
Chapter 11
A Novel Solution of the Multi-Group
Neutron Diffusion Equation by the
Hankel Transform Formalism

R. A. S. Klein and J. C. L. Fernandes

11.1 Introduction

The neutron multi-group equation is frequently used in applications for nuclear
reactors. The division in energy groups has been used for a long time to develop
more detailed solutions, since the separation by their speed or energy not only
facilitates obtaining a better approximate model but also describes the diffusive
process with more physical properties [Oz01, No21]. In addition, it is also common
to use approaches with different types of geometry [Ma17, Ol19, Ma21], which
provide some insight in the influences of the specific boundaries on neutronics.
Nuclear reactor cores have different types of geometric approximations and one of
the most used is one with axial symmetry in cylindrical coordinates. The choice
of a specific coordinate system in general depends on the reactor type and the
characteristics to be analysed.

In the course of time, several attempts were used to solve the neutron flux
problem in reactor cores, among the most classic ones are procedures, which
make use of integral transforms. This method has proven to be effective over
many years of research and some representative works may be found in references
[Du06, Vi08, Fe13]. Hence, in this work, we develop a methodology to solve the
neutron diffusion equation analytically by a finite integral transform technique. In
this line, recently Fernandes et al. [Fe11] solved the neutron diffusion equation
in cylindrical geometry for a model with two energy groups using the Hankel
transform in infinite space, and after constraining the solution to a finite domain,
the Parseval identity was employed. In a similar solution procedure, the authors
of reference [Gl03] solved the neutron transport equation in cylindrical geometry,
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while considering isotropic scattering and using the Hankel transform together with
the Parseval identity. Thus, due to the promising results of these works and the
fact that the approximation S2 of the Boltzmann transport equation reduces to the
diffusion equation, in the present work, we focus on the derivation of an analytical
formulation for the fast and thermal neutron flux in the diffusion equation and
exploring the finite Hankel transform. The derived solutions for different sources
in cylindrical geometry are relevant for nuclear fuel element assembly calculations
of reactor cores, as for example in pressurized water reactor core simulations.

11.2 Problem Formulation

We consider initially a steady-state problem with two energy groups in the neutron
diffusion equation for a homogenized reactor core given by

−D1�rφ1 + ΣR1φ1 = S1 + 1

keff

νχ1Σf 2φ2 + Σ12φ2

−D2�rφ2 + ΣR2φ2 = 1

keff

νχ2Σf 1φ1 + S2 + Σ21φ1 ,

where φg is the neutron flux,Dg is the diffusion coefficient for the group g,�r is the
Laplacian operator in cylinder coordinates explicitly given by �r = ∂2r + 1

r
∂r , ΣRg

is the removal cross section of group g, keff is the effective multiplication factor
from nuclear reactor theory, ν is the average number of neutrons emitted by fission,
Σfg is the fission cross section, χg is the integrated spectrum for neutrons of group
g and Σgg′ is the scattering cross section from g into group g′. The term Sg is the
source term of group g which represents the term 1

keff
νχgΣfgφg responsible for

neutron multiplication, i.e. a manifestation of a chain reaction. The symmetry and
boundary conditions for this problem defined individually for each energy group g

are

∂φg

∂r

∣
∣
∣
∣
r=0

= 0 and φg

∣
∣
r=R

= 0. (11.1)

In order to apply the finite Hankel transform to the previous equations, where as an
idealization R represents the extrapolated distance for the same problem as given in
reference [La66]

H0{f (r)} =
∫ R

0
rf (r)J0(rξi) dr ,



11 A Novel Solution of the Multi-Group Neutron Diffusion Equation 159

where ξi is the i-th root of J0(Rξ) = 0, and the inversion of the finite Hankel
transform is given by

H−1
0 {f (ξi)} = 2

R2

∞
∑

i=1

f (ξi)
J0(rξi)

J 2
1 (Rξi)

.

Now, using the property

H0{−Dg�rφg} = −Dg

(

−ξ2i φ̄g(ξi) − Rξφg(R)J ′
1(Rξ)

)

and further applying the extrapolated distance boundary condition φg(R) = 0, the
finite Hankel transform of this operator term is

H0{−Dg�rφg} = Dgξ
2
i φ̄g(ξi) .

The Hankel transform of the source terms is given by

H0{Sg} = S̄g =
∫ R

0
rSgJ0(rξi) dr .

After application of the finite Hankel transform, one obtains a system of
equations,

⎛

⎝
D1ξi + ΣR1 −

(
1

keff
χ1νΣf 2 + Σ12

)

−
(

1
keff

χ2νΣf 1 + Σ21

)

D2ξi + ΣR2

⎞

⎠

(

φ̄1

φ̄2

)

=
(

S̄1

S̄2

)

,

which is a matrix equation which represents the multi-group problem and may be
cast in compact form

M(ξi)Φ̄ = S̄(ξi) .

The solution of this equation system is formally given by

Φ̄ = M−1(ξi)S̄(ξi) .

For convenience, we introduce now the shorthand notations

A1(ξi) = D1ξ
2
i + ΣR1 , (11.2)

A2(ξi) = D2ξ
2
i + ΣR2 , (11.3)
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and

C =
(

1

keff

χ1νΣf 2 + Σ12

)

︸ ︷︷ ︸

=p1

(
1

keff

χ2νΣf 1 + Σ21

)

︸ ︷︷ ︸

=p2

(11.4)

so that the determinant of matrix M in compact form is

Det(M)(ξi) = A1(ξi)A2(ξi) − C .

With these conventions, one may write the transformed solution as

φ̄1(ξi) = A2(ξi)

Det (M)(ξi)
S̄1 + p1

Det(M)(ξi)
S̄2 ,

φ̄2(ξi) = A1(ξi)

Det (M)(ξi)
S̄2 + p2

Det(M)(ξi)
S̄1 .

These expressions are not the final solution yet, since they depend strongly on
the choice for the sources terms. Nevertheless, using the definition of the inversion
of the finite Hankel transform, we obtain for each energy group

φ1(r) = H−1
0 {φ̄1} = 2

R2

∞
∑

i=1

A2(ξi)S̄1

Det(M)(ξi)

J0(rξi)

J 2
1 (Rξi)

+ 2

R2 p1

∞
∑

i=1

S̄2

Det(M)(ξi)

J0(rξi)

J 2
1 (Rξi)

,

φ2(r) = H−1
0 {φ̄2} = 2

R2

∞
∑

i=1

A1(ξi)S̄2

Det(M)(ξi)

J0(rξi)

J 2
1 (Rξi)

+ 2

R2
p2

∞
∑

i=1

S̄1

Det(M)(ξi)

J0(rξi)

J 2
1 (Rξi)

.

This couple of equations may be used to elaborate the solution of the multi-group
neutron problem for a steady-state diffusion problem, here shown for two energy
groups.

11.3 Solution by the Infinite Hankel Transform

The initial problem in cylindrical coordinates is well defined inside the spatial
domain with r ∈ [0, R] and it was natural to choose the finite Hankel transform
to solve the problem successfully. We now point out and discuss the consequences
if one solves the same problem but using the infinite Hankel transform, which by
definition is

H0{f (r); r → ξ} =
∫ ∞

0
rf (r)J0(rξ) dr,
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and the inversion has the form

H−1
0 {f (ξ); ξ → r} =

∫ ∞

0
ξf (ξ)J0(rξ) dξ . (11.5)

This version of the transform is usually applied for half-open domains. As a matter
of fact, the flux profile for both groups is well known as r goes to infinity, and
we can define an extrapolated distance for both fluxes at R where these vanish and
moreover redefine (11.1) for this kind of problems.

Since the property of the Hankel transform for the operator �r is the same as for
the finite Hankel transform, therefore,

H0{−Dg�rφg} = Dgξ
2φ̄g(ξ),

and the equation system after applying the Hankel transform can be written in matrix
form as

⎛

⎝
D1ξ + ΣR1 −

(
1

keff
χ1νΣf 2 + Σ12

)

−
(

1
keff

χ2νΣf 1 + Σ21

)

D2ξ + ΣR2

⎞

⎠

(

φ̄1

φ̄2

)

=
(

S̄1

S̄2

)

.

Using now the definitions (11.2), (11.3) and (11.4), the matrix equation reads

(

A1(ξ) −p1

−p2 A2(ξ)

)(

φ̄1

φ̄2

)

=
(

S̄1

S̄2

)

with formal solution given by

Φ̄(ξ) = 1

Det(M)(ξ)

(

A2(ξ)S̄1 + p1S̄2

A1(ξ)S̄2 + p2S̄1

)

.

If we focus now our attention on the inversion problem for φ1, we need to investigate
the first term of the last equation using Eq. (11.5).

φ̄1 = 1

Det(M)(ξ)

(

A2(ξ)S̄1(ξ) + p1S̄2(ξ)
)

.

Using the inversion theorem, one gets

φ1(x) =
∫ ∞

0
ξ

(
A2(ξ)J0(rξ)

Det (M)(ξ)

)

S̄1(ξ) dξ + p1

∫ ∞

0
ξ

(
S̄2(ξ)

Det (M)(ξ)

)

J0(rξ) dξ .

The first term of the solution is clearly more complicated to solve, so that to this
end we split the fast flux φ1(x) = φ

(1)
1 (x) + φ

(2)
1 (x) and consider the following

theorems.
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Theorem 11.1 (Hankel Inversion) If
√

r ′f (r ′) is piecewise continuous and abso-
lutely integrable along the real axis, then if γ ≥ − 1

2 , fγ (ξ) = Hγ {f (r ′)}, then
∫ ∞

0
ξfγ (ξ)Jγ (r ′ξ) dξ = 1

2
(f (r ′+) + f (r ′−)).

Theorem 11.2 (Parseval Relation) If the functions f (r ′) and g(r ′) satisfy the
conditions of Theorem 11.1 and if fγ (ξ) and gγ (ξ) are the Hankel transforms of
order γ ≥ − 1

2 , respectively, then

∫ ∞

0
r ′f (r ′)g(r ′)dr ′ =

∫ ∞

0
ξ f̄γ (ξ)ḡγ (ξ) dξ.

These two theorems are essential so that this alternative procedure may be
applied. Upon substituting f̄0(ξ) and ḡ0(ξ) with A2(ξ)J0(rξ)

Det (M)(ξ)
and S̄1, respectively,

and using Theorem 11.2, one obtains

φ
(1)
1 (x) =

∫ ∞

0
ξ

(
A2(ξ)J0(rξ)

Det (M)(ξ)

)

S̄1 dξ =
∫ ∞

0
r ′H−1

0

{
A2(ξ)J0(rξ)

Det (M)(ξ)

}

S1(r
′) dr ′ .

In other words, we need to calculate f (r ′).

f (r ′) = H−1
0

{
A2(ξ)J0(rξ)

Det (M)(ξ)

}

=
∫ ∞

0
ξ
A2(ξ)J0(rξ)

Det (M)(ξ)
J0(r

′ξ) dξ . (11.6)

Recalling that Det(M)(ξ) = A1(ξ)A2(ξ) − C and that the physically meaningful
nuclear parameter set satisfies the following condition, 0 < C

A1(ξ)A2(ξ)
< 1 for all

ξ ∈ [0,∞), we can expand the term A2
Det(M)(ξ)

A2(ξ)

A1(ξ)A2(ξ) − C
= 1

A1(ξ)

1

1 − C
A1(ξ)A2(ξ)

= 1

A1(ξ)

(

1 +
(

C

A1(ξ)A2(ξ)

)

+
(

C

A1(ξ)A2(ξ)

)2

+ ...

)

.

Indeed, for all nuclear parameter sets known in the literature, they comply with
C

A1(ξ)A2(ξ)
<< 1 for ξ ≥ 0. After evaluating different kinds of parameter sets, one

may obtain an estimate for the order of magnitude O
(

C
A1A2

)

= 10−3 and use this

as a maximum for all values of ξ , so that one may safely take only the first term of
the expansion.

A2(ξ)

A1(ξ)A2(ξ) − C
≈ 1

A1(ξ)
. (11.7)
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Consequently, Eq. (11.6) simplifies to

f (r ′) =
∫ ∞

0
ξ
J0(rξ)

A1(ξ)
J0(r

′ξ) dξ ,

so that by the definition of A1(ξ) = D1ξ
2+ΣR1 = D1

(

ξ2 +
√

ΣR1
D1

2
)

, (11.3) may

be explicitly written as

f (r ′) = 1

D1

∫ ∞

0
ξ

J0(rξ)

ξ2 + (
√

α1)2
J0(r

′ξ) dξ

=
{

1
D1

I0(
√

α1r
′)K0(

√
α1r) , 0 < r ′ < r

1
D1

I0(
√

α1r)K0(
√

α1r
′) , r ′ < r < ∞.

Here, α1 = ΣR1
D1

and I0 and K0 are the modified Bessel functions of zero order.

Then, we can write the final expression for φ
(1)
1 , i.e. the solution, using the fact that

there is no source outside the cylinder

φ
(1)
1 (r) = K0(

√
α1r)

D1

∫ r

0
r ′I0(

√
α1r

′)S1(r ′) dr ′

+ I0(
√

α1r)

D1

∫ R

r

r ′K0(
√

α1r
′)S1(r ′)dr ′ ,

and for φ
(2)
1 , we use only the definition of the Hankel transform to obtain

φ
(2)
1 (r) = p1S2(r) .

By a similar procedure, we obtain the solution for φ2(r) completing this way the
entire solution of this problem using the infinite Hankel transform approach.

11.4 Results

We elaborated the general solutions in the previous sections, which for specific
applications need the definitions of the parameter set and sources, respectively. Due
to the fact that by virtue the specific source terms dominate the found solutions,
in this section we present the influence of these source terms on the solution for a
steady-state diffusion problem. The employed nuclear parameter sets are listed in
Table 11.1, where for all cases we used R = 5, keff = 0.95 and ν = 2.5 in the
simulations.
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Table 11.1 Nuclear parameter sets

D1 D2 S
(1)
0 S

(2)
0 ΣR1 ΣR2 Σ12 Σ21 Σf 1 Σf 2

Set 1 1.43 0.39 4 0.0 0.029 0.104 0.015 0.00000 0.0041 0.0077

Set 2 1.43 0.39 4 0.1 0.029 0.104 0.015 0.00825 0.0041 0.0077

Set 3 1.43 0.51 4 0.1 0.052 0.081 0.015 0.00825 0.0041 0.0077

Set 4 1.13 0.39 4 0.1 0.052 0.081 0.015 0.00825 0.0051 0.0081

We consider cases with different sources and compare results from the appli-
cation of the finite and infinite Hankel transform, respectively. To this end, we
consider for all cases a dominant source with fast neutrons and one case with no
thermal neutron source and three cases with a weak thermal neutron source. A
further differentiation stems from different removal cross sections for the fast and
the thermal neutron group. The last set is distinct in comparison to all other ones
because of an increased fission cross section in the fast and the thermal neutron
group. For the first case, only the fast neutron source contributes,

S1(r) = S
(1)
0 H(R − r) .

Upon applying the finite Hankel transform, the source term is

S̄1(ξi) = H0{S1} =
∫ R

0
rS

(1)
0 H(R − r)J0(rξi) dr

= S
(1)
0

∫ R

0
rJ0(rξi) dr

= S
(1)
0

R

ξi

J1(Rξi) ,

and then using the final expression for the scalar neutron flux yields

φ1(r) = 2

R
S

(1)
0

∞
∑

i=1

A2(ξi)

ξi

1

Det(M)(ξi)

J0(rξi)

J1(Rξi)
+ 2

R
p1S

(2)
0

∞
∑

i=1

1

ξi

1

Det(M)(ξi)

J0(rξi)

J1(Rξi)
.

The procedure to obtain φ2 works in close analogy to the one for φ1. We
obtained the following results for the selected parameter sets specified in Table 11.1
(Figs. 11.1, 11.2, 11.3 and 11.4).

By inspection of the obtained results, one observes qualitative agreement with
what is expected from operational experience for processes inside a nuclear reactor
core using this type of geometry. Quantitative properties are the flat current density
at the origin, i.e. the flux with null derivative at r = 0 represents a symmetry
condition. Furthermore, the vanishing flux at the outer boundary drags the flux from
the maximum value at the center of the domain to decreasingly smaller values with
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Fig. 11.1 The scalar neutron flux for the fast and thermal energy group Φ1 and Φ2 for parameter
set 1
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Fig. 11.2 The scalar neutron flux for the fast and thermal energy group Φ1 and Φ2 for parameter
set 2
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Fig. 11.3 The scalar neutron flux for the fast and thermal energy group Φ1 and Φ2 for parameter
set 3

increasing radius. As a systematic feature for all parameter sets, the fast flux always
shows a somewhat larger concavity than the thermal flux. In order to provide a
quantitative comparison between the solutions from the finite and infinite Hankel
transforms, a table with the numerical values for the normalized solutions φ2 using
both types of integral transforms is shown. Note that our findings agree fairly well
with results in the literature [Da11].



166 R. A. S. Klein and J. C. L. Fernandes

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

iz
ed

 F
lu

x

0 1 2 3 4 5
Radius

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

iz
ed

 F
lu

x

0 1 2 3 4 5
Radius

f1(x) f2(x)

Fig. 11.4 The scalar neutron flux for the fast and thermal energy group Φ1 and Φ2 for parameter
set 4

Table 11.2 Solution φ2 using the finite Hankel (FHT) and the infinite Hankel Transform (IHT)
for parameter set 1

r/R FHT IHT

0.0 1.000000 1.000000

0.1 0.987633 0.990253

0.2 0.950761 0.943312

0.3 0.890091 0.885213

0.4 0.806854 0.791032

0.5 0.702894 0.670122

0.6 0.580790 0.543311

0.7 0.444037 0.407630

0.8 0.297278 0.281963

0.9 0.146613 0.149313

1.0 0.000000 0.000000

N = 50

r/R FHT IHT

0.0 1.000000 1.000000

0.1 0.987633 0.990253

0.2 0.950761 0.943312

0.3 0.890091 0.885213

0.4 0.806854 0.791032

0.5 0.702894 0.670122

0.6 0.580790 0.543311

0.7 0.444037 0.407630

0.8 0.297278 0.281963

0.9 0.146613 0.149313

1.0 0.000000 0.000000

N = 100

r/R FHT IHT

0.0 1.000000 1.000000

0.1 0.987633 0.990253

0.2 0.950761 0.943312

0.3 0.890091 0.885213

0.4 0.806854 0.791032

0.5 0.702894 0.670122

0.6 0.580790 0.543311

0.7 0.444037 0.407630

0.8 0.297278 0.281963

0.9 0.146613 0.149313

1.0 0.000000 0.000000

N = 500

In Table 11.2, results for φ2 using the finite and the infinite Hankel transform
are shown. Comparing the solutions for the finite Hankel transform for truncations
at N = 50, N = 100 and N = 500 shows stability of the obtained solution, so
that N = 50 already provides a solution with six significant digits. However, for
solution by the finite Hankel transform, it is not obvious where to truncate the series
in order to obtain an acceptable solution, which depend on the cumbersome task
of determining the roots of the Bessel functions of order 0 and order 1. From the
comparison of the solution φ2 on the one hand by the finite and on the other hand
by the infinite Hankel transform shows that the latter provides solutions fairly close
to the ones by the finite integral transform. The advantage of the infinite Hankel
transform over the finite case is that that there is no need to determine the lowest
truncation of the series, which provides an acceptable solution. Besides having
solved the stationary problem, where the found solution has value on its own right,
the stationary case commonly provides the initial condition for a transient problem.
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11.5 Conclusion

In the reported discussion, we presented and compared two integral methods to solve
the stationary problem of two energy group neutron diffusion in cylinder geometry.
Both methods, the finite and the infinite Hankel transform, generated comparable
and acceptable results for the considered problems (parameter sets 1 to 4). While
the finite Hankel transform seems to be the more natural tool to derive the solution
due to the finite domain in consideration, the infinite sum of the analytical solution
imposes the problem to determine truncation such that the approximate solution
represents the exact solution to a prescribed accuracy. This task does not appear
when the infinite Hankel transform is used, where it is the computation of the
integrals that represents the challenge, and however numerical schemes for well-
behaved integrands are usually no issue. All implemented simulations showed that
both methods provide solutions with acceptable quality, but that the infinite integral
transform is the simpler method especially due to the necessity to have a sufficiently
large number N of terms in the series of the solution by the finite Hankel transform.

From the computational point of view, the source code for the implementation
was written in Python 3.8 for both integral transforms and ran on a simple home
computer, Intel(R) Core(TM) i3-4150 CPU @ 3.50 GHz (64-bit operating system)
with Microsoft Windows 10 operational system. For the solution by the infinite
Hankel transform the CPU, time amounted to a few seconds, while the finite Hankel
transform provided also a solution in a small but larger computational time, however
with increasing tendency for increasing N . Our findings allow to conject that the
solution by the infinite Hankel transform in principle opens pathways to increase the
problem setup, such as to include more energy groups and allow for heterogeneous
domains, which designs these new cases closer to the ones of real reactor cores.
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