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Abstract In the context of production metrology, the field Predictive Quality
develops methods based on statistics and machine learning to predict quality
characteristics from process data. In prior work, conventional machine learning
methods such as feed-forward neural networks have been successfully applied. Yet,
an uncertainty quantification for the prediction is not provided. Therefore, it is
not possible to prove the suitability of the applied predictive quality methods for
quality inspections. However, we can estimate the uncertainty by taking a Bayesian
perspective and utilizing suitable algorithms.
Here we definePrediction of Quality Characteristics (PQC), which is the foundation
for every Predictive Quality application. We extend our definition of PQC into a
general Bayesian framework to interpret predicted quality characteristics. As an
example, we show how Bayesian neural networks are applied to PQC to estimate
the uncertainty of every prediction. We interpret the results in the industrial context
and determine the suitability of the PQC method.
Our results demonstrate that the application of Bayesian methods is highly promis-
ing to get Predictive Quality recognized in industry as an accredited method for
quality inspections.
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1 Prediction of Quality Characteristics

As Industry 4.0 strategies are rolled out progressively, process data is becoming
accessible in large amounts. The available data offers engineers and scientist
innumerable opportunities to analyze and improve production processes. Some
exemplary applications are predictive maintenance and process mining [23]. The
research field Predictive Quality describes the user’s ability to optimize product and
process-related quality characteristics by using data-driven forecasts as a basis for
actions to be taken [5]. The foundation for all predictive quality applications is the
prediction of quality characteristics (PQC).

The prediction those characteristics can be regarded as a virtual inspection
process, as it replaces a physical inspection.

In conventional physical inspection processes for determining product quality, a
specific operation (e.g., measuring or gauging) is used to decide whether a quality
characteristic meets a pre-defined requirement. In order to make this decision, it is
checked whether the considered quality characteristic lies within previously defined
specification limits.

Since every inspection process is subject to uncertainties (e.g., due to the
uncertainty of the underlying measurement process), the decision whether the
characteristic meets the requirement is also uncertain. Due to the uncertainty of
inspection results, an erroneous decision is possible. Characteristics that are within
the specification limits are rejected (α-error), and characteristics that are outside the
specification limits are accepted (β-error). Both errors entail technical, economic,
and legal consequences. To reduce the risk of a wrong decisions, the limits of
conformity are narrower than the specification limits to account for the uncertainty
of the inspection process (e.g., the measurement uncertainty). To guarantee a
product within the specification limits, the process variance, the variance of the test
process, and the specification limits must be aligned according to DIN EN ISO
14253-1 (see Fig. 1) [41].

In order to consider an inspection process as suitable, it must be ensured that the
quotient of uncertainty of the inspection process U and tolerance of the considered
quality characteristic T does not exceed a certain threshold. This threshold value
is defined differently in various standards and guidelines (see MSA [18], VDA5
[40], ISO 22514-7 [42]). As a rule of thumb, the golden rule of metrology states
that the ratio U/T should not be greater than one-tenth to one-fifth [28, 39]. To
deploy PQC in industry, the suitability of the (virtual) inspection process must be
guaranteed. Hence, the uncertainty of the underlying model must be quantified.
The determination of the uncertainty of a model is a typical example from the
mathematical field of Uncertainty Quantification [37].

Uncertainty Quantification (UQ) focuses on the quantitative characterization of
uncertainties in both real and computer-based applications. UQ methods are used to
quantify the probability of certain results if some or all input variables are uncertain.
A mathematical model is used to describe the system’s behavior extracted from
the measured data. UQ problems are divided into two classes: forward uncertainty
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Fig. 1 Limitation of the specification range due to measurement uncertainty according to ISO
14253-1 (see [28, 41])

propagation and inverse uncertainty quantification. Forward uncertainty propagation
aims to estimate the different sources of uncertainty, acting on a model to predict
an overall uncertainty of the system response. Inverse uncertainty quantification
involves estimating the so-called bias correction (i.e., the discrepancy between the
measured value and the model) and unknown parameters of the model [6, 37].

In PQC, we estimate the parameters for a given model structure from data. The
data used for parameter estimation are usually measurement data and, therefore,
affected by uncertainty [28]. For a given model structure and some data, the
objective is to minimize the model prediction’s uncertainty by setting the parameters
appropriately. The determination of uncertainty in the field of predictive quality can,
therefore, be considered an inverse uncertainty quantification problem by definition
[37].

2 Definition of Prediction of Quality Characteristics

We first define PQC in a deterministic way before introducing a Bayesian per-
spective. The definition is provided for a single product in discrete manufacturing.
Thus, the index i ∈ N identifies a unique part of one product type. With minor
modifications, the definition of PQC can be extended to the process industry. The
foundation for any machine learning (ML) application is a sufficient database. In
the case of PQC it contains the quality characteristics and the process data on a
per-part basis. PQC is an inverse problem, as we want to infer a function H from
some infinite-dimensional function space predicting the quality characteristics from
process data [37].
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We define process data and quality characteristics before constructing a database
and deriving the resulting inverse problem.

Definition 1 The process data xi for part i is generated by m ∈ N sensors, where
the readings of every sensor sj 0 ≤ j < m are given as a function of time sj : T −→
S with t ∈ T ⊂ R

+. Accordingly the process data is modelled by xi : T −→ Sm

with xi(t) := [s0(t), . . . , sm(t)]T .

Definition 2 The measurements of the quality characteristics yi ∈ R
n for part i are

given by n ∈ N measurements, where every measurement vl 0 ≤ l < n is a fixed
value yi := [vl]T .
In comparison to the process data xi we assume that the quality characteristics are
time-invariant—or measured only once. Based on Definitions 1 and 2 the data for a
unique part i is given by the tuple (xi, yi). Hence, we denote D := {(xi, yi)} (0 ≤
i < k) the database for a given PQC application with k ∈ N entries.

Given the database D we want to determine the parameters w ∈ W of the
mapping Hw with

yi = Hw(xi) ∀(xi, yi) ∈ D. (1)

Thus, the inverse problem has become a parameter estimation problem, which is
usually ill-posed [37]. A common approach is the computation of a least-squares
solution:

argmin
w

||yi − Hw(xi)||2D. (2)

Note here that some kind of regularization usually improves the solution as noise in
the data is considered [37]. The presence of noise in the data motivates the expansion
of this deterministic interpretation of the parameter estimation using a Bayesian
perspective.

The measurement of a quality characteristic is subject to measurement uncer-
tainty; thus, it is better represented by a random variable. All sensor readings are also
subject to measurement uncertainty and hence – to preserve the time dependency–
interpreted as a stochastic process, which we define as follows:

Definition 3 Let u(t, ω) : T × � −→ S be a stochastic process, where t ∈ T ⊂ R
+

and ω ∈ �. Here � is the sample space of the probability space (�,F, P ) with F
being a σ -algebra and P a probability measure.

Accordingly we give the definitions of process data and quality characteristics in the
Bayesian sense:

Definition 4 The process data X is generated by m ∈ N sensors, where the sensor
readings uj 0 ≤ j < m are given by a stochastic process. Accordingly the process
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data is modelled by X : T × �m −→ Sm with X(t, ω̄) := [uj(t, ωj )]T where
ω̄ := [ωj ]T .

Definition 5 The measurements of the quality characteristics Y : �n −→ R
n are

given by n ∈ N measurements, where every measurement vl 0 ≤ l < n is a random
variable Y (ω̄) := [vl(ωl)]T where ω̄ := [ωl]T .

Based on Definition 4 and 5 the data of a single part i is given by (xi, yi), where
(xi = X(·, ω̄i ), yi = Y (·, ω̄i )) is a realization of (X, Y ). Taking a Bayesian point of
view, Eq. (1) introduces the conditioned random variable Y |X,w and the solution to
the inverse problem is the conditioned random variable w|D [37]. The parameters
can be determined with maximum likelihood estimation (MLE) as

wMLE = argmax
w

logP(D|w) = argmax
w

∑

i

logP(yi |xi,w) (3)

or by introducing a prior P(w) on the parameters and finding the maximum a
posteriori (MAP) parameters

wMAP = argmax
w

logP(w|D) = argmax
w

logP(D|w) + logP(w). (4)

Example 1 Let the product have n = 2 quality characteristics, and the total amount
of sensors on the involved machinery be m = 3. Then the databaseD is constructed
from Table 1. For sensor j = 0 there are two readings, for sensor j = 1 there is
one reading and for sensor j = 2 there are three readings. We append all sensor
readings into a single vector x ∈ R

6. The same procedure applies to the quality
characteristics, which form the vector y ∈ R

2.
Assume that Hw(x) := wx = y is a linear operator with w ∈ R

2×6, then the
least-squares solution ŵ according to Eq. (2) is

ŵ ≈
(−12.92 −89.1 1.69 3.35 −3.17 24.28

0.93 0.12 −0.002 0.04 0.002 −0.16

)
. (5)

Table 1 Database entries for
an exemplary predictive
quality application

xi yi

Part i 0 1 2 0 1

0 [0.49, 0.4] [29] [3.7, 3.7, 3.8] 100.1 0.02

1 [0.52, 0.39] [27] [3.6, 3.8, 3.9] 98.99 0.03

2 [0.5, 0.42] [30] [3.7, 3.6, 3.8] 100.2 0.03

3 [0.49, 0.37] [29] [3.6, 3.7, 3.7] 100.01 0.028

4 [0.52, 0.4] [27] [3.6, 3.2, 3.9] 100 0.03

5 [0.51, 0.42] [30] [3.5, 3.6, 3.8] 99.4 0.031
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3 State of Uncertainty Quantification for Predictive Quality

The formal proof of suitability requires a determination of the measurement uncer-
tainty. We present the results of our literature review regarding the prediction of
quality characteristics and on uncertainty quantification in (deep) machine learning.
The UQ methods are designated keystones to provide a measurement uncertainty
for PQC applications.

Current State of Predictive Quality The quality of product depends on the
interaction of the individual production steps and the condition of the compo-
nents/machinery and material characteristics. Due to the increasing complexity in
production processes, the number of interactions between individual processes is
rising. Further, the increasing individualization of products leads to a significant
increase in process variance [5].

To improve the understanding of products and processes in production engineer-
ing, data analytics methods are used to extract information from data and derive
actions based on this information [15, 35]. In this sense, data analytics describes the
steps of data investigation, data understanding, and knowledge acquisition, which
aim to uncover new relationships within the production process [11]. There are
many different methods for the implementation of this decision support, starting
with statistical methods up to complex machine learning models, which differ
in their application and depend on various factors such as purpose, expertise,
and available resources. Data analytics methods can be categorized as descriptive
analytics, diagnostic analytics, predictive analytics, or prescriptive analytics. The
categories can be seen as steps in the data analysis, which partly rely on each other
[26].

Considering the categories, PQ focuses on the application of predictive analytics
to determine product quality based on process data [5]. Besides considering
data from different process steps, existing information on intermediates and the
individual assembly can also be taken into account. This enables a comprehensive
optimization of the production process.By including data from product usage, the
fulfillment of customer requirements can be increased [16, 36].

In recent years, the use of ML algorithms for PQC has been investigated in a
manifold of applications. Especially the use of neural networks has shown potential
for predicting quality characteristics, as they are capable of mapping and detecting
complex cause-effect dependencies while the user is not required to contribute a
high amount of expert knowledge [28, 34]. For example, Chen et al. used a back-
propagation neural network algorithm and the Taguchi method for quality prediction
in plasma-enhanced chemical vapor deposition for semiconductor manufacturing
already in 2007 [12]. Ogordnyk et al. introduce a neural networks approach for
PQ in the injection molding process. The task here was to classify the product
quality based on 18 machine and process parameters [30]. Baturynska et al. describe
a prediction model for selective laser sintering. They use neural networks to
predict the deviation of manufactured parts in three dimensions depending on their
orientation and positioning in the 3D printer [3].
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The examples have in common that a model is set up to predict quality charac-
teristics without quantifying the model’s uncertainty. Thus, no proof of suitability
is obtained, making the use as an inspection tool in an industrial environment
challenging. There are, however, machine learning methods which can be used to
quantify the uncertainty of the model. These are introduced in the following.

Uncertainty Quantification in (Deep) Machine Learning In the rise of (deep)
machine learning since the 2010s, the importance of UQ has been underestimated in
the scientific community. As adoption of ML progresses in industrial and consumer
applications, safety and security regulations make some types of UQ necessary:
verification, robustness, and interpretability [13]. Verification of a ML system
provides formal guarantees about its behavior [8, 33, 44]. The robustness (i.e., the
reaction to novel/noisy data) is highly relevant for industrial applications, as self-
learning robots, and consumer applications, as autonomous vehicles [10, 27, 32].
Interpretability is another active field, where researchers try to understand why an
ML system behaves a certain way [31]. We argue that verification and robustness
are a form of UQ and that at least a subset of interpretability can be classified as
UQ. In all cases, uncertainty in the model or the data are investigated.

Uncertainty in the data and the model are studied using Bayesian approaches
since 1989. Early examples of Bayesian learning and Bayesian approaches to neural
networks are [25] and [22]. In the 1980s, data sets were significantly smaller than
today, and computational power was expensive. Since, the definition of UQ has been
significantly expanded. Sullivan et al. consider the treatment of all uncertainties in
real and computer-based applications [37]. Especially in the simulation community,
where finite element and finite volume methods and their variants are commonly
used, UQ did not gain traction until the early 2000s [43]. This was mainly due
to the curse of dimensionality and the lack of computational power to perform
the simulations for all parameter sets to be investigated [4]. The development of
improved methods (e.g., sparse collocation) opened novel possibilities to overcome
the curse of dimensionality and explore large parameter spaces efficiently [37].

In deep learning, there are three main movements for UQ [9]. There is Concrete
Dropout [14]. The dropout rate becomes a learnable parameter, and nodes are
dropped during the evaluation. Thus, a sample from a posterior distribution is
generated from a single neural network by randomly omitting a certain percentage
of neurons in each layer at each evaluation. This method is an extension to Dropout,
which is used as a regularizationmethod to prevent overfitting during model training
[19]. Secondly, Deep Ensembles, as introduced in [24], are more sophisticated
than Concrete Dropout. Depending on the algorithm’s variant, multiple neural
networks are trained with different initializations and on different data subsets. At
the evaluation, the outputs of all the neural networks are interpreted as samples
from a posterior distribution. If we expand the number of models to infinity,
we converge to Bayesian Neural Networks (BNN). For a BNN, the weights of
each layer are represented by a probability distributions [17]. These networks are
evaluated by sampling multiple times from the posterior distributions. In [20] a
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different classification is discussed, which takes other approaches into account that
do not apply to PQC.

BNN are capable of representing aleatoric uncertainty (e.g., variability in the
data) and epistemic uncertainty (e.g., model neglecting effects or missing data)
via the posterior distribution [7]. This is a crucial feature for PQC applications
as by Definitions 4 and 5 we have (commonly) unknown uncertainty in our data
and no indication whether an employed model structure is sufficiently expressive.
Even though we have seen successful applications of neural networks to PQC (cmp.
[3, 12, 30] and more), assumptions regarding the structure or the hyperparameters
of the models may be inherently flawed. BNN are successfully applied to various
disciplines as physics [38], civil engineering [1], and others [2, 21, 45]. The BNN
have shown excellent results, not only on theoretical toy problems (cmp. [7]) but in
real world applications. Thus, we focus on BNN given their benefits and apply them
to production engineering, and in particular to PQC.We demonstrate briefly howwe
apply BNNs to PQC, when predicting a quality characteristic ŷ from process data
x̂.

The (posterior) predictive distribution of the unknown value ŷ for the test item
x̂ is given by P(ŷ|x̂) = EP(w|D)

[
P(ŷ|ŷ,w)

]
. The unknown distribution P(w|D)

can be rewritten using Bayes’ theorem:

P(w|D) = P(D|w)P (w)

P (D)
, (6)

where P(w) is the prior on the weights, P(D) is a normalizing constant, and
P(D|w) is the likelihood of observation. To enable PQC in industrial settings,
the predicted distribution P(ŷ|x̂) requires a small variance σ 2. However, this is
not a specific goal of training a BNN since this method aims to approximate the
distribution based on the given data. Hence the ambitions of quality engineers and
mathematicians are not necessarily aligned.

There is not yet a consensus on how to quantify the quality of uncertainty
quantification. Standard measures for a good fit of the posterior are the average
marginal-log-likelihood, the prediction interval coverage probability, or the mean
prediction interval width. However, Yao et al. show that these measures depend on
the inference method used to determine the posterior distribution; we refer to [46]
for a discussion of this matter.

Interim Conclusion As detailed above, ML algorithms are successfully applied
to PQC applications. In special use cases, we even see deployments in industrial
applications even though uncertainties are not considered. Further, we established
that UQ essential part for PQC and almost all other ML applications outside of
laboratories.

To accomplish the overall goal to certify PQC methods as an inspections process,
the application of UQ on PQC methods is imminent. We focus our upcoming
research on BNN, as we see them as the most comprehensive and expressive
method.
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4 Application of Bayesian Neural Networks to the Prediction
of Quality Characteristics

We apply a BNN to an injection molding process of a thin-walled thermoplastic
part. In expert interviews, 14 process parameters (e.g., tool temperature, cycle time,
pressure) were identified, each of which is recorded with one sensor. Hence, the
machine provides m = 14 sensors for process data. We focus on n = 1 quality
characteristic, i.e., a length of the exemplary part with a nominal value of 72.6
mm. The database D was generated using a full-factorial design of experiments
(DoE), where machine settings are explicitly varied, with k = 600 experiments.
The measurements of the quality characteristic were performed on a coordinate-
measuring machine, whose suitability was proven by a Gage R&R Study (MSA) in
advance [29].

The data quality is excellent, as it was manually verified during the recording
and before model training. All sensors and the quality characteristic are scaled to
the interval [0, 1] to facilitate efficient model training. The original scaling is used
for the interpretation in the industrial context in Sect. 4.1.

We use a feed-forward neural network with two hidden layers and leaky ReLU
activation functions. The first hidden layer has four nodes, while the second hidden
layer has two nodes. The second layer’s output is used to parametrize a normal
distribution N(μ, σ ): the first node is interpreted as the mean μ, while the second
node is understood as the variance σ .

Comparably to [7], we use a prior P(w) on our weights w and fit a posterior
P(w|D). A prior is placed on the weights Pt (w) = ∏

j N(wj |tj , σp) where
N(x|μp, σp) is the Gaussian density evaluated at x with mean μp and variance
σp. The prior is learnable as the means tj are fitted during training, while σp = 1 is
fixed. We use a Gaussian variational posterior with trainable mean and variance.

The network is trained for 1250 epochs with a learning rate of 0.001 using the
Adam optimizer. The other hyperparameters of the optimizer are the default values.1

For the loss L we use the sum of the Kullback–Leibler divergence from both hidden
layers and add the negative log-likelihood:

L = KL1 + KL2 + Eq1(w1|θ1),q2(w2|θ2) [logP (w|D)] . (7)

Here KLi = KL [qi(wi |θi)||P(wi )] where i = 1, 2 indexes the hidden layers
and θi are the parameters of a distribution on the weights. We keep the notation
according to [7] and refer the interested reader for details. The loss L over the 1250
epochs is given in Fig. 2. After plateauing for about 1000 epochs, a final drop occurs
over another 200 epochs before optimal performance is reached.

We train the BNN on 540 data points (≈ 90%) and randomly select 60 (≈ 10%)

points for the evaluation.We sample the trained BNN 5000 times for each evaluation

1 https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam.
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Fig. 2 Loss L during the training with 1250 epochs
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Fig. 3 Quality characteristic y1 (blue) with a box plot of the prediction Hw(x) based on 5000
model evaluations for 15 samples from the test data set

point to generate as many pairs (μi, σi) for the parametrized normal distribution.
Figure 3 depicts the meansμi in a box plot for the first 15 evaluation points and give
the results for the first 10 as tabular data in Table 2. The actual quality characteristics
y1 are given in blue in the box plot for comparison. The mean absolute error (MAE)
between the mean of means 1

5000

∑5000
i=0 μi and the actual value y1 is ≈ 0.1814.

In relation to the size of the data set, this is a reasonably low MAE. In Fig. 3 only
sample i = 7 is an outlier regarding the mean of means. A more extensive data set
would allow more rigorous training of the BNN and yield a better MAE.We provide
code and the scaled data set in our GitHub repository.2

2 https://github.com/predictive-quality/bnn-example.


 -108 4378 a -108 4378 a
 
https://github.com/predictive-quality/bnn-example


UQ Based on BNN for Predictive Quality 263

Table 2 Quality
characteristic y1 with the
mean prediction E [Hw(x)]
and the variance of the
prediction V [Hw(x)] after
the training

y1 E [Hw(x)] V [Hw(x)]

0.30239546 0.2830744 0.00976317

0.48470376 0.43315677 0.00700909

0.30063383 0.27861683 0.00965479

0.15363564 0.1343955 0.00571805

0.49191045 0.5456889 0.00547123

0.35253981 0.356259 0.00638528

0.30983144 0.296187 0.00978199

0.32386012 0.26562449 0.00686061

0.51326475 0.51090966 0.00551332

0.35963779 0.36319379 0.0046631

Table 3 Quality
characteristic y1 with the
mean prediction E [Hθ(x)]
and the variance of the
prediction V [Hθ(x)] after
transformation to the original
scale

y1 E [Hθ(x)] V [Hθ(x)]

72.15644055 72.1800606 0.01459118

72.33991666 72.402933 0.01047518

72.15099116 72.177907 0.0144292

71.97468018 71.9982013 0.0085457

72.47748751 72.4117432 0.00817683

72.24590892 72.2413622 0.00954288

72.17247074 72.1891511 0.01461932

72.13510798 72.2063012 0.01025328

72.43496978 72.4378489 0.00823973

72.25438673 72.2500395 0.00696906
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Fig. 4 Quality characteristic y1 (blue) in its original scale with a box plot of the prediction Hw(x)

based on 5000 model evaluations for 15 samples from the test data set

4.1 Interpretation in the Industrial Context

For the industrial practitioner, the raw results of the BNN need further interpretation.
Primarily, we have to restore the original scaling to evaluate the PQC in context.
In Table 3 and Fig. 4 the predicted values are restored to their original scaling. It
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is notable how the variance decreases after the rescaling. This does not indicate a
better model performance but is rather due to the dependency of variance on the
mean. Similarly, the MAE decreases to ≈ 0.0641.

To prove the suitability for this virtual inspections process, the golden rule of
metrology according to which the ratio U

T
of the uncertainty of measurements U to

tolerance T shall not be greater to one-tenth to one-fifth [39]. For our example, we
can interpret the 2σ -interval γ of Hw(x) as the uncertainty of measurement. Then
with V [Hw(x)] < 0.0167:

γ = 2
√
V [Hw(x)] ≤ 0.258. (8)

Given T = 0.6 and choosing U = �γ 	, we derive
U

T
≤ 0.258

0.6
= 0.43

!≤ 0.2. (9)

Thus, based on this conservative estimate of the uncertainty of measurement, this
BNN is not suitable as an inspection process. However, the following aspects need
further consideration:

• Using a more advanced inference method (e.g., Hamiltonian Monte Carlo) can
better approximate the posterior and generate more favorable results regarding
the suitability.

• As the database was generated by a DOE, the process variation is deliberately
high. This is in stark contrast to a real production environment, where the
variation is usually low, and process capability is ensured.

• The size of the database is relatively small compared to the number of trainable
parameters (≈ 210) in the BNN.

• The hyperparameters have a significant influence on the performance of the
BNN. Deliberate, application-specific manual tuning or the use of AutoML-
methods could guarantee proof of suitability.

Overall, we are certain that BNN are a well-suited method for PQC, but we
openly acknowledge that more research is necessary before adopting industrial
applications.

Furthermore, for a formal evaluation of the suitability, the measurement uncer-
tainty must be determined by an approved procedure as the GUM or the VDA 5 (see
[39] for details). However, none of these procedures considers algorithms based on
process data. Many aspects from physical inspection procedures are transferable
to PQC, yet some error sources (e.g., numerical concerns) are not addressed. As
the adoption and development of PQC methods progress, the process to determine
suitability will be extended as well.
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5 Concluding Remarks

We identified the prediction of quality characteristics as the fundamental foundation
of every predictive quality method. To give a framework for future research, we
provided a formal definition of prediction of quality characteristics. Further, we
established PQC as a virtual inspection process, which can complement and/or
reduce costly physical inspections. For every inspection process, a proof of suitabil-
ity is necessary, which requires the determination of the measurement uncertainty
of the underlying method. Hence we added a Bayesian perspective to our definition
to PQC, to consider model- and data-inherent uncertainties.

Based on our literature review, we reason that existingmachine learningmethods,
as BNN, can provide an adequate uncertainty estimation. The uncertainty estimates
are a decisive keystone to establish PQC as a virtual inspection process and permit
proof of suitability. As a showcase, we applied a BNN to an injection molding
process and give several hints on how to improve the uncertainty estimate for
future applications. To facilitate adoption in industry, we advocate for a revision of
standards as the VDA5 or the ISO 22514-7 to accommodate for virtual inspection
processes.
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