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Abstract Global sensitivity analysis aims to quantify the importance of model
input variables for a model response. We highlight the role sensitivity analysis can
play in interpretable machine learning and provide a short survey on sensitivity
analysis with a focus on global variance-based sensitivity measures like Sobol’
indices and Shapley values. We discuss the Monte Carlo estimation of various
Sobol’ indices as well as their graphical presentation in the so-called FANOVA
graphs. Global sensitivity analysis is applied to an analytical example, a Kriging
model of a piston simulator and a neural net model of the resistance of yacht hulls.

Keywords Interpretable machine learning · Global sensitivity analysis · Sobol’
indices · Shapley values · FANOVA graph · Kriging

1 Introduction

Machine learning is a set of methods that improve automatically through experience,
i.e. it is based on data. Popular machine learning methods are, e.g. support vector
machines (SVMs [2]), artificial neural networks (ANNs) and random forests (RFs).
Machine learning algorithms are increasingly applied in science and business and
have achieved impressive performances in diverse tasks, outperforming humans.
However, for several machine learning algorithms it is hard to tell what the machine
has actually learned from the data. For example, in the case of ANNs, what was
learned is hidden in the weights and biases of the neurons involved. If a machine
learning model performs well, one might simply trust the model and ignore why it
made a certain decision. However, such an attitude goes against human curiosity
and thirst for knowledge. This raises the issue of interpretability [24, 25]. The
straightforward way to achieve interpretability in statistical learning is to use only
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interpretable models. Interpretable models are, e.g. linear models, generalized linear
models [23], generalized additive models [12], decision trees and rules. On the
other hand, model-agnostic interpretation methods are more flexible and can be
applied to any machine learning algorithm. Graphical model-agnostic methods are,
e.g. Partial Dependence Plots (PDP) and Individual Conditional Expectation (ICE)
plots. We suggest to provide model-agnostic methods to evaluate the influence of
different regressors and their interactions by applying methods from the statistical
field of global sensitivity analysis (GSA). Sensitivity analysis is the study of how
the uncertainty in the output of a mathematical model or function can be divided
and allocated to different sources of uncertainty in its inputs [14, 29]. Given any
real-valued function on several variables –whether analytical or given by a black-
box– one wants to know which input variables affect the variability of the function
the most. GSA has proven to be a valuable tool in analysing expensive to evaluate
computer models with a surrogate model, e.g. a Kriging model, build first. Cheng et
al. [3] use support vector regression as surrogate model within GSA, whereas [37]
built a new feature selection approach upon GSA. Like in [4] we suggest to achieve
an understanding and interpretability of, e.g. ANNs, SVMs and RFs by combining
GSA and visualization.

2 Global Sensitivity Analysis

This section reviews sensitivity analysis with a focus on global variance-based sen-
sitivity measures, but we also discuss derivative-based global sensitivity measures
briefly.

2.1 Global Sensitivity Indices

Consider a function f : � ⊆ R
d → R that is square integrable w.r.t. a d-

dimensional product measure μ. The functional analysis of variance (FANOVA)
decomposition (also called Hoeffding-Sobol’ decomposition) of f ∈ L2(μ) is the
unique decomposition

f (X) = f0 +
∑

i

fi (Xi) +
∑

i<j

fi,j (Xi,Xj ) + · · · + f1,...,d (X1, . . . , Xd) (1)

such that E(fI (XI ) | XJ ) = 0 for all J ⊂ I ⊆ [d] := {1, . . . , d}. In particular,
we have E(fI (XI )) = 0 for all ∅ �= I ⊆ [d], see e.g. [6]. Furthermore, this implies
orthogonality of all summands in the decomposition, i.e. E (fI (XI )fJ (XJ )) = 0
for all I �= J ⊆ [d]. The FANOVA decomposition can be computed recursively by
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f0 = E(f (X)), and fI (XI ) = E(f (X) | XI ) −
∑

J⊂I

fJ (XJ ). (2)

Orthogonality allows for an ANOVA like decomposition of the variance of f :

D = V ar(f (X)) =
∑

I⊆[d]
V ar(fI (XI )). (3)

The variance of each term, DI = V ar(fI (XI )), gives a sensitivity index of its
effect. The standardized indices

SI = DI/D (4)

are known as Sobol’ indices [31]. Especially, Sobol’ indices Si = S{i} for individual
variables are referred to as first-order indices and Sij = S{i,j} as second-order
indices. The same holds for the unstandardized versions Di and Dij . Sobol’
introduced the closed sensitivity index to describe the influence of a group of
variables:

Dcl
I =

∑

J⊆I

DJ = V ar(E(f (X)|XI )). (5)

The total sensitivity index by Homma and Saltelli [13] describes the total contribu-
tion of a set of variables including all interactions of any order and is defined by all
partial variances containing at least one of the variables, i.e.

DT
I =

∑

I∩J �=∅
DJ , ST

I = DT
I

D
. (6)

For I = {i}, this total sensitivity index is defined by considering all supersets. An
extension [21] of the concept of superset importance is given by

D
sup
I =

∑

J⊇I

DJ . (7)

In particular, the unnormalized and normalized total interaction indices (TIIs) [9]
are given by

D
sup
i,j =

∑

J⊇{i,j}
DJ and S

sup
i,j =

∑

J⊇{i,j}

DJ

D
. (8)

So, each of these indices characterizes a different aspect of the sensitivity of the
model response to individual input variables or interactions between them.
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2.2 Shapley Values

A similar problem to the FANOVA decomposition has been studied in game theory
and economics, namely the problem of attributing the value created in a team effort
to individual team members. Consider the setting where one can measure the value
val(I) ∈ R created by any subset I ⊆ [d] of the d-member team. In that case
the so-called Shapley values φi are the unique choice that satisfy the following four
natural criteria [30, 36].

1. (Efficiency)
∑d

i φi = val([d]).
2. (Symmetry) val(I ∪ i) = val(I ∪ j) ∀I ⊆ [d] \ {i, j } implies φi = φj .
3. (Dummy) val(I ∪ i) = val(I) ∀I ⊆ [d] implies φi = 0.
4. (Additivity) The game with value val(1) + val(2) has Shapley values φ(1) + φ(2)

with φ(1) = φ(val(1)) and φ(2) = φ(val(2)).

Then the Shapley value of an individual variable is given by

φi = 1

d

∑

I⊆[d]\{i}

(
d − 1

|I |
)−1

(val(I ∪ i) − val(I)). (9)

Shapley values are connected to the FANOVA decomposition by Owen [27]. In
that context, for any subset I of input variables, their combined value val(I) is the
“variance explained” in the FANOVA decomposition. More precisely, the choice in
[27] is val(I) = Dcl

I . Then, using the properties (1) − (4), it can be shown that the
Shapley value is

φi =
∑

I⊆[d],i∈I

DI

|I | (10)

according to Theorem 1 in [27]. The Shapley value does not coincide with any first-
order Sobol’ index, but it is bracketed between the closed and total sensitivity index
[27]:

Dcl
i ≤ φi ≤ DT

i . (11)

A normalized Shapley value may be defined as φ∗
i = φi/D. Because these

indices are comparatively easy to compute, Sobol’ indices provide effectively
computable bounds for the Shapley value. An exact computation of the Shapley
value is computationally expensive because there are 2d subsets of [d], representing
coalitions of variables. Štrumbelj and Kononenko [34] and Song et al. [33] propose
effective algorithms to estimate Shapley values using Monte Carlo sampling.
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2.3 Derivative-Based Global Sensitivity Measures

Based on the work of [32] derivative-based global sensitivity measures (DGSM)
were introduced by Kucherneko et al. [20] as

νi =
∫ (

∂f

∂xi

(x)

)2

dμ. (12)

A normalized DGSM can be defined by ν∗
i = νi/

∑d
j vj . DGSMs are not associated

with a functional decomposition, but they are connected to total sensitivity indices
by the inequality DT

i ≤ C(μi)νi if for the measure μ the Poincare inequality

∫
g(x)2μ ≤ C(μ)

∫
||∇g(x)||2dμ (13)

holds for all centred functions g ∈ L2(μ) with
∫

g(x)dμ = 0 and ||∇g|| ∈
L2(μ). Friedman and Popescu [7] introduced crossed DSGMs, in particular, for
interactions:

νi,j =
∫ (

∂2f

∂xi∂j

(x)

)2

dμ. (14)

Roustant et al. [28] provide an inequality to link crossed DGSMs to superset
importance.

2.4 Estimation of Indices

For analytically tractable test functions, the indices above may be calculated
by evaluating the integrals involved. In general, the function f is not known
analytically and will be treated as black-box function. In Monte Carlo estimation,
we take a high number of n samples x(1), . . . , x(n) from the distribution μ and
approximate the integral by

1

n

n∑

k=1

f (x(k))
n→∞−→

∫
f (x)dμ = E(f (X)). (15)

The approximation is unbiased and convergent with probability one according to
the law of large numbers. For the estimation, we require a representation of the
sensitivity indices that is suitable for Monte Carlo integration. A popular choice
is based on the pick-and-freeze formula Dcl

I = E(f (X)f (XI ,Z−I )) − f 2
0 which
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gives the pick-and-freeze Monte Carlo estimator

D̂cl
I = 1

n

n∑

k=1

f (x(k))f
(
x

(k)
I , z

(k)
−I

)
− f 2

0 . (16)

Here Z is an independent copy of the random variable X, and −I denotes the
complement set [d] \ I . Since, the pick-and-freeze estimator gets a large variance
if f0 is large, other formulas have been suggested that avoid the subtraction of f 2

0
[18, 31]. In particular, the total sensitivity index can be computed using the Jansen
formula DT

I = 1/2E((f (X) − f (ZI ,X−I ))
2).

Computationally cheaper than Monte Carlo estimation, but also slightly biased,
are frequency-based estimation methods. The first frequency-based estimation
method was the so-called Fourier amplitude sensitivity test (FAST) by Cukier et al.
[5]. TIIs can be easily estimated via the relationship with closed sensitivity indices
using pick-and-freeze. Of particular interest is a direct method using the formula of
[21]:

D
sup
i,j = 1

4
E((f (Xi,Xj ,X−{i,j}) − f (Xi, Zj ,X−{i,j}) (17)

−f (Zi,Xj ,X−{i,j}) + f (Zi, Zj ,X−{i,j}))2). (18)

The corresponding Liu-Owen Monte Carlo estimator is unbiased, and it is non-
negative since it is a sum of squares. This implies that if the true TII is zero, then
the estimator is zero as well.

3 Visualizing Interaction Structures by FANOVA Graphs

In this section the FANOVA graph, an intuitive tool to visualize the most valuable
information of the FANOVA decomposition, is introduced [8, 10, 26]. Estimation
and thresholding of FANOVA graphs is discussed, and we apply GSA to a standard
non-linear test function.

3.1 General Idea of FANOVA Graphs

Usually, it is infeasible to look at all 2d − 1 terms of the decomposition of a
function with d input variables individually, and quite often only main effect Sobol’
indices are considered. The primal intention of FANOVA graphs is to overcome
this problem and to visualize the interaction structure contained in the FANOVA
decomposition by a mathematical graph [26]. The so-called FANOVA graph is
defined as a graph G = (V ,E) where each of the d input variables is identified
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by an element of the vertex set V = {1, . . . , d}. An edge is included in the edge set
(i, j) ∈ E iff there exists a superset J ⊇ {i, j } such that fJ (XJ ) �= 0. That is, the
pair of input variables (Xi,Xj ) has a non-zero two-way interaction or is involved
in a higher order non-zero interaction. Equivalently an edge (i, j) is not in G iff all
Sobol’ indices SJ = 0 for J ⊇ {i, j }. This is exactly captured by a non-zero TII,
i.e. S

sup
i,j �= 0.

A FANOVA graph can be further enhanced by displaying the thicknesses of
each edges (i, j) proportional to the strength of the TII of the two involved input
variables. In the same way, each vertex i can be displayed by circles with lines
proportional in strength to the main effect Sobol’ index Si .

Let us consider the so-called Ishigami function which is frequently used for
illustrating sensitivity analysis [16]. The function, given by

f (X1,X2,X3) = sin(X1) + 7 sin2(X2) + 0.1X4
3 sin(X1), (19)

depends on three input variables (X1,X2,X3) and obviously contains a non-linear
interaction between X1 and X3 (see Fig. 1c). For this test function Sobol’ indices
can be computed analytically. Assuming a uniform distribution on [−π, π] for each
input variable, analytical calculation of the FANOVA decomposition and Sobol’
indices gives us the following values

D1 = 4.346, D2 = 6.125, D3 = 0, D12 = 0, D13 = 3.374, D23 = 0, D123 = 0.

(20)

This leads to the following first-order Sobol’ indices and normalized TIIs

S1 = 0.314, S2 = 0.442, S3 = 0, S
sup

12 = 0, S
sup

13 = 0.244, S
sup

23 = 0. (21)

Figure 2 shows a bar plot and the FANOVA graph displaying the Sobol’ indices
and TIIs for the Ishigami function. Main effect stands for the normalized first-order
Sobol’ indices and interaction is the difference between the scaled total sensitivity
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Fig. 1 3d-plots for the Ishigami function. (a) f (X1, X2, 0). (b) f (0, X2, X3). (c) f (X1, 0, X3)
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Fig. 2 Bar plot and FANOVA graph displaying Sobol’ indices and TIIs for the Ishigami function.
(a) Bar plot. (b) FANOVA graph

index and the Sobol’ index. From the FANOVA graph it becomes immediately
obvious that the input variable X2 has the highest impact on the response, followed
by X1. Also, the interaction between X1 and X2 is easily detected.

In summary, FANOVA graphs visualize both first- and second-order GSA. First-
order analysis in the sense of detecting the inputs Xi for which Si is very small
or even zero. Second-order in the sense of looking at pairs of input variables
and detecting influential interactions and their strength, i.e. the pairs {i, j } with
S

sup

i,j > 0.

3.2 Estimation and Thresholding

In practice, Si and S
sup
i,j are usually not analytically available and replaced by

estimates Ŝ
sup
i,j and Ŝi . Moreover, we often even apply GSA not to the actual black-

box model but a meta-model or surrogate model of it. Then, estimates are typically
not exactly equal to zero even if the “true” or analytically calculated sensitivity index
would be. The resulting graph becomes confusing and uninformative. Therefore,
edges (i, j) may be included into the graph only if

Ŝ
sup

i,j > δ (22)

for some small threshold δ, e.g. δ = 0.01 [26]. The computation of the FANOVA
graph has been implemented in the R package fanovaGraph, providing several
estimation methods as well as a thresholding functionality [8, 10].

To exemplify, let us now assume that we cannot analyse the Ishigami function
analytically. Based on a random Latin hypercube design with 100 design points, we
build a Kriging model of the Ishigami function. Our Kriging model has the usual
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Table 1 Sobol’ indices (first
order) and TIIs for the
Kriging model of the
Ishigami function

Ŝi φ̂∗
i ŜT

i Ŝ
sup
i,j

X1 0.300 0.447 0.603 X1X2 0.008

X2 0.391 0.406 0.420 X1X3 0.273

X3 0.009 0.148 0.285 X2X3 0.010

1

2

3

(a)

1

2

3

(b)

Fig. 3 Fanova graphs without and with thresholding for the Kriging model of the Ishigami
function. (a) Fanova graph. (b) Fanova graph with threshold δ = 0.025

Matern 5/2 covariance structure, no trend and no nugget effect. Table 1 shows the
results for the estimators of the first-order Sobol’ indices Ŝi , normalized Shapley
values φ̂∗

i and TIIs Ŝ
sup
i,j of the Kriging model. These estimators have been computed

using the R packages fanovaGraph [10] and sensitivity [15]. Remember
that the inequalities

Scl
i ≤ φ∗

i ≤ ST
i (23)

hold and that Scl
i = Si , which is reflected by the order of the values in Table 1.

Comparison also shows that the estimates slightly deviate from the true values given
above.

Figure 3 displays on the left hand side the resulting pure FANOVA graph. This
is a complete graph as all estimated TIIs are different from zero, even if only
slightly. Therefore, we threshold the values by δ = 0.025 and gain the graph
on the right hand side, which is the same as for the analytical evaluation of the
Ishigami function. The TII’s and the FANOVA graph help to discover an underlying
block-additive structure of the function f , i.e. we can find a decomposition into
cliques of input variables such that variables in different cliques do not interact.
As outlined in [26], the detected interaction structure by the FANOVA graph can
be a valuable aid in constructing block-additive Kriging models. Therefore, the
fanovaGraph package also contains methods for block-additive Kriging analysis.
The block-additive decomposition provided by the FANOVA graph can also be used
in a parallelized global optimization procedure [17].
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4 Fields of Applications

The interpretation of a machine learning model by global sensitivity indices and
FANOVA graph is in general applicable to any kind of model with a continuous
response variable. We show examples of a Kriging model of a piston simulator and
an ANN of resistance of sailing yachts.

4.1 Kriging Model of a Piston Simulator

As an example for the application in the field of the design and analysis of computer
experiments we are using the piston simulator from the mistat package in R
[1], first presented in [19]. A piston is moving within a cylinder. The piston’s
performance is measured by the time it takes to complete one cycle, in seconds.
Here, we take the mean of 50 cycles as response, since the cycle time of the piston
fluctuates strongly. The following factors can affect the piston’s performance. The
ranges, in which these factors are varied uniformly in our sensitivity analysis, are
given in brackets.

m The impact pressure determined by the piston mass (30–60) [kg].

S The piston surface area (0.005–0.020) [m2].

V0 The initial volume of the gas inside the piston (0.002-0.010) [m3].

k The spring coefficient (1000–5000) [N/m3].

p0 The atmospheric pressure (9 · 104 − 11 · 104) [N/m2].

T The surrounding ambient temperature (290–296) [K].

T0 The filling gas temperature (340–360) [K].

Based on a random Latin hypercube design with 70 design points, we build
a Kriging model of the piston simulator. The Kriging model has a Matern 5/2
covariance kernel, no trend and no nugget effect. Table 2 shows the results for the
Sobol’ indices (first-order and total) and the Shapley values of the piston simulator.
The slightly negative value for, e.g. φ̂∗

6 is of course an artefact of the estimation
method. We observe that the piston surface X2 = S and the spring coefficient
X4 = k have the largest effect on the cycle time.

Figure 4 displays the FANOVA graph for the Kriging model of the piston
simulator after thresholding by δ = 0.005.

In Fig. 4a both the edges as well as the vertices of the graph are presented by
lines proportional to the values of the respective indices. It becomes obvious that
X2 = S and X4 = k have the highest impact, followed by X1 = m. However, as
the values of the TIIs are noticeably smaller than the first-order Sobol’ indices, it is
not possible to detect which interactions are the largest. Therefore, in the FANOVA
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Table 2 Sobol’ indices for
the Kriging model of the
piston simulator

Sobol’ Ŝi Shapley φ̂∗
i Total Sobol’ ŜT

i

X1 0.109 0.091 0.103

X2 0.375 0.416 0.423

X3 0.062 0.069 0.082

X4 0.353 0.401 0.414

X5 −0.000 0.014 0.003

X6 −0.002 −0.009 0.007

X7 0.026 0.018 0.036

1
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7

(a)

1

2

3

4

5

6

7

(b)

Fig. 4 FANOVA graph with threshold δ = 0.005 for Kriging model of the piston simulator. (a)
FANOVA graph. (b) FANOVA graph (only TIIs displayed)

graph in Fig. 4b we only vary the edges in strength proportional to the values of the
TIIs. The largest TII is observed for the interaction X2X4 = Sk with Ŝ

sup
2,4 = 0.033.

4.2 Neural Net Model of Resistance of Sailing Yachts

The residuary resistance of a ship is its total resistance minus the viscous resistance.
In this section we are studying the residual resistance of sailing yachts in depen-
dence of their hull geometry and the yacht velocity.

The Delft systematic yacht hull series data set [11] comprises 308 = 22 ·
14 experiments with yacht models of scale 6.25 performed at the Delft Ship
Hydromechanics Laboratory. In total, 22 different hull forms were tested with
14 different velocities. Based on the Delft series, semi-empirical models were
developed [11] which are widely used in the yacht industry [22]. The Delft data
set has 6 regressors and one dependent variable, all of which are dimensionless, i.e.
their unit is 1 or % or �. Let the weight displacement � be the weight of water
equivalent to the immersed volume of the hull. Then the dependent variable is the
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ratio Rr/� of the residuary resistance Rr to the weight displacement, given in �.
The independent variables are as follows.

X1 The longitudinal centre of buoyancy (LCB) is the longitudinal distance, given
in % of some characteristic length, from a point of reference (often midships)
to the centre of the displaced volume of water.

X2 The prismatic coefficient Cp = ∇/LWLAm with Am the cross-sectional area
of the underwater slice at midships. Cp displays the ratio of the immersed
volume of the hull to a volume of a prism with equal length and cross-sectional
area Am.

X3 The length-displacement ratio LWL/∇1/3 where the volume displacement ∇
is the volume of water displaced by the hull.

X4 The beam-draught ratio BWL/T where the draught T is the maximal distance
from the water line to the bottom of the keel.

X5 The length-beam ratio LWL/BWL is the ratio of length to maximal width at
water line.

X6 The Froude number Fr = u/
√

gLWL. Here u is the flow velocity relative to
the yacht, g the gravitational acceleration, and LWL is the length of the hull
at water line.

We train a single hidden layer ANN to learn the relationship between input and
output variables in the Delft data set. Such ANNs are implemented in the nnet
package in R [35]. For regression, we choose an ANN with a linear activation
function to the output neuron. The data set is divided into training, validation and
testing subsets, containing 50%, 25% and 25% of the samples, respectively. The
hyperparameter to be tuned is the number n of neurons in the hidden layer. We
choose the ANN with lowest validation error, i.e. highest R2-value for the validation
data. That is according to Table 3 an ANN with 8 hidden neurons, i.e. a 6-8-1 net
with 6 · 8 + 8 = 56 weights and 8 + 1 = 9 biases.

For the chosen ANN as black-box function we perform a GSA. We compute
the Sobol’ indices as well as the scaled TIIs using the Liu-Owen method with
n = 100, 000 Monte Carlo samples with the help of the fanovaGraph package in R.
Table 4 displays these sensitivity indices with the following coding of the regressors
X1 = LCB, X2 = Cp, X3 = LWL/∇1/3, X4 = BWL/T , X5 = LWL/BWL and
X6 = Fr . The Sobol’ indices and scaled TIIs are graphically displayed in the bar
plot in Fig. 5a.

Table 3 R2 values for trainings, validation and test data for ANNs with different number of hidden
neurons

m 2 3 4 5 6 7 8 9

R2
train 0.9969 0.9992 0.9991 0.9998 0.9997 0.9998 0.9998 0.9997

R2
valid 0.9972 0.9970 0.9859 0.9989 0.9985 0.9969 0.9990 0.9988

R2
test 0.9962 0.9943 0.9939 0.9971 0.9924 0.9954 0.9957 0.9970
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Table 4 Sobol’ and Shapley
values for the neural net
model

Sobol’ Ŝi Shapley φ̂∗
i Total Sobol’ ŜT

i

X1 0.024 0.020 0.142

X2 0.006 0.042 0.037

X3 0.033 0.022 0.071

X4 0.028 0.163 0.237

X5 0.021 0.031 0.087

X6 0.591 0.722 0.688
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Fig. 5 Bar plot and FANOVA graphs without and with thresholding for the ANN model. (a) Bar
plot of first-order and total Sobol’ indices. (b) FANOVA graph. (c) FANOVA graph with threshold
δ = 0.025 (only TIIs displayed)

Figure 5 displays the FANOVA graph for the ANN model with and without
thresholding. The Froude number, a proxy for velocity, has by far the largest impact
on the residuary resistance. The largest interactions are X1X4, X4X6 and X1X6.

5 Summary

We have discussed the usefulness of GSA as a tool for interpretable machine
learning. Global sensitivity indices based on Sobol’ indices, Shapley values as
well as derivative-based global sensitivity measures are revisited. FANOVA graphs
allow for a very intuitive visualization of interaction structures and the strength
of first-order Sobol’ indices and TIIs. The approach is exemplified with a Kriging
meta-model for a piston simulator and an ANN model for the resistance of yachts.
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