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Abstract. This methods paper is an attempt to place a few of the classi-
cal vehicle dynamics analysis methods in a common framework and how
the methods can be used in combination to analyze different aspects of
the planar motion of road vehicles. The methods described are the han-
dling diagram for analysis of the non-linear steady-state characteristics,
the phase plane analysis method to analyse the dynamic characteris-
tics of a particular fixed point (or several) and the Milliken moment
method diagram. In summary these methods are used to analyse the
planar motion of the vehicle. The purpose of this methods paper is to
present each method in detail and how they can be computed using a
common vehicle dynamics model. Furthermore, the relationship between
different points in the different representations are presented.

1 Introduction

Road vehicle dynamics analysis have greatly aided by the graphical methods
developed over the previous decades. In particular the popular phase plane anal-
ysis method including contractility analysis [1], handling diagram [2], Milliken
moment method (MMM) [3]. In summary these methods are used to analyse
the planar motion of the vehicle. This author has previously published usage
of these methods before [4,5], as have many other authors [6], but this is an
attempt to place all methods in a common framework and how the methods
can be used in combination to analyze different aspects of the planar motion of
road vehicles. The purpose of this methods paper is to present each method in
detail and how they can be computed using a common vehicle dynamics model.
Furthermore, the relationship between different points in the different represen-
tations are presented. The intended audience are students of vehicle dynamics
and vehicle dynamics practitioners wishing to get a more holistic view of the
planar yaw-sideslip dynamics.

This paper will focus on only the planar yaw/side-slip motion of passenger
vehicles at a fixed longitudinal velocity. This may appear like an over simplistic
approach to analysing something so complex as a road vehicle with advanced
suspension and steering systems, but surprisingly many phenomena and charac-
teristics are captured in these two interacting degrees of freedom. The control
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Fig. 1. Single-track vehicle model

inputs that will be considered are front steering and yaw moment control, but
the methods can easily be extended to include longitudinal force control, roll
moment distribution, rear-wheel steering, etc.

This paper is organized such that first the simple non-linear single track vehi-
cle dynamics model adopted from [7] that will be used throughout the analysis.
Secondly each graphical method will be described in detail, including the meth-
ods used to create plot and how to interpret the results. These are the handling
diagram, used for non-linear steady state analysis of the lateral acceleration ver-
sus a given steering input. Secondly the MMM diagram where the unbalanced
yaw moment (non-steady state) is shown versus the lateral acceleration for a
fixed steering input or side-slip angle. Thirdly, the phase portrait is presented
that can be used to analyse the dynamic characteristics of a given fixed input
solution in the vicinity of a fixed point (steady-state solution). Finally a sum-
mary of the different methods will be presented as well as what they have in
common and which are the unique features of each method.

2 Vehicle Model

The vehicle model used throughout this paper is a standard 2-DOF non-linear
bicycle model as shown in Fig. 1. Constant speed, small angles:

mvx(β̇ + ψ̇) = Fyf (αf ) + Fyr(αr) (1)

Izzψ̈ = lfFyf (αf ) − lrFyr(αr) + Mz (2)

αf = δ − β − lf
ψ̇

vx
(3)

αr = −β + lr
ψ̇

vx
(4)

The tire model in this paper is a simplified version of the Magic Tyre model:

Fy = D sin(B arctan(Cα)) (5)
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Table 1. Vehicle data used in this paper

Symbol Description Unit Value

L Wheel base [m] 2.675

lf Distance from front axle to CoG [m] 40%L

lf Distance from rear axle to CoG [m] L − lf

μf Front axle friction [-] 0.9

μr Rear axle friction [-] 1.0

is Steering gear ratio [δh/δ] 16

where
D =

√
μ2F 2

z − F 2
x (6)

and B = 3/2 and C = 10
The other vehicle data used for the plots is shown in Table 1.

3 Handling Diagram

The handling diagram plots the steady-state lateral acceleration as function of
the difference in front and rear slip angles. It can be used to analyse the steady-
state characteristics of the vehicle, such as the understeer gradient, maximum
lateral acceleration and steady-state fixed points for a given combination of
vehicle speed, steering input and curve radius.

As an example, the handling diagram of the non-linear bicycle model can be
found by assuming steady state (β̇ = 0 and ψ̈ = 0). We can now for any αf use
(2) find for which αr

lfFyf (αf ) − lrFyr(αr) + Mz = 0 (7)

From (1), we then have the steady-state lateral acceleration:

may = mvxψ̇ = Fyf (αf ) + Fyr(αr) (8)

Further, by combining (3) and (4) and that the curve radius R = vx/ψ̇ we
have that

αf − αr = δ − L/R (9)

The understeer gradient is defined as

Ku =
∂δ

∂ay
− ∂L/R

ay
=

∂(αf − αr)
∂ay

(10)

In Fig. 2 we can see the handling diagram for zero and positive yaw moment.
There it can be seen that for a given positive yaw moment, the steering angle
required for zero lateral acceleration is no longer zero (it is, in fact, negative).
Also, the understeer gradient changes from negative (understeer) to positive
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(oversteer) for a certain lateral acceleration. This means that for a given steer-
ing input δ and a given longitudinal speed vx, we have two fixed steady state
conditions, one stable and one unstable. The neutral steer steering angle for a
given lateral acceleration can be found by plotting ay = v2

x/R vs L/R for a given
longitudinal speed vx with R as the independent variable. This is the red curve
in Fig. 2. The distance between the handling curve and this curve is the steering
angle required to achieve a certain lateral acceleration for a given speed. The
lateral acceleration beyond which the vehicle becomes unstable is when

Ku ≤ L/v2
x (11)
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Fig. 2. Handling diagram with zero (blue) and positive yaw moment Mz (green)

4 MMM Diagram

In the Milliken Moment Method diagram shows the normalized unbalanced yaw
moment CN versus the normalized lateral acceleration AY . These can be found
from (1) and (2) such that
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AY =
Fyf + Fyr

mg
(12)

CN =
lfFyf − lrFyr

Lmg
(13)

and assuming ψ̇ = 0, we can for constant δ or constant β, draw the MMM
diagram as can be seen in Fig. 3. This is done by plotting (13) as function of
(12). In Fig. 3, the constant δ and constant β curves are shown as well as the
front and rear axle grip boundaries. The 1st and 3rd quadrant boundaries are
front axle limits and the 2nd and 4th quadrant boundaries are rear axle limits.
Along the dashed lines in the figure in the 1st and 3rd quadrants the rear axle
force is zero. For steering from straight ahead, the yaw moment versus lateral
acceleration will initially follow these lines until the rear axle force builds.

In Fig. 4 CN and AY as function of time is shown for a sine with dwell
maneuver [8]. The steering input maneuver is 0.7 Hz single period sinusoidal
input with a 500 ms dwell after the second peak as shown with the green dashed
lines in Fig. 4. The CN vs AY is also shown in Fig. 3 (magenta curves). Here it
can be seen that after reversal of the steering direction, the yaw moment is nearly

Fig. 3. MMM Diagram. Legend: green = constant δ, blue = constant β, magenta =
sine-with-dwell CN vs AY . The 1st and 3rd quadrant boundaries are front axle limits
and the 2nd and 4th quadrant boundaries are rear axle limits.
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Fig. 4. Unbalanced normalized yaw moment CN and the normalized lateral accelera-
tion AY vs time including the steering input for a sine-with-dwell maneuver.

double that which can be achieved by only steering from straight ahead running,
as can be seen from the initial yaw moment period. This can be explained by the
front and rear axle forces being opposite to each other and both contributing to
the yaw moment. This in contrast to steering from straight ahead where only
the front axle turns the vehicle. It can further be seen in the diagrams that when
both axles are saturated (left vertex in the MMM diagram), the stabilizing yaw
moment (after t > 2) is not enough to sufficiently fast reduce the yaw rate to
zero after the steering input is zero. A very efficient way to overcome this slowly
decaying skid is to apply a stabilizing yaw moment by differential braking, that
is via yaw stability control by braking. This is now also standard equipment on
all new passenger vehicles.

5 Phase Portrait

Rewriting (1) and (2) as ẋ = f(x), with x1 = β and x2 = ψ̇:

ẋ1 =
Fyf (αf (x)) + Fyr(αr(x))

mvx
− x2 (14)

ẋ2 =
lfFyf (αf (x)) − lrFyr(αr(x)) + Mz

Izz
(15)
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In order to draw the phase portrait, record each gradient vector ẋ = f(x) for
a number of combinations of points x. Connect each vector direction and mag-
nitude in each point to create a phase portrait. The result can be seen in Fig. 5
and Fig. 6 where the Matlab function streamslice(X,Y,U,V) was used, with
X,Y,U,V being 2-D matrices spanning vectors of x1, x2, ẋ1 and ẋ2, respectively.
In each figure, the fixed points indicated for the same steering input shown in
Fig. 2 are shown. As can be seen in Fig. 5, there is only one fixed point whereas
Fig. 6 has two fixed points.

Each fixed point can be characterized using the Poincaré diagram using the
trace-determinant plane for classifying phase portraits in 2D linear dynamical
systems. This can be done by linearize ẋ = f(x) at each fixed point in the form

ẋ = Ax (16)

For example, when det(A) < 0, we have a saddle point, as can be seen in
Fig. 6. The boundary between the stable (convergent) trajectories and unstable
(divergent) trajectories is the so-called separatrix. This separatrix can be found
through time integration of ẋ = −f(x) with initial conditions close to the saddle
point. This boundary is the mangenta curve in Fig. 6. An approximation of the
separatrix can be found from one of the eigenvectors of A when linearized at the
saddle point. This eigenvector is the dashed black curve in the figure.
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Fig. 5. Phase plane for an understeered vehicle (MZ = 0)
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Fig. 6. Phase plane for a vehicle that changes from understeer to oversteer (MZ > 0)

6 Conclusions

This methods paper describes a few of the classical vehicle dynamics analysis
methods in a common framework and how the methods can be used in combi-
nation to analyze different aspects of the planar motion of road vehicles. The
methods described are the handling diagram for analysis of the non-linear steady-
state characteristiscs, the phase plane analysis method to analyse the dynamic
characteristics of a particular fixed point (or several) and the Milliken moment
method diagram. In summary these methods are used to analyse the planar
motion of the vehicle.

In summary, all three presented methods (handling diagram, moment method
and phase portrait) are useful to analyse various aspects of the handling char-
acteristics of a vehicle with a given steering and/or yaw moment input. In the
handling diagram, the relationship between the steady-state lateral acceleration
versus a range of steering inputs can be analysed. This is useful to analyse the
steady-state stability and steering characteristics. With the moment method, in
addition to all the steady-state solutions also all the non-steady state solutions
for a range of steering inputs can be shown. This is useful to also understand
the dynamic response to (sudden) changes in the steering input. In particular
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the effect of steering reversal on the yaw response was discussed. In the MMM
diagram, it can clearly be seen that rapidly moving from one steering input to
a negative steering input after the peak yaw moment was reached, can lead to
about double the yaw moment for the changed steering input as was possible
with only steering in one direction. This explains the usefulness of the sine-with-
dwell maneuver used world-wide to evaluate the effectiveness of yaw stability
control via differential braking (typically braking the outer front wheel) to avoid
the skid motion induced by rapid steering reversals that can result from an
emergency lane change.

This paper focuses on only the planar yaw/side-slip motion of passenger
vehicles at a fixed longitudinal velocity. Even with this simplification surpris-
ingly many phenomena and characteristics are captured in these two interacting
degrees of freedom. The control inputs that are considered are front steering
and yaw moment control, but the methods can easily be extended to include
longitudinal force control, roll moment distribution, rear-wheel steering, etc.
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6. Szűcs, G., Bári, G.: Generating MMM diagram for defining the safety margin of self
driving cars. IOP Conf. Ser. Mater. Sci. Eng. 393, 012128 (2018)

7. Chen, L.-K., Ulsoy, A.G.: Experimental evaluation of a vehicle steering assist con-
troller using a driving simulator. Veh. Syst. Dyn. 44(3), 223–245 (2006)

8. NHSTA: Laboratory test procedure for FMVSS 126, electronic stability control
systems. TP126-02 (2008)


	Graphical Methods for Road Vehicle System Dynamics Analysis
	1 Introduction
	2 Vehicle Model
	3 Handling Diagram
	4 MMM Diagram
	5 Phase Portrait
	6 Conclusions
	References




