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Abstract. A Structural Health Monitoring (SHM) architecture involves the pro-
cessing of sensor measurements and their translation to decisions about the struc-
ture’s condition. Given a specific SHM approach, the sensor topology, the fea-
ture selection, and the employed detector are the main elements that control the
detection performance. This work provides an exploratory analysis of the sta-
tistical response patterns that govern a structure subjected to variable loads and
methodically arrives at an optimal sensor topology, that maximizes the detection
performance. For demonstration purposes, a thin square plate subjected to prob-
abilistically described loads is considered. The damage of interest corresponds to
a uniform thickness loss, the detection of which is evaluated at different damage
levels (from 1% to a 90% unrealistic upper bound). The damage is to be iden-
tified indirectly, through strain sensing. The problem is numerically approached
(Finite Elements and Monte Carlo Simulations). The generalized Gaussian like-
lihood ratio test is employed for setting up the detector. The effect of the feature
vector arrangement to the detection performance is assessed through estimations
of the probability of detection and false alarm, under the Neyman-Pearson frame-
work. The optimal feature vector has been derived through case-based informal
(selective process) or formal (Genetic Algorithms) optimization.

Keywords: Optimal sensor placement - Statistical pattern recognition -
Detection theory - Genetic Algorithm - Corrosion

1 Introduction

Modern society relies heavily on structural and mechanical systems. Many of them are
presently close to the furthest limit of their design life. Because they cannot be econom-
ically replaced, techniques for damage detection are being developed and implemented
so that they can continue to be safely used if or when their operation is extended beyond
their design service life [1]. These conditions require the early detection of damage to
increase structure’s reliability and reduce important economic consequences. Structural
health monitoring (SHM) is a growing sector related with damaged detection. It has
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piqued the interest of the scientific community over the last decade. According to Osta-
chowicz et al. [2] the performance of the SHM methods is based on the quality of the
information collected by the sensors. Even though there is a significant development in
sensor technology over the past few years, there is a limit to their performance, so the need
for research in other areas becomes significant. Optimal sensor placement is a solution
that could lead to a reduction in cost of the SHM system without compromising on the
quality of the monitoring approach [2] and is the main challenge of this study. Colombo
et al. [3] provide a combined approach based on the Neyman-Pearson likelihood ratio
test and Bayesian cost used in an optimization framework. According to the authors a
multi-objective optimization scheme is vital to achieve a conjunct saving in costs and
improvement in detection performances. Mallardo et al. [4] highlight the importance
of impact location identification on composite structures and suggest an optimal sensor
positioning on a composite-stiffened aircraft panel aiming to maximize the probability
to detect the impact or minimize the error associated with a pre-assigned probability
of detection by using Genetic Algorithms (GA). Another interesting work focused on
marine applications is proposed in Silionis and Anyfantis [5], where the guiding princi-
ple of the damage identification strategy is based upon measuring, through a limited and
constant number of sensors, the static strain redistribution caused by an extensive dam-
age. The authors treat the problem as one of statistical pattern recognition, and apply
methods derived from machine learning to tackle it. Other interesting works may be
found in [6-8].

The present work addresses the important problem of optimizing sensor topology
on a given structure. It provides an association of the sensor network arrangement that
optimizes the detection performance based on the statistical patterns that govern the
feature space, explored in a manual or automated fashion. More specifically, this paper
focuses on a decision process for arriving at the topology for sensor placement over a
domain of interest, under a variable operational environment. For research purposes, a
fictitious SHM problem has been considered, which is described in the second section.
In the third section, a description of the probabilistic numerical simulations is provided,
followed by that of the employed detector in the fourth section. In the fifth section a
presentation of the statistical response is provided. Detection results are given in the
sixth section. Emphasis is given at the description of the optimal solution that has been
derived by a GA. In the seventh section the conclusions drawn are presented along with
some suggestions for future work.

2 Problem Definition

2.1 SHM Detection Basis

The considered SHM problem is focused on detecting corrosion-induced thickness loss
(CITL), in a thin-walled structural component. This problem is of interest in marine
structures, as these operate in a predominantly corrosive environment. Added thickness
is commonly used in plates across vulnerable regions as a preventive measure. The SHM
strategy proposed herein is oriented towards predictive, condition-based maintenance.
The structure’s plate thickness is inferred, indirectly, from capturing load redistributions
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caused by stiffness reduction. A classifier, based on detection theory is introduced, which
translates the strain-based feature vector into inferences about the structure’s condition.

2.2 Case Study Description

A thin plate subjected to probabilistically described static loads is considered. Hence,
their magnitude and location are considered as random variables (RVs) that obey a given
statistical structure. Strain measurements are extracted and used as the informative fea-
tures. Damage is introduced as general uniform corrosion by simulating eleven damage
levels, ranging from 1% to 90% thickness loss.

A Level I SHM system [9] is developed to discriminate between two states, one
corresponding to the intact plate (healthy state), and the other to the corroded plate
(damaged state). This binary classification task is treated using a detector based on
the maximum likelihood ratio test. The optimal feature vector, with respect to detector
performance, is then chosen via an optimization strategy that optimizes both the sensor
topology and the measured strain component.

The problem is numerically studied on a clamped square plate (¢ = 1000 mm and
to = 10 mm) as shown in Fig. 1a. A non-uniform pressure profile, ¢(x, y), is considered
with the mathematical description provided in Eq. (1).

1/x—Xo\> 1/y—Yo\>
q(x, y; Qo, Xo, Yo) = Qo exp ~3 exp| —x ey

X0 2\ oy,

Its variability (load uncertainty) is controlled through the amplitude Qq at the
controlled location (Xy, Yp). These quantities are considered as normal RVs, with
Qo ~ N(qo; LQy» Uéo), Xo ~ N (x0; txgs axzo) and Yo ~ N(yo; Uy, ayzo). Parameters
1y, 0g, are selected such that the plate remains within its elastic range. To constrain
the non-zero magnitude area within the extreme locations of the plate, parameters i,
and py, are taken equal to zero and parameters oy, and oy, are taken equal to a/12 (sta-
tistically symmetric loading). Some indicative realizations of X, Y pairs are plotted in
Fig. 1b.
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Fig. 1. Considered problem (a) and realizations of the pressure’s profile peak (X, Yq) (b).
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3 Numerical Simulations

Strain measurements are numerically obtained using Finite Element Analysis (FEA).
A mesh consisting of 2500 linear (4-node) shell elements was used and a linear elastic
and isotropic material (E = 200 GPa, v = 0.3) was assigned. Every load realization (X
= X9, Yo = yo and Qo = qo) represents a virtual statistical experiment, as indicatively
presented in Fig. 2.
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Fig. 2. Indicative pressure distribution (a) and corresponding deflection of the plate (b).

Figure 3 presents an indicative strain distribution of the plate for the healthy state.
The form of the response is similar for the damaged state due to the nature of the load.
Eleven different damage states are investigated and simulated. Each damaged condition
results from the simulation of a FE model with a different thickness from 1% thickness
wastage to 90% unrealistic upper bound.

Monte Carlo Simulations (MCS) were employed as the means for forward uncer-
tainty quantification. Latin hypercube sampling is employed to generate independent
realizations of Qp, Xo and Y. Each set corresponds to a numerical statistical test (deter-
ministic FEA). Convergence was achieved at ~10* samples. The three in-plane strain
components (axial exx, transverse &yy and shear exy) of the top surface and at the element
center (gauss point location) were stored for each sample.
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Fig. 3. Contour plot of strain exx (@), eyy (b) and exy (c) for the healthy state for the realized case
shown in Fig. 2.
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4 The Employed Detector

A detector can be regarded of as the transition from a feature vector to a decision [3].
Only binary decisions will be investigated in this research, where one must normally
decide whether features received from a test case belong to the reference condition or
to the corroded plate. The likelihood ratio test is the detector that is associated with
a hypothesis test where a null hypothesis Hq is defined for the healthy state and the
alternative hypothesis H is defined for a modeled damaged state, as follows:

Hp : x ~ fu(x; 0g) = N(X; by, ZH) 2

Hy :x~ fp(x; 8p) = N(x; pp, Xp) 3)

where X is the n-dimensional feature vector x = {x1, x2,.., xn}T that holds the strain
components registered from a specific sensor network design. The random vector is
considered to follow the multinormal distribution with a parameter vector 0y o p, that
incorporates the mean vector iy . p and the covariance matrix Xy o p. A test feature
vector, X, is associated with the damaged state (alternative hypothesis) if the likelihood
ratio is larger than a threshold y, as stated below:

N(x; pp, Xp)
L(x) = 2 == 4
N(X; wy, XyH)
The likelihood ratio test is written as:
Jdet X exp[—%(x — p,D)TZI;I x— p,D)]
L(x) = )

Jdet Xp exp[—%(x — uH)TZ;{I (x— uH)]

By taking the logarithm of both sides and rearranging the terms, the detector (hypothesis
test) is expressed in terms of a test statistic, 7'(x), that is in turn associated with a new
threshold y’. The decision rule is:

decide Hy, if T(x) > logy + % log {G58 = 7/ ©
decide Hy, if T(x) < logy + %log gg: gﬁ =y’
Magnitude 7'(x) is a univariate random variable defined as follows:
- T —ww)  x—wp)"Zp' x—wp)
Tx) = — @)

2 2
The detector’s performance is measured in terms of the probability of detection Pp:

+00

Pp=Pe{T(x) > ' Hy) = / fox; Hi)dx ®)
Y
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and the probability of false alarm, Pga, given by the following equation:

+00
Pon = Pr{T 0 > /s o} = [ futx Hoax ©)
Y

Under the Neyman-Pearson (NP) framework, given a specific value for Ppa, the
threshold for a selected sensor topology, i.e. given 0y and 0p, can be obtained by mini-
mizing an error functional defined by comparing the constant Pra with the numerically
computed version of the same, Pga,,., through MCS [3]:

Vire = argmin, (In((Pgx — Praye (¥))) (10)

5 Statistical Analysis of the Strain Response

The present chapter presents a statistical exploration of the strain pattern over the plate.
The strain data set is extracted from the healthy state (Ho) and eleven strain datasets
from each corresponding damaged state (H1).

Every damaged state is considered as a distinct problem. A 80/20 sample ratio was
considered for training/testing purposes. Some important statistics are computed based
on a thickness loss of 20% of the nominal thickness of the plate, as a major corrosion
scenario that reflects to a loss corresponding to the thickness margin introduced to marine
plates for corrosion wastage purposes over the structure’s design life (20-25 years).
Figure 4 presents contour maps of the mean shift between the undamaged and damaged
states, over the plate domain for each strain component. The difference between mean
values is proportional to the corrosion wastage level. The shift between sample standard
deviations follows a similar pattern. The ratio of the standard deviation of the healthy
state and the standard deviation of the damaged state is almost constant over the plate.
The ratio increases with higher levels of corrosion and reduces with lower levels.

0.5 1051 o5 — 1051 g5 716

68.4 68.4 ; ‘ 429
317 317 143
0.0/ 0.0 0.0
-5.0 -5.1 -14.4
-41.7 -41.8 ‘ . -43.0
05 784 05 | —
00 0

y [m]

0.5 0.0 05 -0.5 0.0 05 83 70'5_0_5 S L6
X [m] X [m] X [m]
(a) (b) ©

Fig. 4. Difference between the MC estimates of the expected values of exx (a), eyy (b) and exy
(c) in [pe] for 20% thickness wastage (damaged) and the reference (healthy) state.
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6 Detector Results

6.1 Detector Performance Assessment

The detector’s performance is assessed for the 20% thickness wastage case (strain pattern
in Fig. 4). A single strain component (exx/€yy/exy) is first selected as the unique infor-
mative feature (univariate problem). The element-wise evaluation of the performance
measures (Pp and Pgp) is presented in Fig. 5 for a threshold y = 1 used in Eq. (4). These
plots reveal information regarding the effect of the location for sensor placement to the
detector’s performance. There is a clear association between the regions where a high
mean shift is recognized in Fig. 4 and the zones that exhibit high Pp in Fig. 5. It is evident
though, that Pp and Prs maximize (or minimize) at the same zones within the plate,
regardless the selected feature. It is noteworthy that we are aiming at a sensor design
that maximizes Pp and minimizes Pga, in the Neyman-Pearson setting. Nevertheless,
an optimally placed single sensor yields poor performance metrics (Pp ~ 65% and Pgp
~ 21%), indicating the statistical complexity of the problem at hand.
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Fig. 5. Distribution of detector’s performance over the plate for a univariate (1d) feature vector.
Subplots exx (a), eyy (b) and exy (c) present measure Pp and subplots exx (d), eyy (e) and exy
(f) present the corresponding measure Ppa . Paired subplots (a)—(d), (b)—(e) and (c)—(f) are to be
considered for examination.

On an effort to increase the information content, all three strain components at
each element are considered to construct the feature vector (tri-variate problem). The
corresponding distribution of the performance metrics over the domain is presented
in Fig. 6. A correlation between the distribution of the statistics obtained from single
features (Fig. 4) and the detector’s performance distribution in Fig. 6 is intractable.
Although, an increased performance is observed in some limited elements located at the
boundary of the plate, this region is considered singular and is preferred to be disregarded.
The remaining smooth pattern within the plate is the pool of candidate locations for sensor
placement. However, the information gain from all strain components is marginal (Pp
~ 69.8% and Ppa ~ 18.7%).
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Fig. 6. Distribution of detector’s performance over the plate for a tri-variate element-wise (3d)
feature vector: Pp (a) and Ppp (b).

Figure 7 shows the aggregated detection performance metrics for each selected fea-
ture vector (univariate or tri-variate case) with respect to the examined corrosion levels.
Each point corresponds to the maximum Pp obtained within the plate and the corre-
sponding Pra, which does not correspond to the Neyman-Pearson optimal detector, as
prescribed by Eq. (10). It is evident that detection accuracy breaks the 50% threshold
for corrosion levels higher than 10%. For corrosion wastage above 40%, the detection
scheme becomes more powerful achieving a Pp of 87%.
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Fig. 7. Maximum probability of detection and corresponding false alarm rate per corrosion level.
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6.2 Determining an Optimal Sensor Network

This section focuses on the determination of the optimal sensor topology and the cor-
responding strain component that maximizes the detector’s performance. This is a con-
strained optimization problem and is tackled through the employment of Genetic Algo-
rithms (GA). The aim is to arrive at a N-dimensional feature vector (holding the design
variables), X, corresponding to N sensors together with the specific strain component, k
= XX, yy or Xy measured at a location.

x:{xlf,...,le»‘...xf\,} (11D

The features are selected from a database holding (2500 x 3 x 10*) entries: (number
of elements x number stain components x MC samples) for the healthy and the damaged
state (20% corrosion). For each design vector, the parameters 0y o, p are calculated and
used within Eq. (6) and Eq. (7) for detection performance evaluation. The fitness function
was defined as:

Xopt = arg maxx (Pp(x)) (12)

The results from four optimization cases are presented in Fig. 8. Initially a case were
ten sensors measuring a single strain component each was examined. The corresponding
feature vector is described by a 10-dimensional multinormal distribution. The problem
is solved over the entire plate domain with a resulting max(Pp) equal to 99.8% and
corresponding Pra equal to ~0%. The optimal sensor topology is presented in Fig. 8a.
However, running the optimization by excluding the singular boundary zones (Fig. 6),
detection performance drops to 92.4% for max(Pp) and increases to ~2.2% for Ppa.
The optimal position for each single sensor is located at high Pp zones over the plate
according to Fig. 5.
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Fig. 8. Optimal positions of single sensors (a) with 3 zones and (b) without 3 zones and positions
of rosettes for 20% corrosion (c) with 3 zones and (d) without 3 zones.

In order to enhance the information content of the feature vector, all three strain com-
ponents were considered at each candidate location, resulting at a 30-dimensional multi-
normal statistical description. The number of locations for sensor placement remains the
same (N = 10). This optimization problem is formulated as in the previous cases (we
maximize Pp and evaluate the corresponding Prs — non NP) and additionally under
the NP setting, where we maximize Pp for a given Pgs (NP). Equation (10) has been



226 T. Liangou et al.

employed for implementing the NP optimal detector and the optimization problem was
solved through the employment of GAs. Respective sensor topologies are presented in
Fig. 8c—d. The performance for the non-NP cases is max(Pp) = 99.9%/Pgp = ~0% and
max(Pp) = 98.4%/Pga = 0.4%, for the entire (Fig. 8c) and the reduced plate domain
(Fig. 8d), respectively. On the other hand, the performance of the NP detector for Pga
= 1% has arrived at a max(Pp) = 99.9% by optimizing over the entire domain and at a
max(Pp) = 93.7% by optimizing over the reduced domain. It is evident that the bound-
ary zones that are considered as singular, include highly informative content, however,
as aforementioned, these locations may be sensitive to error and inaccuracies arising
from e.g. sensor misplacement. The sensor locations are distributed over the plate when
the boundary zones are included compared to the sensor concentration in their absence
(Fig. 8c—d).

7 Conclusions

This study investigated the statistical pattern recognition for optimal sensor placement
in damage detection due to thickness loss. The behavior of a detector under NP frame-
work was examined for all possible sensor placement positions and different levels of
corrosion. It proved that the number, locations, and measuring features of the sensors
could not be selected manually, as such a choice is not immediately understandable.
Thus, the selection of an appropriate optimization technique is considered necessary. A
GA is used to locate optimal — in terms of Pp — combinations of sensor locations and
strain components measured for a constant number of sensors, in a short computational
time, compared to the individual performance of the detector. The solved problem could
be extended to investigate the minimum number of sensors that could be placed.
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