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Abstract. The problem of random vibration response based robust and
unsupervised damage detection for a population of composite aerostruc-
tures is addressed. The focus is on the achievement of robustness which is
of paramount importance as manufacturing variability within the pop-
ulation and flight condition variability are practically inevitable. Two
robust damage detection methods are postulated based on Multiple-
Input Single-Output (MISO) Transmittance Function (TF) stochastic
AutoRegressive with eXogenous pseudo-eXcitation (ARX) type rep-
resentations for eliminating the effects of non-measurable excitation.
Robustness to manufacturing variability is achieved via Multiple Model
(MM) representations (the MM-TF-ARX method) or Principal Com-
ponent Analysis (the PCA-TF-ARX method). The achievable detection
performance is assessed via Monte Carlo ANSYS-based simulations with
a population of 120 composite beams subject to manufacturing thick-
ness variability, two distinct turbulence-like excitation profiles, and three
early-stage crack damage scenarios. The results, in terms of Receiver
Operating Characteristics curves, indicate excellent damage detection
performance for the MM-TF-ARX method, yet inferior for its PCA-TF-
ARX counterpart.

Keywords: Population based SHM · Composite structures · Robust
damage detection · Vibration-based SHM · Statistical time series
methods

1 Introduction

As composite aerostructures are increasingly used by aircraft manufacturers [1],
the development of suitable and effective Structural Health Monitoring (SHM)
systems becomes essential for purposes related to safety and proper maintenance.
Within this context random vibration based SHM is an important technology
offering potential in-flight operation under naturally available excitation, reduced
cost, and large area coverage due to its ‘global’ nature.
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Yet, a number of difficulties are also encountered. First, damage diagnos-
ability and performance for early-stage/incipient damage may be insufficient.
This may be especially true under uncertainty, including that stemming from
non-measurable and varying characteristics of in-flight loading/excitation con-
ditions, as well as other potential factors such as varying temperature. Indeed,
varying excitation conditions hinder effective diagnosis as they may significantly
affect the vibration response characteristics on which damage diagnosis is based.
Furthermore, uncertainty sources like varying temperature [2,3] affect the struc-
tural dynamics and thus the vibration response characteristics as well. The end
result is that the effects of these factors on the vibration response characteristics
may completely ‘mask’ those due to incipient damage, thus rendering effective
diagnosis highly challenging. For this reason considerable efforts are devoted on
the development of robust damage diagnosis methods capable of counteracting
the effects of uncertainty [2–7], and to a lesser extent those of varying excitation
conditions [8–10].

A related important issue stems from the need for population-based SHM
for nominally identical aerostructures; this is highly desirable from a fleet asset
management viewpoint as SHM system tuning on each individual structure
may be avoided and other advantages, such as information sharing, may be
obtained. Yet, additional uncertainty (geometric, manufacturing, and so on), is
then inevitably introduced [4–7], further increasing the problem difficulty.

The goal of the present study is the postulation and critical assessment of
robust damage detection methods for effectively addressing the aforementioned
issues. The postulated methods are designed to be robust to the excitation profile
while also accounting for population uncertainty, and, potentially, other addi-
tional uncertainty as well. They are of the data-based type, that is based on
small-scale identified models using a limited number of sensors, as well as unsu-
pervised, that is with training based on signal records associated only with
the healthy structural state. Robustness to the excitation profile is achieved
via proper Multiple-Input Single-Output (MISO) Transmittance Function (TF)
models, which in contrast to commonly used transmittance [3,6,11], aim at
effective and complete cancellation of potentially variable excitation effects. The
models are of the stochastic AutoRegressive with eXogenous excitation (ARX)
type, designated as MISO TF-ARX. Robustness to population uncertainty is
then achieved by embedding the problem within our recently introduced Mul-
tiple Model (MM) or a Principal Component Analysis (PCA) based framework
[5], with the resulting methods being designated as MM-TF-ARX and PCA-TF-
ARX, respectively.

The assessment of the methods is based on Monte Carlo experiments with an
ANSYS-based finite element model and a population of 120 nominally identical
composite beams subject to manufacturing variability. Two distinct turbulence-
like random excitation profiles are employed, with vibration associated with
engine rotation also included in one. Three early-stage damage scenarios (corre-
sponding to 1mm wide and 1, 3 and 5 cm long longitudinal through-the-thickness
crack on the 150 cm long beam) are considered, while detection performance is
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Fig. 1. Schematic representation of the composite aerostructure on which the excita-
tion, sensor, and crack locations are indicated.

evaluated via Receiver Operating Characteristic (ROC) curves. Some of the main
questions addressed in the study are:

(i) What are the performance characteristics achievable by the postulated meth-
ods in terms of True Positive Rate (TPR) and False Positive Rate (FPR)?

(ii) What is the methods’ sensitivity to damage? Are damages as small as 1/150
of the beam length detectable?

(iii) Is it possible to have the damage detection methods trained with one
random excitation profile but still being effective when operating under the
other?

2 The Population of Composite Aerostructures,
the Damage Scenarios, and the Random Vibration
Signals

2.1 The Population of Composite Aerostructures and the Damage
Scenarios

A population of 120 nominally identical composite aerostructures is consid-
ered. Each structure (Fig. 1) is a hollow Carbon/Epoxy beam representing the
topology of the main part of a tail boom consisting of an eight ply gener-
ally orthotropic laminate with lamination configuration [0/90/45/ − 45]S and
made of UD Carbon/Epoxy prepreg. The structure’s nominal dimensions are
1 500 × 100 × 90 mm, the nominal thickness is 3.1 mm, and the nominal mass is
2.73 kg (Fig. 1). Population geometric uncertainty is introduced by having thick-
ness varying within the ±11% range of its nominal value. Dynamic responses are
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Table 1. Details of the Monte Carlo experiments and the vibration signal character-
istics.

Structural health
state

# of
structures

# of test cases
under E1/E2
(per ‘rotation’)

# aggregate test
cases under
E1/E2

Baseline/Learning Phase

Healthy (HB) 40 40/0 1 360/0

Inspection/Diagnosis Phase

Healthy (HI) 20 40/40 1 360/1 360

1 cm crack (D1) 20 40/40 1 360/1 360

3 cm crack (D2) 20 40/40 1 360/1 360

5 cm crack (D3) 20 40/40 1 360/1 360
1Newmark integration: time step Δt = 1/30 000 (s), α = 0.2525, γ =
0.005, δ = 0.505.
2Signal pre-processing: 24-th order Chebyshev II low-pass filtering with
cut-off 1 000 Hz, re-sampling at fs = 2 000 Hz; final signal length N =
2 000 samples (1 s).
3Each Inspection Test Case is repeated 34 times (‘rotations’) with different
Baseline Test Cases.
4E1, E2: turbulence-like excitation profiles with a 434 Hz sinusoidal added
on E2.

simulated via a finite element model implemented in ANSYS and consisting of
Shell-181 elements [12] with a mesh size of 5 mm. Each beam is considered under
Clamped-Free boundary conditions in order to simulate its connection to the air-
craft fuselage.

Three early-stage damage scenarios, referred to as D1, D2, and D3 and cor-
responding to 1 mm wide and 1, 3, and 5 cm longitudinal through-the-thickness
crack on the 150 cm long beam, are considered. 60 of the 120 aerostructures
are damaged (20 per damage scenario; see Table 1). Damage is implemented by
removing material at a specific location on the top side of each beam (Fig. 1).
The inflation layers are created around the crack area in order to ensure high
model fidelity and resolution [13].

Each structure in the population is excited at two distinct points (X1 and
X2), with the resulting vibration acceleration measured in the same direction as
the excitation at points Y1, Y2, and Y3 (Fig. 1).

2.2 Effects of Uncertainty and Damage on the Dynamics

The effects of geometric uncertainty and damage on the Y2/Y1 and Y2/Y3
Frequency Response Functions (FRFs) of the MISO Transmittance Function
(defined with Y1, Y3 as pseudo-inputs and Y2 as output) for all population
members are depicted in Fig. 2 separately for each damage scenario with the
Healthy (H) curves being also superimposed. The following observations are in
order: (a) In all (H, D1, D2, D3 cases) the geometric uncertainty causes con-
siderable uncertainty on the Transmittance FRFs; (b) Even in the absence of
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Fig. 2. The population uncertainty effects on the analytical MISO Transmittance fre-
quency response Functions under the healthy and each damage state: Y2/Y1 Trans-
mittance (upper row) and Y2/Y3 Transmittance (lower row). The black dashed lines
indicate the functions for the nominal structure.

estimation error, the Transmittance FRF uncertainty zones corresponding to the
healthy case and each one of the damage scenarios are very significantly over-
lapping, especially for the smaller damage scenarios. These observations clearly
suggest a challenging damage detection problem.

2.3 The Vibration Signals

Each structure is excited by realizations of one of two distinct excitation profiles,
E1 or E2, which provide random, turbulence-like, excitation with a damped sinu-
soidal 434 Hz added on E2 in order to simulate rotating part, like engine, effects.
Welch-based Power Spectral Density (PSD) estimates of the employed excita-
tion realizations are presented in Fig. 3; these are treated as non-measurable
in damage detection. The random vibration signals are obtained via Newmark
integration and are subsequently low-pass filtered and sampled at fs = 2000 Hz
(resulting signal length N = 2000 samples or 1 s; details in Table 1).

3 The Robust Damage Detection Methods
and Performance Assessment

3.1 The Methods

The data-based damage detection methods postulated utilize random vibration
response signals from three locations (Y1, Y2, Y3) on the structure, with Y1
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Fig. 3. Welch-based Power Spectral Density estimates of the excitation profiles E1
(blue) and E2 (green) (80 estimates per profile).

and Y3 treated as pseudo-inputs and Y2 as output (see Fig. 1) within a MISO
Transmittance Function (TF) framework that eliminates varying excitation pro-
file effects. The TF is modeled as a stochastic MISO ARX type model of the
form [14, pp. 154–157]:

TF-ARX(n, n, n):
n∑

i=0

ai · y2[t − i] =
n∑

i=0

b1i · y1[t − i] +
n∑

i=0

b3i · y3[t − i] + w[t]

with t designating discrete time, yj [t] (j = 1, 2, 3) the measured signals, w[t]
zero-mean white Gaussian noise with variance σ2

w, ai, b1i , b3i (i = 0, . . . , n) the
AR and the two sets of X parameters, respectively (a0 ≡ 1). Both damage
detection methods employ the model parameter vector consisting of the AR/X
parameters, or versions thereof, as feature vector.

The first, MM-TF-ARX, method operates within a MM framework [5] within
which the healthy population structural dynamics under uncertainty are mod-
eled via a p-dimensional MM representation (consisting of p conventional models
obtained via a corresponding number of Y1, Y2, Y3 signal sets) within the fea-
ture space and constructed in an initial Baseline/Learning Phase. When a fresh
signal set is available from a structure in unknown state, a corresponding con-
ventional model is estimated and a distance metric D (minimum Mahalanobis
pseudo-distance) between it and the MM representation is computed. Damage
is then detected if and only if D is higher than a user selected threshold (Inspec-
tion/Diagnosis Phase).

The second, PCA-TF-ARX, method, employs PCA for feature vector trans-
formation and dimensionality reduction [5]. The principal components corre-
sponding to the largest m eigenvalues of the AR/X parameter covariance matrix
– responsible for a user-selected fraction of the total variability under the healthy
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Table 2. Details on the damage detection methods.

Method Feature Feature
dimensionality

Distance Metric

MM-TF-ARX AR/X parameter vector 31 Mahalanobis

PCA-TF-ARX AR/X parameter vector 30 Mahalanobis

TF-ARX Modeling: selected model TF-ARX(10,10,10); RSS/SSS(%)= 0.08;
BIC= −3.4; SPP= 190.

structural state – are assumed to be associated with uncertainty. Feature vector
transformation and dimensionality reduction (by m) is then achieved by using
the matrix consisting of the eigenvectors corresponding to the retained eigenval-
ues and the healthy population dynamics are represented by the sample-mean
conventional model within the transformed and reduced feature space (Base-
line/Learning Phase). When a fresh signal set is available from a structure in
unknown state, a corresponding conventional model is estimated, transformed,
and reduced in the exact same way. Damage detection is then based on com-
puting a distance metric D (Mahalanobis pseudo-distance) between it and the
sample-mean model representation of the healthy dynamics, with damage con-
firmed if D is higher than a user selected threshold (Inspection/Diagnosis Phase).

3.2 Damage Detection Performance Assessment

Vibration-signal-based TF-ARX(n, n, n) (n = 1, 2, . . .) modeling (signal details
in Table 1) of the healthy population dynamics under the E1 excitation profile
leads to a TF-ARX(10, 10, 10) model with characteristics indicated in Table 2
along with feature dimensionality for each method. The MM representation
dimensionality is selected equal to the number of experiments/Test Cases in the
Baseline Phase, that is p = 40 (Table 1). The numbers of Experiments/Test Cases
under each of the E1 and E2 excitation profiles and each condition (Healthy,
D1, D2, D3) in the Inspection Phase are also shown in the same Table. Signal
sets used in the Baseline Phase are excluded from the Inspection Phase. For
the PCA-TF-ARX method only the principal component corresponding to the
largest eigenvalue is dropped (m = 1; see the feature dimensionality in Table 2)
as only the geometric uncertainty remains active due to the fact that the exci-
tation effects are cancelled out through the MISO TF.

Damage detection assessment results are obtained for 2 720 Inspection Test
Cases (inspection experiments) per health state (HI, D1, D2, D3); resulting into
a total of 10 880 Inspection Test Cases. These are obtained by using 34 different
sets of the p = 40 Baseline Test Cases (‘rotation’ procedure) under the E1
excitation profile in order to ensure that the aggregate results and conclusions
are independent of any specific set of Baseline Test Cases.

The results are presented in terms of ROC curves and distance metric D
plots. Those obtained by the MM-TF-ARX method (Fig. 4) are truly excellent,
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Fig. 4. Damage detection performance for the MM-TF-ARX method: ROC curve for
each damage scenario (a), distance metric for the Healthy and D1 states (b), Healthy
and D2 states (c), and Healthy and D3 states (d). (2 720 Inspection Test Cases per
health condition; E1 and E2 excitation profiles).
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Fig. 5. Damage detection performance for the PCA-TF-ARX method: ROC curve for
each damage scenario (a), distance metric for the Healthy and D1 states (b), Healthy
and D2 states (c), and Healthy and D3 states (d). (2 720 Inspection Test Cases per
health condition; E1 and E2 excitation profiles).

achieving 100% TPR (correct detection rate) for 0% FPR (false alarm rate) for
all three (D1, D2, D3) damage scenarios. Those obtained by the PCA-TF-ARX
methods (Fig. 5) are inferior, especially for the smallest (D1) damage scenario.
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4 Concluding Remarks

The problem of random vibration based robust and unsupervised damage detec-
tion of early-stage cracks D1 (1 cm), D2 (3 cm), and D3 (5 cm) for a population
of nominally identical composite aerostructures under varying excitation profiles
and geometric uncertainty has been considered. Two MISO Transmittance Func-
tion based methods, a MM-TF-ARX and a PCA-TF-ARX have been postulated
and their achievable performance has been assessed via a total number of 10 880
Inspection Test Cases. The main lessons learnt from this study, corresponding
to the questions posed in the introduction, are:

(i) The MM-TF-ARX achieves truly excellent performance characterized by
100% TPR (correct detection rate) for 0% FPR (false alarm rate) for all
damage scenarios. The PCA-TF-ARX achievable performance is lower.

(ii) Damages as small as 1/150 of the beam length (D1 damage) are indeed
detectable by the MM-TF-ARX method despite the excitation profile vari-
ability and the presence of geometric uncertainty. Detectability for such dam-
ages is problematic by the PCA-TF-ARX method.

(iii) Thanks to the use of the MISO Transmittance Function, the performance of
both methods is not affected by the excitation profile, including the presence
of sinusoidal components associated with engine operation.
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