McKernel in Fig. 3(b)), we
collect high-frequency memory access traces from a real, heterogeneous memory-
equipped hardware environment where we place application content into differ-
ent memory devices. Therefore, the application profile is composed of sampled
memory access traces annotated with timing information, once for each mem-
ory device of the target computing system. Using sampling hardware counters
is effectively the lowest-overhead, application-oblivious way to collect an appli-
cation’s memory access trace.

The estimator, which we will describe in more detail below, matches the
traces and identifies execution phases (Phasemark in the figure) along with the
accessed memory regions that impact performance. Taking into account the dis-
crepancy between traces from different memory devices, it estimates execution
time based on input that describes the layout of application data with respect
to the underlying memory devices, the mapping between virtual memory ranges
to the corresponding memory devices that back those mappings (Data Mapping
in Fig. 3(a)).

262 N. Denoyelle et al.

Different approaches exist for implementing such a system, as outlined in
Fig. 3(b). It can be implemented with a different profiling method and/or a
different estimator (Intel pin/gem5 and Ramulator/Siena in the figure, respec-
tively) or even combining the profiling and estimation steps into a single step
(gem5/gem5+Ramulator). We found that existing approaches are impractical
in the context of reinforcement learning because RL requires both low-overhead
profiling for the inference step and a fast estimator for the training step. We
evaluate some of these approaches in Sect. 5.

We first describe the details of our memory access tracing mechanism.

4.1 Memory Access Tracing and Application Phasemarks

To track application-level memory accesses, we utilize Intel’s PEBS facility.
Specifically, we configure PEBS on the event of last-level cache misses for which
the PEBS records include not only the set of general-purpose registers but also
the virtual address for the particular load/store operation that triggered the
cache miss, effectively capturing the memory access pattern of the application.

It has been reported previously that standard PEBS drivers incur nontriv-
ial overhead and have limited configuration flexibility [1,26,30]. For example,
in both the Linux kernel’s PEBS driver and the one provided by Intel’s vTune
software, no interface is available for controlling the internal PEBS assist buffer
size, which implicitly controls the frequency of PEBS interrupts that enable
the annotation of PEBS records with high-granularity timestamps. Olson et
al. also reported that decreasing the PEBS reset value below 128 on Linux
caused the system to crash [30]. For these reasons we utilize McKernel’s cus-
tom PEBS driver, which has been shown to have negligible runtime overhead
even at very high-granularity tracing, for example, by capturing memory accesses
with a PEBS reset counter as low as 16 [29].

In addition to high-frequency tracing, we extend the kernel device driver to
annotate PEBS records with two extra pieces of information. First, we introduce
the notion of application phases, for which we add a dedicated phasemark()
system call in McKernel. The call simply increments a counter in the PEBS
driver, which is in turn appended to each PEBS record. Second, we automatically
record the number of retired instructions elapsed since the beginning of the last
application phase, which again is attached to the PEBS record. As we will see
below, this extra information enables us to match memory access traces from
different memory devices with very high accuracy. We note that phasemark calls
can be inserted into the application source code either manually or through
compiler-level code transformation.

Figure 4 highlights the impact of phasemarks in two memory access traces
captured from DDR4 and high-bandwidth memory, respectively, when running
the Lulesh miniapplication [23]. For more information on the hardware platform
used for this experiment as well as on the specifics of how we execute the appli-
cation, see Sect. 5. The x-axis of the figures indicates elapsed time, while the
y-axis shows virtual page indices (i.e., virtual addresses divided by the page size).

Rapid Execution Time Estimation for Heterogeneous Memory Systems 263

The width of the two plots is proportional to the execution time, while the red
vertical lines pinpoint application phasemarks captured by the PEBS driver. The
two plots show the same four phases of the application, with the only difference
being that the application was running on different memory devices.

Fig. 4. Lulesh memory traces from DDR4 vs. MCDRAM, annotated with application
phasemarks.

As shown, the virtual memory ranges of the two executions are almost identi-
cal. This is due to the deterministic behavior of McKernel’s memory management
subsystem. In addition, phasemarks help determine how much a given applica-
tion phase is impacted by the fact that memory content is placed into a particular
memory device. This information is especially important because not all phases
experience the same effect. For example, the execution time of the fourth phase
in the figure is reduced by 44% when using MCDRAM; the first phase, how-
ever, becomes almost 4× faster. Had we not marked the different phases, trace
matching would become significantly more complex, since it would need to iden-
tify parts of the trace where the application proceeds at a different pace from
that of others when executed out of a different memory device. In contrast, with
the presence of phasemarks, we have stable anchors for periodic synchronization
while processing the traces. In Sect. 5 we quantitatively characterize the impact
of phasemarks on runtime estimation accuracy.

264 N. Denoyelle et al.

4.2 Execution Time Estimation and Verification

Estimation. The mechanism of the execution time estimator is remarkably
simple. The algorithm processes memory traces of a given application obtained
from different memory devices by iterating through the individual phases supple-
mented by the phasemark annotation. In a given phase, the memory access traces
are further divided into windows based on the number of retired instructions
associated with the memory access samples. Much to our surprise, we observe
some discrepancy between the number of retired instructions (associated with
particular phases) captured by the PEBS driver based simply on which underly-
ing memory device is utilized. We are unsure whether this is due to some timing
effect caused by the difference between the memory devices or an issue with
performance counter implementation in the CPU. Either way, to guarantee that
a given phase is processed at the same pace from both traces, we configure the
window lengths proportionally. The window length is a parameter of the estima-
tor, and we typically configure it to cover a few hundred thousand instructions
according to the baseline trace.

In a given window, the estimator iterates the traces and records the number
of accesses that hit each particular memory device according to the mapping
between the virtual memory ranges and the backing devices. Based on the ratio
of the number of accesses, we calculate the execution time of the given window by
skewing it proportionally between the measured times over different devices, e.g.,
for a DRAM plus HBM system we use the following formula: test = tDRAM −
(tDRAM − tHBM) · #accessesHBM

#accessesall
.

As one may notice, this mechanism completely disregards data dependencies
among memory accesses and greatly simplifies the interpretation of memory
access traces. Nevertheless, as we will see in Sect. 5, this simple approach (in
combination with phasemarks) proves to be surprisingly accurate. We also note
that utmost accuracy is not required for the ML training process to be successful;
rather, it is sufficient if it is expressive enough to guide the learning algorithm
to the right optimization path.

Verification. To verify the accuracy of the estimator, we extend McKernel’s
memory management code with two custom APIs. One allows the specification of
a list of virtual memory ranges along with their target memory device; the other
makes it possible to indicate a percentage that is interpreted as the fraction
of application pages that are to be mapped to a given memory device. The
kernel automatically places the memory of the calling process on the target
device irrespective of whether it covers the stack, heap, data/BSS sections, or
anonymous memory mappings in the process’s address space.

As opposed to standard POSIX calls such as set mempolicy() or mbind()
that need to be invoked at the application level, this memory placement mecha-
nism is carried out in an application-transparent fashion. This approach greatly
simplifies experimentation because we do not need to make modifications to
individual applications. Using the APIs, we can easily verify the accuracy of the
proposed estimator against measurements on real hardware.

Rapid Execution Time Estimation for Heterogeneous Memory Systems 265

5 Evaluation

All of our experiments were performed on an Intel R© Xeon Phi
TM

7250 Knights
Landing (KNL) processor, which consists of 68 CPU cores, accommodating 4
hardware threads per core. The processor provides 16 GB of integrated, high-
bandwidth MCDRAM, and it is accompanied by 96 GB of DDR4 RAM. We
configured the KNL processor in Quadrant flat mode; in other words, MCDRAM
and DDR4 RAM are addressable at different physical memory locations. We used
64 CPU cores for applications and reserved the rest for OS activities. While we
acknowledge that the KNL platform has come of age, we emphasize that our
proposal is orthogonal to the underlying hardware. We use KNL because it is
currently the only generally available CPU architecture supporting both high-
bandwidth memory and regular DDR4. Note that Intel has already announced
its upcoming Sapphire Rapids CPU model that will provide a similar hybrid
memory environment [3]. For the wall-clock measurements of the estimator, we
use an Intel R© Xeon

TM
Platinum 8280 (Cascade Lake) CPU equipped platform.

5.1 Application Benchmarks

To evaluate the proposed estimator, we chose the following miniapplications
primarily because they are the subject of a substantial runtime difference when
executed out of high-bandwidth memory.

• MiniFE is a proxy application for unstructured implicit finite element codes.
It is similar to HPCCG and pHPCCG but provides a much more complete
vertical covering of the steps in this class of applications [17].

• Lulesh is the Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics benchmark, which is part of the Shock Hydrodynamics Challenge
Problem. It was originally defined and implemented by Lawrence Livermore
National Laboratory, and it is a widely studied proxy application in U.D.
Department of Energy co-design efforts [23].

• LAMMPS is an acronym for Large-scale Atomic/Molecular Massively Par-
allel Simulator. LAMPPS is a classical molecular dynamics code [36].

• Nekbone solves a standard Poisson equation using a conjugate gradient iter-
ation with a simple preconditioner on a block or linear geometry. Nekbone
exposes the principal computational kernel that is pertinent to Nek5000 [5].

All our measurements are performed in flat MPI configuration, that is, run-
ning 64 MPI ranks on a single node with a dedicated CPU core for each process.
This setup enables us to achieve two important goals. First, we make sure that
we exercise the entire chip and measure a practical application deployment. Sec-
ond, the single-threaded execution of each rank ensures deterministic behavior
with respect to memory mappings, which in turn enables us to easily measure
configurations where only specific ranges of the address space are mapped to
high-bandwidth memory. We also note that we observe negligible performance
variation across multiple executions on McKernel, and thus we omit error bars
on measured data points. As for PEBS, we configure the reset value to 16.

266 N. Denoyelle et al.

5.2 Results

We provide two sets of experiments with respect to estimation accuracy. In the
first setup we gradually increase the fraction of the application address space
that is mapped to high-bandwidth memory from 0% (i.e., running entirely out of
DDR4) all the way up to 100%, where all memory is allocated out of MCDRAM.
We increase the ratio in steps of 10%. Figure 5 summarizes the results.

(a) MiniFE (b) Lulesh

(c) Nekbone (d) LAMMPS

Fig. 5. Runtime estimations vs. measurements as a function of data fraction placed in
high-bandwidth memory.

On each plot the x-axis indicates the fraction of application memory that
is mapped to HBM. The left y-axis shows execution time, where the blue,
orange and green bars indicate runtimes as measured, estimated w/o phase-
marks, and estimated with phasemarks, respectively. We do not estimate values
for full DDR4 and MCDRAM executions. The right y-axis covers estimation

Rapid Execution Time Estimation for Heterogeneous Memory Systems 267

error (against the measured values). The actual values are shown by the blue
and red crosses, for with and w/o phasemarks, respectively.

(a) MiniFE (b) Lulesh

(c) Nekbone (d) LAMMPS

Fig. 6. Runtime estimations vs. measurements as a function of data ranges placed in
high-bandwidth memory.

As shown, without using phasemarks we endure estimation errors up to over
60%, while with the incorporation of phasemark information the proposed mech-
anism provides a remarkably accurate estimation of runtimes. Specifically, the
average estimation error when using phasemarks for MiniFE, Lulesh, Nekbone,
and LAMMPS is 2.4%, 2.3%, 3.2%, and 2.7%, respectively. The largest error
(while using phasemarks) we observe across all the experiments is for LAMMPS

268 N. Denoyelle et al.

at 90% of the memory placed into HBM where we see approximately a 10%
error. We find this particular result counterintuitive because most pages are in
HBM already; we are still investigating the root cause of it.

The second set of experiments covers arbitrary ranges placed into high-
bandwidth memory. We emphasize that the importance of these experiments
lies in the fact that they mimic the conditions the estimator would encounter
during RL training. Results are shown in Fig. 6.

The plots are similar to those in Fig. 5 except for the x-axis. For brevity
we omit listing the actual address ranges (also because they do not carry any
particular meaning), and we use short notations on the x-axis to indicate differ-
ent configurations where select memory ranges are placed into MCDRAM. We
handpicked these ranges by visually examining traces and by algorithmically
identifying areas where a large number of the accesses concentrate.

Again, without using application phasemarks we observe errors up to 75%.
To the contrary, when utilizing phasemarks the average estimation error for
MiniFE, Lulesh, Nekbone, and LAMMPS is 4.1%, 5.7%, 3.1%, and 6%, respec-
tively. We note that although in a few cases the error using phasemarks exceeds
that of without it (e.g., in Fig. 6c), the error is already very small in these cases.
While these numbers are somewhat elevated compared with those of the more
regular percentage-based experiments, we believe these are still well within the
acceptable range for driving ML training. Overall, across all experiments, the
estimator with phasemarks yields an average error rate of 4.4%.

Estimation Time. As depicted in Fig. 3, the profiling and estimation steps
proposed in this paper may be compared with other methods having similar
utility, that is, to estimate the application execution time as a function of the
mapping between application data and physical memory. Here, we compare the
overhead of our method with that of three other methods.

Table 1. Comparison of actual application runtime, the wall-clock time of the proposed
estimator, and simulation times of Ramulator and gem5.

Application Runtime Estimator Ramulator gem5

(measured) (measured) (estimated) (estimated)

MiniFE 41 s ∼9 s ∼1 h ∼14 days

Lulesh 86 s ∼54 s ∼2 h ∼29 days

Nekbone 54 s ∼66 s ∼1 h ∼18 days

LAMMPS 46 s ∼39 s ∼1 h ∼15 days

Based on measurements, we report the upper limit of application runtime
(i.e., running out of DRAM) and the wall-clock time it takes the proposed
mechanism to give an estimate. In addition, we estimate the simulation times

Rapid Execution Time Estimation for Heterogeneous Memory Systems 269

of Ramulator and gem5. Ramulator [25] is a memory simulator capable of sim-
ulating multiple memory technologies. In our experience, using Ramulator to
process a memory access trace obtained with the Intel Pin [28] binary instru-
mentation tool was about 100 to 1,000 times slower than running the actual
application. We estimate wall-clock times based on these values. The gem5 [8]
simulator is a cycle-level simulator, modeling several components of a hard-
ware platform including CPUs, caches, and the memory hierarchy. We estimate
gem5 runtimes based on the approximate 30, 000 times slowdown reported by
Sandberg et al. [38], which is also in line with our own experience running smaller
benchmarks.

Results are shown in Table 1. As seen, the runtimes of both gem5 and Ramu-
lator are prohibitive for our purpose. In contrast, the proposed estimator provides
runtime estimates several orders of magnitude faster. In fact, except for Nekbone,
it runs faster than the application itself. We note that the slowdown in Nekbone
is related to the large number of memory accesses that impacts the speed of
the simulation. We leave further performance optimization of the estimator for
future work. Nevertheless, we point out that the estimator runs on a single CPU
core as opposed to the application that occupies at least an entire chip. Taking
into account RL’s ability to utilize multiple agents concurrently, our solution
provides efficiency improvements proportional to the number of CPU cores even
if compared with actual application runs. Moreover, since the application profile
used in the proposed mechanism is based on sampled memory access traces, we
can adjust the trade-off between the trace resolution and the estimator accuracy
to speed up the profiling and estimation.

6 Discussion

This section provides additional discussion on various aspects of the proposal.
The ultimate goal of this study is to train ML agents that will guide memory

placement in heterogeneous memory environments in an application transparent
fashion. Phasemarking is used exclusively for building the environment to train
the agent (i.e., for generating training data) and the expectation is that ML
agents will generalize enough to work on unseen access patterns.

We emphasize that at the time of deployment an RL agent only needs to
observe memory accesses (e.g., through PEBS) and there is no need for phase-
marking each application when the system is deployed. Furthermore, our special-
purpose OS is only utilized for the creation of training data. Once an RL agent
is trained, it can be deployed in any standard OS/runtime environment with the
only requirement for being able to sample memory accesses.

One might recognize the possibility to directly utilize phasemark information
for memory management. While this may be feasible, it is outside the scope
of this study and we leave it for future exploration. Our goal is to derive an
application-transparent solution that does not require code instrumentation.

270 N. Denoyelle et al.

7 Related Work

A significant amount of research has been done over the years on improving page
placement for complex memory architectures.

Focusing on modern memory architectures and profiling-based methods, we
identify several works of interest. The first set of research studies can be char-
acterized by the focus on designing a system or runtime using different memory
tiers as a stage-in/stage-out cache. These studies can predict which pages of
memory should be migrated from large and slow to small and fast memory
devices ahead of time, either in a system with NVRAM and DRAM or a system
with DRAM and HBM. We highlight the works of Doudali et al. [12–14] that
showcase ML methods to predict which pages to migrate next or how often to
perform migration. These works are difficult to adapt to our objective, however,
since they operate under the assumption that any application page would benefit
from being in fast memory at the right time, which is not necessarily the case in
the HPC context [33,37]. Indeed, we aim here to select the right placement for
each page and not to design a paging scheme that would move the working set
of an application in and out of a hierarchy of devices. We also note that many of
the above-mentioned studies consider only single CPU core execution, which we
think is unrealistic in an HPC setting. We can also differentiate these works with
respect to the profiling method used: whether it is based on estimating locality
metrics (e.g., reuse distance) [2,12,24] or a form of memory pressure (e.g., access
count per region) [6,30,39].

We further highlight studies providing heuristics or software facilities for data
migration between heterogeneous memories [7,35], either through the use of the
same metrics as above or through more knowledge of the application. Phase
detection is also an extensive field of study, surveyed in [10]. We note that most
phase detection methods, in particular architecture-supported ones, tend to be
used for reconfiguration purposes (make a change in a policy) and not as much
for comparison of traces of the same application in different setups. Nevertheless,
we will investigate the use of other lightweight phase detection systems in our
future work.

Binary instrumentation tools can also be used to track memory accesses,
filter them between the last-level cache and memory, and model the timing of
the instructions. Such solutions could be used as profilers for our trace-based
estimator. However, the overhead of binary instrumentation-based methods for
memory analysis tools has been shown to increase the number of instructions
to execute by 10 times [42]. Intel Pin [28] (3.21) is a binary instrumentation
framework shipped with a single-level cache emulator tool. Although it could be
used here as a profiler, in our experience the overhead of the tool is more on the
order of 100 to a 1000 times.

Ramulator [25], the memory simulator we used for evaluation, can also be
combined with other tools such as Siena [34] to simulate heterogeneous memory
systems. These tools can be used as an estimator to evaluate the impact of data
mapping on applications in a fashion similar to our own estimator. Unlike with

Rapid Execution Time Estimation for Heterogeneous Memory Systems 271

our tool, however, where we can rely on sampled memory access traces, these
tools require a complete trace to provide an accurate timing estimation.

8 Conclusion and Future Work

As architectural complexity grows in HPC systems, it becomes increasingly chal-
lenging to efficiently utilize these platforms. Therefore, intelligent application-
transparent solutions are greatly desired. In particular, ML/AI techniques that
can discover solutions without labeled data may come to the rescue. However,
techniques such as reinforcement learning require a large number of interactions
with the environment; and thus, when applied to heterogeneous memory man-
agement, they require rapid execution time estimation of the application running
on a hybrid memory platform.

This paper has proposed a novel execution time estimation mechanism
that relies on comparing sampled memory access traces obtained on real hard-
ware from different memory devices. This relatively simple mechanism achieves
remarkably accurate runtime predictions (with an average error rate of 4.4%)
while running orders of magnitudes faster than high-fidelity architectural simu-
lators. Thus, the proposed mechanism opens up the opportunity to be deployed
in nonsupervised machine learning frameworks such as in RL.

Our immediate future work entails integrating the proposed estimator into
an RL framework to explore the feasibility of its application to heterogeneous
memory management. With respect to gem5, while it is not a suitable solution
for high-speed and low-overhead runtime estimation, we intend to use it in the
future as a validation platform for new architectures.

Acknowledgment. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. The material was based upon work
supported by the U.S. Department of Energy, Office of Science, under contract DE-
AC02-06CH11357. This research was also supported by the JSPS KAKENHI Grant
Number JP19K11993.

References

1. Akiyama, S., Hirofuchi, T.: Quantitative evaluation of Intel PEBS overhead for
online system-noise analysis. In: Proceedings of the 7th International Workshop
on Runtime and Operating Systems for Supercomputers ROSS 2017 (2017)

2. Alvarez, L., Casas, M., Labarta, J., Ayguade, E., Valero, M., Moreto, M.: Runtime-
guided management of stacked DRAM memories in task parallel programs. In:
Proceedings of the 2018 International Conference on Supercomputing (2018)

3. AnandTech: Intel to launch next-gen Sapphire Rapids Xeon with high band-
width memory (2021). https://www.anandtech.com/show/16795/intel-to-launch-
next-gen-sapphire-rapids-xeon-with-high-bandwidth-memory

4. Angel, S., Nanavati, M., Sen, S.: Disaggregation and the Application. USENIX
Association, Berkeley (2020)

https://www.anandtech.com/show/16795/intel-to-launch-next-gen-sapphire-rapids-xeon-with-high-bandwidth-memory
https://www.anandtech.com/show/16795/intel-to-launch-next-gen-sapphire-rapids-xeon-with-high-bandwidth-memory

272 N. Denoyelle et al.

5. Argonne National Laboratory: Proxy-apps for thermal hydraulics (2021). https://
proxyapps.exascaleproject.org/app/nekbone/

6. Arima, E., Schulz, M.: Pattern-aware staging for hybrid memory systems. In: Inter-
national Conference on High Performance Computing (2020)

7. Benoit, A., Perarnau, S., Pottier, L., Robert, Y.: A performance model to execute
workflows on high-bandwidth-memory architectures. In: Proceedings of the 47th
International Conference on Parallel Processing (2018)

8. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit. News (2011).
https://doi.org/10.1145/2024716.2024718

9. Buck, B., Hollingsworth, J.K.: An API for runtime code patching. Int. J. High
Perform. Comput. Appl. (2000), https://doi.org/10.1177/109434200001400404

10. Dhodapkar, A.S., Smith, J.E.: Comparing program phase detection techniques. In:
Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2003. MICRO-36 (2003)

11. Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: NVSim: a circuit-level performance, energy,
and area model for emerging nonvolatile memory. IEEE Trans. Comput. Aid. Des.
Integr. Circ. Syst. 31, 994–1007 (2012)

12. Doudali, T.D., Blagodurov, S., Vishnu, A., Gurumurthi, S., Gavrilovska, A.: Kleio:
A hybrid memory page scheduler with machine intelligence. In: Proceedings of
the 28th International Symposium on High-Performance Parallel and Distributed
Computing (2019)

13. Doudali, T.D., Zahka, D., Gavrilovska, A.: The case for optimizing the frequency
of periodic data movements over hybrid memory systems. In: The International
Symposium on Memory Systems (2020)

14. Doudali, T.D., Zahka, D., Gavrilovska, A.: Cori: dancing to the right beat of peri-
odic data movements over hybrid memory systems. In: 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (2021)

15. Gerofi, B., Takagi, M., Hori, A., Nakamura, G., Shirasawa, T., Ishikawa, Y.:
On the scalability, performance isolation and device driver transparency of the
IHK/McKernel hybrid lightweight kernel. In: 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2016

16. Hady, F.T., Foong, A., Veal, B., Williams, D.: Platform storage performance with
3D XPoint technology. In: Proceedings of the IEEE (2017)

17. Heroux, M.A., et al.: Improving performance via mini-applications. Tech. rep, San-
dia National Laboratories (2009)

18. Hildebrand, M., Khan, J., Trika, S., Lowe-Power, J., Akella, V.: AutoTM: auto-
matic tensor movement in heterogeneous memory systems using integer linear
programming. In: Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (2020).
https://doi.org/10.1145/3373376.3378465

19. HMC Consortium: Hybrid Memory Cube Specification 2.1. (2015). http://
www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR HMCC
Specification Rev2.1 20151105.pdf

20. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer Manuals
(2021). https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html

21. JEDEC Solid State Technology Association: High Bandwidth Memory (HBM)
DRAM (2015)

22. JEDEC Solid State Technology Association: Graphics Double Data Rate 6
(GDDR6) SGRAM standard (2017)

https://proxyapps.exascaleproject.org/app/nekbone/
https://proxyapps.exascaleproject.org/app/nekbone/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1145/3373376.3378465
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Rapid Execution Time Estimation for Heterogeneous Memory Systems 273

23. Karlin, I., Keasler, J., Neely, R.: LULESH 2.0 updates and changes. Tech. rep.,
Lawrence Livermore National Laboratory (2013)

24. Kim, J., Choe, W., Ahn, J.: Exploring the design space of page management
for multi-tiered memory systems. In: 2021 USENIX Annual Technical Conference
(USENIX ATC 21) (2021)

25. Kim, Y., Yang, W., Mutlu, O.: Ramulator: a fast and extensible DRAM simulator.
IEEE Comput. Archit. Lett. 15, 45–49 (2016)

26. Larysch, F.: Fine-grained estimation of memory bandwidth utilization. Master’s
thesis (2016)

27. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as
a scalable DRAM alternative. SIGARCH Comput. Archit. News (2009). https://
doi.org/10.1145/1555815.1555758

28. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (2005)

29. Nonell, A.R., Gerofi, B., Bautista-Gomez, L., Martinet, D., Querol, V.B., Ishikawa,
Y.: On the applicability of PEBS based online memory access tracking for heteroge-
neous memory management at scale. In: Proceedings of the Workshop on Memory
Centric High Performance Computing (2018)

30. Olson, M.B., Zhou, T., Jantz, M.R., Doshi, K.A., Lopez, M.G., Hernandez, O.:
MemBrain: automated application guidance for hybrid memory systems. In: IEEE
International Conference on Networking, Architecture, and Storage (2018)

31. Padakandla, S.: A survey of reinforcement learning algorithms for dynamically
varying environments. ACM Comput. Surv. 54(6) (2021). https://doi.org/10.1145/
3459991

32. Park, K.-T., et al.: 19.5 three-dimensional 128Gb MLC vertical NAND flash-
memory with 24-WL stacked layers and 50MB/s high-speed programming. In: 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC) (2014)

33. Parsons, B.S.: Initial benchmarking of the Intel 3D-stacked MCDRAM. Tech. rep,
ERDC (2019)

34. Peng, I.B., Vetter, J.S.: Siena: exploring the design space of heterogeneous memory
systems. In: SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis (2018)

35. Peng, I.B., Gioiosa, R., Kestor, G., Cicotti, P., Laure, E., Markidis, S.: RTHMS:
a tool for data placement on hybrid memory system. ACM SIGPLAN Notices 52,
82–91 (2017)

36. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-
put. Phy. 117, 1–19 (1995)

37. Pohl, C.: Exploiting manycore architectures for parallel data stream processing.
In: Grundlagen von Datenbanken, pp. 66–71 (2017)

38. Sandberg, A., Diestelhorst, S., Wang, W.: Architectural exploration with gem5
(2017). https://www.gem5.org/assets/files/ASPLOS2017 gem5 tutorial.pdf

39. Servat, H., Peña, A.J., Llort, G., Mercadal, E., Hoppe, H.C., Labarta, J.: Automat-
ing the application data placement in hybrid memory systems. In: 2017 IEEE
International Conference on Cluster Computing (CLUSTER) (2017)

40. Shimosawa, T., et al.: Interface for heterogeneous kernels: A framework to enable
hybrid OS designs targeting high performance computing on manycore architec-
tures. In: 21st International Conference on High Performance Computing (2014)

41. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (1998).
http://www.cs.ualberta.ca/∼sutton/book/the-book.html

https://doi.org/10.1145/1555815.1555758
https://doi.org/10.1145/1555815.1555758
https://doi.org/10.1145/3459991
https://doi.org/10.1145/3459991
https://www.gem5.org/assets/files/ASPLOS2017_gem5_tutorial.pdf
http://www.cs.ualberta.ca/~sutton/book/the-book.html

274 N. Denoyelle et al.

42. Uh, G.R., Cohn, R., Yadavalli, B., Peri, R., Ayyagari, R.: Analyzing dynamic
binary instrumentation overhead. In: WBIA Workshop at ASPLOS. Citeseer
(2006)

43. Wu, K., Ren, J., Li, D.: Runtime data management on non-volatile memory-based
heterogeneous memory for task-parallel programs. In: SC18: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (2018)

44. Yu, S., Park, S., Baek, W.: Design and implementation of bandwidth-aware mem-
ory placement and migration policies for heterogeneous memory systems. In: Pro-
ceedings of the International Conference on Supercomputing, pp. 1–10 (2017)

45. Zambelli, C., Navarro, G., Sousa, V., Prejbeanu, I.L., Perniola, L.: Phase change
and magnetic memories for solid-state drive applications. In: Proceedings of the
IEEE (2017)

Understanding Distributed Deep Learning
Performance by Correlating HPC

and Machine Learning Measurements

Ana Luisa Veroneze Solórzano(B) and Lucas Mello Schnorr(B)

Informatics Institute (PPGC/UFRGS), Porto Alegre, Brazil
{alvsolorzano,schnorr}@inf.ufrgs.br

Abstract. Frameworks for Distributed Deep Learning (DDL) have
become popular alternatives to distribute training by adding a few lines
of code to a single-node script. From a High-Performance Computing
(HPC) perspective, traditional profiling tools for researches in Machine
Learning (ML) fail to expose details about distributed training per-
formance, such as identifying synchronization points, communication
and computing time, and devices usage throughout the training. More-
over, these results are usually considered independently. We present a
methodology for performance analysis of DDL frameworks that com-
bines HPC and ML tools to apply intrusive and non-intrusive tracing
to enrich the findings for a strong scaling in three clusters with differ-
ent GPU models. We selected two modern DDL frameworks: Horovod
and Tarantella. Using spatial and temporal analysis, we identify bottle-
necks in the frameworks, such as a long initialization time for Horovod,
the non-distribution of data during the testing phase for Tarantella. We
extract performance measurements using temporal aggregation consider-
ing the training phases, which can benefit DDL frameworks’ developers
to improve their tools. Horovod presented the best scaling efficiency for 4
GPUs or more, with up to 84.6% scaling efficiency for 4 GPUs and large
batch size, while Tarantella achieves 54.7% for the same case. Using
our temporal aggregation approach, we identified this result origins from
Horovod processing an epoch faster than Tarantella.

Keywords: Distributed Deep Learning · Performance analysis · HPC

1 Introduction

Training a Deep Neural Network (DNN) using big datasets can take days. Dis-
tributed Deep Learning (DDL) frameworks take advantage of large-scale hybrid
systems to accelerate the training by rapid prototyping [17]. The more user-
friendly tools run over popular Machine Learning (ML) frameworks, such as
TensorFlow [2] and PyTorch [25], can distribute a single-device training to a
cluster of multi-GPU nodes, requiring only a few extra lines of code [5,28].

c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 275–292, 2022.
https://doi.org/10.1007/978-3-031-07312-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_14&domain=pdf
http://orcid.org/0000-0003-0203-8865
http://orcid.org/0000-0003-4828-9942
https://doi.org/10.1007/978-3-031-07312-0_14

276 A. L. Veroneze Solórzano and L. Mello Schnorr

The increase of DDL frameworks and the complexity of distributed train-
ing strategies generate new performance characteristics for evaluation on scal-
able distributed systems. Comprehensive literature reviews that compare DDL
frameworks consider the parallelization strategy employed, programming lan-
guage support, efforts to overlap communication with computation, if it is easy
to use, and portability to other architectures [3,10,22]. Practical evaluations
for DDL usually measure the execution time and the training accuracy. Both
aspects are typically covered by single-node training evaluations, as well as the
training speedup when adding more devices, the performance of weak and/or
strong scaling, throughput, and the framework’s usability verifying if they are
easy to use [11,17,21]. Other works go a step further and also evaluate the mem-
ory usage of devices, the overhead of data communication, I/0 behavior, the
training phases (i.e., forward and back propagation), and data copies from host
to devices [15,20,29]. These works present independent results from an ML and
an HPC perspective and give overall measurements. To tackle the performance
of modern DDL frameworks, a methodology to correlate and understand the
performance impact of using such frameworks requires more attention.

We propose a new methodology to evaluate and compare DDL frameworks’
performance correlating measurements obtained with state-of-the-art HPC and
ML tools, using spatial and temporal visualizations. We use two modern DDL
frameworks: Horovod [28] and Tarantella [5]. They share similarities in their
installation, usage, and distribution strategy, but they use different all-reduce
algorithms and communication libraries. Both frameworks are compiled as a
standard-alone Python package and with a C++ back-end implementation for
distributed computing. Therefore, it is challenging to perform an in-depth anal-
ysis of their distributed approach performance using methodologies as applied
on standard parallel and distributed applications. Our main contributions are:

– A practical comparison and performance evaluation of Horovod and Taran-
tella on three multi-GPUs clusters with different GPU cards using strong-
scaling for a CNN using a full-factorial design. We evaluate the framework’s
scalability efficiency and execution time considering resources usage.

– Analysis of Horovod using code instrumentation with Score-P to gather
detailed information about its MPI implementation.

– A new strategy to present the results using spatial and temporal visualiza-
tions. We depict the exact computing time within GPUs for the training
iterations and reveal more detailed information than usual ML profilers that
do not correlate temporally high-level programming language measures with
GPUs usage. Our approach can prevent users from excluding the first itera-
tions for performance analysis [20,29].

– Performance evaluation of the overall computing time in the host and devices
using temporal aggregation considering the training epochs.

– Identify frameworks bottlenecks by using our new methodology. Based on
our comparison between frameworks with the same parallel strategy, we can
indicate along the training time where the frameworks could be improved.

Understanding Distributed Deep Learning Performance 277

This paper is organized as follows: we present the DDL frameworks and trac-
ing and profiling tools for DL that motivated our research approach (Sect. 2),
the selected frameworks Tarantella and Horovod (Sect. 3), our methodology
and tools (Sect. 4), our results comparing the performance of Horovod and
Tarantella and contributions using our temporal visualizations (Sects. 5 and 6),
a discussion about the results (Sect. 7), and finally our conclusion (Sect. 8).
We endeavor to make our analysis reproducible. A public companion hosted
at https://gitlab.com/anaveroneze/isc2022-companion contains the dataset and
analysis to reproduce our results. A perennial archive is also available in Zenodo
at https://zenodo.org/record/6349605.

2 Related Work

Several frameworks are being implemented in recent years due to the fast inno-
vations in Deep Learning (DL). They are targeted to specific scenarios, specific
devices, or to be less or more user-friendly. Frameworks more user-friendly pre-
vent users from acquiring a deep knowledge of high-performance systems to
improve their training performance. They run on top of popular ML libraries
and abstract the system configurations to quickly transform a single-node train-
ing into a multi-node training. For being very recent, there is a lack of studies
evaluating and comparing the performance of these frameworks.

DDL Frameworks. Horovod uses data parallelism on top of TensorFlow, Keras,
Apache MXNet, or PyTorch, with MPI in the back-end for distributed comput-
ing [28]. LBANN is a toolkit for accelerating the training using data, model,
and pipelining parallelism, developed at the Lawrence Livermore National Lab-
oratory [30]. It uses libraries most developed by their team (e.g. Hydrogen and
Aluminum). Due to that, instructions and documentation are focused on the
laboratories’ facilities. Whale is another DDL framework targeting large models
using data, model, and pipelining parallelism on top of TensorFlow, but it is
not available online for usage [13]. Orca is part of the BigDL 2.0 project for dis-
tributing big data to run on Apache Spark and Ray [7]. Tarantella applies data
parallelism using the Global Address Space Programming Interface (GASPI)
standard for distributed computing on top of TensorFlow and Keras [5].

Tracing and Profiling Tools for DL. TensorBoard is a tool to trace and
profile TensorFlow and visualize in a browser [1]. It started supporting multi-
GPUs at the end of 2020 in version 2.4. NVIDIA System Management Interface
(NVSMI) is a command-line tool to monitor NVIDIA GPUs usages [23]. It can
output the measurements in a CSV file. NVIDIA Visual Profiler (NVProf) is a
profiling and tracing tool for events running in NVIDIA GPUs [24]. It outputs an
SQLite to be open in the NVProf interface, which must be locally installed, and
can output a CSV. Profiling at the Python level can gather training information
about training duration and status at runtime. Python cProfile reports statistics
about the training time and efficiency [26]. Keras callbacks provide a set of func-
tions to get events about training during runtime [14]. TensorFlow offers a more
easy-to-use abstraction of the Keras callbacks to get events about the accuracy,

https://gitlab.com/anaveroneze/isc2022-companion/
https://zenodo.org/record/6349605

278 A. L. Veroneze Solórzano and L. Mello Schnorr

loss, training, testing, and validation phases. Horovod offers a native profiler tool
called Horovod Timeline that generates a JSON file compatible with the Google
Chrome Tracing Viewer [28]. It facilitates the identification of epochs, MPI, and
NVIDIA Collective Communication Library (NCCL) operations during training.

Discussion. Horovod and Tarantella are implemented using the same program-
ming languages (C++ and Python) and offer the same parallel strategy. They
are both open-source and have support for TensorFlow and CUDA. Adding Ten-
sorboard to the Python script of Horovod generates one trace file per node, but
it only shows one CPU and one GPU per node, even when using more resources.
Adding the same for Tarantella only generates traces for the node from where we
launch the script. Also, Tensorboard does not provide a visualization of workers
in different nodes, in the same panel. Python cProfile model profiles the perfor-
mance of the training and the execution time for TensorFlow only as a whole,
without details of the framework behavior at runtime [31]. NVProf visualization
API opens one file for each worker at a time, preventing us from contrasting the
worker’s execution. However, NVProf measurements give insightful information
to analyze DDL behavior. Keras callbacks are easy to use and offer important
insights on specific aspects of the training. Still, there is a lack of details on how
the model uses the devices during the time frame representing an epoch dura-
tion. Horovod Timeline presents limitations to opening and navigating large log
files in the browser. For example, training with four workers in 100 epochs and
100 batch size generated a trace with more than 300 MB.

Novelty of Our Work. We compare and evaluate the performance of two
modern frameworks to facilitate DDL. We use tracing and profiling tools and
correlate the results, to understand the impact of using the frameworks con-
sidering the training steps. As far as we are aware, no previous comparison of
such frameworks or temporal correlation of these tools was previously proposed
in the literature. Furthermore, we implement data analysis and visualizations
strategies that are independent of proprietary GUIs for visualization.

3 Frameworks Overview

We selected Horovod and Tarantella since they are both open-source, imple-
mented in Python and C++, and support TensorFlow and CUDA. Both use the
data parallelism strategy, which consists of distributing chunks of the dataset
among workers. Each worker stores the entire model in memory to process its
chunk, and at the end of an epoch, the workers update their gradients based on
the training of the entire dataset.

Horovod is a framework developed by Uber in 2017 and hosted by the Linux
Foundation AI & Data Foundation [28]. It can be downloaded as a stand-alone
Python package or compiled via source code. It uses MPI to distribute train-
ing between host and devices and NCCL to perform collective communication
between NVIDIA GPUs and multi-nodes over PCIe and NVLink interconnec-
tions. Horovod carries out all reduce operations asynchronously, interleaving
communication with computation. To improve performance, it also employs

Understanding Distributed Deep Learning Performance 279

the Tensor Fusion technique to combine small all-reduce tensors operations
into larger ones. Such techniques improve the training performance when com-
bined with TensorFlow to compute operations in the backward propagation step
to advance the reductions processing [17]. Distributing training with Horovod
requires a few lines of code to import and initialize Horovod, pin each GPU avail-
able to a process, and wrap the optimizer to use Horovod optimizer. To guarantee
the parameters and weights are correctly initialized, we use a Horovod callback
function to broadcast global the initial parameters from rank 0.

Tarantella is a framework developed at the Fraunhofer Institute for Indus-
trial Mathematics [5]. It uses the GPI-21 communication library, which imple-
ments the GASPI specification. The GPI-2 has a C++ interface to implement
collective operations [9], supporting one-sided asynchronous communication that
can allow applications to overlap the communication with computation. Taran-
tella also implements the Tensor Fusion technique, but it has a synchronous
communication pattern. Tarantella usage is simpler than Horovod. It automat-
ically broadcast the initial weights to all workers without user intervention. It
also identifies the available GPUs and makes them visible to TensorFlow during
the framework initialization. It only requires importing the library and wrapping
the Keras model to use the Tarantella model.

4 Methodology

4.1 System Configuration and Software Tools

Table 1 presents Chifflot, Chifflet, and Gemini clusters, part of the Grid’5000 [4].
They have the Debian 4.19.160-2 operating system, GCC version 8.3.0, Open-
MPI 4.5.0, GPI-2 1.5.0, which is an open source implementation of the GASPI
standard, CUDA 11.3.1, and Python 3.7.3. NVLink is available in Gemini, with
a link speed of 25 GB/s. We use TensorFlow 2.4.0, which includes the Keras API,
Horovod 0.22.1, and Tarantella 0.7.0. For data processing and analysis, we use
the R language coupled with the tidyverse package2, and the ggplot2 package to
create all visualizations.

Table 1. Specifications for the clusters used, all with Intel CPUs and NVIDIA GPUs.

Configuration Chifflot Chifflet Gemini

Nodes 6 8 2

CPU/node 2x(Xeon Gold 6126) 2x(Xeon E5-2680v4) 4x(E5-2698v4)

GPU/node 2x(Tesla P100) 2x(GTX 1080Ti) 8x(Tesla V100)

CUDA cores 3,840 3,584 5,120+640 Tensor

Frequency 1190 MHz 1481 MHz 1230MHz

Memory 12 GB GDDR5 11GB GDDR5X 16 GB HBM2

1 https://github.com/cc-hpc-itwm/GPI-2.
2 https://cran.r-project.org/web/packages/tidyverse/index.html.

https://github.com/cc-hpc-itwm/GPI-2
https://cran.r-project.org/web/packages/tidyverse/index.html

280 A. L. Veroneze Solórzano and L. Mello Schnorr

4.2 Evaluation Setup

Our approach consisted in comparing the frameworks and correlating results
obtained with different measurement tools to evaluate their performance during
the training. We selected the well-known Lenet-5 model for the MNIST dataset,
composed of 60,000 handwritten digits images plus 10,000 specifically for testing.
Each image has a 28 × 28 dimension (784 pixels), divided in 10 classes [18,19].
We use 54,000 images for training, 6,000 images for validation, and 10,000 for
testing. We use strong scaling by fixing the work size when adding more devices,
which can achieve the same accuracy as the sequential training when using a
small dataset, as MNIST, for example [6]. We use the Keras callbacks, NVSMI,
and NVProf tools to collect the measurements and have a temporal evolution
of the frameworks’ behavior. Additionally, we used Score-P 6.0 tool to trace the
MPI communication for Horovod [16].

Our experiments follow a full-factorial design using Jain’s methodology for
computer systems performance analysis [12]. The factors are grouped into two
categories depending to what they are related to: (i) the training itself and
(ii) hardware resources. For the first, we consider the DL frameworks, models,
datasets, and batch sizes. For the second, we consider the number of nodes and
GPUs. Different from most works that analyze a single experiment, we per-
formed a total of 84 experiments as a result of 10 repetitions for each case. Each
experiment has 100 epochs, which was sufficient for achieving high accuracy.

4.3 Challenges

Tracing the Frameworks. Horovod uses MPI, which could be traced with
Score-P, but still presented some challenges to install and use properly. Taran-
tella uses GPI-2, whereas MPI has become the most used communication inter-
face for frameworks with native training distribution support, like TensorFlow,
MXNET, Keras, and PyTorch [21]. We found a branch of the Extrae instrumen-
tation package3, but we were unable to trace Tarantella properly using Extrae.
Our analysis has been possible anyway for correlating results from NVProf and
Keras callbacks, which brought the main contributions of this work. We evaluate
the time with MPI operations for Horovod with Score-P, but future research is
required to extract the same from Tarantella.

Correlating Tools Output. NVProf can output traces in the CSV file for-
mat or its default file format, with a .nvvp extension, which stores the CUDA
operations as an SQLite file, interpreted by the NVProf visualization tool. Con-
sidering our data analysis using R, our first approach was to output CSV files.
However, it shows the relative time of each event without revealing what they
are relative to. It is essential to use the same base timestamp for all measurement
tools to correlate information as we collected for the Keras callbacks. We found
it is a limitation of the CSV output, so our solution was to also output a .nvvp

3 https://github.com/bsc-performance-tools/extrae/tree/GASPI.

https://github.com/bsc-performance-tools/extrae/tree/GASPI

Understanding Distributed Deep Learning Performance 281

file and use the RSQLite package4 to process the data with R and get absolute
timestamps.

Generate Temporal Visualizations. Real-world ML training took hundreds
of epochs to achieve the desired accuracy. For our model, training for 100 epochs
converges and can be representative enough of the distributed training perfor-
mance. Nevertheless, fitting large amounts of data on small screens is a challenge
in the performance visualization of parallel applications [27]. Since our goal was
also to evaluate the DDL frameworks’ behavior during the training steps, we
found that tracing fewer epochs can already reveal valuable insights and fit in
temporal visualization panels.

5 The Horovod and Tarantella Comparison

Figure 1 presents the average execution time (in the Y axis) for Horovod (red
color) and Tarantella (blue) when scaling up until 12 GPUs (on the X axis), with
a 99.97% confidence interval. We show results for a number of batch sizes (facet
rows) and underlying resource configurations (facet columns). Horovod presents
the best performance using 4 or more GPUs compared to Tarantella for all cases.
It also scales until 12 GPUs, different from Tarantella, which perform similarly
when increasing from 6 to 12 devices. The frameworks achieve similar results in
different GPU models, except with the 100 batch size. The Horovod execution
time increases with batch size 100, when going from one node with one GPU to
two nodes, one GPU each, which can be explained by Horovod start applying
its reduction algorithm and NCCL operations when distributing the training.

The experiments with one device in Fig. 1 were executed with the frameworks
set-up in the script. We expected they achieved a similar execution time with-
out overhead in single-device training. However, Tarantella presented a higher
execution time than Horovod in all cases. Figure 2 presents the frameworks’
overhead (the Y axis) for a non-distributed training with one GPU compared
to the pure TensorFlow implementation as a function of the batch size (the X
axis). Horovod presents negligible overhead compared to the pure TensorFlow
experiment, which was expected since Horovod launches a copy of the script for
each worker, and with one worker, it will launch one process. Tarantella adds
a significant overhead of up to 160 s for the smaller batch size in the Gemini
cluster. Tarantella launches one copy of the script and implements its data par-
titioning and distribution by subclassing the Keras fit function used to train the
model for a fixed number of epochs. Investigating the Tarantella source code, we
observed the lack of verification if the training uses more than one GPU before
distributing the training, which can cause this overhead.

We think this extra time in Tarantella could affect other experiments if
related to an initialization phase, especially when scaling for more devices.
Figure 3 presents the total time between the training script initialization and
the beginning of the first batch for an experiment with 100 images, as a function

4 https://db.rstudio.com/databases/sqlite/.

https://db.rstudio.com/databases/sqlite/

282 A. L. Veroneze Solórzano and L. Mello Schnorr

Chifflet − GTX1080 Chifflot − P100 Gemini − V100
100

180
360

720
1500

2250

1 2 4 6 8 10 12 1 2 4 6 8 10 12 1 2 4 6 8 10 12

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

GPUs

E
xe

cu
tio

n
tim

e
[s

]
Horovod Tarantella

Fig. 1. Average execution time for LeNet-5 over MNIST for Horovod (red bars) and
Tarantella (blue bars). Each horizontal facet represents a batch size, and each vertical
facet represents a cluster. (Color figure online)

of the number of GPUs (X axis). The frameworks’ initialization before starting
the script was measured separately, around 0.14 s for Horovod and 0.33 for Taran-
tella. The percentage values above the bars represent the percentage of time of
initialization over the execution makespan. Horovod and Tarantella spent simi-
lar time before training. Horovod had 7.7% of the time with initialization for 12
GPUs at Gemini, which is a significant value percentage, since the training time
was very small, as shown in Fig. 1. Our interpretation of these results indicates
that Tarantella’s extra execution time compared to Horovod is unrelated to its
initialization.

Figure 4 compares the scaling efficiency using the Eq. 1, where T1 is the exe-
cution time with one GPU, and Tn with n GPUs. In our strong scaling approach,
as we show in the Figure, Horovod achieves higher efficiency for all cases with

Understanding Distributed Deep Learning Performance 283

0 33446 45559 12 0 0 4 455 71119
39

77

153

71121
37

75

128

71019
37

81

160

Horovod Tarantella

Chifflet Chifflot Gemini Chifflet Chifflot Gemini

10
0
18

0
36

0
72

0
15

00
22

50 10
0
18

0
36

0
72

0
15

00
22

50 10
0
18

0
36

0
72

0
15

00
22

50 10
0
18

0
36

0
72

0
15

00
22

50 10
0
18

0
36

0
72

0
15

00
22

50 10
0
18

0
36

0
72

0
15

00
22

50
0

50

100

150

200

Batch Size [number]

O
ve

rh
ea

d
Ti

m
e

[s
]

Fig. 2. Overhead time of using the DDL frameworks compared to a single GPU training
with TensorFlow. The average overhead is written above the error bars.

0.3%0.6%
0.6% 1.1%0.8% 1.3% 1.5% 0.5% 0.2% 0.5% 1.2%0.7% 1.3% 1.5%

7.7%
6.2%4.8%

3.3%0.7%1.0% 2.1%

1.1% 1.1%0.9%0.7%0.5%0.4%0.4% 1.3%1.1%1.0%0.7%0.5%0.3%0.3%

2.0%1.7%1.5%
1.2%0.8%

0.5%
0.4%

Horovod

Tarantella

Chifflet Chifflot Gemini

Chifflet Chifflot Gemini

1 2 4 6 8 10 12 1 2 4 6 8 10 12 1 2 4 6 8 10 12

0

1

2

3

4

0

1

2

3

4

GPUs

In
iti

al
iz

at
io

n
Ti

m
e

[s
]

Fig. 3. Time spent with initialization for an experiment with batch size 100, and the
percentage of time it represents over the execution makespan for each case.

more than 6 GPUs, with a difference of almost 50% between Tarantella and
Horovod. This difference indicates Tarantella could potentially improve its per-
formance since they use the same parallel strategy. Horovod efficiency improves
when increasing the batch sizes, 80% for Chifflet and Chifflot for 2250 batch size,
and 76% for 1500 batch size. The same happens for Tarantella, but more slightly,
with ≈41% for Chifflet and Chifflot, 2250 batch size, and ≈39% for 1500 batch
size. Both frameworks achieve lower scaling efficiency for more than 6 GPUs
for batch sizes of 100 and 180 since the batches are not large enough to enable
further gains. Horovod is ≈84% faster for 4 GPUs in all clusters for 2250 batch
size, the highest efficiency, and for 12 GPUs achieved 68% in Chifflot, 65% for
Chifflet, and 53% in Gemini. Tarantella’s maximum scaling efficiency is 78% for
Chifflot with 1500 batch sizes with 2 nodes, and it is only ≈23% faster for 12

284 A. L. Veroneze Solórzano and L. Mello Schnorr

nodes in all clusters. Overall, Horovod efficiency is higher than Tarantella for 4
GPUs or more.

E =
T1

n · Tn
100% (1)

100 180 360 720 1500 2250

C
hifflet

C
hifflot

G
em

ini

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

0

50

100

0

50

100

0

50

100

GPUs

E
ffi

ci
en

cy
 [%

]

Framework Horovod Tarantella

Fig. 4. Efficiency scaling when adding more GPUs. The vertical facets represent the
batch sizes and the horizontal the clusters. The higher the efficiency, the better the
devices’ usage.

Table 2 presents the execution time processing batches during testing (Test
Batches), training (Train Batches), the overall execution time (Total Time),
and the time difference (Difference) between the Total Time, not considering
the Train and Test Times. We selected results for the Chifflot cluster for 2250
batch size, which represents the performance behavior of the other GPU cards
when scaling from 2 to 12 GPUS. Our goal was to understand if Horovod is
faster than Tarantella for processing the batches faster or if the time processing
batches are similar, so the difference comes from other reasons.

In Table 2, both frameworks decrease their total execution time when scaling
for more workers, in the Total Time column. Horovod’s time computing batches
is 5.84 times faster, going from 2 GPUs to 12, while Tarantella is only 2.54
times faster. The time testing drops when scaling the training for all cases in
Horovod, but it remains similar for Tarantella. It indicates that Tarantella does
not distribute the testing batches as it does for the training batches, which can
improve its performance. In general, Horovod spends fewer time communicating
than Tarantella (column Difference). Processing larger batches in more GPUs in
parallel finishes the training faster and results in lower time with communication
to pass through all the dataset, as we see for the Difference column of almost 9 s
from 2 to 12 GPUs.

Understanding Distributed Deep Learning Performance 285

Table 2. Execution time in seconds processing batches during training (Train
Batches), testing (Test Batches), the total execution time for the experiment (Total
Time), and the time the experiment is not computing batches (Difference).

Framework GPUs Train batches
(Tr)

Test batches
(Te)

Total time
(TT)

Difference
TT − (Tr + Te)

Horovod 2 76.42 2.68 90.96 11.86

Horovod 12 13.09 0.61 16.6 2.9

Tarantella 2 66.7 4.44 84.85 13.71

Tarantella 12 26.25 4.42 45.29 14.62

6 Breaking the Frameworks Black-Box

Distributed training adds new strategies to take advantage of the computing
resources and minimize the communication overhead, when adding more workers.
We use execution traces, profiling, and visualization to get further insight about
the internal behavior of the Horovod and Tarantella during the performance
analysis. The overhead collecting Keras callbacks and NVSMI traces was up to
4% of the total execution time for the smaller batch size for Tarantella and
up to 2.5% for Horovod. Due to the variability in the overhead, in practice, this
difference remains unnoticeable for larger batch sizes.

Instrumenting Horovod with Score-P requires installing Score-P with sup-
port to the gcc-compiler plugin, scorep-binding-python [8], and configuring
Horovod with support to Score-P tracing. We configured the Horovod compi-
lation to replace the framework’s compiler and linker with the corresponding
wrapper for MPI and Score-P5. We converted the Score-P trace file to CSV
using otf2utils6, to easily process with R.

Table 3 presents the total training time duration, and the total time spent
with the MPI Allreduce operation for each node in one Horovod run with batch
size 720. The percentage of time with MPI Allreduce represents 73.62% to
82.30% of the total training time in the respective ranks. These high values
come from the asynchronous all reduce operations, but still, overlapping the
computations with communications needs to be well used since spending more
than 80% of the time with reductions can indicate a performance bottleneck.

Figure 5 presents a space/time view of the reduction operations that took
place along one epoch for the training phase with 4 workers and batch size
1500. The blue color in the background represents the batches process captured
with Keras callbacks. The MPI Allreduce operations are executed throughout
all batches with small and bigger data volumes. We zoomed in a time slice to
investigate the reductions inside two batches. The vertical green dashed lines
represent the time beginning and ending a batch, which occurs subsequently.

5 https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/
scorepwrapper.html.

6 https://github.com/schnorr/otf2utils.

https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/scorepwrapper.html
https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/scorepwrapper.html
https://github.com/schnorr/otf2utils

286 A. L. Veroneze Solórzano and L. Mello Schnorr

Table 3. Training duration for each MPI rank for Horovod using a batch size 720
(Training), time with reductions for each rank (MPI Allreduce), and the percentage of
time it represents over the complete training (Percentage of Time).

MPI rank Training
(seconds)

MPI Allreduce
(seconds)

Percentage
of time

0 84.84 62.46 73.62%

1 85.19 70.11 82.30%

2 84.97 65.34 76.89%

3 85.12 69.63 81.80%

This figure exposes the challenge of fitting one epoch training in a visualization,
even for a small dataset, and zooming into a few batches. We identify a pat-
tern where MPI Allreduce processes bigger messages inside each batch, starting
around the middle of its execution. Right after the batch beginning and end, all
ranks process faster reductions, making them narrow in the plot.

21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0
0
1
2
3
4

23.5
0
1
2
3
4

Execution Time [s]

W
or

ke
r

MPI_Allreduce Batch Batch Init/End

Fig. 5. Correlating Keras callbacks and Score-P traces to investigate the training for
Horovod in one epoch. In red, the pattern of reduction operation during each batch for
the four ranks involved in this analysis (on the Y axis). (Color figure online)

Figures 6 (Horovod) and 7 (Tarantella) present a correlation between the
results obtained with Keras callbacks and NVProf for 10 epochs in the Chifflet
cluster. The panel on the top shows the epochs with Keras callbacks and the
NVProf events for the whole execution. Below, the NVProf panel zooms into
the first epoch, and the last panel zooms into one batch of this epoch, where we
characterize the NVProf operations shown in the legend. The vertical lines in
red mark the zoomed parts. Looking at the top panel, we identify the computing
time at the devices during what is considered an epoch to Keras. The callbacks
encompass more than the actual training time for the first epoch for both frame-
works. Works that only use tracing at the high-level programming language skip

Understanding Distributed Deep Learning Performance 287

the first iterations or the first epoch of the training to avoid measuring the
initialization time [20,29]. This correlation confirms we can identify the actual
training time using the NVProf and consider the entire training duration.

0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0 6.6 7.2 7.8 8.4 9.0 9.6 10.2 10.8 11.4 12.0 12.6 13.2 13.8 14.4 15.0 15.6
0

1

6.0 6.6 7.2
0

1

Execution Time [s]

G
P

U
s

Epoch NVProf

0

1

6.676 6.680 6.684 6.688 6.692 6.696 6.700 6.704 6.708 6.712 6.716 6.720
Execution Time [s]

G
P

U
s

cudnn pooling eigen tensorflow sgemm kernelCompute [CUDA memset]

Zoom in on the batch marked in red above for NVProf

Fig. 6. Correlating Keras callbacks and NVProf traces to investigate the training for
Horovod in 10 epochs in the top panel. The X-axis represents the execution time, and
the Y-axis the 2 devices used. The last 2 panels present: a zoom in on the first epoch
marked in the vertical red lines in the top panel; and a zoom in on a batch, marked in
the second plot. (Color figure online)

In the top panel for Horovod (Fig. 6), we notice the origin of the longer
initialization time. For the first epoch, most of the ≈7.7 s are performed in the
host, with a more extended initialization than Tarantella, which leaves space
for investigating if initialization in Horovod could be improved. For the other
epochs, we notice the time computing in the GPUs with an interval between
epochs to average gradients among all workers. Zooming in the first epoch, we
notice the asynchronous execution of the batches. Zooming in one batch in the
last panel, we identify the operations performed per batch. They are mostly
cuDNN operations, followed by pooling operations, Eigen operations, a library to
perform linear algebra operations, TensorFlow operations, SGEMM for matrix-
matrix operations in single precision, and computations inside the kernel.

288 A. L. Veroneze Solórzano and L. Mello Schnorr

0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0 6.6 7.2 7.8 8.4 9.0 9.6 10.2 10.8 11.4 12.0 12.6
0

1

3.0 3.6
0

1

Execution Time [s]

G
P

U
s

Epoch NVProf

0

1

3.240 3.242 3.244 3.246 3.248 3.250 3.252 3.254 3.256 3.258 3.260
Execution Time [s]

G
P

U
s

cudnn pooling eigen tensorflow sgemm kernelCompute [CUDA memset]

Zoom in on the batch marked in red above for NVProf

Fig. 7. Correlating Keras callbacks and NVProf traces to investigate the training for
Tarantella in 10 epochs in the top panel. The X-axis represents the execution time,
and the Y-axis the 2 devices used. The last 2 panels present: a zoom in on the first
epoch marked in the vertical red lines in the top panel; and a zoom in on a batch,
marked in the second plot. (Color figure online)

Tarantella’s experiment (Fig. 7) shows in the first panel a shorter initializa-
tion time than Horovod but a longer time interval between epochs. The epochs
process is also more synchronized between devices. Zooming into one epoch, we
again notice a constant execution of operations inside the devices, even for the
initialization phase. Zooming into one batch, we identify the same operations
performed inside a batch for Horovod, as expected for the training using the
same model.

We used the Keras callbacks and the NVProf measurements to perform a
temporal aggregation considering the time of an epoch. Figure 8 presents the
amount of time (in the Y axis) computing in GPU, CPU, and communication
(colors) per epoch (the X axis), disregarding the first epoch. We also depict the
time spent with communications between host and devices, even though NVIDIA
GPUs can overlap data transfers and kernel execution. We intend to compare
the total time per epoch spent with communication. Horovod uses almost all the
time during an epoch performing operations in the devices. It spends few time
with communication and presents differences in the total time per device, due
to its asynchronous communication. Tarantella keeps a similar value per GPUs
processing per epoch, resulting in less than half of the time per epoch spent
inside the devices. It also presents a higher time performing communications
than Horovod, which we can notice by the longer interval between epochs as

Understanding Distributed Deep Learning Performance 289

shown in Fig. 7. We believe asynchronous communication in Tarantella could be
explored so that it can increase the time using the devices. In the first epoch,
Horovod spends ≈6 s outside of the devices and only ≈0.9 s computing in GPUs,
while Tarantella spends 2.79 s outside and ≈0.5 in GPUs. However, the first
epoch becomes rapidly absorbed by the total number of epochs that Horovod
processes faster than Tarantella, which makes it train more quickly for most
cases, as presented in Fig. 1.

0.66 0.64 0.68 0.65 0.67 0.68 0.71 0.65 0.690.65 0.67 0.65 0.64 0.65 0.65 0.73 0.65 0.67

0.4 0.4 0.4 0.4 0.4 0.41 0.4 0.4 0.410.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Tarantella

Horovod

1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Epoch

Ti
m

e
[s

]

Communication CPU GPU

Fig. 8. Percentage of time computing in GPU and communicating between host and
devices, device to device, or device to host. Time for each of 2 GPUs per epoch for 10
epochs for Horovod (top facet) and Tarantella (bottom facet).

7 Discussion

The presented results contribute to the performance analysis and comparison of
DDL training, confirming that tracing events at the device level is complemen-
tary to the profiling at the high-level programming language only. Performing
a temporal synchronization of the execution time of the Keras callbacks and
NVProf reveals the time intervals performing the calculation. With a temporal
aggregation, we can measure these results during the training steps (epochs and
batches), and tracing at the back-end level reveals the standard’s overhead for
message passing.

For a small CNN and dataset, the GPU model is not significantly impor-
tant to improve the training performance, but is enough to compare Tarantella
and Horovod behavior. Both frameworks stop scaling after six GPUs, since the
dataset is not large enough to enable further gains. Using a more complex model,
with more layers requiring more matrix operations, we could benefit from Tensor
Cores technologies present in recent devices and both NCCL and cuDNN usage.

290 A. L. Veroneze Solórzano and L. Mello Schnorr

Tarantella is a comprehensive tool for users starting in DDL. It requires
even fewer configurations than Horovod to distribute a sequential code and pro-
vides complete documentation. However, it limited our performance analysis
with state-of-the-art tracing tools as Score-P to get the communication time
with the GASPI standard. It also limits command-line configurations for using
TensorBoard and NVProf, for example, where we have to configure in its source
code. Also, since it is a tool in development, there are no parameters to configure
the network protocol used for communicating between nodes, for example.

Horovod is a more stable framework, in its 65th release, popular in several
courses and tutorials on DDL, while Tarantella is a most recent framework, in
its 4th public release. Horovod benefits from its asynchronous training scheme to
accelerate the epochs processing. Its longer time with initialization is compen-
sated by its optimizations to process batches faster. It presented higher scaling
efficiency for strong scaling than Tarantella for our experiments, with a 48%
difference for the larger batch size of 2250 in the clusters with P100 and GTX
1080Ti GPUs.

Our methodology based on popular ML and HPC tools measurements is
easy to use for researchers with some HPC experience. Since our approach is
implemented at the DDL framework level, it can also be used to analyze the
performance of other neural network models. It should be considered that we
had access to a dedicated environment to perform our experiments. Therefore,
using cloud environments and virtual machines requires considering the resources
sharing and communication bottlenecks in these environments.

8 Conclusion

DDL frameworks facilitate the usage by people without experience in distributed
systems but hide details about their parallel strategy, wrapping the final code
using high-level programming languages. For being very recent, there is a lack
of studies comparing the performance of these frameworks and, even more, cor-
relating information from different performance analysis tools from the HPC
and the ML point-of-view for various hardware and parameters configuration.
We compared and evaluated the performance of Horovod and Tarantella, mod-
ern DDL frameworks, using state-of-the-art ML and HPC tools. We presented
a methodology to perform temporal analyses correlating information from dif-
ferent tracing and profiling tools and revealing potential improvement spots for
both. As future work, we plan to create a more automatic methodology using
a high-level programming language. Furthermore, we aim to evaluate Horovod,
Tarantella, and other less user-friendly DDL frameworks. We will consider more
complex models, larger datasets, and frameworks’ features, such as using Tensor
Cores and cuDNN during training.

Acknowledgments. We are thankful to the Tarantella, scorep-binding-python, and
Score-P developers for the prompt replies that support our advances. This work was
financed by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil

Understanding Distributed Deep Learning Performance 291

(CAPES) - Finance Code 001, under grant no 88887.481194/2020-00. The experiments
were executed on the PCAD at the Federal University of Rio Grande do Sul, and on
the Grid’5000, supported by Inria, CNRS, RENATER and other organizations.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467 (2016)

2. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In:
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2016, pp. 265–283. USENIX Association (2016)

3. Ravikumar, A., Harini, S.: A comprehensive review and evaluation of distributed
deep learning on cloud environments. J. Crit. Rev. 7(19), 9519–9538 (2020)

4. Cappello, F., et al.: Grid’5000: a large scale and highly reconfigurable grid exper-
imental testbed. In: The 6th IEEE/ACM International Workshop on Grid Com-
puting, pp. 8–pp. IEEE (2005)

5. Competence Center for HPC: Tarantella: distributed deep learning framework
(2020). https://github.com/cc-hpc-itwm/tarantella

6. Cunha, R.L.F., Rodrigues, E.R., Viana, M.P., Oliveira, D.A.B.: An argument in
favor of strong scaling for deep neural networks with small datasets. In: 2018
30th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), pp. 306–313. IEEE (2018)

7. Dai, J.J., et al.: BigDL: a distributed deep learning framework for big data. In:
Proceedings of the ACM Symposium on Cloud Computing, pp. 50–60 (2019)

8. Gocht, A., Schöne, R., Frenzel, J.: Advanced Python performance monitoring with
score-P. In: Mix, H., Niethammer, C., Zhou, H., Nagel, W.E., Resch, M.M. (eds.)
Tools for High Performance Computing 2018/2019, pp. 261–270. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-66057-4 14

9. Grünewald, D., Simmendinger, C.: The GASPI API specification and its imple-
mentation GPI 2.0. In: International Conference on PGAS Programming Models,
vol. 243, p. 52 (2013)

10. Hasheminezhad, B., Shirzad, S., Wu, N., Diehl, P., Schulz, H., Kaiser, H.: Towards a
scalable and distributed infrastructure for deep learning applications. In: Workshop
on Deep Learning on Supercomputers, pp. 20–30. IEEE (2020)

11. Jäger, S., Zorn, H.P., Igel, S., Zirpins, C.: Parallelized training of Deep NN: compar-
ison of current concepts and frameworks. In: Proceedings of the Second Workshop
on Distributed Infrastructures for Deep Learning, pp. 15–20 (2018)

12. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, Hoboken
(1991)

13. Jia, X., et al.: Whale: scaling deep learning model training to the trillions. arXiv
e-prints arXiv:2011.09208 (2020)

14. Keras (2020). https://github.com/keras-team/keras
15. Kim, H., Nam, H., Jung, W., Lee, J.: Performance analysis of CNN frameworks

for GPUs. In: International Symposium on Performance Analysis of Systems and
Software, pp. 55–64. IEEE (2017)

16. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastruc-
ture for periscope, Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M., Nagel,
W., Resch, M. (eds.) Tools for High Performance Computing 2011, pp. 79–91.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31476-6 7

http://arxiv.org/abs/1603.04467
https://github.com/cc-hpc-itwm/tarantella
https://doi.org/10.1007/978-3-030-66057-4_14
http://arxiv.org/abs/2011.09208
https://github.com/keras-team/keras
https://doi.org/10.1007/978-3-642-31476-6_7

292 A. L. Veroneze Solórzano and L. Mello Schnorr

17. Kurth, T., Smorkalov, M., Mendygral, P., Sridharan, S., Mathuriya, A.: Tensor-
Flow at scale: performance and productivity analysis of distributed training with
Horovod, MLSL, and Cray PE ML. Concurr. Comput. Pract. Exp. 31(16), e4989
(2019)

18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

19. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database (2010).
http://yann.lecun.com/exdb/mnist

20. Liu, J., Dutta, J., Li, N., Kurup, U., Shah, M.: Usability study of distributed deep
learning frameworks for convolutional neural networks. In: Deep Learning Day at
SIGKDD Conference on Knowledge Discovery and Data Mining (2018)

21. Mahon, S., Varrette, S., Plugaru, V., Pinel, F., Bouvry, P.: Performance analysis
of distributed and scalable deep learning. In: International Symposium on Cluster,
Cloud and Internet Computing (CCGRID), pp. 760–766. IEEE (2020)

22. Mayer, R., Jacobsen, H.A.: Scalable deep learning on distributed infrastructures:
challenges, techniques, and tools. ACM Comput. Surv. 53(1), 1–37 (2020)

23. NVidia: Nvidia system management interface (2020). https://developer.download.
nvidia.com/compute/DCGM/docs/NVSMI-367.38.pdf

24. NVidia: Nvprof, command line profiling tool (2020). http://docs.nvidia.com/cuda/
profiler-users-guide

25. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

26. Python: the Python profilers (2020). https://docs.python.org/3/library/profile.
html

27. Schnorr, L.M., Legrand, A.: Visualizing more performance data than what fits
on your screen. In: Cheptsov, A., Brinkmann, S., Gracia, J., Resch, M., Nagel,
W. (eds.) Tools for High Performance Computing 2012, pp. 149–162. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37349-7 10

28. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799 (2018)

29. Shi, S., Wang, Q., Chu, X.: Performance modeling and evaluation of distributed
deep learning frameworks on GPUs. In: IEEE 16th International Conference on
Dependable, Autonomic and Secure Computing, 16th International Conference on
Pervasive Intelligence and Computing, 4th International Conference on Big Data
Intelligence and Computing and Cyber Science and Technology Congress, pp. 949–
957 (2018). https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.
000-4

30. Van Essen, B., Kim, H., Pearce, R., Boakye, K., Chen, B.: LBANN: livermore big
artificial neural network HPC toolkit. In: Proceedings of the Workshop on Machine
Learning in High-Performance Computing Environments, pp. 1–6 (2015)

31. Wu, X., Taylor, V., Wozniak, J.M., Stevens, R., Brettin, T., Xia, F.: Performance,
power, and scalability analysis of the horovod implementation of the candle Nt3
benchmark on the cray Xc40 theta. In: SC 2018, Workshop on Python for High-
Performance and Scientific Computing, Dallas, USA (2018)

http://yann.lecun.com/exdb/mnist
https://developer.download.nvidia.com/compute/DCGM/docs/NVSMI-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/NVSMI-367.38.pdf
http://docs.nvidia.com/cuda/profiler-users-guide
http://docs.nvidia.com/cuda/profiler-users-guide
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://doi.org/10.1007/978-3-642-37349-7_10
http://arxiv.org/abs/1802.05799
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-4
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-4

A Motivating Case Study on Code
Variant Selection by Reinforcement

Learning

Oliver Hacker, Matthias Korch, and Johannes Seiferth(B)

Department of Computer Science, University of Bayreuth, Bayreuth, Germany
{oliver.hacker,korch,seiferth}@uni-bayreuth.de

Abstract. In this paper, we investigate the applicability of reinforce-
ment learning as a possible approach to select code variants. Our app-
roach is based on the observation that code variants are usually convert-
ible between one another by code transformations. Actor-critic proximal
policy optimization is identified as a suitable reinforcement learning algo-
rithm. To study its applicability, a software framework is implemented
and used to perform experiments on three different hardware platforms
using a class of explicit solution methods for systems of ordinary differ-
ential equations as an example application.

Keywords: Reinforcement learning · Proximal policy optimization ·
Autotuning · Code variant selection · ODE methods · PIRK methods

1 Introduction

One of the major challenges for numerical software is utilizing the available,
often cost-intensive, hardware resources as efficiently as possible. Typically, such
software is used on different platforms during its lifetime. Its performance, how-
ever, strongly depends on the characteristics of the targeted platform, such as,
e.g., the processor design or the cache architectures. Hence, the software needs
to be optimized specifically for each individual platform, which requires a great
deal of effort. Therefore, research is being conducted on how these steps can be
automated using autotuning (AT).

Problem Statement. In general, implementing an algorithm involves taking
multiple design decisions (e.g., order of loops or computations). Here, each deci-
sion path results in a different code variant with potentially widely disparate
performance and runtime behavior. By application of sequences of correctness-
preserving code transformations code variants can be derived from another.
Depending on the algorithm at hand, for example, complex HPC simulations,
this can result in a large candidate pool of possible code variants from which the
best variant needs to be selected efficiently and reliably. It should be noted that
some related works use a different definition of the term code variant.
c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 293–312, 2022.
https://doi.org/10.1007/978-3-031-07312-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_15

294 O. Hacker et al.

Classical AT approaches focus on tuning numeric parameters (e.g., block sizes).
Here, known mathematical optimization methods (e.g., Nelder–Mead, simulated
annealing) are applied to find near-optimal parameter values. Besides numerical
parameters, non-numeric, so-called nominal parameters [13] can also have a big
impact on performance. Their tuning, however, is not as well understood. Identi-
fying the best available code variant, in the following referred to as code variant
selection problem (CVSP), is an important use-case of nominal parameter tuning.

Main Contributions. In this work, we investigate whether the CVSP can be
solved by reinforcement learning (RL) – a machine learning technique based on
actions and rewards. Our main contributions are:

(i) Interpretation of the CVSP as a traversal of a code transformation graph.
(ii) Identification of RL as a suitable approach to solve the CVSP.
(iii) Identification of actor-critic proximal policy optimization (PPO) as a suit-

able RL method.
(iv) Design and implementation of a software framework which allows the eval-

uation of different RL methods.
(v) Experimental case study showing the applicability using a class of explicit

solution methods for systems of ordinary differential equations (ODEs) as
example application on different hardware platforms, including a compari-
son of PPO and deep Q-network (DQN).

Outline. The rest of this work is structured as follows. Section 2 presents an
overview of related work, showing existing approaches to variant selection as well
as existing applications of RL. After this, Sect. 3 introduces the application class
used in our case study and its search space of code variants, thus motivating
the importance of efficient variant selection algorithms. Section 4 describes the
specific RL approach used in our study in detail, and Sect. 5 describes the frame-
work in which this approach has been implemented. The experimental study and
its results are presented and discussed in Sect. 6. Finally, Sect. 7 concludes the
paper and discusses future work.

2 Related Work

A concept still under research for automating the optimization of performance
knobs of numerical algorithms is AT. Typical performance knobs include imple-
mentation design decisions – leading to different code variants – as well as imple-
mentation parameters (e.g., blocking sizes) and system parameters (e.g., clock
rate). Collectively, the selected knob values form a possible configuration. An
important distinction needs to be made between nominal (unordered set with
unordered codomain) and non-nominal (e.g., numeric) parameters leading to an
(at least to some degree) smooth codomain of the search space, because they
require different types of search strategies.

Case Study on Code Variant Selection by Reinforcement Learning 295

Early examples of AT include ATLAS [23] and PhiPAC [4] for dense and
sparse linear algebra routines, respectively. They consider code variants (kernels)
as well as implementation parameters (e.g., register and cache blocking). To
decide which code variant to use, the available code variants are sampled based
on expert knowledge hard coded into the tuner.

Modern AT frameworks which aim at being usable for different classes of
applications, such as Active Harmony [20] and ATF [16], usually provide a set
of different search techniques, e.g., exhaustive search, random search, simulated
annealing, variants of Nelder–Mead or others. OpenTuner [2] even provides meta-
techniques to run several strategies simultaneously. However, typically a sin-
gle search strategy is applied to the whole search space. Hence, if the search
space contains a nominal parameter, only strategies like the expensive exhaus-
tive search or a purely random search can be used reasonably. Due to the large
unified search space, this is either inefficient or unreliable.

To explore the unordered search space of nominal parameters efficiently, new
approaches are required. To automatically select code variants, some works have
successfully applied evolutionary techniques. For example, a previous version of
the image processing framework Halide [15] used a genetic algorithm to select
among possible pipeline schedules. However, since the genetic algorithm could
take days, it was replaced by a tree search machine learning technique combined
with a trained cost model [1]. Other works also suggest the use of machine learn-
ing techniques. For example, [12] uses multi-task learning for cross-architecture
selection of code variants based on profiling data and device features. Tuning
input-dependent code variants by machine learning is considered in [3,22]. A
drawback of such machine learning techniques is that they require a separate
training phase with a suitable large set of training data. A different approach is
taken by [18], which ranks the possible code variants based on analytical white-
box performance prediction of their kernels. In [13,14] a hierarchical tuning
process which considers both non-nominal and nominal parameters is proposed.
It separates the search spaces of non-nominal and nominal parameters so that
different search algorithms can be used, e.g., ε-greedy for nominal parameters
and Nelder–Mead for non-nominal ones.

In this paper, we consider RL as a possible new approach to variant selection.
In contrast to other machine learning techniques, RL does not require a separate
training phase, and is, thus, potentially suitable for a one-shot learning scenario
as in online autotuning. RL has already been applied successfully in related
areas. For example, [9] has used RL to optimize compiler passes, and [5] to select
parameters for loop vectorization. [21] determines which code transformations
to apply in order to target different computing hardware. Further, [6] uses a
model-based RL approach to remove unused and unwanted code from programs
and libraries, and [10] uses RL to find improved distributions of TensorFlow
computations onto devices in heterogeneous systems.

296 O. Hacker et al.

1 for l ← 1, . . . , s do Y(0)
l ← yκ

2 for k ← 1, . . . , m do

3 for l ← 1, . . . , s do

4 Y(k)
l ← yκ + hκ

∑s
i=1 aliF

(k−1)
i

5 with F(k−1)
i ← f(tκ + cihκ,Y(k−1)

i)
6 yκ+1 ← yκ + hκ

∑s
i=1 biF

(m)
i

(a)

1 RHS_PRED•
2 for(int k=0; k<m; ++k){

3 LC•
4 RHS•
5 }

6 APRX

7 UPD

(b)

Fig. 1. (a) Computations required to implement the iterative one-step predictor-
corrector process of a PIRK method. (b) A concrete implementation skeleton, named
A, of possible code variants. The computations are covered by separate kernel templates
(capital letters), which can have different implementation possibilities themselves. ‘•’
denotes that synchronization is needed after a kernel.

3 Motivating Example

When writing code, the programmer’s choices can greatly affect the performance
of the program. For example, one might choose a specific data structure or a
specific iteration order of loops explicitly. This results in a variability of programs
on the code level which can be exploited through code variants.

As case study, we consider the CVSP on a specific class of explicit solution
methods for initial value problems (IVPs) of systems of ODEs. In particular, we
choose the class of parallel iterated Runge–Kutta (PIRK) methods [7]. Explicit
ODE methods are simulation methods composed of evaluations of a mathemati-
cal model and linear algebra operations. In particular, we are interested in com-
putationally intensive cases, where the ODE system is large. ODE methods can
be used as time steppers in simulations of more complex mathematical models.

3.1 Mathematical Background

We consider IVPs of systems of ODEs defined as follows:

y′(t) = f(t,y(t)), y(t0) = y0. (1)

The numerical solution by PIRK methods [7] uses an iterative one-step predictor-
corrector process to perform a series of time steps tκ = t0+κ·h until the end of an
integration interval [t0, te] is reached. Here, f denotes the right-hand-side func-
tion (RHS) and y0 the initial value of the ODE system. The corrector method
used is a s-stage implicit RK method of order o which can be characterized by
its Butcher table entries, i.e., coefficient matrix A = (aij) ∈ R

s,s, weight vector
b = (bi) ∈ R

s and node vector c = (ci) ∈ R
s.

In each time step, a new approximation yκ+1 of the unknown solution y is
computed from the previous approximation yκ (cf. Fig. 1 (a)): First, the previous
approximation yκ is selected as predictor (line 1) for the stages Y1, . . . ,Ys.
Next, the corrector method is applied a fixed number of m = o − 1 times (lines

Case Study on Code Variant Selection by Reinforcement Learning 297

2–5). After all corrector steps have been applied, the new approximation yκ+1

is computed (line 6).

Table 1. Search space of available PIRK method code variants

Kernel template
(#Implementations)

Implementation skeleton

A (48) B (48) C (64) D (64) E (32) F (32) G (48) H (48)

LC (6) × × × ×
RHSa (2) × × × × × ×
RHS PREDa (2) × × × ×
RHSLCa (4) × × × ×
RHSLC PREDa (4) × × × ×
APRX (2) × ×
RHSAPRXa (2) × ×
UPD (1) × × × ×
APRXUPD (2) × ×
RHSAPRXUPDa (2) × ×
aContains evaluations of the RHS of the ODE problem.

3.2 Search Space of Code Variants

Implementing this iterative process and covering all its computations and depen-
dencies requires a four-dimensional loop structure. By applying different code
transformations to this basic structure, a large pool of code variants can be
generated. Because of the large number of possible code variants, we use code
generation based on implementation skeletons to systematically generate all the
source codes of the variants. An implementation skeleton defines the processing
order of so-called kernel templates – and, thus, of the computations – as well
as required synchronization points. A kernel template is a generic loop kernel
that can cover one or multiple computations. For each kernel template, different
concrete kernel implementations might exist (e.g., several different loop orders).

One of the implementation skeletons, named A, is shown in Fig. 1b. Skeleton
A covers a set of vector-oriented code variants which split all computations into
separate kernels: RHS PRED runs the predictor step (line 1). LC computes the
linear combination (line 4). RHS evaluates the RHS functions (line 5). APRX
and UPD compute the new approximation (line 6). Additional skeletons can be
derived from skeleton A through code transformations. For instance, skeleton A
can be transformed to C by fusing kernels LC and RHS to RHS LC. More com-
plex skeletons can be derived through sequences of transformations. E.g., fusing
APRX and UPD to APRXUPD transforms skeleton C to D which consequently
opens a transformation path from A to D through C.

Further, even more code variants can arise within the context of one skeleton
by deriving additional kernel implementations of its kernel templates. A ker-
nel template can potentially have multiple, different implementations with each

298 O. Hacker et al.

enabling extra code variants. The three-dimensional loop structure of kernel LC,
for instance, naturally leads to six different implementations (enabled by loop
interchange) corresponding to the six possible permutations of loops i, j and l.

sw
)ji(redro

pool
xorppa

pa

swap lc loop order(jl)

swap
lc loop

orde
r(ij)

swap lc loop order(il)

sw
)ij(redro

pool
xorppa

pa

swap
lc loop

order
(jl) swap lc loop order(ij)

swap lc loop order(il)

swap lc loop order(lj)

sw
ap

ap
pro

x l
oo
p
ord

er(
ij)

sw
ap

lc
lo
op

or
de

r(
ij)

swap lc loop order(il)

swap
lc loop

order
(lj)

sw
ap

ap
pro

x l
oo
p
ord

er(
ji)

swap lc loop order(ij)

swap lc loop order(il)

swap
lc loop

orde
r(ji)

sw
ap

ap
pr
ox

lo
op

or
de

r(
ij)

swap lc loop order(il)

sw
ap

lc
loop

order(jl)

swap lc loop order(ji)

sw
ap

approx
loop

order(ji)

swap lc loop order(il)

swap
lc loop

orde
r(jl)

sw
ap

lc
loop

order(ji)

swap lc loop order(li)

sw
ap

ap
pr
ox

lo
op

or
de

r(
ij)

swap lc loop order(jl)

swap lc loop order(ji)

swap lc loop order(li)sw
ap

approx
loop

order(ji)

swap
lc loop

orde
r(jl)

swap lc loop order(li)

sw
ap

lc
lo
op

or
de

r(
lj)swap

approx
loop

order(ij)

swap lc loop order(ij)

swap lc loop order(li) swap
lc loop

orde
r(lj)

swap
approx

loop
order(ji)

swap lc loop order(ij)

swap lc loop order(li)

swap lc loop order(lj)

swap lc loop order(ji)

sw
ap

ap
pr
ox

lo
op

or
de

r(
ij)

swap lc loop order(li)

swap
lc loop

orde
r(lj)

swap lc loop order(ji)

sw
ap

ap
pr
ox

lo
op

or
de

r(
ji)

A RHS predictor jl LC ijl RHS jl
Approx ij Update j general radauIIA7

A RHS predictor jl LC ijl RHS jl
Approx ji Update j general radauIIA7

A RHS predictor jl LC ilj RHS jl
Approx ij Update j general radauIIA7

A RHS predictor jl LC jil RHS jl
Approx ij Update j general radauIIA7

A RHS predictor jl LC lji RHS jl
Approx ij Update j general radauIIA7

A RHS predictor jl LC ilj RHS jl
Approx ji Update j general radauIIA7

A RHS predictor jl LC jil RHS jl
Approx ji Update j general radauIIA7

A RHS predictor jl LC lji RHS jl
Approx ji Update j general radauIIA7

A RHS predictor jl LC jli RHS jl
Approx ij Update j general radauIIA7

A RHS predictor jl LC lij RHS jl
Approx ij Update j general radauIIA7

A RHS predictor jl LC jli RHS jl
Approx ji Update j general radauIIA7

A RHS predictor jl LC lij RHS jl
Approx ji Update j general radauIIA7

Fig. 2. A subset of the code transformation graph showing twelve code variants derived
from skeleton A. Only transformations inside this subset are shown.

In total, we consider a pool of at least 384 different PIRK method code vari-
ants. As summarized in Table 1, these variants are derived from eight implemen-
tation skeletons and ten kernel templates. Each table column indicates the ker-
nels required by a particular skeleton. E.g., skeleton B uses kernels RHS PRED,
RHS, LC and APRXUPD and leads to 48 different variants. If there are multi-
ple implementation options for the kernels containing an evaluation of the RHS,
e.g., different permutations of the equations, the total number of code variants
even multiplies by the corresponding factor.

As the example of PIRK methods shows, the number of possible code variants
of numerical algorithms can be quite large. While it is generally possible to
reduce the search space by expert knowledge or preliminary manual performance
analyses, an as high as possible degree of automatic tuning is desirable. For
this, efficient heuristical search methods are needed which avoid an exhaustive
exploration of the whole set of possible variants and make manual intervention
unnecessary. However, classical optimization methods for numeric parameters of
nonlinear functions are not applicable, because we cannot enumerate the code
variants so that the resulting runtime function T (i) ∈ R+ of the variant number
i ∈ N forms a sufficiently smooth shape with a locatable minimum without
knowing T (i) in advance. But computing T (i) for all code variants i corresponds
to an exhaustive search. The RL approach considered in this paper does not
need to sample all variants. By learning about the reward of transformations, it
can predict the performance even of unvisited variants.

Case Study on Code Variant Selection by Reinforcement Learning 299

3.3 Code Transformation Graph

Since the different code variants are the result of design decisions made by the
programmer, there do exist relations between them, which we can try to exploit.
Generally, one can derive code variants from another by applying a sequence of
correctness-preserving code transformations such as loop interchange or fusion.

Thus, the search space of code variants and their relations defined by the
code transformations can be represented by a graph where the nodes represent
the code variants and the edges represent the code transformations. For our
example, this leads to a complex transformation graph that contains a total of
384 PIRK code variants (nodes) and 84 code transformations (edges). Since the
full search space is too large to be visualized, Fig. 2 shows an extracted subgraph
of twelve code variants derived from implementation skeleton A.

4 Application of Reinforcement Learning

Human experts would tackle the CVSP by exploring the code transformation
graph in a systematic way and, in this process, building an iteratively refined
performance model in their mind. In other words, they would exploit the rela-
tions between the code variants and make use of their previously and newly
learned experience to decide which code variant to investigate next. While other
machine learning techniques usually require a separate training phase with suit-
able training data and evolutionary approaches often require a high number
of individuals and generations and, thus, a high number of samples, RL is a
machine learning technique that resembles the target-oriented approach of the
human experts.

4.1 Principles of Reinforcement Learning

The formal principles of RL are captured by (finite) Markov decision processes
(MDPs) [19]. A MDP is defined as a tuple M = (S,A, p,R) where S denotes the
(finite) set of states, A the (finite) set of actions, and R the (finite) set of possible
rewards. p : S × R × S × A �→ [0, 1] is the probability distribution, often given
as p(s′, r|s, a), determining for all s, s′ ∈ S, a ∈ A, and r ∈ R the probability of
going with action a from state s to state s′ while receiving a reward r.

The goal is to find the state s∗ or the action a∗ in a given state s, from
which the highest reward is to be expected. Most of the time, p is not – or only
partially – known, necessitating solutions that are based solely on the experience
gathered through interaction with the environment. This is the main problem
RL algorithms try to solve.

4.2 Modeling Variant Selection as RL Scenario

The idea of interpreting the CVSP as an exploration of the code transformation
graph directly leads to the notion of code variants as states and code transfor-
mations as actions. In the context of RL, the states consist of features, while

300 O. Hacker et al.

the actions consist of changing the values of features. Therefore, a code vari-
ant is considered as a mapping from features of a general code template to their
selected values. E.g., a feature may be some kind of loop kernel in the code, while
the possible values for that feature are different iteration orders. Furthermore,
the code transformations are considered as actions that take a code variant as
input, modify some of its features, e.g., the loop order of a kernel, and deliver
the resulting new code variant as output.

Applying this general idea to our case study results in 384 discrete states (one
per PIRK variant) with 84 transformation actions. Each action can potentially
be executed in each state. The maximum number of edges in a transformation
graph is |S| × |A|. In reality, not all actions are possible in all states resulting
in the notation A(s) for the actions possible in a specific state s, i.e., the set of
code transformations leading to/from this state.

Since there is no clear way to designate a state as a goal state without already
knowing the best variant, we model our task as a continuing problem. At each
step the action the agent takes returns a reward equivalent to the negative
runtime of the new variant. Since reward is maximized, the runtime is reduced.

Finding a good variant requires the following general steps:

1. Select some initial variant s0 randomly.
2. Let an RL-agent explore the transformation graph for a given time period.

(a) Select one of the available transformations A(s) of the current variant.
(b) Transform the variant into a new one.
(c) Execute this new variant, measuring its runtime.
(d) Update the values of variants and transformations.

3. Choose the state the agent stopped in as the result, or keep track of the best
variant found.

4.3 Devising a Suitable RL Method

General RL is applicable to many problems, though choosing and implementing
one of the many algorithms originating from the theoretical foundations depends
on the properties of the problem at hand. In the following, we outline the meth-
ods and techniques chosen for the experimental study in this paper. An overview
of the resulting RL algorithm is shown in Fig. 3.

The standard solution approaches like TD(0) or Q-Learning are the result
of viewing the problem from a state-value or action-value perspective, i.e., they
either approximate the value of a state vπ(s) or of an action possible in a state
qπ(s, a). Here, π denotes the policy the reinforcement learning agent follows while
trying to estimate the value. The governing equations are as follows [19]:

vπ(s) def= Eπ[Gt|St = s] =
∑

a∈A(s)

π(a|s)qπ(s, a) (2)

qπ(s, a) def= Eπ[Gt|St = s,At = a]

=
∑

s′,r

p(s′, r|s, a)(r + γvπ(s′)) (3)

Case Study on Code Variant Selection by Reinforcement Learning 301

Here, Gt is the return as a sum of discounted rewards under policy π at time
step t, defined as

Gt
def=

T∑

k=0

γkRt+k+1

Select Action

Take Action

Transform

Execute

Calculate Reward

Current State

Reward

Calculate Advantage /
TD-Error

Calculate State-Value Update

Fit Value Network Fit Policy Network

Accumulate Value Gradients Accumulate Policy Gradients

Update Value Eligibility Trace Update Policy Eligibility Trace

Update State

f1(s)

f2(s)

...

fn−1(s)

fn(s)

...
...

... vπ(s)

f1(s)

f2(s)

...

fn−1(s)

fn(s)

...

. . .

. . .

...

. . .

. . .

...

π(a1, s)

π(a2, s)

π(a3, s)

...

π(ak−2, s)

π(ak−1, s)

π(ak, s)

Initial State

current state

action next state

runtimereward

advantage

updated state-value

network gradients network gradients

accumulated gradients accumulated gradients

next state[end of episode not reached
and number of steps not exhausted]

[else]

Fig. 3. Detailed depiction of the actor-critic approach to reinforcement learning, which
is part of the learning process summarized in Fig. 4 as “Learning”. Note, that the
dashed nodes depend only on the concrete implementation of an action and not on the
learning algorithm. They can therefore be replaced according to the current scenario.
In addition to actor-critic methods like PPO [17], other methods such as DQN are
supported by the learning process as well.

where T marks the end of an episode (i.e., T is the number of steps until a goal
state is reached). T = ∞ and γ < 1 for continuing problems, i.e., T has to be
chosen large enough for the approximate value functions to converge.

Evidently, there is a natural recursive relationship between both views and
it is mostly an implementation choice, which one is used. Since both value func-
tions depend on themselves, iterative methods have to be used to solve for a spe-
cific value. The aforementioned algorithms for example achieve this by updating
the value function in each step they take in the environment (online learning)
which also eliminates the need of knowing p(s′, r|s, a) since it is approximated

302 O. Hacker et al.

by sampling. TD(0) and Q-Learning use a lookup-table to store the mapping
from states (and actions) to their values, resulting in quickly growing memory
consumption. Due to this, function approximation has had a growing interest in
recent years [19], especially through deep neural networks [11]. For that reason
we also use it in our study. In the case of function approximation, the value
functions depend on parameter vectors θ which describe the approximation:

vπ(s,θv) qπ(s, a,θq) (4)

Additionally, function approximation has the benefit of allowing the imple-
mentation of policy gradient methods. For this the action-selection policy π is
approximated directly, e.g., by a neural network, and its parameters are updated
iteratively according to some performance criterion J . This can be advanta-
geous if the policy is easier to represent than the action-values for a given prob-
lem, but more importantly policy gradient methods can adjust their random-
ization between available strategies, i.e., the probability distribution used to
select actions is not fixed like it would be for, e.g., ε-greedy methods [19]. The
objective function used to update the policy is vπ, i.e., the policy is adjusted to
maximize the value of states. By the policy gradient theorem [19] this results in
the REINFORCE update, named so after the corresponding algorithm.

Actor-critic methods are a sub-category of policy-gradient methods, which
try to combine the benefits of policy-based and value-based methods by approx-
imating both a policy (called the actor) and a value function (called the critic).
They are typically used to decouple acting in the environment from assigning
values to states. As a specific actor-critic method, we choose proximal policy
optimization (PPO) [17], which is a stable and reliable method, but easy to
implement. PPO differs from standard policy gradient implementations mainly
in the loss function used for training the policy network.

5 Implementation of a RL Framework

To facilitate easy specification and implementation of reinforcement learning
based solutions, we develop an extensible Java framework that models the con-
cepts detailed in Subsect. 4.3. By extracting commonalities of learning algo-
rithms, policies, states, actions, and concrete scenarios, it is possible to decou-
ple the implementations using software design patterns like strategy, template
method, and observer.

The framework offers multiple RL algorithms, based on tables as well as
approximation through neural networks. Both value-based and policy-based solu-
tion methods are supported. None of these implementation details, however,
matter for the particular specification of a learning problem but are completely
transparent to it. The user only has to provide a concrete driver class which is
responsible for setting up the current scenario and model elements (i.e., states
and actions) and a corresponding implementation of the states and actions.

The same is true for learning algorithms: all they depend on is that states can
be represented as some kind of feature vector and that actions take the current

Case Study on Code Variant Selection by Reinforcement Learning 303

Setup Learning Evaluation

Code Variant Selection

Code Transformations

Actions

Code Variants

States

Scenarios

Proximal Policy Optimization

Learning Algorithms

Converged State

Greedy Policy

Probabilistic Policy

Learning Results

Greedy Results

Probabilistic Results

Evaluation Results

State Value Monitoring

State Space Monitoring
...

Fig. 4. Overview of the RL framework, following the learning pipeline from left to right.
First, a scenario is defined which consists of specific actions and states. It then sets up
any learning algorithms according to the user’s configuration and starts the learning
process which may result in a settled state, as well as a greedy and a probabilistic
policy. The latter two can be run on unknown random starting states to evaluate the
generalization capabilities of the learned policy.

state, returning a new state and the reward gained. This model is sufficient for
all general reinforcement learning algorithms. To ease the configuration of algo-
rithms with many hyperparameters, configuration files using the JSON format
are used, further decoupling the implementation. For algorithms using function
approximation, we employ DL4J [8] as our neural network library for building,
training, and monitoring since it works within the Java ecosystem. It also allows
defining new loss functions, which is needed for the implementation of algorithms
like PPO where it is the main difference to other actor-critic algorithms.

A graphical overview of the framework is shown in Fig. 4, using the config-
uration chosen for our experimental study as an example. Only specific imple-
mentations for the classes on the left (scenario, action, state) had to be provided.
Note, that each variant is represented by a state object as well as a correspond-
ing executable on the file system. Code transformation actions take the current
state (variant), apply their transformation logic to retrieve a new state, iden-
tify its executable via a filename convention, and execute it to get a runtime
measurement. After this, a reward function is applied that turns the runtime
measurement into a suitable reward which the action returns together with the
new state. These steps are also shown in Fig. 3 as dashed nodes, since they
constitute variability points of the learning algorithm.

6 Experimental Study

The main goal of our evaluation is to determine whether a learned policy can be
used to select a well performing variant given an unknown environment (criterion
I) while keeping the search time low (criterion II) The performance of our
approach is assessed based on these two main criteria. It is worth stressing
that our goal is not to find the best performing variant since this cannot be
guaranteed. Instead, finding a near-optimal variant is sufficient for our purposes
if the search speed outweighs the runtime penalty.

Since for the agent the only variables determining the performance of a vari-
ant are the parameters introduced in Subsect. 3.2, our problem setup falls into

304 O. Hacker et al.

Table 2. Key specifications of the target platforms considered

Name HSW CLX ZEN

Microarchitecture Intel Haswell-EP Intel Cascade Lake-SP AMD Zen2

CPU Xeon E5-2630 Xeon Gold 6248 EPYC 7551

Clock speed 2.4GHz 2.5GHz 2.0GHz

Threads used 32 80 64

SMT enabled enabled enabled

Memory configuration 32 GiB, DDR4-2133 384 GiB, DDR4-2933 512 GiB, DDR4-2933

the category of partially-observable MDPs. This means there are other factors,
unknown to the agent, that characterize the states (and, thus, influence the
runtime). One such unknown, for example, is the configuration of the system
the runtimes are measured on. Incorporating additional information about the
machine would be possible but not required for the problem at hand. Instead,
we rely on the agent approximating it during the learning process.

6.1 Experimental Setup

Our current setup requires the learning agent’s process to be running on the
same machine as the variant to be executed, so all communication happens using
process pipes. The sharing of resources could potentially introduce noise in our
measurements – however, we currently deem this interference minimal since the
learning agent sleeps while a variant’s binary file is executed, requiring only
memory. If full independence is required a client-server architecture similar to
existing approaches like [9,10] can be implemented. Also, if an online autotuning
process is desired, the one-shot learning characteristics of RL allow to implement
this by representing code variants using dynamically loadable libraries or func-
tion pointers instead of executable files.

Hardware Platforms. To investigate how different environments impact the
resulting variant the learning agent chooses, we use three differently configured
hardware platforms (Table 2) while all other parameters are kept the same. Load-
adaptive frequency scaling is always deactivated.

PIRK Method and IVPs. In our experiments, we use the 4-stage (s = 4)
method Radau II A(7) as corrector method and apply m = 6 corrector steps,
unless noted otherwise. Three IVPs are considered. IC is a sparse IVP and
describes a traversing signal through a chain of n concatenated inverters. As
number of equations we used n ≈ 2.0 · 106 on HSW and n ≈ 1.6 · 107 on CLX
and ZEN. BRUSS2D also is a sparse IVP, but models a chemical reaction of two
substances with 2D diffusion. This leads to a 5-point stencil pattern with higher
memory pressure than IC. Here, we use a mixed row-oriented, i.e., interleaved
order of the equations. For BRUSS2D a system size of n ≈ 4.0 · 106 on HSW

Case Study on Code Variant Selection by Reinforcement Learning 305

Table 3. Key parameters of the neural networks used

Network PPO DQN

Policy State-value Action-value

inputs 38 38 38

outputs 84 1 84

hidden layers 5 5 5

nodes in hidden layers 38 38 38

Output activation functionsa Softmax Identity Identity

Optimization epochs 64 80b 128
aThe hidden layers use the ReLU activation function.
bwith an additional maximum loss for PPO.

and n ≈ 16 · 106 on CLX and ZEN equations was used. In contrast, STARS is
a dense IVP that models a naive n-body problem. We consider three implemen-
tations of STARS which use different orders of the equations (consecutive order
of x-, y-, z-positions and x-, y-, z-velocities, interleaved order of positions and
velocities, consecutive order of point positions and point velocities). The number
of equations used were n ≈ 9.6 ·103 on HSW and n ≈ 2.4 ·104 on CLX and ZEN.
Because of the dense structure, the RHS dominates the runtime. This property
allows to evaluate whether the current RL approach can handle the case of a
single dominant feature, or if a hierarchical approach is necessary. We used C as
programming language and OpenMP for parallelization.

Features and Actions. A PIRK variant can be completely characterized using
38 features encoding the possible values for each defining parameter (8 skeletons,
27 kernel implementations, 3 IVP implementations for STARS) and there are
at most 84 actions available to the agent which can modify these values.

Network Parameters and Hyperparameters. The network parameters of
the neural network used for the function approximation components of PPO and
DQN are summarized in Table 3. Further, hyperparameters were determined for
both algorithms through manual optimization and testing. The results are shown
in Table 4. Our goal was to find a set of hyperparameters that work well across all
the tested systems, so almost no re-tuning should be required on other systems.

These parameters have been tuned with respect to both of our aforemen-
tioned evaluation criteria, i.e., the number of learning steps per problem has
been chosen such that learning is considerably faster than an exhaustive search
of all variants while still providing enough time to learn which variants are fast.
We want to keep the number of steps as low as possible with a trivial upper bound
being the total number of variants, above which simply testing each variant is
a better option. Additionally, we searched parameter values that produce sta-
ble learning progress, i.e., during the learning process runtimes should decrease
until a good variant is found and this should happen within the given number of

306 O. Hacker et al.

steps. This also decreases the time the overall learning process takes since slow
variants are mostly only encountered in the first few steps.

Table 4. Selected hyperparameter values for both RL algorithms

PPO DQN

Hyperparameter Value Hyperparameter Value

Clip loss threshold ε 0.1 Discount factor γ 0.99

Policy trace discount λπ 0.8 Replay memory size 32

Value trace discount λv 0.99 Mini batch size 16

Reward baseline step size αR̄ 0.8 Reset threshold C 16

Learning steps 150

Fig. 5. Ground truth runtimes on HSW for the two different ODE systems used in
our case study. Variants are shown grouped by skeleton. For IC and BRUSS2D there
is a very clear distinction between the fastest and slowest code variants of the PIRK
method, while for STARS the RHS dominates the runtime.

6.2 Results and Discussion

Ground Truth. Figure 5 shows the mean runtimes measured over multiple
passes on HSW. Results for the other systems are similar and were omitted for
clarity. This gives us an estimate on the hardness of either problem. While for
the sparse problems IC and BRUSS2D we clearly see better and worse variants,
this is not the case for the dense STARS. Different RHS implementations of
STARS are, however, clearly distinguishable since they are slower by about a
factor of two, resulting in what is basically a two step problem: First, the agent
has to identify which RHS is fastest, then try to find the best in this subset.

DQN and PPO on Different Hardware Platforms. Figures 6a and 6b
provide a comparison of DQN and PPO for the IC test problem by the median
runtimes of multiple one-shot learning runs with random starting states on the
three hardware platforms considered. While DQN performs relatively well on
HSW, the other systems exhibit many deviations from the optimum (or near

Case Study on Code Variant Selection by Reinforcement Learning 307

(a) DQN on IC

(b) PPO on IC

(c) PPO on BRUSS2D

(d) PPO on STARS

(e) PPO on IC, Lobatto III C(8) instead of Radau II A(7)

Fig. 6. Learning progress of DQN on IC and of PPO on different test cases. Shown are
median runtimes of multiple runs with random starting states and in lighter color the
corresponding optimal runtimes.

308 O. Hacker et al.

Fig. 7. Alternative visualization of PPO learning progress for multiple runs with ran-
dom starting states using test problem BRUSS2D on HSW.

optimum). It is only after our intended maximum of 150 steps that it starts to
settle. This data inefficiency is unsuitable for our purposes since, as explained
earlier, the approach only makes sense if considerably less steps than the total
number of variants are taken. PPO, on the other hand, does not show this
behavior. On the contrary, runtime reduction to a good variant happens even
earlier than our intended maximum number of steps, with a few outliers on ZEN.
While none of the then reached states are the de-facto optimum, they are close.
This could be optimized by further tweaking network and hyperparameters. For
BRUSS2D and STARS, we observed similar difficulties of DQN (not shown),
whereas PPO showed motivating results, see detailed discussion below.

Sensitivity of PPO on the IVP/RHS. For the BRUSS2D test problem,
which is also sparse but more memory intensive than IC, we can see in Fig. 6c that
PPO is similarly successful in quickly reducing the median runtime significantly
within about 40–50 steps. However, in the following steps, the reduction of the
median runtime is slowed down and does not get close to the optimum.

For STARS (Fig. 6d), PPO also works well, already having found good vari-
ants, i.e., the fastest RHS implementation, after about 75 steps on all hardware
systems. On HSW it is difficult to determine, whether further exploration among
the STARS MIX implementations yields improvements due to the very simi-
lar runtimes. On CLX and ZEN however, the differences are more pronounced
(around 1–2 s from the optimum). By closely examining the plot for ZEN in
Fig. 6d one can observe small bumps in runtime, e.g., between steps 70 and 100,

Case Study on Code Variant Selection by Reinforcement Learning 309

Fig. 8. Colored code transformation graph. Previous transformations are shown as
black arrows, the current one is shown in cyan. Variants are represented as nodes
whose color is related to the state-value as estimated by the learning agent.

corresponding to these differences. This shows, that exploration inside this sub-
set of very good variants is still taking place, even resulting in going back to
the worse categories by chance but quickly returning. On CLX this behavior is
unfortunately less visible using median runtimes since one of the fastest variants
is selected very early on in most cases, resulting in exploitation thereafter. It is,
however, present in the 75th percentile.

Sensitivity of PPO on Input Data. What data are provided as input and
which are already known at compile time depends on the use case of an ODE
method. In some cases, the same IVP is simulated repeatedly using only different
initial values, which usually has no influence on performance and, thus, on code
variant selection. In other cases, the execution parameters, e.g., the number of
threads, may change between executions. In the most challenging cases, even the
IVP itself, including the RHS, may be part of the input, e.g., when the ODE
method is started from a simulation environment with graphical model editor.

Since the one-shot learning starts from scratch each time, it can adapt to each
current setting by learning a new policy. This includes not only the hardware
platform, but also the input data. In the previous paragraph, it was already
discussed that PPO works for different IVPs. As an additional use case example,
Fig. 6e shows that PPO also works successfully for a different base method,
Lobatto III C(8), which has one additional stage (s = 5) and uses one additional
corrector step (m = 7), which leads to different working sets of the loop structure
and, thus, to a different utilization of the memory hierarchy levels.

Sensitivity of PPO on the Starting State. Figure 6 already shows that
the median runtime, can usually be improved by PPO as the learning process
proceeds. However, since the median runtime appears to get not close enough to
the optimal runtime in some cases, these figures do not exclude the possibility
that some starting states are less successful than others.

To investigate this further, Fig. 7a includes additional percentiles for the
example of BRUSS2D on HSW. Here, the runtime improvement can be best

310 O. Hacker et al.

observed in the 75th percentile, i.e., at least 75% of the runs achieve a signifi-
cant runtime reduction. Similar observations have been made for other examples,
signaling that there is an improvement for all starting states in most experiments.

Another interesting question in that context is if PPO, even if it does not
settle on or near the optimum, at least visits the best or a near-optimal code
variant. In fact, Fig. 7b shows for the example of BRUSS2D on HSW that –
for all 45 random starting states tested – after only at most 25 learning steps
efficient code variants had been visited. While in this example – one of the worst
cases observed – for a few starting states the minimal runtime achieved up to
step 150 still was in some distance to the optimum, it is clearly visible that for
most starting states near-optimal code variants had been visited. For IC and
STARS on all hardware platforms, but also for BRUSS2D on CLX and ZEN,
the maximum distance to the optimum at 150 steps is significantly smaller.

Insights Obtainable from the RL Models. The transformations chosen can
be inspected easily. Also the values of the states (performance predictions) as
estimated by the RL agent and the path it took can be shown in a colored visual-
ization of the code transformation graph, see Fig. 8. This allows, e.g., identifying
clusters of efficient variants. More in-depth analysis of the underlying neural net-
works would be required if one were interested in the impact of specific features,
e.g., specific kernels or transformations.

Overheads of Offline and Online Tuning. We opted to generate code vari-
ants offline for ease of use and quicker testing of the framework. It is, however,
possible to generate and compile code variants online. For this, the implemen-
tation of an RL action can be easily modified to call the generator/compiler in
the same way as it calls the executable. Compiling on the fly on the one side
has the benefit that only the sampled variants need to be compiled, but also the
drawback of additional time required for compilation.

Currently, Figs. 6 and 7 show only the time it takes to execute the variants.
The learning framework is not active while a variant is executed, and thus it
does not impact its execution time. In total 56–97% of time is spent executing
variants while the rest is spent in the framework. Hence, the overhead of an online
tuning scenario is expected to be in this range as well. If the code variants were
generated and compiled on-demand, the overhead would increase further. This
overhead could be reduced significantly by switching from DL4J to a C-based
framework and integrating it closely in the application.

Another type of overhead could be defined by the additional runtime of non-
optimal code variants executed in the tuning/learning phase. Since efficient code
variants are usually already visited after only a small number of learning steps
(cf. Fig. 7b), the improvement of the best runtime observed so far would be a
suitable termination criterion to keep this type of overhead small.

Case Study on Code Variant Selection by Reinforcement Learning 311

7 Conclusion

Selecting a well-performing code variant is a problem which is usually not
approachable by classical mathematical function optimization. In this paper, we
have shown by an experimental study using PIRK methods as example appli-
cation that RL can successfully be used to explore the search space of code
variants efficiently. The specific RL method chosen was actor-critic PPO, which
outperformed DQN in the experimental study. The approach of modeling the
code variants as states and the possible code transformations (e.g., loop trans-
formations) as actions is expected to be adaptable to other applications. This
will be considered as part of our future work, as well as tuning additional param-
eters, like the number of application threads, and investigating the possibility of
explicitly incorporating machine-dependent features into the learning process.

Acknowledgments. This work has been supported by the German Research Foun-
dation (DFG) under grant KO 2252/3-2.

References

1. Adams, A., et al.: Learning to optimize halide with tree search and random pro-
grams. ACM Trans. Graph. 38(4), 1–12 (2019). https://doi.org/10.1145/3306346.
3322967

2. Ansel, J., et al.: OpenTuner: an extensible framework for program autotuning.
In: Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation (PACT 2014). ACM (2014). https://doi.org/10.1145/2628071.
2628092

3. Beckingsale, D., Pearce, O., Laguna, I., Gamblin, T.: Apollo: reusable models for
fast, dynamic tuning of input-dependent code. In: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 307–316 (2017). https://doi.
org/10.1109/IPDPS.2017.38

4. Bilmes, J., Asanovic, K., Chin, C.W., Demmel, J.: Optimizing matrix multiply
using PHiPAC: a portable, high-performance, ANSI C coding methodology. In:
Proceedings of the 11th International Conference on Supercomputing (ICS 1997),
pp. 340–347. ACM, July 1997. https://doi.org/10.1145/263580.263662

5. Haj-Ali, A., Ahmed, N.K., Willke, T., Shao, Y.S., Asanovic, K., Stoica, I.: Neu-
roVectorizer: end-to-end vectorization with deep reinforcement learning. In: Pro-
ceedings of the 18th ACM/IEEE International Symposium on Code Genera-
tion and Optimization. ACM, February 2020. https://doi.org/10.1145/3368826.
3377928

6. Heo, K., Lee, W., Pashakhanloo, P., Naik, M.: Effective program debloating via
reinforcement learning. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, October 2018. https://doi.org/10.
1145/3243734.3243838

7. van der Houwen, P., Sommeijer, B.: Parallel iteration of high-order Runge-Kutta
methods with stepsize control. J. Comput. Appl. Math. 29(1), 111–127 (1990).
https://doi.org/10.1016/0377-0427(90)90200-J

8. Konduit: DL4J: Deep learning for Java (2022). https://deeplearning4j.konduit.ai/

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/IPDPS.2017.38
https://doi.org/10.1109/IPDPS.2017.38
https://doi.org/10.1145/263580.263662
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1016/0377-0427(90)90200-J
https://deeplearning4j.konduit.ai/

312 O. Hacker et al.

9. Mammadli, R., Jannesari, A., Wolf, F.: Static neural compiler optimization via
deep reinforcement learning. In: 2020 IEEE/ACM 6th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical
Parallelism for Exascale Computing (HiPar), pp. 1–11 (2020). https://doi.org/
10.1109/LLVMHPCHiPar51896.2020.00006

10. Mirhoseini, A., et al.: Device placement optimization with reinforcement learning.
In: Proceedings of the 34th International Conference on Machine Learning (ICML
2017), vol. 70, pp. 2430–2439. PMLR (2017)

11. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

12. Muralidharan, S., Roy, A., Hall, M., Garland, M., Rai, P.: Architecture-adaptive
code variant tuning. SIGOPS Oper. Syst. Rev. 50(2), 325–338 (2016). https://doi.
org/10.1145/2954680.2872411

13. Pfaffe, P., Grosser, T., Tillmann, M.: Efficient hierarchical online-autotuning: a
case study on polyhedral accelerator mapping. In: Proceedings of the ACM Inter-
national Conference on Supercomputing (ICS 2019), pp. 354–366. ACM (2019).
https://doi.org/10.1145/3330345.3330377

14. Pfaffe, P., Tillmann, M., Walter, S., Tichy, W.F.: Online-autotuning in the presence
of algorithmic choice. In: 2017 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW 2017), pp. 1379–1388 (2017). https://
doi.org/10.1109/IPDPSW.2017.28

15. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2013),
pp. 519–530. ACM (2013). https://doi.org/10.1145/2491956.2462176

16. Rasch, A., Gorlatch, S.: ATF: a generic directive-based auto-tuning framework.
Concurr. Comput. Pract. Exp. 31(5) (2019). https://doi.org/10.1002/cpe.4423

17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms, July 2017. http://arxiv.org/abs/1707.06347

18. Seiferth, J., Korch, M., Rauber, T.: Offsite autotuning approach. In: Sadayappan,
P., Chamberlain, B.L., Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020.
LNCS, vol. 12151, pp. 370–390. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-50743-5 19

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning, 2nd edn. The MIT Press, Cam-
bridge (2018)

20. Tiwari, A., Hollingsworth, J.K.: Online adaptive code generation and tuning. In:
Proceedings of the 2011 IEEE International Parallel Distributed Processing Sym-
posium (IPDPS 2011), pp. 879–892. IEEE, May 2011. https://doi.org/10.1109/
IPDPS.2011.86

21. Vigueras, G., Carro, M., Tamarit, S., Mariño, J.: Towards automatic learning of
heuristics for mechanical transformations of procedural code. In: Electronic Pro-
ceedings in Theoretical Computer Science, vol. 237, pp. 52–67. Open Publishing
Association, January 2017. https://doi.org/10.4204/eptcs.237.4

22. Wang, T., Jain, N., Boehme, D., Beckingsale, D., Mueller, F., Gamblin, T.: Code-
Seer: input-dependent code variants selection via machine learning. In: Proceedings
of the 34th ACM International Conference on Supercomputing. ACM, June 2020.
https://doi.org/10.1145/3392717.3392741

23. Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimizations of
software and the ATLAS project. Parallel Comput. 27(1), 3–35 (2001). https://
doi.org/10.1016/S0167-8191(00)00087-9

https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00006
https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00006
https://doi.org/10.1038/nature14236
https://doi.org/10.1145/2954680.2872411
https://doi.org/10.1145/2954680.2872411
https://doi.org/10.1145/3330345.3330377
https://doi.org/10.1109/IPDPSW.2017.28
https://doi.org/10.1109/IPDPSW.2017.28
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1002/cpe.4423
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-3-030-50743-5_19
https://doi.org/10.1007/978-3-030-50743-5_19
https://doi.org/10.1109/IPDPS.2011.86
https://doi.org/10.1109/IPDPS.2011.86
https://doi.org/10.4204/eptcs.237.4
https://doi.org/10.1145/3392717.3392741
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1016/S0167-8191(00)00087-9

Programming Environments and System
Software

Remote OpenMP Offloading

Atmn Patel1 and Johannes Doerfert2(B)

1 University of Waterloo, Waterloo, ON, Canada
atmn.patel@uwaterloo.ca

2 Argonne National Laboratory, Lemont, IL, USA

jdoerfert@anl.gov

Abstract. OpenMP has a long and successful history in parallel pro-
gramming for CPUs. Since the introduction of accelerator offloading, it
has evolved into a promising candidate for all intra-node parallel comput-
ing needs. While this addition broke with the shared memory assumption
OpenMP was initially developed with, efforts to employ OpenMP beyond
shared-memory domains are practically non-existent.

In this work, we show that the OpenMP accelerator offloading model
is sufficient to seamlessly and efficiently utilize more than a single com-
pute node and its connected accelerators. Without source code or com-
piler modifications, we run an OpenMP offload capable program on a
remote CPU, or remote accelerator (e.g., GPU), as if it was a local one.
For applications that support multi-device offloading, any combination
of local and remote CPUs and accelerators can be utilized simultane-
ously, fully transparent to the user. Our low-overhead implementation of
Remote OpenMP Offloading is integrated into the LLVM/OpenMP com-
piler infrastructure and publicly available (in parts) with LLVM 12 and
later. LLVM-based (vendor) compilers are expected to be compatible as
well.

To evaluate our work, we provide detailed studies on microbench-
marks, as well as scaling results on two HPC proxy applications. We
show scaling results across dozens of GPUs in multiple hosts with effec-
tiveness that is directly proportional to the ratio of computation ver-
sus memory transfer time. Our work outlines the capabilities and limits
of OpenMP 5.1 to efficiently utilize a distributed heterogeneous system
without source, compiler, or language modifications, as opposed to solu-
tions such as MPI.

Keywords: OpenMP · GPGPU · Distributed computing

1 Introduction

With the growing diversity of accelerator hardware, the number of competing
programming models for intra-node computing, that is, multi-processor comput-
ing and local accelerator offloading has increased as well. For most single-node
solutions, it is challenging, if not impossible, to orchestrate work across (accel-
erators in) multiple nodes. While various distributed programming models exist
c© Atmn Patel and UChicago Argonne, LLC, Operator of Argonne National Laboratory,
under exclusive license to Springer Nature Switzerland AG, part of Springer Nature 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 315–333, 2022.
doi.org/10.1007/978-3-031-07312-0 16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_16&domain=pdf
http://orcid.org/0000-0002-5086-6334
http://orcid.org/0000-0001-7870-8963
doi.org/10.1007/978-3-031-07312-0_16

316 A. Patel and J. Doerfert

and thrive, they are usually developed separately from their intra-node cousins.
Applications initially designed with a single node in mind cannot simply utilize
remote hardware. In addition to infrastructure and software challenges, it would
also require additional coarse-grained parallelism, i.e., exposed through a new
domain-decomposition dimension. Thus, developers are historically in a tough
spot if they outgrow single node capabilities but not in a way that justifies the
expense of incorporating an additional model or framework. Even for applica-
tions that are early on expected to utilize significant resources, it makes sense
to use a single coherent parallel programming model rather than a combina-
tion since the setup and maintenance cost increases dramatically per model and
framework. While some newly developed languages, i.e., Chapel [10], try to bun-
dle capabilities, their lacking adoption in various parts of HPC is still indicating
that classic solutions need to step up and fill the void.

if (N <= Threshold) {
#pragma omp target depend(out:A[0]) device(getDev()) map(tofrom: A[:N])

sort(A, &A[N]);
} else {

#pragma omp task depend(out:A[0])
mergesort_rec(A, N/2);

#pragma omp task depend(out:A[N/2])
mergesort_rec(&A[N/2], N - N/2);

#pragma omp target depend(in:A[0], A[N/2]) device(getDev())
map(tofrom: A[:N])
merge(&A[0], &A[N/2], &A[N]);

}

Fig. 1. Schematic core of a parallel merge sort that uses OpenMP offloading. getDev()
cycles round robin through the available devices and an outer OpenMP parallel region
provides threads to execute the tasks concurrently.

Figure 1 illustrates the core of a parallel merge sort using the OpenMP tasking
and offloading model. As target directives create implicit tasks they can interact
natively with explicit tasks spawned for CPU utilization. If the code is employed
on shared-memory system, i.e., if the offloading device is the CPU itself or a
GPU that has coherent access to the host memory, the map clauses can be
ignored by the compiler. However, if the host and the accelerator do not share
the same memory space, these clauses will instruct the compiler and runtime on
how to orchestrate memory transfers. This explicit denotation of necessary data
transfers is common to offloading models but in OpenMP it is especially tightly
integrated with the tasking and offloading runtime since each data transfer is
kept as an explicit function call throughout compilation.

For this work we observed that the annotations and infrastructure intro-
duced to deal with accelerators in the same system is sufficient to provide users
with transparent and efficient access to remote compute resources. Neither the

Remote OpenMP Offloading 317

model nor the compiler need to be changed to scale the merge sort from a sin-
gle multi-core application to a distributed program. The OpenMP-based source
specialization shown in Fig. 2 make it even easier to specialize existing code to
the heterogeneous remote hardware at compile time, all in the confinement of a
single parallel programming model.

In the following, we outline the contributions and limitations of this work
before we provide technical background in Sect. 3. After we discuss related
approaches in Sect. 4 we dive into the details of our implementation in Sect. 5. An
evaluation of our work based on a microbenchmark and two proxy applications
run on Google Cloud as well as an HPC GPU cluster is presented in Sect. 6. We
end with a discussion of the limitations of OpenMP 5.1 for remote offloading in
Sect. 7, a future work section in Sect. 8, and conclude in Sect. 9.

void sort_x86(Ty *, int);
void sort_arm(Ty *, int);
void sort_gpu(Ty *, int);

#pragma omp declare variant(sort_x86) match(device={arch(x86)})
#pragma omp declare variant(sort_arm) match(device={arch(ARM)})
#pragma omp declare variant(sort_gpu) match(device={kind(gpu)})
void sort(Ty *, int)

Fig. 2. OpenMP variant declarations to provide specialized implementations in a
diverse and heterogeneous computing environment.

2 Contributions and Limitations

The main contributions of this paper are:

– an OpenMP standard-conforming implementation of accelerator offloading
which transparently exposes remote hardware as if it was local,

– an evaluation of the overheads of two distinct implementations of a remote
offloading infrastructure for various offloading tasks,

– a scaling study with two HPC proxy applications executed on local and remote
GPUs on the public cloud and an HPC GPU cluster,

– a discussion of required extensions to the OpenMP standard, or compilers, to
make it more efficient to offload to multiple devices, local and remote.

We are aware of the following limitations of our work:

– local and remote accelerators are currently indistinguishable; this limitation
will go away with the availability of the OpenMP 5.1 interop directive,

– we kept the host-centric model OpenMP is currently using which is why we
expose a flat list of devices to “the host” instead of a hierarchical device tree,

– our two implementations for remote offloading via different network commu-
nication libraries do not fully utilize the advanced features of each library.

318 A. Patel and J. Doerfert

– our work does not aim to compete with MPI or other distributed program-
ming models and attempts to improve developer productivity when beginning
to extend OpenMP applications beyond a single node without any source
modifications.

3 Background

Int this section, we review background information on LLVM’s implementation of
OpenMP. Specifically, we cover the Compilation Workflow and Runtimes used by
LLVM’s implementation to support target offloading. While we briefly introduce
OpenMP target offloading support in LLVM, interested readers should consult
the work [6] for further background information.

3.1 Compilation Flow for LLVM/OpenMP Offloading

OpenMP offloading directives (e.g., omp target, omp target data) are lowered by
clang in the host code to calls to LLVM/OpenMP libomptarget runtime routines.
In subsequent steps of the compilation process, the OpenMP target regions are
compiled for all offload architectures into target-specific images. These images
are embedded by clang into the host object file to support multiple accelerators
from the same binary.

3.2 LLVM/OpenMP Offload Runtime Interactions

LLVM’s target-independent runtime (libomptarget) handles OpenMP specific
tasks with a set of target-dependent runtimes, also referred to as plugins, to
facilitate the communication with the device. The target-independent runtime
exposes synchronous and asynchronous APIs for data transfer and offloading
tasks. The target-dependent runtime plugins (libomptarget.rtl.ARCH) provide
primitive operations forwarded to a foreign device runtime, e.g., libcudart. An
overview of how the runtimes interact is given in the top row of Fig. 3. In the
figure, 1 represents how that clang uses libomptarget, 2 is the API that a
new device plugin should implement to be supported for target offloading. 2’

represents the new device plugin API and 5 represents the inter-node com-
munication API we designed and implemented for our work. LLVM/OpenMP
currently supports offloading to seven1 architectures through plugins.

4 Related Work

The hybrid usage of OpenMP and MPI in HPC applications is complicated not
only from an implementation perspective but also from a performance perspec-
tive. Approaches developed to ensure that a particular hybrid usage of OpenM-
P/MPI would be beneficial [15] are highly non-trivial since they are application
and workload-specific.
1 LLVM/OpenMP plugins: ARM, AMDGCN, CUDA, PPC, Remote, VE, X86.

Others available: OpenCL [22], Virtual GPU [28].

Remote OpenMP Offloading 319

libomptarget libomptarget.rtl.cuda libcudart

1 2

libomptarget.rpc.client openmp-offloading-server

52’ 2’

Fig. 3. Top row: Overview of LLVM’s OpenMP offloading infrastructure for NVIDIA
GPUs. Bottom row: Remote OpenMP offloading plugin design and its placement in the
existing infrastructure. The circled numbers indicate different APIs, the boxes (shared)
runtime libraries.

Attempts to use OpenMP to program multiple nodes predates OpenMP tar-
get offloading. An early approach [24] used the compiler to convert OpenMP
to calls to a software distributed shared memory system (SDSM), here Tread-
Marks [21]. A later improvement [18] on the implementation used a modified
TreadMarks that exploited the hardware shared memory in each SMP node and
achieved performance within 7–30% of MPI. Iterations over the same concept
resulted in the creation of HyComp [23] and Omni OpenMP [30]. HyComp con-
tains a novel page-based SDSM that pre-fetches pages with help from the com-
piler and minimizes data consistency costs by tracking shared variable usage.
The Omni OpenMP compiler implemented transformations to ensure efficient
usage of the memory model in the SCASH SDSM.

Other than attempts to use OpenMP to program SDSM systems, there was
also a source-to-source compiler that converted an extended OpenMP directly
to MPI calls [13]. Other approaches were also considered in [19,35].

OpenMP has already been explored as an effective programming model in the
conceptually similar environment of embedded SoC systems [9]. In this model,
there are NUMA effects that arise from the slower inter-cluster communication.
In this environment, the OpenMP teams and distribute construct were shown
to effectively distribute work. Further explorations of OpenMP as an efficient
programming model on many-core processors can be found in [5].

After the introduction of OpenMP target offloading in OpenMP 4.0, [20]
also utilized the LLVM OpenMP target offloading runtime to program clusters.
They evaluated their implementation with HMMER, a popular bioinformatics
software, and with which they determined that there was a small constant-factor
overhead to using their OpenMP remote offloading when compared to a baseline
MPI implementation. A later implementation, OmpCloud [36] utilizes Apache
Spark clusters to manage the communication, fault-tolerance, load-balancing,
etc. because they were motivated by the prospect of running OpenMP target
offloading applications at scale in the public cloud. This implementation utilized
the Apache Spark runtime to expose the entire cluster of Spark nodes as a
single OpenMP offloading device. Neither implementations were able to exploit
accelerators, e.g., GPUs, on the remote nodes and instead focused on exposing

320 A. Patel and J. Doerfert

more CPU cores to the application. On the other hand, our work supports both
types of offloading and focuses on remote accelerator offloading. In addition, our
work does not rely on Apache Spark, MPI, or any other existing distributed
programming runtime. Initial results on Remote OpenMP Offloading have been
presented in [27].

In addition to OpenMP-based models for programming clusters, there have
been many works that use directives to program clusters such as [25] which
introduced a hybrid of OpenACC and XMP, [34] which introduced an extension
of OpenMP-based on MapReduce. An approach similar to ours was developed in
[17] where CUDA kernels were annotated with data movements for remote multi-
GPU execution. OmpSs [14] is another programming model developed that has
also been extended [8] to also support GASNet [7], which is a high-performance
networking middleware used to implement PGAS languages such as Chapel [3],
Legion [4], UPC [1], UPC++ [2], etc.

Note that our work bears no relation to prior offloading work to accelerators
through other models such as TornadoVM or rCUDA because of their focus
on offloading paradigms in general, and GPU-level virtualization. Additionally,
although this work is reminiscent of single system image (SSI) implementations,
in our work this is an artifact of OpenMP’s programming model, not our work
in particular.

5 Implementation

The basic idea behind the Remote OpenMP Offloading implementation is to
provide a transparent communication channel between the target-independent
libomptarget library on the host with the target-dependent libomptarget.rtl.

ARCH library on the remote system. This use case matches the well-known remote
procedure calls (RPC) idiom. To facilitate communication, we added two new
components into LLVM/OpenMP that build a tunnel from the host to the remote
system through which all plugin API calls (2 in Fig. 3) are forwarded. The
first is a remote offloading plugin (libomptarget.rtl.rpc) which presents itself
to the host libomptarget as any other plugin would, i.e., it looks no different
than the NVIDIA GPU offloading plugin. The second is a server application
that must be running on the remote system (openmp-offloading-server) that
mimics libomptarget when it communicates with the remote device plugin, such
as the one for NVIDIA GPU offloading. The bottom row of Fig. 3 illustrates
their interaction with the existing infrastructure.

Previously there was only one instance of libomptarget, namely the one on
the host, while we now have a “remote” libomptarget emulation via the server
application. Since only the former has access to the binary and all the offload
images (ref. Sect. 3.1), we needed to extend the original plugin API 2 . Specif-
ically, the new LLVM/OpenMP plugin API 2’ matches 2 but with two new
optional plugin entry points. The new entry points are necessary as the remote
libomptarget emulation cannot directly use the program binary to access the
device image, for example, to pass the binary code of the target regions to

Remote OpenMP Offloading 321

the foreign device plugin. Thus, the new functions create a copy of the images
embedded in the program binary on the remote host since the target code on
the device is never explicitly copied (by OpenMP) otherwise. Note that this was
the only modification we required to the existing system, and it has been in
LLVM/OpenMP since version 12.

While the remote offload capability is encapsulated in a single runtime, it
comes with two implementations for serialization (ref. Sect. 5.3): protobuf, and
a custom serialization library, and two transport protocols (ref. Sect. 5.4): gRPC
and UCX. To pick a non-default option, the user has to set the environment vari-
ables LIBOMPTARGET_RPC_{SERIALIZATION,TRANSPORT} at runtime. Note that not all
options described are integrated into the community LLVM/OpenMP yet2.

5.1 Remote Offloading Plugin

The remote offloading plugin (libomptarget.rtl.rpc.so) is loaded by
libomptarget during the initialization of the OpenMP target offloading infras-
tructure. This plugin creates and manages connections with all remote offloading
servers. The environment variable LIBOMPTARGET_RPC_ADDRESS takes a comma-
separated list of network addresses to specify the remote host servers for offload-
ing. After the initial connections, the remote systems determine how many com-
patible devices they can provide. The devices are determined by asking each
plugin, similar to the host. To support multiple accelerators across multiple
hosts, the remote offloading plugin has to keep track of the mapping from host
device numbers to clients and their local device numbering. In addition, the plu-
gin keeps maps to relate host pointers to remote system host pointers to simplify
network communication and the processing on both sides. The plugin is respon-
sible for handling all communication to all servers using whichever serialization
and transport layer have been configured.

5.2 Remote Offloading Server

The server application (openmp-offloading-server) is started by the user and
will wait for a single incoming connection by a client (libomptarget.rtl.rpc).
Once such a connection is severed, that is, once the OpenMP offloading program
has exited, the server shuts down. We do not reset to an initial state because
not all LLVM/OpenMP offload plugins, e.g., the one for NVIDIA GPUs, can
be reset safely at this point. If necessary, users can wrap the server start into a
script that restarts it as needed.

The implementation is, as the OpenMP’s offloading model itself, host-centric.
A host application (client) can offload onto multiple servers at once, but a server
is not yet able to receive offloading requests from multiple clients simultaneously.
This limitation is not conceptual but merely was not required so far.

2 Support for remote offloading in the LLVM/OpenMP community version
is described here: https://openmp.llvm.org/docs/design/Runtimes.html#remote-
offloading-plugin.

https://openmp.llvm.org/docs/design/Runtimes.html#remote-offloading-plugin
https://openmp.llvm.org/docs/design/Runtimes.html#remote-offloading-plugin

322 A. Patel and J. Doerfert

5.3 Serialization

As with other communication protocols, we have to serialize our data, includ-
ing information about the API call from the host side, and deserialize it on
the remote system. For this work, we compared two solutions: protocol buffers
(protobuf) [16] and a custom serialization, one for each data structure and API
call.

Protobuf is a library developed by Google for structured data that relies on
interface definition .proto files. One of our transport layers (gRPC, ref. Sect. 5.4)
integrates naturally with protobuf since the same interface definition can be used
to generate serialization (host) and deserialization (remote) code. As an alter-
native, we also wrote specialized serialization and deserialization routines, free
of external dependencies. In addition, a custom solution provides opportunities
for optimizations. For example, protobuf does not permit random access, and its
zero-copy semantics are lacking. Within the gRPC implementation, we use the
protobuf arena allocator whose maximum size is set via an environment variable
LIBOMPTARGET_RPC_ALLOCATOR_MAX.

Note that both solutions perform copies of the data during serialization.
While one of our transport layers (UCX, ref. Sect. 5.4) provides an interface for
sending non-contiguous data without an intermediate copy, this interface is still
under active development.

5.4 Transport Layers

gRPC [11] is a universal remote procedure call framework that includes support
for load balancing, tracing, authentication, compression, etc. Further, gRPC
comes with a thread pool and handles concurrent connections out-of-the-box.
However, due to the general-purpose nature of gRPC, it contains limitations that
preclude it from being the optimal choice of transport for remote offloading on
high-performance systems. For example, gRPC is optimal for small messages, so
all individual messages are generally recommended to be under 2 MB in size. For
large data transfers, the streaming approach introduces a large unnecessary over-
head. At runtime, this maximum message size is configured via the environment
variable LIBOMPTARGET_RPC_BLOCK_SIZE. On the other hand, it presents out-of-the-
box support for compression that may help mitigate this overhead. gRPC is also
limited to serialized protobuf messages as payloads. Due to the tight integration
of all of its components, it is also impossible to introduce custom compression
algorithms naturally such as nvcomp [26], which utilizes high-performance GPU
(de)compressors on NVIDIA GPUs.

UCX [31] consists of three levels of frameworks: UCP for Protocols, UCT for
Transport, UCS for Services. UCP utilizes the UCT framework to provide com-
monly used protocols needed by implementations of MPI, OpenSHMEM, and
PGAS. UCP abstracts communication resources into Workers that are associ-
ated with Endpoints. Each Endpoint is associated with a single Worker object
responsible for handling the communication on that Endpoint. These Endpoints
are initialized directly with a socket address, in the case of IP over InfiniBand

Remote OpenMP Offloading 323

(IPoIB), or with a UCP specific address object, in the case of generic TCP/IP
addresses. For the latter, these addresses are constructed per worker, communi-
cated by another mechanism (such as UNIX sockets), and then the Endpoints
can be created to use UCX for the communication of future messages. Although
UCX has support for generic TCP/IP, we did not explore implementing remote
offloading over TCP with UCX, yet.

UCP provides various alternative interfaces for message transmission: remote
memory access (RMA), atomic memory access (AMO), Tag Match, Stream,
Active Message, and Collectives. We implemented remote offloading through
the Tag Matching API, in order to maintain parallelism. Each tag encodes the
message type (an enum corresponding to the plugin function being called) and
a message ID to enforce ordering.

UCP Workers have several thread-safety options: single-threaded, multi-
threaded serial access, and multi-threaded concurrent access. MPI implemen-
tations tend to simplify their implementation by providing each thread with its
own worker. While we initially considered this, we wanted to avoid spawning
a worker for each thread that will execute an OpenMP target region (on the
host). This approach led to memory exhaustion on the networking devices while
remote offloading onto 40 GPUs. Instead, we have one Worker and Endpoint
for the whole program on the client-side and have a thread pool on the server
to handle incoming requests in parallel. Depending on the number of concur-
rent offloading threads, the pool size should be adjusted to provide the best
performance.

6 Evaluation

We used two benchmarking environments to evaluate our implementation: the
Google Cloud and ThetaGPU cluster. Our Google Cloud (gCloud) benchmarking
environment consisted of n1-highcpu-16 instances that have 16 vCPUs of Intel
Xeons (Skylake), 16 GB RAM, an NVIDIA T4 GPU, and a maximum egress
bandwidth of 32 Gbps. For this setting, we were limited by the Google Cloud
policies to 4 GPUs in total and the gRPC transport layer as we did not enable
UCX over TCP/IP. Each node in ThetaGPU has 2 AMD Rome 64-core CPUs,
1 TB DDR4 memory, and 8 NVIDIA A100 GPUs. These nodes have 100GbE
ports and are connected via InfiniBand. For this setting, we were limited to 15
nodes, 120 GPUs in total, due to the allocation policies of this cluster. Table 1
summarizes the evaluation environments.

All our Google Cloud results are presented normalized to execution with-
out the remote offloading infrastructure, thus our baseline is native OpenMP
offloading onto all GPUs on a single node. Our ThetaGPU results are presented
normalized to execution on a single remote node to better display the scaling of
Remote OpenMP offloading on HPC systems. In addition to tests using acceler-
ators in remote systems, we run a local offloading configuration in which the host
and the server application are running on the same system, again using all GPUs
on the node. When remote systems were involved we did not offload onto the
local GPUs of the host as the remote accelerators were always the bottleneck.

324 A. Patel and J. Doerfert

For notation, we adopt these acronyms to reduce the verbosity in the discus-
sion that follows: Nd - native execution on the same system (no remote plugin)
using d devices, Ld - local offloading onto the same system using d devices, and
Rk

d - remote offloading onto k remote nodes with d devices in total.

Table 1. Evaluation environments summarized.

Name # nodes # GPUs per node # GPUs GPU model

gCloud 4 1 4 NVIDIA T4

ThetaGPU 15 8 120 NVIDIA A100

6.1 Benchmarks

To evaluate the performance of the remote offloading implementations we use
two HPC mini-apps (RSBench [32] and XSBench [33]) and a microbenchmark for
overhead analysis. Since there are essentially no existing OpenMP target offload-
ing programs that utilize multiple GPUs (on a single MPI rank), we selected
RSBench and XSBench as they were naturally portable to multi-device offload-
ing.

Proxy Applications: XSBench/RSBench. RSBench and XSBench are
proxy applications that serve as stand-ins for the Monte Carlo neutron trans-
port code OpenMC [29]. They simulate only the most computationally intensive
parts of OpenMC and are reported to represent 85% of its runtime. Both apps
are in C with OpenMP threading in mind, but they are also available in CUDA,
OpenCL, SYCL, and OpenMP offloading.

In our systems, the XSBench computation kernel is memory-bound as it
performs semi-random memory accesses. RSBench is similar but uses a different
method for computing cross-sections. This method trades memory efficiency for
runtime and is compute-bound.

To target multiple GPUs we modified the source and introduced the outer
loop illustrated in Fig. 4. To test the weak scaling of our setup, we increased the
overall work by the number of available GPUs to keep the work performed by
each OpenMP target region (lookups_per_device) constant. Both modifications
were done after confirming their scientific meaningfulness with the authors.

Two parameters influence the memory requirement and runtime of RSBench
and XSBench: the problem size (number of particles) and the number of lookups.
Both benchmarks come in two problem sizes: small and large. The memory
usages (as reported by the application) are in Table 2. At runtime, each device is
sent identical arrays of roughly this size. The number of lookups is independent of
the problem size, and for RSBench and XSBench, they are by default 1.02× 107

and 1.7 × 107, respectively. In addition, we run experiments with as little as
103 lookups and up to 108. The number of lookups affects the runtime of the
application by requiring more or fewer iterations of the Monte Carlo algorithm.

Remote OpenMP Offloading 325

#pragma omp parallel for num_threads(num_devices)
for (auto K = 0; K < num_devices; K++) {

#pragma omp target ... device(K)
for (auto i = 0; i < lookups_per_device; i++) {

seed = get_seed();
energy = get_energy(&seed);
material = get_material(&seed);
compute_macro_cross_section(...);

}
}

Fig. 4. Simplified kernel from RSBench/XSBench with our modifications to support
multi-device offloading.

By changing the number of lookups, we explore how sensitive the scaling of
remote OpenMP offloading is to different ratios of computing to data-transfer
time.

Table 2. Memory usage of the proxy applications.

Small Large

RSBench 4.9 MB 25.5 MB

XSBench 38 MB 198 MB

Micro Benchmark. In addition to the proxy applications, we run the empty
target region shown in Fig. 5 to determine introduced overheads. To this end, we
compare local offloading L1, remote offloading R1

1, as well as R2
16 to native execu-

tion N1. To determine the effect of data movement we run the micro benchmark
without a map clause (basically N = 0) and value for N between 216 and 223.

int32_t *arr = ...
#pragma omp target map(arr[:N])
{ }

Fig. 5. Empty target region micro benchmark with variable data transfer.

6.2 Results

We ran RSBench and XSBench on Google Cloud and ThetaGPU, as well as a
series of microbenchmarks on ThetaGPU. We ran weak-scaling experiments on
the Google Cloud, and strong-scaling experiments on ThetaGPU. The Google
Cloud experiments were only run with gRPC to test the efficiacy of Remote
OpenMP Offloading in the public cloud, but the ThetaGPU experiments were
run with both transports to test the scaling of the networking backends on HPC
clusters.

326 A. Patel and J. Doerfert

gCloud Results. In this series of experiemnts, we kept the number of lookups
constant for all runs and reported the difference for various configurations com-
pared to native offloading N1. Figure 6 shows the scaling results for the compute-
bound RSBench. Each program instance is denoted by the problem size and the
number of lookups.

L1 R1
1 R2

2 R3
3 R4

4

1
4
×

1
2
×

1×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
N 1

]

small 106 small (1.02×107) small 108

large 105 large 106 large (1.02× 107) large 108

(a) Configurations running Small instance.

L1 R1
1 R2

2 R3
3 R4

4

1
4
×

1
2
×

1×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
N 1

]

(b) Configurations running Large instance.

Fig. 6. RSBench remote offloading performance for the gCloud environment.

In the worst case, the large instance with 105 lookups, we see an overhead
of 10.7% for R1

1, and a maximum speedup of 2.23× for R4
4, that is, four remote

systems with one GPU each. In the best case, we see that R4
4 improves perfor-

mance essentially 4-fold. Although the case of perfect scaling can be engineered
by increasing the number of lookups, we still see near-linear scalability for the
default problem sizes where we achieve a 3.8× speed up for the small problem
size and a 3.96× speedup for the large problem instance. The compute-intensive
nature and low memory footprint of RSBench are certainly advantageous for our
setup.

Figure 7 shows the result of the memory-bound XSBench. As expected,
remote offloading performs overall much worse as the memory transfer to com-
pute ratio is higher in this benchmark.

For the default number of lookups and the small problem size, we see an
overhead of 18.6% for R1

1 and a speedup of 1.74× for R4
4. The performance

of remote offloading expectedly improves with the number of lookups. For 109

lookups, we see a nearly linear speedup of 3.95× on R4
4. If we lower the lookups,

we see slowdowns of more than 3-fold as the memory transfer times dominate
the execution. For the large problem size and the default number of lookups, the
performance decreases by 19.3% for R1

1 and improves by 1.97× for R4
4. Again,

with a sufficient number of lookups, we see near-linear speedups, e.g., 3.87× for
R4

4 with 109 lookups.

Remote OpenMP Offloading 327

L1 R1
1 R2

2 R3
3 R4

4

1
4
×

1×

4×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
N 1

]
small 103 small 106 small (1.7×107) small 108 small 109

large 103 large 106 large (1.7× 107) large 108 large 109

(a) Configurations running Small instance.

L1 R1
1 R2

2 R3
3 R4

4

1
4
×

1×

4×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
N 1

]

(b) Configurations running Large instance.

Fig. 7. XSBench remote offloading performance for the gCloud environment.

ThetaGPU Results. On the ThetaGPU environment, we performed a weak
scaling study with up to 15 remote hosts, each providing 8 GPUs using the
default number of lookups. Thus, we kept the work per device constant as we
added new nodes and devices. The best case is a flat line at 1× which would
mean there is no overhead using 15× the number of remote resources compared to
remote offloading onto one remote node with 8 GPUs (R1

8) using that networking
backend. We compare against R1

8 rather than N8 to capture the scaling of remote
offloading across multiple nodes in an HPC system.

To put the relative graphs into perspective, the average absolute runtimes
across the networking configurations on a single ThetaGPU node are in Table 3.

Table 3. Absolute runtime on a single ThetaGPU node.

L8 - Small L8 - Large R1
8 - Small R1

8 - Large

RSBench 1.2 s 1.5 s 1.2 s 1.6 s

XSBench 1.2 s 2.8 s 1.2 s 2.7 s

To determine the potential effect of a hierarchical approach on the perfor-
mance of our benchmarks, we performed an additional experiment. The UCX-
Opt entry in Fig. 8 and Fig. 9 show the performance if the data replicated to
all eight remote devices is sent to the remote host only once and are replicated
locally. While a proper compiler analysis would be necessary to validate and
guide such an optimization, we performed it manually as part of the runtime.
Section 7 further discusses this limitation.

For RSBench with the small problem size, shown in Fig. 8a, we see the per-
formance scaling across any number of remote nodes with only a 1.5× runtime

328 A. Patel and J. Doerfert

on R15
120 relative to R1

8. For the large problem size, shown in Fig. 8b, it is also
about the same as small in the best case despite the higher memory usage. The
relative performance boost of using the NVIDIA A100 used in ThetaGPU com-
pared to the NVIDIA T4 in the cloud setting makes the crucial computation
time to memory transfer ratio even more critical.

Due to the higher memory usage of XSBench, we see slightly worse scaling
in the number of nodes on both UCX and UCX-Opt as seen in Fig. 9, where we
reach runtimes of approximately 1.8× and 2× on R15

120 in the case of UCX-Opt
for Small and Large respectively.

R3
24 R5

40 R7
56 R9

72 R11
88R13

104R15
120

1×

2×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
R

1 8
]

small [gRPC] small [UCX] small [UCX-Opt]

large [gRPC] large [UCX] large [UCX-Opt]

(a) Configurations running Small instance.

R3
24 R5

40 R7
56 R9

72 R11
88R13

104R15
120

1×

2×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
R

1 8
]

(b) Configurations running Large instance.

Fig. 8. RSBench remote offloading performance for the ThetaGPU environment.

Microbenchmarks. The micro benchmarking results are shown in Figs. 10a to
10c. We see that UCX produces, as expected, significantly faster data transfers
when compared to gRPC. Additionally, we see the effects of internal thresholds
that UCX maintains for utilizing different UCT and UCS mechanisms at runtime
through the drop in runtime for messages of size 1 MiB. For gRPC, due to issues
known to occur with many large messages, we were unable to obtain results
beyond 2 MiB for L1. Additionally, for R2

16, we were limited by the available
memory for UCX and gRPC.

7 Limitations of OpenMP

In this work, we enabled transparent remote offloading in the confinement of the
OpenMP 5.1 specification for target offloading. While the result shows promise
when data transfer times are far lower than kernel computation times, there
are conceptual limitations to the OpenMP model that would make distributed
offloading simpler and more efficient.

Remote OpenMP Offloading 329

R3
24 R5

40 R7
56 R9

72 R11
88R13

104R15
120

1×

2×

4×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
R

1 8
]

small [gRPC] small [UCX] small [UCX-Opt]

large [gRPC] large [UCX] large [UCX-Opt]

(a) Configurations running Small instance.

R3
24 R5

40 R7
56 R9

72 R11
88R13

104R15
120

1×

2×

4×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
R

1 8
]

(b) Configurations running Large instance.

Fig. 9. XSBench remote offloading performance for the ThetaGPU environment.

0216 218 220 222 224

4×

32×

256×

1024×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
N 1

]

(a) Configuration: L1.

0216 218 220 222 224

gRPC UCX

(b) Configuration: R1
1.

0216 218 220 222 224

4×

32×

256×

1024×

R
u
n
ti

m
e

[r
el

a
ti
v
e

to
N 1

]

(c) Configuration: R2
16.

Fig. 10. Micro benchmarking results for the ThetaGPU environment of transferring
int[N] where N = 0, 216, . . . , 224.

One concern is the flat device model. Instead of enumerating all available
devices from 0 to N, it would be preferable to expose a hierarchy to the user.
This would not only benefit the distributed use case but also help divide GPUs
into multiple devices and expose NUMA effects between accelerators. There
are various ways to extend the current star topology, e.g., a more elaborate
device identifier similar to the thread affinity format. For distributed offloading,
it would be natural to allow hierarchical offloading, that is, nested target regions.
While device-to-device copies are possible already, they were not considered for
use in our proxy apps since they would require breaking our requirement that

330 A. Patel and J. Doerfert

the application source code is only modified to offload onto multiple GPUs. A
native way to program an accelerator cluster would be to offload to the CPUs
of a remote machine first and then to the local accelerators. This would make it
easy to avoid network traffic for data that is replicated among all accelerators
in a remote system.

8 Future Work

For HPC networks, an obvious optimization opportunity is our usage of the UCX
framework. Our current implementation utilized the tag-matching API for com-
munication out of simplicity, but a future implementation that uses UCX’s active
messaging API could efficiently use the advanced networking resources available.
In addition, we did not consider data compression, a promising endeavor for
improving the overall performance of remote OpenMP offloading where we are
network-bound. UCX also exposes RDMA and other advanced hardware fea-
tures which could optimize the networking communication between nodes and
reduce copies in the stack.

OpenMP applications tend to first transfer data to the target device, and
then launch the kernel once the data is available. In many applications, it is
possible to pipeline the execution and data transfer to avoid this unnecessary
serialization. This pipelining process, when done manually, is error-prone and
tedious, so a compiler directive approach was developed [12]. Remote offloading
would be a natural target for such user annotated pipelining or a fully automatic
approach.

Our remote offloading implementation has also been cross-platform tested
on SmartNICs. Through our approach, easy parallelism in data processing could
be achieved on network devices, before being received at the primary host or
secondary nodes for compute-intensive tasks on CPUs and GPUs through target
offloading - all within the same architecture-independent OpenMP program.

9 Conclusion

In this work, we extended the existing LLVM/OpenMP target offloading runtime
to offload onto accelerators on remote hosts. Our OpenMP standard-conforming
implementation transparently exposes remote accelerators as if they were local,
removing the need for programmer intervention when extending an application
to use multiple nodes. Our implementation is capable of using gRPC, a popular
general-purpose RPC library, for offloading over TCP/IP networks, as well as
UCX, a networking framework developed for HPC systems, for more advanced
hardware such as InfiniBand. Given that our networking implementations are
not finely tuned, our results serve as an upper bound for the overhead induced
by remote OpenMP offloading. Our implementation was tested for different con-
figurations on two HPC proxy applications, RSBench and XSBench. We demon-
strated attractive strong scaling across four remote GPUs on the Google Cloud
and attractive weak scaling across 120 GPUs on ThetaGPU. Specifically, we were

Remote OpenMP Offloading 331

able to offload onto 120 GPUs on 15 nodes with 1.5× the overhead of running on
8 GPUs in the single node for RSBench, and at 1.8× and 2× on XSBench Small
and Large respectively. In the case of ThetaGPU, we experimented with a data
transfer optimization mimicking hierarchical offloading for nodes with multiple
devices.

In the future, we hope that with nested target regions hierarchical remote
offloading can be introduced into OpenMP. Our bandwidth optimization, and
many others, would become available natively to the programmer and through
proper compiler analysis. We believe our work shows that OpenMP programs can
be reasonably extended to multiple nodes without a redesign or the introduction
of another programming model. Most parts of our implementations are already
available in LLVM/OpenMP since LLVM 12, and the remaining parts will follow
shortly.

Acknowledgements. We gratefully acknowledge the computing resources provided
and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne
National Laboratory. Part of this research was supported by the Exascale Comput-
ing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy
organizations (Office of Science and the National Nuclear Security Administration)
responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early testbed plat-
forms, in support of the nation’s exascale computing imperative. Part of this research
was supported by the Lawrence Livermore National Security, LLC (“LLNS”) via MPO
No. B642066.

References

1. Berkeley UPC - Unified Parallel C. https://upc.lbl.gov/
2. Upc++. https://bitbucket.org/berkeleylab/upcxx/wiki/Home
3. Chapel Lang (2021). https://chapel-lang.org/
4. Legion Programming System (2021). https://legion.stanford.edu/
5. Al-Khalissi, H.: Efficient Programming Model for OpenMP on Cluster-Based

Many-Core System. Ph.D. thesis, Braunschweig University of Technology, Ger-
many (2015)

6. Antão, S.F., et al.: Offloading support for OpenMP in Clang and LLVM. In: Third
Workshop on the LLVM Compiler Infrastructure in HPC, LLVM-HPC@SC 2016,
14 November 2016. IEEE Computer Society, Salt Lake City, UT, USA (2016)

7. Bonachea, D., Hargrove, P.H.: GASNet-EX: a high-performance, portable commu-
nication library for exascale. In: Hall, M., Sundar, H. (eds.) LCPC 2018. LNCS,
vol. 11882, pp. 138–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34627-0 11

8. Bueno, J., Martorell, X., Badia, R.M., Ayguadé, E., Labarta, J.: Implementing
OMPSS support for regions of data in architectures with multiple address spaces.
In: Malony, A.D., Nemirovsky, M., Midkiff, S.P. (eds.) International Conference
on Supercomputing, ICS 2013, 10–14 June 2013. ACM, Eugene, OR, USA (2013).
https://doi.org/10.1145/2464996.2465017

9. Capotondi, A., Marongiu, A.: On the effectiveness of OpenMP teams for cluster-
based many-core accelerators. In: International Conference on High Performance

https://upc.lbl.gov/
https://bitbucket.org/berkeleylab/upcxx/wiki/Home
https://chapel-lang.org/
https://legion.stanford.edu/
https://doi.org/10.1007/978-3-030-34627-0_11
https://doi.org/10.1007/978-3-030-34627-0_11
https://doi.org/10.1145/2464996.2465017

332 A. Patel and J. Doerfert

Computing and Simulation, HPCS 2016, 18–22 July 2016. IEEE, Innsbruck, Aus-
tria (2016)

10. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel Programmability and the
Chapel Language. Int. J. High Perform. Comput. Appl. 21(3) (2007)

11. gRPC community: GRPC (2021). https://grpc.io/
12. Cui, X., Scogland, T.R.W., de Supinski, B.R., Feng, W.: Directive-based pipelining

extension for OpenMP. In: 2016 IEEE International Conference on Cluster Com-
puting, CLUSTER 2016, 12–16 September 2016. IEEE Computer Society, Taipei,
Taiwan (2016)

13. Dorta, A.J., Bad́ıa, J.M., Quintana, E.S., de Sande, F.: Implementing OpenMP for
clusters on top of MPI. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.)
EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 148–155. Springer, Heidelberg (2005).
https://doi.org/10.1007/11557265 22

14. Duran, A., et al.: OMPSS: a proposal for programming heterogeneous multi-
core architectures. Parallel Process. Lett. 21(2) (2011). https://doi.org/10.1142/
S0129626411000151

15. Gahvari, H., Schulz, M., Yang, U.M.: An approach to selecting Thread + Pro-
cess Mixes for Hybrid MPI + OpenMP Applications. In: 2015 IEEE International
Conference on Cluster Computing, CLUSTER 2015, 8–11 September 2015. IEEE
Computer Society, Chicago, IL, USA (2015)

16. Google: Protocol buffers (2021). https://developers.google.com/protocol-buffers
17. Heldens, S., Hijma, P., van Werkhoven, B., Maassen, J., van Nieuwpoort, R.V.:

Lightning: scaling the GPU programming model beyond a single GPU (2022).
https://doi.org/10.48550/ARXIV.2202.05549, https://arxiv.org/abs/2202.05549

18. Hu, Y.C., Lu, H., Cox, A.L., Zwaenepoel, W.: OpenMP for networks of SMPs. J.
Parallel Distributed Comput. 60(12) (2000)

19. Huang, L., Chapman, B.M., Liu, Z.: Towards a more efficient implementation of
OpenMP for clusters via translation to global arrays. Parallel Comput. 31(10–12)
(2005). https://doi.org/10.1016/j.parco.2005.03.015

20. Jacob, A.C., et al.: Exploiting fine- and coarse-grained parallelism using a directive
based approach. In: Terboven, C., de Supinski, B.R., Reble, P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 30–41. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24595-9 3

21. Keleher, P.J., Cox, A.L., Dwarkadas, S., Zwaenepoel, W.: Treadmarks: distributed
shared memory on standard workstations and operating systems. In: USENIX
Winter 1994 Technical Conference, 17–21 January 1994, Conference Proceedings.
USENIX Association,San Francisco, California, USA (1994)

22. Knaust, M., Mayer, F., Steinke, T.: OpenMP to FPGA offloading prototype using
OpenCL SDK. In: IEEE International Parallel and Distributed Processing Sym-
posium Workshops, IPDPSW 2019, 20–24 May 2019. IEEE, Rio de Janeiro, Brazil
(2019)

23. Li, H., Liang, T., Lin, Y.: An OpenMP programming toolkit for hybrid CPU/GPU
clusters based on software unified memory. J. Inf. Sci. Eng. 32(3) (2016)

24. Lu, H., Hu, Y.C., Zwaenepoel, W.: OpenMP on networks of workstations. In:
Proceedings of the ACM/IEEE Conference on Supercomputing, SC 1998, 7–13
November 1998, Orlando, FL, USA. IEEE Computer Society (1998)

25. Nakao, M., et al.: Xcalableacc: extension of xcalablemp PGAS language using OPE-
NACC for accelerator clusters. In: Chandrasekaran, S., Foertter, F.S., Hernandez,
O.R. (eds.) Proceedings of the First Workshop on Accelerator Programming using
Directives, WACCPD 2014, 16–21 November 2014. IEEE Computer Society, New
Orleans, Louisiana, USA (2014). https://doi.org/10.1109/WACCPD.2014.6

https://grpc.io/
https://doi.org/10.1007/11557265_22
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1142/S0129626411000151
https://developers.google.com/protocol-buffers
https://doi.org/10.48550/ARXIV.2202.05549
https://arxiv.org/abs/2202.05549
https://doi.org/10.1016/j.parco.2005.03.015
https://doi.org/10.1007/978-3-319-24595-9_3
https://doi.org/10.1109/WACCPD.2014.6

Remote OpenMP Offloading 333

26. NVIDIA: Nvcomp (2021). https://developer.nvidia.com/nvcomp
27. Patel, A., Doerfert, J.: Remote OPENMP offloading. In: Proceedings of the 27th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
pp. 441–442. PPoPP 2022, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3503221.3508416

28. Patel, A., Tian, S., Doerfert, J., Chapman, B.: A virtual GPU as developer-friendly
OpenMP offload target. In: LLPP 2021: The First Workshop on LLVM in Parallel
Processing (LLPP), August 9th, 2021, Chicago (Argonne National Lab), Illinois,
USA. ACM (2021). https://doi.org/10.1145/3458744.3473356

29. Romano, P.K., Forget, B.: The OpenMC monte carlo particle transport code. Ann.
Nuclear Energy 51 (2013)

30. Sato, M., Harada, H., Hasegawa, A.: Cluster-enabled OpenMP: an OpenMP com-
piler for the SCASH software distributed shared memory system. Sci. Program.
9(2–3) (2001)

31. Shamis, P., et al.: UCX: an open source framework for HPC network APIs and
beyond. In: 23rd IEEE Annual Symposium on High-Performance Interconnects,
HOTI 2015, 26–28 August 2015. IEEE Computer Society, Santa Clara, CA, USA
(2015)

32. Tramm, J.R., Siegel, A.R., Forget, B., Josey, C.: Performance analysis of a reduced
data movement algorithm for neutron cross section data in monte carlo simulations.
In: EASC 2014 - Solving Software Challenges for Exascale. Stockholm (2014)

33. Tramm, J.R., Siegel, A.R., Islam, T., Schulz, M.: Xsbench - the development
and verification of a performance abstraction for monte carlo reactor analysis.
In: PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future.
Kyoto (2014)

34. Wottrich, R., Azevedo, R., Araujo, G.: Cloud-based OpenMP parallelization using
a mapreduce runtime. In: 26th IEEE International Symposium on Computer Archi-
tecture and High Performance Computing, SBAC-PAD 2014, 2–24 October 2014.
IEEE Computer Society, Paris, France (2014). https://doi.org/10.1109/SBAC-
PAD.2014.46

35. Yonezawa, N., Wada, K., Ogura, T.: Quaver: OpenMP compiler for clusters based
on array section descriptor. In: Fahringer, T., Hamza, M.H. (eds.) Proceedings
of the IASTED International Conference on Parallel and Distributed Computing
and Networks, part of the 23rd Multi-Conference on Applied Informatics, 15–17
February 2005. IASTED/ACTA Press, Innsbruck, Austria (2005)

36. Yviquel, H., Cruz, L., Araujo, G.: Cluster programming using the OpenMP accel-
erator model. ACM Trans. Archit. Code Optim. 15(3) (2018)

https://developer.nvidia.com/nvcomp
https://doi.org/10.1145/3503221.3508416
https://doi.org/10.1145/3458744.3473356
https://doi.org/10.1109/SBAC-PAD.2014.46
https://doi.org/10.1109/SBAC-PAD.2014.46

Hybrid Parallel ILU Preconditioner
in Linear Solver Library GaspiLS

Raju Ram1,2(B), Daniel Grünewald1, and Nicolas R. Gauger2

1 Fraunhofer ITWM, Competence Center High Performance Computing,
Kaiserslautern, Germany

raju.ram@itwm.fraunhofer.de
2 Chair for Scientific Computing, Technische Universität Kaiserslautern,

Kaiserslautern, Germany

Abstract. Krylov subspace solvers such as GMRES and precondition-
ers such as incomplete LU (ILU) are the most commonly used methods to
solve general-purpose, large-scale linear systems in simulations efficiently.
Parallel Krylov subspace solvers and preconditioners with good scalabil-
ity features are required to exploit the increasing parallelism provided by
modern hardware fully. As such, they are crucial for productivity. They
provide a high-level abstraction to the details of a complex hybrid paral-
lel implementation which is easy to use for the domain expert. However,
the ILU factorization and the subsequent triangular solve are sequential
in their basic form. We use a multilevel nested dissection (MLND) order-
ing to resolve that issue and expose some parallelism. We investigate the
parallel efficiency of a hybrid parallel ILU preconditioner that combines
a restricted additive Schwarz (RAS) method on the process level with a
shared memory parallel MLND Crout ILU method on the thread level. We
employ the PGAS based programming model GASPI to efficiently imple-
ment the data exchange across processes. We demonstrate the scalability
of our approach for the convection-diffusion problem as a representative
of a large class of engineering problems up to 64 sockets (1280 cores) and
show comparable baseline performance against the linear solver library
PETSc. The RAS preconditioned GMRES solver achieves about 80% par-
allel efficiency on 1280 cores. Our implementation provides a generic, alge-
braic, scalable, and efficient preconditioner that enables productivity for
the domain expert in solving large-scale sparse linear systems.

Keywords: Sparse linear systems · Parallel ILU preconditioner ·
Domain decomposition · GASPI · METIS · Hybrid parallelism ·
Task-level parallelism

1 Introduction

The performance-critical part in many engineering simulations based on partial
differential equation (PDE) models with implicit discretization is the solution
of a set of linear systems which arise after the discretization. For large-scale
c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 334–353, 2022.
https://doi.org/10.1007/978-3-031-07312-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_17

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 335

problems of this type, the class of Krylov-subspace methods is the appropriate
way to achieve a competitive performance on nowadays hybrid-parallel archi-
tectures. Preconditioners are used to accelerate their convergence and to reduce
the turnaround time. As such, they are crucial for the overall productivity of
the solver. However, the design and implementation of such iterative methods
and their respective preconditioners is still far from being trivial, particularly on
hardware possessing many levels of parallelism - clusters of computational nodes,
consisting of several many-core CPUs. Therefore, simulation software with good
scalability features is required to fully exploit the increasing parallelism provided
by modern hardware. Scalability essentially measures the parallel efficiency of
an implementation. The optimum is the so-called linear scalability. This corre-
sponds to full utilization of the cores within a single CPU or the CPUs within
a cluster which are interconnected by a network. Better scalability allows using
the computational resources more efficiently, implying an abbreviated time to
solution. Ultimately, better scalability allows for more detailed models, more
precise parameter studies, and a more cost-efficient resource utilization.

Iterative solver libraries such as PETSc [5], Trilinos [17] or hypre [12] which
are well adapted in the community are based on the Message Passing Interface
(MPI). MPI is widely considered the de facto standard for communication on
distributed-memory systems. Recently, fundamental limits of MPI concerning
scalability have been investigated [6]. An in-depth analysis of the software shows
overheads in the MPI performance-critical path and exposes mandatory perfor-
mance overheads that cannot be avoided based on the MPI specification. These
prevent MPI to push applications toward the strong scaling limit in which the
ability to have efficient fine-grained communication is required. In contrast to
that, the GASPI communication API [16,28] provides such fine-grained com-
munication. The communication is single-sided, asynchronous, and is comple-
mented by lightweight synchronization primitives. It aims to provide scalability
for truly asynchronous data dependency-driven implementations with dynamic
load balancing and maximal overlap of communication by computation. Explicit
synchronization points can be avoided as much as possible. The GASPI commu-
nication API and its reference implementation GPI-2 [19] have proven to allow
to implement scalable applications in many research fields [23].

The linear solver library GaspiLS [18] provides an abstract interface for basic
linear algebra operations with matrix- and vector-classes, together with iterative
methods to solve sparse linear systems whose implementation is based on top
of the GASPI communication API. As such, GaspiLS is an effort to make an
efficient and scalable GASPI based implementation easily accessible to a broad
range of applications and to hide the complexity of the implementation from
domain experts.

On top of the basic Krylov subspace solvers, scalable and efficient generic black
box preconditioners that can be applied to a large set of problems and that reduce
the turnaround time are crucial for the overall productivity of GaspiLS. Incom-
plete LU (ILU) decomposition is widely used as a preconditioner because of its
robustness, accuracy, and usability as a black-box preconditioner for general pur-
pose (asymmetric, indefinite) linear systems. Along with the ILU factorization,

336 R. Ram et al.

one essentially performs a Gaussian elimination process. Certain elements along
the factorization may be dropped per a given dropping criterium. This allows lim-
iting the preconditioning operation’s size and complexity, which makes it very
attractive from the numerical point of view. However, similar to Gaussian elimi-
nation, the basic ILU factorization algorithm is sequential. Additional paralleliza-
tion strategies need to be employed to expose enough parallelism to the precon-
ditioner to preserve the scalability of the underlying Krylov subspace solvers. At
the same time, the approximation of the factorization, i.e. the quality of the pre-
conditioner needs to be preserved. We aim to design an ILU-based preconditioner
incorporating good concurrency and accuracy.

We propose a hybrid parallel Incomplete LU (ILU) preconditioner which is
based on two-level (hybrid parallel) domain decomposition to mitigate the sequen-
tial algorithm’s limitations and optimally fit the hardware hierarchies. Our hybrid
parallel domain decomposition approach combines a restricted additive Schwarz
(RAS) method [8] on the process level with a shared memory parallel MLND
Crout ILU method on the core level [3]. While the RAS is easy to parallelize, the
MLND Crout ILU method preserves the level of approximation even for higher
degrees of parallelism. Our research exhibits the following contributions:

– We extend the MLND approach for symmetric positive definite (SPD) sys-
tems introduced in [3] to generic (non-SPD) problems.

– We use a data dependency-driven, task-parallel implementation using
pthreads, which provides extremely fine-grained control over task-thread
management for our algebraic ILU preconditioner.

– We show a hybrid parallel approach by combining the MLND based shared
memory approach with Schwarz block preconditioners that use lightweight
distributed programming model GASPI.

– Finally, we compare our hybrid solver and preconditioner in GaspiLS with
methods in the most widely used linear solver library PETSc and demonstrate
better scalability at high concurrency.

The paper is structured as follows. We review the related literature in Sect. 2. We
describe the GASPI programming model and the linear solver library GaspiLS
in Sect. 3. We introduce the hybrid parallel approach to ILU preconditioning in
Sect. 4. We explain the shared memory-based MLND approach in detail in Sect.
5. Finally, we show the results of numerical experiments in Sect. 6 and conclude
in Sect. 7.

2 Related Work

Crout ILU preconditioners are robust, accurate, and applicable to a broad range
of problems, i.e., are useable as a black-box preconditioner. It is derived from
the Crout version of Gaussian elimination. This version of ILU can be computed
much faster than standard threshold-based ILU factorization [24]. Multi-leveling
in combination with inverse-based pivoting and dropping can be used to make the
Crout factorization more stable and accurate, as demonstrated by ILUPACK [7].

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 337

More recently, data structures have been described in the HILUCSI framework
[9,14], that efficiently handle sparsity and provide optimal complexity (O(n)). It
takes advantage of the near or partial symmetry of the linear systems in a mul-
tilevel fashion by applying symmetric pre-processing at the top levels for nearly
or partially symmetric matrices. It provides an efficient and robust implemen-
tation. However, the implementation lacks parallelism and may not be suited
to solve extreme-scale large systems. To resolve that issue, fine-grained ILU
preconditioners using an iterative algorithm have been described in [10]. The
algorithm is based on a reformulation of ILU as the solution of a set of bilin-
ear equations, which can be solved using fine-grained asynchronous parallelism.
The nonlinear equations are solved using fixed-point iteration sweeps that are
performed in parallel. This is different from the more common domain decom-
position (DD) approaches which are usually used to expose some parallelism to
the preconditioner. DD methods can be categorized into either overlapping or
non-overlapping methods [15]. They differ in how the information is exchanged
across the sub-domains along the solution process. For overlapping methods,
the information is exchanged across the overlap region. They are iterative pro-
cedures and are easy to parallelize. Non-overlapping methods are Schur com-
plement methods in which the information is exchanged across the interfaces.
In principle, they are exact and do not require any iteration per se. However,
since the Schur complement is expensive to construct, it is usually approximated
and solved by an iterative method. To balance the parallelization effort with the
quality of the preconditioner, we suggest using an Additive Schwarz method on
the distributed memory level. In contrast, on the shared memory level, we use
a Schur complement method based on the multilevel nested dissection (MLND)
approach for SPD sparse matrices presented in [3]. We extend this approach
to general-purpose (non-SPD) matrices. It uses the METIS library [20,21] to
partition the graph corresponding to the sparse matrix A. For this, the METIS
library takes the sparsity of A + AT as the input graph. Furthermore, [3] uses
serial execution to partition the graph using METIS and only does the factor-
ization and triangular solve in parallel. However, the graph reordering does not
scale on the higher number of cores and becomes the bottleneck. Therefore,
in our approach, we extend the recently developed multi-threaded version of
METIS called MTMETIS [22] to extract the partitioning information in paral-
lel. This is a domain decomposition on two levels which is not to be mixed up
with two-level domain decomposition used in mathematics incorporating a coarse
grid correction to stabilize the long-range decoupling effect across sub-domains.
This domain decomposition is motivated by hybrid parallelism (to improve the
scalability). There are other domain decomposition based preconditioners like
e.g. IFPACK, IFPACK2 [25], HIPS, MaPhys [2], PDSLin [30] and ShyLU [26].
However, each of these solvers/preconditioners is different in the choices made at
different steps and the domain decomposition. We are not aware of any of those
codes to be hybrid parallel besides ShyLU. It uses an additive Schwarz method
on the distributed memory level and an iterative Schur complement method on
the shared memory level.

338 R. Ram et al.

3 GASPI Programming Model and GaspiLS

GASPI is the specification of a Partitioned Global Address Space (PGAS) API
[16] for inter-process communication in a distributed memory system. GASPI
provides a compact yet powerful API which is maintained by the GASPI forum
[13]. GPI-2 [19] is the reference implementation of the GASPI specification. It
provides segments that allocate and pin some parts of the available process-local
main memory for communication. These segments form a partition of the global
address space. They are designed as a software abstraction to the hardware-
provided memory hierarchies and can be mapped to CPU or accelerator memory
like GPUs.

Fig. 1. GPI-2 allocates and pins one or more blocks of its local available memory
for RDMA. Every thread can asynchronously read from or write to these so-called
segments.

The primary communication mechanism provided by GASPI is single-sided
communication. Every thread on a given process may directly access the memory
segment of any remote process, bypassing the remote CPU and operating sys-
tems. Single-sided communication does not require the cooperation of the target
whose memory is accessed. The Remote Direct Memory Access (RDMA) hard-
ware performs the whole transfer without software interaction. As a consequence,
the GPI-2 runtime system is lightweight. The network transfer is offloaded to
the network interface. It is asynchronous to any computation on the source
and target CPUs. The CPUs can be used for computation exclusively. Opti-
mal overlap of communication by computation can be achieved. On top of that,
GASPI provides a fine-grained synchronization mechanism, known as notifica-
tion mechanism, which adds a remote completion notification to a message or a
sequence of messages. This is a combined memory and process synchronization,
i.e., it allows for detecting completion and memory visibility on the communica-
tion target. The critical path for communication in GASPI is a single transfer.
The target process can use this notification for explicitly synchronizing local or
remote accesses to the buffer. There is no implicit synchronization involved. As
such, redundant synchronization steps can be avoided.

GaspiLS [18] is a linear solver library that is built on top of the GASPI pro-
gramming model. It extends the proof of concept implementation of a GPI-2,

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 339

and task-based parallel sparse matrix-vector multiplication [29]. The basic idea
of GaspiLS is to make the scalability and performance of GASPI accessible for
a broad range of applications like scientific or engineering simulations, which
finally need to solve a system of linear equations. It provides a set of predefined
hybrid parallel data structures for linear algebra, such as vectors and matrices.
These data structures hide the complexity of a hybrid, fully asynchronous data
dependency-driven task-based implementation, which incorporates a two-level
domain decomposition and complete overlap of communication and computa-
tion from the domain expert. The guiding principles leverage the capabilities of
GASPI the best. However, implementing them usually requires good program-
ming skills and profound knowledge of the underlying hardware to perform well.
This is usually a non-trivial task for the domain expert to manage. The provided
hybrid parallel data structures are distributed row-wise across the processes on
the first level. Furthermore, on the second level, the local parts of the data
structures are assigned statically or dynamically to different threads. A thread
is the elementary compute unit which is executing the tasks. Based on these
data structures, GaspiLS provides several basic Krylov subspace methods like
PCG, BiPCGStab, and GMRES.

4 Hybrid Parallel Approach

In general, the time to solution of a Krylov subspace solver is determined by the
performance of a single solver iteration and the number of required iterations.
GaspiLS provides a scalable hybrid parallel implementation of a sparse matrix-
vector multiplication, and a dot product [29], which are the building blocks of a
single solver iteration. However, generic and efficient preconditioners are required
to decrease the number of solver iterations and runtime of the solver. At the same
time, they need to provide the same level of hybrid parallel concurrency as the
underlying solver to preserve the overall performance and scalability. Crout ILU
preconditioners are known to be robust, accurate, and applicable to a broad
range of problems, i.e., are useable as a black-box preconditioner. However, the
Crout ILU preconditioner’s factorization and subsequent triangular solve opera-
tions are sequential for sparse matrices in their original form. Additional graph
reordering needs to be applied to enable parallelism. To expose some parallelism
to the preconditioner, we propose a two-level domain decomposition (DD) app-
roach following a hybrid execution model that fits the memory hierarchies of
modern hardware architectures well. As such, our implementation is designed to
preserve the quality of the preconditioner even for higher concurrencies.

4.1 Distributed Memory Parallelism

We use the Additive Schwarz (AS) method at the first level of DD and asso-
ciate one sub-domain with each GASPI process. Thereby, the vertex set V of
the graph corresponding to the matrix A is decomposed into N non-overlapping

340 R. Ram et al.

sub-domains V 0
i such that V =

⋃N
i=1 V 0

i and V 0
i

⋂
V 0

j = ∅ for i �= j. This decom-
position may be augmented by a so called δ-overlap to generate partitions V δ

i

(δ ≥ 1), where V δ
i ⊃ V 0

i is obtained by including all the immediate neighbor-
ing vertices of the vertices in V 0

i up to distance δ. We select the sub-domains
V 0

i in accordance with the existing row-distribution provided by a distributed
CSR matrix in GaspiLS. Restriction operators Rδ

i ∈ R|V δ
i |×|V | and scaling oper-

ators Dδ
i ∈ R|V δ

i |×|V δ
i | associated with each V δ

i and can be defined such that a
partition of unity 1 =

∑N
i=0(R

δ
i)

T Dδ
i R

δ
i is formed. Here, the transpose (Rδ

i)
T

corresponds to the expansion operator. Then, AS decomposes the global problem
Ax = b into independent sub-problems Aixi = bi, which can be solved in parallel
on different subdomains and whose solutions are patched together a posteriori.
The sub-domain matrix Ai is defined as Ai := (Rδ

i A(Rδ
i)

T). Depending on the
sub-domain partitioning, different preconditioners can be implemented:

1) AS preconditioner : M−1
AS =

∑N
i=1(R

0
i)

T A−1
i R0

i

2) Restricted AS (RAS) preconditioner: M−1
RAS =

∑N
i=1(R

0
i)

T Dδ
i A

−1
i Rδ

i . We use
δ = 1 in RAS, which is known to converge faster than AS method [11].

4.2 Shared Memory Parallelism

The global matrix A loses coupling information across sub-domains in the first
level of the DD approach. This effect becomes severe with an increasing num-
ber of sub-domains. To prevent this, we introduce the second level of DD that
partitions the distributed memory subdomain further using multilevel nested dis-
section(MLND) as described in [3]. This approach is extensively used in sparse
direct solvers. MLND preserves the information in subdomain matrix Ai and
allows for fine granular parallelism.

We use the multi-threading version of METIS [22] to generate the MLND
permutation Π in our implementation. MLND reorders Ai into Ai,perm such
that Ai,perm = ΠT AiΠ. Independent local matrices are extracted from Ai,perm,
which are then factorized in a task-parallel way. Similarly, we solve the trian-
gular system using the same MLND task tree structure, exploiting the local
dependency in the tasks. We provide a custom implementation for performance-
critical sparse vector used during serial Crout ILU factorization. Our sparse vec-
tor implementation is significantly faster than C++ STL based data structures
such as std::map and std::unordered map [27].

5 Solving the Process-Level Sub-problem

In the preconditioning step, we aim to solve for ui for a sub-problem matrix Ai

and rhs vector bi on a GASPI process

Ai ui = bi (1)

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 341

at every iteration of the underlying Krylov solver. We solve this sub-problem
using an incomplete LU (ILU) factorization based on the Crout algorithm as
described in [24].

Ai = LiUi ≈ L̃iŨi = Mi (2)

Here, Mi is obtained after dropping entries in the L, U factors of the matrix
Ai such that M = L̃iŨi ≈ LiUi = Ai. For simplicity of notations, we omit the
subscript i in Ai and bi for a sub-domain and use the matrix A and the vector
as b in the remainder of this section.

5.1 Graph Partitioning

The Crout ILU algorithm is sequential in nature, so we need to find a way to
introduce parallelism in this method. We define a graph GA = (V , E) for the
matrix A. The vertex of the graph V represents rows/cols of A, and the edge
E represents nonzero sparse entries in the matrix A. The graph GA reflects the
nonzero pattern (excluding the diagonal) of A. The parallelization approach is
algebraic, i.e., it is exclusively based on the information derived from the sparsity
pattern of matrix A and does not depend on the domain/grid [3]. We use multi-
threading variant of the METIS library [22] to generate the MLND permutation
Π in our implementation. MTMETIS performs the graph reordering in parallel.
However, it does not provide the information about the partitioning information
of the vertices. We have extended MTMETIS implementation to extract the
partitioning information. MLND transforms the matrix A into Aperm and the
vector b into bperm as

Aperm = ΠT AΠ, bperm = Πb (3)

To illustrate the MLND, we show two-level nested dissection of the graph GA

in Fig. 2. The graph GA is recursively split into four sub-graphs G0, G1, G2,
and G3, first using separator G6 and then repeatedly by separators G4 and
G5. Gaussian elimination applied to the corresponding reordered system matrix
allows factorizing the diagonal blocks associated with the sub-graphs G0, G1,
G2, and G3 independently in parallel. After that, the elimination proceeds with
treating G4 and G5 in parallel until, finally, the separator G6 is treated. The task
dependency tree from this scheme is shown in Fig. 2b. Section 2.3 in the paper [3]
contains more information about the algorithm doing the transformation from
the graph to task tree.

Equation (3) for Fig. 2 can be represented as

ΠT AΠ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A00 0 0 0 A04 0 A06

0 A11 0 0 A14 0 A16

0 0 A22 0 0 A25 A26

0 0 0 A33 0 A35 A36

A40 A41 0 0 A44 0 A46

0 0 A52 A53 0 A55 A56

A60 A61 A62 A63 A64 A65 A66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

342 R. Ram et al.

G0

G1

G4 G6 G5

G2

G3

(a) Reordered graph after METIS

T6

T4

T0 T1

T5

T2 T3

(b) Task tree

Fig. 2. Two level nested dissection applied on graph GA

We can disassemble (4) into following independent matrix structures:

A0 =

⎡

⎣
A00 A04 A06

A40 A1
44 A1

46

A60 A1
64 A1

66

⎤

⎦ , A1 =

⎡

⎣
A11 A14 A16

A41 A2
44 A2

46

A61 A2
64 A2

66

⎤

⎦

A2 =

⎡

⎣
A22 A25 A26

A52 A3
55 A3

56

A62 A3
65 A3

66

⎤

⎦ , A3 =

⎡

⎣
A33 A35 A36

A53 A4
55 A4

56

A63 A4
65 A4

66

⎤

⎦

(5)

These independent sub-matrices can now be processed in parallel. Here, we
choose A1

44 = A2
44 = 1

2A44, A1
46 = A2

46 = 1
2A46, A3

55 = A4
55 = 1

2A55,
A3

56 = A4
56 = 1

2A56, A1
66 = A2

66 = A3
66 = A4

66 = 1
4A66 as described in [4].

5.2 Factorization

The task tree from Fig. 2b can be generalized such that it has L leaf nodes.
Although our algorithm can be easily generalized for non-complete binary task
trees, we assume for simplicity that we start from a complete binary task tree
with L leaves of height H = log2L + 1.

Aperm =
l−1∑

i=0

PT
i AiPi (6)

In order to exploit parallelism, we extract the l independent sub-matrices from
Aperm, similar to Eq. (5). The MLND permuted matrix Aperm is defined by
summing these matrices Ai and using appropriate operator Pi as shown in Eq.
6. These matrices are factorized in parallel. We show here the decomposition
of a matrix Ai at MLND task tree node i. The matrix Ai can be thought of
containing the contribution from interior vertices (volume terms) denoted by Av

i ,
and interface vertices (surface terms) denoted by As

i . The surface term includes
entries of the separators nodes, starting from the parent of the node i until the
root node of the tree. We capture the coupling information in the superscripts,

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 343

for e.g. the sub-matrix depicting the coupling of volume terms to surface terms
in Ai is denoted by A

(v,s)
i . Using these notations, Ai is represented in the Fig. 3.

The matrix Ai is partially factorized using Crout ILU method as shown in Fig.
3b (black fill), such that Aii = L

(v,v)
i U

(v,v)
i . The Schur complement matrix Si is

computed as Si = A
(s,s)
i − L

(s,v)
i U

(v,s)
i .

Ai =
A

(v,v)
i

A
(s,v)
i

A
(v,s)
i

A
(s,s)
i

(a) Matrix Ai with interior and inter-
face vertices

Ai =
L

(v,v)
i

U
(v,v)
i

L
(s,v)
i

U
(v,s)
i

Si

(b) LU factorization at tree node i

Fig. 3. Factorization of the matrix Ai

Once the leaf siblings have generated the Schur complements Si and Si+1

after factorising Ai and Ai+1 (where i+1 ≤ l), their parent node in the tree can
construct their local matrix by adding Si and Si+1. We define the local matrix
Ai (i ≥ l) for a separator node in the binary task tree as

Ai = SleftChild(i) + SrightChild(i) (7)

Once the matrix Ai is set for the separator nodes, the Crout ILU factorization
and Schur computation proceeds similarly as the leaf nodes (Fig. 3b). In this
way we proceed the factorization for separator nodes, and finally reach the root
node after traversing the tree from bottom to top. Since there are no separators
above the root node (i.e. A

(s,v)
i = A

(s,s)
i = φ in Fig. 3a), the root node is

factorized completely and no Schur complement matrix is generated. Once the
entire MLND tree has been factorized, we obtain the lower triangular matrix Lv,v

i

and the upper triangular matrix Uv,v
i at all the MLND nodes 0 ≥ i < (2H − 1).

These matrices are later used in the triangular solve.

5.3 Triangular Solve

Although the triangular solve method is inherently sequential, we exploit the
parallelism using the MLND tree structure in the same way as we did for the
factorization. The MLND approach reorders the right hand side (rhs) vector b
into bperm. Thus MLND permutation transforms the preconditioning step from
Eq. 2 into

Mperm xperm = Ãperm xperm = bperm (8)

344 R. Ram et al.

where Ãperm denotes the dropping in Aperm. The vector bperm is used to generate
the local rhs vector bi similarly to Eq. (6) such that

bperm =
l−1∑

i=0

PT
i bi (9)

Here the vector bi consists of the volume and surface terms and denoted as

bi =

(
b
(v)
i

b
(s)
i

)

(10)

Algorithm 1. Triangular solve on MLND task tree i

1: Input : Li =

(
L

(v,v)
i

L
(s,v)
i

)
, Ui =

(
U

(v,v)
i U

(v,s)
i

)
, bi =

(
b
(v)
i

b
(s)
i

)
, Sparent(i) at node i

2: Output : The solution vector x
(v)
i at node i

3:
4: procedure TriSolve(Li, Ui, bi, Sparent(i))

5: Solve for y
(v)
i in L

(v,v)
i y

(v)
i = b

(v)
i using forward substitution

6: if node i is not the root node then
7: Compute y

(s)
i = b

(s)
i − L

(s,v)
i y

(v)
i

8: Recursively solve for x
(s)
i using the Schur: Sparent(i)x

(s)
i = y

(s)
i

9: Compute y
(v)
i = y

(v)
i − U

(v,s)
i x

(s)
i

10: Solve for x
(v)
i in U

(v,v)
i x

(v)
i = y

(v)
i using backward substitution

The triangular solve starts at the leaf nodes, where we solve for y
(v)
i in

L
(v,v)
i y

(v)
i = b

(v)
i with forward substitution. Afterward, we prepare the rhs vector

y
(s)
i for the parent node to perform the forward substitution. We proceed in an

upward direction in the MLND task tree until we have done the forward substitu-
tion at the root node. Then we solve for x

(v)
i in U

(v,v)
i x

(v)
i = y

(v)
i with backward

substitution. The obtained solution vector x
(v)
i is afterward sent to both the child

nodes, which is used to prepare the rhs vector so that the backward substitution
can be performed on the child nodes. We proceed in a downward direction in the
MLND task tree until we have computed the partial solution vectors x

(v)
i at all

the leaf nodes. These partial solution vectors x
(v)
i represent the solution xperm

to the MLND reordered preconditioning step Eq. 8. The permuted vector xperm

is then transformed into the original solution vector x using inverse MLND per-
mutation. This vector x is the solution vector of the preconditioning step Eq. 2.
It is important to note that the underlying Krylov solver is not affected by the
MLND reordering done at the preconditioning step.

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 345

6 Numerical Experiments

We solve a stationary convection diffusion PDE as this is a representative of a
large class of typical problems arising in computational science.

Δu + c2 ∗ x2(
∂u

∂x
+

∂u

∂y
+

∂u

∂z
) = f(x, y, z) (11)

To make the linear system more challenging, we use high convection to diffusion
coefficient ratio of c2 = 100. We discretize the above 3D convection-diffusion
PDE using second order finite differences on a regular rectangular mesh in an
unit cube (x, y, z) ∈ Ω = (0, 1)3. We set f(x, y, z) such that the solution u(x, y, z)
of the above PDE is equal to exp(xyz) ∗ sin(πx) ∗ sin(πy) ∗ sin(πz) and use
Dirichlet boundary conditions as u(∂Ω) = f(∂Ω). The coefficient matrix of the
linear system is non-symmetric, so we use GMRES(30) solver to solve it. For
orthogonalization, we use the modified Gram-Schmidt (MGS) method due to its
superior numerical stability over the classical Gram-Schmidt method. We use a
relative residual tolerance criterion of 10−6.

We evaluate the scalability of our approach both for the shared memory
parallel and full hybrid parallel implementation. The performance is evaluated
on a cluster of 2.4 GHz Intel(R) Xeon(R) Gold 6148 CPU dual-socket nodes,
each socket with 20 cores which are connected by EDR Infiniband interconnects.
We run one distributed process on each socket. The code was compiled with the
GCC 8.2.0 compiler using the optimization flag -O3.

6.1 Shared Memory Implementation

We evaluate the performance of the shared memory implementation. We solve
the 3D convection-diffusion equation (11) on 2003 grid (8 million unknowns).
We use up to 20 available cores in one NUMA domain to use the full socket. We
use MLND tree height of 6, which creates 32 leaf nodes, so every thread has at
least one leaf task to start with.

In Fig. 4, we show that the serial graph reordering done using METIS
becomes the bottleneck during the preconditioner setup phase even though the
factorization scales well (see serial graph reordering S and factorization using
16 threads in Fig. 4). Therefore, parallel graph reordering becomes essential for
scalability. Using MTMETIS instead of METIS reduces the preconditioner setup
time by 6.7× and total time to solution by 2.8× on 16 cores. Thus, MTMETIS
based parallel graph reordering eliminates the scalability bottleneck at higher
degree of parallelism. This drastically improves the scalability of the precondi-
tioner setup phase, which finally improves the overall scalability of the underlying
solver.

6.2 Hybrid Parallel Implementation

We evaluate the performance of our hybrid parallel implementation. For this we
choose a 4003 grid (64 million unknowns) and solve the 3D convection-diffusion
equation (11). We uniformly partition the grid along with the Z direction.

346 R. Ram et al.

S,1 P,
1S,4 P,

4
S,1
6

P,
16

0

50

100

150

Reordering type, # Threads

T
im

e(
se
c)

Graph reordering Factorization

Fig. 4. Time distribution during the Crout ILU preconditioner setup phase; The first
parameter in the x-axis denotes the graph reordering type: S denotes serial reordering
using METIS, P denotes parallel reordering using MTMETIS; the second parameter
in x-axis denotes the number of threads used.

Baseline Comparison with PETSc Library. To measure the baseline per-
formance of our basic solver components (GMRES and Crout ILU), we com-
pare it with the most widely used linear solver library PETSc [5] in its default
configuration, i.e., an AS preconditioner using ILU(0) as subdomain solve in
combination with an outer GMRES(30) Krylov subspace solver. Exactly the
same algorithm, i.e. the same solver, the same preconditioner, and the same
domain decomposition are used in GaspiLS. This allows having a fair compar-
ison of GaspiLS with PETSc. We have followed the performance tuning hints
provided by the PETSc online manual (https://petsc.org/release/docs/manual/
performance/#performance-pitfalls-and-advice) in order to maximize the mem-
ory bandwidth (NUMA pinning) and to avoid performance pitfalls. We have
compiled the non-debug PETSc version 3.16 with dependencies fblaslapack
and mpich-3.4.2. We have used optimized build options with-debugging=0
and PETSC ARCH=arch-opt.

PETSc follows and suggests a FLAT MPI execution model in which one
process is started per core [1]. This affects the number of sub-domains used
along with the AS method. To mimic the PETSc domain decomposition in our
hybrid parallel GaspiLS implementation, we use AS instead of MLND also on
the shared memory level and further partition the process local subdomains
into uniformly distributed thread partitions there. We refer to this as hybrid
parallel AS + AS ILU(0) preconditioner in the following. For PETSc, we pin the

https://petsc.org/release/docs/manual/performance/#performance-pitfalls-and-advice
https://petsc.org/release/docs/manual/performance/#performance-pitfalls-and-advice

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 347

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e(
se

c)

Number of Sockets

PETSc : Plain GMRES
GaspiLS : Plain GMRES

PETSc : GMRES + ILU(0)
GaspiLS : GMRES + ILU(0)

Fig. 5. Baseline comparison of GMRES runtime with and without preconditioner
in GaspiLS and PETSc for the stationary convection-diffusion problem (64 million
unknowns)

distributed processes on cores with options, -bind-to=core and -map-by=numa
in mpich.

From Table 1, we observe that GMRES solver takes the same order of iter-
ations for plain solver and ILU(0) preconditioner both in PETSc and GaspiLS.
In Fig. 5, we validate the baseline performance: for the smaller number of sock-
ets, both GaspiLS and PETSc take the same order of runtime. However, for
the higher number of sockets, GaspiLS based solver and preconditioner runs
faster than PETSc. On 20 sockets (400 cores), plain and ILU(0) preconditioned
GMRES is 1.55 × and 1.34 × faster in GaspiLS than PETSc respectively.

GaspiLS Results. We now evaluate the performance of our proposed two-level
hybrid parallel (R)AS + MLND ILU preconditioner and compare it to the AS
+ AS ILU preconditioner.

Table 2 shows for the different preconditioners, the number of required solver
iterations as a function of an increasing number of sockets (subdomains). While
the number of iterations increases significantly for AS + AS ILU preconditioned
GMRES, this increase is mainly limited for (R)AS + MLND preconditioned
GMRES solver. Figure 6 shows the runtimes as a function of an increasing num-
ber of sockets (subdomains) for the different preconditioners. On 64 GASPI
processes (sockets), each having 20 cores, RAS+MLND preconditioned GMRES
achieves a speedup of 54.44× which outperforms the AS+MLND preconditioned

348 R. Ram et al.

Table 1. Comparison of GMRES solver iterations with and without AS ILU(0) pre-
conditioner in linear solver library GaspiLS and PETSc for the stationary convection-
diffusion problem (64 million unknowns)

Plain GMRES GMRES + AS ILU(0)

#Sockets GaspiLS PETSc GaspiLS PETSc

1 5976 5944 1039 1058

2 6056 5816 1093 1086

4 5976 6040 1155 1143

10 5823 6068 1488 1472

20 5870 6076 2341 2355

Table 2. Comparison of GMRES solver iterations using different preconditioners for
two-level domain decomposition using dropping parameters p = 100 and τ = 0.01 for
Crout ILU preconditioner for the stationary convection-diffusion problem (64 million
unknowns)

Sockets Plain GMRES AS + AS AS + MLND RAS + MLND

1 5976 481 310 307

2 6056 558 379 321

4 5976 715 373 325

8 5658 1077 383 321

16 6008 1826 384 320

32 5990 2336 443 329

64 5985 2254 599 388

GMRES’s speedup of 47.88×. In total, we obtain 3.16× gain in GMRES run-
time using RAS+MLND Crout ILU based preconditioner in comparison to no
preconditioner on 64 sockets.

Figure 7 shows the parallel efficiency of different preconditioners as a function
of an increasing number of sockets. The parallel efficiency is defined as the ratio
of the speedup factor and the number of sockets used. For example, a parallel
efficiency smaller than 50% means that more than half of the resources are wasted
and not used productively.

The parallel efficiency for the AS ILU(0) preconditioner in FLAT MPI-based
PETSc deviates strongly from the ideal parallel efficiency. It is less than 50% for
20 sockets. Therefore, we do not perform further experiments beyond 20 sockets
for this preconditioner. The breakdown in parallel efficiency takes place due to a
huge increase of iterations with increasing subdomains. This effect is reduced to
some extent with the hybrid parallel AS + AS ILU(0) preconditioner in GaspiLS
(c.f. column 3 in Table 2), since it allows to obtain the same degree of parallelism
with fewer sub-domains at the distributed memory level. This can be improved
drastically by using the MLND reordering instead of AS at the shared memory

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 349

 10

 100

 1000

 0 10 20 30 40 50 60 70

T
im

e(
se

c)

Number of Sockets

No Preconditioner
AS + AS Crout ILU Preconditioner

AS + MLND Crout ILU Preconditioner
RAS + MLND Crout ILU Preconditioner

Fig. 6. GMRES runtime with different preconditioners in GaspiLS for the stationary
convection-diffusion problem (64 million unknowns)

level, which reduces decoupling and still allows for the parallelism (c.f. column
4 in Table 2). We observe almost perfect parallel efficiency up to 32 sockets for
(R)AS + MLND ILU preconditioner and it starts to decline afterwards. The
remaining decoupling originating from the first level AS based partitioning can
be further reduced by using RAS instead of AS (c.f. column 5 in Table 2). For
RAS + MLND ILU preconditioner, our GMRES solver implementation achieves
about 80% parallel efficiency on 64 sockets (1280 cores).

The evaluation of the convection-diffusion problem allows us to show the
scaling and efficiency of the basic ILU preconditioner-based modules in GaspiLS
such as factorization, triangular solve, etc. These modules are also required for
more sophisticated problems. In our current research, we provide different drop-
ping strategies and allow for diagonal pivoting with deferral in combination with
equilibration techniques like MC64 in order to make the algorithm robust such
that it is applicable to a broad range of ill-conditioned problems. Since we have
demonstrated the effectiveness of basic modules in GaspiLS, other problems
should also benefit from the scalability of these modules.

350 R. Ram et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 8 16 32 64

Pa
ra

lle
l E

ff
ic

ie
nc

y

Number of Sockets

Ideal Parallel Efficiency
GaspiLS : RAS + MLND ILU

GaspiLS : AS + MLND ILU
GaspiLS : AS + AS ILU(0)

PETSc : AS ILU(0)

Fig. 7. Parallel efficiency of the GMRES solver with different preconditioners in
GaspiLS and PETSc for the stationary convection-diffusion problem (64 million
unknowns)

7 Conclusion

We have investigated a two-level domain decomposition approach that imple-
ments an ILU preconditioner for solving general purpose sparse linear systems
arising from PDE-based simulations. In general, the solution of these systems
is the most expensive part, and the performance of the preconditioner is cru-
cial. The productivity for the domain expert can be directly related to it and is
measured by the following factors:

– The methods can be applied to a huge set of problems (generic).
– The approach does not depend on the physics of the problem and the dis-

cretization method used (algebraic).
– The time to solution scales with the addition of resources (scalable).
– The methods are efficient in providing the solution (efficient).

To incorporate these features, we combine the restricted additive Schwarz (RAS)
method on the process level with a shared memory parallel MLND Crout ILU
method on the thread level.

Generic: We extend the MLND approach, presented in [3] for symmetric
positive definite systems to generic (non-SPD) systems.

Algebraic: We provide a scalable black-box preconditioner that does not
require specific information about the grid or domain and works directly on the
matrices. As an input, it requires the discretization matrix and the rhs vector.

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 351

This allows solving the linear systems from different computational domains
without specific domain knowledge.

Scalable: We employ MTMETIS, a recently developed multi-threaded ver-
sion of METIS [22] which performs the MLND based graph reordering in parallel.
This is essential to achieve better scalability during factorization and is accom-
panied by a data-dependency-driven, task-parallel implementation of the ILU
preconditioner.

We demonstrate the scalability of our hybrid parallel approach by solving
an ill-conditioned 3D convection-diffusion PDE, which represents a large class
of typical problems arising in computational science.

The hybrid parallel RAS-based MLND Crout ILU preconditioner achieves
54.44× speedup on 64 GASPI processes running 20 threads when solving the
4003 mesh. Thus, we provide a scalable implementation that optimally exploits
the hardware using up to 1280 physical cores.

Efficient: We demonstrate the superior performance of our implementation
against the default solver GMRES(30) and default preconditioner ILU(0) in the
most widely used linear solver library PETSc.

As such, we have demonstrated generic, algebraic, scalable, efficient solvers
and preconditioners that enables productivity for the domain expert in solving
large-scale linear systems.

References

1. Threads and PETSc (2021). https://petsc.org/release/miscellaneous/threads/.
Accessed 14 Dec 2021

2. Agullo, E., Giraud, L., Guermouche, A., Haidar, A., Roman, J.: MaPHyS or the
development of a parallel algebraic domain decomposition solver in the course of
the solstice project. In: Sparse Days 2010 Meeting at CERFACS (2010)

3. Aliaga, J.I., Bollhöfer, M., Martı, A.F., Quintana-Ortı, E.S., et al.: Exploiting
thread-level parallelism in the iterative solution of sparse linear systems. Parallel
Comput. 37(3), 183–202 (2011)

4. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Design, tuning
and evaluation of parallel multilevel ILU preconditioners. In: Palma, J.M.L.M.,
Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds.) VECPAR 2008. LNCS,
vol. 5336, pp. 314–327. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-92859-1 28

5. Balay, S., et al.: Petsc users manual (2019)
6. Belli, R., Hoefler, T.: Notified access: extending remote memory access program-

ming models for producer-consumer synchronization. In: 2015 IEEE International
Parallel and Distributed Processing Symposium, pp. 871–881. IEEE (2015)

7. Bollhöfer, M., Saad, Y., Schenk, O.: Ilupack-preconditioning software package.
Release 2 (2006). http://ilupack.tu-bs.de/

8. Cai, X.C., Sarkis, M.: A restricted additive Schwarz preconditioner for general
sparse linear systems. SIAM J. Sci. Comput. 21(2), 792–797 (1999)

9. Chen, Q., Ghai, A., Jiao, X.: HILUCSI: simple, robust, and fast multilevel ILU for
large-scale saddle-point problems from PDEs. Numer. Linear Algebra Appl. 28,
e2400 (2021)

https://petsc.org/release/miscellaneous/threads/
https://doi.org/10.1007/978-3-540-92859-1_28
https://doi.org/10.1007/978-3-540-92859-1_28
http://ilupack.tu-bs.de/

352 R. Ram et al.

10. Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. SIAM J.
Sci. Comput. 37(2), C169–C193 (2015)

11. Efstathiou, E., Gander, M.J.: Why restricted additive Schwarz converges faster
than additive Schwarz. BIT Numer. Math. 43(5), 945–959 (2003)

12. Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hypre, a
library of parallel high performance preconditioners. In: Bruaset, A.M., Tveito, A.
(eds.) Numerical Solution of Partial Differential Equations on Parallel Computers,
pp. 267–294. Springer, Berlin (2006)

13. Forum, G.: GASPI forum - forum of the PGAS API GASPI (2020). http://www.
gaspi.de

14. Ghai, A., Jiao, X.: Robust optimal-complexity multilevel ilu for predominantly
symmetric systems. arXiv preprint arXiv:1901.03249 (2019)

15. Giraud, L., Tuminaro, R.: Algebraic domain decomposition preconditioners. In:
Magoules, F. (ed.) Mesh Partitioning Techniques And Domain Decomposition
Methods, pp. 187–216. Saxe-Coburg Publications, Kippen (2006)

16. Grünewald, D., Simmendinger, C.: The GASPI API specification and its imple-
mentation GPI 2.0. In: Proceedings of the 7th International Conference on PGAS
Programming Models, vol. 243 (2013)

17. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G.,
Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., et al.: An overview of
the trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

18. ITWM Fraunhofer: GaspiLS - a linear solver for the Exascale Era (2020). https://
www.gaspils.de

19. ITWM Fraunhofe: GPI-2 - Programming next generation supercomputers (2020).
http://www.gpi-site.com

20. Karypis, G., Kumar, V.: METIS: A software package for partitioning unstruc-
tured graphs, partitioning meshes, and computing fill-reducing orderings of sparse
matrices. Technical Report; 97-061 (1997)

21. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

22. LaSalle, D., Karypis, G.: Efficient nested dissection for multicore architectures.
In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp.
467–478. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48096-
0 36

23. Leicht, T., Jägersküpper, J., Vollmer, D., Schwöppe, A., Hartmann, R., Fiedler,
J., Schlauch, T.: DLR-project digital-X-next generation CFD solver ’flucs’ (2016)

24. Li, N., Saad, Y., Chow, E.: Crout versions of ILU for general sparse matrices. SIAM
J. Sci. Comput. 25(2), 716–728 (2003)

25. Prokopenko, A., Siefert, C.M., Hu, J.J., Hoemmen, M., Klinvex, A.: Ifpack2 User’s
Guide 1.0. Tech. Rep. SAND2016-5338, Sandia National Labs (2016)

26. Rajamanickam, S., Boman, E.G., Heroux, M.A.: ShyLU: a hybrid-hybrid solver for
multicore platforms. In: 2012 IEEE 26th International Parallel and Distributed Pro-
cessing Symposium, pp. 631–643 (2012). https://doi.org/10.1109/IPDPS.2012.64

27. Ram, R., Grünewald, D., Gauger, N.R.: Data structures to implement the Sparse
Vector in Crout ILU preconditioner (2019), Sparse Days 2019

28. Simmendinger, C., Rahn, M., Gruenewald, D.: The GASPI API: a failure tolerant
PGAS API for Asynchronous Dataflow on heterogeneous architectures. In: Resch,
M., Bez, W., Focht, E., Kobayashi, H., Patel, N. (eds.) Sustained Simulation Per-
formance 2014, pp. 17–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-10626-7 2

http://www.gaspi.de
http://www.gaspi.de
http://arxiv.org/abs/1901.03249
https://www.gaspils.de
https://www.gaspils.de
http://www.gpi-site.com
https://doi.org/10.1007/978-3-662-48096-0_36
https://doi.org/10.1007/978-3-662-48096-0_36
https://doi.org/10.1109/IPDPS.2012.64
https://doi.org/10.1007/978-3-319-10626-7_2
https://doi.org/10.1007/978-3-319-10626-7_2

Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS 353

29. Stoyanov, D., Pfreundt, F.J.: Hybrid-parallel sparse matrix-vector multiplication
and iterative linear solvers with the communication library GPI. WSEAS Trans.
Inf. Sci. Appl. 11 (2014)

30. Yamazaki, I., Ng, E., Li, X.: Pdslin user guide. Tech. rep., Lawrence Berkeley
National Lab. (LBNL), Berkeley, CA, USA (2011)

A Subset of the CERN Virtual Machine
File System: Fast Delivering of Complex

Software Stacks for Supercomputing
Resources

Alexandre F. Boyer1,2(B) , Christophe Haen1 , Federico Stagni1 ,
and David R. C. Hill2

1 European Organization for Nuclear Research, Meyrin, Switzerland
alexandre.franck.boyer@cern.ch

2 Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Mines
Saint-Etienne, LIMOS, 63000 Clermont-Ferrand, France

Abstract. Delivering a reproducible environment along with complex
and up-to-date software stacks on thousands of distributed and het-
erogeneous worker nodes is a critical task. The CernVM-File System
(CVMFS) has been designed to help various communities to deploy soft-
ware on worldwide distributed computing infrastructures by decoupling
the software from the Operating System. However, the installation of
this file system depends on a collaboration with system administrators
of the remote resources and an HTTP connectivity to fetch dependencies
from external sources. Supercomputers, which offer tremendous comput-
ing power, generally have more restrictive policies than grid sites and
do not easily provide the mandatory conditions to exploit CVMFS. Dif-
ferent solutions have been developed to tackle the issue, but they are
often specific to a scientific community and do not deal with the prob-
lem in its globality. In this paper, we provide a generic utility to assist
any community in the installation of complex software dependencies on
supercomputers with no external connectivity. The approach consists in
capturing dependencies of applications of interests, building a subset of
dependencies, testing it in a given environment, and deploying it to a
remote computing resource. We experiment this proposal with a real use
case by exporting Gauss - a Monte-Carlo simulation program from the
LHCb experiment - on Mare Nostrum, one of the top supercomputers of
the world. We provide steps to encapsulate the minimum required files
and deliver a light and easy-to-update subset of CVMFS: 12.4 Gigabytes
instead of 5.2 Terabytes for the whole LHCb repository.

Keywords: Supercomputer · Software distribution · Automation ·
CVMFS · Monte Carlo simulation

1 Introduction

To study the constituents of matter and better understand the fundamental
structure of the universe, HEP collaborations rely on complex software stacks
c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 354–371, 2022.
https://doi.org/10.1007/978-3-031-07312-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_18&domain=pdf
http://orcid.org/0000-0002-9909-0186
http://orcid.org/0000-0002-4947-2928
http://orcid.org/0000-0002-7576-4019
http://orcid.org/0000-0003-2820-2766
https://doi.org/10.1007/978-3-031-07312-0_18

A Subset of CVMFS 355

and a worldwide distributed system to process a growing amount of data: the
World Wide LHC Computing Grid (WLCG) [23]. The infrastructure involves
170 computing centers, 1 million cores and 1 exabyte of storage spread around
42 countries.

Delivering a reproducible environment along with up-to-date software across
thousands of heterogeneous computing resources is a major challenge: Buncic
et al. designed CernVM and CVMFS (CernVM-File System) [16] to tackle it by
decoupling the software from the Operating System.

CernVM [20] is a thin Virtual Software Appliance of about 150 Mb in its
simplest form. It supports a variety of hypervisors and container technologies
and aims to provide a complete and portable user environment for developing
and running HEP applications on any end-user computer and Grid Sites, inde-
pendently of the underlying Operating Systems used by the targeted platforms.

CVMFS [20] is a scalable and low-maintenance file system optimized for
software distribution. CVMFS is implemented as a POSIX read-only file system
in user space. Files and directories are hosted on standard web servers and
mounted on the computing resources as a directory. The file system performs
aggressive file-level caching: both files and file metadata are cached on local disks
as well as on shared proxy servers, allowing the file system to scale to a large
number of clients [16].

This approach has been mainly adopted by the HEP community and is now
getting users from various communities according to Arsuaga-Ŕıos et al. [3]. In
a few years, it has become the standard software distribution service on Grid
Sites of WLCG. Nevertheless, computing infrastructure and funding models are
changing, and national science programs are consolidating computing resources
and encourage using cloud systems as well as supercomputers, as Barreiro et al.
explain [5]. CVMFS developers have extended the features of the file system and
have provided additional tools to support clouds [36,46] and supercomputers [9].

Supercomputers are highly heterogeneous architectures that pose higher inte-
gration challenges than traditional Grid Sites. Many supercomputers do not
allow a CVMFS client to be mounted on the worker nodes and/or do not pro-
vide external connectivity, which is critical to work with CVMFS. CVMFS tools
designed to interact with High-Performance Computing sites are aimed at admin-
istrators of scientific communities that would like to integrate their workflows on
such machines: they ease some steps of the process but may require additional
efforts on behalf of the administrators.

In this study, we aim to automate the whole process and reduce these addi-
tional efforts by providing a utility able to extract, test and deploy parts of
CVMFS on supercomputers not having outbound connectivity. Section 2 briefly
introduces CVMFS and the ecosystem developed around it, in order to deal
with supercomputers. Section 3 focuses on the design of the utility, the steps to
extract software dependencies and to deploy them on a given supercomputer.
Finally, Sect. 4 presents a use case and the obtained results in detail.

356 A. F. Boyer et al.

2 Context

2.1 CVMFS to Distribute Software on Grid Resources

At the beginning of 2021, CVMFS was managing about 1 billion files delivered
to more than 100,000 computing nodes by (i) 10 public data mirror servers -
called Stratum1 s - located in Europe, Asia and the United States and (ii) 400
site-local cache servers [8].

To keep the file system consistent and scalable, developers conceived CVMFS
as a read-only file system. Release managers - or continuous integration workers -
aiming to publish a software release has to log in to a dedicated machine - named
Stratum0 - with an attached storage volume providing an authoritative and
editable copy of a given repository [11]. Changes are written into a staging area
until they are committed as a consistent changeset: new and modified files are
transformed into a content-addressed object providing file-based deduplication
and versioning. In 2019, Popescu et al. [43] introduced a gateway component, a
web service in front of the authoritative storage, allowing release managers to
perform concurrent operations on the same repository and make CVMFS more
responsive (Fig. 1.1.b and 1.2.b).

The transfer of files is then done lazily via HTTP connections initiated by the
CVMFS clients [43] (Fig. 1.3.b). Clients request updates based on their Time-to-
Live (TTL) value, which is generally about a few minutes. Once the TTL value
expires, clients download the latest version of a manifest - a text file located in
the top-level directory of a given repository composed of the current root hash,
metadata and the revision number of this repository - and make the updated con-
tent available. Dykstra et al. [27] provide additional details about data integrity
and authenticity mechanisms of CVMFS to ensure that data received matches
data initially sent by a trusted server. This pull-based approach has been proven
to be robust and efficient, according to Popescu et al. [43], and has been widely
used to distribute up-to-date software on grid sites for many years (Fig. 1.2.a).
Figure 1 presents a simplified schema summarizing the software distribution pro-
cess on grid sites via CVMFS.

Users may need to use various versions of software on heterogeneous comput-
ing resources implying different OS and architectures. To provide a convenient
environment for the users, release managers generally provide software along
with build files related to many architectures, OS and compilers. Framework for
building and installing scientific software on heterogeneous systems can be used
to supply CVMFS with build files. Easybuild [28], Spack [49], Nix [40] or Gentoo
[33] are popular choices in this area [17,56,57].

2.2 Software Delivery on Supercomputers

Communities working around the Large Hadron Collider (LHC) [21] have exten-
sively used WLCG and CVMFS to process a growing amount of data. This app-
roach was reliable during LHC Run1 but has demonstrated its limit. According to
the analysis of Stagni et al. [50] on the use of CPU cycles in 2016, all the LHC

A Subset of CVMFS 357

1a. submit a job

Worker
Nodes

Batch
System

Grid Site

Release Manager

Users

Master Copy Server

Or Stratum 0

Data Mirror Server

Or Stratum 1

Gateway
CVMFS Client
mounted in
read/write

2a. Job gets software
dependencies

3b. pull updated data via HTTP

2b. populate with new data

CVMFS Client
mounted in
read-only

1b. release a new
version of a software

Fig. 1. Schema of the CVMFS workflow on Grid Sites: (a) the steps to get software
dependencies from the job; (b) the steps to publish a release of a software in CVMFS.

experiments have consumed more CPU-hours than those officially pledged to
them by the WLCG: they found ways to exploit opportunistic and not officially
supported resources. Moreover, in the High-Luminosity Large Hadron Collider
(HL-LHC) [2] era, experiments are expected to produce up to an order of magni-
tude more data compared to the current phase (LHC Run2). To keep up with the

358 A. F. Boyer et al.

computing needs, experiments have started to use supercomputers. They offer
a significant amount of computing power and would potentially offer a more
cost-effective data processing infrastructure compared to dedicated resources in
the form of commodity clusters, as Sciacca emphasizes [45]. Nevertheless, super-
computers have more restrictive security policies than Grid Sites: they do not
allow CVMFS to be mounted on the nodes by default and many of them have
limited or even no external connectivity. The LHC communities have developed
different solutions and strategies to cope with the lack of CVMFS, which is a
critical component to run their workflows.

Stagni et al. [51] rely on a close collaboration with some supercomputer cen-
ters - Cineca in Italy and CSCS in Switzerland - to get CVMFS mounted on
the worker nodes. Nevertheless, their strategy is limited to a few supercomput-
ers and their approach would be difficult to reproduce on a large number of
supercomputers: most of them do not allow such collaboration.

To deal with the lack of CVMFS on supercomputers with outbound con-
nectivity, Filipčič et al. studied two solutions: rsync and Parrot [31]. The first
solution consisted in copying the CVMFS software repository in the shared file
system using rsync: a utility aiming to transfer and synchronize files and directo-
ries between two different systems. rsync added a significant load on the shared
file system of the supercomputers and required changes in the repository abso-
lute paths. The second solution was based on Parrot: a utility copied on the
shared file system of the supercomputer, usable without any user privileges.
Parrot is a wrapper using ptrace attached to a process that intercepts system
calls that access the file system and can simulate the presence of arbitrary file
system mounts, CVMFS in this case. Nevertheless, the solution was “unreli-
able in a multi-threaded environment” [31] because it was unable to handle race
conditions. These methods did not constitute a production-level solution but
contributed to further and future advanced solutions.

In recent years, developments in the Fuse user space libraries and the Linux
kernel have lifted restrictions for mounting Fuse file systems such as CVMFS.
Developers of CVMFS have integrated these changes and designed a package
called cvmfsexec [26], which allows mounting the file system as an unprivileged
user. The program needs a specific environment to work correctly: (i) external
connectivity; (ii) the fusermount library or unprivileged namespace mount points
or a setuid installation of Singularity (efficient High-Performance Computing
container technology). Blomer et al. provide additional details about the package
[10].

Communities exploiting supercomputers that do not provide outbound con-
nectivity cannot directly benefit from cvmfsexec: the package still needs to pull
updated data via HTTP, which is not available in such context. We can distin-
guish two cases: (i) supercomputers that grant outside network or specific service
access to a limited number of nodes and (ii) supercomputers that do not provide
nodes with any external connectivity at all.

A Subset of CVMFS 359

Tovar et al. recently worked on the first case [54]. They managed to build
a virtual private network (VPN) client and server to redirect network traffic
from the workloads running on the worker nodes to external services such as
CVMFS. In this configuration, the VPN client runs on a worker node along
with the job, while the VPN server is hosted on one of the specific nodes of the
supercomputer and can interact with external services. Communities working on
supercomputers from the second case cannot leverage the solution developed by
Tovar et al.

O’Brien et al., one of the first teams to work with supercomputers in the LHC
context, address the lack of external network access by copying part of it to the
shared Lustre file system accessible by the WNs [41]. The approach (i) worked
because the environment of the supercomputer was similar to a grid site one, (ii)
required changes in the CVMFS files and (iii) degraded the performance of the
software as Angius et al. described [42]. To tackle the latter issue on the Titan
supercomputer, Angius et al. moved the software to a read-only NFS server [42]:
this eliminated the problem of metadata contention and improved metadata read
performance.

Similarly, on the Chinese HPC CNGrid, Filipčič regularly packed a part
of CVMFS in a tarball. Filipčič provided a deployment script to install the
software and fix the path relocation on the shared file system to the local system
administrators: they were then responsible for getting and updating the CVMFS
tarball on the network when requested [30].

To help communities to unpack a CVMFS repository in a file system, a team
of developers designed uncvmfs [37]. The utility deduplicates files of a software
stack: it populates a given directory with the CVMFS files that are then hard-
linked into it, if possible. The program was used, in combination with Shifter
[34], a container technology providing a reproducible environment, in the context
of the integration of the ALICE and CMS experiments workflows on the NERSC
High-Performance Computing resources [29,38]. As a proof of concept, Gerhardt
et al. used uncvmfs to deduplicate the ATLAS repository and copy it into an
ext4 image - about 3.5 Tb of data containing 50 million files and directories -,
compressed into a 300 Gb squashfs image; and Shifter to provide a software-
compatible environment to run the jobs [34]. Despite encapsulating the files in
a container reduced the startup time of the applications, the solution generated
large images, long to update and deliver on time.

To cope with large images, Teuber and the CVMFS developers conceived
cvmfs shrinkwrap [52]. The tool supports uncvmfs features with certain opti-
mizations and delivers additional features: cvmfs shrinkwrap can extract specific
files and directories based on specification files, deduplicate them, making them
easy to export in various formats such as squashfs or tarball. In this way, the
following operations remain on behalf of the user communities: (i) trace their
applications - meaning, in this context, “capturing all their dependencies and
their locations in the file system” -, (ii) call cvmfs shrinkwrap to get a subset of
CVMFS composed of the minimum required files, and (iii) export this subset in

360 A. F. Boyer et al.

a certain format and deploy it on sequestered computing resources to run their
jobs.

Douglas et al. already described such a project in an article [7], but the
work remains specific to the ATLAS experiment. They use uncvmfs to produce
a large image that has to be filtered afterward. In this paper, we aim at assisting
various user communities in this process by providing an open-source utility that
would take applications of interest in input and would output - with the help of
cvmfs shrinkwrap - a subset of CVMFS with the minimum required files to run
the given applications, in combination with a container image if needed. To our
knowledge, no paper has already covered the subject.

3 Design of the CVMFS Subset Builder

3.1 Input and Output Data

The utility takes a directory as input that should contain: (i) a list of appli-
cations of interest (apps): a command along with its input data in a separate
sub-directory for each application to trace; and/or (ii) a list of files composed of
paths to include in the subset of CVMFS (namelists). Additionally, user com-
munities can embed a (iii) container image compatible with Singularity to get a
specific environment to trace and test the applications; (iv) and a configuration
file to fine-tune the utility with variables related to the deployment process, or
information about repositories. A schema of the inputs is available in Fig. 2.

The expected output can take different forms depending on the utility
configuration:

– The subset of CVMFS, generated as a standalone. In this case, administrators
representing their user communities need to provide the right environment by
themselves, which might also involve discussions with the system administra-
tors.

– The subset of CVMFS embedded within the given Singularity container
image. The utility merges both elements and submits the resulting image,
which can be long to generate and deploy but may limit manual operations
on the remote location.

3.2 Features

We break down the process into four main steps, namely:

– Trace: consists in running applications contained in apps and trapping their
system calls at runtime, using Parrot, to identify and extract the paths of their
dependencies. Applications can run in a Singularity container when provided,
which delivers further software dependencies and a reproducible environment.
Dependencies are then saved in a specific file namelist.txt. In this context,
Parrot is only used to capture system calls and, thus, is not impacted by the
issues mentioned in Sect. 2.2. If the step detects an error during the execution

A Subset of CVMFS 361

inputs

apps

appC1

command.sh

command-input1.conf

appC2

command.sh

command-input1.json

command-input2.sh

appC3

command.sh

namelists

appA.txt

appB.txt

container-image.sif

pipeline-config.json

Fig. 2. Schema of the input structure given to the utility.

of an application, then the program is stopped. The step is particularly helpful
for users of the utility having no technical knowledge of the applications of
interest.

– Build : builds a subset of CVMFS based on the paths coming from Trace
and the namelists directory. First, the step merges the namelist files to
remove duplicated or non-existent path references, and then separates the
paths in different specification files related to repositories. Finally, the step
calls cvmfs shrinkwrap to generate the subset of CVMFS. Figures 3 and 4.3
illustrate an example. The utility deduplicates the files, and hard-link data
to populate a directory, ready to be exported in various formats as explained
in Sect. 2.2 and shown in Fig. 4.3.

– Test : consists in testing certain applications - in the given Singularity con-
tainer environment when provided - using the subset of CVMFS obtained
during the Build step (see Fig. 4.4). By default, applications from apps are
used but further tests can also be provided by modifying the utility config-
uration. All the applications have to complete their execution to go to the
next step.

362 A. F. Boyer et al.

in namelist1.txt:

/cvmfs/repoA/path/to/file

/cvmfs/repoB/path/to/another/file

in namelist2.txt:

/cvmfs/repoA/path/to/file

/cvmfs/repoB/path/to/yet/another/file

in repoA.spec:

/path/to/file

in repoB.spec:

/path/to/another/file

/path/to/yet/another/file

Fig. 3. Transformation process occurring during the Trace step: CVMFS dependencies
are extracted from namelist.txt and moved to specification files.

– Deploy : deploys the subset of CVMFS (Fig. 4.5) embedded or not within the
container image depending on the configuration options. If such is the case,
then the utility (i) generates a new container definition file that includes the
files with the container image, (ii) executes it to produce a new read-only
container image. The utility supports ssh deployment via rsync, provided the
right credentials in the configuration.

3.3 Implementation

The utility is built as a 2-layer system. The first layer, subcvmfs-builder [12], is
the core of the system and is self-contained. It takes the form of a Python pack-
age, which embeds the steps described in Sect. 3.2, and provides a command-line
interface to call and execute steps independently from each other. The first layer
is, and should remain, simple and generic to be easily managed by developers
and used by various communities.

The second layer is the glue code: it consists of a workflow executing - all,
or some of - the steps of the first layer. It contains the complexity required to
generate and deliver a subset of dependencies according to the needs of its users.
Unlike the first layer, the second one can take several forms and each community
can tailor it for its software stack.

We propose a first, simple and generic layer-2 implementation calling each
step one after the other: subcvmfs-builder-pipeline [13]. This layer-2 implemen-
tation is executed from a GitLab CI/CD [35], which provides a runner and a
docker executor bound to a CVMFS client to execute the code (see Fig. 5) Git-
Lab includes features such as log preservation to help debug the implementation
and integrates a pipeline scheduling mechanism to regularly update a subset
of dependencies. Even though this layer-2 solution is adapted for basic exam-
ples - implying a few commands to trace and test, having a small number of
dependencies -, it might require further fine-tuning for more advanced use cases.

A Subset of CVMFS 363

 DTN

Sequestered computing resources

Pipeline

 CVMFS

 Application

1. a new
application comes

in

 Parrot

2. Execute and monitor the
application with CVMFS and a

container image

3. Get the dependencies and
create a subset of CVMFS from it

 Dependencies

 CVMFS Shrinkwrap

4. Mount the subset in the
container and run the
application against it

5. Submit subset-CVMFS and
the conainer to a Data

Transfer Node

Trace

Build

Test

Deploy

 Container

Fig. 4. Schema of the utility workflow: from getting an application to trace to a subset
of CVMFS on the Data Transfer Node of a High-Performance Computing cluster.

Indeed, this generic layer-2 implementation is not scalable as it (i) is a single-
threaded and single-process program, and (ii) requires manual operations to
insert additional inputs in the process. This is not adapted to communities hav-
ing to trace and test hundreds of various applications to generate large sub-
sets of CVMFS. Two possibilities for such communities: building a new layer-2
implementation - able to automatically fetch applications and trace/test them
in parallel - based on subcvmfs-builder-pipeline or creating one from scratch.

In the next section, we are going to study how the LHCb experiment [25]
leverages subcvmfs-builder and subcvmfs-builder-pipeline to deliver Gauss [24], a
Monte-Carlo simulation program, on the worker nodes of Mare Nostrum [55], a
supercomputer with no external connectivity based in Barcelona, Spain.

364 A. F. Boyer et al.

GitLab
Runner

CVMFS Shrinkwrap

CVMFS Client

Docker
executor

SubCVMFS-builder-
pipeline

Layer2

Apps and
Namelists

Container
Image

Layer1

SubCVMFS-
builder

1. Call SubCVMFS-
builder-pipeline

2. Call each step of
SubCVMFS-builder

Fig. 5. Schema of a layer-2 implementation within GitLab CI.

4 A Practical Use Case

4.1 Gauss

To better understand experimental conditions and performances, the LHCb col-
laboration has developed Gauss, a Monte-Carlo simulation application - based on
the Gaudi framework [4] - that reproduces events occurring in the LHCb detec-
tor. The application consists of two independent phases executed sequentially,
namely the generation of the events [6] relying on Pythia [48] by default; the
tracking of the particles through the simulated detector depending on Geant4
[1].

In 2021, Gauss represents about 70% of the distributed computing activities
of the LHCb collaboration and 150 million events are simulated per day. The
application has originally been tailored for WLCG grid sites: Gauss is a compute-
intensive single-process (SP), single-threaded (ST) application, only supporting
×86 architectures and CERN-CentOS-compatible environments [19]. Gauss and
most of its dependencies are delivered via CVMFS.

Gauss takes a certain number of events to process as inputs, as well as a
“run number” and an “event number”. The combination of both numbers forms
a seed, which ensures repeatability during the generation and simulation phases.
It mainly relies on packages such as Python, Boost and gcc to produce histograms
and ntuples under the form of a ROOT [22] file.

Gauss is modular and highly configurable and constitutes a complex use-
case: it can integrate extra packages such as various event generators and decay

A Subset of CVMFS 365

tools. Depending on LHCb production needs and the computing environments
available, different versions of Gauss and its attached packages can be used.
A plethora of option files can also be passed as inputs to the extra packages.
Figure 6 describes the inputs, outputs and dependencies of Gauss as well as its
interactions with some extra packages and their options.

4.2 Mare Nostrum

To start integrating their workflows on High-Performance computing resources,
LHC experiments can benefit from a collaboration with PRACE [44] and
GÉANT [18,32]. This collaboration gives them access to several European super-
computers such as Marconi in Italy and Mare Nostrum in Spain.

Managed by the Barcelona Supercomputing Center (BSC), MareNostrum
is the most powerful and emblematic supercomputer in Spain [15]. MareNos-
trum was built in 2004 (MareNostrum 1), has been updated 3 times since then
(Mare Nostrum 2, 3 and 4) and was ranked 63rd in the June 2021 Top500 list
[53]. Each node composing the general-purpose block is equipped with two Intel
Xeon Platinum 8160 24 cores at 2.1 GHz chips, and at least 2 GB of RAM: this
configuration matches with Gauss requirements. Nevertheless, Mare Nostrum is
more restrictive than a traditional Grid Site on WLCG: (i) no external connec-
tivity at all; (ii) no service can be installed on the edge node; (iii) no CVMFS,
and thus, no Gauss and its dependencies available.

4.3 Running Gauss on Mare Nostrum

Running embarrassingly parallel applications such as Gauss on a supercomputer
can be seen as counterproductive. While it is true that the interconnect of the
supercomputer partitions has not been designed for millions of small Monte-
Carlo runs, it is better to use available, otherwise unused, cycles in agreement
with the management of the supercomputer sites. In the meantime, developers
are adapting software [39,47], but it remains a long process, requiring deep and
technical software inputs.

To deliver Gauss on Mare Nostrum, LHCb can rely on (i) subcvmfs-builder
to produce a subset of CVMFS containing the required files; (ii) a CernVM
Singularity container to provide a Gauss-compatible environment and to mount
the subset of CVMFS as if it was a CVMFS client.

Nevertheless, as we explained in Sect. 4.1, a Gauss execution can involve
different packages, extra packages, options, data and versions. Encapsulating
its ecosystem requires a good understanding of the application and/or a large
amount of storage to encapsulate the right dependencies. Therefore, different
options are available:

– Include the whole LHCb CVMFS repository: would not require any specific
knowledge about Gauss and would involve all the necessary files to run any
Gauss instance. However, this option would imply a tremendous quantity of
storage - the full LHCb repository needs 5.2 TB -, long periods to update the
subset and many unnecessary files.

366 A. F. Boyer et al.

Gauss v55r1
and its packages

-Histograms
-Ntuples

-Run number
-Number of events

Extra-
Package1

AppConfig
v3r4

Extra-
Package2

GenDecFiles
v31r7

opt1 opt2 opt3

Geant4 data

Inside LHCb CVMFS
repository

Fig. 6. Example of a Gauss instance, its dependencies and some interactions with extra
packages and their options.

– Include the dependencies of various Gauss runs: as the first option, would not
need any specific knowledge about Gauss and would include a few gigabytes
of data. Nevertheless, such an option would not guarantee the presence of all
needed files and would require a tremendous amount of computing resources
to trace Gauss workloads continuously.

– Include all the known dependencies of Gauss: would require a deep under-
standing of Gauss and its dependencies to include all the required files in a
subset of CVMFS. While this option would not involve many computing or
storage resources, it would include human resources to update the content
of the subset of CVMFS according to the releases of Gauss and its extra
packages.

As the default storage quota on Mare Nostrum is smaller than the LHCb
repository, we decided to reject the first option. LHCb has access to tremen-
dous computing power: it interacts with hundreds of WLCG Sites to run Gauss
workloads and could theoretically trace them and extract their requirements.
In practice, tracing Gauss workloads in production could slow down the appli-
cations and their execution, which is not an option. Similarly, LHCb does not
have human resources to update the subset of CVMFS according to the changes
done. Thus, we chose to combine the second and the third options to propose a

A Subset of CVMFS 367

light and easy to update and maintain solution. The process consists in getting
insights into the structure of the Gauss dependencies by running and tracing a
small set of Gauss workloads and analyzing the system calls before including the
structure in subcvmfs-builder-pipeline.

After analyzing 500 commands calling Gauss from the LHCb production
environment and tracing 3 Gauss applications using subcvmfs-builder [14], we
noticed that:

– 97% of the workloads studied were running the same Gauss versions (v49r20)
with the same extra packages and versions. The versions of Gauss and its
extra packages seem related to the underlying architecture.

– 846 Mb of files were needed to run 3 Gauss (v49r20) workloads. About 95% of
the size is related to the Gauss version and the underlying architecture, and
is common to the Gauss workloads traced, while the 5% left is bound to the
options and Geant4 data used that are specific to a given Gauss workload.

– Integrating all the options and Geant4 data related to Gauss v49r20 would
correspond to 1.8 Gb of files.

Based on these assumptions, we created a namelist file containing (i) the
files shared by the 3 Gauss applications that we traced and (ii) all the options
and Geant4 data in order to generate a subset of CVMFS able to run any
Gauss workload targeting the v49r20 version. We used subcvmfs-builder-pipeline
to build the subset of CVMFS, to successfully test it with 5 Gauss workloads -
different from the ones we used previously - and to deploy it to Mare Nostrum.
We fine-tuned the utility to disable the trace step and to deploy the subset sepa-
rately from the container. Indeed, CernVM - the container that we use to provide
a reproducible environment to the workload - does not need regular updates and
merging it with the subset of CVMFS is a time-consuming operation.

This resulted in a CernVM singularity container occupying 6.4 Gb on the
General Parallel File System (GPFS) of Mare Nostrum combined with a subset
of CVMFS covering 6 Gb: dependencies occupies 3.2 Gb of space while 2.8 Gb
are required for the cvmfs shrinkwrap metadata. Thus, 12.4 Gb of space on the
GPFS of Mare Nostrum is currently sufficient to run 97% of the Gauss workloads
analyzed: 0.24% of the LHCb repository.

Even though this approach provides a light, easy and fast-to-update solution,
LHCb developers need to keep it up to date to integrate new versions or structure
changes. One way to proceed would consist in automating and repeating the
analysis work regularly. One could also integrate the trace command of subcvmfs-
builder within the LHCb production test phase, which consists in running a few
events of upcoming Gauss workloads on a given Grid Site. LHCb developers could
trace some of them during the process and store the traces in a database. An
LHCb-specific subcvmfs-pipeline-builder could then periodically fetch the content
of the database to build, test and deploy a new subset of dependencies to Mare
Nostrum.

368 A. F. Boyer et al.

5 Conclusion

This paper presents a dependency delivery system based on CVMFS to pro-
vide complex software stacks on sequestered computing resources such as worker
nodes of supercomputers not having external connectivity.

After introducing CVMFS (Sect. 2.1), a critical tool - especially for LHC
communities - to supply workloads with complex dependencies on Grid Sites, we
have described the context of this study (Sect. 2.2): several virtual organizations
are exporting their workflow from WLCG to supercomputers, which have more
restrictive policies than grid sites and generally do not allow to mount CVMFS
on the worker nodes.

We have highlighted several solutions aiming to overcome the issue such as
collaborating with the system administrators and using tools such as Parrot and
cvmfsexec. Nevertheless, these approaches do not work when worker nodes have
no external connectivity. Then, we have emphasized different ways to export
parts of CVMFS to supercomputers with no external connectivity: uncvmfs and
cvmfs shrinkwrap. These solutions require several manual steps and therefore we
have proposed a utility to assist communities in this process.

We have explained the different steps of the utility in detail (Sect. 3.2). It
traces - captures the system calls of - applications of interest, builds a subset with
the required files, tests the subset and deploys it to a remote computing resource.
We also described the structure of the solution (Sect. 3.3), which is composed of
two layers: a first one, generic with simple components, and a second one more
complex, adapted to communities needs that can be fine-tuned.

Finally, we have provided a use case based on Gauss, a Monte-Carlo simula-
tion application reproducing events occurring in the LHCb detector (Sect. 4.1).
Gauss is highly configurable and can be coupled with different packages, extra
packages, options, data and versions. It represents a complex bundle of depen-
dencies, which makes it ideal to test our utility. We have proposed a method
to encapsulate Gauss and its dependencies in a subset, which represents 12.4
Gb of space on the GPFS of the Mare Nostrum supercomputer (Sect. 4.3). The
solution produced represents 0.24% of the full LHCb repository and, thus, is
easier to update. We have successfully tested the solution with different Gauss
workloads. Future work could focus on encapsulating further applications from
different domains using this utility, and analyzing its performances to deploy
subsets on various supercomputers.

References

1. Agostinelli, S., et al.: GEANT 4-a simulation toolkit. Nuclear Instrum. Meth-
ods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 506(3),
250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8, http://www.
sciencedirect.com/science/article/pii/S0168900203013688

2. Apollinari, G., Béjar Alonso, I., Brüning, O., Lamont, M., Rossi, L.: High-
Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report. CERN
Yellow Reports: Monographs, CERN, Geneva (2015). https://doi.org/10.5170/
CERN-2015-005, http://cds.cern.ch/record/2116337

https://doi.org/10.1016/S0168-9002(03)01368-8
http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://www.sciencedirect.com/science/article/pii/S0168900203013688
https://doi.org/10.5170/CERN-2015-005
https://doi.org/10.5170/CERN-2015-005
http://cds.cern.ch/record/2116337

A Subset of CVMFS 369

3. Arsuaga-Ŕıos, M., Heikkilä, S.S., Duellmann, D., Meusel, R., Blomer, J., Couturier,
B.: Using s3 cloud storage with ROOT and CvmFS. J. Phys. Conf. Ser. 664(2),
022001 (2015). https://doi.org/10.1088/1742-6596/664/2/022001

4. Barrand, G., et al.: Gaudi—a software architecture and framework for building
hep data processing applications. Comput. Phys. Commun. 140(1), 45–55 (2001).
https://doi.org/10.1016/S0010-4655(01)00254-5, https://www.sciencedirect.com/
science/article/pii/S0010465501002545, cHEP2000

5. Barreiro, F., et al.: The future of distributed computing systems in atlas: boldly
venturing beyond grids. EPJ Web Conf. 214, 03047 (2019). https://doi.org/10.
1051/epjconf/201921403047

6. Belyaev, I., et al.: Handling of the generation of primary events in gauss, the LHCb
simulation framework. J. Phys. Conf. Ser. 331(3), 032047 (2011). https://doi.org/
10.1088/1742-6596/331/3/032047

7. Douglas, B.: Building and using containers at HPC centres for the atlas experiment.
EPJ Web Conf. 214, 07005 (2019). https://doi.org/10.1051/epjconf/201921407005

8. Blomer, J.: CernVM-FS overview and roadmap (2021). https://easybuild.io/eum/
002 eum21 cvmfs.pdf. Accessed 26 May 2021

9. Blomer, J., Ganis, G., Hardi, N., Popescu, R.: Delivering LHC software to HPC
compute elements with CernVM-FS. In: Kunkel, J.M., Yokota, R., Taufer, M.,
Shalf, J. (eds.) ISC High Performance 2017. LNCS, vol. 10524, pp. 724–730.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67630-2 52

10. Jakob, B., Dave, D., Gerardo, G., Simone, M., Jan, P.: A fully unprivileged
CernVM-FS. EPJ Web Conf. 245, 07012 (2020). https://doi.org/10.1051/epjconf/
202024507012

11. Jakob, B., Gerardo, G., Simone, M., Radu, P.: Towards a serverless CernVM-FS.
EPJ Web Conf. 214, 09007 (2019). https://doi.org/10.1051/epjconf/201921409007

12. Boyer, A.F.: SubCVMFS-builder (2022). https://doi.org/10.5281/zenodo.6335367
13. Boyer, A.F.: SubCVMFS-builder-pipeline (2022). https://doi.org/10.5281/zenodo.

6335512
14. Boyer, A.F.: SubCVMFS: gauss analysis (2022). https://doi.org/10.5281/zenodo.

6337297
15. BSC: Marenostrum (2020). https://www.bsc.es/marenostrum/. Accessed 04 Oct

2021
16. Buncic, P., et al.: CernVM – a virtual software appliance for LHC applications. J.

Phys. Conf. Ser. 219(4), 042003 (2010). https://doi.org/10.1088/1742-6596/219/
4/042003

17. Chris, B., Marco, C., Ben, C.: Software packaging and distribution for LHCB
using nix. EPJ Web Conf. 214, 05005 (2019). https://doi.org/10.1051/epjconf/
201921405005

18. CERN: Cern, skao, gÉant and prace to collaborate on high-performance comput-
ing (2020). https://home.cern/news/news/computing/cern-skao-geant-and-prace-
collaborate-high-performance-computing. Accessed 04 Oct 2021

19. CERN: Linux@cern (2020). https://linux.web.cern.ch/. Accessed 09 Feb 2021
20. CERN: CernVM-FS (2021). https://cernvm.cern.ch/. Accessed 19 May 2021
21. CERN: The large hadron collider (2021). https://home.cern/science/accelerators/

large-hadron-collider. Accessed 27 May 2021
22. CERN: Root: analyzing petabytes of data, scientifically (2021). https://root.cern.

ch/. Accessed 30 Sep 2021
23. CERN: Worldwide LHC computing grid (2021). https://wlcg.web.cern.ch/.

Accessed 27 May 2021

https://doi.org/10.1088/1742-6596/664/2/022001
https://doi.org/10.1016/S0010-4655(01)00254-5
https://www.sciencedirect.com/science/article/pii/S0010465501002545
https://www.sciencedirect.com/science/article/pii/S0010465501002545
https://doi.org/10.1051/epjconf/201921403047
https://doi.org/10.1051/epjconf/201921403047
https://doi.org/10.1088/1742-6596/331/3/032047
https://doi.org/10.1088/1742-6596/331/3/032047
https://doi.org/10.1051/epjconf/201921407005
https://easybuild.io/eum/002_eum21_cvmfs.pdf
https://easybuild.io/eum/002_eum21_cvmfs.pdf
https://doi.org/10.1007/978-3-319-67630-2_52
https://doi.org/10.1051/epjconf/202024507012
https://doi.org/10.1051/epjconf/202024507012
https://doi.org/10.1051/epjconf/201921409007
https://doi.org/10.5281/zenodo.6335367
https://doi.org/10.5281/zenodo.6335512
https://doi.org/10.5281/zenodo.6335512
https://doi.org/10.5281/zenodo.6337297
https://doi.org/10.5281/zenodo.6337297
https://www.bsc.es/marenostrum/
https://doi.org/10.1088/1742-6596/219/4/042003
https://doi.org/10.1088/1742-6596/219/4/042003
https://doi.org/10.1051/epjconf/201921405005
https://doi.org/10.1051/epjconf/201921405005
https://home.cern/news/news/computing/cern-skao-geant-and-prace-collaborate-high-performance-computing
https://home.cern/news/news/computing/cern-skao-geant-and-prace-collaborate-high-performance-computing
https://linux.web.cern.ch/
https://cernvm.cern.ch/
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://root.cern.ch/
https://root.cern.ch/
https://wlcg.web.cern.ch/

370 A. F. Boyer et al.

24. Clemencic, M., et al.: The LHCb simulation application, gauss: design, evolution
and experience. J. Phys. Conf. Ser. 331(3), 032023 (2011). https://doi.org/10.
1088/1742-6596/331/3/032023

25. Collaboration, T.L.: The LHCb detector at the LHC. J. Instrum. 3(08), S08005–
S08005 (2008). https://doi.org/10.1088/1748-0221/3/08/s08005

26. CVMFS: cvmfsexec (2021). https://github.com/cvmfs/cvmfsexec. Accessed 28
May 2021

27. Dykstra, D., Blomer, J.: Security in the CernVM file system and the frontier dis-
tributed database caching system. J. Phys. Conf. Ser. 513, 042015 (2014). https://
doi.org/10.1088/1742-6596/513/4/042015

28. EasyBuild: Easybuild: building software with ease (2021). https://easybuild.io/.
Accessed 11 Dec 2021

29. Fasel, M.: Using nersc high-performance computing (HPC) systems for high-energy
nuclear physics applications with alice. J. Phys: Conf. Ser. 762, 012031 (2016).
https://doi.org/10.1088/1742-6596/762/1/012031

30. Blomer, J., Ganis, G., Hardi, N., Popescu, R.: Delivering LHC software to HPC
compute elements with CernVM-FS. In: Kunkel, J.M., Yokota, R., Taufer, M.,
Shalf, J. (eds.) ISC High Performance 2017. LNCS, vol. 10524, pp. 724–730.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67630-2 52

31. Filipčič, A., Haug, S., Hostettler, M., Walker, R., Weber, M.: Atlas computing on
CSCS HPC. J. Phys: Conf. Ser. 664(9), 092011 (2015). https://doi.org/10.1088/
1742-6596/664/9/092011

32. GÉANT: GÉant (2021). https://www.geant.org/. Accessed: 04 Oct 2021
33. Gentoo: Gentoo linux (2021). https://www.gentoo.org/. Accessed: 11 Dec 2021
34. Gerhardt, L., et al.: Shifter: containers for HPC. J. Phys: Conf. Ser. 898, 082021

(2017). https://doi.org/10.1088/1742-6596/898/8/082021
35. GitLab: Gitlab ci/cd (2021). https://docs.gitlab.com/ee/ci/. Accessed 23 Sep 2021
36. Harutyunyan, A., et al.: CernVM co-pilot: an extensible framework for building

scalable computing infrastructures on the cloud. J. Phys. Conf. Ser. 396(3), 032054
(2012). https://doi.org/10.1088/1742-6596/396/3/032054

37. ic hep: uncvmfs (2018). https://github.com/ic-hep/uncvmfs. Accessed 30 May
2021

38. Hufnagel, D.: CMS use of allocation based HPC resources. J. Phys: Conf. Ser. 898,
092050 (2017). https://doi.org/10.1088/1742-6596/898/9/092050

39. Mazurek, M., Corti, G., Muller, D.: New simulation software technologies at the
LHCb Experiment at CERN (2021)

40. NixOS: Nixos (2021). https://nixos.org/. Accessed 11 Dec 2021
41. O’Brien, B., Walker, R., Washbrook, A.: Leveraging HPC resources for high energy

physics. J. Phys: Conf. Ser. 513(3), 032104 (2014). https://doi.org/10.1088/1742-
6596/513/3/032104

42. Oleynik, D., et al.: High-throughput computing on high-performance platforms: a
case study (2017)

43. Radu, P., Jakob, B., Gerardo, G.: Towards a responsive CernVM-FS architecture.
EPJ Web Conf. 214, 03036 (2019). https://doi.org/10.1051/epjconf/201921403036

44. PRACE: Partnership for advanced computing in Europe (2021). https://prace-ri.
eu/. Accessed 04 Oct 2021

45. Sciacca, F.G.: Enabling atlas big data processing on piz daint at CSCS. EPJ Web
Conf. 245, 09005 (2020). https://doi.org/10.1051/epjconf/202024509005

https://doi.org/10.1088/1742-6596/331/3/032023
https://doi.org/10.1088/1742-6596/331/3/032023
https://doi.org/10.1088/1748-0221/3/08/s08005
https://github.com/cvmfs/cvmfsexec
https://doi.org/10.1088/1742-6596/513/4/042015
https://doi.org/10.1088/1742-6596/513/4/042015
https://easybuild.io/
https://doi.org/10.1088/1742-6596/762/1/012031
https://doi.org/10.1007/978-3-319-67630-2_52
https://doi.org/10.1088/1742-6596/664/9/092011
https://doi.org/10.1088/1742-6596/664/9/092011
https://www.geant.org/
https://www.gentoo.org/
https://doi.org/10.1088/1742-6596/898/8/082021
https://docs.gitlab.com/ee/ci/
https://doi.org/10.1088/1742-6596/396/3/032054
https://github.com/ic-hep/uncvmfs
https://doi.org/10.1088/1742-6596/898/9/092050
https://nixos.org/
https://doi.org/10.1088/1742-6596/513/3/032104
https://doi.org/10.1088/1742-6596/513/3/032104
https://doi.org/10.1051/epjconf/201921403036
https://prace-ri.eu/
https://prace-ri.eu/
https://doi.org/10.1051/epjconf/202024509005

A Subset of CVMFS 371

46. Segal, B., et al.: Lhc cloud computing with CernVM. In: 13th International
Workshop on Advanced Computing and Analysis Techniques in Physics Research
(ACAT2010) vol. 093, issue 4, p. 042003 (2011). https://doi.org/10.22323/1.093.
0004

47. Siddi, B.G., Müller, D.: Gaussino - a gaudi-based core simulation framework.
In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC), pp. 1–4. IEEE, Manchester, United Kingdom (2019). https://doi.org/
10.1109/NSS/MIC42101.2019.9060074

48. Sjöstrand, T., et al.: High-energy-physics event generation with pythia 6.1. Com-
put. Phys. Commun. 135(2), 238–259 (2001). https://doi.org/10.1016/s0010-
4655(00)00236-8

49. Spack: Spack (2021). https://spack.readthedocs.io/en/latest/. Accessed 11 Dec
2021

50. Stagni, F., McNab, A., Luzzi, C., Krzemien, W., Consortium, D.: Dirac universal
pilots. J. Phys: Conf. Ser. 898(9), 092024 (2017). https://doi.org/10.1088/1742-
6596/898/9/092024

51. Stagni, F., Valassi, A., Romanovskiy, V.: Integrating LHCB workflows on HPC
resources: status and strategies. EPJ Web Conf. 245, 09002 (2020). https://doi.
org/10.1051/epjconf/202024509002

52. Teuber, S.: Efficient unpacking of required software from CERNVM-FS (2019).
https://doi.org/10.5281/zenodo.2574462

53. Top500: Top500 (2021). https://www.top500.org/. Accessed 04 Oct 2021
54. Benjamin, T., Brian, B., Michael, H., Kevin, L., Douglas, T.: Harnessing HPC

resources for CMS jobs using a virtual private network. EPJ Web Conf. 251,
02032 (2021). https://doi.org/10.1051/epjconf/202125102032

55. Vicente, D., Bartolome, J.: BSC-CNS research and supercomputing resources. In:
Resch, M., Roller, S., Benkert, K., Galle, M., Bez, W., Kobayashi, H. (eds.) High
Performance Computing on Vector Systems 2009, pp. 23–30. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-03913-3 2

56. l Valentin, V., et al. : Building hep software with spack: experiences from pilot
builds for key4hep and outlook for LCG releases. EPJ Web Conf. 251, 03056
(2021). https://doi.org/10.1051/epjconf/202125103056

57. Benda, X., Guilherme, A., Fabian, G., Michael, H.: Gentoo prefix as a physics
software manager. EPJ Web Conf. 245, 05036 (2020). https://doi.org/10.1051/
epjconf/202024505036

https://doi.org/10.22323/1.093.0004
https://doi.org/10.22323/1.093.0004
https://doi.org/10.1109/NSS/MIC42101.2019.9060074
https://doi.org/10.1109/NSS/MIC42101.2019.9060074
https://doi.org/10.1016/s0010-4655(00)00236-8
https://doi.org/10.1016/s0010-4655(00)00236-8
https://spack.readthedocs.io/en/latest/
https://doi.org/10.1088/1742-6596/898/9/092024
https://doi.org/10.1088/1742-6596/898/9/092024
https://doi.org/10.1051/epjconf/202024509002
https://doi.org/10.1051/epjconf/202024509002
https://doi.org/10.5281/zenodo.2574462
https://www.top500.org/
https://doi.org/10.1051/epjconf/202125102032
https://doi.org/10.1007/978-3-642-03913-3_2
https://doi.org/10.1051/epjconf/202125103056
https://doi.org/10.1051/epjconf/202024505036
https://doi.org/10.1051/epjconf/202024505036

Correction to: “Hey CAI” - Conversational AI
Enabled User Interface for HPC Tools

Pouya Kousha, Arpan Jain, Ayyappa Kolli, Saisree Miriyala,
Prasanna Sainath, Hari Subramoni, Aamir Shafi,

and Dhableswar K. Panda

Correction to:
Chapter ““Hey CAI” - Conversational AI Enabled User
Interface for HPC Tools” in: A.-L. Varbanescu et al. (Eds.):
High Performance Computing, LNCS 13289,
https://doi.org/10.1007/978-3-031-07312-0_5

In an older version of this paper, the name of the fourth author was missing. This has
been corrected.

The updated original version of this chapter can be found at
https://doi.org/10.1007/978-3-031-07312-0_5

© Springer Nature Switzerland AG 2023
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, p. C1, 2023.
https://doi.org/10.1007/978-3-031-07312-0_19

https://doi.org/10.1007/978-3-031-07312-0_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_19&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_5
https://doi.org/10.1007/978-3-031-07312-0_19

Author Index

Akella, Venkatesh 44
Anthony, Quentin 3, 109
Arumugam, Kamesh 192

Bhatele, Abhinav 213
Boyer, Alexandre F. 354

Cankur, Onur 213
Checconi, Fabio 65
Chung, Yi-Hua 174
Cisneros-Stoianowski, Gerardo 26

Denoyelle, Nicolas 256
Doerfert, Johannes 315
Doerfler, Douglas 65

Fariborz, Marjan 44
Fotouhi, Pouya 44

Gauger, Nicolas R. 334
Gerofi, Balazs 256
Graham, Richard 26
Grünewald, Daniel 334

Hacker, Oliver 293
Haen, Christophe 354
Hill, David R. C. 354
Hung, Shih-Hao 174

Iskra, Kamil 256

Jain, Arpan 87, 109

Kolli, Ayyappa 87
Korch, Matthias 293
Kousha, Pouya 3, 87, 109
Kronbichler, Martin 133

Lee, Seyong 233
Li, Baojiu 153
Ljungkvist, Karl 133
Lowe-Power, Jason 44

Malony, Allen D. 233
Mello Schnorr, Lucas 275
Miriyala, Saisree 87

Monil, Mohammad Alaul Haque 233
Munch, Peter 133

Palermo, Samuel 44
Panda, Dhabaleswar K. 3
Panda, Dhableswar K. 87, 109
Patel, Atmn 315
Paterno, Marc 192
Perarnau, Swann 256
Petrini, Fabrizio 65
Proietti, Roberto 44

Qin, Yong 26

Ram, Raju 334
Ranjan, Desh 192

Sainath, Prasanna 87
Sakiotis, Ioannis 192
Samani, Mahyar 44
Schulz, Holger 153
Seiferth, Johannes 293
Shafi, Aamir 3, 87, 109
Shafie Khorassani, Kawthar 3
Shainer, Gilad 26
Shih, Cheng-Jhih 174
Shpigelman, Yuval 26
Stagni, Federico 354
Stunkel, Craig 26
Subramoni, Hari 3, 87, 109

Terzić, Balša 192
Tithi, Jesmin Jahan 65

Veroneze Solórzano, Ana Luisa 275
Vetter, Jeffrey S. 233

Weinzierl, Tobias 153

Yi, Il-Min 44
Yoo, S. J. Ben 44

Zhang, Han 153
Zhou, Qinghua 3
Zubair, Mohammad 192

	 Preface
	 Organization
	 Contents
	Architecture, Networks, and Storage
	Accelerating MPI All-to-All Communication with Online Compression on Modern GPU Clusters
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions

	2 Background
	2.1 Compression Algorithms for HPC Applications
	2.2 Algorithms for MPI_Alltoall Communication
	2.3 GPU-Aware Communication Middleware

	3 Proposed Online Compression Design for MPI_Alltoall Communication
	3.1 Analysis of the Benefits and Limitation for the Naive Compression Design

	4 Optimization Strategies in the Host-Staging Based MPI_Alltoall
	4.1 Enabling Multiple CUDA Streams in ZFP Library
	4.2 Proposed Optimization Metrics

	5 Microbenchmark Results and Analysis
	5.1 MPI_Alltoall Communication Latency on Micro-Benchmark
	5.2 MPI_Alltoall Communication Latency with Real Data Sets
	5.3 Comparison of the Proposed Design and Existing MPI_Alltoall Algorithms with Point-to-Point Compression

	6 Application Results and Analysis
	6.1 PSDNS
	6.2 Deep Learning Application

	7 Related Work
	8 Conclusion
	References

	NVIDIA's Quantum InfiniBand Network Congestion Control Technology and Its Impact on Application Performance
	1 Introduction
	2 Previous Work
	3 Congestion Control Implementation
	4 Experimental Setup
	4.1 System Configuration
	4.2 Congestion Patterns
	4.3 Applications

	5 Synthetic Congestion Bare-Metal Workload
	6 Synthetic Congestion HPC Cloud Workload
	7 Discussion
	References

	LLM: Realizing Low-Latency Memory by Exploiting Embedded Silicon Photonics for Irregular Workloads
	1 Introduction
	2 Motivation
	3 Silicon Photonic Enabling Technologies
	4 Architecture
	4.1 Processor-Memory Interconnect
	4.2 Memory Controller
	4.3 Memory Microarchitecture
	4.4 LLM Organization and Packaging

	5 Methodology
	6 Evaluation
	6.1 Synthetic Traffic Evaluation
	6.2 Irregular Workloads
	6.3 Energy and Power Analysis
	6.4 Latency Variation

	7 Related Work
	8 Conclusion
	References

	SU3_Bench on a Programmable Integrated Unified Memory Architecture (PIUMA) and How that Differs from Standard NUMA CPUs
	1 Introduction
	2 Related Work
	3 Background on SU3_Bench
	4 Background on PIUMA
	5 SU3_Bench on PIUMA
	5.1 Porting Process
	5.2 Roofline Analysis on PIUMA
	5.3 Optimization on PIUMA

	6 Performance on Xeon
	6.1 Roofline Analysis on Xeon
	6.2 SU3 Implementation
	6.3 Performance on Xeon
	6.4 NUMA Effects
	6.5 Impact of Page Migration
	6.6 Parallel Initialization
	6.7 Additional Optimizations and Performance
	6.8 Limitations
	6.9 Lessons Learned

	7 Comparative Analysis
	7.1 Comparison with Xeon
	7.2 Comparison with Other Architectures

	8 Conclusion
	References

	Machine Learning, AI, and Emerging Technologies
	``Hey CAI'' - Conversational AI Enabled User Interface for HPC Tools
	1 Introduction and Motivation
	1.1 Contributions

	2 Challenges in Exploiting Conversational AI for HPC Tools
	3 Background
	3.1 Deep Neural Networks Training
	3.2 Deep Learning Frameworks
	3.3 OSU INAM

	4 Design and Implementation
	4.1 Terminologies and Performance Metrics
	4.2 Generating HPC Dataset for Speech and Text
	4.3 Fine-Tuning Automatic Speech Recognition (ASR) for HPC
	4.4 Designing a Natural Language Understanding (NLU) Scheme for HPC Tools
	4.5 Interface Between Conversational AI and HPC Tools
	4.6 Integration of Conversational AI to HPC Tools

	5 Performance Evaluation
	5.1 Evaluation Platform
	5.2 Experimental Methodology
	5.3 ASR Results
	5.4 NLU Results
	5.5 ASR + NLU Analysis
	5.6 End-to-End Overhead

	6 Discussion
	6.1 Trade-Offs for Converting Speech to Intent
	6.2 Comparison of Client-Side vs Server-Side Inference in CAI
	6.3 Insights for Getting Explainable Flow of CAI
	6.4 Integrating Other HPC Tools with CAI

	7 Related Work
	8 Conclusion and Future Work
	References

	Hy-Fi: Hybrid Five-Dimensional Parallel DNN Training on High-Performance GPU Clusters
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Challenges in Exploiting Different Parallelism Dimensions in Distributed DNN Training
	3 Limitations in Existing Approaches for Model Parallelism
	3.1 Layer Parallelism
	3.2 Pipeline Parallelism
	3.3 Memory-Aware Synchronized Training (Bi-directional Parallelism)

	4 Proposed Hybrid Five-Dimensional Parallelism System
	4.1 Spatial Parallelism
	4.2 Spatial Parallelism + Layer Parallelism
	4.3 Pipeline Parallelism
	4.4 Spatial + Bidirectional Parallelism
	4.5 Hybrid Data Parallelism

	5 Performance Evaluation
	5.1 Evaluation Platform
	5.2 Evaluation Setup and Performance Metrics
	5.3 Evaluation Methodology
	5.4 Performance Benefits of Spatial Parallelism
	5.5 Improving Performance Using Bi-directional Parallelism
	5.6 Hybrid Parallelism
	5.7 Hy-Fi vs Existing Frameworks
	5.8 Next-Generation DNN Designs on Very High-Resolution Images Using Hy-Fi
	5.9 Verifying the Correctness of Hy-Fi

	6 Related Work
	7 Conclusion
	References

	HPC Algorithms and Applications
	Efficient Application of Hanging-Node Constraints for Matrix-Free High-Order FEM Computations on CPU and GPU
	1 Introduction
	1.1 Matrix-Free Operator Evaluation
	1.2 Application of Constraints
	1.3 Related Work
	1.4 Our Contributions

	2 Algorithm
	3 Implementation Details
	3.1 Data Structures
	3.2 Refinement Configuration
	3.3 GPU Interpolation
	3.4 CPU Interpolation
	3.5 Costs of Interpolation

	4 Experiments and Results
	4.1 Experiment 1: Serial Simulation
	4.2 Experiment 2: Parallel Simulation
	4.3 Experiment 3: Cross-Platform Validation

	5 Conclusions and Outlook
	References

	Dynamic Task Fusion for a Block-Structured Finite Volume Solver over a Dynamically Adaptive Mesh with Local Time Stepping
	1 Introduction
	2 Applications
	2.1 Modified Euler Equations: Secondary Infall
	2.2 CCZ4 GR Equations: Gauge Waves

	3 Software and Solver Architecture
	3.1 Dynamically Adaptive AMR
	3.2 Finite Volumes
	3.3 Compute Kernels
	3.4 Time Stepping Variants
	3.5 Concurrency Analysis

	4 Parallelisation
	4.1 Domain Decomposition
	4.2 Task Decomposition
	4.3 Intra-patch Concurrency

	5 Performance Optimisation
	5.1 Optimised C++ Kernels
	5.2 Task Queues

	6 Results
	6.1 Single Task (Kernel) Optimisations
	6.2 Single Node Studies on Regular Grid
	6.3 Single Node Studies for Adaptive Grids
	6.4 Multi-node Runs

	7 Conclusion and Outlook
	References

	Accelerating Simulated Quantum Annealing with GPU and Tensor Cores
	1 Introduction
	2 Background and Previous Works
	2.1 Ising Model
	2.2 Simulated Quantum Annealing (SQA)
	2.3 Tensor Cores

	3 Methodology
	3.1 Hierarchical Update
	3.2 Utilizing the Tensor Cores

	4 Performance Evaluation
	4.1 Benefits of Hierarchical Update
	4.2 Per-Step Annealing Time
	4.3 The Choice of blk_sz
	4.4 The Impact of Tensor Cores
	4.5 The Quality of Solution

	5 Conclusion
	References

	m-Cubes: An Efficient and Portable Implementation of Multi-dimensional Integration for GPUs
	1 Introduction
	2 Background
	2.1 Monte Carlo Methods
	2.2 Parallel Programming Models
	2.3 Parallel GPU Methods

	3 The Vegas Algorithm
	4 The Algorithm m-Cubes
	5 Experimental Results
	5.1 Accuracy
	5.2 Performance
	5.3 Cost of Function Evaluation
	5.4 The m-Cubes1D Variant

	6 Portability
	6.1 Defining Integrands in CUDA
	6.2 Execution Platform Portability Using Kokkos

	7 Conclusion
	References

	Performance Modeling, Evaluation, and Analysis
	Comparative Evaluation of Call Graph Generation by Profiling Tools
	1 Introduction
	2 Background and Related Work
	2.1 Different Methods for Profiling
	2.2 Information Gathered by Profiling Tools
	2.3 Profiling Tools Used in This Study
	2.4 Post-mortem Analysis of Profiling Data
	2.5 Related Work

	3 Methodology for Comparative Evaluation
	3.1 Comparison of Runtime Overhead
	3.2 Comparison of Memory Consumption
	3.3 Comparison of the Quality of Call Graph Data
	3.4 Extensions to Hatchet

	4 Experimental Setup
	4.1 Experiment 1: Comparison of Sampling Capabilities
	4.2 Experiment 2: Impact of Sampling Intervals
	4.3 Experiment 3: Comparison of Instrumentation Capabilities

	5 Evaluation
	5.1 Runtime Overhead
	5.2 Memory Consumption
	5.3 Size of Call Graph Data
	5.4 Correctness of Call Graph Data
	5.5 Richness of Call Graph Data

	6 Discussion
	References

	MAPredict: Static Analysis Driven Memory Access Prediction Framework for Modern CPUs
	1 Introduction
	2 Understanding Memory Reads and Writes in Intel Processors
	2.1 Hardware Description
	2.2 A Tool for Measuring the LLC-DRAM Traffic
	2.3 Different Read and Write Strategies

	3 Modeling Different Types of Access
	3.1 Sequential Streaming Access Pattern
	3.2 Strided Access Pattern
	3.3 Stencil Access Pattern
	3.4 Random Access Pattern and Empirical Factor

	4 MAPredict Framework
	4.1 Aspen, OpenARC, and COMPASS
	4.2 MAPredict Framework Description
	4.3 Identifying Randomness and EmpiricalFactor

	5 Experimental Setup
	5.1 Accuracy Calculation
	5.2 Comparison with Literature

	6 Experimental Results
	6.1 Regular Access Patterns
	6.2 Irregular Access and Large Application with Mixed Patterns
	6.3 Discussion

	7 Related Works
	7.1 Memory Access Prediction
	7.2 Understanding Intel Processors
	7.3 Comparing MAPredict with Other Studies

	8 Conclusion and Future Work
	References

	Rapid Execution Time Estimation for Heterogeneous Memory Systems Through Differential Tracing
	1 Introduction
	2 Motivation
	3 Background
	3.1 Precise Event-Based Sampling
	3.2 Lightweight Kernel-Based Development Environment

	4 Design and Implementation
	4.1 Memory Access Tracing and Application Phasemarks
	4.2 Execution Time Estimation and Verification

	5 Evaluation
	5.1 Application Benchmarks
	5.2 Results

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References

	Understanding Distributed Deep Learning Performance by Correlating HPC and Machine Learning Measurements
	1 Introduction
	2 Related Work
	3 Frameworks Overview
	4 Methodology
	4.1 System Configuration and Software Tools
	4.2 Evaluation Setup
	4.3 Challenges

	5 The Horovod and Tarantella Comparison
	6 Breaking the Frameworks Black-Box
	7 Discussion
	8 Conclusion
	References

	A Motivating Case Study on Code Variant Selection by Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Motivating Example
	3.1 Mathematical Background
	3.2 Search Space of Code Variants
	3.3 Code Transformation Graph

	4 Application of Reinforcement Learning
	4.1 Principles of Reinforcement Learning
	4.2 Modeling Variant Selection as RL Scenario
	4.3 Devising a Suitable RL Method

	5 Implementation of a RL Framework
	6 Experimental Study
	6.1 Experimental Setup
	6.2 Results and Discussion

	7 Conclusion
	References

	Programming Environments and System Software
	Remote OpenMP Offloading
	1 Introduction
	2 Contributions and Limitations
	3 Background
	3.1 Compilation Flow for LLVM/OpenMP Offloading
	3.2 LLVM/OpenMP Offload Runtime Interactions

	4 Related Work
	5 Implementation
	5.1 Remote Offloading Plugin
	5.2 Remote Offloading Server
	5.3 Serialization
	5.4 Transport Layers

	6 Evaluation
	6.1 Benchmarks
	6.2 Results

	7 Limitations of OpenMP
	8 Future Work
	9 Conclusion
	References

	Hybrid Parallel ILU Preconditioner in Linear Solver Library GaspiLS
	1 Introduction
	2 Related Work
	3 GASPI Programming Model and GaspiLS
	4 Hybrid Parallel Approach
	4.1 Distributed Memory Parallelism
	4.2 Shared Memory Parallelism

	5 Solving the Process-Level Sub-problem
	5.1 Graph Partitioning
	5.2 Factorization
	5.3 Triangular Solve

	6 Numerical Experiments
	6.1 Shared Memory Implementation
	6.2 Hybrid Parallel Implementation

	7 Conclusion
	References

	A Subset of the CERN Virtual Machine File System: Fast Delivering of Complex Software Stacks for Supercomputing Resources
	1 Introduction
	2 Context
	2.1 CVMFS to Distribute Software on Grid Resources
	2.2 Software Delivery on Supercomputers

	3 Design of the CVMFS Subset Builder
	3.1 Input and Output Data
	3.2 Features
	3.3 Implementation

	4 A Practical Use Case
	4.1 Gauss
	4.2 Mare Nostrum
	4.3 Running Gauss on Mare Nostrum

	5 Conclusion
	References

	Correction to: “Hey CAI” - Conversational AI Enabled User Interface for HPC Tools
	Correction to: Chapter ““Hey CAI” - Conversational AI Enabled User Interface for HPC Tools” in: A.-L. Varbanescu et al. (Eds.): High Performance Computing, LNCS 13289, https://doi.org/10.1007/978-3-031-07312-0_5

	Author Index

