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Abstract. A new moving train–track interaction model is shown in the paper to
accurately and efficiently determine long-term high-speed train–track interaction
dynamic response. In thismodel, the rail is representedwith a reduced beammodel
(RBM) and the slabs mainly affected by the train–track interaction are modeled
with four-node Kirchhoff-Love plate elements. The fastenings are modeled with
spring-damper elements and the Concrete Asphalt (CA) layer is modeled with a
Winkler foundation. Since only a small part of the rail and a few slabs from the
whole slab track are included, the presentmodel has fewer degrees of freedom than
the traditional model using the modal superposition method and the simulation
time is significantly decreased. The present model is validated by a long-term
train–track interaction case where the results are compared with those from the
traditional method. The simulation results show that the present model is accurate
and efficient and has great advantages in solving high-speed train–track interaction
problems.
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1 Introduction

Train–track interaction plays an important role in high-speed railway engineering. The
numerical study of the train–track interaction can directly reflect the dynamic character-
istics of the train–track interaction and help researchers and engineers to better design
and optimize the high-speed railway system [1],which haswidely be used by researchers.
With the increase in operational speed and the complex operation environment of the
high-speed railway system, the train–track interaction system becomes more complex,
and its modeling should better reflect different complex situations.

In the past decades, finite element method (FEM) and modal superposition method
(MSM) have mainly been used in modeling the train–track interaction. Xiao et al. [2]
investigated the effects of a failed ballasted track support on derailment behavior, in
which a complex train-ballasted track interaction model was built up using the MSM,
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and the track support failure is modeled with zero stiffness and damping of the rail
pad, fastening and ballast. Zhai et al. [3] developed a train-slab track interaction model
using the MSM for the vehicle–track dynamic analysis, where this model was validated
using experimental data. Torstensson et al. [4] modeled the wheelset–track interaction
through the FEM to investigate the wheelset–track dynamic interaction ranging from
20 Hz to 2.5 kHz. Varandas et al. [5] studied the long-term deformation of the ballast
and sub-ballast in the train–track interaction process, where the FEM was used to com-
prehensively model the track structure. However, when considering the long term train
interaction with slab track, the flexibility of the slab must be considered, so both the
FEM and MSM need to include a large number of degrees of freedom (DOFs) to model
the whole structure of the slab track, especially when the track model is long. Therefore,
the efficiency of the FEM and MSM in calculation is low.

In this work, a new moving train–track interaction model is developed to model
the long-term train–track interaction in an accurate and efficient way. The slab track
is studied, and a reduced beam model (RBM) [6] is used. The long slab track does not
needed to be entirely modeled and only a small rail section around the train is considered
and modeled using the RBM.With RBM used, only the slabs affected by the train–track
interaction need to be modeled and the slab is modeled using Kirchhoff-Love plate
elements. The fastenings are modeled as spring-damper elements and the CA mortar
is modeled as Winkler foundation. Since only a small part of the slab track needs to
be modeled, the number of DOFs of the train–track interaction model is reduced and
the corresponding efficiency in calculation gets improved. The validation of the present
model is checked against the traditional model by Zhai [3] that has been validated in the
past.

The present moving train–track interaction model is described in Sect. 2 and the
validation of the present model is shown in Sect. 3. Conclusions from the study are
drawn in Sect. 4.

2 Formulation of the Moving Train–Track Interaction Model

Based on the theory of RBM, themoving train-slab track interactionmodel is formulated
as shown in Fig. 1. As mentioned in [6], the vibration of the rail mainly concentrates
on a small area around the train and dissipates significantly at the places far from the
train due to damping effects, so with RBM only the affected part of the rail needs to be
modeled. Moreover, in the slab track, the damping effect also exists in the CA mortar,
so the vibration of the slab structure caused by the train–track interaction also mainly
affects the slabs close to the train. Therefore, only the slabs affected by the train–track
interaction need to be modeled, where the number of affected slabs is determined by the
length of the RBM and slab.
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Fig. 1. Schematic of the moving train–track interaction model: (a) main view and (b) side view.

2.1 Model of the Slab Track

2.1.1 Model of the Rail

In the present model, the rail is considered as a Timoshenko beam and modeled using
the RBM. With the length l of the RBM, the kinematic energy can be expressed as
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where ρ is the density of the rail, A is the area of the rail cross-section, and Iy and Iz are
the second moments of the rail cross-section about y- and z-axes on the rail cross-section
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reference coordinate system o-xyz [6], respectively. v and w are displacements of the
cross-section central point o along the y- and z- axes, and θx, θy, and θz are rotation
angles of the beam cross-section with respect to the x-, y-, and z-axes, respectively. The
overdot denotes the time derivative. Similarly, the strain energy of the RBM is expressed
in terms of beam coordinates v, w, θx, θy, and θz as

Ur = 1
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∫ l

0

(
EIzθ

′2
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where the operator (·)′ denotes the partial derivative of a variable (·) with respect to
coordinate x, E is the Young’s modulus of the rail, G is the shear modulus of the rail,
GIp is the torsional stiffness of the rail, and ksy and ksz are shear coefficients along the
y- and z-axes, respectively. Through using the Galerkin method, the displacements and
rotations of the RBM are expressed as follows

v(x, t) = V(x)qy(t),w(x, t) = W(x)qz(t) (3)

θx(x, t) = Φ(x)qθx(t), θy(x, t) = Ψ y(x)qθy(t), θz(x, t) = Ψ z(x)qθz(t) (4)

where V, W, Φ, Ψ y, and Ψ z are trial functions, and qy, qz , qθx, qθy, and qθz are the
vectors of the corresponding generalized coordinates. The expressions of the above trial
functions can be seen in [7].

Based on the theory of the RBM [6], in Eqs. (1) and (2), there are

v̇ = −V (t)V′qy + Vq̇y, ẇ = −V (t)W′qz + Wq̇z (5)

θ̇x = −V (t)�′qθx + �q̇θx, θ̇y = −V (t)� ′
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(6)
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′
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where V (t) is the train velocity. Substituting Eqs. (10)–(13) into Eqs. (1) and (2) and
using the Lagrange’s equation, the dynamic equations of the rail can be written as

Mr q̈r + Cr q̇r + Krqr = Qflow + Qfr (9)

where the Mr is the mass matrix, Cr is the mass matrix, Kr is the stiffness matrix,
and qr = [

qy, qz, qθx, qθy, qθz
]T . Qfr is the generalized force vector of wheel–rail

interaction forces and fastening forces applied to the rails, and Qflow is the additional
generalized force vector. A detailed derivation and expressions of the above matrices
and generalized forces in Eq. (14) can be found in [6].
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2.1.2 Model of the Slab

In most of the slab tracks like CRTS II, the slab is much longer than it is thick (thickness
to width and length ratio less than 0.1) [8]. Therefore, the slab is considered as a thin
plate structure and modeled using the Kirchhoff-Love plate theory and FEM. Since the
bending stiffness of the slab in the lateral direction is much higher than in the vertical
direction [8], only the vertical deformation of the plate is considered, and the slab is
regarded as a rigid body when considering its lateral motion. The kinematic energy of
the plate element can be expressed as

TP = 1

24
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3
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ẇ2
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)
dxdy + 1

2
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¨
S
ẇ2
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wherewP is the vertical displacement of the plate element,wPx andwPy denote the partial
derivate of wP with respect to coordinates xP and yP of the plate element, respectively.
h is the thickness of the plate, ρP is the density of the plate, and S indicates the middle
surface of the plate element. The strain energy of the plate element is

UP = 1

2

¨
�

κTDκdxdy (11)

where κT = [
κx κy κxy

]
is the generalized strain vector of the plate element, D is the

elasticity matrix. In the vector κ , there are
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In Eq. (18), D0 is the rigidity of the plate, and ν is the Poisson’s ratio. Based on the
finite element theory, the vertical displacement of the plate element can be expressed as

wP = NPqP (14)

where NP is the shape function vector of the plate element and qP is the generalized
coordinate vector of the plate element. Detailed expressions of NP and qP are shown in
[9]. Based on Eqs. (15) and (16) and applying Lagrange’s equation, the dynamic matrix
equation of the plate element becomes

MPq̈P + CP q̇P + KPqP = QfP (15)

whereMP is the mass matrix,CP is the mass matrix,KP is the stiffness matrix, andQfP
is the generalized force vector of fastening forces and CA mortar forces applied to the
plate element in vertical direction. Detailed derivations of these matrices and the force
vector can be seen in Ref. [10].

The dynamic equations of the whole slab structure are then derived. Since only the
train–track interaction affected slabs need to be modeled, the number of these slabs is
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calculated before modeling the slab structure. The number of train–track interaction
affected slabs nsf can also be determined through the equation

nsf = floor

(
l

lS + lG

)
+ 1 (16)

where the floor means the round down of the closest real number, lS is the length of the
slab, and lG is the width of the gap between every slab.

Based on the number of affected slabs, the dynamic equation of the slab structure in
the present model is

MSAq̈SA + CSAq̇SA + KSAqSA = QfSA (17)

where
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MS , CS , and KS are the mass matrix, stiffness matrix and damping matrix of one
single slab, respectively, based on Eq. (20) and finite element theory [11]. QfSA is the
generalized force vector of fastening forces and CA mortar forces applied to the slab
structure in the vertical direction. Its derivation progress is the same as those shown in
[11]. The corresponding generalized coordinate vector qSA is expressed as

qSA = [
qS , qS , · · · , qS

]T (20)

where qS is the generalized coordinate vector of one single slab developed by qP . Its
detailed derivation progress is shown in [11].

The fastenings and CAmortars are finally considered here. The fastening is modeled
as spring-damping element and the CA mortar is modeled as Winkler foundation [3].
Note that the location of the fastenings in the relative coordinate system of the moving
train–track interaction model changes with time and should be calculated at every time
step [6].

2.2 Model of the Train–Track Interaction

With the dynamic equations of the slab track, the train–track interactionmodel is obtained
here. In the train–track interaction, the vehicle model is just the same as those shown in
[6]. The normal wheel–rail contact forces are calculated through Hertz’s formulae [11]
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and creep forces are calculated according to the heuristic formulae of Shen et al. [12].
The normal and creep forces act on both the wheelsets and the rail.

Thewhole dynamic equations of themoving train–track interaction systemare shown
as
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where Mrl and Mrr are the mass matrices of the rail at left and right side, Crl and Crr

are the damping matrices of the rail on the left and right side, and Krl and Krr are the
stiffness matrices of the rail on the left and right side. Qrl and Qrr are the generalized
force vectors of the wheel–rail contact forces and fastenings on the rail on the left and
right sides.Mv, Cv, andKv are the mass, damping and stiffness matrices of the vehicle,
respectively.

After modeling the train–track interaction, the present model is implemented in
MATLAB and its dynamic equations are solved using the MATLAB function ode15s.
The initial condition of the generalized coordinate array is zero. The track irregularity is
generated based on the power spectral density of a German high-speed track spectrum
with low irregularity shown in [6]. This power spectral density of the track is used as
input excitation in the computational process of the wheel–rail normal contact force.

3 Results and Discussion

To validate the accuracy of the present model, a long-term train–track interaction case is
considered in this part. Parameters of the slab track can be seen in [13]. The train moves
with a constant speedV = 350 km/h and the track length is 600m.The dynamic responses
of the train–track interaction obtained are comparedwith those from the traditionalmodel
developed by Zhai et al. [3], which was validated by measurement data and used by
many researchers. In this traditional model, the MSM is used to model the rail and slabs.
The fastenings and CA mortar are modeled as spring-damping element and Winkler
foundations, respectively. The whole 600 m track is modeled in the traditional model,
but only 36 m rail and 7 slabs are considered in the present model. In the traditional
model, the first 1200 modes of the rails are considered, and the first 20 modes of the slab
are considered. There are 16427 DOFs in the traditional model. In the present model,
the first 60 modes of the RBM are considered and 18 elements are used in the modeling
of a single slab. There are 943 DOFs in the present model. The vehicle model mentioned
above is also used in the traditional model. Both the present model and the traditional
model are solved using the MATLAB function ode15s with the same time step and time
of the train–track interaction.
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The vertical and lateral wheel–rail contact forces are used in the study to validate the
accuracy of the present model. Time histories of the vertical wheel–rail contact forces
of Wheelset 1 left and right wheel are shown in Fig. 2, and lateral wheel–rail contact
forces of Wheelset 1 left and right wheel are shown in Fig. 3. The results in Figs. 2
and 3 show that the present model has a good agreement with the traditional model that
is validated against measurements. As shown in these figures, the maximum relative
difference between these two models in calculating the dynamic response of the train–
track interaction is small. The maximum relative difference between the two models is
3.8% and shown by the results of the lateral wheel–rail contact force in Fig. 2(c) and (d).
We can conclude that the present model is accurate in solving train-slab track interaction
dynamics.

Fig. 2. Time histories of the vertical wheel–rail contact force of Wheelset 1 from the present
model and the traditional model: (a) vertical wheel–rail contact force of left wheel; (b) vertical
wheel–rail contact force of right wheel; (c) absolute difference of the vertical wheel–rail contact
force of leftwheel between the presentmodelFVLP and the traditionalmodelFVLT and (d) absolute
difference of the vertical wheel–rail contact force of left wheel between the present model FVRP
and the traditional model FVRT .

The present model has a higher computational efficiency than the traditional model,
because there are 16427 DOFs in the traditional model but only 943 DOFs in the present
model. Based on this, the calculation time of the present model for the validation case
is 42261s and 88532s for the traditional model. The calculations are carried out on the
same computer with Intel Xeon W-2115 and 32 GB DDR4 RAM. We can conclude that
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Fig. 3. Time histories of the lateral wheel–rail contact force of Wheelset 1 left and right wheel
from the present model and traditional model: (a) lateral wheel–rail contact force of left wheel;
(b) lateral wheel–rail contact force of right wheel; (c) absolute difference of the lateral wheel–rail
contact force of left wheel between the present model FLLP and the traditional model FLLT and
(d) absolute difference of the lateral wheel–rail contact force of right wheel between the present
model FLRP and the traditional model FLRT .

the present model has a big advantage of reducing calculation time in studying long-term
train–track interaction dynamics.

4 Conclusion

In this paper, a new moving train–track interaction model is developed to calculate the
dynamic responses of long-term high-speed train–track interaction. In the model, only
a small part of the track around the train instead of the whole track need to be modeled
based on the theory of the reduced beammodel (RBM). The reduced rail ismodeled using
the RBM, and these slabs are modeled using Kirchhoff-Love plate elements. Since only
a small number of slabs instead of all the slabs need to be modeled, the number of DOFs
is significantly reduced when comparing with traditional models based on the modal
superposition method (MSM) and the calculation time is therefore reduced. The present
model is checked against Zhai’smodel, where a high-speed train–track interactionmodel
is considered. Based on the obtained calculation results, the present model is calculating
the train–track interaction dynamics with the same accuracy as the traditional model but
with much shorter calculation times, which makes it an efficient tool in investigating the
influence of fastening failure on train–track interaction dynamics.
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