
Chapter 13
A Unified Integral Equation Formulation
for Linear and Geometrically Nonlinear
Analysis of Thick Plates: Derivation of
Equations

R. J. Marczak

13.1 Introduction

Numerical solutions for geometrically nonlinear bending of moderately thick plates
are well reported in the literature. Among the conventional numerical methods
used to solve this type of problem, the boundary element method (BEM) has
been receiving relatively little attention on the subject, in spite of the excellence
of the results obtained with the method for linear problems [We82, KaTe88]
[RaEtAl97, Ra15]. Many reasons have contributed to prevent the general application
of the BEM in nonlinear problems. The generality of the finite element method is
obviously one of them, but some mathematical aspects inherent to integral equation
methods have contributed as well. As one of these aspects, one could mention the
so-called convective (or free) terms that arise in derivative integral equations, as
these terms are sometimes misunderstood or even missing from the equations.

The objective of this chapter is to outline the deduction of the convective
terms appearing in integral equations for large displacement analysis of Mindlin
and Reissner plate models. There are only few works exploring the solution of
geometrically nonlinear thick-plate bending problems using the BEM [XiEtAl90,
Vi90, Ji91, XiQui93, SuEtAl94, Ra98]. However, most of them do not present
the derivation of the free terms, and, in addition to the best of the author’s
knowledge, no one shows results for maximum transverse displacement far beyond
the plate thickness magnitude. The present work aims to outline a clear and didactic
derivation of such terms, as they are quite common in nonlinear applications using
boundary integral equation methods.
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The Mindlin and the Reissner plate theories are very well-known structural
models. In his celebrated work, E. Reissner [Re44] started from a stress field and a
mixed variational principle to obtain the equilibrium equations. The Hencky–Bollé–
Mindlin (or simply Mindlin, as it is generally known) plate model [Bo47, Mi51]
can be more easily obtained departing from a kinematical point of view, where the
Kirchhoff–Love normality (thin plate) condition is relaxed.

Uα (x1, x2, x3) = uα (x1, x2) + x3ψα (x1, x2) (13.1a)

U3 (x1, x2, x3) = u3 (x1, x2) . (13.1b)

In all expressions throughout this chapter, Greek indices range from 1 to 2, while
Latin indices range from 1 to 3. Here, u contains the membrane (in-plane) and
transverse plate displacements, respectively (i.e., uα and u3), while ψα are the plate
rotations. All variables are referred to the plate’s middle surface. If taken pointwise
across the thickness, the displacement field of the Reissner model is more complex
than postulated in Eq. (13.1). However, the middle surface fields remain valid for
this model if it is interpreted as a weighed mean value of the displacement field
across the thickness h.

ψMindlin
α = 12

h3

∫ h/2

−h/2
ψReissner

α (x1, x2, x3) x3 dx3

uMindlin
3 = 3

2h

∫ h/2

−h/2
uReissner3 (x1, x2, x3)

[
1 −

(
2x3
h

)2
]

dx3.

The in-plane displacements are included in Eq. (13.1) because the two-
dimensional elasticity behavior will be superimposed on the plate bending
equations, aiming the derivation of equilibrium equations for geometrically
nonlinear bending problems. These are found to be written in terms of resultant
stresses following the reasoning of reference [Fu65].

Nαβ,β + qα = 0 (13.2a)
(
Nαβu3,α

)
,β + Qα,α + q3 = 0 (13.2b)

Mαβ,β − Qα + mα = 0. (13.2c)

Here, Nαβ are the in-plane (membrane) forces, Qα are the shear forces, and Mαβ

are the bending moments. The symbols qα and q3 stand for in-plane and transverse
loadings, respectively, while mα are the distributed moments. Equation (13.2) can
be recovered in terms of displacements through the stress–displacement relations.

Nαβ = C
1 − ν

2

[
uα,β + uβ,α + u3,αu3,β + 2ν

1 − ν

(
uγ,γ + 1

2
u3,γ u3,γ

)
δαβ

]

(13.3a)
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Mαβ = D
1 − ν

2

[
uα,β + uβ,α + 2ν

1 − ν
uγ,γ δαβ

]
(13.3b)

Qα = Dλ2
1 − ν

2

[
uα + u3,α

]
. (13.3c)

Further, C = Eh
(1−ν2)

, D = Eh3

12(1−ν2)
, λ2 = 12κ2

h2
, and κ2 is the shear stress correction

factor. In comparison to the plate theory commonly used, the only visible difference
in Eq. (13.3) is the expression for the moments, which has an additional term in the
Reissner plate model.

MReissner
αβ = R.H.S. of Eq. (13.3b) + ν

(1 − ν)λ2
q3 δαβ. (13.4)

In order to unify the equilibrium equations in the same computational model, a plate
model factor (mf ) is employed [WeBa90].

Mαβ = D
1 − ν

2

[
ψα,β + ψβ,α + 2ν

1 − ν
ψγ,γ δαβ

]
+ mf q3 δαβ , (13.5)

where

mf = ν

(1 − ν)λ2
for the Reissner model, (13.6a)

mf = 0 for the Mindlin model. (13.6b)

Equation (13.2) describes moderately thick-plate bending problems for large
displacements and a moderately large rotations regime [Fu65]. In view of Eq. (13.5),
they can be used regardless of the plate model considered, including the classical
Kirchhoff–Love model. The presence of the nonlinear terms in Eq. (13.3) is a
consequence of relevant higher-order terms kept in the Green–Lagrange strain
tensor. Both the linear and nonlinear contributions can be further evidenced by
writing,

Nαβ = Nl
αβ + Nn

αβ , (13.7a)

Qα = Ql
α + Qn

α , (13.7b)

where

Nl
αβ = C

1 − ν

2

[
ūα,β + ūβ,α + 2ν

1 − ν
ūγ,γ δαβ

]
, (13.8a)

Nn
αβ = C

1 − ν

2

[
u3,αu3,β + ν

1 − ν
u3,γ u3,γ δαβ

]
, (13.8b)
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Ql
α = Dλ2

1 − ν

2

(
uα + u3,α

)
, (13.8c)

Qn
α = Nαβ u3,β . (13.8d)

Upon substituting these into the equilibrium equations, one obtains the (coupled)
Navier equations of the problem, where the nonlinear terms are added to the loading
terms in a general system.

[
mL 0
0 fL

](
mu
f u

)
=
(

mq̂
f q̂

)
. (13.9)

Here, mL is the differential operator of the linear membrane equilibrium problem,
fL is the linear bending operator, mu = {u1 u2}T are the in-plane displacements,
and f u = {ψ1 ψ2 u3}T are the plate displacements. The membrane-bending
coupling is implicit in the corresponding pseudo-loadings mq̂ and f q̂.

mq̂α = − mFαβ(∂Q) mql
β
(Q) + mqn

α
(Q) (13.10a)

f q̂i = − fFij (∂Q) f ql
j (Q) + f qn

i (Q). (13.10b)

The complete expressions of the terms used in Eqs. (13.9) and (13.10a)–(13.10b)
are as follows.

mL(∂Q) = C
1 − ν

2

⎡
⎢⎢⎢⎣

Δ + 1 + ν

1 − ν

∂2

∂x2
1

1 + ν

1 − ν

∂2

∂x1∂x2

1 + ν

1 − ν

∂2

∂x1∂x2
Δ + 1 + ν

1 − ν

∂2

∂x2
2

⎤
⎥⎥⎥⎦ (13.11a)

fL(∂Q) = D
1 − ν

2

⎡
⎢⎢⎢⎢⎢⎢⎣

Δ−λ2+1 + ν

1 − ν

∂2

∂x2
1

1 + ν

1 − ν

∂2

∂x1∂x2
−λ2

∂

∂x1

1 + ν

1 − ν

∂2

∂x1∂x2
Δ−λ2+1 + ν

1 − ν

∂2

∂x2
2

−λ2
∂

∂x2

λ2
∂

∂x1
λ2

∂

∂x2
λ2Δ

⎤
⎥⎥⎥⎥⎥⎥⎦

(13.11b)
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mF(∂Q) =
[
1 0
0 1

]
(13.12a)

fF(∂Q) =

⎡
⎢⎢⎢⎣
1 0 mf

∂

∂x1

0 1 mf

∂

∂x2
0 0 1

⎤
⎥⎥⎥⎦ (13.12b)

mql (Q) = {
q1, q2

}T
(13.13a)

mqn(Q) = C
1 − ν

2

⎧⎨
⎩

(u3,1u3,α ),α + ν

1 − ν
(u3,γ u3,γ ),1

(u3,2u3,β ),β + ν

1 − ν
(u3,γ u3,γ ),2

⎫⎬
⎭ (13.13b)

f ql (Q) = {
m1, m2, q3

}T
(13.14a)

f qn(Q) = D
1 − ν

2

{
0, 0, (Nαβu3,β ),α

}T
. (13.14b)

Equations (13.2) and (13.3)—with Eq. (13.5) replacing equation (13.3b)—are taken
herein as a starting point for an incremental integral formulation. Using the weighted
residual method [BrEtAl84], the following Somigliana identities for boundary
variables are obtained [XiEtAl90, Ra98, Ra15],

mCαβ(p)muβ(p) +
∫

Γ

mTαβ(q, p)muβ(q) dΓq =
∫

Γ

mUαβ(q, p)mtβ(q) dΓq

+
∫

Ω

mVαβ(Q, p)mqβ(Q) dΩQ −
∫

Ω

mUαβ,γ (Q, p)Nn
βγ (Q) dΩQ + mvα(p)

(13.15)

and

f Cij (p)f uj (p) +
∫

Γ

f Tij (q, p)f uj (q) dΓq =
∫

Γ

f Uij (q, p)f tj (q) dΓq

+
∫

Ω

f Vij (Q, p)f qj (Q) dΩQ −
∫

Ω

f Ui3,β (Q, p)Nαβ(Q)f u3,α (Q) dΩQ + f vi(p) ,

(13.16)

where the m and f prefixes refer to the membrane and the bending problem,
respectively, and the non-integral terms mvβ and f vi were included to account for
concentrated loads inside the domain [KaSa85]. The symbols p and q denote source
(collocation) and field points, where lower case letters indicate boundary points
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and upper case letters indicate domain points, respectively. The corresponding
displacement (mUij and f Uij ), traction (mTij and f Tij ), and the other fundamental
solution tensors can be found elsewhere ([We82, Ra98]). Equations (13.15) and
(13.16) are easily particularized for internal points upon substituting mCαβ = δαβ

and f Cij = δij .
From Eqs. (13.15) and (13.16), it is evident that the evaluation of the derivatives

of the transverse displacement (u3) is required. They are present in the nonlinear
membrane forces in the last integral of Eq. (13.15) and also in the last integral
of Eq. (13.16). These terms are partially responsible for the membrane-bending
coupling. In domain methods such as finite elements, it is typical to employ the
derivatives of the shape functions, i.e., ui,α = φi,αui , where φi are the shape
functions. Despite being simple, this approach may generate poor results when
the global shape function is not able to represent accurately the gradients of the
displacement field. Similar approaches can be used for boundary elements, but the
use of higher-order domain cells becomes mandatory for acceptable results (see, for
instance, [Vi90]). In the case of employing the boundary element method, there is
no need to assume an a priori interpolated form for the displacement derivatives
since equations (13.15) and (13.16) are already a strong form of the displacement
field. Therefore, a more rigorous solution can be obtained by differentiation of these
integral equations with respect to the coordinates xα(P ). The procedure leads to the
six additionally required integral equations for ψβ,α and u3,α .

Assuming that the displacement derivatives are required only at internal points,
the differentiation of Eqs. (13.15) and (13.16) is straightforward as all their kernels
become regular. However, the differentiation of the last two integrals on the right-
hand side of both equations is rather tedious because the tensors mVβγ,α ,

f V3i,α ,
mUαβ,γ and f Ui3,β have weak singularities when Q ≡ P . Taking into account the
dimension of the corresponding integration domains, one can show that the integral
containing fV is singular only in the case of Reissner’s plate model, while mV is
always regular [WeBa90]. Unfortunately, the differentiation of integrals containing
singular kernels does not obey the classical calculus rules, and they must be treated
by means of the Leibnitz formula [Mi62, Bu78]. The formal derivation of such
derivative integral equations produces the so-called convective terms [BrEtAl84],
which must be added to the final expressions for ūβ,α (P ) and u3,α (P ).

ūβ,α (P ) −
∫

Γ

mTβγ,α (q, P )ūγ (q) dΓq = −
∫

Γ

mUβγ,α (q, P )t̄γ (q) dΓq

−
∫

Ω

mVβγ,α (Q, P )qγ (Q) dΩQ +
∫

Ω

mUβγ,δα (Q, P )Nn
γ δ(Q) dΩQ

+ Nn
γ δ (P )

∫
Γ ′
1

mUβγ,δ (Q, P ) r,α (P ) dΓQ1

− qγ (P )

∫
Γ ′
1

mVβγ (Q,P ) r,α (P ) dΓQ1 − mvβ,α (P ) (13.17)
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u3,α (P ) −
∫

Γ

f T3i,α (q, P )ui(q) dΓq = −
∫

Γ

f U3i,α (q, P )ti(q) dΓq

−
∫

Ω

f V3i,α (Q, P )qi(Q) dΩQ +
∫

Ω

f U33,αγ (Q, P )Nβγ (Q)u3,β (Q) dΩQ

+ Nβγ (P )u3,β (P )

∫
Γ ′
1

f U33,γ (Q, P ) r,α (P ) dΓQ1

− mf qi(P )

∫
Γ ′
1

f V3i (Q, P ) r,α (P ) dΓQ1 − f v3,α (P ). (13.18)

A negative sign was added to all the integrals as the derivatives are assumed to be
taken with respect to xα(P ). The integrals on Γ ′

1 in Eqs. (13.17) and (13.18) are
the aforementioned convective terms, and Γ ′

1 stands for a unit circle centered in P ,
where the derivation of the former is the objective of the present work. In the further,
the main goal is to solve the analytical expressions for all four convective terms.

f cN
αβ(P ) = Nβγ (P )u3,β (P )

∫
Γ ′
1

f U33,γ (Q, P ) r,α (P ) dΓQ1 (13.19a)

f cq
α(P ) = mf qi(P )

∫
Γ ′
1

f V3i (Q, P ) r,α (P ) dΓQ1 (13.19b)

mcN
αβ(P ) = Nn

γ δ (P )

∫
Γ ′
1

mUβγ,δ (Q, P ) r,α (P ) dΓQ1 (13.19c)

mc
q
αβ(P ) = qγ (P )

∫
Γ ′
1

mVβγ (Q,P ) r,α (P ) dΓQ1 . (13.19d)

13.2 Derivation of the Convective Terms

This section details the analytical exposition of Eq. (13.19) following the steps
described in reference [BrEtAl84]. Once these terms are obtained, the set of
derivative integral equations for the translational displacements are completed. An
inspection of Eqs. (13.15) and (13.16) reveals that the candidate terms that give
origin to the convective terms are

IN
i =

∫
Ω

f Ui3,β (Q, P )Nαβ(Q)u3,α (Q) dΩQ , (13.20a)

I
q
i =

∫
Ω

f Vij (Q, P )qj (Q) dΩQ , (13.20b)
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JN
α =

∫
Ω

mUαβ,δ (Q, P )Nn
βδ(Q) dΩQ , (13.20c)

J q
α =

∫
Ω

mVαβ(Q,P )qβ(Q) dΩQ , (13.20d)

where its derivation with respect to the coordinate axes leads to a general form for
Eq. (13.19).

∂IN
i

∂xγ (P )
= f cN

αβ(P ) (13.21a)

∂I
q
i

∂xγ (P )
= f cq

α(P ) (13.21b)

∂JN
α

∂xγ (P )
= mcN

αβ(P ) (13.21c)

∂J
q
α

∂xγ (P )
= mc

q
αβ(P ). (13.21d)

In order to keep the notation simpler, for convenience the prefixes m and f will be
suppressed in the next paragraphs. In order to recover the complete representation
of all expressions, one may consult equation (13.21).

Evaluation of
∂IN

i

∂xγ (P )
Equation (13.20a) may be expressed as the limit

IN
i = lim

ε→0

∫
Ω−Ωε

Ui3,α (Q, P )Mα(Q) dΩQ , (13.22)

where Mα(Q) = Nαβ(Q)u3,β (Q) and Ωε is a unit circle centered at the source
point P . The boundary of Ωε is denoted Γ ε . Consequently, Eq. (13.20a) may be
expressed by

∂IN
i

∂xγ (P )
= lim

ε→0

(
∂

∂xγ

∫
Ω−Ωε

Ui3,α (Q, P )Mα(Q) dΩQ

)
. (13.23)

Using a polar coordinate system (r̄ , θ̄ ) with origin at P ≡ o as depicted in Fig. 13.1,
Ui3,α is rewritten considering only its strongly singular part.

Ui3,α = 1

r(r̄, θ̄ )
Λi3,α (φ). (13.24)
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Figure 13.1a shows the case with r(r̄, θ̄ ) = r̄ and φ(r̄, θ̄ ) = θ̄ ; however, if the
source P is perturbed by a Cartesian increment Δxα , the parameters r and φ differ
from r̄ and θ̄ , respectively, and the boundary Γ ε changes as well (see Fig. 13.1b).
This shows that Γ ε is dependent on the load point location, so that for convenience
one may cast equation (13.23) in polar coordinate system representation.

∂IN
i

∂xγ

=
∫ 2π

0
lim
ε→0

(
∂

∂xγ

∫ R(θ̄)

ε̄

Λi3,α (φ)

r
Mα(Q) r̄ dr̄

)
dθ̄ . (13.25)

One should note that in Eq. (13.25) the integration limits vary with the integration
variable, and when this dependence holds, the Leibnitz formula shall be used
[SoRe58].

d

dα

∫ φ2(α)

φ1(α)

f (x, α) dx =
∫ φ2(α)

φ1(α)

∂f (x, α)

∂α
dx − f (φ1, α)

dφ1

dα
+ f (φ2, α)

dφ2

dα
.

(13.26)

Applying Eq. (13.26) directly to Eq. (13.25) yields

∂

∂xγ

∫ R(θ̄)

ε̄

Λi3,α (φ)

r
Mα(Q) r̄ dr̄ =

∫ R(θ̄)

ε̄

∂

∂xγ

(
Λi3,α (φ)

r

)
Mα(Q) r̄ dr̄

− Λi3,α (φ)

r(ε̄, θ̄ )
Mα(P ) ε̄

dε̄

dxγ

+ Λi3,α (φ)

r(R, θ̄)
Mα(P )R

dR

dxγ

. (13.27)

Due to the fact that the origin of the coordinate system coincides with the source
point P before the imposition of Δxα , and it remains there after the application of
the increment, only ε̄ changes with xα , while R does not. As a consequence, the last
term on the right-hand side of Eq. (13.27) vanishes. Moreover, taking into account
that r(ε̄, θ̄ ) = ε = ε̄ when P ≡ o, one obtains

∂IN
i

∂xγ

=
∫ 2π

0
lim
ε→0

[∫ R(φ)

ε

∂

∂xγ

(
Λi3,α (φ)

r

)
Mα(Q) r dr

]
dφ

− Mα(P )

∫ 2π

0
Λi3,α (φ) cos(r, xγ ) dφ . (13.28)

Now it is instructive to investigate the existence of the first integral on the right-hand
side of (13.28). Noting that

∂

∂xγ

(
Λi3,α (φ)

r

)
Mα(Q) r = r2

∂

∂xγ

(
Λi3,α (φ)

r

)
Mα(Q)

1

r
(13.29)
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and defining Λ̄i3,αγ (φ) = r2 ∂
∂xγ

(
Λi3,α (φ)

r

)
, the term

∫ 2π

0
lim
ε→0

[∫ R

ε

∂

∂xγ

(
Λi3,α (φ)

r

)
Mα(P ) r dr

]
dφ

can be added and subtracted from Eq. (13.29), resulting in

∫ 2π

0
lim
ε→0

[∫ R

ε

∂

∂xγ

(
Λi3,α (φ)

r

)
Mα(Q) r dr

]
dφ

=
∫ 2π

0
lim
ε→0

{
Λ̄i3,αγ (φ)

∫ R

ε

[Mα(Q) − Mα(P )]
1

r
dr

}
dφ

+ Mα(P )

∫ 2π

0
Λ̄i3,αγ (φ) ln(R) dφ − lim

ε→0

[
Mα(P ) ln ε

∫ 2π

0
Λ̄i3,αγ (φ)dφ

]
.

(13.30)

All the integrals in Eq. (13.30) are limited, provided that the membrane-bending
coupling satisfies the Hölder condition in P .

‖Mα(Q) − Mα(P )‖ ≤ Arα , A, α > 0.

Due to the tensor Λ̄i3,αm satisfying the property
∫ 2π
0 Λ̄i3,αγ (φ) dφ = 0, the last two

terms in Eq. (13.30) vanish. In addition, the first integral on the right-hand side is
convergent since

lim
ε→0

[
Λ̄i3,αm(φ)

∫ R

ε

Arα

r
dr

]
= lim

ε→0

[
Arα+2

α − 1
ln(r)

∂

∂xγ

(
Λi3,α

r

)]R

ε

< ∞ ,

which completes the demonstration.

Now ∂IN
i /∂xγ can be transformed back into Cartesian coordinates,

∂IN
i

∂xγ

= −
∫

Ω

∂Ui3,α (Q, P )

∂xγ

Nαβ(Q) u3,β (Q) dΩQ

− Nαβ(P ) u3,β (P )

∫
Γ ′
1

Ui3,α r,γ dΓ ′ , (13.31)

where the first integral shall be interpreted in terms of the Cauchy principal
value (CPV). The second term on the right-hand side of (13.31) is the convective
contribution, as it appears from a change in the position of the source point. In
the present work, the interest remains in the development of the convective term
particularized for i = 3 according to Eq. (13.19a).
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Since the exterior normal of Γ ′
1 points to the center of the circle r,α = −nα , one

can write the convective term as

f cN(P ) = Nαβ(P )

∫
Γ ′
1

Us
33,α r,γ dΓ ′ = −Nαβ(P )

∫
Γ ′
1

Us
33,α nγ dΓ ′ , (13.32)

with Us
33,α

containing only the singular part of U33,α . In the present case,

Us
33,α = −1

πD(1 − ν)λ2

r,α

r
,

thus validating the representation (13.24). Using dΓ = r dφ, then Eq. (13.32) is
analytically defined by

f cN
αβ(P ) = −1

πD(1 − ν)λ2

[∫ 0

2π
nγ nα dφ

]
Nγβ(P ) .

Recalling (Fig. 13.1) that n1 = − cosφ, n2 = − sinφ and using elementary
trigonometric integrals, the following result is obtained.

f cN
αβ(P ) = −Nαβ(P )

D(1 − ν)λ2
. (13.33)

This non-integral term is added to Eq. (13.18) replacing thus the first integral on
Γ ′
1. Note that the correction is necessary only in the singular case (P ≡ Q). A

comparison to findings in the literature shows that Eq. (13.33) is in agreement with
the results obtained by Xiao-Yan et al. [XiEtAl90].
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Fig. 13.1 Definition of the boundary Γ ε around the source point. (a) Initial configuration, (b) the
effect of an increment Δxα applied to the source point coordinates
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Evaluation of
∂I

q
i

∂xγ (P )
The fundamental solution tensor used to take into account domain bending loadings
in both the Mindlin and the Reissner plate models is given by ([WeBa90])

fV = fU − mf
f Ũ = fU − mf

⎡
⎣0 0 U11,1 + U12,2
0 0 U21,1 + U22,2
0 0 U31,1 + U32,2

⎤
⎦ .

Following the procedure outlined in the previous section, Eq. (13.20b) is written in
terms of a limit

I
q
i = lim

ε→0

∫
Ω−Ωε

Vij (Q, P ) qj (Q) dΩQ , (13.34)

so that its derivative results in

∂IN
i

∂xγ (P )
= lim

ε→0

(
∂

∂xγ

∫
Ω−Ωε

Uij (Q, P )qj (Q) dΩQ (13.35)

+ mf

∂

∂xγ

∫
Ω−Ωε

Ũij (Q, P )qj (Q) dΩQ

)
. (13.36)

Now, the treatment has to be carried out for the Reissner model (mf = 1),
otherwise fV = fU, and since U = O (ln r), the first integral does not manifest
strong singularities after the differentiation and will not provide convective terms.
The second integral deserves a more careful inspection. Since the interest is in
the derivative of the plate transverse displacement, Eq. (13.35) is particularized,
considering from the outset only the necessary terms.

∂IN
3

∂xγ (P )
= lim

ε→0

(
∂

∂xγ

∫
Ω−Ωε

U3α,α (Q, P )q3(Q) dΩQ

)
. (13.37)

However, since U3α,α is regular on Ω , it is not possible to apply the representation

U3α,α = 1

r(r̄, θ̄ )
Λ3α,α (φ), (13.38)

and consequently, there is no convective contribution, as expected.

f c
q
αβ(P ) = 0. (13.39)
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Evaluation of
∂JN

α

∂xγ (P )
In the case of Eq. (13.20c), one may follow the same spirit as lined out in the
previous two paragraphs.

JN
α = lim

ε→0

∫
Ω−Ωε

Uαβ,δ (Q, P )Nn
βδ(Q) dΩQ. (13.40)

The first step is to write the integral as a limit,

∂JN
α

∂xγ (P )
= lim

ε→0

(
∂

∂xγ

∫
Ω−Ωε

Uαβ,δ (Q, P )Nn
βδ(Q) dΩQ

)
, (13.41)

and then introducing

Uαβ,δ = 1

r(r̄, θ̄ )
Λαβ,δ (φ), (13.42)

one arrives at an expression that may be solved by the use of the Leibnitz formula.

∂JN
α

∂xγ

= −
∫

Ω

Uαβ,δ

∂xγ

Nn
βδ(Q) dΩQ − Nn

βδ(P )

∫
Γ ′
1

Uαβ,δ r,γ dΓ ′. (13.43)

Here, the first integral shall again be interpreted in the CPV sense, provided the
nonlinear membrane forces satisfy the Hölder condition on P .

‖Nn
βδ(Q) − Nn

βδ(P )‖ ≤ Arα , A, α > 0. (13.44)

Upon analyzing Eq. (13.43), one identifies the expected convective term,

mcN(P ) = Nn
βδ(P )

∫
Γ ′
1

Uαβ,δ r,γ dΓ ′ = −Nn
βδ(P )

∫
Γ ′
1

Uαβ,δ nγ dΓ ′ , (13.45)

where Uαβ,δ is O(r−1), and consequently, the analytical representation of
Eq. (13.45) is

mcN(P ) = 1

8πG (1 − ν)

{∫ 0

2π

[
(3 − 4ν) r,γ δαβ − r,α δβγ

−r,β δαγ + 2r,α r,β r,γ
]

dφ
}
Nn

βδ(P ) . (13.46)
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Finally, using the relations n1 = − cosφ , n2 = − sinφ and elementary integrals of
trigonometric powers leads to the following expression:

mcN
αβ(P ) = −1

8G(1 − ν)

[
(3 − 4ν) δαδδβγ − δαβδγ δ − δαγ δβδ

+1

4
δαβδγ δ

(
1 + 2δαγ

)]
Nn

γ δ(P ). (13.47)

Evaluation of
∂J

q
α

∂xγ (P )
In this case, mV = mU, and since U = O (ln r), no convective term is involved,

mc
q
αβ(P ) = 0 .

13.3 Summary of the Results

All the relevant expressions obtained in the previous sections can be summarized as
follows:

mcN
αβ(P ) = −1

8G(1 − ν)

[
(3 − 4ν) δαδδβγ − δαβδγ δ − δαγ δβδ

−1

4
δαβδγ δ

(
1 + 2δαγ

)]
Nn

γ δ(P ) , (13.48a)

mc
q
αβ(P ) =0 , (13.48b)

f cN
αβ(P ) = − δαγ

D(1 − ν)λ2
Nγβ(P ) , (13.48c)

f cq
α(P ) =0 . (13.48d)

These equations are subject to the conditions

‖Mα(Q) − Mα(P )‖ ≤ Arα , A, α > 0 ;
‖Nn

βδ(Q) − Nn
βδ(P )‖ ≤ Brβ , B, β > 0 ,
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so that finally Eqs. (13.17) and (13.18) may be cast in their final form.

muβ,α (P ) −
∫

Γ

mTβγ,α (q, P )muγ (q) dΓq = −
∫

Γ

mUβγ,α (q, P )mtγ (q) dΓq

−
∫

Ω

mVβγ,α (Q, P )mqγ (Q) dΩQ +
∫

Ω

mUβγ,δα (Q, P )Nn
γ δ(Q) dΩQ

+ mcN
αβ(P ) − mvβ,α (P ) (13.49)

f u3,α (P ) −
∫

Γ

f T3i,α (q, P )f ui(q) dΓq = −
∫

Γ

f U3i,α (q, P )f ti(q) dΓq

−
∫

Ω

f V3i,α (Q, P )f qi(Q) dΩQ +
∫

Ω

f U33,αγ (Q, P )Nγβ(Q)f u3,β (Q) dΩQ

+ f cN
αβ(P )u3,β (P ) − f v3,α (P ). (13.50)

Note that Eqs. (13.49) and (13.50) are valid for interior points, and consequently,
attention shall be paid to the singularities O

(
1/r2

)
in the integrals on the left-hand

side, and O (1/r) and O
(
1/r2

)
for the first and third integrals on the right-hand

side. For boundary points, their limit to the boundary must be taken in order to obtain
the corresponding geometric factors, i.e., the C matrix. In that case, the integrals on
the left-hand side must be interpreted in the Hadamard sense, which demonstrates
the hyper-singular character of these equations, while all remaining integrals are
interpreted employing the CPV.

Moreover, using any traditional collocation-type process ([BrEtAl84]),
Eqs. (13.15), (13.16), (13.49), and (13.50) lead to the following set of algebraic
equations:

• Membrane (2D elasticity) problem:

mH mu = mG mt + mB + mf. (13.51)

• Bending problem:

fH f u = fG f t + fB ū3 + f f. (13.52)

• In-plane displacement derivatives:

u′
β + βH mu = βG mt + βB + β f. (13.53)

• Transverse displacement derivatives:

u′
3 + 3H f u = 3G f t + 3B u′

3 + 3f, (13.54)
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where

u′
β = {

muβ,1 , muβ,2

}T and u′
3 =

{
f u3,1 , f u3,2

}T

. (13.55)

13.4 Conclusions

This chapter presented a compilation of the relevant integral equations for linear
and geometrically nonlinear bending, as well as elastic stability of moderately thick
plates. The hyper-singular derivative integral equations for the displacement field
were presented, including the corresponding convective terms. The resulting integral
equations can be used to solve geometrically nonlinear bending problems, as well
as in-plane extension, linear bending, and stability problems by particularization.
Domain discretization is assumed for the domain integrals whenever necessary.
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