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Preface

The international conferences on Integral Methods in Science and Engineering
(IMSE) started in 1985 at the University of Texas—Arlington, and continued
biennially in a variety of venues around the world, bringing together specialists who
employ integration techniques as essential tools in their research. These procedures
exhibit generality, elegance, and efficiency, all of which are essential ingredients in
the work of a wide category of practitioners.

The dates and venues of the first 15 IMSE conferences are listed below.

1985, 1990: University of Texas—Arlington, TX, USA

1993: Tohoku University, Sendai, Japan

1996: University of Oulu, Finland

1998: Michigan Technological University, Houghton, MI, USA

2000: Banff, AB, Canada (organized by the University of Alberta, Edmonton)

2002: University of Saint-Etienne, France

2004: University of Central Florida, Orlando, FL, USA

2006: Niagara Falls, ON, Canada (organized by the University of Waterloo)

2008: University of Cantabria, Santander, Spain

2010: University of Brighton, UK

2012: Bento Gongalves, Brazil (organized by the Federal University of Rio
Grande do Sul)

2014: Karlsruhe Institute of Technology, Germany

2016: University of Padova, Italy

2018: University of Brighton, UK

Due to the unfavorable world health conditions, the 2020 conference, scheduled
to be held at the Steklov Mathematical Institute in St. Petersburg, Russia, had to
be postponed. However, as an intermediate solution, a Symposium on the Theory
and Applications of Integral Methods in Scientific Research was held online in
July 2021. By making public their latest results, the participants in this event, all
with long-standing IMSE credentials, have kept the flames of our common research
interests burning bright, in anticipation of the more inclusive in-person meeting
expected to take place, as planned, in St. Petersburg in the summer of 2022.
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The peer-reviewed chapters of this volume, arranged alphabetically by first
author’s name, consist of 22 of the papers presented at the 2021 symposium. The
editors would like to thank the reviewers for their help, Christopher Tominich at
Birkhduser—-New York for his support of this project, and Saveetha Balasundaram
and her production team for their courteous and professional handling of the
publication process.

Tulsa, OK, USA Christian Constanda
Porto Alegre, Brazil Bardo E. J. Bodmann
Brighton, UK Paul J. Harris

January 2022
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Chapter 1 )
Approximate Solution for e
One-Dimensional Compressible

Two-Phase Immiscible Flow in Porous

Media for Variable Boundary Conditions

W. Q. Barros, A. P. Pires, and A. M. M. Peres

1.1 Introduction

In most petroleum reservoirs, there are at least two phases: oil and connate
water. Usually, water is also injected to increase oil production and keep the
reservoir pressure at some desired level. Oil displacement by injected water can
be modeled by a system of two partial differential equations representing the mass
conservation of each component and Darcy’s law replacing momentum balance.
For one-dimensional incompressible systems without mass transfer, the problem
can be solved by the method of characteristics [BL42]. If the relative permeability
curves are convex, the solution is given by a continuous two-phase saturation zone
(rarefaction wave) followed by a discontinuity (shock). This solution was further
expanded to include gravitational and capillary effects [SC59, FS59], to evaluate
the pressure drop along porous medium [W52, JBN59], and for three-phase flow
[IMPT92, GF97, AS09, CAFM16]. Analytical solutions for compressible two-phase
problems are more difficult to develop because both pressure and saturation fields
must be solved simultaneously. Approximate solutions were obtained for a two-zone
system with constant saturation in each zone [HRMS8, KMJ72]. Splitting the two-
phase region in more segments improves the accuracy of the solution. The water
saturation in each zone of this multi-region system is constant, and thus the velocity
of water saturation front in the pressure solution can be neglected and a quasi-
static approach can be used [AK89]. The authors of [BH90] proposed a different
approximate solution superposing pressure transient effects on a previous saturation
profile obtained by Buckley—Leverett solution. The authors of [TR97] generalized
the theory for multiphase flow in a heterogeneous reservoir. In this approach, the

W. Q. Barros - A. P. Pires (54) - A. M. M. Peres
Universidade Estadual do Norte Fluminense, Macaé, RJ, Brazil
e-mail: adolfo.puime @ gmail.com; alvaroperes @lenep.uenf.br
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pressure and saturation zones move with different velocities, in which the saturation
front is always within a steady-state flow-rate zone (Fig.1.1). It is a simplified
method to calculate the pressure profile for the problem of constant fluid injection,
in which the saturation is obtained by the immiscible Buckley—Leverett problem
and the flow rate by the single-phase compressible solution. The pressure solution
is calculated integrating Darcy’s equation [BTR98, PR03, PBR04, PBROG6].

For constant boundary conditions, the Thompson—Reynolds conjecture provides
good results when compared to numerical experiments. However, for non-constant
boundary conditions, a new pressure perturbation along the reservoir appears and the
conjecture cannot be applied. In this work, we present a new procedure to generalize
the solution for non-constant boundary conditions. In Sect. 1.2, we derive the
mathematical formulation and present an approximate solution. Next, we compare
the solution with numerical results under different injection schedules and system
compressibility (1.3). Finally, some conclusions are addressed (1.4).

1.2 Mathematical Model

In this work, it is considered a one-dimensional oil displacement by water in a
homogeneous porous medium (Fig. 1.2). Additional hypothesis are:

e Immiscible and isothermal linear flow

» Constant cross-sectional area

* Negligible dispersion, gravitational and capillary effects
* Constant viscosity phases

» Constant phases and rock compressibility

* Darcy’s law is valid
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Fig. 1.2 Representation of xprL(t)
1D water flooding
| Oil
H Water + Oil

A
\

The velocity of each phase can be calculated using Darcy’s law,

Vg =

Kkyr 0P
U 0x

) (1.1)

where K and k,, are the absolute and phase relative permeabilities, . the phase
viscosity, and %—5 the linear pressure gradient; the subscript 7 denotes water w or
oil o phase. Summing up the velocity for all phases and neglecting capillary effects,
one gets

AP (x,1)

qr (x,t) = —AKAr (x,1)
0x

(1.2)

where A is the cross-sectional area, g7 represents the total volumetric flow rate, and
At is the total mobility of the phases (A7 = k’—;" + IZ—:).

To determine the pressure profile along the porous medium length, we integrate
Eq. 1.2 using a constant pressure external boundary condition

Px=L,t)y="P;,
in which P; denotes the initial pressure and L is the core length, resulting in

! - arir.l (1) dx’.

P(x,t)— P = —
O=F= | e

Now, we introduce dimensionless time and space coordinates,

(1.3)

X
-xDZZa

_ qref t
(1 - Swi - Sor) AL¢ '

o (1.4)

where g,.r is a reference flow rate, adopted as the first injection value, and ¢ is
the rock porosity. The irreducible water saturation and residual oil saturation are
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denoted by S,; and S,,, respectively. Thus, the pressure drop can be written in
dimensionless variables as

1 /
qp \Xp, D
Pp (xp, tp) :/ —( = ) dxp , (1.5)
wp ATD (Xp. ID)
where
K Ak,
Pp (xp,tp) = (P(x,t)y—P) , (1.6)
qref L
AT (x,1)
Arp (Xp,tp) = ——, (L.7)
o
T (x,1)
qp (xp,tp) = D , (1.8)
qref

in which 4, is oil mobility at water irreducible saturation. Equation 1.5 relates the
flow rate and mobility profiles to the pressure drop change at a given position xp.
In this work, we solve this problem for the case of step-change internal boundary
condition. Thus, an approximation can be obtained based on two key hypotheses:

1. The mobility profile can be obtained by the incompressible problem solution.
2. The total flow rate can be calculated considering two regions with fixed interface
position for compressible flow.

The total flow rate is obtained from a linear partial differential equation. Thus,
Eq. 1.5 applied for the internal boundary condition Pp (xp = 0, tp) = Pyp (tp) is
written as

1 ’
CID(XDJD) ,
P tp) = — = d s 1.9
wD (tD) foKTD(x’D,lD) Xp (1.9)

where

Nsteps

Inj _ Inj
qp (xp,1p) = Z [QDI? —qu;j,l]CIDC (xp.1p — tD.i—l) :
j=1

The last equation is the flow-rate superposition, in which Nsteps is the number of
flow-rate steps until zp, qg;_j is the injection flow rate in step j, and 7p; is the time

I
when g D",J
J

gpc and Arp are evaluated. The function gpc is the mathematical solution for the
two-region problem under constant injection rate.

started. The terms inside parenthesis are the (xp, tp) coordinates where
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1.2.1 Approximation for Atp (xp, tp)

The mass conservation for simultaneous flow of oil and water in a linear porous
media is modeled by the equations

3 (¢Sz ) 0 (P Vz)
4
Jat 0x

=0, T =w,o0, (1.10)

where p is the phase density. Considering an incompressible system, we find

38y 1 0vyg
— 4+ ——=0, T =w,o0.
at | ¢ ox

Defining the normalized water saturation as
Siw = > Sw € [Suwi, 1 = Sor]

and applying the definitions of dimensionless variables (Eqgs.1.3, 1.4, and 1.8)
together with Darcy’s law (Eq. 1.1), we find [BL42]

A )
e +QD(xD=07tD)ﬂ=0,
dtp dxp

in which f, defines the water fractional flow

Krw
f — Hw
Y ke

Hw Mo

For convex relative permeability curves, the derivative ;-Sf"“; is not monotonic and
the solution is not unique. To determine the most admissible solution, we apply the
Lax [L57] and Oleinik [O57] stability criteria, and the solution is composed of a
rarefaction wave followed by a shock. The shock must be a zero-diffusion limit of
the solution given by traveling waves [L07]. The solution is given by

df, ~1 1 xp BL
- TS0 (qD(xDzo,tD)E)’ xp € (0,xp") (1.11)
nw — .
0, Xp € (ng, 1) ,
where +X—D is the self-similar variable where the inverse of - is
qD(xD—OJD) tp dSnu)

evaluated. The shock position is denoted by x gl‘ (Fig. 1.2) and is calculated solving
the Rankine—Hugoniot ODE condition.

deL BL

= =0,¢ v
dp qp (xp D) SBL




6 W. Q. Barros et al.
1.2.2 Approximation for qpc (xp, tp)

Applying Darcy’s law (Eq. 1.1) in the mass conservation (Eq. 1.10), we find

0P dp '\ P 08y
S o ) = -
n<¢3P+P >8[+(¢Pn) a1

TP
8 Kkrn Q 2
g 0X Kk, 0pr (0P
Pr 3 + 37 \ 3y =0, T=w,o0 (1.12)
X W X

Using the rock and fluid compressibility definitions (c¢y = %3_P and ¢c; = p_ﬂa_P)
and summing for both phases, it is possible to derive

0 (b1 57)

IP\* e P
0x a

+ (CwAw + Coro) <_
ax

where ¢; is the total compressibility, given by
cr(x, 1) =cp + o (I = Sy (x, 1) + cuSu (x, 7).

For small pressure gradients and slightly compressible fluids, the quadratic term can
be neglected. Thus, applying the dimensionless definitions (Egs. 1.3, 1.4, and 1.5),
we find the dimensionless PDE for the pressure in a compressible two-phase system,

P
L (o (58) _ oro
=YL

ATD 0xp dtp

’

where the term yy, is given by

CIrefL i
(1 - Swi - Sor) KA AT .

vL (Xp,tp) =

The terms y7 and A7p depend on the saturation profile. To solve this equation, the
domain is divided into two regions based on the shock position, and the saturation
profile is considered constant in both zones

3%P, N OP),

BL
o2 YL D XD € (0.xp") .
9P, aP]

D _— & D BL
o, VLB xp € (xph 1)
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where yLIN is the average gamma in the region behind the shock, and y; is the
gamma in the original oil condition. Note that P’ indicates the pressure for the two-
zone problem. The internal boundary condition (I.B.C.) in dimensionless variables
is given by

limy, 0 0Pp = —L (IB.C)).
dxp kg-]};

The initial condition (I.C.) and external boundary condition (E.B.C.) are

P, (xp = 1,tp) =0 (E.B.C.),

P]S (xp,tp =0)=01.C).

Thus, the equations that model the pressure in the inner zone are given by

8% P IN 3P BL
3)%[) =V T xp € (0.xp")
Pb(xD,tDZO)ZO (I.C),
, aP]
limy—o (52 ) =~ (B.C).

TD

The equations for the outer region are

BZP/D ~ BP/D BL
o, VL xp € (xBE 1),

P, (xp,tp =0)=0 (LC),
P, (xp=1,tp)=0 (EB.C).

The continuity of pressure and total flow rate at the interface of the two regions are
used to close the problem.

: / : ’
hmeHxSLf Py (xp,tp) = hmeﬁng* Pp (xp, tp)

AN 9Pp(p,ip) — (3Pp(xp.tp)
TD dxp BL— dxp BL+ *
XD *D

The shock position ng = ng (tp) characterizes a moving internal condition.

However, as the speed of this boundary is small, we may use a quasi-stationary
assumption, in which the effect of a moving interface is neglected in the solution.
However, the interface position is updated every time fp in order to evaluate the
dimensionless pressure Pp (xp, tp).
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1.2.2.1 Solution by the Laplace Transform

The quasi-stationary hypothesis allows one to solve the two-region problem by
the Laplace transform. Applying the transform in the PDE and in both boundary
conditions and using the initial condition, the system can be written for the inner
zone as

2P IN, p
722 = v uP'p, xp € (0,xp") ,
D _
‘ !
lim, 0 (—” D) =-—1+ (1BC)
D d0xp ury'p

and for the outer zone as

2P/ — BL
3x2D =yLuP’p, Xp € (xD ,1) ,
D

P'p(xp =xps,u) =0 (E.B.C.).

The coupling condition in Laplace’s domain is given by

lim s-P'p (xp, u) = lim
D

D/
Xp—>X xDﬁngJrP p (xp,u)

AN AP p(xp.u) _ (P pGxp.u)
TD dxp XBL— - dxp XBL+
D D
The general solution is

_ [CIN _[IN
P'p (xp,u) = Age YLouED Are VYL "D for xp € (O, ng) ,
P'p (xp,u) = AgeV7LUID 4 Aze=NTLUXD  for xp € (xBE, 1) .

Applying the boundary and coupling conditions, it is possible to write the
following system of equations:

1 -1 0 0 Ao
0 0 9L Ds e—9LXDs A
AT p-alNBE T e
IN .BL __IN.BL . 4 BL . _ _BL
M adN e xp" AN o IN =" xD" —§,e9L%D" G, 917D A3
_ 11
IN IN
App uop
0
0
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with aiN = 1/)/L”Vu and a; = +/yru. The coefficients Ag, A, Ap, and Az are
calculated through

~ BL ~ BL IN BL
1 2)»1T%01£N (e—aLxD _ eotL(xD —2)) — e~ XD 2

Ag =
AIT%aiNu 2cosh (aingL) 2L

IN .BL ~ BL & BL
1 10 Qp + 24 a N (e‘““‘b — efLlp ‘2))

Al =
Alr%aiNu 2cosh (aingL) 21

in which
IN _~ \.BL ~ ( BL IN BL
21 = (&L +X§~ND05£N) (g(“L —@o)xp +e“L(xD =2)—a;"xp ) ,

IN | & BL A BL IN BL
+ <&L _)\g_%al{N) (e—(otL +ar)xp +g0‘L(XD =2)+ajNxB ) ]

The coefficients Ag, Aj, Az, and A3 are time dependent because the interface
position between the regions moves. Finally, we can apply Darcy’s law (Eq. 1.2)
in the two-zone pressure solution and obtain the approximated flow-rate profile

IN IN
IN [ IN, V. uxp IN [ IN, =Y. XD
—Arpy v ueV'r Ao+ Appy /v ue VOE Al

for xp < xgl‘ ,

— /)’)Lue\/ }7LMJCDA2 + /)’)Lue—v J;LMXDA3
BL

for xp > xp

gdpc (xp, u) =

(1.13)

These equations are inverted to real space using Stehfest’s algorithm [GS70]. When

the water front position reaches the external core face, Eq. 1.13 for xp < x gL is still

valid; however, the terms yLIN and AIT% must be averaged inside the core domain
(xp € (0, 1)).
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1.3 Model Validation

In this section, we apply the developed solution for a set of typical laboratory core
flood experiment parameter sets (Table 1.1). The relative permeability curves were
generated using the Corey model [C56],

Sor o
krw = Krw (Snw) s

Swi w
kro = kro (Srw)n” ,

using properties shown in Table 1.2 and Fig. 1.3. The mobility ratio is given by
M = i—", where )Ahw and XO denote the water mobility at residual oil saturation and

0
the oil mobility at irreducible water saturation. For the data shown in Table 1.2, we
have M = 1.875.
All solutions discussed in this section are compared to numerical results.

1.3.1 Injection Schedule 1

The first case analyzed is an isochronal schedule composed of three increasing
injection flow rates followed by a falloff (Table 1.3). To generate the approximate
solution, the first step is solving the incompressible problem (Eq. 1.11) using the
fractional flow shown in Fig. 1.3. Comparing the incompressible solution with the

ga.lzlle 1.1 Typl;:al I'OCkgrldd Core length L=15 [Cm]
uid prop erties for core floo Cross-sectional area A=114 [em?]

experiments -
Porosity ¢ =0.1 [-1
Absolute permeability | K = 200 [mD]
Initial injection rate qg =0.54 [cm?3/min]
Water viscosity Uy = 1.0 [epl]
Oil viscosity o =5.0 [cp]

Rock compressibility | ¢, =9.8E — 6 | [1/Kgf/cm2]
Water compressibility | c,, = 1.0E — 6 | [1/Kgf/cm2]
Oil compressibility co =4.0E —5 |[1/Kgf/cm2]

Table 1.2 Relative Swi = 0.20
permeability curves kgulu' —0.80
parameters o
Sy =0.20
Sv
k= 0.30
Ny =2.2

n? =20
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1.0 1.0
-- Kk
= k
0.8 \ — 0.8
\
\
0.6 A 0.6
kr \ fwa
\
0.4 \ 0.4
\, -
\ 7’
0.2 N 0.2
X
TN
0.0 == . 0.0
0.0 0.2 04 0.6 0.8 1.0 0.0 1.0

Snw

Fig. 1.3 Relative permeability curves (left) and water fraction flow curve (right) for data shown

in Tables 1.1 and 1.2

Table 1.3 Injection
schedule 1

1.0
::"""»..\ — Analytical
\\\\ . Numerical
0.8 N
0.6 \ )
S’nu) 1
0.4 tp =001 {tp =0.05 tp =0.10
0.2
0.0 S B—
0.001 0.01 0.1 1.0
Tp

Fig. 1.4 Analytical and numerical saturation profiles for schedule 1

D

0.00-0.05
0.05-0.10
0.10-0.15
0.15-0.20

INJ
qp

1.0
2.0
3.0
0.0

numerical compressible solution (Fig. 1.4), it can be observed that the saturation
profile matches for different injection times.

Once we have the saturation profile, we can solve Eq.1.13 and obtain an
approximate flow rate. In Fig. 1.5, three different A¢p after the first flow-rate change

(tp =

0.05) are compared. Note that the greatest difference between solutions
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Fig. 1.5 Analytical and
numerical flow-rate profile
for different Atp after

tp = 0.05

Fig. 1.6 Analytical and
numerical P, p solution for
schedule 1

W. Q. Barros et al.

2.0 tp =0.05
1.8
1.6
dp
1.4
1.2
— Analytical
1.04 = Numerical
0.001 0.01 0.1 1.0
xp
3.0
— Analytical
------ Numerical
2.0
HUD
1.0
0.0
0.0 0.05 0.10 0.15 0.20
tp

appears at small times (Atp = le™®). After Arp = le™, the solutions present close
agreement. Using the calculated A7 p and gp, it is possible to integrate Equation 1.9
and obtain the final solution (Fig. 1.6).

1.3.2 Injection Schedule 2

The second case changes the injection flow rate schedule (Table 1.4) using the
same reservoir properties (Tables 1.1 and 1.2). Schedule 2 is composed of three
isochronal decreasing flow rates, followed by a falloff. Figures 1.7 and 1.8 present
the saturation and flow-rate profiles compared with the compressible numerical
solutions. The presented profiles are calculated at three different Azp after the falloff
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Table 1.4 Injection
schedule 2

Fig. 1.7 Analytical and
numerical saturation profiles
for different ¢p for schedule 2

Fig. 1.8 Analytical and
numerical flow-rate profile
for different Atp after

tp =0.15

Sn

qD

D qDi
0.00-0.05 | 1.0
0.05-0.10 |2/3
0.10-0.15 |1/3
0.15-0.20 | 0.0

1.0
— Analytical
------ Numerical

0.8

0.6

w tp =0.01 §tp =0.05 tp = 0.10

0.4

0.2

0.0

0.001 0.01 0.1 1.0
D
tp = 0.15
0.3 — Analytical
------ Numerical
0.2 +le—T7
+1le—6
0.1
0.0 |—
0.001 0.01 0.1 1.0

D

(tp = 0.15). It can be noted that both solutions agree and can be used to build the
pressure solution of the original problem (Fig. 1.9). Note that our approximation of
Py, p agrees with numerical simulation for all flow-rate steps.
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Fig. 1.9 Analytical and 1.0
numerical P, p solution for — Analytical
schedule 2 Numerical

0.8

0.6

P, wD

0.4

0.2

0.0

0.0 0.05 0.10 0.15 0.20
tp
Fig. 1.10 Analytical and -
numerical saturation profile — Analyt.lcal
for different ¢ for a more Numerical
compressible system
Snaw tp =001 {tp =0.05 tp=0.10

0.4

0.2

0.0 : :

0.001 0.01 0.1 1.0

1.3.3 Compressibility Effect

Schedule 1 (Table 1.3) was used to analyze the compressibility effects in the
results (¢, = 1.0E — 2 1/MPa and ¢, = 4.0E — 3 1/Kgf/cm2 keeping all other
properties constant. Even increasing the compressibility by a factor of 100, the
incompressible and compressible saturation profiles still match (Fig. 1.10). As this
system is much more compressible, it is expected that the flow rate propagates
slower in the reservoir (Fig. 1.11). It can be noted that both solutions agree after
Atp = le~5. The pressure solution is presented in Fig. 1.12 showing the excellent
agreement with numerical compressible simulation.
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Fig. 1.11 Analytical and
numerical flow-rate profile
for different Atp after

tp =0.10

Fig. 1.12 Analytical and
numerical Py p solution for a
more compressible system

1.4 Conclusion

15
3.0 tp = 0.10
2.8
+le—4
2.6
qD
2.4
2.2 “‘
— Analytical E \
2.0 Numerical
0.001 0.01 0.1 1.0
E»)
3.0 _
— Analytical (
Numerical g
!
i
2.0 E:,,_______m
RUD g
1.0 { preseeees —d E
0.0 \
0.0 0.05 0.10 0.15 0.20
tp

This work presents a new solution for the pressure drop along a linear porous
medium considering immiscible two-phase oil displacement and a step-rate variable
boundary condition. The solution is calculated based on two main hypothesis:

1. The mobility profile can be determined by the incompressible problem solution.
2. The total flow rate can be calculated by a dual-zone compressible problem.

The model was tested for two different flow rate schedules, and the results were
compared to numerical solutions with excellent agreement. The analytical solution
built in this work can be used to model laboratory core flood experiments.
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Chapter 2 )
On Pseudo-Cross Sections for Neutron e
Escape from a Domain by a Physical

Monte Carlo Simulation

D. G. Benvenutti, L. F. F. C. Barcellos, and B. E. J. Bodmann

2.1 Introduction

Neutron transport in finite multiplicative media is relevant in a variety of applica-
tions, as for instance in medicine, industrial applications, energy production and
many others. In these situations, nuclear interactions occur in the domain and
neutrons escape from the domain constituting the physics of the system that can
be dealt with by deterministic methods, such as the P, and S, approximations,
or stochastic methods, such as the physical Monte Carlo method [La06]. It is
noteworthy that these nuclear interactions are generally classified as absorption or
scattering interactions and are quantified using the concept of nuclear cross sections,
which are directly related to the probability for an interaction to occur such that
each nuclear species in the medium has an associated cross section for each type of
interaction [La66].

Concerning the deterministic treatment of this kind of problem, the necessary
boundary conditions depend on the neutron flux in the domain, which in turn depend
on the knowledge of the flux of escape neutrons across the boundary. Usually,
the neutron flux is assumed to be zero at the boundaries or in regions close to
these boundaries known as extrapolation distances [FeEtAll17, OIEtAl17, OIEtAl19,
TuEtAl19]. Although this assumption is a reasonable approximation, it does not
match exactly with reality. Differently, the application of the Monte Carlo method
in the study of neutron transport in finite domains, such as in nuclear reactor cores,
does not require the prior knowledge of the neutron flux on surfaces and allows to
analyse and account for neutron escape in a simulation according to the microscopic
physics of the problem in consideration [BaEtAI21].
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Thus, the present work reports on a novel approach in the study of neutron
transport including escape from finite domains using a Monte Carlo simulation.
More specifically, escape is treated in an analogous way to the absorption reaction
but outside the domain of interest. Consequently, it has the same characteristics as
a real interaction and can be quantified by an associated pseudo-cross section. To
this end, neutron escape or leakage is interpreted as a pseudo-interaction and one
may use the conception of reaction rates determined by a physical Monte Carlo
simulation. This type of method makes use of neutron tracking while providing the
position and energy of each neutron at the interaction vertices when located in the
finite domain. Tallying allows then to compute pseudo-cross sections for neutron
escape which may be cast in analytical functions, so that these can be applied in
subsequent either deterministic or stochastic approaches.

2.2 The Physical Monte Carlo Simulation

The physical Monte Carlo simulation is a stochastic method used in the study of
neutron transport, which allows the treatment of problems with complex geometries
without the need for simplifications frequently applied in deterministic methods.
On the contrary to analytical or numerical approaches, the physical Monte Carlo
method is characterized by simulating the processes which constitute the Boltzmann
transport equation, mimicking the real microscopic physical process at each instance
in the history of each individual neutron. Associated reaction rates are based on
probabilistic descriptions and provide the amplitudes for each specific event that
may occur. The stochastic method like the transport equation is formulated in a
seven-dimensional phase space (energy, oriented solid angle, position and time) as
long as no simplifying assumptions are imposed. Thus, every individual neutron
can be tallied using the track and interaction data recorded for posterior statistical
analysis. From the simulation of a sufficiently large number of neutron histories and
starting from an initial neutron population, it is possible to obtain physical quantities
of interest, such as the neutron density, the scalar and angular flux and reaction rates,
among others. One of the features of the physical Monte Carlo method is that it
considers random processes that are not handled by directly solving the transport
equation through deterministic methods [CaCa75].

One of the main advantages of the Monte Carlo method is that uncertainties due
to the stochastic nature of the procedure can be reduced by increasing the number of
simulated histories, in distinction to deterministic methods, where errors involved
are systematic and cannot be reduced, since they come from necessary simplifying
hypotheses, such as discretization of the independent variables or treating a three-
dimensional problem in a dimensionally reduced fashion. A property of stochastic
methods is that they provide results through tallies, e.g., the number of a given
interaction over a period of time, in intervals AV AE and A2 that constitute
the physical phase space and are previously defined. In practice, the size of these
intervals (the resolution) depends on the number of simulated neutron histories,
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and the larger the sampling of these histories, the more one may reduce the size of
these intervals to obtain more detailed distributions without statistical fluctuations
becoming dominant [LeMi84].

Developed in C++, the Monte Carlo simulator employed and adapted in this
work was created as described in reference [CaEtAlll] and was successively
restructured and optimized as reported in [CaEtAll3, BarEtAll7, BaEtAlI21]. One
of the differences to other neutron transport Monte Carlo codes is that in the present
implementation the nuclear cross section data are parameterized by continuous
functions implemented in the programme, while in most existing simulators the
cross sections are determined by interpolating data from huge databases. In the
simulator used in this work, the entire history of each neutron is assembled in
the Monte Carlo steps, where they are generated by random events in the spirit of
Markov chains. Resuming, at each Monte Carlo step, the neutron propagates from
an initial position to an end position, and if the final position is outside the finite
domain of interest, the neutron is said to have escaped and its history ends, while
otherwise the neutron will induce an interaction at the final position located in the
domain and a new Monte Carlo step describing a new neutron trajectory is initiated.

The history of two neutrons born from fission represented by (n, f) as simulated
with the Monte Carlo simulator described in detail in references [BarEtAll7,
BaEtAl21] is exemplified in Fig.2.1. One of the neutrons is absorbed in the finite
medium by an absorption reaction represented by (n, y), while the second one
undergoes successive scattering interactions, represented by (n, e), until it escapes
the finite medium. Here, (n, z) represents the escape interaction and will be defined

e Neutron
O Target Nucleus

Fig. 2.1 Possible histories of two neutrons in a finite domain
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later. Note that each displacement the neutron performs characterizes one Monte
Carlo step in the simulation process.

2.3 The Pseudo-Cross Section for Neutron Escape

Based on the simulation data of a neutron transport problem in a finite domain using
the physical Monte Carlo method, we developed the methodology to obtain the
pseudo-cross section for neutron escape. To this end, it is possible to start from the
concept of reaction rates, which are defined as the number of interactions per unit
volume and per time unit at position r and at time 7. More formally, it is possible
to define the reaction rate from a density function known as neutron angular density
(n(r, 2, E, 1)) that gives the number of neutrons per unit volume, per energy unit
and per solid angle unit, at position r, with velocity in the direction £ and with
energy E at time ¢ [BeGl70, La66]. Furthermore, this density function is defined
in such a way that n(r, 2, E, t)d§2d E represents the number of neutrons per unit
volume at position r and time ¢, considering neutrons with energy in the infinitesimal
range dE around the energy E and whose direction of motion points into the
differential solid angle d£2 around $2. Thus, the reaction rate of an interaction of
type i at position r and at a time ¢ can be written as

R(r, 1); :foo Z‘i(E)v(E)/ n(r, 2, E,t)dQdE .
0 4

Here, X; (E) represents the macroscopic cross section of interaction type i, v(E)
is the neutron speed and the integral |, 4y 1, 2, E, 1)d$2 corresponds to the total
number of neutrons per unit volume and per energy unit at position r and at time ¢
for neutrons with energy E and integrating over all directions.

An alternative way of writing the reaction rate, which will be used in this
approach, is to consider energy-dependent density functions. Furthermore, in the
present approach, a stationary case is assumed, i.e., n(r, 2, E, t) does not vary with
time during the time interval that is being simulated in the finite domain. Therefore,
for a steady state case, the reaction rate of interaction type i, per energy unit, at
position r, at time ¢ and considering neutrons with energy E is given by

R(r,t, E); = Z(E)o(E) | n(r, R, E)dS .
4

Now, two additional definitions that characterize types of interactions need to be
made. First, an escape pseudo-interaction indicated by the subscript z is understood
when in the simulation a neutron escapes the finite domain and this pseudo-
interaction is associated with the starting position with time stamp ¢ and the initial
neutron energy in the respective Monte Carlo step. By construction, the escape
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pseudo-interaction will have an associated reaction rate per energy unit written as

R(r,t,E), = Z,(r, E)o(E) | n(r,R,E)dS$ ,
4

where X, (r, E) is the macroscopic pseudo-cross section for neutron escape.

Unlike the cross sections that characterize real interactions, which vary only
with the neutron energy, the escape pseudo-cross section varies with both the
kinetic energy of the neutron and its position in space, since neutrons closer to the
boundaries of the finite domain are expected to have greater chances of escaping.
Furthermore, the pseudo-cross section does not vary with time, since only steady
state cases are being considered and it is assumed that this implies the reaction rate
does not vary with time either. Note that these assumptions were validated in the
simulations.

Usually, the total interactions in the physical system, represented by the subscript
t, include any kind of real interaction, that is, scattering and absorption interactions.
With the introduction of an escape pseudo-interaction, the set of all possible
interactions in the domain shall include also escape. In this way and to avoid
ambiguities, integral interactions represented by the letter y are defined as the sum of
any type of interaction that occurs in the domain, whether real interactions, such as
scattering, or pseudo interactions, such as escape. Thus, the reaction rate of integral
interactions per energy unit at time ¢, at position r and energy E is

R(r,t, E), = ,(r, E)u(E) } n(r, 2, E)d$2 .
TT

Here, X'y (r, E) is the integral macroscopic cross section and is, by definition, the
sum of the total macroscopic cross section of the medium with the macroscopic
pseudo-cross section for neutron escape previously introduced, i.e., Xy (r, E) =
X,(r, E) + X(E).

Based on the reaction rate, it is possible to obtain the number of accumulated
interactions up to time fy. Thus, considering neutrons with energy E and in the time
interval At = (fp — 0), the number of escape interactions per energy unit and per
unit volume at r is

I 1
N, E), = /0 R(r,E,t),dt = X, (v, E) / ’ (v(E) n(r, 2, E)dS?) dt .
0 0

@2.1)

4

Similarly, the number of integral interactions per unit volume and per energy unit at
r, with E and in the time interval At is then

I 1
N(r, E), =/00R(r, E,t),di = X, E)/OO (U(E) n(r,.Q,E)d.Q) dt .

(2.2)

47
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Note that using a steady state approach allows to remove Xy (r, E) and X, (r, E)
from the time integral in the above equation, so that the spectral scalar neutron
flux, i.e., the integral [° (v(E) [, n(r, 2, E)d$2)dt, appears in both Egs.(2.1)
and (2.2), respectively. Therefore, by manipulating these equations, it is possible to
obtain the following relation:

N E), X (r,E) Y. (x,E)

N E)y, Xy, E) X,(r,E)+ X(E)’

Now, isolating X, (r, E) from the above equation, one obtains the macroscopic
pseudo-cross section for neutron escape.

_ N@r, E). N(r, E),\ !

Equation (2.3) allows to determine the pseudo-cross section for neutron escape for a
given physical application. Evidently, variations in geometric properties or chemical
composition in this application implies in different X, (r, E).

Whenever necessary and in order to facilitate the post-processing of statistics,
one last assumption can be made, which is the density functions N (r, E), and
N(r, E), are separable and are described as the product of two simpler density
functions. The first one represents the number of interactions per unit volume, which
varies only with position r, and the second one counts the number of interactions per
energy unit, which varies only with the neutron energy E. Thus, Eq. (2.3) becomes

ng, (r)ng . (E)

B ) = Oy (B)

—1
N2, SONzpR8) (r)"ZE(E)> . (2.4)

Y(EY|1—
3 )< ny, (O, (E)

Here, n;, (r) and ny, (r) represent the number of escape and integral interactions per
unit volume, while n;, (E) and ny, (E) represent the number of escape and integral
interactions per energy unit, respectively. It is noteworthy that this simplification is
not necessarily true especially near the surfaces of the finite domain, nevertheless it
still allows to obtain satisfactory global results by the approximate approach.
Considering the case where the number of interactions per unit volume and the
number of interactions per energy unit are not separable, in order to obtain the terms
for the right-hand side in Eq. (2.3), as stated in Sect. 2.2, the intervals AV and AE
that constitute the phase space were previously defined, therefore, both N(r, E),
and N(r, E), are easily found from the Monte Carlo simulation of the neutron
transport in the finite domain of interest. For example, let C, be the number of
escape interactions in AV at r and in AE around E obtained from the simulation
considering a time interval A¢. From the definition of N (r, E),, C; is given by

Ef
C, =/ / N(, E),dVdE .
E; D
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Here, E; and E define the total energy interval of interest and D is the spatial
domain limit, where the AE and AV intervals specify the resolution, respectively.

A way to approximate the number of escape interactions in the incremental
intervals and also more convenient is to consider that AE and AV small enough so
that C, ~ N(r, E),; AV AE. From the discretization of the phase space, the AE and
AV are known, so that the number of escape interactions per unit volume and per
energy unit at r and considering neutrons with energy E during At can be written as
N(r,E), = A‘fﬁ. Since r and E are arbitrary and all AV and AE that cover the
phase space are known, it is possible to construct N (r, E), for the entire domain of
interest, in this case, the entire energy spectrum and all positions in space. Note that
by construction, N (r, E), is discrete, taking unique values for each interval AV and
AE around r and E. The same idea can be applied to the integral interactions, so
that N(r, E)y ~ i

Following a similar reasoning, one obtains n;, (r), ny, (r), n;, (E) and ny, (E),
so that the remaining term needed to find the pseudo-cross section for neutron
escape through Egs. (2.3) or (2.4) is the total macroscopic cross section X;(E). This
is obtained from the microscopic cross sections of the nuclides that make up the
multiplicative medium and are provided in the nuclear data libraries.

As stated before, the idea is to obtain the pseudo-cross section in form of an ana-
lytical function. To this end, all the terms on the right-hand side of Egs. (2.3) or (2.4)
must be represented by analytical functions. Though these terms are obtained from
the Monte Carlo data as discrete functions, therefore, a parametrization of these
is proposed and determined through an optimization problem which consists of
minimizing the weighted sum of squared residuals. Note that the model function
must be nonlinear to parameterize the resonances present in X; (E) and accordingly
in N(r, E); and N(r, E),. By virtue of the model function being nonlinear, an
iterative algorithm was used to solve the minimization problem, in the present
treatise the Levenberg—Marquardt algorithm.

Basically, the model function is made up of sums and products of polynomial
functions, window functions and rational functions. The rational functions used
here served mainly to deal with the resonance regions of the cross sections and

are described by
-1
X —dj 2
f(x):ao<1+< )) ;
as

where ag, a; and a; are obtained from the fitting process. The choice of this type of
function is due to the fact that individual resonances are physically described by the
Breit—Wigner distribution, which has the form of a rational function. The other type
of function used in the parametrization is a window function, which is not directly
used in the curve fitting process, but serves to divide the dense resonance regions
present in the cross sections into sub-regions in which the curve fitting process can
be performed without resulting in divergences. In addition, this type of function is
used to separate the regions of the cross section that do not have resonances from




26 D. G. Benvenutti et al.

1x103E

1x101E

Microscopic Cross Section [b]

1x103 ¢

1x101E E 4
1x10?

1x103 ¢ E
1x10?! : —

1x104 2x10
1)(10»5 Ll | | Ll Ll
1x107° 1x1077 1x10 1x1073 1x101 1x101

Energy [MeV]

Fig. 2.2 Microscopic fission cross section of uranium-235

those that do, because the fitting process of the regions that do not show resonances
may be setup by simple polynomial functions. In this work, the window functions
are constructed using hyperbolic tangent functions.

1
wx) = > (tanh(ag(x — ay)) + ap — tanh(az(x — aq))) .

Here, ap and a3 are adjusted in such a way that the error between the cross section
data and the parametrization function is minimized, while a;, a; and a4 limit the
range in which the respective window function acts.

In Fig. 2.2, the microscopic fission cross section of the uranium-235 obtained
directly from the database is represented by the black points and the analytic
function composed of polynomials, rational and window functions that reproduces
these points is represented by the red line. Furthermore, in the figure, a small
range of the resonance region is shown to point out the large amount of resonances
present in the cross section. These regions with dense variations are common in
heavy nuclides and imply in pronounced oscillations in the total cross section of
the medium, a necessary ingredient to obtain the pseudo-cross section for neutron
escape through Eqgs. (2.3) or (2.4).

2.4 Calculation of X, (r, E) for a Spherical Case

In order to apply the proposed methodology to calculate the pseudo-cross section
for neutron escape, neutron transport in a spherical finite multiplicative medium
similar to early criticality experiments was simulated. The medium was composed
of 72% of water, which plays the role of the moderator for fast neutrons, and 28%
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of uranium dioxide, which is the nuclear fuel. Furthermore, the uranium present in
the fuel was enriched to 2.5%, i.e., 2.5% of the uranium in the uranium dioxide is
uranium-235. The spherical finite domain had a diameter of 76 cm, and due to the
fact that the simulation was performed on a personal computer without large storage
capacity the initial population amounted to 2 x 10* neutrons. These characteristics
were chosen so that the multiplicative medium operated in a critical regime, which
represented a situation where the neutron distribution in the domain did not vary
with time, i.e., represented a steady state problem. For this setup, the respective
pseudo-cross section for neutron escape was obtained by the methodology covered
in Sect. 2.3.

As can be seen in the results further down, the number of initial neutrons used
is relatively small and implies in some limitations, mainly due to the incremental
intervals that constitute the phase space, which are not small enough to describe the
neutron distributions with all its details in the domain. Despite this shortcoming,
the main idea in this work is to present the methodology for obtaining the pseudo-
cross section for neutron escape, so that these calculations for the present simulation
may be understood as an instructive example for applications of the lined out new
conception. Furthermore, even with these limitations, global and semi-quantitative
properties of the pseudo-cross section can be determined. Nevertheless, for future
applications, a larger ensemble with neutrons shall be used as the initial condition
of the simulation.

Returning to the calculation of the pseudo-cross section of neutron escape for
the present situation, ng, (r), ny,(r), n;, (E) and n,, (E) are determined from the
generated data by the Monte Carlo simulation and X (E) by the nuclear database
so that one is ready to calculate the associated X, (r, E) through the simplified way
described by Eq. (2.4). In Fig. 2.3, the analytical function that parametrizes the total
macroscopic cross section of the simulation medium is shown. By inspection, one
observes that X, (E) is composed of several resonances, which was to be expected,
since these stem from the resonances present in the microscopic cross sections of
the nuclides that make up the medium, mainly not only from uranium for lower
energies but also from oxygen for higher energies.

Two other necessary terms are the density functions that represent the number
of interactions per unit volume, i.e., n,, (r) and ny, (r). In Fig.2.4, these density
functions are illustrated as black points representing the counts obtained directly
from the simulation and by the blue and red solid lines that parametrize these points
in form of analytical functions. Note that the graph is in linear scale and only
interactions that occurred at a radius larger than 26 cm are presented, since almost no
neutrons escaped from the central region of the finite domain. Furthermore, one may
notice that the number of escape interactions is too small and practically constant
up to approximately 70 cm. From this point on, which is already very close to the
finite domain boundary, an exponential like growth sets in such that the closer the
positions are to the surface, the larger is the number of escape interactions that
approximate the number of integral interactions in the domain. This implies that



28 D. G. Benvenutti et al.

1x10%
1x10t ¢
1x100 ¢

1x101 ¢

Macroscopic cross section [MeV1]

1X10_2 | | | | Lol Lol
1x108 1x106 1x104 1x1072 1x10° 1x102

Energy [MeV]

Fig. 2.3 Total macroscopic cross section of the medium

T
745 Integral B

o Escape

1S

L

= 595+

C

=]

£

> 445+

o

>

—

g

nw 295F

C

.0

S

[}

©

o l45f

Z

< I

[

5 ‘ -
25 35 45 55 65 75

Radius [cm]

Fig. 2.4 Number of escape and integral interactions per unit volume

the Z}: 8 ratio tends to unity when r tends towards the radius that limits the finite
multiplicative medium, in this case, 76 cm.

The ultimate functions needed to find the pseudo-cross section for neutron escape
through Eq.(2.4) are n;, (E) and ny, (E). Again, in Fig.2.5, these are illustrated
as black points representing the counts obtained directly from the Monte Carlo
simulation, while the blue and the red solid lines parametrize these points in an
analytical fashion. One observes that the number of escape interactions per energy

unit has the same behaviour as the number of integral interactions except for the
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peak regions. Furthermore, throughout the energy spectrum, the order of magnitude
in the number of escape interactions varies between 1 and 10% compared to the
order of magnitude of the integral interactions, which is an expected proportion for
this kind of problem.

Other features that can be identified in Fig.2.5 are the visible peaks and
crevasses. With regard to the integral interactions, these peaks signify an increase
in the number of interactions in certain narrow regions of the energy spectrum and
are a direct consequence of the total cross section. On the other hand, for escape
interactions, there are crevasses in the same regions of the energy domain and
these represent a decrease in the number of escape interactions, which is also a
direct consequence of X;(E), as discussed further down. Figure 2.5 also illustrates
the limitations due to the low number of initial neutrons already mentioned in the
beginning of this section. By inspection, one notices that the number of resonances
in the total macroscopic cross section shown in Fig. 2.3 is considerably larger than
those observed in Fig.2.5. In fact, these peaks are also expected to appear in the
number of interactions per energy unit as shown in Fig. 2.5, however, the sparse
sampling made it impossible for the resonances to be sharply reproduced since the
density of simulated data points is too low and it is impossible to identify these
peaks with fidelity in the optimization process. As can be seen in the figure, only
some resonances up to 1 x 10™* and around 1 x 10° were parameterized through
the analytic function, while in the region with the most dispersed data, only their
average was determined in the data fit process.

Another limitation is due to the use of considerably large incremental intervals
AE such that the heights of the peaks in Fig. 2.5 are higher for integral interactions
and consequently smaller for escape interactions, a property of averages. This effect
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occurs because in the same AE, the number of interactions per energy unit is
influenced by regions in the energy spectrum with a high cross section, characterized
by the extremes of the resonances, and regions with a lower cross section in the
immediate vicinity of these extremes. In order to deal with these limitations, the
total macroscopic cross section of the medium used to calculate the pseudo-cross
section for neutron escape has been averaged so that in the energy region of the
spectrum that corresponds to the interval in which the data is dispersed in Fig.2.5
also the mean value of X, (E) was considered. Furthermore, for each of the AE that
constitute the phase space, the mean of the total cross section was obtained from the
integration of the analytic function which represents X (E) as shown in Fig. 2.3 and
considering as integration limits the respective intervals AE.

Due to the analytic representation of all functions, the integration process is
simple and fast. In this way, the shortcoming by the low initial number of neutrons
can be compensated and X, (r, E) can be obtained based on this approximation as
illustrated in Fig. 2.6, where the total macroscopic cross section is shown according
to the adopted energy resolution. It is evident that the above procedure does not
need to be performed if AE is of compatible size with the resonance densities so
that the total macroscopic cross section used to calculate the pseudo-cross section
for neutron escape is the one illustrated in Fig. 2.3, which is of the same precision
as the database.

1x102 ¢
1x101 £

1x100 |

1x1071 £
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Fig. 2.6 Total macroscopic cross section according to the adopted energy resolution
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Before presenting the pseudo-cross section for the implemented simulation and
based on the density functions that represent the number of interaction per volume
unit and per energy unit, it is useful to determine the neutron escape probability as a
function of the neutron position and its energy (shown in Fig. 2.7) upon introducing

anormalization xgg <. In agreement with expectation from experimental evidence,
E)y

the escape probability increases as the neutron position gets closer to the boundaries
of the finite domain and as the neutron’s energy increases. Moreover, the escape
probability significantly decreases for neutrons whose kinetic energy corresponds to
the energy of one of the resonances present in the total macroscopic cross section.
This result is also expected theoretically, because at these resonances the probability
of a real interaction in the domain increases considerably and thus decreases the
chance of the respective neutron to escape. The same explanation applies for the
peaks and crevasses in the number of interactions per energy unit in Fig. 2.5.

Finally, with all terms on the right-hand side of Eq. (2.4) known and parameter-
ized by analytic functions, it is now possible to calculate the function that represents
the pseudo-cross section for simulated neutron escape from the finite domain as
shown in Fig.2.8. Note that the peaks remain visible which is expected since the
pseudo-cross section depends directly on the escape probability density function and
X (E). In fact, peaks are expected to imply a decrease in X, (r, E), however, as can
be seen, the weaker oscillating behaviour may also be related to the aforementioned
limitations and the procedure for dealing with these by the use of averages, as well as
by anti-correlations between the resonances along event chains, thus decreasing the
number of interactions per energy unit. Nevertheless, the general behaviour of the
pseudo-cross section is as expected so that in principle the implemented simulation
may be considered consistent and sound from the programming and physical point
of view, respectively.
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Fig. 2.8 Macroscopic pseudo-cross section for neutron escape

2.5 Properties and Application of ¥, (r, E)

As discussed in Sect. 2.1, the escape can be quantified through the pseudo-cross
section for neutron escape. An interesting property of X, (r, E) is that neutrons that
approach and interact near the surfaces of the finite domain tend to escape, implying
that practically all interactions, except for some back scattering that redirects the
neutron into the domain, are escape interactions. This can also be seen in Fig. 2.4
where the ratio between the number of escape interactions and integral interactions
tends to unity as the interaction position approaches the boundary radius of the
spherical multiplicative medium. Thus, note that

N(r, E), | S (r E
N E), -1 = X, (r,E) > +00.

Based on this property, it is possible to use X, (r, E) in deterministic and stochastic
approaches considering initially infinite domains in a way that X, (r, E) may
account for the finite contours of a medium volume of interest. Thus, the intro-
duction of X, (r, E) in neutron transport problems may be justified the same way
absorption cross sections are accounted for, i.e., leakage may be inserted directly
in the transport equation for deterministic methods or added as a possible pseudo
reaction in the random process that dice the type of interaction in stochastic
methods.

This conception brings about an advantage in stochastic methods such as the
physical Monte Carlo. Using the probability density functions for escape implies a
reduction in the number of Monte Carlo steps in the simulations, since the execution
of the last step of the neutron which escapes the domain (i.e., tracking) is no
longer necessary. Moreover, these distributions may even simplify deterministic
methods since there is no longer any need for neutron fluxes as boundary conditions.
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Otherwise, the knowledge of the flux of neutron escape at the boundary may replace
the commonly imposed zero flux condition or constructions that make use of an
extrapolated distance.

2.6 Conclusion

In the present work, a new approach to quantify neutron escape from finite domains
was presented by a methodology which results in a pseudo-cross section for
neutron leakage and treats the latter on the same base as the physical interactions.
Furthermore, with the calculation of this pseudo-cross section for a specific case,
some global characteristics could be verified although it would have been desirable
to implement the simulation starting with a larger ensemble, for instance, with
10 neutrons. Highly populated initial ensembles allow to cast all density and
distribution functions in analytical form so that the resulting pseudo-cross section is
then crucial to improve, simplify and facilitate calculations and simulations involv-
ing the neutron transport in finite domains for stochastic as well as deterministic
approaches.

Apart from the indicated limitations, we derived and showed how to use the
pseudo-cross section conception for neutron escape in the study of neutron transport.
Evidently, the higher the resolution, the better are the parametrizations and the
more accurate are the reproduction of physical details such as the influence of
the resonances on the densities and the probability functions. Nevertheless, the
present approximation of X, (r, E) by the use of averages in the spatial and energy
intervals clearly showed the perspectives that arise so that in future simulations with
power computing resources all the known details in X (E) may be embedded in the
calculation of the escape cross section and that the rich influence of the resonances
and their effects on leakage may be evaluated in high fidelity.

Another type of study that can be done is the improvement of the methodology
for obtaining the pseudo-cross section for neutron escape through the consideration
of non-stationary problems and the dependence on the direction of motion of the
neutrons in such a way that X, (r, E) becomes more accurate and generalized.
Finally, it is worth noting that this is a first approach in the study of neutron escape
through a pseudo-cross section and that other properties and applications in different
areas of particle transport can be derived using findings from this kind of approach.
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Chapter 3 )
From a Unitary Symmetry Hypothesis Qs
to Dynamical Structures in Quantum
Mechanics Models

B. E. J. Bodmann

3.1 Introduction

Mathematical modelling of physical systems in general starts from a specific
principle such as dimensional analysis or some conservation law, and in cases where
little is known about a system, a phenomenological Ansatz may define an irrevocable
initial hypothesis. The formal description that constitutes the model is frequently
given by a partial differential equation or equation system. However, conservation
laws seem to be a safe justification for the construction of a model due to the fact
that some symmetries are universal independent whether they apply to classical,
statistical or quantum mechanics among other realms, where energy and momentum
conservation are probably the most employed examples.

In classical models, the dynamical equation may have several symmetries
such as space and time translations and their associated momentum and energy
conservation, respectively, but non-homogeneous boundary conditions break some
of the symmetries explicitly. Self-consistent quantum systems though at best are
subject to a normalization condition such that finiteness of physical observables
is guaranteed or if normalization is not possible, then expectation values in the
spirit of the Gell-Mann-Low theorem shall exist [GeLo51, Mo07]. Nevertheless,
the probability fields are defined in an infinite space so that in most cases
there do not exist boundary conditions, and thus symmetries remain preserved in
dynamical formulations or may be broken spontaneously [ArEtAlO3]. In this sense,
modelling quantum systems seems to be more simple than classical systems due
to the symmetry argument. When considering conservation laws and following
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the reasoning of Noether’s theorem symmetry transformations and their associated
invariants play the principal role [No18, HaEtAl04].

Commonly, a dynamical equation (system) comes first, and only in a second
step the symmetries of the equation (system) are analysed and identified. It is
probably safe to say that even without the knowledge of a dynamical equation, the
presence of (at least some) symmetries of a physical system of interest is easier to be
recognized than determining them from the model. Hence, in the present discussion,
an alternative modelling strategy is shown, which starts from a symmetry hypothesis
and progressively leads to the ingredients that allow to construct the most general
dynamical model inheriting the underlying symmetries. Evidently, such a procedure
needs a principle which provides the connection between symmetry manifestations
and dynamics, where in the present quantum system the model will define the
dynamical vacuum structure.

Symmetries in differential geometry may be built by the use of the two funda-
mental forms of Gauss with invariants such as the rest mass squared, the eigen-time
squared and an expression with the property of a phase of the type wt — kr, which
is a composition of space-time coordinates and their dual quantities (obtained by
integral transforms) proportional to energy and momentum. While these invariants
may be interpreted in a geometrical fashion for the purpose of dynamical modelling
one needs a functional principle, i.e., the action integral together with the variational
principle [Gr09]. Furthermore, one needs a fragment of the dynamical description
as for instance a term compatible with free propagation of a quantum particle with
constant energy—momentum, which triggers the cascade of symmetry breaking and
symmetry restoring steps until in the end an invariant action arises. The aim of the
forthcoming treatise is to show how to progressively construct a model compatible
with an initial symmetry hypothesis.

3.2 The Symmetry Hypothesis

Observable quantities in quantum systems are typically computed as expectation
values provided by sesqui-linear forms. The most simple example is that of a
density, where a probability amplitude is multiplied by its adjoint so that the density
remains invariant under a unitary transformation U (1) [SaNa20]. Such an invariance
may be related with charge conservation for instance since the continuity equation
remains the same after the aforementioned transformation. Physical systems are
not necessarily governed by only one type of interaction, where U (1) could be
associated with electromagnetism so that for the second type of interaction a second
but different transformation shall be brought in which otherwise could not be
differentiated from the unitary one and thus would not present anything new. A
natural choice is the SU(2) symmetry transformation which also complies with a
charge conservation and could be similar to the weak charge of the weak interaction
for instance [GeLe60].
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Both the unitary U(1) and also the SU(2) are compatible with the continuity
equation and thus impose no restriction in the question of mass terms. In a work
[NaJo61], the presence of scalar terms like the mass terms in a quantum field model
was associated with a spontaneous symmetry breaking of chiral symmetry, so that
it seems plausible to add the chiral counterparts of the two unitary transformations
(Us(1) and SUs(2)) to the symmetry hypothesis and thus open up for the possibility
to generate the particle mass terms from spontaneously broken Us(1) ® SUs(2)
symmetries. To this end, variations with respect to the combination of the symmetry
transformations are applied to the action integral 6.2/ = (8 + 85).</, which is the
same applying the variations to the Lagrange densities since it is the Grassmann
variables which are being varied while the coordinates remain the same and thus the
variational operators commute with the integral operator and the invariance of the
action integral is equivalent to determining the invariant Lagrange density.

3.3 The Free Particle Lagrange Density

As an initial attempt, one may consider the free particle Lagrange density and
apply infinitesimal local unitary transformations to the Grassmann variables with
the intent to determine the terms that explicitly break the combined U (1) ® SU (2) ®
Us(1) ® SU5(2) symmetries. Matter constituents are Fermions so that the free Dirac
Lagrange density is that first fragment of the model.

Lo =5 (v o =, 0y").

Here, ¥, ¥ = ¥y are spinors and adjoint spinors, the - signifies the conjugate
transposition, the y# are the Dirac matrices and 9, is the extension of the V-operator
to space—time (d;, V). In the further, double occurring indices imply summation
over the time (i« = 0) and space indices (u = 1, 2, 3).

The combined unitary symmetry group transformation in finite and infinitesimal
form is given by

U — o Aatrsdsa)ty S1 W =1(Ag + y5As) TV,
lI_/ N lI_/e—lTa(Aa_VSASa) , 8+(I_/ = _lll_/-[a(Aa — VSASa) s

where A, and As, are local Hermitian operators with independent local eigenvalues
Aq and As,, respectively. The adjective local means that the Hermitian operators
as well as their eigenvalues are space-time dependent and in this sense are a
manifestation of the functional character of interactions.

A complementary comment is in order here, the spinor does not only contain
spin parity information but also contains pairs of spinors which are connected by
the chiral operator, which is capable to transform the respective upper and lower
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components into each other. Isospin in medium energy nuclear physics is one
example where one state represents the proton and the other one a neutron, which
are connected by B-decays, i.e. the weak interaction.

v=(rp) =

Here, 19 is the identity, T is a vector containing as components the three Pauli
matrices and A, 7 is a quaternion [Pul2].
If we denote the total variation as a superposition by a unitary and chiral variation
6+ = & 4+ 85 ,then the variation of the free Dirac Lagrange density is
— ——

unitary  chiral
1. " a 1 - u a
8L = _EW{V > TaauA W — 5‘1’[7/ s VSTaaMA5]l1/ # 0,

which because of the non-vanishing commutator ([-, -]) and anti-commutator ({-, -})
shows that local symmetry is explicitly broken. By inspection, one observes that
the first term is a vector current density times a vector, i.e. the derivative of the
Hermitian operator, while the second term is an axial vector current density times
an axial vector, so that one at least has an indication what type of physical field one
has to introduce together with its interaction to the Fermions in order to get one step
closer to symmetry restoration.

3.4 The Interaction Lagrange Density

The necessary terms to be introduced may be understood as symmetry constraints
% and may be added to % by the use of Lagrange multipliers thus ending up with
a modified Lagrange density.

A =L+ g% + g5

The explicit form of .Z] is given below.
_ 1 _
A =L+ ¥y 2, + %lll (y“raEZ — EﬁTray“) v

Evidently, the vector current vector field interaction term and the axial vector current
axial vector field interaction term restore the symmetry by compensating the terms
which break local symmetry of the free particle Lagrange density 6.4y # O.
Moreover, the additional terms together with the derivative terms from the free
Dirac Lagrange density allow now to interpret them as a generalized gauge covariant
derivative in analogy to the substantial derivative in fluid mechanics. In the earlier
literature, the extended derivative was called “minimal substitution”, which appears



3 From a Unitary Symmetry Hypothesis to Dynamical Structures 39

here as a symmetry constraint.
A —> Oy — 187482, + 85T 5.

One may now use the fact that £ has to be a genuine Lorentz scalar density of

weight w = —1, which imposes some constraints [, "a(ﬂ] = 0 on the new field
associated with the chiral transformation and reduces Z' to a block diagonal form.

so (&0
12 O’Iz.

The necessity for the commutation relation between the parity operator (where
an arbitrary phase was dropped) and the tensor fields &, becomes apparent upon
analysing the variation of the interacting Lagrange density §;.%] as described in
detail next.

. .
5+ 4 = —3¥ {y". a0 A} — Egv[ L VsTaOu AL] W
g g - b
3P v e} + 5 [ A%, (Y8, - rbaffy“)] 7
L85 -
+ 20 (84 (ra B — 6+ (L") v (3.1)

gs - b
-5 {VsruAs,(y w&E) rba,’fy“)}llf

The symmetry conditions of the variation are now based on the fact that individual
terms have their characteristic behaviour under transformations (vector, axial vector
and tensor), so that one shall group terms together with corresponding properties
under the aforementioned transformations, which constitute the symmetry condi-
tions similar to well-established gauge conditions in the field theoretical structure
of the Standard Model of elementary particles [ YaMi54].

As is the case in the well-established electromagnetic interaction with spinors
the present extension to a symmetry transformation by groups defined by operators
that follow a Lie algebra, the unitary transformation of the vector field establishes a
local gauge symmetry if

8028 = 9,1° .

Furthermore, due to the anti-commutation relation of the chiral operator and the
Dirac matrices {y*, )/5} = 0, the chiral variation of the polar vector field (&5 (.QZ) =
0) vanishes, and thus the first and the third terms of the right-hand side of Eq. (3.1)
cancel. If we denote the transformation matrices T which form a Lie algebra by
isotopic-spin operators, then isotopic-spin symmetry implies

—~b arsc
85, = 2€apcA"E),
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fora, b, c € {1, 2, 3} and where €, is the totally antisymmetric Levi—Civita tensor
of rank three. Thus, the unitary variation of the tensor fields compensates the fourth
term on the right-hand side of Eq. (3.1), so that the last terms that shall match and
establish symmetry are a local and global chiral symmetry condition. Here, the local
chiral symmetry condition comes from the second term and the global one from the
last term on the right-hand side of Eq. (3.1).

85058, = —1y50,A5 +185Tp (VS/\gEﬁ - EZV%) :

What we have got so far is an interacting Lagrange density for spinor fields (i.e.
Fermions), which is invariant under a combined U (1) ® Us(1) ® SU(2) ® SU5(2)
symmetry transformation, and however the model is not closed yet since there is a
further need for a Boson Lagrange density so that the set of dynamical equations,
which are derived from the Lagrange density using Hamilton’s principle allow to
compute the solutions for all involved fields except for a gauge degree of freedom
still to be fixed.

3.5 The Interacting Boson Lagrange Density

The interacting Boson Lagrange density may be constructed using either formal
arguments from differential geometry or one may copy from the theory of electro-
magnetic interaction. In either case, one considers some kind of parallel transport of
momentum along an infinitesimal closed curve, which in analogy to Stokes law of
electromagnetism induces in case of curvature an axial vector field in its interior. In
order to construct from this reasoning a scalar density of weight w = —1, one
may consider a flux term, which is sesqui-linear and if only U(1) symmetry is
considered which corresponds to charge conservation, then the resulting Lagrange
density generates via Hamiltons principle the first two Maxwell equations, while the
third and fourth equations are obtained from the first two upon applying the Hodge
operator [Jo02, TeCh99]. In shorthand notation with [)u =0, —18T4 .QZ + g574 E,‘j
the resulting interacting Boson Lagrange density is

1 M e~ o~
= 55aTrst {1}, DD, D}

1
= 77t {(zgz“(av:zw — 0, 2a) + g5T (OB, — 0,5

— g1t Q2av. 77 Q] + 1885[7% Rav. TbEIju]
ar—v b7

+1gg5[t9 8], TP 2] + 2T B, T Db,ﬂ)

(—1g7¢ (3" Q) — 3" QM) + g5t (A" EY — 3" EM)
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—g [tk v Q)] —1ggs[t° M, 1 EY]
—1ggs[t°EH, 92V + g2 [t°EX, rdE;])} ,

where T'rg;{-} denotes the trace over spin S and isotopic-spin / degrees of freedom.

Formally, the Lagrange density is setup by 36 terms, though as the analysis to
follow will show, there are terms which naturally vanish and there are terms that
impose restrictions such as to make sense from a physical point of view. Note,
that some of the 36 terms are identical and some of them are related by Hermitian
conjugation, so that for the cases of vanishing terms the number of expressions to be
evaluated effectively reduces. In the following, we denote as “term n-m” the trace
over spin and isotopic-spin degrees of freedom of the product between the n-th term
of the first commutator and the m-th term of the second commutator.

3.5.1 The n-n Terms
3.5.1.1 Term 1-1

This term reminds one on the completely antisymmetric tensor field term of
electromagnetism except for the additional isotopic-spin degrees of freedom.

1 :
@Tm {(187* (3, R2ap — 9, R2av)) (—187¢ (0" 2} — 8" 21))}

1
= 2 (R — 8, 20) (9 2" — 5" 2.

Here, the spin trace supplies a factor of 4, whereas the isotopic-spin trace yields
Tr{z%tc} = 28%.

3.5.1.2 Term 2-2

This term is the chiral counterpart of the completely antisymmetric tensor field of
term 1-1 which yields the kinetic Lagrange density of the pseudo scalar field with
the covariant derivative.

1 ) .
5 Trst {gst O8], — 0,80, (g57° @ 52 — 0"E1))]
32¢g

2

85 - o = -
= 1o Trs {(auaju — 3,8 )(HEY — a”aaﬂ)}
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2

8
= Toa3 Conn D™ X up € Dy !

|
= E{D‘“x“Daxu}

1
= 30" x“Buta + 8224 2 X Xa

Here, the generalized gauge covariant derivative was decomposed into the usual
gauge covariant derivative D), = 9, — 187,52;, and further the 2 x 2 blocks of
the tensor field & were parameterized by coefficients and the Pauli matrices §; =
> az bob . Moreover, the following terms were interpreted in terms of a Stokes like
identity for stationary problems, so that

b b b
¢ (B“a; —3"a ) = 1“1 Dy yqu
and
b _vd b ud b d
(ozg‘ ol — o) ak ) = e“ﬁ“"xaxcuauﬁ ,

where ug represents a four velocity carrying spin degrees of freedom and thus
hides some physics relevant for larger energy scales or equivalently for smaller
length scales as the ones relevant for the current model. Furthermore, a steady state

implies that the substantial covariant derivative shall vanish ung/6 — 0. There is

2
an additional constraint between the unitary and chiral coupling constant (g% = ‘%)
which guarantees that upon contracting spin degrees of freedom the Klein—Gordon
Lagrange density may be recovered.

3.5.1.3 Term 3-3
1
T 71 |~ 2 7 2 (g2t ) |

2
— %Trl {[r“, e rd]} Rap 2oy 21 82

= —g%e e 8,1 2,4, 2py 212}

— _82(3a6‘6bd _ Sad(sbc)ga“gbvgélgj
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This is the four vector boson interaction term due to non-commutativity of isotopic
spin, which turns also the free vector Boson Lagrange density a non-linear model
contribution.

3.5.1.4 Terms 4-4 and 5-5

The terms 4-4 and 5-5 are of identical structure except for space—time, spin and
isotopic-spin indices and the first one is shown below.

1 b ot d g
g2 7ot {1assle 2. 2 3] ) rggs) e @l )1

2
_ _%e“bfecdfaefszavgg‘Trs {E;ME);}
— _gg.(abdaac _ 8b08ad)9augétazuka;k

2, di vk bu, T k
= —gs(aﬂka:} Q4,2 — 2,82 “a}'mka”” )

Note that this term together with the terms 4-5 and 5-4 is combined such as to
provide an interaction term between the vector bosons and the pseudo scalar field.

3.5.1.5 Term 6-6

1 . -
——Trsg {g%[r“ET thZU]gg[r‘af, rd.:,(‘j]}

32g2 ap
gg bt d
— az = cek =Y
= 32g2TrS] [[T ualu,f ubl)][T uc,f A_Jd]]
g3

_ abcdr;’r QT [l VN =Rl aba’c:v’r gf =V o
= 16g2TrS1 {r T E,, 5y ElE T T T T B, B N

3g2 8[108b086‘08d0 + SHO(SbO (SCd +8b0860 8ad +6a0660 Bbd
—— —— —_——

cd#0 ad+#0 bd#0
+5b05d0 sac +8a05d0 (Sbc +3005d0 aab
~—~— ~—~— ——
ac#0 bc#0 ab##0

— (58P — 59955) | xaXbXe Xa
D e——
abcd#0



44 B. E.J. Bodmann

3.5.2 Terms n-m (n # m) with Vanishing Spin Trace
Trstel Py =0

In the following, the terms with vanishing spin trace Tr{Z,’ ® } = 0 are shown.

3.5.2.1 Term 1-2 and Hermitian Conjugate Term 2-1

This term is assumed to vanish such that no physical contradictions appear in the
model.

1
32—82Tr51 {(187% 3y Rap — 3uR2av)) g5T°(*E) — 3" EM)}
_ 18

= 02— 1,2 s 57 "5 =0
8

Note that from the physical point of view, this term does not make sense since the
incoming particle undergoes a process without a genuine vertex (interaction). Thus,
upon implying Trs{&}} = 0 cures the problem, which is in agreement with the
symmetry condition for the block matrices §;; = —nj; due to the difference in parity
of the upper and lower two components of the spinors.

3.5.2.2 The Terms 1-4, 4-1, 1-5 and 5-1 Vanish Individually

1 .
5 Trst {187 00 Ry — 0, 200)) (—188sl7° 2L, 7 E1)

32g2

= 85 0, Run — 3y 2u) QU Tre{ BT r {(T2C, 79

—3_2(v ap — 9 av) ¢ VS{ud} ri{t[z", %1}
185 . —~

= ?e‘d“(avszaﬂ — 8,221 Trs{E)} =0

The cancellation of these terms stems from the fact that the trace over spin degrees
of freedom is equal zero.

3.5.2.3 Terms 2-3 and 3-2 Vanish Individually

1
g2 7t {657 08l — 050 (g1 el )|
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3.5.2.4 Terms 3-4 and 4-3 Vanish Identically

1 )
w5l {6217 2up PP 2n ) (—rggo) o2l 71 251

3.5.2.5 Terms 3-5 and 5-3 Do Not Contribute to the Dynamics

1
Tt |81 Qe v D g 1oL 2]

= —%Eabeec‘if&fgaugvaETrS {8t} =0

3.5.3 Terms n-m (n # m) with Vanishing Spin Trace

In the following, the terms with vanishing spin trace are shown. These types are
either of the form Trs{aw_,a Kt EppBev} =0or Trs{um EppZev} =0.

3.5.3.1 Term 2-6 and Hermitian Conjugate Term 6-2

1 - o drcmp —d e
@Try {g5‘ta(8vd(ju —aua(jv) (gs[r”aj.‘,r .:[‘j])}
3
= 5 Trg {0, — 0,80 (EL BT ! — )5kl
32g2 ap I d™c
3

_ 8
32g2

d o b, B _ys A
Tri{t%tt }ea;;,,MDmx u,, €’ nya " Xm XnUneUsg

E
3252

A

Try {t”rctd}DTO‘xbxmXnufauﬁ';cuﬁd%aécméfew” =0
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3.5.3.2 Term 4-6 and Hermitian Conjugate Term 6-4

These terms vanish due to a zero spin trace as well as a zero isotopic-spin trace.

1
Ty {l Q2. 1" 8 183 BN B ]
22! 885[7% Q2ay frEl al
g
= —@GabeQaVTVSI it‘:b-rﬂ (T Td‘—’c Eqy — Tdf ‘-‘dV"‘CM)}

3
85 _ab Aot = o docot = o
= _Eftl “QuvTrsy {rerct EpyBenEay — TeT r”abuadvam} =0

3.5.3.3 Term 5-6 and Hermitian Conjugate Term 6-5
The same argument as for the previous terms holds.

agt

Trsq {lggs[r g, T Qbu]g [t°E, 9 E)]

[

1
32g2

3
85 _ab d ot o d_cmt = e
= _l6g €2y, Trsy [‘L’e‘L'CT a(jvafa; — .19t E a;acﬂ} =0

3.5.3.4 The Terms 1-6 and 6-1 Vanish Because of the Contraction of
Space-Time Asymmetry

1
@T”SI {(lgfa(avgap. - 8MQQU)) (gg[TCEéL, TdE;])}
g = =V
T O an = Qa) Trsy (e e (3L 5] - 518 |

= —Z(avﬂau — 3,208 Tr{tc“t) xexa = 0

Here, the last line only takes into account the contribution for cd # 0 and the fact
that the last term in parenthesis is completely antisymmetric so that the contraction
with respect to space—time indices vanishes.
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3.5.3.5 Terms 2-4, 2-5, 4-2 and 5-2 Vanish

These terms vanish due to the contraction of the completely antisymmetric terms in
both space—time indices as in the previous term.

1
B! Lest? @5, - 9,50 (~rggsleelt. = 21) |

2
8 - e
= éeCd“TrS{(ava;M — B )ENRE =0

3.5.3.6 The Terms 3-6 and 6-3

These terms vanish because of a vanishing isotopic-spin trace.

1
g2 7t | =81 Qu PP 2ngdee 5L < 51

2
1g .
= —Tge“beQaMQbVTrSI {rer‘tdEC"E; — retdtCE;E#} =0

3.5.4 Terms n-m (n # m) Which Contribute to the Dynamics

3.54.1 Terms 1-3 and 3-1 Are Equal

1
2l {(zgr“(avszw — 0, 2a)) <—g2[rcszg, rd:z;])}

L LR

= gecd“(avszw — 3,20 21 2]

The isotopic-spin contribution is Tr; {t%[t¢, 7]} = 41/ For ¢,d = 0 the
commutator vanishes, for a = 0 ¢ = d the commutator also vanishes, therefore
only different combinations for acd survive. This part contributes in form of a three
point interaction part of the vector boson Lagrangian and is a manifestation of non-
commutativity.
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3.54.2 Term 4-5 and 5-4

1 ,
BT {1857 2ur, 78] (-1889)17° 5L, w21

2
8 =t =
= —Zse“beeCdf(Sef.Qav.Q;TrS Haguaf}

These terms may be combined with the terms 4-4 and 5-5 and they will form a term
of the type .Qa,,.QK‘I’XaXd.

3.6 The Resulting Dynamical Model Compatible with
Unitary and Chiral Symmetries

One may now collect all the non-vanishing terms from the previous analysis and
write the dynamical model in terms of pure fermionic contributions (.Z) pure
bosonic contributions (£, and .Z) and the interaction terms between fermions
and bosons (Zy o and £, ) and between bosons (£, ) as dictated by the initial
symmetry hypothesis.

fsz +$¢Q +$¢X + %o +fx +fgx. 3.2)

Here, the explicit expressions for the fermionic sector including the interaction
terms are

1 - - -
Lispa+yy = WYY — 0,0y ) + g Wy 20, ¥
18

V2

The boson sector that reminds one on the theory of electromagnetism however with
a non-linearity is

+ lIIV“VSTQXalP .

1
Zo = (2 = 0,020) (0725 = 9" 2U) + g™ ("2l — 0" 2)) 2f 2
+g7 (898" — 6°967%) 24,824 212}
—
isovector only

and the bosonic sector from the pseudo scalar field is also non-linear with a quartic
interaction similar to the Higgs sector in the Standard model.

2 rrabed
FI

1
Lyyay = Eaux“a“xa -3z XaXbXcXd

+82F?b0d9ua9}l,}'Xch
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Fabcd — 5“08h08608d0+5a06b0 (SCd +8b08C0 (Sad +8006c‘0 de
1 — — —

cd#0 ad#0 bd#0
+6h08d0 Sac +8a08d0 5]){3 +8608d0 Sah
—— —— ——
ac#0 bc#0 ab#0

_ (8ac8bd _ SadabC) .
S —
abcd#0

All the factors may be identified from the individual terms in the analysis section.

3.7 Conclusion

The present discussion showed how starting from an initial symmetry hypothesis
one may derive the most general dynamical structure in agreement with underlying
symmetries. In our procedure, a combined local unitary and chiral transformation
was exploited to progressively construct a model which in the end shows the
considered symmetries. Comparing the obtained structure to existing models, one
observes the similarity to the Standard Model, and however, in the latter the
Higgs sector was constructed so that its contribution could generate the mass
terms of the constituting particles by means of a spontaneous symmetry breaking.
Differently, the present approach generates the non-linear interaction terms as a
symmetry consequence, and one may further think of a spontaneously broken
symmetry in order to generate mass terms as a consequence of non-vanishing
vacuum expectation values similar to the Higgs reasoning. However, this issue
is beyond the considerations of the present work and possible scenarios in this
direction will be explored in a future work.

One of the reasons why one should start from symmetry considerations rather
than directly proposing a dynamical structure is related to the fact that symmetries
are related to conservation laws, and in general it is easier to identify these laws
beforehand than looking for transformations that leave the dynamical equations
invariant and thus indicate existent symmetries. Furthermore, the possibility to
explore the same underlying dynamics with respect to apparent or hidden (spon-
taneously broken) symmetries may open a pathway to get insights in some of
the phenomena in nature which may be related to such mechanisms instead of
introducing them into the model ad hoc . In the same manner as presented in this
work, other symmetry groups may be explored in the same fashion in order to obtain
a generic dynamical structure which then relates constituents of a physical system
to their possible interactions.
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Chapter 4
The Traction Boundary Value Problem Qs
for Thin Elastic Structures

C. Constanda and D. Doty

4.1 Introduction

In this chapter, we construct a method for approximating the solution of bending
of a load-free, unbounded elastic plate with a hole, under Neumann-type conditions
prescribed on the boundary of the hole and a given far-field behavior. The procedure
is implemented by means of a generalized Fourier series method that makes use of
a complete set of functions spanning the space of the solution. The members of this
set are constructed from elements intrinsically tied to the analytic structure of the
mathematical model.

Similar problems have been considered for finite plates with Dirichlet, Neumann,
and Robin boundary conditions, and for an infinite plate with Dirichlet data on
the boundary, in [CoDol7a, CoDol7b, CoDol18, CoDo19a, CoDo19b, CoDo19c,
CoDo20].

4.2 The Mathematical Model

In the sequel, ST is a finite domain in R? bounded by a simple, closed, C?>—curve
88, S~ = R2\ (ST U3S), x(x1, x2) and y(y;, y2) are generic points in ST, §~,
or on 45, and |x — y| is the distance between x and y in the Cartesian metric. For
a matrix M, we denote by M) and M(; its columns and rows, and by M its
transpose. Additionally, C%2(3S8) and CL¥(9S), @ € (0, 1) are, respectively, the
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spaces of Holder continuous and Holder continuously differentiable functions on
dS,and (-, -) and || - || are the inner product and norm on L>(95S).

We assume that the three-dimensional region (S~ U 9S) x [—ho/2, ho/2], where
ho = const, is occupied by a (homogeneous and isotropic) material with Lamé
constants A and .

The model of bending of plates with transverse shear deformation consists of the
following mathematical elements (see [Co16]):

(i) The displacements are characterized by a vector of the form u = (u1, uy, ug)T,
whose components are functions of x| and x;.
(ii) The columns f@ of the matrix

1 00
f= 0O 10
—x1 —xp 1

form a basis for the space of rigid displacements.
(iii) The system of partial differential equations governing the state of equilibrium
when the body forces are negligible is written as

A(d1, 82)u(x) =0,

where
A(91, 32)
h2pA + >0+ w)df — h> (A4 10319 — s
= h2 G+ 1)d19 h2pA +h* o+ a5 —pu —pda |
1oy J7%)) nA

0y = 0/0xq, @ = 1,2, D(x,y) is a matrix of fundamental solutions, h? =
h3/12, and A = 37 + 33 is the Laplacian.

(iv) An associated matrix of singular solutions that plays an important role in the
study of the model is defined by

P(x, y) = (T@,)D(, x))', (4.1)
where
T(3) = T (1. 0))

W20+ 2u)n101 + h2pn2dy h2unad + h2an 9, 0
= h2an00) + h2unidr hZun 0 + 2O+ 2Wn2d 0
uni munz Mrg Oy
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is the boundary moment-force operator, n(ny, nz) is the unit normal to 9§
pointing outside S, and ny 9y = 1191 + n20>.

4.3 Exterior Neumann Problem

Let <7 be the class of vector functions in S~ with far-field expansion, as r — oo,

ui(r, ) = r~'[mosin@ + 2my cos @ — mg sin(30) + (ma — m1) cos(30)]
+ r2[(2m3 + m4) sin(20) + ms cos(20) — 2ms3 sin(46)
+ 2mg cos(46) |
+ r3[2m7 sin(30) + 2mg cos(30) + 3(mo — m7) sin(56)
+3(m1p — mg) cos(50)] + O (r™),

ur(r, ) = r_1[2m2 sinf + mqgcos 6 + (my — my) sin(360) + mg cos(39)]
+ r72[(2mg + ms) sin(20) — my cos(20) + 2mg sin(46)
+ 2m3 cos(46) |
+r3 [2m10 sin(36) — 2mg cos(30) + 3(m19 — mg) sin(56)
+3(m7 — mg) cos(50)] + O (r™),
u3(r, ) = —(my + m) Inr — [my + my 4+ mo sin(20) + (m; — my) cos(26)|
+ 7' [(m3 + my) sin 6 + (ms + me) cos & — m3 sin(30)
+ mg cos(36)]
+ r2[myy sin(20) + m12 c08(20) + (mo — m7) sin(46)

+ (m1o — mg) cos(40)] + O (r ™),

where my, ..., mp are constants.
We make the decomposition

D =D? + D™,
where

(DY) ¢ of, ADY = AD® =0 inSTUS".
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At the same time, for the P matrix we have
P*=0, P=pP7 (P")Decg.

The exterior Neumann problem consists in finding u € C2(S™)y N CcY(§7) that
satisfies

Au=0 inS™,
Tu=./ onds, 4.2)
ue o,

where /" is a 3 x 1 vector function prescribed on 95S.

Theorem 4.1 Problem (4.2) has a unique solution u for any A € C%*(3S) if and
only if

(A O, =0, i=123. 4.3)
Since u € &7, we write u? instead of u, so problem (4.2) becomes

Au? =0 inS™,
(4.4)
Tu? = .4 onds.

As a solution of (4.4), u? admits the representation formulas

u (x) = —/D(m)Tu”(y)ds(y) +fP<x,y>u<‘2’<y>ds(y>, res,
ENY N

0= —/D(m)Tu”(y)ds(nyP(x,ym”(y)ds(y), xeST,
S ENY

which, with u"y|a s = ¥ unknown and Tu? =N , take the form

u” (x) = —/D(x,y)«/V(y)dS(y) +/P(x,y)1ﬁ(y) ds(y) xe§—, (45)
N 3

0= —/D(x,y)«/V(y)dS(y)Jr/P(x,y)l/f(y)dS(y), xeSt. 4.6
S aS
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Let 35, be a simple, closed, C?~curve lying strictly inside ST, let {x®} ™~ be

a set of points densely distributed on 9S,, and consider the vector functions

00
k=1

0UR (x) = (T(D(x’ x(k>))d)<./> _ T((D(x’ x(k)»;zf)(./). @7

In view of (4.1), these functions have the alternative expression
o ) T
0UR (x) = ((P(x ,x))(j)> . (4.8)

Theorem 4.2 The set
G =1eWP, j=1,2,3 k=12,...} (4.9)

is linearly independent on 3§ and complete in L*(9S).
The elements of ¢ are ordered as the sequence

(11) (21) 31) (12) (22) (32)

2 % 2 % % @

and re-indexed:

where

WD =pUh =123 k=1,2,..., i=j+3k-1)=12,....

Writing the representation formulas in the more compact form
o _ -
u? (x)=—(Dx, ), A)+(P(x, ), ¥), xe8, (4.10)

(P(x, ). ¥)=(D(x,), #), xeST, 4.11)

we intend to approximate ¥ (on 9.5) from (4.11), and then approximate u? (inS7)
from (4.10).
Using definition (4.1) of P and (4.8), from (4.11) we deduce that

(fp(i),l/f)=<((D(x(k)"))(j))T’ JV>

We consider the (unique) expansion

oo
v =2 .
h=1
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which we truncate to get the approximation
(n) -
o h
v = w],0)" = 3 ene™.
=1

For symmetry and ease of computation, we use the subsequence of ¥ with
n = 3N, where N is the number of points x® gelected on 8S,. This leads to a
nonsingular linear algebraic system for computing the coefficients ¢, namely

n

Zch((,o(i)» ¢(h)) — ((((D(x(k), x))d)(j))T’ JV),

h=1
i=j4+3k=1)=1,2...n

Finally, we construct the function
u™ ) = @?)® ()
= (D, )7, N+ (Px, ), ™), xes.
Theorem 4.3 The vector function u™ is an approximation of the solution u of

problem (4.2) in the sense that u™ — u uniformly on any closed and bounded
subdomain of S™.

4.4 First Numerical Example

Let ST be the disk of radius 1 centered at origin, and let the plate parameters (after
rescaling and non-dimensionalization) be h = 0.5and L = p = 1.
We consider the boundary condition function (in polar coordinates on 9.5)

—% cosf + 2sinf — 8 cos(20) — sin(20) + 3 cos(36)

— 35in(360) + 3 cos(40) + sin(46) — 3 cos(50) + 6sin(59)

2cosf — % sinf® — 3 cos(20) + 4sin(20) — 9 cos(360)
— 3sin(36) — cos(46) + 3sin(40) — 6 cos(560) — 3 sin(560)

N (x) =

—125in(20) + 54 cos(30) + 18 sin(30) — 36 cos(46)
+ 72 sin(460)
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Direct verification shows that this function satisfies the solvability condition (4.3),
that the exact solution of problem (4.2) generated by it is

(X12 +x22)_] [—3x1 + 2x2]
+ (¢ + x2)72[=5x2 + 5x2 — 6x2x2 + 23]
+ (2 4+ 0D 3 = 3xiad + 6xF + 8x7xy — 36x7xF — 8x1x3 + 6x7]
+ (7 4+ x3)7*[=3x] + 30xTx2 + 30x7xF — 60x7x3 — 15x1x5 + 6x3]
(xf +x3) 7" [2x1 — 3x2]
+ (xl2 + x%)—2[—2x12 + 2x1x2 + 2x% + Zx? — 6x1x%]
+ (7 +x3) 3 [—4x] — 3xxo + 12x1x3 + x5 — 2x} + 24x;x,
u(x) = + 12x7x5 — 24x1x§ —2x3] ,

+ (x]2 + x%)’4[—6x15 — 15xfx2 + 60x?x% + 30x12x§ — 30x1x§ — 3x§]

3+ 3 G} +3)
+ (F +x3) 7 [=2x1 + x2 — 4x1x2]
+ (x]2 + x%)’2[—10x1xz + 3xl3 + 3x12xz — 9x1x§ — xg]
+ (xl2 + x%)_S[lel3 + 18x12x2 - 54x1x§ - 6x§ — x? + 8xfx2
+ 6)(12)622 — 8x1x§’ — xg]

+(x? + x3)TH=9x] + T2x3x2 + S4x3x3 — T2x1 x5 — 9x3]

and that the class &7 coefficients of this solution are
m0=27 mi :—%’ m2=_§’ m3:_11 m4=21 m5=_53 m6=31

m7 =0, mg= %, mg =2, mpo= —%, mi; = -5, mpp=0.

We take the auxiliary curve 95, to be the circle of radius 1/2 centered at the
origin. This seems a reasonable choice since having 9.5, too far from 9.5 makes the
set & “less linearly independent,” whereas positioning it too close to 3§ increases
the sensitivity of ¢ to the singularities of matrices D and P.

It is obvious that the accuracy of the approximation depends on the selection of
the set of points {x®)} on 95,. For the sake of symmetry, we make a uniformly
distributed choice; specifically, for N = 1,2, ...,

N
k=1Cartesian 2" N k=1

The numerical computation method used in this example is row reduction.

Polar
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4.5 Graphical Illustrations I

The graphs of the three components of (u“% )(60) computed from w(60) (with N =20
points x® on 0Sy) for

r>101, 0<6 <2mnm,

together with graph of 9 are shown in Fig. 4.1.

The influence of the singularities of D(x, y) and P(x, y) for x € S~ very close
to y € S is mitigated by increasing the floating-point accuracy in the vicinity of
aS but is never completely eliminated. The gap between the computed subdomain
and 95 is filled by appropriate interpolation.

The graphs of the components of (u”)© constructed from ¥ 00 for

1.0l <r<100, 0<6 <2m,

which illustrate the class .27 behavior of the solution away from the boundary, are
displayed in Fig. 4.2.

Figure 4.3 contains the graphs of the components of the error (u
The approximation is 4-5 digits of accuracy near .S but improves significantly away
from the boundary.

The behavior of the relative error

@7)(60) _ um/.

Iy O — u |5
lu |55l

as a function of N reflects the efficiency and accuracy of our computational
procedure. The logarithmic plot of the size of the relative error in terms of N
can be seen in Fig. 4.4. This plot strongly suggests that the relative error improves
exponentially as N increases. Fitting a linear curve to the logarithmic data produces
the model

3.38762 — 0.295589 N.
The relative error may be modeled by

1O — u [y

— — 2441.3 x 0.506304" . 4.12)
lu Tasll
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Fig. 4.1 Graphs of the
components of u)©0 and
YO0 for r > 1.01,

0<6 <2m
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Fig. 4.2 Graphs of the =100
components of )00 for
10l <r <100, 0<6 <27

=100

=100
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Fig. 4.3 Graphs of the

components of the error
(w0 _ o
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Fig. 4.4 Logarithmic plot of the relative error as a function of N

4.6 Second Numerical Example

The first example, where the exact solution of the problem was known, validated
the efficiency of our approximation method. We now solve the boundary value
problem (4.2) with a data function .#” for which the exact solution is not known.
Specifically, for the same domain S~ we choose

3cosf — sinf + 6cos(20) — 7sin(20) + 3 cos(36) + 15sin(30)
— 3 cos(460) + 2sin(40) — 6 cos(50) — 9sin(50)

—cos 6 + sinf — cos(20) — 6sin(26) 4+ 3 cos(30) — 9sin(36)
— 2cos(46) — 3sin(49) + 9 cos(56) — 6sin(56)

N (x) =

—6.c0s(20) — 6sin(260) — 54 cos(36) + 36 sin(360) — 72 cos(46)
— 108 sin(46)

The approximation is computed with the same auxiliary curve 9., and points
x®  and the same parameters as in Sect. 4.5, by means of the row reduction method.

4.7 Graphical Illustrations 11

The graphs of the components of 17>, generated with 25 points x*) on 35,, for
r>101, 0<6 <2nm,

are shown in Fig. 4.5.
The graphs of the components of u"> for

1.01 <r <100, 0<6 <2m,

which indicate the class &/ behavior of the solution away from the origin, are
displayed in Fig. 4.6.
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Fig. 4.5 Graphs of the
components of u)©0 and
YO0 for r > 1.01,

0<6 <2m
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Fig. 4.6 Graphs of the —~ 100
components of @)™ for
10l <r <100, 0<6 <27

—-100

-100

=100

=100
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Fig. 4.7 Components of (Ti)7> — .4 in polar coordinates

Since u” | »s is not known in this case, we cannot use (4.12) to estimate the error.
Instead, we design a roundabout procedure that uses 17> to construct the solution
it of an exterior Dirichlet problem, then compute (7'i)(’> by the method described

in [CoDo020]. As can be seen in Fig.4.7, (Tzl)(75) is close to .#", which confirms
that our technique is efficient.

A far smaller relative error is obtained if we take 200 points x*) on 9S,; then

I(Ti)©®0 — |

= 1.41203 x 1072,
A
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Chapter 5 )
Mapping Properties of Potential Qs
Operators Related to the 2D

Compressible Stokes System in Weighted
Sobolev Spaces

M. A. Dagnaw and C. Fresneda-Portillo

5.1 Introduction

The purpose of this chapter is providing the mapping properties on weighted
Sobolev spaces of those boundary and domain integral operators that appear in
the integral representation formula of the pressure and velocity solutions of the
compressible Stokes system. These are required to prove further theorems related to
boundary-domain integral equations in 2D. Let us remark that the results presented
here build on the works for the compressible Stokes system in 2D [AyDa20] and the
works on boundary-domain integral equations for the Stokes system in weighted
Sobolev spaces in 3D [FrMi21].

5.2 Preliminaries

Let 2 = .Q+_be a unbounded (exterior) simply connected domain in R? and let
2~ :=R?\ 27 be the complementary (bounded) subset of §2. The boundary 952
is simply connected, closed, and € >~smooth for simplicity.

In what follows, H¥(§2), H®(042) are the Bessel potential spaces, where s € R
is an arbitrary real number (see, e.g., [Mc00]). We recall that H® coincide with the
Sobolev-Slobodetsky spaces W for any non-negative s. For an open set £2’, we,
as usual, denote Z(£2') = C{°(£2'), while 2(82') is the restriction to £2’ of the
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space 2(R?). In what follows we use the bold notation: H*(§2) = [H*(£2)]* for
2-dimensional vector spaces.

We denote by H (.Q) the subspace of H*(R?) defined as H’ (£2):={g : g€
H*(R?),suppg C £2}; similarly, H’ (S)) = {g € H(0R2), suppg C Sy} is the
Sobolev space of functions having support in S; C 9§2. We will use the following
notation for derivative operators: 9 =dy; := % with j=1,2; V:=(01, 02).

Furthermore, to ensure unique solvability of the BVPs in exterior domains, we
will need the weighted Sobolev spaces, see, e.g., [Ha7l, AIAmO0]. Let us first
introduce the weighted Lebesgue space

Ly(p~'s @) ={g:p"'g € La(2)},
where
p() = (1+ [x)'21In 2 + [x).
Let 571 (£2) denote the following weighted Sobolev (Beppo-Levi) space
HN(2) =g € La(p™':1 2): Vg € La(2))
endowed with the corresponding norm

||g||;g)1(_g) o~ g||L2(Q) + ||Vg||L2(Q)
The analogous vector counterpart of .72 (£2) reads
AN(R) =g € La(p™": 2) : grad g € La(2)7).

It is well known that 2(£2) is dense in 7' (2), see, e.g., [Ha7l]. If £ is
unbounded, then the seminorm

181712 = 1IVElLy2)

is equivalent to the norm ||g||%1(g) in %I(Q) [Li73, Chapter XI, Part B, §1]. If
£2~ is bounded, then %1(9’) = H'(£27). If 2’ is a bounded subdomain of an
unbounded domain £2 and g € %”1(.(2), then g € H'(2).

Let # : (£2) be the completion of Z(£2) in 7 1(R2); it can be also characterised
as ' (2) =g : g€ AR, suppg C Q). Let # (@) = @
and 22 1(2) = [% ! (£2)]* be the corresponding dual spaces. Evidently, the space
Lo(p: $2) C 27 1(£2). Let us also consider the spaces LZ(Q) =LX(2)/R={q €

_1
L%(2) : fqux =0} and H,,” (02) :={p e H*(382) : {p;, 1),, =0 for i=
1,2}.
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For any distribution g in x! (£2), we have the following representation
property (see [NeOl, Section 2.5]), g; = 21-2:1 0igij + g?, gij € LQ(RZ),
g? € Lo (p; R2) and g;;, g? = 0 outside the domain £2, i, j € {1, 2}. Consequently,
2(82) is dense in 77~ (2) and Z(R?) is dense in 7~ (R?).

Let u be the viscosity coefficient, p the pressure field and v the velocity field.
In this chapter, for an arbitrary couple (p, v), the stress tensor operator, o;;, and the
Stokes operator, Jz{j, are defined for a compressible fluid as

v (x) v (x)
0x;j ax;

0ji(p,v)(x) :=— Sl.jp(x) + u(x) ( — arS;.jdivv(x)> , 5.1)

a
Aj(p, v)(x) =500 (P V)(X)

_ 0 (M(x)<a”f (), i) —aaf'divv(x)» _P0) ey,
ax,- axi 8x]' ! 8x]'
(5.2)

where « = 1 or o = % and 8{ is Kronecker symbol. Henceforth we assume the

Einstein summation in repeated indices from 1 to 2 if not stated otherwise.
Throughout this chapter, we will assume the following condition to ensure

boundedness properties of the integral operators introduced further on.

Condition 5.1
w € R N Loo(R?) : pVi € Loo(R?).
In addition, there exist constants C1 and Cy such that
0<Cy < pulx)<C,. (5.3)
The operator < acting on (p,v) € L(§2) x 2#1(£2) is well defined in the
weak sense as long as the variable coefficient u(x) is essentially bounded, i.e.,
1 € Ly (£2). Indeed, in the sense of distributions the operator < is defined as

(o (p,v),u)yo =—-EWp,v),u), Yuec D(2), 54

where

E((p,v),u) = fg E((p,v),u) (x)dx, (5.5)
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and the function E ((p, v), u) is defined as

ou; (x) . 8uj(x)> (avi(x) . 8vj(x)>

0x; ax; 0x;j ax;

1
E((p,v),u) (x) :=§u«(x) <
— ap(x)dive(x) dive(x) — p(x)divu(x). (5.6)

The bilinear form & : [L2(2) x 1 (2)] x %I(Q) — R is evidently bounded.
Thus, by the density of 2(£2) in a (£2), the operator

o Ly(82) x AN (2) > #7(R)

defined by (5.4) for any u € v (£2) is also bounded and gives the weak form of
operator (5.2).
We will also make use of the following space, (cf., e.g., [FtMi21]),

A2 ) == {(p,v) € La(2) x 2 (2) : o/ (p, v) € La(p; 2)},

endowed with the norm, || - || V02 7)) where

2 2 2 172
1. D00,y = (121 0) + 10121 ) + 10 (0. DI ) -
Let us define also a space
A2 ) = {(p.v) € LLR) x A (2) : o/ (p.v) € La(p; )},

with the norm

1/2
1P 100 ry = (171220 + 19121 g + 1907 (2. D))

Similar to [Mil 1, Theorem 3.12], one can prove the following assertion.

Theorem 5.2 Let u satisfy condition 5.1. Then the space 2(2) x 2(2) is dense in
102, ).

For sufficiently smooth functions (p,v) € H*~'(2%) x H*(2%) with s >
3/2, we can define the classical traction (conormal derivative) operators, T ot —
{T%}3_,, on the boundary 952 as

T (p, v)(x) == [y oij (p, v)(¥)In; (%)
av; (x) n 0vj(x)

0x; 0x;

- aajdivv(x)> , x €00,
(5.7)

=—n;(x)yEpe)+n, (@) )y (
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where 7 (x) denote the components of the unit normal vector r(x) to the boundary
082 directed outwards the exterior domain §2. Moreover, yi denote the trace operators
from inside and outside £2 which according to the trace theorem satisfy the mapping
property y* : #1(2) - H'/?(3%2).

Traction operators (5.7) can be continuously extended to the canonical traction
operators T+ : #10(2% o7) - H'/%(32) defined in the weak form (cf. [CMN13,
FrMi21]), as

(T*(p.v). whyo = /Q [ (p. 0yt w4+ E ((p.v). y*,w)]dx
V(p,v) e A 0RF, &), Vwe H/?(382),

where the operator y*, : H'/2(352) — 2'(£2) denotes a continuous right inverse
of the trace operator yt : 71 (2) - H'?(312).

Furthermore, if (p, v) € #10(2, «7) and u € ' (£2), the following first Green
identity holds, similar as in [FrMi21] for the 3D case,

(T+(p. ), yHu)ag = /Q [/ (p. vu + E ((p, 9), 1) (©)]dx. (5.8)

Applying identity (5.8) to the pairs (p, v), (¢, u) € s#0(2, o) with exchanged
roles and subtracting the one from the other, we arrive at the second Green identity,

(TT(p.v), yTuoe — (T (g, uw), yTv)ie

=/ [;z{j(p,v)uj—,;z{j(q,u)vj+qdivv—pdivu]dx. (5.9
fos

5.3 Parametrix and Remainder

When p(x) = 1, the operator </ becomes the constant-coefficient Stokes operator
o , for which we know an explicit fundamental solution defined by the pair of func-
tions (q”‘, itk), where summation in k is not assumed, u’; represent components of
the incompressible velocity fundamental solution and ¢* represent the components
of the pressure fundamental solution (see, e.g., [La69]. So for ro > 0, u* and G* will
have the form:

G, y) = — (X — Y1)

, 5.10
27 |x — y|? -1

Xx—yl O =)0 — v
ro x —yI?

1
ﬁﬁ(x,y):—(&’flog' ) j ke{1,2). (5.11)
47 \/

Therefore, the couple (c}k , i'zk) satisfies
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2 2
d i 9 1
—g* .y =) — (—5-loglx—yl ) = -8(x—y). 5.12
anq (x,y) Z ax,f( T og |x yl) x—-y) (5.12)

2 2k o
. . . 0% (x,y)  agk(x, y)
TG @ ity =Y T Y

ax; ox;

i=1

divei®(x, y) = 0. (5.14)

:8?8(x—y), (5.13)

Here and henceforth, §(-) is Dirac’s distribution.
Let us denote 6;;(p, v) := 0i; (p, V)|u=1, T (p, v) := T (p, v)|u=1. Then by (5.1)
the stress tensor of the fundamental solution reads as

1 i =y =y — )
T Ix —y|*

61 () (F (x, y), i* (x, y)) = :

and the classical boundary traction of the fundamental solution becomes

TE(x)(G" (x, y), i (x, y)

=63 ()@ (x, y), e,y ) = LTIV ZIDOZIO
b4 [x —yl
Let us define a pair of functions (g%, u%)?_,,
s y) = PO ke gy = B ST gy (5.15)
n(y) n(y) 2 |x —y|?
k o <8’?1 Ix—yl O — )0 —yk)>
u;(x,y) = 0 ) ( ,Y) = ) og o x—y[ .
(5.16)
Then by (5.1),
017 (1) (g (x, y), uh (x, ) = E ;m,(x)(q . (5.17)
Ti(x)(q" (x. y). u* (x. ) == 0i; () (g" (x, ). u¥ (x, y)) nj(x)
%";wxq (e ). i (x. ). (5.18)

No summation in k is assumed in (5.17) and (5.18).
Substituting (5.15)—(5.16) in the Stokes system with variable coefficient, (5.2)
gives

i (x)(q" (x, ), u* (x, ) = 858 (x — y) + Ry (x, y), (5.19)
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where
1 apx), . .
Rk,»(x,y)=u(—y) o 17 () (" (x, y), i (x, y))
I op(x) (i — yi)(xj — y;) (ke — yi) —1
Tu(y) oxi x— P (w=ab 520

is a weakly singular remainder and no summation in k is assumed in (5.19)—(5.20).
This implies that (g¥, u¥) is a parametrix of the operator .<7. Let us keep in mind that
we have not assumed summation on the index & in (5.17)—(5.20).

Note that a parametrix is generally not unique (cf. [FrMi21] for BDIEs based
on an alternative parametrix for a scalar PDE). The possibility to factor out ﬁ

in (5.17)—(5.18) and V"S‘) in (5.20) is due to the careful choice of the parametrix in

u(y)

form (5.15)-(5.16) and this essentially simplifies the analysis of parametrix-based
potentials and BDIE systems further on.

5.4 Hydrodynamic Potentials

Let first 4 and k be sufficiently smooth scalar and vector functions on £, e.g., h €
2(82), h € 2(R2). Let us define the parametrix-based Newton-type and remainder
vector potentials for the velocity,

) =gy )= [ iy,
(Zh1ik(y) = Zxjhj(y) == /Q Ryj(x, y)hj(x)dx,
and the scalar Newton-type and remainder potentials for the pressure,
(211,00 = 210 = [ ' ohdr == [ gl phedr, G20

Dh(y) = 2h(y) =21} (y) = /Q ¢ (3, )R (¥)dx = /Q ¢ (e, )k (x)dx,

(5.22)
3G’ (x,y) 0 ]
B h(y) = B3hj(y) = —2p.v. /Q % lg:c)hj(x)dx b (523)
i 4 J
= =2(0047 (. 3) hidu) = 20 (oY), (5.24)

for y € R2. The integral in (5.23) is understood as a 2D strongly singular integral
(in the sense of the Cauchy principal value). The bilinear form in (5.24) should be
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understood in the sense of distributions, and the equality between (5.23) and (5.24)
holds since

<3i6?j(', »), hiai“>g - <6}j(" ¥). 8,'(/1[8}',“«))_(2 + <n"qaj(.’ »: hiajﬂ)”

— 1im (47 (. )., (h,-a,-u)>96 +(mid? o) hidym)

=tim (8,7 (. ), hidj) = lim (mid (. ), hidju)
lim {9:g° (. ). hidju o, ~dm niq’ (-, y) il 00

_y /aé’(waﬂ*(x)h.(x)dx_hw
P 0 8x,~ 8x,~ I ]ayj ’

where 2. =2 \ B.(y) and B.(y) is the ball of radius € centred in y, which implies
that

=204/ ¢y, ma,-»}g — 20 () (y)

hj(x)dx — hj(y)

~ 2vp / 3G/ (x, y) Buu(x) D) _ oy
b 0 8)6,' ax,' 3yj ) '

In addition, we will introduce the operators U, Q, R, and R®* whose definitions
coincide, respectively, with the definition of the operators %, 2, #Z, and %#° with
the sole difference that £2 = R3.

Let us now define the parametrix-based velocity single-layer potential and double
layer potential as follows:

[VAI(y) = Vijh(y) = — /d i @) dSe), y ¢ 992,
[Whl(y) = Wijh;(y) = —/ T (e gk u) )b () dS(x). y ¢ 052

a2

For the pressure we will need the following single-layer and double layer potentials:

h) = My o= [ a7 ey dseo., v ¢ 02

3G (x,
Hdh(y) = Hj-jhj(y) = 2/ q’(x y),u(x)hj(x)dS(x), y ¢ 0s52.

e  on(x)

Itis easy to observe that the parametrix-based integral operators, with the variable
coefficient u, can be expressed in terms of the corresponding integral operators for
the constant- coefficient case, u = 1, marked by,

1.
Uh = —%h, (5.25)
1%
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—1 . . .

[%h); = I[aj%k,»(h,-a,-m + 0% i) — Dhjdn) . (5.26)
1 .

Dh = — D(uh), (5.27)
n

Bh = —28;2;(hjdin) —2h;dju, (5.28)
1. 1.

Vh=—Vh, Wh = —W(uh), (5.29)
w w

I°h = IT°h, % = 1% (uh). (5.30)

We will further use (5.25)—(5.30) as definitions of the potentials in the left-hand
sides of these relations, when the densities 4 and h are more general functions or
distributions on £2 or 952.

Note that although the constant-coefficient velocity potentials % h, Vh, and Wh
are divergence-free in £2%, the corresponding potentials % h, Vh, and Wh are not
divergence-free for the variable coefficient j1(y). Note also that by (5.10) and (5.21),

Dih = 8; Nah, (5.31)
where
Nah(y) = —% /Qlog |xr_0y|h(x)dx (5.32)
is the harmonic Newton potential. Hence
div2h = 3;9jh = ANpsh = —h. (5.33)

Moreover, for the constant-coefficient potentials we have the following well-known
relations,

A(IT°h, Vh) =0, & (IT1°h, Wh) =0 in 2%, (5.34)
A (Sh, % h) = h. (5.35)
In addition, by (5.31) and (5.33),
(2 = ), = 2h) = =0; (%25 + 8 Dih — s divOh) — 2 = );h

= —(AQjh 4 8;div2h — ad;divZh) — (2 — a)djh = 0.
(5.36)
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5.4.1 Mapping Properties

The following assertions are well known for the constant-coefficient case, see, e.g.,
Lemmas A.3 and A.4 in [KLMW16] and the references therein. Then by relations
(5.25)-(5.30), we obtain their counterparts for the variable-coefficient case. Let
us highlight that the operators U, Q, Q, R, R® are defined in the same way as
w, 2,92, %, and #° if we take 2 = R2.

Remark 5.3 For sufficiently smooth h, the Newtonian volume potential over RZ,
cf. (5.32), is defined as

Nah(y) = /RZ Ea(x,y)h(x)dx, (5.37)

where

|x — ¥
ro

1
Ex(x,y) = —Elog

is the fundamental solution of the Laplace equation and moreover Ny Ah = ANph
= —h, i.e., the operator N 4 is inverse to the Laplace operator A. On the other hand, it is
well known (see, e.g., [Ha71, Theorem II1.2]) that the Laplace operator A : H° I(R?) >
7Y (R?) has a continuous inverse, A~' : # N (R2) — #V(R2) and thus Nah =
A~V h for any h € 2(R?). As remarked in [CMN13], due to the density of 2(R?) in
A~V (R?) this provides a continuous extension of the operator N defined by (5.37) to
the extended continuous Newtonian potential operator

Na: #7 VR — 2 (R?). (5.38)

Theorem 5.4 The following operators are continuous under condition 5.1,

U: 7 '(R?) - 7' (R?), (5.39)
w Q) > ANR). (5.40)
0 : LR — #'(RY), (5.41)
2:Ly(R2) - #R), (5.42)
0: # \(R? > LryR?), (5.43)
2: 77 (2) > L), (5.44)
R:Ly(p™ " R?) — ' (R, (5.45)
Z:Lrp~ ' 2) > #(R), (5.46)
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R*: Ly(p™ " R?) — Lo(R?), (5.47)

Z*: Ly(p~ " 2) > Ly(£2). (5.48)

Proof Let us consider relations (5.25) and (5.27). The continuity of operators U, %,
Q and 2 in (5.39), (5.40), (5.43), and (5.44) then follows from the continuity of the
corresponding operators % ) U , ﬁ, and Q provided in [KLMW 16, Lemma A.3].

Let us prove now the continuity of operator (5.45), which follows if we prove
the continuity of operators in the right hand side of (5.26). Let us note that by
condition 5.1, u and % are bounded and act as multipliers in the space 5! (£2). In

addition, condition 5.1 states that pd;u € Loo(R?). Consequently, for any function
h; € Ly(p~'; R?), we have that hjoin € L>(R?), see the proof of [CMN13, Theorem
4.1]. It is easy to prove that the operator V : Lz(Rz) — 1 (R?) is continuous, which
implies that V(h;9; ) € 21 (R?).

Let us prove continuity of the first operator in the right hand side of (5.26). First, we
assume that /2 9; u in 2(R?%). Then

3 Wi (hjdin) = — Ui d; (hjd; b). (5.49)

By the density of Z(R?) in L»(R?) and the continuity of operator U : s~ (R?) —
AV (R?), cf. (5.39), we can extend relation (5.49) from hjdiu € 2(R?) to hjoin €
L>(R?). Then, the continuity of operator

b ;% (hjoip) : La(p™ ' R?) — 2 (R?)

follows. The continuity of other two operators in the right hand side of (5.26) can be
proved in a similar way. Consequently, operator (5.45) is continuous. The continuity of
operator (5.45) implies the continuity of operator (5.46).

Taking into account (5.28), the continuity of operator (5.47) will follow from the
continuity of the first operator in the right hand side of (5.28). Let h; € Lo(p~ 1 R?).
Applying a similar density argument, as in the previous paragraph we can deduce
3 D(h;dip) = —d;(h;o;p). Since, d;(h;d;pn) € 7~ (R?), the we have the inclu-
sion Bjé(hj dipn) € Lr(R?) for any hj € Ly(p~ 1 R?), with the corresponding norm
estimate. This implies the continuity of operator (5.47). Continuity of operator (5.48) is
implied by the continuity of operator (5.47).

The mapping properties of operators (5.41) and (5.42) differ from the ones for
operators (5.43) and (5.44) and need to be proved separately.

Let us consider ¢ € 2(R?). Then by (5.31) and (5.32) we have

. E A E 4
2ip =—0;Na¢p = —/ — (X, y)p(x)dx = / —(x, y)p(x)dx
R2 ayj R2 8xj

0
=- / Eate, )22 4x = N4 0;0). (5.50)
R2 ax,
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Forany h € Ly (R?),

1021l sp—1 ey = sup [{djh, §)rel= sup [{h, ;&) g2l
£€DBNEN o1 g =) §€DBNEN o1 =)
= sup ||h||L2(]R2)||8A;'§||L2(R2) = ||h||L2(R2)~ (5.51)

ECD RN o1 gny=1

Due to the density of 2(R?) in 1 (R?), this implies that d;h € 2~ L(R") and
moreover the operator d; : Lo(R?) — 5~ (R?) is continuous.

As a result, the density of 2(R>) in Ly(R?) and the continuity of operator (5.38)
in (5.50) imply that er¢> = —Na(0j¢) € A1 (R?) for any ¢ € Lo(R?) and moreover,
the operator 2, : Ly(R?) — ' (R?) is continuous. Then operator (5.41) and thus
operator (5.42) are continuous as well.

Theorem 5.5 The following operators are continuous under condition 5.1

V:H?02) > #'(Q). (5.52)
T H V2 (02) — Ly(02), (5.53)
W:H?02) - 2'(2), (5.54)
e H'232) — Ly(2). (5.55)

Proof Let us consider relations (5.29) and (5.30). The continuity of the operators V,
IT5, W, and IT¢ then follows from the continuity of the operators V, W, IT% and IT d
which has already being proved in [Sal4, Proposition 7.2].

In the proofs further, second order derivatives of the coefficient u(x) will appear
and apart from Condition 5.1, we will sometimes need to assume the following
additional condition.

Condition 5.6

we EGHR?) : p?0;din € Loo(R?). (5.56)

Theorem 5.7 The following operators are continuous under Conditions 5.1 and 5.6,
(I°, V) : H.?(02) — #'02; ), (5.57)
(4. W) H'202) - #1005 ), (5.58)
(2, %) : Lo(p; 2) - A" OR?; o), (5.59)
(

(=), —2) : Lry(R2) » #102; o). (5.61)

*R): ANR2) > A2 ), (5.60)
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Proof Let us consider first the single-layer potentials (IT°h, Vh) € 5 L(2) x Ly(£2)
for h € H™'/2(32). Let us apply the operator </ taking into consideration (5.29)
and (5.30)

o 1.
A (ITIh, Vi) = (mh, —Vh)
%

- gi,(ﬁSh, \“/kh)+ak@[aj(1/M)\“/kh+ak(1/u)x°/,»h—a5§ai(1/M)x"/ih]) .

Now, the term d}(ﬁsh, \O/kh) vanishes and due Conditions 5.1 and 5.6, the last
term belongs to Ly(p; §2) since Vh € 1 (£2), which implies the continuity of
operator (5.57).

The same argument works for the double layer potential (W, Hd)h with b €
H'/2(3$2)and implies the continuity of operator (5.58). In addition it works for the
Newtonian potentials (%, 2) with the sole difference that </ (2h, %h) = h; and
h € Ly(p; §2). This implies the continuity of operator (5.59).

For operator (5.60), h € »#'(£2) C La(p~"; £2) and hence the operator (%Z°, %) :
L) > Lr(2) x #1(£2) is continuous due to Theorem 5.4. Let us prove that
A (R, R) : A (2) — Lo(p; 2) is continuous. Indeed, by (5.2),

A (Bh, Bh) = (B h, uRh) — 2 ;M;j(Zh), (5.62)
where
1 o
M;j(u) := E(ujaill +uidjp) — §5ijulal//«-

Hence due to Theorem 5.4 and Conditions 5.1 and 5.6, the operator o;M;; % : 7 l2)—»
Ly(p; £2) is continuous. Moreover, by (5.26), (5.28) and (5.35), M}(%’h, UZh) =
—29;Mj;j(h), hence by Conditions 5.1 and 5.6 the operator yf}(,%", ux) . AN 2)—
Ly(p; £2) is continuous. Then (5.62) implies the continuity of operator & (%Z°, u%) :
A1 (2) — Lo(p; 2) and hence of operator (5.60).

For operator (5.61) we proceed in a similar manner to obtain that

o (2 — a)uh, —2h) = <(2 — a)ph, —%:@(uh))
=/} (2 — @)ph, = 2(uh)) +2 ;M (2h) = 2 ;M;; (2h)

due to (5.36). By the continuity of operator (5.42) in Theorem 5.4 and due to
Conditions 5.1 and 5.6, the operator o;M;; 2 : Ly(£2) — L3(p; §2) is continuous,
implying the continuity of operator (5.61).

Let us now define direct values on the boundary of the parametrix-based velocity
single-layer and double layer potentials and introduce the notations for the conormal
derivative of the latter, for sufficiently smooth scalar and vector functions /# and h
onds2,e.g..h e 2(082), h € 2(352),
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[“I/h]k(y)=“I/kjhj(y):=—/M2 u'}(x, Yhj(x)dS(x), y € o8,
(5.63)

[Wmuw=%@mur=—ﬁgrﬂnqhﬁxnyMAMdﬂm, yeoe,

(5.64)
[W/h]k(y):%/jhj(y)::_/BQ 5 (y: q*, u)(x, y)hj(x)dS(x), ye€d,

(5.65)
LER(y):=TTUTh, Wh)(y), y €.

(5.66)

Here T are the canonical derivative (traction) operators for the compressible fluid
that are well defined due to Theorem 5.7.

Similar to the potentials in the domain, we can also express the boundary
operators in terms of their counterparts with the constant coefficient u = 1,

1. 1.
Yh=—Vh, — Wh=—W(uh), (5.67)
g ©

o 0;
W%k=W%k—(M
1%

; D
[Vh], + asffT“ Wh]j) n;. (5.68)

We will further use relations (5.67) and (5.68) as definitions of the potentials
Vh, #h, and #'h when their densities & and h are more general functions or
distributions on 2.

Theorem 5.8 Let s € R. Then the following operators are continuous under Condi-
tions 5.1 and 5.6,

v H(082) > H TN 090), w . H'(82) > HT'(092), (5.69)
LT H32) > H ' (092), W' H(0R) > H T (00). (5.70)

Moreover, the following operators are compact,

v H*(32) - H(32), (5.71)
W H°(32) — H*(382), (5.72)
W' H (02) — H*(0%2). (5.73)

Proof As in Theorem 4.4 of [FrMi2l1], the continuity of operators in (5.69)—(5.70)
follows from relations (5.67)—(5.68) and the continuity of the counterpart operators for
the constant-coefficient case. Then, compactness of operators (5.71)—(5.73) is implied
by the Rellich compactness embedding theorem.
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Theorem 5.9 Ift € H'/?(352), h € H™'/>(32), then the following relations hold on
082 under Conditions 5.1 and 5.6:

1

yEVh = vh, yEWer = FyT T (5.74)
1

TH(T°h, Vh) = :i:ih +#'h. (5.75)

Proof The proof of the theorem directly follows from relations (5.29), (5.67)—(5.68)
and the analogous jump properties for the counterparts of the operators for the constant-
coefficient case of u = 1, see, e.g., [HsWe08, Lemma 5.6.5].

For bounded domains, we had compactness of the remainder operators % and
2°* implied by the Rellich compact embedding theorem, which does not hold for
exterior (unbounded) domains considered in this chapter. To overcome this issue,
we prove that for exterior domains the operators # and #° are limits of some
sequences of compact operators and thus are also compact. We will require the
following condition.

Condition 5.10  limjy|— 00 p(x)V(x) = 0.

The proof of the following assertion is similar to [CMN13, Lemma 7.4] for the
corresponding scalar case.

Lemma 5.11 Let Conditions 5.1 and 5.10 hold. For any sufficiently large n >0, (i) the
operator % can be represented as X =Ky y+ Xy, where ||'%’Sv’7||3?f’1(9)—>3?f’1(9) — 0
as n — oo, while Z. , : HNR) > #LR)is compact;

(ii) the operator %° can be represented as %#° = %, + %,
”‘%S.,n”%'(ﬂ)—wz(ﬂ) — Oasn — oo, while Z¢ ,, HAV(R2) — Ly(2) is compact.

where

Theorem 5.12 Let Conditions 5.1 and 5.10 hold. Then the following operators are
compact,

R AHN(R) > HNR), B A(RQ) > LyR2). (5.76)

5.5 Conclusions

When we replace the parametrix (¢g*, u¥), in the second Green identity, it is possible
to obtain the following integral representation formula for any (p, v) € .#1%(2; &)

P+ %0 —IT*T (p,v)+ M v=27(p,v) + 2 —a)udive in 2,
(5.77)

v+ v — VTt (p,v) +Wytv =% (p,v)—2divv  in 2. (5.78)
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The proof follows the argument [FrMi19, Theorem 5.1]. We note that the solution
is represented in terms of integral operators defined on the boundary and also on the
domain. Using these identities, it is possible to derive integral equation systems,
defined on the boundary and the domain, from a given boundary value problem.
To study the existence and unique solvability of such integral equation systems, we
will require the mapping properties analysed in this paper, see., e.g., [FtMi21] as an
example in 3D.

The advantage of this method is that, sometimes, it is easier to study the
equivalence between the BVP and the system of integral equations, and the existence
of solution of such system than proving directly the existence of solution of the BVP
directly.
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Chapter 6 )
Stochastic Effects of the Meander on the Qs
Dispersion of Pollutants in the Planetary
Boundary Layer Under Low Wind

Conditions

C. Favero, G. A. Gongalves, D. Buske, and R. S. Quadros

6.1 Introduction

Outdoor air pollution is responsible for some of three million deaths around the
world [WHO16]. In addition to this problem, it brings considerable damage to
ecosystems and thus economic losses. These are only some of the reasons why it
is important to study the dispersion of pollutants in the planetary boundary layer
of the Earth’s atmosphere. To this end, mathematical models are widely used to
estimate the concentration of pollutants in the planetary boundary layer and in
domains with horizontal extensions of micrometeorological scales. For regulatory
purposes, conventional models such as a Gaussian plume model are known to
provide acceptable results for many stability conditions of the atmosphere, except
for those where the wind speed is below ~2m/s, henceforth called low wind
conditions [GoKr02].

Under these conditions, the diffusive process is dominated besides the turbulent
diffusivity also by a spread in the plume due to meandering. So far, to the best of our
knowledge, there do not exist pollution dispersion models in three dimensions which
take into account effects due to meandering. In the present approach, we consider
scenarios with wind speeds below 2 m/s and include in the lateral dispersion of the
plume the effect of meandering based on the discussion in reference [AnEtAlO6].
Once the diffusive process of dispersion together with the effect of meander is
implemented in a model, one shall expect that results will approach better reality,
an essential quality for simulation applications by the regulatory authorities.

Accordingly, the objective of the present study is to investigate the perfor-
mance of a newly developed model with analytical solution of the time-dependent
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three-dimensional advection—diffusion equation. The proposed model contemplates
turbulent diffusive parameters for the three spatial dimensions, in contrast to models
that commonly neglect the longitudinal turbulent diffusivity in comparison to the
larger longitudinal wind speed in the advection term, an approximation no longer
valid for low wind conditions. In addition, the effect of meandering in the wind field
is taken care of upon inserting fluctuations in the longitudinal and transverse wind
speeds, respectively.

6.2 The Advection-Diffusion Model

We start our developments from the full space and time-dependent advection—
diffusion equation in Cartesian coordinates, where without restricting generality the
mean wind direction is aligned with the x-axis and the z coordinate extends from the
ground level up to the planetary boundary height. As a simplification, we assume the
terrain to be flat, so that the vertical component of the wind field may be neglected
(see, for instance, reference [Ar99]).

3C+ 8C+ 0C _ 3 (. 0C
— tu—+v—=— -— ).
at ax dy 3z \' “dz

Here, C is the average concentration, u is the mean wind speed in the x direction,
and K, is the eddy diffusivity in the vertical direction, where usually besides
mechanical also thermal forcings generate turbulence and convection.

aC
KZB_ZO at z=nhandz = zp.
z

Here, h is the boundary layer height and zo > O is the average ground level
determined by the root-mean-square value of the surface roughness. The advection—
diffusion equation is subject to boundary conditions that prescribe zero flux at
ground level and at the top of the planetary boundary layer and assume a clean
atmosphere as initial condition and the pollution source with emission rate Q is a
point source located at height z = H, which starts operating at t = 0.

uC0,x,y,2) = Q0)§(x)F(y)é(z — Hy)

u lim C(t,x,y,2)6(x)dx = Qt)F(y)6(z — Hy) lin%)/ 8(x) dx.

e—0J_

To obtain a solution for the advection—diffusion equation, the method of variable
separation was used. Initially, # and v were considered constant and turbulent
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diffusivity K, = K,(z) in the vertical direction only.

d
E = (kK = M) T,

d
u— X = (@ + A) Xq),

dx
d
UEYKZ—KYK
d K()dZ =aZ
dz Zdz o) =%l

For details of the solution derivation, see reference [GoEtAl18].

6.2.1 A Time-Dependent Solution

In the present approach and for convenience, the concentration C is factorized by
three functions, the factors containing one of the horizontal coordinates are time
dependent in view of the extension by the meandering, and the third factor contains
the coordinates of the mean wind velocity direction and the vertical component,
where turbulent diffusion is the only driving force for dispersion.

Ct,x,y,2) =9t e, x)&x, 2).

The function & (x, z) is the result of the solution of the diffusive term by the integral
transform approach thoroughly outlined in reference [BuEtAll12], while ¥ (¢, y) and
@(t, x) are given by the spectral composition

vz, y) =/0 Al Y (2, y) dic

o, x) = /0 B\ (t,x) dr .

To determine the coefficients A(x) and B(A), one makes use of the initial and the
source conditions, which establish the following equalities:

uC(0,x,y,2) = Q(0)8(x)F(y)8(z — Hs) = uyy (0, y)9(0, x)é (x, 2)
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u lim ‘ C(t,x,y,2)6(x)dx = Q(t)F(y)5(z — Hy) lirrb/‘6 S§(x) dx

e—~>0J_

€

=uy(t,y) im [ o, 0)§(x, 2)8(x) dx.

—€

Upon replacing the generic terms by explicit forms of the eigenfunctions after
having solved the equations above, and further using the initial condition at t = 0
and the source condition at x = 0, the results are given by

Yt y) = /oo.ﬁf‘l{F(y), y = nle 107 dny = F(y —vt)
0

p(t,x) = /oox‘l{Q(t),z S Ale =D g = (, _ i) ,
0

u

where .#~! has the form of a Laplace transform. Then, the solution that expresses
the concentration flux of a substance emitted by a point source is given by

uC(t,x,v,2) = F(y — vt)Q (z —_ f) E(x, 1) .
u

Assuming that F' and Q are represented by Dirac delta functionals, it is possible
to find solutions with different forms of time-dependent sources by superimposing
instantaneous contributions to the total concentration. If the source has the time
evolution of a Heaviside function H (¢), then the solution is

oo
C(t,x,y,2) =f H(t—1)C(t, 7,x,y,2) dt
0

(u(z‘f'r)fx)2 _ (U(fff)*)')z
T dKx Kyx
u

e - dt &(x,t).

2 t
= —/ uQ(v)e
V01672 K K12 Y10

With this finding, the expression for the concentration computation is suitable for
micrometeorological conditions that vary in a time interval, which in principle can
be arbitrarily chosen, but for practical applications is usually determined by the
inverse sampling frequency of the data acquisition system in air quality monitoring
installations. Thus, the plume will be composed of segments C, for each interval

20u ' a+Br+0) 20u N o (Ar24B1+0)
o@) = i/ e~ D dt = Q Z/ —e~ o dr,
wD fo T =1 -1 Dj

where A = u? +v%, B = 2u(x —ut) +2v(y —vt),C = (x — ut)r + (y— vt)?
and D = 16(5)2Kx K. The index j indicates the j-th interval, where the total time
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interval covered extends from 7y = 0 to t;y = t. The solution for this equation is
given below:

)
N 0:u; ACjA 4B
J7J T D,

j:l'/nDjAj
2A:t; + B; 2At;_ B;

s (erf (2B o (251 B0V Y ey,
2,/A./'Dj 2 Aij

6.2.2 Fluctuations in the Horizontal Wind Velocity Field

Ct,x,y,2) = X

To relate the Eulerian autocorrelation functions with the influence of the meandering
due to the low wind velocity, the following equations were used [AnEtAl06], which
introduce fluctuations in the horizontal wind velocity components and thus giving
the model a stochastic character.

u'(t + At) = u(t) — (pu’ + qv’) dt + 0,\/2pdté,
V' (t + At) = v(t) — (qu’ + pv') dt + oy\/2pdtE,.
Here, the terms &, and &, are random Gaussian variables with zero mean and

variance equal to unity. For the purpose of generating numerical results, p and g
were estimated according to the following expressions proposed by [Fr53]:

1

P= s
_ m

1=y 1’

where 7 and m are determined according to the prescription in reference
[CaEtAlO6].

_ 2a(m?4+ 1T
m

T. + T} — 167°T?

An T

Experimental data show that the value of the meander’s period represented by T is
approximately 2000 s regardless of the stability class of the atmosphere’s boundary
layer. Experimental values for p and g were also used in the performed simulations
and will be presented in the next section.
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6.3 The INEL Experiment

Reference [SaDi74], known as the INEL (Idaho National Engineering Laboratory)
report, provides the results of a series of 14 diffusion experiments conducted
under stable micrometeorological boundary layer conditions with slow winds over
a flat terrain. Because of the wind direction variability, a 360° sampling grid was
necessary. Arcs were defined at distances of 100, 200, and 400 m from the center of
the grid, and collectors were positioned in intervals of 6° along each arc amounting
to a total of 180 sampling points. An SFg tracer was released at a height of
1.5m, and the collectors were mounted at 0.76 m above the ground level. Every
hour the average concentrations were read out as determined by electron capture
chromatography. These data were used to evaluate the model, and thus simulations
were carried out using the runs of the INEL experiment which presented wind
speeds below 1 m/s as shown in Table 6.1. The meander specifications by the values
for p and g are presented in Table 6.2 and were based on the data recorded in the
INEL experiment and calculated by [St17].

Table 6.1 Measured data

g Run |Quantity [2m (4m |[8m |16m
from the INEL experiment for

. . 4 | u(m/s) 0.7 | 1.2 |- 1.5
respective mean wind speeds
(u) and standard deviations of 09 (°) 13.6 |12.0 |[7.7 |11.5
the wind direction (op) 5 u (m/s) 08 | 09 1.2 2.2

09 (°) 284 284 |223 |16.6

7 u (m/s) 06 | 09 04 0.5
09 (°) 239 223 344 |20.1

8 u (m/s) 05 | 0.8 0.6 1.2
09 (°) 19.6 |72.1 |255 153

9 | u(m/s) 05| 05 09 1.6
05 (°) 214 179 146 |13.9

12 | u (m/s) 0.7 | 1.1 |1.1 1.6
05 (°) 28.8 160.2 192.6 |74.2

Table 6.2 Calculated values Run
p and g for the respective
runs of the INEL experiment

pu(s_l) QM(S_I) PU(S_I) CIU(S_I)
4 (4 m) |0.007556 |0.030121 |0.006515 |0.012815

7 0.008302 | 0.021958 | 0.002489 | 0.009445
8 0.004295 | 0.009744 |0.001799 |0.008073
9 0.003513 | 0.010404 | 0.001335 | 0.006510
10 (4 m) | 0.002996 |0.011516 |0.001003 | 0.008080
11 0.001321 | 0.006060 |0.001471 |0.005338
12 0.012110 |0.031390 | 0.010650 | 0.011440
13 0.001338 | 0.007407 |0.001040 | 0.005696

14 0.002029 | 0.004640 | 0.001326 | 0.005390
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6.4 Results and Discussion

So far, a theoretical treatise and the referenced experimental evidences were
presented apart, so that in the next step the appropriateness of the model against
data from measurement is in order. To this end, three different considerations were
put on as to insert fluctuations in the model and in agreement with the data from the
experimental runs summarized in Table 6.3.

To further validate the model, we also used traditional statistical indices proposed
by the author of reference [Ha89]. The results for the three scenarios can be seen in
Table 6.4. By inspection, one may assert that the model reproduces reasonably well
the observed concentrations once the results indicate an acceptable correlation factor
(COR Z 0.8), as well as a reasonably small normalized mean square error (NMSE
< 0.4) and standard deviation difference (FS < 0.2). If the results are analyzed
by arc, it is possible to infer that the simulation fidelity is best at the arc nearest
to the source, what is welcome for dispersion under low wind conditions because
pollutant concentrations propagate off less from the point of emission. Comparing
the statistical indices in Table 6.4 between the evaluated scenarios, no significant
conclusion may be drawn, which may be rooted in the fact that the underlying
model is a deterministic one although modified by a stochastic component. Thus,
without accounting for fluctuations by a turbulent diffusive variance in the model,
the additional effects by meandering may not be revealed with contrast, since all of
the cases generated satisfactory results.

At this point, it is appropriate to point out that the statistical evaluation of the
presented simulations is right from the beginning limited by the fact that simulated
mean concentration values are compared to single samples from experiment, which
belong to an unknown distribution so that differences between prediction and

Table 6.3 Simulated scenarios

Simulation Fluctuations at # and v Parameters p and ¢
Cpi w'(t + At) = pu' (1) + 0,(1 — p, )2y Absent
V(1 + A1) = ppv' (1) + 0 (1 = )1
Cp u'(t + At) = u(t) — (pu’ + qv')dt + 0,42 pdté, Section 6.2.2
V' (t+ At) = v(t) — (qu’ + pv')dt + oy/2pdté,
Cp3 u'(t + At) = u(t) — (pu’ + qv')dt + 0,42 pdié, Table 6.2

V(t + At) = v(t) — (qu’ + pv')dt + oy/2pdté,

Table 6.4 Traditional

e - Simulation NMSE |COR |FS
statistical evaluation of the - -
model Simulation C ) 0, 30 0,81 0,01
Simulation C ), 0,27 0,82 /0,03
Simulation C )3 0,25 0,82 |0,03

Simulation Cp,; < 1m/s | 0,23 0,88 |0,14
Simulation Cj,» < 1m/s |0, 24 0,87 10,17
Simulation Cj,3 < 1m/s |0, 25 0,87 10,20
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Table 6.5 Experimentally

Exp. | Dist.(m) | C C Cpry |Cp3
observed concentrations (C,) P ) 2 £ £ £

and predicted ones by the 4 100 581 |4.80 |4.71 |4.70

model (Cp1, Cp2 € Cp3) for 200 299 223 1223 |2.17

the arcs of 100 m, 200 m, and 400 147 | 1.11 |1.12 | 1.06
300 m of the INEL 5 100 136 | 1.64 |1.60 | -
experimenF. The 200 087 1059 0.63 |-

concentrations were

normalized by emission rate 400 030 |0.30 |0.32 |-

(€/Q) 7 100 126 1210 |2.11 210

200 0.71 10.77 10.81 |0.76

400 0.33 /0.39 0.40 |0.40

8 100 0.59 |1.24 133 | 140

200 0.32 |0.37 042 041

400 0.33 |0.15 0.15 |0.17

9 100 1.09 |2.75 |2.69 |2.71

200 0.57 |1.19 [ 1.21 |1.23

400 0.39 10.59 0.63 |0.63

10 100 241 [2.02 12.05 |2.06

200 1.80 |0.52 [0.57 0.51

400 0.71 10.24 10.25 |0.25

11 100 232 | 141 142 |1.89

200 1.09 /0.30 1034 | 043

400 1.10 |0.10 |0.10 |0.12

12 100 2.00 [2.13 |2.17 |2.63

200 1.77 10.98 | 1.01 |1.04

400 0.99 10.50 |0.47 |0.51

13 100 3.19 |4.21 4.17 |4.16

200 230 [1.22 [ 1.22 |1.25

400 1.37 10.60 |0.60 | 0.61

14 100 2.81 12.65 [2.75 |2.70

200 1.59 10.79 10.79 |0.79

400 0.30 |0.38 1 0.38 |0.39

observation are to be expected. Moreover, the introduced stochastic component
in the model should be implemented in such a way as to avoid random numbers
close to the recently generated one so that more distant values are more likely than
neighboring ones. In the present implementation, we evaluated the performance
with unpredictably varying fluctuations in the horizontal wind velocity components.
Nevertheless, it is well known from reports in the literature that the meander
has a significant effect on pollutant dispersion, especially close to the source
[OeEtAl06] and according to [AnEtAlO6] and [ShEtAlO2], if the effect is not
correctly represented, then the concentration values are typically overestimated.
However, one has to question the validity of Fick’s closure in the vicinity of sources,
which was one of the premises that lead to the advection—diffusion model.
Nonetheless, it is possible to see in the results presented in Table 6.5 that for this
study the values of observed and predicted concentrations show a fairly good agree-
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Fig. 6.1 Scatter plot of observed concentrations (green line), predicted with the presence of
meander (black line) and predicted without the presence of meander (blue line) for the 100 m
arc of run 11 of the INEL experiment

ment. In order to take a more detailed look into comparisons between prediction
and observation involving meandering, we show concentrations of pollutants for
almost all low wind condition runs of the INEL experiment shown in Table 6.5.
There are no calculated values of p and g for run 5 so that the corresponding
Cp3 values were not calculated. Figure 6.1 shows the data for run 11, the purely
deterministic simulation together with the simulation with the stochastic component
which shall mimic some aspects of meandering. The purely deterministic model
has apparently no pronounced oscillations in the angular distribution, while the
simulation with the stochastic component shows a similar pattern with fluctuations
compared to the experimental data. One effect that was to be expected did not
occur, namely the increase in the spread of the angular distribution in comparison
to the purely deterministic results although both simulations show a larger spread
of angular values anyway. It may well be that in order to reveal meandering effects,
periods with a more stable wind direction shall be chosen so that the afore discussed
distributional effects become more apparent.

6.5 Conclusion

The solution in analytical form presented by the model facilitates the understanding
and description of the physical phenomena involved in the problem, since it explic-
itly considers all involved parameters, either physical or phenomenological. Thus,
the concentration can be obtained at any time and requiring little computational
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effort. Recalling the fact that the employed model is Eulerian as obtained from
the advection—diffusion equation, the insertion of new diffusive coefficients in the
horizontal directions is a necessary adaptation for dispersion simulation in low wind
conditions due to the presence of a new effect, namely meandering. In addition,
the formulation of the latter was implemented by inserting stochastic variables,
which in turn makes the mathematical representation approach the phenomenon
observed in nature but still not fully understood. Furthermore, in comparison to
the approaches reported in the literature, a formal advance was accomplished by
avoiding the usually necessary numerical inversion of the Laplace transform in the
time variable.
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Chapter 7 )
Asymptotics for the Spectrum of a e
Floquet-Parametric Family of

Homogenization Problems Associated

with a Dirichlet Waveguide

D. Gomez, S. A. Nazarov, R. Orive-Illera, and M.-E. Pérez-Martinez

7.1 Introduction

In this chapter, we consider a parametric family of spectral problems for the Laplace
operator in a rectangular perforated domain @w®. The perforations are periodically
placed along the ordinate axis at a distance O (&) between them, where ¢ is a small
parameter ¢ < 1, see Fig.7.1a. We impose Dirichlet conditions on the boundary
of the perforation and on the horizontal sides of the rectangle, while we impose
quasi-periodicity conditions on the lateral sides containing the so-called Floguet
parameter n € [—m, w]. This parametric family arises as the model problem of a
spectral problem posed in an unbounded strip periodically perforated by a string of
holes, which is referred to as perforation string, cf. Fig.7.1b. For each n € [—m, 7],
the spectral problem in the periodicity cell w? is itself a homogenization problem,
and we study the asymptotic behavior of the eigenvalues and eigenfunctions as ¢ —
0. In this way, we revisit the spectral problem for the Dirichlet-Laplace operator
in a perforated waveguide addressed in [NaOrPel9a], providing new results that
complement those.

The setting of the perturbation spectral problem is in Sect.7.1.1; the homoge-
nized problem is in Sect. 7.1.2, while the state of the art is in Sect. 7.1.3. Our aim is
to study the asymptotic behavior of the spectrum as ¢ — 0 at the same time that we
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Fig. 7.1 (a) The perforated domain @ *®. (b) The perforated strip I7°

provide precise bounds for convergence rates which are uniform in both parameters
¢ and 7. This is in Sect. 7.3. Some preliminary results obtained in [NaOrPe19a] and
[GoEtAI21] are stated in Sect. 7.2.

7.1.1 The Parametric Family of Homogenization Spectral
Problems

Let w be a domain in the plane R? which is bounded by a smooth simple closed
curve dw and has the compact closure @ = wUdw C @, where " is the rectangle

o0 = (=1/2,1/2) x (0, H). (7.1)

We introduce the perforated domain @, see Fig.7.1a, obtained from @ by
removing the family of holes

of (k) ={x: e (x1,x»—ekH) e w}), k=0,...,N—1,

which are distributed periodically along the ordinate x,-axis. Each hole is homoth-
etic to w of ratio ¢ and translation of ew = w®(0); namely,

N-1
w° =o'\ w® where o = U w® (k). (7.2)
k=0

Here, ¢ is a small positive parameter and N is a big natural number, both related by
N = &=, The period is ¢ H with ¢ < 1.
In the domain @ ?, we consider the spectral problem defined by the equations

—AU®(x;n) = A*(MU°(x; ), x e’ (7.3)
Ub(x;n) =0, xel?, (7.4)
UP(1/2,x23m) = €"NUS(=1/2,x2: 1),  x2 € (0, H), (7.5)
oU? aU*®

(1/2,x23m) = "——(=1/2,x2; ), x2 € (0, H), (7.6)

dx1 0xy
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where
' =0w®\ {£1/2} x (0, H),

n is the dual variable, namely, the Floquet parameter. A®(n) and U®(-; n), respec-
tively, denote the eigenvalues and eigenfunctions which depend on both the
perturbation parameter and the Floquet parameter. Conditions (7.5)—(7.6) are the
so-called quasi-periodicity conditions on the lateral sides {£1/2} x (0, H) of w®.

The variational formulation of the spectral problem (7.3)—(7.6) reads: find A®(n)
and U () € Hpl(w®; ), US(+; 1) # O satisfying

(VU (). VV) . = A°() (USG5 ), V). YV € HYl(@®: %),
7.7

where H ;,;Z (w®; I'?) denotes the subspace of H'(zw?®) of functions which satisfy
the quasi-periodicity conditions (7.5)—(7.6) and vanish on I"¢, and (-, -) ¢ denotes
the scalar product in L? (@ ®).

As is well known (cf. [NaOrPe19a], Ch. 10 in [BiSo80], Ch. 13 in [ReSi78], and
Ch. 4 in [SaSa89]), problem (7.7) has a discrete spectrum constituting the monotone
unbounded sequence of eigenvalues

0<Aj() =A3(n) <+ <A, () <+ —> 00, asm — 00, (7.8)

which are repeated according to their multiplicities. Also, the corresponding
eigenfunctions {U} (-; 17)}51":1 are assumed to form an orthonormal basis in L2 ().
Furthermore, the function

nell-nm,nwl— AL () (7.9)

is continuous and 2m-periodic. This last assertion is due to the fact that problem
(7.3)—(7.6) is the model problem associated with a waveguide, which is referred to
as the Dirichlet strip, and has been recently considered in the literature (cf. (7.20),
Fig.7.1b), [NaOrPe19a], and [NaOrPe19b]). For the sake of completeness, in order
to outline the interest of the problem under consideration (7.3)—(7.6), as well as its
properties, we introduce briefly this waveguide in Sect. 7.1.3.

7.1.2 The Homogenized Problem

For each n € [—m, 7], the homogenized problem of (7.3)—(7.6) reads

—AU(x; ) = A°U°(xs ), x e &P, (7.10)
UC;m) =0, x € Iy, (7.11)
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U°(1/2,x2;m) = €"U%(—1/2,x2; 1), x2 € (0, H), (7.12)

au° U0
—1/2,x3;n) ="——(=1/2,x2; 1), x2€ (0, H), (7.13)
0x1 dx1

where & and 7,9 denote
&= (=1/2,0) x (0, H) U (0, 1/2) x (0, H)
and

Tuo = {x : x1 € (=1/2,1/2), x2 € {0, H} U {x : x1 =0, x2 € (0, H)},
(7.14)

respectively, A%(n) is the spectral parameter, and U°(-; ) is the corresponding
eigenfunction.
The variational formulation of the spectral problem (7.10)—(7.13) reads: find

A%(p) and UO(-; ) € Hpol(w®; Tiuo), U°(: ) # 0 satisfying

(VU vY)_ =A%) (UG V) VY € Hpl @ o).
(7.15)

where H 11;,2 (@9 Iuo) denotes the subspace of H' (@) of functions which satisfy
the quasi-periodicity conditions (7.12)—(7.13) and vanish on [7j,q. Similarly to
(7.7), problem (7.15) has a discrete spectrum {Agl (m};,_, with corresponding
eigenfunctions {U,?l(-; m}or_,» which form an orthogonal basis in L*(wY).

Comparing the homogenization problem (7.3)—(7.6) with other homogenization
problems having Dirichlet conditions on the boundary of the perforations, we see
that it differs only in the quasi-periodicity boundary conditions on the lateral sides,
and one can easily guess the homogenized problem (7.10)—(7.13), see, for instance,
[LoEtAl98]. However, in this case, one can show that the eigenvalues coincide with
those of the Dirichlet problem

—AUx) = A%U%%x), xev, wv:=(0,1)x (0, H),
U0 () — (7.16)
(x)=0, x € v,

and consequently, do not depend on 7 (cf. [NaOrPel9a]).
Problem (7.16) has a discrete spectrum which forms the increasing sequence of
eigenvalues

0<A?<A8§~--§A21§~-—>oo, asm — 090, (7.17)
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repeated according to their multiplicities. In addition, the eigenpairs of (7.16) can
be computed explicitly

2
2
A9, =72 <n2 + %) . UYL () = 77 sintnm ) sin(praa/H). pon € N.

(7.18)

Note that the eigenvalues Agp are numerated with two indexes and must be
reordered in order to obtain the increasing sequence (7.17); the corresponding
eigenfunctions U,?p are normalized in L2(v). Also, we note that if H?2 is an irrational
number, all the eigenvalues are simple.

As noticed in [NaOrPel9a], extending by quasi-periodicity the eigenfunctions
Up G5 ),

U (x; ), x1 € (0,1/2),

: 7.19
eMUN (x1 — 1, x2: 1), x1 € (1/2, 1), 719

ud (x; ) ={

we obtain a smooth function in the rectangle v, and the pair (A% ), u%(-, n))
satisfies (7.16).
The orthogonality of {U,(,)l(~; n)}°°_, in Lz(wo) implies that the functions in

m=1

(7.19), {U,(,)l (-; m)}°°_,, form an orthogonal basis in Lz(v), and this shows that the set

m=1’
{A?n (m}o-_, coincides with {Af}, ~>_, in the sequence (7.17) for any n € [~m, 7].

By (7.18) and (7.19), we compute the eigenvalues and eigenfunctions of (7.10)—
(7.13):

\/Lﬁ sin(nmrxy) sin(pm %), x1 € (0,1/2),

Ud ,n) = e
np (¥ 1) {Zjﬁ” sin(n7 (x1 + 1) sin(pr2), x1 € (—1/2,0),

2
is the eigenfunction corresponding to Agp =’ (n2 + %) with p,n € N.

7.1.3 The Dirichlet Strip and Some Background

For convenience, we introduce here a problem closely related to (7.3)—(7.6): a
Dirichlet problem for the Laplace operator in a strip with periodic dense transversal
perforations by identical holes of diameter ¢.

Extending @w? (cf. (7.2) and Fig. 7.1a) by periodicity along the x|-axis, we create
the unbounded perforated strip I7° (see Fig. 7.1b):

N-1

m* =R x 0.1\ J G50,

JEZ k=0
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where w®(j, k) = {x : e '(x;—j, xo—ekH) e w}withj € Z, k=0,1,...,N—
1. In the waveguide IT¢, we consider the Dirichlet spectral problem

—Auf(x) = Muf(x), xellf,

7.20
{ua(x)zo, x € dlT¢. ( )

Then, applying the Floquet-Bloch—Gelfand transform

U () > US(esm) = —= ) e " (x1 41, x2),

1
\/E nez
see, for instance, [Ge50], [ReSi78], [Sk85], [Ku93], and [CoPlVa94], problem
(7.20) converts into an n-parametric family of spectral problems in the periodicity
cell w?, namely, into the parametric family of boundary value problems (7.3)—(7.6),
see Fig.7.1a.

The spectrum of the operator on the Hilbert space L>(IT°) associated with
problem (7.20) is given by

o= B, (7.21)
meN
where
By, ={A,(n): n€l-n ]} (7.22)

As a consequence of the previously mentioned continuity of A, (), cf. (7.9), the
sets B, are closed, connected, and bounded intervals of the real positive axis m

Results (7.21) and (7.22) for the spectrum of the boundary value problem (7.20)
are well known in the framework of the Floquet—Bloch—Gelfand theory (see the
above references). The segments B;, and B; | may intersect or be disjoints so that
a spectral gap may become open between them. Recall that a spectral gap is a non-
empty interval which is free of the spectrum but has both end points in the spectrum.

Therefore, studying the asymptotic behavior of the spectrum of (7.3)—(7.6)
becomes essential to detect the band gap structure of the spectrum (7.21). In this
respect, an extensive asymptotic analysis of the spectral bands (7.22) has been
performed in [NaOrPel9a]. In particular, we have obtained asymptotic formulas
for the end points of the spectral bands (7.22) and show that o¢ has a long number
of short bands of length O (¢) which alternate with wide gaps of width O (1), while
we can guarantee that indeed there are open gaps corresponding with B;, and B, |
only when the limit eigenvalue A% in the sequence (7.17) is simple, cf. Fig. 7.2 (on
the right), and this strongly depends on H.

We note that the explicit formulas (7.18) are of great interest to draw the
limit dispersion curves for different values of H and, after obtaining bounds for
discrepancies of the type (7.42) (cf. also (7.28)), they also allow us to draw possible
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Fig. 7.2 On the left: a sketch
of possible dispersion curves
in the axis (n, A) for the w
problem in the waveguide

IT¢. On the right: a sketch of :}0<
the possible distribution of

the spectral bands B

Bj
i == n-n

B [ —— A%

\ 2 &

B |———| A?

configurations of the perturbed dispersion curves associated with (7.20), cf. Fig. 7.2
(on the left). Recall that these curves are the graphs of Af, (), for n € [—m, 7]. On
account of (7.18), the limiting dispersion curves are independent of 5.

We refer to [BaPel8] for a very different perturbed waveguide with limiting
dispersion curves independent of the Floquet parameter and to [GoEtAl22a] and
[GoEtAI22b] for the geometry of the waveguide here considered but with Neumann
conditions instead of Dirichlet. Also, we refer to [GoEtAl22a] and [GoEtAI22b]
for further references and an extensive comparison between the behaviors of the
spectral bands when we change Dirichlet by Neumann conditions both in (7.20) and
in (7.10)—(7.13). As a matter of fact, in the case of the Neumann strip, we find long
bands, of order O(1), which are separated from each other by short spectral gaps
of order O (g). Moreover, it should be mentioned that, as a consequence of the fact
that the limiting dispersion curves are not constant in the case of the Neumann strip,
the asymptotic analysis is much more complicated and delicate, and in particular, it
becomes multiscale in several variables, not only in the geometrical ones but also in
the Floquet parameter.

Finally, let us observe that opening gaps in [NaOrPel9a] implies a thorough
asymptotic analysis to obtain corrector terms of order O(e) that improves the
uniform bounds (7.42). For the sake of brevity, we avoid defining the correctors
here which involves introducing some boundary layer problems and the so-called
polarization matrix. We refer to [NaOrPe19a] and [NaOrPe19b] in this connection.

7.2 Preliminary Results

Let us introduce here some estimates for the eigenvalues of the perturbation problem
that improves that in [NaOrPel9a] and a couple of theorems whose proofs are in
[NaOrPe19a]. The results of these theorems are improved in Sect. 7.3.
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Lemma 7.1 For each fixed m, there are constants eg < 1, K;,(n), and Cp, such
that

0 < Kn(n) <A, <Cp Vi el[—m, ], & <eo. (7.23)

Proof To obtain the lower bound in (7.23) with K,,(n) = C independent of m
and n, it suffices to consider (7.7) for the eigenpair (Ai m, U f (-; ) and apply
the Poincaré inequality in H L(@%) once that U f(-; n) is extended by zero in @°,
cf. (7.1) and (7.2). However, we can also obtain better bounds depending on 7 that
somehow could isolate the branches {Af, () : n € [—m, w]}.

Indeed, let us consider {A, (n)},_, to be the sequence of eigenvalues of the

following problem in & :

—AU(x;n) = AL (UL (), x € @0,
Up(x;m) =0, xely,

Upn (1/2, x25) = ei"U,t(—*l/z, x2;1), X2 € (0, H), (7.24)
U . oU
ﬁ(l/z, x5 1) = e ax'f (=1/2,x2;m), x2 € (0, H),

where we have denoted by 7, lower and upper basis of the rectangle w?, namely,
Ny = {x + x1 € (=1/2,1/2), x2 € {0, H}}, (7.25)

cf. (7.14) to compare, and by {U,y,(-; n)},-_, the eigenfunctions.
Using the minimax principle,

VV,VV
Ay () = min max (V. VV)epo ,
EnCH @ 13,) VEEm VA0 (V. V)50

where the minimum is computed over the set of subspaces E,, of H ;;’Z (wo; Iy,)
with dimension m.

Consider the subspace Ef, of H ;;Z (w®; I'?) with dimension m, of the eigenfunc-
tions U ,f (+; ) of (7.3)—(7.6) associated with the eigenvalues Ai () in the sequence
(7.8) with k < m. These eigenfunctions have been taken to be orthonormal in
L?*(w®) and are extended by 0 inside the holes, they are still denoted by U}, (-; 1)
and orthonormal in L2(z?), and we take the particular subspace of dimension m
of H;;?(wog I7,) to be the span E}, = [Uf(~; m,UsC¢im), - Uy (5 r))]. Then, we
can write

(VV,VV),0

A¥ () < max ————F =
m() = VeE,’;,)\(/;éO (V, V)0 VeEs

max (VV,VV), o .
AV ,200,=1 “

For each V € Ej, with |V 250y = 1, we write V = Y /L, af () Uf (-5 n) for
certain constants af (7). On account of the abovementioned orthonormality, these
constants satisfy
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m
V120, = D (@) = 1.
i=1

Similarly, because of the extension by zero, the orthonormality, and (7.7), for the
gradients, we can write

m m
IVVIZ 20y = D@ M IVUE G200, = D_(@f ()AL () < A5, (),
i=1 i=1

which gives
Ay < AL, Vnel[-mm], m=>1

Therefore, the left-hand side of (7.23) holds for K, () = A} (n) the eigenvalue of
the mixed problem (7.24).

Finally, the precise constant C,, on the right-hand sides of (7.23) has been
obtained in [NaOrPel9a], related to the m-th eigenvalue of a Dirichlet problem in
any fixed rectangle (o, ) x (0, H), with0 <o < 8 < 1/2. O

The first convergence result is given in Theorem 7.1 below. It shows the somehow
expected convergence of the spectrum with conservation of the multiplicity in
homogenization theory. Also, the convergence of the corresponding eigenfunctions
is stated. The proof in [NaOrPel9a] has been performed adapting standard tech-
niques in homogenization and spectral perturbation theory: see, for instance, Ch. 3 in
[OIShY092] for a general framework and [LoEtAI98] for its application to spectral
problems in perforated domains with different boundary conditions.

Theorem 7.1 Let us consider the spectral problem (7.3)—(7.6) and the sequence of
eigenvalues (7.8). Then, for any n € [—m, ], we have the convergence

AS () — A%, ase — 0, (7.26)

where A(,)n are the set of eigenvalues in the sequence (7.17) of the Dirichlet problem
(7.16). In addition, for each sequence, we can extract a subsequence, still denoted
by &, such that the extension by zero of the eigenfunctions {U,; (-; n)}>_, normalized

in L*(w®), {L7,j(~; M}, converges toward the eigenfunctions of (7.10)—(7.13) in
L%(w®), which form an orthonormal basis of L*(w?).

As a consequence of the asymptotic analysis in [NaOrPel9a], we state the
following result:

Theorem 7.2 Let m € N, and let A% be an eigenvalue of the Dirichlet problem
(7.16) in the sequence (7.17). There is at least one eigenvalue A;(n) of problem
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(7.3)—(7.6), with p = p(e, n, m) > m, satisfying
|AS () — Ap| < cme. Ve < e, n € [, 7], (7.27)

where &, and c,, are certain positive constants that are independent of n and ¢.

The proof of Theorem 7.2 can be found in [NaOrPel9a], based on a lemma
on almost eigenvalues and eigenfunctions from the spectral perturbation theory,
cf. [ViLu57]. It involves the construction of approximations to eigenpairs of the
perturbation problem by means of asymptotic expansions from the solutions of the
homogenized problem and a boundary layer problem in an unbounded perforated
strip, namely, in the “unit periodicity cell” for the homogenization problem (7.3)-
(7.6) (cf. also [NaOrPe19b])).

In the next section, we show that the index p provided by Theorem 7.2 coincides
with m, cf. Theorem 7.4. Although the bound (7.27) with p = m has been used to
detect spectral gaps in [NaOrPe19a], we think that the proof in Sect. 7.3 of this work
may clarify that in [NaOrPe19a].

Remark 7.1 1t should be noted that bounds (7.23) can be improved as follows: for
each fixed m, there are positive constants &g < 1,0 < 1, k;,, and ¢;,;, independent of
& and n, such that

A —kne® < A5 () < A 4 cpe Vnpel-moaml, & <eo. (7.28)

The proof of (7.28) can be obtained using the reasoning of [GoEtAlI21] (Sect. 7.3)
with minor modifications. This implies using the max—min principle, Hardy inequal-
ity, the normalization procedure used to obtain the left-hand side inequality in (7.23)
(applied to both finite-dimensional spaces of eigenfunctions of the perturbation and
homogenized problem), weighted estimates in Sobolev spaces and some cut-off
functions vanishing in e-neighborhoods of the perforation string. This result allows
a simplification of the proof of Theorem 7.3 related to the eigenvalues. However,
the bounds (7.28) are associated with the homogenization of perforated domains
along lines with Dirichlet boundary conditions in the perforations (see [GoEtAlI21]
and [GoEtAl22b] for other boundary conditions), and the suitable bounds cannot be
obtained in many problems of perturbed waveguides, see [GoEtAlI21], [GoEtAl22a],
and [GoEtAl22b] to compare. In contrast, the technique developed in Theorem 7.3
can be applied to many problems even when the limit dispersion curves depend on
n, cf. [GoEtAl22a].

Also, it should be emphasized that the result in Theorem 7.4 improves the bound
(7.28) providing the precise value of 6 = 1/2. [J
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7.3 Convergence and Convergence Rates for Eigenvalues

The first approach to the asymptotics for eigenpairs of (7.3)—(7.6) is given by
Theorem 7.1, when the parameter 7 is fixed. Theorem 7.3 below also allows a certain
perturbation of this parameter and therefore improves the result in Theorem 7.1.

Theorem 7.3 Let us consider the spectral problem (7.3)—(7.6) and the sequence
of eigenvalues (7.8). Then, for each sequence {(&,, nr)}f';l such that ¢, — 0 and
Ny — N € [—7, ], as r — 00, we have the convergence

Asr () — A, asr — oo, (7.29)

where A?n are the set of eigenvalues of the Dirichlet problem (7.16) in the sequence
(7.17). In addition, we can extract a subsequence, still denoted by ¢, such that
the extension by zero of the eigenfunctions {U, (- 77,)}310:1 normalized in Lz(ws"),
{17,,? (3 mP)Yoo_ . converges toward the eigenfunctions of (7.10)—(7.13) in L*(@9),

which form an orthonormal basis of L*>(w ).

Proof Let us consider A5 (17,) and U/ (-3 n,) € H,l’e’lr (wr; ') the eigenpair of
(7.7); namely, for fixed (1, &) andm = 1,2, - - -, they satisfy
(VU (0 VV) o = A ) (U Cine)a V) o s Vo€ Hyl (@™ 1),
(7.30)

wér

Taking V = U,/ (-3 1), (7.30) reads
IVU G 12 pery = Ay ONU G017 2 er -

Let us extend the eigenfunctions by zero inside the holes. Then, using (7.23), the
normalization || U/ (-; M) 2(ery = 1, and the Poincaré inequality, for each m, we
get a uniform bound for the eigenvalues and eigenfunctions in H'!(z ). Indeed, the
inequalities

L min Kn() < A () < G and UL Gl ory S cm (73D

hold for constants ¢,, and C,, which do not depend on ¢, and 7.
Hence, for each fixed m, we can extract a subsequence of ¢, and 7, still denoted
by r such that
(7. &) = (11,0), asr — oo, (7.32)

and

A (py) — AL, ﬁ,f{('; ny) — 17,?1 in H (o) — weak, asr — oo,
(7.33)
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for a certain positive X?n and a certain function l,]\,(,)1 € H'(w") which vanishes on
the lower and upper bases of @, namely on I7,, cf. (7.4) and (7.25). Let us prove
that ﬁr(,), also vanishes along the line {x; = 0} N o,

Indeed, we use the Poincaré inequality on the domains w? \ w and @O, cf. (7.1),

Ul 205 < CIVUl20\g YU € H (@ \ @; TNy U dw),
and
Ul 20y < ClIVU I p2¢p0y YU € H' (@°; Tu).
We deduce

_ 2 2
e U G |2 126 2000 = Corl VU G [ 1210, 126y 1000y
(7.34)

where C is a constant independent of r and m. Now, taking limits in (7.34) as r —
00, or equivalently as e, — 0, we get l7,9, =0on{x; = O}ﬂw0 (cf., e.g., [MaKh06]
and (7.31)) as it has been announced.

Therefore, the limit function in (7.33) satisfies 17,9, e H' (@"; M), cf. (7.14).
Let us prove that it also satisfies the quasi-periodicity conditions on the lateral sides
of w?:

U, (1/2,x2) =¢"U,, (—1/2, x2) and 8771"(1/2,)62) = e”’T'I"(—l/Z,xz).

a
(7.35)

To do this, notice that the change V" (-; n,) = U (- n)e X1 converts the
Laplacian into the differential operator

. . 32

—(— +i — +in) — —,

(— + nr)(ax1 +inr) o

and the 7),- quasi-periodicity condition for U,/ (-; n,) becomes a periodicity condition
for Vi () € H) (@0 7). Consequently, since the convergence (7.33) holds,

per

~ |
we also have a bound for V,,” € H,,

and ¢,, and consequently a convergence of f/\,f[(g ny) (Vi (-; ny) extended by zero
inside the holes) toward a function V,g(-; n) € H ;er (w9 o) holds in the weak
topology of H @9 Iu0). Then, we obtain \7,2 = ﬁ,%e’iﬁxl, as a consequence of

the convergence

(w?; I7,) which holds uniformly in 7,

||I’]\,f{('; nr)e I ﬁ,?,e_i”xl 120y = Oasr — oo.
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To verify the last convergence, it suffices to consider

UEr (5 mp)e ™0 — U e ™ 1| 120,
< (T i) = Up)e ™ ™ 20, + 1T (€7 = e 1) || 12590,

the convergence (7.33), the smoothness of the exponential function, and the
convergence of 1, toward 7 nasr — o0.

Thus, we have U0 = V0 1 with V0 € H;e, (wo) and this already implies

(7. 35) Consequently, we have shown that U, U0 ¢ Hpe,(w I,0) and depends
on 7). Also, the normalization of the elgenfunctlons U,/ (-; 1) in L%(wY) and the
convergence (7.33) provides U,g # 0.

In addition, by taking limits in the variational formulation (7.30) for the test
functions V € 65°((—1/2,0) x (0, H)) and for V € 65°((0, 1/2) x (0, H)), we
obtain the partial differential equation

— AU = A%00  forx e &°. (7.36)

All of this together allows us to identify (K?n, U ,9,) with an eigenpair of the boundary
value problem (7.10)—(7.13), cf. also (7.15).

Note that the extracted subsequence and limits, cf. (7.32) and (7.33), may depend
on m. However, using a diagonalization argument, for each sequence of r, we can
extract another subsequence of r, still denoted by r but independent of m, such
that (7.33) holds Vm € N. Hence, by construction, we have obtained an increasing
sequence of eigenvalues of (7.10)—(7.13)

In what follows, we prove that the sequence { }m | converges toward infinity as
m — 00, while the whole sequence coincides with that in (7.17).

Indeed, from the orthonormality of U}y (-; n,) in L?(z "), we get the orthonor-

mality of 17,(,)[ = ﬁ,%(q M) in L2 (@) just writing

(UE'( nr)s UE (3 Tlr))wo = Sm n, VYm,neN,

and taking limits as r — oo. This confirms that the sequence (7.37) converges
toward infinity as m — oo.

Let us prove that the sequence (7.37) coincides with that in (7.17). Since for
each (¢, ), we have a spectral problem with the corresponding spectrum (7.8)
and the eigenfunctions forming an orthonormal basis of L?(z "), we can follow
the idea of Section 3.1 in [OlIShY092] or Section II1.9.1 in [At84] to show the
convergence of the whole sequence of eigenvalues {A}; (nr)},y_, toward those of
(7.10)—(7.13) with conservation of the multlphClty and that the set {U,,, Uo Jore forms
a basis of L?(ww"). The fact that the elgenvalues . do not depend on 7 is due to
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the identification performed by means of the change (7.19). However, since we are
dealing with a double perturbation, the technique must be adapted and, for the sake
of completeness, we provide here the whole proof.

We proceed by contradiction, assuming that there is some A* eigenvalue of
(7.10)—(7.13) in the sequence (7.17) which is not in the sequence (7.37). Therefore,
for some m € N,

A" < ZSHI'
LetU*(;n) € H ll,’e'r] (@ o) be a corresponding eigenfunction that is orthogonal
to the constructed sequence of eigenfunctions {U, ZO(~; ﬁ)}j’il. Then, we consider the

function UY" (-3 n,) € H ;;’Z’(w‘”; I'ér), solution of the problem

(VUE(i0), YY), = A (UG, V), YV e H)r (@ I'¥).

wbr

Applying the Poincaré inequality, we obtain that the extension by zero of Us (5 my)
inside the holes, {U;' (-;n,)}r, constitutes a sequence uniformly bounded in
H! (wo). Therefore, up to a subsequence, still denoted by r,

U (- n,) = U*(+ ) in H (o) — weak, asr — oo. (7.38)

Note that to show the convergence (7.38), we need to rewrite the argument above,
cf. (7.30)—(7.36), with minor modifications.

From U;’ (; n,), we construct a new function WS" (-; ,) orthogonal to the set
{Uf"(~; nr)}j%, in the space L2 (w®r) as follows:

m
WE i) = U (ine) = > (UL (00), U () e Uy (5 0y).
=1
In addition, from the above convergence for eigenfunctions, (7.38), the orthogonal-
ity of the limit eigenfunctions in L?(z "), and the assumption performed on the
orthogonality of U*(-; ) to the limit eigenfunctions, we can write
(Ufr(';nr)’ Ulgr(‘§nr))w5r i 09 asr — oo, I = 1727"' ,m, (739)
We (im) = U*(: 7)) in H (%) — weak, asr — oo, (7.40)

VT/f’ (-; nr) being the extension by zero on the holes of Wy (-; n,), and

(VW (s ne), VW G ) wer = AXUSC ), UG M) o,  asr — oo.
(7.41)
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Then, since for each &,, we have constructed a function Wi (-;n,) € {V €
Hylr (aér; T0); (V, (UF (5 0)mer = 0,1 = 1,2,---,m}, we can apply the
Rayleigh principle, see, for instance, Section 1.7 in [SaSa89],

(VV,VV)yer
(V7 V)w“‘:r

3

m+1 (nr) = 1{/lf

where the infimum is computed over the elements of the space

(Ve HMr (@ T) « (V, U (50 )er =0, [ =1,2,-+ ,m}.

Consequently,

( ) < (VWf’(-:nr),VWf’(-; nr))zzr”
Ay (r (WE (5 07), WEr (53 10 arer

’

and taking limits as r — oo, from (7.33) and (7.39)—(7.41), we already obtain

/Tgm = A%,
which contradicts our assumption, and we have proved that all the eigenvalues of
the homogenized problem in (7.17) are in the sequence {Am }m 1

Also, this confirms the fact that the set of limiting eigenfunctions {ﬁ,?,(-; mie_,
in (7.33) forms an orthogonal basis in L?(z”) and the sets of limiting eigenvalues
(7.37) and (7.17) coincide and are independent on the Floquet parameter. Therefore,
the theorem is proved. O

Theorem 7.4 Let m € N, and let A% be an eigenvalue of the Dirichlet problem
(7.16) in the sequence (7.17). There exist positive &, and ¢, independent of n and
& such that, for any ¢ € (0, &,,], the eigenvalue A% (n) of problem (7.3)—(7.6) in the
sequence (7.8) meets the estimate

1AS () — A | < cpe, Ve < e, n€l-m, 7] (7.42)

Proof Let us recall Theorem 7.2 that provides (7.27) for a certain p(e, n,m) >
m. Here, without any restriction, we can assume that A9 mal > A9 s otherwise
p(e,n,m) > m + 1 also. Let us show that p(e,n,m) = m, and consequently
the result of the statement holds. We proceed by contradiction, denying (7.42).
This implies that there is n™ such that the estimate (7.42) does not hold. That
is, for this #*, we can find an &, < g, for which p(e;«, n*,m) > m + 1 (and,
obviously, strictly greater than m + 1 depending on whether the multiplicity of Ag,
be greater than 1). First of all, we observe that the numbers &+ that we can find
must range in a finite set {1, &+ 2, - - - Erp ko }, because, otherwise, we can take
a subsequence {8,7*,1}fil, ep1 — 0asl — oo, for which p(e,+ 1, n*,m) > m + 1.
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Then, from (7.27), we write

Epx Ep%
Ay ) S AJC e () < AQ + cnee,
and taking limits, as / — oo, we get a contradiction, see the convergence (7.26): for
fixed n*, we have

AL =AY (7.43)

Note that the limit is independent of 7.
Consequently, for each n* such that (7.42) does not hold, we associate the finite

kp*
set {En*,l}lil for which p(e,« 1, n*,m) > m + 1. In addition, we note that if there
is only one n* for which (7.42) does not hold, taking

. )
€y = MIN(Em, Enx 1, 7,2, *+ En* ko)

the inequality (7.42) holds for ¢ < ¢, and the same occurs if there is only a finite
number of n* for which (7.42) does not hold.

Therefore, we deduce that there is at least one subsequence {n;}°C, that
converges toward some 7] € [—m, ] as r — oo such that (7.42) is not satisfied for
Enp 1y Enr2s By ks T 1,2,---, while (7.27) holds. Without any restriction,
we can assume that there is also a subsequence of &,+ converging toward zero
as r — oo. Indeed, let us explain the last assertion in further detail. For the set
J = {n* € [-m, ] : (7.42)isnotsatisfied} C [—m, ], we consider the
associated set of parameters constructed above: & := {g;x 1, &% 2, - - - En ke },7*6/.
Either & has a lower bound ;" > 0 or we can extract a sequence {&,}°2,
converging toward zero as r — 00, each one associated with a certain value
ny € _# . Inthe first case, (7.42) holds for ¢ < ¢}, := min(e};*, &,,) and the proof is
ended. In the second case, since the sequence {n} r"‘;l is bounded from above and
from below, we can construct a subsequence, still denoted by r, such that

(), &px) = (1,0) asr — oo.

To show that this last assertion leads us to a contradiction, we note that from
(7.27) we can write that the corresponding sequence of eigenvalues satisfies
Emf o x Ent * 0
A,,,H(’?r) . Ap(gﬁyn;k,m)(ﬂr) <4, + Cmépy.
Taking limits as r — oo, from the convergence (7.29), we get again the
contradiction (7.43). Therefore, the result of the theorem holds true. O
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Chapter 8

The Wavelet-Based Integral Formula for Qs
the Solutions of the Wave Equation in an
Inhomogeneous Medium: Convergence

of Integrals

E. A. Gorodnitskiy and M. V. Perel

8.1 Introduction

We study the initial-boundary value problem for the wave equation in the half-plane
Ri_ ={(x,2):x eR,z>0}

32u—c(x,2)Au =0, c(x,0)=1, (8.1)
u(t, x,0) = f(t, x), (8.2)

where 8,214 is the second derivative with respect to ¢. To obtain an unique solution
we add the condition

/ dxdz|u|? =0 (8.3)

2
R+

and some restrictions on f (¢, x). We treat here an integral representation of the
solution of (8.1)—(8.3) in terms of localized solutions, which was presented in
[GoEtAl16]. We name the constituent localized solutions in the representation the
elementary ones. Here we give some results for justification of this representation.
The best-known integral representation of a solution in a homogeneous medium

is given by the Fourier integral. If the medium is inhomogeneous, the numerical
(1Y) .
methods are used. In the case f (¢, x) = A(¢, x)é' e , € << 1, the computational

cost of numerical calculations is high. Asymptotic methods [BaBu09, MaFe81] are
more appropriate for the problem and they may provide a qualitative description of
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P j(t.x)
the field. If f(z,x) = > Aj(t, x)el ‘i, &j << 1, where ¢; are of different order,
J

or f(¢,x) is a multi-scaled function found experimentally, the processing of data
should be done first and then each component should be treated by an appropriate
asymptotic method. The integral formula, which is studied here, contains built-
in data processing because it is based on the Poincaré affine wavelet analysis
[AnEtAlO6], which may be applied for image and signal processing. It yields the
decomposition of the solution in exact localized solutions, which may have an
asymptotic approximation.

Other wavelet-based integral formulas for solutions of the wave equation in
a homogeneous medium were presented and studied in [PeSi03, PeSi06, PeSi07,
PeSi09, PeEtAl10], where wavelets constructed with the similitude group were
applied. In a homogeneous medium, the affine Poincaré wavelet analysis was
earlier used in [Pe09, PeGol2, GoPel7]. The elementary solutions in homoge-
neous medium were the exact solutions named the Gaussian wave packets in
[KiPe99, KiPeOO]. Our idea was to decompose the boundary data in wavelets and
each wavelet is a boundary datum for an elementary solution in the medium. In
[GoEtAl12, GoEtAll6], (see also, [PeGo19]), we studied propagation in an inhomo-
geneous medium and used as elementary solutions asymptotic high-frequency ones
called quasiphotons [BaUI81], [Ra82]. The quasiphotons were given by an explicit
formula for high frequencies. They represent wave packets localized according to
the Gaussian law near a point moving along a semiclassical trajectory. The simplest
packets have a “footprint” on the boundary of the form

. 2452
Iﬂ(t,x)ze_lm_( 2 ). (8.4)

We introduce an exact solution, an exact quasiphoton, which is a solution of (8.1)-
(8.3) for f(t,x) = (¢, x).

We aim to show that an integral representation from [GoEtAll2, GoEtAl16]
gives an exact solution and it can be used not only in a high-frequency regime. We
propose here to use exact quasiphotons as elementary solutions for decomposition
of solutions of (8.1)-(8.3). We believe that hybrid methods can be based on
this decomposition formula: in the high-frequency case, asymptotic formulas for
quasiphotons as elementary solutions may be applied; for other parameters, the
numerical methods for exact quasiphotons can be used. To develop a rigorous
approach to an integral representation, we should formulate the well-posed initial-
boundary value problem for the wave equation in a half-plane on a semi-infinite
time interval. Then a problem we solve and a problem for elementary solutions will
be well-posed. In particular, we should find a priori estimates for norms of solutions
given in terms of norms of boundary data. By using these estimates, we should
find the dependence of norms of exact quasiphotons on parameters. The integral
representation is an integral in the space of parameters, on which the solutions
depend. The convergence of the integral should be studied.
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Below we give the outline of the paper. First, we give some facts about the
Poincaré affine wavelet analysis and the integral decomposition of solutions in the
homogeneous medium. Then we formulate results for the well-posed problem for
the wave equation in a half-plane on a semi-infinite time interval, details will be
in a separate paper. The estimates of norms of elementary solutions in terms of
parameters are presented in [GoPe21]. From these estimates, it follows that to study
the convergence of the integral formula, it is necessary to consider the fourfold
integral over the parameters of the wavelet transform multiplied by the powers of
the parameters. In the present paper, we prove the convergence of such an integral.

8.2 Preliminary Considerations by the Fourier Transform

Suppose f(t, x) € Ly(R?). This function can be expanded into the Fourier integral

ft,x)= /e""‘”“‘”) Ff(w, ky) dwdky,
RZ

where f (w, ky) is the Fourier transform of this function. Let us find a solution to the
wave equation (8.1) in the homogeneous medium (¢ = 1) satisfying the boundary
condition (8.2):

u(t,x,z) = /e“*wf*kx“kﬂ) f(w, ky) do dky, k; = \/w? — k2, (8.5)

R2

where the branch of the square root in the definition of k; is fixed by the condition
k, > 0,if w® > k%. The negative k, corresponds to the second solution.

It is easy to see that the solutions given by the formula (8.5) are divided into two
classes: if w* > k)%, k; is real, then the solutions propagate in the direction z, if
w? < k)%, k; is imaginary, then the solutions vary exponentially. In this paper, we
will discuss solutions, which propagate.

We assume that f € L,(R?) and that f(co, ky) # 0 only if w > |ky|. We denote
by D the domain w > |k,| and by & the class of functions with the support of
their Fourier transform lying in D1. Moreover, we assume that f (w, ky) =0if

o — K2 < 6 (8.6)

This condition means that the Fourier integral of the wavefield contains plane waves
propagating under not very small angles to the boundary with k, > &.

If the boundary data are multi-scaled, then the representation in terms of plane
waves is not effective.
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8.3 Some Facts from the Poincaré Affine Wavelet Analysis

This article is devoted to the expansion of solutions of the wave equation based on
the mathematical techniques of the Poincaré affine wavelet analysis [AnEtAl06]. Let
us list some facts we use. Let be ¥ = (7, x)T, & = (w, ky)T. Such two-dimensional
vectors form the Minkowski space with the pseudo-Euclidean scalar product

(X1, X2)m = ity — x1x2.

The subscript m in the notation of inner product (-, -),, is introduced to distinguish
the pseudo-Euclidean inner product from the ordinary Euclidean one.

The Fourier transform f (w, ky) = f (0) of the function f (¢, x) is defined as
follows:

R2 R2

~ @n)?

We give here formulas for the Poincaré decomposition of functions f € Z;. Let us
choose two functions from this space ¢()x), ¥ (x) € 2 and call these functions
mother wavelets. Let us construct a family of wavelets &4 4 5. (X)s Va.p. 7 (X)
applying Lorentz transforms, shifts, and dilations to the mother wavelets:

-

- 1 X — Xs - 1 X — Xs
fag.3: 00 = ~¢ (A—¢ P ) Vag.7 00 =~V (A—¢ — )

where the matrix of hyperbolic rotations is defined by the formula

A — cosh¢p —sinh¢
¢~ \ —sinh¢ coshp /-

We define the affine Poincaré wavelet transform, which in what follows, will be
called for brevity the wavelet transform, by the formula

(e f) @ b, 5) = / &5 f )engz G-
R

where ¢ means the complex conjugation of ¢. The wavelet transform is a convolu-
tion, so it can be found in the Fourier domain

(e f) (@, 9. %) = 2m)*a f d%3 f ()L (aA_g5)e' @ Tm, (8.7)

Dy
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If the wavelet transform of a function is known, then the function itself can be
recovered by the formula

G = — / /dzf (W e f) (@ ¢ F)Wapz ()
Cry

where the constant ¢,y is defined as follows:

_{@)1E)
Coy = (27T)2/d20m.
D,

The condition
0 <cpy <00

is called the admissibility condition, it imposes restrictions on the choice of a pair
of wavelets ¢, V.

8.4 Integral Representation of Solutions in the Homogeneous
Medium

We proposed in [Pe09, PeGo12] to find solutions of (8.1) and (8.2) in a homoge-
neous medium as an integral superposition of solutions, which we name elementary
ones. To construct a family of elementary solutions we should choose one solution,
the so-called mother solution, which satisfies the same problem (8.1)—(8.3) but with
f(t,x) = ¥, x), ¥, x) € 9. We denote this solution ¥ (¢, x,z) = ¥ (X, 2).
We determine a family of elementary solutions as
- 1 )? - )?s <
Yia,p,7) (X5 2) = a‘I’(A—¢ Pt a)- (8.8)

Integral representation of solutions of (8.1)—(8.3) reads

1T R
u(},z) = —/ /d¢/dzxs (W f) @, ¢, %) ¥ap,5) (X 2)
0

if f € 2. We use the notation ¥,(x,2) = Wa.¢.50(X.2) = ¥ (, x,z) for
elementary solutions.



118 E. A. Gorodnitskiy and M. V. Perel

8.5 Initial-Value Problem for the Wave Equation in a
Half-Plane on a Semi-Infinite Time Interval

The family of solutions ¥, (¢, x, z) cannot be constructed by formulas (8.8) in the
case of variable wave speed. We determined them from the initial-boundary value
problem for the wave equation in a half-plane on a semi-infinite time interval. This
problem arose for u itself, for the mother solution ¥ and the family of solutions ¥,,.
Here we formulate conditions under which such a problem is well-posed and give a
priori estimates for norms of solutions.

We need some notation.

We use domains: [T_oo7 = {(t,x,2) : t € (=00, T), (x,2) € R2 wij § Rz =
{(x,2) :x e R, z2>0}, m—oor = {(t,x) : t € (—00,T),x € R}. We will have
=1 71,82 ="_00T,0r 82 = R%_. Letu,v e HI(Q), then

, v)g = Z 3 a0araru 909 02 v dxdzd,
s= OQ x0+x1+x2=s

where x;, j =0, 1,2, may be fromOtos.Ifu € H (£2), then ||u||(l) =/ (u, )(l)
If superscript is omitted or equal to zero, then u € L,(§2). For functions u =
u(t, x, z), we denote

1/2

1 2
hute, - lig = Z/ 3 R erut,x ) dxdz |

x1+xr=s
+
and
T 172
2
ey = | [ dele, .01,
2
o
We say that u € 21 2(I1—oo,7) if
T

Il a1 gy = [l )lgg < oo

—00
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We will use also spaces with the norm

T
k
1l o,y = / di(T = 0 ut, ., )z
—00

We introduce the energy functional class H) (IT-. 1) as follows: the function
v e Heln(H_oo,T) if v e Hl(H_oo,T) and it satisfies the equation in the sense
of integral identity, see [Lal3]; the functions ¥ (¢, .,.) and ¥ (t, ., .) are defined
for every ¢ and are continuous as functions of 7 in the classes H ! (Ri), fz(Ri),
respectively.

Now we describe spaces for a boundary function v = ¥ (¢, x). Let ¥ (¢, x) €
H 2(7t_oo,T). Then the norm || (¢, .)|| in H?(R) exists for almost every t. We define
the norm comprising the second derivative with respect to #:

2
(e @) = [ax (1P + 02w + 1020 7).

R
We denote
T
WIS = / dr(t — O ly ¢, )l < oo,
o
k=0,1,2.
Theorem 8.1

e Let the speed c satisfy the conditions:

0 < cmin < c(x,2) < Cpax < 00,
IVelx, 2)| < e1 < oo.
o Lety € H>(R?) and
%, <o k=012,

L 2(T—co,T

fdx|¢|2 -0 .
t——00

R
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If these conditions are satisfied, the solution of the problem (8.1)—(8.3) with f =
Y (t,x) denoted W (t,x,z) such that ¥ € Heln(l'[_oo,T) N L2100 T) and
U, Wy, W, € LA2(Il_o.1) exists, is unique and stable with respect to small
variations of the boundary data, the following estimates are valid:

1) 1,2) 0,2) 1)
191G = O (WG )+ IS, + IOl

0,2
190 g = Co (1S )+ 180, )lw)
1 1,2
Ay )? = (1,
2,2) 0,2) 1 2
(WS )y IS )+ A0, 02,

where Cj, j =1, 2, 3 are some positive constants.

8.6 Integral Representation for Solutions
in the Inhomogeneous Medium

We study propagating solutions of the problem (8.1)—(8.3). Let the speed c(x, z)
and the boundary function f (¢, x) satisfy the conditions listed in the theorem 8.1.
We assume additionally that f, ¥ € 2.

Let we know the solution ¥ (¢, x, z) of the problem (8.1)—(8.3), which exists
according to the theorem 8.1.

Determine a family of solutions

1
Ax.z)
wv(t’xv Z)lz:() = I/fl)(tv-x)v

fdxdz|wu|2 -0

2
R+

W, — 32w, — 20, =0, v=(a, ¢, X,

It is easy to check that v, (z, x) € Z;. We assume that ¥, (¢, x) satisfies conditions
of the theorem 8.1. This is true for a particular case of i of the form (8.4).

If the family of solutions is constructed, the integral representation of solutions
of (8.1)—(8.3) can be found

q - ﬁ o
u(x,z) = T/ fd¢/d2 s (Vo f) @ b, X)W (X, 2), (8.9)
0 R2
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where ¥, (X,2) = W, (t,x,2), v = (a, ¢, Xs). This representation was introduced
formally in [GoEtAll16]. In [GoPe21], we estimate norms of exact quasiphotons
from the family ‘I’(a,¢,is)(>?7 z) as functions of a, cosh ¢, ¥, and find a power law in
these parameters. The convergence of the integral on the right-hand side of (8.9) is
proved below in Theorem 8.2.

8.7 On Convergence of Integrals

We say that the function ¢ (¢, x) belongs to the Schwartz class, ¢(¢, x) € &, if
¢ € C™, and the function ¢ and its derivatives decrease faster than any power of

¢ and x for 2 + x2 — oo, that is, (2 + x2)m/2a,ka){g(t, x) — 0 , for all non-
124x2—00
negative m, k, j. It is known that the Fourier transform maps the Schwarz class into

the Schwarz class.

Lemma 8.1 Let f(t,x),(t,x) € ., f,.{ € D\. Both functions f(5) and ¢ ()
vanish for 0 < w? — k)% < g-.
Then the following integral converges:

OOda I
J :/E/d(ﬂj[f’ (a, ¢)(cosh¢)? a' < oo, (8.10)
0 R

for any [ and q, where
ULF.Cla ) =a [ %5 | F@)E (aA-g5)|.
D
Proof The integral (8.10) reads

ood . )
J = / G—Z/d¢/d20 ‘f(a){ (aA,¢,o)‘ (cosh$)? a'
0

R D

o [ d L
=fd20|f(a)|/a2—’fl/d¢(cosh¢)q (; (aA_,/)a)‘.
Dy 0 R

To calculate the inner integral we introduce new variable of integration ¢’ instead
of a and ¢:

5/ = aA_¢8.
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The Jacobian determinant is determined by the formula:

1
Ca(@?—k2)’

‘ D(a, ¢)
D(o', k)

We express a and ¢ through the variables &, 6’. We take into account the fact that
a* (@ — k) = (@) — (k,)*,
denote ()? — (k.)? = (p')?, ®* — k2 = p?, and therefore
a=p'/p.
We get also that
o' — Kk ky o'w
/

<2—.
PP pp’

cosh¢p =

If ¢ > 0, we obtain that (8.10) is reduced to the form:

o [ 2=l F @t [ 5. 126E)](@)
J <2 /d 0—pq+171 d“o —(p/)q—l+3 .
D, D

Both integrals of the product converge for any ¢ and [, as it follows from the fact
that

£E<p<w, e<p <,

see (8.6). Indeed, if ¢ +/ — 1 > 0, then 1/p9t=1 < 1/g4+=1 The first integral is
reduced to the integral of | f(¢)|w?, which converges if f € .. Forqg +1—1 < 0,
the first integral can be estimated as follows

[ 317 @ @~ < [ 5@t
Dy by

It converges because f (0) decays faster than any power of w as a function from the
class .. The second integral can be analyzed in a similar way. If ¢ < 0, cosh? ¢ <
1 and J is estimated analogously.

Theorem 8.2 Let f(t,x),¢(t,x) € %, f, ¢ € D\. Both functions, f(&) and £ (),
vanish for 0 < w? — k)% < g2,
Then the following integral converges:
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e ¢]

_ / dxydisd / (7 1¢) (@, . 7)| (cosh ) a 15" xs " < oo,
R3 0
8.11)

foranyl, g, m >0, andn > 0.

Proof If x; and ¢, are bounded, the convergence of J follows from lemma 8.1. In
fact, after rewriting the wavelet transform in the form of (8.7), and estimating its
modulus we obtain an integral, which does not depend on #; and x;. Inserting it
into (8.11) and integrating the result in bounded limits over #; and x;, we obtain the
integral (8.10), which converges.

Let now x; and 7, belong to infinite intervals. The properties of the Fourier
transform yield

(1) (=ixs)" (W ¢ f) (@, ¢, Xs) = a f d*G Vyn(a, ¢,3)e X - (8.12)
D,

5 0" (f(5)C(aA_p5))

Vinn(a, $.6) = (21) e
X

The function V,, ,(a, ¢, o) is the sum of the terms obtained by differentiating the
product. To estimate the integral (8.11), it suffices to estimate integrals of the form

1=a/d2& 19718, £ @) 1972 8,2 ¢ ()] . (8.13)
X X a/:aA,d,J
D,

At each differentiation of ¢, the multiplier a cosh ¢ or a sinh ¢ will arise, and the
derivative of ¢ by its argument will also appear. This derivative is a function of
aA_yo, belonging to the Schwartz class. Finally, the integral (8.13) is reduced to
the integral

I <alt! coshf¢/d25 ‘g(&)n(aA_,;)&)‘ =a’*' cosh/ pU[g, nl(a, ¢).
D

g =0 0y f@),n= 0207 4“(0/)

o'=aA_ ¢(T
(8.14)

where j = my + ny. Thus, |g(t, x)| = [t"™x™ f(¢, x)|, and |n(z, x)| = |t™2x"2]
[¢(t, x)|. The differentiation does not change the support of the function and
multiplication to powers of arguments does not take the function out of the Schwartz
class. Therefore, lemma 8.1 can be applied to the integral obtained by substitution
of (8.14) into (8.11) and the obtained integral converges. By using (8.12) and (8.14),
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we find that

| (Wé‘f) (a’ ¢’ )?S)l =<
Const
(IxsI™ + D (g™ + 1)

DUt f " x ) (a, ¢)a’ ! cosh/ .

my+mpy=m,
ny+ny=n

Substituting this expression into the integral (8.11) and applying the lemma 8.1, we
get a converging integral.
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Chapter 9 )
Modelling the Spread of a Disease in an e
Epidemic Through a Country Divided

into Geographical Regions

P. J. Harris and B. E. J. Bodmann

9.1 Introduction

The global spread of the SAR-CoV-2 virus (which is more commonly referred
to as the Covid-19 virus) [RiAl20, SaEtAl20] has led to a renewed interest in
the mathematical modelling of the spread of diseases [WuEtAl20]. Experimental
evidence of how a disease spreads across a country or state shows that the spread will
depend on the distribution of the people within the country being considered (see
[AIEtAL NelS5, ReEtAl13] for example). Generally, a disease will spread quickly
through a densely populated city and slowly through a sparsely populated rural area.
On other words, the spread of the disease is dependent on the population density of
a region rather than just the population.

This chapter will consider the regional model for the spread of an infectious
disease across a country or region developed in Harris and Bodmann [HaBo21]
which uses the population density in each region rather than just the population. This
model contains a number of new parameters, most notably the proportion of infected
people who are not diagnosed with the disease and a parameter which controls how
many people travel between the different geographical regions. In this chapter, we
will investigate the effect that changing these parameters has on the predicted spread
of a disease across the main part of the United Kingdom. We will then apply the
model to simulate the spread of COVID-19 in the United Kingdom where we will
simulate the effects of events like lockdowns by making appropriate changes to
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some of the parameters in the model to simulate the reduction in transmission and
travel that result from a lockdown.

9.2 Mathematical Model

In developing our model of the spread of a disease through a country divided into a
number of regions, we made the following assumptions:

e We assume that the population is uniformly distributed within each region
considered.

* We assume that births and deaths from causes other than the disease can be
neglected. This means the total number of individuals in the system remains
constant.

e Whilst people can move between regions within the country, we assume that no
one enters or leaves the country.

e Anyone who recovers from the disease is then immune and cannot become
reinfected.

The starting point for our analysis is the susceptible—infected—recovered (SIR)
model [He00]

ds

— = —ASI

dt

dl

— = ASI — 1 9.1
7 IR 9.1
aR _

o7 = MR

where S, I and R denote the number of individuals who are susceptible to the
disease, who are infected by the disease and who have recovered from the disease,
respectively. Furthermore, X is the infection rate and w7 is the recovery rate.

The basic SIR model (9.1) can be extended to include categories such as carriers
(denoted C) and those that have died from the disease (denoted D). Here, we define
carriers as individuals who are infected with the disease but are not diagnosed
because they are asymptomatic or because they mistake the symptoms for a different
disease. In addition, we will use the term infected to denote those individuals who
have been diagnosed and know that they are infected. The modified system of
differential equations is [HaBo21]
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= —AS(I +C)

das
dt
dl
T MSU +C) — urrl — puipl
dcC
dt

=r(1-8)SU +C) — pucrC — ucpC 9.2)
— = 1 C
a1 Mirl + pcr
b = I+ C
- K“ID Hneo

where B is the proportion of infected individuals who are diagnosed and not just
carriers and pyp is the proportion of infected individuals who die from the disease.
Similarly, ;cg and pucp are the proportions of carriers who recover or die.

There are some drawbacks to using (9.2) to simulate the spread of a disease
through a country. Firstly, it assumes that the population is uniformly distributed
over the whole country when in reality a large proportion of the population is usually
concentrated in cities with relatively few people living in rural areas. Secondly, in an
outbreak, a disease is usually confined to a small area of the country and spreads out
from that area. To illustrate the first drawback, consider the four countries described
in Table 9.1. If we apply the SIR model (9.1) with the same parameters to each of the
regions in Table 9.1, then the results for Regions A and D will be the same, as will
the results for Regions B and C as they have the same populations. However, if apply
the SIR model (9.1) to the population densities rather than the populations, then the
proportions of the population who become infected are the same for regions A and
C as they have the same population densities, whilst the proportion of the population
who become infected is higher for Region B as it has a higher population density.
The proportion of the population who become infected in Region D is smaller as
Region D has the smallest population density. These results are illustrated in Fig. 9.1
where the curves for Regions A and C are superimposed.

Consider a country that can be divided into a number of geographical regions.
For the UK, this can be the counties or administrative areas. We assume that the
population is uniformly distributed within each region. Let the ith element of the
vectors S, I, C, R and D be the number of people in each category in the ith
region. Then, the differential equations for a single region (9.2) can be extended

Table 9.1 The area and populations of four example isolated countries

Region Population Initial infected Area (km?) Population density (km~2)
A 1,000,000 10 1000 1000
B 2,000,000 20 1000 2000
C 2,000,000 20 2000 1000
D 1,000,000 10 2000 500
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10

Percentage of the population who are infected.
w

0 20 40 60 80 100 120 140 160 180 200
Time (days)

—RegionA —RegionB —RegionC —RegionD

Fig. 9.1 The proportion of the population who are infected in each of the regions

to consider a country divided into regions by writing in the equations in vector form
as [HaBo21]

ds
— = —AF + oTS
dt
dl
E:AIBF—/J,]RI—H,]DI + oT1
dC
i M1 = BF — ucrC — ucpC + aTC
dR
— = iRl + pucrC +aTR

dD

e uipl+ ucpC

where F; = S;(I; + C;) and the movement matrix 7" will be discussed later. Here,

« is a parameter which controls the rate at which people move between regions.
However, as shown above, we need to use the population density rather than the

population in the differential equation. Harris and Bodmann [HaBo21] developed a

model which takes the population density into account and obtained the modified
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system of differential equations

ds

= =_2A"'F +aTS
dt

dl ;

EZA"BA F—pupl— urpl + aTl
dC

o= A1 = B)A™'F — uerC — uepC + «TC
dR

E Z[/L]RI+MCRC +OlTR
D ipT+ uenC

di = HKID MCcD

where A is a diagonal matrix with A;; being the area of the ith region.
The movement matrix 7 which models people moving between regions is given
by

(PM);; i#]
N
=1 emyi=
k=1 ki

where
dij ..
M;j =max|1—-——,0 i#£j
dmax

d;j is the distance of Region i from Region j, dmax is the maximum travel distance
and P is a diagonal matrix with

Si+1i+Ci+ R
SN S+ L+ Ci+R)

ii =

Here, the notation (P M);; denotes the element at the (i, j) position in the matrix
product P M. This choice of the 7 matrix will ensure that as the populations from
the different regions mix, the total population of each region remains the same.

The system of differential equations are solved using an iterative predictor—
corrector Crank—Nicholson method [At89, CrNi47]. When calculating the number
of people in each category in each region for each day, a sequence of time-steps
ho > h1 > hy > --- > h, is used to ensure that the calculations have converged to
a predetermined accuracy.
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9.3 Numerical Results

The results presented here are for the UK, where the population data for 2018 is
freely available from the UK Office of National Statistics and the initial conditions
for the infection are that on day O there are 20 carriers in London (unless stated
otherwise) and no infected people or carriers in the rest of the country.

In the numerical results presented in this chapter, we will look at the effect of
changing some of these parameters. We will primarily look at varying some of the
new parameters in the model, such as « and B as the effect of changing some of the
other parameters has been explored in the previous work on these equations.

We first investigate the effect of changing the distance parameter . To obtain
these results, we used A = 7 x 1072, B=0.67, urg = nucr =0.0714, u;p = 0.01
and ucp = 0. The reason for making ucp = 0 is that ultimately we are going to
apply the model to the spread of COVID-19 in the UK, and since COVID-19 is a
notifiable disease in the UK, it effectively means that all cases where the patients
die of the disease must have been diagnosed. Figure 9.2 shows the proportion of
the population in each region who are either infected or carriers at the time when
the total number of people are infected or carriers is maximised. When « = 0,
meaning that there is no movement of the population across the country, the disease
is confined to London, and as « increases, the disease spreads to a larger number
of regions in the country. Figure 9.3 shows the total number of people who are
susceptible, known to be infected or carriers, who have recovered and who have
died in the whole country for the different values of « considered. The graphs in
Fig. 9.3 show that changing « has a relatively small effect on the overall number

0% 15% 30% 45% 60%

Fig. 9.2 The proportion of the population who are infected or carriers for each region when the
maximum number of people in the whole country are infected
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Fig. 9.3 The number of susceptible people (top left), infected and carriers (top right), recovered
people (bottom left) and people who have died (bottom right) as a function of time for different
values of the distance parameter o

of people affected by the disease but that when there is more movement of people
between the regions then the distribution of the people affected by the disease are
more spread out over the whole country.

We now investigate the effect of changing B8 which is the proportion of those
infected who are diagnosed. For this case, we used A = 7 x 1075, 0 = 0.1, WIR =
ucr = 0.0714, uyp = 0.01 and ucp = O to calculate our results. Figure 9.4
shows the total number of people who are susceptible, infected or carriers, who
have recovered and who have died in the whole country for the different values of
B considered. These results show that changing the proportion of people who are
diagnosed does not have a large effect on the number of susceptible people, people
known to be infected and carriers, but it does affect the number of people who die
from the disease. This is because a larger proportion of the people infected with the
disease are being diagnosed and in the results presented here we have assumed that
only diagnosed people can die from the disease and that all the carriers eventually
recover.

We also used the model to simulate what happens when the initial infection
is located in different cities. In the results presented here, we considered the
initial infection to be in London, Birmingham, Manchester and Glasgow using the
parameters A = 4x 107>, 8 = 0.67, u;g = ucr = 0.0714, w;p = 0.01, uep =0,
o = 0.1. Figure 9.5 shows the percentage of people who are either infected or are
carriers in each region on the day when there is the maximum number of people
who are infected or are carriers. These results show that the initial location of the
infection has a negligible effect on the number of people who eventually become
infected with the disease.
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Fig. 9.4 The number of susceptible people (top left), infected and carriers (top right), recovered
people (bottom left) and people who have died (bottom right) as a function of time for different
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Fig. 9.5 The percentage of individuals who are infected or are carriers in each region on the day
when the maximum number of individuals are infected or are carriers. From left to right, the maps
are for the initial infection located in London, Birmingham, Manchester and Glasgow
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Fig. 9.6 The simulated and observed numbers of people who have been infected and who have
died of COVID-19 in the UK for different values of the parameters « and B

We can now apply the model to the spread of COVID-19 in the UK. The data for
the daily number of infections and deaths from 30 January 2020 is freely available.
For the first 53 days, there was no lockdown or restrictions in the UK. We can find
A and pyp that approximately fit to the data for the first 53 days. We use three
different values of o to model different rates of people moving between regions and
three values of g since the level of testing in the UK at this time was unknown. We
used pyg = ncr = 0.0714 which corresponds to it taking 14 days for a person to
cease to be infectious, and ;ucp = 0 as all recorded deaths occur in people who have
been tested (death recorded within 28 days of a positive test). Figure 9.6 shows the
parameter which approximately fit the model to the observed data for the UK, and
the values of the fitted parameters are shown in Table 9.2. As expected, changing o
and S does not have major effect on the value of jp since the number of infected
people is approximately the same for all the values of « and 8 and so p;p will be
the same to produce the same number of deaths. However, the results in Table 9.2
show that increasing « for a fixed value of 8 causes A to increase, but increasing
B for a fixed A causes A to decrease. In other words, if there is more movement of
people between the regions, then the infection rate A has to increase to give the same
level of infections. However, if a greater proportion of people are diagnosed, then
the infection rate has to decrease to give the same number of infections, as expected.

Using the fitted values of A and . ;p, we can use the model to predict the number
of people who will be infected with the disease and the number that will die from
the disease. Using the values given in Table 9.2 for @ = 0.3, the results for different
values of B are shown in Fig. 9.7.
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Table 9.2 The approximate o B 2
values of the parameters A
and pp that approximately
model the spread of

MID
0.1 10.05 [5.91 x 1075 |0.006
0.10 |5.67 x 10> | 0.006

COVID-19 in the UK for 0.25 |5.37 x 1075 | 0.006
different values of the 0.2 0.05 |6.60x 105 | 0.006
parameters « and S 0.10 16.35 x 10-5 | 0.006

0.25 [6.04 x 107> |0.005
0.3 [0.05 |7.21 x 1075 | 0.006
0.10 [6.97 x 107> | 0.006
0.25 | 6.64 x 107> | 0.005
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Fig. 9.7 The predicted number of people who are infected (top left), who are carriers (top right),
who recover (bottom left) and who die (bottom right) from COVID-19 in the UK for the case
a=03

The main process for controlling the spread of COVID-19 in the UK was the use
of lockdowns. Lockdowns can be simulated in the model by making the infection
rate A and o which controls the rate at which people move between the different
regions. Here, we simulated the effects of a lockdown lasting from day 53 to day 151
(which is 14 weeks in duration) where either A is reduced by 90% (which we can call
reduced transmission) or « is reduced by 90% (which we shall call reduced travel)
or both were reduced by 90%. The results of these calculations for« = 0.1 and 8 =
0.1 are shown in Fig. 9.8. The results seem to show that provided the transmission
is reduced, there is little point in reducing the travel as the curves for reduced travel
and both are similar in all of the graphs shown in Fig. 9.8. Furthermore, the graph
showing the simulated number of people dying from COVID-19 in the UK shows
that the lockdown does not significantly reduce the number of deaths and merely
delays them.
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Fig. 9.8 The predicted number of people who are susceptible (top left), who are infected (top
right), who recover (bottom left) and who die (bottom right) from COVID-19 in the UK for @ = 0.1
and 8 = 0.1 when there are different types of lockdown between days 53 and 151

9.4 Conclusions

This chapter has presented a method for modelling the spread of a disease across a
country divided into different geographical regions each with different population
densities. The results show that the proportion of the population who become
infected with the disease is greatest in the densely populated cities and that the
proportion of the population infected is much lower in sparsely populated rural
areas.

One of the important results shown in this chapter is that if the proportion of
people travelling increases, then the proportion of people who are infected by the
disease in any given area decreases, but more regions are affected by the disease
and that the total number of people who have the disease across the whole country
does not change significantly. The exception is that if travel is stopped completely,
then the disease cannot spread to other regions, but the region where the disease is
present is very badly affected by it. In reality, there will always be a small amount
of travel between adjacent regions and so the disease will spread.

The results presented in this work also show that changing the initial location of
the infection does not significantly affect the final number of people infected or the
location with the highest proportion of infected people, although the time at which
the peak in the number of infections will be different.

Finally, we have shown that for appropriate values of the parameters the model
can be made to match real-world data. Here, we found parameters such that the
total number of cases predicted by the model is approximately the same as those
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recorded by the UK Government for COVID-19 in the days before the lockdown
was imposed in the UK. However, it should be noted that whilst the overall numbers
were the same, there was no attempt to fit the simulated values to the regional values
that are known, and an area of future research could be to find the parameters that
do give a better regional fit. Using the fitted values, we then simulated the effects
of some different lockdown regimes on the spread of COVID-19 in the UK, and the
results show that enforcing lockdowns that restrict transmission and/or travel only
delay the inevitable spread of the disease. Furthermore, the graphs in Fig. 9.8 show
that reducing transmission has much more significant effect in reducing the number
of people infected with the disease than reducing travel between the regions.
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Chapter 10 ®
Computing Elastic Interior Transmission e
Eigenvalues

A. Kleefeld and M. Zimmermann

10.1 Introduction

Non-destructive testing is an important tool to check whether a given object is
homogeneous or not without destroying it. Interior transmission eigenvalues (ITEs)
may have the potential to serve as an indicator whether an object is homogeneous
or not due to a monotonicity result. If the object is not homogeneous, they might
indicate where and how large the inhomogeneity is. Hence, they can be seen as
a “fingerprint” of a given object. Therefore, it is of great interest to numerically
calculate them for arbitrary domains to high accuracy.

They also play an important role in the theory for scattering problems. Precisely,
algorithms such as the (general) linear sampling method or the factorization method
to reconstruct the scattering object from the scattered field are not theoretically
justified for such eigenvalues. Usually, time-harmonic acoustic, electromagnetic, or
elastic scattering problems are considered. Recent work is now focusing on the latter
one as we do here, too.

Unfortunately, the resulting system of partial differential equations, containing
two Navier equations, are coupled by transmission conditions and lead therefore
to a non-self-adjoint and non-elliptic problem. However, one can cope with this
problem. Existing methods like the inside—outside duality method [Pel6] do not
report numerical results, the method of fundamental solutions only works well for
small perturbations of a circle [KIPi20], and variants of the finite element method
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only work well for polygonal domains [ChLiWa20, JiLiSul8, JiLiSu20, XiJil8,
XiJiGel8, XiJiZh21, YaHaBi20, YaEtAl20].

An alternative is to use the boundary element method which works very well for
domains with smooth boundaries to obtain numerical results to high accuracy. How-
ever, it can only be used for constant coefficients and the fundamental solution needs
to be known. Luckily this is the case for the Navier equation, but one needs to solve
a nonlinear eigenvalue problem which can be done with Beyn’s algorithm [Bel2] as
done for the acoustic transmission problem [KI113]. A first attempt has been made
in [Wel8], but certain integral operators were too complicated to be approximated.
An improvement is given in [Zi21] fully avoiding this integral operator by using a
difference of Dirichlet-to-Neumann maps which has been successfully applied to the
acoustic transmission problem in [CaKr17]. However, the numerical approximation
of the singular integrals to high accuracy is complicated. Here, we use an approach
which fully avoids the numerical calculation of singular integrals.

The existence of a countable number of real ITEs is known [BeCaGu13], but the
existence of complex ITEs is still open, but with our approach we are able to give
numerical results indicating that they do exist.

The chapter is organized as follows: first, we present the elastic interior transmis-
sion problem. Next, we illustrate how to solve it with the boundary element method
using a difference of Dirichlet-to-Neumann maps. Then, the resulting integral
equation is approximated by the boundary element collocation method, and the
emerging nonlinear eigenvalue problem is solved with Beyn’s algorithm. Numerical
results are given to show the correct approximations for two test cases. Finally,
numerical results are reported for a variety of domains and compared with existing
results. A short summary and an outlook are given at the end.

10.2 Elastic Transmission Eigenvalue Problem

Let D C R? be a bounded open domain that is simply connected. Its boundary 3 D
is given parametrically by p(6) with 6 € [0, 27]. We assume that d D is a simple,
closed curve with finite length satisfying p(0) = pQ27), p € C2([0, 2r]), and
p’(8) # 0forall 6 € [0, 27].

Time-harmonic elastic scattering with frequency w can be described by the
Navier equation

pwAu+ (h+p) graddivu+w? pu=0 in D C R?, 10.1)

where u(x) = (u1(x), uz(x))T is the displacement field at the point x = (x1, xz)T €
R2. Here, the parameter p > 0 is the mass density of the medium and assumed to be
constant. The parameters A and p are the Lamé parameters and describe the elastic
material. They satisfy the conditions u > 0 and 2 + A > 0 ([Mc00, p. 297 ff.]).
Assume now that D with mass density p; is contained in a medium with mass
density po with p; > po. Is there an incident field satisfying the Navier equation
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that does not scatter? This leads to the elastic interior transmission problem: find w?
and a nontrivial solution (u, v) such that

wAu+ (A4 p) graddiva+aw?ppu =0  in D, (10.2)
WAV + (A +p) graddivv+w’piv =0  inD, (10.3)
u=yv onaD, (10.4)

T(u) = T(v) on 9D (10.5)

is satisfied, where
T(F) = Adivif)v + 2 (' grad) f + pdiv(Qf Qv

with the normalized vector v = (v1, v2)" on 8D pointing into the exterior of D and

the matrix
01
Q= <—1 0) |

Then, the parameter w is an elastic interior transmission eigenvalue (EITE). The
existence of real EITEs is known [BeCaGul3], and however the existence of
complex EITE: is still open.

We will use boundary integral equations to solve the problem at hand. The
matrix-valued fundamental solution is given by

1
Ko(x.y) = - Hy' (ksllx = yIDI2
n
i
+ o5 erady grad] | DGkl =y — gV ky I — yID | € €22,

where x,y € R? with x # y, ||- || denotes the Euclidean norm, and I is the 2 x 2
identity matrix. The function H(g]) is the Hankel function of the first kind of order 0.
The parameters &, and k; are the wave numbers of the shear and the pressure wave,
respectively. They are given by

2 2

W ()
k=— and k=-——0.
u A+2u

The elastic single-layer operator defined by

u(®) = (SLog) (%) = /B Kyx DR &), x€ D,
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as well as the elastic double-layer operator defined by
-
u(x) = (DLyh) (x) =fa [Ty Ko(x,y)] h(y) ds(y), xe D,
D

with unknown functions g and h solve the Navier equation (10.1). Note that the
traction of a matrix is applied to each column. The unknown functions g and h are
then determined by letting the point x € D approach the boundary and using the
given boundary condition incorporating the jump conditions of the elastic boundary
layer operators defined by

(Swg) X) = /a R Ko, y)g(y) ds(y), x€0D,
(Dlg) (x) = faD Ty Ko (x,y)) g(y) ds(y), xe€0dD,
(Dyh) (x) = /BD [Ty (Ko(x, y))]T h(y) ds(y), xedD.

The first operator is the elastic boundary single-layer operator, the second operator
is the traction of the elastic boundary single-layer operator, and the third operator is
the elastic boundary double-layer operator. To solve (10.2)—(10.5), we use the idea
given in [CaKr17]. The following ansatz

u=SL, g and v=SL, ;zh

solves (10.2) and (10.3) in D. The functions g and h are unknown. Letting the point
approach the boundary yields

u=3S, /8 and v=S, -h ondD.

Taking the traction along with the jump conditions yields

T(u)=(11+Dwf> and T(V)=(11+Dw\ﬁ> ondD,

where I denotes the identity operator. Combining the last two equations gives
1 -1
T () = I+D 0P Swm“ and (10.6)
1
T (v) = ( I+D f)s ! ondD, (10.7)

where we assume that w?pg and w?p; are not eigenvalues of the operator A* :=
@ Au+(A+p) grad div u with boundary condition u = 0. Because of the boundary
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condition (10.4), we can replace v by u in (10.7). Next, we take the difference of
(10.6) and (10.7) and apply the boundary condition (10.5) yielding

1 _ 1 1
|:( I+Dw\ﬁ>Swr <ZI+Dwf>Swm:|u:0 ondD.

=:N(w)

Then, the solution of the nonlinear eigenvalue problem N(w)u = 0, u # 0 will
be a solution of (10.2)—(10.5). However, we will consider the transpose of this
equation to avoid the use of the traction of the elastic single-layer operator. Hence,
we consider

[sb( L+D%f> J<1L+D%ﬁ>}u=0 ondD

=:M(w)

and need to solve the problem
M(@u=0, u#0

assuming w?po and w?p; are not eigenvalues of the operator A* with boundary
condition u = 0.

10.3 The Discretization of the Operators %I + D, and S,

In this section, we illustrate how to solve a given boundary integral equation with the
boundary element collocation method which we will also use later to approximate
the operators S,, and %I + D,, for a given w. As an illustrative example, we want to
solve the problem A*u + w?u = 0 in R?\ D with the boundary conditions u = f,
where f is a given function defined on the boundary. The frequency w is given as
well. Using the double-layer ansatz u = DL,h in R?\ D together with the jump
condition yields the boundary integral equation of the second kind

1
sh+Doh=f. (10.8)

Now, we illustrate how to solve this equation numerically. First, we define for a
given even n the equidistant angles 6; = 27 (j — 1)/n, j =1, ..., n. With this, we
define the nodes v; = p(6;). Next, we define the line segments A; C 9D, where
the i-th segment has the starting point vp;_; and the end point vy;; and a point in
between vy;, i = 1,...,n/2. Note that v,11 = vy since dD is closed. Hence, the
given boundary d D can be written as the union of all A;. Therefore, Eq. (10.8) can
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be written as

n/2

1

3h00+ 3 [ [Ty Ko w)] b s =10, x€ D,
i=1 i

It can be shown that there exists a bijective map m; : o = [0, 1] — A; for each
i =1,...,n/2. Using a change of variables yields

n/2

1

Shx) + > f[Tm[(s) (Ko (%, m; ()] h(m; (5))J;(s) ds(s) =f(x), x€dD,
i=1"°

where J;(s) = | 0sm;(s)| is the Jacobian. The map m; is approximated by a
quadratic interpolation polynomial m; (s) = 23:1 m; (q;)L j(s) with the Lagrange
basis function Li(s) = (1 —s)(1 —2s), La(s) = 4s(1 — ), and L3(s) = s(2s — 1)
and g1 = 0, g2 = 1/2, and g3 = 1. Note that m;(g;) selects the corresponding
nodes vo;_1, v2;, and vp;+1. We approximately obtain

n/2

1 ~ ~ ~

Sheo+ 3 / [T () (Koo (x, 8 ()] h(; ()7 (5) ds(s) ~ f(x), x € aD,
i=1"°9

where .Z(s) = ||d,m; (s)|| is the Jacobian. We define for a given 0 < o < 1/2 the
collocation nodes V; x = m;(gx) fori = 1,...,n/2and k = 1,2,3 with | = «,
q¢>» = 1/2,and g3 = 1 — a. We now approximate each component of the unknown
function h by a quadratic interpolation polynomial using the three nodes g; and the
three Lagrange basis functions

l—s—al—2s ~ s—al—-s—a ~ s—a 2s—1
—_— s Lo(s) =4—F———F—, L3(s) =

Fits) = 12 |
1) = T 12 1—20 1-2a 1—2a1-2¢

Precisely, we use

3 3
h(f; () ~ Y W@ (@) Li(s) = Y h@Fi ) Li(s),

k=1 k=1
and therefore, we obtain
1 nf2 3 5 e
5h(x)+;k§ O[T.ai<s> (Ko, 1;()))] J; (s)Li(s) ds(s)h([F; 1) — £(x)

~r(x), xeaD,
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with the residual r(x). We force the residual to be zero at the collocation nodes V .65
which leads to the linear system of size 3n x 3n

n/2 3
—h(~,@+22 AGin.G.ohGix) =£F).0) (10.9)

i=1 k=1

with
CAG K, = / [Ta,(s) (Ko (Vj,e. My (S)))]T Ji ()L (s) ds(s) € C>*2
(e

since the (i, k), (j, £)-entry is a 2 x 2 matrix. All four elements of the 2 x 2 matrix
are

1,1 1,1 i~ =g 1,2 1,2 = =g
YA G = / ()OO L) dss), ALY =/li(yjq()(s)Ji(s)Lk(s)ds(s)
g

wAElzkl))(] 0= / ’(211} (T OLe(s) ds(s). wAEzzkz))(/ O~ [ ’i(,zj’,?(S)Z(S)Zk(S) ds(s)
with
(1,1) 1 ) ®
tl IZ (S) = m I:(_)\. - 2/1/)])1 (y)d[ /[(s) - MUZ(y)dl J [(S):I
C—2 oy 1) 3
+ TNOIE [( A =2pvi(y) (di,j)l(s)>
B ’\”‘(y)d(])z(s) (de)z(s)) —2uva(y) (di(,lj),z(S)) d(z)z(S)]
- m [(_)” - 4“)v1(y)di(,lj)»l(s) - uvz(y)dl.(i-)’e(s)
+ 4u <U1()’) (djj e@)) +v2(y) (dz(J K(S)) l<2j)g(s)>]
12 (5) = C—l[_kv 1dD () = g ()d® (s)]
G0 = a o LR ) = i G
(6] 1 5 2
+ m [(—k — 2“)”2@)‘1,-(,,-),@(5) (di(,j),z(s))

o) (4, = 20009 (¢,0)) d@)g(s)}

c3

L M () — @
LR TAwEIE (1= 2002004 ) = o1 (1)) (5)
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2 2
+ 4 (vl(y) (4),) d ) +0d) (o (7)) )]

t>1)(s) = m [—Av] M2 () = pr2(d Y z(s)]

+ m [(—)» —2p)vi(y) (d,-(,lj),g(S))2 dl.(’zj)j(s)

- 0 (4,0)' om0 (42,09) ]

T T L4 = 20m O 6 = k205

+ 4u <v1(y> (dl.{lj{@(s))2 d () + va(0d) () (d;ae(s)f)]
02 () = m [ = 200042, (5) — i () 5]

+ m [(—A — 20 () (d}ﬁ{e(s>)3

— 2na(y) (dl.("j)’g(S))2 dlﬁ’?j)’l(s) — 2uv (y)di(,lj),/g(s) (di(,zj),[(s)>2:|

g [ 40004 0 — 004 )

+ 4 (w(y)d,-‘,‘,-’,e(s) (d,%?,g(s))2 +a(y) (d;?jgmf)] ,

where
dije(s) =V —my(s)

kg (1
cl = _RHI (ks I1d;, e ()1

~ i [zk,,HfWkp Id;.j.e () 1) — ko Hy (ks l1di j.e(5) 1)
40? |1d; ;o (5)]| Id; ¢ ()]

— K2HY (kp lId; o)) + k2 H" ks [1d, j,e<s>||>} :

i
207 ||d; j e (s)]]

N 2kafl>(kp Idi j.e )N — ks H (ks l1di j e ()1 ]

c2 = [ K2HS" s 1 50D ) = K e 1 .0 )

Id;, j.e(s)l
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i
+— [ EHP Uy i o)) = EHD Ky 1. e)ID) |
dw? p

i

= somia iy LR H K10 oD — ko HI Gy i) |
l’j?

c3

i
o [ K H 1 (9) 1) — K2 s i) .

The four integrals in A ) (j,¢) have to be evaluated numerically which is
done with an automatic integration routine using adaptive quadrature (refer to the
software package QUADPACK). However, when (i, k) = (Jj, £), a singularity is
present. In this case, we use a singularity subtraction of the form

CAG .Gk = / [T, (s) (Ko Vik B (5)) — Ko (¥ k, My (S)))]T Ji ()L (s) ds(s)

+ / [T, o) (Ko G i (50)] T To(5) i (5) ds (s)

O A k).,

__.: .smooth , .  singular
=: 1nti’k —+ mti,k

The integrand of int?“,?""th is smooth and converges to the 2 x 2 zero matrix, say

singular We

Moo equal to Z,. Next, we consider int;

Z,. Therefore, we directly set in

use the fact that for ¢ = 1, we have Do (x) = —%12 for all x € 9D. Hence, we
approximately have

n/2 3

1 .
22 Aan.gn -5k V0O, (10.10)
i=1 k=1
and therefore we can find the diagonal matrix entry *A¢ ) k) = int?fngar by

enforcing (10.10) to be exact. Hence, we never have to integrate over a singularity,
but we need to additionally compute the 2 x 2 matrices OA(,-,k)’( j.0 forall (7, k) #
(j, £). For a given f and w, the linear system (10.9) is solved directly for h. Likewise,
we can discretize u(x) = DL,h(x) to compute the solution at any x € RZ\B.
Precisely, we have

n/2 3

u(x) = DLoh(x) & Y Y A 4 hFix) = u,(x)

i=1 k=1

with

Ao = / [Tany ) (Koo e 8 (0] T To(5) L) ds(s) € C¥2.
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Table 10.1 Numerical n 6,(11) EOC® er(,i) EOC®
results to test the

discretization of the 10 |1.310394 7.74688_¢
double-layer operator for 20 12.93242_5 |2.16 2.06750_¢ |1.91
w=landw =1 40 [2.00761_¢ |3.87 5.85069_g | 5.14

80 |2.60633_7 |2.95 7.61938_9 |2.94

Example 10.1 Consider the solution of the Navier equation A*u 4+ w?u = 0
in R2\D with u = f on 352, where the boundary of the domain £ is given
parametrically by p(8) = (2cos(#), sin(f)) (an ellipse). The Lamé parameters are
chosentobe A = 1 and u = 1. The frequency w is given by 1 and i and we used
o = (1 — \/3/5)/2. The first column of the fundamental solution with y = (0, 0) "
satisfies A*u + w”>u = 0 and is used as a reference solution. The boundary function
f is chosen to be the first column of the fundamental solution restricted to the given
boundary. We compute the solution at x = (3,3)" using the double-layer ansatz
u(x) = DL, h(x), and test therefore the operator %I +D,, since we need to compute

1
§h+th=f

in order to obtain h. In Table 10.1, we list the absolute error e( ©) — = |lu — u,||
for various choices of n as well as the estimated order of convergence EOC) =
log (e(w) / e(w)) /log(2). As we can see in Table 10.1, we obtain a convergence order
of at least two.

In a similar fashion, we can solve the problem A*u + w*u = 0in Rz\ﬁ with
the boundary conditions u = f, where f is a given function defined on the boundary.
The frequency w is given as well. Using the single-layer ansatz u = SL,,g in R\ D
yields the boundary integral equation of the first kind

Spg=f. (10.11)
Using the same strategy as explained before yields the linear system of size 3n x 3n

n/2 3

Z Z B k). (j.08Vik) =fF;0) (10.12)

with

Bk (jb) = f Ko (.0, 1 (5)) J; (s) Li () ds(s) € C>*?
o
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since the (i, k), (j, £)-entry is a 2 x 2 matrix. All four elements of the 2 x 2 matrix
are

"B G = / w5 )T L) ds () B oy = / uf%) ()T () Li(s) ds(s)

“BGi o = f u? ) T L) ds(s), “BE) o = / u) ()7i($) Li(s) ds(s)
a

with

1
u "V (sy = —HP s 1. 0()1D)

1]/é 4M
. (D . _ [€)) o
+;ka1 (kp ”dt,],f(s)”) ksHl (ks ”dt,],l(s)”)
4o? lld;, j.e(s)l
(1) 2 .
(d) ,(5)) < 1 1
+ K2 HG (kp i j.e() ) — KZHY (ks i j.e(5) 1)
ld;,j.e ()12 [ p AT s 16078 ]
i M )
— | ksH, (kg ||d;.; —k,H; ' (k, ||d; ;
* o [ ks H ks 13601 = kp HY (k| ,,,,z(s)n)])
(1) 2
en di j,e($)d;j ¢ (5) 2 ()
= 0 0l k H k d
w06 = o7 (a2 L [ 1)
1
- k?Hél)(ks ”di,j,Z(S)”):I + m I:kSHl(l)(kS ld;i je(s)ID
1,],
= kpH{"kp 111D |)
(1) (2)
d (s)d (s)
(1,2) j.l R4 2 ., (1)
= k H k d;
i = = <4 5 [K2HS Ky i)
1
— kgHél)(ks “di,j,é(s)”)] + m [ksH1(1>(ks ||di,j,€(s)||)
l,/,
= kot kp ;561D ])
1
w2 (s) = —H" ks 1 j.e ()]

4u

ik H{ (i e (D) — ks HYY (K D, e ()11
402 ld;, j,e(s)l
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(A P (i oy 2,00
m vl [kaO (kp i, j,e (I — k5 Hy (ks ||di,j,e(S)||)]
i

+ _—
202 |ldi, e ()l

[k HV K 11601 = ki HYV Ky 15D ])

For a given function f and frequency w, the linear system (10.12) is solved directly
for g. We discretize u(x) = SL,g(x) to compute the solution at any x € R?\D.
Precisely, we have

n/2 3

u(x) = SLog(x) ~ Y > “Bis x8Fik) = Uy (x)

i=1 k=1

with

§<z‘,k>,x = / Ko (x, @; () J; (s) Ly (s) ds(s) € C**2.

Example 10.2 Consider again the solution of the Navier equation A*u + w?u =
0 in Rz\ﬁ with u = f on 062, where the boundary of the domain 2 is
given parametrically by p(8) = (2cos(9), sin(9)) (an ellipse). We use the same
parameters as before (refer to Example 10.1). We again compute the solution at
x = (3,3)", but with a single-layer ansatz u(x) = SL,g(x) and test therefore the
operator S, since we need to compute

Swg =1
to obtain g. In Table 10.2, we list the absolute error e,(f’) for various choices of n

including the estimated order of convergence EOC®. As we can see in Table 10.2,
we obtain a convergence order of at least two.

Tabif ltOtZ tI\i}limerical n e; 1§ EOC e’(1i) EOC®
results to test the

discretization of the 10 | 1.47550-4 1.31082_s
single-layer operator for 20 | 1.35472_5 |3.45 1.39689_¢ | 3.23
w=1landw =1 40 |2.15646_7 |5.97 2.03561_g |6.10

80 |9.55428_g |1.17 9.41391_9 | 1.11
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10.4 Solving the Nonlinear Eigenvalue Problem

Beyn’s algorithm [Bel2] is used to solve the nonlinear eigenvalue problem of the
form

M@u=0,u#0

with M(w) € C™* ™. Therefore, the user specifies a smooth contour y in the
complex plane and integrates over the resolvent. We will use a circle with radius
R centered at ¢ as the contour y given parametrically by ¢ (f) = ¢ + Re'! and
@'(t) = Rie''. With Keldysh’s theorem, one can reduce the nonlinear eigenvalue
problem to a linear eigenvalue problem of size n(y) which is much smaller than m.
To be more specific, one has to compute the two integrals

1 . 1 .
Ao= — | M Y(w)Vds(w), A= — / oM N (w)Vds(w),
27 v 2 i ¥

where V e C™*¢ with m>€ > n(y) is a random matrix. The parameter £ has
to be chosen such that it is greater than the number of possible eigenvalues n(y)
(including multiplicities), but as small as possible to reduce computational work.
Of course, the two integrals have to be computed numerically. We will use the
trapezoidal rule yielding

N-1 N-1

1 _ . 1 _ .
Aoy = ZO M o)V (1)), Ay = ~ ZO dUHM (PpU))VP (1)) .
J= J=

The parameter N is specified by the user, and with this we define the equidistant
nodes t; = 2mj/N, j = 0,...,N. The parameter N can be chosen small
since the trapezoidal rule converges exponentially. Next, a (reduced) singular value
decomposition of Ag y = VWwH g computed, where V € Ccm=t s e C*¢, and
W € C!*!. Then, a rank test on the diagonal matrix ¥ = diag(oy, 02, ..., 0¢)
is performed which indicates how many eigenvalues including multiplicities are
contained within the chosen contour y. We will use ¢ = 1072 and compute
n(y) such that oy > ... > 0oup) > € > Opp)+1 = ... = 0oy is satisfied.
With this, we construct the three matrices Vo = (Vij)i<i<m,1<j<n(y)> 20 =
eigenvalues, say w;, and eigenvectors s; of the new matrix B = V(I;[A 1L.NWoX, le
C")>n() The i-th nonlinear eigenvector u; is given by Vos;.
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10.5 Numerical Results

In this section, we present numerical results for the computation of elastic interior
transmission eigenvalues for a variety of two-dimensional domains. Let 6 € [0, 27 ].
The first domain D; under consideration is a disk with radius r; = 1/2 having
the parametrization p;(0) := (r1cos(9),r sin(é?))T. The second domain D is
an ellipse with semi-axis @ = 1 and by = 1/2. Its parametrization is given by
p2(0) := (a>cos(9), by sin(@))T. The third parametrization is given by p3(0) =
(3cos(8)/4 + 3cos(2t)/10, sin(é’))T and represents the “deformed ellipse” (kite)
domain Dj3. The unit square Dy is the fourth domain under consideration.

For comparison, we will use the parameters o; = 1 and g = 4 and the Lamé
parameters © = 1/16 and A = 1/4 which have been used in a variety of papers
before. Furthermore, we use N = 24, £ = 20, ¢ = 1072, and R = 1/4 within
the Beyn algorithm. The parameter ¢ and the number of faces n s depend on the
considered domain and are listed separately. The parameter « is chosen to be (1 —
+/3/5)/2 for all the following numerical results.

At first, we consider D; and compute the first seven real elastic interior
transmission eigenvalues using ny = 40 and ¢ = 1.5 for w, w;, and w3 and
ng = 40 and ¢ = 2.1 for w4, ws, ws, and w7 with the boundary element
method (BEM). We compare our results with the method of fundamental solutions
(MFS) [KI1Pi20] since those results are accurate up to ten digits accuracy for Dj.
Additionally, we compare our results with different finite element methods (FEMs)
[YaEtAl20, XiJil8, JiLiSul8]. Note that the second, fourth, and sixth eigenvalues
have multiplicity two. In [XiJil8], the first two eigenvalues are listed, and in
[YaEtAl20, JiLiSul8], the first six eigenvalues are computed. In Table 10.3, we list
the first seven eigenvalues and highlight the correct number of digits in bold. The
eigenvalues obtained with the MFS are used for comparison. All reported digits are
correct and therefore not highlighted in bold.

As we can see, our numerical results are accurate up to five digits accuracy using
only n s = 40 faces. The first eigenvalue is accurate up to six digits. The numerical
results for the FEM methods are only accurate up to two to three digits with the
exception of the first eigenvalue which is accurate up to four digits. The used mesh

Table 10.3 Numerical results for the first seven real elastic interior transmission eigenvalues for
a disk with radius 1/2

ITE | BEM FEM [YaEtAI20] | FEM [XiJil8] | FEM [JiLiSul8] | MFS [KIPi20]
w1 | 1451304 | 1.452482 1.451948 1.455078 1.451304028
w | 1.704645 | 1.706023 1.705370 1.709214 1704638247
w3 | 1704645 |1.706023 1.709214

ws | 1984551 |1.986143 1.989630 1.984530256
ws | 1.984552 | 1.986146 1.989630

we | 2269152 |2.270963 2.274992 2.269112085

w7 2.269152
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Table 10.4 Numerical ITE | BEM MEFS [KIPi20]
results for the first four real

elastic interior transmission @1 1.296681 | 1.296728137
eigenvalues for an ellipse w2 1.302814 | 1.302785814
with semi-axis 1 and 1/2 w3 1.540775 | 1.540896035

w4 1.565173 | 1.565151107

Table 10.5 Numerical ITE | BEM MEFS [KIPi20]
results for the first four real
w1 0.947495 | 0.947

elastic interior transmission
) 1.047398 | 1.047

eigenvalues for the kite
domain w3 1.111190 |1.111

w4 1.235261 | 1.235

size in [XiJil8] is & = 1/160, in [JiLiSul8] is & = 1/80, and in [YaEtAI20] is
h =~ 0.03125. Note that in the preprint [XiJiGe18], & = 0.0125 was used and yields
1.456 for the first eigenvalue. In sum, our numerical results are much more accurate
than the ones given by FEM. However, the best results are given by the MFS.

Next, we consider the ellipse D;. We use ny = 40 and ¢ = 1.4 and compare
our numerical results given in Table 10.4 with the MFS for the first four real
interior transmission eigenvalues. The numerical results of the MFS are accurate
with ten digits and serve again as reference values. They are not highlighted in bold.
Unfortunately, no numerical results are available for the FEM method.

As we can see, we are able to obtain four digits accuracy. The fourth eigenvalue
is accurate up to five digits accuracy. All eigenvalues are simple. Hence, the BEM
method is a good alternative for the MFS and offers good flexibility in terms of
using general domains. This is shown with the next domain Ds.

The numerical results for the first four elastic interior transmission eigenvalues
for the kite are given in Table 10.5 using ny = 40 faces and ¢ = 0.9 for w; and
ny =40 and ¢ = 1.1 for wz, w3, and w4 along with the numerical results obtained
with the MFS. The eigenvalues obtained with the MFS are correct to four digits
accuracy and not highlighted in bold.

We obtain at least four digits accuracy with the BEM for w1, w2, w3, and w4. For
w7, we obtain five digits accuracy. Hence, the results are equal to or better than the
ones of the MFS. Therefore, the BEM method offers the flexibility to use it for more
general domains with a smooth boundary. Unfortunately, no numerical results are
reported with the FEM for such domains.

Of course, the FEM is much better suited for polygonal domains such as the unit
square. We finally compare our method with the FEM (the accuracy is not known,
but at least five digits) and the MFS (five digits accuracy). We use ny = 46 and
¢ = 1.5 for the first eigenvalue and n y = 46 and ¢ = 1.8 for the other eigenvalues
to obtain the numerical results that are given in Table 10.6.

Our numerical results are better than the ones given in [XiJil8] (A = 0.00625)
and [XiJiGel8] (h = 0.0125). Moreover, the results are comparable with the
MFS. However, the numerical results reported in [YaEtAI20] (A = 0.03125)
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Table 10.6 Numerical results for the first five real elastic interior transmission eigenvalues for
the unit square

FEM FEM FEM FEM MFS
ITE |BEM [YaEtAI20] | [JiLiSul8] | [XiJiGel8] |[XiJil8] [KIPi20]
w 1.393892 1393877 1393874 1.393879 1.394419 1.3938
w | 1.618264 1.618299 1.618296 1.619008 1.6182
w3 | 1.618389 1.618299 1.618296
ws | 1.802089 1.802042 1.802032 1.8020
ws | 1.936187 1.936138 1.936134 1.9362

Table 10.7 Numerical results for one complex-valued elastic interior transmission eigenvalues
for the circle with radius 1/2 and the unit square

Domain BEM
Circle 1.987 189 4 0.283 1461
Unit square 1.865 629 4- 0.291 7661

and [JiLiSul8] (& =~ 0.025) are better as expected. The same is true for FEM
[YaHaBi20] using m = 26.

Finally, note that we can easily compute complex-valued elastic interior trans-
mission eigenvalues by selecting a corresponding contour in the complex plane,
although the existence of them is still an open question. Using ¢ = 2 4 i/2 and
ny =40 for Dy and n s = 46 for D4 yields the results reported in Table 10.7.

10.6 Summary and Outlook

We presented an algorithm to compute interior elastic transmission eigenvalues in
two dimensions with the boundary element collocation method in combination with
a nonlinear eigenvalue solver. We are able to obtain good results for a circle and an
ellipse which outperforms various finite element methods. However, the method of
fundamental solutions beats the boundary element method in accuracy. The situation
is different for polygonal domains such as a square. The best method in accuracy is
the finite element method. However, for various domains with a smooth boundary,
the boundary element method is the one for which the best accuracy can be obtained.
The Python program is available at

https://github.com/kleefeld80/elastic-ite-bem
and has been developed and tested under Windows 10 with Python version 3.8.
All numerical results reported within this chapter have been obtained with Python

version 3.9.4 under Windows 10 and can be reproduced using the runall.py
script.
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No numerical results are reported for the three-dimensional case. Hence, the
next step would be to use the presented algorithm to numerically calculate interior
elastic transmission eigenvalues in three dimensions with the boundary element
method in a similar fashion as presented in [K113] for interior acoustic transmission

eigenvalues.
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Chapter 11 )
A Novel Solution of the Multi-Group e
Neutron Diffusion Equation by the

Hankel Transform Formalism

R. A. S. Klein and J. C. L. Fernandes

11.1 Introduction

The neutron multi-group equation is frequently used in applications for nuclear
reactors. The division in energy groups has been used for a long time to develop
more detailed solutions, since the separation by their speed or energy not only
facilitates obtaining a better approximate model but also describes the diffusive
process with more physical properties [Oz01, No21]. In addition, it is also common
to use approaches with different types of geometry [Mal7, Ol19, Ma21], which
provide some insight in the influences of the specific boundaries on neutronics.
Nuclear reactor cores have different types of geometric approximations and one of
the most used is one with axial symmetry in cylindrical coordinates. The choice
of a specific coordinate system in general depends on the reactor type and the
characteristics to be analysed.

In the course of time, several attempts were used to solve the neutron flux
problem in reactor cores, among the most classic ones are procedures, which
make use of integral transforms. This method has proven to be effective over
many years of research and some representative works may be found in references
[Du06, Vi08, Fel3]. Hence, in this work, we develop a methodology to solve the
neutron diffusion equation analytically by a finite integral transform technique. In
this line, recently Fernandes et al. [Fell] solved the neutron diffusion equation
in cylindrical geometry for a model with two energy groups using the Hankel
transform in infinite space, and after constraining the solution to a finite domain,
the Parseval identity was employed. In a similar solution procedure, the authors
of reference [G103] solved the neutron transport equation in cylindrical geometry,
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while considering isotropic scattering and using the Hankel transform together with
the Parseval identity. Thus, due to the promising results of these works and the
fact that the approximation S, of the Boltzmann transport equation reduces to the
diffusion equation, in the present work, we focus on the derivation of an analytical
formulation for the fast and thermal neutron flux in the diffusion equation and
exploring the finite Hankel transform. The derived solutions for different sources
in cylindrical geometry are relevant for nuclear fuel element assembly calculations
of reactor cores, as for example in pressurized water reactor core simulations.

11.2 Problem Formulation

We consider initially a steady-state problem with two energy groups in the neutron
diffusion equation for a homogenized reactor core given by

—DiAr¢1 + X191 = 51

1
—DrAvrgn + Loty = T v Xpé1 + S+ 2o,

eff

where ¢y is the neutron flux, Dy is the diffusion coefficient for the group g, A, is the
Laplacian operator in cylinder coordinates explicitly given by A, = 8,2 + %Br, 2Re
is the removal cross section of group g, k.rs is the effective multiplication factor
from nuclear reactor theory, v is the average number of neutrons emitted by fission,
X ¢4 is the fission cross section, x, is the integrated spectrum for neutrons of group
g and X, is the scattering cross section from g into group g'. The term S, is the
source term of group g which represents the term k SV Xg X rg@q responsible for
neutron multiplication, i.e. a manifestation of a chaln reactlon The symmetry and
boundary conditions for this problem defined individually for each energy group g
are

3pe

» =0 and ¢g| _,=0. (11.1)

r=0

In order to apply the finite Hankel transform to the previous equations, where as an
idealization R represents the extrapolated distance for the same problem as given in
reference [La66]

R
Ho{f(r)} :/o rf(r)Jo(r&) dr,
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where &; is the i-th root of Jo(RE) = 0, and the inversion of the finite Hankel
transform is given by

Jo(ré&;)
JH(RE)

2 o
Hy 'S &)= =5 D [ &)
i=1
Now, using the property

Hol=Dy ) = —Dy (~6265(6) — Redg (R)J{(RE) )

and further applying the extrapolated distance boundary condition ¢¢(R) = 0, the
finite Hankel transform of this operator term is

Hol—DgArpg} = Dol g (&) -

The Hankel transform of the source terms is given by

B R
HO{Sg} = Sg = /O rSgJO(rE,-) dr .

After application of the finite Hankel transform, one obtains a system of
equations,

1 - _
Digi+ 2~ (gpavZn+ ) (?1>=(§1>
- (ﬁXZVEf] + E21> Dyéi + Zgo ) S,

which is a matrix equation which represents the multi-group problem and may be
cast in compact form

ME)P = S(E) -
The solution of this equation system is formally given by
¢ =M""E)SGE) -
For convenience, we introduce now the shorthand notations

A1(&) = D1} 4+ Zg1 (11.2)

Ax(E) = Dot + Zra (11.3)
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and

1 1
C= < XX+ 212) ( xov X+ Em) (11.4)
kes kerf

=p1 =p
so that the determinant of matrix M in compact form is
Det (M) (&) = A1(E) A2(&) — C
With these conventions, one may write the transformed solution as
= Da @ * DernE

Ar&) - P2 -
; S S
26 = 5 @ T DaonE)”!

¢1 (SI

These expressions are not the final solution yet, since they depend strongly on
the choice for the sources terms. Nevertheless, using the definition of the inversion
of the finite Hankel transform, we obtain for each energy group

[e¢]

etz 2 A (&S, Jo(rg,) S Jo(r&;)
1) = Hy {1} = Rnget(M)(Ei) J2(RE) R2 IZDercM)(sl)mRs»’

oo

a2 A1EDS,  JorE) Sy Jo(r&;)
02(r) = Hy {92} = R2;Dez(M)(§i) T2(RE) w? 22 < Det (M) (&) J2(RE;)

This couple of equations may be used to elaborate the solution of the multi-group
neutron problem for a steady-state diffusion problem, here shown for two energy
groups.

11.3 Solution by the Infinite Hankel Transform

The initial problem in cylindrical coordinates is well defined inside the spatial
domain with » € [0, R] and it was natural to choose the finite Hankel transform
to solve the problem successfully. We now point out and discuss the consequences
if one solves the same problem but using the infinite Hankel transform, which by
definition is

Ho{f(r);r — &} = /0 rf(r)Jo(ré) dr,
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and the inversion has the form
Ho_l{f(é);é — r} =/O §f(E)Jo(ré) d§ . (11.5)

This version of the transform is usually applied for half-open domains. As a matter
of fact, the flux profile for both groups is well known as r goes to infinity, and
we can define an extrapolated distance for both fluxes at R where these vanish and
moreover redefine (11.1) for this kind of problems.

Since the property of the Hankel transform for the operator A, is the same as for
the finite Hankel transform, therefore,

Hol—DgArdg) = DoE2g, (£),

and the equation system after applying the Hankel transform can be written in matrix
form as

D& + Xg1 - (ﬁxwzﬁ + 212) <q§1> B (31)

- (@szzfl + 221) Do§ + X2 ) \S

Using now the definitions (11.2), (11.3) and (11.4), the matrix equation reads

(Al(S) —pi ) (d:’l) _ (;91)
—p2 A28) /) \ ¢ $2
with formal solution given by

() =

! <A2(§)§1+p1§2>
Det(M)(E) \A1(§)S2+ p2S1)

If we focus now our attention on the inversion problem for ¢, we need to investigate
the first term of the last equation using Eq. (11.5).

b1 (A2E)S1E) + p152(5)) -

= Det(M)(€)

Using the inversion theorem, one gets

% AYEVI(rE) /Oo ( 5 )
— =2 7S d — =) J d& .
61(5) /0 s(Det(M)(§)> @ de+p [ gaais ) e ds

The first term of the solution is clearly more complicated to solve, so that to this

end we split the fast flux ¢(x) = qf)}l)(x) + ¢>§2) (x) and consider the following
theorems.
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Theorem 11.1 (Hankel Inversion) If /7' f (r') is piecewise continuous and abso-
lutely integrable along the real axis, then if y > —%, fy &) = H,{f@")}, then

o 1
/0 Efy ()T, (r'8) dE = E(f(r’+) + f(' ).

Theorem 11.2 (Parseval Relation) If the functions f(r') and g(r') satisfy the
conditions of Theorem 11.1 and if f,,(§) and g, (&) are the Hankel transforms of
order y > -1 respectively, then

/0 r' f(rYg(rdr = /0 Efy )5y (&) dé.

These two theorems are essential so that this alternative procedure may be
applied. Upon substituting fo(£) and go(§) with %ﬁm and Sp, respectively,

and using Theorem 11.2, one obtains

W [ (AT - _/°°, _liAz@)Jo(rs)} o
P (X)_/o g(Dez(M)(&))S‘ %=, "o\ Daane |

In other words, we need to calculate f(r’).

Jo(r'€) dE . (11.6)

£y = Hy'! {Az(S)Jo(ré)}

/°° A2(8) Jo(r§)
Det (M)(§) 0

Det (M)(§)

Recalling that Det (M)(§) = A1(§)A2(&) — C and that the physically meaningful
nuclear parameter set satisfies the following condition, 0 < m < 1 for all

A
& € [0, 00), we can expand the term Det (M E)

Mg 1 !
ABAE -C AE 1 - 1555

o+ (reme)* (rem) *
ao\ T aheone) heons) )

Indeed, for all nuclear parameter sets known in the literature, they comply with
m << 1 for & > 0. After evaluating different kinds of parameter sets, one

may obtain an estimate for the order of magnitude O (ﬁ) = 1073 and use this

as a maximum for all values of &, so that one may safely take only the first term of
the expansion.

Are) 1
A®AE -C M@

a7
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Consequently, Eq. (11.6) simplifies to

/ < o)
= J dé& |
@ /0 §A1(§_) 0(r'§) dé

2
so that by the definition of A;(§) = D12+ X, = Dy (gz + ED—RII > (11.3) may
be explicitly written as
L[> Jo(r§) /
fo' = —/ § 5——F——5Jo(r§) dé§
Dy Jo " &2+ (Jap)?

_ | prloG/eirKo(air) . 0 <r' <7
DLIIO(A/alr)K()L far’), ' <r < oo.

Here, a1 = ED—RII and Ip and K are the modified Bessel functions of zero order.

Then, we can write the final expression for ¢}l), i.e. the solution, using the fact that
there is no source outside the cylinder

91" () = %@ /o o/ )i () dr’
R
+ %@f r' Ko(Jarr) Sy (rhdr",

and for ¢§2), we use only the definition of the Hankel transform to obtain

P () = p1Sa(r) .

By a similar procedure, we obtain the solution for ¢, () completing this way the
entire solution of this problem using the infinite Hankel transform approach.

11.4 Results

We elaborated the general solutions in the previous sections, which for specific
applications need the definitions of the parameter set and sources, respectively. Due
to the fact that by virtue the specific source terms dominate the found solutions,
in this section we present the influence of these source terms on the solution for a
steady-state diffusion problem. The employed nuclear parameter sets are listed in
Table 11.1, where for all cases we used R = 5, kefy = 0.95 and v = 2.5 in the
simulations.
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Table 11.1 Nuclear parameter sets
D Dy (5" S |Zm [ Zr [Tn |3 T | Zp
Set1 |[1.43 (039 4 0.0 |0.029 |0.104 |0.015 |0.00000 |0.0041 |0.0077
Set2 143 (039 4 0.1 0.029 |0.104 |0.015 |0.00825 |0.0041 |0.0077
Set3 143 (051 |4 0.1 0.052 |0.081 |0.015 |0.00825 |0.0041 |0.0077
Set4 |1.13 039 4 0.1 ]0.052 |0.081 |0.015 |0.00825 |0.0051 |0.0081

We consider cases with different sources and compare results from the appli-
cation of the finite and infinite Hankel transform, respectively. To this end, we
consider for all cases a dominant source with fast neutrons and one case with no
thermal neutron source and three cases with a weak thermal neutron source. A
further differentiation stems from different removal cross sections for the fast and
the thermal neutron group. The last set is distinct in comparison to all other ones
because of an increased fission cross section in the fast and the thermal neutron
group. For the first case, only the fast neutron source contributes,

Si(r)=S"HR —r) .

Upon applying the finite Hankel transform, the source term is
< . (1)
S1(5) = Ho{S1} = / rSo H(R —r)Jo(ré;) dr
0

R
= s(g“/ rdo(r&) dr
0

_ (R
0 g

and then using the final expression for the scalar neutron flux yields

J1(R&) ,

= Az (&) 1 Jo(r&) 2 S(2>°°1 1 Jo(ré;)

2 .
== = — .
N =g & Der(M)&) /\(R&) ~ R''™0 £t & Der(M)(&) J1(R&)

i=l1

The procedure to obtain ¢, works in close analogy to the one for ¢;. We
obtained the following results for the selected parameter sets specified in Table 11.1
(Figs. 11.1, 11.2, 11.3 and 11.4).

By inspection of the obtained results, one observes qualitative agreement with
what is expected from operational experience for processes inside a nuclear reactor
core using this type of geometry. Quantitative properties are the flat current density
at the origin, i.e. the flux with null derivative at r = 0 represents a symmetry
condition. Furthermore, the vanishing flux at the outer boundary drags the flux from
the maximum value at the center of the domain to decreasingly smaller values with
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increasing radius. As a systematic feature for all parameter sets, the fast flux always
shows a somewhat larger concavity than the thermal flux. In order to provide a
quantitative comparison between the solutions from the finite and infinite Hankel
transforms, a table with the numerical values for the normalized solutions ¢, using
both types of integral transforms is shown. Note that our findings agree fairly well
with results in the literature [Dall].
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Table 11.2 Solution ¢, using the finite Hankel (FHT) and the infinite Hankel Transform (IHT)

for parameter set 1
r/R | FHT IHT r/R | FHT IHT r/R | FHT IHT
0.0 | 1.000000 | 1.000000 0.0 | 1.000000 | 1.000000 0.0 | 1.000000 | 1.000000
0.1 |0.987633 |0.990253 0.1 0.987633 | 0.990253 0.1 |0.987633 |0.990253
0.2 |0.950761 |0.943312 0.2 10.950761 | 0.943312 0.2 |0.950761 |0.943312
0.3 |0.890091 |0.885213 0.3 10.890091 | 0.885213 0.3 |0.890091 |0.885213
0.4 |0.806854 |0.791032 0.4 | 0.806854 | 0.791032 0.4 |0.806854 |0.791032
0.5 10.702894 | 0.670122 0.5 10.702894 | 0.670122 0.5 10.702894 | 0.670122
0.6 |0.580790 | 0.543311 0.6 | 0.580790 | 0.543311 0.6 |0.580790 | 0.543311
0.7 |0.444037 | 0.407630 0.7 |0.444037 | 0.407630 0.7 |0.444037 | 0.407630
0.8 |0.297278 |0.281963 0.8 10.297278 | 0.281963 0.8 |0.297278 | 0.281963
0.9 |0.146613 | 0.149313 0.9 |0.146613 |0.149313 0.9 |0.146613 | 0.149313
1.0 | 0.000000 | 0.000000 1.0 | 0.000000 | 0.000000 1.0 | 0.000000 | 0.000000
N =50 N =100 N =500

In Table 11.2, results for ¢» using the finite and the infinite Hankel transform
are shown. Comparing the solutions for the finite Hankel transform for truncations
at N = 50, N = 100 and N = 500 shows stability of the obtained solution, so
that N = 50 already provides a solution with six significant digits. However, for
solution by the finite Hankel transform, it is not obvious where to truncate the series
in order to obtain an acceptable solution, which depend on the cumbersome task
of determining the roots of the Bessel functions of order 0 and order 1. From the
comparison of the solution ¢, on the one hand by the finite and on the other hand
by the infinite Hankel transform shows that the latter provides solutions fairly close
to the ones by the finite integral transform. The advantage of the infinite Hankel
transform over the finite case is that that there is no need to determine the lowest
truncation of the series, which provides an acceptable solution. Besides having
solved the stationary problem, where the found solution has value on its own right,
the stationary case commonly provides the initial condition for a transient problem.
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11.5 Conclusion

In the reported discussion, we presented and compared two integral methods to solve
the stationary problem of two energy group neutron diffusion in cylinder geometry.
Both methods, the finite and the infinite Hankel transform, generated comparable
and acceptable results for the considered problems (parameter sets 1 to 4). While
the finite Hankel transform seems to be the more natural tool to derive the solution
due to the finite domain in consideration, the infinite sum of the analytical solution
imposes the problem to determine truncation such that the approximate solution
represents the exact solution to a prescribed accuracy. This task does not appear
when the infinite Hankel transform is used, where it is the computation of the
integrals that represents the challenge, and however numerical schemes for well-
behaved integrands are usually no issue. All implemented simulations showed that
both methods provide solutions with acceptable quality, but that the infinite integral
transform is the simpler method especially due to the necessity to have a sufficiently
large number N of terms in the series of the solution by the finite Hankel transform.
From the computational point of view, the source code for the implementation
was written in Python 3.8 for both integral transforms and ran on a simple home
computer, Intel(R) Core(TM) i3-4150 CPU @ 3.50 GHz (64-bit operating system)
with Microsoft Windows 10 operational system. For the solution by the infinite
Hankel transform the CPU, time amounted to a few seconds, while the finite Hankel
transform provided also a solution in a small but larger computational time, however
with increasing tendency for increasing N. Our findings allow to conject that the
solution by the infinite Hankel transform in principle opens pathways to increase the
problem setup, such as to include more energy groups and allow for heterogeneous
domains, which designs these new cases closer to the ones of real reactor cores.
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Chapter 12 )
A Simple Numerical Scheme to Obtain e
Reflectivity and Transmissivity

of an Isotropically Scattering Slab

C. A. Ladeia, H. R. Zanetti, D. L. Gisch, M. Schramm, and J. C. L. Fernandes

12.1 Introduction

The radiative transfer equation has numerous applications such as radiation trans-
port in the atmosphere, nuclear reactors, buildings, biological tissues, and vege-
tation, among others [C10z83, Mo13, PiFul3, HoEtAI20]. Originally, the model
has been formulated as an integro-differential equation, whose analytical solution
is practically impossible to obtain for general cases, so that numerical iterative
methods were developed over the years to obtain approximate solutions [ClOz83,
Liwu96, CrEtAll7]. In order to simulate the essence of radiation transport, it is
desirable to have a precise and reliable numerical model to solve the linear radiative
transfer equation. The application of numerical methods in transport theory is
the conventional approach, and it has been explored in classic textbooks such as
[LewMi84, KaEtAl09] only to some essential extent, and there is practically no
convergence analysis for iterative methods presented in their texts. However, many
practical applications require reliable information of radiative fluxes (or partial
fluxes), or at least their reflected and transmitted fractions [C10z83, LiWu96], which
allow to make contact with the experimental sector.

In this chapter, we focus on the linear radiative transfer model, considering a
passive medium with no thermal contributions, which is an initial approximation
for application problems. To this end, we consider a one-dimensional slab geometry
and compute some fundamental properties for applications of radiative transfer,
namely reflectivity and transmissivity. Our developments are based on the discrete
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ordinate method in the angular variable [Ch50] and a modified version of the finite
volume method [LaEtAl20] in the spatial variable. As usual in transport theory, the
solution is obtained by a line-by-line iterative method, and we present a simple but
necessary condition for its convergence based on norm operations. As a case study,
we compute values for reflectivity and transmissivity of isotropically scattering
slabs.

12.2 The Radiative Transfer Equation in Slab Geometry

We consider the radiative transfer equation in slab geometry [0z73],

a 1
P (o )+ 1 (2 ) = ? /1 P, 1) (2, i)dud (12.1)

where T € [0, L], T is the optical depth variable, u € [—1, 1], u = cos @, 6 is the
direction angle, and consequently 1 is the direction cosine of the incident rays, and
I = I(z, n) is the radiation intensity. Further, o is the single scattering albedo; P
is the phase function and may be approximated as a truncated series with Legendre
polynomials [Ch50].

<z

PG, i) =) BeZe() Pe ().
£=0

The boundary conditions of Eq.(12.1) are given for the forward and backward
directions, respectively.

0
10, ) = fi(w) + e1lp1(T) — 2p) / 1 100, hyp'du

for 4 > 0 and

1
1L, 1) = fo(u) + 21 (T) + 202 fo (L, W) dp

for w < 0. Here, f1(n) and f>(u) are the external irradiation incident on the
surfaces at T = 0 and T = L, respectively. Similarly, €] and € are the emissivities,
and p; and p; are the diffusive reflectivities on the surfaces witht =0and t = L,
respectively. Although the medium is passive, at the two surfaces, one shall consider
thermal radiation contributions I1(7T) and I»»(T), which are intensities due to
black-body radiation for a temperature 7.



12 A Simple Numerical Scheme to Obtain Reflectivity and Transmissivity 171

12.3 Discrete Ordinate Method

So far the problem was formulated using continuous variables, and in order to cast
the problem in discrete form, we follow the original work of Chandrasekhar [Ch50]
and use the so-called S3; approach in the polar angle, defining the intensity in the

now discrete direction by I, (t) = I (7, ;). The discrete ordinate version of
Eq.(12.1)is
M
d w(T)
,umalm +1In = ) Z Wiy P (s o) Iy (12.2)
m'=1
form = 1,2,..., M, where u,, and w,, are the (crescent) abscissas and weights

of the Gauss—Legendre quadrature. For convenience, we consider only even values
for M, such that M/2 is an integer. The discrete ordinates form of the boundary
conditions is then

M2
In(0) = fi(w) + € lp1(T) = 201 Y o Wy L (0) (12.3)

m'=1

form=M/2+1,M/2+2,..., M and
M
Ln(L) = fa(0) + &2l (T) + 202 > Wi Ly (L) (12.4)
m'=M/2+1

form =1,2,..., M/2. One of the reasons to adopt a discrete form of the original

equations is that these may be cast in matrix form, so that one may make use of
available techniques to solve the approximate equations.

12.4 Spatial Discretization

Different from the conventional Sj; approximation, we also discretize the spatial
variable 0 < t < L in equally spaced nodes {ri}fvz o> Wherein 7; = iAt for
i =0,1,...,N and At = L/N. One may construct a discretized version of the
problem (12.2) upon using average values for each respective interval or formally
upon applying the operator

1 Ti+1
— .1d
At ), [-1dr



172 C. A. Ladeia et al.

fori =0,1,..., N—1.For the integrals, we used the trapezoidal rule and dropping
the error term [LaEtAl20] so that Eq. (12.2) becomes

M
1 1 1 w(r . .
Hom (Ar Lt — El ) + (2Irln+l + 51, ) E W' P (s o) (I,l,;rl + Ifln'>

or in a shorthand notation

B It 4 AL =S (12.5)
where 1;51 = I(t;, ) and
j M1
Al =4 12.6
m AT + 2 ( )
i Mmoo, ]
Bl =" 4 12.7
"o At + 2 ( )
(@) < .
S =222 D Wt P Gt ) (1;;1 n I;n,) . (12.8)
m'=1

The boundary conditions (12.4) and (12.3) in discrete form are then given by

M2
o= f1w) + e lpi (T) = 2p1 Y Wyt Iy, (12.9)
m'=1
form=M/2+1,M/2+2,..., M and
M
1N = )+ aln(M +20 Y Wkt L) (12.10)
m'=M/2+1

form=1,2,...,M/2.
~ This system is solved in an iterative scheme, updating the left-hand side values
I,‘n+1 and using the previous (old) values in the right-hand side so that (12.5) reads

. Sio— Al
pi =t mem (12.11)
Bm
or
. S _Bi [l+l
Il = '"A# (12.12)
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depending on whether the iterative process is directed top down or bottom up.
Further, we used the stopping criterion

E S Emax,

where

m=l. M i1+ 1 (1) g |

E= (12.13)

Here, (I,’")O1 4 represents the values of /,, in the previous iteration, and Emax is a
measure for the relative maximum difference. The iterative process is described in
the following pseudocode.

1 Get the problem data.

2 Choose the numerical data: N, M, and Egx.

3 Compute the method quantities, like T; and U,.

«Compute A’ and B! using (12.6) and (12.7).

s Guess [ for all m=1,2,..., M and i=0,1,....N.

¢Set E=E;,+1 (to enter the while loop).

rHhile E > E,.;

8 FoTitm —i1 2 D

s update /¥ using (12.10);

10 for i=N-1,N-2,..., 0

1 compute S, using (12.8);

update /! using (12.12);

m

wow

14 update /2 using (12.9);
15 for i=0,1,....N—1
6 compute S using (12.8);

17 update I'/! using (12.11);
18 compute the relative error E with (12.13).

In order to calculate the reflectivity and transmissivity, we define the backward
and forward radiation fluxes as

0 M/2

g (v) =/ I, wpdp = > w1},
-1 m'=1
1 M
q+(r)=/ I(z, Wpudp = Z Wi o' Ly s
0 m' =M /241

and then the coefficients may be calculated from g~ (0), g™ (0), and g (L). For the
finite slab geometry, where fi(u) + &11p1(T) # 0 and fo(u) + e2lpp(T) = O,
the reflectivity is the ratio between the total outgoing flux at T = 0 and the total
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incoming flux at T = 0.

B SO, 10, pdu g7 (0)
Jo 10, pdpe 4O

Likewise, the transmissivity is the ratio between the total outgoing flux at 7 = L
and the total incoming flux at T = 0.

P Jo 1L, wpdu _ a* (L)
fol 100, wudpn 47 0)

12.5 Numerical Results

To check if the present methodology is appropriate, we determine numerical values
for reflectivity % and transmissivity .7 depending on a selection of values for
albedos w = {0.2,0.8,0.995}, without surface emissivity and reflectivity €; =
€2 = 0 p; = pp = 0, and for isotropic incident radiation through the boundary
with T = 0, thus fi(n) = 1 and fo(n) = 0 at T = L. Further, six values for the
optical thickness were considered L = {0.1, 0.5, 1.0, 2.0, 5.0, 10.0}, and the phase
function (P (u, u') = 1) was set up for isotropic scattering with .Z = 0. The spatial
and angular mesh from discretization was implemented with N = 50 and M = 100.
Figure 12.1 depicts the physical scenario in the domain with depth L and the total
radiative fluxes across the respective boundaries (g™ (0), g7 (L), g~ (0)) at T = 0
and T = L, respectively. It is noteworthy that reflectivity % and transmissivity .7 in
the present case are merely a consequence of the physical properties of the medium,
which is dominated by isotropic scattering.

The computed values for the reflectivity and transmissivity from the total
radiative fluxes are shown in Figs. 12.2 and 12.3, respectively. On observing the
effect of the homogeneous medium with constant albedo everywhere and isotropic
scattering, the higher the albedo value the higher is reflectivity and the lower
is transmissivity for all optical thicknesses. For lower albedos, one observes
in Fig. 12.2 a saturation for larger optical thicknesses that may be understood as
a balance between attenuation by absorption and the compensation by the isotropic
source f1(u) on the boundary at T = 0, so that deeper regions contribute less to
q~ (0) through scattering. In Fig. 12.3, one observes the attenuation effects with
increasing optical thickness, which is to be expected by the Beer—Lambert—Bouguer
law.
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Fig. 12.1 Physical scenario with medium and boundary properties and the respective total
radiative fluxes across the boundaries
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12.6 A Convergence Criterion

The iterative scheme may be written in matrix notation
LIy, =-Uly_1+b, (12.14)
where k is the iteration index, while the exact solution I'* satisfies
LI*=-UI*"+b. (12.15)
The sequence {I;} converges to the exact solution if
Iy —I*—0 (12.16)

for all k greater than certain value. One standard way of assuring (12.16) is taking
the norm in order to get semi-positive differences only, so if

|1 —1*| — 0,
then (12.16) is true and the sequence converges to the exact solution I*. Here, || - ||
represents the maximum norm.

Upon subtracting (12.15) from (12.14), we obtain

I —I"=-L7'U (I)- - I') ,
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Table 12.1 Matrix norms of L and U for all test cases
w=02 w=0,8 w = 0,995
L L] 1ol IIL| 1ol LI 1ol
0.1 979.96938 0.24993 980.71916 0.99971 980.96284 1.24338
0.5 196.19382 0.24993 196.94360 0.99971 197.18727 1.24338

1 98.22187 0.24993 98.97165 0.99971 99.21533 1.24338
2 49.23590 0.24993 49.98568 0.99971 50.22936 1.24338
5 19.84432 0.24993 20.59410 0.99971 20.83777 1.24338
10 10.04712 0.24993 10.79690 0.99971 11.04058 1.24338

and therefore, we have an expression for the k-th error starting from an initial guess
Io,

I — I = (—L’1U>k (Io—1%) (12.17)

fork=1,2,3,....
Applying the maximum norm in (12.17) and using some norm operations, we get

[e—17] < || o - 17|

’

where it becomes evident that | I — I*| — Oask — oo if |[L~'U| < 1. Further,
using some norm product operations, we get that if

HL‘IH | <1, (12.18)

then the scheme is convergent. Moreover, upon multiplying both sides in (12.18) by
|IL|| and using HL’1 H IIL|| > 1, then the iterative scheme converges only if

LIl > [IU] .

Table 12.1 shows ||L|| and |U || for the test cases.

12.7 Final Remarks and Conclusion

In the present work, the linear radiative problem in slab geometry was solved
by a numerical scheme using a spatial and angular mesh. The reflectivities and
transmissivities for a selection of albedos of an isotropically scattering medium were
determined for an isotropic incident radiation. The obtained results are in agreement
with expectations from experimental physics, which may be used as an indication
that the computational implementations are consistent. The codes were written in the
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Python programming language version 3.8, which proved to be quick and effective
for all simulated cases. The numerical results were computed on a standard personal
computer, and execution times for all simulated cases were of the order of 100 s,
thus reaffirming the effectiveness and applicability of the methodology.

As a highlight of this work, a convergence criterion was implemented, which to
the best of our knowledge is usually absent in the literature of transport theory.
Quite often benchmark results are used as reference solutions, however without
a desirable justification for their claim of high precision. Despite the presented
convergence criterion is required, it is not sufficient to assure general convergence
of this iterative scheme; however, it may be considered a starting point toward a
rigorous convergence criterion for problems in transport theory that make use of
source iterations, a usual technique in the field. As a continuation of the present
treatise, we will develop a sufficient convergence criterion for linear cases, which
will set then the base for a genuine convergence criterion for the nonlinear radiative
transfer equation.
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Chapter 13 )
A Unified Integral Equation Formulation e
for Linear and Geometrically Nonlinear
Analysis of Thick Plates: Derivation of
Equations

R. J. Marczak

13.1 Introduction

Numerical solutions for geometrically nonlinear bending of moderately thick plates
are well reported in the literature. Among the conventional numerical methods
used to solve this type of problem, the boundary element method (BEM) has
been receiving relatively little attention on the subject, in spite of the excellence
of the results obtained with the method for linear problems [We82, KaTe88]
[RaEtA197,Ral5]. Many reasons have contributed to prevent the general application
of the BEM in nonlinear problems. The generality of the finite element method is
obviously one of them, but some mathematical aspects inherent to integral equation
methods have contributed as well. As one of these aspects, one could mention the
so-called convective (or free) terms that arise in derivative integral equations, as
these terms are sometimes misunderstood or even missing from the equations.

The objective of this chapter is to outline the deduction of the convective
terms appearing in integral equations for large displacement analysis of Mindlin
and Reissner plate models. There are only few works exploring the solution of
geometrically nonlinear thick-plate bending problems using the BEM [XiEtAl90,
Vi90, Ji91, XiQui93, SuEtAl194, Ra98]. However, most of them do not present
the derivation of the free terms, and, in addition to the best of the author’s
knowledge, no one shows results for maximum transverse displacement far beyond
the plate thickness magnitude. The present work aims to outline a clear and didactic
derivation of such terms, as they are quite common in nonlinear applications using
boundary integral equation methods.
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The Mindlin and the Reissner plate theories are very well-known structural
models. In his celebrated work, E. Reissner [Re44] started from a stress field and a
mixed variational principle to obtain the equilibrium equations. The Hencky—Bollé—
Mindlin (or simply Mindlin, as it is generally known) plate model [Bo47, Mi51]
can be more easily obtained departing from a kinematical point of view, where the
Kirchhoff-Love normality (thin plate) condition is relaxed.

Uq (x1, X2, X3) = ug (X1, X2) + X3¢ (x1, X2) (13.1a)
Us (x1, x2, x3) = u3 (x1, x2) . (13.1b)

In all expressions throughout this chapter, Greek indices range from 1 to 2, while
Latin indices range from 1 to 3. Here, u contains the membrane (in-plane) and
transverse plate displacements, respectively (i.e., u, and u3), while i, are the plate
rotations. All variables are referred to the plate’s middle surface. If taken pointwise
across the thickness, the displacement field of the Reissner model is more complex
than postulated in Eq. (13.1). However, the middle surface fields remain valid for
this model if it is interpreted as a weighed mean value of the displacement field
across the thickness .

/2
Mindlin _ 2 /
* h3 ) _pp

/2 2
MISVIindlin — i/ / ul;eissner(xl’ X2, X3) 1 — % dX3.
2h J_pp2 h

The in-plane displacements are included in Eq.(13.1) because the two-
dimensional elasticity behavior will be superimposed on the plate bending
equations, aiming the derivation of equilibrium equations for geometrically
nonlinear bending problems. These are found to be written in terms of resultant
stresses following the reasoning of reference [Fu65].

1)0()1t{eissner()”’ X2, X3) X3 dx3

Nep,s + 4o =0 (13.2a)
(Nopuz,) g+ Qay + 43 =0 (13.2b)
Mg, — Qo +mg = 0. (13.2¢)

Here, Nyg are the in-plane (membrane) forces, Q are the shear forces, and Mg
are the bending moments. The symbols g, and g3 stand for in-plane and transverse
loadings, respectively, while m, are the distributed moments. Equation (13.2) can
be recovered in terms of displacements through the stress—displacement relations.

1—v

2v 1
Notﬁ =C |:Ltayﬂ + Upg,q + u3,Qu3,ﬁ + : (My'y + §u3,yu3,y> Saﬂ]

(13.32)
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-V 2v
Maﬁ =D |:Ma’/3 + ug,, + m uy’ysaﬂi| (1331’))
2 1—=v
o« = DA [ua + ug,m] . (13.3¢)
Further, C = (lf?ﬂ) , D= 125’13‘)2) A2 = 1%2 , and «2 is the shear stress correction

factor. In comparison to the plate theory commonly used, the only visible difference
in Eq. (13.3) is the expression for the moments, which has an additional term in the
Reissner plate model.

MBS = RHLS. of Eq. (13.3b) + 5 43 Sap. (13.4)

V
(1 —v)A

In order to unify the equilibrium equations in the same computational model, a plate
model factor (m ) is employed [WeBa90].

1—v 2v
Ma/g = DT |:1ﬁa,ﬂ + Wﬂ,a + mlﬁy’yaaﬁ} +Mf q3 501,3 , (135)
where
myg = _r for the Reissner model, (13.6a)
(1 —v)A2
mp=0 for the Mindlin model. (13.6b)

Equation (13.2) describes moderately thick-plate bending problems for large
displacements and a moderately large rotations regime [Fu65]. In view of Eq. (13.5),
they can be used regardless of the plate model considered, including the classical
Kirchhoff-Love model. The presence of the nonlinear terms in Eq.(13.3) is a
consequence of relevant higher-order terms kept in the Green—Lagrange strain
tensor. Both the linear and nonlinear contributions can be further evidenced by
writing,

Nag = Ny + Niig . (13.7a)
0y =0, + 0", (13.7b)

where

! — _ _ 2v
Naﬁ = CT Ua,p g, + =

ﬁy,yaaﬁ} : (13.8a)

v vV
[”3,a”3,ﬁ + = M3,Vu3,y8aﬂi| , (13.8b)
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1—v
I 2
Q! = Da

(uq +us,) . (13.8¢)

Qu = Nopuz . (13.8d)

Upon substituting these into the equilibrium equations, one obtains the (coupled)
Navier equations of the problem, where the nonlinear terms are added to the loading

terms in a general system.
mL 0 mu m’q
= . 13.9
o)) (%) 39

Here, "L is the differential operator of the linear membrane equilibrium problem,
fL is the linear bending operator, "u = {u us}7T are the in-plane displacements,
and fu = {Y; ¥» u3}T are the plate displacements. The membrane-bending
coupling is implicit in the corresponding pseudo-loadings " and / q.

"G, = =" Fup(30) "4, (Q) + "q(Q) (13.10a)
1 =170 45(Q) + ' 4}(Q). (13.10b)

The complete expressions of the terms used in Egs. (13.9) and (13.10a)—(13.10b)
are as follows.

1+v 982 14+v 82

1—v 1—v9x2 1—vdx19x2

m — 1
L(dg) =C L4y 92 s L+ 52 (13.11a)
1 —vdx;0xy 1—vax§
2 2
A_/\2+1+ua_ 1+v 0 _)in
1—v Bxf 1 —vdx19x2 9x1
1— 2 2

fL(E)Q):D v I1+v 0 A_12+1+”a——2i
1 — v dx19x2 1—vgx? dx2

b 0

Ar— 22— A
9x1 0x2

(13.11b)
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10
"RD0) = 13.12
00 =[] (13120
- 9
10mf—
f o1
F00) = | 01, (13.12b)
0x7
00 1
T
"q' () ={q1, 2} (13.13a)
v
1—v | W3,u3,) .0+ (u3,,u3,,),
mg(Q) = C—— ] Lo (13.13b)
2 (u3,u3.4) .+ T 1)(M3,yu3,y),2
T
Tq(Q) = {mi, ma, q3} (13.14a)
1—v T
1q"(Q) = D——{0, 0, (Nuguz ), } - (13.14b)

2

Equations (13.2) and (13.3)—with Eq. (13.5) replacing equation (13.3b)—are taken
herein as a starting point for an incremental integral formulation. Using the weighted
residual method [BrEtAl84], the following Somigliana identities for boundary
variables are obtained [XiEtA190, Ra98, Ral5],

mcaﬂ<p)mu,s<p>+/r'" 2@, P)"ug(q) T, =/F'" (@ P15 dT,
+/Q'"va,e(Q,p)’"q,s<Q)d9Q—Lmuaﬁ,y<Q,p>Ngy(Q>d9Q ()

(13.15)

and
fCij(p)fuj(p)+fFfTu(q,p)fMj(4)dF Z/rfUif(‘l’P)f’/(Q)drq

+/va,-j(Q,p>qu(Q)d9Q —/QfUis,ﬁ(QP)Na/s(Q)fM&a(Q)dQQ—I—fvi(P),
(13.16)

where the m and f prefixes refer to the membrane and the bending problem,
respectively, and the non-integral terms "vg and fv; were included to account for
concentrated loads inside the domain [KaSa85]. The symbols p and g denote source
(collocation) and field points, where lower case letters indicate boundary points
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and upper case letters indicate domain points, respectively. The corresponding
displacement (" U;; and fu; 1), traction (" 7T;; and T i), and the other fundamental
solution tensors can be found elsewhere ([We82, Ra98]). Equations (13.15) and
(13.16) are easily particularized for internal points upon substituting " Cyg = Sup
and fC,'j = 8,']'.

From Egs. (13.15) and (13.16), it is evident that the evaluation of the derivatives
of the transverse displacement (#3) is required. They are present in the nonlinear
membrane forces in the last integral of Eq.(13.15) and also in the last integral
of Eq.(13.16). These terms are partially responsible for the membrane-bending
coupling. In domain methods such as finite elements, it is typical to employ the
derivatives of the shape functions, ie., u;, = ¢; u;, where ¢; are the shape
functions. Despite being simple, this approach may generate poor results when
the global shape function is not able to represent accurately the gradients of the
displacement field. Similar approaches can be used for boundary elements, but the
use of higher-order domain cells becomes mandatory for acceptable results (see, for
instance, [Vi90]). In the case of employing the boundary element method, there is
no need to assume an a priori interpolated form for the displacement derivatives
since equations (13.15) and (13.16) are already a strong form of the displacement
field. Therefore, a more rigorous solution can be obtained by differentiation of these
integral equations with respect to the coordinates x, (P). The procedure leads to the
six additionally required integral equations for yg , and u3 .

Assuming that the displacement derivatives are required only at internal points,
the differentiation of Eqs. (13.15) and (13.16) is straightforward as all their kernels
become regular. However, the differentiation of the last two integrals on the right-
hand side of both equations is rather tedious because the tensors " Vg, , f V3i s
n B,y and / Uiz have weak singularities when Q = P. Taking into account the
dimension of the corresponding integration domains, one can show that the integral
containing /V is singular only in the case of Reissner’s plate model, while "V is
always regular [WeBa90]. Unfortunately, the differentiation of integrals containing
singular kernels does not obey the classical calculus rules, and they must be treated
by means of the Leibnitz formula [Mi62, Bu78]. The formal derivation of such
derivative integral equations produces the so-called convective terms [BrEtAl84],
which must be added to the final expressions for g , (P) and u3 , (P).

5, (P) = [ Tyt Py @l == [ MUy P @,
- /g "V o (0, P)ay (Q)dR0 + /Q "Upy (O PYN"S(0) dS20
+N;/18 (P)/]l/mUﬁy,ﬁ(Q, P)rm((P)d]—'Ql

1

—qy (P) /F/mvﬂy(Q, Pyr,(P)dIg, —"vg,(P) (13.17)
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u3,, (P) — /P T, (q. Pyui(q)dly = — /F 103, (q. P)ti(g)dTy
— /Q IV3i.,(Q. P)qi(Q)dS2¢ + /Q 1Us3,,,(Q. P)YNg, (Q)u3 ,(Q)d2¢
+ Nay (P, (P) /F U, (. Pyr (P,
—my qi(P) /F Tv3i(Q. Pyr,,(P)dIg, — ' v3,(P). (13.18)

A negative sign was added to all the integrals as the derivatives are assumed to be
taken with respect to x,(P). The integrals on F’l in Egs. (13.17) and (13.18) are
the aforementioned convective terms, and I~ /1 stands for a unit circle centered in P,
where the derivation of the former is the objective of the present work. In the further,
the main goal is to solve the analytical expressions for all four convective terms.

TeNy(P) = Nyy (Pyus, , (P) /F U, (@, P)r (Pl (13.19)

Tl (Py=my qi(P) /F Va0, Pyr, (PYdTy, (13.19b)
1

") =Ny ) | Vs (@) (P)dTo (13.19)

el (P) =gy (P) fr{ "V (Q. P)r,(P)dTg,. (13.19d)

13.2 Derivation of the Convective Terms

This section details the analytical exposition of Eq.(13.19) following the steps
described in reference [BrEtAl84]. Once these terms are obtained, the set of
derivative integral equations for the translational displacements are completed. An
inspection of Egs. (13.15) and (13.16) reveals that the candidate terms that give
origin to the convective terms are

1Y = /Q TUss.,(Q. P)Nap(Qu3,,(Q) d20 . (13.20a)

I =/QfVi,-(Q, P)q;(Q)dS2 | (13.20b)



186 R. J. Marczak

7= fg "Uap(Q. PYNBS(Q) dS2g . (13.200)
I = /Q "Vap(Q. P)gp(Q)d g . (13.20d)

where its derivation with respect to the coordinate axes leads to a general form for
Eq. (13.19).

I (P) (13.21a)
dxy (P) op
8x8},I€1P) =T cj(P) (13.21b)
ajyjfvp) = "cap(P) (13.21¢)
8xanyP) ="cap(P). (13.21d)

In order to keep the notation simpler, for convenience the prefixes m and f will be
suppressed in the next paragraphs. In order to recover the complete representation
of all expressions, one may consult equation (13.21).

N

1
dxy (P)
Equation (13.20a) may be expressed as the limit

Evaluation of

IiN = lim Uis,,(Q, P)My(Q)dS2¢ , (13.22)
e—0 -2
where M, (Q) = Naﬁ(Q)ugyﬂ(Q) and £2¢ is a unit circle centered at the source

point P. The boundary of £2, is denoted I".. Consequently, Eq.(13.20a) may be
expressed by

E)I,N _ 0 U " o o
dxy (P) _GER)(E/;)QE i3, (@, P)YMu(Q) Q) . (13.23)

Using a polar coordinate system (7, 8) with origin at P = o as depicted in Fig. 13.1,
Uis,, is rewritten considering only its strongly singular part.

1
Uis,, = "G.0) A3, (@). (13.24)
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Figure 13.1a shows the case with 7(7,0) = 7 and ¢(7,0) = 6; however, if the
source P is perturbed by a Cartesian increment Ax,, the parameters r and ¢ differ
from 7 and 6, respectively, and the boundary I'. changes as well (see Fig. 13.1b).
This shows that T ¢ is dependent on the load point location, so that for convenience
one may cast equation (13.23) in polar coordinate system representation.

N 2 RO) 4. -
i _ f lim (i/ A, @) Ma(Q)FdF> do. (13.25)
0 r

8x), e—0 axy é

One should note that in Eq. (13.25) the integration limits vary with the integration
variable, and when this dependence holds, the Leibnitz formula shall be used
[SoRe58].

d 9@ 9@ 5f(x, a d d
[ rewax = [T g g T+ 0@
da ¢1() o1 () da da da
(13.26)
Applying Eq. (13.26) directly to Eq. (13.25) yields
3 (RO A, RO 5 /A,
KB 30 (@) MQ(Q)W:/ _< ,3,a(¢)) Mo(O)
0xy, Je r ¢ 0xy r
Aj de Aj dR
_A3a @)y gy dE | A g AR (13.27)
r(€,0) dx, r(R,0) dx,

Due to the fact that the origin of the coordinate system coincides with the source
point P before the imposition of Ax,, and it remains there after the application of
the increment, only € changes with x,, while R does not. As a consequence, the last
term on the right-hand side of Eq. (13.27) vanishes. Moreover, taking into account
that r (e, 9_) = ¢ = € when P = o, one obtains

N 2 R($) 4
o =/ lim [/ 0 <_Al3’a (¢)> Ma(Q)rdr:| d
3xy 0o €0 Je Bxy r

2
- Ma(P)/ A3, (@) cos(r, x,) de . (13.28)
0

Now it is instructive to investigate the existence of the first integral on the right-hand
side of (13.28). Noting that

KB <_A"3~a ("”) Mo(Q)r =r> (M) ML (329)

0xy r 0xy r
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and defining A;3,,(¢) = r?5> a (M), the term

2 R .
[ lim [ / 9 <—A’3'“ (¢)) M, (P) rdr:| de
0 €>0LJe BXy r

can be added and subtracted from Eq. (13.29), resulting in

2 R .
[ im [ [ (—A’“ “”) Ma(Q)rdr} d¢
0o €¢>0]J¢ ny r

2 B R 1
- /0 tim {AB,W«M / [Ma<Q>—Ma(P>1;dr}d¢
2
+ Ma(P) f A3y @) I0(R) d — lim [M (P)Ine / A,-g,wws)dqs].
0
(13.30)

All the integrals in Eq.(13.30) are limited, provided that the membrane-bending
coupling satisfies the Holder condition in P.

Mo (Q) — Mo (P)|| < Ar® A,a>0.
Due to the tensor /L-g,m satisfying the property fo () d¢ = 0, the last two

terms in Eq. (13.30) vanish. In addition, the first integral on the right-hand side is
convergent since
R

} R Ay Aret? 9 (A
lim |:A,'3W (¢)/ dr] = lim |: r In(r) — < 13,a):| <00,
€0 B e—=0| o — ax}’ r €

which completes the demonstration.

13 ay

Now BIiN /0x, can be transformed back into Cartesian coordinates,

a1 U3, (Q. P)

So— | R TN (0 us, (0) dR2g
Q

0xy 0x,

— aﬂ(P)ug’ﬁ(P)/ U,»3,ar,yd1“’, (13.31)
ry

where the first integral shall be interpreted in terms of the Cauchy principal
value (CPV). The second term on the right-hand side of (13.31) is the convective
contribution, as it appears from a change in the position of the source point. In
the present work, the interest remains in the development of the convective term
particularized for i = 3 according to Eq. (13.19a).



13 A Unified Integral Equation Formulation for Thick Plates 189

Since the exterior normal of Fl’ points to the center of the circle r , = —ngy, one
can write the convective term as

FeN(P) = Ny (P) /F Uy, 1., dT" = —Nep(P) fr Uy, nydl’ ., (1332)
1 1

with U3, . containing only the singular part of Us3 . In the present case,

-1 r

S o

Uy = ———s %,
Ba T gD —v)A2 r

thus validating the representation (13.24). Using dI” = r d¢, then Eq. (13.32) is
analytically defined by

feN -1 ’
Teqp(P) = 2D =2 [/m Nyng d¢} Nyp(P) .

Recalling (Fig. 13.1) that ny = —cos¢, np, = —sin¢ and using elementary
trigonometric integrals, the following result is obtained.

_erﬁ(P)

Tehy(P) =

This non-integral term is added to Eq. (13.18) replacing thus the first integral on
I'. Note that the correction is necessary only in the singular case (P = Q). A
comparison to findings in the literature shows that Eq. (13.33) is in agreement with
the results obtained by Xiao-Yan et al. [XiEtAI90].

Fig. 13.1 Definition of the boundary I", around the source point. (a) Initial configuration, (b) the
effect of an increment Ax,, applied to the source point coordinates
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q

]
0x, (P)
The fundamental solution tensor used to take into account domain bending loadings
in both the Mindlin and the Reissner plate models is given by ([WeBa90])

Evaluation of

_ 00U, + Uiz,
IN=IU-mi/U="U-ms| 00Us, +Un,
00Uz, +Us,

Following the procedure outlined in the previous section, Eq. (13.20b) is written in
terms of a limit

1Y = lim Vij(Q, P)q;(Q)dS2g (13.34)
e—=0Jo_0

€

so that its derivative results in

aliN =1 9 / Uii(Q, P)gi(Q)dS2 (13.35)
ox, (P)  e0\ax, Jo_g, ~HN T 9 '
0 ~
+ mfa—/ Ui (0, P)qj(@dfzg) : (13.36)
x}’ — 82
Now, the treatment has to be carried out for the Reissner model (my = 1),

otherwise 'V = /U, and since U = 0O (Inr), the first integral does not manifest
strong singularities after the differentiation and will not provide convective terms.
The second integral deserves a more careful inspection. Since the interest is in
the derivative of the plate transverse displacement, Eq. (13.35) is particularized,
considering from the outset only the necessary terms.

ary i a/ u . . .
axy(P)_eg%(R -0 30,4 (@, P)g3(Q) Q). (13.37)

However, since Usq,, is regular on £2, it is not possible to apply the representation

1
o = f/‘ o N 1 .
Usa.q o « (@) (13.38)

and consequently, there is no convective contribution, as expected.

fcgﬂ(P) =0. (13.39)
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N
o

dx, (P)
In the case of Eq.(13.20c), one may follow the same spirit as lined out in the
previous two paragraphs.

Evaluation of

JY = lim Uap,s (0. PYN35(0) dS2q. (13.40)
e—>0 -8

The first step is to write the integral as a limit,

aJN . 3
=1 — Uyps(Q, P)NG as2 , 13.41
et =l (G [ vwa0. PN 0)d20) (13.41)

and then introducing

1
Usp.s = G0 Agp 5 (D), (13.42)

one arrives at an expression that may be solved by the use of the Leibnitz formula.

ﬂ = —/ Uap.y Ngs(0)dS2¢9 — N"a(P)/ Ugp,sr,,dI". (13.43)
0xy o 0xy B 4 r o

Here, the first integral shall again be interpreted in the CPV sense, provided the
nonlinear membrane forces satisfy the Holder condition on P.

INgs(Q) = Ngs(P)I < Ar% A a > 0. (13.44)

Upon analyzing Eq. (13.43), one identifies the expected convective term,
meN(p) = Nga(P)/ UaposT., dr’' = —NE(S(P)/ Ugp,snydl’", (13.45)
r r

where Ugyg, ;s is O@r~"), and consequently, the analytical representation of
Eq.(13.45) is

1 0
m N
P) =g —4v)r Sup — 1,8
¢ (P) 87 G (1 —v) {/271 (G V)T, dap — T4 Opy

~ 8ay + 2,11, ] do} Nis(P) . (13.46)

sa’ 5By
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Finally, using the relations n; = —cos ¢ , np = — sin ¢ and elementary integrals of
trigonometric powers leads to the following expression:

N
mcaﬁ(P) :m [(3 —4v) 80508y — 8ap0ys — Say s
1
+Z(Sa,33y5 (1+ 230”)} Nys(P). (13.47)
aJl
Evaluation of ——>—
dx, (P)

In this case, ™V = U, and since U = O (Inr), no convective term is involved,

’”czﬁ(P) =0.

13.3 Summary of the Results

All the relevant expressions obtained in the previous sections can be summarized as
follows:

"l (P) =360 [(3— 4v) 80888y — Supdys — aydps
l n
— 4 8apbys (14280, ) | NJs(P) . (13.48a)
el (P) =0, (13.48b)
8
Tely(Py =— ﬁ Nyg(P), (13.48¢)
Ted(P) =0. (13.48d)

These equations are subject to the conditions

IMo(Q) — Mo(P)| < Ar® . A,a>0;
IN3s(Q) — Njs(P)| < Brf . B.B>0,
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so that finally Egs. (13.17) and (13.18) may be cast in their final form.
m”ﬂ,a(P) - /FmTﬂy,a(q’ P)muy(‘Z)dF = _/FmUﬂy,a(‘Ia P)mty(‘Z)qu

—fﬂ’"Vﬂy,a(Q,P)mqy(Q)dQQ+/Q’"U/sy,5a(Q,P)N$5(Q)d-QQ

+ el (P) —"vg , (P) (13.49)

Tus, (P) — / Ty, (q. P) ui(q)dly = — / U (a0, PY 11(q)dT,
I r

_ /Q Vs, (0. PY 4:(Q) dS2g + /Q Uss., (0. PYNys(0) 3, (0) d 20
+ el (Pyuz () — Tv3,(P). (13.50)

Note that Egs. (13.49) and (13.50) are valid for interior points, and consequently,
attention shall be paid to the singularities O (1 / r2) in the integrals on the left-hand

side, and O (1/r) and O (1 / r2) for the first and third integrals on the right-hand
side. For boundary points, their limit to the boundary must be taken in order to obtain
the corresponding geometric factors, i.e., the C matrix. In that case, the integrals on
the left-hand side must be interpreted in the Hadamard sense, which demonstrates
the hyper-singular character of these equations, while all remaining integrals are
interpreted employing the CPV.

Moreover, using any traditional collocation-type process ([BrEtAl84]),
Egs. (13.15), (13.16), (13.49), and (13.50) lead to the following set of algebraic
equations:

e Membrane (2D elasticity) problem:
"H"u="G"t + "B + "f. (13.51)
* Bending problem:
Mu='G't + 'Bus + 't (13.52)
* In-plane displacement derivatives:
u, + PH"u="G"t + ’B + Ft. (13.53)
* Transverse displacement derivatives:

v, + *H/u=°G't + *Buj + °f, (13.54)
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where

/

T
wy = {"up, ."up,}’ and uj= {fu3,1 ,fug,z} . (13.55)

13.4 Conclusions

This chapter presented a compilation of the relevant integral equations for linear
and geometrically nonlinear bending, as well as elastic stability of moderately thick
plates. The hyper-singular derivative integral equations for the displacement field
were presented, including the corresponding convective terms. The resulting integral
equations can be used to solve geometrically nonlinear bending problems, as well
as in-plane extension, linear bending, and stability problems by particularization.
Domain discretization is assumed for the domain integrals whenever necessary.
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Chapter 14 )
On Viscous Fluid Flow in Curvilinear s
Coordinate Systems

A. Meneghetti, B. E. J. Bodmann, and M. T. M. B. Vilhena

14.1 Introduction

Many theoretical problems and their applications such as fluid dynamics scenarios
are formulated in a specific coordinate system, which is frequently the Cartesian
coordinate system. However, depending on the topography of the physical domain,
more specifically, the geometry of the domain boundaries, another choice might
be advantageous. The question as to what is the most adequate system is one of the
principal issues in the Theory of General Relativity and is based on the mathematical
framework of differential geometry. While this theory relates the geometry of space-
time with its energy—-momentum content [We72], some of the ideas of curved
space may be exported to other realms as for instance mechanical engineering.
In engineering and especially fluid mechanics, we can use a similar methodology,
but instead of using geodesics representing the geometric properties of a physical
system, one may define the curvilinear coordinate system from the geometry of the
physical domain and its boundaries.

If a coordinate axis is interpreted as a solution of a geodesic equation, then the
affine connection introduces terms due to curvature in the curvilinear coordinate
system. In other words, we locally shear, twist, stretch, or compress the domain
such that the boundaries have simple geometries, which constitutes the principal
difference to the conceptions of general relativity. As a consequence, the differential
operators of the dynamical equations are changed by the addition of new terms,
see for instance reference [So64]. The apparent disadvantage of obtaining larger
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equations after the coordinate transformation is effectively compensated by simpler,
in our work plane parallel boundaries. Evidently, one has to accept some restrictions
with respect to shapes that define the orography, imposed by the diffeomorph
conformal character of the transformation. Conditions that are mandatory will
be defined in order to establish a unique relation between the original and new
coordinate systems. Thus, the novelty of the present work is the procedure to solve
the curvilinear Navier—Stokes equation, which is then transformed back into the
original Cartesian coordinate system. Three-dimensional case studies are presented
as numerical implementations of this methodology.

14.2 Transformation of the Coordinate System

As mentioned before, the curvilinear boundary guides the construction of the
coordinate transformation that simplifies the boundaries of the transformed problem.
Let x! x x% x x3 be the Cartesian coordinate system and £! x £2 x £3 a generalised
coordinate system; then we define the general transformation 7 by T : &% =
£%({x"}). Here, i, € {1,2,3}, {x'} = {x!,x2,x3} € 2 c R3, where £ is an
open set. According to [MeEtAll7], T is a diffeomorph conformal transformation
if and only if the functions £* are of class Cl2)and |J| = ‘%‘ # 0in £2, where
|J| is the Jacobian determinant of the transformation 7. Thus, we guarantee that
the solution of the transformed problem obtained in the new coordinate system can
in the end be inverted and presented in the original coordinate system. In addition
to its mathematical characteristics, this property ensures that conservation laws are
preserved, as shown in [We72]. As already mentioned in the introduction, we use the
curvilinear contours of the domain in which the problem is structured to define the
new coordinate system, more precisely the £!, £2, and £ system, which by virtue
is a curvilinear coordinate system.

14.3 The Transformed Navier—Stokes Equation

We consider an incompressible model and define as a starting point the dimension-
less Navier—Stokes equation (14.1),which together with the continuity equation is
given in Cartesian coordinates (see for instance reference [ScGel7]). In order to turn
the developments more compact, in the further the Einstein summation convention
is understood in all equations that follow.

o P, 8/ 92um ' _ o 14
— M —_— = e — -_— = . .
ot ax! axm Re 0x'0x/ ax!
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Here, i, j,m € {1, 2,3}, u™ is the velocity in the x™ direction, P is the pressure,
Re is the Reynolds number, and the Kronecker symbol 81.] = 1 fori = j and zero
otherwise. As a convenient simplification, we neglect effects due to the force of

gravity.
Using algebraic manipulations in the Eq.(14.1), it is possible to obtain the
Poisson equation for pressure (14.2), where D = g—i‘;
j %P *Giu)) 8 9D 9D
— =+ — — (14.2)
b oxtox/ axtox/ Re dx'dx/ at

Recalling that Eq.(14.1) is represented in a Cartesian coordinate system, one
may now use a coordinate transformation and obtain the transformed equation in
the generalised coordinate system. The variables of both coordinate systems are
made compatible through the affine connection (the manifestation of curvature),
which as a consequence of coordinate changes enter in the dynamical equations.
More precisely, differential operators are altered by the addition of new terms. The
transformed Navier—Stokes equations as well as the transformed Poisson equation

for the pressure are presented by Eqs. (14.3) and (14.4), where D = % %

dum L du™ JE® aP 0g% & [oum 9% 2um g P
at dEY 9x! £ 9x™ ~ Re \ 0&% 0x'9x/ = Q£9Q&P 3xi dxJ
(14.3)

EY xidx) JEXIEP dxi dx) dE®  dxigx) | JEYIEP dxi dxJ
1 d(D) 9%e” - 02(D) 3£ peP aD
L (D) 9% 0AD) g% 9EPN 9D

Re Jat

N (BP 92g® 3PP 9E“ agﬁ>__a(u"uf') 928 3%(u'ul) 9™ 9&P

(14.4)

Lge dxigxs U 9E«QER axi dxJ

14.4 Numerical Solution

In the further, the sequence of steps to obtain a numerical solution of Eqgs. (14.3) and
(14.4) is lined out. For convenience, we regroup terms in Eq. (14.3) and end up with
Eq. (14.5), with the new abbreviations defined in (14.6).

ou™ D ou™ 4D d%u™ 4D 32um g (14.5)
ar aaga 3+a3(§a)3(§'a) 4+a+ﬂa§aa$ﬁ . .
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Q&Y 1 82§a IEY  PE”
Dy =u' ==+ ———— Ditg = — (=) (==
o =M ax! + Re 0x'0x! e (Bx’)( )
leyapl (2 0£% 0£P 9P &
Ditap = (T Re) 00 oxl "= g g (149

Equation (14.5) is nonlinear since the expressions D depend on velocities, so that
the equation needs to be approximated by an iterative scheme. To this end, we use
the implicit finite difference method in Eq. (14.5), see [HoO1] and [Bo15], and end
up with the approximate equation (14.7).

R MCRITE
At -
+1 +1 +1 +1
(D! (um)?+l,j,l —( m)?fl,j,l + (D )n+1( m)z"l,j+1l (”m)fj 1,1
Vi 2481 2 2482
+1 +1 +1 +1 +1
+(D o & Mg = @igi )n+1( i1~ 2™+ @D
3ij 2A:§3 (D4 i,j.1 A($1)2
gyt W =2+ W
e A
+1 +1 +1
(D! @™) e — 2™ T+ @™ (14.7)
ot A ‘
+1 +1
D )n+1( it e — @M — (”m)z+1 -1t @™t 1Lj—1.
Vil 4AETAE?
+1 +1 +1 +1
(g @™ e — @M — @ @
Sijl 4AETAES
+1 T1
H(Dg)" ! (“m)Zj+1.z+1 _(”m)?,jq.m (u™ )1 jJrll + ),j 1,i— 1+( mynt1
9i.j.1 4AEZAES )i g

Upon regrouping terms u”
and n), one obtains Eq. (14.8),

(Eooo)i (u m)zl-}-} + (Eloo)i

010 +1
+<E )i ™)

»J

+<Eoo 1)i (MM):l-j‘y:} |

+(EO 10). (um)n+1”+<E001>‘ (u m)n—i_-l
l,], i,

+ <E“0>i ()i

with the corresponding space and time indices (i, j, k

( m)n—i-l

—100
1+l,jl+(E )i (m)nljl

i,j,1+1

i+1,j+1,1
n
110 a1 1-10 i1
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w%”V (14.8)
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which may be cast in a matrix equation (14.9).

Elu ! =" — w4 gn (14.9)

Note that the vectors u” and ¢" are known because they are evaluated in the previous
time step n. However, the matrix E"*! and the vector u”*! depend on u"*! in the
time step n + 1 to be determined, and the vector uZ“ is constructed using the
values of the nodes that belong to the domain boundary. In order to work around
the problem with the nonlinearity and the contours, an approximation by iteration
is employed. At each time step n + 1, we construct ", which yields an estimate
value for the velocity component advanced in time by iteration u? — u”*!, and
moreover, Eq. (14.9) is approximated by (14.10).

E'u"t = u" —a” +¢". (14.10)

For each time stamp n + 1, the approximation starts with 7 = 0 and 0" is set
to u”. Equation (14.10) is solved, and one obtains the preliminary values for the
vector w1, In the next iteration, for 7 = 1, one assumes that o’ = u"*!, and
Eq. (14.10) is again solved and a new estimated value for vector u"*! is calculated.
Note that in each iteration both the u” _vector and the E” matrix are updated. The
process is repeated until the vectors " and u"*! “converge” according to a pre-
established stopping criterion. In each step, the matrix equation (14.10) is solved
using the standard Gauss—Seidel method ([HoO1, Bo15]).

Moreover, for each iteration in 7, the vector ulci is updated too, which is built by
nodes on the domain boundary and is defined by the parametrised surfaces. In case
that no variations occur on the surface, then the nodes are kept without updates.
For those that vary, except in the main direction (the direction of the inlet flow),
the update is done using the neighbouring node. In the main direction, in this work
defined along £!, the update follows Eq. (14.8). As an inconvenience, there appear
nodes outside the mesh, so that this shortcoming has to be corrected by the use of
homogeneous boundary conditions 2 51 =0.
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m __.m m
Uipp — Uy _ Ou

Ag ~8—$1=O=>ul'-”+1%uf".

The Poisson equation for the pressure (14.4) was solved proceeding in an
analogue way. More specifically, the equation was initially approximated using the
implicit finite difference method, and the discretised equation was rearranged and
cast in the matrix form. Due to the Poisson equation being linear, the iteration
defined at each time step will be used only to approximate the vector formed by
the nodes belonging to the contours. As already mentioned, the transformation 7T is
defined from the geometry of the curvilinear domain, so that in order to solve the
equations by the finite difference method, the transformation is setup by the meshes
constructed in the curvilinear domain (see ref. [MeEtAll17]).

14.5 Numerical Simulations

In this section, two simulations are presented using the dimensionless Navier—
Stokes equations in its two-dimensional and three-dimensional form.

Simulation 1
A two-dimensional duct has the top and bottom described by Eq. (14.11).

il =1-0.125 (tanh (8(x1 - 6.875)) — tanh (8(x1 - 8.125)))
fix!) = —0.249 <tanh (8(x1 — 3.75)) — tanh (8(x1 — 5))) . (14.11)

Now, a fluid flow inside this duct is considered, with inlet horizontally from the
left to the right, with Reynolds number Re = 100 and in a domain (x',x?) €
[0, 10]®[O0, 1]. Thus the flow is modelled by the dimensionless transformed Navier—
Stokes equations (14.3) and (14.4), adapted to the two-dimensional case, subject to
the following initial and boundary conditions:

* The initial conditions are given by a horizontal flux ' = 1, u?> = 0 and a constant
pressure P = 1 in the domain.

+ The boundary conditions for the inlet in the domain are a horizontal flux: u! =
8£2(1—£2), u® = 0 and a vanishing pressure gradient % = 0, i.e., a mechanical
equilibrium.

* The exit of the domain to the right is given by vanishing velocity field gradients
ul g oud
91 > el

* On the top and bottom boundary, no-slip conditionsa ?)re assumed (u! = 0 and

u* = 0) together with a vanishing pressure gradient %=

0 and a prescribed pressure P = 1.

In the following, some results obtained in this simulation are shown, where the
velocity and the pressure fields are presented in the original Cartesian coordinate
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system, i.e., after the inverse coordinate transformation. In Figs. 14.1, 14.2, 14.3
and 14.4, the horizontal axis (xl) corresponds to the initial direction of the flow,
while the vertical axis (x2) corresponds to the cross flow. Figure 14.1 shows the
local speed in the domain (xl,xz) e [0,10] ® [0, 1], while for the locations
x!le {0.3,2.0, 4.0, 6.0, 8.4}, the two-dimensional vector field is given. Due to the
no-slip condition, the velocity close to the top and bottom boundaries approaches
zero, whereas in the centre of the two-dimensional duct, the velocity assumes larger
values. Further, as was to be expected, the velocity of the fluid flow is largest at the
narrowing of the vertical dimension of the domain around x! = 7.5.

The details according to the change in direction of the fluid flow and its associated
velocity field close to the widening and narrowing regions in the vertical direction

i 1

\ \ | \ \ 0
0.0 25 5.0 7.5 10.0

Fig. 14.1 Local speed of the fluid flow (/(u!)? + (12)?) in the Cartesian coordinate system. The
two-dimensional velocity vector field is shown for the coordinates x!' =023, 2.0,4.0,6.0, and 8.4

=5
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Fig. 14.2 Zoom images showing details of Fig. 14.1 in the neighbourhood of the concavities at
the bottom and top boundaries, respectively. The colours follow the same scale as in Fig. 14.1

= - - - 3

0 2.5 5 7.5 10

Fig. 14.3 Local pressure distribution P in the domain
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Fig. 14.4 Residuals of the obtained numerical solution for ul (top), u? (centre) and for P (bottom)

are shown in Fig. 14.2. Considering the speed u = +/(u!)? + (u?)2, the regions
of the flow field with u 2> 1 follow the horizontal direction, i.e., the direction of
the incoming fluid flow. Close to the boundaries, one observes the effect of the no-
slip condition. Inside the indentation and shortly after the bulge, one observes an
inversion of the flow direction, i.e., a counter flow, which is physically expected for
flows that pass around obstacles. It is noteworthy that the velocity of the fluid flow
almost doubles below the bulge located on the top of the boundary.

Figure 14.2 displays some details of the flow velocity vector field in the vicinity
of the concavities at the bottom and the top, respectively.

The pressure distribution, shown in Fig. 14.3, follows the expected behaviour,
where globally there is a decreasing tendency from upstream to downstream. In
the region below the concavity on the top boundary, one observes a pressure drop
caused by the increase of the flow velocity. This may also be verified in Fig. 14.2,
where the effect of the concavity on the velocity field becomes apparent. Close to
the curved boundary, the no-slip condition dominates, but there is a pronounced
increase of the velocity in the vertical direction, where an increase between 2.0 and
2.5 in comparison to the inlet velocity was found.

By inspection of Figs.14.1, 14.2 and 14.3, one verifies that the discussed
numerical solutions obtained by the presented methodology are qualitatively in
agreement with physical intuition. In the further, we employ a second argument
to validate the quality of our findings. To this end, the solutions for the velocity field
and the pressure field are inserted back into Eqgs. (14.3) and (14.4), where in each
equation the absolute difference between the left-hand side and the right-hand side
is used as a measure for the quality of the obtained numerical solution and in the
further referred to as residual. These differences are shown in Fig. 14.4.
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Generally, the largest differences of the left- and right-hand sides occur in the
region of the concavities and at the end of the domain. The order of magnitude of
the components of the velocity fields is considerably small (of the order 107°), so
that the numerical velocity field may be considered a good approximation for the
true solution. The slightly larger differences at the end of the domain are a result of
the imposed condition by the pressure, where the points outside the domain have to
be estimated for the numerical calculations. This does not occur on the left boundary
where the pressure gradient vanishes, and thus the same pressure value may be used
for points outside the domain in the numerical evaluation of the solution.

Although the order of magnitude of the differences in the vertical velocity
component is considerably small, also the numerical values of > are small. This
is the reason why the distribution of the difference between the left- and right-
hand sides of the Navier—Stokes equation shows a less homogeneous pattern for
the cross flow velocity component. In the first half of the domain [0, ~ 5] on the
top boundary, there is an oscillation of the difference from positive values close to
the boundary to negative ones, while the central part is reasonably homogeneous. At
the bottom, there is only a negative difference close to the boundary. In the second
half of the domain, the larger differences are still closer to the boundary but less
pronounced. This asymmetric upstream downstream behaviour depends on where
the first concavity is located, on the top or bottom boundary. Since the numerical
implementation is symmetrical with respect to the top and bottom boundaries, an
inversion of the x? coordinate (collocating the concavity on the bottom to the upper
location and the one on the top to the lower boundary) inverts also the distribution
of the differences. The upstream downstream asymmetry is also visible in the
differences for the pressure equation. The upstream half of the domain has larger
negative differences on the lower boundary, while in the downstream located half of
the domain the values are also negative and of the order of 1073, In the latter half of
the domain, the differences tend towards numerical values closer to zero. Although
the presented validation is from the mathematical point of view a necessary but not
sufficient condition for convergence, the discussion of the obtained results indicates
that the found solutions for the velocity and the pressure field are acceptable because
from the physical point of view they look sound.

Simulation 2

In this simulation, a domain consisting of x! € [0,10], x2 € [0, 1] and the
curvilinear boundaries on the top and bottom with f; and f; are considered and
are given by Eq. (14.12). The sketch of the domain is shown in Fig. 14.5.

x? = S ) =1

= fix!, %) =0.1g(xH) h(x?). (14.12)
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0.0 1.0

5.0 0.0

7.5

10.0

Fig. 14.5 Illustration of the domain with curvilinear bottom boundary
Here,

¢(x') = tanh (15(x‘ _ 3)) — tanh (15(x‘ _ 5.0)) ,
h(x?) = tanh (4(x2 _ 0.4)) — tanh (4(x2 — 2)) .

We assume again that the incoming fluid flow is aligned with the direction of the
positive x! axis. In this simulation, the fluid obeys the three-dimensional Navier—
Stokes and Poisson equations with Reynolds number Re = 100. Further, we assume
the following initial and boundary conditions:

* Horizontal incoming flow with u! =1, u? =0,and u® = 0, and homogeneous
pressure P = 1.

* At the upstream domain surface with x! = 0, a parabolic velocity profile u! =
8 x x3(1 — x3) is understood in agreement with the no-slip condition on the
surfaces and with normal vectors perpendicular to the incoming ﬂow direction.

Further, no cross fluxes u> = 0, u> = 0 and pressure gradlents 5 S‘ = 0 are
assumed.

e At the downstream surface with x! = 10, vanishing velocity gradients for all
components dé’ =0, gg, — 0and ¢ 9T = = 0 are defined together with a prescribed

pressure P = 1.
* At the front and back surfaces with x> = 0 and x? = 1, respectively, no velocity

gg; 0, ggz =0 M = 0 and null pressure

gradlents 3 EZ = 0 are considered.

gradients for all components

* At the top and bottom boundaries with x> = f; and x> = f;, respectively, the
no-slip condition u! = 0, u?> = 0, u? = 0 applies, and a vanishing pressure

gradient g ; = 0 normal to the surfaces is understood.

From the coordinate transformation, a mesh structure with 111 partitions along
the x! axis (0 < i < 111), 11 partitions along the x2 axis (0 < j < 11),
and 24 partitions along the x3 axis (0 < k < 24) was constructed, totalling in
33,600 = 112 x 12 x 25 nodes defined in the domain. Figure 14.6 shows a slice
in the domain, parallel to the plane x! x x3 and with Jj = 11, that is, the set of
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Fig. 14.6 Vertically parabolic shaped vector velocity field for a slice at j = 11 and its
deformations around the maximum concavity

1.0
0.5

0.0

0.0

Fig. 14.7 Vertically parabolic shaped vector velocity field for a slice at j = 5 and its deformations
around the less pronounced concavity

discrete points identified by the indices (i, 11, k), where i € {0,1,..., 111} and
k € {0,1,...,24} for which the vector velocity field u = (ul, u?, u3) is shown,
and the colours indicate the speed of the flow u = |[u|| = v/(u!)2 + (u2)% + (u3)2.
As expected, in the areas of the narrowing, the speed increases and the velocity
field conforms to the curvilinear domain and the horizontal movement of the fluid.
As already shown in the two-dimensional case, also in this case, one observes the
formation of vortices immediately after the bump.

The three-dimensional bump is irregular and decreases in the direction from y =
1 to y = 0. Figure 14.6 shows the slice at j = 11 where the bump has its largest
extension, and one consequence is the formation of a well-defined vortex, while
Fig. 14.7 shows the slice at j = 5 where the bump is less salient. This implies
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Fig. 14.8 Vertically parabolic shaped vector velocity field for a slice at j = 0 and its deformations
around the shallow end of the concavity

0.0 —

0.0

Fig. 14.9 Vertical speed profile in the plane with j = 11 and evolution of the vector field close to
the lower boundary (k = 3)

smoother velocity profile changes and consequently a weaker formation of vortices.
Further, Fig. 14.8 shows the shallow end of the bump, at j = 0, where there is only
a spurious change in the speed profile.

Initially, the fluid moves in the direction of the x! axis, but as soon as it interacts
with the bump, the flow characteristics change. This fact can be seen in more detail
in Fig. 14.9. In this figure, the vector field in the vicinity of the lower boundary for
k = 3 is shown indicating the direction and intensity of the velocity field. One may
observe the changes in the vector field profile as soon as the fluid interacts with the
bump, which has as an effect an increase in the flow speed and a diversion of the
movement around the concavity.

A complementary plot (Fig. 14.10) shows the velocity vector field in x>-x> planes
for the positions ati = 0,i = 15,i = 34,i =48,i =57,i = 80, and i = 100.
As expected, one observes the predominant parabolic profile in the direction of the
x! axis. Collision with the bump near x' = 3 reduces the duct’s cross section in
the vertical direction, causing the flow to move upwards and increasing the velocity
at this location. From approximately x! = 5 on, where the concavity vanishes, the
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Fig. 14.10 Three-dimensional vector velocity field (numerical values are reduced by a factor of
three) at the positions i = 0,i = 15,i = 34,i =48,i = 57,i = 80, and i = 100. Zoom into the
region after the bump of the lower boundary at x' =5

1.0
7.5
10.0 0.0

Fig. 14.11 Cross-sectional pressure profile P for the three-dimensional simulation at the positions
i=0,i=15,i =34,i =48,i =57,i =80,and i =100

flow converges against the main direction due to the increase of the cross section
in the vertical direction. The formation of vortices occurs and is more accentuated
in the limit y = 1. Comparable experiments, which make use of the PIV (Particle
Image Velocimetry) technique, show exactly these details [AdOS5].

The pressure field P with its visible effects due to the change in the cross
section is shown in Fig. 14.11 for the positions i = 0,i = 15,i = 34, i = 48,
i = 57,i = 80, and i = 100. While in the inlet (x1 < 2) and the outlet
regions (x! > 7) the pressure profiles across the x?—x3 plane seem to be to a
good approximation homogeneous, in the region of the bump, the effect on the
pressure becomes apparent. Although identifying the pressure equation associated
to the Navier—Stokes equations is an arduous task, the Poisson equation used in the
present discussion to model the pressure contribution to the flow provides results
compatible with experimentally trained intuition.
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Table 14.1 Residuals fgr the Residual | Minimum Maximum
components of the velocity i 12393 x 10-11 1 9.4690 x 10-0¢
fields and the pressure Uy : x : x
u? 3.7872 x 10712 16,1993 x 10~
ul 1.2816 x 10712 | 3.1434 x 10~%
P, 4.3617 x 1076 | 4.6000 x 1073

A quantitative criterion beyond mere intuition is provided by the residual test
already used in the two-dimensional case. Table 14.1 shows the minimum and
maximum absolute values of the residuals for the three components of the vector
velocity field ul, u%, uf and the pressure P, field, respectively. In all cases, the
residual values attest an acceptable solution for the velocity vector field as well as
the pressure distribution. Thus, the resolution of the discretisation of the numerical
method was sufficient and did not compromise the quality of the numerical results,
which in general is not known beforehand but was evaluated by the obtained
results. Our findings and posterior error analysis allow us to conclude that if the
model is adequate to simulate the flow phenomenon, our found velocity vector
and pressure field represent an acceptable description within the numerical and
arithmetic uncertainties.

14.6 Conclusions

Flow problems in real scenarios generally have complex curvilinear boundaries,
which provide challenges for numerical as well as (semi-)analytical approaches.
Quite often, these problems are discussed considering idealised (simplified) bound-
aries only. Hence, in the present work, the authors made a step into a direction
where a class of curvilinear boundaries may be taken into account, but after a
diffeomorph conformal coordinate transformation, these simplify to plane parallel
boundaries, evidently at the cost of additional terms in the differential operators
of the dynamical equation. From the numerical point of view, this fact does not
introduce complications into the algorithmic solver, so that as a benefit the matrix
system that solves the equation may be set up in the same way as is done for a
simple plane parallel boundary problem. The coordinate transform technique has
the advantage in comparison to irregular mesh methods that in the latter it is not
straightforward to preserve conservation laws, which is guaranteed with the present
method. In this line, we showed by two simulations how the method works and
made plausible by an error analysis that the obtained solutions are fairly close to the
true solutions.

Although of numerical architecture, this solution may be considered a benchmark
for other approaches, especially (semi-)analytical ones, which are the focus of
our future efforts. Once the surfaces of a three-dimensional domain of interest
are parametrised, they provide the basis for the construction of the coordinate
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transformation. This reasoning of using curvilinear boundaries to define the new
coordinate system that is being used to derive the solution is a new aspect for
solving more realistic scenarios in fluid flow problems. Nevertheless, the authors
of the present work are aware of the fact that the developed approach imposes
restrictions on implementable environmental reliefs for flow simulations, although
the discussion so far shows promising perspectives for future developments.
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Chapter 15 ®
Impact Loading of Interface Cracks: e
Effects of Cracks Closure and Friction

O. Menshykov, M. Menshykova, and I. A. Guz

15.1 Introduction

It is well known, e.g., see [GuMeO03] and [MeGu08a], that the cracks’ closure and
friction under any type of loading shall be taken into account when the fracture
mechanics problems for cracked materials are considered. The simplification of the
problem by neglecting the contact between the opposite cracks’ faces leads to the
quantitative and qualitative change of the results.

The main reason for the neglecting the cracks’ faces contact is the complexity of
the problem solution. Linear crack problems for normal and oblique time-harmonic
loading with consideration of the cracks’ closure were solved in [MeWe05] and
[MeGuO8a]. For the oblique loading, the effects of friction according to the
Coulomb friction law were taken into account, and the problem was solved using
boundary integral equation method. The solutions of the contact problems for
penny-shaped and elliptical cracks in homogeneous material under harmonic load-
ing were presented in [GuMe03, MeGu06, MeGu08b]. Boundary integral equation
method was also used by [FoGo21] in order to simulate the elastic wave propagation
in layered piezoelectric phononic crystals. Dynamic contact and crack propagation
problems were recently solved in [ZhDu?21].

With the growing industrial usage of various composite materials, the problems
for cracks situated at the interface between two materials are of high interest.
Matbuly [Ma06] considered an interfacial crack under shear loading and derived
the singular system of integral equations using the variables’ separation technique.
Men’shikov et al. [MeGu07] presented the expressions for the integral kernels and
the numerical solution for a penny-shaped interface crack under normal tension—
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compression loading problem. The validation of the boundary integral equations
method for the harmonic loading of the interface crack was done in [MeGu0S8c].
The application of the boundary integral equations for the case of time-harmonic
loading of the crack situated at the bi-material interface problem was presented in
[MeGu09a]. The results obtained for a penny-shaped crack under dynamic loading
were compared with the ones obtained for the static case. The solution of the
problem for shear wave incidence on the interface linear crack is presented in
[MeGu09b], where the system of boundary integral equations for displacements
and tractions can also be found. The detailed review of the interface crack problems
is given in [GuMel3]; please note that the problems mentioned in the current
paragraph were solved neglecting the effects of the friction and cracks’ closure.

The linear interface crack closure problem for the case of harmonic loading
was considered in [MeGu10] and [MeGul1]. The system of hyper-singular integral
equations for boundary displacements and tractions was derived from the dynamic
Somigliana identity, and the comparison of the results obtained with and without
contact interaction of the crack’s faces was presented for 2-D and for 3-D cases,
see also [MeGul2]. The detailed investigation of the algorithm convergence for
the problem solution is done in [MeGul1], where the effects of frequency on the
distribution of the stress intensity factors were also studied.

The cracked materials under transient dynamic loading were considered in
[MeGul6]. To solve the problem, the boundary integral equations in frequency
domain were used, and for different stress pulses, the dynamic stress intensity
factors were obtained. Basu and Mandal [BaMal6] considered the problem of
the impact torsional loading for the case of penny-shaped crack situated within
the elastic layer. The problem for two-dimensional crack under transient dynamic
loading was solved by [WuZh(09a], the comparison of two hyper-singular time-
domain boundary element methods was carried out, and the analysis of dynamic
stress intensity factors was presented. The factors that influence the dynamic
distribution of stresses for the case of the saw-tooth shock pulse were investigated
in [ZhSh20].

The problem for the linear interface crack under impact loading neglecting the
crack’s closure was solved in [MeGu20a], and the effects of the material properties
on the stress intensity factors were analyzed. Interface cracks in layered anisotropic
solids were considered by using the time-domain boundary element method in
[WuZh09b]. Orthotropic materials with interfacial cracks under impact loading
(normal and shear pulses) were investigated in [LiRu05]. Impact of a torsional load
was also considered in [KaBal8] for the case of a penny-shaped interface crack.

Finally, the problem for linear crack subjected to normal impact loading was
solved in [MeGu20b] taking the crack’s closure into account. The solution of
the problem was obtained for different friction coefficients and stress pulses. The
convergence of the algorithm was analyzed. The problem of oblique Heaviside com-
pression loading of a linear crack was considered in [MeGu20c]. The calculation
of the contact forces is done, and the dependence of the solution on the friction
coefficient was presented.
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In the current study, the 2-D problem for a linear interface crack under the
Heaviside normal shear pulse is solved using the boundary integral equations
method in the frequency domain accounting for the cracks’ closure and friction,
the components of the solution are presented, and the iterative process convergence
is discussed.

15.2 Statement of the Problem and Boundary Integral
Formulation

Let us consider a two-dimensional isotropic linearly elastic bi-material under
external transient loading. The bi-material contains a linear interface crack of a finite
length and without any initial opening, and the Heaviside shear pulse propagates
normally to the surface of the crack.

For each isotropic domain, the equations of motion and the generalized Hooke’s
law lead to the linear Lamé equations of elastodynamics for the displacement field
with the appropriate boundary (continuity conditions for stresses and displacements,
the Sommerfeld radiation condition at the infinity, and the tractions at the crack’s
surface defined by the external loading) and initial (zero deformations at the initial
moment) conditions.

Thus, the components of the displacement field in both domains, 2O and 9(2),
could be represented by the boundary displacements and tractions at the interface (at
domains’ boundaries), I'" and I"®, using the Somigliana dynamic identity with
the appropriate fundamental solutions Ul.(im)(x, y,t — 7) and Wi(;")(x, y,t — T), see
[AlIBrPa94, MeGu08c, MeGul1] and [MeGul6]:

u (x, 1) = / / ", DUy, t=0)—u{" (v, OWE (x, y, t—)dydr,
T I'(m)
(15.1)

xe™, reT, jm=1,2.

Similar representation may be obtained for the tractions by applying the differ-
ential operator to (15.1), and the boundary integral equations for the limiting case at
the domains’ boundaries have the following form (assuming the smoothness of the
boundary displacements and tractions):

1 m

Eu;m)(x, ) = / / (pi(m) (y, r)Ui(jm) X, y,t—1)— ul( )(y, r)Wi(jm)(x, y, t—1))dydr,
T I'(m)

(15.2)
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%u;m)(x, 1) = / / (pi(m)(y, T)Ki(jm)(x, y,t—1)— u?m)(y, 1:)Fi(;")(x, y,t —1))dydrt,
T I'(m)
(15.3)
wherex e '™, teT.

Because of the crack’s faces closure, the traction vector at the crack’s surface can
be represented as the superposition of the predefined traction caused by the external
loading and the contact force that appears at the crack’s surface (in the contact zone
that changes in time due to the dynamic loading). The length (in a 2-D case) and
shape (in a 3-D case) of the contact zone are unknown beforehand and depend on
the parameters of the external loading (type of the loading, its direction, magnitude,
frequency, etc.), mechanical properties of the bi-material, and the friction conditions
at the crack’s surface and must be determined during the solution process.

To take the crack closure and friction into account, the Signorini unilateral
constraints (ensuring that there is no interpenetration of the opposite crack faces,
the normal component of the contact force is unilateral and present in the contact
zone only) and the Coulomb friction law (the contacting crack faces do not move
in the tangential direction, while they are held by the friction unless the slipping
happens) are applied to the normal and tangential components of the displacement
jump (displacement discontinuity), [u(x, )] = u(x, 1) — u?(x, 1), and contact
forces, see [GuZo02, GuMel3, MeGu20b]:

[M}’l(xv t)] 2 07 Qn(x» t) Z Oa [un(x» t)]Qn(Xa t) - 07 (154)

olur (x,1)] _

0, 15.5
” (15.5)

lq: (X, )| < kegn(x,1) =

(15.6)

Qo (x5, )] = kogn(x.1) = dur(x, )] qe(x,7) [d[ur(x,1)] ‘

o e 0l| ot

Let us approximate the external transient dynamic loading and the components
of the solution by the Fourier exponential series with the appropriate number of the
Fourier coefficients (may be quite high for the impact pulses), as it was suggested in
[GuMel3, MeGu20a] and [MeGu20b]. That will allow to use the solution approach
previously developed by authors for cracked materials under harmonic loading in
the frequency domain.

In particular, the Heaviside impact pulse can be approximated, for example, by
the repeating “steep and long” trapezoidal stress pulse, [MeGul6]:

o) = o* {#(H(t) —H@—1)+H@—1*) = H@t — 1" - fd))}
+Q -S4 HE — 1" —1g) — H(t = 21" — 1)) ’

where cgl)t* =0.1 and cél)td =12.
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Thus, as it was mentioned above, the components of the solution at the crack
surface can be approximated by the following exponential Fourier time series:

T

+o0
fle 1) = Re{ Z fk(o)ei“’k’}, *e) = _/f(. Ne i dr,  (15.7)
k=—00

0

where wy = 2k /T and i is the imaginary unit.
Fundamental solutions in the frequency domain have the following form, see
[AIBrPa%4, MeGu09b]:

Ul(’zn)(x, Y, o) = UQ(T)(X, y, wr) =0,

(m)
1 Cy
Uiy o0 = 5o [ KoU') + = w (m(z("”) T W”)ﬂ

1

( (,m)?K ) - Kz(l(m)) + Ko(15%))

) (K1<z<’")) - K (l“’”))

2,k

1
(m)

Uy, (X, ¥, 0p) = ——

(m)

2 pulm +-L

Wi x,y, or) = W (x, y, ) = 0,

sr | DKL) = 2K2(057)
(m)

(M) 2
(X,y, w1) =
y 271 Sy1 +2( (m)> Ka({")

__mpm )

Wi (x, y, wr) 1 ér GO 22 1k
21 XY, W) =S i

2mr 8y; —2K2(l§m)) +2< (m)) KZ(ZE’;))

K1)

lff';c) = za)kr/c( ) lg? = ia)kr/cém); (m) = /(AW £ 24m))/p(m) and

cg") = /u®™/pm and r = |x; — yi| is the dlstance between the loading and
observation points.

For every Fourier coefficient number, &, the appropriate system of linear alge-
braic equations can be obtained from the boundary integral equations (15.2) and
(15.3) and then solved numerically, so the Fourier representations of the components
of the solution (15.7) with the finite number of the Fourier coefficients can be found.

During the numerical solution, divergent integrals of various orders (weakly
singular, singular, and hyper-singular ones) that depend on the type and order of the

where
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approximation shall be regularized and computed. In the current study, the simplest
piecewise-constant approximation was used, as it successfully proved its efficiency
for two-dimensional problems compared, for example, with the Galerkin method,
see [MeWe05].

In order to take the contact constraints (15.4)—(15.6) into account, the iterative
correction algorithm based on the orthogonal projections on the sets of constraints
shall be used. The detailed description, studies on the numerical convergence, and
the comparison of the iterative algorithms applicable to homogeneous and layered
materials are given in [GuMel3, MeGull, MeGu20b]. In the current study, the
algorithm presented in [MeGul1] is used. The references above also contain the
detailed analysis of the numerical convergence of the iterative algorithm for different
loading conditions and material properties.

In particular, according to [MeGul6], for the impact loading of a homogeneous
cracked material, at least 30 Fourier coefficients should be used to adequately
approximate the components of the solution and the external pulse. For linear
interface cracks, additional details of the numerical convergence analysis were also
presented in [MeGu20a] with the recommended number of Fourier coefficients
being equal to 50. Thus, in this chapter, for the consistency, 50 Fourier coefficients
were used to represent the external loading and the components of the numerical
solution.

15.3 Numerical Results and Conclusions

For the validation of the numerical solution, the linear interface crack of the length
2L under the normally incident Heaviside shear pulse of amplitude og (with the
normalized wave number kéz) L=wL/ cf) = 0.01) was considered.

The following mechanical properties of the bi-material (v(" = 0.1, ED =
29G Pa, and v® = 0.49, E® = 400G Pa) were used in order to satisfy the

model constraint, see [Co90] and [CoDu80]:

B M(Z)(K(l) -1- ,u,(l)(/c(z) -1 B

= =05, «™=3—4m,
OO -1 + 0@ —1) * v

B

The normalized normal components of the displacement discontinuity and the
contact force, 2uolu,1/0oL and g, /o accordingly, at the crack’s surface when the
stable quasi-static solution is achieved (after some time since the shear pulse is
applied to the crack) are presented in Figs. 15.1 and 15.2 disregarding the friction
and taking it into account (for the friction coefficient k; = 0.0 and k; = 1.0).
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Fig. 15.1 Normal contact forces and the displacement jump at the crack surface disregarding
friction
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The normal and tangential components of the displacement jump and contact
forces at the crack surface plotted against the iteration number are presented in
Figs. 15.3, 154, 15.5 and 15.6 for k; = 1.0. One can clearly see that both
components of the solution are gradually changing till the final solution is found.

Please note also that the convergence of the iteration process takes much longer
than 100 iterations (as presented in Figs. 15.3, 15.4, 15.5 and 15.6 for illustration
purposes only). In particular, the small region of the crack’s faces interpenetration
is still visible in Fig. 15.3 next to the crack tip (L,0), and the correction of the
components, especially, of the components of the contact force, has not been fully
completed (as the forces are still significantly changing with each iteration step).

The results in Figure 1 have been presented after the convergence had been
achieved (after 1000 iterations). Finally, it is worth to mention that the convergence
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0.6 OCK .
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-0.4 ' .

-1.0 x4/L 0.5 1.0

Fig. 15.2 Normal contact forces and the displacement jump at the crack surface with friction

rate can be changed by the choice of the iterative coefficients, and the values
recommended in [MeGul1] have been used.

Please note that, as it was also shown in [MeGu21], after the correction, the
contact constraints (15.4)—(15.6) are satisfied on the entire surface of the crack.
The most importantly, there is no interpenetration of the crack’s opposite faces, and
the friction significantly affects the distribution of displacements and tractions, as
well as the length of the contact zone; and the Sommerfeld radiation conditions
are satisfied at the infinity (the displacements and forces slowly but surely decrease
at the bonding interface with the increase of the distance from the crack), so the
iterative process effectively corrects the solution.

The contact forces and the size of the contact zone are compared with the model
static solution by Comninou and Dundurs [CoDu80]. As one can see, the results are
in a very good agreement, complementing the results presented in [MeGu21] for the
case of “slow” harmonic shear loading of the interface crack.

Thus, the crack’s closure and friction significantly change the distribution of
the displacements and tractions at the bonding interface, inevitably affecting the
distribution of the dynamic stress intensity factors in the vicinity of the crack’s tips.
The stress intensity factors (the opening and the transverse shear modes) can be
computed using the following asymptotic formulas:
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Fig. 15.3 Normal displacement jump at the crack surface
K; = max lin%)|p;f(R+r, HV2mr, (15.8)
r r—
K1 = max limo|pj(R+r, HV2mr, (15.9)
r r—

where pi(L + r,t) and p}(L + r,t) are the normal and tangential components
of the traction vector at the bonding interface and r is the distance from the crack
tip. The appropriate representations of the stress intensity factors computed through
the displacement discontinuity (very similar to asymptotic representations (15.8)
and (15.9)) may also be used. The computation and analysis of the stress intensity
factors for different mechanical properties of the bi-material and different directions
of the loading will be the next step of the current research study.

As a conclusion, it shall be added that the proposed approach may be extended
to three-dimensional fracture mechanics problems for cracked materials under
arbitrary dynamic loading, and the special attention shall be paid to the coupling
oscillation singularities in the vicinity of the crack’s front, e.g., see [C0o90], [Os19].
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Chapter 16 )
Periodic Solutions in R” for Stationary e
Anisotropic Stokes and Navier-Stokes

Systems

S. E. Mikhailov

16.1 Introduction

Analysis of Stokes and Navier-Stokes equations is an established and active field
of research in the applied mathematical analysis, see, e.g., [CF88, Gall, RRS16,
Sel5, So01, Te95, Te01] and references therein. In [KMW20, KMW21a, KMW21b]
this field has been extended to the transmission and boundary-value problems for
stationary Stokes and Navier-Stokes equations of anisotropic fluids, particularly,
with relaxed ellipticity condition on the viscosity tensor. In this chapter, we present
some further results in this direction considering periodic solutions to the stationary
Stokes and Navier-Stokes equations of anisotropic fluids, with an emphasis on
solution regularity.

First, the solution uniqueness and existence of a stationary, anisotropic (linear)
Stokes system with constant viscosity coefficients in a compressible framework
are analysed on n-dimensional flat torus in a range of periodic Sobolev (Bessel-
potential) spaces. By employing the Leray-Schauder fixed point theorem, the linear
results are used to show existence of solution to the stationary anisotropic (non-
linear) Navier-Stokes incompressible system on torus in a periodic Sobolev space
for n € {2, 3}. Then the solution regularity results for stationary anisotropic Navier-
Stokes system on torus are established for n € {2, 3}.
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16.2 Anisotropic Stokes and Navier-Stokes Systems

Let £ denote a second order differential operator in the component-wise divergence
form,

(Cu)y = da(al Ejpw). k=1,....n,

wereu=(uy, ..., u,,)T, Ejg(u):= %(8juﬁ + dgu ;) are the entries of the symmetric

part E(u) of Vu (the gradient of u), and a,f’.s are constant components of the tensor
ap

J
viscosity coefficient A := (akj )1 i’ cf. [Duf78].
<i.j.a.p<n

Here and further on, the Einstein summation convention in repeated indices from
1 to n is used unless stated otherwise.
The following symmetry conditions are assumed (see [OSY92, (3.1),(3.3)]),

) .
agjf? - aa’f = ag}. (16.1)

In addition, we require that tensor A satisfies the (relaxed) ellipticity condition

in terms of all symmetric matrices in R"*" with zero matrix trace, see [KMW21a,
KMW?21b]. Thus, we assume that there exists a constant Cp > 0 such that,

0 thatip = Co LRV & = Gadbamt n € BT

n
such that £ =¢" and Y gy =0, (16.2)
k=1

where [ |2 = Cralka»> and the superscript T denotes the transpose of a matrix.
The tensor A is endowed with the norm

Al :=max{|a,‘jf| Tk ja, = 1n} .
Symmetry conditions (16.1) lead to the following equivalent form of the operator £
(Su) = da(ai dpu;). k=1.....n. (16.3)
Let us also define the Stokes operator L as
L, p):=Lu—Vp. (16.4)

Let u be an unknown vector field, p be an unknown scalar field, f be a given
vector field and g be a given scalar field defined in T. Then the equations

—Z@,p)=f divu=ginT (16.5)
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determine the anisotropic stationary Stokes system with viscosity tensor coefficient
— af ; ;

A= (A )1 <a.p<n i@ compressible framework.
In addition, the following nonlinear system

- Zu,p)+@-VYu=f, divu=ginT (16.6)

is called the anisotropic stationary Navier-Stokes system with viscosity tensor
coefficient A = (A“/g)Ka f<n in a compressible framework. If g = 0 in (16.5)
and (16.6), then these eﬁdaﬁons are reduced, respectively, to the incompressible
anisotropic stationary Stokes and Navier-Stokes systems.

In the isotropic case, the tensor A reduces to

a,':f = ASka8jg + 14 (8ajdpk + 8apdij), 1 <i,j,a, B <n, (16.7)

where X and p are real constant parameters with u > 0 (cf., e.g., Appendix III, Part
I, Section 1 in [Te01]), and (16.3) becomes

L£u= A+ wn)Vdiva + pAu. (16.8)

Then it is immediate that condition (16.2) is fulfilled (cf. [KMW21b]) and thus our
results apply also to the Stokes and Navier-Stokes systems in the isotropic case.
Assuming A = 0, u = 1 we arrive at the classical mathematical formulations of
isotropic Stokes and Navier-Stokes systems.

16.3 Some Function Spaces on Torus

Let us introduce some function spaces on torus and periodic function spaces (see,
e.g., [Agmo65, p.26], [Agrl5], [McLI1], [RT10, Chapter 3], [RRS16, Section 1.7.1],
and [Te95, Chapter 2], for more details).

Let n > 1 be an integer and T be the n-dimensional flat torus that can be
parametrized as the semi-open cube T = [0, 1) C R”", cf. [Zy02, p. 312]. In what
follows, D(T) = C°°(T) denotes the space of infinitely smooth real or complex
functions on the torus. As usual, N denotes the set of natural numbers, Ny the set of
natural numbers complemented by 0, and Z the set of integers.

Let &€ € Z" denote the n-dimensional vector with integer components. We will
further need also the set

7 =7\ {0).

Extending the torus parametrisation to R”, it is often useful to identify T with the
quotient space R” \ Z". Then the space of functions C°°(T) on the torus can be
identified with the space of T-periodic (1-periodic) functions Cg° = C°(R") that
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consists of functions ¢ € C*°(R") such that
Px+E=px VEeZ

Similarly, the Lebesgue space on the torus L p(T), 1 < p < o0, can be identified
with the periodic Lebesgue space L # = L,#(R") that consists of functions ¢ €
L 10c(R"), which satisfy the periodicity condition for a.e. x.

The space dual to D(T), i.e., the space of linear bounded functionals on D(T),
called the space of torus distributions is denoted by D’(T) and can be identified with
the space of periodic distributions D}, acting on Cg°.

The toroidal/periodic Fourier transform mapping a function g € Cg° to a set of
its Fourier coefficients g is defined as (see, e.g., [RT10, Definition 3.1.8])

8(8) = [Fral(®) == /T N gdx, £ e 7.

and can be generalised to the Fourier transform acting on a distribution g € D,,.
For any & € 7", let |&] := (Z;'-Zl 5]2)1/2 be the Euclidean norm in Z" and let us
denote

p(&) == (1+ (€11
Evidently,
1 .
SP®? <87 < p®)? VEeL. (16.9)
Similar to [RT10, Definition 3.2.2], for s € R we define the periodic/toroidal

Sobolev (Bessel-potential) spaces Hy := H(R") := H*(T), which consist of the
torus distributions g € D’(T), for which the norm

1/2
lglls = 108lle, == | Y p®FIE® (16.10)

Eezh
is finite, i.e., the series in (16.10) converges. Here || - ||, is the standard norm

in the space of square summable sequences. By Ruzhansky and Turunen [RT10,
Proposition 3.2.6], H,; are Hilbert spaces.
For g € Hj,s € R, and m € Ny, let us consider the partial sums

gn(®) = Y gE)eTE

§ezn,&|=m
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Evidently, g, € C;°, gn(§) = g(§) if |§] < m and g,,(§) = 0 if |§] > m. This
implies that ||g — g || H — 0 as m — oo and hence we can write

gx) =) &)™, (16.11)

Eezn

where the Fourier series converges in the sense of norm (16.10). Moreover, since g
is an arbitrary distribution from H,, this also implies that the space C;° is dense in
Hj for any s € R (cf. [RT10, Exercise 3.2.9]).

There holds the compact embedding H; < Hj if t > s, embeddings H; C C}
if m € No, s > m + n/2, and moreover, ﬂseR Hi = Cg° (cf. [RT10, Exercises
3.2.10, 3.2.10 and Corollary 3.2.11]). Note also that the torus norms on Hg are
equivalent to the corresponding standard (non-periodic) Bessel potential norms on
T as a cubic domain, see, e.g., [Agrl5, Section 13.8.1].

By (16.10), [Igll%,: = [2(0)|* + |g|3;s, where
# #

1/2
8luy = 10"2ls, = | Y p®FRE

1/

is the seminorm in H,.
For any s € R, let us also introduce the space HJ := {g € Hy : (g, 1)r = 0}.
The definition implies that if g € I-'Ig , then 2(0) = 0 and

gl gy = lglay = 18lay =102l - (16.12)

Denoting C§° ={g €C®: (g, 1)t =0}, then ;g I-'Ig = C§°

The corresponding spaces of n-component vector functions/distributions are
denoted as Hj, := (H;;)", etc.

Note that the norm ||V (-) ||H2 is an equivalent norm in I-'I#. Indeed, by (16.11)

Vo) =2mi Y £ EgE),  Vg(§) =2mikg(&)
R/
and then (16.9) and (16.12) imply
272 glly,y = 2w liglyy =27 1gly,) < Vel

<4mllgly, =478l =4n’lgly, Ve Hy.  (16.13)

The vector counterpart of (16.13) takes form
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2

2 2 2 2 2 2 2 2 Tl
— - < < L et
2 ||V||H;‘t =2 ||V||H#L < ||Vvll 4 ”V”H,L =4n ||V||H; Vv e Hg.

(HQ)”X" —
(16.14)
We will further need also the first Korn inequality
IVVIEL, e < 2HEMIT,, e ¥V € Hy (16.15)

that can be easily proved by adapting, e.g., the proof in [McLO0O, Theorem 10.1]) to
the periodic Sobolev space.
Let us define the Sobolev spaces of divergence-free functions/distributions,

H), = {weH:divw=0}, seR,

endowed with the same norm (16.10).

16.4 Stationary Anisotropic Stokes System on Flat Torus

In this section, we generalise to the isotropic and anisotropic (linear) Stokes systems
in compressible framework and to a range of Sobolev spaces the analysis, available
in [Te95, Section 2.2]
For the unknowns (u, p) € H; X 1’-'1;_l and the given data (f, g) € I:Ii_2 X 1-.1;_1,
s € R, let us consider the Stokes system
—Z(u, p) =Hf, (16.16)

diva =g, (16.17)
that should be understood in the sense of distributions, i.e.,

—(Z@u,p),dr=(dr Vée (), (16.18)
(divu, ) = (g, ¢)T Vo € C°. (16.19)
For & € 7", let us employ eg(x) = e~ 2Mi%E 35 ¢ in (16.19) and eg (x), multiplied

by the unit coordina}e vector, as ¢ in (16.18). Then recalling (16.3) and (16.4), we
arrive for each & € Z" at the following algebraic system for the Fourier coefficients,

Qj(&),k=1,2,....n and p(&).

4n25aa,ffé,gﬁj(§)+2ni§kﬁ(§) = fi(§) VE€Z", k=1,2,....,n (16.20)
2migin;(E) = 8§ V&€l (16.21)
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The (n + 1) x (n + 1) matrix, G(&), of system (16.20)—(16.21) is in fact the
principal symbol of the anisotropic Stokes system (16.16)—(16.17) that was analysed
in [KMW21b, Lemma 15] to prove that the Stokes system is elliptic in the sense
of Agmon-Douglis—Nirenberg. It was, particularly proved that the matrix & is
nonsingular if & % 0 and hence the solution of system (16.20) and (16.21) can
be represented in terms of the inverse matrix &~ (£) as

o~

a©\ (f@)) o ]
(ﬁ(&))_g Ose)) V8L (16:22)

Moreover, using the estimates for the matrix, obtained in that lemma proof, and
implementing to the algebraic system the variant of Babuska—Brezzi theory given
in Theorem 2.34 and Remark 2.35(i) in [EG04], see also [KMW21b, Theorem 10],
we obtain the following estimates for the solution of the algebraic system (16.20)—
(16.21),

A (&) 18]

[u(é)| < Cyuy 27k " el (16.23)
A 3] R .

Pl < CpfFSIEI +Cpglg(§)| VEeZ, (16.24)

where  Cyp =2Cp, Cyg = Cpr =1+ 2C4[All, Cpg = AN +2C4[IAD.

Remark 16.1 For the isotropic case (16.7), due to (16.8), system (16.20)—(16.21)
reduces to

42 [ O+ 8 - TE) + wIEPTE) | +2miEp®) =T@). Ve e,
(16.25)

amik U(E) =8(E) VEeL'. (16.26)
Taking scalar product of Eq. (16.25) with & and employing (16.26), we obtain

T .
pé&) = % + A +21)g), VEeZ', (16.27)
mil§|

and substituting this back to (16.25), we get

_ 1| £ 1) 2@ -
u@é)=————|f(§) —§ +E="2, VEeI (16.28)
42 € [ &1 2mi|&|?
(cf. [Te95, Section 2.2] for the case s = 1, g = 0, A = 0, and = 1). Expressions
(16.27) and (16.28) evidently satisfy estimates (16.23) and (16.24). U

The anisotropic Stokes system (16.16) and (16.17) can be re-written as
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where

and for any s € R,
S Hy x H7' > H7E x B! (16.29)
is a linear continuous operator.
Now we are in the position to prove the following assertion.
Theorem 16.11 Let condition (16.2) hold.

(i) Forany (f, g) € I:I;;t_2 X I-‘Ig_l, s € R, the anisotropic Stokes system (16.16)—
(16.17) in torus T has a unique solution (u, p) € H; X I:I;_l, where

u = Y TG, px) = Y TR (16.30)
g g

with u(§) and p(§) given by (16.22). In addition, there exists a constant C =
C(Ca,n) > 0 such that

iy + 12151 < € (Ifllge2 + gl 1) (16.31)
and operator (16.29) is an isomorphism. ) )
(ii) Moreover, if (£, g) € (C°)" x CZ° then (u, p) € (CZ°)" x Cg°.
Proof

(i) Expressions (16.22) supplemented by the relations w(0) = 0, p(0) = 0 imply
the uniqueness. From estimates (16.23) and (16.24) we obtain the estimate

1/2
lullg, = [ D p@®> @)
1/
C for) . c cor)
uf 2s ug 25 18
s 5|2 r® T +o55| 2 p® e

=/ Ecir
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Eezn
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= 272

C
Ifllggs-2 + Z—jjx/ingn,;;fl

and the similar estimate for || p|| ;s-1, which imply (16.31) and hence inclusions
#
in the corresponding spaces. ) ) )
(ii) The inclusion (f, g) € (C°)" x Cg° implies that (f, g) € H} % x H ™' for
any s € R. Then by item (i), (u, p) € I:I; X I-'Ié_l for any s € R and hence
(u, p) € (C°)" x C°.
O
If g = 01in (16.17), we can re-formulate the Stokes system (16.16)—(16.17) as
one vector equation
—Zu,p =1 (16.32)
for the unknowns (u, p) € I:Ij#(7 X Hé_l and the given data f € I:I;_2, s € R. Then
Theorem 16.11 implies the following assertion.
Corollary 16.1 Let condition (16.2) hold.

(i) Foranyf € I:I;_z, s € R, the anisotropic Stokes equation (16.32) in torus T has
a unique incompressible solution (u, p) € I:Ijk7 X I-'I;_l, with W(€) and p(€)
given by (16.22) and (16.30) (and particularly by (16.28), (16.27), and (16.30)
for the isotropic case (16.7)) with g = 0. In addition, there exists a constant
C = C(Cp,n) > 0 such that

Il + 1Pl -1 = Clifllgg;-2
and the operator
CITS 7s—1 s —2
£ H,, xH;~ — H,

is an isomorphism. ) )
(ii) Moreover, iff € (C2°)" then (u, p) € (C°)" x CZ°.
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16.5 Stationary Anisotropic Navier-Stokes System with
Constant Coefficients on Torus

16.5.1 Existence of a Weak Solution to Anisotropic
Incompressible Navier-Stokes System on Torus

In this section, we show the existence of a weak solution of the anisotropic Navier-
Stokes system in the incompressible case with general data in L2-based Sobolev
spaces on the torus T, for n € {2, 3}. We use the well-posedness result established
in Theorem 16.11 for the Stokes system on a torus and the following variant of the
Leray-Schauder fixed point theorem (see, e.g., [GTO1, Theorem 11.3]).

Theorem 16.2 Let B denote a Banach space and T : B — B be a continuous and
compact operator. If there exists a constant Mo > 0 such that ||x||p < My for every
pair (x,0) € B x [0, 1] satisfying x = 0TX, then the operator T has a fixed point
X (with ||xollp < Mo).

Let us consider the Navier-Stokes system

—Zu,p)=f—(u-V)u, (16.33)
diva =0, (16.34)

for the couple of unknowns (u, p) € Hi; X FI#? and the given data f € H; L As for
the Stokes system, the Navier-Stokes system (16.33) and (16.34) can be re-written
as one vector equation

—Zu,p)=f—(u-V)u (16.35)

for the unknowns (u, p) € H}*U X Hﬁ and the given data f H; I
Let us denote the nonlinear operator as B, i.e.,

Bw:=(w-V)w, Vwe H}, s eR. (16.36)
Theorem 16.3 Let the operator B : w — Bw be defined by (16.36) and let n > 2.

(i) If 0 <s <n/2then

y2s—1—n/2

B:H — H, (16.37)

is a well defined, continuous and bounded quadratic operator, i.e., there exists
Cn.s > 0 such that

| BWllggze-i-n2 < CoslIWly ¥ weHj (16.38)
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(ii) If s > n/2 then
TS ys—1
B Hj — H (16.39)

is well defined, continuous and bounded quadratic operator, i.e., there exists
Cn.s > 0 such that

IBWllgg1 < CuslIWlig ¥ w e Hj. (16.40)

Proof If a function w is periodic, then evidently the function Bw is periodic as well.

(1) Let 0 < s < n/2. Due to Theorem 1(iii) in Section 4.6.1 of [RS96] and
equivalence of the Bessel potential norms on square and norms (16.10) for the
Sobolev spaces on torus, we have,

I(vi - VIV2llos—1-n2 < CpsliVillms IV2llms, Y v, v2 € Hy. (16.41)
H, # #

for some constant C,, s > 0. This particularly implies estimate (16.38).
Further, if u € Hj, | then

(Bu, )T = (u- V)u, I)t = —((diva)u, )t = 0
since divu = 0. Together with estimate (16.38) this implies that quadratic
operator (16.37).is well defined and bounded.
Letw,w € H;U. Then by (16.41) we obtain

|Bw — Bw/HHﬁ&,l,n/z < |w-V)w—(w- v)w’||H§sflfn/z

< (= W) - V)W + W D)W = W) et

< Cos [w =W [y (Wl + 19/l )
This estimate shows that operator (16.37) is continuous.

(i) Lets > n/2.Due to Theorem 1(i) in Section 4.6.1 of [RS96] and equivalence of
the Bessel potential norms and norms (16.10) for the Sobolev spaces on torus,
we have,

IV Vvallgg-1 = Cuslvillmg V2l Y viova € Hj.
for some constant C,, s > 0. This particularly implies estimate (16.40) and then

the boundedness of operator (16.39). By the same arguments as in item (i), one
can prove that this operator is also well defined and continuous.
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Corollary 16.2 Let n € {2, 3}. Then the quadratic operator
B:H, — H;' (16.42)

is well defined, continuous, bounded and compact.

Proof Let n = 3. Due to Theorem 16.3(i), the operator B : H}m — I:I; 172 is well
defined, continuous and bounded. On the other hand, the compactness of embedding
H, 2 H, ! implies the compactness of embedding 1-'1#_ 12 1-'1#_ !"and hence
gives the compactness of operator (16.42) and thus the corollary claim for n = 3.
Let now n = 2. Then by Theorem 16.3(i), the operator B : H; . = I:Iff 2 is well
defined, continuous and bounded for any s € (1/2, 1). In addition, for s € (1/2, 1)
we also have the compact embeddings 1-'11(12(7 — Hg . and st 2 1-'1#_ ! that lead

to the corollary claim for n = 2. O
Next we show the existence of a weak solution of the Navier-Stokes equation.

Theorem 16.4 Let n € {2, 3} and suppose that condition (16.2) holds. If f € H, !

then the anisotropic Navier-Stokes equation (16.35) has a solution (u, p) € H}# . X
70

Hy.

Proof We will reduce the analysis of the nonlinear equation (16.35) to the analysis

of a nonlinear operator in the Hilbert space H#g and show that this operator has a

fixed-point due to the Leray-Schauder Theorem.
Nonlinear equation (16.35) can be re-written as

—%(u, p) =f— Bu. (16.43)
By Corollary 16.1, the linear operator
-Z. I:ILG X I-'I,? — H;l (16.44)

is an isomorphism. Its inverse operator, —%~!, can be split into two operator

components,
. 4
~ ¢ =
( P )

where % : I:I; I I:I#U and P : I:I; I I-'I,? are linear continuous operators such
that

A
_'?(79 9)“9
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for any & € H; L Applying the inverse operator, —.%~!, to Eq. (16.43), we reduce
it to the equivalent nonlinear system

u = Uu, (16.45)
p = Pu, (16.46)

where U : H}m — HLG and P : H}m — Hﬁ are the nonlinear operators defined as

Uw =% (f — Bw), (16.47)
Pw =P — Bw) (16.48)

for the fixed f.

Since p is not involved in (16.45), we will first prove the existence of a solution
u e H}m to this equation. Then we use (16.46) as a representation formula for
p, which gives the existence of the pressure field p € Hﬁ . In order to show the
existence of a fixed point of the operator U and, thus, the existence of a solution of
Eq. (16.45), we employ Theorem 16.2.

By Corollary 16.2, for n € {2, 3} the operator B : Him — H;l is bounded,
continuous and compact. Since f € H,, Uis fixed and the operator % : H,, ' Him
is linear and continuos, definition (16.47) implies that the operator U : H; . Hé -
is also bounded, continuous, and compact.

Next, we show that there exists a constant My > O such that if w € H}m satisfies
the equation

w = 6Uw (16.49)

for some 6 € [0, 1], then ”W”H; < M. Let us denote

q ‘=60 Pw. (16.50)
By applying the operator —% to Egs. (16.49) and (16.50) and by using relations
(16.47) and (16.48), we deduce that whenever the pair (w, 6) € H#a x R satisfies
Eq. (16.49), then the equation
—Z(w,q) =0(— Bw),

is also satisfied due to the isomorphism property of operator (16.44). This equation
should be understood in the sense of distribution, i.e.,

(—L 0, ). 91 = (i Ejp(w), Eia(®))_— (g, div)r

=0(f— Bw,¢)r V¢ e (C)". (16.51)
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Taking into account that the space (Cg°)" is dense in H; and the continuity of the
dual products in (16.51) with respect to ¢ € HL, Eq.(16.51) should hold also for
Pp=we H}w Then we obtain

<al?’;ﬂE,ﬁ(w), Eia(w)> 0(f— Bw, w)r. (16.52)

T =
Since w € I:I}m, relation (16.55) implies that (Bw, w)T = ((w - V)w, w)T = 0.
Then by using the norm equivalence (16.14), the Korn first inequality (16.15), the

ellipticity condition (16.2), Eq.(16.52), and the Holder inequality, we obtain for
6 > 0 that

2 1 2 1 2
HWHHL = F”VWH(LZ#)"XH =< ;HE(W)”(LZ#)”X”

IA

1 o 0
—5Cu(af Ejpw). Eia(w) =

—Callflly=1 1Wly -
- all IIH#III 1)

Hence, for 6 € [0, 1],
1
IIWIIH; <My := 3 CA”f”ﬁ;l-

Therefore, the operator U : H; . H# ., satisfies the hypothesis of Theorem 16.2
(with B = I:Iéo), and hence it has a fixed point u e H#a, that is, u = Uu. Then with
p € Hﬁ as in (16.46), we obtain that the couple (u, p) € H#a X H,? satisfies the
nonlinear equation (16.35). |

16.5.2 Solution Regularity for the Stationary Anisotropic
Navier-Stokes System

In this section, using the bootstrap argument we show that the regularity of a
solution of the anisotropic incompressible Navier-Stokes system on T", n € {2, 3},
is completely determined by the regularity of its right-hand side, as for the Stokes
system. To prove this we use the inclusions of the nonlinear term Bu given by
Theorem 16.3 and the unique solvability of corresponding (linear) Stokes system.

Theorem 16.5 Let condition (16.2) hold. Letn > 2 andn/2 — 1 < 51 < $7.
(i) If(u, p) € Hi_,'a X I-'I#v =1 is a solution of the anisotropic Navier-Stokes equation

(16.35) with a right hand side £ € H> ™7, then (u, p) € H, x H2™".
(ii) Moreover, iff € (Cﬁo)” then (u, p) € (C’go)” X C§°
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Proof

(1) Let (u, p) € H;l(r X H;lf} be a solution of (16.35) with f € I:I;rz. Then by

(ii)

exi

Th
(i)

(it)

Theorem 16.3, for the nonlinear term we have the inclusion Bu € I:I;' with

1 =251 —1—n/2if s < n/2, witht; = s; — 1if 51 > n/2, and with any
t1 € (s1 —2,s1 — 1) (and we can further use t; = s1 — 3/2 for certainty) if
s1 = n/2. Hence the couple (u, p) satisfies the equation

— £, p) =fD (16.53)

with f := f — Bu € H;(l)_z, where s() = min{sy, f; + 2}. By Corol-
lary 16.1(i), the linear equation (16.53) has a unique solution in I:I;J X H; -1
for any s < s and thus (u, p) € I:I;i;) X Hg(l)_l. If sV = s,, which we call
the case (a), this proves item (i) of the theorem.

Otherwise we have the case (b), when sO < 5 i, sW =4 +2, by the
definition of s(1) and the theorem condition s; > n/2 — 1. Then we arrange an
iterative process by replacing s; with () = #; 4+ 2 on each iteration until we
arrive at the case (a), thus proving item (i) of the theorem. Note that in the case

(b),
s — g > 68 :=minfs; + 1 —n/2,1,1/2} > 0

in the first iteration, and § can only increase in the next iterations due to the
increase of s1. This implies that the iteration process will reach the case (a) and
stop after a finite number of iterations.

Iff e (C§° )", then for any s» € R we have f € I:I;;f_2 and item (i) implies that
(u, p) e H;EU X H;z_l. Hence (u, p) € (C}f’)” X Cg".
O

Combining Theorems 16.4 and 16.5, we obtain the following assertion on
stence and regularity of solution to the Navier-Stokes system on torus.

eorem 16.6 Letn € {2, 3} and condition (16.2) hold.

Iff e H;—Z’ s > 1, then the anisotropic Navier-Stokes equation (16.35) has a
solution (u, p) € I:I;U X I-.I;_l.
Moreover, if f € ((f;o)" then (16.35) has a solution (u, p) € (Cf’)" X Cgo

Note that in the isotropic case (16.7) with A = 0, similar results for the Navier-

Stokes system in torus as well as in domains of R" are available, e.g., in [Gall,
RRS16, Sel5, So01, TeOl1].
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16.6 Some Auxiliary Results

The dense embedding of the space (C;°)" into H# and the divergence theorem imply
the following identity for any vy, v, v3 € HL.

((vi - V)va, v3)1 = /TV ~(Vi(v2 - v3))dx — ((V - v)Vv3 + (V1 - V)V3, Va)T
= —((vi - V)v3,v2)p = (V- v])v3, Vo). (16.54)
In view of (16.54) we obtain the identity
(1~ VIV2, v3)p=—((v1 - V)v3, v2)r V' vi € Hyy 2, v3 € Hy,
and hence the well known formula

((vi - V)va,v2)p =0 VvieH) , v, € H}. (16.55)
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Chapter 17 )
Null-Solutions of Elliptic Partial Qs
Differential Equations with Power

Growth

D. Mitrea, I. Mitrea, and M. Mitrea

17.1 Introduction and Statement of Main Result

Let N denote the collection of natural numbers and set Ny := N U {0}. We shall
typically assume that n € N with n > 2. Define the length of any given multi-
index & = (a1,...,a,) € Nj as |a| = Z’}-:l o), and set a! = a!- -l
Corresponding to each j € {1, ..., n}, denote by e; the multi-index in Njj of length
one and with the j-th component equal to 1.

Next, fix m, M € N and consider an M x M system L of homogeneous
differential operators of order 2m, with constant (complex) coefficients in R”.
Hence, there exists a family of coefficient tensors A = {Aaﬂ} consisting
(CM xM

loe|=|B|=m
of matrices Ayg in indexed by multi-indices , 8 € Nj with |a| = |B| = m
such that the system L may be expressed as

L= Z 3% Agp 0P (17.1)

la|=|B|=m

In this work we further assume that L is weakly elliptic in the sense that its
characteristic matrix

L&) := Z Agp TP for £ e R" (17.2)

la|=|B|=m
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is invertible in R" \ {0}, i.e.,

det[ > Aaﬂg“%]#o forall & € R"\ {0}. (17.3)

la|=|Bl=m

Relevant for our work is the fact that such a weakly elliptic system L has a
fundamental solution E;, of the sort described in Proposition 17.1.

The reader is reminded that an arbitrary set £2 C R” is said to be an exterior
domain provided R” \ £2 is a compact set. The main result in this work, elucidating
the asymptotic behavior at infinity for null-solutions of weakly elliptic systems in
exterior domains with at most polynomial growth at infinity, is stated next.

Theorem 17.1 Fixn,m, M € N, n > 2. Let L be a homogeneous M x M system of
differential operators of order 2m in R", with constant complex coefficients. Assume
L is weakly elliptic in the sense of (17.3). Let 2 € R”" be an exterior domain and
consider a function u € [€*®(2)M satisfying Lu = 0 in $2, for which there exists
N € R such that

ux) = o(|x|V) as |x| — oo. (17.4)

Then there exists some polynomial P in R" satisfying LP = 0 in R" and with
the property that

0<|x|’+2’”) ifnisoddorifn > 2m,
u—P= as |x| - oo.  (17.5)

0(|x|2m’” In |x|) ifnisevenandn < 2m,

In addition,

P=0 if N e (—00,0),
P=0 if N =0 and eithern is odd, orn > 2m,
degP <[N] if Ne(0,00)\N, (17.6)

degP < N — 1if N €N and either n is odd, or n > 2m,

degP < N if N € Ng andn is even and satisfies n < 2m.

The regime where the above theorem is effective is N > 2m — n, since in such
a scenario u — P decays faster (or grows slower) than u# was originally assumed
to decay (or grow). In particular, this shows that, in this range, the leading term in
the asymptotic expansion at infinity of null-solutions of a weakly elliptic system
in an exterior domain is always a polynomial. This is remarkable since these null-
solutions can, globally, be very different from polynomial functions.

Even though the statement does not reflect it, our proof of Theorem 17.1 crucially
relies on boundary layer potentials for higher-order weakly elliptic systems, as
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introduced and studied in [MM13] and [HLM21]. Two other key ingredients in the
proof are as follows: first, we shall employ a version of the Divergence Theorem for
singular vector fields which has recently appeared in [MMM?20]; second, we shall
need precise estimates for fundamental solutions of higher-order weakly elliptic
systems, of the sort obtained in [DM18]. For the reader’s convenience, all these are
reviewed in the next section.

Here, we conclude by including the following useful corollary, itself an immedi-
ate consequence of our main result.

Corollary 17.1 Fix n,m,M € N, with n > 2. Let L be a homogeneous
M x M system of differential operators of order 2m in R", with constant complex
coefficients which is weakly elliptic in the sense of (17.3). Suppose 2 is an exterior
domain in R".

For N € R consider the boundary value problem

u € [€X(R2) N ()M,
Lu=0 in $2,

0 I 7.7
@)y = fr € [€°@DM, Iyl <m —1,
ulx) = 0(|x|N) as |x| — oo.
Then any solution u of this boundary value problem is of the form
u= P +u, (17.8)

where P is a polynomial in R" satisfying LP = 0 in R" and (17.6), and ug is a
solution of the boundary value problem

:uo e[EX@)NE" ' (M, Lug=0 in 2, 179
@7 u0)|yo = fy — @7 P)|yq for Iyl <m —1, '
whose behavior at infinity is given by
O(IXI'+2"’) ifnisodd, orifn > 2m,
up(x) = as |x| — oo.
0(|x|2’"_” In |x|) ifnisevenandn < 2m,
(17.10)

17.2 Preliminaries

We start by recalling that weakly elliptic systems as in (17.1) and (17.3) have
fundamental solutions as described in the proposition below. Before stating it, the
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reader is reminded that A stands for the Laplacian in R” (with A, indicating that
this operator acts in the variable x), and .7#"~! denotes the (n — 1)-dimensional
Hausdorff measure in R". Also, ‘dot’ denotes the inner product of vectors in R”.
Finally, 2, &', & stand, respectively, for the space of distributions, compactly
supported distributions, and tempered distributions. For a proof of Proposition 17.1
see [DM18, Theorem 11.1, pp. 393-395].

Proposition 17.1 Fix n,m,M € N, with n > 2. Let L be a homogeneous
M x M system of differential operators of order 2m in R", with constant complex
coefficients and let A = {Ao,,g }IaIZI Bl=m be a family of coefficient tensors associated
with L in the sense of (17.1). Suppose L is weakly elliptic in the sense of (17.3).
Consider the M x M matrix Ey defined at each point x € R" \ {0} by

(n 1)/2 ‘ g‘Zm 1 X 1
E = [L@E)] drm
(0= 4(2711)” 1{f1 @2m —1)! [L®)] @)} (17.11)
ifn is odd,
and
—ay? (x - )™ - |
E = 1 , L d"—
L) = l)”{ Gl n|(x, &)[ [L©)] (e;)} 1712

sn—1
if n is even.

In relation to the CM*M _yalyed function (17.11)-(17.12), the following proper-
ties hold:

(1) With ' (R") denoting the space of tempered distributions in R", one has

Ep € [€°®\ {0) N LL,®") N7/ @]

(17.13)
Ep(—x) = Ep(x) forevery point x € R" \ {0}.

In fact, each entry in Ep, is a real-analytic function in R" \ {0} and an even
tempered distribution in R".

(2) Iffor each y € R" one denotes by 8, Dirac’s delta distribution with mass at y
in R", then in the sense of distributions in R" one has

Ly [EL(x — )] =8,(x) Iuxu,  VyeR", (17.14)

where Iy« p is the M x M identity matrix, and the subscript x indicates that the
operator L is applied to each column of the matrix E (x — y) in the variable x.
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(3) Foreach a € Nj there exists Cy € (0, 00) such that for each point x € R" \ {0}

one has
Ca . . .

W ifnis odd, orifn > 2m,

orifla| >2m —n+1,
|(0“EL) ()| < 17.15)

C,(1 1

% ifniseven, andn < 2m,
and 0 < |a| <2m —n.

Thus, with the derivatives taken in the sense of distributions in R",

the components of the matrix 0“Ep belong to

Llloc(R”) whenever o € Njj satisfies |a| < 2m — 1. (17.16)

Having fixed a Lipschitz domain £2 C R", denote by v = (v;)1<j<p its outward
unit normal and by o := " ~! |32 the corresponding surface measure on 2. For
each m € N, the boundary multi-trace of order m — 1 of a vector-valued function
u € [¢"1(£2)IM, denoted by Tt u, is the family of functions indexed by multi-
indices of length < m — 1 given by

Teyo ' = {07 w)],, } (17.17)

lyl<sm—1"

For a coefficient tensor A = (Agg)|a|=|g|=m Of M x M matrices with complex
entries, the conormal derivative of a function u € [€2" ($2)1M associated with A is
defined as

ofu = | (3)hw), (17.18)

|§|<m—1

with the §-component given by the formula

118]1Gm — 18] — 1)!

97, = —ple 2

(@)= D, D misla — 6 — ;) |
la|=IBl=m

dtej<a

x v Ay (3041 (17.19)

ETel

Single and double layer potentials are introduced next, including a summary of
the their properties that are important for our subsequent analysis. For more on this
topic, see [HLM21] and [MM13].
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Theorem 17.2 Fixn,m, M € N, n > 2. Let L be a homogeneous M x M system of
differential operators of order 2m in R", with constant complex coefficients and let
A= {Aaﬁ } || Bl=m be a family of coefficient tensors associated with L in the sense
of (17.1). Suppose L is weakly elliptic in the sense of (17.3). Let §2 be a Lipschitz
domain in R" with compact boundary. Denote by v = (vj)1<j<n its outward unit
normal and let o == "' |92 be the surface measure on its boundary.

In this setting, let f = {fs}51<m—1 be a family of CM _valued functions, indexed
by multi-indices § € N of length < m — 1, such that

fs € [LI(B.Q, a)]Mforeach 8 € Ny with [8] <m — 1. (17.20)

Then the action of the single multi-layer potential operator S, and of the double
multi-layer potential operator P4, on f, is defined according to

(L) = Y (=D fa @B =) fu()do(y) (17.21)
loe] <m—1
and according to

o L
GahHo=- Y ¥ ﬁ%ﬂx

|
la|=IBl=m 8+y+e;=a v

x / Vi@ EL)(x — ) Apa f3(y) doy(y),

0482
(17.22)

respectively, at each x € §2.
These are well-defined CM -valued functions and satisfy the following properties

DY . . M
L, Daf € |€(£2) as well as
.. [ .o ] (17.23)
L(Zf)x)=0 and L(Z4f)(x) =0 forall x € $2.
The following combinatorial lemma has been proved in [HLM?21].
Lemma 17.1 For every multi-index & € Njj one has

1 e
Z — =, (17.24)

.ol a!

atei=uo

where the sum is performed over alla € Njjand alli € {1, ..., n} with the property

that o + e¢; = Q.
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Lastly, we include a version of the Divergence Theorem for singular vector fields,
which is a special case of [MMM20, Theorem 2.6, pp. 1299-1300]. An extensive
account on this topic may be found in [MMM22].

Theorem 17.3 Fix n € N and let 2 be an exterior Lipschitz domain in R".
Denote by v the outward unit normal to $2 and consider the surface measure
o = A" 1082. Assume the vector field

F=(F,...,F) € [9’(9)]" has divF € &'(2), (17.25)

where the divergence is considered in the sense of distributions in 2. In addition,
suppose

there exists a compact set K contained in 2

such that 13|9\K e[6°@\ K)]", (17.26)
and
Fx) =o(lx|'™) as |x| - oo. (17.27)
Then
s pldiv F Dew) = /m v-(F|,q)do. (17.28)

17.3 Proof of the Main Result

Here we present the proof Theorem 17.1.

Proof Pick R € (0, oo) sufficiently large so that 92 is contained in B(0, R) and
set £29 := R" \ B(0, R). Fix an arbitrary point x € 29 and select an arbitrary
multi-index n € Ng. For these choices, consider the vector field

Fy = (F] (17.29)

j)lsjsn
whose j-th component, j € {1, ..., n}, is defined for y € £2 as
LS| ]!
Ny e atldftly ]t
Fjoy== ) 2 mlylsl
le|=|Bl=m d+y+ej=a

X (=DM G B (0 — )] Ape (02u) ()
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ol 18]y !
o Z Z 1811 X
la|=|Bl=m S+y+ej=a m:ozy:
x (=DIMHPIGIRTEL (x — 3)] Aap 3P 1) ().
(17.30)

MxM ]MXM

Since E(x — ) € [L].(£20)] c [Z'(%20) , and for every 6 € Nj we

have 8%u € [%W(Qo)]M, it follows that 17“77 € [9’(!20)]MX". In fact, based on
(17.30), the hypotheses on u and (17.13) we have

Fye[¢%(20\ )] n[2/@20)]"". (17.31)
Next, we claim that
div Fy = (—=D)u - 975, e [£'(20)], (17.32)

where &, denotes the Dirac distribution with mass at x. To see why this claim is
true, let y € 29 be arbitrary and write

n
div Fy(y) = ) 0jFI () =T+ Ip+ 11, + 11, (17.33)
j=1
where
ol [5]!y]! Byt
loi=— Y S ()T - )] Apa0P) (),
jal=lBl=m VO
S+ytej=a
al|sty|! ..
== Y e (DI AT B (= )] Apa (07T (),
jal=lBl=m VO
dt+y+ej=a
) o! |5|' |y|' [n]+18] n+d+e; B+y
Ho=— ) — e (DM [EL (= )] Aap 07T w) (),
jal=lBl=m Y
dtytej=a
al 6]y ! .
Iy=— > W(—l)‘"‘“ﬁ'aﬁ[hu — 1] Aap @ FTu) ().
jal=ll=m O

S+ytej=a
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We proceed by rewriting the sums in the right-most side of (17.33) as follows.
Starting with 1, we have

1y a! [8]! (o — 8] — 1!
la= 2. Z( > _> m 8! x

|
la|=|Bl=m S<a y+ej=a—5 v

x (=DM=PlIHF+a=dTE) (x — y)] Apa(3°u) (y)

_ Z Za—6| a!|8|!(|ot—8|—1)!x
B —8)! m! 8!

la|=|Bl=m 8<a

x (=D)M=Plnth+a=dlE) (x — y)] Apa (9°u) (y)

Z Z“'ISI'IG—(SI'
= X
la|=|Bl=m §<a m! 5! (o — 3)!

x (=D)M=PlIHF+a=d1E) (x — y)] Apa(3°u)(y)

alls|!y]!
= 2 2 mislyl

la|=|Bl=m  s+y=a.|y[>0

X (=DM P TR (x — 1) ] Apa (32u) (p), (17.34)

where for the first equality above we have used the fact that in the definition of I,
we have |y| = |a| — || — 1 = m — 1 — |§], for the second equallty in (17.34) we
have applied Lemma 17.1 to the effect that N > J7 l = (Ig ] for each § < «,
ytej=a—
and for the final equality in (17.34) we have denoted y := «a — 4.
Moving on to I}, we write

Iya! (o —y| = D!yl
> Z( 2 5) ml ! x

le|=|Bl=m y<a S+ej=a—y

x (=) P (B (= 3)] Apa (097 u) (y)

Z Zla—yl al(la—y|l—=D!yl!
. X

—_ | |RYAl
al=pl=m y=u &~V my

x (=) P (B — 3)] Apa (097 ) (y)

Z Za'la— 1yl

| — |
lal=IBl=m ¥< (@ =y)!

X (=DM P TR (v — 1) ] Aga (997 u) ()
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al 8!y
== 2 2 miylsl

la|=|Bl=m  y+dé=a,|8|>0

x (=)IPITFH By (x — 1)) Apa(0u) (), (17.35)
where for the second equallt?/ in (17.35) we have employed Lemma 17.1 which
implies that Y 5 = @ y), for each § < «, while for the last equality in

dtej=a—y

(17.35) we have denoted § := o — y and used the fact that |y| = m — |§].

A simple inspection of (17.34) and (17.35) reveals that all the terms in I, + I
corresponding to |§| > 0 and |y | > O cancel out. The terms in I, corresponding to
|8] = 0 and the terms in [}, corresponding to |y| = O are the only ones that remain,
hence

Lot dy= DD oI P EL (e — )] Apa Ju(y)
la|=|Bl=m

— (=pltm N I EL(x — )] Apa(0*w)(y).  (17.36)
lae|=|Bl=m

Observe that based on the properties of E; we further obtain

T
a)’/7+/5+01 [EL (x _ y)]AﬂOI — (A;—aa;l+/5+01 [EL (x _ y)T])

(A;—aay’?+ﬁ+a [Epr(x — y)])T

oI [LT (Epr(x = )]

T
=08 Imxm]
= ("8 ) Imxm. (17.37)
Now we combine (17.36) and (17.37) to conclude that

Lo+ I = (=DMu(y)(@78,)

— (=l N A EL(x — 3) ] Apa (31 ().
la|=|Bl=m
(17.38)
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Using the same circle of ideas, write 11, as

Iya! (o —y|— D!y
Ho= ), Z( 2 5) mly! x

lel=IBl=m v<a b+ej=a—y

X (_1)m+|’7|_‘}"a;)+a*y[EL(x _ y)]Aaﬁ(aﬂ+yu)(y)
_ Z Z lo — y| .Ol!(IOl—)/I—l)!Iy/I!><

al=1Bl=m 7<a &) m!y!

x (_1)m+|ﬂ|_‘y‘a;7+0!*7[EL(x _ y)]Aaﬂ(3ﬂ+Vu)(y)
_ Z Z Ol!|5|!|7/|!x
B mly!sl

la[=IBl=m  y+s=a, [5]>0

x (=D)IMHPIIHTEL (x — y)]Aap (0P 1) () (17.39)

1yl (jo — 8] — 1)1]8]!
== > Z( > _z>a am!az x

la|=|Bl=m é<a y+ej=a—3 Y

X (=DM IR (x — y)] Aup (3P T Pu) ()

¥ Z|a_8| ! (jo — 8 — D31
= @—20)! ml ol .

la|=|Bl=m d<a

x (=DM TEL (x — 3)] Aup (3P Pu) ()

ally|ts]!
=" Z Z Syl
lal=lBl=m y+o=arly|=0 OV
x (=DIMHRIGIHTEL (x = 9 ]Aap GPH 1) (). (17.40)

An inspection of (17.39) and (17.40) reveals that the terms in /I, corresponding to
|y| > 0 and the terms in I}, corresponding to |§| > O cancel out, so

Ho+ 1= Y (=DM EL (x — )] Agp@P1)(y)

la|=|Bl=m

— Y DMAIEL - 3)]Aap P u)(y)

la|=|Bl|=m
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= (=DM N I EL(x — )] Aap (0P u) (y)

la|=|Bl=m
— (=DMINEL(x — »](Lu)(y)
= (=Dl N AP EL(x — )] Apa (0%u) (y), (17.41)
la|=|B|=m

where we have used the definition of L in the second equality above, while for the
last equality in (17.41) we have used the fact that Lu = 0 in £2.
Together, (17.33), (17.38), (17.41), and the arbitrariness of x € £2¢9 imply

div Fy (y) = (=DMu(y)(375,) in [@’(90)]’” (17.42)
proving (17.32).
Let us now assume that the multi-index 7 is such that
[n] > N ifnisodd, orif n > 2m,
(17.43)
In| > N ifnisevenand n < 2m.
Under this additional assumption, our second claim is that
Fy(») = o(IyI'™) as |y| — oc. (17.44)

To justify (17.44), start by invoking interior estimates for the null-solution u of
L (cf. [DM18, Theorem 11.7, p.409] and [MMM?22]) and conclude that the decay
in (17.4) further improves to

@ w)(y) = o(Iy1N 7" as |y| - oo, forall 6 e Np. (17.45)

To proceed, consider the case when either n is odd, or n > 2m. Fix o, 8,6,y € Ng
along with some j € {1,...,n} satisfying |¢| = |[B| = mand § + y +¢; = a.
Then the decay in (17.45), the estimates in (17.15), and the fact that by assumption
[n] > N (cf. (17.43)) imply

1
o s = 160001 = O gt o)

1
[
<|y|n—2m+\77\+m+m—l—N)

0( ! ) (17.46)

|yt
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as |y| = oo, and

1
|3;7+5[EL(X - )’)]||(3ﬂ+yu)(Y)| = O(an)l)ﬂyw_w_lyl)

1
= 0( |y|n72m+\n\+m+m7]7N)

1
0(|y|n_1) (17.47)
as |y| — oo. A combination of (17.30), (17.46), and (17.47) gives (17.44) in the
current case, namely whenever || > N and if n is odd, or if n > 2m.

It remains to consider the case when n is even and n < 2m. This time, if
a, B,8,y € N together with j € {1,...,n} are such that |a| = |B| = m and
8 + y +e; = a, using the decay in (17.45), the corresponding estimates in (17.15),
and the fact that now we assume || > N, we obtain

1
VP [ELe = )] [10°0 ()] = 0(|y|n,2m‘1|'j'+lm+ly| Jolly =)

=o( : ) (17.48)

ly[n=1

as |y| = oo, and

1
07 [EL(x = »][10P ) ()] = O(M%)O(UVV—W—M)

=o( ! ) (17.49)

|yln=1

as |y| — oo. Thus, (17.30), (17.48), and (17.49) may be combined to conclude that
(17.44) also holds if n is even and n < 2m provided || > N.

Having provgd (17.31), (17.32), and (17.44), we see that whenever (17.43) holds,
the vector field F, satisfies the hypotheses of the Divergence Theorem 17.3. As such,
formula (17.28) written for this vector field implies

& iy Fy o 1) g0 :/BQ v (Fylyg,) do. (17.50)
0

Making use of (17.32) we can further express
&' @l Fr - U g gy = ean{(=DMu %8 1) g

= éa’(ﬂo><(_1)mlan5x J “)(5’(90)
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= g/(90)<8x N 8"u>g(90)
= (8"u) (x). (17.51)

As for the right-hand side of (17.50),

s al 8]ty !
fo? Brlia)io == 3> % T
820 lo|=|Bl=m S+y+ej=a 17
x 3" fd . Vi (M@PTYEL)(x — y)Apa (@) (y) do (y)
0

al 8]y !
- Z Z Styl }

lal=Ipl=m S+ytej=a OV

x 3" /B . Vi@ EL)(x — ) Agg (3P u)(y) do ()
0
= 0" Ia (T u) = 7 (0u) | o). (17.52)

Above, Dy, . are, respectively, the double and single multi-layers associated as in
Theorem 17.2 with the set £2y. These act, respectively, on the arrays Trg'golu, the
multi-trace of order m — 1 of u on 982 (cf. (17.17)), and the conormal derivative
8fu of u on 982¢ (cf. (17.18)—(17.19)). Together, (17.50), (17.51), and (17.52), give

0"[u = Ia(Tejglu) + 7 (80u) | =0 in 20 (17.53)
Consequently, if we set
Py :=u— Da(Trhglu) + .7 (9;'u) in L0, (17.54)
then what we proved so far ensures that

Py € [¢°(20)]" and 37Py =0 in 2o

for all n € Nj satisfying (17.43).

(17.55)

Via a Taylor series argument, it is not difficult to see that the conditions in (17.55)
force Py to be locally a polynomial. The degree of this polynomial depends on the
lower bound for |n| as dictated by (17.43). In addition, since £2 is a connected set
in R", it follows that there exists a polynomial P in R" such that Py = P| o, 10 $20.
An inspection of (17.54) also implies L Py = 0 in §£29 which forces LP = 8 in £2p.
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Hence, the polynomial L P which is defined in R” vanishes in £2¢, thus necessarily
LP = 0in R". In summary, so far we proved that

there exists some polynomial P in R”,
satisfying LP =0 in R", and such that (17.56)
u =P+ Ds(Trygu) — 7 (0}u) in 2.

The fact that u satisfies (17.5) now follows from (17.56), (17.21), (17.22), and
(17.15). In addition, the claim about P made in (17.6) is a consequence of what
we proved so far and a careful inspection of (17.55), while keeping in mind (17.43).
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Chapter 18 )
On the Use of the Adjoint Technique to e
the Estimation of Neutron Source

Distributions in the Context of

Subcritical Nuclear Reactors

L. R. C. Moraes and R. C. Barros

18.1 Introduction

A nuclear reactor characterized as subcritical possesses a core that cannot achieve
criticality, in the sense, that the fission-chain reactions occurring with the fissile
materials at the reactor core cannot hold without the action of an external stationary
source of neutrons. Nowadays, there are different classes of such devices driven by
external sources, being the accelerator-driven systems the most common in projects
involving subcritical reactors [NiEtAlO1]. Due to its inherent safety, as one just
needs to switch off the external source to shut down the reactor, and other positive
features, which also include substantial flexibility in fuel processing and managing,
the subcritical reactors have been increasing research interest, although they possess
a more complex structure in comparison to critical commercial nuclear reactors.

In this chapter we provide a more deep and general description of the method-
ology presented in the literature [LeEtAl120, LeEtAl21]. This methodology is based
on the adjoint technique and is used to determine the neutron source distribution
required to drive a subcritical system to a prescribed distribution of power. In
other words, the forward transport equation to mathematically model the neutron
migration within the reactor core together with the equation that is adjoint to it
are correlated through a reciprocity relation (Sect. 18.2), leading to a relationship
between the sources of neutrons and the power produced by the system. This
relationship is centered on the construction of a special matrix, namely importance
matrix (Sect. 18.3), composed of the solutions of the adjoint transport equations,
which are interpreted here as measure of the importance that one neutron inserted
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into the system has to the power generation. An illustrative example is given in
Sect. 18.4 and we close this chapter with some concluding remarks in Sect. 18.5.

18.2 Mathematical Basis

We begin with considering the functional
o0 ~ o A
F:/ de dE O'(r, 2, EYW(r, 2, E)d2 = (07, W), (18.1)
v 0 4r

which is linear with respect to both ¥ and QT functions. These two functions are
defined in the same phase space, that is composed by the spatial variable r (a point
inside a convex volume V), the angular variable Q? (a direction of flight taken at
the surface of an unit sphere, i.c., |f2| = 1), and the kinetic energy variable E.
The function ¥ in Eq. (18.1) is the neutron angular flux, which satisfies the linear
Boltzmann equation (LBE), also referred to in this chapter as the forward neutron
transport equation [PrLal0]. That is,

Q.-VU(r,R2,E)+o(r, EYW(r, 2, E) =

0
/ 5" 6 / 5' / 5
/O dE Anas(r,sz ‘R,E - E)¥(r,R ,E)dR + (18.2a)

X(I‘, E) o0 ’ ’ A/ ’ A/ A
dE vor(r, ENW(r, 2 ,ENd2 + Q(r, 2, E),
4 Jo 4

where oy, 05, and of are the total, scattering, and fission macroscopic cross sections,
v and x are the average number of neutrons released in a fission event and the
fission spectrum, respectively, and Q represents a neutron source. Equation (18.2a)
is subjected to the boundary conditions

W, R, E)=v"w,2,E), redV, 2. n<0,0<E < oo, (18.2b)

where n is the unit outward normal vector atr € d V. In addition, back to Eq. (18.1),
Q" is a function called adjoint source, whose meaning is tied to the definition of the
functional F. At this point we remark that the theoretical approach considered in
this chapter is consistent with positive definite functionals, i.e., F > 0 in Eq. (18.1).

Now, in order to analyze the constitution of the functional F, we suppose the
introduction of one neutron at position r, migrating in direction 2 with energy E,
inside the same system as ¥ in Eq. (18.1) is defined. From this insertion an (average)
increase AY¥ of the neutron angular flux will then promote a change (increase) AF
in the functional F. We remark that this increase AF may be produced either directly
by the inserted neutron or through its precursors, in the case of a multiplying system.



18 Estimation of Neutron Source Distributions Using the Adjoint Technique 263

The contribution AF generated in the functional due to the insertion of a neutron
into the system is defined as neutron importance [Ga87], also referred to as adjoint
angular flux.

Based on the concept of neutron importance, each neutron inserted into the
system contributes with a value AF to the functional. Therefore, considering the
two ways of which neutrons can be inserted into the system, i.e., through its
boundaries or by the neutron source, we can rewrite the functional F accounting
for the contribution of all neutrons inserted into the system. In this case, we have

P=' 0)+p vl v, (18.32)
where we have defined
oo ~ ~ ~
<wT,Q>=/ dV/ dE/ wir, 2, E)Q(r, 2, E)dR (18.3b)
\% 0 4
and
K oo ~ ~ ~ ~
Py [wuw]:/ dE/ 42 | m-@wie 2. B, 2, E)dA
0 n-2<0 A%

o
—/ dE[A d2 | m-2)v (@, 2,E)¥(, 2, E)dA.
0 n-2>0 A%
(18.3¢)

In Eq.(18.3) we have used the function ¥ to represent the importance of one
neutron inserted into the system at (r, fl, E), which is equal to the aforementioned
contribution AF.

For the sake of simplicity, let us examine separately Eqgs. (18.3b) and (18.3c¢).
Regarding Eq. (18.3b), this term accounts in the functional F for the contribution
of all neutrons inserted into the system by the neutron source. Here, ¥ gives the
contribution AF of one neutron inserted at (r, S} E) and Q biases this contribution
to the total number of neutrons inserted into the system by the neutron source at
the same point. On the other hand, the term given in Eq. (18.3¢c) accounts in the
functional for the contribution of neutrons that are inserted, for the first time, into
the system through its structural boundaries. In Eq. (18.3c) the term

o0
/ dE/ ) d.fl/ n- ¥ (r, 2, E)Y0’r, 2, E)dA (18.4a)
0 n-2<0 A%

accounts for the contribution to the functional of all neutrons that enter the system
through its boundaries. Also in Eq. (18.4a), ¥T provides the contribution AF to
the functional of one neutron inserted into the system at (r, Sé, E) and w? (Eq.
(18.2b)) biases this contribution with respect to all neutrons that enter the system
through its boundaries. However, if there is a possibility that part of the neutrons
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entering the system can be formed by neutrons that were previously inside the
system, for example, when reflective boundary conditions are considered, then their
contribution to the functional have been already accounted for, either by the neutron
source term or even by the boundary term itself. In this case, neutrons that enter
the system through its boundaries, and for some reason had been previously inside
the system, should be removed in order to avoid considering the same contribution
multiple times. This situation explains the term

o0
—/ dE/ ) dSZ/ m- Wi @, E)VW(r, 2, E)dA (18.4b)
0 n-2>0 A%

that appears in Eq. (18.3c¢). If there is a possibility of a neutron leaving the system to
return, the importance of this neutron (IIIT, for 2 -n > 0 at the boundaries, i.e., r €
aV) is different from zero. Therefore, in Eq. (18.4b), the product between wTand @
represents the contribution to the functional of all neutrons that are re-entering the
system. Again, as the minus sign in Eq. (18.4b) indicates, this contribution needs to
be subtracted of Eq. (18.4a), since this term makes no distinction about the origin of
the inserted neutron.

Equation (18.3a) is the well-known reciprocity relation [PrLal0]. Observing Eqs.
(18.1), (18.2), and (18.3), it is reasonable to assume that Q7 is the source term of the
equation whose solution is ¥ . In fact, the equation centered on ¥ ' can be derived
using different approaches, such as the operation reversal [Ga87]. The importance
equation, also called adjoint transport equation, since it is the equation that is adjoint
to Eq. (18.2a), appears as

—Q .V, 2, E) +our, E)Wi(r, 2, E) =

o0
/ dE’/ or.2 -9 E— EYWix @ E) ® +
0 4

(18.5a)
vor(r, E) [ - N s ~
_— dE X@, ENYY'(r,2 ,E)d2 + Q' (r, 2, E).
4r 0 4r
Equation (18.5a) is subjected to the boundary conditions
lI/T(r, S}, E) = WTb(r, SAZ, E), redV, Q- n> 0,0< E < o0, (18.5b)

which possess a strict relation with the boundary conditions for the forward transport
problem (Eq. (18.2b)) as will become apparent in the next section.
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18.3 The Source Estimation Through the Adjoint Technique

Let us consider again the functional defined in Eq. (18.1). As briefly discussed in
the previous section, the adjoint source keeps a strict relation with the functional F.
In fact, the definition of QT depends on the definition of the functional F. When one
requires F to represent a specific physical quantity, Q" is automatically defined, such
that F becomes this desired quantity. For example, if it is required for F to represent
the reaction-rate of a given material at a specific point r*, then Q' becomes

0'(r, E) = ox(r, E)5(r — 1),

where o (r, E) is the reaction cross section of the material considered and § is the
Dirac delta function.

As we are interested in building an explicit relation between the power generated
by a subcritical system and the neutron source distribution used to stabilize it, we
assume that F represents the power generated by the system. That is,

o0
F = Protal =/ de dE/ eop(r, E)W (r, 2, E)dS2, (18.6a)
Vv 0 A

where € is the average energy released in one fission event. From Egs. (18.1) and
(18.6a), one concludes that the adjoint source is

0'(r, E) = eoy(r, E). (18.6b)

The adjoint angular flux associated with the adjoint source as in Eq. (18.6b)
represents, in this case, the contribution that one neutron inserted into the system
has to the generation of power by the whole subcritical system.

18.3.1 Boundary Conditions

At this point we need to focus our attention on the boundary conditions considered
in the neutron transport problem, in order to examine their relation with the adjoint
boundary conditions and the impact of such conditions in the definition of the
functional as presented in Eq. (18.3).

Thus, let us suppose that it is possible to know the origin of all neutrons entering
the system through its boundaries. In this case, Eq. (18.2b) can be written as a sum
of two different terms, i.e.,

UP(r, 2, E) = v, 2, E) + ¥, 2,E), recdV, 2. n<0, 0<E < oo,
(18.7)
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where ¥* is the part of ¥” composed of the neutrons that come into the system for
the first time, and ¥** is the part of ¥? composed of the neutrons that enter the
system and, for some reason, had been previously inside the system. Substituting
Eq. (18.7) into Eq. (18.3c), and recalling the definition of term P [\I/T, lI/] given in
the previous section, we write

o0
Py [wT,w]:/ dE/ ) d.Q[ In- @i, & By x, @, E)dA
0 2 <0 Vv

(18.8a)
and

o0
/ dE/ - d2 | m-2¥ix, 2, E)0*(x, 2,E)dA
2<0 A% (18.8b)
/ dE/ df (n Qwie, 2, E)Y0(r, 2, E)dA.
SZ>0

In nuclear reactor physics problems, the angular flux of neutrons usually satisfies
the vacuum and/or reflective boundary conditions. In the case of vacuum boundary
conditions (VBC), it is assumed that no neutron can enter the system through its
boundaries. In other words,

v, 2, E)=0, redV, 2 - n<0,0 < E < oo.

Thus, for VBC, functions ¥* and ¥** are identically zero. Setting ¥* and ¥** as
zero in Egs. (18.8), we obtain

Py ['ﬂ, -1/] —0 (18.9)

and, according to Eq. (18.8b) we conclude that
i, 2, E)=0, redV, 2. n>0,0<E < oco. (18.10)

As no neutron can enter the system through its boundaries, considering VBC means
that the contribution to the functional of neutrons that are inserted for the first
time into the system is zero, as we notice from Eq. (18.9). Furthermore, from
Eq. (18.10), we can also conclude that neutrons leaving the system have zero
importance. As there is no possibility for a neutron leaving the system to return,
once a neutron leaves the system, it will not contribute to the functional, hence it
has zero importance.

In the reflective boundary conditions (RBC), it is considered that all neutrons
leaving the system are reflected back into the system. In other words, the neutron
angular fluxes in the incoming directions at the boundaries are settled as equal to
the neutron angular fluxes in the outgoing directions at the same points. Thus,

Yo, 2, E)=w(x,-R,E), redV, 2 n<0,0<E < 0.
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As in the RBC the neutrons entering the system were all previously inside the system
(inserted by the neutron source), we have ¥* equal to zero and

U, R, E)=¥(x,—R,E), redV, 2-n<0,0<E < oo. (18.11)

Therefore, as no neutron enters the system, for the first time, the contribution to
the functional of P, [¥7, ] is also zero. Moreover, substituting Eq. (18.11) into
Eq. (18.8b) we obtain the boundary conditions for the adjoint transport problem,
associated with RBC for the forward neutron transport problem. That is,

i, 2, E)=v'(,-R,E), redV, 2 . n>0,0<E < oco. (18.12)

As all neutrons leaving the system are reflected back into the system, their
contribution to the functional is equal to the contribution of neutrons entering the
system, as we can infer from Eq. (18.12).

18.3.2 The Importance Matrix

Considering the definition of the functional given in Eq. (18.6a) and P [lI/T, lI/] as
shown in Eq. (18.9) (valid for VBC and RBC), we can conclude from Egs. (18.3)
that

o0
Pmﬂ:/dV/ dE | o, 2, Eyo™ (v, 2, EYa®. (18.13)
\%4 0 4

The superscript “total” that appears in ¥ is used to indicate that these functions
are obtained by the solution of Eq. (18.5a) considering the adjoint source as given
in Eq. (18.6b), and boundary conditions as defined in Eqgs. (18.10) and/or (18.12).

To proceed, let us consider the spatial domain V (subcritical system) as com-
posed of I subdomains V; (hereafter called regions), i.e.,

v=v.

i=1

where the neutron source is uniform with respect to the spatial variables inside each
region V;. Moreover, we assume that it is given not only the total power generated
by the system (Pyotq1) but also how this power is distributed. That is to say,

I
Ptotal = Z P;,
i=1
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where the power generated in each region (P;) is considered to be known. Thus,
we redefine the functional F as the power generated by the region V; instead of the
whole system as in Eq. (18.6a). In this case, we have

P; =/ dv /OodE/ eof(r, E)o; ()Y (r, 2, E)dS2, (18.14a)
14 0 4
with
Of(r, E) = eog(r, E); (r), (18.14b)
where
50 = | aoeraie

Following a procedure which is analogous to the one that results in Eq. (18.13), we
obtain

00 ! i oA ~
P, = f dE/ Z 0 (L2, E)Vkaz (2, E)ds2, (18.15)
0 4 k=1

where we have defined

4 oA 1 i ~
v (2. E) = W/ wi'(r, 2, E)dV,
Wk

with V; standing for the volume of region Vx. The subscript “k” in the neutron
source is used to emphasize that this function is uniform with respect to the spatial
variables inside each region Vj. Furthermore, the superscript “i” in &7 is used to
indicate that this function is obtained through the solution of Eq. (18.5a) considering
the adjoint source as shown in Eq. (18.14b), and boundary conditions as in Eqgs.
(18.10) and/or (18.12).

Moreover, we use the energy multigroup formulation [PrLal0O], wherein the
energy variable is discretized in a finite number G of contiguous energy groups,
such that

Emin=E¢ < Eg-1 < <Eg <Eg | <.+ <Ey<E|=Ena,

where Enjy is considered to be sufficiently small that neutrons with energy less than
Enin are negligible and E,y is sufficiently large that neutrons with energy greater
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than Ep. are also negligible [PrLal0O]. Assuming the neutron source as uniform
with respect to the energy variable inside each energy group, Eq. (18.15) appears as

I G )
p; = ZZQk,ngczb,jfg, (18.16a)
k=1 g=1
where we have defined
i E8*1 _Ti A A
<D,jg = / dEf v, (R,E)dL. (18.16b)
’ E 47

4

At this point we remark that we have also considered isotropic neutron sources in
Eq. (18.16a). Fori = 1 : I, we obtain the isotropic matrix equation

P=L"Q, (18.17a)

where P is an /-dimensional column vector composed of the prescribed power
density distribution; Q is an /G-dimensional column vector composed of the
uniform multigroup neutron sources; and L is an I x /G matrix defined as

— Tl Tl Tl Tl Tl Tl —_
Vio], Vid[, Vi 5 - Vi®] o Vod,y - V&)

v,0" viol viel vl Vadl v el
1%, Y1%¥12 V1% 3 %16 Y2%21 I¥1.G
L' = . (18.17b)

—{-I TI —}-I TI -I.I -I.I
_qu)l,l qu)m Vl(plﬁ Vl(pl,G VQQDZJ e V]@D[)G_

We observe that each row of matrix L is composed of the solution of Eq.
(18.5a) considering boundary conditions given by Eq. (18.10) and/or (18.12) and
appropriate adjoint sources, cf. Eq. (18.14b) fori =1: 1.

The matrix displayed in Eq. (18.17b) is referred to as importance matrix. Each
element of this matrix represents the importance that all neutrons inserted into the
system at a region k with kinetic energy in group g have to the generation of power
in region i, cf. Eqs. (18.16). The calculation of the importance matrix allows us
to explicitly correlate a prescribed distribution of power (P) with the neutron source
distribution (Q) required to drive the subcritical system into the given level of power.

If we consider the subcritical system as composed only of multiplying regions,
as well as G = 1, we can obtain a unique solution for Eq. (18.17a). That is,

Q=L""P,

. —1 . . . . .
provided that LT exists. However, if we consider that there are non-multiplying
regions composing the subcritical system and/or G > 1, which accounts for most
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of realistic situations, the linear system presented in Eq. (18.17a) does not have
a unique solution. In particular, with respect to the existence of non-multiplying
regions, the rows of Eq. (18.17b) associated with such regions have all elements
equal to zero. As in a non-multiplying region there is no fissile material to produce
fission, i.e., P = 0, the importance that a neutron inserted in any place into the
system has to the generation of power in this non-multiplying region is clearly zero.
This situation can also be viewed, noticing that trivial solution of Eq. (18.5a) arises
considering boundary conditions as Eqgs. (18.10) and/or (18.12) and adjoint source
equal to zero (o¢(r, E) = 0 when ¢;(r) = 1).

As the linear system presented in Eq. (18.17a) does not have a unique solution,
auxiliary information must be given in order to determine a unique neutron source
distribution. This situation actually gives to the present methodology an interesting
flexibility, since different neutron source distributions can be generated (according
to the auxiliary information), all of them driving the subcritical system to the
prescribed distribution of power.

18.4 An Illustrative Example

To illustrate the use of the adjoint technique to estimate neutron source distributions
driving a subcritical system to a prescribed power distribution, we consider a
2-energy group slab-geometry subcritical problem, as depicted in Fig. 18.1. The
material parameters for this problem are displayed in Table 18.1. Moreover, we
adopt v = 2.5 and € = 200 MeV. At this point we remark that the numerical values
of the macroscopic cross sections presented in this section are fictitious. The goal
here is just to illustrate the application of the present methodology.

The adjoint transport equation for slab-geometry problems appears in the
multigroup discrete ordinates formulation (Sy) [LeMi93] as

G N

d i i 1 i
~Hm Elp’lvg(x) + Utg l[/r::’g(x) = E Z Usgﬁg’ Z ‘I/V:r,g/ (x)wn+
g'=1 n=1

=z

(18.18a)

G
Vot, i T
5 Zl KXo DY (o + 0 (),
g =

n=1

m=1:N,g=1:G, xeV (k=1:5),

RBC §

Fig. 18.1 Geometry of the test problem
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Table 18.1 Material parameters of the test problem

O'SR‘)R/ (Cm_l )

Material parameters | oy, (cm™) Vo, em™ ¢ =1 g =2 Xg

Vi lg=1 2.31800E—01* | 0.00000E400 | 1.82450E—01 | 1.56300E—02
g=2 8.38000E—01 | 0.00000E+00 | 0.00000E4-00 |7.33100E—01

Vo |g=1 2.36570E—01 1.12038E—02 | 2.09560E—01 | 1.45311E—-02 |1
g=2 8.22800E—01 1.04762E—01 | 0.00000E4+00 | 7.06506E—01 |0

V3 |g=1 2.31800E—01 |8.66721E—03 | 1.84200E—01 | 1.63800E—02 |1
g=2 8.71460E—01 1.88993E—01 | 0.00000E4+00 | 7.42840E—01 |0

Vi |g=1 3.37600E—01 | 0.00000E+4-00 |3.03126E—01 | 1.01203E—03
g=2 9.99500E—01 | 0.00000E+4-00 | 0.00000E+4-00 | 3.13126E—01

Vs |g=1 1.78120E—01 | 0.00000E+00 | 8.00710E—02 | 3.43413E—03
g=2 1.17616E4+-00 | 0.00000E+00 | 0.00000E+400 | 1.14458E—01

a4 Read as 2.31800x 10!

where the adjoint source for this case is

06 (x) = €0, g (x), (18.18b)
with
1, ifxeV, .
() =1 , i=1:5.
G (x) {O, otherwise !

In Eq. (18.18a) N is the number of discrete directions, G is the number of energy
groups, and w, is the weight of the angular quadrature. The superscript “i” is used
to emphasize the relation between the adjoint angular flux and the adjoint source as
defined in Eq. (18.18b). That is,

i B i
v () = / o (x, wm, E)AE.

Eg

Furthermore, we consider the macroscopic cross sections as uniform with respect to
the spatial variable within each region V;, viz Table 18.1.

As described in the previous section, we need to calculate the importance matrix
in order to correlate the neutron source distribution and the power generated by
the system. However, as we consider here a slab-geometry problem, the vector P
presented in Eq. (18.17a) represents, in fact, the distribution of power per unit cross
sectional area in accordance with Egs. (18.16). Using the fact that for slab-geometry
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problems the adjoint angular flux is considered to be uniform in the Y-Z plane, we
rewrite Eq. (18.16a) as

I G )
Pi= ) Qk,ngAq?Z,g, (18.19a)
k=1 g=1
where we have defined
N
i 1 Xk ;
Py = —/ > o wl (Do dx, (18.19b)
, Hy Jyx, | —

with Hy = xp — xx—1, the width of region Vj. In Eq. (18.19a) the volume Vy is
considered to be V; = Hy A, where A is a constant cross sectional area. Dividing
Eq. (18.19a) by A, we obtain

I G ,
=) > Qk,ngcDZ’g, (18.20)

k=1 g=1

where B; = P; /A. At this point we remark that Eq. (18.20) holds due to the fact that
we have considered that the system’s volume has a constant cross sectional area A.

Furthermore, in order to calculate the importance matrix we solve Eq. (18.18a)
2 times (number of multiplying regions) considering the adjoint source properly,
i.e., by setting i = 2 and i = 3 in Eq. (18.18b). To solve Eq. (18.18a) we use the
Response Matrix (RM) method [LeEtAl21] considering N = 16. The RM method
is free from spatial truncation errors, as it generates numerical results for the adjoint
angular fluxes in multilayer slabs that agree with the numerical values obtained from
the analytical solution of the energy multigroup adjoint Sy problems. More details
about the RM method can be found in reference [LeEtAl21]. Table 18.2 presents the
importance matrix as generated for the problem depicted in Fig. 18.1.

As this is an underdetermined problem, we need additional information in order
to obtain a unique solution (Eq. (18.17a)). Thus, we consider the neutron source
distribution as

q1, if (k’ g) = (27 1)
Okg =\ q2. if (k, g) = (3,2) . (18.21)
0, otherwise

Now, as P| = P4 = Ps = 0 (non-multiplying regions) and by setting P, = P3 =
0.5 MW/cm?, considering the importance matrix as displayed in Table 18.2 and the
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Table 18.2 The importance matrix

b
L, 1 2 3 4 5
a 1 |0.00000E4+00 | 0.00000E+00 | 0.00000E-+00 | 0.00000E-+00 | 0.00000E+00
2 | 1.17797E—16* |7.24480E—17 | 2.58976E—15 |2.99135E—15 | 4.85430E—16
3 | 1.55041E-17 | 7.13617E—18 | 6.75813E—16 | 6.62154E—16 | 2.85270E—15
4 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E-+-00 | 0.00000E+00
5 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E-+00 | 0.00000E+00
b
L, 6 7 8 9 10
a 1 |0.00000E4+-00 | 0.00000E+00 | 0.00000E-+00 | 0.00000E-+00 | 0.00000E+00
2 |7.25905E—16 | 6.08541E—19 |4.46152E—20 |8.15136E—21 |2.08975E—29
3 [6.30994E—15 | 1.09166E—16 | 1.58733E—17 | 1.44139E—18 | 7.30164E—27
4 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E-+-00 | 0.00000E+00
5 | 0.00000E4+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E-+-00 | 0.00000E+00

a Read as 1.17797x 10716

Table 18.3 Power generated by the forward transport problem with Sy and G = 2
Region
Vi 1% V3 Vy Vs
Power MW/cm?) | g =1 |0.00000 |0.230728 |0.097421 | 0.00000 0.00000
g=2 0.00000 |0.269272 |0.402579 |0.00000 0.00000
Total 0.00000 | 0.500000 | 0.500000 |0.00000 0.00000

neutron source distribution as given in Eq. (18.21), we obtain: g1 = 1.76144 x
10+ neutrons /em3s and g = 6.03743 x 10713 neutrons/cm?s. In other words,

1.76144 x 10114 if (k, g) = (2, 1)
Ok = { 6.03743 x 10113 if (k, ) = (3,2) . (18.22)
0, otherwise

In order to verify if the neutron source distribution shown in Eq. (18.22) in fact
drives the subcritical system to the prescribed distribution of power, we solve the
forward neutron transport equation for slab-geometry problems in the multigroup
(G = 2) and discrete ordinates (S¢) formulations, considering the same transport
problem as depicted in Fig. 18.1 and neutron source distribution as given in Eq.
(18.22). Then, we calculate the power per unit area generated in each region, as
can be seen in Table 18.3. Furthermore, Fig. 18.2 displays the neutron scalar flux
generated by this forward transport problem.

We remark that we have also used the RM method to solve the forward transport
problem. Observing Table 18.3, we conclude that the neutron source distribution
correctly drove the subcritical system to the given power distribution.
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Fig. 18.2 Neutron scalar flux generated by the forward transport problem with Sy and G = 2

18.5 Concluding Remarks

Presented here is a more general description of the methodology given in [LeEtAl20,
LeEtAlI21], where the adjoint technique is used to estimate the neutron source
distribution that drives a subcritical system to a prescribed distribution of power.

This methodology is based on a relation between a linear functional with respect
to the neutron angular flux and the importance function. The importance function,
also termed adjoint angular flux, represents the contribution that one neutron
inserted into the system has to the generation of power. Under a practical viewpoint,
the most important aspect of the present methodology lies on the calculation of the
importance matrix. This matrix is composed of solutions of the adjoint transport
equation, considering appropriate adjoint sources, which are related to the meaning
of the functional. The importance matrix allows the direct correlation between the
neutron source distribution and the power generated by the system.

Once the importance matrix is settled, one can obtain the desired neutron source
distribution, with additional information, if necessary. This additional information,
in fact, gives to the methodology an interesting flexibility, since it can change the
arrangement of the estimated neutron source distribution. As an example, if we had
considered in the previous section the neutron source distribution as

q1, if (k, g) = (1, 2)
Okg =1 q2 if (k,g) = (3, 1) ,
0, otherwise
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we would have obtained, considering the same importance function: q; =
5.82473 x 1015 neutrons/cm’s and ¢» = 1.60701 x 107!* neutrons/cm3s. This
alternative neutron source distribution drives the subcritical system to the generation
of power displayed in Table 18.4. In addition, Fig. 18.3 displays the neutron scalar
flux as generated by the forward transport problem with this new distribution source.

Analyzing Fig. 18.3, we can notice that this different additional information has
led to a neutron source distribution that changed considerably the profile of the
neutron scalar flux in the forward problem. However, despite the change in the shape
of the neutron angular flux, which suggests a modification in the power generated
by the system, the new neutron source distribution still drives the subcritical system
to the prescribed power distribution, as can be seen in Table 18.4.

We conclude this chapter by pointing out that the interpretation of the adjoint
angular flux as an importance function, and its subsequent use in the development of
the offered methodology, is not unique. In fact, the theoretical approach considered
in this work is referred to as heuristic approach [Ga87]. Other approaches, such

Table 18.4 Power generated by the forward transport problem with the alternative neutron source
distribution
Region
Vi Vo V3 Va Vs
Power (MW/cm?) |g=1 0.00000 |0.178961 |0.133306 | 0.00000 0.00000
g=2 10.00000 |0.321039 |0.366694 | 0.00000 0.00000
Total 0.00000 | 0.500000 | 0.500000 | 0.00000 0.00000

| g=1-—--g=2|

o
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s

T 2
Neutron scalar flux (neutrons/cm?s)
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Fig. 18.3 Neutron scalar flux generated by the forward transport problem with the alternative
neutron source distribution
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as the variational [Po67] and differential [Ob76, PrLal0] approaches, can also be
used in the development of the present methodology. Nonetheless, regardless of the
approach that is considered, the prescribed power density and the neutron source
distribution will still be correlated as given in Eq. (18.17a).
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Chapter 19 )
The Nodal LTSy Solution and a New e
Approach to Determine the Outgoing

Angular Flux at the Boundary in a

Rectangular Domain

A. R. Parigi, C. F. Segatto, B. E. J. Bodmann, and F. C. da Silva

19.1 Introduction

One of the approaches to solve neutral particle transport in multiplicative or partially
multiplicative media is the discrete ordinate method, also known as the Sy Ansatz
[Se95]. Recent literature has shown that this method is a convenient starting point
for an analysis of the problem and for developments of approximate solutions in
analytical representation with potential application in a variety of reactor problems.
The basic idea is based upon discretizing the continuous angular variables in the
transport equation, so that the transport equation becomes a system of coupled
partial differential equations. A general derivation of the neutron transport equation
based on microscopic dynamics may be found in references [BoEtAI83, Sp78], and
the simplification to the Sy equation is reported in [SeEtAl12].

If the dimension of the domain is two- or three-dimensional, a pathological
problem shows up, namely the angular fluxes at the boundaries shall be provided
so that a unique solution may be determined, which in the one-dimensional case
is not necessary. This peculiarity is independent of the specific approach, whether
numerical or (semi-)analytical, it rather stems from the fact that in the one-
dimensional problem the boundary is not connected (i.e., simply two end points),
whereas for domain dimensions larger than one the boundary of the typically
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convex domain is connected. In the further the Sy equation is solved using a
well-established method in the treatment of multidimensional transport, which is
based on integrating out the transverse degree of freedom of the spatial variables
in the transport equation. This procedure allows in principle to derive the analytical
solution of the Sy equation system, but using approximations for the transverse-
leakage terms which arise from the integration step and the scattering source term,
respectively.

A number of attempts to obtain analytical solutions already exist in the literature,
where the ones relevant for the present discussion are derived using besides the
discrete ordinate description also the Laplace integral transform. In this context, the
LT Sy method for two- and three-dimensional transport problems are reported in
references [ZaEtAl95, ZaEtAl97, Ha02, Ha06], while in [HaEtAlO3] the question of
convergence of the discrete ordinate solution towards the continuous solution in the
angular variables is addressed. Following in some part the reasoning of the previous
works, in the further we present the two-dimensional nodal LT Sy2 D solution using
anew approach for the determination of the unknown angular fluxes on the contours,
which were introduced adhoc in the aforementioned references and citations therein.

Recalling that the problem of the unknown angular flux on the boundary does not
exist in the one-dimensional formulation of the Sy equation, one may use this fact
and construct the two-dimensional solution from the one-dimensional version. To
this end the two-dimensional domain is segmented into narrow straight subdomains,
so that in each strip one may consider a one-dimensional transport problem. Then
the originally unknown angular fluxes in the boundaries are approximated by the
one-dimensional LT Sy solution in the contours of each line, which represents
the strip. For a sufficiently large number of subdomains this approximation should
already provide an acceptable solution for the two-dimensional problem and espe-
cially represent the “better physics” as compared to the necessary but nevertheless
“arbitrary” assumptions for the angular flux at the respective domain boundaries as
commonly adopted in the literature.

19.2 The Integrated Sy Equations

Nuclear scenarios are typically analyzed in a rectangular domain, which might
represent a nuclear fuel cell or a region of the nuclear reactor core. The reduction
of an initially three-dimensional problem to a two-dimensional problem may be
justified by the fact that the horizontal dimensions of a fuel element are typically
very much smaller than the element height, so that one may consider approximate
translational symmetry along the vertical axis and consequently the problem
depends only on the horizontal coordinates (x, y). Moreover, in the horizontal plane
one may assume an approximate symmetry under reflection across the x and y
axis, respectively, so that only one quarter of the geometric cross section of the
problem shall be considered. Thus, this has implications on the type of boundary
conditions, namely reflective conditions at (0, y) and (x, 0) due to symmetry and



19 The Nodal LTSy Solution and a New Approach 279

Fig. 19.1 Rectangular A
domain [0, a] ® [0, b] with Vacuum
neutron source region (gray)
[0, as] ® [0, bs] and reflective b
and vacuum boundary
conditions Reflection Q=0
Boundary
Condition
bs
Vacuum
Q>0
»
©0 Reflection s a
Boundary
Condition

vacuum boundary conditions at (a, y) and (x, b) (see Fig. 19.1). In this sense one
considers an idealized neutrons transport problem defined in a rectangular domain

= {(x,y) € [0,a] ® [0, b]} with the aforementioned boundary conditions of
vacuum and reflection type together with a multiplicative region representing a
neutron source fg = {(x, y) € [0, a;]®[0, bs]} withay < a and by < b. As already
made plausible the Sy transport equation is defined in two-dimensional Cartesian
geometry with sectionally homogeneous media, i.e., a region where fission occurs
(x,y) € [0,a5] ® [0, bs], and a region (x, y) € [0,a] ® [0, b]\[0, as] ® [0, bs]
where only absorption and scattering are the relevant nuclear reaction processes.
Additionally discrete ordinates are understood, further we assume that the dominant
collision process is described by isotropic scattering and for simplicity the energy
dependence of the general transport equation was integrated out. In the transport
equation, which we define as our starting point of the discussion to follow, the
scattering integral was tacitly replaced by a quadrature approximation, where in this
work the Level Symmetric Quadrature- L Q y was used (for details see, for instance,
reference [LeEtA193]).

M
0, (x,y) o0, (x,y) o
s 22 gy, Y + oW (x,3) = O, ) + 3 ) on¥n(x, )

ox dy
(19.1)
Here, m = 1,..., M are the discrete angular directions where the total number
of directions M =" (N +2) s related to the quadrature scheme N. ¥, (x,y) =
W (x, y, £2in) denotes the angular flux of particles at position (x, y), which propa-

gate in the direction .Qm, where the discrete directions of motion .Qm = (Um> Om)
are specified by the two angular cosines u;,, and n,,. The total macroscopic cross
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section o; and the isotropic scattering cross section o define the considered nuclear
reactions, wy, is the weight from the quadrature scheme associated with direction m
and Qx,y) = Q(x, y, (}m) signifies the neutron source at location (x, y), which is
different from zero in the subdomain where fission occurs and otherwise vanishes.
The boundary conditions (19.2) of the considered scenario are the two reflective
conditions followed by the two vacuum conditions.

W (0, 3, 2 (o 1)) = ¥ (0, ¥, 2y (—fm, 1)) > forpam > 0
Wi (%, 0, 2o (s 1)) = Wi (%, O, 2o (eins —11m)) 5 fOrT, > 0
W@, ¥, 2 (o, ) =0, < 0
Wy (X, by Lo (s 1)) =0, 1y <0 (19.2)
As a next step towards solving Eq.(19.1) subject to the boundary conditions
(19.2), the Sy equation was integrated over the transverse direction x from 0 to

a and multiplied by % so that the dimension of a flux is maintained and we end up
with a system of ordinary differential equations which depend on variable y only.

AW (y) | 1 . oy o
T T W@ 3) = ¥ (0,9)) + 0 (1) = Qen() + 7 Y onPan ()
y a 4 =

Nm

(19.3)

Here the cross direction integrated flux and source term is

- 1 ¢
Yim(y) = ;/(; Y (x,y) dx ,

1 [
Om(y) = _/ Om(x,y)dx,
a Jo

and ¥, (0, y) and ¥, (a, y) are the boundary conditions (19.2) form = 1,..., M.
Proceeding in the same manner for the second spatial variable, Eq.(19.1) was
integrated with respect to y from O to b and for dimensional reasons the integral
was multiplied by .

2 M
AWy, (x) ) A o A
=+ "7 W (6, b) = W (6, 0)) + 01 (6) = Qun () + - 3 S ontbyn(x)

n=1

(19.4)
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where

R 1 (b
l’pym(x) = EA Y (x,y) dy,

1 b
Oym(x) = Ef Om(x,y)dy
0
and ¥, (x, 0) and ¥, (x, b) are the respective boundary conditions from Eq. (19.2),
form=1,..., M.
19.3 The Nodal LT Sy Solution

In order to find the solutions of Egs. (19.3) and (19.4) by the LT Sy method, for
convenience the set of equations was cast in matrix form,

dW . (y)

o AV (y) = Z(y) (19.5)
and
Wy _ AW, (x) = S(x) (19.6)
dx

where A, and A, are square matrices of order M with the components given by

. o Gifi =
A, j) = ’Uywj ! i .
a0 ifi#
and
_ o aswj . P—
Ay(l’]) = mUj;)j4ni lfl J .
T ifi #j

Here, lI~lx (y) and IIAIy(x) are vectors of order M, representing the angular flux
averaged along the x and y degree of freedom, respectively, and the integrated
source term vectors are

1
Z(y) =N"'Q.(y) - EN”M (W(a,y) —¥(0,y)) ,

S(x) =M'Qu(x) — %M_lN(III(x, b) — ¥ (x,0)) .
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The matrices M and N are diagonal of order M with components containing the
direction cosines u,, and 1,,. Further, ¥ (a, y), ¥ (0, y) are the boundary condition
vectors of the two-dimensional problem at x = g and x = 0, and ¥ (x, b), ¥ (x, 0)
are the counterpart boundary condition vectors at y = b and y = 0, respectively.

The next step to obtain the solution of (19.3) and (19.4) by the LT Sy method is
provided upon applying the Laplace transform in the respective spatial variable of
the ordinary matrix differential equation (19.5) and (19.6) from which one obtains
two linear matrix equation systems of order M, depending now on the dual complex
variable s.

(T — AW (s) = Z(s) + ¥, (0) (19.7)
(T — A (5) = S(s) + $,(0) (19.8)

Here, I is the usual identity matrix of order M and

Uy() =20}, Wals) = L))
SG6) =28}, L) = L{L))
are the Laplace transforms of the averaged angular fluxes and the cross direction

integrated source terms, respectively. Now, the transformed problems (19.7) and
(19.8) may be solved for non-singular matrices (sI — A),

o) = (s1-A) 7 (Z6) + #,0) (19.9)
and

¥,(5) = 61— A0 (S6) +9,0) . (19.10)
Upon applying the inverse Laplace transform in (19.9) and (19.10) one obtains

the solutions for the averaged angular fluxes in the original coordinates y and x,
respectively.

v, (y) = YE O Y1, (0)

Eyy—1 -1 L1
+Ye™'Y *(N Qx(y)_;N M('I’(a,y)—'l’((),y))> (19.11)

W, (x) = Xe? WX (0)

+XeP X! (M_le(x) - %M—IN(W(x, b) — W (x, 0))) (19.12)
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In these two equations * signifies the convolution operation, D = diag{d;, d», . ..,
dy} are the M distinct eigenvalues d; of matrix A,, E = diag{ey, ez, ..., ey} are
the M distinct eigenvalues e; of matrix A Further, the arguments of the exponential
function of the homogeneous solutions are given by

dix ifd; <0
D* — 1 1
(x) {di(x—a) ifd >0 °
i ife; <0
E* _)éy 1 e;
o) {ei(y—b) ife; >0

Last but not least, X is the matrix with eigenvectors of A, and correspondingly Y is
the matrix containing the eigenvectors of A . Thus, the solutions (19.11) and (19.12)
are determined except for the unknown angular fluxes at the boundary ¥ (0, y),
¥(a,y), ¥(x,0),and ¥(x, b), respectively.

At this point, instead of choosing boundary conditions which may or may not
represent a physically sound scenario, we follow a different reasoning and attempt
to construct the two-dimensional solution from the one-dimensional one, since as
mentioned in the introduction in the one-dimensional case the boundaries are points
only. To this end, we consider the rectangular domain covered with a discrete and
finite set of narrow stripes, either oriented parallel to the x-axis with discrete ry = yi
and y; € [0, b] as shown in Fig. 19.2 or parallel to the y-axis with r;y = x; and
xr € [0, a], where in either case k = 1, ..., J with J € N. If the differences of
ry —rx—1 << a or b depending on the case in consideration, then the angular fluxes
at the extreme ends of the stripe may be interpreted as the ones of a one-dimensional
problem, so that the known angular fluxes from the one-dimensional problem shall
be an acceptable approximation for the boundary values at either x; € {0, a} or
vk € {0, b}.

More specifically, along each line, we considered a heterogeneous and one-
dimensional problem, so that the domain is divided into two regions, where one
region contains a neutron source, whereas the second region has no neutron source.
Note that even for lines that do not cross the region where the physical neutron
source is located (the shaded region in Fig. 19.2) one has to admit a spurious source
in order to avoid the trivial solution, which would arise otherwise. Thus, each one-
dimensional problem is represented by the following equation Sy .

d .
Vin "’ @ b () = 2 Z¢(l)(Z)wn+q;§l)(Z)

Here, z represents the spatial variable, ¢k ) (z) is the one-dimensional angular flux
of line k, in the direction m and in region i (i € {1, 2}), where in region 1 the
restriction z < ay or by holds, so that the line crosses either the neutron source region
if 7 < by or a5 and has a spurious source otherwise. Region 2 is the complement in
the domain, where the medium is characterized by the nuclear reactions scattering
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Fig. 19.2 Approximation of y
the two-dimensional problem
by an enumerable and finite
set of one-dimensional
problems

0.52

7

I3
r2

n

0 | 0.52 1

and absorption. In analogy to the two-dimensional problem y,, is the directional
cosine and w, (n = 1, ..., /) are the weights of the quadrature of order .#". The
source term for region 1 is then given by

) 1 Vzel0,0.52]if ry <0.52
U 1D Z N\ o=B=052) y; € [0, 0.52] if yg > 0.52

while in region 2 the source term vanishes, gi @ (z) = 0 with z € (0.52, 1], because
here the medium is no longer multiplicative, or physically speaking does not contain
nuclear fuel. The macroscopic scattering and total cross sections oy and o; of the
one-dimensional problems are the same as for the two-dimensional case.

However, differently from the two-dimensional problem, where only the shaded
region (see Fig. 19.2) has a non-vanishing source term, the one-dimensional neutron
transport problem needs source terms for the lines with ry > by or ag and we
assume them to be of the type q(z),({l) = ¢ POx=b) where B is a constant to be
determined a priori in a way that this term is sufficiently close to zero but finite to
guarantee that the found solution does not coincide with the trivial one. Moreover,
this term was crucial in order to preserve the reflexive boundary condition for the
one-dimensional problem, which circumvents the characteristics and consequences
of a homogeneous and non-multiplicative medium. For all the obtained results a
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numerical value for 8 = 25 has proven to be suitable. Then, the boundary conditions
forz =0 are

. N
07O = ¢ 0. =y)  withy, > Oandn = (1..... ),
while at the interface between the regions with and without the source term (at
Z = ay or by) a continuity condition holds,

o (a5 V by, yu) = 97 (a5 V by, i)

and at the outer boundary at z = a or b the fluxes vanish.
N
¢,E2)(avb,yn):0 forn:{7+l,...,</1/}

From the application of the LT Sy method to the one-dimensional case one finds
the solution (for details see reference [SeEtA199])

¢V =BV @ED +HV(z)  forz € [0,a, v byl

6?12 =BP12)E®  forz ela, Vbs,aVbl,
where the matrices B are

; XeP: ifD <0
Bl (Z) — eD( 7Lv) ! <
Xe T E) D > 0
and depending on the orientation of the one-dimensional problem in the two-
dimensional domain L; = a5 V by fori = 1 and L; = a Vv by fori = 2. The
vector H contains the source term as follows:

HO @) = x| o0 OX g © de D <0

[ PEOX g W) deif D >0
and here X is the matrix containing the eigenvectors and the diagonal matrix D with
the distinct eigenvalues of the LT Sy matrix of the one-dimensional problem, which
is the one-dimensional analogue to the matrices A in Eqgs. (19.5) and (19.6).

To estimate the angular fluxes of the two-dimensional problem on the bound-
aries one employs the findings from the one-dimensional angular fluxes and
uses the LT Sy method associated with the DNI technique (dummy-node inclu-
sion) [ChEtAIO0] to construct the angular fluxes in the two-dimensional problem.
This new procedure opened a pathway to interpolate the directions of the two-
dimensional problem by the values of the one-dimensional directions. More specif-
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ically, we considered the direction cosines [}m, m € [1, %] included them in the
quadrature scheme and associated with them null weights, so that the quadrature
scheme of the one-dimensional problem becomes

LI :cos(Qi) and the weights w; = 0 fori = l,...,%;

* Vipm =i and the weights WM = 0 fori = 1,..., N, where R is the total
number of directions of the one-dimensional problem;

C VigMyy = cos($2;) and the weights Wy m + A =0fori = % +1,..., %

As a consequence, this allows to approximate the unknown angular fluxes at
the boundaries by the solution of the one-dimensional problem calculated in the
boundaries of the one-dimensional problem, that is, according to the boundary
conditions the estimated ¥, (0, y) are given by

U (0, 36) = ¥, 1 (0. Y1) = By (0)
— 41

form =1, %. Now, in agreement with the outer boundary conditions ¥, (a, y)
may be estimated

Ui (@, yi) = W, 31 (@, Y) = B (L)

withm = 1, %, where qb,l (0) and ¢,%(L) represent the angular fluxes at the origin
and end of the domain of each one-dimensional transport problem in the narrow
rectangle aligned with ry, respectively.

In the same manner one approximates the fluxes in ¥ (x, 0) and ¥ (x, b), so that
finally the solutions (19.11) and (19.12) are completely determined and the only
necessary information is to determine the vectors ¥, (0) and lfly (0). To this end,
two linear systems with M equations each are solved, which are associated with the
Egs. (19.11) and (19.12), respectively, obtained by estimating the same equations
for the boundary values x = @ and y = b.

19.4 Numerical Results

Next some numerical results obtained from the solution presented in the previous
section are shown, considering the domain described in Fig. 19.1 where a = b =
1, OQ(x,y) = 1for0 < x <a; = 052and 0 < y < by = 0.52. Note that
all the dimensions are given in multiples of mean-free-paths, o; = 1.0cm™! and
three situations for oy, oy = 0.5cm™!, o, = 0.1cm™!, and o, = 0.05cm™! were
analyzed. For all the cases of o; and N from a strong to a weaker scattering medium,

we used twenty directions for the one-dimensional problems associated with %
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Table 19.1 Scalar Fluxes for the present method and comparison to the findings of reference
[Si18]

x=0.5 x=0.7 x =0.98

os | N | Spatial grid for DD| LT Sy | DD [Sil8]| LTSy |DD [Sil8]| LTSy |DD [Sil8]
0.5 12 |50 x50 0.280 |0.312 0.211 | 0.216 0.137 0.112
4 150 x50 0.319 |0.314 0.221 1 0.196 0.128 0.097
6 |50 x50 0.325 |0.314 0.218 0.188 0.123 0.095
8 |50 x 50 0.328 |0.3315 0.214 1 0.184 0.121 0.095
12|50 x 50 0.330 |0.3316 0.211 | 0.181 0.119 0.095
16|50 x 50 0.330 |0.317 0.209 | 0.180 0.118 0.095
0.1 12 |50x50 0.211 |0.3224 0.151 0.147 0.094 0.071
4 1100 x 100 0.229 10.3223 0.146 | 0.127 0.094 0.059
200 x 200 0.231 ]0.3223 0.140 0.120 0.075 0.058
8 200 x 200 0.232 |0.3224 0.137 1 0.117 0.073 0.058
12| 500 x 500 0.233 |0.3225 0.133 0.114 0.072 0.058
16| 500 x 500 0.234 |0.226 0.131 0.113 0.171 0.058
0.05/2 |50 x 50 0.204 |0.3216 0.145 0.141 0.090 0.068
4 1400 x 400 0.220 |0.3215 0.139 1 0.122 0.076 0.056
400 x 400 0.223 |0.3215 0.134 1 0.115 0.071 0.055
8 500 x 500 0.224 |0.3216 0.130 | 0.111 0.069 0.055
12| 1000 x 1000 0.225 10.3217 0.126 | 0.109 0.068 0.055
16| 1000 x 1000 0.225 |0.218 0.124 1 0.108 0.067 0.055

directions corresponding to the two-dimensional problem. The numerical results
obtained by this novel methodology are presented in Table 19.1 and compared with
those obtained by the DD method—Diamond Difference of reference [Sil8].

19.5 Conclusions

In this work we presented the first results obtained by the proposition of a new
methodology to determine the solution of a neutron transport problem with isotropic
scattering, with a fixed source and in two-dimensional Cartesian geometry. The
solution was found upon integrating the Sy equations in the spatial variables
followed by the application of the LT Sy method. Since it is a characteristics of
nodal methods to establish auxiliary equations to represent the transverse-leakage
terms, we developed a new approach for the treatment of the unknown angular
fluxes on the boundaries. To be more specific, we considered the two-dimensional
domain covered by a set of straight subdomains, in a way that the unknown fluxes
may be approximated by the angular fluxes at the ends of the domain by a one-
dimensional transport problem where each subdomain corresponds to narrow strip
of the coverage. Thus, the unknown angular fluxes at the boundary of the two-
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dimensional domain were estimated by the solution of the one-dimensional LT Sy
problem calculated at the endpoint of each straight line.

This formulation allowed to decouple the solutions of the average angular fluxes
in the x and y directions, making it possible to transform the resulting linear system,
so that the LTSN method could be applied. Through this approach, the solution of
integrated Sy problems becomes equivalent to the solution of the one-dimensional
Sn problem and the comparison of the present approximations coincide fairly well
with those obtained by other procedures reported in the literature and giving support
to our reasoning. Nevertheless, in the literature the unknown fluxes at the boundary
are commonly chosen adhoc without any additional physical justification so the we
believe to have made a step towards a more consistent solution of the problem not
only from a mathematical but also from a physical point of view.

As future steps, we will elaborate error estimates of the found solution in order
to analyze the necessity of a refinement of the procedure. Furthermore, this idea of
building the two-dimensional solution from one-dimensional one can be modified
so that each strip of a line problem does not necessarily be oriented along the x or
y axis but may be oriented in a way to contain a section with physical source term
instead of introducing a spurious term. These results can then be compared with the
ones obtained in this work, so that one may evaluate the progress of the extended
method with the current results.
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Chapter 20 )
A Numerical Study of the Convergence Qs
of Two Hybrid Convolution Quadrature
Schemes for Broadband Wave Problems

J. Rowbottom and D. J. Chappell

20.1 Introduction

In this chapter, we compare the performance of two recently proposed hybrid meth-
ods [RoCh21] for numerically solving the wave equation in two spatial dimensions.
The convolution quadrature (CQ) method is employed for the time discretisation
[Lu88, Lu94, Chl1], which can be used to transform the original time-domain
problem into a system of frequency domain Helmholtz problems with complex
wavenumbers [BaSa08, BeEtAll7, MaEtAl20]. For a range of wavenumbers that
will be considered as low frequencies, the Helmholtz problems will be solved
numerically using a piecewise constant collocation boundary element method
(BEM). The remaining wavenumbers will be considered as the high frequencies,
and the Helmholtz models will be replaced by one of two alternative high-frequency
approximations, leading to the two hybrid schemes that we compare in this study.
The first high-frequency approximation will be based on a plane-wave approx-
imation in which the amplitudes are approximated via dynamical energy analysis
(DEA) with a Petrov-Galerkin discretization, as discussed in [ChEtAlI21]. DEA is
an approach for modelling wave energy densities at high frequencies that was first
proposed just over 10 years ago [Ta09]. DEA is based on a linear integral operator
model (like the BEM) of phase-space density transport along ray trajectories
between positions on the boundary of a domain or sub-domain. Recent develop-
ments have seen the capability of DEA extended to three-dimensional [BaEtAll7]
and industrial applications [HaEtAl19], as well as stochastic propagation through
uncertain structures [ChTal4, BaCh20]. The phase terms will then be approximated
by matching the solutions calculated via BEM with an expression for the plane-wave
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approximation, as discussed in more detail in Sect.20.4.1. The second high-
frequency approximation will be based on an incident illumination approximation
where only the direct contribution of the source term on the boundary is included.
Numerical experiments are then discussed, investigating the convergence of both
hybrid methods when the wave problems are driven by a plane wave travelling into
the domain.

20.2 Convolution Quadrature for the Wave Equation:
Summary

Let 2 C R? be a finite domain with boundary I" = 3£2. We consider the following
initial-boundary value problem (IBVP) for the homogeneous wave equation:

AD L 0% 0, in £2x(0,7T) (20.1)
——=— =0, in x (0, T), .
¢z 912
with initial conditions
®P(¢,0=0P(,00=0, in £, (20.2)
and Neumann boundary condition
0P
—=F on I x(0,7), (20.3)
on

for some T > 0. Here, we assume F is a real-valued function of space and
time, ¢ > 0 is the wave speed and f is the unit outward normal to the boundary.
We will consider problems when the boundary I” corresponds to an interface
with a vibrating structure that generates an inhomogeneous boundary condition F
[ChEtAI08, MaEtAI20].

We consider solving the IBVP of the wave equation (20.1)—(20.3) by reformulat-
ing it as a direct boundary integral equation

D(x,t)=(LF)(x,1) — (ZP)(x,t) in £ x[0,T] (20.4)

Here, . and Z are, respectively, the single and double layer potential operators

T
(LF)(x,t) = f / Gx —y,t—1)F(y, 1)dl)dr,
o Jr

T r aG
(92D)(x,1) I=/ / —((x —y,t —1)®(y, 1)dldr,
0 r Bny
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where the fundamental solution G is given by

H(t —|lx]|| /c)
27412 — ||x||> /2

and H is the Heaviside step-function. Moving (20.4) from the interior domain £2
to the boundary I", one then obtains the following direct time-domain boundary
integral equation

G(x,t)=

<%I+K>¢(x,t):(VF)(x,t) on I xI[0,T], (20.5)

where V and K are, respectively, the traces of .’ and Z on I".

Note that boundary integral operators V and K in (20.5) are time convolution
operators. We will employ a time discretisation of (20.5) based on the BDF2
multistep scheme outlined in [BaSa08, BeEtAll7, MaEtAl20]. In doing so we split
the time interval [0, T'] into N steps of equal length A = T /N and compute an
approximate solution at the discrete time-steps ¢, = nAt. We will make use of the
Laplace transforms of the operators V and K evaluated at a set of Laplace domain
frequencies ¢, =, ..., N — 1, which we denote by

V(@) F)(x) = fp G (x — y) F(y)dly,

~ Gy
R @) = / (x — y) u(y)dly.

r 8ny

Here, G, is the fundamental solution to the Helmholtz equation in two dimensions
given by

L))
Gi(x) = _ZHO (ky llx1l),

with Hél) being the zeroth order Hankel function of the first kind and k; = i¢;/c
the wavenumber. The choice of Laplace domain frequencies ¢; relate to those used
in a numerical approximation of Cauchy’s integral formula applied to the inversion
of a Z-transform, where the contour is taken as a circle of radius A < 1 [BaSa08,
BeEtAll7, MaEtAl20] and one obtains

B y()\‘e—Znil/ﬁ)

& oy

The function y(z) = %(z2 — 4z 4 3) is the quotient of the generating polynomials
of the BDF2 multistep method. We allow the choices of N and N to be decoupled
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in order to potentially over-resolve in the Laplace domain for better accuracy as
proposed in [BeEtAl17], although in this study we fix N =2N.

The result of this time discretization process can be expressed as a system of
boundary integral equations for the Helmholtz equation (see [BaSa08, BeEtAll7,
MaEtAI20] for details) given by

l % ~ ~
Su) + (K@) 0 = (VenF) ). x el (20.6)
where
N—1 s N o
u = Z @rpne /N F Z F(-. ty)ane=2min/N

are the Z-transforms of ®@4"* and F, respectively, and @2 denotes the solution of

(20.5) after it has been semi-discretised in time using CQ. ~

Once we have computed the Helmholtz solutions u; forl =0, 1,..., N — 1, the
discrete solution to the wave equation @} can then be approximated via a trapezoidal
rule for the inverse Z-transform. The interior solution is also calculated by applying
the same time and spatial discretisation to (20.4). In the next section we outline the
splitting of these Helmholtz problems into low and high-frequency cases according
to the index / = 0,1,..., N — 1 and briefly describe the methods employed to
approximate their solution in each case.

20.3 Hybrid Methods Framework

For the spatial discretisation we now either apply a piecewise constant collocation
BEM to (20.6) or for a high-frequency region (to be specified in terms of Re(k;)), we
employ a high-frequency approximation (HFA). In order to define this procedure we
heuristically specify a threshold k* for which we employ the BEM when |Re(k;)| <
k* and let n < N /2 be the minimal integer valued index of the minimal |Re(k;)| >
k*, which is the region for which we apply the high-frequency approximation—see
Fig. 20.1. We note that the indexing/ =0, 1, ..., N —1 starts from Re(kg) = O at the
bottom of the loop and runs clockwise. We specify the location of the wavenumber
ky to be within the lower left quarter of the loop of possible k; values. Note that we
are only required to solve N/2 + 1 Helmholtz problems since the wavenumbers ;,
I =0,1,..., N — 1 occur in symmetric pairs and consequently the solutions arise
in complex conjugate pairs.

The first HFA will be provided by a plane-wave approximation in which the
amplitudes are determined using the DEA method detailed in [ChEtAI21] as
described in [RoCh21]. The phases are constructed by performing a matching of
the high-frequency approximation with the BEM results at the highest frequencies
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Fig. 20.1 Example of a hybrid method implementation with the threshold k* = 100 chosen to be
the wavenumber where the method switches from the BEM to a high-frequency approximation

for which the BEM is applied, as discussed later in Sect.20.4.1. The second HFA
we consider is an incident illumination approximation where only the direct contri-
bution of the source term on the boundary is included and reflected contributions are
assumed to play an insignificant role. This approximation, therefore, relies on there
being sufficient decay before any reflections occur. For wavenumbers which have a
very large imaginary part, we expect that the incident illumination approximation
will be a reasonable approach since the magnitude of Im(k;) determines the decay
rate of the plane waves as they propagate. The DEA numerical approach will be able
to go beyond the incident illumination model in terms of the reflection order but will
introduce additional sources of error due to the numerical discretisation procedures.

20.4 High-Frequency Approximations

In the following subsections, we outline two high-frequency approximations for
solving the set of Helmholtz problems (20.6) for {{ = 0,1, ..., N/2 : |[Re(k;)| >
k*}.
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20.4.1 DEA Based HFA

The first HFA is based on the fact that the solution to the Helmholtz equation
Au+ku=0

for wavenumbers k with large real part may be well described as a plane-wave
superposition solution of the form

R
u(x) =Y Ac(x, 0)e ™, (20.7)
k=1
where w = Re(ck) is the angular frequency. In the method proposed here, the

amplitude terms A, in (20.7) are approximated using the direction preserving DEA
method detailed in [ChEtAl21]. In particular, we make use of the following rela-
tionship between the stationary phase-space density p (the variable approximated
by DEA) and the amplitudes A, and phases S;:

R
px, p) =) ALE @)8(p — VSe (), (208)

k=1

Here p € R? is the momentum vector whereby | p| = ¢~!. For a plane wave directed
with angle ©@ relative to the x; axis, then cp = (cos(®), sin(®)). Therefore, the
phase-space density p is equal to the superposition of squares of the amplitudes A,
corresponding to rays travelling in directions defined by S,. The approximation of
the phase terms S, in our plane-wave superposition solution (20.7) will be calculated
by setting the solution calculated via the BEM equal to the expression (20.7) at
! = n—1and! = n, in which the amplitude terms have been determined from DEA,
and the phase terms are the only unknowns in the expression to be determined.

We now discuss how to determine the phase terms S, in (20.7), given that the
amplitudes A, for each direction « have been found by choosing the directions in
the sum over « in (20.8) to correspond to those of the direction preserving DEA
discretisation [ChEtAl21]. A new methodology introduced recently in [RoCh21]
is applied to determine the unknown phase terms S,. In particular, we reconstruct
the phase terms from a full wave solution calculated via the BEM at the maximal
frequency before we switch to the high-frequency approximation and also at the
lowest frequency at which we apply the high-frequency approximation. These
frequency values are denoted w,_; = Re(ck;—1) and w, = Re(ck;), respectively.
The choice of w;_1 and w, has been investigated numerically in [RoCh21]. We
apply both the BEM and DEA to obtain a set of equations of the form

R
() = 3 A, ap)e O/ (20.9)

k=1
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for ] = n — 1 and also for [ = 5. The left hand side of (20.9) is provided
by the solutions calculated from the BEM and s is the boundary arclength value
corresponding to the Cartesian coordinates x € [I'; see Fig.20.2. Note that the
representation of the phase terms in (20.9) as linear functions

Se(x) = sin(@)s/c + v,

stems from the fact that the wave speed c is assumed to be constant. In addition,
0, € (—m/2, /2) represents the direction relative to —ny of a plane wave directed
into £2 from x and y,f, k=1,2,..., R, =n,n+1 are a set of unknown constants
to be determined by imposing (20.9) at a set of points x € I".

The phase reconstruction procedure must be performed at more than one
frequency owing to the periodicity of the plane waves, and hence the non-uniqueness
of the phase solution at a single frequency. The phase terms at w,—; and w;, may
then be related via

sin(6,)s 2wy sin(6,)s 2wy
yk’l—l_i_l_}__:yk’?_{_l -
wy—1 c o

(20.10)

Solving (20.10) for v € Z allows us to recover a unique set of phase constants y,
via

; 2mv
Vi =Vt —,
wj
for either / = n — 1 or [ = n. Once y, are known we calculate the solutions to the
Helmboltz problems using (20.9) for all frequencies with absolute value larger than
|wn71 [

The calculation of y,f -1 (and y,(" ) will be dependent on the numerical example
we are considering. In our numerical examples we only consider polygonal domains
and the values for y,/ will need to be calculated for each edge separately since the y,’
values will relate to different directions of propagation from each edge. We generate
a system of equations of the form (20.9) by choosing x = x; fori = 1,2,..., M as
the collocation points from the BEM approximation (located in the centre of each of
the M boundary elements) in (20.9). The next task is to determine how many of the
amplitudes A, are non-zero at every collocation point x; on a given edge, since this
provides a reduction in the number of phase constants )/,f that we need to recover.
The system of equations (20.9) can then be solved as a linear system

R
u(x;) = ZAK (xi, a)l)ei‘”’(Si“(gl)si/c)v,l(,

k=1

fori =1,2,...,M,] = n—1orl = n and where s; is the arclength parameter
I

; 1 . .
. = e'“Yc may be determined using the Moore-

for the point x;. The unknowns v
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Penrose pseudo-inverse to obtain the least squares solution. Once each v,l( term has
been found, one can directly calculate the phase constants via y,ﬁ =—i log(v,[() Jy.

20.4.2 Simple HFA

In this section, we describe a simple high-frequency approximation (SHFA) based
on the observation that the wavenumbers k; in the high-frequency range typically
have large imaginary part. Since the DEA calculation includes a dissipative factor
with exponential decay rate 2Im(k;) along each ray trajectory, then the only
significant contributions to the DEA solution will come from very short ray
trajectories. In this case, the solution for a wavenumber k; with a large enough
imaginary part can be reasonably well approximated by simply rescaling the Z-
transformed boundary data E In particular, we set

Fi(x)

1 T cos @

where 9y (x) defines the direction of the source term at x € I relative to the normal
direction. For a boundary value problem with boundary data related to a plane wave
entering the domain from one or more edges, then the angle 6y can be found directly
from the plane wave direction. In the next section, we will present numerical results
for the interior solution produced using the hybrid methods described above in a
variety of different examples.

20.5 Numerical Results

In this section we consider numerically solving the wave equation (20.1) with
Neumann boundary conditions (20.3) via the two hybrid methods introduced in this
chapter. We consider an inhomogeneous Neumann IBVP for the cases when 2 is
a unit square or an L-shaped domain and the boundary data corresponds to a plane
wave travelling into the domain, as depicted in Fig.20.2. We define our Neumann
boundary condition (20.3) to be

W (x2 sin(®g) — ct) if x; =0,
F(x,t) =1 W(x|cos(®g) — ct) if x =0and ®g > 0, (20.11)
0 otherwise,
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Fig. 20.2 The domains considered in the numerical experiments for solving the homogeneous
wave equation (20.1) showing the value of the boundary arclength s at each vertex, the propagation
direction ®q for the plane wave boundary data and the interior evaluation point as a red dot.
The bold boundary lines indicate the positions where the plane wave may enter the domain and,
therefore, provide inhomogeneous boundary data. (a) Unit square domain. (b) L-shaped domain

where ®y € [0,7/2) is a direction relative to the positive x; axis. Here x =
(x1, x2) and the angle O is, in general, distinct from directions used in the DEA
discretisation. However, for accuracy reasons we choose &g to correspond to one
of the DEA discretisation directions, which we note can be specified in a problem
specific manner, and, therefore, this choice does not indicate a limitation of the
method. We consider the case when the function W takes the form of the normal
derivative of a Gaussian pulse written as

W(x) = —a(x + cto)(n cos(@p) + na sin(@p))e @+

for x € R and where n = (n1, ny) are the entries of the unit normal vector n. The
parameters 7y > 0 and o > 0 control the position of the peak of the Gaussian pulse
and its bandwidth, respectively. These parameters are chosen carefully to ensure
that the initial conditions are approximately satisfied and the pulse has decayed
sufficiently at + = 0. Throughout this section we choose @ = 4096, 1y = 0.1
and ¢ = 1 in order to obtain a broadband signal. We consider regular geometric
domains and directions ®q for the boundary condition, as illustrated in Fig. 20.2,
such that we will only need to use 8 global directions in the DEA implementation
in order to include all possible propagation directions. Technical details regarding
the implementation of the Neumann boundary condition (20.11) in the DEA scheme
can be found in [RoCh21].
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20.5.1 Square Domain

We now present the numerical results for the case when £2 is a unit square as shown
in Fig. 20.2a. The error of the time-dependent interior solution is calculated via

YN (@ (x, 1) — Du(x))?

E N) =
rrorth) ST (@ (x. 1))

(20.12)

and the estimated order of convergence (EOC) is given by
EOC(N) = log, (Error(N /2) /Error(N)).

We initially consider the case ®y = 0 where we can compare the numerical solution
@,, against the exact solution @ (x, #,) given by

D(x, 1) = %e*wl*“(f*fo))z (20.13)

for an infinite domain (in the x;—direction). We consider only early times such that
we do not observe any reflections and the solution matches (20.13). For the unit
square example we can compare our numerical results against the exact solution
given by (20.13) up to time T = 1, such that we do not observe any reflections.
Figure 20.3 shows a comparison between the exact and numerical interior
solutions at x = (0.5, 0.5). We apply a high-frequency approximation whenever
|Re(k;)| > 350 and employ M = 1024 boundary elements to provide a good level
of accuracy up to the BEM cut-off wavenumber k* = 350. The plots compare the
results of using the SHFA and the DEA based plane wave approximations with
the exact solutionup to T = 1, for N = N /2 = 4096 time-steps. In this case both
high-frequency approximations produce identical looking results matching the exact

Fig. 20.3 Interior solution to 0.5 ¥ )
the wave equation at i ---DEA
x = (0.5, 0.5) inside a unit 04l 1‘“ --------- SHFA| |
square with boundary data ’ i w‘ Exact
(20.11) and parameters i
® =0, ¢ = 4096, 1y = 0.1, — 037} :“ .
with M = 1024 boundary ® | !
elements and B ool A 7
N = N/2 = 4096 time-steps. i
The high-frequency ! !
approximations are applied 0.1 i , ]
whenever |Re(k;)| > 350 i \\

00 0.2 0.4 0.6 0.8 1



20 Convergence of Hybrid CQ Schemes 301

Table 20.1 Errors and convergence rates for the interior solution in the unit square domain
observed at the point x = (0.5, 0.5) with parameters @y = 0, « = 4096, to = 0.1 and T = 1. The
interior solutions were calculated numerically using the DEA and SHFA based hybrid CQ schemes
whereby the high-frequency approximations were applied whenever [Re(k;)| > 350

DEA SHFA
N N M 1 Error EOC Error EOC
1024 512 4 101 0.4518 - 0.4518 -
2048 1024 16 108 0.4629 —0.04 0.4629 —0.04
4096 2048 64 111 0.1372 1.75 0.1372 1.75
8192 4096 256 112 0.0142 3.27 0.0142 3.27
16384 8192 1024 112 0.0026 2.45 0.0026 2.45
Fig. 20.4 Interior solution to 0.5 w
the wave equation at —  DEA
x = (0.5, 0.5) inside a unit 04!
square with boundary data ' SHFA
(20.11) and parameters
Oy = /4, a = 4096, = 037
to = 0.1, with M = 1024 3
boundary elements and vy 02!
N = N /2 = 4096 time-steps.
The high-frequency
approximations are applied 0.1
whenever |Re(k;)| > 350
0 ‘ ‘ ‘ i
0 0.2 0.4 0.6 0.8 1
Time (s)

solution. In Table 20.1 we investigate the relative errors and convergence rates of the
interior solutions observed at the point x = (0.5, 0.5), calculated via both hybrid
methods, as we double the number of time-steps N = N /2 and increase the number
of boundary elements M by a factor of four. The interior solutions were calculated
for the parameters ®y) = 0, « = 4096 and 79 = 0.1, with the high-frequency
approximations again being implemented whenever |Re(k;)| > 350. The relative
errors were computed via (20.12) using the exact solution (20.13) up until 7 = 1.
From the table we observe that both hybrid methods produce identical results and
convergence rates. On the last row of the table we achieve errors of less than 1% as
there are enough boundary elements to model the highly oscillatory behaviour, and
we also observe a convergence rate close to the expected second order.

We now investigate the same IBVP as discussed previously, but now we consider
the case when the plane wave boundary data enters the domain at an angle of
®¢ = m/4. Figure 20.4 compares the interior solutions at the point x = (0.5, 0.5)
computed using the DEA and SHFA high-frequency approximations. In this figure
we observe that both solutions behave identically. Table 20.2 investigates the relative
errors and convergence rates of the interior solutions, observed at the point x =
(0.5, 0.5), calculated via both hybrid methods with parameters ®y = 7 /4, ¢ =
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Table 20.2 Errors and convergence rates for the interior solution on the unit square domain
observed at the point x = (0.5, 0.5) with parameters &y = n/4, « = 4096, tp = 0.1 and
T = 1. The interior solutions were calculated numerically using the DEA and SHFA based hybrid
CQ schemes whereby the high-frequency approximations were applied whenever |Re(k;)| > 350

DEA SHFA
N N M n Error EOC Error EOC
256 128 1024 80 - _ _ _
512 256 1024 92 0.5919 - 0.5919 -
1024 512 1024 101 0.3769 0.65 0.3769 0.65
2048 1024 1024 108 0.1455 1.37 0.1455 1.37
4096 2048 1024 111 0.0397 1.87 0.0397 1.87
8192 4096 1024 112 0.0100 2.80 0.0100 2.80
16384 8192 1024 112 0.0025 2.00 0.0025 2.00

4096 and 7y = 0.1, with the high-frequency approximations implemented whenever
[Re(k;)| > 350. The errors were computed via (20.12) but using subsequent
interior solutions as we double the number of time-steps. We investigate the error
when doubling the number of time-steps for a fixed number of boundary elements
M = 1024 and observe the expected second order convergence rate for BDF2 based
CQ schemes with errors smaller than 1% for both hybrid methods. The errors for
both methods are identical when comparing against subsequent interior solutions.

20.5.2 L-Shaped Domain

We now present the numerical results for solving the same IBVP as above for
the case when 2 is an L-shaped domain as shown in Fig.20.2b. The DEA
approximation process needs to be modified for non-convex domains such as the
L-shape and we implement the DEA approximation on a sub-divided version of
the domain where each of the (two) sub-domains is convex. In this case the sub-
division was implemented by introducing an (artificial) internal interface connecting
the vertices at s = 1 and s = 3 to form two convex quadrilateral sub-domains. The
extension of the DEA approximation to multi-domains is discussed in more detail
in [ChEtAI21]. We also note that we must omit any amplitudes associated with the
internal interface from the DEA result and then reorder the degrees of freedom to
be consistent with the low frequency BEM calculations before integrating into the
CQ algorithm. For this example we can compare our numerical results against the
exact solution given by (20.13) up to the time # = 0.5 so that we do not observe any
reflections at the solution point x = (0.25, 0.25).

Figure 20.5 shows a comparison between the exact and numerical interior
solutions at x = (0.25,0.25). We again apply a high-frequency approximation
whenever |Re(k;)| > 350 and use N = N /2 = 4096 time-steps and M = 1024
boundary elements. We observe that both high-frequency approximations produce
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Fig. 20.5 Interior solution to 0.5 7
the wave equation at
x = (0.25,0.25) inside an ——DEA
L-shaped domain with 04r - - -SHFA
boundary data (20.11) and Exact
parameters &y = 0, 0.3F
a = 4096, tp = 0.1, with =
M = 1024 boundary H
elements and & 027
N = N/2 = 4096 time-steps.
The high-frequency 01°t
approximations are applied
whenever |Re(k;)| > 350 0
0 0.2 0.4 0.6 0.8 1

Time (s)

Table 20.3 Errors and convergence rates for the interior solution on the L-shaped domain
observed at the point x = (0.25, 0.25) with parameters @y = 0, « = 4096,19 = 0.1 and T = 0.5.
The interior solutions were calculated numerically using the DEA and SHFA based hybrid CQ
schemes whereby the high-frequency approximations were applied whenever [Re(k;)| > 350

DEA SHFA
N N M n Error EOC | Error EOC
1024 512 8 101 |0.2898 - 0.2898 -
2048 | 1024 32 108 0.1836 0.66 0.1836 0.66
4096 2048 | 128 111 |0.0433 2.08 0.0433 2.08
8192 4096 | 512 112 |0.0037 3.55 0.0037 3.55

16384 8192 2048 112 5.0609e—4 2.87 5.0609e—4 2.87

identical looking results up to ¢+ = 0.9. For ¢ > 0.9 we observe that the numerical
solutions deviate from the exact solution because the numerical solutions include
contributions due to diffraction from the re-entrant corner at s = 3 and, therefore,
the exact solution is not valid. In Table 20.3, we investigate the relative errors and
convergence rates of the interior solutions observed at the point x = (0.25, 0.25),
calculated via both hybrid methods, as we double the number of time-steps N =
N /2 and increase the number of boundary elements M by a factor of four. The
interior solutions were calculated for the parameters @y = 0, « = 4096 and
to = 0.1, with the high-frequency approximations being implemented whenever
|[Re(k;)| > 350. The relative errors were computed via (20.12) against the exact
solution (20.13) up until # = 0.5, when the exact solution is valid. From the table
we observe that both methods give the same error and convergence results, obtaining
less than 1% error with N > 4096 time-steps and M = 512 boundary elements. We
also approximately achieve the expected second order convergence for BDF2 based
CQ schemes.

We now investigate the same IBVP as discussed previously, but consider the case
when the plane wave boundary data enters the domain at an angle of ®y = 7 /4.
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Fig. 20.6 Interior solution to 0.5
the wave equation at —_DEA
x = (0.25,0.25) inside an
L-shaped domain with

boundary data (20.11) and
parameters &y = /4, 0.3+

04 |- SHFA

o = 4096, tg = 0.1, with =
M = 1024 boundary \;:{
elements and & 021

N = N/2 = 4096 time-steps.
The high-frequency 011
approximations are applied
whenever |Re(k;)| > 350

0 0.2 0.4 0.6 0.8 1
Time (s)

Table 20.4 Errors and convergence rates for the interior solution on the L-shaped domain
observed at the point x = (0.25, 0.25) with parameters &y = 7 /4, @ = 4096, tp = 0.1 and
T = 1. The interior solutions were calculated numerically for fixed M = 1024 using the DEA
and SHFA based hybrid CQ schemes whereby the high-frequency approximations were applied
whenever |[Re(k;)| > 350

DEA SHFA
N N M n Error EOC Error EOC
256 128 1024 80 - - _ _
512 256 1024 92 0.4338 - 0.4338 -
1024 512 1024 101 0.2346 0.89 0.2346 0.89
2048 1024 1024 108 0.0789 1.57 0.0789 1.57
4096 2048 1024 111 0.0209 1.92 0.0209 1.92
8192 4096 1024 112 0.0053 1.98 0.0053 1.98
16384 8192 1024 112 0.0013 2.03 0.0013 2.03

Figure 20.6 shows that the interior solution at x = (0.25, 0.25) is visually identical
for each of the hybrid methods. Table 20.4 investigates the relative errors and
convergence rates of the interior solutions, observed at the point x = (0.25, 0.25),
calculated via the DEA and SHFA hybrid methods with parameters ®¢ = /4,
a = 4096, tp = 0.1 and T = 1, with the high-frequency approximations being
implemented whenever |Re(k;)| > 350. The errors were computed via (20.12) but
using subsequent interior solutions as we double the number of time-steps. Table
20.4 investigates the error when doubling the number of time-steps for a fixed
number of boundary elements M = 1024. In this table, we observe the expected
second order convergence rate and errors smaller than 1% for both methods. Again
the errors for both methods are identical when comparing against subsequent
interior solutions.
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20.6 Conclusion

We have described two hybrid CQ based discretisations of the wave equation for
interior acoustic Neumann problems with broadband boundary data or source terms.
We performed a series of numerical experiments to demonstrate the effectiveness
of both hybrid approaches for the case of plane wave boundary data. The hybrid
methods were able to provide faster computations than using CQ with BEM alone,
while retaining the expected second order convergence behaviour for BDF2-based
CQ schemes.
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Chapter 21 )
Analytical Reconstruction Qs
of the Nonlinear Transfer Function

for a Wiener-Hammerstein Model

J. Schmith, A. Schuck Jr., B. E. J. Bodmann, and P. J. Harris

21.1 Introduction

Professional audio equipment that is traditionally being used by musicians either in
the recording studio or in live performances is usually analog, where we specifically
focus on tube amplifiers and effect pedals. Amplifiers of the various blends all
have their characteristic sounds, which originate from details in the electronic
architecture of the device as well as specific electro-acoustic features. Thus, the
loudspeakers installed in the amplifier cabinets are one source of those sound
characteristics due to the nonlinear conversion of an electronic signal into an
acoustic response as reported in references [ScOI21, OlSc13]. Another source of
nonlinear behavior is the tubes, which because of different kinds of fabricated
models for a specific operation makes it hard to understand details of the reasons
for their differences in sound signal reproduction.

Even today, tube amplifiers are the “holy grail” for guitarists, and the tubes
are the nonlinear components that are present in the pre- or power stages of
amplifiers, which are distinctively identified in distortion situations. Nevertheless,
recent investments in the developments of digital amplifier simulators define a
new paradigm for signal amplification and modulation for practical usage. It is
noteworthy that although there is a tremendous progress in the technical evolution
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of digital audio devices for simulating tube amplifiers by algorithms, it is safe
to say that the simulation fidelity of tube-driven devices is still a challenge
[MoEtAll5, EiZo16, EiEtAll7, EiZo18, EiZo18a]. An incontestable example aston-
ishingly close to the original amplifier that is being simulated is the Kemper
Amplifier Profiler’ [DuEtA120, Kel5], which makes use of a Volterra model type
of approach[Og07, Zol1] for its digital implementation of signal amplification
reconstruction and reproduction. Nevertheless, there is still need for improvements
on the one side for high-fidelity amplifier response reproduction and on the other
side for optimization in the computational approach in order to allow for more
complex sound creations with a combination of amplifiers and effects.

To this end, we propose a different approach to the problem where input and
output signals are superimposed and produce a Lissajous curve, which contains
besides the nonlinearity of the Wiener—Hammerstein model [SjSc12, RoEtAll4,
ScEtAl14] also the influence of the linear equalization before and after the nonlinear
block, respectively. A nice feature of this type of approach is that the analytical
method used to identify the composition of the nonlinear response by the creation of
harmonics and their respective phase may be cast into a linear algorithm. Evidently,
such a methodology does not depend on advanced computational resources to work
in real time, nevertheless with today’s multi-thread processors opens a pathway for
fast signal processing especially for simulations of complex configurations with
amplifiers and effect pedals.

21.2 Preliminaries

A commonly used amplification model is the Wiener—-Hammerstein model pre-
sented in Fig. 21.1. This block model is composed of a linear, a nonlinear followed
by another linear component, where the input signal appears with a phase shift after
the first filter followed by the generation of various harmonics as a consequence of
the nonlinearity and last a frequency-dependent phase shift from the second filter
that is the output signal. The latter shall simulate the characteristics of the nonlinear
device in consideration. While filters with their influence on amplitude and phase
are well understood, in approaches reported in the literature, the principal difficulty

Linear time invariant system  Nonlinear transfer function  Linear time invariant system
hi) | » I h2(t)

Fig. 21.1 The Wiener—-Hammerstein model diagram

\
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lies in the task to identify the nonlinearity, which is sandwiched between the two
linear blocks, i.e., the filters.

In the further, we present the idea of a new approach, which in principle should
be able to overcome this difficulty, however so far considering only clean signals, in
other words ignoring the presence of the always present noise in real signals. Note
that this aspect becomes increasingly relevant for the higher part of the frequency
spectrum. Additionally, we idealize the test case by considering an input signal with
a single frequency only because input signals with multiple frequencies may be
handled in close analogy to the presented case.

In order to get the response function of the system, the input—output analysis
shall be performed for a sequence of input signals with different frequencies. For an
input signal with frequency o = 27” (T is the usual period), the frequency spectrum
{kw} le = {w, 2w, ..., Ko} generated by the nonlinearity is assumed to be discrete
and compact, i.e., with a finite number (K) of generated harmonics. This assumption
is reasonable since the filters are typically low-pass or band-pass filters and thus
suppress the higher frequencies. Moreover, the data acquisition limits the highest
detectable frequency by the sampling frequency f;. Further, each frequency has
an associated phase shift {¢k},§:1 = {¢1, ¢2, ..., ¢k }. The data for the analysis are
then drawn from a digital signal acquired by sampling the analogue input and output
signals with a digital oscilloscope.

For simplicity, but without restricting the method, the input signal shall have a
zero phase I = I (w|t), whereas the output signal is composed of a spectrum with
the base frequency and its upper harmonics.

2 = 2k} Al 1) = ko, (b1, ¢2, - .., Px ).

From the obtained experimental data to be analyzed, the initial transient is excluded,
and only data from the total sample are used for the analysis that form a closed loop
in the Lissajous figure Z = I + 1£2. Thus one gets N = f;T as the number of
samples (points that constitute the Lissajous figure) for a simply closed Lissajous
curve, i.e., for exactly one period of the input signal.

The representation for the input and output signals is

K
[(@l) = Ao’ , QUkok, {delt) = ) Age!®H90 - @L1)
k=1

with the amplitudes (Aj) and phases (¢ ) of the output signal to be determined from
the experimental data. Here, Ay is the amplitude and w is the frequency of the input
signal.
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21.3 Data Analysis Using the Lissajous Curve

As already mentioned in the introduction, one of the challenges is to identify the
nonlinearity, which is the principal characteristics of the response of an amplifier
to an input signal. The use of real signals and efforts to disentangle the linear
contributions from the nonlinear ones so far resulted in iterative algorithms only,
where convergence is a crucial issue, so that we resorted to a method that allows
to directly extract the nonlinearity from the experimental data. It is noteworthy that
the usage of the input and output signals only characterizes the present analysis as a
black-box approach, due to the fact that no detail of the electronic circuit was used
to obtain a parameterized form of the amplification of the input signal, and in this
sense, it is not limited to Wiener—Hammerstein block models but may in principle
be applied to more complex signal processing architectures.

The following steps resemble the idea of the identification of the nonlinearity.
First, the experimental data of the input and output signals compose the Lissajous
figure, which may be analyzed in order to get the amplitudes and phase shifts of
the output signal by a data fit procedure. By inspection of the Wiener—Hammerstein
architecture, one observes that upon cancelling the phases, one obtains a representa-
tion of the nonlinearity since only the linear blocks affect the phase shifts. It is worth
mentioning that the use of Lissajous curve is novel in the literature of amplification
profiling, and reconstruction of the nonlinear curve separated from the linear block
contributions was so far not obtained in analytical form.

An infinitesimal line element on the Lissajous curve is then given by

dl as?
dZ = <E + IW) dt = (za)Aoe“‘” - Xk:Akka)e'd’ke'kwt) dr .

In order to separate specific output modes with its associated phase, we use an

integral transform of ‘2 .

dz T T
/ e lmOl gy la)A()/ 6‘l(l—m)wt dt — Z kwAket(bk / et(k—m)wt dt
o dr¢ 0 P 0

= 271 A8 — 2TmA e P, (21.2)

21.4 Amplitudes and Phases

From Eq.(21.2), one derives the equation that is then used to determine the
amplitudes and phases,

T
Apn =1 <A081m —/ Zemtmet dt) e~ (21.3)
0
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which allows to express the amplitudes and associated phases in terms of the
Lissajous data and the known amplitude of the input signal.

1
T T 2
= (s~ [ 220 ) (s~ [ 2 )
0 0

T
= ((Ag — 249 / I(t)cos(wt) + (1) sin(wt) dz) Sim
0

1

T T 2
+ f / Z' ) Z(0)e™ D dr dr)
0 0

The integral with the N Lissajous sampling points may be approximated making
use of the sampling specification and the Riemann sum.

1/T 1’\’2‘:l L g
— Ze MO g — Z(nfy e TN, (21.4)
T Jo N =

where the time interval At = fs_1 is identified with the inverse sampling frequency
and N = Tf;. In the further and for convenience, we introduce the abbreviation
Zy=Z(n f;l) for the Lissajous point at instant t = n fs_1

2 N—-1
Ay ~ (<A5 - 40 Z Lcos(2un/N) + £, sin(Znn/N)) S1m

n=0

N—1N-—1 p ) %
ZZZTZ T=E (21.5)

n=0 p=0

From Egs. (21.3) and (21.4), the phases are computed by

AoSm1 + Im {’N Y z,,eﬂ”%]

[ Z 7 61271”1’\7}

¢,(,i””) = arctan (21.6)

Due to the fact that the arctan function in the function library returns only angles in
the range ¢ € [—7%, 5], one has to identify the correct quadrant of the angle ¢,,.
For completeness We 1nd1cate all cases together with their correct phase value in
Table 21.1 for the calculated value ¢ @), From the last line in the table, one may
understand that for very small amplitudes the calculation of the phases may fail
because of instabilities caused by floating-point arithmetic quantization.
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Table 21.1 Correction to the phase shift depending on the nominator and denominator in the
arctan function in Eq. (21.6)

Nominator | Denominator | Corrected ¢ Nominator | Denominator | Corrected ¢
> i in

=0 >0 Plin) >0 =0 plim) 7
>0 <0 o) <0 =0 Pl — z
<0 <0 o) _ g =0 =0 Undefined

21.5 Numerical Results

Our numerical examples for the Wiener—Hammerstein model presented in Fig. 21.1
were computed with equal band-pass filters i1 and hy. We used for each of
these linear time invariant systems a high-frequency cut at 8000 Hz and a low-
frequency cut at 50 Hz. Experiments were implemented with three different
nonlinear transfer functions: a synthetic input—output signal, the hyperbolic tangent,
and the hyperbolic sine function, respectively. The synthetic signals for the input
are given by I = sin(wt) and for the output in Eq.(21.7). In agreement with
experimental findings for real tube amplifiers, the output signal contains besides the
fundamental frequency also the second, the fourth, and the sixth upper harmonics.
For data acquisition, a sampling frequency was set to f; = 200 kHz, and the input
frequency was w = 2w kHz. The synthetic signal although non-physical was used
to validate the profiling method by the usage of the analytical expressions (21.5) and
(21.6).

. b4 1 . b4 1 . b4 1 . b4
2 = sin(wt — 5) + 5 sin(3wt — E) + 1 sin(Swt — Z) + 3 sin(7Twt — g). 21.7)

The input and output signals of the three transfer functions are presented in Fig. 21.2.
For the proposed method, the signals shall be periodic so that the resulting Lissajous
figure describes a closed curve apart from the initial transient. The curves from
the input versus output signals of the synthetic signal and the two aforementioned
nonlinear transfer functions are presented in Fig.21.3, (a) Synthetic signal, (b)
Hyperbolic tangent response, and (c) Hyperbolic sine response.

Upon inspecting the Lissajous curves, the nonlinear transfer functions are
anything but obvious due to the presence of the phases. Thus, we removed the
filters 4y and h; to reduce the curve to the nonlinear transfer functions and show
consistency of the proposed method. In the case of the synthetic signal, no specific
transfer function was assumed so that we set all the phases of the Eq. (21.7) to zero in
order to obtain the transfer function that generates the relation of the synthetic input
and output signal. The Lissajous curves without phases and the filters influences are
presented in Fig. 21.3 in parts (a) to (f).

From Egs. (21.5) and (21.6), we computed the amplitudes and phases for each
output signal. The spectrum of the output signals is presented in Fig. 21.4, where (a)
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Fig. 21.2 Input with f = 1 kHz and output signals for three different nonlinear transfer functions,
(a) Synthetic signal, (b) Hyperbolic tangent response and (c¢) Hyperbolic sine response

shows the output of the synthetic signal simulation with the harmonics correctly
computed according to Eq.(21.7). Fig